N

N

Ergodic behavior of control systems and first-order
mean field games

Cristian Mendico

» To cite this version:

Cristian Mendico. Ergodic behavior of control systems and first-order mean field games. Optimization
and Control [math.OC]. Université Paris sciences et lettres; Gran Sasso Science Institute (L’Aquila,
Italie), 2021. English. NNT: 2021UPSLDO025 . tel-03696965

HAL Id: tel-03696965
https://theses.hal.science/tel-03696965

Submitted on 16 Jun 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-03696965
https://hal.archives-ouvertes.fr

PSL

UNIVERSITE PARIS

G S GRAN SASSO

THESE DE DOCTORAT

DE L'UNIVERSITE PSL

Préparée a I'Université Paris-Dauphine
Dans le cadre d'une cotutelle avec GSSI-Gran Sasso Science

Institute

INSTITUTE

I SCHOOL OF ADVANCED STUDIES

Ergodic behavior of control systems and first-order mean

Soutenue par

Cristian Mendico
Le 05 Novembre 2021

Ecole doctorale n°ED 543

Ecole doctorale de
Dauphine

Spécialité
Mathématiques appliquées

et applications des mathé-
matiques

Pauphine | PSL*

UNIVERSITE PARIS

field games

Composition du jury :

Daniela Tonon

Associate professor, Universita degli
studi di Padova

Nicoletta Tchou

Maitre de conferance,
Rennes 1

Fabio Camilli

Full professor, SBAI

Université

Francisco J. Silva

Assistant professor, Université de Limo-
ges

Pierre Cardaliaguet

Full professor, CEREMADE

Piermarco Cannarsa
Full professor, Universita degli studi di
Roma Tor Vergata

Président

Rapporteur

Rapporteur

Examinateur

Directeur de thése

Co-directeur de
thése






Contents

3
P Preliminaried 17
E.I _Measure Theory] . . . . . . . . . . ... ... ... 17
PO Sub-Riemannian control . . . . . . . . ... 19
P33 Weak-KANM THEOTY . - « « « v v v oeoee e e e 23
b Vhild and weak solutions of M (4 27
B.I __Setting of the Mean Field Games problemd . . . . . . . . . .. 27
B.I.LT "Assumpfiond . . . . . . . . . . . .. .. ... 27
B.I1.2_ Definifions and first properfie§ . . .. .. .. ... .. 31
B2 MFG: Existence and Uniquenesy . . . . . . . . . . ... ... 32
B.3__Further regularity of mild solutiond . . . . . . ... ... ... 38
p.o.l  local Lipschitz continuity and local fractional semiq
concavity of the Value tuncfion . . . . . . . . . . . .. 38
B-32_ Lipschitz regularity of Mean Field Games equilibrium 42
B4 PDE’ssystemd . . . . ... ... .. ... ... ... ..., 45
B. 4T Optimal synfesi§ . . . . . . . . . ... ... ... ... 45
bdZ2 Weaksolufions . . . . . ... L0000 L. 46
3 Appendix . . . . . e e e e e e e 49
ol Proot of Theorem 2200 . . . . . . . . . . . . . . . . .. 49
g  Ekrgodic behavior of acceleration model 53
E. T Setting and assumptions of the problemd . . . . . . . . . . .. 53
a1 1 Calciilnis of variation with acceleration . . . . . . . . . 53
AT Mean Field Games of acceleration . . . . . . . . . . . 55
B.2  Frgodic behavior ot control ot acceleration . . . . . . . . . .. 57
E2 T Fxistence ol the Lmil . . . . v v v v v v v v 57
E.2.2 Characterization of the ergodic Iimif] . . . . . . . . .. 61
E.3~ _Asymptotic behavior of MFG with acceleration . . . . . . .. 74
E3 T  Ergodic MFG with acceleration . . . . . . . ... ... 74
B.o.2  Rhepresentation ol the solution of the time-dependent
MEG systeml . . . . . . oo 77



2 CONTENTS
E.0.0 Convergence ol the solution ot the time dependent

MFEFG sysfem] . . . .. ... ... ... .. ....... 86

T4 Appendix . . . . . . . . o e e 97

BE4T  Von Neumann minmax thearemd . . . . . ... .. .. 97

E.4.2  An inferpolation inequality] . . . ... ... ... ... 98

b _Singular [imit of acceleration 99

b.T Assumpfions and main resultd . . . . . . . . . . . ... .. .. 99

bl 1 Control of accelerationl . . . . . . . . . ... .. .... 99

BT 7 Mean field control of acceleration . . . . . . . . . . . . 101

B2 Proofoffhemamyesnlfl . .. .. .. ... ... ........ 103

B2 1 Proof for the control of acceleration . . . . . . . . . . 103

b.2Z.2 Proof for mean field game of acceleration . ... . .. 109

b __Asymptotic behavior of sub-Riemannian systems 121

b.I Seftings and assumpfiond . . . . . . . .. ... .. ... ... 121

b.Z Boundedness of optimal tfrajectoried . . . ... .. ... ... 124

6.3 Long-fime average and ergodic constanff . . . . . ... .. .. 127

p.3. 1T TLong-fime averagd . . . . .. .. .. .. ... ..... 128

b.3.2  Application to Abelmeand . . ... ... ... .. .. 132

b.4 Representation formula . . . . . . . . . . . . .. ... .... 135

§ APDENdIN . . . . e e e e e e e 144

b | Abelian- lanberian I heorem . . . . . . . . . . . . . .. 144

[ On the Aubry sef 147

[[.T Setfings and assumpfiond . . ... .. .. .. .. ... .... 147

[[.2_ Characterization of the ergodic constanf . . . . . . . . . . .. 150

[[.3 " Aubrysef] . ... .. . . . ... ... 158

[[.3.1  Compactness of the Aubryseff . ... ... ... ... 163

[[.4 Horizonfal regularity of critical solufiond . . . . . . . . . . .. 165




Chapter 1

Introduction

Before discussing the state of the art and introducing the topics covered in
this thesis, we proceed to motivate why we get interested in these problems.

The work is divided in two parts: the first is devoted to the systematic
study of Mean Field Game (MFQG) systems with control on the acceleration;
in the second we address the problem of long time-average behavior of solu-
tions to Hamilton-Jacobi equations associated with sub-Riemannian control
systems and Aurby-Mathery Theory for these latter. We will explain below
how these two topics are related.

Let us start describing the first. In the recent years there have been
an increasing attention to the study of multi-agent systems with control on
the acceleration, i.e., models of interacting individuals in which each player
wants to control their acceleration instead of the classical control of the ve-
locity. For this reason in we study the well-posedness of MFG
systems associated with such control problems. By using a relaxed notion
of Nash equilibrium (MFG equilibrium) we provide existence, uniqueness
and regularity results for the so-called mild solutions. We conclude by in-
vestigating the connections between these solutions and the PDEs system.
Then, the aim of is to study the long time-average behavior of
solutions to the MFG system studied in as the time horizon goes
to infinity. The main issue for this is the lack of small time controllability
that prevents to define the associated ergodic MFG system in the standard
way. We conclude this first part addressing the problem of singular pertur-
bation for "pure" control systems and for MFG with control of acceleration in
Chapter J. In particular, solving this problem we found a relation between
MFG of acceleration and the classical system.

At this point, the difficulties in lead us to the following ques-
tion: are these issues common to more general control systems than the
control of acceleration? To address this problem, we start with a general
drift-less control system and in we address the problem of the
long time behavior of solutions to Hamilton-Jacobi equations. Note that,

3



4 CHAPTER 1. INTRODUCTION

the case of control of acceleration does not fit into this class of systems
since it has a linear non-zero drift. However, what we immediately realize
is that sub-Riemannian control systems are locally small time controllable.
So, by using new ideas which relies on the different geometry on the state
space we prove the existence of a critical constant and of a critical viscosity
solution to the ergodic Hamilton-Jacobi equation. Moreover, we study the
well-posedness of the Lax-Oleinik semigroup and we prove the existence of a
fixed-point. Finally, in we extend the well-known Aubry-Mather

theory for Tonelli Hamiltonian systems to the sub-Riemannian ones.

More details on the results and on the difficulties to achieve them are
given in the following sections.

Mean field games

Since MFG is the common subject of the first part of this thesis, we introduce
here the argument and describe the state of the art.

Game theory is a branch of mathematics which aims to describe the
behavior of a group of interacting agents. Fix, for instance, this number
to N € N. Each player satisfy a certain dynamics that depends on the
interaction with the other agents and they choose their strategy in order
to minimize/maximize a certain cost functional. A fundamental tool in the
analysis of these models is the notion of Nash equilibria, introduce by Nash
in [62]. Roughly speaking, a strategy is called a Nash equilibrium if each
agent is not interested to be the unique who changes strategy.

However, the study of the N-players games lead to several issues as N
becomes large and, in this case, we are interested in describing the behavior
of Nash equilibria as N — oco. In order to overcame these difficulties, MFG
system has been introduced by J.M. Lasry and P.L. Lions in [64, 55, 56]
and a similar analysis was also developed, in the same years but indepen-
dently, by P. Caines, M. Huang and R. Malhamé in [47, 48]. At the macro-
scopic level the model turns out to be described by a systems of PDEs: an
Hamilton-Jacobi equation which describes the single agent’s strategy and
a Kolmogorov Fokker-Planck equation (continuity equation) which explains
how the distribution of players evolves in time according to the optimal
strategy provided by the first equation. Classically, the mean-field inter-
action term that coupled the two equation is given by a function of space
and measure and, moreover, the drift appearing in the continuity equation
depends on the value function satisfying the Hamilton-Jacobi equation. Let
H : R¥xR? — R be an Hamiltonian function, let ' : RYx 2(R%) — R be the
coupling function describing the interaction of the agents, let pg € 2 (R?)
be the initial distribution of players in space and let G : R x Z(R%) — R



be the terminal costs. Then, the simplest for of this system is the following

—Owu(t,z) + H(x, Dyu(t,z)) = F(x,ms), (t,z)€[0,T] x R?
Oymy — div (myDpH (z, Dyu(t,x))) =0,  (t,z) € [0,T] x R?
mo = Ko, U(T, .’IJ) = G([B, mT)7 TE Rd-

Let us describe heuristically the meaning of such a system. To do so, let
L :R% x R — R be the Lagrangian associated with the Hamiltonian H by
taking the Legendre Transform. Then, each player choose is own strategy
in order to minimize the cost functional of the form

T
| €036 + F6(s).m.) ds + G (T), ma)
t
where the control system is of the following simple form

Y(s) = u(s), (s €0,T]).

There is by now an extensive literature concerning MFG system of the
above form concerning problems as existence, uniqueness and regularity of
solutions depending on the assumptions on F. For an overview on the sub-

ject we refer the reader to [6, BH, B6, 46, 28], which is however far from
being complete.

So far, most of the literature concerns the analysis of the above system
describing models in which the agents has control only of their velocity.
However, in many applications, see for instance [39], one might be inter-
ested in studying systems in which players needs to have control on their
acceleration. In this case, proceeding heuristically as before, we have that
each agent choose is strategy in order to minimize a cost functional of the
form

T
/ (L(v(5):%(5),4(5)) + F(v(5),3(s),ms)) ds + G(y(T), mr)
t
where the control system now has the form

{wt) = v(t),

Hence, the PDEs system is given by

—Opu(t, z,v) + H(x,v, Dyu(t, z,v), Dyu(t,z,v)) = F(z,v,my), (t,z,v) € [0,T] x R*
Oymy — divg,, (mtDpH(x,v, Dyu(t,z,v), Dvu(t,x,v))) =0, (t,z,v) € [0,T] x R*
mo = po, w(T,z,v) =G(x,v,mr), (z,v) € R,
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Note that, now the state space is not R? but R% x R% which takes into
account not only the position but also the dependence of the strategy on
the velocity v € R%. Consequently, we also have that for any ¢ € [0, 7] the
distribution m; is a probability measure on R? x R

This is what motivated us at beginning of this project to analyze this
problem and it is what concerns, i.e., the study of the existence,
uniqueness and regularity of solutions to the MFG system with control of
acceleration. In particular, we consider the acceleration model as embedded
into a more general setting which is the case of linear state equation linear,
that is, a dynamics of the form

Y(t) = Ay(t) + Bu(t)

for some constant matrices 4 and B.

MFG for linear control systems

Fixed a time horizon T" > 0, we consider players having the following dy-
namics the whole space R?

A(t) = Avy(t) + Bu(t), Vte[0,T] (1.1)

where A and B are real matrices and « is a measurable control function.
Each player aims to minimize a cost functional of the form

T
| 26).u.m) ds+ Go(T).ma), (1.2)

where, for each time ¢ € [0, T, the probability measure m; on R? represents
their distribution. In this framework the MFG system reads as

-0V (t,x) + H(x, D,V (t,x),my) =0, (t,x) € [0,T] x RY
dymy + div (mtDpH(a:, D,V(t,z), mt)> =0, (tx)e[0,T] xR (1.3)
mo =mo, V(T,r)=G(z,mr), ¥z cR?

where the Hamiltonian H : R? x R? — R defined by

H(x,p,m) = sup { — (Ax + Bu,p) — L(x,u,m)}.
ucRk

One can immediately observe that if the Lagrangian L is of Tonelli type
(strictly convex and coercive w.r.t. control variable) then H fails to be
Tonelli. Hence, using the standard approach in MFG via fixed-point meth-
ods would lead us to several issues.



Therefore, in order to overcome this issue we solve the problem via the
Lagrangian approach (see, for instance, [IR8] and [60]). That is, we define
the metric space

Ty = {7 e AC([0,T]) : 7(t) satisty (), v(0) € Rd},

endowed with uniform metric || - ||o and we consider Borel probability mea-
sures n supported on I'r. Then, we restrict the attention to probability
distributions on R% of the form m; = edin where e; : I'p — R% denotes the
evaluation map and f stands for the push-forward operator. This correspond
to consider only flow of measures concentrated on trajectories satisfying
=)

Let us describe the results of this work. The first problem we deal with
is the definition of MFG equilibria for this class of problems. So, given an
initial distribution of players mo € Z(R%) we say that n € Z(I'7) is a MFG
equilibrium if it is supported on minimizing curves of (I2), with starting
point in spt(mg). Then, we prove that such equilibria exist (Iheorem-3T3)
and having this at our disposal we give the definition of mild solutions,
(V,m) € C([0,T] x R%) x C([0, T]; Z(R%)), of our MFG problem. For these,
we study the existence, the uniqueness and the regularity. In particular,
we show that {eifn}icpo ] is 3-Hélder continuous in time (Theorem 3 17)
and, consequently, the value function V' is locally semiconcave on [0, 7] x R4
linearly in space and with fractional semiconcave modulus in time (Theod
Eem 318). Moreover, by standard tools of optimal control theory we get
that V' is locally Lipschitz continuous (Cheorem 320).

Under an extra growth assumption on the Lagrangian, we also show that
there exists a MFG equilibrium such that the flow of measures {e:n},c[0,7] i3
Lipschitz continuous in time. This yields to linear semiconcavity estimates
for the value function V' both in space and in time. In conclusion, we
show that the notion of mild solution is strictly related with the classical
definition of weak solutions for the MFG system. Indeed, we prove that they
coincide, in the sense that: a mild solution is a weak solution and vice versa
(Cheorem—3730).

After this work was submitted, similar results were obtained in [1] for
the special case of mean field games with control on acceleration.

Ergodic behavior of MFG of acceleration

In this Chapter we focus the attention on a special case of system (B=21).
Indeed, we consider the case of control of acceleration which can be written

)-8 BBl =
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In this case, we have that the MFG system is given by

—opuT (t, 2, v) + 3| Dyu (t,z,0) > — (Dyul (t, 2, v),v)

= F(z,v,m}]), in [0, T] x T¢ x R?

oym! — (v, Dym]) — div (m?DUuT(t,x,v)> =0, in [0, 7] x T¢ x R?
WP (T,2,0) = glw,0,mE),  ml(e,0) =mo(z,v)  inT¢x R

(1.4)

During the last years, the question of the long time behavior of solu-
tions of (standard) MFG systems has attracted a lot of attention. Results
describing the long-time average of solutions were obtained in several con-
text: see [0, 1], for second order systems on T¢, and [29, 19, 20], for first
order systems on T?, R¢ and for state constraint case respectively. Recently,
Cardaliaguet and Porretta studied the long time behavior of solutions for
the so-called Master equation associated with a second order MFG system,
see [324]. In view of the results obtained in these works one would expect the
limit of u?' /T to be described by the following ergodic system

3| Dyu(z,v)|? — (Dyu(z,v),v) = F(z,v,m), (z,v)€ T4 xR?
—(v, Dym) — div (mDvu(z:, U)) =0, (z,v) € T¢ xR (1.5)
Jpiyga m(de, dv) = 1.

The main issue of this work is that this ergodic system makes no sense.
Indeed, as we explain below, even for problems without mean field inter-
action, we cannot expect to have a solution to the corresponding ergodic
Hamilton-Jacobi equation (the first equation in (IZ3)). As the drift of the
continuity equation (the second equation in (ICH)) is given in terms of solu-
tion to the ergodic Hamilton-Jacobi equation, there is no hope to formulate
the problem in this way. As far as we know, this is the first time this kind
of problem is faced in the literature.

To overcome the issue just described, we first study the ergodic Hamilton-
Jacobi equation without mean field interaction. More precisely, in the first
part we investigate the existence of the limit, as T tends to infinity, of
u®'(0,-,-)/T, where now u’ solves the Hamilton-Jacobi equation (without
mean field interaction)

—ouT (t,2,v) + 3| DyuT (¢, 2,0) > — (Dpul (t,2,v),0) = F(z,v), in[0,7]x T¢ x R?
uT (T, z,v) = 0in T? x R,

Here F : R? x R? — R is periodic in space (the first variable) and coercive
in velocity (the second one). Following the seminal paper [57], it is known
that the existence of the limit of u? /T is related with the existence of a
corrector, namely to a solution of the ergodic Hamilton-Jacobi equation:

1
—(Dgu(z,v),v) + §]Dvu(a:,v)]2 = F(z,v)+¢ (z,v)€ xT? xR,



for some constant ¢. However, we stress again the fact that due to the lack of
coercivity and due to the lack of small time controllability of our model, we
do not expect the existence of a continuous viscosity solutions of the ergodic
equation (see, however, this reference [40] on this point). This problem
has been overcome in several other frameworks: we can quote for instance
[63, 33, B8, 27, 3, O, B, [0, 17, 45, 44], for related problems see also [G, 53]
and the references therein. Following techniques developed in [I0] we prove
in the first part of Theorem B2 that the limit of u” /T exists and is equal
to a constant. However, this convergence result does not suffice to handle
our MFG system of acceleration: indeed, we also need to understand, when
the map F also depends on the extra time dependent parameter {m;}:>o,
how this ergodic constant depends on this. For doing so, we follow ideas
from weak-KAM theory (see for instance [A1]) and characterize the ergodic
constant in terms of closed probability measures: namely, we prove in the
second part of Theorem B=2 that, for any (z,v) € T¢ x R,

T
0’ ) . 1
lim v 02,v) = 1nf/ “|w|? + F(x,v) | p(de, dv, dw)
T—+o00 T peC Jrdyrdxrd \ 2
where C is the set of Borel probability measures 1 on T x R? with suitable
finite moments and which are closed in the sense that, for any test function
@ € C(T4 x RY),

/deRded (<Dm90(:v,v)7v> + (Dyp(z,v), w}) n(dx, dv, dw) = 0,

(see also Defmition 47T).

We now come back to our MFG of acceleration (I4). In view of the
characterization of the ergodic constant for the Hamilton-Jacobi equation
without mean field interaction, it is natural to describe an equilibrium for
the ergodic MFG problem with acceleration as a fixed-point problem on the
Wasserstein space. We say that (A, i) € R x C is a solution of the ergodic
MEFG problem of acceleration if

- 1
A= inf/ <|w]2+F(x,v,7rﬁ,u)> p(dz, dv, dw)
TdxRIxRd \ 2

1 - —
= /Ed RixRd (2\w|2+F(x,v,7Tﬁ,u)> i(dx, dv, dw),
XIREX

where 7 : T¢ x R? x R4 — T? x R? is the canonical projection onto the first
two variables. We show that such an ergodic MFG problem with acceleration
has a solution and that the associated ergodic constant X is unique under the
following monotonicity condition (first introduced in [564, 55]): there exists
a constant Mg > 0 such that for any my, mg € 2(T? x RY)

Jrayga (F(z,v,m1) — F(z,v,mz)) (m1(dz, dv) — ma(dz, dv))
> Mp [raygae (F(z,0,m) — F(:lc,v,mQ))2 dxdv,
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see (1) in Mhearem 45, The main result of this Chapter is the fact that,
if (u?’,m?) solves the MFG system of acceleration (I2), then u’ (0, z,v)/T
converges, as T tends to infinity, to the unique ergodic constant \ of the
ergodic MFG problem, see (2) in Mhearem 4°5. The main technical step
for this is to rewrite the MFG system in terms of time-dependent closed
measure (a kind of occupation measure in this set-up), see Cheorem 425,
and to understand the long-time average of these measures.

Singular perturbation problem

Here we address the singular perturbation problem for control systems of
acceleration and of MFG systems with control on the acceleration. The
main goal of this analysis is the behavior of such MFG system when the
acceleration costs goes to zero. So, the study of the singular problem without
mean-field interaction is used to understand the expected behavior of the
system. Hence, we first study the limit behavior of the solutions to the
Hamilton-Jacobi equation

—0uf + 5= | Dyuf|? — (Dguf,v) — Lo(z,v) =0, (¢, z,v) € [0,T] x R*
us (T, z,v) = g(x), (z,v) € R*.

as e — 0. As already pointed out in the previous Chapters, the Hamiltonian
1
H(:U,v,px,p»u) = E‘pvp - <p277 ’U> - L(](J],U)

fails to be strictly convex and coercive w.r.t. momentum variables. So, also
in this case, we solve the problem by using variational technics observing
that the value function u® can be represented as

W@wﬂoZzﬁ%{ﬁw(;%@P+Ld7@%W®D<u+gWHW}-

However, since this represents the test bench for the study of the singular
perturbation problem for MFG with control of acceleration we immediately
focus the attention on the latter describing it in details. The system we
consider here is given by

—Opuf + 5= |Dyuf|? — (Dyuf,v) — Lo(z,v,m§) =0, (t,z,v) € [0,T] x R*
Out — (Dot 0) — L diva (4 Do) = 0, (t,2,0) € [0,T] x R
W= o, W (T,2,0) = gz, m), (x,0) € R

(1.6)

where v : [0, 7] x R — R is the value function, u € C([0,T]; 21 (R?*?)) is
the joint distribution of position and velocity of a typical agent and mi =
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mips with mp 0 RY x RY — RY the projection map onto the first variable.
MFG systems with control on the acceleration describes in general models in
which the interacting agents controls their acceleration. Here, the systems
we are interested in are those in which the acceleration cost vanishes, as it
can be easily observed from (IC3).

The Lagrangian L appearing in the system is assumed to be smooth in
space and in velocity variables and to have Tonelli type dependence on v. We
refer to (M3) below for what concern the dependence of Ly on the measure
variable. One can immediately recognize that the underlying minimization
problem associated with the above PDEs systems has the following form

y(t)= 2
y(t)=v

w { | " (GHOR + Lota(e),5(s),m2)) ds -+ 9(4(T), o)

for any initial position and velocity (z,v) € R?,

The singular perturbation problem has been widely studied for control
problems and, more recently, for differential games. For an overview on the
subject, which is far from being complete, we refer the reader to [0, B, @],
and references therein. For these kind of problems, the general structure is
to consider a classical controlled dynamic coupled with one that depends on
a small parameter € > 0. Then, as € — 0 the limit system turns out to be
defined only on R? where the unperturbed system is defined. Some type of
perturbation problems in MFG have been studied, recently, in [29, 19, 20, 32|
where the authors study the long time-average behaviour of solutions to first
order MFG system and in [37, b8] where the authors study the homogenisa-
tion problem for second order MFG system. Note that, in homogenisation
the structure of the MFG system might be lost in the limit (as proved in
[87]) which is not the case here, as we will show in [heorem 53.

Indeed, going back to the MFG system (ICH) we prove that (u®,m?),
where we recall that m7 is the space marginal of the solution pj for any ¢t €

[0, T], converges (up to subsequence) to a solution (u’,m?) to the classical
MFG system
(i) — 0wul(t,x) + Ho(z, Dyul(t, z),m?) = 0, (t,x) € [0,T] x RY
(i) OymY — div (m?DpHg(x, Dul(t, z), m?)) =0, (t,x) € [0,T] x RY
my = mg, u(T,z) = g(z,mY), r € R?

(1.7)

where Hp : R x R? — R is the Hamiltonian associated with the Lagrangian
Ly. As observed so far, we can see from (IZ7) that the limit ¢ — 0 leads
to the elimination of the velocity as state variable, whose dynamics was
controlled via the perturbation . At this point, we again want to stress the
fact that the Lagrangian Lo in (IC@) depends only on the space marginal of
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the measure p®. First, this comes from the elimination of the velocity as
state variable and so, also for in the analysis of the measure p°, the limit
does no see the behavior of the second marginal. Moreover, we are interested
in connecting the MFG system of acceleration with the classical one which
we know depends only on a flow of probability measures in space which
describes the motion of the agents.

Let us briefly explain the method of proof. We first show that u® is
equibounded and m*® is tight (see Cemma 511 and Theorem 514). Thus,
as a first consequence we get that, up to a subsequence, there exists A=
C([0,T); 221 (R?) such that m¢ — m® in C([0,T]; 21 (R%)). Then, we pro-
ceed with the analysis of the value function u®: we show that u®(¢,-,v) is
equi-Lipschitz continuous, u® (-, z,v) is equicontinuous and u* (¢, z, -) has de-
creasing oscillation w.r.t. e (see Cemma 516 and [Proposition 5.17). We
finally address the locally uniform convergence of u®, showing that there
exists a subsequence ¢ | 0 such that (u*,m®) converges to a solution
(u®, m®) of (=7) (see MThearem 519, [Proposition 5.20 and [Corollary 5.29).
The main issues in proving the above results are due to the lack of strict
convexity and the lack of superlinearity of the Hamiltonian in system (ICH).
In particular, these and the fact that Lagrangian Lg is non-autonomous mo-
tivated us to use a variational approach instead of a PDEs approach since
the latter creates series difficulties in estimating uniformly the gradient of
u® w.r.t. velocity variable. We recall that such gradient plays a key role
in understanding the limit state space since it capture the behaviour of the
velocity as state variable in R? x R%.

Ergodic behavior of sub-Riemannian control sys-
tems

In recent years, increasing attention has been devoted to control systems of
the form

(1) =D i fi(y(1)) (1.8)
i=1

where f; are m € {1,---,d} vector fields defined on R?, with sublinear
growth, and controls u; are measurable functions on R”*. The main assump-
tion on the model is the so-called Chow condition (also known as Hérdman-
der condition in PDE), i.e., the fact that iterated Lie brackets of fi, ..., fmn
generate the whole tangent space at any point. Indeed, this condition im-
plies that the system is controllable, that is, given any two points in the
state space one can find a control that generates a path which joins the two
points. Such systems are naturally associated with a new metric on the state
space—the sub-Riemannian metric—which in general fails to be equivalent
to the classical Euclidean metric, see for instance [2, 38, 65, 61].

ey e, L, IS
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Given a Lagrangian L : R? x R™ — R, an initial position € R, and a
time horizon T' > 0 we consider the problem of minimizing the functional

T
ub—>/0 L(vi(s),u(s)) ds

over the space of all measurable controls w : [0,7] — R™, where 7 denotes
the solution of (M) such that 7(0) = z. The first part of this work
is devoted to the analysis of the long-time average behavior of the value
function of the above problem as T — oo, that is, the existence of the limit
of Vp(z)/T as T — oo where

T
Vr(z) = inf /0 LOYE (1), ult)) dt.

In particular, we prove that such a limit exists locally uniformly and is
independent of the initial position z € R, that is,

1
lim —=V; =a(l). 1.9
lim V() = a(L) (1.9)
Following [&1], it is known that the existence of the limit in (I79) is related
to the existence of a critical constant ¢ € R and of a viscosity solution x to
the ergodic Hamilton-Jacobi equation

H(z,Dx(z))=c¢ (zeR% (1.10)

where

m
WNWWW{ZWmMW—MW*-
ueR™ | v

The existence of the critical constant for equation (ICI2), in a certain sub-
Riemannian setting, was obtained in [3] by a technique based on optimal
transport. The analysis in [3] covers compact manifolds and families of
3-generating vector fields (i.e., a step—2 Lie algebra).

Our analysis, unlike [B], is performed on a noncompact state space
equipped with a general bracket-generating distribution. The lack of com-
pactness is a major difficulty that we overcome by condition (L3) below,
which ensures the existence of a compact attractor for all minimizing trajec-
tories. We observe that an assumption of the same type was used, in [19],
to study the long-time behavior of first order Mean Field Games systems on
Euclidean space and, in [61], to investigate the limit behavior of discounted
Hamilton-Jacobi equations on the whole space.

By analyzing the limit behavior of the discounted Hamilton-Jacobi equa-
tion associated with (II2), we deduce that the ergodic equation admits
solutions for ¢ = — (L) (Cheorem 6 13). Then we construct a specific so-
lution of such an equation which coincides with its Lax-Oleinik evolution.
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Our interest in such a solution is motivated by the fact that we need it to
derive a further characterization of the ergodic constant as the minimum of
the Lagrangian action on closed measures. As we will show in the following
Chapter, this is a crucial step to investigate the related Mather and Aubry
sets, on which ergodic solutions have important regularity properties.

We recall that for Tonelli, or even more general, Hamiltonians on a
compact or a non-compact manifold, the existence of solutions to the ergodic
equation ([CI2) has a long history going back to the seminal paper [57].
Among the many papers that have been published on the subject, when the
state space is compact and the Hamiltonian is Tonelli we refer, for instance,
to [43, A1) and references therein. If the state space fails to be compact and
the Hamiltonian is Tonelli or quasi-Tonelli we refer, for instance, to [I5],
(i), [22], [50], [@9], [51).

However, when the Hamiltonian is not coercive the problem of finding
solutions to (ICI2) is open. This issue has been addressed in specific frame-
works: we quote for instance [33], [68], [27], [13], for the ergodic problem
associated with the so-called G-equation or other noncoercive Hamiltonians.
Moreover, we refer to [G, 6] [63], [63] for more on second order differential
games.

We want to point out that some of the results of this work are specific
to affine-control systems without drift. Indeed, in the presence of a drift,
the existence of a continuous viscosity solution to (II2) with a noncoercive
Hamiltonian remains a challenging problem. We also mention systems with
control on the acceleration (see, for instance, [82]) for which it has been
proved that, due to the lack of small time local controllability, there are
no continuous viscosity solutions to the associated ergodic Hamilton-Jacobi
equation.

Aubry-Mather theory for sub-Riemannian control
systems

In Chapfer @, we have studied the asymptotic behaviour as T" — 400 of the
value function
T
Ve(a) = int [ LOI0.0(0) dt (@ eRY
u(-) Jo

where L is a Tonelli Lagrangian, controls u : [0,7] — R™ (1 < m < d) are
square integrable functions, v;, is the solution of the sub-Riemannian state
equation

(1.11)
7(0) ==,

and {f1,..., fm} are linearly independent smooth vector fields satisfying the

so-called Lie algebra rank condition. Observe that the above assumptions

{w) = > wi(t) fi(y(t))  ae te[0,T)
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ensure that system () is small time locally controllable. By using such a
property and assuming the existence of a compact attractor for the optimal
trajectories of (II), we proved that Vp(xz)/T converges to a constant—
a(L), the critical constant of L—as T" — +oo, uniformly on all bounded
subsets of R

As is well known, the convergence of the above time averages entails the
(locally uniform) convergence as A | 0 of the Abel means {\v)} x>0, where

o0
ua(z) = 11(1§/ e ML(vE(s), u(s)) ds (x € RY).
This fact in turn allows to construct a corrector y, that is, a continuous
viscosity solution of the so-called ergodic Hamilton-Jacobi equation

a(L)+H(x,Dx(z)) =0 (z € RY), (1.12)

where H is defined by

The above analysis is by now classical in the Tonelli case, that is, when
both L(z,v) and H(x,p) are smooth functions, strictly convex and superlin-
ear in v and p, respectively. Moreover, in such settings, the critical constant
has a powerful variational interpretation in terms of probability measures
minimizing the Lagrangian action on the tangent bundle. This connection
is well explained by the celebrated Aubry-Mather and weak KAM theories
(see, for instance, [41, 66, 59] and the references therein).

However, it is easy to see that the Hamiltonian in (I"13) fails to be
Tonelli, in general. So, the classical weak KAM theory does not apply to
minimization problems for sub-Riemannian control systems which are, on
the other hand, quite relevant for both theory ([2]) and applications ([62]).
Introducing new ideas and techniques to make this extension possible is the
purpose of this work.

To be more precise, we point out that the underlying geometry on the
state space, namely the sub-Riemannian structure induced by the family of
vector fields {fi}i=1,..m on R? (see for instance [2, B8, 65] and references
therein), plays a crucial role in our approach. Moreover, in order to improve
the natural regularity of correctors—which would just be Holder continu-
ous, see [23]—we restrict the analysis to the class of sub-Riemannian systems
that admit no singular minimizing controls different from zero. Then, ow-
ing to [25], we know that correctors are locally semiconcave, hence locally
Lipschitz, on R%. Finally, in order to deal with unbounded state and con-
trol spaces, we assume the existence of a compact attractor for all optimal
trajectories as is customary in this kind of situations.
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We now proceed to describe the main results of this Chapter. First,
extending the classical notion of closed measures on the tangent bundle (see,
e.g., [43]), we introduce the class Cr of closed probability measures adapted
to the sub-Riemannian structure and we show that the critical constant
a(L) is the minimum of the Lagrangian action on Cp (Chearem 7R). In this
context, it is worth noting that closed measures are naturally supported on
the distribution associated with {f;}i=1, m, which in our case reduces to
R? x R™,

Then, we introduce and study the Aubry set A from a dynamical and
topological point of view, proving that A is a nonempty compact subset of R¢
(Chearem 727), invariant for the class of calibrated curves for Peierl’s barrier
(28) (Proposition 7.28). Moreover, we show that any critical solution to
(I12) is differentiable along the range of the vector fields { f;}i—1,... m at any
point x € A (see Thearem 727 establishing horizontal differentiability).

Papers extracted: We conclude this introduction quoting the papers
which has been extracted from the work in this thesis.

1. P. Cannarsa, C. Mendico, Mild and weak solutions of mean field game
problems for linear control systems, Minimax Theory Appl. 5, No. 2,
221-250 (2020).

2. P. Cardaliaguet, C. Mendico, Ergodic behavior of control and mean
field games problems depending on acceleration, Nonlinear Anal., The-
ory Methods Appl., Ser. A, Theory Methods 203, 41 p. (2021).

3. C. Mendico, Singular perturbation problem for mean field game of ac-
celeration, Arxiv:2107.08479, (submitted).

4. P. Cannarsa, C. Mendico, Asymptotic analysis for Hamilton-Jacobi

equations associated with sub-Riemannian control systems, Arxiv:2012.09099,

(submitted).

5. P. Cannarsa, C. Mendico, On the Aubry set for sub-Riemannian con-
trol systems, (forthcoming).



Chapter 2

Preliminaries

In this chapter we collect some preliminary definitions and results that we
are going to use throughout this thesis. In particular, they concern:

1. Wasserstein spaces and Wasserstein distance, for which we refer to
[67, ] for more details.

2. Sub-Riemannian geometry and sub-Riemannian control systems on
RY, see [61, 65, .

3. Weak KAM theory for Tonelli Hamiltonian systems for which we refer
to [d1, &2, 66, 59].

2.1 Measure Theory

Let (X, d) be a metric space (in the work, we use X = R% or X = R% x R™).
Denote by #(X) the Borel o-algebra on X and by #?(X) the space of Borel
probability measures on X. The support of a measure p € #(X), denoted
by spt(u), is the closed set defined by

spt(p) == {x € X : (V) > 0 for each open neighborhood V,, of :c}

We say that a sequence {ug}ren C Z(X) is weakly-* convergent to pu €
P(X), denoted by o, f, if

tim [ f(a) o) = [ 1@ dute). VF € CUX).

n—oo X

There exists an interesting link between the weak-* convergence and the con-
vergence of the support of the measures, see [, Proposition 5.1.8]. Indeed,
if {pj}jen C Z(X) weakly-+ converges to p € Z(X) then

Vo espt(p) 3Fxj €spt(py):  lim x; = . (2.1)
j

—00

17
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For p € [1,+00), the Wasserstein space of order p is defined as

2yX) = {m e P(X)s [ dlao.a dm(z) <400}

for some (and thus all) zp € X. Given any two measures m and m' in
Pp(X), define

(m,m') := {)\ € P(XxX): MAxX)=m(A), N\(XxA)=m/(A), VA € B(X)}.
(2.2)
The Wasserstein distance of order p between m and m’ is defined by

dy(m,m’) = inf ( /X XXd(m,y)pd/\(z:,y)>l/p.

AeII(m,m’)

The distance d; is also commonly called the Kantorovich-Rubinstein dis-
tance and can be characterized by a useful duality formula (see, for instance,
[67]) as follows

dy(m,m’) = sup { /X f(z) dm(z) — /X fl@)dm'(z) | f: X =R is 1—Lipschitz},

(2.3)

for all m, m" € 21(X).
Let K be a subset of Z(X). We say that the set K has uniformly
integrable p-moment with respect some (and thus any) z € X if and only if

lim d(xz,z)? p(dx) =0, uniformly with respect to u € K.
11— 00 X\BZ(CE)
Remark 2.1. Notice that, if
0<p<pi, and sup/ d(z,z)P* p(dr) < +oo,
peK J X
then K has uniformly integrable p-moment.

Theorem 2.2 (Compactness and convergence). A set K C Z,(X)
is relatively compact if and only if it is p-uniformly integrable and tight.
Moreover, for a given sequence {p;}tien C Pp(X) we have that

lim dpy (i, p) =0

1—00
if and only if p; narrowly converge to u and {p;}ien has uniformly integral
p-moment.

Theorem 2.3. Let r > p > 0 and let K C Pp(X) be such that
sup/ |z|" p(dr) < oo.
neK JX

Then the set IC is tight. If, moreover, r > p then K is relatively compact for
the d, distance.
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Let X1, X2 be metric spaces, let u € #(X1) and let f: X1 — X2 be a
p measurable map. Then, we denote by fiu € &(Xs2) the push-forward of
p through f defined by

fi(B) = p(f~1(B)), V B € B(Xa).

More generally, in integral form, it reads as

/w(f(m)) u(d:v)Z/ o(y) fiu(dy).
X1

X2

We conclude this introductory section recalling the so-called disintegration
theorem.

Theorem 2.4 (Disintegration Theorem). Let X and Y be Radon sep-
arable metric spaces, let u be a Borel probability measure on X and let
m: X — Y be Borel map. Define v = iy € P(Y). Then there exists a
w-a.e. uniquely determined Borel measurable family of probability measures
{vytyey C P(X) such that

vy (X\m Hy)) =0, forp—ae yey,

| s@ntan) = [ ( L. f(x)uy<das>) (dy)

for every Borel map f: X — [0, 400].

and

2.2 Sub-Riemannian control

A class of nonholonomic drift-less systems on R¢ is a control system of the

form
m

) = 3 FO)uilt), te [0, +00) (2.4)

i=1
Such a system induces a distance on R? in the following way. First, we define
the sub-Riemannian metric to be the function g : R? x R™ — RU {oo} given

by
g(z,v) = inf{z ul v = Zfz(:r)ul} .
i=1 i=1

If v € span{ fi(z), ..., fm(z)} then the infimum is attained at a unique value
uy € R™ and g(z,v) = |ug|?. Then, since g((t),%(t)) is measurable, being
the composition of the lower semicontinuous function g with a measurable
function, we can define the length of an absolutely continuous curve v :
[0,1] — R? as

1
length(y) = / Vel @, 50) dt.
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In conclusion, one defines the sub-Riemannian distance as

dsr(z,y) =  inf _ length(y)
(%u)efﬁjy

where I‘g?y denotes the set of all trajectory-control pairs such that u €
L?(0,1;R™), v solves (24) for such a control u, v(0) = = and (1) = .
Following [25] it is possible to represent the sub-Riemannian distance as

follows
dsr(z,y) = inf{T >0:3 (you) €TELY, Jult)| < Lae. t € [o,:r]} (2.5)

for any z, y € RY. Moreover, again from [25] the sub-Riemannian distance
can be characterised in terms of the sub-Riemannian energy: setting

1
esn(z,y) = inf /0 g(v(),3(1)) dt,

T—yY

(vu)€ly

one can prove that
dsr(z,y) = Vesr(z,y) (2.6)

(see, for instance, [Z5, Lemma 11]).

