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“The lessons of mathematics are simple ones and there are no
numbers in them: that there is structure in the world; that we
can hope to understand some of it and not just gape at what
our senses present to us; that our intuition is stronger with a
formal exoskeleton than without one. And that mathematical
certainty is one thing, the softer convictions we find attached
to us in everyday life another, and we should keep track of the
difference if we can.”

J. Ellenberg, [Ellenberg, 2014]





Summary

Networked Control and Estimation Under Restrictions on
Channel Capacity

Wireless communication technologies are omnipresent in the modern world
and hence, there are plenty of examples from the control engineering field in-
volving dynamical systems interacting via communication technologies. The fact
that most current-day wireless communication technologies rely on packets im-
plies that they suffer from several limitations/drawbacks: limited packet size,
limited packet sending rate, and packet losses.

The typical structure of most problems pertaining to dynamical systems and
communication technology interactions is as follows: one or several dynamical
systems, or the components thereof are connected via communication channels.
The systems are subject to a source of uncertainty (a source of uncertainty can
be noise, parametric uncertainty, perturbations, sensitivity to initial conditions).
This source of uncertainty generates information that needs to be transferred via
the communication channel. In order to solve the underlying control/observation
tasks, it is necessary to design specific communication strategies that deal with
the limitations and drawbacks of communication technologies. This thesis pro-
vides several such communication strategies, each for a different combination of
drawbacks and sources of uncertainty.

The first result is for the remote observation of a nonlinear dynamical sys-
tem over a communication channel which is subject to losses. The goal is to
reconstruct online estimates of the state of a system at a remote location whilst
using as few bits per unit of time as possible. A solution, in the form of a com-
munication protocol, consisting of several interacting devices, is designed. The
communication protocol is designed such that it functions even in the presence
of losses in the communication channel.
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Consensus for a network of agents, which communicate over data-rate con-
strained communication channels is the second result. Each agent consists of a
nonlinear discrete-time dynamical system, which determines its dynamics, and
is equipped with a smart sensor (a device capable of measuring the state and
performing some computations) and a controller. All agents are interconnected
through data-rate constrained channels. The smart sensor and controller of
each agent are placed at locations remote from one another such that the smart
sensor and controller need to use the communication channels as well. By ex-
changing messages, the sensors and controllers should steer the agents so that
they achieve a particular type of consensus. Three different designs of smart
sensors, controllers, and communication protocols that achieve this feature are
presented, each with an increasing degree of interaction between the agents. For
each protocol, a theorem providing conditions on the sufficient minimal data
rates to implement them is presented. The protocols are tested on various ex-
ample networks of dynamical systems, for which the theoretical bounds on the
rate are compared to the rates observed in simulations.

The third result is an event-triggered data-rate constrained observation
scheme for a perturbed continuous-time Lipschitz-nonlinear dynamical system.
The system is connected to a remote location by means of a communication
channel that can only send a limited number of bits per unit of time. The goal
is to provide estimates of the state of the system at the remote location whilst
respecting the communication channel capacity constraint. The developed so-
lution uses an event-triggered mechanism to reduce the average data rate. For
this solution, abound on the minimum channel capacity is provided. This actual
rate resulting from the implementation is tested through simulations.

The fourth result consists of a remote data-rate constrained observer for
a single discrete-time Lipschitz-nonlinear dynamical system which is governed
by an external signal and subjected to bounded state perturbations and mea-
surement error. The objective is to provide estimates of the state at the remote
location by sending messages via a data-rate communication channel and to limit
the bandwidth usage of the communication. A solution in the form of several
interacting agents is proposed. This solution makes use of an event-triggering
mechanism to reduce bandwidth usage. A theoretical maximum communication
rate is computed. This theoretical rate is then compared to the actual commu-
nication rate by means of simulations on several dynamical systems.

The final result of the thesis is an observer that is experimentally validated
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on unicycle-type TurtleBot mobile robots. A specific event-triggered data-rate
constrained observer is designed. The theoretical maximum rate is computed
and then compared to the actual rate in experiments, which confirms the effec-
tiveness of the designed communication protocol.





Résumé

Contrôle et estimation sous contraintes de capacité de
communication

Les technologies de communication sans fil sont omniprésentes dans le monde
moderne et, de fait, il existe pléthore d’exemples du domaine de l’automatique
impliquant des systèmes dynamiques qui interagissent via des technologies de
communication. Le fait que la plupart des technologies de communication
actuelles reposent sur des envois d’informations regroupées en paquets implique
qu’elles souffrent de plusieurs limitations et revers : taille de paquets limitée,
vitesse d’envoi de paquets limitée et pertes de paquets.

La structure typique de la plupart des problèmes ayant attrait aux interac-
tions entre les systèmes dynamiques et les technologies de communication est
la suivante : un ou plusieurs systèmes dynamiques, ou leurs composantes, sont
connectés par le biais de canaux de communication. Les systèmes sont affectés
par une source d’incertitude (une source d’incertitude peut être du bruit, de
l’incertitude paramétrique, des perturbations ou bien de la sensibilité aux con-
ditions initiales). Cette source d’incertitude génère de l’information qui doit
être transmise via le canal de communication. Afin de résoudre les tâches de
contrôle/observation sous-jacentes, il est nécessaire de développer des stratégies
de communication spécifiques qui gèrent les limitations et revers des technolo-
gies de communication. Cette thèse propose plusieurs de ces stratégies, chacune
pour une combinaison différente de limitations et sources d’incertitude.

Le premier résultat concerne l’observation à distance d’un système dy-
namique non linéaire via un canal de communication qui est sujet à des pertes.
Le but est de produire, en temps réel, des estimations de l’état d’un système
distant, en envoyant aussi peu de bits par unité de temps que possible. Une so-
lution est développée sous la forme d’un protocole de communication constitué
de plusieurs appareils interagissants. Ce protocole de communication est ima-
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giné de façon qu’il fonctionne même en cas de pertes de paquets dans le canal
de communication.

Le deuxième résultat est le consensus d’un réseau d’agents qui communiquent
via des canaux de communication avec contraintes de données. Chaque agent
est constitué d’un système dynamique, qui détermine son comportement, et
est équipé d’un capteur intelligent (un appareil capable de mesurer l’état du
système ainsi que d’effectuer des calculs simples), ainsi que d’un contrôleur.
Les agents sont interconnectés via des canaux de communication limités en
termes de données transmissibles. Les capteurs intelligents et contrôleurs de
chaque agent sont placés à des endroits éloignés l’un de l’autre et ils doivent
donc également utiliser les canaux de communication pour communiquer entre
eux. En échangeant des messages, les capteurs et contrôleurs doivent mener les
systèmes à une forme de consensus particulière. Trois conceptions différentes de
capteurs, contrôleurs et protocoles de communication sont développées, chacune
avec un niveau croissant d’interaction entre les agents. Pour chaque protocole, le
taux de transmission minimal suffisant est calculé. Les protocoles sont testés sur
divers réseaux de systèmes dynamiques, pour lesquels le taux de transmission
minimal est comparé au taux de communication observé pendant des simula-
tions.

Le troisième résultat est un observateur à évènements discrets avec con-
traintes de données pour un système en temps continu non-linéarités lipschitzi-
ennes. Le système est relié à un lieu distant par le biais d’un canal de communi-
cation qui ne peut qu’envoyer des quantités limitées de bits par unités de temps.
Le but est de produire des estimations de l’état du système à distance tout en
respectant la contrainte de transmission du canal de communication. La solution
développée utilise un mécanisme d’évènements discrets afin de réduire le nom-
bre moyen de communications. Pour cette solution, une borne sur la capacité
minimale de transmission nécessaire est calculée. Le réel taux de transmission
résultant de l’implémentation de ce protocole de communication est testé via des
simulations.

Le quatrième résultat consiste en un observateur pour système en temps dis-
cret avec non-linéarités lipschitziennes, perturbations et signal de commande.
L’objectif est de produire des estimations de l’état en envoyant des messages via
un canal de communication tout en limitant l’utilisation de bande-passante. Une
solution est proposée sous la forme de plusieurs appareils interagissants. Cette
solution fait usage d’un mécanisme d’évènements discrets pour réduire l’usage de
la bande passante. Le maximum de bande passante théorique nécessaire est cal-
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culé. Ce maximum est alors comparé, via des simulations sur plusieurs systèmes
dynamiques, au taux résultant de l’implémentation du protocole de communi-
cation.

Le dernier résultat est un observateur qui est validé expérimentalement sur
des TurtleBots, qui sont des robots mobiles de type unicycle. Un observateur
avec contraintes de données est développé spécifiquement pour ce type de robots.
Le taux de communication maximum est calculé et ensuite comparé au taux réel
via des expériences, qui confirment l’efficacité du protocole de communication
développé.
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Chapter 1

Introduction

1.1 General Introduction

1.1.1 Historical Context

Communication plays a central role in what makes us humans. Sending messages
over long distances has always been challenging and throughout history, human-
ity has used many different ways to achieve this: fires, smoke signals, beacons,
drums, mail, telegraph, or even pigeon posts. On June 21st, 1880, two scientists
made an invention that would later revolutionize the modern world. Alexander
Graham Bell and Charles Sumner Tainter transmitted a voice telephone mes-
sage wirelessly over 213 meters by converting an audio signal into a light signal
which was then received by another light to audio converter ([Hutt et al., 1993]).
Thus was born the photophone. At that time, they could not possibly imagine
the importance that wireless communications would have nowadays. Yet, 150
years later, it is virtually impossible to imagine what the world would look like
without wireless communications. Wireless communications are everywhere and
used every day. Whether it be through radio waves, Bluetooth, Wi-Fi, 4G, 5G,
or some other technologies, most people use multiple devices that rely on wire-
less technologies several times per day.

Since the mathematical field of control is a field that finds applications in
many different areas of the modern world, it was massively impacted by the
technological revolution that wireless communication has brought. Twenty years
ago, Richard Murray and his co-authors ([Murray et al., 2003]) already observed
that:
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Figure 1.1: Illustration of the photophone’s transmitter, as invented by Bell and
Tainer in 1880. Source: [Guillemin, 1885]

“The advent of ubiquitous, distributed computation, communication, and
sensing systems has begun to create an environment in which we have
access to enormous amounts of data and the ability to process and com-
municate that data in ways that were unimagined 20 years ago.”

and nowadays, systems and control and communication technologies cannot
be separated from one another, as was demonstrated in [Lamnabhi-Lagarrigue
et al., 2017]:

“...Systems & Control is at the heart of the Information and Communi-
cation Technologies to most application domains”

There are many examples of applications where dynamical systems and com-
munication technologies are mixed, among them, we note: lunar base construc-
tion ([Brooks et al., 1990]), cooperation of mobile robots ([Eustace et al., 1993],
[Arai and Ota, 1996]), payload transportation ([Johnson and Bay, 1995]), dis-
tributed sensor networks ([Sinopoli et al., 2003]), formation control ([Olfati-
Saber and Murray, 2002, Eren et al., 2002, Vidal et al., 2003]), flocking ([Vicsek
et al., 1995, Reynolds, 1987, Toner and Tu, 1998]), communication of underwater
vehicles ([Awan et al., 2019, Hamilton et al., 2020]),. . .

When faced with a situation where a dynamical system is mixed with com-
munication technology, one might think that both problems can be treated sep-
arately: leave the control to the control engineer and the communication to the
telecommunication engineer, but as [Nair et al., 2007] emphasised:
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“In engineering systems with large communication bandwidth, it makes
sense to treat communication and control as independent functions, since
the analysis and design of the overall system are simplified. However,
recent emerging applications ... have begun to challenge the validity of
this modular approach.”

To obtain the best results, it is thus necessary to consider situations where
control problems are intertwined with communication problems and to tackle
the particular challenges due to these interactions ([Richard and Divoux, 2007]).

1.1.2 Drawbacks of Communication Technologies

Since the sixties, most communication technologies rely on packets to send in-
formation, as opposed to relying on a continuous flow of bits ([Davies, 2001]).
The reason for the usage of packets is that it allows several devices to use the
same communication channel at the same time, which is a valuable property.
There are however some inherent drawbacks due to package-based communica-
tion. These are ([Bemporad et al., 2010, Heemels et al., 2010]):

1. Limited packet size: all technologies rely on packet sizes to be limited,
this implies that every message only contains a finite number of bits. The
number of different messages that can be sent at any given time is thus
finite;

2. Limited transmission rate: the number of packets that can be sent per unit
of time is restricted, this can be due to the design of the communication
technology, or the fact that several devices share the same communication
medium;

3. Packet losses: some packets might be sent but not received on the other
side of the communication channel, because of faulty communication de-
vices, or interferences;

4. Packet corruption: due to technical problems, or interference, the content
that is received by the receiving device might not have the same informa-
tion content as the one that was sent. In the case of interference, if the
intent is malicious, the issue is related to cyber-physical security issues;

5. Latency: there is a delay between the time when the packet is sent, and
it is received. The latency may be due to scheduling protocols, which
alternate between the different users of the communication medium, or
simply due to physical reasons (e.g., when the communication agents are
moving). This may even result in packets arriving in a different order than
they were sent in.
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The drawbacks can be split into two parts: limitations on rate/network conges-
tion (points 1, 2, and 5), and disturbances (points 3 and 4). It has been observed
that network congestion causes perturbations, in the sense that it increases the
risk of packet losses, packet corruption, and transmission delays ([Granelli et al.,
2007]). By reducing the network usage, one also reduces the chances of pertur-
bations. Limiting the packet transmission rate is also important for all wireless,
battery-powered objects (sensors, actuators) for which the energy consumption
is an issue. For this reason, focusing on either limited packet sizes, or limited
packet sending rates, or both should be the main focus when tackling the prob-
lems related to mixing dynamical systems and communication technologies.

1.1.3 Sources of Uncertainty

If there are drawbacks to using communication technologies, one might ask:
“Why is it necessary to communicate?” and “What information needs to be
transmitted?”. The answer lies in the structure of the problems that involve the
technologies. The first component of these problems is distance (as in distance
that separates two locations) which cannot be covered other than by using com-
munication technologies. The second component has to do with some missing
information and pertains to the concept of a source of uncertainty.

Regarding the first component: in some applications, (mobile robots, aircraft,
platooning/automated driving, underwater vehicles, drones, Mars rovers,. . . ),
due to the nature of the applications, a physical connection is not possible. If
communication is necessary, then the only solution is to use wireless communica-
tion devices. The distance component is not sufficient to require communication,
as there should also be a source of uncertainty.

A source of uncertainty is an abstract concept that is used to represent
something that generates uncertainty. If there no uncertainty, meaning that
everything about the connected agents is either known in advance, or can be
predicted, there is no need to communicate, even if there is distance (uncer-
tainty is information, see [Shannon, 1948], more on that later). The reason is
that in the absence of uncertainty, one can entirely predict the behaviour of the
connected agents by simply using the known information. In the case of dynam-
ical systems, uncertainty manifests itself in several ways. Sources of uncertainty
mainly come from the absence of an accurate, deterministic model. Mathemat-
ical constructions are always a simplification of reality and in control science,
the model one has in mind is an interpretation, constructed from some (real or
virtual) data for the purpose of solving some control problem. This means that,
despite its necessity for the design step, every model contains uncertainties, in
an irreducible way. For a given structure of a dynamical system, those uncer-
tainties can be mainly regrouped in the following classes, each illustrated with
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a basic example:

1. Parametric uncertainty : the dynamical system has some parameters which
may vary over time and/or be unknown. Example ([Hill, 1886]):

ẋ(t) =

[
0 1

−f(t) 0

]
x(t),

where f(t) is a time-varying parameter. Depending on f(t), the system
may show periodic and bounded solutions, or it might be unstable ([Teschl,
2004]). If f(t) is not known in advance, predicting the state is not possible,
and hence, this forms a source of uncertainty.

2. Perturbations/Noise: the dynamical system’s state/output is affected by
noise or perturbations. Example ([Meier et al., 1967]):

x[k + 1] =

[
1 1
0 1

]
x[k] +

[
0.5
1

]
u[k] + w[k],

y[k] = x[k] + v[k],

where w[k] and v[k] are Gaussian white noises. Because the state is per-
turbed by a perturbation and the measurement is corrupted by a noise,
it is not possible to reconstruct the state exactly from the measurements.
Since there is no damping in the state-transition matrix (it has two eigen-
values equal to 1), the state perturbations can be accumulated over time,
which forms a source of uncertainty.

3. Sensitivity to initial conditions: The system present a high sensitivity to
initial conditions (e.g., the system has multiple equilibria or chaotic behav-
ior), while its initial state is uncertain. Example: the Hénon map1,([Henon,
1976]):

x1[k + 1] = 1.4 + 0.3x2[k]− x1[k]2

x2[k + 1] = x1[k]

with x[0] = x0 and ‖x0‖ ≤ 1. This dynamical system exhibits chaotic be-
haviour ([Strogatz, 1994]). A small difference in initial conditions can re-
sult in large differences in state-space trajectories, simply due to the chaotic
nature of the system’s dynamics. If the initial condition is unknown, it is
not possible to predict the state-space trajectories of the system.

Sources of uncertainty all share the common feature that there is additional in-
formation necessary to be able to determine the state of the system in real-time.

1This example will be studied in Chapter 3, where the data rate constrained consensus of
a network of Hénon maps is considered.



6 Chapter 1. Introduction

Sources of uncertainty are particularly relevant in the context of communication
systems and that is why they have been immediately discussed in the 1948 pa-
per: A Mathematical Theory of Communication by Claude Shannon ([Shannon,
1948]). In this paper, the author very appropriately depicts the fundamental
problem of communication as “reproducing at one point either exactly or ap-
proximately a message selected at another point”. He then observes that the
meaning a message possesses very much depends on the physical or conceptual
entity that the message is related to. The messages are always selected from a
set of possible messages, each having a separate meaning, which can be inferred
from the particular situation. The number of different possible messages is of
course related to the complexity of the physical or conceptual entity that the
messages are related to. If the number of messages is finite, then “this number
or any monotonic function of this number” can be used as a measurement of
the amount of information that is sent, every time one message is issued.

As was previously exposed, sources of uncertainty make the system’s be-
haviour unpredictable in some situations, which means that more information
is required to accurately determine its state. The variety of messages to accu-
rately describe the state of the system is thus greater. Also, the “larger” the
uncertainty, the “larger” the set of all possible messages to describe the system
affected by the source of uncertainty. Sources of uncertainty are thus directly
related to the amount of information that is sent in problems that mix both
dynamical systems and communication technologies.

In conclusion, here is how one could describe the common features of all chal-
lenges arising from mixing dynamical systems and communication technologies:

One or several devices, which are modelled as dynamical systems or com-
ponents thereof, are placed at locations that are remote from one another.
These locations are connected only by means of communication technolo-
gies. One or several sources of uncertainty generate information in the
sense of [Shannon, 1948]. The task at hand is to find efficient commu-
nication strategies to deal with both the drawbacks of the underlying
communication technologies and the sources of uncertainty.

1.1.4 Time Domains and Measurement Devices

Before we provide an overview of the existing results in the literature, it is neces-
sary to briefly discuss the matter of the time domain over which the underlying
dynamical system operates and how this is related to measurement devices.

Based on the equations that describe them, plenty of dynamical systems can
be put into one of the following categories: continuous-time systems, discrete-
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time systems, and hybrid systems (Hybrid systems are “dynamical systems whose
evolution depends on a coupling between variables that take values in a continuum
and variables that take values in a finite or countable set”, [van der Schaft and
Schumacher, 2000]). Generally speaking, what equation is used to describe a
process depends on several factors including: the nature of process that the
system describes, which part of the process the system should replicate, what the
system’s equation will be employed for (simulation, control, ...), and what classes
of systems are widely used. Examples for each category of systems include:

� (Continuous-time system): The causal relation of input (electrical voltage)
and the output (angular velocity) of a DC motor can be described by the
following electro-mechanical system ([Zaccarian, 2005]):

Lẋ1(t) = −Rx1(t)− kex2 + u(t)

Jẋ2(t) = kMx1(t)− bMx2(t),

where x1 is the current, x2 the angular velocity of the rotor, u the input
voltage, and L, R, ke, J , kM , and bM are positive motor constants. This
system operates over a continuous time domain.

� (Discrete-time system): A Verhulst process is a discrete-time system which
describes the evolution of a population that has access to a limited resource
([Murray, 2002]):

x(k + 1) = rx(k)

(
1− x(k)

K

)
,

where x(k) is the population at time k and r and K are positive constants.
The evolution of a population is the change over a continuous time frame
of a discrete variable (number of individuals). However, because of the
lack of a system paradigm operating over such domains (discrete state,
continuous time domain), the Verhulst process is modelled as a continuous
variable operating over a discrete time domain (discrete-time system).

� (Hybrid system): A bouncing ball can be modelled as a hybrid system
consisting of a differential equation which describes the free movement of
the ball in between impacts and an impact rule which describes the impact
of the ball ([van der Schaft and Schumacher, 2000]):

ẍ(t) = −1,

ẋ(τ+) = −eẋ(τ−),

where t is the time τ− and τ+ are the jump instants, x(t) is the position
of the bouncing ball and e is positive constant. This system operates both
over a a continuous time domain and a discrete-time domain.



8 Chapter 1. Introduction

Note that some processes, such as the aforementioned bouncing ball, can be
modelled in several ways (the bouncing ball system is sometimes also modelled
as a discrete-time system, see [Tufillaro et al., 1992] for example).

Although it is possible to discretize continuous-time systems ([Lewis, 1992])
to transform them into discrete-time systems, it is often not advisable to do so
as this can result in losses of precision (depending on the discretization method
that is employed). Because the equations that describe discrete-time systems,
continuous-time systems, and hybrid systems are very different, results that hold
for one type of system generally need thorough reformulation to apply to the
other type of systems and can sometimes require much more mathematical ef-
forts to hold. In this thesis, results are developed for continuous-time systems
and discrete-time systems.

As was mentioned earlier, modern communication technologies are intrinsi-
cally discrete-time processes: packets are sent with information at specific in-
stants and in between packets nothing happens. When a continuous-time system
or hybrid system is connected with a communication channel, there is thus auto-
matically a problem of incompatibility of the time domain on which both entities
operate (continuous time domain versus discrete communication instants). For
discrete-time systems, another problem can occur: “what if the sampling times
of the system are different from the communication instants?”

For all three types of systems, there is the need for a tool that operates
the transition between different time domains. Such tools are often referred to
as samplers. Samplers measure the full state of a system at specific discrete
time instants. The simplest example of a sampler is an analog-to-digital con-
verter ([Lathi and Ding, 2018]). Initially, samplers were designed such that the
sampling occurs at equally spaced out instants of time but in more recent times,
samplers have been based on events occurring, rather than based on time passing
([Tarbouriech et al., 2017]). More on this event-based approach in a subsequent
section. The sampling tool can sometimes be a part of a device that measures
the state of the system, which is called a sensor. In that case, the output of
the system is possibly not the full state but rather some mapping of part of the
states taken at discrete time instants. In classic (unconstrained) control theory,
an observer is then used to reconstruct the state based on this output (on the
condition that the system is observable). Another possibility with sensors is that
they measure the full state corrupted by some measurement noise. In that case,
a state estimator is generally used to obtain estimates of the uncorrupted state.

Problems involving dynamical systems and communication technologies
sometimes assume full state measurement ([Liberzon, 2003a, Savkin, 2006]),
sometimes output measurement ([Fradkov et al., 2006, Postoyan and Nesic,
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2012]). Noise is sometimes also considered ([Matveev, 2008]). In the follow-
ing section, many different results will be discussed. The terms remote observer
and remote state estimator are sometimes used, even in the case of noiseless
full state measurement ([Matveev and Pogromsky, 2016]). This terminological
inaccuracy is due to the fact that even with noiseless full state measurement, it
is not always possible to reconstruct estimates of the state at a remote location,
to which the system is only connected via a communication channel. Regarding
the problem of reconstructing remote estimates, it should be noted that in the
literature, the terms observer and state estimator are sometimes used despite the
absence in the developed solutions of what classically understood as an observer
or a state estimator, simply because of the absence of better terminology.

1.1.5 Brief Overview of Solutions to Communication Lim-
itations for Dynamical Systems

This section is dedicated to exploring the solutions that have been developed
in the literature so far. As was previously mentioned, when handling prob-
lems related to combining dynamical systems and communication technologies,
the main focus is on dealing with the limiting properties of the communication
technology: the limit on the package transmission rate, the limited size of the
packets, and latency. Although the latency problem is extremely relevant in
current days (these lines are written only a few days after the landing of the
Mars Rover: Perseverance), discussions on latency are outside of the scope of
this thesis. The focus shall hence be put on the transmission rate and package
size problems. From these two issues, it is possible to sort the works in this field
into three categories: works that deal with the limit on the transmission rate,
works that deal with the limit on the size of the packets, and works that tackle
both problems at the same time.

1.1.5.1 Limit on the Transmission Rate

The fact that packets are used to communicate necessarily implies that in be-
tween two packets, no new data is available. The rate at which packets arrive
thus determines how often new information is available about the dynamical
system. For control engineers, this limitation gives rise to a phenomenon called
sampling. Consider for example the problem depicted in Figure 1.2. One should
design a controller for a plant where instead of having continuous-time measure-
ments of the state x(t), only measurements x(tk), sampled at instants tk are
available. Depending on the sampling rate (which, in the periodic case, is the
frequency at which the sampling instants tk occur), the design of a controller
might simply be impossible: for example if the sampling frequency is too low,
then the measured signal might not capture the dynamics of the system properly,
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which makes it impossible to design a stabilizing controller.

Figure 1.2: Example of a setup of a control problem involving sampling.

Such sampling problems are extremely common for digital control systems.
One can find a wide array of results that were already obtained in the eighties in
[Isermann, 1981]. A solution that naturally occurs when dealing with sampling
problems is simply to impose that the sampling frequency is “high enough.”
In the case of communication technologies, however, this strategy is not always
viable. What happens when the maximum sampling capacity of the system is
reached and it is still not enough to achieve the control objective? What about
network congestion? As was exposed earlier, high utilization of the communi-
cation technologies leads to higher network congestion, which in turn leads to
perturbations. A solution to this problem appeared at the end of the nineties,
in the form of event-triggered sampled-data control, which is also referred to as
event-driven and event-based control.

The simplest description of event-driven/event-based sampled-data control
is ([Åarzén, 1999]):

“In an event-based system it is the occurrence of an event rather than
the passing of time, that decides when a sample should be taken.”

At its essence, event-based sampled-data control is a technique where processes
that normally occur after a certain amount of time has passed, instead only
occur when certain events happen. Various alternatives have been inspired by
this idea of managing the sampling instant in an event-based, non-periodic way.
In [Fiter et al., 2015], the authors list the following four types of “dynamic
sampling control”:

� event-triggering;

� self-triggering;

� periodic event-triggering;

� state-dependent sampling.

In all these cases, the continuous state system is subject to an event-based
sampled-data control. For a general introduction to event-triggered control,
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one can refer to [Heemels et al., 2012]. Early notable results in event-triggered
control include [Åarzén, 1999], which developed an event-triggered PID con-
troller, with the objective in mind to reduce the CPU utilization of the PID con-
troller, by using an event-driven approach and [Åström and Bernhardsson, 1999]
which compared time-driven sampling with event-driven sampling for various
configurations involving linear systems (it was later proved in [Asadi Khashooei
et al., 2018] that (periodic) event-triggered control can strictly outperform time-
triggered control in this case). [Heemels et al., 1999] is also relevant for its
development of a solution for master/slave synchronization of two motors by
using time-driven and event-driven strategies. The common point of all of these
papers is that they proved that event-driven control offered a promising alter-
native to time-driven control.

In [Yook et al., 2002], bandwidth is mentioned as the main motivation for the
implementation of an event-triggered solution, which makes this paper particu-
larly relevant in the context of this thesis. A framework for distributed control
systems is developed where estimators are used at each node to estimate the
values of the outputs and these outputs are then used in an event-triggered fash-
ion: if the difference between the actual state and the estimated state exceeds
a certain threshold value, a new estimate is broadcast over the network to all
other nodes. In that work, local computation capacity is traded for bandwidth:
by equipping each node with an estimator capable of performing computations,
the overall required communication capacity is increased, but the benefit is that
the network usage is reduced. Another paper, [Tabuada, 2007] develops event-
triggered control and stabilization of nonlinear systems for which a continuous-
time control law already exists (this is the principle of the emulation technique,
see also [Omran et al., 2016]). This work is mentioned because the authors pro-
vide conditions such that so-called Zeno behaviour is avoided. Zeno behaviour
([Ames et al., 2005]), named after the Greek philosopher Zeno of Elea’s Zeno’s
paradox, is a problem that occurs with event-driven control, where there exists
an infinite number of triggering instants in a finite time interval. Regarding
[Tabuada, 2007] and the conditions to avoid Zeno behaviour, in [Donkers and
Heemels, 2012], the authors prove that the conditions dot not hold for arbitrarily
small perturbations or in the case of output feedback control (see also [Borgers
and Heemels, 2014] for more details). In [Fiter et al., 2012], the authors de-
velop a state-dependent sampling control with an offline computation of regions
of the state-space to trigger the control, which participates in alleviating the
computational load of the online algorithm. We finally mention [Henningsson
et al., 2008] because it presents an event-triggered controller for linear first-order
stochastic systems, which is an example of a work that tackles noise, one of the
three main sources of uncertainty for dynamical systems and [Fiter et al., 2015,
Omran et al., 2014, 2016, Dolk et al., 2017] for the development of robustness
conditions for perturbed systems (both linear and nonlinear cases are treated in
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these works), again relating to one of the three sources of uncertainty.

For an overview of results on event-driven control, one can refer to [Garcia
et al., 2010], [Miskowicz, 2016], and [Hetel et al., 2017]. We conclude with the
following remark on the importance of event-driven control:

Event-driven control has extensively been used in sampling problems to
space out consecutive sampling instants, which contributes to alleviating
the load on the underlying communication technologies. In a more gen-
eral context (i.e. with or without feedback loops), event-driven commu-
nication forms an important part of the solutions to problems involving
dynamical systems and communication technologies.

1.1.5.2 Limit on the Packet Size

All packet-based communication relies on sending packets, that is, messages
consisting of a certain number of bits, in which data is encoded. A portion
of these bits is typically reserved for protocol-specific information (information
such as: who is sending the packet, who is it meant for, security confirmation
bits,. . . ) while the rest of the bits can freely be assigned. Let us thus consider
the following example: a certain communication protocol allows for 4 physical
bits to be sent at each communication. How many different messages can be
sent based on these four bits? Logically, 24 = 16, so 16 different messages. Note
that in some sense, not sending a message constitutes a form of communication
as well, and hence, one could consider that 17 different messages can be sent,
by using and an extra “virtual” bit (which corresponds to no message being
sent). For the remainder of this thesis however, we will not consider this pos-
sibility and hence n bits always imply that 2n different messages can be encoded.

What if one has to use this communication protocol to transmit estimates of
the state of the following dynamical system (logistic map2, [May, 1976])

x[k + 1] = λx[k](1− x[k]),

to a remote location, with the initial state known only to be in a certain set
(x[0] ∈ [0, 1]), and λ = 3.56995? Is it possible to reconstruct an estimate x̂[k] of
the state, with an arbitrarily small estimation error? A very basic answer would
be that since it is possible to send 16 different messages and since the state x[k]
remains within the set [0, 1] for all initial conditions [Strogatz, 1994], one might
simply partition the set [0, 1] into 16 equidistant intervals, and simply transmit
the sequence of bits corresponding to the interval in which the state currently is

2This example will be studied in Chapter 3, where the data rate constrained consensus of
a network of logistic maps is considered.
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at each instant, to provide an estimate with precision 0.03125. This is however
not a strategy that allows one to have arbitrarily small estimation errors since
the estimation error cannot be reduced below 0.03125 unless one uses more bits
to communicate or a different communication strategy. More on this problem,
later in this thesis.

Figure 1.3: Example of a quantizer which maps real numbers to integers.

This example, and many other examples related to limits on the packet size,
are better known in the control community as quantization problems. At its
essence, quantization is the mathematical problem of mapping a variable that
takes continuous values, to a discrete set. Figure 1.3 depicts an example of a
simple quantizer, where numbers are mapped to the first preceding integer num-
ber (also known as the floor function).

Quantizers are devices or mappings constituted by a union of several quanti-
zation regions, which all correspond to a unique quantization value. The union
of all quantization regions is called the quantization range. The quantizer maps
all values laying inside a quantization region to the quantization value of that
region. Depending on the chosen quantizer, the size of the quantization regions
can be the same for all regions, or it can vary. Quantization policies can be static
(memoryless) or dynamic (see definitions and references in [Ling and Lemmon,
2005]). The size of the regions determines the maximum quantization error when
a point lies within the quantization range. If a point lies outside of the quan-
tization range, it is generally mapped to the quantization value of the closest
quantization region but the error is then typically very large. The quantization
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error, and hence the precision of the quantizer is particularly important since it
can have permanently destabilizing effects when it interacts with a control law
that would have otherwise stabilized the system, as was shown in [Delchamps,
1990]. Other relevant works on the effects of quantization include [Montestruque
and Antsaklis, 2007] which considers the effects of quantization in the case of
linear systems with parametric uncertainty and [Nesic and Liberzon, 2009] where
the authors use a Lyapunov function approach to tackle quantization problems
for nonlinear systems.

The number of quantization regions is sometimes assumed to be infinite,
in which case the quantization range is often infinite as well. Although this
property is extremely valuable to avoid large errors when the quantized variable
lies outside of the quantization range, for communication problems, such an as-
sumption is not realistic. Indeed, to send a message which contains a quantized
measurement, it is necessary to send a message which uniquely determines one of
the quantization regions. To uniquely determine each quantization region, sev-
eral bits should be sent, the number of which is proportional, up to a log term
to the number of quantization regions. If the number of quantization regions
is infinite, then the number of bits required to communicate is infinite as well,
which is impossible. To cope with the fact that a finite number of quantization
regions should be used, whilst maintaining a quantization region large enough
that the quantized variable does not lie outside of it, quantizers with dynamic
ranges are used. This solution was suggested in [Brockett and Liberzon, 2000],
[Liberzon, 2003b], and [Liberzon and Nešić, 2007]. It consists of using a zoom-
in/zoom-out procedure, where the size of the quantization regions depends on
a parameter that is tuned online. The quantization range is thus adapted to
always ensure that the quantized variable lies inside of the quantization range,
whilst providing a low quantization error.

We conclude this section on quantization with the following remark:

Quantization is an essential component of any problem involving com-
munication technologies and dynamical systems. A good quantization
algorithm guarantees a small quantization error whilst using as few quan-
tization regions as possible, to reduce the load on the communication
technology.

1.1.5.3 Combined Approach

In the two previous subsections, it was observed that limits on the transmis-
sion rate and the packet size correspond to sampling problems and quantization
problems respectively. When both problems are tackled simultaneously, there



1.1 General Introduction 15

are two possible approaches. The first approach is to still consider both prob-
lems separately and to combine individual solutions to both problems into one
solution. This is the approach followed, among others, by [Liberzon, 2003a, Li
et al., 2012, Liu and Jiang, 2015, Li et al., 2016, Tallapragada and Cortes, 2016,
Tanwani et al., 2016, Li et al., 2017, Liu and Jiang, 2019, Abdelrahim et al.,
2019]. The common point of these works is that no characterisation of neces-
sary/sufficient bit-rates is given. The second approach is to consider that the
combination of limited transmission and limited packet size results in a new sin-
gle problem: a data rate problem. This is the approach that will be followed in
this thesis. There are two ways to deal with the data rate problem: as a capacity
problem and as a minimal rate problem.

1. Limited communication capacity: The capacity of channel is an asymptotic
quantity. Given that the channel has a maximum number of bits b+(s̄)
that can be sent per time interval of length s̄, the capacity is defined as
(assuming that the limit exists)

c := lim
s̄→∞

b+(s̄)

s̄
.

The goal is, given a certain capacity, to find out what kind of properties
can be guaranteed by messaging schemes that respect a channel capacity
constraint (namely that the number of bits sent over any time interval of
length s̄ does not exceed the maximum b+(s̄)).

2. Minimal communication rate: given that a certain property should be
guaranteed (e.g., observability, certain performance objective...), find a
messaging scheme which guarantees this property, whilst sending as few as
possible bits per unit of time, on average. If at communication instants j,
the messaging scheme sends messages of bj bits, the rate R is defined as
(assuming that the limit exists)

R := lim
j→∞

1

j

j∑
i=0

bi.

Note that in some works of the literature, the limits are replaced by lim sup or
lim inf (depending on which is applicable), to avoid existence problems.

The differences between these two terminologies (capacity versus rate) are:

� In the first case, the restriction comes from the communication channel
and the objective is to find the best property that holds, whilst in the
second case, the restriction is that a certain property should hold and the
objective is to find the messaging scheme that achieves this with the lowest
rate. In the second case, there is no fixed constraint.
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� Because of its definition, the channel capacity might require arbitrarily
long time intervals between communications s̄, which, from an application
point of view, is not realistic. The rate, on the other hand, is simply an
average per unit of time of the number of bits that are sent.

The earliest works on this topic include [Wong and Brockett, 1997] which tackles
state estimation for a stochastic plant whilst using the minimal communication
rate approach, [Elia and Mitter, 2001] which considers the stabilization of a lin-
ear system with quantized input with the minimal communication rate approach,
and [Nair and Evans, 2003] which considers the stabilization of a discrete-time
linear system with a capacity approach. On the topic of state estimation, we
further note [Simsek et al., 2004, Martins et al., 2006, Sahai and Mitter, 2006,
Matveev and Savkin, 2007] which all provide solutions for the state estimation
with limited data rate but assume a feedback communication link.

The rest of this section is dedicated to presenting some recent developments
on the data rate approach. It is organized around several categories of problems
that are tackled in the literature: linear systems versus nonlinear systems, se-
quential communication schemes versus absolute communication schemes, and
single systems versus multiple systems.

Linear Versus Nonlinear

The problems involving data rate constraints have already been studied exten-
sively. One can find surveys of the results for single-system configurations in
[Nair et al., 2007] and for multiple systems / networks of systems in [Baillieul
and Antsaklis, 2007, Hespanha et al., 2007, Andrievsky et al., 2010].

Linear Time-Invariant systems can be written in the following form:

x[k + 1] = Ax[k] +Bu[k],
or

ẋ(t) = Ax(t) +Bu(t).

Most bounds on rates or capacity are then given in terms of the eigenvalues of
the matrix A, the singular values of the matrix A, or some variant thereof. This
is because the matrix A drives the dynamics of the system, that is, it determines
how fast or how slow the system evolves, which in turn influences the necessary
data rate to describe the system. For nonlinear systems, such an analysis is not
as simple.

For generic nonlinear systems of the following form

x[k + 1] = f(x[k], u[k]),
or

ẋ(t) = f(x(t), u(t)),
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a direct characterization is not possible. For discrete-time systems, one might
think that, in analogy to what is done for linear systems, it is possible to con-
sider the singular values of ∂f∂x (x(t), u(t)), the Jacobian of f (a technique close to
the first Lyapunov method). Similarly, for continuous-time systems, the singular
values of the flow could be used. This approach is not viable on its own however
since f is nonlinear, the singular values taken at some point in the state-space
are meaningless to describe the global dynamics.

Some early results for nonlinear systems with specific structures were ob-
tained in [De Persis, 2003, Baillieul, 2004]. To obtain results for systems with
more general forms, some, like Liberzon et al. [Liberzon and Hespanha, 2005],
opted to generalize techniques that were originally designed for linear systems
(in the case of Liberzon et al., [Liberzon, 2003a]) to nonlinear systems. Others,
like Fradkov et al. [Fradkov et al., 2008a], employed a passivity-based approach
to solve this problem but the approach that received the most attention is the
entropy-based method.

Entropy is a physical property that originated in the 1800s to measure the
amount of disorder, randomness, or uncertainty in a certain system. In [Shannon,
1948], the author established the link between communication problems and
entropy, which opened up the way for Adler et al. to define topological entropy in
[Adler et al., 1965]. We borrow the following informal description of topological
entropy from [Nair et al., 2004]:

“Briefly, the idea behind this definition is to first fix an open cover for
the space, through which each iteration of the map is observed, i.e., all
that is known is the sets of the open cover in which the iterations fall.
Each observed open set is then inverted to yield an open set in the ini-
tial state space. As the number of iterations increases, the family of all
possible intersections of initial state open sets forms an increasingly fine
open cover for the space. The topological entropy of the map is then ob-
tained by supremizing the asymptotic rate of increase of the cardinality
of this open cover over all observation open covers. This in some sense
measures the fastest rate at which uncertainty about the initial state can
be reduced, or equivalently the fastest rate at which initial state informa-
tion can be generated.”

The paper of Nair et al. [Nair et al., 2004], was among the first to use a notion
of entropy to describe the minimal data rates required in a problem involving
a dynamical system and a communication channel. In their case, they intro-
duced a concept called feedback topological entropy, which measures the required
data rate to stabilize a nonlinear system with a data rate-constrained feedback
loop. Since then, topological entropy was employed many times [Pogromsky
and Matveev, 2016a,b, Matveev and Pogromsky, 2016] as well as several other
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notions of entropy, to quantify sufficient and/or necessary bit-rates to achieves
various properties:

� Stabilization entropy [Colonius, 2012]: quantifies the minimum bit rates
for the exponential stabilization of systems:

� Invariance entropy [Kawan, 2013, Colonius et al., 2013, Kawan, 2011]:
quantifies the rate necessary to achieve invariance of a compact subset of
the state-space;

� Topological entropy for uncertain system [Savkin, 2006]: an extension of
topological entropy for systems with uncertain input;

� Estimation entropy [Liberzon and Mitra, 2018, Sibai and Mitra, 2017,
Kawan, 2018] : quantifies the sufficient bit-rate to approximate system
trajectories up to an exponentially decaying error;

� Restoration entropy [Kawan et al., 2020, Matveev and Pogromsky, 2019,
Kawan et al., 2021]: quantifies “the minimal rate at which sensory data
should be transferred to an estimator so that the initial estimation accu-
racy can be reproduced somewhere in the future then be maintained and,
moreover, exponentially improved” [Matveev and Pogromsky, 2019].

For a comprehensive introduction of entropy and its usage in dynamical systems,
one can refer to [Downarowicz, 2011].

Sequential Versus Absolute

Another important difference relates to the messaging scheme that is used:
whether it functions in an absolute way (the meaning of the message can be
derived independently of the other messages) or a sequential way (the meaning
of the message depends on the previous messages). The difference between both
strategies is best illustrated through an example. Consider the game of chess
which is played on a board of 8 × 8 black-and-white squares. The most impor-
tant piece is the king, which moves along the board, one square at a time. At
any time instant, there are at most 8 possibilities for the king to move to (as
illustrated on Figure 1.4). Imagine a king moving randomly on an empty board
of chess, one square at a time, starting at the bottom left corner (An example
of such a random walk is shown in Figure 1.5). One person observes the move-
ments of the king and has to transmit them to another person, who cannot see
the board, with the objective that the second person always knows on which
square the king currently is. Here are two possible strategies to communicate
the current position of the king:
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1. Absolute strategy: Using the traditional coordinate scheme for chess, which
consists of labelling the columns from a to g and the rows from 1 to 8 (see
Figure 1.5), the person can simply give the current position of the king
at each instant. For the walk of Figure 1.5, this would give the sequence
of messages: a2, b3, c3, d2, e3, e2, d1. Because there are 8 columns and
8 rows, it takes 3 bits to encode for the row and 3 bits to encode for the
column which implies that for such a strategy, 6 bits have to be sent at
each time instant.

2. Relative Strategy: Because the king only has at most 8 legal moves at each
time instant, it is possible to simply describe the movement that the king
employed and combine this information with the last position of the king
to provide the coordinates of a new square on which the king currently
resides. Figure 1.5, this would give the sequence of messages: top, top
right, right, bottom right, top right, bottom, bottom left. Since there are
8 legal moves, 3 bits are necessary to encode all possible messages, and
hence for this strategy, 3 bits per time instant are necessary.

What are the advantages and disadvantages of each strategy? In terms of rate,
the relative strategy is of course better than the absolute strategy. Over 7
time instants, 21 fewer bits are required to communicate. This is since the rate
depends only on the dynamics of the king, rather than on the size of the chess-
board. If the chessboard was infinite, the absolute strategy would require an
infinite number of bits whereas the relative strategy would still require only 3
bits.
There is however a major drawback of using the relative strategy: imagine some-
one makes noise at the same time the observer is telling one of the messages,
and this message is not heard by the remote peer. In that case, it is impossible
to reconstruct the position of the king because the messages are always relative
to the last known position. This is a default that the absolute strategy does not
suffer from because a single message is sufficient to reconstruct the current posi-
tion of the king, independently of the previous messages. The difference between
the absolute strategy and relative strategy is thus that there is a trade-off: rate
versus robustness towards losses.

The above example illustrates the difficulty that comes from dealing with
losses in the communication channel whilst being subject to data rate con-
straints. In this particular case, it is the quantization scheme that is particularly
important (as was already discussed in subsection 1.1.5.2). The above two strate-
gies apply to quantization: absolute and relative. The absolute strategy consists
of quantizing in such a way that no other information that the message itself
is necessary to reconstruct the state of the system accurately. This strategy
has a cost, however: possibly many more quantization regions are necessary to
cover the entire state-space. Exactly how many are necessary depends on the
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Figure 1.4: Possible moves of the king
in the game of chess.

