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Chapter 1

Introduction

Before discussing the state of the art and introducing the topics covered in
this thesis, we proceed to motivate why we get interested in these problems.

The work is divided in two parts: the first is devoted to the systematic
study of Mean Field Game (MFG) systems with control on the acceleration;
in the second we address the problem of long time-average behavior of solu-
tions to Hamilton-Jacobi equations associated with sub-Riemannian control
systems and Aurby-Mathery Theory for these latter. We will explain below
how these two topics are related.

Let us start describing the first. In the recent years there have been
an increasing attention to the study of multi-agent systems with control on
the acceleration, i.e., models of interacting individuals in which each player
wants to control their acceleration instead of the classical control of the ve-
locity. For this reason in Chapter 3 we study the well-posedness of MFG
systems associated with such control problems. By using a relaxed notion
of Nash equilibrium (MFG equilibrium) we provide existence, uniqueness
and regularity results for the so-called mild solutions. We conclude by in-
vestigating the connections between these solutions and the PDEs system.
Then, the aim of Chapter 4 is to study the long time-average behavior of
solutions to the MFG system studied in Chapter 3 as the time horizon goes
to infinity. The main issue for this is the lack of small time controllability
that prevents to define the associated ergodic MFG system in the standard
way. We conclude this first part addressing the problem of singular pertur-
bation for "pure" control systems and for MFG with control of acceleration in
Chapter 5. In particular, solving this problem we found a relation between
MFG of acceleration and the classical system.

At this point, the difficulties in Chapter 4 lead us to the following ques-
tion: are these issues common to more general control systems than the
control of acceleration? To address this problem, we start with a general
drift-less control system and in Chapter 6 we address the problem of the
long time behavior of solutions to Hamilton-Jacobi equations. Note that,
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4 CHAPTER 1. INTRODUCTION

the case of control of acceleration does not fit into this class of systems
since it has a linear non-zero drift. However, what we immediately realize
is that sub-Riemannian control systems are locally small time controllable.
So, by using new ideas which relies on the different geometry on the state
space we prove the existence of a critical constant and of a critical viscosity
solution to the ergodic Hamilton-Jacobi equation. Moreover, we study the
well-posedness of the Lax-Oleinik semigroup and we prove the existence of a
fixed-point. Finally, in Chapter 7 we extend the well-known Aubry-Mather
theory for Tonelli Hamiltonian systems to the sub-Riemannian ones.

More details on the results and on the difficulties to achieve them are
given in the following sections.

Mean field games

Since MFG is the common subject of the first part of this thesis, we introduce
here the argument and describe the state of the art.

Game theory is a branch of mathematics which aims to describe the
behavior of a group of interacting agents. Fix, for instance, this number
to N ∈ N. Each player satisfy a certain dynamics that depends on the
interaction with the other agents and they choose their strategy in order
to minimize/maximize a certain cost functional. A fundamental tool in the
analysis of these models is the notion of Nash equilibria, introduce by Nash
in [62]. Roughly speaking, a strategy is called a Nash equilibrium if each
agent is not interested to be the unique who changes strategy.

However, the study of the N-players games lead to several issues as N
becomes large and, in this case, we are interested in describing the behavior
of Nash equilibria as N → ∞. In order to overcame these difficulties, MFG
system has been introduced by J.M. Lasry and P.L. Lions in [54, 55, 56]
and a similar analysis was also developed, in the same years but indepen-
dently, by P. Caines, M. Huang and R. Malhamé in [47, 48]. At the macro-
scopic level the model turns out to be described by a systems of PDEs: an
Hamilton-Jacobi equation which describes the single agent’s strategy and
a Kolmogorov Fokker-Planck equation (continuity equation) which explains
how the distribution of players evolves in time according to the optimal
strategy provided by the first equation. Classically, the mean-field inter-
action term that coupled the two equation is given by a function of space
and measure and, moreover, the drift appearing in the continuity equation
depends on the value function satisfying the Hamilton-Jacobi equation. Let
H : Rd×Rd → R be an Hamiltonian function, let F : Rd×P(Rd) → R be the
coupling function describing the interaction of the agents, let µ0 ∈ P(Rd)
be the initial distribution of players in space and let G : Rd × P(Rd) → R
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be the terminal costs. Then, the simplest for of this system is the following
−∂tu(t, x) +H(x,Dxu(t, x)) = F (x,mt), (t, x) ∈ [0, T ]× Rd

∂tmt − div
(
mtDpH(x,Dxu(t, x))

)
= 0, (t, x) ∈ [0, T ]× Rd

m0 = µ0, u(T, x) = G(x,mT ), x ∈ Rd.

Let us describe heuristically the meaning of such a system. To do so, let
L : Rd × Rd → R be the Lagrangian associated with the Hamiltonian H by
taking the Legendre Transform. Then, each player choose is own strategy
in order to minimize the cost functional of the form∫ T

t

(
L(γ(s), γ̇(s)) + F (γ(s),ms)

)
ds+G(γ(T ),mT )

where the control system is of the following simple form

γ̇(s) = u(s), (s ∈ [0, T ]).

There is by now an extensive literature concerning MFG system of the
above form concerning problems as existence, uniqueness and regularity of
solutions depending on the assumptions on F . For an overview on the sub-
ject we refer the reader to [16, 35, 36, 46, 28], which is however far from
being complete.

So far, most of the literature concerns the analysis of the above system
describing models in which the agents has control only of their velocity.
However, in many applications, see for instance [39], one might be inter-
ested in studying systems in which players needs to have control on their
acceleration. In this case, proceeding heuristically as before, we have that
each agent choose is strategy in order to minimize a cost functional of the
form ∫ T

t

(
L(γ(s), γ̇(s), γ̈(s)) + F (γ(s), γ̇(s),ms)

)
ds+G(γ(T ),mT )

where the control system now has the form{
γ̇(t) = v(t),

v̇(t) = u(t).

Hence, the PDEs system is given by
−∂tu(t, x, v) +H(x, v,Dxu(t, x, v), Dvu(t, x, v)) = F (x, v,mt), (t, x, v) ∈ [0, T ]× R2d

∂tmt − divx,v
(
mtDpH(x, v,Dxu(t, x, v), Dvu(t, x, v))

)
= 0, (t, x, v) ∈ [0, T ]× R2d

m0 = µ0, u(T, x, v) = G(x, v,mT ), (x, v) ∈ R2d.
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Note that, now the state space is not Rd but Rd × Rd which takes into
account not only the position but also the dependence of the strategy on
the velocity v ∈ Rd. Consequently, we also have that for any t ∈ [0, T ] the
distribution mt is a probability measure on Rd × Rd.

This is what motivated us at beginning of this project to analyze this
problem and it is what Chapter 3 concerns, i.e., the study of the existence,
uniqueness and regularity of solutions to the MFG system with control of
acceleration. In particular, we consider the acceleration model as embedded
into a more general setting which is the case of linear state equation linear,
that is, a dynamics of the form

γ̇(t) = Aγ(t) +Bu(t)

for some constant matrices A and B.

MFG for linear control systems

Fixed a time horizon T > 0, we consider players having the following dy-
namics the whole space Rd

γ̇(t) = Aγ(t) +Bu(t), ∀ t ∈ [0, T ] (1.1)

where A and B are real matrices and u is a measurable control function.
Each player aims to minimize a cost functional of the form∫ T

0
L(γ(s), u(s),ms) ds+G(γ(T ),mT ), (1.2)

where, for each time t ∈ [0, T ], the probability measure mt on Rd represents
their distribution. In this framework the MFG system reads as

−∂tV (t, x) +H(x,DxV (t, x),mt) = 0, (t, x) ∈ [0, T ]× Rd

∂tmt + div
(
mtDpH(x,DxV (t, x),mt)

)
= 0, (t, x) ∈ [0, T ]× Rd

m0 = m0, V (T, x) = G(x,mT ), ∀ x ∈ Rd
(1.3)

where the Hamiltonian H : Rd × Rd → R defined by

H(x, p,m) = sup
u∈Rk

{
− 〈Ax+Bu, p〉 − L(x, u,m)

}
.

One can immediately observe that if the Lagrangian L is of Tonelli type
(strictly convex and coercive w.r.t. control variable) then H fails to be
Tonelli. Hence, using the standard approach in MFG via fixed-point meth-
ods would lead us to several issues.
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Therefore, in order to overcome this issue we solve the problem via the
Lagrangian approach (see, for instance, [18] and [60]). That is, we define
the metric space

ΓT =
{
γ ∈ AC([0, T ]) : γ(t) satisfy (1.1), γ(0) ∈ Rd

}
,

endowed with uniform metric ‖ · ‖∞ and we consider Borel probability mea-
sures η supported on ΓT . Then, we restrict the attention to probability
distributions on Rd of the form mt = et♯η where et : ΓT → Rd denotes the
evaluation map and ♯ stands for the push-forward operator. This correspond
to consider only flow of measures concentrated on trajectories satisfying
(1.1).

Let us describe the results of this work. The first problem we deal with
is the definition of MFG equilibria for this class of problems. So, given an
initial distribution of players m0 ∈ P(Rd) we say that η ∈ P(ΓT ) is a MFG
equilibrium if it is supported on minimizing curves of (1.2), with starting
point in spt(m0). Then, we prove that such equilibria exist (Theorem 3.13)
and having this at our disposal we give the definition of mild solutions,
(V,m) ∈ C([0, T ]×Rd)×C([0, T ];P(Rd)), of our MFG problem. For these,
we study the existence, the uniqueness and the regularity. In particular,
we show that {et♯η}t∈[0,T ] is 1

2 -Hölder continuous in time (Theorem 3.17)
and, consequently, the value function V is locally semiconcave on [0, T ]×Rd
linearly in space and with fractional semiconcave modulus in time (Theo-
rem 3.18). Moreover, by standard tools of optimal control theory we get
that V is locally Lipschitz continuous (Theorem 3.20).

Under an extra growth assumption on the Lagrangian, we also show that
there exists a MFG equilibrium such that the flow of measures {et♯η}t∈[0,T ] is
Lipschitz continuous in time. This yields to linear semiconcavity estimates
for the value function V both in space and in time. In conclusion, we
show that the notion of mild solution is strictly related with the classical
definition of weak solutions for the MFG system. Indeed, we prove that they
coincide, in the sense that: a mild solution is a weak solution and vice versa
(Theorem 3.30).

After this work was submitted, similar results were obtained in [1] for
the special case of mean field games with control on acceleration.

Ergodic behavior of MFG of acceleration

In this Chapter we focus the attention on a special case of system (3.21).
Indeed, we consider the case of control of acceleration which can be written
as [

γ(t)
γ̇(t)

]
=

[
0 1
0 0

] [
γ(t)
γ̇(t)

]
+

[
0
1

] [
0
u(t)

]
, t ≥ 0.
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In this case, we have that the MFG system is given by
−∂tuT (t, x, v) + 1

2 |Dvu
T (t, x, v)|2 − 〈Dxu

T (t, x, v), v〉
= F (x, v,mT

t ), in [0, T ]× Td × Rd

∂tm
T
t − 〈v,Dxm

T
t 〉 − div

(
mT
t Dvu

T (t, x, v)
)
= 0, in [0, T ]× Td × Rd

uT (T, x, v) = g(x, v,mT
T ), mT

0 (x, v) = m0(x, v) in Td × Rd.
(1.4)

During the last years, the question of the long time behavior of solu-
tions of (standard) MFG systems has attracted a lot of attention. Results
describing the long-time average of solutions were obtained in several con-
text: see [30, 31], for second order systems on Td, and [29, 19, 20], for first
order systems on Td, Rd and for state constraint case respectively. Recently,
Cardaliaguet and Porretta studied the long time behavior of solutions for
the so-called Master equation associated with a second order MFG system,
see [34]. In view of the results obtained in these works one would expect the
limit of uT /T to be described by the following ergodic system

1
2 |Dvu(x, v)|2 − 〈Dxu(x, v), v〉 = F (x, v,m), (x, v) ∈ Td × Rd

−〈v,Dxm〉 − div
(
mDvu(x, v)

)
= 0, (x, v) ∈ Td × Rd∫

Td×Rd m(dx, dv) = 1.

(1.5)

The main issue of this work is that this ergodic system makes no sense.
Indeed, as we explain below, even for problems without mean field inter-
action, we cannot expect to have a solution to the corresponding ergodic
Hamilton-Jacobi equation (the first equation in (1.5)). As the drift of the
continuity equation (the second equation in (1.5)) is given in terms of solu-
tion to the ergodic Hamilton-Jacobi equation, there is no hope to formulate
the problem in this way. As far as we know, this is the first time this kind
of problem is faced in the literature.

To overcome the issue just described, we first study the ergodic Hamilton-
Jacobi equation without mean field interaction. More precisely, in the first
part we investigate the existence of the limit, as T tends to infinity, of
uT (0, ·, ·)/T , where now uT solves the Hamilton-Jacobi equation (without
mean field interaction){

−∂tuT (t, x, v) + 1
2 |Dvu

T (t, x, v)|2 − 〈Dxu
T (t, x, v), v〉 = F (x, v), in [0, T ]× Td × Rd

uT (T, x, v) = 0 in Td × Rd.

Here F : Rd × Rd → R is periodic in space (the first variable) and coercive
in velocity (the second one). Following the seminal paper [57], it is known
that the existence of the limit of uT /T is related with the existence of a
corrector, namely to a solution of the ergodic Hamilton-Jacobi equation:

−〈Dxu(x, v), v〉+
1

2
|Dvu(x, v)|2 = F (x, v) + c̄, (x, v) ∈ ×Td × Rd,
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for some constant c̄. However, we stress again the fact that due to the lack of
coercivity and due to the lack of small time controllability of our model, we
do not expect the existence of a continuous viscosity solutions of the ergodic
equation (see, however, this reference [40] on this point). This problem
has been overcome in several other frameworks: we can quote for instance
[63, 33, 68, 27, 13, 9, 6, 10, 17, 45, 44], for related problems see also [5, 53]
and the references therein. Following techniques developed in [10] we prove
in the first part of Theorem 4.2 that the limit of uT /T exists and is equal
to a constant. However, this convergence result does not suffice to handle
our MFG system of acceleration: indeed, we also need to understand, when
the map F also depends on the extra time dependent parameter {mt}t≥0,
how this ergodic constant depends on this. For doing so, we follow ideas
from weak-KAM theory (see for instance [41]) and characterize the ergodic
constant in terms of closed probability measures: namely, we prove in the
second part of Theorem 4.2 that, for any (x, v) ∈ Td × Rd,

lim
T→+∞

uT (0, x, v)

T
= inf

µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ(dx, dv, dw)

where C is the set of Borel probability measures µ on Td ×Rd with suitable
finite moments and which are closed in the sense that, for any test function
φ ∈ C∞

c (Td × Rd),∫
Td×Rd×Rd

(
〈Dxφ(x, v), v〉+ 〈Dvφ(x, v), w〉

)
η(dx, dv, dw) = 0,

(see also Definition 4.1).
We now come back to our MFG of acceleration (1.4). In view of the

characterization of the ergodic constant for the Hamilton-Jacobi equation
without mean field interaction, it is natural to describe an equilibrium for
the ergodic MFG problem with acceleration as a fixed-point problem on the
Wasserstein space. We say that (λ̄, µ̄) ∈ R × C is a solution of the ergodic
MFG problem of acceleration if

λ̄ = inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ̄)

)
µ(dx, dv, dw)

=

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ̄)

)
µ̄(dx, dv, dw),

where π : Td ×Rd ×Rd → Td ×Rd is the canonical projection onto the first
two variables. We show that such an ergodic MFG problem with acceleration
has a solution and that the associated ergodic constant λ̄ is unique under the
following monotonicity condition (first introduced in [54, 55]): there exists
a constant MF > 0 such that for any m1, m2 ∈ P(Td × Rd)∫

Td×Rd

(
F (x, v,m1)− F (x, v,m2)

)
(m1(dx, dv)−m2(dx, dv))

≥ MF

∫
Td×Rd

(
F (x, v,m1)− F (x, v,m2)

)2
dxdv,
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see (1) in Theorem 4.5. The main result of this Chapter is the fact that,
if (uT ,mT ) solves the MFG system of acceleration (1.4), then uT (0, x, v)/T
converges, as T tends to infinity, to the unique ergodic constant λ̄ of the
ergodic MFG problem, see (2) in Theorem 4.5. The main technical step
for this is to rewrite the MFG system in terms of time-dependent closed
measure (a kind of occupation measure in this set-up), see Theorem 4.25,
and to understand the long-time average of these measures.

Singular perturbation problem
Here we address the singular perturbation problem for control systems of
acceleration and of MFG systems with control on the acceleration. The
main goal of this analysis is the behavior of such MFG system when the
acceleration costs goes to zero. So, the study of the singular problem without
mean-field interaction is used to understand the expected behavior of the
system. Hence, we first study the limit behavior of the solutions to the
Hamilton-Jacobi equation{

−∂tuε + 1
2 ε |Dvu

ε|2 − 〈Dxu
ε, v〉 − L0(x, v) = 0, (t, x, v) ∈ [0, T ]× R2d

uε(T, x, v) = g(x), (x, v) ∈ R2d.

as ε→ 0. As already pointed out in the previous Chapters, the Hamiltonian

H(x, v, px, pv) =
1

2 ε
|pv|2 − 〈px, v〉 − L0(x, v)

fails to be strictly convex and coercive w.r.t. momentum variables. So, also
in this case, we solve the problem by using variational technics observing
that the value function uε can be represented as

uε(t, x, v) = inf
γ(t)=x
γ̇(t)=v

{∫ T

t

(ε
2
|γ̈(s)|2 + L0(γ(s), γ̇(s))

)
ds+ g(γ(T ))

}
.