Among the many properties of these systems we are interested in the
controllability. For such a system, controllability can be obtained by using
the Lie algebra generated by fi, ..., fim, which is defined as follows. Set

Al = span{fi,..., fm}

and, for any integer s > 1,
As-i—l = A5+ [AI’AS]

where [Al, A%] := span{[X,Y]: X € A|Y € A®}. The Lie algebra gener-
ated by fi,..., fm is defined as

Lie(flv"')fm) = U A®.

s>1

We say that system (24) satisfies Chow’s condition if Lie(f1,..., fm)(z) =
RY for any = € RY, where Lie(f1,. .., fm)(x) = {X(2) : X € Lie(f1,..., fm)}.
Equivalently, for any z € R¢ there exists an integer 7 > 1 such that
A"(z) = R The minimum integer with such a property is called the degree
of nonholonomy at x and will be denoted by r(z). Chow’s condition is also
known as the Lie algebra rank condition (LARC) in control theory and as
the Hérmander condition in the context of PDEs.

Example 2.5. The following are two well-known examples of sub-Riemannian
systems for which Chow’s condition holds true.
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(i) Heisenberg group: We consider the system in R3

@(t) = u(t),
y(t) =),
= u(t)y(t) — v(t)x(t)

In this case, the matriz of the system is given by

1 0
A(z,y,z) = |0 1
y —x

and the columns of such matrix satisfy the Hordmander condition:
X1 =(1,0,y), Xo = (0,1, —x) and [X1, X2] = (0,0,2) generate R3.

(ii) Grushin type systems: Consider a control system of the form

y(t) = p(a(t))o(t)

for a mnonzero continuous function @(x) with sub-linear growth. The
classical Grushin system in R? is obtained taking ¢(x) = x. Then, the
dynamics is given by the matriz

A=y o]

whose columns satisfy the Héordmander condition: X; = (1,0) and
[X1, X2] = (0,1) generates R2. O

Theorem 2.6 (Chow-Rashevsky theorem, [38, Theorem 3.1.8]). If
system (24) satisfies Chow’s condition, then any two points in R can be
joined by a trajectory satisfying (24).

Besides controllability, another important consequence of Chow’s con-
dition is the well-known Ball-Box Theorem, see for instance |2, Theorem
10.67]. Of particular interest to us is a corollary of such a theorem which
gives Holder equivalence between the Euclidean distance and the sub-Riemannian
one. First, we observe that for any 2 € R? a continuity argument ensures
the existence of a neighborhood U, of x such that

A"@ () =RY, Vyel,. (2.7)

Thus, given a compact set C there exists a finite cover given by {Uy, }i=1, .~
and a set of integers {r(x;)}i=1,.. n such that (27) holds on U,, with r(z) =
r(z;). Taking

r = izr{l’?.}fNr(xi)
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we obtain

A(y)=RY Vyek. (2.8)

We call degree of nonholonomy of K the minimum integer such that (23)
holds true and we denote it by (k). Moreover, we recall that a family of
vector fields {f;}i=1,..m is an equi-regular distribution on R< if there exists
ro > 1 such that A™(z) = R? for any x € R%

Corollary 2.7. For any compact set K C R? there exist two constants ¢,
¢o > 0 such that

_1
51|ZC - y| < dSR(xa y) < 52|$ - y‘r(}C), v T,y € K. (29)

Furthermore, we recall that the topology induced by (R?, dgg) coincides
with the topology induced by the Euclidean distance on R? ([2, Theorem
3.31]). In particular, from this result, we obtain that a set is compact in
(R?, dgR) if and only if it is compact in R? w.r.t. Euclidean distance.

We conclude this preliminary part with a brief introduction to singular
controls. Let zg € R? and fix t > 0. The end-point mapping associated with
system (24) is the function

E®ot: L2(0,t;R™) — RY
defined as
E () = (1)

where 7 is a solution of (24) associated with u such that v(0) = xg. Under
the assumption that the vector field f; has sub-linear growth for any i =
1,...m it is known that E*0! is of class C' on L?(0,t;R™). Then, we
say that a control u € L%(0,t;R™) is singular for E%- if dE*0:t(u) is not
surjective. Moreover, defining the function Hy : R x R? x R™ — R as

Hy(z,p,u) =Y uilp, fi())
=1

we have the following well-known characterization of singular controls.

Theorem 2.8. A control u € L?(0,t;R™) is singular for E*0! if and only
if there exists an absolutely continuous arc p : [0,t] — RAN\{0} such that

{*‘y(s) = DyHy(3(s). p(s), u(s))
—p(s) = DyHo(7(s),p(s),u(s))
with v(0) = z¢ and

Dy Hy(y(s),p(s),u(s)) =0, fora.e se]|0,t],

that is,
(fi(7(s)),p(s)) = 0
for any s € [0,1t].
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2.3 Weak-KAM Theory

Definition 2.9 (Tonelli Lagrangians). A function L : R? x R? — R is called
a Tonelli Lagrangian if it belongs to C? and it satisfies the following.

(i) For each (x,v) € R x RY, the Hessian D2,L(x,v) is positive definite.
(ii) For each A > 0 there exists B(A) € R such that
L(z,v) > Alv| + B(4), VY(z,v) € R x RY,
(iii) For each R > 0

A(R) = sup {L(m,v) | < R} < +o0.

Define the Hamiltonian H : R? x R? — R associated with L by

H(xz,p) = vseuﬂg {<p, v) — L(a:,v)}, V(x,p) € RY x RY.

It is straightforward to check that if L is a Tonelli Lagrangian, then H
defined above also satisfies (¢), (ii), and (#¢) in Definifion29. Such a
function H is called a Tonelli Hamiltonian. Moreover, if L is a reversible
Lagrangian, i.e., L(x,v) = L(x, —v) for all (z,v) € R? x R%, then H(z,p) =
H(zx,—p) for all (z,p) € R? x R%

Let us recall definitions of weak KAM solutions and viscosity solutions
of the Hamilton-Jacobi equation

H(z,Du) =¢, zeR% (2.10)
where c is a real constant.

Definition 2.10 (Weak KAM solutions). A function u € C(R%) is called
a backward (resp. forward) weak KAM solution of equation (2I0) if the
following holds.

1 or eacn contimuous pzecewzse CUT’U@’YI 1,02 — , We nave a
/) F h conti ] ise C1 .t R4 have that

Mﬂm»um@n>s/”LW@xwﬁm8+dwmx

t1

(ii) For each x € R%, there exists a C' curve v : (—00,0] — R? (resp.
7y : [0, +00) = R?) with v(0) = = such that

0
M@—WWDzALM%%w%—m vt <0

(resp. u(y(t)) —u(zx) = fg L(v(s),7(s))ds +ct, Vt>0).
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Remark 2.11. A function v on R? is said to be dominated by L+ ¢, denoted
by u < L+ ¢, if u satisfies condition (i) of Definffion 2T0. A curve 7 is said
to be (u, L, c)-calibrated if it satisfies condition (ii) of Definifion 2-T0.

Definition 2.12 (Viscosity solutions). Let V C R? be an open set.

(i) A function u : V. — R is called a viscosity subsolution of equation
(M), if for every C! function o : V. — R and every point xg € V
such that u — ¢ has a local mazimum at xo, we have that

H(zo, Dp(x0)) < ¢;

(ii) A function u : V — R is called a viscosity supersolution of equation
(1), if for every C' function ¢ : V — R and every point yg € V
such that u — v has a local minimum at yo, we have that

H (yo, DY(yo)) > ¢

(iii) A function uw:V — R is called a viscosity solution of equation (211)
if it is both a wviscosity subsolution and a viscosilty supersolution.

Definition 2.13 (Mané critical value). The Mané critical value of a Tonelli
Hamiltonian H is defined by

c(H) := inf{c eR: Jue CRY viscosity sol. of H(x, Du) = c} .

See [42, Theorem 1.1] for the following weak KAM theorem for noncom-
pact state spaces.

Theorem 2.14 (Weak KAM theorem). Let H be a Tonelli Hamiltonian.
Then, there exists a global viscosity solution of equation

H(x,Du) = ¢(H), x€&R%

In [A7], viscosity solutions are shown to coincide with backward weak
KAM solutions. Observe that, as R? can be seen as a covering of the torus
T¢, Mafié’s critical value can be characterized as follows:

c(H)= inf sup H(z, Du(x)).
(H) = _inf_ sup H(x, Dufa)

We conclude this section by recalling the notion of Mather set and the
role such a set plays for the regularity of viscosity solutions. Let L be a
Tonelli Lagrangian. As is well known, the associated Euler-Lagrange equa-
tion, i.e.,

d

aDyL(m‘,a}) = D,L(x, &), (2.11)
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generates a flow of diffeomorphisms ¢ : R? x R? — R? x R?, with t € R,
defined by
o1 (w0, v0) = ((1), (1)),

where z : R — R? is the maximal solution of (ZZIT) with initial conditions
z(0) = zg, ©(0) = vg. It should be noted that, for any Tonelli Lagrangian,
the flow ¢F is complete, see for instance [&2].

We recall that a Borel probability measure x4 on R? x R? is called ¢F-
invariant, if

w(B) = p(éy(B)), VteR, VBe AR xR?),

or, equivalently,
[, $kw) pdndo) = [ f0) ldn,dv), v € CF(RIRY)
Rd xR R4 x R4

We denote by M, the class of all ¢F-invariant probability measures.

Definition 2.15 (Mather measures [69]). A probability measure y € My, is
called a Mather measure for L, if it satisfies

/ L(z,v) p(dx,dv) = inf L(z,v) v(dz,dv).
R4 xRd veEMp JrdxRd
In [47], it was proved that
H) = — inf L dzx, dv).
o)== inf [ Do) v(da.do

Denote by M7 the set of all Mather measures. Observe that, if L (resp. H)
is a reversible Lagrangian (resp. reversible Hamiltonian), then

—c(H) = inf L(z,0).
c(H) = inf L(z,0)

The Mather set is the subset Mvo C R% x R? defined by
Mo = U spt(p).
HEMT

We call Mg = m1(Mp) C R? the projected Mather set. See [, Theorem
4.12.3] for the following result.

Theorem 2.16. If u is dominated by L + c(H), then it is differentiable at
every point of the projected Mather set M. Moreover, if (z,v) € My, then

Du(x) = D, L(x,v)

and the map My — R? x R?, defined by x — (x, Du(z)), is locally Lipschitz
with a Lipschitz constant which is independent of .
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Chapter 3

Mild and weak solutions of
Mean Field Games problems
for linear control systems

3.1 Setting of the Mean Field Games problem

3.1.1 Assumptions

Let us consider a Lagrangian L : R? x RF x 22;(R?) — R and a function
G : R% x 221 (R%) — R satisfying the following.

(L1) For any m € 21(R%), the map (x,u) — L(x,u, m) is of class C?(R? x
R*) and the map m ~ L(z,u,m), from 22;(R?%) to R, is Lipschitz
continuous with respect to the d; distance, i.e.

‘L(x7uam1) — L(JJ, u7m2)‘

Qr = sup < +o00.

(,u)ERY X RE di(m1,ma)
m1, ma€P (R?)
mi#mse

(L2) The map (x,m) — G(z,m) is of class Cy(R? x P (RY)) and for every
m € 21(R%) the map z — G(z,m) belongs to C} (R?).

(L3) (i) There exist a constant Cj such that

I
Fd < DyuL(z,u,m) < Cold, VY (z,u,m) € R x R¥ x 22, (RY).
0

(73) There exists a constant C; > 0 such that for any (z,u,m) €
RY x R* x 221 (R?)

IDZ, Lz, u,m)|| < CL(L+ |ul).

27
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(131) There exists a constant Co > 0 such that for any (z,u,m) €
R? x R* x 221 (R?)

|L(z,0,m)| + |DyL(x,0,m)| + |Dy(x,0,m)| < Cs.

Remark 3.1. Note that, from (L3), it is not difficult to check that there
exist cg > 0 and ¢; > 0 such that

1
colu? = e1 < L(z,u,m) < ¢1 + a|u|2 Y (z,u,m) € RY x R¥ x 2, (RY).

Fix a time horizon T' > 0. Let A and B be real matrices, d x d and d x k,
respectively, and consider the control system defined by

A(t) = Ay(t) + Bu(t), te[0,T] (3.1)

where u : [0, 7] — R* is a summable function. For all 2 € R? we denote by
(- ;2,u) the solution of the differential equation (8) such that v(0) = =
and define the metric space

Iy = {7(-;x,u) xeRY we LI(O,T;Rk)} c AC([0, T); RY)
endowed with the uniform norm, denoted by || - ||oc. Moreover, set

Ip(z) = {y €'y :9(0) = z}.

For any x € R any u € L'(0,7T) and any flow of probability measures
m € C([0,T]; 21(R%)) define the functional

T
J(:I:) u, {mt}t) = / L(’Y(t’ z, u)7 u(t)7 mt) dt + G(’Y(T’ xz, u)7 mT)7
0
and the associated optimal control problem

inf  J(x,u, . 3.2
gl T fme) (32)

Notice that the restriction to controls u € L%(0, T; R¥) is due to the structure
assumptions we imposed on L.

We proceed now to prove some estimates on the optimal controls and
the associated optimal trajectories.

Proposition 3.2. Assume (L1) — (L3). Then, there exists a real positive
constant K such that for any x € R, any m € C([0,T]; 21(R?)) and any
optimal control u* of (B2), we have that

[u"]]2 < K.
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Proof. By Remark BTl and the optimality of u* we deduce that
T
ATH||Glloo = J(z,0,{m}) > J(x,u™, {m}¢) > co/ |u* () |Pdt—c1T—|| G so-
0

Therefore, from the above inequalities we deduce that
2 g 2 2 2
[[u*]]2 :/0 [u* (t)[7dt < « (1T + ||Gllo) =: K2

Thus, the proof is complete. ]

Corollary 3.3. Assume (L1) — (L3). Then, there exists a constant Cy > 0
such that for any x € R, any m € C([0,T]; Z1(R?)) and any optimal
control u* of (82) we have that

17 lloe < C1(L1+ |2)
where v* is the trajectory associated with u*.

Proof. Since v* is a solution of (B1l) associated with u*, we know that

t
v (t) = e -l—/ e =) ABy*(s) ds.
0

Hence,
t
I (0)] < T (m 18] [ ) ds)
0

and by Hélder’s inequality
(&) < e (Jaf + | BITE ]l 0

Lemma 3.4. Assume (L1) — (L3). Then, there exists a constant Cy > 0
such that for any v € R, any m € C([0,T]; 21 (RY)) and any u* optimal
control for (B2) we have that

15*]l2 < Ca(1 + |z])

where v* is the trajectory associated with w*. Moreover, the family of mini-
mizing trajectories I'*(x) is uniformly Hélder continuous.

Proof. From [Proposition 3.4 and Corollary 3.3 there holds

ok * * 1 * 1 *
17 ll2 = [Ay*(8) + Bu™(t)[l2 < |AlIZ[[7*[l2 + | Bl 2 [[u*|l2

1
1 T 2 1
<JlAl} ( /0 Iy <t>|2dt> LB

<||A|2T2C (1 + |2|) + || B|2 K.
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Thus, for any ¢, s € [0,T] such that s <t we get

=76 < [ 5ol dr

1

1 l 1
<[4l \t—s\zs(m\a SC(1+al) + | BIFK) |t - s
Which completes the proof. O

In order to express our MFG problem in terms of the Lagrangian for-
mulation we are going to give a special structure to the continuous flow of
probability measures {m;}cjo,r]- Let a > 1, let mo be a Borel probability
measure in 2, (R?), and denote by [mg]. the a-moment of my, i.e.,

mola = /R el mo(dr). (3.3)

Let R be a real constant such that R > [my], and define the following space
of probability measures on I'p

Prng (T R) = {n e P(Cr): [ 115 n(dn) < R, eotn - mo}

where e () = 7(t) is the evaluation map. Note that the sets Z,,,(I'r, R)
are compact subsets of Z2(I'r) with respect to d; distance. Indeed, for any
r > 0 define the following sets

Cr={yelr:O0)<r [Fll2<r},

which are compact by Ascoli-Arzela Theorem. Observe, also, that by defi-
nition

Cic{yelr:ill2>rU{yelr: [y (0)]>r}.
Thus, given n € P, (I'r, R) we have that

n({y € L'z : [7(0)| > r}) = mo(B;)

which goes to zero as r — 400. Moreover, by Bienaymé-Tchebychev in-
equality we obtain

il

TOA

n{v €l :[fll2 >7}) <

Therefore, we get

c R c
77(Cr) < 7’70‘ + mO(Br)

which in turn yields the compactness of Z,,(I'r, R).
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Remark 3.5. There exist at least one constant R > [mg], such that the
set Pmo(I'r, R) is non-empty. Indeed, fixed a Borel probability measure
mo € P,(R%), consider the map p : R — 't such that

z = plz](t) := ez, Yt e0,T]

and define the measure n = p[-Jtmo € Z(I'r). Note that, for any z € R?
the curve 'z is an admissible curve associated with the control v = 0.
Then, the following holds:

1. for any bounded continuous function f on R%, we have that egn = my.

Indeed,
/ f(x) eot(da) / F((0)) n(d)

= [, 1600 pimo(an) = / F(pl](0)) mo(d)
= f(fl?) mo(dx);
Rd

2. the a-moment of 7 is bounded:

[ 1l wt@n) = [ 1ptalls mo(do)
I'r R4
< (llapeman)® /R I mo(dz) < (11Afe™41) fmola.

Therefore, taking R > (||A||6THAH)a [mo]a we have that n € Pp,,(I'r, R). O

3.1.2 Definitions and first properties

For any * € R any u € L'(0,T) and any n € Z,,,(I'r, R), define the
functional

T
In(z,u) = / L(v(t,z, u), u(t), en) dt + G((T', x,u), erfn)
0
and the associated optimal control problem

ueL22£:€“; 2 Iy, ). (3.4)

We denote by I';(z) the set of curves associated with an optimal control u*

(B83), i.e.

r:;(x):{fy(.;x,u*);Jn(x,u*): inf Jn(:z:,u)}.

u€L?(0,T;RF)
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Definition 3.6 (Mean Field Games equilibrium). Givenmg € Z,(R%),
we say that n € Py (I'r, R) is a Mean Field Games equilibrium for mg if

spt(n) C U Iy ().

zeRY
Proposition 3.7. Assume (L1) — (L3).

1. For any n € Py (L1, R) we have that

sup |x|* etin(dx) < R. (3.5)
te[0,T] JRA

Consequently, the family of measures {eiin}iejo,r is tight.

2. For any {n;}ien C Pmo (L1, R) andn € Py (L1, R) such thatn; —* n
we have that

di(edini, eddn) — 0
for every t € [0,T].

3. For any n € Ppy(Tr, R) we have that the map t € [0,T] — efin is
continuous.

Proof. We are going to prove only the point (1), see [I&, Lemma 3.2] for a
proof of (2) and (3).
Given n € P, (I'r, R) we have that

[l entan) = [ o i < [l ) < o

I'r

where the last inequality holds by definition of &, (I'r, R). So, by Theod
tem 273 the family of measures {e:fn}cpo,7] is tight in &, (RY) with respect
to the d; distance since by assumption o > 1. O

Remark 3.8. Note that, in (B3H) the constant R in independent of ¢ € [0, T
and 7. Indeed, as explained so far it is fixed a priori such that R > [my]q.

3.2 Mean Field Games equilibria: Existence and
Uniqueness

At this point, it is not difficult to prove that for any given o > 0 and
any given initial measure mgy € @a(Rd) there exists Ry > 0 such that
for any R > Ry there exists at least one Mean Field Games equilibrium
N € Py (I, R) and that, under a classical monotonicity assumption, such
an equilibrium is unique.
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For the sake of completeness, we give below the key ideas and steps
to prove the existence of a Mean Field Games equilibrium, following the
appoach in [IR].

Given mg € Z,(R?) and given n € Z,,,(I'r, R) we recall that by Ihed
brem 24 there exists a unique Borel measurable family of probability mea-
sures {1 },cra on I'r such that

) = [ neld) mofdo)
spt(n.) € T'p(z), mo—ae., xR
Define the set-valued map
E: (Pn,Tr,R),d1) = (Pmy(Tr, R), d1)

that associates with any n € Pp,,(I'r, R) the set
E(n) = {1/ € Py (L', R) + spt(vz) C Ty (), mo — a.e.}.

It is easy to realize that a given n € Z,,(I'r, R) is a Mean Field Games
equilibrium if and only if n is a fixed point of the above set-valued map, that
is, n € E(n). Therefore, in order to prove the existence of Mean Field Games
equilibria, we appeal to Kakutani-Fan-Glicksberg’s fixed point theorem, see
for instance [@, Corollary 17.55], which provides conditions under which the
set-valued map F has a fixed point.

We check the validity of such conditions in the following Lemmas.

Lemma 3.9. Assume (L1) - (L3). Let R > [mo|o. For any x; — x in RY,
any 1n; —* 1 in Pmy (L1, R) and any v; € L, (x;) such that v; — v in T'p we
have that v € I'} ().

Proof. Since v; € I’ (x;) we know that there exists a sequence of optimal
controls u; € L2(0,7T) such that v;(-) = (-, z;,u;) for every t € [0,T].
Moreover, from [Proposition 3.2 we get that ||u;||2 < K. Therefore, up to a
subsequence, we obtain that there exists @ € L?(0,T) such that u; — @ in
L?. Hence, we are reduced to prove that

2. Jy(z,u) < Jy(z,u) for every u € L*([0,T]),

Point 1:

By definition of ~y;, we know that

¢
yi(t) = el +/ eA=%) Buy(s) ds.
0
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Let v be a vector on R?, then
(0,7 (1)) = (v,eMz) + /Ot (v, e Bu,(s)) ds
= (v,ez) + /Ot (A=) BY* v, u;(s)) ds.
Thus, letting i — co by the weak L? convergence of u; we obtain that

t
(0,5(t)) = (v, e + / (v, A=) Ba(s)) ds.
0
This concludes the proof of point 1.
Point 2:
We now prove that
Jp(z, ) < liminf Jy, (25, u;).

1— 00

By (L2) and the convergence of ~; in I'y and that of 7;, it follows that
G(vi(T), ertni) — G(v(T), ertin).

Therefore, it suffices to prove that

/T L(3(t),u(t), esfn) dt < liminf TL(%(t),uz-(t),ettim) dt.
0

1—00 0

Now,
T
/0 (L), a(t), extn) — L(v(t), uilt), eitn)) d

T
- /0 (L), 0(t), estn) — LOHE), uilt), estn)) dt
A
T
" /0 (L), ust). extn) — Lvi(t), us(t), echs)) dt

B

By assumption (L3) (iii) and Lipschitz condition (L1) we have that B — 0
as ¢ — 0. Thus, we have to prove now that the functional

T
Au) = /0 L(t), u(t), eitn) dt

is weakly lower semicontinuous with respect to the L? topology. Define, for
every A € R,
X\ ={uec L*0,T): Alu) < A}
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By assumption (L3) on convexity of the Lagrangian L with respect to con-
trols, we get that the sets X are convex. Furthermore, such sets are closed
in the strong L? topology. Indeed, if {u;};en C X is such that u; — ue in
L? then u; — us a.e. up to a subsequence. Thus, by the continuity of L we
have that L(v(t),u;(t),efin) — L(y(t), uso(t), e:fn) a.e. and by Bemark 31
the Lagrangian L is bounded from below. Therefore, by Fatou’s Lemma we
obtain that u., € X). Hence, since the sets X are convex and strongly
closed it implies that they are closed also in the L? weak topology. O

Corollary 3.10. Assume (L1) — (L3). Then, the set-valued map

o (RL]1) = (1l floo)
x— I ()

has closed graph.

Lemma 3.11. Assume (L1) — (L3). Then, there ezists a constant R(c, [mola) >
0 such that if R > R(a, [mola) then E(n) is non-empty. Moreover, E(n) is
convezx and compact.

Proof. We, first, prove that given mg € %, (R%) for any n € Z,,,(I'r, R) the
set E(n) is non empty for some constant R > [mgls. Indeed, we have that
by and [Z0, Proposition 9.5] the set-valued map = = I'} ()
is measurable with closed values. Thus, by [26, Theorem A 5.2], there
exists a measurable selection 7, € I'y (), that is 7, (t) = J(t, z, u") for some
u* € L?(0,T) solution of (84) associated with 7. Define, now, the measure
7 as follows

n(A) = /Rd 05, (A) mo(dx) for any A € B(I'r).

Thus, we need to prove that 7 € P (I'r, R). Indeed, epfiy = mg by
definition and

/ 1418 (dv) = / 1ellg molda) < / Co® (1 + |2)® mo(da),
I'r R4 Rd

where the last inequality holds by Cemma 3. Therefore, we deduce that

10 ) < 5 ([ ot motas) +1) < C5mole 1),
Hence, taking R > R(a, [mo]a), where
R0, [male) = €5 (fmola + 1)

we obtain that 7 € &, (I'r, R). Consequently, that E(n) is non-empty.
The proof of convexity is a straightforward application of [IR, Lemma 3.5].
In conclusion, for any n € Z,,(I'r, R) the sets E(n) are compact, with
respect to the d; distance, since E(n) C P, (I'r, R) which is compact. O
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Lemma 3.12. Assume (L1) — (L3). Then, for any R > R(«a, [mola), the
set-valued map

E: (Pne(Tr,R),d1) = (Pmo(Tr, R), d1)

n— E(n)
has closed graph.
Proof. The proof of this Lemma is a straightforward application of [I8,
Lemma 3.6]. O

Theorem 3.13 (Existence of Mean Field Games equilibria). Assume
(L1) - (L3). Let R > R(a,[mgla), where R(c,[mola) is defined as in
LCemma 3 T1. Then, the set-valued map E has a fized point.

Proof. By the above lemmas the assumptions of Kakutani-Fan-Glicksberg’s
fixed point theorem (see, for instance, [, Corollary 17.55]) are satisfied and
therefore, there exists a fixed point of the map F, that is 7 € E(7) and 7 is
a Mean Field Games equilibrium. O

At this point, for a > 1 fix mg € Z,(RY) and R > R(a,[mgla),
where R(c, [molq) is defined as in Cemma 3 T1. Thus, by Theorem 313
we have that there exists at least one Mean Field Games equilibrium n €
P (L1, R).

From now on, we denote by 7(s;t,z,u) the solution to the following
control system

{’7(8) — A’y(S) —+ B’LL(S), CRS [t>T] (36)

v(t) = =,

where u : [t,T] — R* belongs to L?(t, T;R¥). Moreover, we introduce the
following notation

m{ = ey, (3.7)
for any n € Zp,,(I'r, R).
Definition 3.14 (Mild solutions of Mean Field Games problem). We
say that (V,m) € C([0, T] xR%) x C([0, T], Po(R%)) is a mild solution for the

Mean Field Games problem if there exists a Mean Field Games equilibrium
N € Pmo (') such that

(i) m¢=mj for allt € [0,T);
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(i) V can be represented as the value function of the optimal control prob-
lem (B3A), that is

V(t,x)

T
= ueL2(i(§,1£; - {/t L(vy(s;t,x,u),u(s),m]) ds + G(’y(T;t,x,u),m’%)}
(3.8)

for all (t,x) € [0,T] x RZ.

Note that the above definition is well-posed since we have proved so far
that there exists at least one Mean Field Games equilibrium and the map
[0,T) = Za(RY)

t > eddn
is continuous with respect to dy. Moreover, for the same reasons we know
that there exists at least one mild solution of the Mean Field Games problem.

In order to study the uniqueness of mild solutions, we focus the attention
on a particular Lagrangian function, that is

L(xz,u,m) := {(x,u) + F(x,m), (3.9)
where ¢ and F satisfy the assumptions (L1)—(L3).

Definition 3.15 (Monotonicity). We say that ¥ : R? x 21 (RY) — R is
monotone if

/Rd (‘I’(x’ml) - ‘I’(wvm‘z)) (m1 —mg)(dz) =0, (3.10)

for all my,my € P1(RY).
We say that U is strictly monotone if (810) holds true and

/]Rd (\Il(x,ml) — \Il(x,m2)> (m1 —mg)(dzx) =0 < F(x,m1) = F(z,mz2)
for any x € R?,

Theorem 3.16 (Uniqueness of mild solutions). Assume (L1) — (L3).
Let F and G be strictly monotone. Then, for any Mean Field Games equi-
libria n1 and 12 in Py (U1, R) we have that the associated functionals J,,
and Jy, are equal.

Consequently, if (V1,m1) and (Va,ma) are two mild solutions associated
with the Mean Field Games equilibria n1 and 12, then Vi = Va.

We omit the proof of the MThearem 318 which is similar to the one of
[T, Theorem 4.1].
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3.3 Further regularity of mild solutions

Throughout this section, given a > 1 fix mg € Z,(R?) and R > R(«, [mo]a),
where R(c, [mglq) in defined as in Cemma 3 T1. At this point, we know
that under assumptions (L1)-(L3) by MTheorem 313 there exists at least
one Mean Field Games equilibrium n € #,,,(I'r, R). Furthermore, if the
Lagrangian L is of the form (89), the coupling function F' and the terminal
costs G satisfy the strict monotonicity assumption, see Definifion 3 TH, then
the mild solution is unique. For this reasons, from now on we fix R >
R(a, [mola).

Now, we are going to prove that any Mean Field Games equilibrium
generates a family of probability measures {m?}te[o’ﬂ which is %—H(’jlder
continuous in time. Consequently, any mild solution (V,m") is such that
the value function V is locally Lipschitz continuous and locally fractionally
semiconcave on [0,7] x R%. Moreover, we will prove that there exists at
least one Mean Field Games equilibrium 7 € £, (I'r, R) such that t — m]
is Lipschitz continuous.

Given the control system (81), the Hamiltonian associated with the
Lagrangian function L is defined as

H(z,p,m) = sup { — (p, Az + Bu) — L(w,u,m)}.
u€Rk
The Hamiltonian H can be explicitly written as follows
H(fc,p,m) = —<pa A:E> - L*(l" —B*pam)v v (xvpv m) € Rd X Rk X @a(Rd)
(3.11)
where L* denotes the Legendre Transform of L, i.e.,

L*(xz,p,m) = usgﬂgc { — (p,u) — L(w,u,m)}.

Moreover, it is easy to check that there exists a constant co > 0 such that
for any (z,p,m) € R? x RF x 22, (R?)

|DpH (z,p,m)| < co(1 + || +[p]) (3.12)

and, from (7) in (L1) one can also deduce that there exists a constant cg > 0
such that

|DpH (2,p,m) — DpH(y,q;m)| < cu(lp — gl + [z = y|) (3.13)
for any (z,y) € R??, (p,q) € R?* and m € &, (R%).
3.3.1 Local Lipschitz continuity and local fractional semicon-
cavity of the Value function

Let (V,m") a mild solution of the Mean Field Games problem associated
with an equilibrium n € Z,(I'r, R). In this section, we prove that the flow
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of measures {m{},cor) are Holder continuous and consequently, that the
associated value function is locally semiconcave on [0,7] x R%, linearly in
space and with a fractional modulus of semiconcavity in time. Moreover, we
show that the value function V' is locally Lipschitz continuous on [0, 7] x R?.
We conclude this section proving that, under some extra assumptions on
the data, there exists at least one equilibrium n € Z,(I'r, R) such that
{m{}+ejo,r) is Lipschitz continuous in time.
We recall that V' is defined as the value function

T
V t7 = i f L ;t7 ) 9 b ,r] d —"_ G T; t7 ) ) n *
)= _int [ L6t ). md) s+ 66(T: ). |
Theorem 3.17 (H6lder continuity of equilibria). Assume (L1) - (L3).
Then, given any Mean Field Games equilibrium n, the map t — m) is 1

2
Hoélder continuous in time.

Proof. By definition of d;, we have that

dmfm) = _int 7 — ) (d
o) = [ o)~ ) (e

_ it /FT(tp(v(t))sO(v(S))n(dv)é / Iy (8) = () ln(d),

@€Lip; (R9) Oy

where Lip;(R%) is the set of Lipschitz continuous functions such that the
Lipschitz constant is equal to 1.

We recall that, since n is a Mean Field Games equilibrium then it is
supported on the set of all minimizing curves of problem (8). Therefore,
by Cemma=34 and recalling that x = v(0) we obtain

() < [ i) = (o))
T
1 1,1~ 1 1
<[t — |3 / (1AIET5C (1 + fol) + IBIEK) n(dy) = r(Imola)lt — 51,
T
where the constant x depends on the moment of mg which we know is

bounded by construction. Thus, the proof is complete. O

In order to prove the semiconcavity of the value function V', we need to
add the following assumption on the Lagrangian L and terminal cost G:

(L4) There exists two constants wy > 0 and wg > 0 such that for any
A € [0,1], any radius R > 0, any u € R*, any xg, 1 € Bpg, and any
m € 21 (R%) such that
AL (g, u,m) + (1 — X\)L(z1,u,m) — L(Axg + (1 — Az, u,m)
< wpA(1 = N)|zo — xl\Q,
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and
AG(xog,m) 4+ (1 = N)G(x1,m) — G(Azo + (1 — N)xz1,m)
< weA(1 — N)|zo — z1)?.
Theorem 3.18 (Local fractional semiconcavity of V). Assume (L1) -
(L3). Let R be a positive radius. Then, there exists a constant A > 0 such
that for any (t,x) € [0,T] x Bg, any (h,5) € R xR such that (x+h,t+0) €
[0,T] x Br and (x — h,t — &) € [0,T] x Br we have that
V(46,0 +h)+V(Et—bx—h)—2V(tz) <A <|hy2 + \5|3) .

Proof. We first prove that the value function V is locally semiconcave in
space uniformly in time and then, that it is locally semiconcave in space
and time.

Let R > 0 be a positive radius and fix (¢,z) € [0,7] x Bg. Let h € R?
be such that « + h, x — h € Bg and let u* € L? be an optimal control for
(t,z) € [0,T] x Bg. Then, define the following curves

v(s) =y(s;t,,u”), s€[t,T]
i (s) =y(s;t,x + h,u*), selt,T]
v-(s) =y(s;t,x — h,u*), s € [t,T].

Thus, we have that
V(t,x+h)+V(t,x —h)—2V(t,x)
T
< / (£ (5), 0 (5), m) + Ly (5), ' (s), m) = 2L((s), u*(5),m2) ) ds

+G(7+(T), my) + G(y-(T), my) — 2G(y(T), m7).
(3.14)

Consider, first, the expression involving only the terminal costs:
G(v+(T),mp) + G(y-(T), mz) = 2G(y(T), m7)
Y+ (T') + v=(T
= G () + Gl (D)) = 26 (=) )

2 1
420 (W%) —2G(y(T), m).

By (L1) and (L4) we deduce that

GOT) ) + G (oo () ) — 26 (DL )

< wale(1) - 1- (P26 (I g ) - 26 ().

< Glloo 4 (T) + 7 (T) = 24(T)]-
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From the definition of v, 74 and v_ we have that these curves are solutions
of (B). Therefore, we get that there exists a real positive constant W such
that

4 (T) = 7= (T < WlhP,

V4 (T) + 7= (T) = 29(T)| < W|h|*,
Hence, we get

G(14(T),mp) + G(y-(T),m7) = 2G((T),m7) < W (wg + [|Gllsc) 1.

By almost similar arguments, one can prove that also the integral term in
(813) is bounded by a constant times |h|?. This proves that V is locally
semiconcave in space uniformly in time.

We proceed to show that V is locally semiconcave on [0,7] x R?. Fix
(t,x) € [0,T] x Bg and let h € R% § € R be such that x + h,  — h € B
and 0 <t—6 <t+6 <T. Let u* be an optimal control for (¢, ) and define

the control
_ L [t+6+s
u(s) =u —

By the Dynamic Programming Principle we get

V(t+d,z+h)+V(t—0,x—h)—2V(tx)
< V(@Et+d6x+h)+V(E+06,v({t+0;t—0,x—h,u)) —2V(t+d,v(t + 0;t, z,u™))

/

>, seft—o,t+4].

1
t+6 t+6
—|—/ L(y(s;t — 9,z — h,u*),u(s),m?) ds — 2/ L(y(s;t,z,u™),u"(s),m?) ds.
t—¢ t
1

Thus, by the first parte of the proof term I is bounded by a constant times
|h|? + |§]2. Now, we have to estimate term II. Let us denote, for simplicity,
by v~ the curve (- ;¢ — 0, — h,u*). Then, by assumption (L1) we have
that there exists a constant D > 0 such that

t+6
IT = 2/t (L(f(zs —t—0),u"(s),my,_,_5) — L(v(s),u(s), mfZ)) ds

144
< D/t (\7‘(28 —t—=08) —(s)| +d1(m’27$7t75’m787)) s
(3.15)

Since 7 is a Mean Field Games equilibrium we know by MTheorem 3 T7 that
{m?}te[o,ﬂ is %—Hélder continuous in time with respect to the d; distance.
Therefore,

t+6 t+6 1 2 3
/ di(mg,_,_g5md) ds < ff([mo]a)/ |5 —t =]z ds < Zr([mo]1)]d]2.
t t
(3.16)
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Now, we have to estimate the distance between the curves v_ and ~. For
that, we recall that since v_ and 7 are solutions of (Bl) we know that

25—t—0
v (2s —t—10) :e(S_H—é)A(.%' —h)+ / e(T‘”‘S)ABa(r) dr,
t—0

v(s) —els—)Ag —|—/ e(T*t)ABu*(T) dr.
t

From [26, Theorem 7.4.6], without loss of generality, we can assume that
u* belongs to L and consequently, @ € L°°. Thus, we obtain that for any
s € [t,t+ 9]

Y7 (2s =t —6) —v-(s)]
< T4 R + 25T 14N B [|]|o + (5 — )14 B|||u*| .-

Therefore, we deduce that

t+0
[ (140 ] + 25T B al]og + (5 — )T B0 ) ds

< 3e™ 14 ] + (26140 B ] + €741 B " o ) 8%
(3.17)

Hence, combining (B78) and (817) with (313) yields the conclusion. [

Remark 3.19. We note that [Chearem 3 T8 guarantees that the function
x +— V(t,z) is linearly semiconcave, locally uniformly in time.

The proof of the following theorem is given in Becfion 351 since the
techniques we have used to prove it are classical in optimal control theory.

Theorem 3.20. Assume (L1) — (L3). V is locally Lipschitz continuous on
[0,T] x RZ.
3.3.2 Lipschitz regularity of Mean Field Games equilibrium

Define the following class of curves on Z,(R9)

d s
Lip(Z,) = { m € C([0,T]; Z4(RY)) : iip M<O® ’
t,sE[(iT]

and set

PRI (Tr) = {5 € Pony(Tr, B) - " € Lip(1) }.
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Remark 3.21. The set L@,I#f (@“)(FT) is non-empty. Following the construc-
tion we have done in Remark 33, let p : RY — 't be defined as

z — plz](t) := ea,V t € [0, T]

and define n = pgmyg. Therefore, by Bemark 3 H, we only need to prove that
m" € Lip(Py).
Indeed,

(i) = sup [ o) (m, (da) — m (o)
= s [ (660 o))
- s [ (6((0)) = 6 22))ptmota)
= sw [ (@(plel(t) — olpla]ta))mofda)

= su etz — d(e22))mo(dx
= s [ (0 a) - o) mo(d)

¢€l—Lip
S/ |6Atla: - eAtQ:C’mg(dx).
Rd

Since the function ¢ — e4*x is Lipschitz continuous in any compact subin-
tervals of R we get the conclusion. O

Proposition 3.22. Assume (L1) — (L3). Letz € R? andn € @éﬁp(%’(m).
Let u* be an optimal control for (BA) and let v* be the minimizing curve
generated by u*. Then, there exists a real positive constant Q)1 such that

19 llo0 < Qu(1 + [2]).
Proof. From the same reasoning in [26, Theorem 7.4.6] one can prove that
[0 [0 < Qo(1 + [2]). (3.18)
Hence, from the state equation we obtain
17" (®)lloo < AN lloo + 1 BIHluloo-
Thus, by and by (BIR) we get
17 ()lo < max{||A[IC1, | BIQo}(1 + |2]). m

Remark 3.23. We observe that the above result is a generalization of [24,
Proposition 5.6] where we assumed that there exist two constants cs3, ¢4 such
that for any (z,p,m) € R? x RF x 22,(R%)

<DIH($,]), m)ap> > C3|p’2 — (4.
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We recall the definition of the set-valued map E given in the Section 3,
that is,

E: (Pne(Lr,R),d1) = (Pmo(Tr, R), d1)

with
E(n) ={v € Pmo(I'r,R) : spt(vy) C [ (), mo — a.e.}.
Lemma 3.24. Assume (L1) - (L3). Then, E(ﬁz,%p(‘@“)) C L@é?(‘@a).