Figure 1.5: Example of a random walk
of a king.

dimension of the state-space. For most systems, the state-space is simply Rn
(or some subset thereof) but for some systems whose state-space has a frac-
tal structure, other non-Euclidean dimensions are useful. Among them are the
Hausdorff dimension ([Douady and Oesterle, 1980]), the Lyapunov exponents
(which was proven to be related to the Hausdorff dimension in [Ledrappier and
Young, 1985, Young, 1983], the limit capacity/box-counting dimension (see [Fal-
coner, 1997, Takens, 1980] for a definition and [Rosenberg, 2020, Siegmund and
Taraba, 2006] for numerical methods on how to compute it) and the Lyapunov
dimension ([Kaplan and Yorke, 1978], which was proven to upper bound the box-
counting dimension in [Hunt, 1996], and which can be computed via the second
Lyapunov method ([Leonov, 2007, Kuznetsov, 2016]). For a general introduction
to dimension theory for ODE’s, one can refer to [Boichenko et al., 2005]. The
relative quantization strategy does not suffer from this curse of dimensionality
but its robustness towards losses remains a challenge. An example of sequential
communication schemes can be found in [Matveev and Pogromsky, 2016].

It should also be noted that both strategies are not mutually exclusive. It
is possible to alternate between both communication strategies to reduce the
required communication rate whilst still maintaining some robustness towards
losses. However, to the best of the author’s knowledge, such a strategy has not
been explored yet.

Single System Versus Multiple Systems

So far, most examples that were given included only one dynamical system and
some communication device. In applications, it is very common to have not
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just one but several systems interacting via wireless communication technolo-
gies. These are problems known as cooperation, decentralized schemes, and
consensus/synchronization. These two forms of collaboration between dynami-
cal systems should be understood as follows:

� Cooperation: Several dynamical systems interact to achieve a common
control objective. Example: several mobile robots carrying a load together
[Johnson and Bay, 1995].

� Synchronization/Consensus: Several dynamical systems interact such as
their state-space trajectories coincide (up to a small, possibly vanishing,
synchronization error). Example: formation control of flying vehicles [Eren
et al., 2002].

One particular type of synchronization is master/slave(s) synchronization. In
master/slave(s) synchronization, one system is considered the master while all
others are considered slaves. The master system’s state is then left unaffected
while the slave systems have to track the master’s state-space trajectories.

Communication problems generally require specific solutions to the multiple
systems case. Some interesting results on consensus algorithms include [Yam-
aguchi et al., 2001], which provided a distributed consensus algorithms for a
formation of robots, [Fax and Murray, 2004], which considered cooperative con-
trol of a formation of robots, [Olfati-Saber and Murray, 2004] which provides
an algorithm for consensus in a network of integrators with fixed and switched
topology and time-delays. For a more general reference on collaboration prob-
lems, one can refer to [Ren and Beard, 2008].

In terms of collaboration problems with data rate constraints, the earliest
works include [Fradkov et al., 2008a] and [Fradkov et al., 2008a] which consider
the synchronization of two chaotic systems and the master/slave synchronization
of two systems respectively. Since then, more works on consensus in networks
have been published, such as [Li et al., 2011] (average consensus in networks of
linear systems with fixed topologies), [Li and Xie, 2011] (distributed average con-
sensus with limited communication and varying network topology), [Liu et al.,
2011] (average consensus in a network of systems with communication delays),
[Dong, 2019] (consensus of a network of nonlinear systems with perturbations
and a specific structure for the systems). To the best of the author’s knowledge,
no general results have been obtained for consensus in networks of nonlinear
systems with generic structures.

This concludes the discussion on the solutions that have been provided so far
for interactions between dynamical systems and communication technologies. In
the next section, we discuss the contributions of this thesis to the field.
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1.2 Research Problem and Contributions of this Thesis

As was highlighted in sections 1.1.2 and 1.1.3, many problems originate from
the combination of one or several dynamical systems with communication tech-
nologies. A non-exhaustive list of such problems is:

I. Considering several sources of uncertainty at the same time. This is il-
lustrated in Figure 1.6. Most problems fit in one of the three circles but
to the best of the author’s knowledge, few tackle two at the same time
whilst none tackle all three. An open problem is thus to design solutions
for problems combining two or three sources of uncertainty;

II. Developing communication protocols that deal with both limiting factors of
wireless communication technologies (limited transmission rate and limited
packet size) whilst also having robustness to the disturbances (packet losses
and packet corruption);

III. Developing data-efficient algorithms for cooperation problems of dynamical
systems with generic structures;

IV. Using an event-triggered approach to the combined rate problem, rather
than for sampling and quantization problems separately;

V. Developing tools for control-oriented interactions between nonlinear sys-
tems with generic structures and communication technologies;

VI. Validating tools for interactions between dynamical systems and commu-
nication technologies through experiments.

This thesis aims to tackle some of these problems. The research problem
could thus be summarized as follows:

Research Problem: To develop general tools for control-oriented in-
teractions between dynamical systems and communication technologies.

In this thesis, five different solutions are developed, each aiming to provide a
(partial) solution to one or several of the aforementioned open problems.

1.2.1 First Contribution

The first important problem is the design of observers that function over commu-
nication channels with limited communication capacity. A single deterministic
nonlinear system is connected to a remote location via a data rate constrained
communication channel. Initially, only an estimate of the state is available at
the remote location which implies that there is a sensitivity to the initial
conditions. The objective is to design a communication protocol, in the form
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Figure 1.6: The three sources of uncertainty for dynamical systems and how the
contributions of the thesis relate to them.

of several devices that generates estimates of the state of the system at the re-
mote location. The protocol should satisfy two criteria: the error between the
actual state and the estimate of the state should be either bounded, or vanishing,
and the channel capacity should not be exceeded. In [Matveev and Pogromsky,
2016], the authors provide analytical bound on the minimum capacity required
for several types of observability, but the communication protocol is not robust
towards losses in the communication channel. Since channel dropouts are a com-
mon problem with wireless communication technologies (as was highlighted in
1.1.3), developing a scheme that is robust towards losses constitutes an impor-
tant contribution. The first contribution of the thesis is (referring to items II.
and V. of the above list):

First Contribution: A data rate constrained observation scheme for
nonlinear systems (both continuous- and discrete-time), with sensitivity
to initial conditions, that is robust towards losses in the communication
channel is developed.

For this observer, analytical bounds on the minimum sufficient communication
capacity are obtained to observe the system through a data rate constrained
communication channel. The bound is proven to depend on the singular values
of the Jacobian of the system’s map (for the discrete-time case) and the singular
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values of the Jacobian of the system’s flow (for the continuous-time case), as
well as the Lyapunov dimension of the state-space of the system. The novelty of
this result is the robustness of the observer towards losses in the communication
channel. It is developed in Chapter 2.

1.2.2 Second Contribution

As was highlighted in the part of section 1.1.5 dedicated to configurations with
multiple systems, it is sometimes desirable for dynamical systems to interact to
achieve some collective behaviour. If several dynamical systems interact through
a network of data rate constrained communication channels, it is not always pos-
sible to achieve consensus. In particular, in some applications, the device that
measures the state is not directly connected to the controller of each system,
which implies that even to have an estimate of its own system’s state, the con-
troller needs to receive messages which are sent over the communication channel.
When combined with a sensitivity to initial conditions of each system, it
results in a problem that requires a specific solution to achieve and maintain
consensus. So far, no general communication protocols have been derived for
such configurations. Whether it is possible or not to achieve consensus, under
what conditions on the adjacency matrix which describes the connections be-
tween the systems, what channel capacities are required, are all open problems
to which we provide the following answers (referring to items III. and V.):

Second Contribution: For a network of agents described by identical
discrete-time dynamical systems, several consensus protocols (consisting
of several interacting devices) are obtained (for different network topolo-
gies) which keep the agents in consensus whilst limiting the load on the
communication.

For each of these consensus protocols, analytical bounds on the required channel
capacity are provided in terms of quantities that depend on the equations de-
scribing the dynamical systems. The novelty of this result is the three consensus
protocols for nonlinear systems. This result is developed in Chapter 3

1.2.3 Third Contribution

The third contribution is the design of a communication protocol for the re-
mote observation through a data rate constrained communication channel of
a Lipschitz-nonlinear continuous-time system with state perturbations and
measurement noise. The problem is approached from the point of view of
the rate, rather than capacity. Bounded state perturbations and measurement
noise are assumed, which makes a deterministic LMI approach suitable for this
problem. This forms the following contribution (referring to items IV. and V.):
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Third Contribution: An event-triggered communication protocol for
the remote observation of continuous-time Lipschitz-nonlinear systems
with bounded state perturbations and measurement noise is developed.

For this remote observer, a bound on the maximum rate and maximum obser-
vation is provided, in function of tunable constants. Through the tunable con-
stants, a trade-off is possible of precision for rate and vice-versa. The inclusion
of the event-triggered scheme leads to a greatly reduced average communica-
tion rate, as is proven through simulations on various examples. The novelty of
this result is an event-triggered scheme for generic continuous-time systems with
Lipschitz-nonlinear structures. It is developed in Chapter 4

1.2.4 Fourth Contribution

The fourth contribution of the thesis is a solution for the remote observation of
a steered system. A single discrete-time Lipschitz-nonlinear system is steered by
an external, a priori unknown signal, which is measured with zero measurement
error. This signal plays the role of a parametric uncertainty. The system is
subject to state perturbations and only an output measurement with mea-
surement noise is available. The objective is to send messages to a remote
location such that an estimate of the state is available remotely. This property
should be achieved whilst using as few bits per unit of time as possible. The
following solution is developed (referring to items I., IV., and V.):

Fourth Contribution: An event-triggered communication protocol
for the remote observation of steered discrete-time Lipschitz-nonlinear
systems with bounded state perturbations and measurement noise is ob-
tained.

Again, an event-triggered scheme is used to reduce the average number of com-
munications. Bounds on the maximum observation error and maximum commu-
nication rate are provided in function of the system’s constants. The novelty of
this result consists of an event-triggered scheme for discrete-time systems with
Lipschitz-nonlinear structures, perturbations, and parametric uncertainty. It is
developed in Chapter 5.

1.2.5 Fifth Contribution

The fifth and final contribution of the thesis is a solution for the remote obser-
vation of unicycle-type robots, with experimental validation. A unicycle-type
robot is driven by a steering signal. It is connected to a remote location via a
data rate constrained communication channel. The objective is to reconstruct
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the position of the robot, whilst using an as low as possible number of bits per
unit of time. The following solution is developed (referring to items IV. and
VI.):

Fifth Contribution: An event-triggered communication protocol for
the remote observation of unicycle robots, with experimental validation,
is developed and demonstrated.

Due to the experimental nature of the contribution, perturbations naturally oc-
cur, as well as sensitivity to initial conditions. An event-triggered scheme is used,
to reduce the average number of communications. Bounds on the maximum
observation error and communication rate are computed. The communication
scheme is then tested through experiments on Turtlebot robots. The novelty
of the result consists of implementing the protocol on a real-life problem. It is
developed in Chapter 6.

1.3 Structure of the Thesis and List of Publications

Each chapter of this thesis corresponds to one publication in a peer-reviewed
journal. The content of the papers has only been modified to reflect the com-
ments of the members of the thesis committee and for layout issues. Each chapter
is self-contained and can be read independently.
Chapter 2 corresponds to:

� Q. Voortman, A. Y. Pogromsky, A. S. Matveev, and H. Nijmeijer. “Data-
Rate Constained Observers of Nonlinear Systems”. In: Entropy 21.282
(2019), pages 1-29, [Voortman et al., 2019].

which is the continuation of:

� Q. Voortman, A. Y. Pogromsky, A. S. Matveev, and H. Nijmeijer. “Contin-
uous Time Observers of Nonlinear Systems with Data-Rate Constraints”.
In: Proceedings of the 5th IFAC Conference on Analysis and Control of
Chaotic Systems. Eindhoven, 2018, [Voortman et al., 2018a].

� Q. Voortman, A. Y. Pogromsky, A. S. Matveev, and H. Nijmeijer. “A
Data Rate Constrained Observer for Discrete Nonlinear Systems”. In:
Proceedings of the 57th IEEE Conference on Decision and Control. Miami
Beach, 2018, [Voortman et al., 2018b].

Chapter 3 corresponds to:

� Q. Voortman, A. Y. Pogromsky, A. S. Matveev, and H. Nijmeijer. “Data-
Rate Constrained Consensus in Networks of Dynamical Systems”, Preprint
submitted to Automatica, [Voortman et al., 2020e].
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which is the continuation of:

� Q. Voortman, A. Y. Pogromsky, A. S. Matveev, and H. Nijmeijer. “Con-
sensus of Nonlinear Systems with Data-Rate Constraints”. In: Proceedings
of the 21st IFAC World Congress. Berlin, 2020, [Voortman et al., 2020d].

Chapter 4 corresponds to:

� Q. Voortman, D. Efimov, A. Y. Pogromsky, J.-P. Richard, and H. Nijmei-
jer. “An Event-Triggered Observation Scheme for Systems with Pertur-
bations and Data-Rate Constraints”, Preprint submitted to Automatica,
[Voortman et al., 2020a].

which is the continuation of:

� Q. Voortman, D. Efimov, A. Y. Pogromsky, J.-P. Richard, and H. Nijmei-
jer. “Event-triggered Data-efficient Observers of Perturbed Systems”. In:
Proceedings of the 21st IFAC World Congress. Berlin, 2020, [Voortman
et al., 2020b].

Chapter 5 corresponds to:

� Q. Voortman, D. Efimov, A. Y. Pogromsky, J.-P. Richard, and H. Nijmei-
jer. “Tracking State with Limited Communications: an Event-Triggered
Approach”, Preprint submitted to IEEE Transactions on Automatic Con-
trol, [Voortman et al., 2021a].

which is the continuation of:

� Q. Voortman, D. Efimov, A. Y. Pogromsky, J.-P. Richard, and H. Ni-
jmeijer. “Synchronization of Perturbed Linear Systems with Data-Rate
Constraints”. In: Proceedings of the 59th IEEE Conference on Decision
and Control. Jeju Island, 2020, [Voortman et al., 2020c].

Chapter 6 corresponds to:

� Q. Voortman, D. Efimov, A. Y. Pogromsky, J.-P. Richard, and H. Ni-
jmeijer. “Observing Mobile Robots with Data-Rate Constraints: a Case
Study”, Accepted for publication at the 60th IEEE Conference on Decision
and Control. Austin, 2021, [Voortman et al., 2021b].





Chapter 2

Data-Rate Constrained Observers of

Nonlinear Systems

In this chapter, the design of a data-rate constrained observer for a dynamical
system is presented. This observer is designed to function both in discrete time
and continuous time. The system is connected to a remote location via a com-
munication channel which can transmit limited amounts of data per unit of time.
The objective of the observer is to provide estimates of the state at the remote
location through messages that are sent via the channel. The observer is designed
such that it is robust toward losses in the communication channel. Upper bounds
on the required communication rate to implement the observer are provided in
terms of the upper box dimension of the state space and an upper bound on the
largest singular value of the system’s Jacobian. Results that provide an ana-
lytical bound on the required minimum communication rate are then presented.
These bounds are obtained by using the Lyapunov dimension of the dynamical
system rather than the upper box dimension in the rate. The observer is tested
through simulations for the Lozi map and the Lorenz system. For the Lozi map,
the Lyapunov dimension is computed. For both systems, the theoretical bounds
on the communication rate are compared to the simulated rates.

2.1 Introduction

Ever since the widespread usage of wireless technologies, there has been a fo-
cus on data-rate problems for dynamical systems. These problems arise when
networked technologies are employed in configurations where sensors, actuators,
and controllers are placed at locations that are remote from one another. Extra
complications arise from uncertainties in the system’s parameters, initial condi-
tions, sensor measurements, communication channels, and dynamics, such as in
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the form of exogenous disturbances. These necessitate communication strategies
that are efficient in terms of data rate and robust against all kinds of uncertainty.
In this chapter, the focus will be placed on uncertainties in the initial conditions,
and also on issues of losses in the communication channel.

Up until now, the main focus in the relevant control-oriented literature was
on state estimation and stabilization problems. In the early 2000’s, most of the
research dealt with linear systems, for which many results have been obtained
(see [Elia and Mitter, 2001, Nair et al., 2007, Baillieul and Antsaklis, 2007,
Andrievsky et al., 2010] for extended surveys).

Early results on nonlinear systems (exemplified by [De Persis, 2003, Baillieul,
2004]) typically assumed special properties of the considered systems, and were
also based on these properties. Proper adapting and extending techniques, origi-
nally developed for linear plants, opened the door for handling generic nonlinear
systems and permitted the establishment of lower data-rate bounds sufficient
for the observability and stabilizability of such systems; see, e.g., [Liberzon and
Hespanha, 2005]. Another research trend was concerned with intrinsic charac-
teristics of nonlinear systems that provide a somewhat exhaustive description of
the bit-rate of information transmission under which a certain dynamic property
(such as stability, invariance, observability) can be achieved. As a result, there
appeared a whole series of extensions and modifications of classical topological
entropy [Adler et al., 1965], such as feedback topological entropy [Nair et al.,
2004], invariance entropy [Kawan, 2013, Colonius et al., 2013], topological en-
tropy with regard to dynamic uncertainties [Savkin, 2006] and to uncertainties
in the initial conditions [Kawan and Yüksel, 2018], estimation entropy [Liberzon
and Mitra, 2018], and others (see, e.g., [Matveev and Savkin, 2009, Kawan, 2018,
Sibai and Mitra, 2017, Pogromsky and Matveev, 2016a]). Finally, some papers
such as [Fradkov et al., 2008a] have relied on passivity-based methods to provide
bit-rate bounds.

One of the objectives of the chapter is to use non-Euclidean concepts of the set
dimension as an alternative to the aforementioned notions of entropy. Among
the non-Euclidean concepts of set dimensions, the best known is, maybe, the
Hausdorf dimension [Douady and Oesterle, 1980]. Another related characteristic
is the upper box dimension [Falconer, 1997], which is sometimes referred to
as the limit capacity [Takens, 1980]. These two dimensions—the entropy and
Lyapunov exponent—were proven to be closely related to one another in [Kawan,
2011, Young, 1983, Ledrappier and Young, 1985]. Both dimensions are based on
covering a set with balls of infinitesimally small size (a technique which is very
similar to the idea of partitioning the state-space and using symbolic dynamics
to describe the dynamical system — see, e.g., [Stojanovski et al., 1997]); both
can assume non-integer values, and both may be smaller than the dimension
of the hosting Euclidean space. These concepts have been much inspired by
studies of fractals and research on chaotic attractors of dynamical systems. The
latter is a primary incentive for our interest in these dimensions, which may be
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a non-integer for chaotic attractors and provide a somewhat deeper insight into
the issue of their dimensionality than the ordinary Euclidean dimension.

Unfortunately, there are still no general analytical techniques for computing
the two aforementioned dimensions for chaotic attractors. Numerical methods
remain the main tool used by scientists and engineers to estimate these dimen-
sions [Siegmund and Taraba, 2006]. In this chapter, an alternative to this numer-
ical approach is developed. The alternative is based on the so-called Lyapunov
dimension, in which the upper bounds are the above two dimensions [Hunt,
1996]. Moreover, its advantage resides in the fact that the Lyapunov dimension
can be computed analytically by using the second Lyapunov method [Leonov,
2007, Kuznetsov, 2016], which leads to analytical upper bounds. By following
this alternative, we obtain a fully analytical lower bound on the communication
data-rate under which reliable estimation of the system’s state becomes feasible.
When doing so, we consider a generic nonlinear system and focus attention on
its behavior within a given invariant set, which may be a chaotic attractor, for
example.

Apart from this bound, the design of a particular observer that ensures such
an observability is also presented. The observer is composed of a sampler, a
quantizer, a data-rate constrained channel, and a decoder. All components in-
teract in order to build estimates of the state at a remote location in real time.
The observer can ensure arbitrarily high precision of estimation with a commu-
nication rate that remains below the channel capacity. Moreover, the proposed
observer is robust against delays and losses in the communication channel, which
is a valuable property for applications where delays and losses are a common
occurrence. This robustness is achieved without any feedback in the communi-
cation channel, which is atypical for most data-rate constrained observers in the
current literature [Sahai and Mitter, 2006, Martins et al., 2006, Simsek et al.,
2004, Matveev and Savkin, 2007] and constitutes the novel contribution of the
chapter.

This chapter is both a generalization and an extension of [Voortman et al.,
2018a,b]. We provide a unified solution for both continuous and discrete-time
systems. In addition to providing proofs for all the results that were presented
in the two aforementioned conference papers, the problem statement is extended
to also include delays in the communication channel.

In Section 2.2, we define the types of systems to be observed, as well as
the observer notations, and provide a definition for observability with data-rate
constraints. Section 2.3 introduces the proposed observer. In Section 2.4, pre-
liminary criteria for observability of the plant are offered, which are converted
into a fully analytical form in Section 2.5. Section 2.6 illustrates the general the-
ory via handling two examples: the Lozi map and the Lorenz system. For both
systems, the necessary data-rates are computed and simulations that confirm
the theoretical results are provided.
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2.2 Problem Statement

In this section, we introduce the problem statement. The general setting is that
of a dynamical system and two peers connected together via a communication
channel. Both peers have full knowledge about the dynamics of the system.
Meanwhile, only one of them has direct access to the system’s current state and
fully measures it. The task is to provide estimates of the state to the other
peer by sending messages through the communication channel. This channel
is discrete (i.e., the variety of transmittable messages is finite) and has delays,
losses, and limited data-rate. The effects due to data-rate constraints and delays
are explicitly modeled in this section, whereas the issue of message losses is
discussed separately in Remark 2.8. Two types of delays will be considered in
turn. A processing delay is also incurred, since the channel can transmit only
a given and finite number of bits c per unit time, and so a B-bits message can
wholly arrive at the receiving end of the channel not earlier than B/c time units
after the transmission of this message is commenced. A transmission delay is
caused by holding up the progress in the ideal routine of bits transfer, which
may occur as a result of, e.g., resolving competition with third parties for shared
resources of the communication medium or network.

In order to solve the stated problem, we will develop a particular type of
observer. In this section, we will only introduce notations concerned with the
observer. Operation of its components will be described in the next section.

2.2.1 Observed Dynamical System

We consider a dynamical system {ϕt}t∈T on an open set S ⊂ Rn, paying special
attention to a certain subset S0 ⊂ S. Here,

� T is the set of time periods, which is either Z+ or R+;

� ϕt : S → S is the evolution function that gives the system state x(t) =
ϕt(x0) at time t ∈ T , provided that the initial state is x0;

� S0 is the focus of our interest in the system.

Specifically, we are interested only in trajectories that start in S0 and remain
there afterwards:

x(t) ∈ S0 ∀t ∈ T. (2.1)

Assumption 2.1. The dynamical system at hand is time-invariant: ϕt ◦ ϕs =
ϕt+s ∀t, s ∈ T .

Assumption 2.2. The set S0 is a bounded forward invariant ϕt(S0) ⊂ S0 ∀t ∈
T , its closure S0 lies in S.
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Typical examples of sets S0 which satisfy the aforementioned assumption are
chaotic attractors. Indeed, chaotic attractors are bounded and forward invariant
by nature. If additionally the closure of the attractor lies in S, all three condi-
tions of the assumption are met and the chaotic attractor can be used as the set
S0.

Our main interest is in systems for which complex and possibly chaotic long-
horizon dynamics arise from rather regular short-horizon behavior. The last
feature is partly substantiated by the following.

Assumption 2.3. For any t ∈ T , the evolution function ϕt : S → S is contin-
uously differentiable.

Depending on the “time-set” option, two types of dynamical systems will be
considered.

(1) Discrete time systems: T = Z+, and the system evolves as follows:

x(t+ 1) = ψ(x(t)) t ∈ Z+, ,

where ψ : S → S is a given mapping. In this case,

ϕt(·) := ψ(. . . ψ(·))︸ ︷︷ ︸
t times

and ψ = ϕ1.

Assumption 2.1 holds, and Assumption 2.3 is met if, and only if ψ is continuously
differentiable.

(2) Continuous time systems: T = R+ and the evolution of the system is
described by an ordinary differential equation (ODE):

ẋ(t) = f(x(t)) t ∈ R+, (2.2)

where f : S → Rn is a continuously differentiable vector field. So for any x0 ∈ S,
the solution x(t, x0) of the Cauchy problem x(0) = x0 for the ODE (2.2) exists,
and is unique; it can be extended to the right on the maximal interval [0, T (x0)).
However, Equation (2.2) not ineluctably defines a dynamical system on S, since,
not necessarily, T (x0) = ∞ for all x0 ∈ S. Insofar as the right-hand side of
Equation (2.2) is not defined outside S, this extendability T (x0) = ∞ means,
in particular, that the solution x(t, x0), x0 ∈ S never attempts to leave the set
S; i.e., the set S is forward invariant. So when dealing with ODE, we always
assume that all its solutions that start in S at t = 0 can be extended on [0,∞)
while remaining in S.

The following proposition can be proved by retracing the arguments from
Section 2.2 in [Khalil, 2002].

Proposition 2.4. Whenever the vector field f : S → Rn is smooth (i.e., con-
tinuously differentiable) and the ODE (2.2) has the just-stated extendability and
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invariance properties, this ODE gives rise to a dynamical system {ϕt}t∈R+ on S
(ϕt(x0) := x(t, x0)), which satisfies Assumptions 2.1 and 2.3. Moreover, ϕt(x)
and its first derivatives, with respect to t and x, are continuous functions of t
and x.

2.2.2 Architecture of the Observer, Notations, and Gen-
eral Traits of the Communication Channel

We assumed that the current state x(t) was observed in full at a certain mea-
surement site but is needed at time t at a remote location, where data can be
communicated only via a discrete channel. The channel is discrete in the sense
that first, it is constrained to carry messages that are drawn from a finite set,
and second, the messages can be communicated only one at a time and, while
the channel is busy transmitting a previous message, it is closed for the next
transmission.

The purpose of the observer is to arrange and manage transmissions across
the channel and to finally build, at time t and at the remote location, an estimate
x̂(t) of the current state x(t) with a pre-specified exactness. The formal definition
of the last notion is as follows.

Definition 2.5. A number ε > 0 is called an “exactness of observation” if there
exists t̄0 <∞ such that

‖x(t)− x̂(t)‖ ≤ ε, ∀t ∈ T : t ≥ t̄0.

Figure 2.1: Structure of the observer.

As is illustrated in Figure 2.1, an observer O is defined as a composition con-
sisting of a sampler S , quantizer Q, and decoder D ; the sampler and quantizer
together form a coder C :

O is composed of S and Q︸ ︷︷ ︸
C

and D .

� The sampler and quantizer are built at the measurement site and have
access to the dynamics {ϕt} of the system, the set S0, the current state
x(t), and the desired exactness of observation ε.

� The decoder is built at the remote site L and has access to the system
dynamics {ϕt}, the set S0, the desired exactness of observation ε, and the
messages transmitted across the channel.
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The roles and structures of the observer components are as follows.
The Sampler generates the (sampling) instants sj ∈ T (where at every one

of these instants t = sj , transmission of another message e(sj) is initiated):

sj+1 = S ({ϕt}t∈T , S0, x(sj), sj , ε) > sj , s0 = 0, j ∈ Z+.
(2.3)

Also, the sampler builds a finite alphabet Aj from which the message e(sj)
should be drawn at time sj for subsequently communicating across the channel:

Aj = A ({ϕt}t∈T , S0, x(sj), sj , ε), j ∈ Z+. (2.4)

The alphabet is thus permitted to depend on sj .
The Quantizer forms the message e(sj) ∈ Aj to be dispatched

e(sj) = Q({ϕt}t∈T , S0, x(sj), sj , ε), ∀j ∈ Z+. (2.5)

The Decoder generates state estimates based on the previously received mes-
sages:

x̂(t) = D({ϕτ}τ∈T , S0, {(e(sj), s̄j)}j∈J(t), ε), (2.6)

where s̄j is the time when the message e(sj) arrives at the remote site L and
J(t) := {j : s̄j ≤ t}. If no message has arrived yet, J(t) = ∅ and the meaningless
{(e(sj), s̄j)}j∈∅ is replaced by an arbitrarily pre-specified symbol, e.g., 0 ∈ Z+.
The observer has to fit the constraints and capabilities of the channel, which are
as follows.

c.1) The channel correctly transfers any message e(sj) ∈ Aj to the receiving
end provided that the message processing time τpr

j and the size of the
message are in balance:

log2 card(Aj) ≤ b(τpr
j ). (2.7)

Here, b(τ) is a channel-dependent function that gives the number of bits
processable by the channel during any time period of length τ .

c.2) As the processing time increases to infinity, the average number of bits
transmittable per unit of time stabilizes and converges to a certain value
c ∈ R+, called the (bit-rate) channel capacity:

∃c := lim
τ→∞

b(τ)

τ
. (2.8)

c.3) The channel is closed for the next message until all bits of the current
message e(sj) have been processed, but is open afterwards.
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c.4) On its way to the destination point L, any message e(sj) incurs a trans-
mission delay τ tr

j :

s̄j = sj + τpr
j + τ tr

j , (2.9)

where s̄j is the time when the whole of the message e(sj) arrives at L, and
the processing time τpr

j plays the role of a processing delay here.

c.5) The transmission delays are upper-bounded: τ tr
j ≤ τ tr

+ <∞.

To correctly transmit messages, the sampler should balance the chosen al-
phabet and the message processing time τpr

j in accordance with Equation (2.7),
and respect the requirement: sj+1 ≥ sj + τpr

j .

2.2.3 Observability via Channels with Limited Bit-Rate
Capacity

The objective of the observer is to guarantee observability, as defined in the
following definition.

Definition 2.6. A system {ϕt}t∈T is said to be observable on the set S0 via
a communication channel if, for any ε > 0, there exists an observer Equations
(2.3)–(2.6) that operates via this channel and ensures the requested exactness of
observation ε for any trajectory satisfying Equation (2.1).

Observability is classically defined as a property of the system itself. How-
ever, in the current context, finite data rate makes observability critically de-
pendable on the employed communication channel. So, by following [Pogromsky
and Matveev, 2016a, Matveev and Pogromsky, 2017, Voortman et al., 2018a,b],
observability is introduced as a property of the pair “system + channel”. In
Definition 2.6, the reference to existence of an observer in fact conveys the idea
of most effectively utilizing the properties of the system and the potentiali-
ties of the channel, where if their clever use may result in a reliable and exact
state estimate at the receiving end of the channel, the pair is sealed with the
stamp, “observable”.

2.3 Design of the Proposed Observer

Since we are interested only in trajectories satisfying Equation (2.1), our dis-
cussion of the observer design is confined to the case where x(sj) ∈ S0 ∀j in
Equations (2.3)–(2.5).

We will introduce an observer that is determined by the following four enti-
ties:

e.1) s+ ∈ T — the period sj+1 = sj + s+ between consecutive dispatches of
messages via the channel;
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e.2) P — a symmetric and positive definite n× n-matrix;

e.3) δ(ε, s+) > 0 — a function of ε > 0 and s+ for which

‖x̂− x‖P ≤δ(ε, s+) and x̂, x ∈ S0 ⇒
∥∥ϕt(x̂)−ϕt(x)

∥∥
P
≤ ε ∀t ∈ T, t ≤ s+.

(2.10)

e.4) {BPδ (qk)}Kk=1 — a finite covering of the compact set S0 with K = K(ε, s+)
balls (with respect to the norm ‖·‖P ) centered in qi ∈ S0 and with a radius
of δ = δ(ε, s+) each.

Here, the centers qi may also depend on ε, s+.

Lemma 2.7. Let Assumptions 2.2 and 2.3 hold, and for any τ ∈ T , the deriva-
tives of ϕt are bounded over t ∈ T, t ≤ τ and x from some τ -dependent neigh-
borhood of S0. Then, a function δ(ε, s+) > 0 with the property (2.10) exists.

The proof of this lemma simply follows from the continuous differentiability
of ϕt and the boundedness of of the derivates.

The proposed observer operates as follows.

Procedure 1. (Observer)

o.1) The sampler S (Equations (2.3) and (2.4)) carries out the following ac-
tions:

sj+1 =S({ϕt}t∈T , x(sj), sj , ε) := sj + s+, s0 := 0.

A({ϕt}t∈T , x(sj), sj , ε) := {1, . . . ,K},

i.e., the alphabet substantiates the numbering of the balls from e.4).

o.2) The quantizer Q finds an element BPδ (qk) of the covering from e.4) that
contains x(sj+1) = ϕs+(x(sj)) ∈ S0 and sends its index k over the channel:

Q({ϕt}t∈T , x(sj), sj , ε) = k,

o.3) The decoder D performs the following operations at time t ∈ T :

– Extracts the index k from the last message received at a time θ ≤ si,
where i := bt/(s+)c (If no message has been received yet, k is assigned
an arbitrarily pre-specified value, e.g., 1.).

– By using the centers from e.4), forms the current state estimate

x̂(t) := ϕ(t−si)(qk). (2.11)

Several comments on this observer are as follows:



38 Chapter 2. Data-Rate Constrained Observers of Nonlinear Systems

� In o.2), we do not address the case x(sj+1) 6∈ S0 due to the reason stated
at the onset of the section.

� The proposed design assumes that both the coder and decoder have access
to s+ from e.1) and the covering from e.4).

� The observer uses a fixed alphabet {1, . . . ,K}, which is shared by the coder
and the decoder, where K is the number of balls of radius ε in the covering
of S̄0 (as defined in e.4))

� The quantizer sends data about the estimate qk of not the current x(sj),
but the forward-time state x(sj+1), which is computed from the measured
x(sj) by using the known transition map ϕs+(·).

� The idea behind this relies on the expectation that these data will be
received prior to sj+1 and put in use at due time, t = sj+1. Then, the
exactness of estimation will be δ at this time.

� These data are also used to estimate the state on the subsequent time
interval {t ∈ T : sj+1 ≤ t < sj+2} via applying the matching transition
map to the just-discussed estimate at time t = sj+1. By Equation (2.10),
this guarantees the exactness of estimation ‖x(t) − x̂(t)‖P ≤ ε on this
interval.

In order for the proposed observer to be able to operate correctly via a given
communication channel, the message e(sj) initiated at time sj should be fully
processed and received prior to sj+1. (This, in particular, implies that the mes-
sages arrive in order: s̄j+1 > s̄j .) Due to c.1), c.4), and c.5), correct operation
occurs whenever there exists a solution τ pr ∈ T to the following two inequalities:

log2K(ε, s+) ≤ b(τpr), s+ ≥ τpr + τ tr
+ . (2.12)

We recall that τ tr
+ is an upper bound on the transmission delay. In the typical

case where K(ε, τ) is an increasing function of τ and modulo the possibility to
choose s+, Equation (2.12) reduces to only one inequality:

log2K(ε, τpr + τ tr
+ ) ≤ b(τpr). (2.13)

Anyhow, the inequalities depend on both the system (via K(·, ·)) and channel
(via b(·), τ tr

+ ). This means that correct operation in fact requests a certain level
of conformity between the system and the channel.

The conditions for correct operation will be fleshed out in the next section.
We conclude the section with a comment on observability and a remark on how
the observer proceeds when a loss occurs.

Observation 1. The following statements are true:
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i) Let the proposed observer correctly operate for a given ε > 0 and s+. Then,
for any trajectory satisfying Equation (2.1), the desired exactness of ob-
servation ε is ensured with respect to the norm ‖ · ‖P ;

ii) Let a communication channel be given. Also, let any ε > 0 small enough
be coupled with some s+ so that the proposed observer with these ε and s+

operates correctly via the channel at hand. Then, the system {ϕt}t∈T is
observable on the set S0 via this communication channel.

All observability conditions that will be established in this chapter are noth-
ing but implications of ii) in this observation. This means that these conditions
ensure the correct operation of the proposed observer modulo’s proper and fea-
sible choice of its parameters. In other words, whenever these conditions are
satisfied, a reliable state estimate can be obtained by means of this observer.

Remark 2.8. Suppose that messages may be lost when transmitting over the
communication channel. If a loss does occur, the message qk which was last
received is used in Equation (2.11) not only during the intended time interval
(from si to si+1), but also during the subsequent time intervals until the next
successful transmission. Certainly, there is no guarantee that the estimation
accuracy will be within the desired ε on these extra intervals. However, as soon
as a new message arrives, this accuracy is restored due to the very design of
the observer. This robustness against losses is achieved without any feedback in
the communication channel (i.e., the coder is not notified when losses occur on
the channel), unlike many competing schemes [Sahai and Mitter, 2006, Martins
et al., 2006, Simsek et al., 2004, Matveev and Savkin, 2007].

Note that although the robustness towards losses is one of the main advan-
tages of the designed observer, the discussion on the situation with losses is
relatively short in this chapter. This is intentional as the authors believe that
providing any further comments would require some form of a statistic model
for the losses. For brevity such a discussion is left for further research. This
remark extends on the situation where the message is not lost, but corrupted so
that an incorrect qk is occasionally used in Equation (2.11).

2.4 Criteria for Observability of the System

A problem with the conditions (2.12) and (2.13) is that they use the function
K(·, ·) from e.4), for which there is a lack of constructive techniques to compute,
or at least to assess it from its “parents”: the dynamics {ϕt}, and the set S0. In
this section, we make a first step to overcome this deficit; whereas the function
K(·, ·) is a by-product of the coalesce of the dynamics and set, we re-master the
conditions into a form where separate characteristics of the dynamics and the
set are employed.
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2.4.1 The Size of Finite Covering

Inspired by e.4), we start with the question: How many balls of a common radius
δ are needed to cover a given bounded set? Though not articulated thus far,
our interest in fact focuses on the high exactness of estimation δ ≈ 0. This, in
turn, motivates asymptotical analysis as δ → 0. A response to these concerns
is partly given by the concept of an upper box-counting dimension d̄B , which is
defined as follows.

Definition 2.9 ([Falconer, 1997]). The upper box-counting dimension d̄B(F ) of
a bounded set F ⊂ Rn is given by

d̄B(F ) := lim sup
δ→0

logNδ(F )

− log δ
. (2.14)

Here, Nδ(F ) can be defined in any of the following ways, with all of them
resulting in a common value (2.14):

1. The smallest number of closed balls of radius δ that cover F ;

2. The smallest number of closed balls of radius δ and centers in F that cover
F ;

3. The smallest number of cubes of side δ that cover F ;

4. The number of δ-mesh cubes that intersect F ;

5. The smallest number of sets of diameter at most δ that cover F ;

6. The largest number of disjoint balls of radius δ with centers in F .

Also, the quantity (2.14) does not depend on the choice of the norm in (i),(ii),
(v), and (vi).

It follows that for arbitrarily small κ > 0, the number of δ-balls with centers
in F that are needed to cover F does not exceed δ−(d̄B(F )+κ) for all sufficiently
small δ > 0.

As is well-known [Falconer, 1997], d̄B(F ) = d̄B(F ) ≤ n for any bounded
set F ⊂ Rn and d̄B(F ) = n if the interior of F is not empty, F1 ⊂ F2 ⇒
d̄B(F1) ≤ d̄B(F2), and d̄B(F1 ∪ . . . ∪ Fk) = max{d̄B(F1), . . . , d̄B(Fk)}, k ∈
Z+. The box-counting dimension may assume non-integer values; for example,
d̄B(F ) = 1/ log2 3 for the middle-thirds of the Cantor set F ⊂ R.

Our particular interest is in dynamical systems and their invariant sets S0

with d̄B(S0) < n; this case does hold for some chaotic systems and complex
attractors S0.
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2.4.2 Balance between the Initial and Forthcoming Esti-
mation Exactness, Respectively

Now, we are going to study relations between the initial exactness δ of the state
x estimate x̂ and the implied forthcoming exactness ε during the time horizon of
duration s+. This study is aimed at building the component e.3) of which the
proposed observer is composed, among others. We recall that this component is
a function δ(ε, s+) for which Equation (2.10) holds.

The growth rate of the system {ϕt} on the set S0 is defined to be:

g(S0) := lim
δ→0

lim
t→∞

t−1 log2 sup
θ∈T :θ≤t

sup
x∈Bδ(y),y∈S0

‖Aθ(x)‖ , (2.15)

where Aθ(x) := ∂ϕθ

∂x (x) is the Jacobian matrix of the map ϕθ(·) at point x
and log2∞ := ∞. It is well-defined for all sufficiently small δ, since x ∈ S in
Equation (2.15), thanks to the following.

Lemma 2.10. There exists δ0 > 0 such that Bδ0(y) ⊂ S for any y ∈ S0.

The proof of this lemma is trivial and thus omitted from this document.
In Equation (2.15), the limit limδ→0 exists since the subsequent quantity

decays as δ decreases. Since all norms ‖ · ‖ in the space of n × n-matrices are
equivalent, it is easy to see that g(S0) does not depend on the choice of the
norm.

Among other components, the proposed observer uses a function δ(ε, s+)
with a special property described in e.3). Now, we show how such a function
can be built from g(S0).

Lemma 2.11. Let g(S0) < ∞. For any ĝ > g(S0) and any positive definite
n × n-matrix P , there exists a function δ(ε, s+) with the property e.3) that is
given by

δ(ε, s+) = ε2−ĝs+ (2.16)

for all sufficiently small ε > 0 and sufficiently large s+.

The proof of this lemma is provided in Appendix 2.A.

2.4.3 Correct Operation of the Observer and a Criterion
for Observability

By bringing the pieces together, we arrive at the following.

Proposition 2.12. Suppose that Assumptions 2.1–2.3 hold and the system has
a finite growth rate g(S0) on the set S0. Consider a communication channel with
capacity c. If

c > g(S0)d̄B(S0), (2.17)

the system {ϕt}t∈T is observable on the set S0 via this communication channel
in the sense of Definition 2.6.
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The proof of this proposition is provided in Appendix 2.A. The previous
inequality strongly resembles other inequalities in the context of entropy in dy-
namical systems that link dimensions, Lyapunov exponents, and entropy (see
[Kawan, 2011, Young, 1983, Ledrappier and Young, 1985]). Note that the above
bound is suboptimal, in the sense that for noiseless communication channels,
several results requiring lower capacities have already been design. One can re-
fer to Section VI of [Kawan and Yüksel, 2018] for an overview of said results.
The goal of this chapter is to provide an alternative observer which is robust
towards losses in the communication channel.

Remark 2.13. The bounded transmission delay τ tr
j from Equation (2.9) and its

upper bound from c.5) do not affect the condition (2.17) for observability.

2.5 Constructive Estimates and Analytical Bounds

In this section, we make the next and final step for obtaining tractable conditions
for observability. The road to this is via the development of techniques for
assessing growth rate and the box-counting dimension. A technique will be
employed in both these cases that is similar in spirit to the second Lyapunov
method.

2.5.1 Lyapunov-Like Function

The characteristic trait of the classic Lyapunov function v(·) is its decay along the
trajectories of the system. In the current context, we are not interested in such
a decay. Instead, our interest is focused on the rate at which an infinitesimally
small ball is expanded under the transition mapping ϕt. The smallness implies
that this mapping is well-approximated by the first two terms of its Taylor series,
and so the rate in question is nothing but the expansion rate due to the Jacobian
matrix At(x) defined in Equation (2.15). The deformation of a ball under a
linear mapping A is described by the singular values of A; in particular, the
maximal of them is the norm of A and may be used in Equation (2.15). If P is a
symmetric positive definite matrix and Rn is endowed with the P -related norm
‖ ·‖P , these values are the square roots of the solutions of the algebraic equation
det[AᵀPA − P ] = 0 repeated in accordance with their algebraic multiplicities
and ordered from large to small. With these in mind, we introduce a function
v(·) : S → R with special properties whose description uses the t-step increment
of this function:

∆tv(x) := v(ϕt(x))− v(x). (2.18)

Assumption 2.14. There exist d ∈ [0, n], a bounded function v : S → R,
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constant Λ ≥ 0, and symmetric positive definite matrix P ∈ Rn×n, such that

∆tv(x) +

bdc∑
i=1

log2 λi(t, x) + (d− bdc) log2 λbdc+1(t, x) ≤ Λt, (2.19)

∀x ∈ S, ∀t ∈ T : 1 ≥ t > 0, where λ1(t, x) ≥ · · · ≥ λn(t, x) are the roots of the
algebraic equation

det [At(x)ᵀPAt(x)− λP ] = 0 (2.20)

repeated in accordance with their algebraic multiplicities and ordered from large
to small, and log2 0 := −∞.

In the discrete-time case, only t = 1 is concerned in Equation (2.19). In
the continuous-time case, Equation (2.19) is imposed only within the finite time
horizon of duration 1.

With P = In, Equation (2.20) reduces to det [At(x)ᵀAt(x)− λIn] = 0 and
λi(x, t) are the squares of the standard singular values of the Jacobian matrix
At(x). For a generic P , the roots λi(x, t) can also be reduced to standard singular
values. Indeed, let U be the symmetric and positive definite “square root” of the
symmetric and positive definite matrix P = U2. The solutions of Equation (2.20)
are evidently identical to those of det

[
U−1At(x)ᵀUUAt(x)U−1 − λIn

]
= 0, and

so the λi(x, t)’s are the squares of the ordinary singular values of the matrix
UAt(x)U−1. This matrix is similar to At(x), and so these two matrices represent
a common linear transformation in various bases. Thus, the role of P is, in fact,
that of a linear coordinate transformation in pursuit of ease of building Λ and
v(·).

Assumption 2.14 will be utilized for assessment of both quantities that we
are interested in. Specifically, it will be used with d = 1 and arbitrary Λ to
upper-estimate the growth rate (2.15) of the system; this estimate is given by
Λ. With Λ = 0 and some d ∈ [0, n], it will be used to establish an upper bound
on the upper box dimension of the invariant set S0; this bound is given by d.

In the case of a continuous time system, the next proposition provides an al-
ternative to computing the transition maps ϕt, t ∈ (0, 1] and checking infinitely
many inequalities (2.19), each for its own t ∈ (0, 1], when verifying Assump-
tion 2.14. To state this proposition, we introduce the Jacobian matrix of the
right-hand side in Equation (2.2):

J(x) =
∂f

∂x
(x).