However, since this represents the test bench for the study of the singular
perturbation problem for MFG with control of acceleration we immediately
focus the attention on the latter describing it in details. The system we
consider here is given by
−∂tuε + 1

2 ε |Dvu
ε|2 − 〈Dxu

ε, v〉 − L0(x, v,m
ε
t ) = 0, (t, x, v) ∈ [0, T ]× R2d

∂tµ
ε
t − 〈Dxµ

ε
t , v〉 − 1

ε divv (µεtDvu
ε) = 0, (t, x, v) ∈ [0, T ]× R2d

µε0 = µ0, uε(T, x, v) = g(x,mε
T ), (x, v) ∈ R2d

(1.6)

where uε : [0, T ]× R2d → R is the value function, µ ∈ C([0, T ];P1(R2d)) is
the joint distribution of position and velocity of a typical agent and mε

t =
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π1♯µ
ε
t with π1 : Rd × Rd → Rd the projection map onto the first variable.

MFG systems with control on the acceleration describes in general models in
which the interacting agents controls their acceleration. Here, the systems
we are interested in are those in which the acceleration cost vanishes, as it
can be easily observed from (1.6).

The Lagrangian L0 appearing in the system is assumed to be smooth in
space and in velocity variables and to have Tonelli type dependence on v. We
refer to (M3) below for what concern the dependence of L0 on the measure
variable. One can immediately recognize that the underlying minimization
problem associated with the above PDEs systems has the following form

inf
γ(t)=x
γ̇(t)=v

{∫ T

t

(ε
2
|γ̈(s)|2 + L0(γ(s), γ̇(s),m

ε
s)
)
ds+ g(γ(T ),mε

T )

}

for any initial position and velocity (x, v) ∈ R2d.
The singular perturbation problem has been widely studied for control

problems and, more recently, for differential games. For an overview on the
subject, which is far from being complete, we refer the reader to [10, 6, 11],
and references therein. For these kind of problems, the general structure is
to consider a classical controlled dynamic coupled with one that depends on
a small parameter ε > 0. Then, as ε → 0 the limit system turns out to be
defined only on Rd where the unperturbed system is defined. Some type of
perturbation problems in MFG have been studied, recently, in [29, 19, 20, 32]
where the authors study the long time-average behaviour of solutions to first
order MFG system and in [37, 58] where the authors study the homogenisa-
tion problem for second order MFG system. Note that, in homogenisation
the structure of the MFG system might be lost in the limit (as proved in
[37]) which is not the case here, as we will show in Theorem 5.3.

Indeed, going back to the MFG system (1.6) we prove that (uε,mε),
where we recall that mε

t is the space marginal of the solution µεt for any t ∈
[0, T ], converges (up to subsequence) to a solution (u0,m0) to the classical
MFG system
(i) − ∂tu

0(t, x) +H0(x,Dxu
0(t, x),m0

t ) = 0, (t, x) ∈ [0, T ]× Rd

(ii) ∂tm
0
t − div

(
m0
tDpH0(x,Dxu

0(t, x),m0
t )
)
= 0, (t, x) ∈ [0, T ]× Rd

m0
0 = m0, u

0(T, x) = g(x,m0
T ), x ∈ Rd

(1.7)

where H0 : Rd×Rd → R is the Hamiltonian associated with the Lagrangian
L0. As observed so far, we can see from (1.7) that the limit ε → 0 leads
to the elimination of the velocity as state variable, whose dynamics was
controlled via the perturbation ε. At this point, we again want to stress the
fact that the Lagrangian L0 in (1.6) depends only on the space marginal of
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the measure µε. First, this comes from the elimination of the velocity as
state variable and so, also for in the analysis of the measure µε, the limit
does no see the behavior of the second marginal. Moreover, we are interested
in connecting the MFG system of acceleration with the classical one which
we know depends only on a flow of probability measures in space which
describes the motion of the agents.

Let us briefly explain the method of proof. We first show that uε is
equibounded and mε is tight (see Lemma 5.11 and Theorem 5.14). Thus,
as a first consequence we get that, up to a subsequence, there exists m0 ∈
C([0, T ];P1(Rd) such that mε → m0 in C([0, T ];P1(Rd)). Then, we pro-
ceed with the analysis of the value function uε: we show that uε(t, ·, v) is
equi-Lipschitz continuous, uε(·, x, v) is equicontinuous and uε(t, x, ·) has de-
creasing oscillation w.r.t. ε (see Lemma 5.16 and Proposition 5.17). We
finally address the locally uniform convergence of uε, showing that there
exists a subsequence εk ↓ 0 such that (uεk ,mεk) converges to a solution
(u0,m0) of (1.7) (see Theorem 5.19, Proposition 5.20 and Corollary 5.22).
The main issues in proving the above results are due to the lack of strict
convexity and the lack of superlinearity of the Hamiltonian in system (1.6).
In particular, these and the fact that Lagrangian L0 is non-autonomous mo-
tivated us to use a variational approach instead of a PDEs approach since
the latter creates series difficulties in estimating uniformly the gradient of
uε w.r.t. velocity variable. We recall that such gradient plays a key role
in understanding the limit state space since it capture the behaviour of the
velocity as state variable in Rd × Rd.

Ergodic behavior of sub-Riemannian control sys-
tems

In recent years, increasing attention has been devoted to control systems of
the form

γ̇(t) =
m∑
i=1

uifi(γ(t)) (1.8)

where fi are m ∈ {1, · · · , d} vector fields defined on Rd, with sublinear
growth, and controls ui are measurable functions on Rm. The main assump-
tion on the model is the so-called Chow condition (also known as Hördman-
der condition in PDE), i.e., the fact that iterated Lie brackets of f1, . . . , fm
generate the whole tangent space at any point. Indeed, this condition im-
plies that the system is controllable, that is, given any two points in the
state space one can find a control that generates a path which joins the two
points. Such systems are naturally associated with a new metric on the state
space—the sub-Riemannian metric—which in general fails to be equivalent
to the classical Euclidean metric, see for instance [2, 38, 65, 61].
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Given a Lagrangian L : Rd × Rm → R, an initial position x ∈ Rd, and a
time horizon T > 0 we consider the problem of minimizing the functional

u 7→
∫ T

0
L(γxu(s), u(s)) ds

over the space of all measurable controls u : [0, T ] → Rm, where γxu denotes
the solution of (1.11) such that γ(0) = x. The first part of this work
is devoted to the analysis of the long-time average behavior of the value
function of the above problem as T → ∞, that is, the existence of the limit
of VT (x)/T as T → ∞ where

VT (x) = inf
u

∫ T

0
L(γxu(t), u(t)) dt.

In particular, we prove that such a limit exists locally uniformly and is
independent of the initial position x ∈ Rd, that is,

lim
T→∞

1

T
VT (x) = α(L) . (1.9)

Following [41], it is known that the existence of the limit in (1.9) is related
to the existence of a critical constant c ∈ R and of a viscosity solution χ to
the ergodic Hamilton-Jacobi equation

H(x,Dχ(x)) = c (x ∈ Rd) (1.10)

where

H(x, p) = sup
u∈Rm

{
m∑
i=1

ui 〈p, fi(x)〉 − L(x, u)

}
.

The existence of the critical constant for equation (1.12), in a certain sub-
Riemannian setting, was obtained in [3] by a technique based on optimal
transport. The analysis in [3] covers compact manifolds and families of
3-generating vector fields (i.e., a step−2 Lie algebra).

Our analysis, unlike [3], is performed on a noncompact state space
equipped with a general bracket-generating distribution. The lack of com-
pactness is a major difficulty that we overcome by condition (L3) below,
which ensures the existence of a compact attractor for all minimizing trajec-
tories. We observe that an assumption of the same type was used, in [19],
to study the long-time behavior of first order Mean Field Games systems on
Euclidean space and, in [51], to investigate the limit behavior of discounted
Hamilton-Jacobi equations on the whole space.

By analyzing the limit behavior of the discounted Hamilton-Jacobi equa-
tion associated with (1.12), we deduce that the ergodic equation admits
solutions for c = −α(L) (Theorem 6.13). Then we construct a specific so-
lution of such an equation which coincides with its Lax-Oleinik evolution.
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Our interest in such a solution is motivated by the fact that we need it to
derive a further characterization of the ergodic constant as the minimum of
the Lagrangian action on closed measures. As we will show in the following
Chapter, this is a crucial step to investigate the related Mather and Aubry
sets, on which ergodic solutions have important regularity properties.

We recall that for Tonelli, or even more general, Hamiltonians on a
compact or a non-compact manifold, the existence of solutions to the ergodic
equation (1.12) has a long history going back to the seminal paper [57].
Among the many papers that have been published on the subject, when the
state space is compact and the Hamiltonian is Tonelli we refer, for instance,
to [43, 41] and references therein. If the state space fails to be compact and
the Hamiltonian is Tonelli or quasi-Tonelli we refer, for instance, to [15],
[14], [42], [50], [49], [51].

However, when the Hamiltonian is not coercive the problem of finding
solutions to (1.12) is open. This issue has been addressed in specific frame-
works: we quote for instance [33], [68], [27], [13], for the ergodic problem
associated with the so-called G-equation or other noncoercive Hamiltonians.
Moreover, we refer to [5, 6] [53], [63] for more on second order differential
games.

We want to point out that some of the results of this work are specific
to affine-control systems without drift. Indeed, in the presence of a drift,
the existence of a continuous viscosity solution to (1.12) with a noncoercive
Hamiltonian remains a challenging problem. We also mention systems with
control on the acceleration (see, for instance, [32]) for which it has been
proved that, due to the lack of small time local controllability, there are
no continuous viscosity solutions to the associated ergodic Hamilton-Jacobi
equation.

Aubry-Mather theory for sub-Riemannian control
systems
In Chapter 6, we have studied the asymptotic behaviour as T → +∞ of the
value function

VT (x) = inf
u(·)

∫ T

0
L(γxu(t), u(t)) dt (x ∈ Rd)

where L is a Tonelli Lagrangian, controls u : [0, T ] → Rm (1 ≤ m ≤ d) are
square integrable functions, γxu is the solution of the sub-Riemannian state
equation {

γ̇(t) =
∑m

i=1 ui(t)fi(γ(t)) a.e. t ∈ [0, T ]

γ(0) = x ,
(1.11)

and {f1, . . . , fm} are linearly independent smooth vector fields satisfying the
so-called Lie algebra rank condition. Observe that the above assumptions
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ensure that system (1.11) is small time locally controllable. By using such a
property and assuming the existence of a compact attractor for the optimal
trajectories of (1.11), we proved that VT (x)/T converges to a constant—
α(L), the critical constant of L—as T → +∞, uniformly on all bounded
subsets of Rd.

As is well known, the convergence of the above time averages entails the
(locally uniform) convergence as λ ↓ 0 of the Abel means {λvλ}λ>0, where

vλ(x) = inf
u(·)

∫ ∞

0
e−λtL(γxu(s), u(s)) ds (x ∈ Rd) .

This fact in turn allows to construct a corrector χ, that is, a continuous
viscosity solution of the so-called ergodic Hamilton-Jacobi equation

α(L)+H(x,Dχ(x)) = 0 (x ∈ Rd) , (1.12)

where H is defined by

H(x, p) = sup
u∈Rm

{
m∑
i=1

ui〈pi, fi(x)〉 − L(x, u)

}
(x, p) ∈ Rd × Rd. (1.13)

The above analysis is by now classical in the Tonelli case, that is, when
both L(x, v) and H(x, p) are smooth functions, strictly convex and superlin-
ear in v and p, respectively. Moreover, in such settings, the critical constant
has a powerful variational interpretation in terms of probability measures
minimizing the Lagrangian action on the tangent bundle. This connection
is well explained by the celebrated Aubry-Mather and weak KAM theories
(see, for instance, [41, 66, 59] and the references therein).

However, it is easy to see that the Hamiltonian in (1.13) fails to be
Tonelli, in general. So, the classical weak KAM theory does not apply to
minimization problems for sub-Riemannian control systems which are, on
the other hand, quite relevant for both theory ([2]) and applications ([52]).
Introducing new ideas and techniques to make this extension possible is the
purpose of this work.

To be more precise, we point out that the underlying geometry on the
state space, namely the sub-Riemannian structure induced by the family of
vector fields {fi}i=1,...,m on Rd (see for instance [2, 38, 65] and references
therein), plays a crucial role in our approach. Moreover, in order to improve
the natural regularity of correctors—which would just be Hölder continu-
ous, see [23]—we restrict the analysis to the class of sub-Riemannian systems
that admit no singular minimizing controls different from zero. Then, ow-
ing to [25], we know that correctors are locally semiconcave, hence locally
Lipschitz, on Rd. Finally, in order to deal with unbounded state and con-
trol spaces, we assume the existence of a compact attractor for all optimal
trajectories as is customary in this kind of situations.
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We now proceed to describe the main results of this Chapter. First,
extending the classical notion of closed measures on the tangent bundle (see,
e.g., [43]), we introduce the class CF of closed probability measures adapted
to the sub-Riemannian structure and we show that the critical constant
α(L) is the minimum of the Lagrangian action on CF (Theorem 7.8). In this
context, it is worth noting that closed measures are naturally supported on
the distribution associated with {fi}i=1,...,m, which in our case reduces to
Rd × Rm.

Then, we introduce and study the Aubry set A from a dynamical and
topological point of view, proving that A is a nonempty compact subset of Rd
(Theorem 7.22), invariant for the class of calibrated curves for Peierl’s barrier
(7.26) (Proposition 7.28). Moreover, we show that any critical solution to
(1.12) is differentiable along the range of the vector fields {fi}i=1,··· ,m at any
point x ∈ A (see Theorem 7.27 establishing horizontal differentiability).

Papers extracted: We conclude this introduction quoting the papers
which has been extracted from the work in this thesis.
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3. C. Mendico, Singular perturbation problem for mean field game of ac-
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equations associated with sub-Riemannian control systems, Arxiv:2012.09099,
(submitted).
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trol systems, (forthcoming).



Chapter 2

Preliminaries

In this chapter we collect some preliminary definitions and results that we
are going to use throughout this thesis. In particular, they concern:

1. Wasserstein spaces and Wasserstein distance, for which we refer to
[67, 7] for more details.

2. Sub-Riemannian geometry and sub-Riemannian control systems on
Rd, see [61, 65, 2].

3. Weak KAM theory for Tonelli Hamiltonian systems for which we refer
to [41, 42, 66, 59].

2.1 Measure Theory
Let (X, d) be a metric space (in the work, we use X = Rd or X = Rd×Rm).
Denote by B(X) the Borel σ-algebra on X and by P(X) the space of Borel
probability measures on X. The support of a measure µ ∈ P(X), denoted
by spt(µ), is the closed set defined by

spt(µ) :=
{
x ∈ X : µ(Vx) > 0 for each open neighborhood Vx of x

}
.

We say that a sequence {µk}k∈N ⊂ P(X) is weakly-∗ convergent to µ ∈
P(X), denoted by µk

w∗
−→ µ, if

lim
n→∞

∫
X
f(x) dµn(x) =

∫
X
f(x) dµ(x), ∀f ∈ Cb(X).

There exists an interesting link between the weak-∗ convergence and the con-
vergence of the support of the measures, see [7, Proposition 5.1.8]. Indeed,
if {µj}j∈N ⊂ P(X) weakly-∗ converges to µ ∈ P(X) then

∀ x ∈ spt(µ) ∃xj ∈ spt(µj) : lim
j→∞

xj = x. (2.1)

17
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For p ∈ [1,+∞), the Wasserstein space of order p is defined as

Pp(X) :=

{
m ∈ P(X) :

∫
X
d(x0, x)

p dm(x) < +∞
}
,

for some (and thus all) x0 ∈ X. Given any two measures m and m′ in
Pp(X), define

Π(m,m′) :=
{
λ ∈ P(X×X) : λ(A×X) = m(A), λ(X×A) = m′(A), ∀A ∈ B(X)

}
.

(2.2)
The Wasserstein distance of order p between m and m′ is defined by

dp(m,m
′) = inf

λ∈Π(m,m′)

(∫
X×X

d(x, y)p dλ(x, y)

)1/p

.

The distance d1 is also commonly called the Kantorovich-Rubinstein dis-
tance and can be characterized by a useful duality formula (see, for instance,
[67]) as follows

d1(m,m
′) = sup

{∫
X
f(x) dm(x)−

∫
X
f(x) dm′(x) | f : X → R is 1-Lipschitz

}
,

(2.3)
for all m, m′ ∈ P1(X).

Let K be a subset of P(X). We say that the set K has uniformly
integrable p-moment with respect some (and thus any) x̄ ∈ X if and only if

lim
i→∞

∫
X\Bi(x̄)

d(x, x̄)p µ(dx) = 0, uniformly with respect to µ ∈ K.

Remark 2.1. Notice that, if

0 < p < p1, and sup
µ∈K

∫
X
d(x, x̄)p1 µ(dx) < +∞,

then K has uniformly integrable p-moment.

Theorem 2.2 (Compactness and convergence). A set K ⊂ Pp(X)
is relatively compact if and only if it is p-uniformly integrable and tight.
Moreover, for a given sequence {µi}i∈N ⊂ Pp(X) we have that

lim
i→∞

dp(µi, µ) = 0

if and only if µi narrowly converge to µ and {µi}i∈N has uniformly integral
p-moment.

Theorem 2.3. Let r ≥ p > 0 and let K ⊂ Pp(X) be such that

sup
µ∈K

∫
X
|x|r µ(dx) <∞.