Proof. Fixn € L@,Iﬁif (Z2) and let w be a Borel probability measure in E(n).
We need to prove that for any ¢1, to € [0,T], with t1 < to

sup  Blmme)
t#s |t - 8’
t,s€[0,T
Hence
dy (mfl,mg) = sup (x) (mffl (dx) — mfl(d:n))

¢€Lip; (RY) JRY

= sup (¢(v(t1)) — ¢(v(t2)) p(dv)

#€Lip; (R) JI'r

< /F ) =3t () < 11— o /F el )

<1 — /F Q1(1+ |z]) uldr),

where the last inequality follows by [Proposition 3.22. Therefore, recalling
that x = v(0) and u belongs to &, (I'r, R), we obtain the conclusion. [J

Theorem 3.25 (Existence of Lipschitz Mean Field Games equilib-
ria). Assume (L1) — (L3). Then, there exist at least one Mean Field Games

equilibrium such that the associated family of measures {m?}te[o,T} belongs
to Lip(Z,).

Proof. It is sufficient to prove that the set-valued map E : ,@}nif (“%‘)(FT) =
,@71#3 (Ze) has a fix point and in order to prove it we want to use Kakutani’s
fixed point theorem.

We recall that by Cemma 3T we have that the map F has closed graph

.. Lip(Z, . Lip(Z,,
and so also the restriction of E on ,@mlg’ ( ). Moreover, since lef (Za) C

P (L1, R) we have that 9}#{? (Pe) i compact.Therefore, all the assump-
tions of Kakutani’s fixed point theorem are satisfied and this concludes the
proof. O
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Corollary 3.26. Assume (L1) — (L3). Let n € Z,(I'r, R) be a Lipschitz
Mean Field Games equilibrium and let (V,m") be a mild solution associated
with . Then, the value function V is locally semiconcave on [0,T] x RY with
a linear modulus of semiconcavity.

3.4 Mean Field Games: PDEs system

3.4.1 Optimal syntesis

In order to deduce the PDE system for our Mean Field Games problem, we
have to derive first some optimality conditions for the following problem:

T
J(x,u) = inf ){g(y(T)) —1—/0 L(t,y(t),u(t)) dt}. (0C)

’YGFT(I
As usual, let V' be the value function of the above (OC) problem.

Proposition 3.27. Assume (L1) - (L3). Let (tg,70) € [0,T] x Br and
let po be a point in D:V (tg,x0). Then, there exists a pair of curves (7,p)
solving the Hamiltonian system

{ A(t) = —DpH (8, 5(8),5(t),  7(to) = o
ﬁ(t) = DacH(tvf_Y(t)vﬁ(t))v Tj(tﬂ) = Do

such that 7 is a minimizer of V (to,zo). In particular, if V (to,-) is differen-
tiable at xo then 7 is the unique minimizer of V (to,xo).

Proof. Let po be a point in D%V (tg, o) such that (tg, z0) € [0,7] x Br. By
definition of reachable gradient, there exists a sequence {xj}ren such that

T — X0
—pPo = lim DmV(to,wk).
k—o0

Let u; and 7 be, respectively, an optimal control and an optimal trajec-
tory with starting point (¢g,z). By the maximum principle, we have that
there exists an absolutely continuous arc pg such that

{ jf’k(t) = A*ﬁ_k(t) + Dy L(t, Yk(1), uk(t)) (3.19)
pi(T) = Dg((T)).
By the maximum principle we know that
;)/k(t) = _DpH(t7 P_Yk(t%pk(t)) (3 20)
Pr(t) = Do H(t, 3k (t), pr(t))- '
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Since the sequence {xy}ren is convergent, by Corollary 3.3 and [Propo]
Eifion 322 we obtain that {7 }ren is equibounded and equicontinuous.
Moreover, by (B19) we have that for any t > g

T
pr(t) = T4 Dg(4(T)) +/ eSO DL L(s, (), Tk (s)) ds.
t

Thus, it easily follows that also the sequence of dual arcs {px}ren is equi-
bounded and equicontinuous. Therefore, there exist an absolutely contin-
uous arc p and a curve 74 such that pp — p and 74 — %, uniformly as
k — oo.

From (L3), we have that there exists a constant x > 0 such that

|DyL(t,x,u)| < w(1+ ]u\Q)

Moreover, since z € B we deduce by [28, Theorem 7.4.6] that there exists

a constant & > 0 such that [|ui|lcc < K. Consequently, we obtain that
D, L(t, 3(t), ux(t)) weakly converges in L?(0,T;R?) to D,L(t,5(t),u) as
k — oo.

Therefore, passing to the limit in (8T9) we get that p is a solution of the
limit equation and by the maximum principle the pair (7, ) solves system
(820). In conclusion, as k — oo in the value function we obtain that the
curve 7 is a minimizer for (¢o, zg). O

3.4.2 Weak solutions

In this section, we consider the case of splitted Langrangian, that is L is of
the form (B1).

We recall that, given the control system (B), the Hamiltonian associ-
ated with the Lagrangian function L is defined as

H(z,p) = 531156 { — (p, Az + Bu) — E(x,u)}.

For a > 1, let my € Z,(R?) be a Borel probability measure and intro-
duce the following Mean Field Games PDEs system

—0V (t,x) + H(x, D,V (t,x)) = F(x,m;), (t,x) €[0,T] x R?
Oymy + div (mtD H(x, DV (t ))) (t,x) € [0,T] x R? (3.21)
v

mo =mg, V(T,z)=G(x, mT), x €

Definition 3.28 (Weak solutions). We say that (V,m) € W1>°([0,T] x
RY) x C([0,T), Pa(RY) is a weak solution of the Mean Field Games PDEs
system if:
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(i) m is a solution in the sense of distribution of the continuity equation,
i.e. for any test function ¢ € C}([0,T) x RY) we have that

- [ #(0.2) mo(ao)
T

= / <8t90(t,:c) — (De(t, x),DpH(x,DwV(t,x)))) my(dzx).
0o Jrd

(i) V(t,-) is differentiable on spt(m:) and V is a continuous viscosity
solution of Hamilton-Jacobi equation.

Remark 3.29. We recall that by classical optimal control theory, see for
instance [26], the following holds:

1. from the maximum principle one can deduce that any minimizer ~y of
problem (B™) has the same regularity of the data, thus in this case we
obtain that v € C?;

2. given a Mean Field Games equilibrium 7 we have that for any = €
spt(my) the value function V is differentiable since the value function
of an optimal control problem with a strictly convex Hamiltonian (with
respect to p) is known to be differentiable in the interior of any optimal
trajectory, see for instance [26, Theorem 6.4.7] and [22, Proposition
4.4].

Theorem 3.30 (Equivalence between mild and weak solutions). As-
sume (L1)—(L4). Fiz o > 1 and let mg € Po(RY) be an absolutely con-
tinuous with respect the Lebesque measure and with compact support. Then,
(V,m) € C([0,T] x R%) x C([0,T], Pa(RY)) is a mild solution of the Mean
Field Games problem if and only if it is a weak solution of system (B=21).

Proof. First, we show that any mild solutions (V,m") is a weak solution.
Let V' be the value function defined as in Definition 3 T4, in expression
(B]R). Then, it is well-known that it is a continuous viscosity solution of
the Hamilton-Jacobi equation in system (B=21) and satisfies the terminal
condition. Hence, we are left to prove that m” is a solution of the continuity
equation in system (B=2T) in the sense of distributions.
Indeed, for any ¢ € C1([0,7) x R?), we have that

% y o(t,z) mj(dz) = jt/FT @(t,y(t)) n(dy)
= [ (0uplt:1(0) + (Dol 7(0). 50 nla),

where the last integral is well-posed by point (1) in Remark—329. Since
N € Pmy(I'r, R) is a Lipschitz Mean Field Games equilibrium we know that
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n is supported on the minimizers of problem (B3). So, from the Maximum
Principle we know that

’Y(t) = _DPH(PY(t% Dwv(tu ’Y(t)))

Therefore,

i L et mian)

= | (00ptt:1(0) + (Duplt.1(0). 50 mlan)
= [ (0plt.1(0) = (et 1), D (2). DoV () mle)
:/Rd <8tso(t,:c) - <Dz<p(t,a:),DpH(:c,Dwv(m;m) m!(dz),

where the last integral in above series of equality is well-posed by point (2)
in Remark—329. The conclusion follows by integrating the above equalities
over [0, 7.

Now, let (V,m) be a weak solution of Mean Field Games system. Since
V' is a viscosity solution of the Hamilton-Jacobi equation we know that it
can be represented by the formula (838) in Definifion -3 T4. Hence, we only
have to prove that there exists a Mean Field Games equilibrium 7 such that
me = efn.

Since m is a solution of the continuity equation in the sense of distribu-
tions, by the superposition principle [7, Theorem 8.2.1] we know that there
exists a probability measure p € Z(I'r) such that m; = e;fpu and p-a.e. is
a solution of the following equation

Y(t) = =DpH(y(t), DV (t,~7(t))), te€l0,T] (3.22)

As mo = egfip, by Theorem 24 there exists a family of Borel probability
measures fiz, for any x € spt(mg), such that

p(dy) = /]Rd pz(dy)mo(x) de.

Since myg is absolutely continuous with compact support and the value func-
tion V is locally Lipschitz continuous, it follows that mg-a.e. and p;-a.e. v
is a solution of (B222) such that v(0) = x. Therefore, by the optimal synthe-
sis explained above, such a curve 7 is a minimizer of the underlying optimal
control problem and from (BTI3) it is also the unique solution of (B=22).
Hence, the measures i, are supported on minimizing curves of the optimal
control problem. Consequently, p is a Mean Field Games equilibrium for
mo.

O
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The following result is an immediate consequence of Mhearem 330 and
[heorem 3 T8.

Corollary 3.31. Assume (L1)—(L4). Assume that F is strictly monotone,
in the sense of definition [Definition 3.13. Let n1, n2 € Pmy(L'r, R) be
two Lipschitz Mean Field Games equilibria and let (Vi,m™), (Va,m™) be,
respectively, the weak solutions of system (8220). Then, Vi = V5.

3.5 Appendix

3.5.1 Proof of Thearem 320

We divide the proof in two steps: first, we prove that V is locally Lipschitz
in space and then, we prove that it is locally Lipschitz in both the variables.

Let R be a positive radius and denote by Bg the ball of radius R centered
in the origin on R¢. Fix z € B and h € R? such that  + h € Bg. Then,
given an optimal control u* associated with (t,z) € [0,T] x Bg we get that

V(t,z+h) - V(t,z)

T
< /t (L('y(s;t,:v + h,u*),u*(s),m?!) — L(y(s; t, z,u"), u*(s),m;’)) ds

+G(y(Tst, 2 + h,u'),mp) — G(V(T;t, z, u"), mp).
(3.23)

Thus, we have to estimate the distance between two admissible paths: the
one starting in (¢,z) and the other one starting in (¢, 4+ h). Recall that

v(sit,z,u) = e +/ e TOABY (1) dr, Vs e[t T)
t

to obtain
Iv(sit,z + h,u*) — y(s;t,z,u*)| < T MAn|, Vs elt,T).
Therefore, by assumption (L2) we get
G((Tst,x + h,u*),m]) — G(V(Tst, 2, u*),mi) < [|Glloce” 4h].

So, we just have to bound the integral term in (8223). By assumption (L3),
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we have that

T
/t (L(y(s; t,x + h,u*),u*(s),ml) — L(vy(s;t,z,u”), u*(s), mg)) ds

T 1
/ (DyL(Ay(s;t,x + h,u®)
t Jo

+ (1= AN)y(s;t,x,u”),u*(s),m?,y(s;t,x + hyu™) —y(s;t,x,u”)) ds

< / / |DaL(AY(s3t, @ + hyu*) + (1= A)y(s;t, @, ub)|
t Jo
|u(s), mZ, y(sit, @+ hou") — (st x,u”)| ds

T 1
< [ [l w st ha) — (st ds
t 0

< TeaeTI AR + coV'T||u*||a|h| = (czTeTHA” +02ﬁK) Ih],

where ||u*||2 < K by [Proposition 3.4. Then, we conclude that

Vit,z +h) - V(t,z) < <CQT6T“AH + eoVTK + ||G||OoeT”AH) In].

By similar considerations, one can easily prove that the reverse inequality
also holds true. Therefore, we have that V is locally Lipschitz in space.

We now prove that V' is locally Lipschitz in space and time on [0, 77 x Br
forany R > 0. Fixt € [0,T], x € Bg and let § € R be such that t+6 € [0, 7.

We recall that, by the Dynamic Programming Principle we know that

t+6
V(t,x) = inf {V(t+5,’y(t+5;t,:v,u)) +/ L(y(s;t,z,u), u(s), m?) ds}
t

u€L?
(3.24)
Moreover, by [26, Theorem 7.4.6] we know that, under the assumptions
(L1)-(L4), for any n € Z,,,(I'r) and any = € R?, problem (B2) is equiva-
lent to the following one

inf  J, (2, u).
ueLOOl(I(l],T;IRk) nl@,u)

Thus, we can minimize over the set of bounded controls. Let the control
u* € L™ be optimal for V(¢,z). By (B24) we deduce that for any ¢ > 0

t+6
V(t,a)+e> / L(y(s;t,e,u”),u (s),ml) ds + V(¢ + 8.(t + 8:t, 2,u")).
t
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Hence, we have that

V(t+9d,z)—-V(tx)
< V(t+6,2) = V(t+6,v(t+ 6 t,z,u"))

t+0
- / L(y(sit, 2, u), u*(s),m?) ds + €
t

< (T 4 oV TK + (Gllooe™A1) | = 5t + 68,2, ")

1,
46 (cl L y\oo) ,
co

where the last inequality holds true by the first step of the proof and assump-
tion (L3). Moreover, since the curve ~(-; ¢, z,u*) is Lipschitz continuous in
time, we know that the first term of the right-hand side is bounded by a
constant times §. Thus, the proof of first estimate is complete.

On the other hand, again by (8224) we know that taking u = 0 we have
that

(3.25)

t+6
V(t,z) < V(t+6,7(t+d;t,2,0)) +/ L(v(s;t,%,0),0,m]) ds.
t
Therefore, adding and subtracting the term V(¢ 4§, z) we get that
V(t,x) —V(t+0,x)

t+06
<V(t+0,v(t+d;t,2,0) = V(t+d,z)+ / L(vy(s;t,z,0),0,m?) ds.
¢

Hence, by the same considerations as in (B=25) we get the result. O
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Chapter 4

Ergodic behavior of control
and mean field games
problems depending on
acceleration

4.1 Setting and assumptions of the problems

4.1.1 Calculus of variation with acceleration

In our first main result we study the large time average of an optimal control
problem of acceleration. Let L : T% x R x R — R be the Lagrangian
function defined as

1
L(z,v,w) = §|w\2 + F(x,v)
where I : T¢ x R — R satisfies the following assumptions:
(F1) F is globally continuous with respect to both variables;

(F2) there exists @ > 1 and there exists a constant ¢y > 1 such that for
any (z,v) € R? x R4

1
— " —ep < F(z,v) < ep(14[0]%) (4.1)
cF

and, without loss of generality, we assume F'(z,v) > 0 for an (z,v) €
T4 x R

(F3) there exists a constant Cr > 0 such that
| Dy F(x,v)| + | Dy F(x,v)] < Cp(1l+ |v|%).

53
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Let T be the set C! curves v : [0, +00) — T? (endowed with the local
uniform convergence of the curve and its derivative) and for (¢, z,v) € [0, T]|x
T x R? let T'y(z,v) be the subset of T' such that y(t) = = and () = v.
Define the functional J57 : T' — R as

Tl . :

70) = [ (GHEP+FOELA) ds iy e 0.1, (42
t

and J4T(y) = 400 if v & H?(0,T;T%), and let VT (¢,z,v) denote the value

function associated with the functional J“7 i.e.

VIt z,0) = inf  JT(r). (4.3)
~€ET(x,v)

Let H be the Hamiltonian associated with the Lagrangian L, that is for
any (z,v,p,) € T? x R? x R?,
Lo
H(xﬂ})pv) = §|pv| - F(.’E,’U)7
where p, € R% denotes the momentum variable associated with v € R%
Then, it is not difficult to see that the value function V7 is a continuous

viscosity solution of the following Hamilton-Jacobi equation on [0, T] x T¢ x
R

—0 VT (t,z,v) — (D VT (t,z,v),v) + %]DUVT(t,x,v)\Q = F(x,v),
VT(T,z,v) =0 in T x R%

Our aim is to characterize the behavior of V7(0,-,-) as T'— +o0. To state
the result, we need the notion of closed measure, which requires another
notation: we set

Poa(T? x R x RY)

—{uG@(deRded):/

(Jw|* + [v]*) p(dz, dv, dw) < —i—oo}
TexRIx R4

endowed with the weak-* convergence.

Definition 4.1 (Closed measure). Let n € P, 2(T¢ x R? x RY). We say
that n is a closed measure if for any test function p € C®(T? x RY) the
following holds

/deRded <<D190(x,v),v) + <Dvgo(x,v),w>) n(dz, dv, dw) = 0.

We denote by C the set of closed measures.



4.1. SETTING AND ASSUMPTIONS OF THE PROBLEMS 55

Theorem 4.2 (Main result 1). Assume that F' satisfies assumptions (F1)
and (F2). Then, the following limits exist:
1

1
T 4o T 0, 2,v) T—lgrloo'yeIl?(M)T v

and are independent of (x,v) € T? x R%. Moreover, if F satisfies also (F3)
then

1 1
lim —V7 = inf “|wf* + F dz, dv, dw).
Jim TV 0,z,v) inf S <2]w\ + (m,v)) p(dx, dv, dw)
Remark 4.3. 1. If we denote by X the above limits, the convergence of

VT(0,z,0) = AT

is a completely open problem in this context. This is related to the
lack of solution of the ergodic HJ equation.

2. The (strong) structure condition on L and the fact that the problem is
periodic in the x variable can probably be relaxed: this would require
however more refined and technical estimates and we have chosen to
work in this simpler framework.

4.1.2 Mean Field Games of acceleration

In our second main result, we consider a mean field game problem of accel-
eration. The Lagrangian function L : T? x R? x R? x 2 (T4 x RY) — R now
takes the form

1
L(z,v,w,m) = §|w|2 + F(x,v,m)
where I : T¢ x R? x 22 (T¢ x R?) — R satisfies the following assumptions:
(F1°) F is globally continuous with respect to all the variables;

(F2’) there exists & > 1 and a constant ¢y > 1 such that for any (z,v,m) €
RY x R? x 221 (T? x R? x RY)
1

7|’U|a —cp < F(CL‘,U,m) < CF(l + |U‘a)
CF

and, without loss of generality, we assume F(z,v,m) > 0 for any
(z,v,m) € T¢ x R x 2 (T?% x R? x R%);

(F3’) there exists a constant Cp > 0 such that, for any (z,v,m) € RYxR? x
21 (T4 x RY x RY),

| Dy F(xz,v,m)| + |DyF(z,v,m)| < Cp(1+ |v]?).
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We consider the time-dependent MFG system on [0, 7] x T? x R?

—opuT (t,2,v) — (DyuT (¢, 2,0),v) + 5| Dyu’ (¢, z,0)[> = F(z,v,m}),
oyml — (v, D,m]l) — div (m?DvuT(t, x, v)) =0,
ul(T,z,v) = g(z,v,mL), in T¢ x RY,  ml =mg e 2(T? x RY).

(4.4)

where the terminal condition of the Hamilton-Jacobi equation satisfies the
following;:

(G1) (z,v) — g(z,v,m) belongs to C}(T? x RY) for any m € 2(T? x
R9) (without loss of generality we assume g(z,v,m) > 0) and m
g(x,v,m) is Lipschitz continuous with respect to the d; distance, uni-
formly in (z,v) € T¢ x R%.

We recall that (ul, mT) is a solution of (23) if u’ is a viscosity solution
of the first equation and m” is a solution in the sense of distributions of the
second equation.

Our aim is to understand the averaged limit of u’" as T'— +o00. For this
we define the ergodic MFG problem, inspired by the characterization of the
limit in Mheorem 4. Let us recall that the notion of closed measure was
introduced in Definifion 41 and that C denotes the set of closed measures.

Definition 4.4 (Solution of the ergodic MFG problem). We say that
(A, 1) € R x C is a solution of the ergodic MFG problem if

- 1
A= inf/ (\w|2 + F(:L‘,U,ﬂljﬂ)) p(dz, dv, dw)
peC Jrdyrdxpd \ 2

1 _ _
- /Td S <2”U)|2+F<LL‘,’U,7FﬁM)> a(dz, dv, dw). (4.5)
xRdx

Theorem 4.5 (Main result 2). Assume that F' and G satisfy (F1”), (F2°)
and (G1).

1. There exists at least one solution (X\,fi) € R x C of the ergodic MFG
problem (B33). Moreover, if F satisfies the following monotonicity
assumption: there exists Mg > 0 such that for m1, mg € @(Td X Rd)

f’]l‘ded (F(l‘, v, ml) - F(xa v, m2)) (ml(dfl?, d’U) - mg(dm, d'l)))
> Mp dede (F(x,v,ml) — F(x,v,mg))2 dxdv,
(4.6)
then the ergodic constant is unique: If (A1,i1) and (A2, fi2) are two
solutions of the ergodic MFG problem, then A\i = \o.

2. Assume in addition that o = 2, that (F3’) and (E8) hold and that the
indtial distribution mg is in Po(T% x RY). Let (uT,mT) be a solution
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of the MFG system and let (A, i) be a solution of the ergodic
MFG problemfeq. (45). Then T~ uT(0,-,-) converges locally uniformly
to A and we have

1

— T _3
TEIEOO T /1rdedu (0, z,v) mo(dz,dv) = .

4.2 Ergodic behavior of control of acceleration

4.2.1 Existence of the limit

Before proving the main result of this section, [Proposition 4.13, we need a
few preliminary lemmas.

Lemma 4.6. Assume that F satisfies (F1) and (F2). Then, for any
(z,v) € T? x Bg, with R >0, and for any T > 0, we have

1
TVT(O,x,v) < cp(1+ RY).

Remark 4.7. The result also holds when F' = F(t,z,v) depends also on
time, provided that F' is continuous and satisfies (F2) with a constant cp
independent of ¢.

Proof. Define the curve £(t) = x + tv, for t € [0,T]. Then, by definition of
the value function V7, we have
T
VT(0,2,0) <JT(E) = / F(x +tv,v) dt < Tcp(1+ RY).
0
O
Lemma 4.8. Assume that F satisfies (F1) and (F2). Let 0 > 1, (x0,v0)
and (x,v) be in T¢ x B for some R > 1. Then, there exists a constant

Cy > 0 (depending only the constants o and cp in (F2)) and a curve o :
[0,60] — R? such that o(0) = zg, 6(0) = vo and o(f) = z, 5(0) = v and

J%(0) < Co(R%67! + R20). (4.7)
Remark 4.9. The result also holds when F' = F(t,z,v) depends also on
time, provided that F' is continuous and satisfies (F2) with a constant cp
independent of ¢.

Proof. Define the following parametric curve

o(t) = zo +vot + Bt2 + Ct3, t € [0,6].



58 CHAPTER 4. ERGODIC BEHAVIOR OF ACCELERATION MODEL

Choosing

{ B = 3(x — xq) — Ov — 200)0~2
C = (—2(x —x0) +0(v+19))073,

we have that 0(0) = z¢, 6(0) = vp and o(1) =z, 6(1) = v.
By definition of the functional J? we get

J(0) = /09 <;|&(t)|2 + Fo(®), c'r(t))) dt

0
1
< / <2]2B +6Ct? + cp(1 + |vg + 2tB + 3t2C’|°‘)> dt
0
< Cy(R*07! + R%p),
for some constant Cy depending on the constants a and cp in (F2) only. [
2
Lemma 4.10. Let T > 2 and (z,v) € T? x Bg, for some Ry > cp. Let

v € I'(z,v) be optimal fOT'.VT(O,ZL',’l}>. Then for any X\ > 2 there exists
¥ € I'(z,v) with ¥(T) =z, ¥(T) = v and

JH(F) < T7 () + C3(A’R3 + RgA™°T),
where the constant C3 depends on a and cg only.

Remark 4.11. The result also holds when F' = F(t,z,v) depends also on
time, provided that F' is continuous and satisfies (F2) with a constant cp
independent of ¢. In addition, by the construction in the proof, there exists
7 > 0 such that 4 =~ on [0, 7] and

T
/ (%HW +ep(1 4 [3(1)]|%)dt < C3(A2R2 + R§A™T).

Finally, the map which associates 4 and 7 to v is measurable.

Proof. Let

sup{t > 0, [y(t)] < ARo} if [v(T —1)[ > ARy,
T = )
T-1 otherwise.

If 7 >T — 2, we set

i (t) for ¢ € [0, 7],
3(t) = { Z(t_T) for t € [r,T),

where o is the map built in Cemma 48 with § = T — 7, 0(0) = ~(7),
c(0)=4(1),0(T—7)=z,6(T —7)=v. lf 7 <T — 2, then we set

v(t) for t € [0, 7],
F(t) =4 o1(t—7) fort € [r,7 + 1],
oot —7—1) forte[r+1,T],
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where 01 and oy are the map built in Cemma™8 with § = 1, 01(0) = v(7),
61(0) =4(7), 01(1) =z, 6(1) =vand 6 =T — 7 — 1 and 02(0) = 02(T —
7 —1) = and d2(0) = 62(T — 7 — 1) = v respectively. Note that ¥(T') = x
and 5(T) = v.

In order to estimate J7 (%), we first show that 7 cannot be too small:
namely we claim that

cr(1+ RE)
72T<1—m>—1. (4.8)

1

cF

Indeed, let us first recall that by Cemma ™18 we have
JH(y) < ep(1+ RY)T.

On the other hand, by assumption (F2) and the fact that |¥(¢)| > ARy on
[7,T — 1] and that F' > 0, we also have that

7o = [ (Gh0r + Fo.a) a
> | - (R0 —er) arz (=7 =1 (O - er ).

CF

So (%) holds for Ry > /.
We estimate J7 () in the case 7 < T — 2, the other case being similar
and easier. Note that |§(7)| < ARy. By Cemma @8 and the fact that F' > 0,

we have

. T . 1 .
TG = [ GROP+FOOA0NE+ [ GIaOF + Flo@).ao)
T—7—1 1
+ [ GlR0P + Pl sae))ar
0

< JT(y) + C2((ARo)* + (AR)* + RA(T — 7 — 1) + R§(T — 7 — 1)).

In view of (AR) this implies that
J'(3) < I" () + C3(V*Rf + RGAT),

for a constant C3 depending on a and cp only. O

Next we prove that the (z,v) — V7T(0,z,v) have locally uniformly
bounded oscillations.

Lemma 4.12. There exists a constant My(R) > 0 such that for any (z,v)
and (zg,vq) in T? x B we have that

VT(0,2,v) = VT(0,20,v0) < Mi(R).



60CHAPTER 4. ERGODIC BEHAVIOR OF ACCELERATION MODEL

Proof. Let v* be a minimizer for V7(0,z0,v9) and let o : [0,1] — T% be
such that ¢(0) =z, 6(0) = v and o(1) = xg, 6(1) = vo as in Cemma ] for

0 = 1. Define
o), t €10,1]
) = {7*@— 1), tel[l,T).

Then 4 € T'g(x,v) and, by Cemma 8 and the assumption that F > 0, we
have that

1
VT(o,x,u)—vT(o,xo,vo)g/ (;\if'(t)\Q—l—F(a(t),d(t))) dt

0
T
# [ (3D PO - 040 1) - V0
T-1
<26+ [ (G OF PG40 de- VT 0.0.m)

< 205R? — /

T-1

T
(3157 OF + FOr 0.5 @)) dt < 20282

which is the claim. O

Proposition 4.13 (Existence of the limit). Assume that F satisfies (F1)
and (F2). Then, for any (z,v) € T? x R?, the following limits exist:

.1 _p I T
N L N R

In addition the convergence is locally uniform in (x,v) and the limit is in-
dependent of (z,v).

Proof. Fix Ry > c%a such that |v| < Ry. Let {1}, }nen and let {v, }nen be
a sequence of minimizers for V77 (0, x,v) such that T,, — 0o as n — oo and

A G T S

thiggf—V (0,z,v) = nh%rgo T—nJ (n)-
For A > 2, let us define 4, is in CemmadT0. Then we know that 7, (T) = z,
An(T) = v and

T (3n) < I () + C3(N2RE + RGAT,,). (4.9)

Let us define 4,, as the periodic extension of the curve 7,, i.e. 4, is Tp-
periodic and it is equal to 4, on [0,T},]. Then, taking 4, as competitors for
JT we obtain that

1 1
lim su inf —J7 < limsup —JT (4
T%oop Y€ (z,v) T (’Y) o T%oop T (’WL)

1 1
= ) < (T ) + CoOPRAT 4 REA)).
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where the equality holds true since we are taking the limit of a periodic
function and the last inequality holds by (E79).

We get the conclusion letting n — oo and then A — oo, indeed: as
n — oo we deduce that

1 1
lim su inf —JT < lim — JT» 4+ C3 RN

1
= liminf inf —J7(7)+ C3RIN™®
fminf mf 77 0)+ Calty

and then, taking the limit as A — co we get

1 1
lim su inf —J7T <liminf inf —=JT(~).
T%oop y€lo(z,v) T (/Y) - ~Elo(z,v) T (/Y)

As the (VT(0,-,-)) have locally bounded oscillation (Cemma4-17), the above
convergence is locally uniform and the limit does not depend on (z,v). O

4.2.2 Characterization of the ergodic limit

In this part we characterize the limit given in [Proposition 4.13 in term of
closed measures. The proof of the main result, [Proposition 4.22, where this
characterization is stated, is technical and requires several steps. Here are
the main ideas of the proof. By using standard results on occupational
measures, one can obtain in a relatively easy way that

1
\:= lim inf —Jr
T—o00 'yero(xo,’uo) T (7)

1
> inf/ <|w[2+F(x,U)> wu(dz, dv, dw),
peC Jrdyrdxrd \ 2

where C denotes the set of closed probability measures (see Definition ).
The difficult part of the proof is the opposite inequality. The first step

for this is a min-max formula (Theorem 4 T3) which gives, by using the
characterization of closed measures, that

1
inf (\w[Q + F(x, v)> p(dx, dv, dw)
HEC JTd«Rd xR 2
1
= sup inf {—|Dv<ﬂ(x,v)2 — (Dyp(z,v),v) + F(x7v)} ,
peCo(TdxRY) (z0)€TIXRE [ 2

In order to exploit this inequality, one just needs to find a map ¢ € C°(T? x
R%) for which

~51Dup(@, ) (Daip(ar, v),v) + Fz,v)
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is almost equal to A. This is not easy because the corrector of our ergodic
problem does not seem to exist (at least in the usual sense) because of the
lack of controllability and, if it existed, it certainly would not be smooth
with a compact support. The standard idea in this set-up is to use instead
the approximate corrector, i.e., the solution Vs to

1
Vs(z,v) + ileV;;(x,v)P + (D, Vs(z,v),v) = F(z,v) in T¢ x RY.

However, this approximate corrector has not a compact support either (it
is even coercive, see [Proposition 4.16) and 0V does not converge uniformly
to —A, but only locally uniformly. We overcome these issues by an extra
approximation argument (Cemma 4T8).

Let us first explain why closed measures pop up naturally in our problem.
To see this, let (xg,v9) € T% x R? be an initial position and let ’y(j;o )

be an optimal trajectory for V7 (0,z0,v9). We define the family of Borel
probability measures {u7}7rs¢ as follows: for any function ¢ € C°(T? x
R? x RY)

/ so(a;avuw) ,UT(dCU,dU,d’UJ)
TdxR4 xR

e : .
= | P O3y (05 () . (@10

Lemma 4.14. Assume that F satisfies (F1) and (F2). Let the family of
probability measures {u” Y=o be defined by feq. (£.10). Then, {u" Y=o is

tight and there exists a closed measure p* such that, up to a subsequence,
pl —* p* as T — +o0.

Proof. We first prove that {ur}rso its a tight family of probability mea-
sures. Indeed, by assumption (F2) for (xq,v0) € T? x R? we know that

ZV(0, 30,00 =7 /O (515 OF + FOR o) (0,4 (00 )

1
—/ (f\wP + F(x, v)) ut (dz, dv, dw)
TdxRIxRE \2
1 1
> / (Sl + = fol* — cr) 47 (dr, dv, dw).
TdxRIxRd \2 CF
On the other hand, by Cemma 1@ we have that

1
TVT(O, Zo, Uo) § Cl

where C7 only depends on the initial point (xg,v¢). Therefore, we obtain
that

1 1
/]I‘d R xRd (5’“42 + ;Ivla) p (dzx, dv, dw) < C4
XREX
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which implies that {u” }7~¢ is tight. By Prokhorov theorem there exists a
measure p* € Z(T¢ x R x R?) such that up to a subsequence p? —* u* as
T — 4o0.

We now show that the measure p* is closed in the sense of Definition 4711
Let ¢ € CX(T? x R?) be a test function and let R > 0 be such that
¢(z,v) = 0 for any (x,v) € T x BS. Moreover, define

. {sup{t € 0,71+ 158, o0y (O] < R, 1 (a0 (D)) > R
T, if ‘;Y(Io,vo) (T)’ <R

and let o* : [7*,7* + 1] — T? be as in Cemma 48 such that o*(7*) =

V(I;O’UO)(T*)’ d*(T*) - fy(jf’fo,vo)(T*) and 0*(7—* + 1) = Zo, d*(T* + 1) =
Moreover, define

AT @, telr]
) = {0*(t), te (s, +1].

Then we get
Lo (iDep(a,0).0) + (Dupla,o).w) du” (a0 0)
Tdx R4 x R4

/ $()0 ’Y(wo,vo)( ) ao,vo)(t)>7;y’(1;0,vo)(t)>
+ <DU(10(’7(£E0,’U0)( )7;Y’(Z;Eo,’l}o)(t))7;}'/’(1;0,vo)(t)>> dt

- 7 OT ((Dase G (0,77 (1), 57 (1)) + (Dup(GT (0,37 (1),57(1)))
1

T+1
= = | (Dapl0"(®),67 (1), 6" (1)) + (Dusplo” (8), 5" (1), 5(1))) it

T
[ (D00 g (00, 0y (0, )

LRGN (O R T ()R A O I

One can immediately observe that by construction the last integral is 0
(since ¢ has a support in T? x Bg) and by the definition of 4 one also has
that the first one is 0. The behavior of the second is also immediate because,
as @ is bounded,

’T+1
- / Dap(o™ (£),6(1),6° (1)) + (Dusplo™ (6), 6" (1), 5° (1)) dt

—T po™ (1" +1),6" (1" + 1)) — (o™ (77),0™(77)) = 0, as T — +oo.

The proof is thus complete. O
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The next step consists in formulating in two different ways the expected
limit of Proposition B—13.

Theorem 4.15 (Minmax formula). Assume that F satisfies (F1) and
(F2). Then, the following equality holds true:

1
inf/ <]w|2+F($,v)> p(dz, dv, dw)
nEC JTdwRd xR 2

1
" pece(m o {_|D”¢(m’”)|2 — (Dgp(x,v),v) + F(:E,v)} .
PEC® (T4 xR4) (z,v)€TEXRE 2
(4.11)

Proof. By definition of a closed measure we can write

1
inf / <|w\2 + F(x, U)) wu(dz, dv, dw)
HEC JTdwRdxRd 2

1
= inf sup / <*|w|2+F(IL‘,U)
HE P2,a(TIXRIXRY) e oo (TdxRA) J TdxRIxRE 2
— (Datp(,0),0) = (Dospl,v),w) ) plda, do, duw).

Our aim is to use the min-max Theorem (see [hearem 434 below). We use
for this the notation introduced in Appendix A and set A = C®(T? x RY),
B = P 4(T¢ x R? x R?) and for any (¢, ) € A x B

L(p, 1)

= /TdXRdXRd <%|w\2 + F(z,v) — (Dyp(z,v),0) — (Dvgp(:c,v),w>> p(dz, dv, dw).

Let us choose ¢*(x,v) = 0 and

1
=1+ inf sup / (*]w|2 + F(z,v)
HE P2,a(TXRIXRY) e oo (TdxRE) JTAXRIXRE N2

— (Dyo(z,v),v) — <Dv<p(ac,v),w>) wu(dz, dv, dw).

Note that ¢* is finite (since it is bounded below by assumption
and bounded above for u = §,, 0,0y for any zo € T%). In addition, the set
B* = {ueB: L(¢* n) <c*} is nonempty and tight, and thus compact, in
P3.0(T? x R? x RY) for the weak-* convergence. Finally, we have

1
cF>1+ sup inf / <f|w‘2+F(x,v)
pEC (TAxRA) LEP2,0 (TIXRIXRY) JTdxRAxRE \2

— (Dgp(z,v),v) — (Dvgo(x,v),w>> p(dz, dv, dw).
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Therefore, Thearem 434 states that

. 1
inf sup / (*\10]2 + F(x,v)
HE P2,a(THXRIXRY) ;e oo (Td xRe) J Td x RE x RY 2

— (Dyp(x,v),v) — <Dv<,0(;1:,v),w>> p(dz, dv, dw)

1
— s inf / (3uf + F(a,v)
©EC (TdxRd) HE P2 (T xR xR) JTd xR x RY 2
— (Daspl(,0),0) = (Dyip(w,v),w) ) plda, dv, dw)

1
—  sup inf {5l + Fle,0) = (Dagple,v),0)
pEC (T4 xR4) (z,0,w)€TIxRIxRE L 2

— (Dup(w,v),w)}

1

= sup inf {—]Dmp(a:,v)\z — (Dg(z,v),v) + F(x,v)} .
pEC (T xR4) (z,v) €T XRE 2

This complete the proof. O
Next we introduce and study the discounted problem associated with

eq. (4.2). For any § > 0 and any (z,v) € T x R? we define Js : I' —
R U {+00} as

+oo
s = [ (SRR + P )

if 4 is absolutely continuous with [;7° e~ (315(¢)]2 + [4(1)|*) dt < +o0,
and Js(y) = +oo otherwise. We define the associated value function (the
approximate corrector)

Vs(z,v) = 7€1§f}1(£ » Js(7). (4.12)

We recall that Vj is the unique continuous viscosity solution with a polyno-
mial growth of the following Hamilton-Jacobi equation

§Vi(w,v) + %mvvé(x,v)\? Dy Vil v),0) = Fl,0). (4.13)

As the convergence of V7(0,,-)/T is locally uniform (by Lemma 4 12),
we can apply the Abelian-Tauberian Theorem of [63] and we have that for
any (z,v) € T? x R?

lim 6Vs(x,v) = lim %VT(O,a:,v) = A (4.14)

§—0+ T—o0

In the proof of the main result of this section (Proposition 4.22) we will
have to smoothen the map V. This involves some local regularity properties
of V9, which is the aim of the next result.
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Proposition 4.16. Assume that F' satisfies (F1) — (F3). Then, we have:
(i) {0Vs(x,v)}s=0 is locally uniformly bounded;

(ii) {Vs(x,v)}s>0 has locally uniformly bounded oscillation, i.e. there ex-
ists a constant M(R) > 0 such that for any (zo,vo), (z,v) € T? x Bg

Vs(z,v) — Vs(zo,v0) < M(R).