Proposition 2.15. Let there exist d ∈ [0, n], a continuously differentiable
bounded function w : S → R, constant Γ ≥ 0, and a symmetric positive def-
inite matrix P ∈ Rn×n, such that

ẇ(x) +

bdc∑
i=1

γi(x) + (d− bdc)γbdc+1(x) ≤ Γ, ∀x ∈ S, (2.21)
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where ẇ(x) = ∂w
∂x f(x) and γi(x) are the solutions of the algebraic equation

det (J(x)ᵀP + PJ(x)− γP ) = 0 (2.22)

ordered from largest to smallest (γ1(x) ≥ · · · ≥ γn(x)) and repeated in accordance
with their algebraic multiplicity. Then, Assumption 2.14 holds with the particular

P and d of Equation (2.22), v(x) = w(x)
ln 2 and Λ = Γ

ln 2 .

This result is proved in Appendix 2.B.

2.5.2 Analytical Upper Bound on the System’s Growth
Rate and Related Conditions for Observability

Proposition 2.16. Let Assumptions 2.1–2.14 hold with d = 1 and Λ ≥ 0 in
the last of them. Then, the growth rate (2.15) of the system on S0 obeys the
following bound:

g(S0) ≤ Λ

2
.

The proof of this proposition is provided in Appendix 2.B.

By combining Propositions 2.12 and 2.16, we arrive at the following.

Theorem 2.17. Suppose that Assumptions 2.1–2.14 hold with d = 1 and Λ ≥ 0
in the last of them, and consider a communication channel with capacity c. If

c >
Λd̄B(S0)

2
, (2.23)

the system {ϕt}t∈T is observable on the set S0 via this communication channel
in the sense of Definition 2.6.

The observation schemes proposed in [Pogromsky and Matveev, 2011,
Matveev and Pogromsky, 2016] can sometimes work under the channel rates
smaller than that given in Theorem 2.17. This improved rate comes at a price:
these schemes are not robust against losses in the communication channel.

In [Liberzon and Hespanha, 2005], the observer requires some feedback in
the channel and a channel rate of the form n log2 L, where L is the Lipschitz
constant of the mapping ϕ1. The estimate (2.23) is less conservative, both
because L ≥ Λ/2 (if L is related to a norm of the form ‖ · ‖P ) and n ≥ d̄B(S),
with ≥7→> in some cases. Moreover, the scheme from [Liberzon and Hespanha,
2005] does not enjoy robustness against losses in the communication channel.

Finally, Corollary 6.2.1 of [Leonov, 2007] provides an estimate for the topolog-
ical entropy by using a result from [Ito, 1970], which is identical to our estimate
of the rate c with identical assumptions.
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2.5.3 Analytical Bounds on the Upper Box Dimension and
Final Conditions for Observability

A drawback of Theorem 2.17 is that it uses the upper box dimension, whereas
there are no general techniques to compute this dimension analytically. To
compensate for this drawback, we will use results from [Hunt, 1996, Kuznetsov,
2016] to replace the upper box dimension by its upper estimate in the form of
another well-known kind of dimension, i.e., the so-called Lyapunov dimension.
The benefit from this is that the latter can be estimated analytically.

We start by introducing the necessary definitions, including those of the
Lyapunov dimension of a map in a point, of a map over a set, and of a dynamical
system. Next, we will recall the required results from [Hunt, 1996, Kuznetsov,
2016], and finally, we will provide the general results of this chapter, which offers
analytical conditions for observability under a finite communication bit-rate.

Definition 2.18. For any t ∈ T , the singular value function of At(x) of order
d ∈ [0, n] at point x ∈ Rn is defined as

ωd (At(x)) :=


1, d = 0,
σ1(At(x)) . . . σd(At(x)), d ∈ {1, .., n},
σ1(At(x)) . . . σbdc+1(At(x))d-bdc, d ∈ (0, n) \ {1, .., n-1}.

Here σ1(A) ≥ . . . ≥ σn(A) are the singular values of the n× n-matrix A.

Definition 2.19 ([Kuznetsov, 2016]). For any t ∈ T , the Lyapunov dimension
of the map ϕt(·) at the point x ∈ S is given by

dL(ϕt, x) := sup{d ∈ [0, n] : ωd (At(x)) ≥ 1}.

Definition 2.20 ([Kuznetsov, 2016]). For any t ∈ T , the Lyapunov dimension
of the map ϕt(·) with respect to the invariant set S0 is given by

dL(ϕt, S0) := sup
x∈S0

dL(ϕt, x) = sup
x∈S0

sup{d ∈ [0, n] : ωd (At(x)) ≥ 1}.

Definition 2.21 ([Kuznetsov, 2016]). The Lyapunov dimension of the dynam-
ical system {ϕt}t≥0 with respect to the invariant set S0, is defined as

dL({ϕt}t∈T , S0) := inf
t∈T

sup
x∈S0

dL(ϕt, x) = inf
t∈T

sup
x∈S0

sup{d ∈ [0, n] : ωd (At(x)) ≥ 1}.

For the sake of completeness, we provide the results that we borrowed from
[Hunt, 1996, Kuznetsov, 2016].

Theorem 2.22 ([Hunt, 1996]). Let Assumptions 2.1–2.3 hold. Then,

d̄B(S0) ≤ dL(ϕ1, S0).



46 Chapter 2. Data-Rate Constrained Observers of Nonlinear Systems

Corollary 2.23 ([Hunt, 1996]). Let the hypotheses of Theorem 2.22 be true.
Then for all t ∈ T : t ≥ 1,

d̄B(S0) ≤ dL(ϕt, S0).

The following proposition is essentially a reformulation of Theorem 2 from
[Kuznetsov, 2016].

Proposition 2.24. Let Assumptions 2.1–2.3 be true. Suppose also that As-
sumption 2.14 holds with some d ∈ [0, n] and Λ = 0. Then, for sufficiently large
l > 0, the following inequality is valid:

dL({ϕt}t∈T , S0) ≤ dL(ϕl, S0) ≤ d. (2.24)

The proof of this proposition is provided in Appendix 2.B.
In some cases, the inequalities in Equation (2.24) take place as equalities.

Specifically, the following proposition is valid, which is a reformulation of Propo-
sition 3 and Corollary 3 from [Kuznetsov, 2016].

Proposition 2.25 ([Kuznetsov, 2016]). Suppose that at one of the equilibrium
points of the dynamical system {ϕt}t∈T : xeq ≡ ϕt(xeq), the matrix A1(xeq) has
the simple real eigenvalues λ1(xeq), . . . , λn(xeq). Let us consider a non-singular
matrix U , such that

UA(xeq)U−1 = diag(λ1(xeq), . . . , λn(xeq)) (2.25)

where |λ1(xeq)| ≥ · · · ≥ |λn(xeq)|, which matrix does exist thanks to the first
assumption of the proposition. Let ϕU : w → Uϕ1(U−1w) be the transition
mapping after the linear coordinate change. Suppose that Assumption 2.14 holds
with some d and Λ = 0, and additionally, we have

dL(ϕU , Uxeq) = d.

Then, for any compact invariant set S0 3 xeq of {ϕt}t∈T , the following
equation holds

dL({ϕt}t∈T , S0) = d.

Now we are in a position to state the main result of the chapter, which is
clear from Theorem 2.17 and Proposition 2.24.

Theorem 2.26. Let Assumptions 2.1–2.3 be true. Suppose also that Assumption
2.14 holds twice: first, with d = 1 and some Λ = Λ̄ ≥ 0 and second, with Λ = 0
and some d = d̄ ∈ [0, n]. Consider a communication channel with capacity c. If

c >
Λ̄d̄

2
, (2.26)

the system {ϕt}t∈T is observable on the set S0 via this communication channel
in the sense of Definition 2.6.
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2.6 Examples

In this section, we apply the previous theory to two celebrated prototypical
chaotic systems: the smoothened Lozi map and the Lorenz system. For the
smoothened Lozi map, we will compute the Lyapunov dimension and provide
a bound on the channel rate above where the associated dynamical system is
observable via the channel at hand. We will then test this bound via computer
simulations of the proposed observer to show that the established theoretical
rates are close to the actual practical rates. For the Lorenz system, we borrow
upper estimates of the Lyapunov dimension and the largest singular value of the
Jacobian from [Pogromsky and Matveev, 2011, Leonov et al., 2016], respectively,
to provide a bound on the channel rate by using Theorem 2.26. Like in the
previous example, we will also test this bound via computer simulations.

2.6.1 The Smoothened Lozi Map

The Lozi map [Lozi, 1978, Elhadj, 2013] is a modification of the Henon map. The
Lozi map is not continuously differentiable, and so does not meet Assumption 2.3.
We examine its continuously differentiable analog introduced in [Aziz-Alaoui
et al., 2001] by smoothing the Lozi map at the fracture point. The respective
smoothened map acts according to the following formula

ϕα :

(
x1

x2

)
→
(

1− afα(x1) + bx2

x1

)
, (2.27)

where a, b, and α� 1 are positive parameters and

fα(x) =

{
|x|, if |x| ≥ α;

x2

2α + α
2 , if |x| < α.

(2.28)

If 1 + a − b > 0 and α < (a + 1 − b)−1, the smoothened Lozi map has an
equilibrium

x+ =

(
1

1 + a− b
,

1

1 + a− b

)
.

If 1−a− b < 0 and α < (a− b−1)−1 in addition to the previous inequalities,
there exists a second equilibrium

x− =

(
1

1− a− b
,

1

1− a− b

)
.

In this section, we adopt the following.
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Assumption 2.27. The following inequalities hold:

a, b, α > 0,

1− a < b < 1,

α < (a+ 1− b)−1.

This assumption implies that two equilibria exist, and that they are unstable.
Moreover, b < 1 ensures dL({ϕtα}t≥0,K) < 2 for the associated discrete-time
dynamical system. We start by giving more insight into the Lyapunov dimension
of the smoothened Lozi map.

Theorem 2.28. Let Assumption 2.27 hold. Then, for any compact invariant
set S0 of the map (2.27), the following inequality is valid

dL({ϕtα}t∈T , S0) ≤ d := 2− log2 b

log2

(√
a2 + 4b− a

)
− 1

(2.29)

and Assumption 2.14 holds with Λ = 0 and d = d. Moreover, if x+ ∈ S0,
inequality (2.29) holds as equality:

dL({ϕtα}t∈T , S0) = 2− log2 b

log2

(√
a2 + 4b− a

)
− 1

.

The proof of this theorem is provided in Appendix 2.C.
In order to use the observer from Section 2.3 for the smoothened Lozi map

(2.27), we need to choose a compact and invariant set S0. For the original (i.e.,
non-smooth) Lozi map, such a set exists whenever the following conditions are
met: [Misiurewicz, 1980]

0 < b < 1, (2.30)

a > 0, (2.31)

2a+ b < 4, (2.32)

b <
a2 − 1

2a+ 1
, (2.33)

a
√

2 > b+ 2. (2.34)

Moreover, when the previous inequalities hold, the set S0 is the closure of the
unstable manifold of the unstable equilibrium x+. It is still unknown whether
they guarantee the same for the smoothened Lozi map (2.27). To the best of
the authors’ knowledge, no conditions that guarantee the existence of such a
set for the map (2.27) are available in the literature. In the following, we will
assume that Equations (2.30)–(2.34) are sufficient to ensure the existence of a
compact and invariant set S0. Our simulations with the parameters a = 1.7
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Figure 2.2: Typical trajectory with 10,000 steps of the smoothened Lozi map
with a = 1.7, b = 0.3, and b = 10−5.

and b = 0.3, α = 10−5, which verify Equations (2.30)–(2.34), provide evidence,
illustrated in Figure 2.2, in favor of this hypothesis. By combining Theorem 2.26
with Theorem 2.28 and an estimate of the largest singular value of the concerned
Jacobian given in [Matveev and Pogromsky, 2016], we arrive at the following.

Corollary 2.29. Let Assumption 2.27 hold, and let S0 be a compact invariant
set of the smoothened Lozi map (2.27). Then, the associated dynamical system
is observable on the set S0 via any communication channel whose capacity

c >

[
2 log2

(√
a2+4b−a

2

)
− log2 b

] [
log2

(√
a2+4b+a

2

)]
log2

(√
a2+4b−a

2

) .

Proof. Theorem 13 from [Pogromsky and Matveev, 2016a] yields that Assump-
tion 2.14 holds with d = 1 and

Λ = 2 log2

(√
a2 + 4b+ a

)
− 2.

Theorems 2.26 and 2.28 complete the proof.
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Corollary 2.29 implies that for these parameters, the associated dynamical
system is observable for any channel rate above 1.2013 bits/s. To verify whether
this lower bound on the channel rate can be improved, we employed the observer
from Section 2.3 whose parameters were experimentally tuned to ensure a pre-
specified exactness of observation ε during the first 1000 steps. The following
values were considered: ε = 0.5, 0.2, 0.1, 0.05. An accompanying objective of
experimentally tuning was to minimize the size of the alphabet K employed
for data encoding, or, in other words, the channel capacity c∗ requested by the
observer. The best values of the capacity can be found in Table 2.1. It shows
that for high exactness, the system can be observed with a channel rate slightly
below the theoretical estimate. For the lowest exactness, the experimental rate
barely exceeds the theoretical bound. However, in any case, this bound seems
to be pretty close to the experimental result.

Table 2.1: Results of the simulations on the smoothened Lozi map.

ε = 0.2 ε = 0.1 ε = 0.075 ε = 0.05
K (1) 1× 106 2× 106 2× 107 3.5× 107

c∗ (bits/s) 1.0924 1.1499 1.169431 1.212770

2.6.2 The Lorenz System

In this section, we apply our previous theoretical results to the Lorenz system.
The Lorenz system [Lorenz, 1963] is a well-known example of a continuous-time
system where, for certain values of its parameters, it displays chaotic behavior.
The system equations are:ẋ1 = −σx1 + σx2,

ẋ2 = ρx1 − x1x3 − x2,
ẋ3 = x1x2 − βx3,

(2.35)

where σ, ρ, and β are positive parameters. If ρ < 1, the system has a single
globally asymptotically stable equilibrium: the origin. For ρ > 1, this equilib-
rium becomes a hyperbolically unstable saddle-point. In addition, two equilibria
appear. In this chapter, we assume ρ > 1. We will apply our findings to the
system with its chaotic attractor as the set S0. As is well-known [Sparrow, 1982],
the conditions on the parameters (σ > 0, β > 0, ρ > 1) suffice to ensure the
presence of a compact invariant set. Moreover, to compute the Lyapunov di-
mension, we adopt the following assumption which is taken from [Leonov et al.,
2016].
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Assumption 2.30. Let the following hold:

ρ > 1,

ρ ≥ β3 − 2β2 + 6β2σ − 3βσ2 − 6βσ + β

3σ2
+ 1,

σρ > (β + 1)(β + σ),

and either

σ2(ρ− 1)(β − 4) ≤ 4σ(σβ + β − β2)− β(β + σ − 1)2,

or the following equation has two distinct solutions, ν

(2σ − β + ν)2(β(β + σ − 1)2 − 4σ(σβ + β − β2) + σ2(ρ− 1)(β − 4))

+ 4βν(σ + 1)(β(β + σ − 1)2 − 4σ(σβ + β − β2)− 3σ2(ρ− 1)) = 0 (2.36)

and {
σ2(ρ− 1)(β − 4) > 4σ(σβ + β − β2)− β(β + σ − 1)2

ν1 > 0
,

where ν1 is the largest root of Equation (2.36).

Any solution of the Lorenz system that starts at t = 0 can be extended on
[0,∞) [Leonov, 2007], and thus has the extendability property discussed just
after Equation (2.2). Hence, the differential Equations (2.35) give rise to a
dynamical system on S := R3 in the sense of Section 2.2.1.

Proposition 2.31. Let Assumption 2.30 hold, and let S0 be a compact invariant
set of the Lorenz system. Then, this system is observable on the set S0 via any
communication channel whose capacity is:

c>

[√
(σ-1)2 + 4ρσ-σ-1

] [
3
√

(σ-1)2 + 4ρσ-2β + σ + 1
]

2 ln 2
[√

(σ-1)2 + 4ρσ + σ + 1
] .

Proof. Since the right-hand side of the equations in Equation (2.35) are polyno-
mial, Assumptions 2.1 and 2.3 hold by Proposition 2.4; Assumption 2.2 is true
due to the choice of S0. It is easy to see by inspection of the proof of Theorem
4.3 from [Pogromsky and Matveev, 2011] that the assumptions of Proposition
2.15 hold with d = 1,

Γ =
√

(σ-1)2 + 4ρσ − σ − 1,

and the matrix P defined by (16) in [Pogromsky and Matveev, 2011]. So
Proposition 2.15 guarantees that Assumption 2.14 holds with d = 1 and
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Λ = 1
2 ln 2

[√
(σ-1)2 + 4ρσ − σ − 1

]
. As is shown in Section 4 from [Leonov

et al., 2016], Assumption 2.14 also holds with Λ = 0 and

d = d = 3− 2(σ + β + 1)√
(σ − 1)2 + 4σρ+ σ + 1

.

Theorem 2.26 completes the proof.

We have performed simulation studies similar to those carried out for the
previous example. Starting from various initial conditions in S0, we have simu-
lated the observer for various chosen ε, each with its own chosen δ and associated
covering. In our simulations, we used σ = 10, ρ = 28, β = 8

3 , which verify As-
sumption 2.30. For these parameters, the theoretical rate bound is c > 40.975
bit/s. The results of the simulations can be seen in Table 2.2. Once again, it
can be seen that the experimentally found rate is below or very close to the
theoretical rate. This confirms that our theoretical results correctly predict the
rate.

Table 2.2: Results of the simulations on the Lorenz system.

ε = 0.2 ε = 0.1 ε = 0.075 ε = 0.05
K (1) 364758 714701 1448880 3.5× 107

c∗ (bits/s) 19.814 30.739 34.614 43.714

2.7 Conclusion

In this chapter, we have presented an observer for both discrete and continuous-
time nonlinear systems. We have provided bounds on the necessary data-rates to
implement the observer. We have proven that this observer can be implemented
on any channel with a finite delay parameter and a channel rate c > Λd̄B(S0)/2,
where Λ/2 is an upper bound on the largest singular value of the Jacobian and
d̄B(S0), the upper box dimension of the compact invariant set of the system.
By combining results from several other papers, we have provided an analytical
bound to the channel rate that depends on the Lyapunov dimension, rather than
the upper box dimension. These analytical bounds have been computed for the
smoothened Lozi map and the Lorenz system. For the smoothened Lozi map, we
computed the Lyapunov dimension. Simulations of the observer on both of these
systems have proven that the theoretical rate is closely related to the actual rate
required to implement the observer.

The following notations are used in this manuscript:

� Z+: the set of nonnegative integers;

� R+: the set of nonnegative real numbers;
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� |x|: the absolute value of x;

� card(F ): the cardinality of a set F ;

� bsc = maxt∈Z t, s.t. t ≤ s;

� In: the identity matrix of dimension n× n;

� Mᵀ: the conjugate transpose of the matrix M ;

� M−ᵀ: the inverse of the transpose of the matrix M ;

� ‖x‖2 =
√
xᵀx;

� ‖x‖P =
√
xᵀPx, with P symmetric and positive definite;

� Bδ(x): the ball in ‖·‖2 of radius δ centered in x;

� BPδ (x): the ball in ‖·‖P of radius δ centered in x.

Appendices

2.A Proofs of Section 2.4

In this appendix, we present the proofs of of the results stated in Section 2.4.

2.A.1 Proof of Lemma 2.11

We introduce the P -associated spectral norm of a n× n-matrix:

‖A‖P = max
x:‖x‖P=1

‖Ax‖P .

Based on Equation (2.15), Lemma 2.10, and the remark following that lemma,
we first pick δ0 > 0 such that

Bδ0(x) ⊂ S ∀x ∈ S0

and

lim
t→∞

t−1 log2 sup
θ∈T :θ≤t

sup
x∈Bδ0 (y),y∈S0

∥∥∥∥∂ϕθ∂x
(x)

∥∥∥∥
P

< ĝ.

Based on this inequality, we then pick ς ∈ T so that for all t ∈ T, t ≥ ς, we
have ∥∥∥∥∂ϕθ∂x

(x)

∥∥∥∥
P

< 2ĝt if θ ∈ T, θ ≤ t, x ∈ Bδ0(y), y ∈ S0. (2.37)

Now, we consider ε ≤ δ0, s+ ≥ ς, and δ = δ(ε, s+) defined in Equation
(2.16). Let the context of Equation (2.10) holds, i.e., x̂, x ∈ S0 and ‖x̂− x‖P ≤
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δ(ε, s+) = ε2−ĝs+ ∈ (0, δ0]. Then, the segment [x, x̂] = {(1−θ)x+θx̂ : 0 ≤ θ ≤ 1}
lies in the balls Bδ0(x), and so in S by the choice of δ0. By using the mean value
inequality Theorem 9.19 from [Rudin, 1976], we have for any θ ∈ T, θ ≤ s+,

.
∥∥ϕθ(x̂)− ϕθ(x)

∥∥
P
≤ sup
z∈[x,x̂]

∥∥∥∥∂ϕθ∂x
(z)[x̂− x]

∥∥∥∥
P

≤ ‖x− x̂‖P sup
z∈[x,x̂]

∥∥∥∥∂ϕθ∂x
(z)

∥∥∥∥
P

.

Now, we note that the conditions from Equation (2.37) are fulfilled for t :=
s+, x := z, and y := x̂. Hence∥∥ϕθ(x̂)− ϕθ(x)

∥∥
P
≤ ε2−ĝs+ × 2ĝs+ = ε.

Thus, we see that Equation (2.10) is true. It remains to extend the function
δ(ε, s+) from ε ∈ (0, δ0], s+ ∈ T, s+ ≥ ς on all ε > 0 and s+ ∈ T by putting
δ(ε, s+) := δ

(
min{ε, δ0},max{s+, ς}

)
.

2.A.2 Proof of Proposition 2.12

We first pick ĝ > g(S0) and κ > 0 so close to g(S0) and 0, respectively, that

c > ĝ[d̄B(S0) + κ]. (2.38)

We also pick a positive definite n × n-matrix P and borrow the function
δ(ε, s+) from Lemma 2.11. We also consider ε > 0 and s+ ∈ T so small and
large, respectively, that Equation (2.16) holds. As was remarked just after Def-
inition 2.9, the set S0 can be covered by no more than δ−(d̄B(S0)+κ) δ-balls
centered in S0 for all small enough δ > 0. By reducing ε > 0, if necessary, we
make δ = δ(ε, s+) small enough in this sense irrespective of s+ ∈ T . Then, no
more than

δ(ε, s+)−(d̄B(S0)+κ) = ε−(d̄B(So)+κ)2ĝ[d̄B(S0)+κ]s+

δ-balls centered in S0 are needed to cover S0. Hence, the integer floor of the
right-hand side of this equation is the function K(ε, s+) from e.4). So, the
condition (2.13) for the correct operation of the observer from Section 2.3 takes
the form

−(d̄B(S0) + κ) log2 ε+ ĝ[d̄B(S0) + κ](τpr + τ tr
+ ) ≤ b(τpr)

⇔
ĝ[d̄B(S0) + κ]τ tr

+ − (d̄B(S0) + κ) log2 ε

τpr
+ ĝ[d̄B(S0) + κ] ≤ b(τpr)

τpr
.

By invoking Equations (2.8) and (2.38), we see that the last inequality can be
satisfied by picking τpr which is large enough. Then, by picking s+ ≥ τpr +τ tr

+ in
accordance with Equation (2.12), we ensure the correct operation of the observer.
The statement ii) from Observation 1 completes the proof.
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2.B Proofs of Section 2.5

2.B.1 Proof of Proposition 2.15

For the dynamical system given by Equation (2.2), the matrices At(x) defined
in Equation (2.15) obey the equations

∂At
∂t

(x) = J [ϕt(x)]At(x), A0(x) = In. (2.39)

Hence,
A∆(x) = In + ∆J(x) + ∆Mx(∆), ∀∆ > 0, (2.40)

where Mx(∆)→ 0 as ∆→ 0. Moreover, this convergence is uniform over x from
any compact subset K of S. Indeed, for x ∈ K, Equation (2.39) yields that

Mx(∆) = ∆−1[A∆(x)−A0(x)]− J(x) = ∆−1

∫ ∆

0

∂At
∂t

(x) dt− J(x)

= ∆−1

∫ ∆

0

[
J [ϕt(x)]At(x)− J(x)

]
dt = ∆−1

∫ ∆

0

[
Ψ(t, x)]−Ψ(0, x)

]
dt,

where Ψ(t, x) := J [ϕt(x)]At(x). Due to the last claim of Proposition 2.4, the
function Ψ(t, x) is continuous. Hence it is uniformly continuous on the compact
set [0, 1]×K and so

µK(∆) := max
t∈[0,∆],x∈K

‖Ψ(t, x)−Ψ(0, x)‖ → 0 as ∆→ 0.

It remains to note that for all x ∈ K,

‖Mx(∆)‖ ≤ ∆−1

∥∥∥∥∥
∫ ∆

0

[
Ψ(t, x)−Ψ(0, x)

]
dt

∥∥∥∥∥ ≤ ∆−1

∫ ∆

0

∥∥∥Ψ(t, x)−Ψ(0, x)
∥∥∥ dt

≤ µK(∆).

By invoking Equation (2.40), we see that

A∆(x)ᵀPA∆(x) = P + ∆ [J(x)ᵀP + PJ(x)] + ∆Qx(∆), (2.41)

where

Qx(∆) := ∆J(x)ᵀPJ(x) + ∆Mx(∆)ᵀPMx(∆) + PMx(∆) +Mx(∆)ᵀP

+ ∆J(x)ᵀPMx(∆) + ∆Mx(∆)ᵀPJ(x)→ 0 as ∆→ 0

uniformly over x ∈ K due to the foregoing since the continuous function J(x) is
bounded on the compact set K. Let U = Uᵀ > 0 be the positive definite square
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root P = U2 of P . Equation (2.20) with t := ∆ can be rewritten by virtue of
Equation (2.41) as follows

0 = det[A∆(x)ᵀPA∆(x)− λP ]
m

0 = det
{

∆ [J(x)ᵀP + PJ(x)] + ∆Qx(∆)− (λ̄− 1)P
}

m
det
{

[J(x)ᵀP + PJ(x)] +Qx(∆)− λ̄−1
∆ P

}
= 0

m
det
{ [
U−1J(x)ᵀU + UJ(x)U−1

]
+ U−1Qx(∆)U−1 − λ̄−1

∆ In

}
= 0.

Thus we see that [λi(∆, x] − 1)/∆ are the ordinary eigenvalues of the
symmetric matrix U−1J(x)ᵀU + UJ(x)U−1 + U−1Qx(∆)U−1, which goes to
U−1J(x)ᵀU +UJ(x)U−1 as ∆→ 0 uniformly over x ∈ K. Meanwhile the eigen-
values continuously depend of the symmetric matrix by Corollary 6.3.8 [Horn
and Johnson, 2013]. It follows that

[λi(∆, x)− 1]/∆ = ηi(x) + ωi(x,∆),

where ωi(x,∆)→ 0 as ∆→ 0 uniformly over x ∈ K and ηi(x) are the solutions
for the eigenvalue problem

det
[
U−1J(x)ᵀU + UJ(x)U−1 − ηIn

]
= 0⇔ det

[
J(x)ᵀP + PJ(x)− ηP

]
= 0.

The last equation is identical to Equation (2.22), and so ηi(x) = γi(x). By
using the previous equations together, we see that

λi(∆, x) = 1 + ∆γi(x) + ∆ωi(x,∆), Ωi(K,∆) := sup
x∈K
|ωi(x,∆)| → 0 as ∆→ 0.

(2.42)
Now we invoke d from Proposition 2.15. For any n× n matrix B, we denote

by λ̄i(B) the roots of the algebraic equation

det[BᵀPB − λP ] = 0 (2.43)

enumerated from large to small, and put

ω̄d(B) := λ̄1(B) · · · λ̄bdc(B)[λ̄bdc+1(B)]d−bdc

By combining the generalized Horn inequality [Leonov, 2007] with Lemma 8.1
in [Pogromsky and Matveev, 2011] (which relates to the roots of Equation (2.43)
with the concept of the singular value of a matrix), we infer that ω̄d(BC) ≤
ω̄d(B)ω̄d(C) for any n × n matrices B,C. It follows that for any sequence
B0, . . . , Bm of such matrices

ω̄d(BmBm−1 · · ·B0) ≤
m∏
j=0

ω̄d(Bj).
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Now we pick an arbitrary t > 0 and denote ∆r := t/r, tr(j) := j∆r for any
natural r and j ∈ Z+. Since the system is time-invariant, we have

At(x) = A∆r
[ϕtr(r−1)(x)]A∆r

[ϕtr(r−2)(x)] · · ·A∆r
[ϕtr(1)(x)]A∆r

[ϕtr(0)(x)].

As a result, we see that in Equation (2.19),

A :=

bdc∑
i=1

log2 λi(t, x) + (d− bdc) log2 λbdc+1(t, x) = log2 ω̄d[At(x)]

≤
r−1∑
j=0

log2 ω̄d
{
A∆r [ϕ

tr(j)(x)]
}

=

r−1∑
j=0


bdc∑
i=1

log2 λi[∆r, ϕ
tr(j)(x)] + (d− bdc) log2 λbdc+1[∆r, ϕ

tr(j)(x)]


=

bdc∑
i=1

r−1∑
j=0

log2 λi[∆r, ϕ
tr(j)(x)] + (d− bdc)

r−1∑
j=0

log2 λbdc+1[∆r, ϕ
tr(j)(x)]

=

bdc∑
i=1

r−1∑
j=0

log2

{
1 + ∆rγi[ϕ

tr(j)(x)] + ∆rωi[ϕ
tr(j)(x),∆r]

}
+(d− bdc)

r−1∑
j=0

log2

{
1 + ∆rγbdc+1[ϕtr(j)(x)] + ∆rωbdc+1[ϕtr(j)(x),∆r]

}
.

We proceed by using the elementary inequality log2(1 + x) ≤ x/ ln 2 and the
quantity Ωi(K,∆) defined in Equation (2.42) for the compact set K := {ϕθ(x) :
0 ≤ θ ≤ t}, which contains all points of the form ϕtr(j)(x), j = 0, . . . , r,

r−1∑
j=0

log2

{
1 + ∆rγi[ϕ

tr(j)(x)] + ∆rωi[ϕ
tr(j)(x),∆r]

}
≤ ∆r

ln 2

r−1∑
j=0

γi[ϕ
tr(j)(x)] +

∆r

ln 2

r−1∑
j=0

ωi[ϕ
tr(j)(x),∆r]

≤ ∆r

ln 2

r−1∑
j=0

γi[ϕ
tr(j)(x)] +

r∆r

ln 2
Ωi(K,∆r),
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where r∆r = t by the definition of ∆r = t/r. Thus

A ≤ ∆r

ln 2

r−1∑
j=0

bdc∑
i=1

γi[ϕ
tr(j)(x)] + (d− bdc)γbdc+1[ϕtr(j)(x)]︸ ︷︷ ︸

B

+Ω(∆r), where

Ω(∆) :=
t

ln 2

 bdc∑
i=1

Ωi(K,∆) + (d− bdc)Ωbdc+1(K,∆)

→ 0 as ∆→ 0.

Now we estimate B by employing Equation (2.21)

A ≤ ∆r

ln 2

r−1∑
j=0

{
Γ− ẇ([ϕtr(j)(x)]

}
+ Ω(∆r)

= t
Γ

ln 2
− 1

ln 2

r−1∑
j=0

∆rẇ([ϕtr(j)(x)] + Ω(∆r).

Here, the sum is the Riemann sum of the continuous function ẇ([ϕθ(x)] of
θ ∈ [0, t], and A does not depend on r. So be letting r → ∞ and by invoking
that ẇ(x) = ∂w

∂x (x)f(x), we get

bdc∑
i=1

log2 λi(t, x) + (d− bdc) log2 λbdc+1(t, x)

≤ t Γ

ln 2
− 1

ln 2

∫ t

0

∂w

∂x
[ϕθ(x)]f [ϕθ(x)] dθ

= t
Γ

ln 2
− 1

ln 2

{
w[ϕθ(x)]− w[ϕ0(x)]

}
Thus we have arrived at Equation (2.19) modulo the definitions of Λ =

Γ/ ln 2 and v(x) = w(x)/ ln 2 from Proposition 2.15. It remains to note that
the function v(x) is bounded since w(x) has this property by the assumptions
of Proposition 2.15.

2.B.2 Proof of Proposition 2.16

We first note that Equation (2.19) with d = 1 means that whenever x ∈ S, t ∈
T, 1 ≥ t > 0, we have

∆tv(x) + 2 log2 ‖At(x)‖P ≤ Λt. (2.44)

We are going to show that for any natural r, Equation (2.44) holds whenever
t ∈ T, 0 < t ≤ r, arguing by induction on r. As a result, we will show that
Equation (2.44) is valid for all t ∈ T, t > 0.
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For r = 1, this claim is initially given. Suppose that it is true for some r,
and consider t ∈ T ∩ (0, r + 1]. If t ∈ T ∩ (0, r], Equation (2.44) is true by the
induction hypothesis. Let t > r. Then t = r + θ, where θ ∈ T, 0 < θ ≤ 1. By
putting y := ϕr(x) and invoking Assumption 2.1 and Equation (2.15), we see
that

ϕt = ϕθ ◦ ϕr ⇒ At(x) = Aθ(y)Ar(x)⇒ ‖At(x)‖P ≤ ‖Aθ(y)‖P ‖Ar(x)‖P
⇒ log2 ‖At(x)‖P ≤ log2 ‖Aθ(y)‖P + log2 ‖Ar(x)‖P ;

∆tv(x) = v(ϕt(x))− v(x) = v(ϕr+θ(x))− v(ϕr(x)) + v(ϕr(x))− v(x)

= ∆θv(y) + ∆rv(x),

where the start of the second line is due to Equation (2.18). By using these
relations, we arrive at Equation (2.44) via adding Equation (2.44) with t := θ
to the inequality

∆rv(x) + 2 log2 ‖Ar(x)‖P ≤ Λr,

which holds by the induction hypothesis. Thus, Equation (2.44) is true whenever
t ∈ T, t > 0.

Now we introduce a finite upper bound v ≥ |v(x)| ∀x ∈ S on the bounded
function |v(·)|. Let x ∈ S. Then ϕt(x) ∈ S and so Equation (2.18) yields that
|∆tv(x)| ≤ 2v. By Equation (2.44),

log2 ‖At(x)‖P ≤ Λt/2 + v.

As was remarked, g(S0) does not depend on the matrix norm ‖·‖ in Equation
(2.15). Meanwhile, Lemma 2.10 ensures that x ∈ Bδ(y), y ∈ S0 ⇒ x ∈ S for all
small enough δ > 0. Hence

g(S0) = lim
δ→0

lim
t→∞

t−1 sup
θ∈T :θ≤t

sup
x∈Bδ(y),y∈S0

log2 ‖Aθ(x)‖P

≤ lim
δ→0

lim
t→∞

t−1 sup
θ∈T :θ≤t

sup
x∈Bδ(y),y∈S0

[Λθ/2 + v] = Λ/2.

2.B.3 Proof of Proposition 2.24

Proof. From Assumption 2.14, we have that λi(t, x) are the roots of the equation

det(At(x)ᵀPAt(x)− λP ) = 0. (2.45)

Since P is positive definite and symmetric, we can decompose it as

P = UᵀU,

where U is nonsingular. Equation (2.45) can thus be rewritten as

det(At(x)ᵀUᵀUAt(x)− λUᵀU) = 0.
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If we premultiply with U−ᵀ and postmultiply with U−1, the solutions λi are
unchanged and the equation becomes

det(U−ᵀAt(x)ᵀUᵀUAt(x)U−1 − λIn) = 0.

We thus know that λi(t, x) are the eigenvalues of the matrix

U−ᵀAt(x)ᵀUᵀUAt(x)U−1

or the square of the singular values of the matrix UAt(x)U−1. From Equation
(2.14) with the same d and Λ = 0, we have that

∆tv(x) +

bdc∑
i=1

log2 λi(t, x) + (d− bdc) log2 λd+1(t, x) < 0,

∀x ∈ S, t ∈ T : 0 < t ≤ 1, which thus also implies that

1

log2 e

1

2
∆tv(x) +

bdc∑
i=1

1

2
log2 λi(t, x) +

(d− bdc)
2

log2 λd+1(t, x)

 < 0,

∀x ∈ S, t ∈ T : 0 < t ≤ 1, where e is Euler’s number. This can be rewritten as

1

2 log2 e
∆tu(x) +

bdc∑
i=1

ln
√
λi(t, x) + (d− bdc) ln

√
λd+1(t, x) < 0,

∀x ∈ S, t ∈ T : 0 < t ≤ 1.
We now apply Theorem 2 from [Kuznetsov, 2016] with t = 1, S = U ,

λi(x, S) =
√
λi(1, x) and V (x) = 1

2 log2 e
v(x) to obtain

dL({ϕt}t≥0, S0) ≤ dL(ϕT , S0) ≤ d,

for T sufficiently large.

2.C Proofs of Section 2.6

Proof of Theorem 2.28

Proof. Proposition 2.24 yields that to prove the first sentence from the conclusion
of Theorem 2.28, it suffices to justify Assumptions 2.1–2.3 and Assumption 2.14
with Λ = 0 and d := d̄ defined in Equation (2.29) for the discrete-time dynamical
system associated with the smoothened Lozi map. Assumptions 2.1–2.3 do
hold since the map (2.27) is smooth and S0 is a compact invariant set by the
assumptions of Theorem 2.28. It remains to check Assumption 2.14, where t = 1
in Equation (2.19) since we are in discrete time now.
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We are going to justify Assumption 2.14 with P = diag{1, b}. Since we have
that

A(x) =

(
−af ′α(x) b

1 0

)
,

Equation (2.20) becomes

det (A(x)ᵀPA(x)− λP ) = 0

(2.46)

m (2.47)

det

[(
a2 (f ′α(x))

2
+ b −af ′α(x)b

−af ′α(x)b b2

)
−
(
λ 0
0 bλ

)]
= 0. (2.48)

To simplify the notations, we introduce f̄ := f ′α(x). Equation (2.48) admits
two solutions

λ1(x) =
1

4

(√
a2f̄2 + 4b+ a|f̄ |

)2

,

λ2(x) =
1

4

(√
a2f̄2 + 4b− a|f̄ |

)2

.

(2.49)

Since by Equation (2.28),

1 ≥ |f̄ | ≥ 0, (2.50)

given Assumption 2.27, we know that maxx∈S0 λ1(x) is always larger than one
(in particular, for all |x| ≥ α, f̄ = 1). This implies that dL({ϕtα}t∈T , S0) > 1 and
that 1 < d < 2. Note that the latter inequality is strict as a result of Assumption
2.27. After some computations and due to Equation 2.49, the left-hand side of
Equation (2.19) becomes

log2(λ1(x)) + (d− bdc) log(λ2(x))

= 2

[
1− (d− bdc) + log2 b+ (d− bdc − 1) log2

(√
a2f̄2 + 4b− a|f̄ |

)]
.

Which, using Equation (2.50) can be upper bounded in the following way

log2(λ1(x)) + (d- bdc) log(λ2(x))

≤ 2
[
1-(d- bdc) + log2 b+ (d- bdc -1) log2

(√
a2 + 4b-a

)]
.

To satisfy Assumption 2.14 with some d and Λ = 0, we are looking for d−bdc
such that the left-hand side of the previous equation is negative. We thus obtain
the following sufficient condition

2
(

1− (d− bdc) + log2 b+ (d− bdc − 1) log2

(√
a2 + 4b− a

))
< 0
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which, using Assumption 2.27, can be rewritten as

(d− bdc) > 1− log2 b

log2

(√
a2 + 4b− a

)
− 1

.

Note that from the conditions from Assumption 2.27, the following is always
true 0 < (d− bdc) < 1. Since Assumption 2.14 with d = d̄ and Λ = 0 is verified,
the proof is completed by applying Proposition 2.24 which yields

dL({ϕtα}t≥0, S0) ≤ d̄ = 2− log2 b

log2

(√
a2 + 4b− a

)
− 1

.

To prove the second part of this theorem, we will use Proposition 2.25. We
consider the following diagonalizing coordinate change matrix

U =

[
1√

a2+4b
a+
√
a2+4b

2
√
a2+4b

−1√
a2+4b

−a+
√
a2+4b

2
√
a2+4b

]
which is nonsingular and well-defined for all parameters satisfying Assumption
2.27.

To compute dL(ϕU , Uxeq), we first compute

λ1(x+) =

√
a2 + 2b+ a

√
a2 + 4b

2
, (2.51)

λ2(x+) =

√
a2 + 2b− a

√
a2 + 4b

2
. (2.52)

From Assumption 2.14 with d = d̄ and Λ = 0, we have λ1(x+) > 1 and
λ2(x+) < 1 which means we have d̄ ∈ [1, 2). We thus compute

dL(ϕU , Ux+) = sup{d ∈ [0, n] : ωd(UA(Ux+)U−1) > 1}

⇔ λ1(x+) [λ2(x+)]
(d̄−bd̄c) = 1.

Using Equations (2.51) and (2.52), and after some computations, we obtain
that

d̄−
⌊
d̄
⌋

=

− log2

(√
a2+2b+a

√
a2+4b

2

)
log2

(√
a2+2b−a

√
a2+4b

2

) .

This latter equation can be rewritten as

d̄−
⌊
d̄
⌋

= 1− log2 b

log2

(√
a2 + 4b− a

)
− 1

.
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Since we assumed x+ ∈ S0, all conditions of Proposition 2.24 are verified.
We thus obtain

dL({ϕtα}t≥0, S0) = 2− log2 b

log2

(√
a2 + 4b− a

)
− 1

.





Chapter 3

Consensus in Networks of Dynamical

Systems with Limited Communication

Capacity

This chapter provides a solution for the preservation of consensus in a network
of several agents, described by discrete-time nonlinear dynamical systems. Con-
sensus preservation is the problem of maintaining a certain distance between the
states of several systems, given that the systems’ initial states are close to each
other. The agents are equipped with both a smart sensor, capable of measuring
the state of the system and performing some computations, and a controller.
The sensors and controllers are placed at locations that are remote from one an-
other. A network of communication channels with limited transmission capacity
connects the agents by allowing the sensors to send messages to the controllers
of their system as well as to the controllers of other systems. The controllers
use the messages that they receive to steer the agents such that the consensus is
preserved. Sensors and controllers that achieve this feature are called consensus-
preserving protocols. In this chapter, three distinct consensus-preserving pro-
tocols are presented, each with an increasing degree of interaction between the
systems. For each of these protocols, a theorem providing conditions on the min-
imum sufficient communication capacity to implement them is presented. The
protocols are tested by simulations for a network of logistic maps and a network
of Hénon maps. For both of these networks, analytical bounds on the sufficient
transmission capacities in the communication channels to implement the proto-
cols are provided. These bounds are compared to rates observed in simulations
of the consensus-preserving protocols.
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3.1 Introduction

In modern society, wireless technologies such as Wi-Fi and Bluetooth are om-
nipresent and it is thus no surprise that these technologies have many appli-
cations in the industrial world. For the field of dynamics and control, these
technologies have given birth to a completely new subfield that studies inter-
actions between dynamical systems and wireless communication technologies.
These communication technologies generally take the form of communication
channels that can only transmit limited numbers of bits per unit of time and
can be subject to losses or corruption of the messages they carry. In many
modern industrial applications, one or several dynamical systems, together with
their sensors and actuators, are connected only by such communication chan-
nels. Examples of such applications are networks of distributed sensors that
communicate via Wi-Fi, drones which fly in formation, the cooperative driving
of automated vehicles.

In this chapter, we will investigate lossless communication channels with
limited transmission capacities. For dynamical systems, interactions with such
constrained channels become problematic when they are combined with one or
several sources of uncertainties. Indeed, according to Shannon (see Shannon
[1948]), uncertainty can be seen as information and in the case of dynamical
systems, this uncertainty generally takes one or several of the four following
forms: uncertainty in and sensitivity to initial conditions, parametric uncertain-
ties, unmodelled system dynamics, or noise/disturbances. The challenge is to
design communication protocols to transmit the information generated by the
uncertainties via the data rate constrained channels to remote locations such
that all the information needed to solve the posed control/estimation problem
is transmitted whilst respecting the data rate constraints.

The earliest works on the interaction between dynamical systems and com-
munication channels with limited transmission capacities were concerned with
the design of observers and controllers that function over data rate constrained
channels. The earliest works focus on linear dynamical systems (see e.g. Wong
and Brockett [1997] or Elia and Mitter [2001] and references therein). Most
of the problems involving linear systems have now been solved (an overview of
those results can be found in Nair et al. [2007], Baillieul and Antsaklis [2007],
Andrievsky et al. [2010], Yüksel and Başar [2013], and Fang et al. [2017]).

Although some results appeared not much later for nonlinear systems, most of
these early results presupposed very specific structures in the nonlinear systems
(see e.g. in De Persis [2003] and Baillieul [2004]). More general results were
obtained in Nair et al. [2004] and Liberzon and Hespanha [2005]. The first
paper used a concept called feedback entropy to provide meaningful bounds on
the necessary channel rates while the second paper used techniques that were
first designed for linear dynamical systems and extended them to the nonlinear
case. Since then, several different notions of entropy have been introduced in
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an effort to provide general results about necessary and/or sufficient data rates
for observers and controllers of nonlinear systems with data rate constrained
communication channels (see Kawan [2013], Colonius et al. [2013], Matveev and
Savkin [2009], Kawan [2018], Sibai and Mitra [2017], Liberzon and Mitra [2016],
and Pogromsky and Matveev [2016a]).