Then the set K is tight. If, moreover, r > p then K is relatively compact for
the dp distance.



2.2. SUB-RIEMANNIAN CONTROL 19

Let X1, X2 be metric spaces, let µ ∈ P(X1) and let f : X1 → X2 be a
µ measurable map. Then, we denote by f♯µ ∈ P(X2) the push-forward of
µ through f defined by

f♯µ(B) := µ(f−1(B)), ∀ B ∈ B(X2).

More generally, in integral form, it reads as∫
X1

φ(f(x)) µ(dx) =

∫
X2

φ(y) f♯µ(dy).

We conclude this introductory section recalling the so-called disintegration
theorem.

Theorem 2.4 (Disintegration Theorem). Let X and Y be Radon sep-
arable metric spaces, let µ be a Borel probability measure on X and let
π : X → Y be Borel map. Define ν = π♯µ ∈ P(Y ). Then there exists a
µ-a.e. uniquely determined Borel measurable family of probability measures
{νy}y∈Y ⊂ P(X) such that

νy(X\π−1(y)) = 0, for µ− a.e. y ∈ Y,

and ∫
X
f(x)µ(dx) =

∫
Y

(∫
π−1(y)

f(x)νy(dx)

)
ν(dy)

for every Borel map f : X → [0,+∞].

2.2 Sub-Riemannian control
A class of nonholonomic drift-less systems on Rd is a control system of the
form

γ̇(t) =
m∑
i=1

fi(γ(t))ui(t), t ∈ [0,+∞) (2.4)

Such a system induces a distance on Rd in the following way. First, we define
the sub-Riemannian metric to be the function g : Rd×Rm → R∪{∞} given
by

g(x, v) = inf
{

m∑
i=1

u2i : v =
m∑
i=1

fi(x)ui

}
.

If v ∈ span{f1(x), . . . , fm(x)} then the infimum is attained at a unique value
ux ∈ Rm and g(x, v) = |ux|2. Then, since g(γ(t), γ̇(t)) is measurable, being
the composition of the lower semicontinuous function g with a measurable
function, we can define the length of an absolutely continuous curve γ :
[0, 1] → Rd as

length(γ) =
∫ 1

0

√
g(γ(t), γ̇(t)) dt.
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In conclusion, one defines the sub-Riemannian distance as

dSR(x, y) = inf
(γ,u)∈Γx→y

0,1

length(γ)

where Γx→y
0,1 denotes the set of all trajectory-control pairs such that u ∈

L2(0, 1;Rm), γ solves (2.4) for such a control u, γ(0) = x and γ(1) = y.
Following [25] it is possible to represent the sub-Riemannian distance as
follows

dSR(x, y) = inf
{
T > 0 : ∃ (γ, u) ∈ Γx→y

0,T , |u(t)| ≤ 1 a.e. t ∈ [0, T ]
}

(2.5)

for any x, y ∈ Rd. Moreover, again from [25] the sub-Riemannian distance
can be characterised in terms of the sub-Riemannian energy: setting

eSR(x, y) = inf
(γ,u)∈Γx→y

0,1

∫ 1

0
g(γ(t), γ̇(t)) dt,

one can prove that
dSR(x, y) =

√
eSR(x, y) (2.6)

(see, for instance, [25, Lemma 11]).
Among the many properties of these systems we are interested in the

controllability. For such a system, controllability can be obtained by using
the Lie algebra generated by f1, . . . , fm, which is defined as follows. Set

∆1 = span{f1, . . . , fm}

and, for any integer s ≥ 1,

∆s+1 = ∆s + [∆1,∆s]

where [∆1,∆s] := span{[X,Y ] : X ∈ ∆1, Y ∈ ∆s}. The Lie algebra gener-
ated by f1, . . . , fm is defined as

Lie(f1, . . . , fm) =
⋃
s≥1

∆s.

We say that system (2.4) satisfies Chow’s condition if Lie(f1, . . . , fm)(x) =
Rd for any x ∈ Rd, where Lie(f1, . . . , fm)(x) = {X(x) : X ∈ Lie(f1, . . . , fm)}.
Equivalently, for any x ∈ Rd there exists an integer r ≥ 1 such that
∆r(x) = Rd. The minimum integer with such a property is called the degree
of nonholonomy at x and will be denoted by r(x). Chow’s condition is also
known as the Lie algebra rank condition (LARC) in control theory and as
the Hörmander condition in the context of PDEs.
Example 2.5. The following are two well-known examples of sub-Riemannian
systems for which Chow’s condition holds true.
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(i) Heisenberg group: We consider the system in R3
ẋ(t) = u(t),

ẏ(t) = v(t),

ż(t) = u(t)y(t)− v(t)x(t)

In this case, the matrix of the system is given by

A(x, y, z) =

1 0
0 1
y −x


and the columns of such matrix satisfy the Hördmander condition:
X1 = (1, 0, y), X2 = (0, 1,−x) and [X1, X2] = (0, 0, 2) generate R3.

(ii) Grushin type systems: Consider a control system of the form{
ẋ(t) = u(t),

ẏ(t) = φ(x(t))v(t)

for a nonzero continuous function φ(x) with sub-linear growth. The
classical Grushin system in R2 is obtained taking φ(x) = x. Then, the
dynamics is given by the matrix

A(x, y) =

[
1 0
0 x

]
whose columns satisfy the Hördmander condition: X1 = (1, 0) and
[X1, X2] = (0, 1) generates R2.

Theorem 2.6 (Chow-Rashevsky theorem, [38, Theorem 3.1.8]). If
system (2.4) satisfies Chow’s condition, then any two points in Rd can be
joined by a trajectory satisfying (2.4).

Besides controllability, another important consequence of Chow’s con-
dition is the well-known Ball-Box Theorem, see for instance [2, Theorem
10.67]. Of particular interest to us is a corollary of such a theorem which
gives Hölder equivalence between the Euclidean distance and the sub-Riemannian
one. First, we observe that for any x ∈ Rd a continuity argument ensures
the existence of a neighborhood Ux of x such that

∆r(x)(y) = Rd, ∀ y ∈ Ux. (2.7)

Thus, given a compact set K there exists a finite cover given by {Uxi}i=1,...,N

and a set of integers {r(xi)}i=1,...,N such that (2.7) holds on Uxi with r(x) =
r(xi). Taking

r = max
i=1,...,N

r(xi)
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we obtain
∆r(y) = Rd, ∀ y ∈ K. (2.8)

We call degree of nonholonomy of K the minimum integer such that (2.8)
holds true and we denote it by r(K). Moreover, we recall that a family of
vector fields {fi}i=1,...,m is an equi-regular distribution on Rd if there exists
r0 ≥ 1 such that ∆r0(x) = Rd for any x ∈ Rd.

Corollary 2.7. For any compact set K ⊂ Rd there exist two constants c̃1,
c̃2 > 0 such that

c̃1|x− y| ≤ dSR(x, y) ≤ c̃2|x− y|
1

r(K) , ∀ x, y ∈ K. (2.9)

Furthermore, we recall that the topology induced by (Rd, dSR) coincides
with the topology induced by the Euclidean distance on Rd ([2, Theorem
3.31]). In particular, from this result, we obtain that a set is compact in
(Rd, dSR) if and only if it is compact in Rd w.r.t. Euclidean distance.

We conclude this preliminary part with a brief introduction to singular
controls. Let x0 ∈ Rd and fix t > 0. The end-point mapping associated with
system (2.4) is the function

Ex0,t : L2(0, t;Rm) → Rd

defined as
Ex0,t(u) = γ(t)

where γ is a solution of (2.4) associated with u such that γ(0) = x0. Under
the assumption that the vector field fi has sub-linear growth for any i =
1, . . .m it is known that Ex0,t is of class C1 on L2(0, t;Rm). Then, we
say that a control ū ∈ L2(0, t;Rm) is singular for Ex0,t if dEx0,t(ū) is not
surjective. Moreover, defining the function H0 : Rd × Rd × Rm → R as

H0(x, p, u) =

m∑
i=1

ui〈p, fi(x)〉

we have the following well-known characterization of singular controls.

Theorem 2.8. A control u ∈ L2(0, t;Rm) is singular for Ex0,t if and only
if there exists an absolutely continuous arc p : [0, t] → Rd\{0} such that{

γ̇(s) = DpH0(γ(s), p(s), u(s))

−ṗ(s) = DxH0(γ(s), p(s), u(s))

with γ(0) = x0 and

DuH0(γ(s), p(s), u(s)) = 0, for a.e. s ∈ [0, t],

that is,
〈fi(γ(s)), p(s)〉 = 0

for any s ∈ [0, t].
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2.3 Weak-KAM Theory
Definition 2.9 (Tonelli Lagrangians). A function L : Rd×Rd → R is called
a Tonelli Lagrangian if it belongs to C2 and it satisfies the following.

(i) For each (x, v) ∈ Rd ×Rd, the Hessian D2
vvL(x, v) is positive definite.

(ii) For each A > 0 there exists B(A) ∈ R such that

L(x, v) > A|v|+B(A), ∀(x, v) ∈ Rd × Rd.

(iii) For each R > 0

A(R) := sup
{
L(x, v) : |v| ≤ R

}
< +∞.

Define the Hamiltonian H : Rd × Rd → R associated with L by

H(x, p) = sup
v∈Rn

{〈
p, v
〉
− L(x, v)

}
, ∀(x, p) ∈ Rd × Rd.

It is straightforward to check that if L is a Tonelli Lagrangian, then H
defined above also satisfies (i), (ii), and (iii) in Definition 2.9. Such a
function H is called a Tonelli Hamiltonian. Moreover, if L is a reversible
Lagrangian, i.e., L(x, v) = L(x,−v) for all (x, v) ∈ Rd ×Rd, then H(x, p) =
H(x,−p) for all (x, p) ∈ Rd × Rd.

Let us recall definitions of weak KAM solutions and viscosity solutions
of the Hamilton-Jacobi equation

H(x,Du) = c, x ∈ Rd, (2.10)

where c is a real constant.

Definition 2.10 (Weak KAM solutions). A function u ∈ C(Rd) is called
a backward (resp. forward) weak KAM solution of equation (2.10) if the
following holds.

(i) For each continuous piecewise C1 curve γ : [t1, t2] → Rd, we have that

u(γ(t2))− u(γ(t1)) ≤
∫ t2

t1

L(γ(s), γ̇(s))ds+ c(t2 − t1);

(ii) For each x ∈ Rd, there exists a C1 curve γ : (−∞, 0] → Rd (resp.
γ : [0,+∞) → Rd) with γ(0) = x such that

u(x)− u(γ(t)) =

∫ 0

t
L(γ(s), γ̇(s))ds− ct, ∀t < 0

(resp. u(γ(t))− u(x) =
∫ t
0 L(γ(s), γ̇(s))ds+ ct, ∀t > 0).
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Remark 2.11. A function u on Rd is said to be dominated by L+c, denoted
by u ≺ L+ c, if u satisfies condition (i) of Definition 2.10. A curve γ is said
to be (u, L, c)-calibrated if it satisfies condition (ii) of Definition 2.10.

Definition 2.12 (Viscosity solutions). Let V ⊂ Rd be an open set.

(i) A function u : V → R is called a viscosity subsolution of equation
(2.10), if for every C1 function φ : V → R and every point x0 ∈ V
such that u− φ has a local maximum at x0, we have that

H(x0, Dφ(x0)) ≤ c;

(ii) A function u : V → R is called a viscosity supersolution of equation
(2.10), if for every C1 function ψ : V → R and every point y0 ∈ V
such that u− ψ has a local minimum at y0, we have that

H(y0, Dψ(y0)) ≥ c;

(iii) A function u : V → R is called a viscosity solution of equation (2.10)
if it is both a viscosity subsolution and a viscosity supersolution.

Definition 2.13 (Mañé critical value). The Mañé critical value of a Tonelli
Hamiltonian H is defined by

c(H) := inf
{
c ∈ R : ∃ u ∈ C(Rd) viscosity sol. of H(x,Du) = c

}
.

See [42, Theorem 1.1] for the following weak KAM theorem for noncom-
pact state spaces.

Theorem 2.14 (Weak KAM theorem). Let H be a Tonelli Hamiltonian.
Then, there exists a global viscosity solution of equation

H(x,Du) = c(H), x ∈ Rd.

In [42], viscosity solutions are shown to coincide with backward weak
KAM solutions. Observe that, as Rd can be seen as a covering of the torus
Td, Mañé’s critical value can be characterized as follows:

c(H) = inf
u∈C∞(Rd)

sup
x∈Rd

H(x,Du(x)).

We conclude this section by recalling the notion of Mather set and the
role such a set plays for the regularity of viscosity solutions. Let L be a
Tonelli Lagrangian. As is well known, the associated Euler-Lagrange equa-
tion, i.e.,

d

dt
DvL(x, ẋ) = DxL(x, ẋ), (2.11)
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generates a flow of diffeomorphisms ϕLt : Rd × Rd → Rd × Rd, with t ∈ R,
defined by

ϕLt (x0, v0) = (x(t), ẋ(t)),

where x : R → Rd is the maximal solution of (2.11) with initial conditions
x(0) = x0, ẋ(0) = v0. It should be noted that, for any Tonelli Lagrangian,
the flow ϕLt is complete, see for instance [42].

We recall that a Borel probability measure µ on Rd × Rd is called ϕLt -
invariant, if

µ(B) = µ(ϕLt (B)), ∀t ∈ R, ∀B ∈ B(Rd × Rd),

or, equivalently,∫
Rd×Rd

f(ϕLt (x, v)) µ(dx, dv) =

∫
Rd×Rd

f(x, v) µ(dx, dv), ∀f ∈ C∞
c (Rd×Rd).

We denote by ML the class of all ϕLt -invariant probability measures.

Definition 2.15 (Mather measures [59]). A probability measure µ ∈ ML is
called a Mather measure for L, if it satisfies∫

Rd×Rd

L(x, v) µ(dx, dv) = inf
ν∈ML

∫
Rd×Rd

L(x, v) ν(dx, dv).

In [41], it was proved that

c(H) = − inf
ν∈ML

∫
Rd×Rd

L(x, v) ν(dx, dv).

Denote by M∗
L the set of all Mather measures. Observe that, if L (resp. H)

is a reversible Lagrangian (resp. reversible Hamiltonian), then

−c(H) = inf
x∈Rd

L(x, 0).

The Mather set is the subset M̃0 ⊂ Rd × Rd defined by

M̃0 =
⋃

µ∈M∗
L

spt(µ).

We call M0 = π1(M0) ⊂ Rd the projected Mather set. See [41, Theorem
4.12.3] for the following result.

Theorem 2.16. If u is dominated by L+ c(H), then it is differentiable at
every point of the projected Mather set M0. Moreover, if (x, v) ∈ M0, then

Du(x) = DvL(x, v)

and the map M0 → Rd ×Rd, defined by x 7→ (x,Du(x)), is locally Lipschitz
with a Lipschitz constant which is independent of u.
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Chapter 3

Mild and weak solutions of
Mean Field Games problems
for linear control systems

3.1 Setting of the Mean Field Games problem

3.1.1 Assumptions

Let us consider a Lagrangian L : Rd × Rk × P1(Rd) → R and a function
G : Rd × P1(Rd) → R satisfying the following.

(L1) For any m ∈ P1(Rd), the map (x, u) 7→ L(x, u,m) is of class C2(Rd×
Rk) and the map m 7→ L(x, u,m), from P1(Rd) to R, is Lipschitz
continuous with respect to the d1 distance, i.e.

QL := sup
(x,u)∈Rd×Rk

m1, m2∈P1(Rd)
m1 ̸=m2

|L(x, u,m1)− L(x, u,m2)|
d1(m1,m2)

< +∞.

(L2) The map (x,m) 7→ G(x,m) is of class Cb(Rd × P1(Rd)) and for every
m ∈ P1(Rd) the map x→ G(x,m) belongs to C1

b (Rd).

(L3) (i) There exist a constant C0 such that

Id
C0

≤ DuuL(x, u,m) ≤ C0Id, ∀ (x, u,m) ∈ Rd × Rk × P1(Rd).

(ii) There exists a constant C1 ≥ 0 such that for any (x, u,m) ∈
Rd × Rk × P1(Rd)

‖D2
xuL(x, u,m)‖ ≤ C1(1 + |u|).

27
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(iii) There exists a constant C2 ≥ 0 such that for any (x, u,m) ∈
Rd × Rk × P1(Rd)

|L(x, 0,m)|+ |DxL(x, 0,m)|+ |Du(x, 0,m)| ≤ C2.

Remark 3.1. Note that, from (L3), it is not difficult to check that there
exist c0 ≥ 0 and c1 ≥ 0 such that

c0|u|2 − c1 ≤ L(x, u,m) ≤ c1 +
1

c0
|u|2 ∀ (x, u,m) ∈ Rd × Rk × P1(Rd).

Fix a time horizon T > 0. Let A and B be real matrices, d×d and d×k,
respectively, and consider the control system defined by

γ̇(t) = Aγ(t) +Bu(t), t ∈ [0, T ] (3.1)

where u : [0, T ] → Rk is a summable function. For all x ∈ Rd we denote by
γ(· ;x, u) the solution of the differential equation (3.1) such that γ(0) = x
and define the metric space

ΓT =
{
γ(·;x, u) : x ∈ Rd, u ∈ L1(0, T ;Rk)

}
⊂ AC([0, T ];Rd)

endowed with the uniform norm, denoted by ‖ · ‖∞. Moreover, set

ΓT (x) =
{
γ ∈ ΓT : γ(0) = x

}
.