(iii) there exists a constant C > 0 such that for any (z,v) € T% x R?

C ol = C6™ < Vs(x,v) < cpd™H(|v|* +1); (4.15)

(iv) the map x — Vs(x,v) is locally Lipschitz continuous and there exists
a constant Cs > 0 such that for a.e. (z,v) € T? x R? the following
holds:

D2 Vs(,v)] < C5(1+ |v]*). (4.16)

Proof. (i) Fix (z,v) € T? x Bg and define a competitor ~ : [0, +o00] — T¢
such that v(¢) = = + tv. By definition and we get

Vs(z,v) < (5/000 e F(y(t),4(t) ds < cp(1 4 [v]Y) < er(1+ RY).

On the other hand, we have by (F2) that F' > 0 and thus V5 > 0,
which completes the proof of (7).

(ii) Let (xo,v0), (z,v) € T x Bg be fixed points, let v* be a minimizer for
Vs(zo,v0) and let o be defined as in Cemma a8 such that o(0) = z,

6(0) = v and o(1) = xo, 6(1) = vg. We define a new curve 7y :
[0, +00) — T as follows
o(t), tel0,1
{0 ieo
Yt - 1), t € (1,400)

Then
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By a change of variable, we have that
oo —ot 1 sk 2 * 3k
o ST OF + F(7(),7°@)) | dt
5 [ s (1.4 X . -
—e? [T (G @R+ 06476 ) ds = e Vian, o)
0
Therefore, we obtain that
O s (1 .
o S+ F(y(1),4(1) ) dt = Vs(zo, o)

< )6_6 — 1) Vs(xo,v0)

(4.18)

< 0|Vs(zo,v0)] < ep(l+ RY),

where the last inequality holds true by (). Moreover, by construction
of ¢ in Cemma 4°8 we have that

| o (;l&@)r? +F(o(t), d<t>>) dt < J'(0) < Co(R* + R%).
0

(4.19)

Combining together inequality pq. (4.1I8] and pq. (4.19] in kq. (4.17)
we get (ii):

Vs(x,v) — Vs(zo,v0) < cp(1 4+ R*) + Co(R? + RY) =: M(R).

For some constants M and Ms we have that the map Z : T¢xRY —» R
such that Z(z,v) = M 'v|® — Mad~! is a subsolution of pq. (4.13),
indeed

57 (z,v) + %|DUZ(:E, O + (DaZ(x,v),0) — F(z,0)
< My Hul™ — My + %Mf2a2|v\2(a_1) — it u]* + cp.
As2(a—1) < «, since a € (1, 2], we get, for M; and M, large enough,
5Z(z,v) + %|DUZ(3:,U)|2 + (D Z(2,0),0) — F(z,0) < 0.

By comparison we obtain V5 > Z, which proves the first inequality in
eq. (4.15).

In the same way, considering the map Z(z,v) = cpd 1(Jv|* + 1), we
have

5Z(z,v) + %|DUZ(;C,U)|2 Dy Z(3,0),0) — F(z,0)

1
> cp(ju]* +1) + 567 (era)?|o 7Y — cplp|* —ep > 0,
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so that Z is a supersolution. By comparison we conclude that the
second inequality in (Z1H) holds.

(iv) Let v* be optimal for Vs(z,v) and let h € R%. Then

+o0
Vs(z + h,v) < /0 e o (;w*(m? + F(y*(t) + h, 7*(15))) dt

< V(s(wvv)Jr/;oo e (F(Y"(t) + b7 (1) = F(Y"(1),7(t))) dt

+oo
< Vs(e,v) + / e Step(L+ 13 ()] dt,
0
(4.20)

where the last inequality holds true by assumption (F3). Moreover,
by we deduce that there exists a constant Cs > 0 such that

“+o00
/ e A ()] — ep) dt < V(z,0) < Cs(L+ o]®).
0

Therefore, by we deduce that
Vs(x + h,v) = Vs(z,v) < Cs(1 + |v|Y)|Al,

which implies that Vy is locally Lipschitz continuous in space and
proves (iv).
O

We now strengthen a little the convergence in (E14):
Proposition 4.17. Assume that F satisfies (F1)—(F3). Then

A= lim inf oVs(z,v),
d—0% (z,v)€TL xR

with A defined in leq. (4.14].

Proof. First we note that, by (i) in [Proposition 4.10, the convergence in
(213) is locally uniform. Fix R > 0 such that

'R —cp > A (4.21)

Then, for any € > 0, there exists . > 0 such that for any ¢ € (0, J.) we have
that
inf  dVs(z,v) > A —€. (4.22)

(z,0)ETIx B
Fix (z,v) € T x R? and let 7} be a minimizer for Vs(x,v). We define
_ inf{t € [0,400] : [¥£(t)| < R}, if {t €[0,+0c] : |3} (t)] < R} # 0
0= . .
+00, if {t € [0, 4o00] : |¥5(t)| < R} = 0.
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By Dynamic Programming Principle we get

o 1 o % * L% —oT, * %
Vi) = [ e (GEHOR + FOH0.500) ) dese Valai ). 55(0)
and by assumption and definition of 75 we deduce that
BVs(,0) > (LR — ep)(1— ~9%) 4+ e 9 8Vy(3 (1), 35 (). (4.23)

If 75 is finite, we have that |§;(75)| is bounded by R and thus, by (B=211) and
eq. (4.22] we deduce that for any ¢ € (0, J;)

OVs(z,v) > A1 —e ™) e (N —g) > A —¢.

By (£221) and (E=23) the same inequality also holds if 75 = +00. Hence, we
obtain that

lim inf  §Vs(z,v) > A —¢.

§—07F (z,v)eTIxRY

By we infer that

A= lim §V5(0,0) > lim inf Vs(xz,v) > X — ¢,
§—0t 6—07F (z,v)eTIxRY

which implies the desired result since ¢ is arbitrary. O

As Vjy is coercive, we cannot use it directly as a test function to test the
fact that a measure is closed. To overcome this issue we approximate Vs by
family of Lipschitz maps (V{?).

Lemma 4.18 (Approximate problem 1). Assume that F' satisfies as-
sumption (F1)—(F3). Let R > 0 and define Fr(x,v) = min{F(z,v), R}
for any (z,v) € T? x RY. Let V(;R be the unique continuous and bounded
viscosity solution to

1
6V5R(x,v)+§\DvV;;R(a:,v)|2+<DzV5R(x,v),v> = Fr(z,v), (z,v) € T9xR%
(4.24)
Then, the following holds:

(i) Vit is globally Lipschitz continuous;
(77) there are two positive constants ¢1 5 and ¢z 5 such that
SV (z,v) > &5(1 + minf{|v|*, R}) — &6 (4.25)
for any (z,v) € T x R%;
(iii) there is a constant Cs > 0 such that
|D,Vi(z,v)| < Cs(1 + min{|v|*, R}) (4.26)

for a.e. (z,v) € T? x R%;
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(iv) V;;R converge, as R — oo, uniformly on compact subsets of T¢ x R¢
to the map Vs defined in (E12).

The proofs of (i) and (iv) are direct consequences of optimal control
theory while the proofs of pq. (4.25) and pq. (4.26] follow the same argument
as for pq. (4.15) and kq. (4.16)], respectively and we omit these proofs.

Lemma 4.19. Assume that F satisfies (F1) — (F3). Let Fr and V{ be
defined in [Lemma 4.18. Then we have that

1
inf —“|lwP+ F de.dv,dw) >  inf  OVE .
,tirelC/deRded <2|w’ + R(xav)> ,u( Ty &0 w)_(a:,v)g’]ll‘ded J (x’v)
(4.27)

Remark 4.20. Note that we can allow for a larger class of test functions
in Definition 47, i.e. ¢ € WHo(T¢ x RY) N C®(T¢ x R?). Indeed, let
@ € WHe(T? x RY) N C®(T? x R?) and for R > 1 let £ € CX(R?) be such
that £g(x,v) = 1 for (z,v) € T¢x B, £r(x,v) = 0 for (z,v) € T xRN Bapg,
0 < &r(z,v) < 1 for T x Byg\Bpr and there exists a constant M > 0 such
that |DEp(z,v)| < MR™! for any (z,v) € T¢ x RY. Set pp = p€&r. Then,
we have that pr € C°(T¢ x R?), Dipg is uniformly bounded and converges
locally uniformly to Dp. For u € C we have:

/ ((DmgoR(x, v),v) + (Dvng(ac,v),w>) p(dz, dv, dw) = 0. (4.28)
TdxRdx R4

Since p1 € P24(T¢ x R? x RY), we can pass to the limit in as
R — 400 by dominate convergence. This proves that

/ ((Deiplar.).0) + (Duipl, ), w)) p(dr,do, dw) = 0
Td x R4 x R4
for o € WH(T? x R?) N C®(T? x RY). O

Proof. Let £ € C®(RY) be such that spt(¢¥) C Be, ¢%(z) > 0 and
st ¢Y¢(z) do = 1, and define %R’a(x,v) = Vit x, €1°(z,v) where the mol-
lification only holds in z. Then Vi satisfies the following inequality in the
viscosity sense

1
SVF (2,0) + 5IDVVE (w,0) P + DV (2,0),0)
< Fr+€"(x,v) < Fr(z,0) + Cpe(1 + min{[v]*, R})

where the last inequality holds true by (F3) and the definition of Fg.
Now, let €26 € C®(R%) be such that spt(¢>°) C B., £€2¢(v) > 0 and



4.2. ERGODIC BEHAVIOR OF CONTROL OF ACCELERATION 71

5. £2¢(v) dv = 1 and define wia(x,v) = £2F ¥, V(sR’s(x,U) (where the the
mollification now only holds in v). Then, by we have that

€ €,0
€22 %, (DL V5 (2, ), ) (v) — (Do (z,v),0)]
< | DoV || Lo (Bu(a)) < Cs (1 + min{|v|, R}),

which implies that

1
0 (2,0) + 51D (2,0) P + (Datpy’ (1, 0), )
0 1 0
< 590% (CC,U) + i‘DUSDiE (.T,U)|2

+ &2 w0, (D, V¥ (2,0),0) + Cye(1 + min{[v[*, R})
< Fg *62’6(5E, v) + Cse(1 + min{|v|*, R})
< Fr(z,v) + C15e(1 + min{|v|*, R})

where the last inequality holds true by assumption (F3). Thus, so far we
have proved that for any (z,v) € T¢ x R?

0 1 0 5
54,0;:{ (l’,’U) + §|DU()0;:{ (xav)‘Q + <D9090;:{ ($7U)7U>
< Fgr(z,v) + Ci5e(1+ min{|v|%, R}).

(4.29)

Moreover, in view of we deduce that there exists a constant Cy 5 >
0 such that for any (x,v) € T? x R? we have that

(5(,0%5(:1:, v) > Ci; min{|v|*, R} — Ca. (4.30)

We claim that for € > 0 small enough, the following holds:

1
g [ (3l + Fito.)) date.v.)
REC JrdxRdxrd \ 2

: €,0 . . o
>t (R ) = Cuse (L minlof®, BY) )

(4.31)

By Remark 220 above, we can test the fact that a measure is closed by
smooth and globally Lipschitz continuous maps. Let £(T? x R%) be such a
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set. Then

1
inf/ <|w\2+FR(x,v)> w(dz, dv, dw)
HEC JTdyRdxRd 2

1
= inf sup / (f|w|2 + Fr(z,v)
,uegﬂa,g(’]l'dx]Rded)weg(deRd) Td xR xR 2

— (Dyp(w,v),0) — (Dytb(,v), w)) pu(de, do, duw)

1
> sup inf / (f|w|2+FR(az,v)
PEE(TIXR?) UE Py 2(TAXRIXRE) JTdRd R 2

— (Dy)(z,v),v) — <Dv1/}($,v),w>> p(dz, dv, dw)

1
> ot (5w + Fr(a.v)
UE Py 2(TAXRIXRE) JTdRd R 2

— (D’ (2,0),0) — (Do (2,0),0) ) pulder, dv, dw)

. 1 5 5
= " v).lg%‘ngd {—2|Dv80§é (x, U)|2 + Fr(x,v) — (Dwgp‘;’ (z, U)’U>} ,

which proves thanks to kq. (4.29). Recalling (8=30), the right hand
side of is coercive in v uniformly in € for € small. As in addition

goiz’a converges locally uniformly to V(;R as € — 0, we obtain

lim inf <(5§0;’6($, v) — Ca5€ (1 + minf[v]®, R}))

€0 (z,v)eTexR4

= inf  OVE(z,v).
(z,fu)g%l'dXRd 0 (ZL‘ U)

So we can let € — 0 in (E231) to obtain the result. O

In the next step, we let R — +o0 in (E227):

Lemma 4.21. Assume that F satisfies (F1) — (F3). Let Vs be defined in
(B12). Then

1
inf Zlwl2+ F > i f .
;EC/WXWXW (2\w| + (a:,v)> p(dz, dv, dw) > . §Vs(z,v)
(4.32)

Proof. We first consider the left-hand side of (B=21), for which we obviously
have, by the definition of Fr in Lemma BTY,

1
inf/ <|w|2—|—FR(x,v)> w(dz, dv, dw)
neC JTdwRd xR 2

1
< inf/ <]w|2+F(x,v)> w(dz, dv, dw). (4.33)
pEC JTdyRdxRd \ 2
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As for the right hand side of Bq. (4.27), we note that, if (zg,vg) € T¢ x RY
satisfies
Vi (zp,vp) <  inf  Vi(z,0)+ R,
J ( = R) "~ (z,v)ETIxRd J ( )

then, as V¥ < Vj and (2223) holds, we have

C16(1 +min{|vg|*, R}) — s < inf  Vs(z,v)+ R L

(1 minonl RY) = Gag < inf Via.o)
This proves that vp remains bounded in R and we can find a subsequence of
(xR, vR), denoted in the same way, which converges to some (z,7) € T? x R?

as R — 4o00. Then by local uniform convergence of V(SR to Vs, we obtain
that

. _ . R . . R
(x,v)g']lI‘EXRd V;S(JJ, U> = ‘/6( ’ ’U) N REI-EOO Vs (.’L’R, ’UR) - Rgr-‘fr-loo (x,v)gﬁll‘deRd Vs (-’IJ, U).
(4.34)
Passing to the limit as R — +oo in (E227) proves the Lemma thanks to
(A233) and (£=32). O

We are now ready to prove the main result of this section.

Proposition 4.22 (Characterization with closed measures). Assume
that F satisfies (F1) — (F3). For any (zo,v9) € T¢ x R? we have that

1 1
lim —V7T(0,z0,v) = inf/ —|w|? + F(z,v) ) w(dz,dv,dw).
T TdxRIxRE \ 2

T—o00 nel

Proof. Let 7(7;05110) be a minimum for the problem

inf  JT(v).
’YGF()(Z(),'U[)) (/}/)

Let us define the probability measures ur by

1 [T . )
/deRded o, v,w) dp' (z,v,w) = T/o (Vo 00) ) F o 00) (D) Al o (1) dt

for any ¢ € C°(T? x R? x R?). By Cemma 414, the (u”) converge, up to a
subsequence (7},), weak-* to a closed measure p*. Therefore

lim inf —Jr
T—00 v€T'g(x0,v0) T (7)

. 1 1 T, 2 T, . T,
= tim o [ (G (O + O 057, 0) at

n—o0 T},

1
= lim <2|w|2 + F(x, v)> pI (dz, dv, dw)

n—=00 JTd «RdxRd

1
z / (\w|2 +F($>U)> w*(dx, dv, dw).
TdxRIxRE \ 2
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Thus, taking the infimum over the set of closed measures C we obtain that
l_int 2 0T0) > it [ Ll + F(a,0)) du(z,v,w)
im in = in —|w x,v x,v,w).

T—00 €T (xo,00) 1’ 7= neC Jrdxraxrd \ 2 ’ s

To obtain the opposite inequality, we note that, by (E=32) (which holds
for any 6 > 0) and Proposition B2, we have

1
inf/ (|w\2+F(x,v)) w(dz, dv, dw)
nel Tdx R4 x R4 2

> lim inf  0Vs(z,v) = A,
§—07F (z,0)€TExRY

where A defined in pq. (4.14)]. Then we can conclude thanks to (214). [
Proof of [Theorem 4.3. The existence of the limit and the fact that it does

not depend on (x,v) is the main statement of [Proposition 4.13 while the
characterization of this limit is given by [Proposition 4.22. O

4.3 Asymptotic behavior of MFG with accelera-
tion

We now turn to MF'G problems of acceleration. In order to study the asymp-
totic behavior of these problems, we first need to describe the expected limit:
the ergodic MFG problems of acceleration. The difficulty here is that, as
explained in the previous part, we do not expect the existence of a corrector
and therefore the ergodic MFG problem cannot be phrased in these terms.
We overcome this issue by using the characterization of the ergodic limit
given by Mhearem 47 in terms of closed measures. This suggests the def-
inition of equilibria for ergodic MFG of acceleration (Definifion—24). We
prove the existence and the uniqueness of a solution in [Proposition 4.23. In
order to pass to the limit in the time-dependent MFG system of accelera-
tion, we first need to rephrase the solution of this system in terms of closed
measures (more precisely in terms of the so-called T'—closed measures, see
Definifion 424). This is the aim of the second part of the section (Cheod
Fem 424). Thanks to this characterization, we are then able to conclude on
the long time average and complete the proof of Definition 4.

4.3.1 Ergodic MFG with acceleration

Following Definition 41 we recall that C C P, 2(T¢ x R? x R?) denotes
the set of closed measures, i.e. pu € C if it satisfies for any test function
¢ € C(T? x R?) the following condition:

/deRded (<D190(IL‘,U)7’U> + (Dyp(x, v),w)) w(dz, dv, dw) = 0.
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The candidate limit problem that we are going to study is the following
fixed point problem: we look for a measure pu € C such that

1
p € argmin {/ <w|2 + F(m,v,wﬁu)) n(dz, dv, dw)} (4.35)
nec TdxRexRE \ 2

where 7 : T¢ x R? x R?, defined as 7(x,v,w) = (z,v), is the projection
function.

Proposition 4.23. Assume that F' satisfies (F1’) and (F2’). Then, there

exists at least one solution (X, i) € R x C of the ergodic MFG problem.
Moreover, if F' satisfies the monotonicity assumption (E8) and if (A1, fi1)

and (X, fiz) are two solutions of the ergodic MFG problem, then A1 = Ag.

Proof. Let K be the set of probability measures p € C such that
1
[, (GluP i ol") sl do,du) < 2,
Td xRa 2

where « and cp are given by assumption (F2’). We endow K with the d;
distance and define, for any p € K, the set U(u) as the set of minimizers
7 € C of the map defined on C

n— <1|w]2 + F(x,v, Wjj,u)) n(dz, dv, dw) (4.36)
TdxRIxRY \ 2

We also denote by A(u) the value of this minimum. First, we show that

the set-valued map ¥ is well-defined from K into K. Indeed, if p € K and

n € C is any minimum of (A=30), we have by assumption (F2’) (setting

7 = 0(20,0,0) € C for an arbitrary point x¢ € T%):

1
/ (f]w|2 +c}1]v|°‘ —cp) 7j(dx, dv, dw)
TdxRixRd 2
1
< [ Gl ) a(d, du,du)
TdxRixRd 2
1
< / (=|w]* + F(z,v,7Hp)) f(dz, dv, dw) < cp.
TdxRIxRd 2

So 77 belongs to K. Moreover, we observe that a solution of the ergodic MFG
problem exists if the set-valued map ¥ has a fixed-point and we prove that
this is the case using the Kakutani fixed-point theorem. Since o > 1, by the
above considerations, we know that the space K is compact with respect to
the d; distance. Thus, for any p € K, the set ¥(u) is convex and compact.
It remains to check that ¥ has closed graph. Fix a sequence {u;}jen C K
and a sequence {n;}jeny C K such that

pi =", m; =M, and ;€ W(uy) Vi €N
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Let us show that 7 € ¥(u). Note that 7 € C. It remains to check that 7 min-
imizes (A230). By standard lower-semi continuity arguments and continuity
of F', we have:

1
[, Gl + P, mtu) nlds, dv, dw)
TdxRd x R4 (4.37)

1
< lim'inf/ (=|w* + F(z,v, mu;)) nj(dz, dv, dw).
i JrdxRixrd 2

We now check that the right-hand side is not larger that A(u). Indeed, let
7 belong to ¥(p) and fix n > 0. As 7 belongs to K we can find R > 0 such
that

1
/ (= |w|* + cplv|® + cp) F(dz, dv, dw) < €.
(TAxRIxRIN\Br 2

As mfp; converges to mip for the d; distance, we have by assumption (F1”)
that, for j large enough,

dim  sup  |F(x,v,mu;) — F(x,v,mip)| <e.
UREES (CC,’U)EBR

So, by optimality of 77; and the estimates above,

1
/ (z|w]® + F(z,v, mip;)) nj(dz, dv, dw) = A(u;)
TdxRExRd 2

A

1
< [ G+ P i) i, do. do)
TdxRIxRE 2
1
< / Gl + Pla,v,miny) i(de, do, dw)
Br 2

1
+ / (§|w|2 + cp|v|* + cp) N(dz, dv, dw)
BC

R

1
< [ GGlul + Faomiw) ide,do, du) + 2 < M) + 2.
Bgr
Coming back to (B=37), this shows that
1
Lo Gl + Plavo,mtp) n(de, do,du) < A,
TdxRIxRd 2

and therefore that 77 belongs to W(u). Therefore, applying Kakutani fixed-
point theorem we have that there exists a fixed point 77 of ¥ and this is a
solution of the ergodic MFG problem.

Now, we prove that under the monotonicity assumption the
critical value is unique. Let (Af,/i1) and (A, fi2) be two solutions of the
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ergodic MFG problem. Then, by definition we have that, for i = 1 or ¢ = 2,

1
Ai = inf (|w2 + F(z,v, ﬂjjui)) w(dz, dv, dw)
nec Td xRd x R4 2 (4 38)

1 - _
— /]Td . (2\w|2+F(x,v,7rﬁ/~Li)> fii (dz, dv, dw).
X X

Thus, exchanging the role of fi; and fig as competitor for A\; and \g, respec-
tively, we get

- 1
A1 < / (]w\2 + F(x,v,ﬂﬁﬂl)) fo(dz, dv, dw) (4.39)
TdxRixRd \ 2
and

- 1
A2 < / <w|2 —I—F(:U,v,ﬂttﬂg)) 1 (dx, dv, dw). (4.40)
Td xR xR 2

We first take the difference between pq. (4.39) and kq. (4.38) for ¢ = 2 and
we get

AL — Ao §/ (F(z,v,mfi1) — F(z,v,7i2)) diz(dz,dv, dw).
TdxRd xR
Taking the difference between for i =1 and we get
AL — Ao 2/ (F(z,v,7fi1) — F(z,v,7i2)) din(dz,dv, dw).
TdxRd xR
Thus, taking the difference of the above expressions we deduce that
0 > / (F(.T, v, ﬂ-ﬁﬂl) - F(I, v, ﬂ-ljﬂz)) (lal(d‘r7 dU, dw)_ﬂ2(dl‘) d’U, dw))
Tdx R4 x R4

which implies by monotonicity assumption pq. (4.6] that F(z,v,7§i1) =
F(z,v,m8fi2). Coming back to (E=39), it follows that A\; = As. O

4.3.2 Representation of the solution of the time-dependent
MFG system

We now consider the time-dependent MFG system (22). We have shown in
that such system has a solution (u”,m”) and that the function

uT can be represented as

ul (t,z,v)

= e L GR6P+ FA6mD) ds+ g6m.Ammh}-

’Yert (l‘,’U
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In order to compare the solution of this time-dependent problem with the
solution of the ergodic MFG problem, which is written in terms of closed
measures, we need to rewrite the time-dependent problem in term of flows
of Borel probability measures on T¢ x R? x R?. The following definition
mirrors the definition of closed measure in the ergodic setting:

Definition 4.24 (T-Closed measures). Let T be a finite time horizon
and let mg € 21(T¢ x RY). If n € C([0,T]; 21(T¢ x R? x R%)), we say
that n is a T-closed measure associated with mg if for any test function
@ € C2([0,T] x T¢ x R?) the following holds

/ / 8tg0 (t,z,v) + (Dyp(t, z,v),v) + (Dvw(t,x,v),w)) ne(dx, dv, dw)dt
Td xR x R4

= / o(T, z,v) nr(dx,dv, dw) — / (0, z,v) mo(dz, dv).
TdxRIx R4 Td xR x R4
(4.42)

We denote by CT(mg) the set of T-closed measures associated with mg €
P1(T? x RY).
The goal of the subsection is to prove the following equality:

Theorem 4.25. Assume that F satisfies (F1°), (F2’) and g satisfies (G1).
Let M > 0 and assume that

/Td y [v]* mo(dz, dv) < M. (4.43)
X

Let (u”',m") be a solution to (&4). Then

inf / / < lw|* 4+ F(z,v mtT)> p(dz, dv, dw)dt
neCT (mo) TdxRixRE \ 2

—|—/ g(z,v,m%) pr(de, dv, dw)} (4.44)
Td xR xR

= / ul' (0, z,v) mo(dz, dv).
TdxRd

In addition, there exists a minimizer i* € CT(mg) of the problem in the
left-hand side of (B23) such that m] = mial, where © : T? x RY x RY —
T x R? s the canonical projection on the two first coordinates, i.e. such
that w(x,v,w) = (z,v).

The proof of Mhearem 477 follows standard arguments but is slightly
technical because the problem is stated in the whole space in velocity. The
main problem is to regularize the map «” in order to have a smooth function
with a compact support which satisfies a suitable (approximate) Hamilton-
Jacobi inequality. The first step towards this aim is the following Lemma:
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Lemma 4.26 (Approximate problem 2). Let f : T? x R? x [0,T] — R
be a continuous map with at most a polynomial growth and which is locally
Lipschitz continuous in space locally uniformly in time and g : T* x R — R
be a locally Lipschitz continuous map with at most a polynomial growth. Let
R > 0 and let €% be a smooth cut—off function such that £ >0, ¢8(z,v) =1
if (x,v) € T'x Bg, 0 < £f(z,v) < 1if (v,v) € TYx Bar\Bg and £¥(x,v) =
0 if (z,v) € T¢x By. Define fr: T¢xR*x[0,T] — R and gg : T*xR? - R
as fr =0 f and gr = £Rqg. Let u% be the viscosity solution of the following
problem

—Owuk(t, z,v) + %\Dvug(t,x,v)lz — (Dyuk(t,z,v),v)
= fr(t,z,v), in [0, 7] x T¢ x R?
ul (T, z,v) = gr(z,v), in T4 x RY.
(4.45)

Then, the following hold:
1. u% has compact support;
2. u% is Lipschitz continuous in space and velocity variable;

3. u% converge, as R — +oo, locally uniformly to the solution u’ of the
following problem

—opuT (t,2,v) + 3| DyuT (¢, 2,0) > — (Dpul (t,2,v),v)
= f(t,z,v), in [0, 7] x T¢ x R?
ul (T, z,v) = g(x,v), in T¢ x R,

The proof of the Lemma follows standard argument in optimal control
and we omit it. Next we prove [hearem 477 in the simpler case where F
and g are replaced by Fr and gg:

Proposition 4.27. Assume that F' satisfies (F1°) and (F2’) and g satisfies
(G1). Let (uT,m") be a solution of system [eq. (4.4). For R > 0, let ¢f
be a smooth cut—off function as in and let us set Fr = ¢0F
and gp = £8q. Let ug be the continuous viscosity solution of the following
problem

—oph(t, x,v) + 5| Dyuk(t, z,v)[* — (Dyuk(t, z,v),v)
= Fr(z,v,m]), in [0, 7] x T¢ x R?
uf(T,z,v) = gr(z,v,ml), in T¢ x R,
(4.46)
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Then

inf / / ( \w|* + Fr(z,v, m] )) we(dx, dv, dw)dt
HeCT (mo) TdxRdx R4
+/ gR(IE,U,m%) ,LLT(dZL',dU,d'UJ)}
TdxRIx R4
:/ uh(0, z,v) mo(dz, dv).
Tdx R4

Proof. We first prove that

T
1
inf {/ / <f]w\2+FR(m,v,mf)> i (dx, dv, dw)dt
neCT(mo) Lo Jrdxraxma \2
+ / gR(Iﬂ)’m%) HT(dl‘,dU,dw)} (4'47)
Td xR xR4
2/ u%(o,m,v) mo(dx, dv).
Td xRd

We have that

inf / / ( |w|* + Fr(z,v, m] )) p(dz, dv, dw)dt
TdxRd xR

MECT (mo)

+ / gR(x,v,m%) MT(dx7dv7dw)}
T xR x R4

= inf sup / / ]w\Q + Fr(z,v,ml)
(0,121 (T4 xR xR4)) ©eC([0,T] xTdxRd) deRded

+0p(t,2,) + (Dasp(t,,0), ) + (Dot 2,0),w) ) e, dv, )
+ / (gR(x,v,m%) - go(T,ac,v)) pr(dx, dv, dw)
Tdx R4 x R4

+/ (0, z,v) mo(dzx,dv)
TdxRd

1
> sup inf / / (f|w|2 + Fr(z,v,m])
0eCo([0,T]xTdxRA) HEC(0,T];: 21 (TIxRIxR)) Jo  JTdxRIxRE \2

+ Oup(t,,0) + (Daplt,,0),0) + (Dosplt, 2, v), w) ) pn(de, do, duw)alt
+ / <9R($5’Uam%) - QD(T,I‘,U)) MT(dCL‘,dU,d’U))
Td xR xR4

+/ @(0,1’,’[1) mo(diE,d’U).
TdxR4

In the argument below, the constant ¢ depends on R and on the data
and may change from line to line. Let £1¢ = ¢1¢(z) be a smooth mollifier
such that spt(¢'°) C B, £'4(z) > 0 and [ €"%(z) dz = 1, and define
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ui R = uk x, £1°(¢,2,v) (the convolution being in the z variable only). Let

R > R be such that spt(uk), spt(Fr) and spt(gr) are contained in B
Then, we have that ui’R satisfies the following inequality in the viscosity
sense

1
- 8tU§’R(t,.’L‘,’U) + *|Dvui7R(t,£L’,’U)|2 - <D:Bu§’R(tal‘7fU)7U> < FR*gLa(t7w7U)
< Fala.v.m]) + Cpe(l+ ") yeris -
Now, let £2¢ = ¢2¢(v) be a smooth mollifier such that spt(&2 E) C B.,
€2¢(v) > 0 and st €2¢(v) dv = 1 and define u = £2° %, ul “(t,z,v)

(the convolution being now in the v variable only) Then, by the Lipschitz
regularity of u% stated in we have that

R?
€25 (Dauy™ (£, 2, ), ) (0) = ( Dy (£, 2, v), 0)| < & [| Doy || < cRE€L(zp)eTixB,, -
Hence ug’R satisfies in the viscosity sense:

1
— B (t, x,v) + §|Dvu§’R(t,x,v)]2 — (Dyu " (t, x,0),0)

T
< Fgp(z,v,m; )+ CRsl(:r,v)E']TdXBR/'

We finally regularize u‘;R in time. Let &3¢ = £3(t) be a smooth mollifier
such that spt(ﬁ2 §) C Be, £2°(t) > 0 and fB €2¢(t) dt = 1 and define
uf’s = 3%y u2 “(t,z,v) (convolution in time). Thus, u3 ° for any (t,z,v) €
(=00, T — ] x T4 x Rd, satisfies (in the classical sense)

— Oyug* (t,w,0) + ngwawF—wwguxww

< €3 4 FR(x, v,mT)(t) + cre l(a:,v)erxBR/'

By Theorem 324 in Chapter 4 we know that m” is Lipschitz continuous in
tlme with respect to the d; distance. Setting a2 (¢, z,v) = uf’s(t —&,,v),
ol satisfies therefore

— 9yal(t, z,v) + !D af(t,z,0)[* = (Dyal(t,z,v),v) (4.48)

< FR(xvvymt )+ CRgl(:r,v)E']I‘dXBR/'

We note that @ is smooth and has a compact support and converges uni-
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R

formly to u® as ¢ — 0. Using 4 as test function we get

T
1
sup inf / / <f|w|2 + Fgp(z,v,ml)
EC ([0,T]xTdxRd) LEC([0,T]; 21 (TIxRIXRY)) Jo  JTdxRIxRA 2

+ Qup(t,2,0) + (Dasplt, 2,0),v) + (Duiplt,,0), w) ) pug(der, dv, dw)at

+/ <gR(:1c,v,m%) — @(T,x,v)) pr(dz, dv, dw) +/ ©(0,z,v) mo(dz, dv)
TdxR4xR4 T

dwRd

T

1
> lnf (7w2+F x,U’mT +a’&,Rt’x”U
_MEC([O,T];%(WdexW))/0 /deRded 2’ | R( ¢ )+ o )

+ (DB (t, 2, v),v) + (Dyal(t, z, v),w)) pi(dx, dv, dw)dt
—|—/ (gR(a:,v,mr_:ﬁ) - ﬁf(T,m,v)) pr(dz, dv, dw)
TdxR4x R4
+/ a0, z,v) mo(dz, dv)
Tdx R4

1
= inf {7D@R t.2, ) + Fr(z,v,mD) — 8,08 (¢, z, v
(t,x,w)€[0,T] x Td x R4 2| vl ( )| R( t) U2 ( )

+ {(Dyali(t, x,v),v) + gr(z,v,m%) — (T, =, v)} +/ a2(0, z,v) mo(dz, dv).
TdxR?

By we obtain that

1
inf {<7DARt)7 2+F » Uy T+8ARt>7 +DARt7a ) )
o™ o A (GIDAE )P + P, vm ) & 00, 0) + (Dsa 2, 0), 0

+ gR(x,v,m%) - &f(T,x,v)} +/ fbf(o,x,v) mo(daz,dv)
TdxR?

> —cre+  inf { gr(z,v,mb) — af’(T,x,v)} +/ a2(0, z,v) mo(dz, dv).
(z,0)€TI xR Td x Rd

As e — 0" we obtain q. (£.47).
On the other hand, since ug is a continuous viscosity solution we know

that it can be represented as follows:

T
u5(0.2,0) = inf ){ / (va(t)r?+FR<w<tm<t>,m?>) dt+ng<T>,v<T>,m%>}.

~elo(z,v 2
(4.49)
We define the measure v € C([0,T]; 21 (T x R? x R?)) as
/ 90(3;’ v, w) Vt(dx7 dv, dw) - / 90('7(13,11) (t)a ;Y(x,v) (t)7 ;)./(:):,v) (t)) mo (dwa d’U),
Tdx R4 x R4 TdxR4xR4

for any ¢ € C°(T?xR?xR?) and any ¢ € [0, T], where Y(z,v) is @ measurable
selection of minimizers of problem pq. (4.49), see Cemma 4 28. By the
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regularity of the minimizers it is not difficult to prove that v € CT(my).
Moreover, integrating the equality

T
1. .
ug(O, xz, U) :/O <§|f}/(:v,v) (t)‘Q + FR(7(1,U) (t)a Y(z,wv) (t)a m?)) dt
+ gR(/y(m,v) (T)a ;V(a:,v) (T)v m%)
against the measure mg we deduce that
/ uh(0, z,v) mo(dz, dv)
Tdx R4
-/ / e (O + Fr(ia) (1), 3oy (6. ) ) dt mo(dz, o)
Tdx R4
[ 9RO (D). (1)) mo(de, o)
Tdx R4
r Lo T
= <f|w\ + Fr(z,v,m; )) vi(dx, dv, dw)dt
0 JTdxRixRd \2
+ / gR(l',’U,m%) l/T(dx,d’U,d’w)
TdxRd xR
> inf / / ( lw|* + Fr(z,v, m] )> we(dx, dv, dw)dt
HeCT (mo) Td x R4 x R4

+ [ gr(w,v,mE) pr(de, dv, dw).
TdxRdxRd

This completes the proof. O

Proof of [Theorem 4.23. Using the notation of [Proposition 4.27 we know that
for any R > 0

inf / / < lw|* + Fr(z,v m?)) we(dx, dv, dw)dt
neCT (mo) Td xR x R4

+/ gR(x,v,m%) MT(dl‘,dU,d’IU)
T xR xR

_/Td y uh(0,z,v) mo(dz, dv).
X

Then, on the one hand it is easy to see, by standard optimal control argu-
ments, that for any (z,v) € T¢ x R? we have that [u%(0,z,v)| < Cy(1+|v|%).
By Dominated Convergence Theorem we get

lim uh(0,2,v) mo(dz, dv) = / ur' (0, z,v) mo(dz, dv).
R—+o00 Jpd «Rd Tdx R4
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On the other hand, without loss of generality we can define a cut-off function
&R as in [Proposition 4.27 such that Fr and ggr are non-decreasing in R. Thus

r 1
limsup inf / / <|w|2 +FR(x,v,mtT)) we(dx, dv, dw)dt
R—+oo peCT(mo) Jo Jraxrixmrd \2

+ / gR(m,v,mg) /,LT(d.%',d’U,d'U})
T xR x R4

T 1
< inf / / <|w|2 —i—F(:U,v,mtT)> e (de, dv, dw)dt
neCT(mo) Jo Jraxrixmrd \ 2

+ 9, v,mB) pr(de, dv, duw).
Tdx R4 xR4

To prove the reverse inequality, let {R;} en and {1 }ien C CT(my) be such
that

T 1
liminf  inf ~|w|? + Fr(z,v,m] > dz,dv, dw)dt
R—+00 ueCT (myp) /0 /deRded (2| | R( ¢ ) Mt( )

+ / gR(xﬂ]am%) MT(dxvdU7dw)
TexRIxRE

T 1
= lim inf Z|w|? + Fr. (z,v,m! > dx, dv, dw)dt
8y o (317 D)) st

+ / IR, (z,v,m%) pp(dz, dv, dw)
TdxRd xR

T 1 ‘
= lim / / ~|w|® + Fp,(x,v,m]) | pl(dz,dv,dw)dt
j—=+oo Jo  Jrdxraxrd \ 2 !

+ / gRj(I',U,m%) M%w(d[l),d?],d’(ﬂ)
Td xR xR2

We claim that {ug }jen is tight. Indeed, the lower bound on F and g, there
exists a constant C' > 0 such that

T .
Sup/ / lwl* pf (dz, dv, dw)dt < C (4.50)
j Jo JTdxRIxRd

and thus it is enough to prove that the moment with respect to v is also
bounded. In order to prove this bound, let 1 € C°(RY) with (0) = 0
and such that |Di(p)| < 1. For ¢(t,z,v) = (T — t)y(v), we have, by the
definition of a T'—closed measure in pq. (4.42),

T .
/ / (= (v) + (T — )(DY(w), w)) uf (de, dv, duw)dt
0 TdXRdXRd (451)

-7 / ) mo(dr.dv)
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and by and Cauchy-Schwarz inequality we get

T ,
‘/ / (T — )(D(v), w) Mg(dx,dv,dw)dt‘ < TCV2,
Tdx R4 x R4
Thus, by we obtain that

‘/ v) 1 (dz, dv, dw) dt( <,
’H‘deded

for some new constant C. If we choose v, such that ¢, (v) increases in n
and converges to |v|, we get therefore

T A
/ / |v| pl(dz, dv, dw)dt < C.
0 JTIxRIxRY

This implies that {ug }jen is tight and, up to a subsequence still denoted by
], converges to some i € CT(myg). Then, we have that

inf / / ( |w|* + F(z,v mf)) we(dx, dv, dw)dt
peCT (mo) Td xRd x R4

+/ g(z, U,m%) pr(dx, dv, dw)
T4 xRd xR

r 1
§/ / (|w[2 + F(x,v, mf)) fe(dx, dv, dw)dt
0 JTdxrixrd \2

—1—/ g(z, v,m%) pr(dz, dv, dw)
TdxRd xRd

T
1 .
< lim // “Jw? + Fr.(z,v,ml) ) wl(dz,dv,dw)dt
j—=+00 Jo  JTdxRIxRd \ 2 !