Since one of the important topics in the field of dynamics and control is the
problem of synchronization and/or consensus of dynamical systems, it should
come as no surprise that this problem was also studied in the subfield of dynam-
ical systems and data rate constrained communication channels. Two of the first
works that studied the problem of consensus of systems that communicate with
limited data rates are Fradkov et al. [2008a] and Fradkov et al. [2008b] where the
problem of master/slave synchronization of two nonlinear systems was consid-
ered. Since then, several more papers have focused on this problem. Some results
were obtained for linear systems, such as in Li et al. [2011], where the problem of
average consensus in networks of linear systems with fixed topologies and limited
data rates was tackled. The paper Li and Xie [2011] provided an extension of
the aforementioned results with a time-varying network topology. In You and
Xie [2011] the specific effects of network topology and data rate constraints were
studied and in Li et al. [2016] an event-triggered approach was developed for the
average consensus of linear systems with data rate constraints. In Meng and Li
[2014] and Meng et al. [2017], the authors develop an observer-based solution
for the coordination problem with quantization. Some works on consensus for
nonlinear systems were also done such as Dong [2019], which studied consensus
for networks of nonlinear systems with data rate constraints.

In this work, we consider the problem of consensus preservation in a network
of identical nonlinear dynamical systems. Several agents, with identical dynam-
ics, have initial states that are close to each other. All agents are equipped with
a smart sensor (a smart sensor is a sensor that is also capable of performing
some computations) and a controller. The sensor and controller are placed at
locations remote from one another. The sensors are connected to the controllers,
including that of their own agent, via a network of communication channels with
limited transmission capacities. A particular controller has access to data about
the state of its own associated agent only if a communication channel links this
controller with the sensor of this agent. The data rate constrained channels
can only transmit symbols from finite-sized lists of symbols that are generally
referred to as alphabets. The goal of this chapter is to design the sensors, alpha-
bets, and decoder-controllers such that the initial distance between the states of
the agents is preserved over time, up to a time-invariant multiplication factor.
A combination of sensors, alphabets, and controllers which achieves this fea-
ture is called a consensus-preserving protocol. In this chapter, we present three
consensus-preserving protocols. This work extends Voortman et al. [2020d],
both because two new consensus-preserving protocols are added and because
the considered class of systems is broader. For all protocols, the design of the
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alphabets is based on an idea that is very similar to the idea of separating the
state-space into partitions and using symbolic dynamics (see Morse and Hedlund
[1938]) to describe the dynamical system. The main result of this work resides
in three theorems, one for each consensus-preserving protocol, which provide an-
alytical upper bounds on transmission capacities in the communication channels
sufficient to implement the consensus-preserving protocol. The bounds on the
capacities are proven to depend on the singular values of the Jacobian of the
system. The novelty of this work is to consider the situation where the sensors
and controllers of each agent are connected only via the limited capacity com-
munication channels, which, to the best of the authors’ knowledge, has not been
considered in the literature before.

The structure of the chapter is as follows. Firstly, the problem statement
along with all necessary definitions are exposed in Section 3.2. Next, in Section
3.3, the method which will be used to communicate whilst limiting the data rate
is described. In Section 3.4, three different algorithms, that solve the problem
exposed in the problem statement, are developed. The chapter continues with
Section 3.5, which contains the main results of the chapter: theorems that pro-
vide upper bounds on the minimum sufficient capacities required to implement
the consensus-preserving protocols of the previous section. Finally, in Section
3.6, examples of how these theorems can be used are given. The problems of
consensus preservation for a network of logistic maps and a network of Hénon
maps are considered. For both of these problems, the sufficient capacities are
computed from the theorems of the previous section and compared with the
rates of simulations.

3.2 Problem Statement

We consider a network of k agents described by the following discrete-time dy-
namical systems:

xi(t+ 1) = f(xi(t), ui(t)), xi(0) = xi0, (3.1)

for i ∈ {1, . . . , k}, where f : Rnx × Rnu → Rnx is a nonlinear mapping,
ui ∈ Rnu are the control inputs, xi0 ∈ X are initial states, and X is a given
set of them. We define the distance dist(x,X) from a point x to a set X as
dist(x,X) := infy∈X ‖x− y‖P , where ‖x‖P :=

√
xᵀPx, for a positive definite

matrix P that will be defined further in this chapter. We impose the following
regularity assumptions on the mapping f and the state-space trajectories of the
system.

Assumption 3.1. The function f is continuously differentiable on Rnx ×Rnu .
The set X of initial states is bounded and there exists ξ > 0 such that for all
x ∈ Rnx verifying dist(x,X) ≤ ξ, f(x, 0) ∈ X.
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Further in this chapter, a covering of X with balls in norm ‖·‖P will be con-
sidered. Assumption 3.1 implies that such a covering exists and that, provided
that the balls in the covering are of small enough radius and a zero control input
is applied, all trajectories starting within the covering end up in X. The agents
are connected through a network of communication channels. The connections
in the network are described by a communication adjacency matrix A ∈ Rk×k.
Each entry aij of this matrix is 1 if there is a communication channel transmit-
ting messages mij(t) from agent i to agent j and 0 otherwise. We denote by
J the set of all pairs (i, j) such that aij = 1. Figure 3.1 depicts a particular
network of four agents.

Figure 3.1: The structure of a particular network with 4 agents.

Each agent is equipped with a smart sensor and a smart controller which
are responsible for sending (sensor) and receiving (controller) messages over the
communication channels. The structure of a single agent is depicted on Figure
3.2.

Informally, the challenge could be described as follows: given that the states
of the systems are close to each other initially, design the sensors and controllers
of the agents such that the states of their systems remain close to each other
whilst using bit-rates below the transmission capacities of the communication
channels. Each smart sensor i is composed of several encoders Eij : one for each
of the agents it is connected to. Encoder Eij sends messages mij(t) to controller
j. All messages are sent simultaneously by the encoders at communication time
instants t ∈ S := {0, s̄, 2s̄, . . .}, where s̄ > 0 is a tunable constant. The encoders
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Figure 3.2: The structure of a single agent.

Eij utilize the past messages Mij(t) that they sent, Mij(t) := {mij(s) : s ∈ S, s <
t}, ∀i, j ∈ J. It is assumed that all agents are aware of a shared initial estimate
of the state x̂0 ∈ X which verifies

‖x̂0 − xi(0)‖P ≤ δ, (3.2)

∀i ∈ {1, . . . , k}. It is also assumed that the sensors measure the state of their
own system without any measurement error. The encoder equations are

mij(t) = Eij(f, s̄, δ, xi(t), x̂0,Mij(t)) (3.3)

for i, j ∈ J, t ∈ S.
For any time interval s̄ between two consecutive communications, each of the

channels has its own maximum number of bits b+ij(s̄) that can be transmitted

and depends on the length of the time interval s̄. The bound b+ij implies that the
messages mij(t) that are sent have to be drawn from finite-sized alphabets. Each
communication channel between sensor i and controller j has its own alphabet
function Aij which determines the length of the alphabet at time t and hence
the variety of messages it can transmit. The alphabet is a list of symbols which
are indexed from 1 to lij(t) <∞ where the last index lij(t) and thus the size of
the alphabet at time t is determined by the alphabet function Aij . The alphabet
of each channel is known by both agents which communicate via the channel.
The alphabet function equations are

lij(t) = Aij(f, s̄, δ, x̂0,Mij(t)), (3.4)

for i, j ∈ J, t ∈ S. Since the messages have to be elements of the alphabet of
their channel, the restriction on the messages generated by (3.3) is that

mij(t) ∈ {1, ..., lij(t)}, (3.5)

for i, j ∈ J, t ∈ S. At every communication instant, the logarithm of the size
of the alphabet should always be inferior or equal to the maximum number of
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bits that can be transmitted during any time interval between communications.
The following should thus hold

log2(lij(t)) ≤ b+ij(s̄), (3.6)

for i, j ∈ J, t ∈ S.
On the controller side, we assume that the messages are received one time

instant before the next communication, that is, s̄ − 1 time instants later, at
the end of the transmission interval (the time between two consecutive com-
munications s̄ > 0 prevents the channel from transmitting infinite amounts of
data instantaneously). Each controller uses the previously received messages
M̄j(t) := {mij(s) : s ∈ S, s ≤ t − s̄ + 1, i ∈ {1, . . . , k} : aij = 1} to form the
control input, and is described by an equation of the form

uj(t) = Uj(f, s̄, δ, x̂0, M̄j(t)) (3.7)

j ∈ {1, . . . , k}, ∀t ≥ 0.
To formally define the objective of this chapter, we need a quantity that

measures the sum of the channel’s transmission capacities from all channels that
each agent is connected to. We first define each channel’s transmission capacity
cij as

cij := lim inf
s→∞

b+ij(s)

s
. (3.8)

Note that this definition means that for any α > 0 and cij > α there exists
s̄ <∞ such that αs̄ bits can be sent during any time interval of duration s̄. The
outgoing communication capacity ci of agent i is then defined as

ci := min
j:aij=1

cij

k∑
q=1

aiq. (3.9)

The outgoing communication capacity of an agent is thus the product of the
minimum transmission capacity among all the channels that the agent’s smart
sensor is connected to times the number kc of controllers that the agent is con-
nected to. Hence for any α > 0, ci > αkc implies that there exists a time interval
s̄ <∞ such that αs̄ bits can be sent over each of those communication channels
during that time interval.

We pose the following problem: several systems have initial states all within
a distance of 2δ of each other (see (3.2)). Design the sensors, alphabet functions,
and controllers such that their interactions preserve the consensus, i.e. that the
states of the systems remain within a certain distance Gδ of each other for t > 0,
where G is a positive constant. Moreover, this consensus-preserving property
should hold for all small enough δ’s with a common G. Note that this property
does not necessarily require all systems to be controlled, but at least some of
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them should be, particularly the systems that are sensitive to initial conditions,
such as chaotic systems.

The constant G will be referred to as a consensus factor and is defined as
follows.

Definition 3.2. Let (3.2) hold for k systems with a particular δ > 0. Then, if
the quantity G < ∞ satisfies ‖xi(t)− xj(t)‖P ≤ Gδ, ∀t ≥ 0, ∀i, j ∈ {1, . . . , k},
it is called a consensus factor.

All smart sensors, alphabet functions, and smart controllers together form
a consensus-preserving protocol. The protocol should not only maintain the
consensus but also function whilst respecting the channel capacity constraints
(as stemming from (3.6), (3.8), and (3.9)). If a particular protocol achieves both
these features, it is said to preserve consensus which is more formally defined as
follows.

Definition 3.3. A consensus protocol (3.3), (3.4), (3.7) preserves consensus of
k agents with outgoing communication capacities ci as defined in (3.9) if both of
the following conditions hold

(i) There exists G < ∞, δ∗ > 0, such that for all δ : 0 < δ ≤ δ∗, G is a
consensus factor as defined in Definition 3.2 with those particular δ;

(ii) The messages generated by the encoders respect the restriction on the choice
of messages (3.5) and the alphabet functions respect the channel capacity
constraints (3.6).

This chapter presents several consensus-preserving protocols (3.3), (3.4),
(3.7).

3.3 Rationale Behind the Alphabet for Communication

A first important feature of a consensus-preserving protocol is how the sensors
and controllers communicate. To preserve the consensus between the agents, the
controllers need information about the state of the system they control, as well
as information about a common trajectory that is going to be followed. Since
the communication channels can only transmit limited numbers of bits during
any time interval, sending the full state is not possible. There is thus a necessity
of quantizing the state so that it can be encoded into messages of finite sizes.
These messages can then be used to generate estimates of the states which will
be used to control the systems. This discretization involves designing the al-
phabets which are lists of symbols that are used for communication. To make
the protocols more graspable, we develop the design of the alphabets in a sepa-
rate section where we describe one possible approach to this design. Note that
the alphabets only describe a possible method to encode the information about
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the state or the common trajectory into messages. Which sensor should send
what information to what controller is another part of the consensus-preserving
protocol and will be discussed in the next section. In this section, we describe
the design of the alphabets and not the alphabet functions that determine the
cardinality of the alphabets (as defined in (3.4)).

In this section, the role of the quantities δ and s̄ will be highlighted. Up to
now, how these should be chosen has not been discussed. The method to build
the alphabets which we will now describe simply requires that δ is chosen strictly
positive and small enough (at least smaller than ξ from Assumption 3.1) and
that s̄ is an integer larger than zero.

The idea behind the alphabet (which is partially based on techniques from
Matveev and Pogromsky [2016], Pogromsky and Matveev [2011], Voortman et al.
[2018a], Voortman et al. [2018b], and Voortman et al. [2019]) is to cover the set
of initial conditions X with balls of size δ, where δ is the initial distance (the
left part of Fig. 3.3 depicts such a covering). We will use the notation Bδ(x)
for a ball of radius δ, centred in x, in the norm ‖·‖P . The rationalities of this
section are valid for any positive definite P . In the following definition, we will
use the notation |V | to denote the cardinality of a set V .

Definition 3.4. Given X and δ > 0, we will denote by V ⊂ X a finite set of

points vq ∈ V such that X ⊆
⋃|V |
q=1Bδ(vq).

The set V is a part of our protocol, it is thus known to all agents (and
their connected devices). This set is used to form a covering of X with balls:
each element in V corresponds to the center of one ball in the covering. This
in turn provides a simple method to discretize X: each point of X is mapped
to the center of one of the balls in which it lies, i.e. points are discretized to
elements of V . Assumption 3.1 states that X is bounded which implies that the
cardinality of V can be chosen finite. The set V cannot be used to communicate
estimates because it might require a very large number of balls to cover X,
and in particular, as δ tends to zero, the number of elements in V increases
unboundedly. We use another feature of the covering to overcome this difficulty.
In the absence of input, and given s̄ ≥ 1 and δ > 0, one can compute the image
f s̄(Bδ(vq), 0) of the ball q through the mapping f applied s̄ times with zero
input. This situation is illustrated in Fig. 3.3.

The images of these balls

Iq := f s̄(Bδ(vq), 0), (3.10)

are subsets of X by Assumption 3.1 and can thus be covered by selecting balls
with centres in V . To each set Iq we associate a set Vq of such centres. A family
of these sets {Vq} is defined as follows:

Definition 3.5. Given X, δ > 0, and V , for each vq ∈ V , we denote a finite set

Vq ⊆ V of points vqp ∈ Vq, p ∈ {1, . . . , |Vq|} such that Iq ⊆
⋃|Vq|
p=1Bδ(v

q
p), where

Iq is defined in (3.10). The family {Vq} is the collection of these sets.
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Figure 3.3: Every ball Bδ of the covering of the state-space X is mapped into
an ellipsoid after s̄ time-steps.

As a part of our protocol, a set V and a family {Vq} are computed and
provided to all sensors and controllers. For each of the balls with a center vq in
V , the indexes of the balls in Vq form an alphabet. Each symbol in this alphabet
corresponds to the center of one of the balls used to cover Iq (See Fig. 3.4).

Remark 3.6. The sets Vq depend on Iq, which are the images of the balls through
the mapping with a zero input applied. The fact that the input is assumed to be
zero is intentional and will be taken into account in the design of the consensus-
preserving protocols in the next section.

Figure 3.4: Alphabet for the ball Bδ of Fig. 3.3, lij = 23

The sensors then use the sets V and {Vq} to send messages in the following
way. If a controller possesses an estimate vq of the current state of its system,
then it knows which alphabet is used for communication (namely {1, . . . , |Vq|}),
since all alphabets are known at the start of the protocol. Because the sensor
has access to the full state of its system, it can easily compute the future state of
the system with zero input (by applying the mapping f(·, 0) to the current state
of the system). To transmit an estimate of the future state to the controller, the
encoder which communicates with that controller then simply needs to transmit
the index p of the center of the ball vqp in which the state will be in s̄ time-
steps (Fig. 3.4 presents this idea schematically) to provide a future estimate of
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the state of its system to that controller. The alphabets thus allow any sensor
to send estimates of the state of its system to any of the controllers, provided
that they are connected via a communication channel with sufficient capacity to
transmit the message.

Figure 3.5: Particular situation with the state and estimate. The state evolves
in such a way that it ends up in the ball with index 14 after s̄ time steps. The
message to communicate a new estimate would then be ”14”.

The presented design of the alphabets of this section will be used to build the
alphabet functions of the next section where we will discuss consensus-preserving
protocols in full.

3.4 Consensus-preserving Protocols

In this section, the consensus-preserving protocols, in the form of equations of
encoders, alphabet functions, and controllers are presented. For the clarity and
simplicity of the upcoming mathematical developments, we will only consider
mappings with the following form

f(xi(t), ui(t)) = ϕ(xi(t)) + ui(t). (3.11)

Note that it is possible to adapt the upcoming consensus-preserving protocols
to situations with non-additive inputs. To achieve this, it is necessary to assume
reachability/controllability for the systems (see Nijmeijer and van der Schaft
[2013]) and to adapt the protocols to take into account the time it would take to
drive the systems from one point to another. This heavily impacts the clarity of
the presentation, however, and given the current complexity of the mathematical
developments, is left for further research.

We will denote ϕs(·) the mapping ϕ applies s times to itself (i.e. ϕs(·) =
ϕ(. . . ϕ(·))). Three distinct protocols will be presented, each requiring a higher
outgoing communication capacity. To avoid redundancy, the first subsection will
contain the aspects that are identical in the functioning of all three protocols.
We will then dedicate a separate subsection to every particular protocol. For
each of them, we will briefly describe the underlying idea and then present the
equations.
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3.4.1 Common Elements of the Protocols

Some parts of the consensus protocols are similar, in this subsection we describe
these common parts. We denote by qt the index of the ball with center vqt
in which the states xi(t) are contained at the communication time t ∈ S. We
use the notation t̄ for the last communication instant. For the sake of brevity,
we will not repeat the arguments of the protocol functions and instead use the
abbreviated notation: Aij(·), Eij(·), and Ui(·).

We design the controller equations (3.7) such that the input of all systems is
zero at all time instants except the ones preceding the instants of communication
(i.e. ui(t) = 0, ∀t : (t+ 1) ∈ S). Note that due to the transmission delay, these
are also the instants at which the previous messages reach the controllers. To
control only at the time instants preceding communications, all protocols operate
in periods of s̄ ≥ 2. Note that this design allows us to consider the mapping with
zero input when constructing the subcoverings, as was foreshadowed by Remark
3.6.

By properly controlling the systems, the protocol guarantees that at the
communication instants, all states xi(t) are within the ball of radius δ centred
in vqt . The index qt of the ball in which the states of all of the systems are
at the communication instants is assumed to be always known by all sensors
and controllers. The control input is applied at the time step preceding the
communication instants. Via the messages they receive, all controllers compute
a common ball in which all systems should be at the next communication instant.
If a controller receives no messages, it applies zero control input. The control
input that is applied takes the form of a shift vector in the state-space which
is added to the dynamics of the system (as in (3.11)). It corresponds to the
difference between the center of the ball in which all systems should be at the
next time step, and the ball in which the controller’s system would be, had no
input be applied.

The alphabet functions (3.4) are

Aij(·) = |Vqt |, (3.12)

t ∈ S, i, j ∈ J . The alphabet function thus corresponds to the cardinality of the
covering of the set Iqt (as defined in (3.10)).

The encoder functions (3.3) are

Eij(·) = arg min
p∈{1,...,|Vqt |}

∥∥ϕs̄(xi(t))− vqtp ∥∥P , (3.13)

t ∈ S, i, j ∈ J . Each encoder thus sends the index of the ball in which its
system will be in s̄ timesteps (should no input be applied) to the controller it is
connected to.
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3.4.2 The Pacemaker Protocol

The pacemaker solution relies on an external pacemaker to determine the ball
in which the state of all systems should be contained. This decision happens
independently of the current states of the systems. The trajectory generated by
the pacemaker is denoted r(t) and is defined as follows

r(t) := arg min
v∈V

∥∥ϕt(x̂0)− v
∥∥
P
.

It is a sequence of points, which are selected from the points in the set V , such
that they are the closest points to the solution to (3.1) with x̂0 as an initial
condition. This trajectory is known by all controllers since they have access
to both x̂0 and V . In order to track this trajectory, the controllers require an
estimate of the state of their own system, which implies that the communication
adjacency matrix is A = Ik (where Ik is the k×k identity matrix). The controller
equations (3.7) of the pacemaker protocol are for,

Ui(·) =

{
0, if (t+ 1) /∈ S

r(t+ 1)− vqt̄mii(t̄), if (t+ 1) ∈ S. , t ≥ 0.

Remark 3.7. It might seem peculiar at first sight that tracking a predetermined
target is regarded as consensus. Given the previously enunciated definition for
consensus preservation, this protocol is however inevitable. Not only does this
protocol preserve consensus, but it is also the protocol that will be presented that
requires the smallest outgoing communication capacity, as will be proven in the
next section.

3.4.3 The Master/Slaves Protocol

The master/slaves protocol relies on one of the systems being the master system
and the remaining k − 1 systems being the slave systems. The master system
is left uncontrolled and all the slaves track the master system’s trajectory. The
slave systems are uncoupled. For simplicity’s sake, we will assume that system
1 is the master while the next k− 1 systems are the slaves. The communication
adjacency matrix is

A = Ams :=



0 1 1 · · · 1
0 1 0 · · · 0

0 0 1 · · ·
...

...
...

...
. . .

...
0 0 0 · · · 1

 . (3.14)

Note that the element a11 of this matrix is zero, which is because the first
system will not be controlled and hence doesn’t need an estimate of its state.
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The controller equations (3.7) of the master/slaves protocol are for t ≥ 0,

U1(·) = 0,

Ui(·) =

{
0, if (t+ 1) /∈ S,

vqt̄m1i(t̄)
− vqt̄mii(t̄), if (t+ 1) ∈ S, , ∀i 6= 1,

3.4.4 The Mutual Protocol

Our third consensus-preserving protocol is closer to what is traditionally under-
stood as consensus: part or all of the systems decide on a common trajectory.
Out of the k systems, km systems (k ≥ km ≥ 2) are decision-makers and thus
exchange information to decide on a common trajectory to be tracked while
ks = k − km systems are followers which track the trajectory without partici-
pating in its generating. Without any loss of generality, we will assume that the
systems numbered from 1 till km are decision-makers and the remaining ones are
followers. Among the group of decision-makers, all systems exchange estimates
of their states with each other. They also send an estimate of their states to the
controller of their agent as well as the controller of the followers. The followers
only need to send an estimate of their state to their controller to be actuated.
Note that since the systems receive an estimate of their state, this protocol with
km = 1 is not the same as the master/slaves protocol. The communication
adjacency matrix is

A = Amc :=

[
1km×km 1km×ks
0ks×km Iks

]
. (3.15)

The mutual protocol controller equations (3.7) are,

Ui(·) =

 0, if (t+ 1) /∈ S,
arg min

v∈Vqt̄

∥∥∥∑km
j=1

vmji(t̄)

km
-v
∥∥∥
P

-vlt̄mii(t̄), if (t+ 1) ∈ S.

The difference between the mutual protocol and the master/slave protocol is
that the master does not receive an estimate of its state because it is left uncon-
trolled (notice that the first entry of Ams is zero). The master/slave protocol
is thus not the same as the mutual protocol with km = 1. This explains why
both protocols are presented separately. In the next section, we will prove that
the sufficient outgoing communication capacity is smaller for the master/slave
protocol than for the mutual protocol with km = 1. Note that the different
consensus-preserving protocols that have been presented here are by no means
the only protocols that preserve consensus in the sense of Definition 3.3.

3.5 Resulting Rates

The three protocols from the previous section rely on the tunable constants δ > 0
and s̄ ≥ 2. As was mentioned in Section 3.3, the choice of δ and s̄ has a capital



3.5 Resulting Rates 79

impact on the size of the alphabets and hence, on the required outgoing com-
munication capacity. In this section, we provide the main results of the chapter,
namely three theorems, one for each of the protocols, which provide sufficient
conditions on the communication adjacency matrix and outgoing communication
capacities ci to implement the protocols.

As was briefly explained in Section 3.3, one of the determining factors is how
a ball of radius δ expands/contracts under the influence of the mapping ϕ. It is
well-known that the image of a ball under a linear mapping is an ellipsoid whose
semi-axes are the right-singular vectors of the matrix associated with this linear
map and the length of the axes are the singular values multiplied by the original
radius of the ball. In the nonlinear case, the singular values of the Jacobian of
the mapping ϕ have the same effect as long as the original ball is small enough
such that the higher-order terms are neglectable. For nonlinear systems, these
singular values are generally state-dependent which means that it is difficult to
provide upper bounds on the expansion/contraction rate depending on those
singular values.

One possibility to get rid of the state-dependency in the singular values of
the Jacobian is to use an assumption from Matveev and Pogromsky [2016]. We

first introduce the following notations As(x) := ∂ϕs

∂x (x) , A(x) := A1(x), and
Xξ := {x ∈ Rnx |dist(x,X) < ξ}, where ξ is taken from Assumption 3.1. We
then impose the following assumption.

Assumption 3.8. Matveev and Pogromsky [2016] There exist continuous and
bounded on Xξ functions vd : Rn → R, constants Λd ≥ 0, d ∈ {1, . . . , nx}, and
a positive definite nx × nx matrix P = P ᵀ such that

∆vd(x) +

d∑
i=1

log2 λi(x) ≤ Λd, ∀x ∈ Xξ (3.16)

for all d ∈ {1, . . . , nx}, where log2(0) := −∞ and λ1(x) ≥ · · · ≥ λn(x) ≥ 0 are
the roots of

det (Aᵀ(x)PA(x)− λP ) = 0 (3.17)

repeated according to their algebraic multiplicities and ∆vd(x) = vd(ϕ(x)) −
vd(x).

Note that this assumption constitutes an extension of the results obtained in
Voortman et al. [2020d] since a wider class of systems can be considered now,
thanks to the addition of the auxiliary functions vd. In the upcoming results,
we will use the quantity v̄, which is defined as

v̄ := sup
x∈Xξ, d∈{1,...,n}

|vd(x)| (3.18)
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and is finite since the functions vd are bounded on Xξ (by Assumption 3.8). We
also define

Λ̄ := max
d∈{1,...,n}

Λd. (3.19)

The matrix P from Assumption 3.8 is used to define the norm ‖·‖P and
hence also the balls used in the construction of the alphabet that was discussed
in Section 3.3.

The λi(x) of the previous assumption are in fact the square singular-values
of A(x) expressed in a different coordinate basis. Indeed, decomposing the ma-
trix P as P = UᵀU where U is non-singular (since P is positive definite and
symmetric such a decomposition always exists) allows us to rewrite (3.17) as
det (Aᵀ(x)UᵀUA(x)− λUᵀU) = 0 which, since U is non-singular, has the same
solutions as det

(
U−ᵀAᵀ(x)UᵀUA(x)U−1 − λIn

)
= 0. The solutions of this

equation are thus the squares of the singular values of U−ᵀAᵀ(x)UᵀUA(x)U−1,
which is equivalent to saying that they are the squares of the singular values of
A(x) in a different coordinate basis. One important consequence is that for the
norm ‖·‖P , the following inequality holds ‖A(x)x‖P ≤

√
λ1(x) ‖x‖P .

With Assumption 3.8 in mind, we now present the main contributions of
this chapter: the theorems that provide sufficient conditions on the outgoing
communication capacities to implement the consensus-preserving protocols. The
first theorem provides the bounds for the pacemaker protocol.

Theorem 3.9. Let Assumptions 3.1 and 3.8 and (3.2) hold for k systems (3.1).
Then there exists s̄ > 0 such that the pacemaker protocol with the communi-
cation adjacency matrix A = Ik preserves the consensus of the systems over
channels with outgoing communication capacities ci >

Λ̄
2 , and consensus factor

G = 2
Λ1s̄+v̄+2

2 .

The proof of this theorem is provided in Appendix 3.A. The second theorem
provides the bounds for the master/slaves protocol.

Theorem 3.10. Let Assumptions 3.1 and 3.8, and (3.2) hold for k systems
(3.1). Then there exists s̄ > 0 such that the master/slave protocol with the com-
munication adjacency matrix A = Ams as defined in (3.14) preserves the consen-
sus of those systems over any channels with outgoing communication capacities

c1 > (k − 1) Λ̄
2 , ci >

Λ̄
2 , ∀i ∈ {2, . . . , k}, and consensus factor G = 2

Λ1s̄+v̄+2
2 .

The proof of this theorem is provided in Appendix 3.A. The third and last
theorem provides the bounds for the mutual protocol.

Theorem 3.11. Let Assumptions 3.1 and 3.8, and (3.2) hold for k systems
(3.1). Then there exists s̄ > 0 such that the mutual protocol with the com-
munication adjacency matrix A = Amc as defined in (3.15) preserves the con-
sensus of k systems over any channels with outgoing communication capacities
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ci > k Λ̄
2 ,∀i ∈ {1, . . . , km}, ci > Λ̄

2 , ∀i ∈ {km + 1, . . . , k} and consensus factor

G = 2
Λ1s̄+v̄+2

2 .

The proof of this theorem is provided in Appendix 3.A.
The three protocols are ranked in terms of increasing interactions. In this

context, interactions mean how many systems’ current states are taken into ac-
count when deciding on the next point in the common trajectory. The pacemaker
protocol requiring the least interactions (none of the systems’ states are used to
determine the common trajectory) whilst the mutual protocol requires the most
(with km = k, all the system’ states are taken into account). These interactions
come at a cost, if we denote by c∗ the total outgoing communication capacity
(c∗ =

∑
i ci), then we have that

c∗pm =
kΛ̄

2
, c∗ms =

(2k − 2)Λ̄

2
, c∗mc =

(km(k − 1) + k)Λ̄

2
, (3.20)

where the subscripts pm, ms and mc denote the pacemaker, master/slaves and
mutual protocol respectively. Note that for k > 2, we have c∗pm < c∗ms < c∗mc.
Higher levels of interactions thus require higher total outgoing communication
capacities.

3.6 Examples

In this section, we illustrate the use of the previous theorems by applying them
to two examples. We consider the problem of consensus preservation first for
a network of logistic maps, then for a network of Hénon maps. For both of
these networks, we will apply Theorems 3.9, 3.10, and 3.11 to find the sufficient
outgoing communication capacities to implement the consensus-preserving pro-
tocols. These capacities are then compared to the rates used by the protocols in
simulations to validate the theoretical bounds.

3.6.1 The Logistic Map

The logisitic map is a single-dimensional map, introduced in May [1976], with
the following state equation

ϕγ : {x→ γx (1− x)} , (3.21)

with state-space X = [0, 1], where γ is a positive parameter. For γ ∈ [0, 4],
the set X is positively invariant. Depending on γ, the system has one or two
equilibria xeq

1,2 ∈ X:

xeq
1 = 0, xeq

2 =
γ − 1

γ
,
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where the latter equilibrium only exists for γ ∈ (1, 4]. The system displays a wide
array of different behaviors (see e.g. Strogatz [1994] for a detailed description of
the behaviors). One particular property of the system is that for most values of
γ ≥ 3.56995, the system displays chaotic behavior. We thus consider k systems
with the following equations

xi(t+ 1) = ϕγ(xi(t)) + ui(t).

This system does not satisfy the final part of Assumption 3.1: there is no ξ > 0
such that ξ-neighbourhood of X is attractive. However, this assumption is only
made to ensure that for any point belonging to the covering of X with balls,
its image through the mapping of the system is inside of X (a property that
is necessary for our protocols). Since [0, 1] can be covered with balls in R such
that no point of the balls fall outside of [0, 1], the consensus-preserving protocols
and their associated theorems can still be applied. Applying the three previous
theorems to the logistic maps gives the following proposition

Proposition 3.12. Theorems 3.9, 3.10, and 3.11 hold for k logistic maps with
Λ̄ = 2 log2 γ and G = 2γ s̄.

Proof: In order to prove the proposition, we need to verify Assumption 3.8.
We start by computing the Jacobian of the system

∂ϕγ
∂x = γ − 2γx. We thus

have that λ1(x) = (γ − 2γx)2 is a solution of (3.17) for the logistic map. Over
the state-space X = [0, 1], λ1(x) has a global maximum at x = 0: λ1(0) = γ2.
We thus have that Assumption 3.8 holds with P = 1, Λ1 = Λ̄ = 2 log2(γ), and
v1 = 0. �

For the simulations, we consider two logistic maps each with the same pa-
rameter γ = 3.97 and X = [0, 1]. For the mutual protocol, we consider the
case km = 2 only. Proposition 3.12 holds with Λ̄ = 3.9782. This implies that
the theoretical bounds on the capacities are cpm > 3.9782, cms > 3.9782 and
cmc > 7.9564. Note that the pacemaker protocol and master/slaves protocol
have the same bound on the total outgoing communication capacity, which is
logical since in both cases, each sensor transmits estimates of its state to only
one controller. The mutual protocol requires twice as large of a total outgoing
communication capacity, as follows from (3.20). This is due to the fact that each
of the sensors needs to send estimates of their state to both controllers, which
requires twice as many communications as for the other protocols.

A Monte-Carlo simulation method was used for all three protocols. For each
protocol, the two systems were given random initial states in [0, 1], within a
distance δ of each other, 1000 different times. For each of those 1000 different
initial conditions, the systems and the consensus-preserving protocols were then
simulated for 1000 timesteps for various choices of s̄. In all cases, the consensus
was preserved. The choices of δ and the associated results are displayed in Table
3.1. The quantity G is dimensionless while the total communication rates R∗

are given in bits per time instant.
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s̄ = 2 s̄ = 5 s̄ = 10 s̄ = 20
δ = 10-2 δ = 10-4 δ = 10-8 δ = 10-13

G 3.97 1972 194194× 106 1.89× 1012

R∗pm 4.98 3.17 2.58 2.28
R∗ms 4.97 3.18 2.60 2.27
R∗mc 9.99 6.38 5.18 4.58

Table 3.1: Results for the logistic maps.

We make the following comments about these results. For s̄ = 2, the rates
R∗ are above the theoretical thresholds c∗ (which are 3.9782, 3.9782 and 7.9564).
For larger s̄ the resulting communication rates are below the theoretical capacity
threshold. This effect is accentuated for the largest choices of s̄. This is partially
due to the fact that the worst initial states (i.e. the initial conditions requiring
the highest rate) are not selected every time. The reduction in communication
rate comes at a price: the consensus factor is larger for larger s̄. There is thus a
trade-off between the rate and consensus factor. Note that the small differences
between the rates R∗pm and R∗ms are due to the random nature of Monte-Carlo
type simulation methods.

3.6.2 The Hénon map

The Hénon map is a two-dimensional discrete-time dynamical system that was
first introduced in Henon [1976]. It is described by the following map

ϕH :

{(
x1

x2

)
→
(
a+ bx2 − x2

1

x1

)}
, (3.22)

where a and b are positive parameters. The most studied parameters are the
combination a = 1.4 and b = 0.3 for which simulations show both bounded and
unbounded trajectories. Moreover, for these parameter values, the system has
a strange attractor which is a typical manifestation of chaotic properties. The
system has two equilibrium points of (x+, x+) and (x-, x-)

x+ =
b-1 +

√
(b-1)2 + 4a

2
, x- =

b-1-
√

(b-1)2 + 4a

2

For the parameter values a = 1.4 and b = 0.3 both equilibria are saddle points.
As was proven in Henon [1976], one of the particularities of the system is that
is has a positively invariant set: the quadrilateral ABCD with vertices A =
(−1.33, 0.42), B = (1.32, 0.133), C = (1.245,−0.14), D = (−1.06,−0.5). The
equilibrium (x+, x+) lies inside of this quadrilateral while the other equilibrium
point lies outside of it. We thus consider k Hénon maps of the following form

xi(t+ 1) = ϕH(xi(t)) + ui(t)
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with the aforementioned quadrilateral ABCD as the set X and ξ = 10−3 for
Assumption 3.1. Applying the three theorems to these Hénon maps gives the
following proposition

Proposition 3.13. Theorems 3.9, 3.10, and 3.11 hold for k Hénon maps with

Λ̄=2 log2

(√
(x -)2 + b-x -

)
and G=2

(√
(x -)2 + b-x -

)s̄
.

The proof of this proposition simply follows from the proof of Theorem 15
from Matveev and Pogromsky [2016].

For the simulations, we considered 4 Hénon maps with the parameter values
a = 1.4 and b = 0.3. The objective of the simulations are to compare the total
outgoing communication capacities c∗ for the pacemaker protocol, master/slave
protocol, and the mutual protocol with km ∈ {2, . . . , 4}. Proposition 3.13 holds
with Λ̄ = 3.41. This implies that the theoretical bounds on the total outgoing
communication capacities are cpm > 6.82, cms > 10.23, cmc > 17.05 (km = 2),
cmc > 22.16 (km = 3), and cmc > 27.28 (km = 4). Monte Carlo methods were
again used for simulations: 1000 times, the four systems were given random
initial conditions within the quadrilateral ABCD and within a distance of 2δ of
each other. For each of these initial states, the state-space trajectories of the
systems as well as the consensus-preserving protocols were simulated for 1000
timesteps. For all simulations the consensus was preserved. The results in terms
of total communication rate are displayed in Table 3.2.

We make the following observations about the simulations. For s̄, the rates
are again above the theoretical thresholds. For s̄ ≥ 3, the rates are below the
theoretical capacities (for the same reasons as with the previous example). More
cooperation between the systems in determining the target trajectory indeed
requires a higher communication rate, as can be seen from the increasing rates
from one protocol to the next. The consensus factor again increases large for
the larger choices of s̄. There is thus again a trade-off between the resulting
rate and consensus factor. The large consensus factors imply that the systems
can drift relatively far away from each other, in comparison with how close to
each other they start initially. In practice, however, and given the choices of δ,
even in the case of s̄ = 20, the systems are never further than 0.00367 units of
distance away from each other.

3.7 Conclusion

This chapter provided a solution to the problem of consensus preservation in a
network of nonlinear dynamical systems which communicate over channels with
limited transmission capacities. The systems in the network were equipped with
smart sensors and controllers which were placed at locations remote from one an-
other and thus forced them to use the channels to communicate with each other.
The problem of consensus preservation was introduced. This problem implies
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s̄ = 2 s̄ = 5 s̄ = 10 s̄ = 20
δ=10-3 δ = 10-7 δ = 10-10 δ = 10-13

G 21.25 736 2.72×105 3.68×1010

R∗pm 10.47 6.23 4.82 4.12
R∗ms 15.71 9.35 7.23 6.17

R∗mc (km=2) 26.18 15.59 12.06 10.29
R∗mc (km=3) 34.03 20.26 15.67 13.38
R∗mc (km=4) 41.89 24.94 19.29 16.46

Table 3.2: Results for the Hénon maps.

steering systems that start in a small vicinity of one another, such that they re-
main close to each other. Sensors and controllers which preserved the consensus
were referred to as consensus-preserving protocols. The chapter then answered
the following questions: ”What protocols preserve consensus?”, ”What are the
sufficient outgoing communication capacities necessary to implement such pro-
tocols?”, and ”How do these quantities depend on the system’s equations?”.
Several answers, in the form of consensus-preserving protocols, were provided.
Together with these protocols, three theorems that give sufficient conditions on
the outgoing communication capacities were proven. The sufficient capacities
were proven to depend on the larger-than-one singular values of the linear part
of the mapping of the systems. The protocols were tested by simulations of con-
sensus preservation in networks of logistic maps and networks of Hénon maps.
For both of these types of systems, analytical bounds on the sufficient capacities
in the communication channels to implement the consensus-preserving protocols
were provided. To validate these protocols, the bounds were compared with the
rates observed in simulations. Future extensions of this work include developing
consensus-preserving protocols that constantly control the agents by means of
relatively small inputs contrary to the scheme proposed in this chapter where
a large input is applied only just prior to every current communication time,
while the agents are left uncontrolled at all other times, as well as, considering
more general situations with non-additive inputs, and considering communica-
tion networks with multi-terminal coding (see Chapter 9 of Yüksel and Başar
[2013]).

Appendices

3.A Proofs of the Results from Section 3.5

We define λi(M), where M is square matrix, as the solutions of

det (MᵀPM − λP ) = 0,
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where these solutions are ranked in decreasing order and repeated according
to their algebraic multiplicity. We also define σPi (M) :=

√
λi(M). Note that

by decomposing P as P = UᵀU , where U is non-singular (since the matrix
P is positive definite, such a decomposition always exists), the solutions of
the previous equation correspond to the squares of the singular values of the
operator defined by the matrix M expressed in a different coordinate basis
(which is because the solutions of the previous equation are identical to those
of det

(
U−ᵀMᵀUᵀUMU−1 − λIn

)
= 0). We will refer to those σPi (M) as P -

generalized singular values. Note that for the P -generalized singular values of
A(x), we have σPi (A(x)) =

√
λi(x), where λi(x) are taken from Assumption

3.8.

3.A.1 Lemmata from other papers

For the convenience of the reader, we start with formulation of three lemmata
that were established in Matveev and Pogromsky [2016], Voortman et al. [2018b],
Pogromsky and Matveev [2011] and will be used to prove our main results.

Lemma 3.14. Matveev and Pogromsky [2016] For any x ∈ Xξ s̄ ≥ 1 and

d ∈ {1, . . . , nx} we have
∏d
i=1 σ

P
i (As̄(x)) ≤ 2

Λ̄s̄
2 +v̄, where v̄ is defined in (3.18)

and Λ̄ is defined in (3.19).

Lemma 3.15. Voortman et al. [2018b] Let Assumptions 3.1 and 3.8 hold.
Then, for any ε > 0, there exists δ∗1 such that for all δ : 0 < δ ≤ δ∗1 ,
xi, xj ∈ Xξ for which ‖xi − xj‖P ≤ δ, we have ‖ϕq(xi)− ϕq(xj)‖P ≤ ε,

∀ 0 < q ≤ 2 log2(ε)−2 log2(δ)−v̄
Λ1

.

Lemma 3.16. Pogromsky and Matveev [2011] For any non-negative real num-
bers α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 enumerated in descending order, the following is
true

∏n
i=1dαie ≤ max

{
2n maxd∈[1:n]

∏n
i=1 αi; 1

}
.

3.A.2 Auxiliary Results

Lemma 3.17. For any s̄ ≥ 1, η > 0, and P = P ᵀ � 0, there exists a δ∗2 > 0
such that for all δ for which 0 < δ ≤ δ∗2 , x ∈ Xξ, and x0 ∈ Xξ for which
‖x− x0‖P ≤ δ, ‖ϕs̄(x)− ϕs̄(x0)−As̄(x)(x− x0)‖P ≤ ηδ holds.

Proof: The proof of this lemma simply follows from the continuous differ-
entiability of f(·, ·) from Assumption 3.1. �

In what follows, we use the term orthotope to refer to a P -orthotope, an
orthotope in ‖·‖P .

Lemma 3.18. For any s̄ ≥ 1, η > 0, and P = P ᵀ � 0, there exists δ∗3 > 0 such
that for all δ : 0 < δ ≤ δ∗3 and x ∈ X, ϕs̄(Bδ(x)) is inscribed in an orthotope,
centered in ϕs̄(x) and with semi-axes of length σPi (As̄(x)) δ+ηδ, i ∈ {1, . . . , nx}.
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Proof: Let δ∗3 be chosen smaller than or equal to δ∗2 from Lemma 3.17. The
proof then simply follows from the definition of the generalized singular values
σPi as well as Lemma 3.17. �

Lemma 3.19. For any s̄ ≥ 1 and η > 0, there exists δ∗4 > 0 and a set
V satisfying Definition 3.4 such that for all δ : 0 < δ ≤ δ∗4 and for each
ball Bδ(vq) with vq ∈ V , its image Iq can be covered by mq = |Vq| balls
Bδ(v

q
1), Bδ(v

q
2), . . . , Bδ(v

q
|Vq|), where |Vq| ≤

∏nx
i=1

⌈
2
√
nxσ

P
i (As̄(vq)) + 2

√
nxη

⌉
.