For any x ∈ Rd, any u ∈ L1(0, T ) and any flow of probability measures
m ∈ C([0, T ];P1(Rd)) define the functional

J(x, u, {mt}t) =
∫ T

0
L(γ(t, x, u), u(t),mt) dt+G(γ(T, x, u),mT ),

and the associated optimal control problem

inf
u∈L2(0,T ; Rk)

J(x, u, {mt}t). (3.2)

Notice that the restriction to controls u ∈ L2(0, T ;Rk) is due to the structure
assumptions we imposed on L.

We proceed now to prove some estimates on the optimal controls and
the associated optimal trajectories.

Proposition 3.2. Assume (L1) – (L3). Then, there exists a real positive
constant K such that for any x ∈ Rd, any m ∈ C([0, T ];P1(Rd)) and any
optimal control u∗ of (3.2), we have that

‖u∗‖2 ≤ K.
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Proof. By Remark 3.1 and the optimality of u∗ we deduce that

c1T+‖G‖∞ ≥ J(x, 0, {mt}t) ≥ J(x, u∗, {mt}t) ≥ c0

∫ T

0
|u∗(t)|2dt−c1T−‖G‖∞.

Therefore, from the above inequalities we deduce that

‖u∗‖22 =
∫ T

0
|u∗(t)|2dt ≤ 2

c0
(c1T + ‖G‖∞) =: K2.

Thus, the proof is complete.

Corollary 3.3. Assume (L1) – (L3). Then, there exists a constant C̃1 ≥ 0
such that for any x ∈ Rd, any m ∈ C([0, T ];P1(Rd)) and any optimal
control u∗ of (3.2) we have that

‖γ∗‖∞ ≤ C̃1(1 + |x|)

where γ∗ is the trajectory associated with u∗.

Proof. Since γ∗ is a solution of (3.1) associated with u∗, we know that

γ∗(t) = etAx+

∫ t

0
e(t−s)ABu∗(s) ds.

Hence,

|γ∗(t)| ≤ eT∥A∥
(
|x|+ ‖B‖

∫ t

0
|u∗(s)| ds

)
and by Hölder’s inequality

|γ∗(t)| ≤ eT∥A∥
(
|x|+ ‖B‖T

1
2 ‖u∗‖2

)
. □

Lemma 3.4. Assume (L1) – (L3). Then, there exists a constant C̃2 > 0
such that for any x ∈ Rd, any m ∈ C([0, T ];P1(Rd)) and any u∗ optimal
control for (3.2) we have that

‖γ̇∗‖2 ≤ C̃2(1 + |x|)

where γ∗ is the trajectory associated with u∗. Moreover, the family of mini-
mizing trajectories Γ∗(x) is uniformly Hölder continuous.

Proof. From Proposition 3.2 and Corollary 3.3 there holds

‖γ̇∗‖2 = ‖Aγ∗(t) +Bu∗(t)‖2 ≤ ‖A‖
1
2 ‖γ∗‖2 + ‖B‖

1
2 ‖u∗‖2

≤‖A‖
1
2

(∫ T

0
|γ∗(t)|2dt

) 1
2

+ ‖B‖
1
2K

≤‖A‖
1
2T

1
2 C̃
(
1 + |x|

)
+ ‖B‖

1
2K.
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Thus, for any t, s ∈ [0, T ] such that s ≤ t we get

|γ∗(t)− γ∗(s)| ≤
∫ t

s
|γ̇∗(τ)| dτ

≤ ‖γ̇∗‖2|t− s|
1
2 ≤

(
‖A‖

1
2T

1
2 C̃
(
1 + |x|

)
+ ‖B‖

1
2K
)
|t− s|

1
2

Which completes the proof.

In order to express our MFG problem in terms of the Lagrangian for-
mulation we are going to give a special structure to the continuous flow of
probability measures {mt}t∈[0,T ]. Let α > 1, let m0 be a Borel probability
measure in Pα(Rd), and denote by [m0]α the α-moment of m0, i.e.,

[m0]α =

∫
Rd

|x|α m0(dx). (3.3)

Let R be a real constant such that R ≥ [m0]α and define the following space
of probability measures on ΓT

Pm0(ΓT , R) =

{
η ∈ P(ΓT ) :

∫
ΓT

‖γ̇‖α2 η(dγ) ≤ R, e0♯η = m0

}
where et(γ) = γ(t) is the evaluation map. Note that the sets Pm0(ΓT , R)
are compact subsets of P(ΓT ) with respect to d1 distance. Indeed, for any
r > 0 define the following sets

Cr = {γ ∈ ΓT : |γ(0)| ≤ r, ‖γ̇‖2 ≤ r},

which are compact by Ascoli-Arzela Theorem. Observe, also, that by defi-
nition

Ccr ⊂ {γ ∈ ΓT : ‖γ̇‖2 > r} ∪ {γ ∈ ΓT : |γ(0)| > r}.

Thus, given η ∈ Pm0(ΓT , R) we have that

η({γ ∈ ΓT : |γ(0)| > r}) = m0(B
c
r)

which goes to zero as r → +∞. Moreover, by Bienaymé-Tchebychev in-
equality we obtain

η({γ ∈ ΓT : ‖γ̇‖2 > r}) ≤ R

rα
.

Therefore, we get

η(Ccr) ≤
R

rα
+m0(B

c
r)

which in turn yields the compactness of Pm0(ΓT , R).



3.1. SETTING OF THE MEAN FIELD GAMES PROBLEM 31

Remark 3.5. There exist at least one constant R ≥ [m0]α such that the
set Pm0(ΓT , R) is non-empty. Indeed, fixed a Borel probability measure
m0 ∈ Pα(Rd), consider the map p : Rd → ΓT such that

x 7→ p[x](t) := etAx, ∀t ∈ [0, T ]

and define the measure η = p[·]♯m0 ∈ P(ΓT ). Note that, for any x ∈ Rd
the curve etAx is an admissible curve associated with the control u ≡ 0.

Then, the following holds:

1. for any bounded continuous function f on Rd, we have that e0♯η = m0.
Indeed, ∫

Rd

f(x) e0♯η(dx) =

∫
ΓT

f(γ(0)) η(dγ)

=

∫
ΓT

f(γ(0)) p♯m0(dγ) =

∫
Rd

f(p[x](0)) m0(dx)

=

∫
Rd

f(x) m0(dx);

2. the α-moment of η is bounded:∫
ΓT

‖γ̇‖α2 η(dγ) =
∫
Rd

‖ṗ[x]‖α2 m0(dx)

≤
(
‖A‖eT∥A∥

)α ∫
Rd

|x|α m0(dx) ≤
(
‖A‖eT∥A∥

)α
[m0]α.

Therefore, taking R ≥
(
‖A‖eT∥A∥

)α
[m0]α we have that η ∈ Pm0(ΓT , R).

3.1.2 Definitions and first properties

For any x ∈ Rd, any u ∈ L1(0, T ) and any η ∈ Pm0(ΓT , R), define the
functional

Jη(x, u) =

∫ T

0
L(γ(t, x, u), u(t), et♯η) dt+G(γ(T, x, u), eT ♯η)

and the associated optimal control problem

inf
u∈L2(0,T ; Rk)

Jη(x, u). (3.4)

We denote by Γ∗
η(x) the set of curves associated with an optimal control u∗

(3.4), i.e.

Γ∗
η(x) =

{
γ(· ;x, u∗) : Jη(x, u∗) = inf

u∈L2(0,T ;Rk)
Jη(x, u)

}
.
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Definition 3.6 (Mean Field Games equilibrium). Given m0 ∈ Pα(Rd),
we say that η ∈ Pm0(ΓT , R) is a Mean Field Games equilibrium for m0 if

spt(η) ⊂
⋃
x∈Rd

Γ∗
η(x).

Proposition 3.7. Assume (L1) – (L3).

1. For any η ∈ Pm0(ΓT , R) we have that

sup
t∈[0,T ]

∫
Rd

|x|α et♯η(dx) ≤ R. (3.5)

Consequently, the family of measures {et♯η}t∈[0,T ] is tight.

2. For any {ηi}i∈N ⊂ Pm0(ΓT , R) and η ∈ Pm0(ΓT , R) such that ηi ⇀∗ η
we have that

d1(et♯ηi, et♯η) → 0

for every t ∈ [0, T ].

3. For any η ∈ Pm0(ΓT , R) we have that the map t ∈ [0, T ] 7→ et♯η is
continuous.

Proof. We are going to prove only the point (1), see [18, Lemma 3.2] for a
proof of (2) and (3).

Given η ∈ Pm0(ΓT , R) we have that∫
Rd

|x|α et♯η(dx) =
∫
ΓT

|γ(t)|α η(dγ) ≤
∫
ΓT

‖γ‖α∞ η(dγ) ≤ C0,

where the last inequality holds by definition of Pm0(ΓT , R). So, by Theo-
rem 2.3 the family of measures {et♯η}t∈[0,T ] is tight in Pα(Rd) with respect
to the d1 distance since by assumption α > 1.

Remark 3.8. Note that, in (3.5) the constant R in independent of t ∈ [0, T ]
and η. Indeed, as explained so far it is fixed a priori such that R ≥ [m0]α.

3.2 Mean Field Games equilibria: Existence and
Uniqueness

At this point, it is not difficult to prove that for any given α > 0 and
any given initial measure m0 ∈ Pα(Rd) there exists R0 ≥ 0 such that
for any R ≥ R0 there exists at least one Mean Field Games equilibrium
η ∈ Pm0(ΓT , R) and that, under a classical monotonicity assumption, such
an equilibrium is unique.
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For the sake of completeness, we give below the key ideas and steps
to prove the existence of a Mean Field Games equilibrium, following the
appoach in [18].

Given m0 ∈ Pα(Rd) and given η ∈ Pm0(ΓT , R) we recall that by The-
orem 2.4 there exists a unique Borel measurable family of probability mea-
sures {ηx}x∈Rd on ΓT such that

η(dγ) =

∫
Rd

ηx(dγ) m0(dx)

spt(ηx) ⊂ ΓT (x), m0 − a.e., x ∈ Rd.

Define the set-valued map

E :
(
Pm0(ΓT , R), d1

)
⇒
(
Pm0(ΓT , R), d1

)
that associates with any η ∈ Pm0(ΓT , R) the set

E(η) =
{
ν ∈ Pm0(ΓT , R) : spt(νx) ⊂ Γ∗

η(x), m0 − a.e.
}
.

It is easy to realize that a given η ∈ Pm0(ΓT , R) is a Mean Field Games
equilibrium if and only if η is a fixed point of the above set-valued map, that
is, η ∈ E(η). Therefore, in order to prove the existence of Mean Field Games
equilibria, we appeal to Kakutani-Fan-Glicksberg’s fixed point theorem, see
for instance [4, Corollary 17.55], which provides conditions under which the
set-valued map E has a fixed point.

We check the validity of such conditions in the following Lemmas.

Lemma 3.9. Assume (L1) – (L3). Let R ≥ [m0]α. For any xi → x in Rd,
any ηi ⇀∗ η in Pm0(ΓT , R) and any γi ∈ Γ∗

ηi(xi) such that γi → γ in ΓT we
have that γ ∈ Γ∗

η(x).

Proof. Since γi ∈ Γ∗
ηi(xi) we know that there exists a sequence of optimal

controls ui ∈ L2(0, T ) such that γi(·) = γi(·, xi, ui) for every t ∈ [0, T ].
Moreover, from Proposition 3.2 we get that ‖ui‖2 ≤ K. Therefore, up to a
subsequence, we obtain that there exists ū ∈ L2(0, T ) such that ui ⇀ ū in
L2. Hence, we are reduced to prove that

1. γ̄(·) = γ(·, x, ū);

2. Jη(x, ū) ≤ Jη(x, u) for every u ∈ L2([0, T ]),

Point 1:

By definition of γi, we know that

γi(t) = eAtx+

∫ t

0
eA(t−s)Bui(s) ds.
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Let v be a vector on Rd, then

〈v, γi(t)〉 = 〈v, eAtx〉+
∫ t

0
〈v, eA(t−s)Bui(s)〉 ds

= 〈v, eAtx〉+
∫ t

0
〈(eA(t−s)B)∗v, ui(s)〉 ds.

Thus, letting i→ ∞ by the weak L2 convergence of ui we obtain that

〈v, γ̄(t)〉 = 〈v, eAtx〉+
∫ t

0
〈v, eA(t−s)Bū(s)〉 ds.

This concludes the proof of point 1.

Point 2:

We now prove that

Jη(x, ū) ≤ lim inf
i→∞

Jηi(xi, ui).

By (L2) and the convergence of γi in ΓT and that of ηi, it follows that

G(γi(T ), eT ♯ηi) → G(γ(T ), eT ♯η).

Therefore, it suffices to prove that∫ T

0
L(γ̄(t), ū(t), et♯η) dt ≤ lim inf

i→∞

∫ T

0
L(γi(t), ui(t), et♯ηi) dt.

Now, ∫ T

0

(
L(γ̄(t), ū(t), et♯η)− L(γi(t), ui(t), et♯η)

)
dt

=

∫ T

0

(
L(γ̄(t), ū(t), et♯η)− L(γ̄(t), ui(t), et♯η)

)
dt︸ ︷︷ ︸

A

+

∫ T

0

(
L(γ̄(t), ui(t), et♯η)− L(γi(t), ui(t), et♯ηi)

)
dt︸ ︷︷ ︸

B

.

By assumption (L3) (iii) and Lipschitz condition (L1) we have that B → 0
as i→ 0. Thus, we have to prove now that the functional

Λ(u) =

∫ T

0
L(γ̄(t), u(t), et♯η) dt

is weakly lower semicontinuous with respect to the L2 topology. Define, for
every λ ∈ R,

Xλ = {u ∈ L2(0, T ) : Λ(u) ≤ λ}.
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By assumption (L3) on convexity of the Lagrangian L with respect to con-
trols, we get that the sets Xλ are convex. Furthermore, such sets are closed
in the strong L2 topology. Indeed, if {ui}i∈N ⊂ Xλ is such that ui → u∞ in
L2 then ui → u∞ a.e. up to a subsequence. Thus, by the continuity of L we
have that L(γ(t), ui(t), et♯η) → L(γ(t), u∞(t), et♯η) a.e. and by Remark 3.1
the Lagrangian L is bounded from below. Therefore, by Fatou’s Lemma we
obtain that u∞ ∈ Xλ. Hence, since the sets Xλ are convex and strongly
closed it implies that they are closed also in the L2 weak topology.

Corollary 3.10. Assume (L1) – (L3). Then, the set-valued map

ϕ :
(
Rd, | · |

)
⇒
(
ΓT , ‖ · ‖∞

)
x 7→ Γ∗

η(x)

has closed graph.

Lemma 3.11. Assume (L1) – (L3). Then, there exists a constant R(α, [m0]α) >
0 such that if R ≥ R(α, [m0]α) then E(η) is non-empty. Moreover, E(η) is
convex and compact.

Proof. We, first, prove that given m0 ∈ Pα(Rd) for any η ∈ Pm0(ΓT , R) the
set E(η) is non empty for some constant R ≥ [m0]α. Indeed, we have that
by Corollary 3.10 and [21, Proposition 9.5] the set-valued map x ⇒ Γ∗

η(x)
is measurable with closed values. Thus, by [26, Theorem A 5.2], there
exists a measurable selection γ̃x ∈ Γ∗

η(x), that is γ̃x(t) = γ̃(t, x, u∗) for some
u∗ ∈ L2(0, T ) solution of (3.4) associated with η. Define, now, the measure
η̃ as follows

η̃(A) =

∫
Rd

δγ̃x(A) m0(dx) for any A ∈ B(ΓT ).

Thus, we need to prove that η̃ ∈ Pm0(ΓT , R). Indeed, e0♯η̃ = m0 by
definition and∫

ΓT

‖γ̇‖α2 η̃(dγ) =
∫
Rd

‖ ˙̃γx‖α2 m0(dx) ≤
∫
Rd

C̃2
α
(1 + |x|)α m0(dx),

where the last inequality holds by Lemma 3.4. Therefore, we deduce that∫
ΓT

‖γ̇‖α2 η̃(dγ) ≤ C̃α2

(∫
Rd

|x|α m0(dx) + 1

)
≤ C̃α2 ([m0]α + 1).

Hence, taking R ≥ R(α, [m0]α), where

R(α, [m0]α) := C̃α2 ([m0]α + 1)

we obtain that η̃ ∈ Pm0(ΓT , R). Consequently, that E(η) is non-empty.
The proof of convexity is a straightforward application of [18, Lemma 3.5].
In conclusion, for any η ∈ Pm0(ΓT , R) the sets E(η) are compact, with
respect to the d1 distance, since E(η) ⊂ Pm0(ΓT , R) which is compact.
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Lemma 3.12. Assume (L1) – (L3). Then, for any R ≥ R(α, [m0]α), the
set-valued map

E :
(
Pm0(ΓT , R), d1

)
⇒
(
Pm0(ΓT , R), d1

)
η 7→ E(η)

has closed graph.

Proof. The proof of this Lemma is a straightforward application of [18,
Lemma 3.6].

Theorem 3.13 (Existence of Mean Field Games equilibria). Assume
(L1) – (L3). Let R ≥ R(α, [m0]α), where R(α, [m0]α) is defined as in
Lemma 3.11. Then, the set-valued map E has a fixed point.

Proof. By the above lemmas the assumptions of Kakutani-Fan-Glicksberg’s
fixed point theorem (see, for instance, [4, Corollary 17.55]) are satisfied and
therefore, there exists a fixed point of the map E, that is η̄ ∈ E(η̄) and η̄ is
a Mean Field Games equilibrium.