+/ gr;(w,v ,mb) (d:c dv, dw)
TdxRIx R4

=liminf inf / / ( lwl® + Fg,(z,v m?)) pt(dx, dv, dw)dt
Td xR x R4

J—r+00 peCT (myo)

+/ gRj(x,v,m%) ,LLT(d,I,dU,d’LU).
TdxRIxR4

This completes the proof of equality (224).

It remain to check the existence of a minimizer i’ € CT(mg) of the
problem in the left-hand side such that m! = mfu!. For this, let V(w,v)
denote the measurable selection of minimizers of u? (0,x,v) in (EZ1) as in
below and define the measure

/_‘? = ((SU,’U) - (V(m,v)(t)v'y(r,v)(t)vD u (t V(x, v)( ) Yz, v)( )))) ﬁmo



86CHAPTER 4. ERGODIC BEHAVIOR OF ACCELERATION MODEL

for any ¢ € [0,T]. Note that by [I, Lemma 3.5] fi] is well-defined since
u(t, x,-) is differentiable along the optimal trajectory 7(, ., with

;)./(:c,v) (t) = DUUT(ta V(z,v) (t)a ;Y(z,fu) (t>)7 te [07 T]

In particular, it is easy to see that i’ € CT(mg) and moreover, by [il, Propo-
sition 4.2] we have that m! = 7fii] sincem] = ((x,v) — (Yw,0) (), Yz () EM0.

By the representation formula of the value function we have that
T ! 2 T T
u (O> z, U) = /O (5 h/(ac,v) (t)| + F('Y(ac,v) (t)a 1(&:,1}) (t)a my )) dt + g(’y(m,v)(T)a ’y(z,fu) (T)v mT)

T
1 . .
= /0 (5 ‘DUUT(ta V(z,w) (t)v Y(z,v) (t)) ’2 + F(V(x,v) (t)7 V(z,v) (t)? mg)) dt
+ 9(7(1,1)) (1), ;V(a:,v) (1), m%)

Integrating both side against the measure mg and using the definition of i’
we obtain that i’ satisfies the equality in (B24) and therefore is optimal.
O

Lemma 4.28. Assume that F satisfies (F1’) and (F2’) and g satisfies
(G1). For (z,v) € T¢ x R? let T*(x,v) C To(x,v) be the set of minimizers
of problem fort =0. Then, the set-valued map

L (T xRY ) = (0] o) (2,0) 70 T (2,0)

has a measurable selection 7(z.), i-€. (T,V) = Y(g,) 5 measurable and, for
any (z,v) € T? x RY, Yw) € (2, 0).

Proof. By using classical results from optimal control theory it is not difficult
to see that I'* has a closed graph, see for instance Cemma 39 in Chapter 3.
Therefore, by [21, Proposition 9.5] the set-valued map (z,v) = I'*(z,v) is
measurable with closed values. This implies by [26, Theorem A 5.2] the
existence of a measurable selection 7, ) € ['*(z,v). O

4.3.3 Convergence of the solution of the time dependent
MFG system

We now investigate the limit as the horizon T' — +o00 of the time-dependent
MFG problem. The main result of this subsection is the following proposi-
tion:

Proposition 4.29 (Convergence of MFG solution). Assume that F
satisfies (F1°), (F2%), (F3’) with a = 2 and the monotonicity condition
(@), that g satisfies (G1) and that the initial distribution mq in
belongs to Po(T¢ x R?). Let (uT,m”) be a solution of the MFG system
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and let (X, i) be the solution of the ergodic MFG problem [eq. (4.35).

Then
1

— T _3
Tl_lﬂloo T /deRdu (0, z,v) mo(dx,dv) = A

Throughout the section, we assume that the assumption of
are in force. The proof of the proposition—given at the end of the
subsection—is made at the level of the closed and T'—closed measures. For
this we first need to discuss how to manipulate them. The first lemma is a
straightforward application of the definition of T'—closed measures:

Lemma 4.30 (Concatenation of T-closed measure). Let T,7" > 0,
mo € Po(T¢ x RY), py € CT(mg) and py € CT' (my) with mi = w1 (T).
Then, the measure

L ul(t), tE[O,T]
M= et =1),  te(TT+T)

belongs to CT+T" (my).
Next we explain how to link two measures by a T'—closed measure:

Lemma 4.31 (Linking two measures by a T-closed measure). Let
my and m belong to P2(T? x RY). Then, there exists [ € CT=Y(m})

1 2
such that mg = whuy" "™ and

1
1 1,2
/ / (51wl + cp(1+ v]*) py 0" (da, dv, dw)dt < Co(1+ Ma(mg) + Ma(mp)),
0 JTixr2d

(4.52)

where Ma(m) = [ra, ga [v[?dm(z,v) (for m € P5(T? x RY)) and where Cy

depends only on o and cp.

Proof. Let (xg,v0) € spt(m}) and let (z,v) € spt(m3). Then, following the

proof of Cemma 4R, there exists a curve o) [0,1] — T such that

(wo,v0)

o) (0) = o, dgm’v) 1(0) = vy and o) (1) =y, i) (1) = w with

(xo0,v0 Z0,V0 (xo,v0 (20,v0

1
1 ~ (v . (T, v
/O GIEG oy OF +ep(L+ 160 (OP)dt < Co(1 + v + [uol?). (4.53)

x0,V0 20,v0)

Moreover, by construction, o depends continuously on (zg,vg,z,v). Let
A € I(md, m3) be a transport plan between mj and m3 (see (222)). We
define the measure ™o~ € Cl(m}) by

1 2
/]Td o (p(w,v,w)u;no_)mo(dx,dv,dw)
X X

_ /( e o™ (0,600 (0,550 (8)) Mdao, dvo, de, dv)
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m0—>m0

for any ¢ € C2°(T? x R x R?). Then, on easily checks that m3 = mwfu]
and that, by (E53):

/ / f\w]2 +ep(1+[v]?) mo_mo(dx dv, dw)dt
Td xR2d

2 2 m§—m2
<y (14 |v|* + |vo|?) py (dz, dv, dw)dt
0 JTdxR2d
= Co(1+ Ma(mg) + Ma(mj)).
O

Proposition 4.32 (Energy estimate). Under the notation and assump-
tion of [Proposition 4.29, there exists a constant C' > 0 (independent of T')
such that

T Ty _ Y| 2d+2
/ sup [Pz, v,my ) Fgacédv, )l dt < CT3, (4.54)
0 (x,w)eTdxRd (1 + ‘U’ )

where m = wip, with 7(x,v,w) = (x,v).

Proof. The proof consists in building from i and ! competitors in problems
(2=33) and (224) respectively. Let us recall that u! and fi are minimizers
for these respective problems.

We start with problem (224). Fix T > 2. We define the measure i’ by

mo—m

N 1 , tel0,1]

=M (4.55)
s te (1,11,

where ™0™ is the measure defined by Cemma4-31. We know by Lemma 430
that 17 belongs to CT(mg). So we can use i’ as a competitor in problem
(B22) to get

/OT /TdXRdXRd <;|w\2 + F(x,v,m?)) uf(d:ﬁ,dv,dw)dt
Adededg(:r v,mr) pp(de, dv, dw)
/ /deRded < w|? + F(z,v m?)) o™ (d, dv, dw)dt
/ /deRded ( wl* + F(a,v mtT)) fi(dz, dv, dw)dt

/ g(x,v,mL) i(dx, dv, dw).
Td xR x R4
(4.56)
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Next we build from p” a competitor for the minimization problem
for which i is a minimizer. In view of [, Proposition 4.2] there exists a Borel
measurable maps (r,v) — 7(z,, such that, for each (z,v) € T¢ x R4, V(w,v)
is a minimizer for u” (0, x,v) in (B24) and satisfies

T
/ / o(x,v,w) pl (de,dv, dw)dt
TdxR2d

(4.57)
/ / ’Y(z v) ( )7 ;)-/(x,v) (t))dtm() (d.ﬁlf, dv)
TdxR4

for any test function ¢ € CP(T? x R??). By Lemma B0 and Remark
BT, for any A > 2, there exist Borel measurable maps (z,v) — ¥(;,.) and
(z,v) = T(4,0) such that

V(z,v) (0) - :Y(x,v) (T) =T, V(xw) (O) = ’LY(:E,U) (T> = v and :)/(:t:,v) = V(z,w) O [07 T(CE,U)]
(4.58)

T
1. - _
[ R ®F +er + Fam (Ot < Col1 + o) + X7°T)

(4.59)

Let us define 47 by

/ o(z,v,w) i* (dz, dv, dw)
d 2d
o (4.60)

= [ A 003 03 Ot 0

for any test function ¢ € C} (T x R??). Note that, by (258), 47 belongs to
C. So using the closed measure i’ as a competitor in problem we
deduce that

1
/ *|w|2 + F(x,v,m) | p(dz,dv,dw)
TdxRAxRd \ 2

1 (4.61)
< / <!wl2+F(x,v,m)> i (dz, dv, dw).
TdxR2d \ 2



90CHAPTER 4. ERGODIC BEHAVIOR OF ACCELERATION MODEL

Note that by the definition of 4 in (260) and by (B58) and (E59), we have

1w2 T,0, MM 0! (dx, dv, dw
7 [ (Gl Fam) i (e dv.do)
-/ / L Bty (D12 + F i) (8 3y (£), 7))t mo(dv, )
TdxRd
<[ (7 Gl OF + PO O 0 m)de
Tdx R4 0

T
* / %Ww) OF + cr(1+ e (t)!2))dt> mo(dz, dv)

T(z,v)

71
</deRd</0 Gl O + F () (1), Yo (), 7)) dt

+O5(1+ [)2(N2 + A—2T)) mo(dz, dv).

Plugging this inequality into (E%0) and using the representation of u!
(E57) then gives

1
/ ~|w|? + F(z,v,m) | pa(dx,dv,dw)
TdxRAxRA \ 2
Lo > -T
< —|w|* + F(z,v,m dx, dv, dw
/deR?d(2| | ( )) ) (4.62)

T 1
< Tl/ / <]w|2 + F(a:,v,m)) pd (da, dv, dw)dt
0 JTixrixrd \2
+2C5(1 + Ma(mg)) (AT~ + A72),

where Ma(mg) = [ra,ga |v[*dmo(z,v). Putting together (E56) and (EG2)
(multiplied by T') then implies that

T
1
/0 /’er RQd(i\wP+F(x,v,mtT))dﬂtT(x,U’w)
X

T 1
+/ / <yw|2+F(:v,v,m)> f(dz, dv, dw)dt
0 JTdxgr2d \ 2
! 1
= // <!wl2+F(x7v,mtT)> "™ (dz, dv, dw)dt
TdXRQd

/ /’H‘d R2d < wl + F(z,v mf)) (dx, dv, dw)dt

i
+ / g(z,v,mY) f(dz, dv, dw) / g(x,v,mk) ph(dz, dv, dw)
Td xR24
T
Hit

/ / < wf2 + Pz, v m)) (da, dv, dw)dt + 2C5(1 + Ma(mo)) (A2 + A=T).
Td x R2d
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Using (B52) to bound the first term in the right-hand side (note that m
belongs to 2, o(T? x R x RY) with o = 2, so that m € P5(T? x RY)) we
obtain therefore

T
/ / (F(x,v,mT) — Flz,v,m)) (i (de, dv, dw) — (dz, dv, dw))dt
0 Td xR2d
< Co(L+ Ma(mo) + Ma(1m) + 2l|gloo + 2C5(1 + Ma(mo)) (X + A~°T).

We now use the strong monotonicity condition and choose A = T'/4
to get

T
/ / (F(xz,v,ml) — F(x,v,m))?dedvdt < CT:
0 JTIxR2d

for a constant C' independent of T'. Recalling that F' satisfies (F3’), we
obtain (E54) by the interpolation inequality Cemma @33 in the Appendix.
O

Proof of [Proposition 4.29. Throughout the proof, C' denotes a constant in-
dependent of T' and which may change from line to line. Let u’ € CT(my)
be associated with a solution (u”,m”) of the MFG system (A4) as in Thel
brem 4 28. By Thearem 4275 we have that

1
— ul (0, z,v) mo(dz, dv)
T Td xRa

1 T 1
— T{/o /Td o (2|w|2+F(ﬂc,v,mtT)> ud (dz, dv, dw)dt
X X

+ [ gleemd) k(e do.du)
TdxRe xR

1 T 1
inf = - 2+F,7T> dz, dv. dw)dt
pECT (mo) T{/o /]I‘deded (2|w| (@, v,m ) | pe(de, dv, dw)

+ / g(z,v,m7) pr(de, dv, dw)}-
Td x R4 x R4

(4.63)

We first claim that
. . 1
limsup inf

T
1, .
T 5 F dz, dv, dw)dt
T— 400 RECT (M) T{/O /EdXRded <2|’UJ| + (x,v,mt )> :U't( X, av, ’U))

+ / gz, v, mr) M(dw,dv,dw)}
Td x R4 x R4

1
< inf w4+ F n) ) fi :
< ;LIGIC{/’JI‘dXRdXRd <2|w| + (x,v,m)) ,u(dx,dv,dw)}
(4.64)
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In order to prove the claim, we first note that, by Young’s inequality and
[Proposition 4.34, we have, for any p € CT(my),

T
‘/ / (F(z,0,m{) — F(z,v,m)) p(dz,dv,dw)dt
Td xR x R4

F(z' v T — F(2' V. m
/ / sup |F(z',v",my) (;UaU,m” (1+ [v]? ) py(dz, dv, dw)dt
TdxRIXRE (37 ,0/)€Td x RY (14 [v'[?)a+T

yy Fle.vmf) - F.o,mP2
0 (z,v)

sup

- 2d+ 2 , cTd xRd (]. + |U|2)2d

1
2d + 1T 3@arn [T Cad
it ] / / (1 + [v]*)CHD py(de, dv, dw)dt
2d+2 0 JTdxRIxR4

1 T
< TS 4 7T / / (1+ [0]2) pue(de, dv, dw)dt.
TdxREx R4

(4.65)

As g is bounded, we have therefore, for any u € CT(my),

1 T 1 .
T{ 0 JTdxRixRd §|w| + F(z,v,my ) | pu(de, dv, dw)dt
X X

+ / g(z, U,m?) pr(dz, dv, dw)}
T4 xRd xR

1 g LT _
= 7{ —|w|* + F(x,v,m) | p(dx,dv,dw)dt
T )y Jrixraxgrd \ 2

L T
+ 1 1G240 / / (L+ [v]?) ,ut(dx,dv,dw)dt} +CT 7+ T H9lloo-
Tdx R4 x R4
(4.66)

Given fi € C, we know from [Cemma 230 that there exists p™0 ™ such
that

/ / \w[Q + ep(1+ [o) o™ (da, dv, dw)dt
’ﬂ‘deQd

< Oy(1 + Ma(mo) + Ma(mti)).

(4.67)

Let us then define i’ by
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By LCemma 431, i7" belongs to CT(mg) and we have, in view of (E67),

T
1
Tl/o /Jl‘d . <2]w|2+F(w,v,m)> al (dx, dv, dw)dt
X X

< CoT 71+ Ma(mg) + Ma(mtfi))
+ T YT - 1)/ (1]11)\2 + F(a:,v,ﬁt)) a(dx, dv, dw)
TdxRAxRE \ 2

while

/T/ (1+ [v*) fif (de, dv, dw)dt
0 JTIxRIxR4

Therefore, coming back to (B%8) and using the 7 built as above from the
it € C as competitors, we have

1o/t 1
inf {/ / <w2+F x,v,mT) dx,dv, dw)dt
A A S 5] ( t)) he( )

+ / g(z,v,m7) pr(de, dv, dw)}
TdxREx R4

1
< inf{/ (|w|2 + F(z,v, m)> a(dx, dv, dw)
REC \ Jd wRd xRd 2

+ CT™ T (14 Ma(mo) + Ma(wtji)) b + CT % + T g
(4.68)

Since, by assumption (F2?),
/ F(z,v,m) fi(dr,dv,dw) > ca' May(rtii) — cp,
TdxRIx R4
one easily checks that the limit of the right-hand side of (ABR) as T' — 400
is )
inf{/ (!w\Q + F(z, v,ﬁ%)) f(dx, dv, dw)}.
el Td x R4 x R4 2
This proves our claim (£54).
Next we claim that there exists a closed measure i € C such that
I 'fl{/T/ Ljwf? + FY( ™Y WT(dz, dv, dw)dt
im inf — —|w x,v,m x, dv, dw
To+oo T'\Jy Jrdxrixrd \ 2 T He T
+ / g(x,v,m%) ph(dz, dv, dw)} (4.69)
TdxRdx R4

1
>/ (\w|2+F(:c,v,m)> idz, dv, dw).
TdxRExRd \ 2
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For the proof of (E69), we work with a subsequence of T — +oo (still
denoted by T') along which the lower limit in the left-hand side is achieved.
Coming back to (E643), we have

I 1
T{/o /ird o <2|w]2 +F(x,v,mtT)> pl (dx, dv, dw)dt
X X

i / g(x,v.mf) 1 (d,dv, du) }
TdxRe x R4

1 T 1
= {/ / S|w|* + F(x,v,m) | pf (d,dv, dw)dt
T Uy Jraxpdxprd \ 2

1

T
7w [ Mgl dt} - €T~ gl
0

By the coercivity of F' in assumption (F2’), we can absorb the second term
in the right-hand side into the first one and obtain:

1 T 1
{/ / *|w|2 + F(x, U,mtT) utT(d:L‘,dU, dw)dt
T )y Jrixrixrd \ 2
o atnemd) e dvdu)
TdxRdxRd

1 (T 1
>_(1-Cc'T T ) / / <lw|2 + F(:U,U,rﬁ)) pt (dx, dv, dw)dt
T 0 JTixrixrd \2

— TN — O — ||glle T
(4.70)

As in the proof of [Proposition 4:32 (see (E52)), for any A > 1, we can
find a closed measure fi7 € C such that

1
/Td -y (2\w|2 +F(iﬁ,v,fn)> it (dz, dv, dw)
X

r 1
< T_l/o /11‘61 - <2|w|2 —|—F(:U,v,m)> pl (dzx, dv, dw)dt
X X

+ 203(1 + MQ(mo))()\zT_l + )\_2>.

Plugging this inequality into (B=70) we find therefore

1 (" 1
T{/o /Td i <2|w\2 +F(:1;,v,mtT)> pd (dz, dv, dw)dt
X X

+ [ o(x,v.mf) (W (da, dv, dw)
TdxRdxRd

1
<|w|2 + F(x,v, m)) i (dzx, dv, dw)

> (1 c—lT«zim)/ -

Td xR2d
—203(1 + Ma(mo)) (V2T + A~2) — OT 7@,
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By assumption (F2’), the functional in the right-hand side of the inequality
is coercive for T large enough. So fi7 weakly-* converges (up to a subse-
quence) to a closed measure ji. Taking the lower-limit in the last inequality
then implies (259).

Putting together (A64) and (A69), we find that /i is a minimizer in the
right-hand side of (E54) and that the semi-limits and the inequalities in
(AB2) and (B6Y) are in fact limits and equalities. So coming back to (E53)
we find that

lim / u® (0, z,v) mo(dz, dv)

1
= jnf{/ <|w|2+F(x,v,m)) [L(d:ﬁ,dv,dw)}.
peC \ JTdymdxrd \ 2

The right-hand side of this equality is nothing than but X since (), i) is a
solution to the the ergodic MFG problem with m = 7wfiji: this completes the
proof of the proposition. O

To complete the proof of Theorem EZ3, we need estimates on the oscilla-
tion of u”. This comes next:

Lemma 4.33. For any R > 1 and (z,v), (2/,v") € T% x Bg, we have
_4d43
luT (0, z,v) — u? (0,2,v")| < CR*T3@)
where C' is independent of T and R.

Proof. Let v € I'(z,v) be optimal for (0,2, v) in (B21). We define 7 €
['(2/,v") by

R (5! ift € [0,1]

V() = { Nt—1) ifte[L,T).

where ¢ is as in Cemma 48 with o(0) = 2/, 6(0) =/, (1) = 2, 6(1) = v
and

L
/ (4&@);2 + F(o(t), d(t),mtT))dt < 205 R?.
) \2

Note that, as the problem for u” depends on time through (m?), the cost
associated with 4 could be quite far from the cost associated with . To over-
come this issue, we use in a crucial way [Proposition 4.32. Indeed, applying
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(E52) in Proposition 4.32, we have

T
/0 [F(3(8), (1), mF) — F(y(t),5(0),m))| d

T . B
F _F
< / (1+ |7(t)|2)dil sup |E(y, z,mq ) gy’ Z’m)’dt
0

(y,2) €T x R4 (1 + [v[2)@H
g sits T T 2d+2 5ars
2d 2d+2 Fy, 2, Py e
< ( / (1+ w(t)ﬁ)ﬁidt) / wp  E@mmE) 5@,2; )2
0 0 (y,2)€TIxRA (1+1v]?)

2d+1

1 T 2d+2
<ormm ([Ca+opa)

We have by assumption (F2’) and Cemma 28 that

T
| G HOF — erdt < T 0.0,0) < enT(1+ o], (4.71)
0
Therefore
T 4d+3 2d+1
/ |F(v(t),5(t),m]) — F(y(t),%(t),m))| < CTA@D (1 4+ R?)2d2. (4.72)
0

For the very same reason we also have

2d+1

T 4d+3
/1 [F(3(t — 1),4(t — 1), mT) — F(y(t — 1), 4(t — 1),m))| < CTHE0 (1 + B35
(4.73)

because we only used the optimality of v only in the estimate (EZ71). So, by
(B272) and (A—73) we obtain

0 < [ (JBEOP + FE0.A0,mD) i
— /01 (%\5(1&)\2 + F(o(t),a(t), mtT))dt + /0

T
< 20,R? + / (S0P + F 0,30, m) )de + €T3 (1 4 R2) 353

T-1 1
(513 = D2+ F(y(t = 1),5( = 1),m]) ) at

2 T - 2 . T _4d+3 o, 2d+1

<20%R +/0 (5"7(t)| + F(y(t),4(t), m; ))dt+2CT4(d+1) (1+ R?)2a
T ) _4d+3_ o, 2d+1
<u (0,1‘,1)) + 2C9R* + 2CT 4(d+1) (1 + R )2d+2,

from which the result derives easily. O
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Proof of [Theorem 4.J. [Proposition 4.23 states the existence of a solution for
the ergodic MFG system and its uniqueness under assumption (£4). From
[Proposition 4.29 we know that

1 _
lim — T =\
P o /deRdu (0, z,v)mo(dz, dv) = A

It remains to prove the local uniform convergence of v’ to A\. Fix R > 0
and € > 0. We have by Cemma ™48 that

0 <ul(0,z,v) < cpT(1 + |v]?). (4.74)

As my € P5(T? x R?), there exists R’ > R such that
/ (1 + |[v[*)mo(dz, dv) < €. (4.75)
Tdx (R Bpy)

Then, for any (zg,v9) € T¢ x Bg, we have, by Lemma 433, (£-74) and
(B=73),
L 7 3 1 T 3
|7u (0,$0,U0) = A | <=5 U (O,JT,’U)mo(dﬂf,dU) —A
T T Td xRa

1

+ = ‘uT(O,:):,v) - uT(O,xo,vo)‘ mo(dz, dv)
T Jrixp,,

1
+ 5 (‘UT(O7$7U)’ + ’UT(O,IE(),’U(])D mo(dw,dv)
T Jrax(Rd\B)
1 T 3 1 p2iats 2
<|= u” (0,2, v)mo(de,dv) — X |+ CT ™ (R)*T4a+0 + cpe(2+ R?),
T Jrixga

from which the local uniform convergence of u’(0,-,-)/T to A can be ob-
tained easily. O

4.4 Appendix

4.4.1 Von Neumann minmax theorem

Let A, B be convex sets of some vector spaces and let us suppose that B
is endowed with some Hausdorff topology. Let £ : A x B — R be a saddle
function satisfying

1. a — L(a,b) is concave in A for every b € B,
2. b L(a,b) is convex in B for every a € A.

It is always true that

inf sup L(a,b) > inf L(a,b).
JEoup £ D) 2 ip g £Le.D)
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Theorem 4.34 ([64]). Assume that there exists a* € A and ¢* > sup,c, infpep L(a,b)
such that
B :={beB: L(a"b) <"}

is not empty and compact in B, and that b — L(a,b) is lower semicontinuous
in B* for every a € A.
Then

minsup L(a, b) = sup inf L(a,b).
beB aeg ( ) aeg beB ( )

4.4.2 An interpolation inequality

Lemma 4.35. Assume that f : T x R — R is locally Lipschitz continuous
with

|f(x,0)|+| Dy f(x,0)|+|Dy f(x,v)] < co(1+]v]%) for a.e. (z,v) € T? x R?

(4.76)
for some constants co > 0 and o € (1,2]. There exists a constants Cy > 0
(depending on dimension only) such that

2d+2
sup % < C’dc%d/ |f(z,v)|?dzdv.
(wv)eTixrd (14 [v]%) TdxRd
Proof. Let (xg,v9) € T? x R? be such that f(zg,v9) # 0 and let R =
If(@o.v0)l _ Note that, by our assumption on |f| in (EZ78), R is less than

2c0(342|vo ™)
1. Then, for any (z,v) € Br(zg,v9), we have by assumption (E=78) that

| Do f (2, 0) [+ Do f (2, 0)] < co(L+(1+]vo])¥) < (1422714277 ug|%) < eo(3+2uo|*),

(where we used the fact that R < 1 and that (a + b)® < 2% Y(a® + b%) in
the first inequality and the fact that o < 2 in the second one). Therefore

|f(950’1)0)|_

|f(z, v)| 2 [ f (20, vo)| = co(3 + 2fuwo|*) R = =

Taking the square and integrating over Bgr(xq,vg) gives

| f (@0, v0)] 242
22d+263d(3—|—2|’00|a)2d ’

2
o,V
Lo st > PARER UL TN
X

which implies the result. O



Chapter 5

Singular limit problem for
mean field control of
acceleration

5.1 Assumptions and main results

In this following, we will use the same notation for similar objects for two
problems. Howewver, both the analysis are self contained and there are no
intersections that might create ambiguity.

5.1.1 Control of acceleration

We begin with the analysis of the pure control problem of acceleration with-
out mean field interaction.
Assume that the Lagrangian Lo : R?¢ — R satisfy the following.

(L1) Lo € CY(R%);
(L2) there exists Cy > 0 such that for any (z,v) € R??

1

CTO\UI2 — Co < Lo(z,v) < Co(1+[v]?), (5.1)
|DLo(z,v)| < Co(1+|v[?), (5.2)
|DyLo(x,v)| < Co(1+ Jv)), (5.3)

and, without loss of generality, we assume that Lo(z,v) > 0.

99
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We consider the Hamilton-Jacobi equation

—Opuf (t, 2, v) + 52| Dyl (t, 2, v)|? — (Dyus(t, 2, v),v)
—Lo(z,v) =0, (t,z,v) €[0,T] x R*
u (T, z,v) = g(x), (z,v) € R,
(5.4)

and assume the following on the function g : R — R.
(TC) g(-) € C’g(Rd) such that Cy > max{%, %||Dg(')||oo7Rd}.

Let ' be the set of C! curves v : [0,7] — R? endowed with the local
uniform convergence of the curve and its derivative, and given (¢,x,v) €
[0,T] x R?? let Ty(x,v) be the subset of T' such that v(t) = z, ¥(t) = v.
Similarly, let T'y(z) be the subset of T' such that v(¢) = z. Define the
functional Ji, : I' = R

e Tre. 2 : . 2 d
T ) = [ (SHOF + Lolr(s).5(:) ds+gr(T). if 7 € HH0. TR

and set Jip(y) = +oo if v & H?(0,T;R%). Then, we know that the solution
u® of (B4) can be represented as

uf(t,z,v) = inf  JEp(y),  (tz,v) € [0,T] x R*, (5.5)
~vyelt(z,w) 7

Let Hy : R — R be the Hamiltonian associated with Lo, i.e.,

Ho(z,p) = s { = (p,v) — Lo(z,v)}.

Theorem 5.1 (Main result 1). Assume (L1), (L2) and (TC). Let u®
be a solution to (B4). Then, there exists a sequence {ey}reny with €, | 0 as
k — o0, and a function u® € W2°([0,T] x R%) such that for any R > 0

loc

lim u®(t,2,v) = u’(t,x), wuniformly on [0,T] x Br x Bg.
k—ro00

Moreover, u® satisfy

—0pul(t, x) + Ho(x, Doul(t,2)) =0, (t,z) € [0,T] x RY
u(T,x) = g(x), r € RY

and, consequently, for any (t,z) € [0,T] x R? we have that

)=t L[ 1000605060 s + o) |

yETH(
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5.1.2 Mean field control of acceleration

We now list the main assumptions on the Lagrangian L : R?? x 22, (RY) —
R.

(M1) Lg is continuous w.r.t. all variables and for any m € £;(R?) the map
(x,v) — Lo(x,v,m) belongs to C*(R?).

(M2) There exists My > 0 such that for any (z,v,m) € R? x 22, (R%)

1
MOMQ — My < Lo(x,v,m) < My(1 + |v]?), (5.6)
|DyLo(z,v,m)| < Mo(1+ [v]?), (5.7)
|DyLo(z,v,m)| < Mo(1+ |v]), (5.8)

and, without loss of generality, Lo(z,v,m) > 0 for any (z,v,m) €
R2d x 22 (RY).

(M3) There exists two moduli 6 : Ry — R4 and wp : R4 — R4 such that
’LO(CU, v, ml) - LO(x7 v, m2)| < 0(’1")&)0((11 (m17 mQ))7
for any (x,v) € R? and my, ms € 21 (R9).

Let Hy : R?? x 22 (R?) — R be the Hamiltonian associated with Ly, i.e.,

HO(xapa m) = sup { - <p,’u> - L()(CC,U,m)}.
veERY

We consider the following MFG system

—Opuf + 5= |Dyuf|? — (Dyuf,v) — Lo(z,v,m§) =0, (t,z,v) € [0,T] x R*
O — (Dypus, vy — T divy, (uf Dyuf) = 0, (t,x,v) € [0,T] x R
4§ = o wS(Toz,0) = gl mS), (,0) € R

(5.9)

where m§ = mifp$ and 71 : R — R? denotes the projection onto the first
factor, i.e., mi(x,v) = x. We assume the following on the boundary data of
the system:

(BC1) pp € Z(R??) is absolutely continuous w.r.t. Lebesgue measure, we
still denote by pg its density, and it has compact support.

(BC2) g(-,m) belongs to C}(RY) such that My > max{3, 31 Dg(-,m)| oo g}
and g(z,-) uniformly continuous w.r.t. space.
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Let ' be the set of C' curves v : [0,7] — R? endowed with the local
uniform convergence of the curve and its derivative, and given (¢,x,v) €
[0,T] x R?? let Ty(x,v) be the subset of T' such that v(t) = z, ¥(t) = v.
Similarly, let I';(z) be the subset of I' such that y(¢) = z. Define the
functional Ji,:I' = R

T 9
T ) = [ (SHOR + Lotr(s).3(s).md)) ds+g(x(T)omi). if ¥ € H(0.T5RY)

and set J;p(v) = oo if v & H?(0,T;R%). Then, from we know
that there exist a solution (u®, uf) € VVZIOCOO([O, T] xR2%) x O ([0, T]; 21 (R??))
to system (69) such that

ut(t,z,v) = inf  Jip(y) (5.10)
yely(z,w) 7

and for any t € [0,T] the probability measure yi is the image of po under
the flow

(5.11)

{wt) = o(t)
0(t) = — LDy (8, y(2), v(1)).

That is, u® solves the Hamilton-Jacobi equation in the viscosity sense and
1€ solves the continuity equation in the sense of distributions.

Remark 5.2. Note that for a.e. (x,v) € R?? there exists a unique solution
to system (6), which we will denote by ’y(ig o) such that fy(ex v)(O) ==z

and ¢, ) (0) = v. Moreover, such a curve 7(695,1))(’) is optimal for u® (¢, x,v)
£ £

satisfying 7¢, ) (t) =z and V) (t) = v as initial condition.

Theorem 5.3 (Main result 2). Assume (M1) — (M3) and (BC). Let
(uf, uf) be a solution to (69) and let m§ = miffu for any t € [0,T]. That
is, there exists a sequence {ep}ren with e, | 0, as k — oo, a function
u’ € I/Vlicoo([O,T] x RY) and a flow of probability measures {m{}icjo1) €

C([0,T); 221 (RY)) such that for any R >0

lim u®*(t,z,v) = u’(t,z), wuniformly on [0,T] x Br x Br
k—o0

and
lim ms* =m?, in C([0,T]; 21 (RY)).
k—ro0

Moreover, the following holds.
(i) (u®,m®) e WL2°([0,T] x RY) x C([0,T); 21(R%)) is a solution of

loc
—0u(t, ) + Ho(z, Dpul(t, x), mY) = 0, (t,) € [0,T] x R?
Oym? — div (ngpH[)(.’L', Dl (t, x), mg)) =0, (t,x) €[0,T] x R?
my = mg, u(T,z) = g(z,mY), r € RY

(5.12)
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that is, u° solves the Hamilton-Jacobi equation in the viscosity sense
and m is a solution of the continuity equation in the sense of distri-
butions.

(ii) For anyt € [0,T) the probability measure m{ is the image of mo under
the Euler flow associated with Lg.

Remark 5.4. Let (u®,;®) be a solution to (69). Assume that Hy is of
separated form, i.e., there exists a coupling function F : R? x 22;(R%) — R
such that

Hy(z,p,m) = H(z,p) — F(z,m), Y(z,p,m) e R x 22, (RY).

Moreover, assume that F' is continuous w.r.t. all variables, that the map
z +— F(z,m) belongs to C}(R?) and that the functions F, g are monotone
in the sense of Lasry-Lions, i.e.

/Rd (F(z,m1) — F(z,mz)) (mi(dz) — ma(dz)) >0, YV my,mg € 2 (R

/Rd (g(m,ml) — g(m,mg)) (mq(dz) — mo(dx)) >0, VYV mi,mg € f@l(Rd).

Then, we know that that there exists a unique solution (u®, m°) € I/Vllocoo([O, T x
R?) x C([0,T]; 221(R?)) of (512) and thus if (uf, m®) is relatively compact
then convergence of (u®, m) holds for the whole sequence.

5.2 Proof of the main result

5.2.1 Proof for the control of acceleration

We start our analysis by considering the case of control of acceleration with-
out mean field interaction and first we will show that the value function u®
is locally equibounded and locally equicontinuous.

Lemma 5.5. Assume (L1), (L2) and (TC). Then we have that
~CoT — |lglloo g < u(t,2,0)] < CoT(1+ [v]*) + |9l e
for any (t,x,v) € [0,T] x R?** and any e > 0.
Proof. On the one hand, by (63), (6) and (TC) we deduce that
ut(t,x,v) = =CoT = ||glloo ra-
On the other hand, the functions

C(t,z,v) = glx) + C(L+ [T —t), (t,z,v)€[0,T] x R
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is a supersolution to the equation satisfied by u® for a suitable choice of the
real constant C' > 0. Indeed, we have that

= 0G(t,,0) + 5 1DuClt, 2, V) — (Dak(t,2,0),0) — Lo, v)

T_tQ 2
20(1+\v12)+2(€)c

[v[? = (Dyg(z),v) — Co(1 + |v]?)
1 1
> C(1+ v]?) — iHDg(-)Hoo,Rd - ilv\2 — Co(1+ |v]?)

where the last inequality holds by Young’s inequality. Thus, taking C = 2C)
by (TC) we obtain

1 1
Co(1+ [v]*) = S11Dg() sz = 5lvI* > 0. O

An immediate consequence of Cemma 51 is the following uniform esti-
mate on the velocity of minimizing trajectories for u°.

Corollary 5.6. Assume (L1), (L2) and (TC). Let (t,x,v) € [0,T] x R
and let v be a minimizer for u(t,x,v). Then, there exists a constant S > 0
such that

[ O as < 50+ o)
t
where S is independent of €, t, x and v.
Proof. From Cemma 5 H we know that
u (¢, x,v) < CoT(1+ |U|2) +l9lloore, V (t,z,v) €[0,T] x R,

On the other hand, let (t,z,v) € [0,T] x R? and let ¥° be a minimizer for
u®(t,z,v). Then, we have that

T
I 6 € £ € £
it = [ (SR + Lob(s).4%(s)) ds + 907 (D)
t
T T 1 )
> [ A6 ds gl > [ (GO o) ds gl
t t
Therefore, combining the above inequalities we get
T
/ 55 ()2 ds < 2Co(|lgllaoma + CoT(L + o)) = S(1 + [of2). O
t

We now provide uniform estimates estimates for the gradients of the
value function u® w.r.t. time and space, and we also show that the gradient
w.r.t. the velocity variable decrease linearly in €.
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Proposition 5.7. Assume (L1), (L2) and (TC). Then, there exists a con-
stant C7 > 0 such that

|0 (t, z,v)] < C1T(1 + |v]?), (5.13)
|Dyuf(t,z,v)] < C1T(1 + |v]?), (5.14)
|Dyuf (t, z,v)|* < 26 C1(1 + [v* + |u[*) (5.15)

for a.e. (t,z,v) € [0,T] x R*,

Proof. We start by proving (5L3). By similar arguments to the one in
Cemma 53 we deduce that

lu(t, ) = 9()loop2a < Co(T = )1+ [vf*), Vite(0,7).  (516)
Moreover, the functions f* : [0, 7] x R?¢x — R defined by
FEtz0) = u(t—ha,0) £ ([[uf(T—hy ) = 9() o r2a +R(T =) (1+ [v]?))

are, respectively, supersolution and subsolution to the equation satisfied by
u®. Therefore, by Comparison Theorem [12, Theorem 3.7] we get

u=(t, 2,0) = (t = h, 2z, 0)| < Ju (T = hs ) = 9() oo max, + (T 1)
which yields to (B13).

Next we show (514). Let (t,x,v) € [0, 7] x R*® and let 4 be a minimizer
for u®(t,x,v). Then, by (62) we get

T
wta+ho) < [ (GHER+ Lol (s) + 147 ds+o(7(T)+ 1)

T
= u(t,z,v) +/t (Lo(y*(s) + h. 77 (s)) = Lo(7" (), 7" (5))) ds
+ 90 (1) +h) —g(v*(T))

T
< us(t, 2, v) +/ Colhl(1 + 17*(s)?) ds + [ Dg(-)l|olhl.
t

Moreover, from (61) we obtain

r 1
[ (G0 g6 ds < 0 (t0) < GOT L+ ) + gl
t 0

which in turn completes the proof of (514).

We finally proceed with the proof of (5cI3). To do so, we first show the
result assuming that u° belongs to C1([0,T] x R??) and then we treat the
general case with an approximation argument.
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Now, assuming that u* € C1([0, T] x R??) we have that
1
-0 + T\DUUEP — (Dguf,v) — Lo(xz,v) =0
5
in the classical sense. Thus, by (611) we obtain

1

2—|Dvu€|2 < 0| + |Dyuf||v| — Co(|v\2 +1)
< . ) (5.17)

< |Opuf| + i\DquP + 5\”’2 — Co([v]* +1).

Hence, combining (617) with (A13) and (54) we get (513).
Let us consider now the general case. Take § > 0 and let &9 €
C2°([0,T7) be a smooth mollifier w.r.t. time. Then define the function

uf 5(t, z,v) = u * W0t x,v),  (t,x,v) € [0,T] x R%
Then, uj ;5 satisfy the following inequality in the viscosity sense

1
—Oui s+ %|Dvui§\2 — (Dgui 5,v) < Lo(z,v).

Let £29 € C2°(R?) be a smooth mollifier w.r.t. space and define the function
us s(tw,v) = ui 54 €0 (tw,0),  (ta,0) € 0,T] x R,
Then, we have that u§ ; satisfy the following inequality in the viscosity sense
1
—atug,(;—i—%]Dvug’é]Q—<Dxu§75,v) < Lox€%°(x,v) < Lo(x,v)+Cod(1+|v[?).
Let £3° € C°(R?) be a smooth mollifier w.r.t. velocity variable and define
the function
u3 5(t, z,v) = uj 4 * &9tz 0),  (t,x,v) € [0,T] x R%,

Then, by Jensen’s inequality we deduce that g g satisfy

1
— O s+ 5| Dot g2 = (Da 5,0) < Lo % €99(z,0) + C(1+ [of?)