Proof: Let δ∗4 be chosen smaller than or equal to δ∗3 from Lemma 3.18
and smaller than ξ. Lemma 3.18 holds for all δ smaller than δ∗3 and hence
also for δ∗4 . Next, construct V as follows: take nx−dimensional grid, with a
distance in ‖·‖P of δ∗4/2

√
nx between neighbouring grid elements. Next, select

all grid points within a distance of δ∗4/2 or less from X. Let the set of these
points be V−. Finally map each grid point to (one of) the closest element(s)
in X to that point. Let V be a set constructed in the aforementioned manner,

then X ⊆
⋃|V |
q=1Bδ∗4/2(vq), which we now prove by contradiction. Let there

be x ∈ X such that x /∈
⋃|V |
q=1Bδ∗4/2(vq). x is at a distance of at most δ∗4/4

to the nearest point in V− (this is a property of an nx−dimensional grid with
distance δ∗4/2

√
nx between neighbouring grid points). Let y be one of these

points in V− at a distance of at most δ∗4/4 of x. x /∈
⋃|V |
q=1Bδ∗4/2(vq) implies

that there exists z ∈ X, to which y was shifted. Moreover, z was at most
at a distance of δ∗4/4 to y, or else y would have been shifted to x (because it
would have been closer). Since the maximum distance between x and y is at
most δ∗4/4, and the maximum distance between y and z is also at most δ∗4/4,
the total distance between x and z is at most δ∗4/2, which implies that x ∈⋃|V |
q=1Bδ∗4/2(vq), we thus have a contradiction. V constructed as above also

satisfies Definition 3.4 (because for Definition 3.4, balls of radius δ∗4 are used).
From Lemma 3.18, the image Iq of the balls with centres in V is inscribed in
a orthotope with semi-axes of length σPi (As̄(vq)) δ

∗
4 + ηδ∗4 . Next, consider an

nx−dimensional grid with distance δ∗4/
√
nx between neighbouring grid elements,

oriented such that the grid lines are parallel with the sides of the orthotope. Keep
all the points in this grid which are inside of the orthotope. Evidently, there

are at most
∏nx
i=1

⌈
2σPi (As̄(vq))δ∗4+2ηδ∗4

δ∗4/
√
nx

⌉
such points (the length of the axes of

the orthotope divided by the spacing between neighbouring gridpoints). For
each of these points, select the closest element in V . Let the sets constructed
in the aforementioned manner be Vq. We prove, again by contradiction, that

Iq ⊆
⋃|Vq|
p=1Bδ∗4 (vqp). Let there be x̄ ∈ Iq such that x̄ /∈

⋃|Vq|
p=1Bδ∗4 (vqp). Since x̄ is

in Iq, it is also inside of the orthotope inscribed around Iq. Let ȳ be the closest
point in the grid that was placed over the orthotope. Because the distance
between the neighbouring grid points was δ∗4/

√
nx, the distance from x̄ to ȳ

is at most δ∗4/2. Let z̄ be the point to which ȳ was mapped (when V− was



88 Chapter 3. Consensus in Networks with Limited Communication Capacity

mapped to V ). Since the points in the grid are mapped to the closest point in
V and the points in V form a covering of balls of radius δ∗4/2 of X, the distance
between ȳ and z̄ is at most δ∗4/2. This implies that the distance between x̄ and

z̄ is at most δ∗4 and hence x̄ ∈
⋃|Vq|
p=1Bδ∗4 (vqp). We set Vq constructed as above

thus satisfies Definition 3.5 and the image Iq can thus be covered by at most∏nx
i=1

⌈
2
√
nxσ

P
i (As̄(vq)) + 2

√
nxη

⌉
balls. Evidently, the above can be repeated

for δ : 0 < δ ≤ δ∗4 . �

Lemma 3.20. Let Assumptions 3.1 and 3.8, and (3.2) hold for system (3.11).
There exists a δ∗5 > 0 such that for all δ : 0 < δ ≤ δ∗5 , the number of elements
in the sets Vq as defined in Definition 3.5 is upper bounded as follows |Vq| ≤
8nxn

nx/2
x 2

Λ̄s̄
2 +v̄, where v̄ is defined in (3.18) and Λ̄ is defined in (3.19).

Proof: For any s̄ ≥ 2 and η = 1/2, Lemma 3.19 guarantees that there exists
δ∗4 such that for all δ : 0 < δ ≤ δ∗4 the number of balls required to cover the
image of Bδ(vq) is |Vq| ≤

∏nx
i=1

⌈
2
√
nxσ

P
i (As̄(vq)) +

√
nx
⌉
. Let δ∗5 be equal to

this δ∗4 . Next, we use Lemma 3.16, to obtain

|Vq| ≤ max

{
2nx max

d∈[1,...,nx]

d∏
i=1

(
2
√
nxσ

P
i

(
As̄(vq)

)
+
√
nx
)
, 1

}
,

which implies

|Vq| ≤ max

{
4nxnnx/2x max

d∈[1,...,nx]

d∏
i=1

(
σPi
(
As̄(vq)

)
+

1

2

)
, 1

}
. (3.23)

Here, maxd∈[1,...,nx] implies that we only consider i such that σPi (As̄(vq))+
1
2 > 1.

We thus have σPi (As̄(vq)) >
1
2 and (3.23) can be rewritten as

|Vq| ≤ max {1,

4nxnnx/2x max
d∈[1,...,nx]

d∏
i=1

(
1 +

1

2σPi (As̄(vq))

)
σPi
(
As̄(vq)

)}
.

Since σPi (As̄(vq)) >
1
2 , this implies that

|Vq| ≤ max

{
8nxnnx/2x max

d∈[1,...,nx]

d∏
i=1

σPi
(
As̄(vq)

)
, 1

}
.

Applying Lemma 1 to this inequality yields

|Vq| ≤ max

{
8nxnnx/2x max

d∈[1,...,nx]
2

Λ̄s̄
2 +v̄, 1

}
.

which, given that Λ̄ ≥ 0 implies |Vq| ≤ 8nxn
nx/2
x 2

Λ̄s̄
2 +v̄. Since Lemma 3.19 also

applies to δ : 0 < δ ≤ δ∗4 = δ∗5 and the rest of the proof is independent of δ, the
proof is complete. �
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Lemma 3.21. Let Assumptions3.1 and 3.8, and (3.2) hold for system (3.11).
For any s̄ ≥ 1, there exists a δ∗6 such that for all δ : 0 < δ ≤ δ∗6 , if the states
of all systems are within the same ball of radius δ at t ∈ S = {0, s̄, 2s̄, . . .} then

G = 2
Λ1s̄+v̄+2

2 is a consensus factor.

Proof: Take δ∗6 = δ∗1/2 from Lemma 3.15 with ε = 2
Λ1s̄+v̄

2 δ∗1 . If the
states of all systems are within the same ball of radius δ : 0 < δ ≤ δ∗6 (i.e., if
‖xi(t)− xj(t)‖P ≤ 2δ), then, by Lemma 3.15, we have that ‖xi(t)− xj(t)‖P ≤
2δ implies ‖ϕq(xi(t))− ϕq(xj(t))‖P ≤ 2

Λ1s̄+v̄
2 2δ, ∀xi(t), xj(t) ∈ Rnx , i, j ∈

{1, . . . , k}, q ∈ {1, . . . , s̄}, t ∈ S. For all consensus protocols ui(t) = 0,
∀t : t + 1 /∈ S, which implies that ∀t : t + 1 /∈ S, xi(t + 1) = ϕ(xi(t)).
Combining this property with the previous inequality is equivalent to stating

that ‖xi(t+ q)− xj(t+ q)‖P ≤ 2
Λ1s̄+v̄+2

2 δ, ∀i, j ∈ {1, . . . , k}, q ∈ {1, . . . , s̄− 1},
t ∈ S. This implies that ‖xi(t)− xj(t)‖P ≤ 2

Λ1s̄+v̄+2
2 δ, ∀i, j ∈ {1, . . . , k}, ∀t ≥ 0.

From the definition of the consensus factor, we thus have that G = 2
Λ1s̄+v̄+2

2 is
a consensus factor. �

Lemma 3.22. For any communication channel (i, j) ∈ J , ci >
Λ
2 implies cij >

Λ
2
∑
q=1:k aiq

.

Proof: We have ci > α which implies minj:aij=1 cij
∑k
q=1 aiq > α from (3.9).

The proof is completed by noticing that cij ≥ minj:aij=1 cij .
�

Lemma 3.23. If, for all (i, j) ∈ J , the length of the alphabet verifies lij(t) ≤
8nxn

nx/2
x 2

Λ̄s̄
2 +v̄, and the channel capacities verify cij >

Λ̄
2 , there exists s̄ such

that the channel rate constraint (3.6) holds.

Proof: For all (i, j) ∈ J , we have Λ̄
2 < cij := lim inf s̄→∞

b+ij(s̄)

s̄ . This

implies that there exist µij > 0 such that lim inf s̄→∞
b+ij(s̄)

s̄ = Λ̄
2 + µij . From

the definition of the inferior limit, for any εij > 0, there exist s̄∗ij such that

∀s̄ij ≥ s̄∗ij ,
b+ij(s̄ij)

s̄ij
> Λ̄

2 +µij − εij . This implies that for εij = µij/2, there exists

s̄∗ij such that for all s̄ij ≥ s̄∗ij

b+ij(s̄ij)

s̄ij
>

Λ̄

2
+ µij . (3.24)

Meanwhile, log2 lij(t) ≤ log2

(
8nxn

nx/2
x 2

Λ̄s̄
2 +v̄

)
= Λ̄s̄

2 + v̄ + 3nx + log2 n
nx/2
x .

Since lims̄→∞
Λ̄s̄
2 +v̄+3nx+log2 n

nx/2
x

s̄ = Λ̄
2 , there exists s̄† such that ∀s̄ ≥ s̄†,

Λ̄s̄
2 +v̄+3nx+log2 n

nx/2
x

s̄ ≤ Λ̄
2 + µij , ∀µij . Let s̄ = max{s̄∗ij , s̄†}, starting again from
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(3.24), we have

b+ij(s̄)

s̄
>

Λ̄

2
+ µi ≥

Λ̄s̄
2 + v̄ + 3nx + log2 n

nx/2
x

s̄
≥ log2 lij(t)

s̄
,

which evidently implies that the channel rate constraints (3.6) are verified. �

3.A.3 Proof of Theorem 3.9

For the protocol to preserve consensus, it needs to verify both conditions specified
in Definition 3.3. Let δ∗ be chosen smaller than ξ and smaller or equal to δ∗6
from Lemma 3.21. Then for any δ : 0 < δ ≤ δ∗, the following reasoning can be
applied.

Regarding Definition 3.3, (i): If at the communication instants the states
of all agents are within the same ball of radius δ, (i) follows from Lemma 3.21.
We prove by induction that the states of all agents are indeed within the same
ball of radius δ at t ∈ S. For the first time instant, this property holds, due
to (3.2). Assume that it holds for t, we prove that it holds for t + s̄. If a zero
control input is applied at t+ s̄− 1, the states of the systems end up in the balls
with centres vltmii(t) (because the messages mii(t) correspond to the indices of

the balls in which the states end up if they were left unactuated). This implies
that ‖ϕ(xi(t + s̄ − 1)) − vltmii(t)‖P ≤ δ, ∀i, if u(t + s̄ − 1) = 0. However, the

additive control input u(t + s̄ − 1) = r(t + s̄) − vltmii(t) is applied, ∀i, implying

that instead we have xi(t + s̄) = ϕ(xi(t + s̄− 1)) + r(t + s̄)− vltmii(t), ∀i, hence

ϕ(xi(t + s̄ − 1)) = xi(t + s̄) − r(t + s̄) + vltmii(t) which implies that we have

‖xi(t+ s̄)− r(t+ s̄) + vltmii(t)− v
lt
mii(t)

‖P = ‖xi(t+ s̄)− r(t+ s̄)‖P ≤ δ, ∀i, which

implies that all the states xi of the systems are within the same ball centred in
r(t+ s̄) of radius δ at t+ s̄.

Regarding Definition 3.3, (ii): The first half of item (ii) trivially holds from
the alphabet function (3.12) and encoder function (3.13). For the second half
of item (ii) to hold, the channel rate constraints (3.6) must hold. From the
theorem statement we have aii = 1, ∀i ∈ {1, . . . , k}. From Lemma 3.22 and

since ci >
Λ̄
2 and

∑k
j=1 aij = 1, we have Λ̄

2 < cii. From Lemma 3.20, we have

|Vqt | ≤ 8nxn
nx/2
x 2

Λ̄s̄
2 +v̄. From (3.12), we have lij(t) = |Vqt |. We thus use Lemma

3.23, which implies that there exists s̄ such that channel rate constraints hold.�

3.A.4 Proof of Theorem 3.10

We follow the same structure for the proof of this theorem as for the proof
Theorem 3.9. Let δ∗ be chosen smaller than ξ and smaller or equal to δ∗6 from
Lemma 3.21. Then for any δ : 0 < δ ≤ δ∗, the following reasoning can be
applied.
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Regarding Definition 3.3, (i): If at the communication instants the states of
all agents are within the same ball of radius δ, (i) follows from Lemma 3.21. We
prove by induction that the states of all agents are indeed within the same ball
of radius δ at t ∈ S. For the first time instant, this property holds, due to (3.2).
Assume that it holds for t, we prove that it holds for t+s̄. If a zero control input is
applied at t+s̄−1, the states of the systems end up in the balls with centres vltmii(t)
(because the messages mii(t) correspond to the indices of the balls in which the
states end up if they were left unactuated). This implies that ‖ϕ(xi(t+ s̄−1))−
vltmii(t)‖P ≤ δ, ∀i, if u(t+ s̄−1) = 0. For system 1, the control input is zero at all

times, which implies that we have ‖ϕ(xi(t+ s̄−1))−vltmii(t)‖P ≤ δ. For all other

systems, i the additive control input u(t + s̄ − 1) = vltm11(t) − v
lt
mii(t)

is applied,

implying that instead we have xi(t+ s̄) = ϕ(xi(t+ s̄− 1)) + vltm11(t)− v
lt
mii(t)

, ∀i,
hence ϕ(xi(t+ s̄− 1)) = xi(t+ s̄)− vltm11(t) + vltmii(t) which implies that we have

‖xi(t+ s̄)− vltm11(t) + vltmii(t) − v
lt
mii(t)

‖P = ‖xi(t+ s̄)− vltm11(t)‖P ≤ δ, ∀i, which

implies that all the states xi of the systems are within the same ball centred in
vltm11(t) and of radius δ at t+ s̄.

Regarding Definition 3.3, (ii): The first half of item (ii) trivially holds from
the alphabet function (3.12) and encoder function (3.13). For the second half
of item (ii) to hold, the channel rate constraints (3.6) must hold. From the
theorem statement we have a1i = 1, ∀i ∈ {2, . . . , k}. From Lemma 3.22 and

since ci >
(k−1)Λ̄

2 and
∑k
j=1 a1j = k − 1, we have Λ̄

2 < c1j ∀j ∈ {2, . . . , k}.
From the theorem statement we also have aii = 1, ∀i ∈ {2, . . . , k}. Again

from Lemma 3.22 and since ci >
Λ̄
2 and

∑k
j=1 aij = 1 ∀i ∈ {2, . . . , k}, we have

Λ̄
2 < c1i ∀i ∈ {2, . . . , k}. From Lemma 3.20, we have |Vqt | ≤ 8nxn

nx/2
x 2

Λ̄s̄
2 +v̄.

From (3.12), we have lij(t) = |Vqt |. We thus use Lemma 3.23, which implies
that there exists s̄ such that channel rate constraints hold. �

3.A.5 Proof of Theorem 3.11

We follow the same structure for the proof of this theorem as for the proof
Theorem 3.9. Let δ∗ be chosen smaller than ξ and smaller or equal to δ∗6 from
Lemma 3.21. Then for any δ : 0 < δ ≤ δ∗, the following reasoning can be
applied.

Regarding Definition 3.3, (i): This part of the proof is identical to the
equivalent part of the proof in Theorem 3.9 with the exception that r(t) is

replaced by arg min
v∈Vqt̄

∥∥∥∑km
j=1

vmji(t̄)

km
-v
∥∥∥
P

. For brevity, we thus omit this part of

the proof.

Regarding Definition 3.3, (ii): The first half of item (ii) trivially holds
from the alphabet function (3.12) and encoder function (3.13). For the second
half of item (ii) to hold, the channel rate constraints (3.6) must hold. From
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the theorem statement we have aij = 1, ∀i ∈ {1, . . . , km},∀j ∈ {1, . . . , k}.
From Lemma 3.22 and since ci >

kΛ̄
2 and

∑k
j=1 aij = k, we have Λ̄

2 < cij ,
∀i ∈ {1, . . . , km},∀j ∈ {1, . . . , k}. From the theorem statement we also have

aii = 1, ∀i ∈ {km + 1, . . . , k}. Again from Lemma 3.22 and since ci >
Λ̄
2 and∑k

j=1 aij = 1 ∀i ∈ {km + 1, . . . , k}, we have Λ̄
2 < cii ∀i ∈ {km + 1, . . . , k}. From

Lemma 3.20, we have |Vqt | ≤ 8nxn
nx/2
x 2

Λ̄s̄
2 +v̄. From (3.12), we have lij(t) = |Vqt |.

We thus use Lemma 3.23, which implies that there exists s̄ such that channel
rate constraints hold. �



Chapter 4

An Event-Triggered Observation Scheme

for Systems with Perturbations and

Data Rate Constraints

In this chapter, an event-triggered observation scheme is considered for a per-
turbed nonlinear dynamical system connected to a remote location via a com-
munication channel, which can only transmit a limited amount of data per unit
of time. The dynamical system, which is supposed to be globally Lipschitz, is
subject to bounded state perturbations. Moreover, at the system’s location, the
output is measured with some bounded errors. The objective is to calculate esti-
mates of the state at the remote location in real-time with maximum given error,
whilst using the communication channel as little as possible. An event-triggered
communication strategy is proposed in order to reduce the average number of
communications. An important feature of this strategy is to provide an esti-
mation of the relation between the observation error and the communication
rate. The observation scheme’s efficiency is demonstrated through simulations
of unicycle-type robots.

4.1 Introduction

Efficiency has always played a central role in the field of system dynamics and
control. In the past twenty years, with the appearance of wireless technologies,
efficiency has gained a new meaning. It is not sufficient enough to observe and
control systems optimally. These tasks should in addition be carried out in a way
that is efficient in terms of data rates. This quest for efficiency has lead to the
birth of an entire sub-field in the domain: control and estimation over data rate
constrained communication channels ([Matveev and Savkin, 2009], [Yüksel and
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Başar, 2013]). The problems in this sub-field all share some common ingredi-
ents: one or several dynamical systems, one or several communication channels,
several other devices such as controllers, actuators, sensors, that interact by
exchanging messages over these communication channels, and a source of uncer-
tainty. This source of uncertainty can be in the form of noise, perturbations,
parametric uncertainty, or deviations in the initial conditions. The incertitude
can be understood as information in the sense of Shannon’s information theory
(see [Shannon, 1948]). This information needs to be transmitted via the commu-
nication channels, which are generally limited either in the frequency at which
they can send messages or in the number of bits they can transmit per unit of
time and can be subject to losses or noise themselves.

The earliest work in this sub-field focused on linear systems, which naturally
have a simpler structure. For example, these early results include [Wong and
Brockett, 1997], where the problem of state estimation for a stochastic plant
over data rate constrained communication channel is investigated, and [Elia and
Mitter, 2001], where the problem of stabilization of a linear plant with limited
information is considered. Many more results were obtained for linear systems
and broad surveys of these results are available in [Nair et al., 2007], [Baillieul
and Antsaklis, 2007] and [Andrievsky et al., 2010].

For nonlinear systems, results followed soon after. These include [De Persis,
2003], where the problem of the stabilization of a nonlinear system via a data
rate constrained channel is posed, and [Baillieul, 2004] which investigates the
data rate requirements for feedback control. Both of these early works assumed
a particular structure on the nonlinear system. Results for nonlinear systems
with more general structures were obtained in [Nair et al., 2004] and [Liberzon
and Hespanha, 2005] which adapted techniques for linear systems from [Nair and
Evans, 2003] and [Liberzon, 2003a] to nonlinear ones. We put the emphasis on
[Nair et al., 2004] because it is among the first papers to introduce a notion of
entropy (in this case, topological feedback entropy) to describe the minimum suf-
ficient data rate to stabilize a system. Several other notions of entropy have since
then been used to provide bounds on the sufficient and/or necessary data rates
allowing for constrained control and/or observation of unperturbed systems.
These results include invariance entropy ([Kawan, 2013]), topological entropy
([Liberzon and Mitra, 2016], [Matveev and Pogromsky, 2016], [Matveev and
Savkin, 2009], [Sibai and Mitra, 2018], and [Voortman et al., 2019]), estimation
entropy/α-entropy ([Kawan, 2018] and [Sibai and Mitra, 2017]), and restora-
tion entropy ([Matveev and Pogromsky, 2019]). As an alternative to notions
of entropy, some works such as [Fradkov et al., 2008a] relied on passivity-based
methods to provide bit-rate bounds. The aforementioned results on entropy are
limited to unperturbed systems as the entropy of a perturbed system is, gener-
ally speaking, infinite and, as such, entropy is not a useful mathematical tool to
analyze perturbed systems.

Around the same time, and for similar reasons, another topic appeared in
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the world of dynamical systems and control: event-based control. Some of the
earliest works on this topic include [Åarzén, 1999], where an event-triggered
PID controller is presented and [Åström and Bernhardsson, 1999], where the
effects of event-based sampling are compared to periodic ones. An introduction
to event-based control can be found in [Heemels et al., 2012] and an overview of
sampling-related results in [Hetel et al., 2017].

One possible approach to obtain constructive bounds for the case of sampled-
data systems is to rely on LMI-based techniques. Early results making use of this
technique include [Fridman et al., 2004] which provides sufficient conditions for
the robust sampled-data stabilization of linear systems with delayed input and
[Fu and Xie, 2005] which considers several quantized feedback design problems
for linear systems. Recently, LMI-based techniques have been employed for
nonlinear systems with specific structures such as Lur’e-type systems ([Seifullaev
and Fradkov, 2016, Zhang et al., 2017]), nonlinear systems with cone-bounded
nonlinearities [Tarbouriech et al., 2017] and with cone-bounded nonlinear inputs
([Moreira et al., 2019]).

In some recent works, both concepts (data rate constraints and event-based)
have explicitly been used together for control and observation purposes. Among
them are [Han et al., 2015], which uses an event-triggered sensor schedule for
remote estimation for a linear system, [Shi et al., 2016], designing a remote
estimator for a linear system with unknown exogenous inputs, [Huang et al.,
2017], where a remote estimator for a system with an energy harvesting sensor
is developed, [Trimpe, 2017], which tackles distributed state estimation with data
rate constraints [Xia et al., 2017], which considers networked state estimation
with a shared communication medium, [Muehlebach and Trimpe, 2018], where
an LMI approach is used for the networked state estimation problem over a
shared communication medium, and [Abdelrahim et al., 2019] where output-
based stabilization of linear time-invariant systems affected by unknown external
disturbances is studied.

Focusing on the observation, the problem statement in this chapter is moti-
vated by the following practical situation: a unicycle-type robot needs to com-
municate its position and orientation to a remote location by using Wi-Fi, whilst
measuring only its position and using limited computation capacities. Because
wireless networks can’t transmit infinite amounts of data, it is necessary to de-
velop an observation scheme that minimizes the data rate usage. The simplest
equations describing a unicycle-type robot are

ẋ1(t) = vl(1 + d̄1(t)) cos(x3(t))

ẋ2(t) = vl(1 + d̄1(t)) sin(x3(t))

ẋ3(t) = vθ(1 + d̄2(t))

y(t) =

[
x1(t)
x2(t)

]
+

[
w̄1(t)
w̄2(t)

] (4.1)
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with x(t) = [x1(t) x1(t) x3(t)]ᵀ the state-space vector, y(t) the measured output,
where x1(t) ∈ R, x2(t) ∈ R are the coordinates of the robot in the xy-plane,
x3(t) ∈ [0, 2π) is the angular orientation of the robot, vl and vθ are linear
and angular velocities respectively, d̄1(t) and d̄2(t) are perturbations such that
d̄max ≥ d̄i(t) ≥ d̄min > −1 which correspond to an actuation mismatch, and
w̄(t) ∈ R2 is a measurement error. Note that the bound d̄min > −1 implies
that the actual velocity vl(1 + d̄1(t)) has the same sign as vl, which is a natural
condition stemming from experiments (see [Guerra et al., 2014] and [Guerra
et al., 2017] for more details about this formulation).

In this chapter, an event-triggered observation scheme is developed for the
remote observation of dynamical systems with Lipschitz nonlinearities, state
perturbations, and measurement noise (as in (4.1)) via data rate constrained
communication channels. The first original feature of the observation scheme
is that the minimum duration between two consecutive messages that are sent
via the communication channel can be chosen. The second original feature is
that the precision of the estimates can be tuned. The third feature is that the
observation scheme functions on an event-triggered basis, by using the knowledge
of the remote estimate to only communicate a new estimate when the precision
of the current estimate is not sufficient anymore. The combination of these
features leads to an observation scheme, which is very efficient in terms of the
transmitted number of bits, which is the main contribution of this chapter. This
chapter is an extension of [Voortman et al., 2020b]. This chapter, considers
continuous-time systems, whereas [Voortman et al., 2020b] studies discrete-time
systems. Moreover, [Voortman et al., 2020b] deals with linear systems while this
chapter extends the class of systems to Lipschitz-nonlinear ones. An observer
specific for unicycle-time robots which utilizes a similar communication protocol
as this chapter has been experimentally validated on Turtlebots. The results
have been submitted for publication in [Voortman et al., 2021b].

The structure of this work is as follows. First, in Section 4.2 we specify
the problem statement. In order to solve this problem, an observation scheme
is developed in Section 4.3. In Section 4.4, two results about this observation
scheme are exposed. The first one is a proposition that provides a bound on
the maximum observation error. The second one is a theorem that evaluates
a bound on the so-called ”channel transmission capacity” which is sufficient
to implement the observation scheme. Finally, in Section 4.5 simulations of
the observation scheme are provided for the motivating example (4.1). These
simulations illustrate why the observation scheme is particularly efficient and
how its different parameters can be tuned to fit the user’s preferences in terms
of performance.
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4.2 Problem Statement

We consider continuous-time systems of the following form

ẋ(t) = Ax(t) + Sϕ(Hx(t)) + d(t),

y(t) = Cx(t) + w(t),
(4.2)

where x(t) ∈ Rn is the state, A ∈ Rn×n, S ∈ Rn×p, ϕ : Rp → Rp is a vector
field, H ∈ Rp×n, d(t) ∈ Rn is an unknown state perturbation, y(t) ∈ Rm is
the output, C ∈ Rm×n, and w(t) ∈ Rm is a measurement error. We make the
following assumptions about the external signals:

Assumption 4.1. For the state perturbation d(t) and the measurement error
w(t),

‖d(t)‖2 ≤ δ, ‖w(t)‖2 ≤ ω, ∀t ≥ 0,

where ‖·‖2 is the Euclidean norm, δ is the maximum state perturbation, and ω
is the maximum measurement error.

We make the following regularity assumption about the right-hand side of
(4.2).

Assumption 4.2. The vector field ϕ is globally Lipschitz with Lipschitz constant
L with respect to the Euclidean norm.

Note that the previous assumption can be relaxed to local Lipschitz continu-
ity if the perturbations from Assumption 4.1 are such that the solutions of (4.2)
are uniformly ultimately bounded ([Khalil, 2002]).

The system is equipped with a smart sensor (a sensor admitting some com-
putational capacities, which allows it to perform additional computations on
the measured data) and it is connected to a remote location via a data rate
constrained communication channel, which can only send messages that are of
finite size. For any time interval t̄ between two consecutive transmission, the
channel can transmit at most b+(t̄) bits. The objective is to provide estimates
x̂(t) of x(t) at the remote location by sending messages over this communication
channel. The sensor and the remote location are aware of an initial estimate
x̂(0) which verifies

‖x(0)− x̂(0)‖2 ≤ ε0, (4.3)

where ε0 is a user-specified parameter corresponding to the error of initial condi-
tions. The reason why (4.3) is assumed, will be discussed further in this chapter
in Remark 4.7.

In order to generate the estimates, messages m(tj), where tj are the transmis-
sion times, are sent. Four ingredients interact with these messages: a sampler S,
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a coder C, an alphabet function A, and a decoder D. The four devices together
form a communication protocol. The following constants/parameters are known
by all devices: the system matrices A and C, the vector field ϕ, the maximum
state perturbation δ, the maximum measurement error ω, the discretization error
ε (which is induced by coding/decoding operation), and the initial estimate x̂(0)
with its accuracy ε0. At the system side, the sampler S generates the instants
of transmission in the following way

tj+1 = S(tj , {y(s)}tj≥s≥0,m(t1), . . . ,m(tj)), (4.4)

t0 = 0. The coder then generates the messages in the following way

m(tj) = C(x̂(0), {y(s)}tj≥s≥0,m(t1), . . . ,m(tj−1)), (4.5)

∀tj : j > 0. At each communication instant, the different possible messages are
encoded into a finite-sized alphabet (the finiteness being due to the data rate
constraints). The alphabet function A determines the last index of the messages
lj in the following way

lj = A(x̂(0),m(t1), . . . ,m(tj−1)), ∀tj : j > 0. (4.6)

The restriction on the choice of messages is then

m(tj) ∈ {1, . . . , lj}, ∀tj : j > 0.

After encoding the messages into sequences of bits, the number of transmitted
bits should not exceed the maximum number of bits that can be sent during the
communication interval. This implies the following constraint on the alphabet
length:

log2 lj ≤ b+(tj+1 − tj) ∀tj : j > 0. (4.7)

At the remote location, the decoder D receives the messages and interprets them
to generate a deterministic estimate of the state x̂(t) in the following way

x̂(t) = D(x̂(0),m(t1), . . . ,m(tj)), ∀t ∈ [tj , tj+1), (4.8)

∀j ≥ 0. Because of the perturbation, measurement error and finite data rate, it
is impossible to provide exact estimates at the remote location.

Definition 4.3. Let (4.2) and (4.8) define respectively the state and its estimate.
Then, the quantity

ξ := sup
t≥0
‖x(t)− x̂(t)‖2 (4.9)

is called the maximum observation error.
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To have ξ = 0 would require infinite data rates, as was proven in Theorem
2.3.17 of [Matveev and Savkin, 2009]. We thus instead define the following goals
for the chapter:

1. To design the observation scheme (4.4), (4.5), (4.6), and (4.8) such that
ξ <∞.

2. To design the observation scheme such that its performance in terms of
data rate is better when the perturbations are not the worst-case realiza-
tions every time.

3. To investigate the relationship of the time interval between subsequent
communications t̄j := tj+1 − tj , the maximum number of bits per time
interval b+(·), and the maximum observation error ξ for the proposed com-
munication scheme.

4.3 Designing the devices

In this section, we introduce the different devices of the communication proto-
col. The main mechanism can be described as follows: the sensor emulates the
dynamics of the remote estimate on the last sent estimate and forwards a new
local estimate whenever such value is “far away” from the local measurement.
More specifically, at the sensor side, a local observer transforms the output into
estimates of the state x̄(t). A copy of the decoder is also simulated by the com-
putational capacity of the sensor so that the sensor knows the current estimate
x̂(t) the decoder currently has. This ’copy’ of the remote estimate which is pro-
vided by the smart sensor will be denoted x̂c(t). Starting at the initial estimate
x̂(0) and in the absence of messages, the decoder computes real-time estimates
as solutions of (4.2) without perturbations. When the distance between x̄(t)
and x̂c(t) = x̂(t) becomes larger than the prescribed maximum error (including
a margin for the local observation error ē(t) := x(t)− x̄(t)), the sampler decides
to communicate and the coder sends a message to the decoder to provide a new
estimate x̂(t). Fig. 4.1 depicts how the different elements interact. Below, each
of these algorithms is presented in detail.

Figure 4.1: Structure of setup.
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4.3.1 The Local Observer

The local estimate x̄(t) has the following dynamics

˙̄x(t) = Ax̄(t) + Sϕ(Hx̄(t)) +K(y(t)− Cx̄(t)), (4.10)

where K ∈ Rn×m is a gain matrix. The dynamics of ē(t) are thus

˙̄e(t) =(A+KC)ē(t) + S(ϕ(Hx(t))− ϕ(Hx̄(t))) + d(t)

+Kw(t).
(4.11)

The local observer uses x̄(0) = x̂(0) as an initial point, which implies that
‖ē(0)‖ ≤ ε0. The gain K is computed by using the solutions of an LMI program:

arg min
M,P,Y,γi

−γ1 + δ2γ2 + ω2γ3,

s.t.


Q11 PS P Y
SᵀP -SᵀMS 0p×n 0p×m
P 0n×p -γ2In 0n×m
Y ᵀ 0m×p 0m×n -γ3Im

 � 0,

P � 0,

M � 0,

γ4Ip � SᵀMS,

γ1 > 0,

γ2, γ3, γ4 ≥ 0,

(4.12)

with Q11 = AᵀP+CᵀY ᵀ+PA+Y C+γ1In+γ4L
2HᵀH, and where In is the n×n

identity matrix and 0n×m is the n×m zero matrix. This LMI program is then
used to compute K as a function of Y and P , which in turns provides a bound
on the norm of the local observation error, as proven in the next proposition.

Proposition 4.4. Let (4.12) have a solution (M∗, P∗, Y∗, γ
∗
i ) and ε0 be chosen

smaller than

√
γ∗2 δ+
√
γ∗3ω√

γ∗1
. Then by choosing the gain of the local observer as

K = P−1
∗ Y∗, local observation error satisfies:

‖ē(t)‖2 ≤ η :=

√
γ∗2δ +

√
γ∗3ω√

γ∗1
, ∀t ≥ 0. (4.13)

The proof of this proposition is provided in Appendix 4.A.

Remark 4.5. The objective function of the LMI (4.12) simply aims to minimize
the size of the attractive region (by maximizing γ∗1 and minimizing γ∗2 and γ∗3).
This, in turn, minimizes the bound on the local observation error. Ideally, one
would want to minimize η but this leads to a - generally intractable - nonlinear
matrix inequality problem.
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4.3.2 The Protocol Description

We now present the communication procedure, which we will further reference as
Procedure 2. It is composed of a sampler, alphabet function, coder, and decoder
as described below. For this particular communication procedure, a minimum
time interval between communications is going to be employed. This quantity,
denoted as t̄, is known by all devices. It is a user-specified parameter, which is
to be chosen finite and it directly influences the upper bound on the estimation
error. How one might choose t̄ and how it influences the error will be discussed
further in this chapter.

To properly describe the communication instants, we will need several quan-
tities. The indexes j of the communication instants are inherently known by all
devices. The quantity j̄(t) refers to the index of the last instant of communica-
tion (initially, ¯j(0) = 0). This quantity is always known by the sampler (because
it knows how many communication instants it defined), the coder (because it
knows how many messages it sent), as well as the decoder (because it knows
how many messages it received). In between messages (i.e. for t ∈ [tj , tj+1)),
estimates x̂(t) and x̂c(t) are computed as solutions of the system

˙̂x(t) = Ax̂(t) + Sϕ(Hx̂(t)), (4.14)

with the initial conditions x̂(tj) coming from the messages m(tj).
Before we can define the communication protocol, a final lemma is necessary.

The alphabet relies on the assumption that the estimate x̄(t) will lie within a
known set Vj when the communications occur. This assumption guarantees that
‖x̄(t)− x̂(t)‖2 ≤ ε after each communication instant, which makes the procedure
repeatable. The following lemma proves this property.

Lemma 4.6. For any tj ≥ 0, x(tj), x̂(tj) ∈ Rn, ε > 0, η > 0 such that
‖x(tj)− x̂(tj)‖2 ≤ ε+ η, and t̄ > 0, the following holds

‖x(t)−x̂(t)‖2 ≤ e
µ∗1t
2 (ε+ η) + δ

√
µ∗2

√
eµ
∗
1t − 1

µ∗1
, (4.15)

∀t ∈ [tj , tj + t̄], where x(t) is the solution of (4.2) with x(tj) as an initial condi-
tion, x̂(t) is the solution of (4.14) with x̂(tj) as an initial condition and

(µ∗1, µ
∗
2, M̂∗) := arg min

µi,M̂
µ1 + δ2µ2,

s. t.

Aᵀ +A− µ1In + L2µ3H
ᵀH In In

In −µ2In 0n×n
In 0n×n −SᵀM̂S

 � 0,

µ3Ip ≥ SᵀM̂S,

µi ≥ 0.

(4.16)
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The proof of this lemma is provided in Appendix 4.B.
Note that (4.16) is an LMI program. Because of its formulation, (4.16) always

admits a solution (this can be seen from the fact that µi can be chosen arbitrarily
large, which makes the first inequality to hold for some µi sufficiently large).

Procedure 2.
The Sampler: For all t ≥ tj̄(t) + t̄, the sampler verifies whether the following
condition is satisfied

‖̄x(t)−x̂c(t)‖≤e
µ∗1 t̄
2 (ε+ η) + δ

√
µ∗2

√
eµ
∗
1 t̄ − 1

µ∗1
− η, (4.17)

where µ∗1 and µ∗2 are solutions of (4.16). If the condition is not met, a message
must be sent to provide a new estimate. The sampler thus updates j̄(t) and
tj̄(t) = t (j increases by one and j̄(t) = j).

The Alphabet Function: If t = tj̄(t), the coder and decoder build a covering
of the set Vj, where Vj is defined as

Vj :=

x ∈ Rn
∣∣∣∣∣∣‖x-x̂(tj)‖2 ≤ e

µ∗1 t̄
2 (ε+ η) + δ

√
µ∗2

√
eµ
∗
1 t̄-1

µ∗1

 , (4.18)

with balls of size ε. The balls in the covering are numbered from 1 till lj̄(t), where
lj̄(t) is the length of the alphabet and hence the output of the alphabet function.

The Coder: At the communication instants, the coder function finds the index
of the ball in the covering whose center is the closest to x̄(tj) and sends this
index over the communication channel. To compute xc(t), the coder computes
the solutions of (4.14) with the center of that ball as an initial condition.

The Decoder: When the decoder receives a message, it computes the solutions
of (4.14) with the center of that ball as an initial condition. This solution is then
used as the estimate x̂(t).

The strategy to build the alphabet is based on the following idea. As was
previously mentioned, in the absence of messages, new estimates are obtained
by computing the solutions of (4.14). After receiving a message, the state of
the system x(t) is contained in a ball of a certain radius whose center is the
estimate x̂(t). In the absence of any messages, this ”ball” of uncertainty is
gradually deformed into a larger/small uncertain set. The uncertain set evolves
due to three factors: first of all, the unknown state perturbation d(t) increases
its radius, secondly, the uncertainty set is stretched/compressed by the action of
the dynamics of the system (the deformations are proportional to the eigenvalues
A), and thirdly, its radius is increased due to the measurement noise. Given that
the communication intervals are chosen to be finite, this uncertain set remains
of finite size, estimated by Lemma 4.6 with t = t̄, in between communications.
It can thus be covered by a finite number of balls of size ε > 0. The balls in
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the covering can be indexed from 1 till lmax < ∞. In order to produce such a
covering, the only information needed is the initial ball and the different upper
bounds on the uncertainties/errors, which implies that both the coder and the
decoder can build the set. In order to transmit a new estimate, one can simply
send the index of one of the balls whose center then serves as a new estimate with
a precision that will depend on ε. The cost of communicating in that fashion is
dependent on how many balls of size ε are required to cover the uncertain set.

Remark 4.7.

� The coordinates of the centers of the balls used in the covering are always
relative to the previous estimate. By communicating in a relative fashion,
it is possible to keep the size of the messages limited even if the system
is unstable. If the system is unstable, state-space trajectories can drift
arbitrarily far away from the origin, which implies that sending an estimate
in an absolute fashion (that is, in a coordinate system that is with respect
to a fixed point, e.g., the origin), requires to cover all of Rn, which needs
infinitely many balls and hence infinitely many bits to be sent. The main
drawback of communicating in this fashion is that the channel has to be
lossless since the loss of a single message would put the communication
protocol to a halt. It is possible to make the communication protocol robust
towards losses in the communication channel (see e.g. [Voortman et al.,
2019] for more information on communication protocols that are robust
towards losses). This option was not explored as robustness towards losses
lies outside of the scope of the current work.

� Since x̂c(t) = x̂(t), both devices can build the set Ij according to its defini-
tion (4.18). The covering procedure which determines the alphabet is not
demanding from a computational point of view since it consists of covering
a set that always has the same shape except the whole set is shifted by a
certain vector from the origin. Moreover, since this set is centered around
the previous estimate, both the coder and decoder can build a covering for
it and thus have access to the alphabet.

� The existence of t̄, the minimum time interval between two consecutive
communications, implies that Zeno behaviour is automatically avoided
since at least t̄ time has to elapse between two triggering instants and t̄
is a strictly positive parameter that does not change during the execution
of the communication protocol.

� The assumption that (4.3) holds is made in order to avoid unnecessar-
ily complicating the communication protocol. If (4.3) does not hold, then
an additional initialization step would be required, during which an initial
estimate is provided. Because this step does not change the rest of the
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communication protocol and would have little impact on the overall com-
munication rate, it is omitted and replaced by the assumption that (4.3)
holds, to facilitate the understandability of the procedure.

4.4 Rate and Errors

With the observation scheme and its devices fully introduced, we now focus
on determining what minimum number of bits per time interval is sufficient
to implement the observation scheme. The first result we present provides a
closed-form expression for maximum observation error ξ.

Proposition 4.8. The observation scheme described in Procedure 2 ensures that
(4.9) holds with

ξ ≤ e
µ∗1 t̄
2 (ε+ η) + δ

√
µ∗2

√
eµ
∗
1 t̄ − 1

µ∗1
. (4.19)

Proof: At the times of communication, ‖x̂(t)− x̄(t)‖2 is at most ε, since
x̂(t) is the center of a ball that contains x̄(t). From Proposition 4.4, we have
that ‖x(t)− x̄(t)‖2 ≤ η. At the times of communication, we consequently have
that ‖x(t)− x̂(t)‖2 ≤ η+ ε. We thus apply Lemma 4.6, to obtain that following
a communication,

‖x(t+ s)− x̂(t+ s)‖2 ≤ e
µ∗1 t̄
2 (ε+ η) + δ

√
µ∗2

√
eµ
∗
1 t̄-1

µ∗1
(4.20)

for s ∈ [0, t̄]. Since after t̄, the sampler checks whether the distance is going to
be exceeded, and a communication resets the distance to ε+η should this bound
be reached, then (4.20) holds ∀t ≥ 0. �

The next result of this section, which is also the main result of the chapter,
aims to provide a lower bound on b+(·) for the designed communication scheme.
In the following theorem, the notation d·e refers to the ceiling function (aka the
smallest integer that is greater than the argument of the function).

Theorem 4.9. The observation scheme described in Procedure 2 with t̄ > 0 is
implementable on any channel with

b+(t̄) ≥ n log2

√n
e
µ∗1 t̄
2 (ε+ η) + δ

√
µ∗2

√
eµ
∗
1 t̄-1
µ∗1

ε

 . (4.21)

Proof: In order to implement Procedure 2, (4.7) should be verified for all j.
The size of the alphabet is equal to the number of balls of radius ε required to
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cover Vj . Since the radius of the set is

e
µ∗1 t̄
2 (ε+ η) + δ

√
µ∗2

√
eµ
∗
1 t̄-1

µ∗1
,

it can evidently be covered by no more than
e
µ∗1 t̄
2 (ε+ η) + δ

√
µ∗2

√
eµ
∗
1 t̄-1
µ∗1

ε√
n


n

hypercubes of radius ε√
n

. These hypercubes are themselves contained in a sphere

of radius ε. In order to verify (4.7), it thus suffices to take the log2 of this last
quantity, which leads to (4.21) and completes the proof.

Remark 4.10. As it will be demonstrated in the simulations section, both error
bounds presented in this section may be conservative. This is due to several
factors:

1. In the LMI formulation, the Lipschitz nonlinearity is modelled as a per-
turbation (that has to be compensated). For systems where the Lipschitz
nonlinear term plays the most important part in the dynamics, this can be
a source of conservatism.

2. The proof of the observation error relies on a Lyapunov-like function. As
is always the case with Lyapunov functions, better functions can lead to
tighter error bounds.

3. The objective function of (4.12) is suboptimal in the sense that it is a
linear formulation that minimizes the size of the convergence region, which
depends on a quotient of γi’s, which is an inherently nonlinear function.

4. The covering of the set Ij is simple but not optimal. A better covering pro-
cedure would result in fewer balls being necessary and would thus improve
the bound of Theorem 4.9.

Regarding point (3) of the above remark, one could alternatively take the
objective function γ−1

1 + δ2γ2 +ω2γ3 and use Schur’s lemma to transform (4.12)
into an LMI again (this approach is used in e.g. [Moreira et al., 2019]). After
trying both objective functions out on the simulations which will be presented in
the next section, the authors notice no improvement compared with the previous
objective function. This different formulation thus wasn’t used.

Proposition 4.4 and Theorem 4.9 can be used to choose ε and t̄. The choice of
ε provides a trade-off between the error (Proposition 4.4) and the requirements
on b+(·) (Theorem 4.9). By choosing ε small, the maximum observation error is
small but the maximum number of bits that can be sent becomes large and vice
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versa. Regarding t̄, the smaller it is chosen, the lower the error and requirement
on b+(·) but the higher the frequency at which messages are sent, hence, the
more often the communication channel is used.

4.5 Simulations

In this section, we apply the previously developed observation scheme to the
motivating example that was presented in the introduction: a unicycle-type
robot with data rate constraints. The goals of this section are

� To illustrate the validity of the theoretical upper bound (4.21), but also to
show that, in a real situation, our observation strategy can be much more
efficient than expected;

� To illustrate how the choices of ε and t̄ affect the number of communica-
tions;

� To show that with an improved local observer, the performance of the
observation scheme becomes much better.

The unicycle-type model that we consider is of the form (4.1) with vl = 0.15,∥∥[d̄1(t) d̄2(t)]ᵀ
∥∥

2
≤ 0.1, ‖[w̄1(t) w̄2(t)]ᵀ‖2 ≤ 0.05, and vθ = 0.2. We rewrite this

system such that it fits in the form (4.2):

ẋ(t) =

0 0 0
0 0 vl
0 0 0


︸ ︷︷ ︸

A

x(t) +

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

S

ϕ(Hx(t)) + d(t),

y(t) =

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

C

x(t) + w(t)

(4.22)

with

H =

0 0 1
0 0 0
0 0 0

 , ϕ : R3 → R3 :

r1

r2

r3

→
 vl cos(r1)
vl sin(r1)− vl

vθ

 ,
d(t) =

vld1(t) cos(x3(t))
vld1(t) sin(x3(t))

vθd2(t)

 , w(t) =

[
w1(t)
w2(t)

]
.