At this point, for α > 1 fix m0 ∈ Pα(Rd) and R ≥ R(α, [m0]α),
where R(α, [m0]α) is defined as in Lemma 3.11. Thus, by Theorem 3.13
we have that there exists at least one Mean Field Games equilibrium η ∈
Pm0(ΓT , R).

From now on, we denote by γ(s; t, x, u) the solution to the following
control system {

γ̇(s) = Aγ(s) +Bu(s), s ∈ [t, T ]

γ(t) = x,
(3.6)

where u : [t, T ] → Rk belongs to L2(t, T ;Rk). Moreover, we introduce the
following notation

mη
t = et♯η, (3.7)

for any η ∈ Pm0(ΓT , R).

Definition 3.14 (Mild solutions of Mean Field Games problem). We
say that (V,m) ∈ C([0, T ]×Rd)×C([0, T ],Pα(Rd)) is a mild solution for the
Mean Field Games problem if there exists a Mean Field Games equilibrium
η ∈ Pm0(ΓT ) such that

(i) mt = mη
t for all t ∈ [0, T ];
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(ii) V can be represented as the value function of the optimal control prob-
lem (3.4), that is

V (t, x)

= inf
u∈L2(0,T ; Rk)

{∫ T

t
L(γ(s; t, x, u), u(s),mη

s) ds+G(γ(T ; t, x, u),mη
T )

}
(3.8)

for all (t, x) ∈ [0, T ]× Rd.

Note that the above definition is well-posed since we have proved so far
that there exists at least one Mean Field Games equilibrium and the map

[0, T ] → Pα(Rd)
t 7→ et♯η

is continuous with respect to d1. Moreover, for the same reasons we know
that there exists at least one mild solution of the Mean Field Games problem.

In order to study the uniqueness of mild solutions, we focus the attention
on a particular Lagrangian function, that is

L(x, u,m) := ℓ(x, u) + F (x,m), (3.9)

where ℓ and F satisfy the assumptions (L1)–(L3).

Definition 3.15 (Monotonicity). We say that Ψ : Rd × P1(Rd) → R is
monotone if ∫

Rd

(
Ψ(x,m1)−Ψ(x,m2)

)
(m1 −m2)(dx) ≥ 0, (3.10)

for all m1,m2 ∈ P1(Rd).
We say that Ψ is strictly monotone if (3.10) holds true and∫

Rd

(
Ψ(x,m1)−Ψ(x,m2)

)
(m1 −m2)(dx) = 0 ⇐⇒ F (x,m1) = F (x,m2)

for any x ∈ Rd.

Theorem 3.16 (Uniqueness of mild solutions). Assume (L1) – (L3).
Let F and G be strictly monotone. Then, for any Mean Field Games equi-
libria η1 and η2 in Pm0(ΓT , R) we have that the associated functionals Jη1
and Jη2 are equal.

Consequently, if (V1,m1) and (V2,m2) are two mild solutions associated
with the Mean Field Games equilibria η1 and η2, then V1 = V2.

We omit the proof of the Theorem 3.16 which is similar to the one of
[18, Theorem 4.1].
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3.3 Further regularity of mild solutions
Throughout this section, given α > 1 fixm0 ∈ Pα(Rd) and R ≥ R(α, [m0]α),
where R(α, [m0]α) in defined as in Lemma 3.11. At this point, we know
that under assumptions (L1)–(L3) by Theorem 3.13 there exists at least
one Mean Field Games equilibrium η ∈ Pm0(ΓT , R). Furthermore, if the
Lagrangian L is of the form (3.9), the coupling function F and the terminal
costs G satisfy the strict monotonicity assumption, see Definition 3.15, then
the mild solution is unique. For this reasons, from now on we fix R ≥
R(α, [m0]α).

Now, we are going to prove that any Mean Field Games equilibrium
generates a family of probability measures {mη

t }t∈[0,T ] which is 1
2 -Hölder

continuous in time. Consequently, any mild solution (V,mη) is such that
the value function V is locally Lipschitz continuous and locally fractionally
semiconcave on [0, T ] × Rd. Moreover, we will prove that there exists at
least one Mean Field Games equilibrium η ∈ Pα(ΓT , R) such that t → mη

t

is Lipschitz continuous.
Given the control system (3.1), the Hamiltonian associated with the

Lagrangian function L is defined as

H(x, p,m) = sup
u∈Rk

{
− 〈p,Ax+Bu〉 − L(x, u,m)

}
.

The Hamiltonian H can be explicitly written as follows

H(x, p,m) = −〈p,Ax〉 −L∗(x,−B⋆p,m), ∀ (x, p,m) ∈ Rd×Rk ×Pα(Rd)
(3.11)

where L∗ denotes the Legendre Transform of L, i.e.,

L∗(x, p,m) = sup
u∈Rk

{
− 〈p, u〉 − L(x, u,m)

}
.

Moreover, it is easy to check that there exists a constant c2 ≥ 0 such that
for any (x, p,m) ∈ Rd × Rk × Pα(Rd)

|DpH(x, p,m)| ≤ c2(1 + |x|+ |p|) (3.12)

and, from (i) in (L1) one can also deduce that there exists a constant cH ≥ 0
such that

|DpH(x, p,m)−DpH(y, q,m)| ≤ cH(|p− q|+ |x− y|) (3.13)

for any (x, y) ∈ R2d, (p, q) ∈ R2k and m ∈ Pα(Rd).

3.3.1 Local Lipschitz continuity and local fractional semicon-
cavity of the Value function

Let (V,mη) a mild solution of the Mean Field Games problem associated
with an equilibrium η ∈ Pα(ΓT , R). In this section, we prove that the flow
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of measures {mη
t }t∈[0,T ] are Hölder continuous and consequently, that the

associated value function is locally semiconcave on [0, T ] × Rd, linearly in
space and with a fractional modulus of semiconcavity in time. Moreover, we
show that the value function V is locally Lipschitz continuous on [0, T ]×Rd.
We conclude this section proving that, under some extra assumptions on
the data, there exists at least one equilibrium η ∈ Pα(ΓT , R) such that
{mη

t }t∈[0,T ] is Lipschitz continuous in time.
We recall that V is defined as the value function

V (t, x) = inf
u∈L2(0,T ; Rk)

{∫ T

t
L(γ(s; t, x, u), u(s),mη

s) ds+G(γ(T ; t, x, u),mη
T )

}
.

Theorem 3.17 (Hölder continuity of equilibria). Assume (L1) – (L3).
Then, given any Mean Field Games equilibrium η, the map t → mη

t is 1
2 -

Hölder continuous in time.

Proof. By definition of d1, we have that

d1(m
η
t ,m

η
s) = inf

φ∈Lip1(Rd)

∫
Rd

φ(x)(mη
t −mη

s)(dx)

= inf
φ∈Lip1(Rd)

∫
ΓT

(φ(γ(t))− φ(γ(s))η(dγ) ≤
∫
ΓT

|γ(t)− γ(s)|η(dγ),

where Lip1(Rd) is the set of Lipschitz continuous functions such that the
Lipschitz constant is equal to 1.

We recall that, since η is a Mean Field Games equilibrium then it is
supported on the set of all minimizing curves of problem (3.4). Therefore,
by Lemma 3.4 and recalling that x = γ(0) we obtain

d1(m
η
t ,m

η
s) ≤

∫
ΓT

|γ(t)− γ(s)|η(dγ)

≤|t− s|
1
2

∫
ΓT

(
‖A‖

1
2T

1
2 C̃
(
1 + |x|

)
+ ‖B‖

1
2K
)
η(dγ) = κ([m0]α])|t− s|

1
2 ,

where the constant κ depends on the moment of m0 which we know is
bounded by construction. Thus, the proof is complete.

In order to prove the semiconcavity of the value function V , we need to
add the following assumption on the Lagrangian L and terminal cost G:

(L4) There exists two constants wL ≥ 0 and wG ≥ 0 such that for any
λ ∈ [0, 1], any radius R > 0, any u ∈ Rk, any x0, x1 ∈ BR, and any
m ∈ P1(Rd) such that

λL(x0, u,m) + (1− λ)L(x1, u,m)− L(λx0 + (1− λ)x1, u,m)

≤ wLλ(1− λ)|x0 − x1|2,
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and

λG(x0,m) + (1− λ)G(x1,m)−G(λx0 + (1− λ)x1,m)

≤ wGλ(1− λ)|x0 − x1|2.

Theorem 3.18 (Local fractional semiconcavity of V ). Assume (L1) –
(L3). Let R be a positive radius. Then, there exists a constant Λ ≥ 0 such
that for any (t, x) ∈ [0, T ]×BR, any (h, δ) ∈ R×R such that (x+h, t+ δ) ∈
[0, T ]×BR and (x− h, t− δ) ∈ [0, T ]×BR we have that

V (t+ δ, x+ h) + V (t− δ, x− h)− 2V (t, x) ≤ Λ
(
|h|2 + |δ|

3
2

)
.

Proof. We first prove that the value function V is locally semiconcave in
space uniformly in time and then, that it is locally semiconcave in space
and time.

Let R > 0 be a positive radius and fix (t, x) ∈ [0, T ] × BR. Let h ∈ Rd
be such that x + h, x − h ∈ BR and let u∗ ∈ L2 be an optimal control for
(t, x) ∈ [0, T ]×BR. Then, define the following curves

γ(s) =γ(s; t, x, u∗), s ∈ [t, T ]

γ+(s) =γ(s; t, x+ h, u∗), s ∈ [t, T ]

γ−(s) =γ(s; t, x− h, u∗), s ∈ [t, T ].

Thus, we have that

V (t, x+ h) + V (t, x− h)− 2V (t, x)

≤
∫ T

t

(
L(γ+(s), u

∗(s),mη
s) + L(γ−(s), u

∗(s),mη
s)− 2L(γ(s), u∗(s),mη

s)
)
ds

+G(γ+(T ),m
η
T ) +G(γ−(T ),m

η
T )− 2G(γ(T ),mη

T ).

(3.14)

Consider, first, the expression involving only the terminal costs:

G(γ+(T ),m
η
T ) +G(γ−(T ),m

η
T )− 2G(γ(T ),mη

T )

= G(γ+(T ),m
η
T ) +G(γ−(T ),m

η
T )− 2G

(
γ+(T ) + γ−(T )

2
,mη

T

)
+ 2G

(
γ+(T ) + γ−(T )

2
,mη

T

)
− 2G(γ(T ),mη

T ).

By (L1) and (L4) we deduce that

G(γ+(T ),m
η
T ) +G

(
γ−(T ),m

η
T

)
− 2G

(
γ+(T ) + γ−(T )

2
,mη

T

)
≤ wG|γ+(T )− γ−(T )|2, 2G

(
γ+(T ) + γ−(T )

2
,mη

T

)
− 2G

(
γ(T ),mη

T

)
≤ ‖G‖∞|γ+(T ) + γ−(T )− 2γ(T )|.
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From the definition of γ, γ+ and γ− we have that these curves are solutions
of (3.1). Therefore, we get that there exists a real positive constant W such
that

|γ+(T )− γ−(T )|2 ≤W |h|2,
|γ+(T ) + γ−(T )− 2γ(T )| ≤W |h|2.

Hence, we get

G(γ+(T ),m
η
T ) +G(γ−(T ),m

η
T )− 2G(γ(T ),mη

T ) ≤W (wG + ‖G‖∞) |h|2.

By almost similar arguments, one can prove that also the integral term in
(3.14) is bounded by a constant times |h|2. This proves that V is locally
semiconcave in space uniformly in time.

We proceed to show that V is locally semiconcave on [0, T ] × Rd. Fix
(t, x) ∈ [0, T ] × BR and let h ∈ Rd, δ ∈ R be such that x + h, x − h ∈ BR

and 0 < t− δ < t+ δ < T . Let u∗ be an optimal control for (t, x) and define
the control

ū(s) = u∗
(
t+ δ + s

2

)
, s ∈ [t− δ, t+ δ].

By the Dynamic Programming Principle we get

V (t+ δ, x+ h) + V (t− δ, x− h)− 2V (t, x)

≤ V (t+ δ, x+ h) + V (t+ δ, γ(t+ δ; t− δ, x− h, ū))− 2V (t+ δ, γ(t+ δ; t, x, u∗))︸ ︷︷ ︸
I

+

∫ t+δ

t−δ
L(γ(s; t− δ, x− h, u∗), ū(s),mη

s) ds− 2

∫ t+δ

t
L(γ(s; t, x, u∗), u∗(s),mη

s) ds︸ ︷︷ ︸
II

.

Thus, by the first parte of the proof term I is bounded by a constant times
|h|2 + |δ|2. Now, we have to estimate term II. Let us denote, for simplicity,
by γ− the curve γ(· ; t − δ, x − h, u∗). Then, by assumption (L1) we have
that there exists a constant D ≥ 0 such that

II = 2

∫ t+δ

t

(
L(γ−(2s− t− δ), u∗(s),mη

2s−t−δ)− L(γ(s), u∗(s),mη
s)
)
ds

≤ D

∫ t+δ

t

(
|γ−(2s− t− δ)− γ(s)|+ d1(m

η
2s−t−δ,m

η
s)
)
ds

(3.15)

Since η is a Mean Field Games equilibrium we know by Theorem 3.17 that
{mη

t }t∈[0,T ] is 1
2 -Hölder continuous in time with respect to the d1 distance.

Therefore,∫ t+δ

t
d1(m

η
2s−t−δ,m

η
s) ds ≤ κ([m0]α)

∫ t+δ

t
|s− t− δ|

1
2 ds ≤ 2

3
κ([m0]1)|δ|

3
2 .

(3.16)
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Now, we have to estimate the distance between the curves γ− and γ. For
that, we recall that since γ− and γ are solutions of (3.1) we know that

γ−(2s− t− δ) =e(s−t+δ)A(x− h) +

∫ 2s−t−δ

t−δ
e(τ−t+δ)ABū(τ) dτ,

γ(s) =e(s−t)Ax+

∫ s

t
e(τ−t)ABu∗(τ) dτ.

From [26, Theorem 7.4.6], without loss of generality, we can assume that
u∗ belongs to L∞ and consequently, ū ∈ L∞. Thus, we obtain that for any
s ∈ [t, t+ δ]

|γ−(2s− t− δ)− γ−(s)|
≤ eT∥A∥|h|+ 2seT∥A∥‖B‖‖ū‖∞ + (s− t)eT∥A∥‖B‖‖u∗‖∞.

Therefore, we deduce that∫ t+δ

t

(
eT∥A∥|h|+ 2seT∥A∥‖B‖‖ū‖∞ + (s− t)eT∥A∥‖B‖‖u∗‖∞

)
ds

≤ δeT∥A∥|h|+
(
2eT∥A∥‖B‖‖ū‖∞ + eT∥A∥‖B‖‖u∗‖∞

)
δ2.

(3.17)

Hence, combining (3.16) and (3.17) with (3.15) yields the conclusion.

Remark 3.19. We note that Theorem 3.18 guarantees that the function
x 7→ V (t, x) is linearly semiconcave, locally uniformly in time.

The proof of the following theorem is given in Section 3.5.1 since the
techniques we have used to prove it are classical in optimal control theory.

Theorem 3.20. Assume (L1) – (L3). V is locally Lipschitz continuous on
[0, T ]× Rd.

3.3.2 Lipschitz regularity of Mean Field Games equilibrium

Define the following class of curves on Pα(Rd)

Lip(Pα) =

m ∈ C([0, T ];Pα(Rd)) : sup
t ̸=s

t,s∈[0,T ]

d1(mt,ms)

|t− s|
<∞

 ,

and set

PLip(Pα)
m0

(ΓT ) =
{
η ∈ Pm0(ΓT , R) : m

η ∈ Lip(P1)
}
.
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Remark 3.21. The set P
Lip(Pα)
m0 (ΓT ) is non-empty. Following the construc-

tion we have done in Remark 3.5, let p : Rd → ΓT be defined as

x 7→ p[x](t) := etAx, ∀ t ∈ [0, T ]

and define η = p♯m0. Therefore, by Remark 3.5, we only need to prove that
mη ∈ Lip(Pα).

Indeed,

d1(m
η
t1
,mη

t2
) = sup

ϕ∈1−Lip

∫
Rd

ϕ(x)
(
mη
t1
(dx)−mη

t2
(dx)

)
= sup
ϕ∈1−Lip

∫
ΓT

(
ϕ(γ(t1))− ϕ(γ(t2))

)
η(dγ)

= sup
ϕ∈1−Lip

∫
ΓT

(
ϕ(γ(t1))− ϕ(γ(t2))

)
p♯m0(dγ)

= sup
ϕ∈1−Lip

∫
Rd

(
ϕ(p[x](t1))− ϕ(p[x](t2))

)
m0(dx)

= sup
ϕ∈1−Lip

∫
Rd

(
ϕ(eAt1x)− ϕ(eAt2x)

)
m0(dx)

≤
∫
Rd

∣∣eAt1x− eAt2x
∣∣m0(dx).

Since the function t 7→ eAtx is Lipschitz continuous in any compact subin-
tervals of R we get the conclusion.

Proposition 3.22. Assume (L1) – (L3). Let x ∈ Rd and η ∈ P
Lip(P1)
m0 (ΓT ).

Let u∗ be an optimal control for (3.4) and let γ∗ be the minimizing curve
generated by u∗. Then, there exists a real positive constant Q1 such that

‖γ̇∗‖∞ ≤ Q1(1 + |x|).

Proof. From the same reasoning in [26, Theorem 7.4.6] one can prove that

‖u∗‖∞ ≤ Q0(1 + |x|). (3.18)

Hence, from the state equation we obtain

‖γ̇∗(t)‖∞ ≤ ‖A‖‖γ∗‖∞ + ‖B‖‖u∗‖∞.