< Lo(z,v) + 00,56(1 + ‘U|2)
(5.18)

in the classical sense. Therefore, applying the argument in (517) to the
function u§ 5, which solves (518), we get the result as ¢ | 0. O

Now, define the function u° : [0, T] x R?? as
T
R IR Y A CTO RIS P AEClcal] S CAT)
vele(z) (Jt

Then, by standard arguments in control theory it is easy to prove the fol-
lowing result.
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Lemma 5.8. Assume (L1), (L2) and (TC). Let (t,x) € [0,T] x R? and
let 40 € T'y(x) be a minimizer for u®(t,x). Then, we have that

T
| P ds<or
t

for some constant C7 > 0.

We are now in the position to prove Thearem 5 1. To do so, we first
show in that u® locally uniformly converges to u° and then in
[Proposition 5.10 we prove that any minimizers of u® converges to a minimizer
of u® at any point of differentiability of u°.

Proposition 5.9. Assume (L1), (L2) and (TC). Then, there exists a se-

quence €, — 0 such that us* locally uniformly converges to u®.

Proof. Tt is enough to show that u® converges to u? pointwise. Indeed, if this
holds then by Cemma 51 and by [Proposition 5.1 we can apply Ascoli-Arzela
Theorem to obtain that there exists {ej }ren such that u®* converges to uY
locally uniformly.

Let R >0, let (t,x,v) € [0,T] x R? x Br and let 4° be a minimizer for
u®(t,z,v). Then, we have that

T e
wtaw) = [ (R + Lo (9.4°(9) ds+9(°(T)

T
> / Lo(¥ (), 5 (5)) ds + g(+*(T))
T
> inf Lo(7(8),7(s)) ds + g(v(T)) = u’(t, x).
vel(z) J¢

On the other hand, for any R >0 et (¢,z,v) € [0,7] x R? x Bg and let
7% € I'y(z) be a minimizer for u®(¢,z). If 4°(t) = v, by the Euler equation
and the regularity of Ly we have that v € C?([0,T]) and thus we can use °
to estimate u®(¢,x,v) from above. So, we get

) < [ (SHOR + Lo,3°0)) s+ 9 °(T) < w(,2) +o(1).
(5.20)

If this is not the case, we observe that

u(t,z,v) = u(t,x,v) —u(t,2,4° (1)) + u(t, 2,40 () < o(1) + us(t,2,4°(t))

where the last inequality holds by (513). Thus, in order to conclude it is
enough to estimate u®(t,z,4%(t)) as in (5220). Therefore, we obtain

uO(t,z) < u(t,z,v) < ul(t,z) + o(1)

which implies that u® converges to (E19) pointwise. O
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Proposition 5.10. Assume (L1), (L2) and (TC). Let (t,z,v) € [0,T] x
R2? be a point of differentiability for u®(t,x) and let v° be a minimizer for
uf(t,x,v). Then, v¢ uniformly converges to a curve v° € AC([0,T); RY) and
70 minimize u® at (t,x).

Proof. Let us start by proving that v* uniformly converges, up to a subse-
quence. By we know that

T
[ 1P ds <50+ o).
t
Thus, for any s € [t,T], by Holder’s inequality we have that
7 (s)] < ol + VTVS(L+ [o]?)2.

Therefore, ¥ is bounded in H'(0, T'; R?) which implies that by Ascoli-Arzela
Theorem there exists a sequence {e}reny and a curve 40 € AC([0,T]; R%)
such that % converges uniformly to 7°.

We proceed now that 4° is a minimizer for u°(t,x). First, we observe
that

T 9
imint [ (5157 + Zo( (). 4(5) ds+9(:°(T)

T
> liminf Lo(v*(s),¥°(s)) ds + g(v°(T)).

e—0 t

(5.21)

Since ¥¢ is uniformly bounded in H'(0,T), by lower-semicontinuity of the
functional we deduce that

T
lim inf/lt Lo(7v*(s),9°(s)) ds + g(~°(T))

5;)0
> / Lo(7°(),4°(s)) ds + g(+°(T)).

Moreover, given (¢, z,v) € [0, T]xR%x B, for any R > 0, by
we have that
uf (t,z,v) < ul(t,z) + o(1)

and by definition

T
wt.ao) = [ (R + L), 5°(s)) ds+ a7 (D))

Hence, we have that

T
o) +t,3) > [ (G196 + Lalr(s).4°(5))) ds+alr°(T))
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which implies the result passing to the limit as € | 0 in (62211) since

T
()2 [ L3637 ds + 93T, a
t
Proof of Thearem 571. The result follows by [Proposition 5.9 and [Proposi]
Eon-5711. 0

5.2.2 Proof for mean field game of acceleration

In order to prove the main result we proceed by steps analyzing the behavior
of the value function u® and of the flow of probability measures m® sepa-
rately. First, we show that u® is equibounded and we prove that, up to a sub-
sequence, m¢ converges to a flow of probability measure in C([0, T; 221 (R?)).
Then, we address the convergence of the value function, up to a subsequence,
to a solution of a suitable Hamilton-Jacobi equation and we study the limit
of its minimizing trajectories. Finally, we are able to characterize the limit
flow of measures as solution of a suitable continuity equation which cou-
pled with the Hamilton-Jacobi equation, previously found, define the MFG
system (B512).

Lemma 5.11. Assume (M1) — (M3) and (BC). Then we have that
~TMo — [|g(-s 1) loo pe < u®(t,2,0) < MeT(L+ [vf*) + [lg(-,m%) || o et
for any (t,z,v) € [0,T] x R** and for any ¢ > 0.

Proof. First, since u® satisfy (610), from (518) and (BC) follows that for
any (t,x,v) € [0,7] x R there holds

w(t,z,v) > —=CoT = [lg(; m7) [l o -
On the other hand, the function
C(t,2,0) = gz, mz) + C(L+ )T —t), (t,2,v0) € [0,T] x R*

is a supersolution to the equation satisfied by u® for a suitable choice of the
real constant C' > 0. Indeed, we have that

= C(t,2,0) + 5 IDWC (2, 0) P~ (DaC(t,,0),0) — Lo(a,v)

T —t)2C?
T 02— (Daglr,mi), o) — Mo(1 + o)

> C(1+|v]?) +2
1 1
> C(1+ |v]?) - 1D m7)lloo e — 5!1)\2 — Mo(1 + [v]?)

where the last inequality holds by Young’s inequality. Thus, taking C' = 2M|
by (BC) we obtain

1 . 1
Mo(1 + [v]*) — §”Dg('7mT)Hoo,Rd - §|U\2 > 0. O
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Corollary 5.12. Assume (M1) - (M3) and (BC). Let (t,z,v) € [0,T] x
R24 and let ¢ be a minimizer for u®(t,x,v). Then, there exists a constant
Q1 > 0 such that

T
/ 145(8)2 ds < Q1 (1 + [v]?), ¥ e>0.
t

where Q1 is independent of €, t, x and v.
Proof. On the one hand, from Lemma 5 T1 we know that

uf(t,z,v) < MoT(1+ |v|2) +1l9¢,mT) oo ras ¥ (,2,v) € [0,T] x R,
On the other hand, let (t,z,v) € [0,T] x R? and let ¥° be a minimizer for

uf(t,z,v). Then, by (58) we have that

T
wtaw) = [ (SR + Lo ()5 (s)md)) ds+ g (T)mi)
T
> [ Lol(5),45(5),m2) ds =l m)

T
> / <|76(3)|2 - M0> ds — |lg(-, m7) || oo re-
+ \ Mo

Therefore, combining the above inequalities we get

T
/t 55 (s)1* ds < 2Mo(Ilg (-, mT)l|oo ma + MoT (1 + [v]*)) =: Q1 (1 + [v])

where Q1 depends only on Mg, T' and ||g(-,m7)||o ge Which is bounded
uniformly in m7. O

Corollary 5.13. Assume (M1) — (M3) and (BC). Then, there exists a
constant Qo > 0 such that for any s1, s2 € [0,T] with s; < s9 there holds

di(mg mil)§Q2|S1—82\%, Vex>0

527

where Qg is independent of €.

Proof. We first recall that for any ¢ € [0, 7] we know that m§ = m1fuf where
us is the image of 19 under the flow (611) whose space marginal we denote
by () for (z,v) € R4,

Let s1, s2 € [0,T] be such that s; < sy. Then, by (23) we have that

iy m5y) < [ (61 =y ()] ol do)
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and thus, appealing to and the Holder inequality we obtain

o) < v = sl ([ Q110 g )
R

So, since g has compact support we get the result setting

Q2 = </}R2d Q1(1+ |v?) ,uo(da;,dv)> : . O

We are now ready to prove that the flow of probability measures m®
converges in C([0,T]; 21 (R%)), up to a subsequence. First, we recall that
for any t € [0, 7] the measure m§ is the space marginal of p§ which is given
by the push-forward of the initial distribution pg under the optimal flow
(6I), that is

{f'y@,u) (t) = v(®), Vo) (0) =
U(t) = _%Dvus(tva(x,v) (t)a U(t))7 U(O) =v.

Theorem 5.14. Assume (M1) — (M3) and (BC). Then, the flow of mea-
sures {mj }yepo,1] @5 tight and there exists a sequence {ey fren such that m®*
converges to some probability measure m® in C([0,T]; 21 (RY)).

Proof. Since m§ = mug, for any t € [0,7], where uf is given by push-
forward of pp under the flow (E1), we know that

/]Rd 2|2 m$(dx) = /]R?d ]fy(gx’v)(t)\Q po(dz, dv).

So, we are interested in estimating the curve 7(8:6 ) for any (x,v), uniformly
in € > 0. In order to get it, from we immediately deduce that

Nray(5) < |2l + VTVQi(1 + 0?2, ¥ s€0,T).

Hence, for any ¢ > 0 we have that

/ |z|? m$(dx) :/ |fy(€$?v)(t)\2 o (dx, dv)
Rd Rd
< [ CollaP + TQUL+[oP) poda, o

R

for some constant Cy > 0. Thus, since pug has compact support we deduce
that {mj };c[o,r has bounded second-order momentum, uniformly in & > 0
and, consequently, {mf}te[O,T} is tight. Therefore, by Prokhorov Theorem
and Ascoli-Arzela Theorem there exists a sequence {ej}ren and measure
m® € C([0,T); 21(R?)) such that m& — m? in C([0, T]; 221 (RY)). O
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Next, we turn to the convergence of u®. Before proving it, we need
preliminary estimates on the oscillation of the value function w.r.t. velocity
variable and then w.r.t. time and space variable. In particular, we will show
that the function u®(t,z,-) has uniformly decreasing oscillation which will
allowed us to conclude that the limit function does not depend on v.

Lemma 5.15. Assume (M1) - (M3) and (BC). Let R > 0 and let (x,v),
(x,v) € R? x Br. Then, there exists Cr > 0 and a parametric curve
o :[0,v€] = R? such that

o(0) = o(vE) =, ¢(0)=w, &(VE)=v
and .
1 c
2 GO+ Lalos),510),m0)) ds <
where Cr is independent of €, x, v and vy.

Proof. Let R > 0 and let (z,vp), (z,v) € R? x Bg. Define the curve o :
[0, V€] = R? by
o(t) = x +vot + Bt* + At?

with A, B € R satisfying the following conditions
o(0) = o(vE) = a, ¢(0) =v, (V&) =v.

Thus, we obtain

Hence, we get

/Oﬁ (%!5(5)\2 + Lo(o(s),5(s), mi)) ds

Ve ~
</ (5128 + 641 + Mo(1 + o + 2B +324P) ) ds < CVER?
0

for some positive constant C and the proof is thus complete. ]

Lemma 5.16. Assume (M1), (M2) and (BC). Let R >0, let T > 1 and
e > 0. Then, there exists Cr(g) > 0 such that for anyt € [0,T], any x € RY,
and any v, w in Bg there holds

i (£, 0) — (1, 2, w)| < Cr(e)

and Cr(e) — 0 as e | 0.
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Proof. Fix R > 0 and take (z,v), (z,w) € R? x Bg. Let 7¢ be a minimizer
for u®(t,x,v) and define the curve

(s) = {U(s—t), s € [t,t+ /¢
75(5—\/5>’ s € [t+\/gaT]

where o : [0, /2] — R?? connects, in the sense of Cemma 514, (z,w) with
(z,v). Then, we obtain

t+/e
uf<t,x,w)—ua(t,x,u)g/t (g]&(s—t)]2+L0(a(s—t),(’f(s—t),mi)) ds

T
v [, G VAR + Lot~ V) (s = vy m) ds

+ 90O (T = VE), m§) — u(t, 2,v)
Ve o
_ /t (515(5—t)\Q+L0(a(s—t),d(s—t),m§_t)) ds
T I3
/t . (557 = VAP + Loy (s = V&), 47(s = VELmE_ 1)) ds
90 (T),mg) + g(3*(T = V&), my) — g(v*(T), m5) — (¢, 2,v)

t++/€
4 /t (Lo(o(s — 1), 6(s — ), m=) — Lo(o(s — 1), 6(s — 1), m"_,)) ds

+
+

T
[ (Lol s = V) A = V) ) — Lol (s = VE) s — V)i ) ds.
t++/e

Now, from CLemma 5 T3 we know that

Ve o
/t (516(s = ) + Lo(o(s = 1), 6(s = 1), mi_y) ) ds < CavE, (5:22)

and, moreover, from the optimality of v we get

T
E . .. .
[ (GG = VOr + Lot = VO (s = VL mE_ ) ds— wé(tao)
t 2
+VE
T 3
<= [ (G OP+ Lo ()5 (s)mi)) ds <o,
T—e \2
(5.23)
Then, as observed before from we obtain that
75 (s)] < el + VTVQi(1 + [v])2, ¥ s€0,T]

and we also know that the curve o is bounded. Hence, by (M3) and Coral
we deduce that there exists P(e) > 0, with P(¢) — 0 ase¢ | 0, such



114 CHAPTER 5. SINGULAR LIMIT OF ACCELERATION

that

t+/e
/t (Lo(a(s —t),6(s —t),m:) — Lo(o(s —t),0(s — t), mi_t)) ds

T
" /t+\/5 (Lo(v*(s = V&), 37 (s = Ve).m3) — Lo(¥*(s — vE), 4" (s — Ve),mi_ ;) ds

+ 9( (T = Ve),m7) — g(v*(T),m7) < P(e)
(5.24)

where we have used that the modulus 6 in (M3) is bounded from the bound-
edness of 7¢ and o. Therefore, combining (6222), (6223) and (6224) we get
the result. O

Proposition 5.17. Assume (M1) — (M3) and (BC). Then, for any R > 0
there exists a modulus wg : Ry — Ry and a constant C7; > 0, independent
of R, such that for any e > 0 the following holds:

|U5(t,$,’u) - U,E(S,x,'l))‘ < WR(|t - S|)7 v (t,S,l’,"U) € [O7T] x [OaT] X ER X ER
(5.25)

| Dl (t,x,0)| < C1T(1 +|v)?), a.e. (t,z,0) € [0,T] x R? x RY.
(5.26)

Proof. We begin by proving (528). Let (t,z,v) € [0,T] x R? x R? and let
~¢ be a minimizer for u®(¢,x,v). Then, from (621) we get

T
V(3 4 hyv) < / (SR + Lor™(5) + b3 (s),m0)) ds + (o (T) + h, m5)
T
= ua(tv €T, U) + /t (LO('YE(S) + h, ’.Ve(s)a mi) - LO('Y(E(S)?’V&(S)? mi)) ds
+ 90 (T) + h,m7) — g(v*(T), m7)

T
< u(t, 2, v) +/ Molh|(1+ [45(s)*) ds + [|Dg (-, m7) | oo pelh].
t

By (68) and by Cemma 5 11 we obtain
T 1 2 2
[ (G OF = M0) ds < 0ty < AT+ o)+ g0

which, in turns, yields to the conclusion.

Next, we proceed to show (A25). Let R > 0 and take (¢,z,v) € [0,T] X
Bpg % Bg. Let 4¢ be a minimizer for u¢(t,z,v) and let h € [0,T — t]. Then,
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we have that

Wt + h, z,v)
< [ (GRA =M + Lol (s = 1)5%( = i) ds-+ (0 (T — ) i)
= [ (G =W B — (s = R 1)) s+ (oD
/ )3 (s = ),mE) — Lo(a (s — h), 45(s — h), m3_y)) ds
90" (T = .m) = (D). m)

w(t,z,v) + o 9(|75(8 — h)wo(di(mg, m5_)) ds + [[Dg(-; m7 )| o ra|P]

where the last inequality holds by (M3). Hence, from we
know that

1

7 (s)] < el + VT VI + [v]*)2, Vs €0,T]

and thus 6(-) turns out to be bounded. Therefore, appealing to Carol
we obtain

W (t+ hyv) - (t2,0) < TO(R)wo([hl?) + [ Dg(-m) s zalhl. (5.27)

On the other hand, let R > 0 and let (t,z,v) € [0,T] x Bgr x Bg. For
h € [0,T — t], define the curve 7 : [t,t + h] — R? by ~(s) = x + (s — t)v.
Then, by Dynamic Programming Principle we deduce that

t+h
wtan) < [ (SHEP+ L)) mi)) ds
+u(t+h,y(t+h),¥(t+h))
- (5.28)
= / Lo(x + (s — t)v,v,m%) ds +u(t + h,x + hv,v)

< Mo(1 + R?)|h| + u®(t + h, z,v) + C1T(1 + R?)|h|

where we applied (58) and [Equation (5.26) to get the last inequality. There-
fore, combining (627) and (628) the proof is complete. O

Remark 5.18. Next, we study the behavior of the value function u® as
€ — 0 and before doing that we recall the following argument needed to get
uniform convergence from point-wise convergence.

Assume that there exists a nonnegative function 0(dp, 0, Rp) such that

©(do, €0, Ro) — 0, as 9,00 |0,
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and assume that for any [t; — to| + |x1 — 22| < do, any € < g9 and any |z;],
|vi| < Ro (i = 1,2) there holds

|u(t1, z1,v1) — u(t2, x2,v2)| < O(do, €0, Ro).

Then: if u® converge point-wise then u® converges locally uniformly and the
limit function does not depend on v. O

Let m® € C([0,T]; 21 (R%)) be the flow of measures obtained in Thead
fem 514 as limit of the flow m®* in C ([0, T]; 221 (R?)) for some subsequence
e | 0. Define the function u° : [0,7] x R? — R by

T

)= int { [ 126399 ds + gD | 629)
vele(z) \J¢

We will prove now that for the subsequence ¢, the sequence of value functions

u®* locally uniformly converge to u.

Theorem 5.19. Assume (M1) — (M3) and (BC). Then, there exists a

subsequence €, | 0 such that u®* locally uniformly converges to u°.

Proof. We proceed to show first the point-wise convergence of uc* to u°, for
some subsequence € | 0, and then, using Remark B8, i.e., constructing
such a modulus O, we deduce that the convergence is locally uniform.

From Mheorem 514, let ), be the subsequence such that m® — m? in
C([0,T); 21 (R%)) as k — oo. Let R >0, let (t,z,v) € [0,T] x R? x Bg and
let v be a minimizer for u®* (¢, z,v). Then, we have that

ut(t,z,v)

T 3
= [ (FHH R + L™ (6). 4% (s)me)) ds +g( ()i

T
> /t Lo(y**(s), ¥ (s), m5*) ds + g(v**(T), m7*)

>t L 03608 s+ o).}

vET(
+ g(v*(T), m7) — g(v*(T), m7)

T
[ (B (657 (o) = Lor™ (31,5 () m)) ds > (t,) = o(1)

where the last inequality holds by (M1) and the convergence of m* in
C((0.7); 21 (RY). ~

On the other hand, let R > 0 and take (¢,z,v) € [0,T] x R? x Bg. Let
7% € I'y(z) be a solution of

wt [ o490 s+ o))}

yET(
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Next, we distinguish two cases: first, when 4°(t) = v and then when 5°(t) #
v. Indeed, if 4°(t) = v, by the Euler equation and the C?-regularity of
Ly we have that v € CQ([O,T]). Hence, we can use v° as a competitor for
uk(t, z,v) and we get

T g
wta) < [ (GHER + Lol ()46 me)) ds g (T)m(T))

T g
< [ (GROP + L"), 4%(s)m) ds +9(°(D).mO(D))

T
(L()(’YO(S)?;YO(S)v mik) - LO(’YO(S)?;YO(S)’ mg)) ds

(YUT),m™(T)) — g(y°(T), m*(T))
t,x) +o(1)

— S

[e=)
—~

(5.30)

where the last inequality again follows from the convergence of mf* in
C([0,T]; 21 (R%)). If this is not the case, i.e., 3°(t) # v, from Cemma 518
we deduce that

uF(t,z,v) = uF(t,x,v) — u°k (t,:n,f'yo(t)) + u°k (t,:c,"yo(t)) < o(l) + u* (t,:r,’}/o(t)).

Thus, in order to conclude it is enough to estimate u®*(t,x,4%(¢)) as in
(6230). Therefore, we obtain

uO(t,z) — o(1) < ufk(t,z,v) < ul(t,z) + o(1)

which implies that u®* point-wise converges to u°.

Finally, in order to conclude we need to show that the convergence is
locally uniform. From (623), (6228) and Cemma 518 we have that for any
R >0 and any (t1,71,v1), (t2,2,v2) € [0,T] x Bg x B there holds

[u® (t1, 21, v1) — us(t2, v2, v2)|
< wr([t1 — t2]) + Ci|z1 — 22| + CrVeE.

Therefore, setting
6(605 €0, RO) = WRy (60) + C]_(SO + CRQ\/S»O

by Remark BI8 we deduce that the convergence is locally uniform and the
proof is thus complete. O

After proving the convergence of u®, we go back to the analysis of the
flow of measures and in particular we will characterize it in terms of the limit
function u°. In order to do so, we study the convergence of minimizers for
uf and appealing to such a result we will show that m® € C([0, T]; 2, (R%))
solves a continuity equation with vector field D,Ho(x, D,u%), in the sense
of distribution.
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Proposition 5.20. Assume (M1) - (M3) and (BC). Let (t,z,v) € [0, T]x
R2? be such that u° is differentiable at (t,x) and let v° be a minimizer for
uf(t,x,v). Then, v¢ uniformly converges to a curve v° € AC([0, T]; R?) and
70 is the unique minimizer for u°(t,z) in (5229).

Proof. Let us start by proving that ¢ uniformly converges, up to a subse-
quence. By we know that

T
[ )R ds <@ o).
t
Thus, for any s € [t,T], by Holder inequality we have that

()] < J2l + VT VQi(A + [vf)2.

Therefore, ¥ is bounded in H'(0, T; R?) which implies that by Ascoli-Arzela
Theorem there exists a sequence {ej}reny and a curve 40 € AC([0,T]; R%)
such that 4% converges uniformly to ~°.

We show now that such a limit 4" is a minimizer for u°(¢,z). First, we
observe that

k—o0 2

imint [ [ (E54 6+ Bolo*(6). 47 (5),m)) ds + gl (7))

> tymint [ [ By (1,474 6).m2) ds-+ 90740 mi) .

k—o0

Then, as observed at the beginning of this proof ¢ is uniformly bounded
in H(0,T). So by lower-semicontinuity of L and MThearem 514 we deduce
that

lim inf [/tT Lo(y%%(s),4°%(s)) ds + g(v**(T), m?)}

k—o0

., (5.31)
> / Lo(7°(s),4°(s),m?) ds + g(1°(T), m%).

Moreover, for any R > 0 taking (t,z,v) € [0,T] x R? x Bp, from Theal
fem 5 19 we obtain
utk (t, z,v) < ul(t,z) 4+ o(1)

and we recall that

T
u (b, ) = / (S () + Loy (5), 77 (), ms*) ) ds+g(y(T), m).

Hence, we get

€k

T
o(1) + u’(t, 2) > / (L) + Lo(r(s), 47 (), m) ) ds + g7 (T), m5t).
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Therefore, passing to the limit as ¢ | 0 from (6231) we obtain

T
WOt ) > / Lo(r°(),4°(s),m2) ds + g(x*(T),m%)

which proves that 7Y is a minimizer for u’(¢,z). Since u is differentiable
at (t,z) € R? there exists a unique minimizing trajectory and thus we have
that the uniform convergence of ¢ holds for the whole sequence. O

Remark 5.21. Since u° is locally Lipschitz continuous w.r.t. time and Lip-
schitz continuous w.r.t. space, we have that [Proposition 5.20 holds for a.e.
(t,z) € [0,T] x RY.

Let u” be as in (6229) and let 7?(+) be the flow associated with the vector
field

x> DpHo(x, Dyu®(t, ), m}),
that is,
¢ (x) = DpHo(v{ (2), Dyu®(t, ¢ (2)), mf), ¢ €[0,T]
Yo(x) = x.

Note that such a flow exists since the vector field z — D, Ho(z, D,u’(t, z), m?)
is Lipschitz continuous by the Lipschitz continuity of the value function u°
and by the regularity of the Hamiltonian Hy. We also recall that the mea-
sure uf is the image of po under the flow (6I), which is optimal as observed
in Remark 52 for u°(0,z,v) for a.e. (z,v) € R??, and thus, for any function
@ € C*(R?Y) the measure ms is given by

[ et mitdn) = [ o6f ) wodnde). (532

We finally recall that by assumption ug is absolutely continuous w.r.t. Lebesgue
measure.

Corollary 5.22. Assume (M1) — (M3) and (BC). Then, we have that
m) =A9(Yimo, V€ (0,7, (5.33)
Moreover, m® € C([0,T]; 21(R?)) solves

{atm? —div (m?DpHo(:E, Dxuo(t,x),m?)) =0, (t,x)€0,T]xRY

m8 :mo’ T ERd,

in the sense of distributions.
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Proof. From Mhearem 5 14 let & | 0 be such that m®* — m® in C([0, T]; 21 (R%)).
Then, since pg is absolutely continuous w.r.t. Lebesgue measure by
we have that

*y(sg’;m (t) = 2(x), po-ae. (z,v), ¥Vt € [0,T].

Therefore, from (6232), for € = ¢, as k — 0o we get

/ o(z) md(dz) = / o(2(x)) mo(dz), ¥t e [0,T]
R4 R4

which proves (533). Moreover, again by [Proposition 5.20 we have that ~)
is a minimiser for u°(0,) since it is the limit of ’y(ic ) which is optimal

u®(0,z,v) and we are taking (z,v) in a subset of full measure w.r.t. pup.
Therefore, from the optimality of 7° we get

{ 39(x) = DpHo(79 (), Dul(t,7{(x)),mP), t e (0,]
M(@) = .

Hence, for any 1 € C2°([0,T) x R?) we obtain

d

G | vt mita) = 5 [ wt8(@) mo(a)

:=/£d&%¢%u’ﬁ(xD-+<l%¢%t’ﬁ($»7l%fﬂﬁvfﬁﬂpDzw(tfow)ﬂn?D mo(dz)
:jgdG%¢@#@‘+<Dx¢@#w7Dpr@%Df¢@#ﬂ7m$»7n%d$)

and integrating, in time, over [0, 7] we get the result. O

We are now ready to prove the main result.
Proof of Thearem 53. Let {e},}xen be such that me — mY in C ([0, T]; 221 (R?)
and u®* — u® locally uniformly on [0, 7] x R??. Then, appealing to [hel
brem 519 and Corollary 5.29 we deduce that (u’,m°) is a solution to the
MFG system

—0ul(t, 2) + Ho(z, Dou(t, ), mY) = 0, (t,x) €[0,T] x R?
oym? — div (m?DpH()(l‘, D ul(t, z), m?)) =0, (t,x)€0,T]x R4
md = mo, W(T, z) = g, mb) 7 e R

which completes the proof. O



Chapter 6

Asymptotic analysis for
Hamilton-Jacobi equations
associated with
sub-Riemannian control
systems

6.1 Settings and assumptions
FormeNand:=1,..., m, let
fi R 5 RY
and
u; : [0,00) = R

be smooth vector fields and measurable controls, respectively, and consider
the following controlled dynamics of sub-Riemannian type

A(t) =Y fitvO)uit) = FOO))UE), ¢t € [0, +00) (6.1)
=1

where F(z) = [fi(z)|...|fm(z)] is an dxm real matrix and U (t) = (u1(t),.. ., U ()0
For any sg, s1 € R such that sg < s; and x, y € R? we set
Pioin = {(v,u) € AC([s0, 51 RY) x L2(s0, 51 R™) : 4(t) = F(y(t))ult), 7(s0) = a},

50,51

L%, = {(7:u) € AC([s0, s1]; RY) x L?(s0,51:R™) : 4(t) = F(y(8))u(t), 7(s1) =y},

50,51

Fx—)y — FI—) N I\—)’y

50,51 50,51 50,51°

Yuy, ..., um)* denotes the transpose of (uq,..., Um)

121
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Throughout the Chapter we assume the vector fields f; to satisfy the
following:

(FO) there exists a constant cf > 1 such that for any i =1,...,m

|fi(2)| < cp(1+ |z]), Vo eR% (6.2)

In literature, under assumption (F0) the distribution {f;}i=1,. m is called
regular.

By (62) and Gronwall’s inequality we get the following estimate for the
trajectories of (B).

Lemma 6.1. Let v € RY ¢ >0 and (y,u) € 5y If ue L0, R™) then
we have that

[ (s)] < (2] + g llulloos)e I I=%, v s € [0,1].
Moreover, still from (622) we obtain the following.

Lemma 6.2. Let x € R?, t > 0 and (v,u) € I'5; . Then there exists a
constant £(||ul|2,t) > 0 such that

[y(s)l < s(llulle, ) (1 + |zf), Vs €0,] (6.3)
and
y(t2) =7t < eqn(lulla, )1+ [ llullalta —ta]Z, 0 <ty <t <t (6.4)
Proof. We begin by proving (633). For any s € [0,¢] we have that
¢
[y(s)] < |z +/0 [F(v(s))[|u(s)| ds
¢

< Ja| + /0 e (L4 (s))lus)] ds

< Jol + s (/0 1+ )’ ds>é .

Thus, we get

t
)P <cC (:c|2 T Etflul3 + Allul /0 (s)P ds>

which implies the (633) by Gronwall’s inequality.
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We now proceed to show (B4). Fix t1, to such that 0 < t; < to < t.
Then, we have that

I (t) — (1)) < / IF(y(s)llu(s)] ds

t1

¢ / (U () us)] ds

t1

IN

IN

cpr(lfull2, )(1 + |2]) / " |u(s)| ds

where the last inequality holds by (623). Hence, by Hélder’s inequality we
obtain

1
[7(t2) = ()] < eprlllulle, ) + [z])ull2|tz = ta]>.

This completes the proof of the lemma. O
Let the Lagrangian L : R x R™ — R be such that

(LO) L € C*(R? x R™) and L(x,u) > L(x,0) for any (z,u) € R? x R™.

(L1) There exist a non-decreasing function g : [0,00) — R and a constant
¢1 > 0 such that

L(z,u) < B(z)A+ [u]?), V (z,u) € R x R™
|DL(z,u)| < 6(1+uf®), V(z,u)cRxR™

1
D2L(z,u) > 7w VY (z,u) € R x R™,
1

(L2) There exists a compact set Ky, C R? and a constant §;, > 0 such that

inf  L(x,0) > dr + min L(z,0). 6.5

T€RINK, ( ) =L ey, ( ) ( )

Observe that a special class of functions L which satisfy (LO) is the

class of Lagrangians L € C?(R? x R™) which are convex w.r.t. v € R? and

reversible, that is, L(z,u) = L(z, —u) for any (z,u) € R x R™. Moreover,
note that by (L0), (L1) and (L2) we obtain

1
L(z,u) > y\u\z + L(z*,0), VY (z,u) € R? x R™ (6.6)
1

where z* € Ky, is such that

L(z*,0) = xrg}lcri L(z,0).

Furthermore, set
§*(x) = dsg(z,2*), VzeR?
and observe that, by [Corollary 2.7, there exists a nondecreasing function
D: R+ — R+ with
6" (z) < D(|z|), VzeRL (6.7)
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6.2 Boundedness of optimal trajectories

We consider the following minimisation problem: for any 7' > 0 and z € R¢

T
to minimize / L(vy(s),u(s)) ds over all (y,u) € Tg7 (6.8)
0
and we set
T
Vr(z) =  inf / L(y(s),u(s)) ds, ¥z €R< (6.9)
(vw€ergz Jo

For any z € R? we say that a trajectory-control pair (7, u) € ng} is
optimal if it solves (B3).

Remark 6.3. We observe that by using classical technics from optimal con-
trol theory one can easily obtain the existence of optimal trajectory-control
pairs for (B3) (see, for instance, [26, Theorem 7.4.4]).

In this section, we prove the uniform boundedness of optimal trajectories
for (B38) starting from a given compact set. We begin by deriving a uniform
bound for the Lebsegue measure of all times at which an optimal trajectory
may lie outside the compact set K of assumption (L3).

Proposition 6.4. Assume (FO0), and (LO) - (L2). For any R > 0 there
exists a constant Mp > 0 such that for any x € Bg, any T > §*(x), and
any optimal pair (vz,uz) € I'f7 for (B8) we have that

LY {t € [0,T]: 7.(t) € Ki}) < Mp. (6.10)

Proof. Fix R > 0 and let z € Bg. Let (Y, 1) € Fg;ﬁf;) be a solution of

(24) and recall that, as observed in (622), 6*(x) < D(R). Define the control

Then, (Y, ;) € TEZ%" and we obtain

5% ()
Vr(x) S/O L(Ye(t), (1)) dt + (T = 6" (x)) L(z", 0)
=:c1(x,0"(x)) + (T — 6*(z))L(z",0).

(6.11)

Invoking once again, we have that c;(x,0*(z)) < Ci(R) for
some positive constant C1(R). Now, let (v, u,) € I'§7 be optimal for (E3).
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Then, we have that

T T
Ve(z) = /0 L(vat). g (0)) dt > /0 L(3(1),0) dt

T T

2 o ")+ [ EOu0, 006, 00(0) e+ [ 100,001 (100

caw, 6% () + La*,0) L1 ({t € [6"(2), T] = (1) € Kr})
(it 1@0) £ W@ 1] 2ule) £ K1)
= eo(w, 0" (x)) + L(z*,0)L1 ({t € [6*(2),T] : 7a(t) € Kr})

( inf L(x >T 5%(x) — LL({t € [0"(2), T] : 7alt) € Kp}))

| \/

$€Rd\KL
(6.12)
where
5 ()
a8 @)i= [ LOa0.0) dt
0
From (612) it also follows that
Vr(x) = co(2, 67 (x)) + L(z", 0)(T — 6*(x)),

which, together with (61), yields

ca(z,0%(x)) < c1(z,0%(x)) < C1(R). (6.13)

Hence, we have that

e5(8"(2)) 1= 1 (8°(2)) — e2(E(2)) 2 0, e3(6*(@)) < C1(R).
So, combining (611) and (612) and recalling (L2), we deduce that

c3(8%(z)) > (zeﬂg\f& L(z,0) — L(z", 0)) (T — 6% () — L ({t € [0" (), T : wu(t) € KL}))
> 6L ({t € [0%(2), 7] va(t) € Ki}).

Therefore,

LY{te[0,T]: () ¢KL}) < 3O @) | g ().

or,
Recalling that §*(z) < D(R) and setting
M= OB D(R)
or,

we obtain the conclusion. O
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Theorem 6.5. Assume (F0), and (LO) — (L2). For any R > 0 there exist
two constants Pr, Qr > 0 such that for any © € Bg, any T > 6*(z), and
any optimal pair (Vz,uz) € T for (B3) we have that

T
| uato) de < P (6.14)
0

and
()] < Qr, VY te[0,T), (6.15)

Proof. We begin with the proof of (634). Since (v, us) € I'§7 is optimal
for (B3) we have that

T T
Vr(z) :/0 L(v2(t), ug(t)) dt > 221/0 luz(t)|? dt + TL(x*,0). (6.16)

On the other hand, let (7, ) € Fg}"i;) be a solution of (23H) and define
the control

0, te (0%(x), T,

that is, (Vz, Uz) € Fg?x*. By the definition of V7 we deduce that

5 (x)
Vi(z) < /0 L(F(t), Gx(t)) dt + (T — 6*(2))L(z*,0). (6.17)

Combining (618) and (EI7) we obtain

1

T 5 (@)
2@1/0 [ua (t))* dt S/O L(3a(t), Gu(t)) dt — 6% (x) L(z*,0).

In order to prove (6Id), we need an upper bound for the term

0*(x)
/0 L(Fat), @ (8)) dt.

Observe that, since ||tz|/o,0,5+(x)) < 1 and 6*(z) < D(R), Cemma 61 en-
sures that

72(t)] < (R+ ¢y D(R))ePE = A(R), ¥ tel0,6%(x)]. (6.18)

Therefore, by assumption (L1) we deduce that

5* ()
/0 L(a(t), (1)) dt < 2B(A(R)).
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Hence, (614) follows taking
Pr = 20,(28(A(R)) + D(R)L(z",0)).

We now proceed to prove (BI3). Let (vz,us) € I'f7 be a solution of
(6). Clearly, we just need to estimate |y,(t)| for all times at which the
optimal trajectory lies outside the compact set K. Let ¢ € [0,T] be such
that v,( ¢ ) & K1 and set

o sup{t € [0, ] :v.(t) e K}, if{t€[0,t]:7(t)eKr} #0
° o, if {t € [0,F]:vu(t) €KL} =0

We only consider the case of tg # 0 since the reasoning is similar when
to = 0. Since 7, is a solution of (E) we deduce that for any ¢ € [to, ]

Y2 (8)] < |z (to)] +Cf/t (14 [z (s)Dua(s)| ds

2,[t0,1] </t: (1+ Py (s)?) ds> 2

Hence, appealing to (610) and (614) we deduce that

<ha(to)] + cfllus

t
hz(t)* < C (!%c(to)\g + a3 0.0 Mr + HuxH%,[to,ﬂ/t [z (s)I? d8>
0

t
<C (|’yx(to)|2 + PrMpg + Pgr |’yx(s)|2 ds>

to

for some constant C' > 0. Thus, recalling that [t — to] < Mg by
Eion 64, the Gronwall inequality yields

vz ()] < Clya(to) | PrMpe™™ME Y t € [to, 1]

and we set Qg := C|v.(to)|?PrMpeP"ME. Since |v,(to)| < max{|y| : y €
Kr} and |y, (t)| < max{|y| : y € K} for all times ¢ at which ~,(t) € K, we
get the conclusion. O

6.3 Long-time average and ergodic constant

In this section, we investigate the existence of the limit

1 d
Jim ~Vr(z) (z€RY,

where V() is defined in (639), as well as the related problem of the existence
of solutions to the ergodic Hamilton-Jacobi equation

c+ H(x,Dx(z)) =0 (zeR? (6.19)
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for some ¢ € R, where H : R? x RY — R is the Hamiltonian associated with
L, that is,

H(z,p) = sup {Zuxp,fi(x»—ux,u)}, V (z,p) € RT x R (6.20)
ueR™ =1
6.3.1 Long-time average

In order to prove the main result of this section, that is, [heorem G 8, we
need to show, first, that the value function V7 is locally equicontinuous
uniformly in 7.

Lemma 6.6. Assume (FO0), and (LO) — (L2). For any R > 0 there exist
two constants Tr > 0 and K(R) > 0 such that

\Vr(z) — Vr(y)| < K(R)dsr(z,y), YT >Tr V az,y€ Bg.