Assumption 4.1 holds with δ = 0.1, vl = 0.015 and ω = 0.05. In general,
Assumption 4.2 holds with L = 2vl. However, (4.12) is not feasible with L = 2vl.
We can adapt the formulation and solve this issue by using the fact that if
the observation error is small, the Lipschitz constant is smaller than 2vl (for
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‖x(t)− x̄(t)‖2 ≤ 1, L ≈ vl ‖x(t)− x̄(t)‖2). In order to solve the LMI, we thus
follow the following steps:

1. Pose L = L̄, where L̄ is some arbitrary initial value to be used in solving
of the LMI (4.12);

2. Compute γi and K by solving the LMI (4.12) with L = L̄;

3. Compute η from equation (4.13) and find Lipschitz constant L over the
interval [−η, η];

4. If the Lipschitz constant that we compute is smaller than L̄, the problem is
feasible, if not, we adapt L̄ to a different value and start at step (1) again.

We begin by computing the gain of the local observer K by solving the LMI
program (4.12). For the matrix A as in (4.22), following the aforementioned
steps, we pose L = L̄ = 0.38 and obtain

K =

−0.2447 0
0 −1.2581
0 −1.8184

 .
To solve the LMI, the MATLAB package YALMIP ([Lofberg, 2004]) was used,
together with the MOSEK solver ([MOSEK ApS, 2019]).

With these values, we have η = 0.370964 and for that range, the Lipschitz
constant of the system over [−0.370964, 0.370964] is smaller than 0.38. The
value for L̄ is thus validated. We then used a Monte Carlo method with 10000
different simulations of the communication scheme from t = 0 till t = 100 with
initial conditions (0, 0, 0), an initial estimate randomly chosen in a ball of radius
η centred around the origin, and random perturbations. In order to compare the
actual number of transmitted bits with the theoretical maximum number of bits
and to show the influence of the choices of ε and t̄, we run several simulations.
First, we set t̄ = 0.1 and simulate for various choices of ε. In Table 4.1, we
expose the results of the experiments in term of maximum observation error ξ,
number of communications Ncom and number of bits per communication Nbits.
We make several observations

1. The minimum time interval between two communications is set to 0.1,
which implies that we could theoretically communicate 1000 times in 100
seconds. Clearly, the actual number of communications is much lower than
that since it reaches 14.39 when the most precise estimates are sent. In
that case, 8 bits need to be sent every time we communicate, on average
every 7 seconds. This shows that the scheme is much more efficient in
terms of the actual number of transmitted bits per unit of time, compared
to the theoretical sufficient maximum number of bits.
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2. As the precision of the estimates increases, the total error decreases, but
the number of transmitted bits increases (more balls are required to cover
Vj). There is thus a trade-off between precision and the number of trans-
mitted bits. Since ξ is smaller, we also communicate more often.

3. Decreasing ε can only affect the precision up to a certain limit, which is
largely dictated by the precision local observer. Since the bound on the
local observation error is η = 0.370964, it is impossible to reach this bound
for ξ. Moreover, even approaching this bound requires us to decreases ε
drastically.

For the next set of simulations, we use only one value of ε = 0.05 and simulate
the observation scheme for various choices of t̄. The results are displayed in Table
4.2. We make the following observations about the results:

1. Increasing t̄ also increases ξ, which is logical: communicating more often
leads to better precision.

2. As t̄ increases, the average time between two consecutive communications
drastically increases as well. Even with t̄ = 0.5, we communicate on aver-
age less than once every 100 time instants. This is mostly due to the fact
that the state perturbations and measurement noise are relatively low.

3. For almost all choices of t̄, the number of bits that need to be transmitted
is the same. This is due to the fact that the number of bits is rounded
upwards. The unrounded number of bits does increase as t̄ increases.

4. The limiting effect of the local observation error is again present. Even
when choosing t̄ = 0.01, which corresponds to a sampling time of 10 ms, ξ
remains large.

ε 0.1 0.05 0.02 0.01 0.005
ξ 0.5128 0.4625 0.4323 0.4222 0.4172

Ncom 2.288 5.606 9.993 12.635 14.392
Nbits 4 5 6 7 8

Table 4.1: Results for various ε with t̄ = 0.1

In both sets of simulations, the main limiting factor is that the local observer
has a limited precision (η = 0.371) and this greatly influences the total error.
By using a better local observer (e.g., a nonlinear observer specifically designed
for unicycle-type robots), the performance of the observation scheme would be
improved. In order to illustrate this fact, we consider the situation where all
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t̄ 0.01 0.1 0.2 0.5 1 2
ξ 0.433 0.462 0.485 0.522 0.568 0.639

Ncom 11.719 5.60 1.660 0.493 0.108 0.008
Nbits 4 5 5 5 5 5

Table 4.2: Results for various t̄ with ε = 0.05

states of the unicycle robot are observed locally and a local observer is not
necessary. We thus consider the following system

ẋ(t) =

0 0 0
0 0 vl
0 0 0


︸ ︷︷ ︸

A

x(t) +

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

S

ϕ(Hx(t)) + d(t),

y(t) = x(t) + w(t).

(4.23)

with

H =

0 0 1
0 0 0
0 0 0

 , ϕ : R3 → R3 :

r1

r2

r3

→
 vl cos(r1)
vl sin(r1)− vl

vθ

 ,
vl = 0.1, vθ = 0.2, δ = 0.099 and ω = 0.05. This value for δ implies that very
large perturbations are possible in the state. In particular, the linear velocity of
the robot ranges from 0.001 m/s to 0.199 m/s. Since all states are observed, η =
ω = 0.05. We again used a Monte-Carlo method with 1000 different simulations
of the observation scheme for 100 seconds.

Fig. 4.2 shows how the actual observation error evolves over time, together
with ‖x̄(t) − x̂(t)‖2, which is used for the triggering condition. Note that the
distance between both horizontal lines is equal to ω = 0.1. We observe that
communication is triggered each time the triggering condition is met. The ob-
servation error always remains below ξ. There is some conservatism in the
triggering condition, the reasons for which have been discussed in Remark 4.10.
Towards the end, it can be seen that the actual observation error is larger than
‖x̄(t) − x̂(t)‖2 and the triggering condition, which is due to the measurement
noise, and also proves that the protocol is not too conservative.

Fig. 4.3 shows the trajectory of the unicycle robot in the x1-x2 plane for
one particular simulation with ε = 0.01 and t̄ = 0.5. We can see that the
observation scheme follows the actual trajectory of the system but, due to the
state perturbations and the measurement noise, the observation scheme regularly
resets to a point close to the current local estimate. The full results of the Monte-
Carlo simulations for relevant pairs of ε and δ are displayed in Table 4.3. We
make the following observations about these results.
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1. Although large state perturbations are present, the observation scheme is
still more efficient than the theoretical maximum. Even in the case of
ε = t̄ = 0.01, we only communicate 477 times on average, as opposed to
the theoretical maximum of 10000 times.

2. The effect of ε and t̄ on ξ and Ncom are similar as in the previous example.
It is always possible to trade precision for the number of communicated
bits and vice-versa.

3. The choice of t̄ has more impact in the error, as well as the average number
of communications than ε.

Figure 4.2: Evolution over time of the observation error and quantity used in
the triggering function, together with the respective bounds for one particular
simulation with full state measurement, ω = 0.1, ε = 0.01, and t̄ = 0.5.

4.6 Conclusion

In this chapter we presented an event-triggered, data rate constrained observa-
tion scheme for continuous-time linear systems with perturbations. After posing
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Figure 4.3: State-space trajectory of the unicycle robot in the x1-x2 plane for
one particular simulation with vl = 0.1, vθ = 0.2, ε = 0.01, and t̄ = 0.5.

ε 0.05 0.01
t̄ 0.5 0.1 0.5 0.05 0.01
ξ 0.331 0.200 0.290 0.130 0.0915

Ncom 16.15 47.97 21.12 120.26 477.517
Nbits 4 3 6 5 4

Table 4.3: Results for different choices of ε and t̄ with locally fully observed
states.

the problem statement, the design of the devices that form the communication
scheme was explained. A theorem evaluating the upper bound for the minimum
bit-rate required to implement this communication protocol was then presented.
The protocol was tested via simulations of unicycle-type robots. Through these
simulations, the following properties of the observation scheme have been high-
lighted.

� On average, it was observed in simulations that the number of commu-
nications is much lower than the theoretical maximum. This is due to
some conservatism in the estimates as well as the fact that the observation
scheme functions on an event-triggered basis;
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� By properly choosing the parameters of the observation scheme, it is pos-
sible to trade-off accuracy for a lower number of bits sent and vice-versa;

� One of the limiting factors of the observation scheme is the usage of a
generic local observer. The accuracy of the local observer greatly influences
the general precision of the data rate constrained observation scheme.

The continuation of this work includes:

� Using a local observer more adapted to the structure of the system to
decrease the total observation error and hence the maximum observation
error;

� Using the data rate constrained observation scheme on several mobile
robots;

� Adapting the observation scheme to a larger class of nonlinear systems.

Appendices

4.A Proof of Proposition 4.4

Proof: For brevity, we will drop the dependency on time in the notations of
this proof (e.g., ē refers to ē(t)). We start by defining the Lyapunov function
V (ē) = ēᵀP∗ē. The derivative with respect to time of this function is

V̇ (ē) = ˙̄eᵀP∗ē+ ēᵀP∗ ˙̄e.

From (4.11), we have

V̇ (ē) = ((A+KC)ē+ S(ϕ(Hx)− ϕ(Hx̄)) + d+Kw)
ᵀ
P∗ē

+ ēᵀP∗((A+KC)ē+ S(Hϕ(x)− ϕ(Hx̄)) + d+Kw).

We add and subtract the following terms to the right-hand side of the previous
equation: γ∗1 ē

ᵀē, γ∗4L
2ēᵀHᵀHē, (ϕ(x)−ϕ(x̄))ᵀSᵀM∗S(ϕ(Hx)−ϕ(Hx̄)), γ∗2d

ᵀd,
and γ∗3w

ᵀw. We then have

V̇ (ē) = ēᵀ(A+KC)ᵀP∗ē+ ēᵀP∗(A+KC)ē+ γ∗4L
2ēᵀHᵀHē

+ (ϕ(Hx)− ϕ(Hx̄))ᵀSᵀP∗ē+ ēᵀP∗S(ϕ(Hx)− ϕ(Hx̄))

− (ϕ(Hx)− ϕ(Hx̄))ᵀSᵀM∗S(ϕ(Hx)− ϕ(Hx̄)) + dᵀP∗ē

+ ēᵀP∗d− γ∗2dᵀd+ wᵀKᵀP∗ē+ ēᵀP∗Kw − γ∗3wᵀw + γ∗1 ē
ᵀē

− γ∗1 ēᵀē− γ∗4L2ēᵀHᵀHē+ γ∗2d
ᵀd+ γ∗3w

ᵀw

+ (ϕ(Hx)− ϕ(Hx̄))ᵀSᵀM∗S(ϕ(Hx)− ϕ(Hx̄)).
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This can be rewritten as

V̇ (ē) =zᵀQz − γ∗1 ēᵀē− γ∗4L2ēᵀHᵀHē+ γ∗2d
ᵀd+ γ∗3w

ᵀw

+ (ϕ(Hx)− ϕ(Hx̄))ᵀSᵀM∗S(ϕ(Hx)− ϕ(Hx̄)),

where z = [ēᵀ (ϕ(x)− ϕ(x̄))ᵀ dᵀ wᵀ]ᵀ and

Q =


Q11 P∗S P∗ P∗K
SᵀP∗ -SᵀM∗S 0p×n 0p×m
P∗ 0n×p -γ∗2In 0n×m

KᵀP∗ 0m×p 0m×n -γ∗3Im

 ,
with Q11 = (A+KC)ᵀP∗+P∗(A+KC)+γ∗1In+γ∗4L

2HᵀH. Clearly, (4.12) implies
that Q � 0, and we thus have that

V̇ (ē) ≤− γ∗1 ēᵀē− γ∗4L2ēᵀHᵀHē+ γ∗2d
ᵀd+ γ∗3w

ᵀw

+ (ϕ(Hx)− ϕ(Hx̄))ᵀSᵀM∗S(ϕ(Hx)− ϕ(Hx̄)).

From (4.12), γ∗4Ip � SᵀM∗S, which implies that

V̇ (ē) ≤− γ∗1 ēᵀē− γ∗4L2ēᵀHᵀHē+ γ∗2d
ᵀd+ γ∗3w

ᵀw

+ γ∗4(ϕ(Hx)− ϕ(Hx̄))ᵀ(ϕ(Hx)− ϕ(Hx̄)).

Assumption 4.2 implies that

(ϕ(Hx)− ϕ(Hx̄))ᵀ(ϕ(Hx)− ϕ(Hx̄)) ≤ L2ēᵀHᵀHē

and thus

V̇ (ē) ≤− γ∗1 ēᵀē+ γ∗2d
ᵀd+ γ∗3w

ᵀw.

By traditional Lyapunov arguments, we thus have

γ∗1 ē
ᵀē ≤γ∗2dᵀd+ γ∗3w

ᵀw,

which implies that √
γ∗1 ‖ē‖2 ≤

√
γ∗2 ‖d‖2 +

√
γ∗3 ‖w‖2 .

By using Assumption 4.1, we thus have the following globally attractive region

‖ē‖2 ≤
√
γ∗2δ +

√
γ∗3ω√

γ∗1
.

By choosing ε0 smaller than

√
γ∗2 δ+
√
γ∗3ω√

γ∗1
, we guarantee that the ē(0) starts

within that region and hence, (4.13) holds for all t ≥ 0. �.
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4.B Proof of Lemma 4.6

Proof: Starting from tj , the error ê(t) := x(t)− x̂(t) has the following dynamics.

˙̂e(t) = ẋ(t)− ˙̂x(t)

=Ax(t) + d(t) + Sϕ(Hx(t))−Ax̂(t) + Sϕ(Hx̂(t))

=Aê(t) + d(t) + S(ϕ(Hx(t))− ϕ(Hx̂(t))).

(4.24)

We define the Lyapunov function V̂ (ê(t)) := ê(t)ᵀê(t). The derivative with
respect to time of this function is

˙̂
V (ê(t)) = ˙̂e(t)ᵀê+ êᵀ ˙̂e(t)

=(ê(t)ᵀAᵀ + d(t)ᵀ + ϕ(Hx(t))ᵀSᵀ − ϕ(Hx̂)ᵀSᵀ)ê(t)

+ ê(t)ᵀ(Aê(t) + d(t) + Sϕ(Hx(t))− Sϕ(Hx̂(t)))

We add and subtract the following terms to the right-hand-side of the previous
equation: µ∗1ê(t)

ᵀê(t), µ∗2d(t)ᵀd(t), (ϕ(Hx(t))− ϕ(Hx̂(t)))ᵀSᵀM̂∗S(ϕ(Hx(t))−
ϕ(Hx̂(t))), and L2µ∗3ê(t)

ᵀHᵀHê(t), where M̂∗ is the solution of (4.16).

˙̂
V (ê(t)) = ê(t)ᵀ(Aᵀ +A)ê(t)− µ∗1ê(t)ᵀê(t) + d(t)ᵀê(t)

+ ê(t)ᵀd(t)− µ∗2d(t)ᵀd(t) + (ϕ(Hx(t))ᵀ − ϕ(Hx̂)ᵀ)Sᵀê(t)

+ ê(t)ᵀS(ϕ(Hx(t))− ϕ(Hx̂(t))) + L2µ∗3ê(t)
ᵀHᵀHê(t)

− (ϕ(Hx(t))− ϕ(Hx̂(t)))ᵀSᵀM̂∗S(ϕ(Hx(t))− ϕ(Hx̂(t)))

+ µ∗1ê(t)
ᵀê(t) + µ∗2d(t)ᵀd(t)− L2µ∗3ê(t)

ᵀHᵀHê(t)

+ (ϕ(Hx(t))− ϕ(Hx̂(t)))ᵀSᵀM̂∗S(ϕ(Hx(t))− ϕ(Hx̂(t)))

By defining ẑ(t) = [ê(t)ᵀ d(t)ᵀ ϕ(Hx(t)) − ϕ(Hx̂(t))]ᵀ, the previous equation
can be rewritten as

˙̂
V (ê(t)) = ẑ(t)ᵀQ̂ẑ(t) + µ∗1ê(t)

ᵀê(t) + µ∗2d(t)ᵀd(t)

+ (ϕ(Hx(t))− ϕ(Hx̂(t)))ᵀSᵀM̂∗S(ϕ(Hx(t))− ϕ(Hx̂(t)))

− L2µ∗3ê(t)
ᵀHᵀHê(t).

with

Q̂ =

Aᵀ +A− µ∗1In + L2µ∗3H
ᵀH In In

In −µ∗2In 0n×n
In 0n×n −SᵀM̂∗S


Evidently, from (4.16), we have ẑ(t)ᵀQ̂ẑ(t) ≤ 0 and thus

˙̂
V (ê(t)) ≤ µ∗1ê(t)ᵀê(t) + µ∗2d(t)ᵀd(t)

+ (ϕ(Hx(t))− ϕ(Hx̂(t)))ᵀSᵀM̂∗S(ϕ(Hx(t))− ϕ(Hx̂(t)))

− L2µ∗3ê(t)
ᵀHᵀHê(t).
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Since µ∗3Ip ≥ SᵀM̂∗S, we have

˙̂
V (ê(t)) ≤ µ∗1ê(t)ᵀê(t) + µ∗2d(t)ᵀd(t)

+ µ∗3(ϕ(Hx(t))− ϕ(Hx̂(t)))ᵀ(ϕ(Hx(t))− ϕ(Hx̂(t)))

− L2µ∗3ê(t)
ᵀHᵀHê(t).

By using Assumptions 4.1 and 4.2, this can further be transformed to

˙̂
V (ê(t)) ≤µ∗1ê(t)ᵀê(t) + µ∗2δ

2 + L2µ∗3ê(t)
ᵀHᵀHê(t)

− L2µ∗3ê(t)
ᵀHᵀHê(t).

and thus

˙̂
V (ê(t)) ≤ µ∗1V̂ (ê(t)) + µ∗2δ

2.

This implies that

V̂ (ê(t)) ≤ eµ
∗
1tV̂ (e(tj)) + µ∗2δ

2 e
µ∗1t − 1

µ1
.

From the definition of V̂ , and by taking a square root on both sides of the
equations, this yields the following inequality

‖ê(t)‖2 ≤ e
µ∗1t
2 (ε+ η) + δ

√
µ∗2

√
eµ
∗
1t − 1

µ∗1
.

�





Chapter 5

Remote State Estimation of Steered

Systems with Limited Communications:

an Event-Triggered Approach

In this chapter, an approach is proposed for the remote observation of a dynam-
ical system through a data-rate constrained communication channel. The focus
is put on discrete-time systems with a Lipschitz nonlinearity, driven by an ex-
ternal signal, and subject to bounded state perturbation and measurement error.
The problem at hand is providing estimates of system’s state at a remote loca-
tion, which is connected via a channel which can only sent limited numbers of
bits per unit of time. A solution, named observation scheme, is proposed in the
form of several interacting agents. This solution is designed such that the max-
imum observation error is upper-bounded by a computable quantity dependent
on system constants and selectable parameters. The scheme is designed in an
event-triggered fashion, such that the actual communication rate is sometimes
much lower than the theoretically evaluated maximum one, as it is demonstrated
through simulations.

5.1 Introduction

Whether it is collective cruise control of connected cars, formation control for
drones through Wi-Fi or Bluetooth, connected smart sensors, or another form
of cyber-physical system technology, wireless communications are omnipresent
in the modern industry. Since it is a booming application domain, new perfor-
mance requirements are imposed, and the field of dynamics and control has to
come up with new solutions to deal with these new problems and challenges.
The problems related to the interactions between dynamical systems and com-
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munication technologies are numerous, and have led to the creation of an entire
sub-field within the topic: control and estimation over communication channels.
All problems share some common features: one or several dynamical systems,
sometimes paired with sensors, actuators and controllers, are placed at remote
locations from one another. To communicate, they have to employ communica-
tion channels which are limited, either in terms of frequency of communications,
size of the messages, or are subject to losses and lags. When this setting is
combined with noise, parametric uncertainty, perturbations, or deviations in
initial conditions, there is a need to design efficient communication strategies to
deal with these uncertainties, which can be understood as additional sources of
information in the sense of Shannon's information theory [Shannon, 1948].

Among the earliest works in this sub-field, one finds: [Wong and Brockett,
1997], which considered state estimation under data-rate constraints for linear
noisy systems and [Elia and Mitter, 2001], which considered stabilization of a
linear system under quantized state feedback. Many more results on observation,
state estimation and control have been obtained for linear systems and broad
overviews of these results can be found in [Nair et al., 2007], [Baillieul and
Antsaklis, 2007] and [Andrievsky et al., 2010].

For nonlinear systems, important results are [Nair et al., 2004], [Liberzon and
Hespanha, 2005] and [Savkin, 2006], which are based on entropy concepts. Since
those three papers, many different notions of entropy have been used to provide
bounds on the sufficient and/or necessary data-rates to observe and/or con-
trol nonlinear dynamical systems over constrained channels (see [Kawan, 2013],
[Matveev and Savkin, 2009], [Kawan, 2018], [Sibai and Mitra, 2017], [Liber-
zon and Mitra, 2016], [Matveev and Pogromsky, 2016], [Sibai and Mitra, 2018],
[Voortman et al., 2019] and [Matveev and Pogromsky, 2019]).

Approximately at the same time as the research on control with data-rate
constraints started, the topic of event-triggered control appeared as well in the
dynamics and control community. Two early papers are: [Åarzén, 1999], where
an event-triggered PID controller is presented and [Åström and Bernhardsson,
1999], where the effects of event-based sampling are compared to periodic sam-
pling. For an introduction to event-based control, one can refer to [Heemels
et al., 2012]. For an overview of many sampling-related results, one can refer to
[Hetel et al., 2017].

Both control with data-rate constraints and event-based control have been
used together for control and observation purposes. These works include [Han
et al., 2015], which uses an event-triggered sensor schedule for remote estimation
for a linear system, [Shi et al., 2016], designing a remote estimator for a linear
system with unknown exogenous inputs, [Huang et al., 2017], where a remote
estimator for a system with an energy harvesting sensor is developed, [Trimpe,
2017], which tackles distributed state estimation with data-rate constraints, [Xia
et al., 2017], which considers networked state estimation with a shared commu-
nication medium and, [Muehlebach and Trimpe, 2018], where an LMI approach
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is used for the networked state estimation problem over a shared communication
medium.

A particular class of dynamical systems is the class of Lipschitz-nonlinear
systems which are typically found when modeling mechanical systems. This
class includes systems with trigonometric nonlinearities, which are globally Lip-
schitz. Square or cubic nonlinearities which are also sometimes encountered
with mechanical systems are locally Lipschitz and, since they often occur on
physical systems, they are often paired with a saturation function (due to hav-
ing restricted movement in space), which makes them globally Lipschitz. Many
results have been obtained for Lipschitz-nonlinear systems, among which we
note [Raghavan and Hedrick, 1994] and [Rajamani, 1998] which both develop
observers for Lipschitz-noninear systems.

In this chapter, we develop a communication scheme to remotely observe a
discrete-time Lipschitz-nonlinear system with state perturbations and bounded
measurement error. The system is connected to a remote location by means of
a data-rate constrained communication channel. It is also steered by a driving
signal which is not measured at the remote location. The challenge is to design
the communication protocol such that through the messages that are received
from the system, it is possible to reconstruct estimates of the state at the remote
location. Moreover, this should be achieved while using limited communication
data-rates. The novelty of this chapter in comparison with the aforementioned
works, is that we consider an event-trigger communication protocol which often
requires much less than the theoretical maximum channel rate.

The chapter is structured as follows. In Section 5.3, we expose the details
of the problem statement. Next, in Section 5.4, we develop the communication
scheme. Section 5.5 is then dedicated to analytical bounds on the maximum
observation error and communication rate. Finally, we conclude with simula-
tions in Section 5.6, to insight on how the communication scheme functions and
performs in practice.

5.2 Notations

� In: an n× n identity matrix;

� ?: a zero matrix of appropriate dimension;

� ‖v‖2, v is a vector: the Euclidean norm;

� ‖M‖2, M is a matrix: the operator norm induced by the pair (‖·‖2 , ‖·‖2);

� σi(M), M is a matrix: the singular values of M ranked in non-increasing
order (σ1(M) = ‖M‖2);

� vec (M), M is a matrix: the vectorization of M ;
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� |S|, S is a set: the cardinality of S;

� Bε(x): the ball of radius ε, centred in x.

5.3 Problem Statement

We consider discrete-time systems of the following form

x(k + 1) = Ax(k) +Bu(k) + ϕ(Hx(k), u(k)) + d(k),

y(k) = x(k) + w(k),
(5.1)

where x(k) ∈ Rn is the state, A ∈ Rn×n, B ∈ Rn×m, u(k) ∈ Rm is the driving
signal, ϕ : Rp × Rm → Rn is a mapping, H ∈ Rp×n, d(k) ∈ Rn is an unknown
state perturbation, y(k) ∈ Rn is the output, and w(k) ∈ Rn is a measurement
error.

Remark 5.1. The case of full state measurements is considered as this is equiv-
alent to assuming observability for the system with bounded measurement noise.
Since the main objective of the chapter is to design a remote observer, this tech-
nicality is left out.

We assume the following about the driving signal.

Assumption 5.2. The driving signal u(k) is measured exactly and ui(k) ∈
[ui, ūi], i ∈ {1, . . . ,m} where [u1(k) . . . um(k)]ᵀ = u(k) ∈ U :=

∏m
i=1[ui, ūi].

The considered class of systems will be restricted to Lipschitz-nonlinear sys-
tems, which are commonly found structures of robotic and/or mechanical sys-
tems. We thus make the following assumption about the mapping ϕ.

Assumption 5.3. There exist L such that

‖ϕ(x1, u)− ϕ(x2, u)‖ ≤ L ‖x1 − x2‖ , ∀x1, x2 ∈ Rp,

uniformly in u ∈ Rm and there exists ϕ̄ such that

‖ϕ(x, u1)− ϕ(x, u2)‖ ≤ ϕ̄ ‖u1 − u2‖ , ∀u1, u2 ∈ U,

uniformly in x ∈ Rn (i.e., the mapping φ is uniformly globally Lipschitz with
respect to both arguments).

Note that the previous assumption can be substituted, if the system is
bounded-input bounded-state stable, by an assumption that the system is lo-
cally Lipschitz with respect to the state.

We make the following assumptions about the perturbations d(k) and the
errors w(k).
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Assumption 5.4. There exists a maximum state perturbation δ > 0 and maxi-
mum measurement error ω > 0 such that

‖d(k)‖2 ≤ δ, ‖w(k)‖2 ≤ ω, ∀k ≥ 0.

The system is equipped with a smart sensor (a sensor admitting some com-
putational capacities, which allows it to perform additional computations on
the measured data) and it is connected to a remote location via a data-rate
constrained communication channel, which can only send messages that are of
finite size. The objective is to provide estimates x̂(k) of x(k) at the remote
location by sending messages over this communication channel. Note that the
measurements of input u(k) are available at the plant side and also have to be
communicated to the remote location. The sensor and the remote location are
aware of an initial estimate x̂(0) which verifies

‖x(0)− x̂(0)‖2 ≤ ε0, (5.2)

where ε0 is a selectable parameter corresponding to the error of initial conditions.
In order to generate the estimates, messages m(kj) are sent, where kj are

the transmission times and j = {0, 1, . . .} is the index of communication. Four
ingredients interact with these messages: a sampler S, a coder C, an alphabet size
function A, and a decoder D. The four devices together form a communication
protocol. The following constants/parameters are known by all devices: the
system matrices A, B H, the mapping ϕ, the constants L and ϕ̄, the maximum
state perturbation δ, the maximum measurement error ω, and the initial estimate
x̂(0) with its accuracy ε0. At the system side, the sampler S generates the
instants of transmission in the following way

kj+1 = S({u(k)}k<kj+1 , kj , {y(k)}k<kj+1 , {m(ki)}i≤j), (5.3)

k0 = 0. The coder then generates the messages in the following way

m(kj)=C({u(k)}k≤kj , kj , x̂(0), {y(k)}k≤kj ,
{m(ki)}i≤j−1),

(5.4)

∀kj : j > 0. At each communication instant, the different possible messages
are encoded into a finite-sized alphabet (the finite-sizedness being due to the
data-rate constraints). The alphabet size function A determines the number of
different messages lj in the following way

lj=A(x̂(0), {m(ki)}i≤j−1), ∀j > 0. (5.5)

The restriction on the choice of messages is then

m(kj) ∈ {1, . . . , lj}, ∀j > 0.
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When a message is sent, it is encoded by using bits. The number of bits bj
required to encode a message at communication instant kj is defined as

bj := dlog2 lje j > 0. (5.6)

At the remote location, the decoder D receives the messages and interprets them
to generate an estimate of the state x̂(k). For simplicity, we assume that there
is no transmission delay, i.e., that the messages are received at the same time as
they are sent. The decoder functions in the following way

x̂(k) = D(x̂(0),m(k1), . . . ,m(kj)), ∀k ∈ {kj , . . . , kj+1 − 1},

∀j ≥ 0. Because of the perturbation, measurement error and finite data-rate,
it is impossible to provide exact estimates at the remote location. Instead,
the design of the communication protocol should ensure that the estimation
error ‖x(k)− x̂(k)‖ is bounded by a quantity which we call the maximum
observation error ξ and is defined as

ξ := sup
k≥0
‖x(k)− x̂(k)‖2 . (5.7)

In order to properly define the goal of the chapter, we need a quantity that
evaluates the rate at which bits are sent through the communication channel.
This quantity depends on both bj , which can vary from one communication
instant to another, and on kj+1 − kj , which is fluctuating as well. We thus
define the maximum communication rate R as

R := lim sup
j̄→∞

∑j̄
j=0 bj

j̄ + 1
, (5.8)

which can be commented as follows: first we define the average number of bits
sent per unit of time during a window of j̄ consecutive communications, next we
start counting at time instant j such that this quantity is the largest possible,
and finally, we take j̄ such that the quantity is the smallest possible. This
quantity is called maximum communication rate because we will provide results
that guarantee that this rate is not exceeded.

The first objective of the chapter is to design a data-rate constrained obser-
vation scheme, to investigate what maximum observation error ξ it guarantees,
and to determine the maximum communication rate R required to implement
it. The second objective, is to ensure that this data-rate constrained observa-
tion scheme requires on average a lower communication rate than R when the
perturbations occur in a favourable way. This will be achieved by using an
even-triggered operation.

Remark 5.5. The problem statement allows for an observation scheme that
uses all previous inputs and outputs in order to generate estimates. Therefore,
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it is necessary to store these input-output data locally in memory, which can be
costly. The solution that is presented in this work does not rely on storing all
previous inputs and outputs. However, we decided to leave this possibility, to
keep the problem statement as general as possible.

5.4 The Communication Scheme

In this section, we describe the different components that form the observation
scheme: sampler, coder, alphabet, and decoder. The observation scheme needs
to provide accurate estimates of x(k) for all k. The naive solution is to sim-
ply send an estimate of x(k) at every time instant. This solution is extremely
inefficient in terms of data-rate, and a way to decrease the transmission rate
is to only occasionally send estimates of the states and to utilize the system’s
dynamics on the decoder side in order to complement the estimates between the
communications. This is the solution that will be used in this chapter.

The problem is that the decoder has no information about the driving signal
u(k) so it cannot reconstruct estimates based on the system’s dynamics. The
solution we are going to explore in this chapter, is to communicate a driving
signal of the estimate û(k) via the messages at every time instant (i.e. kj = k)
and to sometimes send an estimate of the state x̂(k) in addition to û(k). The
reasoning behind this idea is that the state and the driving signal have different
dimensions (respectively n and m) and hence, their communication produces
different loads on the channel. Typically, m ≤ n and it is less “expensive” to
transmit an estimate of the driving signal than the state of the system.

Therefore, the observation scheme is going to send two different types of
messages: messages which only contain the driving signal of the estimate and
messages which contain both the driving signal of the estimate and an estimate
of the state. We denote jx is the index of the last communication instant when
an estimate of the state was transmitted. The following dynamics are used to
generate new estimates at the remote site in between messages containing x̂:

x̂(k) = Ax̂(k − 1) +Bû(k − 1) + ϕ(Hx̂(k − 1), û(k − 1)), (5.9)

∀k : k 6= kjx , that is, for all time instants when the current message does not
contain an estimate of the state.

Since these estimates are based entirely on the messages, the sampler and
coder also maintain local copies of these estimates x̂c(k) = x̂(k) and ûc(k) =
û(k). These copies are used by the smart sensor to determine when to trigger
communications, as will be explained further in this chapter. Figure 5.1 displays
how the different agents interact.

When are messages sent? It is at this point that the event-triggered mech-
anism comes into play. Since the sampler knows x̂c(k) and ûc(k), it will com-
municate new estimates x̂(k) only when the distance between x(k) and x̂(k)
becomes too large (including a margin of error to account for the measurement
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Figure 5.1: Structure of setup.

noise). Also, in order to reduce the amount of communications, the sampler will
space out subsequent communications of estimates of x(k) by at least k̄ time
instants. The quantity k̄ is a tunable integer constant larger or equal to one,
which allows one to tune the error and maximum communication rate, as will
be proven later in the chapter. We assume that, as a part of the observation
scheme, this quantity is known by all agents.

In order to properly define the observation scheme, we will need several
additional notions.

First of all, the sets of points V, W and Wx. The set V = {vl} ∈ Rm is
a constant set of points indexed from 1 till |V|. The set W = {wl} ∈ Rn is a
constant set of points indexed from 1 till |W|. The set Wx is equal to the set
W, shifted by the vector x. Its elements {wxl } ∈ Rn are indexed from 1 till |W|
(since the set is a shift of W, it has the same number of elements).

Next, the notation A_B refers to the concatenation of the text A and B
(i.e. “12”_“34” = “1234”), K ∈ Rm×n is a tunable constant gain matrix, α
is a tunable constant. Since we communicate at every time instant, we have
k = kj = j. For the sake of correctness and to highlight their different meaning,
we keep referring to each of these quantities separately, despite the fact that they
are always equal. In any message m(kj), mu(kj) refers to the part of the message
that encodes information necessary to reconstruct û(k) and mx(kj) to the part
that encodes information necessary to reconstruct x̂(k). Finally, we define the
provisional estimate x̂−(k) := Ax̂(k−1)+Bû(k−1)+ϕ(Hx̂(k−1), û(k−1)) and
its local copy x̂−c (k) = x̂−(k) (which are maintained by the sampler and coder).
Note that x̂−(k) = x̂(k) only if k 6= kjx . It is a provisional estimate and will
coincide with the actual estimate x̂(k) only if no message is sent. If a message
containing information to reconstruct x̂(k) is sent, x̂−(k) is discarded and that
message is used to generate the estimate x̂(k).

Procedure 3.
Sampler S:

1: if k = 0 then
2: j ← 0
3: jx ← 0
4: kj ← 0
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5: else
6: j ← kj ← k
7: end if

Alphabet Size Function A:

1: lj ← |V|
2: if kj ≥ kjx + k̄ and ‖y(k)− x̂−c (k)‖2 ≥ α then
3: lj ← lj |W|
4: end if

Coder C:

1: x̂−c (k) = Ax̂c(k − 1) +Bûc(k − 1) + ϕ(Hx̂c(k − 1), ûc(k − 1))
2: m(kj)← arg min

l∈{1,...,|V|}
‖u(k)−K(y(k)− x̂(k))− vl‖2

3: ûc(k)← vum(kj)

4: if kj ≥ kjx + k̄ and ‖y(k)− x̂−c (k)‖2 ≥ α then

5: m(kj)← m(kj)
_ arg min

l∈{1,...,|W|}

∥∥∥y(k)− wx̂
−
c (k)
l

∥∥∥
2

6: x̂c(k)← w
x̂−c (k)

mx(kj)

7: jx ← kj
8: else
9: x̂c(k)← x̂−c (k)

10: end if

Decoder D:

1: x̂−(k) = Ax̂(k − 1) +Bû(k − 1) + ϕ(Hx̂(k − 1), û(k − 1))
2: û(k)← vmu(kj)

3: if mx(kj) 6= ∅ then
4: x̂(k)← w

x̂−(k)
mx(kj)

5: else
6: x̂(k)← x̂−(k)
7: end if

The Sampler S is relatively simple: there is an initialization step (lines 2-4)
and an incremental step (lines 6), where j and kj are simply updated to the
current time instant (since we communicate û at every time instant).

The Alphabet Size FunctionA starts (line 1) by being equal to the cardinality
of V (since V is used to transmit û and we communicate û at every time instant).
Next (line 2), it checks whether two conditions are verified: firstly that enough
time has elapsed since the last communication of x̂ (kj ≥ kjx + k̄) and secondly
that the triggering condition is verified (‖y(k)− x̂−c (k)‖2 ≥ α). If both condition
are true, then an estimate x̂ will be communicated in addition to û so we increase
the length of the alphabet by multiplying the previous value (which was set to
the cardinality of V at line 1) with the cardinality of W (line 3).

The Coder C starts by computing the local copy of the provisional estimate
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x̂−c (line 1). It then computes the point in V closest to u(k) + K(y(k) − x̂(k)),
uses its index as the message (line 2), and updates the local copy of ûc (line 3).
Next, it verifies whether the triggering condition is verified (line 4). If it is, then
it computes the point in Wx̂−c (k) closest to y(k), concatenates its index to the

previous part of the message (line 5), updates the local copy of x̂ accordingly
(line 6), and updates jx (line 7). If the triggering condition is not verified then
the provisional estimate is used for x̂c(k) (line 9).

The Decoder D starts by computing the provisional estimate x̂− (line 1) and
uses the index it received via the message to set the current driving signal of the
estimate to the point in V to which this index corresponds (line 2). Next, if it
received a message containing information on x̂ (line 3), then it uses the point in
Wx̂−c (k) corresponding to the received index (line 4), otherwise, it updates x̂ to be

equal to x̂− (line 6). Since |V| and |W| are constant, the length of the alphabet
indicates whether a message contains information about û(k), or both û(k) and
x̂(k). By looking at the number of bits it received, the decoder can thus clearly
distinguish between the different types of messages. The decoder can also easily
distinguish which bits encode information about the driving signal and which
bits encode information about the state, when estimates of both are sent at the
same time (the first bits encode for the driving signal, the last bits for the state).

As it follows from this procedure, the driving signal of the estimate û(k)
includes a state correction term:

û(k) = u(k)−K(y(k)− x̂(k)).

Further in this chapter, we will prove if Assumption 5.2 holds, there exists
ηu such that û(k) ∈ Bηu(u+ū

2 ), i.e., that the driving signal of the estimate is
bounded. We conclude this section with several remarks regarding the observa-
tion scheme.

Remark 5.6.

� The observation scheme relies on choices of the quantities k̄, εu, V, εx,
W, K, α. At this stage, there is no guarantee that, no matter the choices
for these quantities, the observation scheme will always be implementable.
Moreover, the choices of these quantities greatly impact the resulting max-
imum observation error and maximum communication rate. This will be
discussed extensively in the next section.

� The sets V and W play an essential role in the observation scheme. They
will be used to make a covering of the sets containing û(k) and x̂(kjx). The
observation scheme relies on them having the following properties:

– For any possible û(k), there should exists vl ∈ V such that
‖û(k)− vl‖ ≤ εu (precision of the covering).
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– For any possible x̂(kjx), there should exists w
x̂−(kjx )
l ∈ Wx̂−(kjx ) such

that
∥∥∥x̂(kjx)− wx̂

−(k)
l

∥∥∥ ≤ εx (precision of the covering).

– The cardinalities |V| and |W| are finite (size of the covering).

5.5 Choices, Error and Rates

With the observation scheme and its agents fully introduced, this section aims
to answer the following questions: “What is the resulting maximum error ξ?”
and “What is the resulting maximum communication rate R?”. The answers
come in the form of two theorems: one for each quantity.

Before the theorems can be presented, there is a need to provide proper
choices for the constant α, gain matrix K, and sets V and W.

To this end, we first introduce the following Bilinear Matrix Inequality pro-
gram.

(µ∗i , N
∗, Q∗i , S

∗) := arg min
µi,N,Qi,S

(δ2µ4 + ε2uµ5 + ω2µ6),

subject to: (5.21) and

µiIn � Qi, ∀i ∈ {2, . . . , 4},
µiIm � Qi, ∀i ∈ {5, 6},
µ1 ≥ 0,

N � 0,

Qi � 0, ∀i ∈ {2, . . . , 6},

(5.10)

Based on the solution of this program (µ∗i , N
∗, Q∗i , S

∗) (due to the structure of
this particular BMI, such a solution always exists), we define

P ∗ := (N∗)−1 (5.11)

and the matrix T which is a matrix verifying T ᵀT = P ∗. Note that since P ∗ is
symmetric and positive definite, this decomposition always exists. The gain K
used in the observation scheme is defined as follows:

K∗ := P ∗S∗. (5.12)

As was previously mentioned, an important part of the observation scheme
is the sets V andW. We will use the concept of covering of a set which is defined
as follows:

Definition 5.7. A set S1 with elements sl generates a covering of radius εs
of the set S2 if the following holds

S2 ⊆
|S1|⋃
l=1

Bεs(sl).
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The set V is then determined as follows: first we compute ηu such that the
distance between û(k) and u+ū

2 is at most ηu (that is û(k) ∈ Bηu(u+ū
2 )), next

we define V such that it generates a covering of radius εu of Bηu(u+ū
2 ). This

necessarily implies that minl∈{1,...,|V|} ‖û(kj)− vl‖2 ≤ εu.
For the set W, we proceed similarly by computing ηx such that x̂(kjx) ∈

Bηx(x̂−(kjx)), then we defineW such that it is a covering of radius εx of Bηx (0).
The setsWx̂−(kjx ) are then constructed by simply shifting the setW by a vector
x̂−(kjx).

The aforementioned quantities ηu and ηx are chosen as :

ηu :=

∥∥∥∥u− ū2

∥∥∥∥
2

+ σ1(K∗)ω + εu

+ σ1(K∗) max

{
εx + ω,

(µ∗1)
k̄−1

2 σ1(T )

σn(T )
(εx + ω)

+
1

σn(T )
(µ∗4δ

2+µ∗5ε
2
u+µ∗6σ1(K∗)2ω2)

1
2

k̄−2∑
i=0

(µ∗1)
i
2

 ,

(5.13)

ηx :=
(µ∗1)

k̄
2 σ1(T )

σn(T )
(εx + ω) + ω

+
1

σn(T )

(
µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(T )2ω2

) 1
2

k̄−1∑
i=0

(µ∗1)
i
2

. (5.14)

In the appendix, Lemmata 5.13 and 5.14 prove that by choosing them as above,
we indeed have û(k) ∈ Bηu(u+ū

2 ) and x̂(kjx) ∈ Bηx(x̂−(kjx)).
In order to implement Procedure 3, it is also necessary to define α, which is

used in the triggering condition of the observation scheme and it is defined as
α :=

min

σn(T )[ηx − ω −
(
µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2

) 1
2 ]

(µ∗1)
1
2σ1(T )

−ω,

max

{
εx + ω,

(µ∗1)
k̄−1

2 σ1(T )

σn(T )
(εx + ω)

1

σn(T )
(µ∗4δ

2+µ∗5ε
2
u+µ∗6σ1(K∗)2ω2)

1
2

k̄−2∑
i=0

(µ∗1)
i
2


.

(5.15)

We now present the two main results of the chapter: first a theorem that
provides a bound on the maximum observation error and then a theorem that
gives a bound on the maximum communication rate.

In the following theorem, k̄, εx and εu are tunable constants.
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Theorem 5.8. Let Assumptions 5.2 to 5.4 hold for the system (5.1). Then for
any k̄ ≥ 1, εx > 0, ε0 ≤ εx +ω and εu > 0, Procedure 3 guarantees the following
bound on the maximum observation error:

ξ ≤ max

{
εx + ω,

(µ∗1)
k̄−1

2 σ1(T )

σn(T )
(εx + ω)

+

k̄−2∑
i=0

(µ∗1)
i
2

1

σn(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

1
2


(5.16)

The proof of this theorem is provided in Appendix 5.A.1.

In the following theorem, the notation d·e refers to the ceiling function (i.e.
the function that rounds up to the nearest integer).

Theorem 5.9. Let Assumptions 5.2 to 5.4 hold for the system (5.1). For any
k̄ ≥ 1, εx > 0, ε0 ≤ εx+ω and εu > 0, Procedure 3 results in the following bound
on the maximum communication rate:

R ≤
⌈
m log2

2ηu
√
m

εu

⌉
+

⌈
n log2

2ηx
√
n

εx

⌉
k̄

(5.17)

The proof of this theorem is presented in Appendix 5.A.2.

5.6 Simulations

In this section, various systems are simulated under the observation scheme. The
objectives are:

� To compare the bound on R with the actual rate observed in simulations;

� To show how the Lipschitz-nonlinear term of the system’s dynamics affects
R, the actual rate, and ξ;

� To show how R, the actual rate, and ξ are influenced by the choices of k̄,
εx, and εu;

� To show how R, the actual rate, and ξ are influenced by the perturbations
d(k) and w(k).

We will consider two examples of Lipschitz-nonlinear systems. First, a simple
two-dimensional system with a trigonometric nonlinearity, which is a structure
typical of mechanical systems. Secondly, a model for a flexible joint robot, which
has already been studied in [Raghavan and Hedrick, 1994].
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5.6.1 Example 1

We consider the discretization, by using an Euler method of the following
continuous-time system (inspired by Example 2 of [Grandvallet et al., 2013]):

ẋ(t)=

[
0 1
0 0

]
x(t) +

[
1
0

]
u(t) +

[
γ sin(x2(t))

0

]
+ d(t),

y(t) = x(t) + w(t),

where γ > 0 is a parameter, with a discretization step of 10 ms. This yields the
following discrete-time system:

x(k + 1) =

[
1 0.01
0 1

]
x(k) +

[
0.01

0

]
u(k) +

[
0.01γ sin(x2(k))

0

]
+ d(k),

y(k) =x(k) + w(k),

(5.18)

For this system, Assumption 5.3 holds with L = 0.01γ and ϕ̄ = 0. We first
consider γ = 2, Assumption 5.2 with u1 = −1 and ū1 = 1, Assumption 5.4 with
δ = 0.01 and ω = 0.01, and the following choices for the observer constants

εu = 0.01, εx = 0.01, k̄ = 2.