Thus, by Corollary 3.3 and by (3.18) we get

‖γ̇∗(t)‖∞ ≤ max{‖A‖C̃1, ‖B‖Q0}(1 + |x|). □

Remark 3.23. We observe that the above result is a generalization of [24,
Proposition 5.6] where we assumed that there exist two constants c3, c4 such
that for any (x, p,m) ∈ Rd × Rk × Pα(Rd)

〈DxH(x, p,m), p〉 ≥ c3|p|2 − c4.
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We recall the definition of the set-valued map E given in the Section 3,
that is,

E :
(
Pm0(ΓT , R), d1

)
⇒
(
Pm0(ΓT , R), d1

)
with

E(η) =
{
ν ∈ Pm0(ΓT , R) : spt(νx) ⊂ Γ∗

η(x), m0 − a.e.
}
.

Lemma 3.24. Assume (L1) – (L3). Then, E(P
Lip(Pα)
m0 ) ⊂ P

Lip(Pα)
m0 .

Proof. Fix η ∈ P
Lip(Pα)
m0 and let µ be a Borel probability measure in E(η).

We need to prove that for any t1, t2 ∈ [0, T ], with t1 < t2

sup
t ̸=s

t,s∈[0,T ]

d1(mt,ms)

|t− s|
<∞.

Hence

d1(m
µ
t1
,mµ

t2
) = sup

ϕ∈Lip1(Rd)

∫
Rd

ϕ(x)
(
mµ
t1
(dx)−mµ

t1
(dx)

)
= sup
ϕ∈Lip1(Rd)

∫
ΓT

(
ϕ(γ(t1))− ϕ(γ(t2)

)
µ(dγ)

≤
∫
ΓT

∣∣γ(t1)− γ(t2)
∣∣ µ(dγ) ≤ |t1 − t2|

∫
ΓT

‖γ̇‖∞| µ(dγ)

≤|t1 − t2|
∫
ΓT

Q1(1 + |x|) µ(dγ),

where the last inequality follows by Proposition 3.22. Therefore, recalling
that x = γ(0) and µ belongs to Pm0(ΓT , R), we obtain the conclusion.

Theorem 3.25 (Existence of Lipschitz Mean Field Games equilib-
ria). Assume (L1) – (L3). Then, there exist at least one Mean Field Games
equilibrium such that the associated family of measures {mη

t }t∈[0,T ] belongs
to Lip(Pα).

Proof. It is sufficient to prove that the set-valued map E : P
Lip(Pα)
m0 (ΓT ) ⇒

P
Lip(Pα)
m0 has a fix point and in order to prove it we want to use Kakutani’s

fixed point theorem.
We recall that by Lemma 3.12 we have that the map E has closed graph

and so also the restriction of E on P
Lip(Pα)
m0 . Moreover, since P

Lip(Pα)
m0 ⊂

Pm0(ΓT , R) we have that P
Lip(Pα)
m0 is compact.Therefore, all the assump-

tions of Kakutani’s fixed point theorem are satisfied and this concludes the
proof.
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Corollary 3.26. Assume (L1) – (L3). Let η ∈ Pα(ΓT , R) be a Lipschitz
Mean Field Games equilibrium and let (V,mη) be a mild solution associated
with η. Then, the value function V is locally semiconcave on [0, T ]×Rd with
a linear modulus of semiconcavity.

3.4 Mean Field Games: PDEs system

3.4.1 Optimal syntesis

In order to deduce the PDE system for our Mean Field Games problem, we
have to derive first some optimality conditions for the following problem:

J(x, u) = inf
γ∈ΓT (x)

{
g(γ(T )) +

∫ T

0
L(t, γ(t), u(t)) dt

}
. (OC)

As usual, let V be the value function of the above (OC) problem.

Proposition 3.27. Assume (L1) – (L3). Let (t0, x0) ∈ [0, T ] × BR and
let p0 be a point in D∗

xV (t0, x0). Then, there exists a pair of curves (γ, p)
solving the Hamiltonian system{

˙̄γ(t) = −DpH(t, γ̄(t), p̄(t)), γ(t0) = x0
˙̄p(t) = DxH(t, γ̄(t), p̄(t)), p(t0) = p0

such that γ is a minimizer of V (t0, x0). In particular, if V (t0, ·) is differen-
tiable at x0 then γ is the unique minimizer of V (t0, x0).

Proof. Let p0 be a point in D∗
xV (t0, x0) such that (t0, x0) ∈ [0, T ]×BR. By

definition of reachable gradient, there exists a sequence {xk}k∈N such that

xk → x0

−p0 = lim
k→∞

DxV (t0, xk).

Let ūk and γ̄k be, respectively, an optimal control and an optimal trajec-
tory with starting point (t0, xk). By the maximum principle, we have that
there exists an absolutely continuous arc p̄k such that{

− ˙̄pk(t) = A∗p̄k(t) +DxL(t, γ̄k(t), ūk(t))

p̄k(T ) = Dg(γ̄k(T )).
(3.19)

By the maximum principle we know that{
˙̄γk(t) = −DpH(t, γ̄k(t), p̄k(t))

˙̄pk(t) = DxH(t, γ̄k(t), p̄k(t)).
(3.20)
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Since the sequence {xk}k∈N is convergent, by Corollary 3.3 and Propo-
sition 3.22 we obtain that {γk}k∈N is equibounded and equicontinuous.

Moreover, by (3.19) we have that for any t ≥ t0

p̄k(t) = e(T−t)A
∗
Dg(γ̄k(T )) +

∫ T

t
e(s−t)A

∗
DxL(s, γ̄k(s), ūk(s)) ds.

Thus, it easily follows that also the sequence of dual arcs {p̄k}k∈N is equi-
bounded and equicontinuous. Therefore, there exist an absolutely contin-
uous arc p̄ and a curve γ̄ such that p̄k → p̄ and γ̄k → γ̄, uniformly as
k → ∞.

From (L3), we have that there exists a constant κ ≥ 0 such that

|DxL(t, x, u)| ≤ κ(1 + |u|2).

Moreover, since x ∈ BR we deduce by [26, Theorem 7.4.6] that there exists
a constant κ̃ ≥ 0 such that ‖uk‖∞ ≤ κ̃. Consequently, we obtain that
DxL(t, γ̄k(t), ūk(t)) weakly converges in L2(0, T ;Rd) to DxL(t, γ̄(t), ū) as
k → ∞.

Therefore, passing to the limit in (3.19) we get that p̄ is a solution of the
limit equation and by the maximum principle the pair (γ̄, p̄) solves system
(3.20). In conclusion, as k → ∞ in the value function we obtain that the
curve γ̄ is a minimizer for (t0, x0).

3.4.2 Weak solutions

In this section, we consider the case of splitted Langrangian, that is L is of
the form (3.9).

We recall that, given the control system (3.1), the Hamiltonian associ-
ated with the Lagrangian function L is defined as

H(x, p) = sup
u∈Rk

{
− 〈p,Ax+Bu〉 − ℓ(x, u)

}
.

For α > 1, let m0 ∈ Pα(Rd) be a Borel probability measure and intro-
duce the following Mean Field Games PDEs system

−∂tV (t, x) +H(x,DxV (t, x)) = F (x,mt), (t, x) ∈ [0, T ]× Rd

∂tmt + div
(
mtDpH(x,DxV (t, x))

)
= 0, (t, x) ∈ [0, T ]× Rd

m0 = m0, V (T, x) = G(x,mT ), ∀ x ∈ Rd.

(3.21)

Definition 3.28 (Weak solutions). We say that (V,m) ∈ W 1,∞([0, T ] ×
Rd) × C([0, T ],Pα(Rd)) is a weak solution of the Mean Field Games PDEs
system if:
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(i) m is a solution in the sense of distribution of the continuity equation,
i.e. for any test function φ ∈ C1

c ([0, T )× Rd) we have that

−
∫
Rd

φ(0, x) m0(dx)

=

∫ T

0

∫
Rd

(
∂tφ(t, x)− 〈Dxφ(t, x), DpH(x,DxV (t, x))〉

)
mt(dx).

(ii) V (t, ·) is differentiable on spt(mt) and V is a continuous viscosity
solution of Hamilton-Jacobi equation.

Remark 3.29. We recall that by classical optimal control theory, see for
instance [26], the following holds:

1. from the maximum principle one can deduce that any minimizer γ of
problem (3.4) has the same regularity of the data, thus in this case we
obtain that γ ∈ C2;

2. given a Mean Field Games equilibrium η we have that for any x ∈
spt(mη

t ) the value function V is differentiable since the value function
of an optimal control problem with a strictly convex Hamiltonian (with
respect to p) is known to be differentiable in the interior of any optimal
trajectory, see for instance [26, Theorem 6.4.7] and [22, Proposition
4.4].

Theorem 3.30 (Equivalence between mild and weak solutions). As-
sume (L1)—(L4). Fix α > 1 and let m0 ∈ Pα(Rd) be an absolutely con-
tinuous with respect the Lebesgue measure and with compact support. Then,
(V,m) ∈ C([0, T ] × Rd) × C([0, T ],Pα(Rd)) is a mild solution of the Mean
Field Games problem if and only if it is a weak solution of system (3.21).

Proof. First, we show that any mild solutions (V,mη) is a weak solution.
Let V be the value function defined as in Definition 3.14, in expression

(3.8). Then, it is well-known that it is a continuous viscosity solution of
the Hamilton-Jacobi equation in system (3.21) and satisfies the terminal
condition. Hence, we are left to prove that mη is a solution of the continuity
equation in system (3.21) in the sense of distributions.

Indeed, for any φ ∈ C1
c ([0, T )× Rd), we have that

d

dt

∫
Rd

φ(t, x) mη
t (dx) =

d

dt

∫
ΓT

φ(t, γ(t)) η(dγ)

=

∫
ΓT

(
∂tφ(t, γ(t)) + 〈Dxφ(t, γ(t)), γ̇(t)〉

)
η(dγ),

where the last integral is well-posed by point (1) in Remark 3.29. Since
η ∈ Pm0(ΓT , R) is a Lipschitz Mean Field Games equilibrium we know that
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η is supported on the minimizers of problem (3.4). So, from the Maximum
Principle we know that

γ̇(t) = −DpH
(
γ(t), DxV (t, γ(t))

)
.

Therefore,

d

dt

∫
Rd

φ(t, x) mη
t (dx)

=

∫
ΓT

(
∂tφ(t, γ(t)) + 〈Dxφ(t, γ(t)), γ̇(t)〉

)
η(dγ)

=

∫
ΓT

(
∂tφ(t, γ(t))− 〈Dxφ(t, γ(t)), DpH(γ(t), DxV (t, γ(t)))〉

)
η(dγ)

=

∫
Rd

(
∂tφ(t, x)− 〈Dxφ(t, x), DpH(x,DxV (t, x))〉

)
mη
t (dx),

where the last integral in above series of equality is well-posed by point (2)
in Remark 3.29. The conclusion follows by integrating the above equalities
over [0, T ].

Now, let (V,m) be a weak solution of Mean Field Games system. Since
V is a viscosity solution of the Hamilton-Jacobi equation we know that it
can be represented by the formula (3.8) in Definition 3.14. Hence, we only
have to prove that there exists a Mean Field Games equilibrium η such that
mt = et♯η.

Since m is a solution of the continuity equation in the sense of distribu-
tions, by the superposition principle [7, Theorem 8.2.1] we know that there
exists a probability measure µ ∈ P(ΓT ) such that mt = et♯µ and µ-a.e. is
a solution of the following equation

γ̇(t) = −DpH(γ(t), DxV (t, γ(t))), t ∈ [0, T ]. (3.22)

As m0 = e0♯µ, by Theorem 2.4 there exists a family of Borel probability
measures µx, for any x ∈ spt(m0), such that

µ(dγ) =

∫
Rd

µx(dγ)m0(x) dx.

Since m0 is absolutely continuous with compact support and the value func-
tion V is locally Lipschitz continuous, it follows that m0-a.e. and µx-a.e. γ
is a solution of (3.22) such that γ(0) = x. Therefore, by the optimal synthe-
sis explained above, such a curve γ is a minimizer of the underlying optimal
control problem and from (3.13) it is also the unique solution of (3.22).
Hence, the measures µx are supported on minimizing curves of the optimal
control problem. Consequently, µ is a Mean Field Games equilibrium for
m0.
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The following result is an immediate consequence of Theorem 3.30 and
Theorem 3.16.

Corollary 3.31. Assume (L1)—(L4). Assume that F is strictly monotone,
in the sense of definition Definition 3.15. Let η1, η2 ∈ Pm0(ΓT , R) be
two Lipschitz Mean Field Games equilibria and let (V1,m

η1), (V2,m
η2) be,

respectively, the weak solutions of system (3.21). Then, V1 ≡ V2.

3.5 Appendix

3.5.1 Proof of Theorem 3.20

We divide the proof in two steps: first, we prove that V is locally Lipschitz
in space and then, we prove that it is locally Lipschitz in both the variables.

Let R be a positive radius and denote by BR the ball of radius R centered
in the origin on Rd. Fix x ∈ BR and h ∈ Rd such that x + h ∈ BR. Then,
given an optimal control u∗ associated with (t, x) ∈ [0, T ]×BR we get that

V (t, x+ h)− V (t, x)

≤
∫ T

t

(
L(γ(s; t, x+ h, u∗), u∗(s),mη

s)− L(γ(s; t, x, u∗), u∗(s),mη
s)
)
ds

+G(γ(T ; t, x+ h, u∗),mη
T )−G(γ(T ; t, x, u∗),mη

T ).

(3.23)

Thus, we have to estimate the distance between two admissible paths: the
one starting in (t, x) and the other one starting in (t, x+ h). Recall that

γ(s; t, x, u) = e(s−t)Ax+

∫ s

t
e(τ−t)ABu∗(τ) dτ, ∀ s ∈ [t, T ]

to obtain

|γ(s; t, x+ h, u∗)− γ(s; t, x, u∗)| ≤ eT∥A∥|h|, ∀ s ∈ [t, T ].

Therefore, by assumption (L2) we get

G(γ(T ; t, x+ h, u∗),mη
T )−G(γ(T ; t, x, u∗),mη

T ) ≤ ‖G‖∞eT∥A∥|h|.

So, we just have to bound the integral term in (3.23). By assumption (L3),
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we have that

∫ T

t

(
L(γ(s; t, x+ h, u∗), u∗(s),mη

s)− L(γ(s; t, x, u∗), u∗(s),mη
s)
)
ds

=

∫ T

t

∫ 1

0
〈DxL(λγ(s; t, x+ h, u∗)

+ (1− λ)γ(s; t, x, u∗), u∗(s),mη
s , γ(s; t, x+ h, u∗)− γ(s; t, x, u∗)〉 ds

≤
∫ T

t

∫ 1

0

∣∣DxL(λγ(s; t, x+ h, u∗) + (1− λ)γ(s; t, x, u∗)
∣∣∣∣u∗(s),mη

s , γ(s; t, x+ h, u∗)− γ(s; t, x, u∗)
∣∣ ds

≤
∫ T

t

∫ 1

0
c2
(
1 + |u∗(s)|

)∣∣γ(s; t, x+ h, u∗)− γ(s; t, x, u∗)
∣∣ ds

≤ Tc2e
T∥A∥|h|+ c2

√
T‖u∗‖2|h| =

(
c2Te

T∥A∥ + c2
√
TK

)
|h|,

where ‖u∗‖2 ≤ K by Proposition 3.2. Then, we conclude that

V (t, x+ h)− V (t, x) ≤
(
c2Te

T∥A∥ + c2
√
TK + ‖G‖∞eT∥A∥

)
|h|.

By similar considerations, one can easily prove that the reverse inequality
also holds true. Therefore, we have that V is locally Lipschitz in space.

We now prove that V is locally Lipschitz in space and time on [0, T ]×BR

for any R > 0. Fix t ∈ [0, T ], x ∈ BR and let δ ∈ R be such that t+δ ∈ [0, T ].
We recall that, by the Dynamic Programming Principle we know that

V (t, x) = inf
u∈L2

{
V (t+ δ, γ(t+ δ; t, x, u)) +

∫ t+δ

t
L(γ(s; t, x, u), u(s),mη

s) ds

}
.

(3.24)
Moreover, by [26, Theorem 7.4.6] we know that, under the assumptions
(L1)–(L4), for any η ∈ Pm0(ΓT ) and any x ∈ Rd, problem (3.4) is equiva-
lent to the following one

inf
u∈L∞(0,T ;Rk)

Jη(x, u).

Thus, we can minimize over the set of bounded controls. Let the control
u∗ ∈ L∞ be optimal for V (t, x). By (3.24) we deduce that for any ϵ ≥ 0

V (t, x) + ϵ ≥
∫ t+δ

t
L(γ(s; t, x, u∗), u∗(s),mη

s) ds+ V (t+ δ, γ(t+ δ; t, x, u∗)).
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Hence, we have that

V (t+ δ, x)− V (t, x)

≤ V (t+ δ, x)− V (t+ δ, γ(t+ δ; t, x, u∗))

−
∫ t+δ

t
L(γ(s; t, x, u∗), u∗(s),mη

s) ds+ ϵ

≤
(
c2Te

T∥A∥ + c2
√
TK + ‖G‖∞eT∥A∥

)
|x− γ(t+ δ; t, x, u∗)|

+δ

(
c1 +

1

c0
‖u∗‖∞

)
,

(3.25)

where the last inequality holds true by the first step of the proof and assump-
tion (L3). Moreover, since the curve γ(·; t, x, u∗) is Lipschitz continuous in
time, we know that the first term of the right-hand side is bounded by a
constant times δ. Thus, the proof of first estimate is complete.