Proof. Let x, y € By, set § = dsg(x,y) and let T > dsg(x,y) =: Tg. Let
(Fy, y) € Ty 5" be a solution of (2Z3), let (12,u,) € T§7 be a solution of
(63), and define the control

Then, we have that

T

T
Vely) - V() < /O L@,(t), 3y (1)) dt - / L(va(t), ua (1)) dt

0

) T T
< /0 Ly (1), ay (1)) dt + /5 L(valt — 8), us(t — 6)) di — /0 L(valt), us(t)) dt
) T—46 T
- /0 Ly (t), (1)) dt + /0 L(va(s), ta(s)) ds — /O L(7a(s), u(5)) ds
1) T
— / Ly (1), (1)) dt — / L(7a(s), ua(s)) ds.
0

T—6
(6.21)

First, by (638) we get

T
/ L(yu(s), us(s)) ds > 6L(a",0).
T—6

Then, since ||ty||o < 1 and § < ¢(R), by Cemma 61 we have that

15,(8)] < (R + cpe(R))ecr ) = A(R), Vtel0,d). (6.22)
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Thus, by (L1) we obtain

4
| 2G5 ds < 265(a().
Hence, going back to (B2211), from it follows that
Vr(y) — Vr(z)

0 T
< [ pGe) a6 ds = [ Leuls).us(s) ds
<6(2B(A(R)) — L(z*,0)) = K(R)dsr(z,y)
where K(R) := ¢2(28(A(R)) — L(z*,0)). Switching = and y in the above
reasoning completes the proof. O

Lemma 6.7. Assume (F0), and (LO) - (L2). For any R > 0 there exists
a constant Cr > 0 such that for any x € By, any T > 0, and any optimal
pair (Yo, ug) € IE 7 of (BB) there exists a pair (yr,ur) € I'i7* such that

T T
| 2or@.ur@) i< [ (o), 0a(0) de+Cr
0 0

Proof. Fix R > 0, € Bg, and take an optimal pair (y,,u;) € 1”0”3. If
vz(T') = x then it is enough to take Cr = 0 and (yr,ur) = (Vz, uz). If this
is not the case, let dp € (0,7") be such that

6o = dsr (72 (T — do), x).

Note that such a number §y exists since g(d) := dsg(V(T — §),x) — 0, for
d € [0, T, is a continuous function satisfying

g(T)=-T<0
9(0) = dsr (7(T),z) > 0.

For simplicity of notation set y = ~,(T — dp) and observe that |y| < Qg
by MTheorem 63. Let (¥, 4y) € Fg?f be a solution of (223) and define the

control

{ugg(t), t€0,T — ]
ur(t) = q _
y(t+ 00 —T), te (T —3d,T).

Then
T T*éo 60

/ Ly (), ur(t)) dt = / L (8), us(t)) dt + / LG, (), a, (1)) dt
0 0 0
T T 0

- / Ly (t), s (8)) dt — / Ly (), ua(t)) dt + / LG, (8), ay (1)) dt.
0 0

T—680
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By (638) we obtain

T
/ L(va(t), ua(t)) dt > GoL(z",0).
T—d¢

Let R = max{R,Qr}. Then, since [tyllo 0] < 1 and |y| < Qr, by
Cemma 61 we also have that

7y ()] < (Qr + c;R)e R =1 A(R)

for any t € [0, dp]. So, we obtain

T do

[ L) e [ L0, a,00) d
T—80 0
do

< =S0L" 0+ [ LG 0.5,(0) dt < B2AR) ~ L".0).

The conclusion follows taking
Cr = R'(2B(A(R)) — L(z*,0)). O

Theorem 6.8 (Existence of the critical constant). Assume (FO0), and
(LO) - (L2). There exists a constant a(L) € R, called the critical constant
(or Mané’s critical value), such that

V() - a(L)) —0, VR>0. (6.23)

lim sup
T—o0 :EEER

Proof. Let R > 0. By Cemma 6.8, for all z € B we deduce that
|Vr(z) — Vr(0)| < K'(R). (6.24)

Hence, to obtain the conclusion it suffices to prove the existence of the limit

.1
Th_rgo fVT(O) = «(L). (6.25)

For this purpose let {7}, }nen and {(Vn, un) }nen C 1“8771” be such that

1 1 In
lim infTVT(O) = lim —  inf / L(y(t),u(t)) dt
0

T—00 n—oo T, (y.u)ery .

1
= lim /0 L(yn(t), un(t)) dt.

n—oo T},

(6.26)

By Cemma 6.7 there exists a sequence (72, u0) € I‘g’%? and a constant Cy > 0
such that

Tn Tn
/ Mﬁ@@ﬁ»ﬁéf L(yu(t), un(t)) dt + Co. (6.27)
0 0
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Next, for any n € N let 4 be the periodic extension of u, i.e., 4} is T,-
periodic and @0 (t) = ul(t) for any t € [0,T},]. Then, we have that

1 17T
lim sup TVT(O) < lim sup T/o L(R°(t), a2

n

) dt, YneN  (6.28)

T—00 T—o00
by using 49 as a competitor in (68). Then, by periodicity and (622) we

obtain

1 T
fimsup 1. [ LG0, @ (0) d
0

T—oo
I I Co
= — LAY, 2 ) dt < — Ly (t), upn(t)) dt + —.
| reRwab) @< [T Lo, o) @+ 3
Therefore, recalling (6228) and (6228) we conclude that
1 1 [T Co
li - <lim (— [ LOw(t),un ~0
msup 7o) < i (7 [ 20, un(0) e+ )
N |
= hTIgl;.}f TVT(O)'
This yields (6223), thus completing the proof. O

Corollary 6.9. Assume (F0), and (LO) — (L2). Then, we have that
a(L) = L(z*,0).

Proof. First, we recall that

T
o(I) = Jim %VT(O): lim ~  inf /0 L(v(s), u(s)) ds.

T—o0 T (yu)ery s

So, taking (vz, ug) € Fg} optimal for V(0) we obtain

1 /7 T
a(L) = lim / L(vz(8),uz(s)) ds > lim L(z*,0) ds = L(z*,0)
since, by assumption (LO) and (L2), we have that L(z,u) > L(x*,0) for
any (z,u) € R x R™.

On the other hand, we observe that, owing to [Chearem 68, the value of
a(L) could be computed replacing 0 in (6223) with any other point of R
So,

1
L)= lim — ).
oll) = Jim Ve
This implies that

T—o00

.1 r R N o
a(l) = lim =  inf /0 L(v(s),u(s)) ds < lim T/o L(x*,0) ds = L(z*,0)

T—oo T (7,u)ErT

which yields the conclusion. O
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Remark 6.10. Note that in view of [Chearem 6 8 we have that

lim sup
T—o0 $€§R

1 T
— inf / (L(y(s),u(s)) —a(L)) ds| =0, VY R>0.
(vweTgT Jo

Moreover, from we deduce that

min L(z,u) —a(L) =0.
(z,u)ERIXR™ ( ) ( )

Therefore, by replacing L with L(z,u) == L(z, u) — a(L) one can reduce the
analysis to the case of a(L) = min(, ,)cpaxpm L(z,u) = 0.

6.3.2 Application to Abel means
Now, we move to the analysis of the ergodic equation

¢+ H(z,Dx) =0, zecR?

showing the existence of viscosity solutions to such an equation by studying
the limit behavior of solutions to the discounted problem

Moy (z) + H(z, Duy(z)) =0, z € R? (6.29)
as A | 0. To do so, define the function
(@) = i { / T MLy (0), (1)) dt} , (6.30)
(vw)erg L (e~*dt) (Jo
where

Fg:o(e_’\tdt) = {(’y,u) € Lﬁf’c(O,oo;Rd) X L%OC(O, oo; R™) :

(y,u) €T YT >0, and / e Mu(t)? dt < oo}.
0

Hereafter, we assume the following.

(L2’) There exists a compact set K C R? such that

min L(z,0) =0, and inf L(z,0) > 0.
zek z€RIN\K

We recall that in view of Remark 5.10 assumption (L2’) is not restrictive
and, moreover, by we have that a(L) = 0. Furthermore, (L2”)
stands for the corresponding of (L2) given so far.

Note that vy(z) > 0 for any x € R?. Then vy is the continuous viscosity
solution of (6=29).
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Proposition 6.11. Assume (F0), and (LO) — (L2%). Then, for any R > 0
we have that:

(i) { \r}rs0 is equibounded on Bg;
i1) there exists a constant Cr > 0 such tha
i) th St tant Cr > 0 h that

loa(z) — vA(y)| < Crdsr(z,y), V x,y € Bg. (6.31)

Remark 6.12. Recalling that rr is the uniform degree of nonholonomy of

the distribution {f;}i=1.. m associated with the compact B,
and (B31) yield

1 _
loA(z) —ua(y)| < Créalz —y|™® ¥V z,y € Bg.

Proof of [Proposition 6.11: Let R > 0 and let * € Bgr. Taking (¥,4) €
Fg;’o(e_’\tdt) such that (Y(t),u(t)) = (x,0), by (L1) we get

+o00
Avy(z) < )\/ e ML(x,0) dt
0
+o0
< B(R) / e M dt = B(R).
0
On the other hand, by (L2’) we have that
Avy(z) > 0.
Thus, for any A > 0 we conclude that
Aoa(2)l < B(R), VY z € Bg.

In order to prove (ii), for any fixed z, y € Bg set § = dsr(z,y). Let
(y> ty) € I‘g;m be a solution of (E3). Let (v, u,) € Ffiﬁoo(e*/\tdt) be such
that
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and so (3y,y) € T§ o (e *dt). Then, we have that
ua(y) — ua(x)

) +oo
< /O e ML, (1), iy (1)) dt + /5 ML (y(t — 6), ualt — ) dt
— /+°0 ef)‘tL(’yx(t),ux(t)) dt + A
06 +oo
= [N m0) dt -1 [ L), uals) ds+ )
0 0

)
- /0 e ML (1), Ty (1) dt + (= X+ 0(6N)) (va(2) + A) + A

where

qg—0 q
By point (i) we have that dAvy(z) < §F(R) and for A < 1 we obtain o(d\) <
0. Moreover, by Cemma 61 we know that
Ty (8)] < (lyl + e8)et® = A(R), V¥ te€[0,0]

since ||ty ||o0,0,5) < 1. Thus, by (L1) we deduce that

19
/Oe/\tL(v( Ty dt</ B, (O (A + |1, (1)) dt < 256(A(R)).

Therefore, setting Cr = 28(A(R)) we obtain (B233W) recalling that § =

dSR(l', y) . O

Note that, the above proof fails for general control systems, i.e., of the
form (B30), under the assumption (LUGC) since, a priori, Tr might not be
of the order of |z — y|.

Theorem 6.13 (Existence of correctors). Assume (FO0), and (LO) —
(L2°). Then there exists a continuous function x : RY — R and a sequence
An 4 0 such that, for any R > 0,

lim vy, (z) = x(z), wuniformly on Bp.
n—o0

Moreover, we have that:

(i) x(z) >0, x(z*) = 0 and x s locally Lipschitz continuous w.r.t. dgg,
that is, for any R > 0 there exists a constant £ > 0 such that

Ix(z) — x(y)| < lrdsr(z,y), Y x,y€ Bg. (6.32)

(ii) x is a viscosity solution of the ergodic Hamilton-Jacobi equation

H(z,Dx(z))=0 (zeR%. (6.33)
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Proof. First, we observe that, by an adaptation of [8, Theorem 5] (see Thed
brem 621 in Becfion 65 1), we have that

1
0 T—1>I£oo TV (.7}) )\gr(l) )\’U)\(.T) (6 3 )
locally uniformly in space. We recall that vy(z) is a continuous viscosity

solution of
Aoa(z) + H(z, Duy(z)) =0 (z € RY)

Since wvy(z*) = 0, by [Proposition 6.11 we deduce that {vy}xso is equi-
bounded and equicontinuous. So, applying the Ascoli-Arzeld Theorem and
a diagonal argument we deduce that there exists a sequence A, J 0 such
that {vy, (z)}nen is locally uniformly convergent, i.e., for any R > 0

lim vy, () =: x(z) uniformly on Bpg.

n—oo
Hence, from (L2’) we immediately deduce that x(x) > 0 and, again, since
va(z*) = 0 we get x(z*) = 0. Furthermore, from (6231) we get (B532).
Finally, the stability of viscosity solutions ensures that x is a solution of
(6333), which proves (7). O

Definition 6.14 (Critical equation and critical solutions). The equa-
tion

H(x,Dx(z)) =0 (zeR% (6.35)

is called the critical (or, ergodic) Hamilton-Jacobi equation. A continuous
function x is called a critical subsolution (resp. supersolution) if it is a
viscosity subsolution (resp. supersolution) of (B38) and a critical solution
if it is both a subsolution and a supersolution.

6.4 Representation formula

In this last section, we construct a critical solution that can be represented
as the value function of a sub-Riemannian optimal control problem. Such
a solution, which is useful to develop the Aubry-Mather theory in the sub-
Riemannian case, will be obtained as the asymptotic limit as t — oo of the
Lax-Oleinik semigroup, applied to x given by heorem 6 13.

We begin by giving the definition of dominated functions.

Definition 6.15 (Dominated functions). Let a, b € R such that a < b
and let x, y € R%. Let ¢ be a continuous function on R%. We say that ¢ is
dominated by L — ¢, and we denote this by ¢ < L — c, if for any trajectory-
control pair (y,u) € Fﬁ;y we have that

b
b(y) — 6(z) < / L(y(s), u(s)) ds — ¢ (b— a).
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Let us introduce, now, the following class of functions
Sz{ngC(Rd):go(x)zO vz € RY, ¢<L}

endowed with the topology induced by the uniform convergence on compact
sets. Then, for any € R? any ¢t > 0 and any ¢ € S define the functional

Fo F(Ttx - R
Folrou) = p(2(0)) + /0 L(v(s), u(s)) ds

and

Tip(x) = inf {w(’y(O))Jr [ zeea) ds}. (6.36)

('y,u)el“a’f

Before proceeding to derive several properties of T;p, including the fact that
Tip(x) > 0, we first show that the class S is non-empty.

Lemma 6.16. Assume (F0), and (LO) — (L2%). Then, the function x
constructed in [Chearem G 13 belongs to S.

Proof. Let x be the critical solution given in Theorem 6 13, i.e.,

x(z) = lim vy, (x)

n—o0

where the limit is uniform on compact subsets of R%. Recall that

= inf T t),u(t)) dt.
=[G,

Next, we show that x € S. From MTheorem 613 we know that y(z) > 0
for any = € R? Hence, we only need to prove that xy < L. To do so,
let R > 0 and let 2, y € Br. Fix a, b € R and let (y,u) € I} /Y. Let

(V> uy) € Fg:o(e_’\t dt) be A-optimal for vy(y), that is,

/Ooo e MLy, (), uy (1)) dt < va(y) + A

and define the control
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Then, (7,u) € I'§

oa(x) —valy) < /0 T e NLG (), () di - /O TN Ly (£),uy (1)) dt + A

= /b—a e ML(y(t+ a),u(t + a)) dt
0

[ L0y 0) di— [T ML 0. u,(0) di+
b—a 0

< /a bL(’y(t),u(t)) dt + (e_)‘(b_“)—1> / Ooe_’\tL(vy(t),uy(t)) dt + A

0

b
= / L(y(t),u(t)) dt — (b —a) v(y)(1 4+ o(1)) + .

Therefore, since A = A, as n — oo from the previous estimate we get

b

(@) — x(y) < / Ly (), u(t)) dt

a
which completes the proof. ]

Theorem 6.17 (Lax-Oleinik semigroup). Assume (F0), and (LO) -
(L2’). The following holds.

1. For any ¢ € S there exists a function N : R? — R, which is bounded
on compact sets, such that for any (t,z) € [0,00) x R? there exists a
trajectory-control pair (v, uz) € Ugi® such that

Fo(Var ue) < Ny(x). (6.37)

2. For any ¢ € S the following holds. For any R > 0 there exists a
nondecreasing function C, : [0,00) — [0,00) such that for any (t,z) €
[0,00) x Bg and any (7y,u) € Tgi* satisfying (632) we have that

dsg(2,7(0)) < Cp(R) := B(R)D(R) + max p(a).  (6.38)

SCEER,

3. For any x € R, any t > 0 and any ¢ € S we have that Typ(x) > 0.
Moreover, for any (t,x) € [0,00)xRY the infimum in (638) is attained.

4. For any ¢ € § and any ¢ € R we have that Ti(p + ¢) = Typ + ¢ for all
t>0.

5. Ty is a semigroup on S, i.e., Ty : § — S and for any s, t > 0 and
pes

Toy = ¢, Ts(Tip) = Tsiep-
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6. T; is continuous on S w.r.t. the topology induced by the uniform con-
vergence on compact subsets.

Remark 6.18. We recall that, according to [?, Theorem 3.31], a set K is
compact in (R?, dsg) if and only if K is compact in R? w.r.t. the Euclidean
distance.

Proof. We begin by proving (1). To do so, we consider two cases: first, we
take (t,z) € [D(|z|),00) x R? and, then, (¢,z) € [0, D(|z|)) x RZ Recall
that D(-) is defined in (627) and satisfies 0*(z) < D(|z|).

Define the function N, : R — R as

~ Je@@*) + D(x)B(|z), (t,2) € [D(|x]),00) x R?
N«p(ﬂc) = P
e(x) + D(|z))B(lz]), (t,z) € [0,D(|z])) x R

Note that, since ¢ € § we deduce that N, is bounded on any compact subset
of R%.

We now proceed with the first part of the proof, i.e., we show that for
any (t,x) € [D(]z]),00) x R? there exists (Vz, uz) € ['g%" such that

fso(VmaUx) < N@(m).

Let (y0,u0) € Fg;:’(fc ) be optimal for (24) and define the control

o (5) = {O, se[0,t—0*(x))
! up(s —t + 0*(x)), se[t—o*(x),t.

so that (vz,uyz) € Fg:ﬁx . Then

Fopertia) = 9la") + /m( Lol = ¢+ wo(s —+5°(@) ds
6* (x) 6" (x)
= p(a*) + / Lv(s),uo(s)) ds < p(a™) + / L(v(s), uols)) ds

Let us estimate the rightmost term above. Recalling that |ug(s)] < 1 for
any s € [0,6"(z)] we have that

o)l < (Ja] + ¢p8*(2))e™ ) = A(la]), ¥t € 0,67,

Thus, we get

Fo(v,u) < p(a7) + D(|z]) 5(A(|z])) (6.39)
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which completes the proof of (1) for (t,x) € [D(]z]), ) x Re.
We now consider the case (¢t,z) € [0, D(|z])) x RL. Let (vs,us) € Loy
be defined as

uz(s) =0, v(s) =z, sel0,D(z])).
Then
Fo(2,0) < @(x) + tL(x,0) < o(x) + D(|z])B(|])- (6.40)

This completes the proof of (1).

We proceed now with the proof of (2). In order to prove (GEZ38) we
estimate from below Fy(v,u), for any (v,u) € ['g}7 satisfying (6=37), and
then we combine such estimate with the definition of Ny(-). In view of (1)
we also analyze two cases: first, we show that the conclusion holds for any
(t,x) € [D(]z|), 00) x R% and then we do the same for (t z) € [0, D(|z])) xR

Let (t,z) € [D(|z]),00) x R? and let (y,u) € ['gi" satisfy (6337). Then,
by (68) we have that

Felr) 2 o6O)+ 5 [ ) ds> ohdsn(ra ). (641

Therefore, combining (621) with (6339) we have that

1 *
TgldSR(%V(O)V < D(l)B(z]) + o (7) (6.42)
which implies (6238) for (¢,z) € [D(]z]), 00) x R? by the continuity of ¢.
Now, let (t,z) € [0, D(|z|)) x R? and observe that inequality (621) still
holds true. So, we combine such estimate with (620) to obtain

- dsn(@,7(0))* < D(al)(Jal) + (o) (6.43)

which implies (638) for any (¢, ) € [0, D(|z])) x R?, again, by the continuity
of . Hence, from (642) and (EZEH) we get, for any R > 0, any (¢,x) €
[0,00) x Br and any (v,u) € I'g}® satisfying (6537,

dsr(z,7(0)) < Cp(R) := B(R)D(R) + max o(z).

I‘EBR

Now, given (t,z) € [0,00) xR%, let p € S and let (y,u) € [y’ be optimal
for Tip(x). Then, by definition we have that

Tip(x) > %1/ lu(s)|*> ds > 0.

The existence of minimizing pairs (v, u) € I'y’* follows by classical results
in optimal control theory (see, for instance, [zb, Theorem 7.4.4]). This
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completes the proof of (3). Then, (4) is a direct consequence of the definition
of TtQO

In order to prove (5), from the previous point we know that for any
(t,x) € [0,00) x R? and any ¢ € S we have that Typ(x) > 0. Moreover,
the proof of the fact that Typ(x) < L and of the semigroup property, the
latter being based on the dynamic programming principle, is similar to the
proof of [@2, (1) of Proposition 3.3] and [&1, Proposition 4.6.2.] and will be
omitted here.

We finally show (6). Let R > 0, let z € Bg and let t > 0. Let {¢p }nen €
S and let ¢ € S be such that ¢, — ¢ locally uniformly. Then, on the one
hand, taking (v£,us) € I'g%* optimal for Typ(z) we obtain

Tyon(x) — Trp(r) < on(7£(0)) — w(7£(0)).

Hence, from (2) we deduce that there exists a constant C,(R) > 0 such that
Tipn(z) ~ Tp(2) < 1n() ~ ) oo 5 (6.44)

Similarly, on the other hand, let (v, uy) € I'g;* optimal for Tipn (). Then,
from (2) there exists a constant Cy, (R) > 0 such that

Tip(z) =Tipn(2) < ¢(12(0)) =n(12(0)) < llon()=¢( )l e, - (6:45)

Again in view of (2) by the locally uniform convergence of the sequence
¢n the constant C,, (R) can be chosen uniform w.r.t. n € N. Therefore,
combining (624) and (623) the proof of (6) is complete. O
We call T; the Lax-Oleinik semigroup, adapted to the sub-Riemannian
systems. Now, recall that we are interested in finding a critical solution Y
such that
X(x) = Tix(z), Vt>0,VazecRe

Hereafter, we take x a critical solution in S (the existence of which is guar-
anteed by Mheorem 6 13). We will show that T;x(z) converges as the t — oo
to the function Y we are looking for.

Proposition 6.19. Assume (F0), and (LO) — (L2’). Then, for any R >0
we have that

(i) {Tix}i>0 is equibounded on Br;
(ii) {Tyx}i>1 is equicontinuous on BR.

Proof. In order to prove(i) we argue as in [Theorem 6 T4. Let R > 0, let
t > 0let v € Bg. Let (yz,us) € I'g)® be optimal for Tyx(x). Since x is
Lipschitz continuous w.r.t. dgg the following holds

X(SU) < fRdSR(fa 0), Ve ER. (6.46)
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Then, since x > 0 from (E8) we obtain

1
T )|? ds = 2 6.47
() > #or [ el ds = Sh-dsn(a(@)? (647
which is bounded by (2) in Mhearem G 14. Then, on the one hand, if ¢ €
[D(R),00) by (639) and (6286) we obtain
Tix(x) < x(z") + D(R)B(R) < Lredsr(z,0) + D(R)B(R)  (6.48)
where Ry stands for the diameter of . On the other hand, if ¢ € [0, D(R))
by (620) and (648) we get
Tix() < x(2) + DIR)B(R) < Crdsp(@,0)+ D(R)B(R).  (6.49)

Hence, combining (647) with (62%) and, also, (647) with (629) the proof
of (i) is complete.

We proceed to show (ii), that is, the equicontinuity of T;x(z) for ¢ > 1.
Let R>0,let z, y € Br and let t > 1.

To begin with, assume that dggr(x,y) > 1. Then, we have that

Tix(x) = Tix()] < 20 Tixll oo 5, < 201TixNl 0, 5, 95R (7, )

We now consider the other case, i.e., dsg(z,y) < 1. Let (v0,up) €
)

gz;(x,y) be optimal for (23) and let (v, u,) € Ty be optimal for Tix(y).

Then, define the control

ﬁ(s) — {Uy(s + dSR(may))7 5 € [Ovt - dsR(fL’,y)]
uo(s —t +dsr(z,y)), s€ (t—dsr(x,y),t]

and call ¥ the corresponding trajectory, that is, (7,u) € I'y%". Note that u
can be used to estimate Tyx(x) from above. We have that

Tix(x) — Tix(y)

X(G(0)) = x(3(0)) + /0 L(F(s),i(s)) ds — /0 Ly (5), uy(5)) ds

IN

= x(y(dsr () — x(1(0)) + /O Ly(5), 1y (5)) ds

dsgr (z,y) dsr (,y) t
- / Ly (), uy(s)) ds + / L(v0(s), uo(s)) ds — / Ly (s), uy(s)) ds
0 0 0

dsr(z,y) dsg (z,y)
— x(w(dsr(z,))) — x(75(0)) - / Liy(5), 11y (5)) ds + / L(o(s), uo(s)) ds.

(6.50)

We estimate first the integral terms. By (608) we immediately obtain

dSR(wvy)
[ ol ds =0,
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Moreover, since [|ug||s,[0,dgp ()] < 1 We have that
o(t)] < (|| + cpdsr(z, y))e BSREY) ¥ t € [0, dsr(z,y)).
So, we get
dSR(E7y) d
/ L(0(s), uo(s)) ds < dsr(z,y)(|z| + cpdsr(z,y))ersm@v),
0
Combining both inequalities we have that

dSR(Ivy) dSR(xvy)
= [ Loy s+ [ Loa(s), us) ds
0 0

< dsg(,y) (o] + crdsr(x, y))ertsnlov),

(6.51)

Therefore, in order to obtain the results we need to estimate

X(y(dsr (2, 9))) — x(74(0))- (6.52)

First, we claim that |v,(0)| and |v,(dsr(z,y))| are bounded. Indeed,
observe that from (2) in MTheorem 617 and the equivalence of the sub-
Riemannian topology with the Euclidean one we deduce that

74(0)] < 2max{R, C\(R)}.
Moreover, by Lemma 62 we know that
Yy ()] < ml[uyllz, (1 + [ (0)]), Vs € [0,dsr(z,y)]-
So, in particular,

y(dsr (@, 9)| < Kllluyll2, DL+ | (0)])-

We claim that ||uyl2,[0,dgg (z,y)) 13 Pounded by a constant that only depends
on R. Indeed, from (i) we know that T;x(y) is locally uniformly bounded
and by (68) we know that

Tixt) = X0 + = [ o) ds > g [ (o) as.

Thus, we obtain

1 t
5 | [ & < 1T,

and this completes the proof of the claim since Ty is locally equibounded
by (). For simplicity of notation, let R, > 0 be such that

y(dsr (2, )| < Ry, [7(0)] < Ry,
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Moreover, we denote by r, > 1 the degree of nonholonomy associated with
the compact set Bg, .
Hence, going back to by the Lipschitz continuity of x w.r.t. dsg we get

X(vy(dsr(2,9))) = x(74(0)) < lr,dsr (vy(dsr(2,9)), 7(0))-

Then, by we have that

1
X(y(dsr (2, 9))) = x(15(0)) < C2lvy(dsr(x, ) — 1y (0)]™ (6.53)
where ¢a depends only on R,. Next, from CemmaB2 we have that

1
7y (dsr (@, 9)) =7y (0)] < 5 (|luy 120,50 2.9)] dsr (@, ¥)) (14 (0))dsr (2, ) 2.

Hence, we get that there exists a constant C'; > 0 such that

X(ydsi (2, ) — x(7(0)) < Chdsn(w, y)*7. (6.54)

Therefore, combining (6250), (6551) and (6254) we obtain

1
Tyix(z) — Tix(y) < dsr(z,y)(|2] + cpdsr (@, y)) e BREY) 4 Cldsg (,y) 7.

Finally, exchanging the role of x and y the proof of the equicontinuity is
complete. ]

Theorem 6.20. Assume (F0), and (LO) — (L2’). Then, there exists a
continuous function Y such that

Jlim Tix(z) = X(2) (6.55)
uniformly on Br for any R > 0. Moreover, we have that
X(z) = Tix(z), t>0, zeR

and X satisfies
H(z,Dx(x)) =0, (xecR?) (6.56)

in the viscosity sense.

Proof. In order to prove the existence of the limit in (655), we first show
that the map
t— Tix(z)

is nondecreasing for any = € R%. Indeed, we have that

Tix(x) < Ti (Tsx(x)) = Trsx(x)

where the inequality holds since x < L. This implies that

Tix(x) < Tiysx(x)
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and so we have that

Tox(@) < Tux(@), Vi<t

Therefore, since by [Proposition 6.19 we have that T3 is locally equibounded
it follows that the pointwise limit

Ji T

exists for all z € R?. Moreover, again by [Proposition 6.19 we know that the
family T}y is locally equicontinuous. Thus the above limit is locally uniform.
Let us set

X(z) = lim Tyx(z), VzeR?
t—00

Next, we show that x(z) = Tyx(z) for any € R? and any ¢ > 0. Indeed,
let s > 0. Then

TSY("I’.) = tliglo Ts (CTtX(x)) = tliglo Ts—&—tX(x)

where we have used the continuity of the semigroup T; and property (4) in
heorem 6 T4. Hence, we get

T.X(@) = Jim Topx(x) = X(z).

So, we have that

Y@) = Tx()=  inf {x<x>+ [ zoea) ds} (6.57)

(’Yvu) GF(I}tI

The proof of the fact that from (EZ57) the function ¥ solves (658) in the
viscosity sense is similar to the proof of [42, Proposition 5.1, Proposition
5.2]. O

6.5 Appendix

6.5.1 Abelian-Tauberian Theorem

In this appendix, we give a new formulation of the Abelian-Tauberian The-
orem, stated in [8, Theorem 5], tailored for the proof of [hearem G 13.

Theorem 6.21. Let ¢(t,x) be the solution of

OY(t,z) + H(x, Dy(t,z)) =0, (t,z) € [0,T] x R?
@b(T’ :L') =0, x € R

For any A > 0, let ¥)\(x) be the solution of
M(z) + H(z, Dip(x)) =0, zeRL
Then:
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(i) if {A\A(- ) aso locally uniformly converges to a constant d € R as
A L0, then {%1/1(0, )}rso locally uniformly converges to d as T — oo;

(ii) if {%1/)(0,- V=0 locally uniformly converges to a constant d €R as
T — 00, then {\x(-)}aso locally uniformly converges to d as A\ | 0.

This result can be proved arguing as in [8, Theorem 5] keeping in mind
the following differences:

1. the uniform convergence on the full space € is replaced by the locally
uniform convergence on R%;

2. whenever the boundedness assumption on L is used in [8] one here has
to invoke the boundedness of optimal pairs (y,u) in L®(0,T;R%) x
L2(0,T;R™).
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Chapter 7

Aubry-Mather Theory for
sub-Riemannian control
systems

7.1 Settings and assumptions
FormeNandi=1,...,m, let
f;i :R* —» R?
and
u; : [0,00) = R

be smooth vector fields and measurable controls, respectively, and consider
the following controlled dynamics of sub-Riemannian type

J(t) = Y fily®)ui(t) = Fy())U(#), t € [0,+00) (7.1)
i=1

where F(z) = [fi(z)|...|fm(x)] is an dxm real matrix and U (t) = (u1(t),. .., um(t))*L.
For any sg, s1 € R such that sg < 51 and z, y € R? we set

Lo = {(v,u) € AC([so, s1[;RY) x L2(s0, s1:R™) : 4(t) = F(y(t))u(t), v(s0) =z},
L%, = {(7:u) € AC([s0, s1]; RY) x L?(s0,51:R™) : 4(t) = F(y(8))u(t), 7(s1) =y},

50,51 50,51 50,51°

Throughout the paper we assume the vector fields f; to satisfy the fol-
lowing.

Y(u1,...,um)* denotes the transpose of (u1, ..., Um)

147
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(FO) There exists an integer rg > 1 such that f; € C™~1(R?), for any
i1=1,...,m, and

A™(z) =RY, VzeRY
(F1) There exists a constant ¢y > 1 such that for any i =1,...,m

filx)] < ep(L+|z)), ¥z eRY, (7.2)

(F2) m < d, F € C’llo’i (R%) and for any z € R? the matrix F(x) has full
rank m.

Observe that, from (F2) we have that the vector fields f; are linearly inde-
pendent.

By (F1) and Gronwall inequality we get the following estimate on solu-
tions of (I1).

Lemma 7.1. Let v € RY ¢ >0 and (y,u) € 5y Ifue L(0,4;R™) then
we have that

Y(8)| < (|| + cr||u||oot ecrlivllst v g e 0,1].
i
We now state the assumptions on the Lagrangian L : R? x R™ — R.

(LO) L € C?*(RY x R™) is reversible, that is L(z,u) = L(z,—u) for any
(z,u) € R x R™;

(L1) There exists a positive constant ¢;, C; such that

1
D2L(z,u) > o (@) e R? x R™
1
Do L@, u)] < Ci(1+ [u?), (z,u) € R x R™;
and L is locally semiconcave in space uniformly w.r.t. v € R™.

(L2) There exists ¢ > 0 such that

L(z,u) < Oluf> 4+ 0, (z,u) € RY x R™

(L3) There exists a compact set Kz C R? and a constant §;, > 0 such that

inf L(z,0) > 6z + min L(x,0); 7.3
seitle, (,0) 2 0r + min L(z,0) (7.3)

Note that by (LO), (L1) and (L3) we obtain

1
L(z,u) > gluﬁ + L(z*,0), V (z,u) € REx R™ (7.4)
1
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where z* € Ky, is such that

L(z*,0) = xrg}lcri L(z,0).

Let H : R x R? — R be the Hamiltonian associated with L, that is,

ueR™

H(z,p) = sup {Zui<p, fi(x))y — L(m,u)} , VY (xz,p) € R? x R (7.5)
i=1

Since the subject of this Chapter is deeply connected with the prob-
lem studied in [Chapter 6, we first recall the main results of such Chapter.
Consider the following minimization problem: for any 7' > 0 and any x € R¢

T
to minimize / L(y(s),u(s)) ds over all (y,u) € T57 (7.6)
0
and define the function V7 : R* — R by

T
Vi) = inf / L(y(s),u(s)) ds, ¥z €R% (7.7)
(vw€ergz Jo

For any = € R? we say that a trajectory-control pair (v, u) € I'§7 is optimal
if it solves ([CH). Note that, the existence of optimal trajectory—’control pairs
for (M) is a well-known result (see, e.g., [26, Theorem 7.4.4]).

Then, we know that for any R > 0 there exist two constants Pr, Qr >
0 such that for any @ € Bg, any T > dsr(z,x*), and any optimal pair
(Vas ug) € I 7 for (ICH) the following holds:

T
[ uato) de < P (1)
0
and

72(t)] < Qr, VYte[0,T]. (7.9)

Moreover, there exists a(L) € R such that for any R > 0

o1 . =

Tl_l)r_EOO TVT(:E) = a(L), uniformly on Bpr (7.10)

and a continuous viscosity solution x : R¢ — R of the ergodic Hamilton-
Jacobi equation

o(L)4+H(z, Dx(x)) =0, zeR%L (7.11)

Furthermore, such a solution che ne represented as

V@)= it {x<v<o>>+ [ 2669.u6) ds}—a<L>t (7.12)

(77’“)6110_;;9
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for any (t,z) € [0,T] x R%

We say that a(L) s the critical constant for our problem and x is any
critical solution to the ergodic equation (IM). Hereafter, we will always
work with critical solutions that satisfy (12).

Differently from here we also need to assume the following on
the sub-Riemannian system:

(S) there are no singular minimizing controls of problem (Z8).

The above extra assumption is needed for the critical solution y to be more
regular. Indeed, under (S) any critical solution is locally semiconcave and
consequently locally Lipschitz continuous, see [25, Theorem 1].

Remark 7.2. (i) Observe that the sub-Riemannian systems in Exami
fit assumption (S), see for instance [Z5, Theorem 5.1].

(i1) In view of the assumptions on L, we deduce that for any R > 0 there
exists a constant C'g > 0 such that

7.2 Characterization of the ergodic constant

We begin by introducing a class of probability measures that adapts the
notion of closed measures to sub-Riemannian control systems. Set

lul? p(dz,du) < 400, spt(mitp) compact}
RIXR™

P2RIXR™) = {M € P(RE x R™) : /

where 71 : R x R™ — R¢ denotes the projection onto the first factor, i.e.
mi(z,u) = .
Recall that F(x) = [fi(x)]...]|fm(x)] is the real d X m matrix in ().

Definition 7.3 (F-closed measure). We say that p € P22(R? x R™) is
an F-closed measure if

/]Rd . (F*(x)Dp(x),u) p(der,du) =0, VYV pé€ Cl(Rd).

We denote by Cr the set of all F-closed measures.

Closed measures were first introduced in [43] in order to overcome the
lack of regularity of the Lagrangian L. Indeed, if L is merely continuous,
then there is no Euler flow and, consequently, it makes no sense to introduce
invariant measure as in [41]. Similarly, in our setting such a flow does
not exists and for this reason the use of closed measures turns out to be
necessary. Moreover, as we will show in the next result, such measures
collect the behavior of minimizing trajectories for (Z7) as the time horizon
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T goes to infinity. We now proceed to construct one closed measure that
will be particularly useful to study the Aubry set.

Fix 29 € R? and for any 7' > 0 let the pair (Yay, Uz,) € Fg?; be optimal
for (7@). Define the probability measure ,ufo by

1 T
[ otw) st (dodu) = 1. [ gl un(0) di, Vg € CRINR™),
R4 xR™ 0

(7.14)
Then, we have the following.

Proposition 7.4. Assume (F0) - (F2), (LO) - (L3) and (S). Then,
{ugo Y=o is tight and there exists a sequence T,, — oo such that ,ufg weakly-*

converges to an F-closed measure 3, .

Proof. First, from (9) it follows that {mttufo }r>0 has compact support,
uniformly in 7. Thus, such a family of measures is tight. Let us prove that
{matu” Y=g is also tight.

On the one hand, taking the null control we have that

L7 ><1/TL< 0) ds < ¢
TU l‘o_TO xo, S X £92.

On the other hand, since (7, ug,) is a minimizing pair for Vp(zg), from
(2) we get

T

1
= [ Ll o) > <ru\2 +L<x*,o>) W (de, du)
RdxR™ RAxR™ 251

which implies that

1
— lul? pk (dx, du) < £y — L(z*,0).
261 RIAxR™ 0
Consequently, the family of probability measures {Wgﬂufo }r~0 has bounded
second order moment (w.r.t. 7). So, {ﬂgjj,ufo }r>o is tight.

Since {miful }r>o and {maful }r-o are tight, so is {uZ }r>o by [@, The-
orem 5.2.2]. Therefore, by Prokhorov’s Theorem there exists {7}, }nen, with
T, — 00, and u € P2(R? x R™) such that plr —* p.

We now show that ugo is an F-closed measure, that is

[ P Do) et =0, v e O
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By definition we have that

Tn
/ (F* () Dip (), ) e (d, ) / CF* (g (E) D (g (£)), 11 (1)) lt
RIxR™ 0

Tn
L

ﬁ\H

Then, from (79) we know that v,,(T},) € EQ\IO\‘ So, we get

(Yo (Tn)) = (o)

A T, =0
and, consequently,
[, @ Do), u) u(do.du) =0, .
R xR™

Set
PLRE x R™) = {M e PR x R™) : spt(mtp) C ER} .

The following property, which is interesting in its own right, will be cru-
cial for the characterization of the critical constant derived in Theorem 7.8
below.

Proposition 7.5. Assume (F0) — (F2), (LO) — (L3) and (S). Then, for
any R > Qq, where Qg is given in (9), we have that

inf L(z,u) u(der,du) = — inf sup H(z, DyY(x)).
MECFHW%(RdXRm) /]RdXRm ( ) IU/( ) PYeC1(RE) QTGEPR ( ¢< ))
(7.15)

Lemma 7.6. Assume (F0) - (F2), (LO) - (L3) and (S). Then, for any
R > Qo, where Qq is given in (), we have that

€ ] ‘2 d ) 'u d ’d“
1% CF CW}R(R XRm) /Rd xRm (m u) ( x )
pe QRi R xR ] / . (L(.T,U) <F (x)D¢($),u>> u(dw,du)
Z ( X m) 1/1601 (R ) Ra xR™

(7.16)

The proof of the above lemma is based on an argument which is quite
common in optimal transport theory see, for instance, [67, Theorem 1.3].
We give the reasoning for the reader’s convenience.



7.2. CHARACTERIZATION OF THE ERGODIC CONSTANT

Proof. Since L is bounded below we have that

inf L(z,u dx, du
#ECFQQ%(RdXRm) /IRdXR”L ( )H( )

= inf {/Rdem L(z,u) p(dz,du) —i—w(u)}

peEPL(RIXR™)

where

0, JURS Cr
w(p) =
o0, 1% §ZCF

So, observing that

w(p) = sap — / (F*(2) D), u) pu(de, du)
peCl(R) JRIXR™

we obtain (Z13).