Solving (5.10) and using Theorems 5.8 and 5.9, we obtain

ξ ≤ 0.0519

R ≤ 17.

We used Monte-Carlo methods to simulate the observation scheme for 10, 000
iterations from k = 0 to k = 1000 each. The simulated communication rate R∗

is R∗ = 12.0068. The number of bits Nu used to transmit û is Nu = 12 and the
number of bits Nx required to transmit x̂ is Nx = 10. Since we communicate û at
every instant, we sent 12 bits at each time instant. Since the communications of
x̂ are spaced out by at least k̄ instants, we at most send 10 bits every k̄ instants.
When decomposing the rate between the rate that is used to send estimates of u
(R∗u) and the rate that is used to send estimates of x (R∗x), we observe R∗u = 12
and R∗x = 0.0068. This means that the coder extremely rarely sends estimates
of the state and instead relies on the driving signal of the estimate to keep the
error low. We compared these quantities for varying γ and the same values for
the other system parameters and observer constants. The results are displayed
in Table 5.1. We observe that:

� The nonlinearity influences ξ: the bigger γ, the bigger the maximum error.
Since the Lipschitz nonlinearity is modelled as a perturbation, it is natural
that a larger nonlinearity implies a larger ξ;
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� The communication rate is mostly due to communications of û;

� In terms of communication rate, we observe that a significant decrease
happens, when γ is increased. This is due to the fact that α grows with
L and hence with γ, which implies that the triggering condition is verified
less often. For γ = 10, there are simply no communications of the state
at all whilst ξ remains small which implies that our observer makes good
usage of the driving signal of the estimate.

γ 1 2 5 10
ξ 0.0479 0.0519 0.0607 0.0706
Nu 12 12 12 12
Nx 10 10 11 11
R∗ 12.0279 12.0068 12.0003 12
R∗u 8 8 8 8
R∗x 0.0279 0.0068 0.0003 0

Table 5.1: Example 1: Results for various values γ.

Next, we simulated the observation scheme, using the same process, for γ = 2
and various choices of k̄. The results are displayed in Table 5.2. We observe
that ξ is greatly influenced by k̄. The error is multiplied by 5 while k̄ increases
from 2 to 5. The same effect as for the nonlinearity happens here: the increase
in k̄ also increases α which means that the triggering condition is verified less
and less often. The event-triggering mechanism is very useful in this case as it
completely removes the need to communicate estimates of the state.

k̄ 1 2 3 5
ξ 0.0200 0.0519 0.0958 0.2172
Nu 11 12 12 13
Nx 8 10 11 13
R∗ 18.992 12.0068 12 13
R∗u 11 12 12 13
R∗x 7.992 0.0068 0 0

Table 5.2: Example 1: Results for various choices k̄.

5.6.2 Example 2

Now that the effects of L and k̄ have been illustrated on a simple system, we turn
to a higher order system to illustrate the effects of changing k̄, εu, εx, δ, and ω.
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We consider the discretization of the following continuous-time system, which
was first introduced in [Raghavan and Hedrick, 1994] (Flexible joint robot):

ẋ(t)=


0 1 0 0

−48.6 −1.25 48.6 0
0 1 0 0

19.5 0 −19.5 0

x(t)+


0

21.6u(t)
0

−3.33 sin(x3(t))


We consider a discretization step of 10 ms. The system matrices and mapping
are then

A =


1 0.01 0 0

−0.4860 0.9875 0.486 0
0 0 1 0.01

0.195 0 −0.195 1

 , B =


0

0.216
0
0

 ,

H =
[
0 0 1 0

]
, ϕ : ζ →


0
0
0

−0.033 sin(ζ)


For this system, Assumption 5.3 holds with L = 0.033 and ϕ̄ = 0. For the
simulations, the default values for the different parameters and constants are as
follow: we assume Assumption 5.2 with u1 = −10 and ū1 = 10, Assumption 5.4
with δ = 0.5 and ω = 0.2, and the following choices for the observer constants

εu = 0.1, εx = 0.05, k̄ = 2.

For all constants that are not mentioned in the upcoming description of the sim-
ulations, the reader should assume that the constant takes the aforementioned
default value. The first simulations investigated the impact of changes in k̄. The
results are displayed in Table 5.3. We observe the following effects:

� The error is greatly influenced by the choice of k̄;

� In terms of transmitted number of bits bit, both Nu and Nx increase with
k̄;

� For the case k̄ = 1, we can see that the maximum error is extremely close
to the sum of the measurement error and the discretization error of x̂,
which is why the event-triggering condition is triggered almost at every
communication instant and hence why the theoretical rate of 37 is almost
equal to the actual rate. For larger k̄, the error increases drastically and
hence the need for communications of x̂ decreases also.

We then analysed the impact of the choices of εu and εx. The results of the
simulations are displayed in Tables 5.4 and 5.5. Several observations are to be
made:
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k̄ 1 2 3 5
ξ 0.2678 1.2164 2.7549 7.6805
Nu 9 10 10 11
Nx 28 32 35 40
R∗ 36.5411 12.6822 11.0757 11.468
R∗u 9 10 10 11
R∗x 27.5411 2.6822 1.0757 0.468

Table 5.3: Example 2: Results for various choices k̄.

� εu has a smaller impact on the error than εx proportionally;

� Augmenting both εu and εx increases the discretization error, leads to a
larger error, and a smaller communication rate;

� The impact in terms of rate is greater for εu than for εx;

� The conclusion of these simulations is to send less precise estimates of the
estimate driving signal and more precise estimates of the state rather than
the other way around.

εu 0.01 0.1 1
ξ 1.2087 1.2164 1.3382
Nu 13 10 6
Nx 32 32 32
R∗ 15.7028 12.6822 8.3312
R∗u 13 10 6
R∗x 2.7028 2.6822 2.3312

Table 5.4: Example 2: Results for var-
ious choices εu.

εx 0.025 0.05 0.1
ξ 1.1641 1.2164 1.3195
Nu 10 10 10
Nx 36 32 28
R∗ 13.2434 12.6822 12.0589
R∗u 10 10 10
R∗x 3.2434 2.6822 2.0589

Table 5.5: Example 2: Results for var-
ious choices εx.

Finally, we analysed the impact of the size of the state perturbations and
measurement error, through the bounds on their maximum norm δ and ω. The
results for various values of δ and ω are displayed in Tables 5.6 and 5.7. We
make the following observations about these results:

� The impact of the state perturbation on the error and on the communica-
tion rate is greater than the impact of the measurement error;

� Even in situation with high perturbations, the number of communications
stays well below the theoretical maximum (for δ = 1, the theoretical max-
imum is 10 + 35/2 = 27.5);
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� The measurement noise only affects the rate up to a certain point. When it
becomes too large, α becomes large as well and hence the triggering condi-
tion is more rarely verified, which explains the reduction in communication
rate.

δ 0.25 0.5 1
ξ 0.9137 1.2164 1.8088
Nu 9 10 10
Nx 30 32 35
R∗ 10.5982 12.6822 14.4613
R∗u 9 10 10
R∗x 1.5982 2.6822 4.4613

Table 5.6: Example 2: Results for var-
ious values of δ.

ω 0.01 0.1 1
ξ 0.9823 1.2164 1.6688
Nu 9 10 10
Nx 31 32 33
R∗ 12.0663 12.6822 12.0865
R∗u 9 10 10
R∗x 2.0663 2.6822 2.0865

Table 5.7: Example 2: Results for var-
ious choices ω.

Based on these simulations, we make the following concluding observations:

� The minimum duration between subsequent communications k̄ is the con-
stant that has the biggest impact on ξ;

� It is better to choose εu large rather than εx, both in terms of error and in
terms of communication rate;

� The event-triggering mechanism greatly reduces the actual communication
rate compared to the theoretical maximum;

� Most of the communication rate is due to transmitting the driving signal
of the estimate.

5.7 Conclusion

In this chapter, an approach was proposed for the remote observation of a dy-
namical system with a Lipschitz nonlinearity through a data-rate constrained
communication channel. A solution, named observation scheme, in the form of
several interacting agents was proposed and evaluated. The main features of the
observation scheme are:

� The maximum observation error is upper-bounded by a quantity that can
be computed from the system’s features as well as selectable parameters;

� The maximum communication rate is also upper bounded by a quantity
that can be computed from the system’s features as well as selectable
parameters;
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� The scheme uses an event-triggering mechanism to reduce the overall re-
quired communication rate, without reducing the performance in terms of
maximum observation error.

As was demonstrated through simulations, the actual communication rate is
much lower than the theoretically evaluated maximum one, which is due to two
factors. First of all, the error bounds are conservative, which is due to the usage
of a basic quadratic Lyapunov function. Secondly, the event-triggered commu-
nication protocol, which greatly helps in reducing the resulting communication
rate.

The continuation of this work includes:

� Improving the error bounds through finding a better Lyapunov function;

� Extending the observer to deal with a larger class of nonlinear systems;

� Using this observation scheme for consensus problems in networks of per-
turbed dynamical systems with data-rate constraints.

Appendices

5.A Proofs of Section 5.5

We first provide several auxiliary lemmata. We define e(k) := x(k) − x̂(k) and
V (e(k)) := e(k)ᵀP ∗e(k), where P ∗ is defined in (5.11).

The following lemma provides a bound on the one-step evolution of V (e(k)),
provided that û(k) = u(k)−K∗(y(k)− x̂(k)) + eu(k), where eu(k) is the quan-
tization error on û(k) at time instant k which verifies ‖eu(k)‖2 ≤ εu, εu being
the maximum quantization error.

Lemma 5.10. Let Assumptions 5.2 to 5.4 hold for the system (5.1). For any
k ≥ 0, any eu(k) such that ‖eu(k)‖2 ≤ εu, any x(k), x̂(k) ∈ Rn, any w(k), d(k) ∈
Rn satisfying Assumption 5.4, any u(k) satisfying Assumption 5.2, and for y(k),
û(k), e(k + 1), x(k + 1), and x̂(k + 1) such that y(k) = x(k) + w(k), û(k) =
u(k)−K∗(y(k)− x̂(k))+eu(k), e(k+1) = x(k+1)− x̂(k+1), x(k+1) = Ax(k)+
Bu(k)+ϕ(Hx(k), u(k))+d(k), and x̂(k+1) = Ax̂(k)+Bû(k)+ϕ(Hx̂(k), û(k)))
the following holds

V (e(k + 1)) ≤µ∗1V (e(k)) + µ∗4δ
2 + µ∗5ε

2
u + µ∗6σ1(K∗)2ω2. (5.19)

Proof. From

x(k + 1) = Ax(k) +Bu(k) + ϕ(Hx(k), u(k)) + d(k),
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û(k) = u(k)−K∗(y(k)− x̂(k)) + eu(k), and

x̂(k + 1) =Ax̂(k) +Bû(k) + ϕ(Hx̂(k), û(k))

=Ax̂(k) +Bu(k)−BK∗(y(k)− x̂(k)) +Beu(k)

+ ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k)) + eu(k))

=Ax̂(k) +Bu(k)−BK∗(x(k)− x̂(k)) +Beu(k)

+ ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k)) + eu(k))

−BK∗w(k),

we have

e(k + 1) = Ax(k) +Bu(k) + ϕ(Hx(k), u(k)) + d(k)−Ax̂(k)

−Bu(k) +BK∗(x(k)− x̂(k))−Beu(k) +BK∗w(k)

− ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k)) + eu(k))

= (A+BK∗)e(k) + ϕ(Hx(k), u(k)) + d(k)−Beu(k) +BK∗w(k)

− ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k)) + eu(k)).

We add and subtract ϕ(Hx̂(k), u(k)) from the previous equation to obtain

e(k + 1) = (A+BK∗)e(k) + ϕ(Hx(k), u(k))− ϕ(Hx̂(k), u(k))

+ ϕ(Hx̂(k), u(k))− ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k)) + eu(k))

+ d(k)−Beu(k) +BK∗w(k).

We then have

V (e(k + 1)) = e(k + 1)ᵀP ∗e(k + 1)

= [(A+BK∗)e(k) + ϕ(Hx(k), u(k))− ϕ(Hx̂(k), u(k))

+ ϕ(Hx̂(k), u(k))− ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k)) + eu(k))

+d(k)−Beu(k) +BK∗w(k)]
ᵀ
P ∗

[(A+BK∗)e(k) + ϕ(Hx(k), u(k))− ϕ(Hx̂(k), u(k))

+ ϕ(Hx̂(k), u(k))− ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k)) + eu(k))

+d(k)−Beu(k) +BK∗w(k)] .

By adding an subtracting the following terms from the previous equation

� µ1e(k)ᵀPe(k);

� L2µ∗2e(k)ᵀHᵀHe(k);

� [ϕ(Hx(k), u(k))− ϕ(Hx̂(k), u(k))]ᵀQ∗2[ϕ(Hx(k), u(k))− ϕ(Hx̂(k), u(k))];

� [ϕ(Hx̂(k), u(k)) − ϕ(Hx̂(k), u(k) − K∗(y(k) − x̂(k)) + eu(k))]ᵀQ∗3
[ϕ(Hx̂(k), u(k))− ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k)) + eu(k))];
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� d(k)ᵀQ∗4d(k);

� eu(k)ᵀQ∗5eu(k);

� w(k)ᵀ(K∗)ᵀQ∗6K
∗w(k);

it can be rewritten as

V (e(k + 1)) = z(k)ᵀMz(k) + µ∗1e(k)ᵀP ∗e(k)

− L2µ∗2e(k)ᵀHᵀHe(k) + [ϕ(Hx(k), u(k))−ϕ(Hx̂(k), u(k))]ᵀQ∗2

[ϕ(Hx(k), u(k))− ϕ(Hx̂(k), u(k))] + [ϕ(Hx̂(k), u(k))

−ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k))+eu(k))]ᵀQ∗3[ϕ(Hx̂(k), u(k))

− ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k))+eu(k))]+d(k)ᵀQ∗4du(k)

+ eu(k)ᵀQ∗5eu(k) + w(k)ᵀ(K∗)ᵀQ∗6K
∗w(k)

where z(k) =
e(k)

ϕ(Hx(k), u(k))− ϕ(Hx̂(k), u(k))
ϕ(Hx(k), u(k))− ϕ(Hx(k), u(k)−K∗(y(k)− x̂(k)) + eu(k))

d(k)
eu(k)
K∗w(k)


and M as in (5.22). From (5.10), we have µ∗2In � Q∗2 µ

∗
3In � Q∗3, µ∗4In � Q∗4,

µ∗5Im � Q∗5, µ∗6Im � Q∗6 and hence

V (e(k + 1)) = z(k)ᵀMz(k) + µ∗1e(k)ᵀP ∗e(k)

−L2µ∗2e(k)ᵀHᵀHe(k) + µ∗2[ϕ(Hx(k), u(k))−ϕ(Hx̂(k), u(k))]ᵀ

[ϕ(Hx(k), u(k))− ϕ(Hx̂(k), u(k))] + µ∗3[ϕ(Hx̂(k), u(k))

−ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k)) + eu(k))]ᵀ[ϕ(Hx̂(k), u(k))

− ϕ(Hx̂(k), u(k)−K∗(y(k)− x̂(k)) + eu(k))] + µ∗4d(k)ᵀdu(k)

+ µ∗5eu(k)ᵀeu(k) + µ∗6w(k)ᵀ(K∗)ᵀK∗w(k).

Using Assumption 5.3, we have

V (e(k + 1)) = z(k)ᵀMz(k) + µ∗1e(k)ᵀP ∗e(k)

− L2µ∗2e(k)ᵀHᵀHe(k)+ L2µ∗2[Hx(k)−Hx̂(k)]ᵀ[Hx(k)−Hx̂(k)]

+ µ∗3ϕ̄
2[u(k)− u(k) +K∗(y(k)− x̂(k))− eu(k)]ᵀ[u(k)− u(k)

+K∗(y(k)− x̂(k))− eu(k)] + µ∗4d(k)ᵀdu(k) + µ∗5eu(k)ᵀeu(k)

+ µ∗6w(k)ᵀ(K∗)ᵀK∗w(k).
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Equivalently

V (e(k + 1)) = z(k)ᵀMz(k) + µ∗1e(k)ᵀP ∗e(k)

− L2µ∗2e(k)ᵀHᵀHe(k) + L2µ∗2e(k)ᵀHᵀHe(k)

+ µ∗3ϕ̄
2[K∗(y(k)− x̂(k))− eu(k)]ᵀ[K∗(y(k)− x̂(k))− eu(k)]

+ µ∗4d(k)ᵀdu(k) + µ∗5eu(k)ᵀeu(k) + µ∗6w(k)ᵀ(K∗)ᵀK∗w(k)

and thus

V (e(k + 1)) = z(k)ᵀMz(k) + µ∗1e(k)ᵀP ∗e(k)

+ µ∗3ϕ̄
2[K∗(y(k)− x̂(k))− eu(k)]ᵀ[K∗(y(k)− x̂(k))− eu(k)]

+ µ∗4d(k)ᵀdu(k) + µ∗5eu(k)ᵀeu(k) + µ∗6w(k)ᵀ(K∗)ᵀK∗w(k)

Using (5.1), Assumption 5.4, as well as the fact that ‖Kx‖ ≤ σ1(K) ‖x‖2 for
any vector x and matrix K, we obtain

V (e(k + 1)) ≤ z(k)ᵀMz(k) + µ∗1V (e(k)) + µ∗4δ
2 + µ∗5ε

2
u

+ µ∗6σ1(K∗)2ω2

+ µ∗3ϕ̄
2[K∗e(k) +K∗w(k)− eu(k)]ᵀ[K∗e(k)+K∗w(k)− eu(k)].

The previous equation can be rewritten as

V (e(k + 1)) ≤ z(k)ᵀM̂z(k) + µ∗1V (e(k)) + µ∗4δ
2 + µ∗5ε

2
u

+ µ∗6σ1(K∗)2ω2

with M̂ as in (5.23).
If M̂ � 0, we have

V (e(k + 1)) ≤ µ∗1V (e(k)) + µ∗4δ
2 + µ∗5ε

2
u + µ∗6σ1(K∗)2ω2.

It remains to prove that (5.10) implies that M̂ � 0. Starting from M̂ � 0, using
Schur’s complement once, yields (5.24). Applying Schur’s complement twice to
move the term L2µ∗2H

ᵀH leads to (5.25). Using Schur’s complement, one obtains
(5.26), which after pre and post-multiplication with the following matrix

P̄ =



(P ∗)−1

In
In

In
In

In
In

In


gives (5.27). Since (P ∗)−1K∗ = S∗, we clearly have that M̂ � 0 from (5.10).
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Lemma 5.11. For any x1, x2 ∈ Rn, any β ≥ 0, any γ ≥ 0, the following
inequality

V (x1) ≤ βV (x2) + γ (5.20)

implies

‖x1‖2 ≤
√
βσ1(T )

σn(T )
‖x2‖2 +

1

σn(T )

√
γ.

Proof. The inequality (5.20) implies that√
V (x1) ≤

√
β
√
V (x2) +

√
γ.

Since P ∗ is symmetric and positive definite, it defines a norm ‖x‖P :=
√
V (x).

Since P ∗ = T ᵀT , we have

‖x‖P = ‖Tx‖2 ≤ σ1(T ) ‖x‖2

and

‖x‖2 =
∥∥T−1x

∥∥
P
≤ 1

σn(T )
‖x‖P ,

by the usual properties of the singular values of a matrix, and hence

‖x1‖2 ≤
√
βσ1(T )

σn(T )
‖x2‖2 +

1

σn(T )

√
γ.
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

−µ1N ? ? ? µ3ϕ̄
2Sᵀ µ3ϕ̄

2Sᵀ NAᵀ + SᵀBᵀ µ3ϕ̄
2Sᵀ

? −Q2 ? ? ? ? In ?
? ? −Q3 ? ? ? In ?
? ? ? −Q4 ? ? In ?

µ3ϕ̄
2S ? ? ? −Q5 + µ3ϕ̄

2Im µ3ϕ̄
2Im Bᵀ ?

µ3ϕ̄
2S ? ? ? µ3ϕ̄

2Im −Q6 + µ3ϕ̄
2Im Bᵀ ?

AN +BS In In In B B −N + L2µ2H
ᵀH ?

µ3ϕ̄
2S ? ? ? ? ? ? -Im


� 0 (5.21)

M=
M1 (A+BK∗) PT ∗ (A+BK∗)ᵀP ∗ (A+BK∗)ᵀP ∗ (A+BK∗)ᵀP ∗B (A+BK∗)ᵀP ∗B

P ∗(A+BK∗) P ∗ −Q∗2 P ∗ P ∗ P ∗B P ∗B
P ∗(A+BK∗) P ∗ P ∗ −Q∗3 P ∗ P ∗B P ∗B
P ∗(A+BK∗) P ∗ P ∗ P ∗ −Q∗4 P ∗B P ∗B

BᵀP ∗(A+BK∗) BᵀP ∗ BᵀP ∗ BᵀP ∗ BᵀP ∗B −Q∗5 BᵀP ∗B
BᵀP ∗(A+BK∗) BᵀP ∗ BᵀP ∗ BᵀP ∗ BᵀP ∗B BᵀP ∗B−Q∗6


M1 = (A+K∗B)ᵀP ∗(A+BK∗)−µ∗1P ∗+L2µ∗2H

ᵀH

(5.22)

M̂=


M̂1 (A+BK∗) PT ∗ (A+BK∗)ᵀP ∗ (A+BK∗)ᵀP ∗ M̂ᵀ

3 M̂ᵀ
2

P ∗(A+BK∗) P ∗ −Q∗2 P ∗ P ∗ P ∗B P ∗B
P ∗(A+BK∗) P ∗ P ∗ −Q∗3 P ∗ P ∗B P ∗B
P ∗(A+BK∗) P ∗ P ∗ P ∗ −Q∗4 P ∗B P ∗B

M̂3 BᵀP ∗ BᵀP ∗ BᵀP ∗ BᵀP ∗B−Q∗5+µ∗3ϕ̄
2Im BᵀP ∗B − µ∗3ϕ̄2Im

M̂2 BᵀP ∗ BᵀP ∗ BᵀP ∗ BᵀP ∗B − µ∗3ϕ̄2Im BᵀP ∗B−Q∗6 + µ∗3ϕ̄
2Im


M̂1 = (A+K∗B)ᵀP ∗(A+BK∗)−µ∗1P ∗+L2µ∗2H

ᵀH + (µ∗3)2ϕ̄2(K∗)ᵀK∗

M̂2 = BᵀP ∗(A+BK∗) + µ∗3ϕ̄
2K∗, M̂3 = BᵀP ∗(A+BK∗)− µ∗3ϕ̄2K∗

(5.23)
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

−µ∗1P ∗+L2µ∗2H
ᵀH + (µ∗3)2ϕ̄4(K∗)ᵀK∗ ? ? ? −µ∗3ϕ̄2(K∗)ᵀ µ∗3ϕ̄

2(K∗)ᵀ (A+BK∗)ᵀ

? −Q∗2 ? ? ? ? In
? ? −Q∗3 ? ? ? In
? ? ? −Q∗4 ? ? In

−µ∗3ϕ̄2K∗ ? ? ? −Q∗5 + µ∗3ϕ̄
2Im −µ∗3ϕ̄2Im Bᵀ

µ∗3ϕ̄
2K∗ ? ? ? −µ∗3ϕ̄2Im −Q∗6 + µ3ϕ̄

2Im Bᵀ

(A+BK∗) In In In B B −(P ∗)−1


� 0

(5.24)

−µ∗1P ∗+ (µ∗3)2ϕ̄4(K∗)ᵀK∗ ? ? ? −µ∗3ϕ̄2(K∗)ᵀ µ∗3ϕ̄
2(K∗)ᵀ Aᵀ + (K∗)ᵀBᵀ

? −Q∗2 ? ? ? ? In
? ? −Q∗3 ? ? ? In
? ? ? −Q∗4 ? ? In

−µ∗3ϕ̄2K∗ ? ? ? −Q∗5 + µ∗3ϕ̄
2Im −µ∗3ϕ̄2Im Bᵀ

µ∗3ϕ̄
2K∗ ? ? ? −µ∗3ϕ̄2Im −Q∗6 + µ∗3ϕ̄

2Im Bᵀ

A+BK∗ In In In B B −(P ∗)−1 +L2µ∗2H
ᵀH


� 0

(5.25)
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

−µ∗1P ∗ ? ? ? −µ∗3ϕ̄2(K∗)ᵀ µ∗3ϕ̄
2(K∗)ᵀ Aᵀ + (K∗)ᵀBᵀ µ∗3ϕ̄

2(K∗)ᵀ

? −Q∗2 ? ? ? ? In ?
? ? −Q∗3 ? ? ? In ?
? ? ? −Q∗4 ? ? In ?

−µ∗3ϕ̄2K∗ ? ? ? −Q∗5 + µ∗3ϕ̄
2Im −µ∗3ϕ̄2Im Bᵀ ?

µ∗3ϕ̄
2K∗ ? ? ? −µ∗3ϕ̄2Im −Q∗6 + µ∗3ϕ̄

2Im Bᵀ ?
A+BK∗ In In In B B −(P ∗)−1 +L2µ∗2H

ᵀH ?
µ∗3ϕ̄

2K∗ ? ? ? ? ? ? −Im


� 0 (5.26)



−µ∗1(P ∗)−1 ? ? ? −µ∗3ϕ̄2(P ∗)−1(K∗)ᵀ µ∗3ϕ̄
2(P ∗)−1(K∗)ᵀ M̂ᵀ

4 µ∗3ϕ̄
2(P ∗)−1(K∗)ᵀ

? −Q∗2 ? ? ? ? In ?
? ? −Q∗3 ? ? ? In ?
? ? ? −Q∗4 ? ? In ?

−µ∗3ϕ̄2K∗(P ∗)−1 ? ? ? −Q∗5 + µ∗3ϕ̄
2Im −µ∗3ϕ̄2Im Bᵀ ?

µ∗3ϕ̄
2K∗(P ∗)−1 ? ? ? −µ∗3ϕ̄2Im −Q∗6 + µ∗3ϕ̄

2Im Bᵀ ?

M̂4 In In In B B M̂5 ?
µ∗3ϕ̄

2K∗(P ∗)−1 ? ? ? ? ? ? −Im


� 0,

M̂4 = A(P ∗)−1+BK∗(P ∗)−1,

M̂5 = −(P ∗)−1 +L2µ∗2H
ᵀH.

(5.27)
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Lemma 5.12. Let there be α0 ≥ 0, β ≥ 0, γ ≥ 0 k ≥ 1. For any sequence αi
such that

αi = βαi−1 + γ, ∀i ≥ 1 (5.28)

the following holds

αi ≤ max

{
α0, β

kα0 + γ

k−1∑
i=0

βi

}
, ∀i ∈ {0, . . . , k}.

Proof. We start by noticing that (5.28) implies that αi = βiα0 + γ
∑i−1
j=0 β

j .
First of all, for β ≥ 1, the result trivially holds (because the series is strictly
increasing and hence the last term upper bounds all previous ones) and hence it

what follows, we assume β < 1. In that case, we have that αk = βkα0 + γ 1−βk
1−β ,

∀k ≥ 0. We consider two cases: α0 ≤ γ
1−β and α0 >

γ
1−β .

If α0 ≤ γ
1−β , then, since β < 1, we have

βi ≥ βk, ∀i ∈ {0, . . . , k},

since α0 − γ
1−β ≤ 0, we have

βi
(
α0 −

γ

1− β

)
≤ βk

(
α0 −

γ

1− β

)
, ∀i ∈ {0, . . . , k},

which, after adding γ
1−β to both sides yields

βiα0 + γ
1− βi

1− β
≤ βkα0 + γ

1− βk

1− β
, ∀i ∈ {0, . . . , k},

and hence

αi ≤ αk, ∀i ∈ {0, . . . , k}.

If α0 >
γ

1−β , then we have

αi = βiα0 + γ
1− βi

1− β

since α0 >
γ

1−β , we have

αi ≤ βiα0 + α0(1− βi) = α0,

which completes the proof

The following lemma provides a condition on the choice of ηu such that
û(k) ∈ Bηu

(u+ū
2

)
.



144 Chapter 5. Remote State Estimation of Steered Systems with Lim. Com.

Lemma 5.13. Let Assumptions 5.2 to 5.4 hold for the system (5.1). For any
k ≥ 0, any eu(k) such that ‖eu(k)‖2 ≤ εu, any x(k), x̂(k) ∈ Rn, any w(k), d(k) ∈
Rn satisfying Assumption 5.4, any u(k) satisfying Assumption 5.2, and for y(k)
and û(k), such that y(k) = x(k)+w(k) and û(k) = u(k)−K∗(y(k)−x̂(k))+eu(k),
choosing ηu as

ηu ≥
∥∥∥∥u− ū2

∥∥∥∥
2

+ σ1(K∗) ‖x(k)− x̂(k)‖2 + σ1(K∗)ω + εu (5.29)

implies

û(k) ∈ Bηu
(
u+ ū

2

)
.

Proof. We have∥∥∥∥û(k)− u+ ū

2

∥∥∥∥
2

≤
∥∥∥∥u(k)−K∗(y(k)− x̂(k)) + eu(k)− u+ ū

2

∥∥∥∥
2

≤
∥∥∥∥u(k)− u+ ū

2

∥∥∥∥
2

+ ‖K∗(y(k)− x̂(k))‖2 + ‖eu(k)‖2

≤
∥∥∥∥u(k)− u+ ū

2

∥∥∥∥
2

+ ‖K∗(x(k)− x̂(k))‖2 + ‖K∗w(k)‖2

+ ‖eu(k)‖2

≤
∥∥∥∥u(k)− u+ ū

2

∥∥∥∥
2

+ σ1(K∗) ‖(x(k)− x̂(k))‖2

+ σ1(K∗) ‖w(k)‖2 + ‖eu(k)‖2

≤
∥∥∥∥u(k)− u+ ū

2

∥∥∥∥
2

+ σ1(K∗) ‖x(k)− x̂(k)‖2 + σ1(K∗)ω + εu.

(5.30)

From Assumption 5.2, we have∥∥∥∥u(k)− u+ ū

2

∥∥∥∥
2

≤
∥∥∥∥u− ū2

∥∥∥∥
2

which, when combined with (5.30), concludes the proof.

The next lemma provides a condition on the choices of ηx and α such that
y(kjx) will be contained in Bηx(x̂−(kjx)), provided that an estimate of precision
εx was provided at the last communication instant contained the state guess. To
this end, we define l̄(jx): the communication instant before jx where an estimate
of the state was provided.

Lemma 5.14. Let Assumptions 5.2 to 5.4 hold for the system (5.1). For any
k̄ ≥ 1, any εx > 0, any εu > 0 such that (5.10) has a solution (µ∗i , N

∗, Q∗i , S
∗),
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for any x(kl̄(jx)), any w(kl̄(jx)), for y(kl̄(jx)) such that y(kl̄(jx)) = x(kl̄(jx)) +

w(kl̄(jx)), for x̂(kl̄(jx)) such that
∥∥∥y(kl̄(jx))− x̂(kl̄(jx))

∥∥∥
2
≤ εx, for any u(kl̄(jx) +

1), . . . , u(kjx−1), for eu(k), k ∈ {kl̄(jx), . . . , kjx−1} such that ‖eu(k)‖2 ≤ εu, for
û(k), k ∈ {kl̄(jx), . . . , kjx − 1}, such that û(k) = u(k)−K∗(y(k)− x̂(k)) + eu(k),
∀k ∈ {kl̄(jx), . . . , kjx − 1}, choosing α and ηx as

ηx ≥
(µ∗1)

k̄
2 σ1(T )

σn(T )
(εx + ω) + ω

+
1

σn(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(T )2ω2)

1
2

k̄−1∑
i=0

(µ∗1)
i
2

(5.31)

and

α ≥

min

σn(T )[ηx−ω −
(
µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2

) 1
2 ]√

µ∗1σ1(T )
−ω,

max

{
εx + ω,

(µ∗1)
k̄−1

2 σ1(T )

σn(T )
(εx + ω)

1

σn(T )
(µ∗4δ

2 + µ∗5ε
2
u+µ∗6σ1(K∗)2ω2)

1
2

k̄−2∑
i=0

(µ∗1)
i
2


.

(5.32)

implies

y(kjx) ∈ Bηx(x̂−(kjx)).

Proof. We distinguish two different cases: the first one is the situation where
jx = l̄(jx) + k̄, the second is the situation where jx > l̄(jx) + k̄.

Situation 1: Let there be kjx such that jx = l̄(jx) + k̄. By the theorem
statement, at kl̄(jx), we have∥∥∥x(kl̄(jx)

)
− x̂−

(
kl̄(jx)

)∥∥∥
2
=
∥∥∥x(kl̄(jx)

)
− x̂

(
kl̄(jx)

)∥∥∥
2

≤ εx + ω.

Applying Lemma 5.10 k̄ times, we obtain

V (x(kl̄(jx) + k̄)− x̂(kl̄(jx) + k̄))

≤ (µ∗1)k̄V
(
x
(
kl̄(jx)

)
− x̂

(
kl̄(jx)

))
+ (µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

k̄∑
i=0

(µ∗1)i.
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Applying Lemma 5.11, this implies

∥∥∥x(kl̄(jx) + k̄)− x̂(kl̄(jx) + k̄)
∥∥∥

2
≤ (µ∗1)

k̄
2 σ1(T )

σn(T )
(εx + ω)

+
1

σn(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

1
2

k̄−1∑
i=0

(µ∗1)
i
2 .

And thus ∥∥y(kjx)− x̂−(kjx)
∥∥

2
≤ ‖y(kjx)− x(kjx)‖2

+
∥∥x(kjx)− x̂−(kjx)

∥∥
2
≤ ω +

(µ∗1)
k̄
2 σ1(T )

σn(T )
(εx + ω)

+
1

σn(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

1
2

k̄−1∑
i=0

(µ∗1)
i
2 ,

which implies y(kjx) ∈ Bηx(x̂−(kjx)).

Situation 2: Since jx > l̄(jx) + k̄, the triggering condition

‖y(kjx − 1)− x̂(kjx − 1)‖2 ≤ α

necessarily holds (otherwise, a communication would have been triggered at the
previous time instant). We have∥∥x(kjx − 1)− x̂−(kjx − 1)

∥∥
2

≤ ‖y(kjx − 1)− x(kjx − 1)‖2 +
∥∥y(kjx − 1)− x̂−(kjx − 1)

∥∥
2

≤ ω +
∥∥y(kjx − 1)− x̂−(kjx − 1)

∥∥
2
≤ ω + α.

Applying Lemma 5.10 and Lemma 5.11 together we have

∥∥x(kjx)− x̂−(kjx)
∥∥

2
≤
σ1(T )

√
µ∗1

σn(T )
(ω + α)

+
1

σn(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

1
2

which, after replacing α with the right-hand side of (5.32) and some computa-
tions, yields ∥∥x(kjx)− x̂−(kjx)

∥∥
2
≤ ηx − ω,

which implies y(kjx) ∈ Bηx(x̂−(kjx)).
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5.A.1 Proof of Theorem 5.8

Proof. At first, from (5.2), we have

‖x(0)− x̂(0)‖2 ≤ ε0,

and thus from the theorem statement, it immediately follows that

‖x(0)− x̂(0)‖2 ≤ εx + ω.

Lemma 5.10 implies

V (e(1)) ≤
√
µ∗1σ1(T )

σn(T )
V (e(0))

+
1

σ2(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

1
2 .

and 5.11 thus implies that

‖x(1)− x̂(1)‖2 ≤
√
µ∗1σ1(T )

σn(T )
(εx + ω)

+
1

σ2(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

1
2 .

From (5.13) and Lemma 5.13, we have that û(1) ∈ Bηu
(u+ū

2

)
and hence we

can apply Lemma 5.10, again. From there on, proceeding sequentially for j ∈
{2, . . . , k̄}. Every time, we apply Lemma 5.10, Lemma 5.11 and Lemma 5.12 to
obtain that

‖x(l)− x̂(l)‖2 ≤ max

{
εx + ω,

(√
µ∗1
)j
σ1(T )

σn(T )
(εx + ω)

+
1

σn(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

1
2

j−1∑
i=0

(µ∗1)
i
2

}
,

∀l ∈ {1, . . . , j} The parameters chosen in (5.13) and Lemma 5.13 then imply that
û(j) ∈ Bηu

(u+ū
2

)
which implies that the same can be repeated until j = k̄ − 1

at which point, we have

‖x(j)− x̂(j)‖2 ≤ max

εx + ω,

(√
µ∗1
)k̄−1

σ1(T )

σn(T )
(εx + ω)

+
1

σn(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

1
2

k̄−2∑
i=0

(µ∗1)
i
2

.
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∀j ∈ {0, . . . , k̄ − 1}. At j = k̄, and at all subsequent time instants, if no
communication occurs at k = k̄, ‖x(j)− x̂(j)‖2 ≤ α is verified, otherwise a
communication would occur. From (5.15), we thus have

‖x(j)− x̂(j)‖2 ≤ max

εx + ω,

(√
µ∗1
)k̄−1

σ1(T )

σn(T )
(εx + ω)

+
1

σn(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

1
2

k̄−2∑
i=0

(µ∗1)
i
2

.

Finally, at k = kjx , we use Lemma 5.14, so that y(kjx) ∈ Bηx(x̂−(kjx)) and thus
an estimate of precision εx is transmitted, which resets the error to εx+ω. From
there on, the observation scheme simply repeats the same steps in between two
communications of an estimate of the state and hence

‖x(k)− x̂(k)‖2 ≤ max

εx + ω,

(√
µ∗1
)k̄−1

σ1(T )

σn(T )
(εx + ω)

+
1

σn(T )
(µ∗4δ

2 + µ∗5ε
2
u + µ∗6σ1(K∗)2ω2)

1
2

k̄−2∑
i=0

(µ∗1)
i
2

.
∀k ≥ 0.

5.A.2 Proof of Theorem 5.9

Proof. Although the messages of the communication protocol can possibly
change every instant, the length of their associated alphabets can only be two
values: |V| or |V||W|. The first case corresponds to when only the driving signal
of the estimate is communicated while the second corresponds to when both the
driving signal of the estimate and an estimate of the state are communicated.
Let us call the first situation (a) and the second (b). If (a) occurs for a particular
kj , then we have bj = dlog2 |V|e. If (b) occurs for a particular kj , then we have
bj = dlog2 |V||W|e. At each time instant, either (a) or (b) occurs. Let #b(j̄) be
the number of times that the situation (b) has occurred up to the communication
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instant kj̄ . We have∑j̄
j=0 bj

j̄ + 1
=#b(j̄)

dlog2 |V||W|e
j̄ + 1

+ (j̄ + 1−#b(j̄))
dlog2 |V|e
j̄ + 1

≤#b(j̄)
dlog2 |V|e
j̄ + 1

+ #b(j̄)
dlog2 |W|e
j̄ + 1

+ (j̄ + 1−#b(j̄))
dlog2 |V|e
j̄ + 1

= dlog2 |V|e+ #b(j̄)
dlog2 |W|e
j̄ + 1

.

Since at least k̄ time instants elapse between two successive communications of

x̂ (or events (b)), we have #b(j̄) ≤ j̄+1
k̄

+ 1, ∀j̄ ≥ 0. This implies that∑j̄
j=0 bj

j̄ + 1
≤dlog2 |V|e+

(
j̄ + 1

k̄
+ 1

)
dlog2 |W|e
j̄ + 1

= dlog2 |V|e+
dlog2 |W|e

k̄
+
dlog2 |W|e
j̄ + 1

.

Starting from the definition of R, we thus have

R := lim sup
j̄→∞

∑j̄
j=0 bj

j̄ + 1

≤ lim sup
j̄→∞

[
dlog2 |V|e+

dlog2 |W|e
k̄

+
dlog2 |W|e
j̄ + 1

]
= dlog2 |V|e+

dlog2 |W|e
k̄

+ lim sup
j̄→∞

dlog2 |W|e
j̄ + 1

= dlog2 |V|e+
dlog2 |W|e

k̄
.

The set V is a covering of a ball of radius ηu with balls of radius εu. One
possible solution to obtain such a covering is as follows. In any ball of radius
εu, there is a cube of side εu/

√
m inscribed. Any ball of radius ηu is inscribed

in a hypercube of side 2ηu. It is thus possible to cover Bηu
(u+ū

2

)
with

(
2ηu
εu√
m

)m
balls. By an identical reasoning, at most

(
2ηx
εx√
n

)n
balls are required to cover

Bηx(0) and hence

R ≤
⌈
m log2

2ηu
√
m

εu

⌉
+

⌈
n log2

2ηx
√
n

εx

⌉
k̄

.





Chapter 6

Observing a Unicycle Robot with Data

Rate Constraints: A Case Study

In this chapter, we consider the problem of remote observation of a unicycle-type
mobile robot through a data rate constrained communication channel, which can
only send a limited number of bits per unit of time. The objective is to reconstruct
estimates of the state of the robot at the remote location through the messages
that are sent. The design of the communication protocol should ensure that the
maximum observation error is bounded whilst using as few bits per unit of time as
possible. An event-triggered observation scheme is developed specifically for the
unicycle-type robot. This observer is tested through experiments on Turtlebots.
The experiments show that the event-triggered scheme is very efficient at reducing
the average number of required communications.

6.1 Introduction

As wireless communication technologies have become omnipresent in modern
society, the world of dynamics and control has been taken over by them as well.
There are many different applications where one or several dynamical systems
or the components thereof are connected via data rate constrained communica-
tion channels. Examples include: cooperative load displacement by robots, un-
derwater communication of autonomous vehicles, formation control for drones,
cooperative cruise control, etc. All these problems share the common feature
that some source of uncertainty (in the sense of Shannon [1948]) makes it nec-
essary to communicate over a communication channel that is limited either in
the transmission rate of packets, the size of packets, or both. The sources of
uncertainty include perturbations, noise, parametric uncertainty, and sensitivity
to initial conditions. Although the problem of communication can be seen sep-
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arately from the control/observation associated with the underlying dynamical
systems, a combined approach allows one to provide better results, be it in terms
of control performance, error bounds, sufficient rates, etc.

Among the many works in this field, we note the pioneering contributions
Wong and Brockett [1997], Elia and Mitter [2001] which provide results for
linear systems. Many other results were obtained for linear systems and broad
overviews of such results can be found in Baillieul and Antsaklis [2007], Hespanha
et al. [2007], Andrievsky et al. [2010]. For nonlinear systems, early important
results include Nair et al. [2004] and Liberzon and Hespanha [2005], which use
the concept of entropy to characterize the minimum data rates. Many more
papers exploited entropy-based techniques to provide constructive bounds on the
sufficient/necessary data rates (see Kawan [2013], Matveev and Savkin [2009],
Kawan [2018], Sibai and Mitra [2017], Liberzon and Mitra [2016], Matveev and
Pogromsky [2016], Sibai and Mitra [2018], Voortman et al. [2019] and Matveev
and Pogromsky [2019]).

At the same time as data rate constrained control appeared in the literature,
another topic emerged: event-triggered control. Two of the earliest works in this
field include Åarzén [1999] and Åström and Bernhardsson [1999]. An introduc-
tion to event-based control can be found in Heemels et al. [2012] and an overview
of sampling-related results in Hetel et al. [2017]. Event-triggered control and
data rate constrained control have recently been combined in some works of the
literature. Examples of such works include: Han et al. [2015] (event-triggered
sensor schedule for remote estimation for a linear system), Trimpe [2017] (dis-
tributed state estimation with data rate constraints), Xia et al. [2017] (networked
state estimation with a shared communication medium) and, Muehlebach and
Trimpe [2018] (LMI approach is used for the networked state estimation problem
over a shared communication medium).

In this chapter, we present the theory behind a data rate constrained ob-
server for a unicycle robot, which is modeled by a nonlinear dynamical system
and has already been studied extensively (see e.g. Jiang and Nijmeijer [1997],
Evers and Nijmeijer [2006] or Kostic et al. [2009]). The robot is equipped with a
smart sensor, capable of measuring the position and orientation of the robot and
performing computations. It is connected to a remote location via a communi-
cation channel. The smart sensor can send messages over this communication
channel to the remote location to provide an estimate of the position of the
robot at the remote location. The particularity of the communication channel is
that it is restricted in terms of data rates that it can transmit. The objective is
to develop a communication protocol such that it is possible to reconstruct the
position of the robot at a remote location whilst using limited data rates. The
novelty of the result and the main contribution of this work consists of using an
event-triggered communication protocol which often greatly reduces the commu-
nication rate, as is proven through experiments on mobile robots. To the best
of the authors’ knowledge, no fundamental bounds on the minimum sufficient
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capacity to observe unicycle-type robots have been obtained in the literature.