On the other hand, again by (3.24) we know that taking u ≡ 0 we have
that

V (t, x) ≤ V (t+ δ, γ(t+ δ; t, x, 0)) +

∫ t+δ

t
L(γ(s; t, x, 0), 0,mη

s) ds.

Therefore, adding and subtracting the term V (t+ δ, x) we get that

V (t, x)− V (t+ δ, x)

≤ V (t+ δ, γ(t+ δ; t, x, 0))− V (t+ δ, x) +

∫ t+δ

t
L(γ(s; t, x, 0), 0,mη

s) ds.

Hence, by the same considerations as in (3.25) we get the result.
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Chapter 4

Ergodic behavior of control
and mean field games
problems depending on
acceleration

4.1 Setting and assumptions of the problems

4.1.1 Calculus of variation with acceleration

In our first main result we study the large time average of an optimal control
problem of acceleration. Let L : Td × Rd × Rd → R be the Lagrangian
function defined as

L(x, v, w) =
1

2
|w|2 + F (x, v)

where F : Td × Rd → R satisfies the following assumptions:

(F1) F is globally continuous with respect to both variables;

(F2) there exists α > 1 and there exists a constant cF ≥ 1 such that for
any (x, v) ∈ Rd × Rd

1

cF
|v|α − cF ≤ F (x, v) ≤ cF (1 + |v|α) (4.1)

and, without loss of generality, we assume F (x, v) ≥ 0 for an (x, v) ∈
Td × Rd;

(F3) there exists a constant CF ≥ 0 such that

|DxF (x, v)|+ |DvF (x, v)| ≤ CF (1 + |v|α).

53
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Let Γ be the set C1 curves γ : [0,+∞) → Td (endowed with the local
uniform convergence of the curve and its derivative) and for (t, x, v) ∈ [0, T ]×
Td × Rd let Γt(x, v) be the subset of Γ such that γ(t) = x and γ̇(t) = v.
Define the functional J t,T : Γ → R as

J t,T (γ) =

∫ T

t

(
1

2
|γ̈(s)|2 + F (γ(s), γ̇(s))

)
ds, if γ ∈ H2(0, T ;Td), (4.2)

and J t,T (γ) = +∞ if γ 6∈ H2(0, T ;Td), and let V T (t, x, v) denote the value
function associated with the functional J t,T , i.e.

V T (t, x, v) = inf
γ∈Γt(x,v)

J t,T (γ). (4.3)

Let H be the Hamiltonian associated with the Lagrangian L, that is for
any (x, v, pv) ∈ Td × Rd × Rd,

H(x, v, pv) =
1

2
|pv|2 − F (x, v),

where pv ∈ Rd denotes the momentum variable associated with v ∈ Rd.
Then, it is not difficult to see that the value function V T is a continuous
viscosity solution of the following Hamilton-Jacobi equation on [0, T ]×Td×
Rd:{

−∂tV T (t, x, v)− 〈DxV
T (t, x, v), v〉+ 1

2 |DvV
T (t, x, v)|2 = F (x, v),

V T (T, x, v) = 0 in Td × Rd.

Our aim is to characterize the behavior of V T (0, ·, ·) as T → +∞. To state
the result, we need the notion of closed measure, which requires another
notation: we set

Pα,2(Td × Rd × Rd)

=

{
µ ∈ P(Td × Rd × Rd) :

∫
Td×Rd×Rd

(
|w|2 + |v|α

)
µ(dx, dv, dw) < +∞

}
endowed with the weak-∗ convergence.

Definition 4.1 (Closed measure). Let η ∈ Pα,2(Td ×Rd ×Rd). We say
that η is a closed measure if for any test function φ ∈ C∞

c (Td × Rd) the
following holds∫

Td×Rd×Rd

(
〈Dxφ(x, v), v〉+ 〈Dvφ(x, v), w〉

)
η(dx, dv, dw) = 0.

We denote by C the set of closed measures.
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Theorem 4.2 (Main result 1). Assume that F satisfies assumptions (F1)
and (F2). Then, the following limits exist:

lim
T→+∞

1

T
V T (0, x, v) = lim

T→+∞
inf

γ∈Γ0(x,v)

1

T
JT (γ)

and are independent of (x, v) ∈ Td ×Rd. Moreover, if F satisfies also (F3)
then

lim
T→∞

1

T
V T (0, x, v) = inf

µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ(dx, dv, dw).

Remark 4.3. 1. If we denote by λ̄ the above limits, the convergence of

V T (0, x, v)− λT

is a completely open problem in this context. This is related to the
lack of solution of the ergodic HJ equation.

2. The (strong) structure condition on L and the fact that the problem is
periodic in the x variable can probably be relaxed: this would require
however more refined and technical estimates and we have chosen to
work in this simpler framework.

4.1.2 Mean Field Games of acceleration

In our second main result, we consider a mean field game problem of accel-
eration. The Lagrangian function L : Td×Rd×Rd×P1(Td×Rd) → R now
takes the form

L(x, v, w,m) =
1

2
|w|2 + F (x, v,m)

where F : Td × Rd × P1(Td × Rd) → R satisfies the following assumptions:

(F1’) F is globally continuous with respect to all the variables;

(F2’) there exists α > 1 and a constant cF ≥ 1 such that for any (x, v,m) ∈
Rd × Rd × P1(Td × Rd × Rd)

1

cF
|v|α − cF ≤ F (x, v,m) ≤ cF (1 + |v|α)

and, without loss of generality, we assume F (x, v,m) ≥ 0 for any
(x, v,m) ∈ Td × Rd × P1(Td × Rd × Rd);

(F3’) there exists a constant CF ≥ 0 such that, for any (x, v,m) ∈ Rd×Rd×
P1(Td × Rd × Rd),

|DxF (x, v,m)|+ |DvF (x, v,m)| ≤ CF (1 + |v|α).
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We consider the time-dependent MFG system on [0, T ]× Td × Rd
−∂tuT (t, x, v)− 〈Dxu

T (t, x, v), v〉+ 1
2 |Dvu

T (t, x, v)|2 = F (x, v,mT
t ),

∂tm
T
t − 〈v,Dxm

T
t 〉 − div

(
mT
t Dvu

T (t, x, v)
)
= 0,

uT (T, x, v) = g(x, v,mT
T ), in Td × Rd, mT

0 = m0 ∈ P(Td × Rd).
(4.4)

where the terminal condition of the Hamilton-Jacobi equation satisfies the
following:

(G1) (x, v) 7→ g(x, v,m) belongs to C1
b (Td × Rd) for any m ∈ P(Td ×

Rd) (without loss of generality we assume g(x, v,m) ≥ 0) and m 7→
g(x, v,m) is Lipschitz continuous with respect to the d1 distance, uni-
formly in (x, v) ∈ Td × Rd.

We recall that (uT ,mT ) is a solution of (4.4) if uT is a viscosity solution
of the first equation and mT is a solution in the sense of distributions of the
second equation.

Our aim is to understand the averaged limit of uT as T → +∞. For this
we define the ergodic MFG problem, inspired by the characterization of the
limit in Theorem 4.2. Let us recall that the notion of closed measure was
introduced in Definition 4.1 and that C denotes the set of closed measures.

Definition 4.4 (Solution of the ergodic MFG problem). We say that
(λ̄, µ̄) ∈ R× C is a solution of the ergodic MFG problem if

λ̄ = inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ̄)

)
µ(dx, dv, dw)

=

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ̄)

)
µ̄(dx, dv, dw). (4.5)

Theorem 4.5 (Main result 2). Assume that F and G satisfy (F1’), (F2’)
and (G1).

1. There exists at least one solution (λ̄, µ̄) ∈ R× C of the ergodic MFG
problem (4.5). Moreover, if F satisfies the following monotonicity
assumption: there exists MF > 0 such that for m1, m2 ∈ P(Td ×Rd)∫

Td×Rd

(
F (x, v,m1)− F (x, v,m2)

)
(m1(dx, dv)−m2(dx, dv))

≥ MF

∫
Td×Rd

(
F (x, v,m1)− F (x, v,m2)

)2
dxdv,

(4.6)
then the ergodic constant is unique: If (λ̄1, µ̄1) and (λ̄2, µ̄2) are two
solutions of the ergodic MFG problem, then λ̄1 = λ̄2.

2. Assume in addition that α = 2, that (F3’) and (4.6) hold and that the
initial distribution m0 is in P2(Td × Rd). Let (uT ,mT ) be a solution
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of the MFG system eq. (4.4) and let (λ̄, µ̄) be a solution of the ergodic
MFG problem eq. (4.5). Then T−1uT (0, ·, ·) converges locally uniformly
to λ̄ and we have

lim
T→+∞

1

T

∫
Td×Rd

uT (0, x, v) m0(dx, dv) = λ̄.

4.2 Ergodic behavior of control of acceleration

4.2.1 Existence of the limit

Before proving the main result of this section, Proposition 4.13, we need a
few preliminary lemmas.

Lemma 4.6. Assume that F satisfies (F1) and (F2). Then, for any
(x, v) ∈ Td ×BR, with R ≥ 0, and for any T > 0, we have

1

T
V T (0, x, v) ≤ cF (1 +Rα).

Remark 4.7. The result also holds when F = F (t, x, v) depends also on
time, provided that F is continuous and satisfies (F2) with a constant cF
independent of t.

Proof. Define the curve ξ(t) = x + tv, for t ∈ [0, T ]. Then, by definition of
the value function V T , we have

V T (0, x, v) ≤ JT (ξ) =

∫ T

0
F (x+ tv, v) dt ≤ TcF (1 +Rα).

Lemma 4.8. Assume that F satisfies (F1) and (F2). Let θ ≥ 1, (x0, v0)
and (x, v) be in Td × BR for some R ≥ 1. Then, there exists a constant
C2 ≥ 0 (depending only the constants α and cF in (F2)) and a curve σ :
[0, θ] → Rd such that σ(0) = x0, σ̇(0) = v0 and σ(θ) = x, σ̇(θ) = v and

Jθ(σ) ≤ C2(R
2θ−1 +Rαθ). (4.7)

Remark 4.9. The result also holds when F = F (t, x, v) depends also on
time, provided that F is continuous and satisfies (F2) with a constant cF
independent of t.

Proof. Define the following parametric curve

σ(t) = x0 + v0t+Bt2 + Ct3, t ∈ [0, θ].



58CHAPTER 4. ERGODIC BEHAVIOR OF ACCELERATION MODEL

Choosing {
B = 3(x− x0)− θv − 2θv0)θ

−2

C = (−2(x− x0) + θ(v + v0))θ
−3,

we have that σ(0) = x0, σ̇(0) = v0 and σ(1) = x, σ̇(1) = v.
By definition of the functional Jθ we get

Jθ(σ) =

∫ θ

0

(
1

2
|σ̈(t)|2 + F (σ(t), σ̇(t))

)
dt

≤
∫ θ

0

(
1

2
|2B + 6Ct|2 + cF (1 + |v0 + 2tB + 3t2C|α)

)
dt

≤ C2(R
2θ−1 +Rαθ),

for some constant C2 depending on the constants α and cF in (F2) only.

Lemma 4.10. Let T ≥ 2 and (x, v) ∈ Td × BR0 for some R0 ≥ c
2
α
F . Let

γ ∈ Γ(x, v) be optimal for V T (0, x, v). Then for any λ ≥ 2 there exists
γ̃ ∈ Γ(x, v) with γ̃(T ) = x, ˙̃γ(T ) = v and

JT (γ̃) ≤ JT (γ) + C3(λ
2R2

0 +Rα0λ
−αT ),

where the constant C3 depends on α and cF only.

Remark 4.11. The result also holds when F = F (t, x, v) depends also on
time, provided that F is continuous and satisfies (F2) with a constant cF
independent of t. In addition, by the construction in the proof, there exists
τ > 0 such that γ̃ = γ on [0, τ ] and∫ T

τ
(
1

2
|¨̃γ(t)|2 + cF (1 + | ˙̃γ(t)|α))dt ≤ C3(λ

2R2
0 +Rα0λ

−αT ).

Finally, the map which associates γ̃ and τ to γ is measurable.

Proof. Let

τ :=

{
sup{t ≥ 0, |γ̇(t)| ≤ λR0} if |γ(T − 1)| > λR0,
T − 1 otherwise.

If τ ≥ T − 2, we set

γ̃(t) =

{
γ(t) for t ∈ [0, τ ],
σ(t− τ) for t ∈ [τ, T ],

where σ is the map built in Lemma 4.8 with θ = T − τ , σ(0) = γ(τ),
σ̇(0) = γ̇(τ), σ(T − τ) = x, σ̇(T − τ) = v. If τ < T − 2, then we set

γ̃(t) =


γ(t) for t ∈ [0, τ ],
σ1(t− τ) for t ∈ [τ, τ + 1],
σ2(t− τ − 1) for t ∈ [τ + 1, T ],
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where σ1 and σ2 are the map built in Lemma 4.8 with θ = 1, σ1(0) = γ(τ),
σ̇1(0) = γ̇(τ), σ1(1) = x, σ̇(1) = v and θ = T − τ − 1 and σ2(0) = σ2(T −
τ − 1) = x and σ̇2(0) = σ̇2(T − τ − 1) = v respectively. Note that γ̃(T ) = x
and ˙̃γ(T ) = v.

In order to estimate JT (γ̃), we first show that τ cannot be too small:
namely we claim that

τ ≥ T

(
1− cF (1 +Rα0 )

1
cF

(λR0)α − cF

)
− 1. (4.8)

Indeed, let us first recall that by Lemma 4.6 we have

JT (γ) ≤ cF (1 +Rα0 )T.

On the other hand, by assumption (F2) and the fact that |γ̇(t)| > λR0 on
[τ, T − 1] and that F ≥ 0, we also have that

JT (γ) =

∫ T

0

(
1

2
|γ̈(t)|2 + F (γ(t), γ̇(t))

)
dt

≥
∫ T−1

τ

(
1

cF
|γ̇(t)|α − cF

)
dt ≥ (T − τ − 1)

(
1

cF
(λR0)

α − cF

)
.

So (4.8) holds for R0 ≥ c
2/α
F .

We estimate JT (γ̃) in the case τ < T − 2, the other case being similar
and easier. Note that |γ̇(τ)| ≤ λR0. By Lemma 4.8 and the fact that F ≥ 0,
we have

JT (γ̃) =

∫ τ

0
(
1

2
|γ̈(t)|2 + F (γ(t), γ̇(t)))dt+

∫ 1

0
(
1

2
|σ̈1(t)|2 + F (σ1(t), σ̇1(t)))dt

+

∫ T−τ−1

0
(
1

2
|σ̈2(t)|2 + F (σ2(t), σ̇2(t)))dt

≤ JT (γ) + C2((λR0)
2 + (λR0)

α +R2
0(T − τ − 1)−1 +Rα0 (T − τ − 1)).

In view of (4.8) this implies that

JT (γ̃) ≤ JT (γ) + C3(λ
2R2

0 +Rα0λ
−αT ),

for a constant C3 depending on α and cF only.

Next we prove that the (x, v) 7→ V T (0, x, v) have locally uniformly
bounded oscillations.

Lemma 4.12. There exists a constant M1(R) ≥ 0 such that for any (x, v)
and (x0, v0) in Td ×BR we have that

V T (0, x, v)− V T (0, x0, v0) ≤M1(R).
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Proof. Let γ∗ be a minimizer for V T (0, x0, v0) and let σ : [0, 1] → Td be
such that σ(0) = x, σ̇(0) = v and σ(1) = x0, σ̇(1) = v0 as in Lemma 4.8 for
θ = 1. Define

γ̃(t) =

{
σ(t), t ∈ [0, 1]

γ∗(t− 1), t ∈ [1, T ].

Then γ̃ ∈ Γ0(x, v) and, by Lemma 4.8 and the assumption that F ≥ 0, we
have that

V T (0, x, v)− V T (0, x0, v0) ≤
∫ 1

0

(
1

2
|σ̈(t)|2 + F (σ(t), σ̇(t))

)
dt

+

∫ T

1

(
1

2
|γ̈∗(t− 1)|2 + F (γ∗(t− 1), γ̇∗(t− 1))

)
dt− V T (0, x0, v0)

≤ 2C2R
2 +

∫ T−1

0

(
1

2
|γ̈∗(t)|2 + F (γ∗(t), γ̇∗(t))

)
dt− V T (0, x0, v0)

≤ 2C2R
2 −

∫ T

T−1

(
1

2
|γ̈∗(t)|2 + F (γ∗(t), γ̇∗(t))

)
dt ≤ 2C2R

2,

which is the claim.

Proposition 4.13 (Existence of the limit). Assume that F satisfies (F1)
and (F2). Then, for any (x, v) ∈ Td × Rd, the following limits exist:

lim
T→+∞

1

T
V T (0, x, v) = lim

T→+∞

1

T
inf

γ∈Γ0(x,v)
JT (γ).

In addition the convergence is locally uniform in (x, v) and the limit is in-
dependent of (x, v).

Proof. Fix R0 ≥ c
2/α
F such that |v| ≤ R0. Let {Tn}n∈N and let {γn}n∈N be

a sequence of minimizers for V Tn(0, x, v) such that Tn → ∞ as n→ ∞ and

lim inf
T→∞

1

T
V T (0, x, v) = lim

n→∞

1

Tn
JTn(γn).