Lemma 7.7. Let ¢ € C(R? x R™) be such that

¢o < ¢z, u) < Cy(1+ |uf), ¥ (x,u) € R x R™

153

for some constants ¢o € R and Cy > 0. Let {p;}jen € P2(R? x R™) and
let p € P%(RY x R™) be such that pu; —* p1 as j — oo. Then, we have that

liminf/Rd . o(x,u) pj(de, du) 2/ o(x,u) p(de,du).

Jj—o0 RAxR™

(7.17)

Proof. We first prove (1) assuming that ¢y = 0 and then we remove such

a constraint.
For any € > 0 we have that

oz, u)

T; 2y T
B (de, du) = A Bde, d
Lot iz = [ O (e ul?)

> / o) T, du)

RAxRm 1 + & "U/|2

From the growth assumption on ¢ we deduce that the function
bounded and so by weak-* convergence we get

P(@,u)

dxrm 1+ € |ul? Hao

liminf/ o(z,u) ,ufé(d:r;,du) 2/
RIxR™ R

Jj——+oo

Therefore, as ¢ | 0 we obtain ([Z1I2).

(dz, du).
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For ¢g # 0, we have that
[ (@leva) = o) + én] plidedu)
R4 xRm

¢(x,u) - ¢0 T
- /RdXRm W(l +e ‘U|2) Hmé(dl’, du) + ¢0

¢(x,u) —¢o
> —— uzl(dx,d .

—/me 1+ e [ul? Hay (4, du) + do
Thus, we obtain

A T} ¢(x7u)_¢0
lim inf B (da, du) > P = P00 (g g
mint [ o) uiddn) > [ S i o)+ 0

Jj—+oo

which in turn yields the result as € | 0. O

Proof of [Proposition 7.3. We divide the proof into two steps.
(1): Define F : C1(RY) x Z%(R% x R™) — R by

F) = [ (L) = (P @)D, w) ald.dw).

We will apply the Minimax Theorem ([64, Theorem A.1]) to prove that

inf sup / (L(x,u) - <F*(m)D¢(m),u)) w(dz, du)
HEPH(RIXR™) yc 01 (RD) JRIXR™

= sup inf / L(z,u) — (F*(x)Dy(x),u) ) p(dz,du).

B o [ (B = (P @Dy, ) ) e, du)

In order to check that the hypothesis of such a theorem are satisfied, let
us define

¢ =14 L(z*,0).
We claim that the level set
E={pe PERY X R™) : F(O,p) < c*}

is compact in (Z%(R? x R™),d;). Indeed, for any given p € Z%(R? x R™)
we know that mifiu has compact support contained in Br. Moreover, the co-
ercivity of L implies that for any given u € £ we have that mofjn has bounded
second moment which in turn yields the tightness of the family mofiu for any
e 3212%(]1@ x R™). Thus, the level set is compact by Prokhorov’s Theorem
and [@, Theorem 5.2.2]. Moreover, from Cemma 77 we have that F (v, u)
is lower-semicontinuous w.r.t. p in @%(Rd x R™). Therefore, applying the
Minimax Theorem ([64, Theorem A.1]) we obtain

inf sup / (L(x,u) - (F*(x)Dw(a:),u)) w(dz, du)
pEPE(RIXR™) e 01 (RA) JREXR™

= sup inf / L(z,u) — (F*(z)DvY(x),u dz,du).

I . . (L) (P @) D), ) ) e, du)
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(2): Proof of (1H). By ([I8) we get

inf L xz, H d ,du
uecFmﬁ}%(Rdem)/Rdem (z,u) pldz, du)
oY v / (L(:c,u) - (F*(fﬂ)Dl/J(x),W) w(dz, du)
HEPH(RIXR™) yc 01 (RD) JRIXR™
s gzinf m/ Liz,u F*(2)Dip(z),u dz, du).
PeCT (RL) LEPF(RIXR™) Rdem( (@, u) = (F"(z) Dip(x) >) 1 )

Now, the coercivity of L ensures the existence of the

min {L(x,u) - <F*(x)D1/J(m),u)}.

(z,u)eBrxR™

Therefore, by taking a Dirac mass centered at any minimizer of the above
function, one deduce that

sup min {L(m,u) — <F*(a:)D¢(x),u>}.

$EeC (R) (x,u)EBRXR™
= sw (= max {L(wu) - (F@)De@),w }
PeC1(RE) (z,u)EBRXR™

— _ inf L(z,u) — (F*(2)Di(x),
el e L) — (7 @DV, 0 )

=— inf max H(z,Dy(x
PECT(RY) z€BR ( V(@)

where the last equality holds true observing that
max  {(F*(2)D(@),u) — Liw,u)}
(z,u)eBrxR™

= max sup {<F*($)DLZJ(J}),U> —L(;U,u)} = sup H(z,Dy(x)).

z€BR ueR™ T€BR

This completes the proof. ]

The following characterization of the critical value is essential for the
analysis in Bection 773,

Theorem 7.8. Assume (F0) — (F2), (LO) - (L3) and (S). Then, for any
R > Qo, where Qo is given in (), we have that

L = : f L , d ,d — . f L 7 d ,d .
CV( ) MecFmﬁgg(RdXRm) Adem <x u) M( v u) MIGHCF Rd xR™ <x u) M( * u)
(7.18)
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Lemma 7.9. Assume (F0) — (F2), (LO) — (L3) and (S). Let x be a critical
solution. Then, for any R > 0 there exists a constant kg > 0 such that for

any e >0
a(L)+H(z,Dxe(z)) < kre, VY x € Bpg (7.19)

where x:(x) = x * & (x) and & is a smooth mollifier.
Proof. From (S) we have that y belongs to W,.>°(R?). So,
o(L) +H(z, Dx(z)) =0, ae. zeR% (7.20)

Let R > 0 and let xo € Br. Then, by Jensen’s inequality we get
a(L) +H(xo, Dx<(z0)) =a(L)+H <JJ0, /]Rd Dx(xo —y)&:(y) dy>
< [ | [a(D)+H(av. Dx(ao = )]&(o) do.
Moreover, writing
[, Tt 4@, Dxten - )] ) d

_ /Rd [a(L) +H (o — y, Dx(xo — ) &:(y) dy

+ /Rd [H (z0, Dx(z0 — y)) — H(zo — y, Dx(z0 — y))] & (y) dy,

-

II

by (=20) we deduce that I =0 and by (I3) we get II < kpe. O

Proof of Theorem ™7 8. We divide the proof into two steps.
Step 1: We first show that for any R > Qg, where Qg is given in (9),

a(l) = inf L(z,u dzx,du).
( ) MecFﬁ:@%(RdXRm) /I\{dXRm ( ) M( )

Indeed, by (I0) we know that

. 1
a(L) - TLHEOO TUT(O)‘

Hence, appealing to Cemma 777 and recalling that L(z,u) > L(x*,0) we

obtain

a(L) :Tlim L(z,u) pd (dz,du) > / L(z,u) pg°(dzr,du).
—00 JRdxR™M R4 xR™
(7.21)
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Recalling that ui° € Cp N yé(Rd x R™) for any R > @, we deduce that

L) > inf L , d ,d )
a( ) _— MeCFﬂ?}g(RdXRm) ~/Rd><Rm (x u) l"L( Xz u)

Next, by [Proposition 7.5 we have that for any ¢ € C1(R9)

inf L(z,u) p(de,du) = — inf  sup H(x, Dy(x)).
MECFWL@%(RdXRm) /RdX]Rm ( )/’L( ) PeC1(RE) IEEEPR ( 1/}( ))

(7.22)

Let x be a critical solution. For € > 0 let x.(x) = x x {¢(x), where £° is a
smooth mollifier. From Lemma 79 we know that for any R > 0

a(L)+H(z,Dx:(z)) < kre, =€ Bg.

Then, using x. in ("22) we obtain
inf L(x,u) p(dz,du
pECFNP%(REXR™) /Rdem ( ) 'u( )
> — sup H(z, Dx.(v)) > a(L) —kge.

zEBR

Hence, as € | 0 we get

nf L(z,u) p(dzr,du) > a(L
#ECFQ@%(RdXRTU) /RdXRm ( ) M( ) ( )

and this completes the first step.
Step 2: Now we prove that

a(L) = inf / L(z,u) p(dz,du),
peCrp RIxR™m

that is, we remove the constraint u € Z%(R% x R™).
Let {115} jen C Cr be such that

lim L(z,u) pj(dr,du) = inf L(z,u) p(de,du). (7.23)
J—00 JRdxR™ uneCr RdxR™

Since p; € Cp C Z2(R% x R™) we deduce that there exists {R;}jen such
that

spt(uj) C Br,.

Moreover, without loss of generality, we can assume that for any j € N

inf / L(xz,u) p(dr,du :/ Lz, u) p;(dz,du).
peCrn %, (RixEm) Jpixmm (,u) 1 ) . (@, u) 5 )
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Since, for j sufficiently large, we have proved that

a(l) = /Rdem L(z,u) pj(de,du)

the conclusion follows from (723). O

Corollary 7.10. Assume (F0) — (F2), (LO) — (L3) and (S). Then the
following holds.

(i) a(L) = L(z*,0) = mingex, L(x,0).

(ii) For any xo € R? we have that

a(L) = /Rdem L(z,u) pg, (dz, du)

where pgo is given in [Proposition7.4.

Remark 7.11. Note that point (i) of the conclusion has beed already proved
n [23, Corollary 5.4]. Here we propose a different approach which relies on

==

Proof. (i) On the one hand, by MTheorem 78, we have that

a(L) = inf / L(z,u) p(dz,du) > L(z*,0)
neCp RIxR™

where the inequality holds true by (I4).
On the other hand we observe that the Dirac measure d(,- ¢ is F'-closed.
So,

a(L) = inf / L(z,u) p(dx,du) < / L(z,u) §(y 0y (dz,du) = L(x*,0).
,MECF RAxR™ RIxR™ ’
(ii) Recalling Cemma 774 we obtain
a(L) = lim L(z,u) pd (dx,du) > / L(z,u) pg°(dz, du).
T—oo JrdyRm RdxR™

Thus, the conclusion follows from MTheorem 778 recalling that ugy is F-closed
by [Proposition 7.4. 0

7.3 Aubry set

We denote by L* the Legendre Transform of L, that is,

L*(x,p) = Sup. {(p,v) = L(z,u)},
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and we observe that

H(z,p) = L(z, F*(@)p), (2,p) € R x RY, (7.24)
Moreover, since L satisfies (LO) — (L2) we know that L* is coercive and
strictly convex in p.

Definition 7.12 (Dominated functions and calibrated curves). Let
c € R and let ¢ be a continuous function on R?.

1. We say that o is dominated by L — ¢ and we denote this by ¢ < L —c,
if for any a, b € R, with a < b, and any trajectory-control pair (y,u) €

F;Yfg)ﬁy(b) we have that

b
o(v(B)) — p((a)) < / Liy(s),u(s)) ds — c (b a).

2. We say that the first component v : [a,b] — R?, with a, b € R and

a < b, of a trajectory-control pair (v,u) € Fz(g)_W(b) is a calibrated

curve for ¢ if

b
o(v(b)) — pl(a)) = / L(v(s),u(s)) ds — c (b a).

We denote by Cal(p) the set of all calibrated curves for .

For any ¢ > 0 and for any z, y € R? we denote by A;(x,y) the action
functional, also called fundamental solution of the critical equation, i.e.,

Aa,y) = inf {/OtL('y(s),u(s)) ds}.

(yu)ery Y

We note that ¢ < L — a(L) if and only if for any z, y in R? and for any
t > 0 we have that

o(y) — p(x) < Az, y) — a(L)t. (7.25)
Then, Peierls’s barrier is defined as
A (z,y) = litm inf [A¢(z,y) —a(L)t], wx,y€c RY. (7.26)
—00

Lemma 7.13. The following properties hold.
(i) For any x, y € R% we have that 0 < A (z,y) < oco.
(ii) For any x, y, z € R we have that
Aso(7,2) < Aco(,y) + Acc(y, 2) (7.27)
and, for anyt > 0 we have that
A (z,2) < Aso(z,y) + Ay, 2) — a(L) t. (7.28)
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Proof. Point (i) follow by (L2) and the reversibility of L, respectively. Point
(77) follows by similar arguments as in [A3]. O

Definition 7.14 (Projected Aubry set). The projected Aubry set A is
defined by
A={ze R : Ago(z,z) = 0}.

Lemma 7.15. Assume (F0O) - (F2), (LO) - (L3) and (S). Let (z,y) € R*?
be such that
h:=Ax(z,y) € R.
Let {tn}nen € R and (yn, un) € ng—;y be such that
tn
t, = 400 and  lim L(vu, (8),un(s)) ds — a(L) t, = h. (7.29)

n—-+o00 0

Then, there ezists a subsequence, still denoted by (Yn,un), and a trajectory-
control pair (7,u) € Fg:oy such that

(i) {n}nen weakly converges to u in L? on any compact subset of [0,00);
(ii) {Vn}nen uniformly converges to 5 on every compact subset of [0, 00).

Proof. From (I28) it follows that there exists n € N such that for any n > 7
we have that

/0 " L(vn(8),un(s)) ds — a(L) t, < h+1.

On the other hand, by (L2) we obtain

tn

tn 1
/ L(vn(8),un(s)) ds — a(L) t, > 20 [un (5)|? ds — (L(z*,0) + a(L))t,.
0 1Jo
Appealing to (i) in we have that L(z*,0) + a(L) = 0. So,
tn
/ lun(s)|> ds < 201(h +1), Vn >7.
0

Therefore, there exists a subsequence, still denoted by {u,}, that weakly
converges to an admissible control 7 in L? on any compact subset of [0, +oc0).
Moreover, let R > 0 be such that |z| < R. Then, by (9) for any ¢t > 0 we
have that

()2 < Qr, Vsel0,t], Vn>n

and
tn tn 9
| R as < [ @+ b)) ds
< A1+Qr20(h+1), Ysel0,4, Vn>n
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Hence, {7, }nen is uniformly bounded in W12(0,¢; R?) for any ¢ > 0. Then,
by the Ascoli-Arzela Theorem, up to extracting a further subsequence,
{¥n }nen uniformly converges to a curve 4 on every compact subset of [0, +00).

Now, we claim that (7,u) satisfies (). Indeed, for any ¢ > 0 we have

that
—m+2/ ) film(s)) ds.

Thus, by the locally uniform convergence of v, it follows that f;(y,(t)) —
fi(3(t)), locally uniformly, for any t > 0, as n — +oo for any ¢ = 1,...,m.
Therefore, taking v € R? we deduce that

(v, Y (t)) = (v, z —1—2/ $){(fi(ym(s)),v) ds, Vt>0.

As n — 400 we get
(v, 7(t)) = (v,x) + Z/ i (s){fi(7(s)),v) ds, VY t>0.
=170

Since v € R? is arbitrary the conclusion follows. O

Remark 7.16. Arguing as in the proof of Cemma 7 T4, one can prove the
following. Given h € R, {tn}nen and (vn,un) € T such that

0
tn, = 400 and  lim L(vu, (s),un(s)) ds — a(L) t, = h.

n—-+o0o —t
n

Then, there exists a subsequence, still denoted by (v, uy,), and a trajectory-
control pair (7, u) such that

(1) {un}nen weakly converges to % in L? on any compact subset of (—oo, 0];
(71) {Yn}nen uniformly converges to 7 on every compact subset of (—oo, 0].

Proposition 7.17. Assume (F0) - (F2), (LO) - (L3) and (S). For each
z, y € RY there exists (3,1) € Ffoyoﬂ such that

0
A (z,y) — Aso(z,7(—t)) = /_tL(’_y(s),a(s)) ds—a(L)t, Yt=>0.(7.30)

Moreover, for each x € R? the map y — As(x,y) is a critical solution on
R,

Proof. Fix z, y € R? and let {t, }nen, (Yo, un) € F‘f?ﬂ% be such that
0

t, — o0, and lim L(vn(8),un(s)) ds — a(L) t, = Ax(x,y).

n—oo J_ ;.
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Then, from Remark 6.16 there exists (7, ) such that u, weakly converges
to u and 7, uniformly converges to 7, on every compact subset of (—oo, 0].
Let R > 0 be such that || < R. Fix t € [0,00), take n € N such that

dn = dsr(7(—t), 7 (1)) < L and t, > t+ 1. Let (y0,u0) € I7% 777" be
optimal for (233) and let U, € L*(—t,, —t + dy,) be given by

- Un(S), s |—tp,—t
up(s), s € (—t,—t +dy].
We denote by 7, the associated trajectory, that is, (Yn,u,) € Ffzviti) 4,

Then, defining the control @, (s) = u, (s —t,), denoting by 7,, the associated
trajectory by (L2) and the fact that ||ugllco < 1 we get

Aty =ty (@, 3(=1)) = a(L)(tn — t + o)

tn—t+dn
< / L (), n(s)) ds — a(L)(tn — t + dy)
0

— —t+dn
< / L(yn(s), tn(s)) ds + / L(s), uo(s)) ds — (L) (tn — t + dy)

—tn -1

< /_ Ly (), tn(s)) ds + (€2 + 1 — a(L))dn — a(L)(tn — ).

—tn
Hence, from the lower-semicontinuity of the action we obtain
0

Aoz, 7(—1) + / L(3(s). a(s)) ds — a(L)t

—t

0
< iminf {dr, o0, 0. 5(-0) — (D)t~ t =)} + [ L63()() ds - a(D)t
< ng-s}gof{(& + 01 —a(L))d, + /—; L(vn(s),un(s)) ds — a(L)(t, — t)}

+ liminf{/o L(n(8), un(s)) dsa(L)t}.

n—-+o0o ¢

By combining together the terms inside the brackets we get

Aoz, 7(—1) + / L(3(s). a(s)) ds — a(L)t
hmmf{ (ba + 01 — a(L))dy, —I—/O

n—-+00 —tn

L(vu(s). tn(s)) ds — (L) tn} ~ Anc(ary).

Therefore, we obtain

0
Aco(,y) = Aco(z,7(—t)) = / L(5(s),u(s)) ds — a(L)t. (7.31)

—t
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Next, we claim that

0
Aco(2,5) — Aso(z, 7(—1)) < / L(i(s),a(s)) ds —a(L)t.  (7.32)

—t

Indeed, by (28) we have that
Aso(7,y) = Aso(z,7(—1)) < Ai(3(—1),y) — a(L) .
Hence, defining the control
u(s)=u(s—t), s>0
and denoting by 7 the associated trajectory, we deduce that
Aco(2,y) = Aco(,7(—1)) < Ai(Y(=1),y) — a(L)t
0

< /0 L(7(s),u(s)) ds —a(L)t = / L(¥(s),u(s)) ds — a(L)t.

—t

By combining (Z31) and (Z32) we obtain (ZZ30). The fact that y —
Ao (z,y) is a critical solution for any 2 € R? can be proved by a standard
argument which uses the dynamic programming principle. O

7.3.1 Compactness of the Aubry set

In this section, we prove that the projected Aubry set A is a compact subset
of R%. We begin with some preliminaries.

Proposition 7.18. Assume (F0) - (F2), (LO) - (L3) and (S). For any
x € RY there exists Ty, > 0 such that, for any t > T, any optimal pair
(Y, uz) € TG for (W) satisfies

LY ({s€[0,t] : v.(s) € KL}) > 0.

Proof. We proceed by contradiction,. Suppose that there exist zg € RY,
{tk}ren with ¢t — oo, and a sequence of optimal pairs (v, ug) € I’g%? of
(7M@) such that

£ ({s €[0,tx] : v(s) € Kr}) =0.

On the one hand, we have that

/ " Lo (s) up(s)) ds > by inf L(y,0). (7.33)
0

yery

On the other hand, having fixed any optimal pair (7o, ug) € I‘g%@i; for (23)
and for any k € N such that t; > d(x¢) define the control

Tn(s) = {uo(s), s € [0,0(zg)]
0, s € (8(zo), tr)-
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Then, since ||ug|looc < 1 it follows that

/ " L) un(s)) ds < / " LG(s), @(s) ds
0 0
< 5(.%'0)(61 + EQ) + (tk — (5(330))[/(1'*,0).

(7.34)

Thus, combining (7=33) and (7=32) and dividing by ¢ we get

1 5
inf L(y,0) < —d(zo)(41 + l2) + <1 — (m0)> L(z*,0)
yeks tr tr
Moreover, by (L3) we deduce that
1 )
L(z*,0) + 41, < t—é(a:o)(ﬁl + l9) + (1 — (txo)) L(z*,0)
k k

With 67 > 0. Taking the limit as £ — oo in the above inequalities yields
67, < 0 which is a contradiction. O

In view of the reversibility of L, the above Lemma implies the following.

Corollary 7.19. Assume (F0) — (F2), (LO) — (L3) and (S). For any
x € RY there exists T, > 0 such that for any t > T, any optimal pair
(Va» uz) € TZf for problem (ICB) we have that

LY ({s € [~t,0]: v.(s) € KL}) > 0.

We observe that since calibrated curves are, in particular, minimizing
trajectories for (H) then can be applied to such curves.
This is a key point to deduce that the projected Aubry set is bounded, as
we show below.

Proposition 7.20. Assume (F0) - (F2), (LO) - (L3), and (S). Then A
is bounded.

Proof. Let xg € RY be such that A (zg,2¢) = 0. By [Proposition 7.17 there
exists (7,u) € I'”°, such that 7 is a calibrated curve for A (zo,- ) and,

by [Corollary 7.19, we know that there exists typ € (—o0, 0] such that

A(to) € Kr.
Thus, the the trajectory & associated with the control
u(s) = u(s +to),

for s € [0, —tp], with (—tg) = w0, is a calibrated curve for A (zg,- ) such

that (0) € K. Then, from (9) this implies that there exists Rz, > 0 such

that xg € PRL- ]
Next, we show that the projected Aubry set is closed.
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Proposition 7.21. Assume (F0) - (F2), (LO) - (L3) and (S). A is a
closed subset of RY.

Proof. Let {x,}nen be a sequence in A such that lim x, = € R%. Then,
n—o0
we have to show that =z € A.

By definition we have that there exist sequence {tg, }nen and {(Vx,,, Uk, ) fnen €
Igr ™ such that

27 1
[ Lok ) ds - abyn, < .
0
Then, by Cemma 713 there exists (7, @) such that wuy, weakly converges
to @ and 7y, uniformly converges to 7, on every compact subset of [0, 00),

respectively. Let us define d,, = dsgr(xy,x) and the control

ul(s), s € [—dy, 0]
un(s) § ug, (), s € (0,tg,]
ub(s), s € (tk,, tr, + di,]
where (7], uf') € T2, %0 and (14, uj) € Ff:nj:n +d,, are optimal for (2Z35), on

their respective intervals. Hence, we have that (7, u,) € F”jj)jtkn +dy, and,
thus, we get

As(z,z) < lirginf [As,,, +2d, (z,7) — (L) (tk, + 2d,)]

0 tiy,
<timind ([ LGP0 ds+ [ L (8) 0, (9) ds = (D),

n—00 —_d
n

+ /tknern L(vy(s),uy(s)) ds —2a(L) dn) < lim (dn(€1 +49) + le> =0.

¢ n—00
kn

The proof is thus complete since, by definition, Ay (z,z) > 0 for any = €
R, O

Theorem 7.22 (Compactness of the Aubry set). Assume (F0) — (F2),
(LO) - (L3) and (S). Then, A is a nonempty compact set.

Proof. The fact that A is compact follows from [Proposition 7-20 and [Propoq
Kifion 7 21. Moreover, (L3) and ensure that A is nonempty
since z* € A. O

7.4 Horizontal regularity of critical solutions

In this section we show that any critical solution is differentiable along the
range of F', see the definition below, at any point lying on the projected
Aubry set.
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Definition 7.23 (Horizontal differentiability). We say that a continu-
ous function v on R is differentiable at x € R? along the range of F(x)
(or, horizontally differentiable at x) if there exists q, € R™ such that

o P (@)0) = 6(2) = (g0)

v—0 |’U|

= 0. (7.35)

Clearly, if 1 is Frechét differentiable at x, than v is differentiable along
the range of F(x) and g, = F*(z)Dy(x).

For any ¢ € C(RY) we set Dfy)(z) = F*(z) D i(z).
Lemma 7.24. Assume (F0) - (F2), (L0) — (L3) and (S). Let ¢ € C(R?)

be locally semiconcave. Then, 1 is differentiable at x € R% along the range

of F(x) if and only if Diab(x) = {q.}.

Proof. We first prove that if D},t (x) is a singleton then 1 is differentiable
at x along the range of F(z). Let {q,} = D}it(z) and take p, € DT (z).
Then

Y(x + F(x)v) — () — (pa, F(2)v) < of|[F(z)v]) < of[v]).
Therefore, we deduce that

lim sup Y@+ F(w)v) - w(x) - <Qac7 ’U>

<0.
v—0 |U‘

In order to prove the reverse inequality for the liminf, let {vg}ren be any
sequence such that vp # 0, vy, — 0 as kK — +oo and let

pr € DTY(x + F(x)vy).

Then
|U1k|(1/)(x + F(x)vg) — ¥(x) — (pao, F(2)vK))
— |U1k|(¢(m + F(z)vg) — ¥(x) — (pr, F(@)vk) + (pr — par F(2)01))

1 *
> WO(’F(@%D — |F*(2)pr — qa||vkl-

By the upper-semicontinuity of Dt we have that [F*(z)py — q.| — 0 as
k T oo. Since since this is true for any sequence v, — 0, we conclude that
F — _
i ing L@ T F(@)0) — $(2) — {4, v)

> 0.
v—0 |’U| -

We now prove that, if ¢ is differentiable along the range of F'(z), then
D;;w(:v) is a singleton. To do so, let p € DT (z) and let ¢, € R™ be as in
(7=33). Then, we know that

(e hE()0) — ¥()
R0 h

> <Q:ra9>'



7.4. HORIZONTAL REGULARITY OF CRITICAL SOLUTIONS 167

Moreover, by definition we have that for any 6 € R¢

i P+ BE@)0) — ()

< (F*p.6).
im . < (F*p,0)

Therefore,
(gz,0) < (F*p,0), V0eR.

Thus F*(z)p = qx. O

Hereafter, the vector ¢, given in Definifion 723 will be called the horizontal
differential of ¢ at x € R? and will be denoted by Dp)(z).

The next two propositions ensure that any critical solution x is differen-
tiable along the range of F' at any point lying on a calibrated curve . The
proof consists of showing that D;X is a singleton on . We recall that

L*(z,p) = sup, {{p,v) = L(z,v)}

is the Legendre Transform of L. We will rather write the critical equation
using L*, instead of the Hamiltonian H, to underline the role of horizontal
differentiability.

Proposition 7.25. Assume (F0) — (F2), (L0O) — (L3) and (S). Let x be
a critical subsolution and let (,u) be such that v : [0,00) — R? is calibrated
for x. Then we have that

a(L)+L*(v(r),p) =0, V¥ pe Dix(v(r))

for all 7 > 0.

Proof. On the one hand, since x is a subsolution of (I1) we have that
a(L) +H(y(7),p) <0, Vpe D x(y(r)).

So, from (=24) and recalling that D x(z) = F*(z)D*x(x) for any » € R?
we get
a(L)+L*(4(7),p) <0, ¥ pe Dfx(y(r)).

Thus, it is enough to prove the reverse inequality.
Let A > 0, then since « is a calibrated curve for y we have that

) = xor =) = [ L)) ds = a(D)
Then, by the definition of super-differential we get
X((7) =X = ) < (py(r) = 5(r = ) +o(h)
— i [ 3 s o) = [ O uls) ds-+ ofh)

—h
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Therefore, we conclude that

T

| 16e.ae) ds—amns [ (o) ds o)

T—h
—at) < ¢ [ (PO u) - LOw).u)) ds+ o)
<3 [ B6OF O dso).
Thus, for h — 0 we obtain the conclusion. ]

Proposition 7.26. Assume (F0) — (F2), (LO) - (L3) and (S). Let x be
a critical solution and let (y,u) be such that 7y : [0,00) — R? is calibrated
for x. Then, for any T > 0 we have that x is differentiable at v(7) along
the range of F(y(1)).

Proof. We recall that from [25, Theorem 1] we have that y is semiconcave.
By [Proposition 7-29 we know that

a(L)+L*((7),p) =0

for any p € Dfx(v(r)). Moreover, we have that L*(x,-) is strictly con-
vex and the set Djx(z) is convex. Therefore, the above equality implies
that D x(v(7)) is a singleton. Consequently, ensure that y is
differentiable at v(7) along the range of F'(v(7)). O

We are now ready to prove the differentiability of any critical solution
on the Aubry set.

Theorem 7.27 (Horizontal differentiability on the Aubry set). As-
sume (FO) — (F2), (LO) — (L3) and (S). Let x be a critical solution. Then,
the following holds.

(I) For any x € A there exists a trajectory-control pair (v, uz) € IZ5 5N
'Y such that

0,00

A (12(t),x) = _/0 L(vz(8),uz(s)) ds + (L)t (7.36)

and

0
Aco(®,72(—1)) = —/ L(72(s), uz(s)) ds + a(L) t (7.37)

—t

(ii) vz : R — R? is calibrated for x.
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(iii) x 1is horizontally differentiable at x € A.

Proof. We start by proving (=38). Since z € A. We have that A (z,2) =0
. So there exist {t,}nen and (7,5, u}) € T 7* such that

tn
tn, = 400 and  lim Ly (s),uf(s)) ds —a(L)t, =0. (7.38)

n—-+o0o 0 n

Then, by Cemma 713 there exists (7, u;) such that u,} weakly converges to

u;} and 4,5 uniformly converges to 7;", on every compact subset of [0, 00), re-
spectively. Fix t € [0, +00), fix n large enough such that d,, := dsgr (7, (t), 7,7 (1)) <
land ¢t +1 <t,. Let (y0,u0) € in_ﬁ'gﬁ " e a solution of (23) and let

U, € L%(t,t, + d,) be such that

Then, recalling that ||up||coc < 1 we obtain

tn t+dp tn
/t L(Fn(s), in(s)) ds = / Lv(s), uo(s)) ds + /Hd L(n(s), in(s)) ds

< (6 + 5)dy + / L(vn(s), tn(s)) ds.

t+dn

Now, defining u,,(s) = u,(s—t) and denoting by 7,, the associated trajectory
we get

Asc(v (t), ) < liminf [Ay, —y — (L) (tn — )]

n—+oo
< timint[ [ £63,(6) (o) ds — al)(t — )
t+dn tn
< timint | [ 2009, wa(s) ds + [ L)) ds = abie - 0)
< tmint (0 + 2)d, + /t;nL(vn( ). (9) ds (D)t 1)
r tn t+dn
= lim fnf _(£1+£2)dn+ /0 L7y (8),up (3)) ds — a(L) tn — /0 L(7y (8), uy (8)) ds +a(L)t

Then, by (239), the uniform convergence of 7, and the fact that d,, | 0 we
deduce that

| 26 @) ds = (D) 1+ A (0.) <0
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Moreover, we also have that

Aco(@,77 (1) = Aso(z, 7 (1)) — Aco(@,7) < /0 Ly (s),uy (s)) ds — (L)t

and A (z,7, (1)) + Ao (75 (t), 2) > 0. Therefore, we obtain

t
| B ) () ds = o)+ Al (0).) = 0.
Similar arguments show that there exists (v, ,u, ) € [ 7% o such that (I=37)
holds. Indeed, it is enough to consider {t,}nen and (v, ,u, ) € I'"}’% such
that

0
tp, — 400 and  lim L(v, (s),u, (s)) ds — a(L)t, =0. (7.39)

n—-+oo ¢
n

Then, by Remark 6.16 there exists (v, ,u, ) such that u, weakly converges
to uy and ~y, uniformly converges to 7, , on every compact subset of [0, c0),
respectively. Therefore, defining the control

{u;(s), s € 10,00)
uz (s), sé€ (—o0,0]

and denoting by ~y, the associated trajectory the proof of (i) is complete.
Next, we prove (i7), that is, 7, is a calibrated curve for y. From (12)
we know that x < L — «(L) and thus for any ¢ > 0 the following hold

t
X(V2(t)) — x(x) < /0 L(72(s), uz(s)) ds — a(L)t.
Moreover, again from (12) we deduce that

x() = x(12(t) < As(12(t), 2) — (L) s

for any s > 0. Thus, we get

X(2) = x(72(1)) < Aco(V2(t), 2) = —/0 L(72(5), ux(s)) ds + a(L) 1.

This proves that -, is a calibrated curve for x on [0,00). Similarly, one can
prove that the same holds on (—oo,0]. Moreover, if we consider —s < 0 <t
we can write

X(vz(t) = x(hz(=5)) = x(7=(t)) — x(z) + x(7) — x(7z(=5))
0

- / L(ya(r), ug(r)) dr — a(L)t + / L(ya(7), us(r)) dr — a(L) s

0 —s

- / L(a(r), un(7)) dr — a(L)(t + 5),

—S
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and this completes the proof of (i7).
Finally, by (ii) and Proposition 7.26 we deduce that x is differentiable
at x € A along the range of F(x). O

Proposition 7.28. Assume (F0) — (F2), (L0O) — (L3) and (S). Let x be
a critical solution. Let v € A and let (Vz, uy) be such that v, is a calibrated
curve for x on R with v,(0) = x. Then, we have that

Y(t) €A, t>0. (7.40)
Proof. In order to prove (Z1) it is enough to show that
Aco(72(t),72(t)) <0, >0 (7.41)

since it is always true that A (72 (f),72(t)) > 0 for any ¢t > 0. From (I22)
the following holds

Aco(12(1), 72(t) < Aco(Va(t), ) + Aco(,72(1)), ¢ >0. (7.42)
Since 7, is calibrated for xy we deduce that
¢
Aso(z,72(1)) = /0 L(vz(8),uz(s)) ds — a(L) t. (7.43)
and .
A (V2 (t),z) = —/ L(vz(s),ux(s)) ds + (L) t. (7.44)
0
Hence, combining (23) and (Z24) with (Z2) we get (A1) which we recall
that it implies (21). O

Corollary 7.29. Assume (F0) — (F2), (LO) - (L3) and (S). Let x be a
critical solution, let x € A and let v, be calibrated for x. Then, 7y, satisfies
the state equation with control

ug(t) = Dp L7 (72 (t), Drx(12(%))), ¢ =0.
Moreover,

DFX('Yx(t)) = DuL(’Yx(t)’ux(t))a t>0.

Proof. Let x be a critical solution, let x € A and let v, be a calibrated curve
for x. Let uy be the control associated with 7,. Then, from the Maximum
Principle and the inclusion of the dual arc into the superdifferential of the
corresponding value function, e.g. [26, Theorem 7.4.17], we have that

<DFX(7x(t))vu:c(t)> = L(’Yx(t)aux(t)) + L*(’Vx(t)a DFX('Yx(t))

for any ¢ > 0. Note that, Dpx(v,(t)) is well-defined by [Proposition 7.20.
Hence, by the properties of the Legendre Transform we obtain

ux(t) = DPL*('Yx(t%DFX(’Yx(t)))’ t>0

and
Dix(e(t)) = DuL(3a(t),us (), £ 0. O
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Remark 7.30. Following the classical Aubry-Mather theory for Tonelli Hamil-
tonian systems, one can define the Aubry set A C R? x R™ as

A=(V(z,u) € AxR™: Dpx(z) = DyL(x,u)}

where the intersection is taken over all the critical solutions x. Note that
such a set is nonempty since (z*,0) € A.
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RESUME

Les travaux de cette thése concernent I'analyse de systémes de jeu a champ moyen (MFG) du premier ordre avec contrble
de l'accélération et I'étude du comportement en temps moyen long de systémes de contréle de type sous-riemannien.
Plus précisément, dans la premiére partie nous commengons par étudier le caractére bien posé du systéme MFG asso-
cié a un probléme de commande a équation linéaire en espace et en état de commande. En particulier, nous prouvons
I'existence et I'unicité des solutions généralisées et nous étudions également leur régularité. Ensuite, nous nous concen-
trons sur le systéme MFG avec contréle de I'accélération, un cas particulier de celui décrit ci-dessus, et nous étudions le
comportement en temps moyen long des solutions en montrant la convergence vers une constante ergodique. Ici, comme
pour I'analyse précédente, le principal probléme est le manque de convexité et de coercivité stricte du Hamiltonien par
rapport a la variable de quantité de mouvement. Cela conduit par exemple a la non-existence de solutions de viscosité
continue aux équations ergodiques de Hamilton-Jacobi et, par conséquent, ce permet pas de définir le systéme MFG
ergodique au sens classique. Nous concluons cette premiére partie en établissant un lien entre le systéme MFG avec
contrble de 'accélération et le systéme MFG classique. Pour ce faire, nous étudions le probléme de perturbation singuliére
pour le systéme d'accélération MFG, c'est-a-dire que nous analysons le comportement des solutions aux systémes de
jeu a champ moyen dont le colt d'accélération devient nul. Encore une fois, nous résolvons le probléme en utilisant des
techniques de calcul des variations en raison du probléme résultant du manque de convexité et de coercivité strictes du
Hamiltonien par rapport a la variable de quantité de mouvement.

Dans la deuxiéme partie, nous nous concentrons sur les systémes de contréle affine sans dérive (de type sous-
riemannien). A la différence du cas de I'accélération, nous montrons qu'il existe une constante critique et que I'équation
ergodique de Hamilton-Jacobi associée a une telle constante qui posséde des solutions de viscosité continues. Pour
cela nous faisons appel a la géométrie sous-riemannienne sur l'espace d'état. Toujours en utilisant les propriétés de
cette géométrie, nous définissons le semi-groupe de Lax-Oleinink et nous prouvons I'existence d'un point fixe de ce
semi-groupe. Nous concluons cette partie, et donc cette thése, en étendant la célébre théorie d'Aubry-Mather au cas
du systéme de contrille sous-riemannien. Nous montrons d'abord une formule de représentation variationnelle de la
constante critique et, a partir de celle-ci, nous définissons I'ensemble de Mather et I'ensemble d'Aubry. En utilisant une
approche dynamique, nous étudions les propriétés analytiques et topologiques de tels ensembles comme, par exemple,
la différentiabilité horizontale de la solution critique en tout point se trouvant dans I'un des deux ensembles. Enfin, nous
appliquons ces résultats pour étudier le caractére bien posé du systéme MFG ergodique associé a de tels systémes de
contrdle.
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ABSTRACT

The work in this thesis concerns the analysis of first-order mean field game (MFG) systems with control of acceleration
and the study of the long time-average behavior of control systems of sub-Riemannian type.

More precisely, in the first part we begin by studying the well-posedness of the MFG system associated with a control
problem with linear state equation. In particular, via a relaxed approach, we prove the existence and the uniqueness of
mild solutions and we also study their regularity. Then, we focus on the MFG system with control of the acceleration, a
particular case of the one above, and we investigate the long time-average behavior of solutions showing the convergence
to the critical constant. Here, as for the previous analysis, the main issues are the lack of strict convexity and coercivity of
the Hamiltonian with respect to the momentum variable. Indeed, for instance, when studying the asymptotic behavior of
the control system this lead us to a non existence result of continuous viscosity solutions to the ergodic Hamilton-Jacobi
equation. Consequently, it does not allowed us to the define the ergodic MFG system as one would expect. We conclude
this first part establishing a connection between the MFG system with control of acceleration and the classical one. To do
so, we study the singular perturbation problem for MFG system of acceleration, that is, we analyze the behavior of solutions
to the system when the acceleration cost goes to zero. Again, we solve the problem by using variation techniques due
to the problems arising from the lack of strict convexity and coercivity of the Hamiltonian with respect to the momentum
variable.

In the second part, we concentrate the attention to drift-less affine control systems (sub-Riemannian type). Differently
from the case of acceleration, we prove that there exists a critical constant and the ergodic Hamilton-Jacobi equation
associated with such a constant has continuous viscosity solutions. This is possible appealing to the properties of the
sub-Riemannian geometry on the state space. Still using the properties of this geometry we finally define the Lax-Oleinink
semigroup and we prove the existence of a fixed point of such semigroup. We conclude this part, and thus this thesis,
extending the celebrated Aubry-Mather Theory to the case of sub-Riemannian control system. We first show a variational
representation formula for the critical constant and from this we define the Aubry set. By using a dynamical approach
we study the analytical and topological properties of such sets as, for instance, horizontal differentiability of the critical
solution at any points lying in such a set.
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