6.2 Problem statement

We consider a unicycle-type robot with the following dynamics:ẋ1(t)
ẋ2(t)

θ̇(t)

 =

(ux(t) + dx(t)) cos(θ(t))
(ux(t) + dx(t)) sin(θ(t))

uθ(t) + dθ(t)

 , ∀t ≥ 0, (6.1)

where x = (x1, x2) ∈ R2 is the position of the robot, θ ∈ S1 is the orientation
angle of the robot, u = (ux, uθ) ∈ R2 is the input, dx ∈ R and dθ ∈ R are time-
varying input perturbations. The system’s output y consists of the full state,
sampled with sampling interval t̄,

y(tk) =

x1(tk)
x2(tk)
θ(tk)

 , ∀k ≥ 0, (6.2)

where tk = t̄k are the sampling instants. We assume that the input perturbations
are continuous signals that verify

|di(t)| ≤ δi, (6.3)

∀i ∈ {x, θ},∀t ≥ 0 where δi are the maximum input perturbations, which are
known constants.

The system is connected to a remote location via a data rate constrained
communication channel. Several devices interact to send messages m(sj) (where
sj are the transmission times) over this communication channel. These devices
are a smart sensor (a sensor admitting some computational capacities, which
allows it to perform additional computations on the measured data), an alphabet
function A, and a decoder D. The smart sensor is further sub-divided into a
sampler S and a coder C. Together, the devices form a communication protocol.
The smart sensor sends messages over the communication channel to the decoder
which interprets the messages to generate an estimate x̂(t) of the position x(t)
of the robot. Fig. 6.1 depicts how the different components interact. Note that
only an estimate of the position should be generated at the remote location.

The sensor and the decoder share the common knowledge of an initial esti-
mate x̂0 which satisfies

‖x(0)− x̂0‖2 ≤ ε0, (6.4)

where ε0 is a user-specified parameter corresponding to the error in initial con-
ditions and ‖·‖2 is to the Euclidean norm in Rn. We define the following metric



154 Chapter 6. Observing a Unicycle Robot with Data rate Constraints

Figure 6.1: Structure of the interactions between the different components of
the problem.

on S1

dS(θ1, θ2) :=

{
|θ1 − θ2|, if |θ1 − θ2| ≤ π,

2π − |θ1 − θ2|, else.

The sensor and remote location also have an initial estimate θ̂0, which satisfies

dS(θ(0), θ̂0) ≤ εθ0 . (6.5)

The knowledge of the following quantities is shared by all devices: the maxi-
mum input perturbations δx and δθ, the discretization errors εx and εθ (which
are induced by coding/decoding operation and for brevity of exposition in this
document the constants ε0 = εx and εθ0 = εθ), and the initial estimates x̂0 and

θ̂0.
At the system side, the sampler S generates the instants of transmission in

the following way

sj+1 = S(sj , {y(tk)}k:t>tk≥0,m(s1), . . . ,m(sj)), (6.6)

s0 = 0, m(0) = ∅, with the restriction that sj+1 > sj . The coder then generates
the messages in the following way

m(sj) = C({y(tk)}k:sj>tk≥0,m(s1), . . . ,m(sj−1)), (6.7)

∀sj : j > 0. At each communication instant, the list of different possible messages
is encoded into a finite-sized alphabet (the finite cardinality is necessary because
of the data rate constraints). The alphabet function A determines the last index
of the messages lj in the following way

lj = A(m(s1), . . . ,m(sj)), ∀sj : j > 0. (6.8)

The restriction on the choice of messages is m(sj) ∈ {1, . . . , lj}, ∀sj : j > 0. At
the remote location, the decoder D receives the messages and interprets them
to generate an estimate of the state x̂(t) in the following way

x̂(t) = D(m(s1), . . . ,m(sj)), ∀t ∈ [sj , sj+1),
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∀j ≥ 0. The number of bits bj required to encode the messages depends on the
length of the alphabet. In practice, this implies that

bj := dlog2 lje ∀sj : j > 0, (6.9)

where d·e is the ceiling function (which rounds any real number to the smallest
integer larger than or equal to that number). The communication rate R
resulting from the transmission of these messages is defined as

R := lim
j→∞

1

sj

j∑
i=1

bi. (6.10)

The rate is thus defined such that it is the average overall communication instants
of the number of bits that are sent. Because of the perturbation, measurement
error, and finite communication rate, it is impossible to generate estimates of
the state at the remote location with zero error. Instead, the design of the
communication protocol should ensure that the maximum observation error
η is bounded, where

η := sup
t≥0
‖x(t)− x̂(t)‖2 . (6.11)

Note that the maximum observation error only concerns the position of the
robot and not its angular orientation. The first objective of this chapter is to
design a communication protocol, in the form of a Sampler S, Coder C, Alphabet
A and Decoder D such that the maximum observation error and the rate are
bounded, and preferably as small as possible. The second objective is to test
this communication protocol through experiments on mobile robots.

6.3 Designing the Observer

In this section, we introduce the different agents of the communication proto-
col. Before we describe the communication protocol and due to page number
limitations, we pose the following simplifying assumption about the input.

Assumption 6.1. The inputs ux(t) and uθ(t) are constant, i.e. ux(t) = ūx,
uθ(t) = ūθ, ∀t ≥ 0 and known.

Remark 6.2. This hypothesis can be relaxed to the requirement that the inputs
are piece-wise constant keeping their values over an interval of time, in which
case the input values have to be also communicated. For more information about
how to transmit estimates of the input, one can refer to Voortman et al. [2020c].
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We also introduce the system ˙̂x1(t)
˙̂x2(t)
˙̂
θ(t)

 =

ūx cos(θ̂(t))

ūx sin(θ̂(t))
ūθ

 (6.12)

which corresponds to (6.1) with zero perturbations. Note that for any initial

condition [x̂10 x̂20 θ̂0]ᵀ, (6.12) has the following exact solution

x̂1(t) =
ūx
ūθ

(
sin(ūθt+ θ̂0)− sin(θ̂0)

)
+ x̂10,

x̂2(t) =
ūx
ūθ

(
− cos(ūθt+ θ̂0) + cos(θ̂0)

)
+ x̂20,

θ̂(t) = ūθt+ θ̂0.

(6.13)

The main mechanism of the communication protocol can be described as
follows: at the sensor side, the sampled state y(tk) is measured at sampling
instants tk. The smart sensor simulates a virtual copy of the decoder, which is
possible since the sensor generates the messages that the decoder receives. The
sensor is thus aware of a copy of the remote estimate, which will be denoted x̂c(t).
The sensor sends messages which contain information necessary to reconstruct
both x̂(sj), as well as θ̂(sj). Starting at the estimates stemming from the last
message and in the absence of messages, the decoder simply updates the estimate
by computing the solution of (6.12) with x̂(sj) and θ̂(sj) as an initial condition.
If at some sampling instant tk, the distance between y(tk) and x̂c(tk) = x̂(tk)
becomes larger than some prescribed maximum error, the sampler decides to
communicate: it sets sj = tk and the coder then sends a message to the decoder

to provide new estimates x̂(tj) and θ̂(tj).
The communication procedure, which we will further reference as Procedure

4, is composed of a sampler, alphabet, coder, and decoder as described below.
Although the problem statement leaves room for different choices of communi-
cation instants, our communication protocol will choose communication instants
such that they coincide with sampling instants. At least N sampling instants will
need to elapse between two consecutive communications, where N is a choosable
parameter. This parameter is finite and a part of the communication protocol,
which implies that it is known by all interacting agents. The choice of N directly
influences the maximum observation error and resulting rate. How exactly one
might choose N and how it influences the error will be discussed in the next
section.

To properly describe the communication instants, we will need several quan-
tities. The indexes j of the communication instants are inherently known by
all agents. The quantity j̄ refers to the index of the last instant of communica-
tion (initially, j̄ = 0). This quantity is always known by the sampler (because
it knows how many communication instants it defined), the coder (because it
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knows how many messages it sent), as well as the decoder (because it knows how
many messages it received). Finally, the sampler and coder interact to update
the knowledge of the estimate x̂(t) at the coder side.

Procedure 4.
The Sampler S: At each sampling instant tk ≥ sj̄ + Nt̄, the sampler computes
x̂c(tk) and then verifies whether the following condition is satisfied

‖y(tk)− x̂c(tk)‖2 ≤ εx + 2|ūx|Nt̄+ 2δxNt̄− 2|ūx|t̄− 2δxt̄. (6.14)

If the condition is not satisfied, a message must be sent to provide a new estimate.
The sampler thus sets sj̄ = tk and j̄ increases by 1.

The Alphabet Function A: If tk = sj̄, the alphabet agent builds a covering of
the set Ij̄, where Ij̄ is defined as

Ij̄ :=
{
x ∈ R2|

∥∥x− x̂c(sj̄−1)
∥∥

2
≤ εx + 2(|ūx|+ δx)Nt̄,∥∥x− x̂c(sj̄−1)

∥∥
2
≥ εx + 2(|ūx|+ δx)Nt̄− 2(|ūx|+ δx)t̄

}
,

(6.15)

with disks of radius εx. The disks in this covering are numbered from 1 till lx
j̄

.

The coder also divides S1 into intervals of size 2εθ. The these intervals are
numbered from 1 till lθ

j̄
. The alphabet function then returns lj̄ = lx

j̄
lθ
j̄
.

The Coder C: At the communication instants, the coder function finds the
index of the ball in the covering made by the alphabet whose center is the closest
to x(sj̄). The coder also finds the index of the interval in the covering of S1

which contains θ(sj̄). It then sends both indexes to the decoder. The coder also

updates the local estimates x̂c(sj̄) and θ̂c(sj̄) by setting them to be equal to the
center of the ball in Ij.

The Decoder D: In the absence of messages, the decoder computes x̂(t) and

θ̂(t) as solutions of (6.12) with x̂(tj̄) and θ̂(tj̄) as an initial conditions. If a
message is received, the decoder uses the center of the disk whose index it received
as x̂(tj̄) and the center of the interval whose index it received as θ̂(tj̄).

The alphabet is based on the following idea. As was previously mentioned,
in the absence of messages, new estimates are obtained at the decoder side by
solving (6.12). After receiving a message, the state of the system x(t) is contained
in a ball of a radius εx whose center is the estimate x̂(t). In the absence of any
messages, the distance between the state and the estimate increases/decreases
(both cases are possible). The distance between the state and estimate evolves
due to two factors: first of all, the unknown state perturbation dx(t) and dθ(t)
increase it continuously (but no more than δx every second). Secondly, the
distance set is increased/decreased by the action of the system dynamics. Given
that the communication intervals are chosen to be finite (i.e., N < ∞), the
distance remains finite in between communications. Supposing that the set
Ij is defined in such a way that it always contains the current state at the
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communication instants, then by covering this set with balls of radius εx, the
centers of the balls of which cover Ij form an alphabet to communicate estimates
x̂.

In this case, the set Ij , which is simply a ring centered around the previous
estimate, can be covered by a finite number of balls of size εx > 0. The balls in
the covering can be indexed from 1 till lmax < ∞. To produce such a covering,
the only information needed is the initial ball and the different upper bounds
on the uncertainties/errors, which implies that both the coder as well as the
decoder can build the set. To transmit a new estimate of x, one can simply send
the index of one of the balls whose center then serves as a new estimate with a
precision that will depend on εx. The cost of communicating in that fashion is
dependent on how many balls of size εx are required to cover Ij . We finish the
current section with several remarks on the different features of the proposed
scheme.

Remark 6.3. � The copies of the estimates at the sensor side x̂c(t) and

θ̂c(t) are either updated by the sampler if no message is sent, or by the
coder if a message is sent.

� The coordinates of the centers of the balls used in the covering are always
relative to the previous estimates. By communicating in relative fashion,
it is possible to keep the size of the messages limited. Note that since
x̂c(t) = x̂(t), both agents can build this set according to its definition (6.15).

� The alphabet procedure is easy from a computational point of view since it
consists of covering one set which always has the same shape except the
whole set is shifted by a certain vector from the origin and another set
which is simply S1. The first of these sets is centered around the previous
estimate, both the coder and decoder can build a covering for it and thus
have access to the alphabet.

� The computational requirement on the decoder are relatively low since an
exact solution (6.13) exists to (6.12).

6.4 Rate and Errors

With the observer and its agents fully introduced, we are in a position to de-
termine a bound on the communication rate resulting from the observer. This
quantity is related to the observation error, for which we also provide a theoreti-
cal bound. The first result provides a closed-form expression of the upper bound
of the total estimation error that indicates the proportionality of the different
parameters/errors.

Proposition 6.4. The observer described in Procedure 4 ensures that

η ≤ εx + 2(|ūx|+ δx)Nt̄, (6.16)
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where η is defined in (6.11).

The proof of this result is available in Appendix 6.A.

Remark 6.5. The use of Proposition 6.4 is straightforward. Based on the veloc-
ities ūx and ūθ, as well as the bounds on the perturbations δx and δθ, the user of
the communication scheme has an expression that links the minimum number of
sampling intervals between communications, the discretization error εx and the
total error. Depending on the maximum tolerable observation error, it is thus
simple to find N such that the error will not exceed that bound.

The next result of this section aims to provide an upper bound on R for the
designed communication scheme.

Theorem 6.6. The observer described in Procedure 4 with N > 0 results in a
communication rate R such that

R≤ 1

Nt̄

⌈
log2

⌈
π

εθ

⌉⌈
2(εx + 2|ūx|Nt̄+ 2δxNt̄)π√

2εx

⌉⌈
2|ūx|t̄+ 2δxt̄√

2εx

⌉⌉
. (6.17)

The proof of this result is available in Appendix 6.B. Note that in the proof
of Theorem 6.6 a covering procedure is presented for Ij . This covering procedure
is very conservative. There exist coverings of rings with disks that require fewer
disks but the objective of this theorem is simply to provide a theoretical upper
bound on the required communication rate. In practice, the communication
protocol requires a much lower rate than the theoretical bound, as will be shown
through experiments in the next section.

6.5 Experiments

In order to test the observer, experiments were run in a lab on a Turtle-
bot21, which is a unicycle-type robot. The Turtlebot is equipped with a net-
book, which utilizes ROS (Robot Operating System2). Four sets of experi-
ments were run in total, each with the objective to test one particular con-
figuration. All experiments were run with the following setting for the ve-
locities (ūx, ūθ) = (0.1 [m/s],−0.2 [rad/s]). The precision of the estimates is
(εx, εθ) = (0.01 [m], 0.01 [rad]). The four sets of experiments are:

1. No perturbations: The first set of experiments consists of steering the robot
with the constant velocities without any additional perturbations;

2. Small angular velocity perturbations: The second set of experiments re-
volves around testing a configuration with perturbations only in the angu-
lar velocity;

1See https://www.turtlebot.com/turtlebot2/ for more information.
2ROS is an open-source operating system to control robots, more information available at

https://www.ros.org/.

https://www.turtlebot.com/turtlebot2/
https://www.ros.org/
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3. Larger perturbations: The third set of experiments involves large pertur-
bations, both in the linear velocity and in the angular velocity;

4. Larger perturbations, larger observation error: The fourth and final set of
experiments involves the same perturbations as the third set of experiments
except N is now chosen larger.

A video of the experiments (as well as Gazebo simulations) is available at the
following URL: https://www.youtube.com/watch?v=zx3Mckyj4EM.

6.5.1 First Experiment - No Perturbations

In this experiment, the dynamics of the robot are assumed to be unperturbed
(i.e., δx = δθ = 0). The sampling time for the robot is t̄ = 0.5s. We choose
N = 2 (implying that a communication could potential occur every second).
The following bounds are then obtained on η and R by applying Proposition
6.4 and Theorem 6.6:η ≤ 0.21 [m], R ≤ 17 [bits/s]. Several experiments are
run, each consisting of 120 seconds. A typical trajectory in the x1, x2-plane is
depicted on Fig. 6.2 while the observation error for the same run is depicted in
Fig. 6.3.

Figure 6.2: Figure depicting the state-space trajectory of the robot (blue) and
the remote estimate (orange) for the unperturbed case.

As can be seen from the figures, even in the unperturbed case, several com-
munications are required. This is due to internal frictions of the robot, im-
perfect actuation, frictions with the floor, . . . all of which are not accounted

https://www.youtube.com/watch?v=zx3Mckyj4EM
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Figure 6.3: Figure depicting the observation error (blue), together with the
triggering condition (orange) for the unperturbed case.

for in the model. On average, over 10 different trials, the number of com-
munications is 4.1 per 120s. This is still much lower than the upper bound
on the theoretical rate predicted, 120 communications. The resulting rate is
17 × 4.1/120 = 0.5805 [bits/s], which is 34 times lower than the upper bound
on the theoretical rate, which proves the effectiveness of the event-triggered pro-
tocol, as well as some conservatism in the theoretical error bounds. In terms
of observation error, the error remains much below the maximum observation
bound.

6.5.2 Second Experiment - Small Angular Velocity Per-
turbations

In this experiment, the dynamics of the robot are assumed to only be perturbed
in angular velocity. The sampling time for the robot is t̄ = 0.5s. We use
δx = 0 and δθ = 0.05 (implying up to 25% variation in the angular velocity).
We again choose N = 2 (implying that a communication could potential occur
every second). The following bounds are then obtained on η and R by applying
Proposition 6.4 and Theorem 6.6: η ≤ 0.21 [m], R ≤ 17 [bits/s]. Note that since
only δθ changed from the first experiments, the bounds are identical. Several
experiments are run, each consisting of 120 seconds. A typical trajectory in the
x1, x2-plane is depicted on Figure 6.4 while the observation error for the same
run is depicted in Figure 6.5.
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Figure 6.4: Figure depicting the state-space trajectory of the robot (blue) and
the remote estimate (orange) for the case with angular velocity perturbations.

Figure 6.5: Figure depicting the observation error (blue), together with the
triggering condition (orange) for the case with angular velocity perturbations.

This time, the state-space trajectories of the system deviate much more com-
pared to the unperturbed case. The effects of the perturbation on the angular
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velocity can clearly be seen. Over 10 experiments, an average of 10.5 communica-
tions are necessary, which is much lower than the upper bound on the theoretical
rate of 120. The resulting rate is 17 × 10.5/120 = 1.3125 [bits/s]. This again
validates the effectiveness of the event-triggered communication scheme.

6.5.3 Third Experiment - Large Perturbations

In this experiment, the dynamics of the robot are assumed to be perturbed by
large perturbations. We use δx = 0.2 and δθ = 0.2. This time, the sampling
interval is assumed to be t̄ = 0.1. We choose N = 3 (implying that a communi-
cation could potential occur every 0.3 seconds). The following bounds are then
obtained on η and R by applying Proposition 6.4 and Theorem 6.6: η ≤ 0.19 [m],
R ≤ 53.33 [bits/s]. Several experiments are run, each consisting of 120 seconds.
A typical trajectory in the x1, x2-plane is depicted on Figure 6.6.

Figure 6.6: Figure depicting the state-space trajectory of the robot (blue) and
the remote estimate (orange) for the large perturbations case.

The effects of these large perturbations are immediately seen on the state-
space trajectories of the robot. Many more communications are therefore re-
quired: on average 53.6 over 120 seconds. This results in an effective commu-
nication rate of 16 × 53.6/120 = 7.1467 [bits/s]. This is again much below the
upper bound on the theoretical rate.
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6.5.4 Fourth Experiment - Large Perturbation Large Ob-
servation Error

For the final round of experiments, the same setting as the previous experiments
is assumed, except N = 4 (implying that a communication could potential occur
every 0.4 seconds). The following bounds are then obtained on η and R by
applying Proposition 6.4 and Theorem 6.6: η ≤ 0.25 [m], R ≤ 40 [bits/s]. The
different choice of N thus immediately impacts both the maximum error, which
becomes larger and the upper bound on the theoretical rate, which becomes
smaller. Several experiments are run, each consisting of 120 seconds. A typical
trajectory in the x1, x2-plane is depicted on Figure 6.7.

Figure 6.7: Figure depicting the state-space trajectory of the robot (blue) and
the remote estimate (orange) for the large perturbations case with larger obser-
vation error.

The experiments confirm the same effect as the theoretical bounds: as can
be seen in Figure 6.7, the maximum distance between the observed trajectory
and the actual state-space trajectory is larger than in the previous experiment
(see Figure 6.6). In terms of the number of communications, the average now
sits at 24.2 communications per 120 seconds, which implies an effective rate of
16×24.2/120 = 3.2267 [bits/s], almost twice as low as in the previous experiment.
This confirms the fact that there is a tradeoff between precision and rate that
can be tuned through N .
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6.6 Conclusion

In this document, we presented an event-triggered, data rate constrained ob-
server for unicycle-type robots with constant velocities and time-varying per-
turbations. After posing the problem statement, the design of the agents that
form the communication protocol was developed. Two theoretical results were
presented. First, a proposition which links the minimum time interval between
two consecutive communications and the maximum error. Secondly, a theorem
that upper bounds the communication rate resulting from the communication
protocol. The effectiveness of the proposed communication scheme was experi-
mentally validated on Turtlebots.

We conclude with the following remarks on the communication protocol:

1. The communication protocol is very efficient at producing precise estimates
at a remote distance;

2. The required communication rate is much lower than the upper bound on
the theoretical rate, which is due both to the usage of an event-triggered
communication protocol, as well as conservatism in the error bounds;

3. It is possible to exchange more precision for a higher communication rate
and vice-versa, by tuning the parameter N ;

4. Although a proportion of the transmitted bits is used to transmit θ̂, which
is not included in the observation error, it is an essential part of the dy-
namics of the robot and hence plays a crucial role in increasing the time
between two subsequent communications (by improving the quality of the
remote estimate).

Further research on this topic includes configurations with piece-wise con-
stant input, tracking of the full state instead of only the position, improving the
covering procedure to improve the theoretical bounds, and studying the funda-
mental minimum requires capacity to observe unicycle-type robots.

Appendices

6.A Proof of Proposition 6.4

Proof: We start by defining the error e(t) = [(x(t)− x̂(t))ᵀ (θ(t)− θ̂(t))]ᵀ. The
dynamics of the error are

ė1(t)
ė2(t)
ė3(t)

=


ux(t)

(
cos(θ(t))− cos(θ̂(t))

)
+dx(t) cos(θ(t))

ux(t)
(

sin(θ(t))− cos(θ̂(t))
)

+dx(t) sin(θ(t))

dθ(t)

, (6.18)
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which implies that

e3(t+ t̂) ≤ e3(t) + δθ t̂,

e3(t+ t̂) ≥ e3(t)− δθ t̂.
(6.19)

Since cos(θ), sin(θ) ∈ [−1, 1], ∀θ ∈ R, and due to (6.3) we clearly have that the
solutions e(t+ t̂) of (6.18) satisfy

e1(t+ t̂) ≤ e1(t) + |ūx|t̂+ δxt̂,

e2(t+ t̂) ≤ e2(t) + |ūx|t̂+ δxt̂,
(6.20)

and

e1(t+ t̂) ≥ e1(t)− |ūx|t̂− δxt̂,
e2(t+ t̂) ≥ e2(t)− |ūx|t̂− δxt̂.

(6.21)

Since communications reset the observation error to εx, it remains to evaluate
the observation error in between communication instants. We thus evaluate∥∥x(t+ t̂)− x̂(t+ t̂)

∥∥ for t̂ ≥ 0, assuming that a communication occurred at time

t. There are two possible situations: either Nt̄ ≥ t̂ ≥ 0, or t̂ > Nt̄.
Situation 1: Nt̄ ≥ t̂ ≥ 0
This implies that the triggering condition (6.14) has not been checked and

will only be checked at t̂ = Nt̄. For
∥∥x(t+ t̂)− x̂(t+ t̂)

∥∥
2

=
∥∥e1:2(t+ t̂)

∥∥
2
,

inequalities (6.20) and (6.21) imply that∥∥e1:2(t+ t̂)
∥∥

2
≤ ‖e1:2(t)‖2 + |ūx|t̂+ δxt̂+ |ūx|t̂+ δxt̂

≤ εx + 2|ūx|t̂+ 2δxt̂,

which, from (6.11), implies that (6.16) holds for t̂ : Nt̄ ≥ t̂ ≥ 0.
Situation 2: t̂ > Nt̄
This implies that (6.14) held at most t̄ time instants ago (otherwise a com-

munication would have occurred). We thus have∥∥e1:2(t+ t̂− t̄)
∥∥

2
≤ εx + 2|ūx|Nt̄+ 2δxNt̄− 2|ūx|t̄− 2δxt̄ (6.22)

and hence, from (6.20) and (6.21), we have that∥∥e1:2(t+ t̂)
∥∥

2
≤ εx + 2|ūx|Nt̄+ 2δxNt̄. (6.23)

�

6.B Proof of Theorem 6.6

Proof: The rate R depends on the number of bits bj that are sent as each com-
munication instant, which itself depends on the alphabet length. The alphabet
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length is equal to the product of the number of elements in the covering of Ij , as
well as the number elements in the covering of S1. The latter is easily computed:

with intervals of length 2εθ,
⌈
π
εθ

⌉
intervals are required.

The set Ij , on the other hand, is a ring of inner radius εx+2|ūx|Nt̄+2δxNt̄−
2|ūx|t̄ − 2δxt̄ and outer radius εx + 2|ūx|Nt̄ + 2δxNt̄. Recall that for any disk
εx, there is a square of side

√
2ε inscribed. To cover a ring of outer radius r and

inner radius r − εx, it suffices to employ
⌈

2πr√
2εx

⌉
squares of side

√
2εx (see Fig.

6.8), and hence
⌈

2rπ√
2εx

⌉
disks of radius εx. By splitting Ij in rings of thickness

√
2εx, no more than

⌈
2(εx+2|ūx|Nt̄+2δxNt̄)π√

2εx

⌉
disks of radius εx are required to

cover each ring. Since there are at most
⌈

2|ūx|t̄+2δx t̄√
2εx

⌉
rings of thickness

√
2εx

that form Ij , in total
⌈

2(εx+2|ūx|Nt̄+2δxNt̄)π√
2εx

⌉ ⌈
2|ūx|t̄+2δx t̄√

2εx

⌉
disks of radius εx are

sufficient to cover Ij . We thus have that

lj ≤
⌈
π

εθ

⌉⌈
2(εx + 2|ūx|Nt̄+ 2δxNt̄)π√

2εx

⌉⌈
2|ūx|t̄+ 2δxt̄√

2εx

⌉
.

This implies that

bj := dlog2 lje

≤
⌈

log2

⌈
π

εθ

⌉⌈
2(εx + 2|ūx|Nt̄+ 2δxNt̄)π√

2εx

⌉⌈
2|ūx|t̄+ 2δxt̄√

2εx

⌉⌉
.

Figure 6.8: Figure depicting how balls of radius εx are used to cover a ring of
thickness

√
2εx by the usage of inscribed squares of side

√
2εx.
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Figure 6.9: Figure depicting the region Ij and how it is split up into rings of
thickness

√
2εx.

The rate is defined in (6.10) as

R := lim
j→∞

1

sj

j∑
i=1

bi.

It is dependent on the communication instants sj , which depend on the particular
realization of the system. At least N sampling instants elapse in between two
subsequent communications. This implies that sj ≥ jNt̄ and hence

R ≤ lim
j→∞

1

jNt̄

j∑
i=1

bj ,

which, since bi is constant, implies that

R ≤ bj
Nt̄

,

and hence

R ≤

⌈
log2

⌈
π
εθ

⌉ ⌈
2(εx+2|ūx|Nt̄+2δxNt̄)π√

2εx

⌉ ⌈
2|ūx|t̄+2δx t̄√

2εx

⌉⌉
Nt̄

.

�



Chapter 7

Conclusion and Recommendations

7.1 Concluding Remarks

As was discussed extensively in the introduction, the widespread of communica-
tion technologies means that many applications featuring dynamical systems now
also include some form of wireless communication. These communication tech-
nologies have limitations that are inherent to their nature. These limitations are
limited packet size, limited packet transmission rate, losses, noise/perturbations,
and time-delays (see Section 1.1.2 for a more detailed explanation of these limita-
tions). When these wireless communication technologies are used in conjunction
with a controlled/observed dynamical system which has one of the following
sources of uncertainty: parametric uncertainty, perturbations/noise, and sen-
sitivity to initial conditions (see Section 1.1.3 for a more detailed explanation
on each of these sources of uncertainty), it becomes necessary to design specific
communication strategies to carry over information about the system via these
communication channels whilst dealing with the limitations.

It is important to simultaneously handle the limitations due to communi-
cation technologies and solve the underlying control/observation problem, as
opposed to dealing with each problem separately. Integrated approaches offer
more possibilities than simply solving the communication problem separately
from the control problem, as was highlighted in Section 1.1.1.

The objective of this thesis is to develop tools for interactions between dy-
namical systems and communication technologies. The following results are
presented:

1. (Chapter 2) A data-rate constrained observation scheme for nonlinear
systems (both continuous- and discrete-time) with sensitivity to initial
conditions that is robust towards losses in the communication channel is
developed.
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2. (Chapter 3) For a network of agents described by identical discrete-time
dynamical systems, several consensus protocols (consisting of several de-
vices) are obtained (for different network topologies) which keep the agents
in consensus whilst limiting the load on the communication.

3. (Chapter 4) An event-triggered communication protocol for the remote
observation of continuous-time Lipschitz-nonlinear systems with bounded
state perturbations and measurement noise is developed.

4. (Chapter 5) An event-triggered communication protocol for the re-
mote observation of steered discrete-time Lipschitz-nonlinear systems with
bounded state perturbations and measurement noise is obtained.

5. (Chapter 6) An event-triggered communication protocol for the remote
observation of unicycle robots, with experimental validation is developed
and validated.

Each of these results is written in the form of a paper which has either been
published or submitted to a peer-reviewed journal/conference. Chapters 2 to 6
each correspond to one result and paper. What follows is a summary of each of
these results.

7.1.1 Data-Rate Constrained Observers of Nonlinear Sys-
tems

The first result is a data-rate constrained observer for a nonlinear dynamical
system with robustness towards losses. By means of a one-way communication
channel, a system is connected to a remote location where online estimates of the
state of the system should be reconstructed. The source of uncertainty is in the
form of sensitivity to initial conditions. The communication channel can only
transmit limited amounts of data per unit of time. A solution that is robust to-
wards losses in the communication channel is provided, both for continuous-time
and discrete-time systems. For this solution, bounds on the required communi-
cation rate are provided in terms of the upper box dimension of the state space
of the dynamical system and an upper bound on the largest singular value of
the system’s Jacobian. Next, theorems that provide an analytical bound on the
required minimum communication rate are presented. The bounds are obtained
by using the Lyapunov dimension of the dynamical system instead of the upper
box dimension in the communication rate.

The theoretical results are compared in simulations for two systems: the
Lozi map and the Lorentz system. All simulations (for this result as for the
next) are obtained by using Monte-Carlo methods. The simulations confirm
that the proposed communication protocol is implementable on any channel
with a capacity equal to or larger than the analytical upper bound provided by
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the theorems. The novelty of this result is the robustness towards losses in the
communication channel, which is a valuable property in light of the drawbacks
of wireless communication technologies.

7.1.2 Data-Rate Constrained Consensus in Networks of
Dynamical Systems

The second result is consensus for a network of agents, which communicate over
data-rate constrained communication channels. A network of agents is consid-
ered whose dynamics are determined by a nonlinear discrete-time dynamical
system. In this case, the source of uncertainty stems from a sensitivity to initial
conditions. Each agent is equipped with a smart sensor (a device capable of
measuring the state and performing some computations) and a controller. All
agents are interconnected through channels that are limited in terms of commu-
nication capacity. The smart sensor and controller of each agent are placed at
locations remote from one another such that the smart sensor and controller of
each agent need to use the communication network as well to exchange infor-
mation. The topology of the network of communication channels is represented
through a communication adjacency matrix. By exchanging messages, the sen-
sors and controllers should steer the agents so that they achieve a particular
type of consensus.

Three different designs of smart sensors, controllers, and communication pro-
tocols that achieve this feature are presented, each with an increasing degree of
interaction between the agents. For each protocol, a theorem is presented, pro-
viding conditions on the sufficient minimal data rates to implement them, as
well as the requirements in terms of the communication adjacency matrix. It
is shown that involving more agents in the decision on the common trajectory,
which implies a higher degree of interaction, requires a higher number of commu-
nications to keep all systems in consensus. The protocols leading to consensus
are tested via simulations on a network of Logistic maps and Hénon maps. For
each of these systems, the theoretical bounds on the rate are compared to the
rates observed in simulations, confirming the applicability and effectiveness of
the consensus protocols. The novelty of the result is the data-rate constrained
communication protocols for various network topologies.

7.1.3 An Event-Triggered Observation Scheme for Sys-
tems with Perturbations and Data-Rate Constraints

The third result is an event-triggered data-rate constrained observation scheme
for a perturbed continuous-time Lipschitz-nonlinear dynamical system. Bounded
perturbations form the source of uncertainty for this problem. The system is
connected to a remote location by means of a communication channel that can
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only send a limited amount of bits per unit of time. The goal is to provide
estimates of the state of the system at the remote location whilst respecting a
channel capacity constraint. A solution, in the form of an event-triggered com-
munication protocol, is developed. The event-triggering mechanism compares
the remote estimate with the current state and only sends a new estimate when
the distance between both exceeds a certain threshold. This mechanism greatly
reduces the average number of communications. For this communication pro-
tocol, a bound on the minimum channel capacity is provided, in terms of the
underlying system’s dynamics, and some tunable constants. The observation
scheme’s efficiency is then tested through simulations on unicycle-type robot
systems. The simulations show that by using an event-triggered mechanism, it
is possible to greatly reduce the average number of communications, and hence
reduce the load on the communication channel. The novelty of this result is con-
sidering an event-triggered data-rate constrained observer for Lipschitz-nonlinear
systems and providing analytical upper bounds on the necessary channel rate to
implement the communication protocol.

7.1.4 Remote State Estimation of Steered Systems with
Limited Communications: an Event-Triggered Ap-
proach

The tracking of the state of a perturbed system that is steered by a measured
reference signal is the fourth result. A single discrete-time Lipschitz-nonlinear
dynamical system is steered by an external signal which is measured and sub-
jected to bounded state perturbations and measurement error. The steering
signal is modeled as a parameter, which is a priori unknown but measured in
real-time. The steering signal (parameter), perturbations, and measurement
noise act as sources of uncertainty. This system is connected to a remote loca-
tion by means of a communication channel. The objective is to provide estimates
of the state at the remote location by sending messages via the communication
channel and to limit the bandwidth usage of the communication. A solution
in the form of several interacting agents is proposed. This solution makes use
of an event-triggering mechanism to reduce bandwidth usage. The theoreti-
cal maximum communication rate resulting from the communication protocol is
computed. This theoretical rate is then compared to the actual communication
rate by means of simulations on several dynamical systems. The effectiveness of
the event-triggered scheme is demonstrated by these simulations. The novelty
of the result is the event-triggered protocol for discrete-time steered Lipschitz-
nonlinear systems.
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7.1.5 Observing a Unicycle Robot with Data-Rate Con-
straints: a Case Study

The final result of the thesis is a data-rate constrained observer specifically de-
signed for unicycle-type robots, which is experimentally validated on a Turtle-
bot2 robot. A unicycle robot is steered by an external and known in advance
steering signal. It is also subjected to random bounded perturbations. The
robots send messages via WiFi to a remote location where estimates of the
position of the robot should be maintained. An event-triggered communication
protocol that achieved this whilst using little data is developed. For this commu-
nication protocol, an upper bound on the maximum number of communications
per unit of time is obtained. This theoretical upper bound is compared to the
actual rate resulting from the implementation of the protocol through various
experiments. The experiments proved that the event-triggeredness of the proto-
col was very efficient at reducing the average number of communications. The
novelty of the result is that the observer is specifically designed for unicycle-type
robots. The importance of this result is that it confirms, through experiments,
the effectiveness and applicability of the third and fourth results to real-life
problems.

7.2 Future Work and Recommendations

7.2.1 Future Work

Extensions

For each of the aforementioned results, further works could be carried out, im-
proving on the existing results.

� (Chapter 2): Since the communication protocol is robust towards losses,
an appropriate continuation would be to determine a mathematical model
for the losses, as well as results providing bounds on the error, when losses
occur. The best approach to achieve this is by including a stochastic loss
model.

� (Chapter 3): Each of the designed consensus protocols requires a specific
communication network topology. One interesting extension would con-
sist in adapting the consensus protocol so that it can accept any network
topology, e.g., by having nodes carry over messages to third nodes (that
is, to have chains of communication in the network). Another extension
would be to consider configurations with systems whose dynamics are not
necessarily affine with respect to the control input.

� (Chapters 4 and 5): Although the simulations prove that the event-
triggered communication protocol is efficient at reducing the required com-
munication rate, they also prove that the error bounds are conservative.
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The reasons for this conservatism lie partially in the Lyapunov-liken ap-
proach that is used in the LMI formulation. One possible extension would
be to improve on the error bounds.

� (Chapter 6): The protocol that was designed implied that a constant
control input was being applied to the unicycle robots. The communication
protocol could easily be extended to the case of piece-wise constant control
inputs by adding additional messages containing information necessary to
reconstruct this piece-wise constant control input.

Combining Several Sources of Uncertainty

Many solutions that have been developed for problems involving dynamical sys-
tems and communication technologies focus on one of the three sources of un-
certainty (sensitivity to initial conditions, perturbations/noise, and parametric
uncertainty), and provide solutions specifically for that source of uncertainty.
What functions for one source of uncertainty generally doesn’t apply to others.
An example of this is the notions of entropy that have been used for systems
with sensitivity to initial conditions but that becomes difficult to use in the case
of perturbations. The reasons for this being that most notions of entropy are
defined as asymptotic quantities which, in the case of perturbed systems are
simply infinite. In this thesis, an effort to combine several sources of uncertainty
was made but no general result for problems combining sensitivity to initial
conditions, perturbation/noise, and parametric uncertainty have been obtained.

Each of these sources models a property of real-life systems and it is generally
not possible to model e.g., perturbations as parametric uncertainty and vice-
versa. Designing control tools that combine all three sources of uncertainty is
thus an important direction for research and should be pursued in the future.

Dealing With More Drawbacks

Packet-based communication technologies suffer from five different types of draw-
backs: limited packet size, limited transmission rate, corrupted packets, packet
losses, and delays. In this thesis, three out of the five drawbacks have been
addressed directly but solutions were provided to deal with packet corruption
and time delays. Up to now, there have been few works in the literature dealing
with all drawbacks together. Providing solutions that are robust towards losses
and time-delays in the communication channel whilst simultaneously taking into
account the limited packet size and transmission rate would be an important
achievement, considering that most modern wireless technologies suffer from all
four drawbacks (Wi-Fi, 4G, 5G).
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7.2.2 Final Recommendations

In this thesis, the focus has been on providing general solutions for problems
involving several sources of uncertainty and dealing with several drawbacks of
communication technologies. The main reason for this approach is that the afore-
mentioned limitations/problems all correspond to difficulties encountered when
dealing with real-life applications. The focus in research on interactions between
dynamical systems and communication technologies, and more generally engi-
neering, should remain on solving problems stemming from real-life applications
and designing solutions that are applicable in practice.
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ques, 39(C5):9–10, 1978.

N. C. Martins, M. A. Dahleh, and N. Elia. Feedback Stabilization of Uncertain
Systems in the Presence of a Direct link. IEEE Transactions on Automatic
Control, 51(3):438–447, 2006.



BIBLIOGRAPHY 185

A. S. Matveev. State estimation via limited capacity noisy communication chan-
nels. Mathematics of Control, Signals, and Systems, 20(2):1–357, 2008.

A. S. Matveev and A. Y. Pogromsky. Observation of nonlinear systems via finite
capacity channels: Constructive data rate limits. Automatica, 70:217–229,
2016.

A. S. Matveev and A. Y. Pogromsky. Two Lyapunov methods in nonlinear state
estimation via finite capacity communication channels. IFAC-PapersOnLine,
50(1):4132–4137, 2017.

A. S. Matveev and A. Y. Pogromsky. Observation of nonlinear systems via finite
capacity channels, Part II: Restoration entropy and its estimates. Automatica,
103:189–199, 2019.

A. S. Matveev and A. V. Savkin. An Analogue of Shannon Information Theory
for Detection and Stabilization via Noisy Discrete Communication Channels.
Siam Journal on Control and Optimization, 46(4):1323–1367, 2007.

A. S. Matveev and A. V. Savkin. Estimation and Control over Communication
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votre soutien indéfectible qui a servi de phare pour guider ma vie. Sans vous je



195

n’aurais jamais fini ingénieur, et encore moins docteur. Merci pour tout ce que
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École Centrale de Lille in 2017, in a Marie-Curie
project entitled: Understanding and Controlling
Complex Systems (UCoCoS). His PhD was supervised by Henk Nijmeijer and
Jean-Pierre Richard. The research focused on interactions between dynamical
systems and communication technologies. The result of this research is contained
in the present PhD dissertation. For his paper entitled Continuous Time Ob-
servers of Nonlinear Systems with Data-Rate Constraints he obtained an IFAC
Young Author Award at the 5th IFAC Conference on Analysis and Control of
Chaotic Systems. Since May 2021, he is employed at Flanders Make.




	Summary
	Résumé
	Contents
	1 Introduction
	1.1 General Introduction
	1.1.1 Historical Context
	1.1.2 Drawbacks of Communication Technologies
	1.1.3 Sources of Uncertainty
	1.1.4 Time Domains and Measurement Devices
	1.1.5 Brief Overview of Solutions to Communication Limitations for Dynamical Systems

	1.2 Research Problem and Contributions of this Thesis
	1.2.1 First Contribution
	1.2.2 Second Contribution
	1.2.3 Third Contribution
	1.2.4 Fourth Contribution
	1.2.5 Fifth Contribution

	1.3 Structure of the Thesis and List of Publications

	2 Data-Rate Constrained Observers of Nonlinear Systems
	2.1 Introduction
	2.2 Problem Statement
	2.2.1 Observed Dynamical System
	2.2.2 Architecture of the Observer, Notations, and General Traits of the Communication Channel
	2.2.3 Observability via Channels with Limited Bit-Rate Capacity

	2.3 Design of the Proposed Observer
	2.4 Criteria for Observability of the System
	2.4.1 The Size of Finite Covering
	2.4.2 Balance between the Initial and Forthcoming Estimation Exactness, Respectively
	2.4.3 Correct Operation of the Observer and a Criterion for Observability

	2.5 Constructive Estimates and Analytical Bounds
	2.5.1 Lyapunov-Like Function
	2.5.2 Analytical Upper Bound on the System's Growth Rate and Related Conditions for Observability
	2.5.3 Analytical Bounds on the Upper Box Dimension and Final Conditions for Observability

	2.6 Examples
	2.6.1 The Smoothened Lozi Map
	2.6.2 The Lorenz System

	2.7 Conclusion
	2.A Proofs of Section 2.4
	2.A.1 Proof of Lemma 2.11
	2.A.2 Proof of Proposition 2.12

	2.B Proofs of Section 2.5
	2.B.1 Proof of Proposition 2.15
	2.B.2 Proof of Proposition 2.16
	2.B.3 Proof of Proposition 2.24

	2.C Proofs of Section 2.6

	3 Consensus in Networks of Dynamical Systems with Limited Communication Capacity
	3.1 Introduction
	3.2 Problem Statement
	3.3 Rationale Behind the Alphabet for Communication
	3.4 Consensus-preserving Protocols
	3.4.1 Common Elements of the Protocols
	3.4.2 The Pacemaker Protocol
	3.4.3 The Master/Slaves Protocol
	3.4.4 The Mutual Protocol

	3.5 Resulting Rates
	3.6 Examples
	3.6.1 The Logistic Map
	3.6.2 The Hénon map

	3.7 Conclusion
	3.A Proofs of the Results from Section 3.5
	3.A.1 Lemmata from other papers
	3.A.2 Auxiliary Results
	3.A.3 Proof of Theorem 3.9
	3.A.4 Proof of Theorem 3.10
	3.A.5 Proof of Theorem 3.11


	4 An Event-Triggered Observation Scheme for Systems with Perturbations and Data Rate Constraints
	4.1 Introduction
	4.2 Problem Statement
	4.3 Designing the devices
	4.3.1 The Local Observer
	4.3.2 The Protocol Description

	4.4 Rate and Errors
	4.5 Simulations
	4.6 Conclusion
	4.A Proof of Proposition 4.4
	4.B Proof of Lemma 4.6

	5 Remote State Estimation of Steered Systems with Limited Communications: an Event-Triggered Approach
	5.1 Introduction
	5.2 Notations
	5.3 Problem Statement
	5.4 The Communication Scheme
	5.5 Choices, Error and Rates
	5.6 Simulations
	5.6.1 Example 1
	5.6.2 Example 2

	5.7 Conclusion
	5.A Proofs of Section 5.5
	5.A.1 Proof of Theorem 5.8
	5.A.2 Proof of Theorem 5.9


	6 Observing a Unicycle Robot with Data Rate Constraints: A Case Study
	6.1 Introduction
	6.2 Problem statement
	6.3 Designing the Observer
	6.4 Rate and Errors
	6.5 Experiments
	6.5.1 First Experiment - No Perturbations
	6.5.2 Second Experiment - Small Angular Velocity Perturbations
	6.5.3 Third Experiment - Large Perturbations
	6.5.4 Fourth Experiment - Large Perturbation Large Observation Error

	6.6 Conclusion
	6.A Proof of Proposition 6.4
	6.B Proof of Theorem 6.6

	7 Conclusion and Recommendations
	7.1 Concluding Remarks
	7.1.1 Data-Rate Constrained Observers of Nonlinear Systems
	7.1.2 Data-Rate Constrained Consensus in Networks of Dynamical Systems
	7.1.3 An Event-Triggered Observation Scheme for Systems with Perturbations and Data-Rate Constraints
	7.1.4 Remote State Estimation of Steered Systems with Limited Communications: an Event-Triggered Approach
	7.1.5 Observing a Unicycle Robot with Data-Rate Constraints: a Case Study

	7.2 Future Work and Recommendations
	7.2.1 Future Work
	7.2.2 Final Recommendations


	Bibliography
	Acknowledgements
	Curriculum Vitae