For λ ≥ 2, let us define γ̃n is in Lemma 4.10. Then we know that γ̃n(T ) = x,
˙̃γn(T ) = v and

JTn(γ̃n) ≤ JTn(γn) + C3(λ
2R2

0 +Rα0λ
−αTn). (4.9)

Let us define γ̂n as the periodic extension of the curve γ̃n, i.e. γ̂n is Tn-
periodic and it is equal to γ̃n on [0, Tn]. Then, taking γ̂n as competitors for
JT we obtain that

lim sup
T→∞

inf
γ∈Γ0(x,v)

1

T
JT (γ) ≤ lim sup

T→∞

1

T
JT (γ̂n)

=
1

Tn
JTn(γ̃n) ≤

(
1

Tn
JTn(γn) + C3(λ

2R2
0T

−1
n +Rα0λ

−α)

)
,
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where the equality holds true since we are taking the limit of a periodic
function and the last inequality holds by (4.9).

We get the conclusion letting n → ∞ and then λ → ∞, indeed: as
n→ ∞ we deduce that

lim sup
T→∞

inf
γ∈Γ0(x,v)

1

T
JT (γ) ≤ lim

n

1

Tn
JTn(γn) + C3R

α
0λ

−α

= lim inf
T→+∞

inf
γ∈Γ0(x,v)

1

T
JT (γ) + C3R

α
0λ

−α

and then, taking the limit as λ→ ∞ we get

lim sup
T→∞

inf
γ∈Γ0(x,v)

1

T
JT (γ) ≤ lim inf inf

γ∈Γ0(x,v)

1

T
JT (γ).

As the (V T (0, ·, ·)) have locally bounded oscillation (Lemma 4.12), the above
convergence is locally uniform and the limit does not depend on (x, v).

4.2.2 Characterization of the ergodic limit

In this part we characterize the limit given in Proposition 4.13 in term of
closed measures. The proof of the main result, Proposition 4.22, where this
characterization is stated, is technical and requires several steps. Here are
the main ideas of the proof. By using standard results on occupational
measures, one can obtain in a relatively easy way that

λ := lim
T→∞

inf
γ∈Γ0(x0,v0)

1

T
JT (γ)

≥ inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ(dx, dv, dw),

where C denotes the set of closed probability measures (see Definition 4.1).
The difficult part of the proof is the opposite inequality. The first step
for this is a min-max formula (Theorem 4.15) which gives, by using the
characterization of closed measures, that

inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ(dx, dv, dw)

= sup
φ∈C∞

c (Td×Rd)

inf
(x,v)∈Td×Rd

{
−1

2
|Dvφ(x, v)|2 − 〈Dxφ(x, v), v〉+ F (x, v)

}
.

In order to exploit this inequality, one just needs to find a map φ ∈ C∞
c (Td×

Rd) for which

−1

2
|Dvφ(x, v)|2 − 〈Dxφ(x, v), v〉+ F (x, v)
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is almost equal to λ. This is not easy because the corrector of our ergodic
problem does not seem to exist (at least in the usual sense) because of the
lack of controllability and, if it existed, it certainly would not be smooth
with a compact support. The standard idea in this set-up is to use instead
the approximate corrector, i.e., the solution Vδ to

δVδ(x, v) +
1

2
|DvVδ(x, v)|2 + 〈DxVδ(x, v), v〉 = F (x, v) in Td × Rd.

However, this approximate corrector has not a compact support either (it
is even coercive, see Proposition 4.16) and δVδ does not converge uniformly
to −λ, but only locally uniformly. We overcome these issues by an extra
approximation argument (Lemma 4.18).

Let us first explain why closed measures pop up naturally in our problem.
To see this, let (x0, v0) ∈ Td × Rd be an initial position and let γT(x0,v0)
be an optimal trajectory for V T (0, x0, v0). We define the family of Borel
probability measures {µT }T>0 as follows: for any function φ ∈ C∞

c (Td ×
Rd × Rd)∫

Td×Rd×Rd

φ(x, v, w) µT (dx, dv, dw)

=
1

T

∫ T

0
φ(γT(x0,v0)(t), γ̇

T
(x0,v0)

(t), γ̈T(x0,v0)(t)) dt. (4.10)

Lemma 4.14. Assume that F satisfies (F1) and (F2). Let the family of
probability measures {µT }T>0 be defined by eq. (4.10). Then, {µT }T>0 is
tight and there exists a closed measure µ∗ such that, up to a subsequence,
µT ⇀∗ µ∗ as T → +∞.

Proof. We first prove that {µT }T>0 its a tight family of probability mea-
sures. Indeed, by assumption (F2) for (x0, v0) ∈ Td × Rd we know that

1

T
V T (0, x0, v0) =

1

T

∫ T

0

(1
2
|γ̈T(x0,v0)(t)|

2 + F (γT(x0,v0)(t), γ̇
T
(x0,v0)

(t))
)
dt

=

∫
Td×Rd×Rd

(1
2
|w|2 + F (x, v)

)
µT (dx, dv, dw)

≥
∫
Td×Rd×Rd

(1
2
|w|2 + 1

cF
|v|α − cF

)
µT (dx, dv, dw).

On the other hand, by Lemma 4.6 we have that
1

T
V T (0, x0, v0) ≤ C1

where C1 only depends on the initial point (x0, v0). Therefore, we obtain
that ∫

Td×Rd×Rd

(1
2
|w|2 + 1

cF
|v|α

)
µT (dx, dv, dw) ≤ C1
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which implies that {µT }T>0 is tight. By Prokhorov theorem there exists a
measure µ∗ ∈ P(Td×Rd×Rd) such that up to a subsequence µT ⇀∗ µ∗ as
T → +∞.

We now show that the measure µ∗ is closed in the sense of Definition 4.1.
Let φ ∈ C∞

c (Td × Rd) be a test function and let R ≥ 0 be such that
φ(x, v) = 0 for any (x, v) ∈ Td ×Bc

R. Moreover, define

τ∗ =

{
sup{t ∈ [0, T ] : |γ̇T(x0,v0)(t)| ≤ R}, if |γ̇(x0,v0)(T )| > R

T, if |γ̇(x0,v0)(T )| ≤ R

and let σ∗ : [τ∗, τ∗ + 1] → Td be as in Lemma 4.8 such that σ∗(τ∗) =
γT(x0,v0)(τ

∗), σ̇∗(τ∗) = γ̇T(x0,v0)(τ
∗) and σ∗(τ∗ + 1) = x0, σ̇∗(τ∗ + 1) = v0.

Moreover, define

γ̃(t) =

{
γT(x0,v0)(t), t ∈ [0, τ∗]

σ∗(t), t ∈ (τ∗, τ∗ + 1].

Then we get∫
Td×Rd×Rd

(
〈Dxφ(x, v), v〉+ 〈Dvφ(x, v), w〉

)
dµT (x, v, w)

=
1

T

∫ T

0

(
〈Dxφ(γ

T
(x0,v0)

(t), γ̇T(x0,v0)(t)), γ̇
T
(x0,v0)

(t)〉

+ 〈Dvφ(γ
T
(x0,v0)

(t), γ̇T(x0,v0)(t)), γ̈
T
(x0,v0)

(t)〉
)
dt

=
1

T

∫ τ∗+1

0

(
〈Dxφ(γ̃

T (t), ˙̃γT (t)), ˙̃γT (t)〉+ 〈Dvφ(γ̃
T (t), ˙̃γT (t)), ¨̃γT (t)〉

)
dt

− 1

T

∫ τ∗+1

τ∗

(
〈Dxφ(σ

∗(t), σ̇∗(t)), σ̇∗(t)〉+ 〈Dvφ(σ
∗(t), σ̇∗(t)), σ̈∗(t)〉

)
dt

+

∫ T

τ∗

(
〈Dxφ(γ

T
(x0,v0)

(t), γ̇T(x0,v0)(t)), γ̇
T
(x0,v0)

(t)〉

+ 〈Dvφ(γ
T
(x0,v0)

(t), γ̇T(x0,v0)(t)), γ̈
T
(x0,v0)

(t)〉
)
dt

One can immediately observe that by construction the last integral is 0
(since φ has a support in Td × BR) and by the definition of γ̃ one also has
that the first one is 0. The behavior of the second is also immediate because,
as φ is bounded,

1

T

∫ τ∗+1

τ∗

(
〈Dxφ(σ

∗(t), σ̇∗(t)), σ̇∗(t)〉+ 〈Dvφ(σ
∗(t), σ̇∗(t)), σ̈∗(t)〉

)
dt

=
1

T
(φ(σ∗(τ∗ + 1), σ̇∗(τ∗ + 1))− φ(σ∗(τ∗), σ∗(τ∗)) → 0, as T → +∞.

The proof is thus complete.
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The next step consists in formulating in two different ways the expected
limit of Proposition 4.13.

Theorem 4.15 (Minmax formula). Assume that F satisfies (F1) and
(F2). Then, the following equality holds true:

inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ(dx, dv, dw)

= sup
φ∈C∞

c (Td×Rd)

inf
(x,v)∈Td×Rd

{
−1

2
|Dvφ(x, v)|2 − 〈Dxφ(x, v), v〉+ F (x, v)

}
.

(4.11)

Proof. By definition of a closed measure we can write

inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ(dx, dv, dw)

= inf
µ∈P2,α(Td×Rd×Rd)

sup
φ∈C∞

c (Td×Rd)

∫
Td×Rd×Rd

(1
2
|w|2 + F (x, v)

− 〈Dxφ(x, v), v〉 − 〈Dvφ(x, v), w〉
)
µ(dx, dv, dw).

Our aim is to use the min-max Theorem (see Theorem 4.34 below). We use
for this the notation introduced in Appendix A and set A = C∞

c (Td × Rd),
B = P2,α(Td × Rd × Rd) and for any (φ, µ) ∈ A× B

L(φ, µ)

:=

∫
Td×Rd×Rd

(1
2
|w|2 + F (x, v)− 〈Dxφ(x, v), v〉 − 〈Dvφ(x, v), w〉

)
µ(dx, dv, dw).

Let us choose φ∗(x, v) = 0 and

c∗ = 1 + inf
µ∈P2,α(Td×Rd×Rd)

sup
φ∈C∞

c (Td×Rd)

∫
Td×Rd×Rd

(1
2
|w|2 + F (x, v)

− 〈Dxφ(x, v), v〉 − 〈Dvφ(x, v), w〉
)
µ(dx, dv, dw).

Note that c∗ is finite (since it is bounded below by assumption eq. (4.1)
and bounded above for µ = δ(x0,0,0) for any x0 ∈ Td). In addition, the set
B∗ = {µ ∈ B : L(φ∗, µ) ≤ c∗} is nonempty and tight, and thus compact, in
P2,α(Td × Rd × Rd) for the weak-∗ convergence. Finally, we have

c∗ ≥ 1 + sup
φ∈C∞

c (Td×Rd)

inf
µ∈P2,α(Td×Rd×Rd)

∫
Td×Rd×Rd

(1
2
|w|2 + F (x, v)

− 〈Dxφ(x, v), v〉 − 〈Dvφ(x, v), w〉
)
µ(dx, dv, dw).
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Therefore, Theorem 4.34 states that

inf
µ∈P2,α(Td×Rd×Rd)

sup
φ∈C∞

c (Td×Rd)

∫
Td×Rd×Rd

(1
2
|w|2 + F (x, v)

− 〈Dxφ(x, v), v〉 − 〈Dvφ(x, v), w〉
)
µ(dx, dv, dw)

= sup
φ∈C∞

c (Td×Rd)

inf
µ∈P2(Td×Rd×Rd)

∫
Td×Rd×Rd

(1
2
|w|2 + F (x, v)

− 〈Dxφ(x, v), v〉 − 〈Dvφ(x, v), w〉
)
µ(dx, dv, dw)

= sup
φ∈C∞

c (Td×Rd)

inf
(x,v,w)∈Td×Rd×Rd

{1
2
|w|2 + F (x, v)− 〈Dxφ(x, v), v〉

− 〈Dvφ(x, v), w〉
}

= sup
φ∈C∞

c (Td×Rd)

inf
(x,v)∈Td×Rd

{
−1

2
|Dvφ(x, v)|2 − 〈Dxφ(x, v), v〉+ F (x, v)

}
.

This complete the proof.

Next we introduce and study the discounted problem associated with
eq. (4.2). For any δ > 0 and any (x, v) ∈ Td × Rd we define Jδ : Γ →
R ∪ {+∞} as

Jδ(γ) =

∫ +∞

0
e−δt

(
1

2
|γ̈(t)|2 + F (γ(t), γ̇(t))

)
dt

if γ̇ is absolutely continuous with
∫ +∞
0 e−δt

(
1
2 |γ̈(t)|

2 + |γ̇(t))|α
)
dt < +∞,

and Jδ(γ) = +∞ otherwise. We define the associated value function (the
approximate corrector)

Vδ(x, v) = inf
γ∈Γ0(x,v)

Jδ(γ). (4.12)

We recall that Vδ is the unique continuous viscosity solution with a polyno-
mial growth of the following Hamilton-Jacobi equation

δVδ(x, v) +
1

2
|DvVδ(x, v)|2 + 〈DxVδ(x, v), v〉 = F (x, v). (4.13)

As the convergence of V T (0, ·, ·)/T is locally uniform (by Lemma 4.12),
we can apply the Abelian-Tauberian Theorem of [63] and we have that for
any (x, v) ∈ Td × Rd

lim
δ→0+

δVδ(x, v) = lim
T→∞

1

T
V T (0, x, v) =: λ. (4.14)

In the proof of the main result of this section (Proposition 4.22) we will
have to smoothen the map V δ. This involves some local regularity properties
of V δ, which is the aim of the next result.
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Proposition 4.16. Assume that F satisfies (F1) – (F3). Then, we have:

(i) {δVδ(x, v)}δ>0 is locally uniformly bounded;

(ii) {Vδ(x, v)}δ>0 has locally uniformly bounded oscillation, i.e. there ex-
ists a constant M(R) ≥ 0 such that for any (x0, v0), (x, v) ∈ Td ×BR

Vδ(x, v)− Vδ(x0, v0) ≤M(R).

(iii) there exists a constant C̃ ≥ 0 such that for any (x, v) ∈ Td × Rd

C̃−1|v|α − C̃δ−1 ≤ Vδ(x, v) ≤ cF δ
−1(|v|α + 1); (4.15)

(iv) the map x 7→ Vδ(x, v) is locally Lipschitz continuous and there exists
a constant Cδ ≥ 0 such that for a.e. (x, v) ∈ Td × Rd the following
holds:

|DxVδ(x, v)| ≤ Cδ(1 + |v|α). (4.16)

Proof. (i) Fix (x, v) ∈ Td×BR and define a competitor γ : [0,+∞] → Td
such that γ(t) = x+ tv. By definition and eq. (4.1) we get

δVδ(x, v) ≤ δ

∫ ∞

0
e−δtF (γ(t), γ̇(t)) ds ≤ cF (1 + |v|α) ≤ cF (1 +Rα).

On the other hand, we have by (F2) that F ≥ 0 and thus Vδ ≥ 0,
which completes the proof of (i).

(ii) Let (x0, v0), (x, v) ∈ Td×BR be fixed points, let γ∗ be a minimizer for
Vδ(x0, v0) and let σ be defined as in Lemma 4.8 such that σ(0) = x,
σ̇(0) = v and σ(1) = x0, σ̇(1) = v0. We define a new curve γ :
[0,+∞) → Td as follows

γ(t) =

{
σ(t), t ∈ [0, 1]

γ∗(t− 1), t ∈ (1,+∞).

Then

Vδ(x, v)− Vδ(x0, v0)

≤
∫ 1

0
e−λt

(
1

2
|γ̈(t)|2 + F (γ(t), γ̇(t))

)
dt

+

∫ +∞

1
e−λt

(
1

2
|γ̈(t)|2 + F (γ(t), γ̇(t))

)
dt

−Vλ(x0, v0).

(4.17)
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By a change of variable, we have that∫ +∞

1
e−δt

(
1

2
|γ̈∗(t)|2 + F (γ∗(t), γ̇∗(t))

)
dt

=e−δ
∫ ∞

0
e−δs

(
1

2
|γ̈∗(s)|2 + F (γ∗(s), γ̇∗(s))

)
ds = e−δVδ(x0, v0).

Therefore, we obtain that∣∣∣∣∫ +∞

1
e−δt

(
1

2
|γ̈(t)|2 + F (γ(t), γ̇(t))

)
dt− Vδ(x0, v0)

∣∣∣∣
≤
∣∣∣e−δ − 1

∣∣∣Vδ(x0, v0)
≤ δ|Vδ(x0, v0)| ≤ cF (1 +Rα),

(4.18)

where the last inequality holds true by (i). Moreover, by construction
of σ in Lemma 4.8 we have that∫ 1

0
e−δt

(
1

2
|σ̈(t)|2 + F (σ(t), σ̇(t))

)
dt ≤ J1(σ) ≤ C2(R

2 +Rα).

(4.19)

Combining together inequality eq. (4.18) and eq. (4.19) in eq. (4.17)
we get (ii):

Vδ(x, v)− Vδ(x0, v0) ≤ cF (1 +Rα) + C2(R
2 +Rα) =:M(R).

(iii) For some constants M1 and M2 we have that the map Z : Td×Rd → R
such that Z(x, v) = M−1

1 |v|α −M2δ
−1 is a subsolution of eq. (4.13),

indeed

δZ(x, v) +
1

2
|DvZ(x, v)|2 + 〈DxZ(x, v), v〉 − F (x, v)

≤ δM−1
1 |v|α −M2 +

1

2
M−2

1 α2|v|2(α−1) − c−1
F |v|α + cF .

As 2(α−1) ≤ α, since α ∈ (1, 2], we get, for M1 and M2 large enough,

δZ(x, v) +
1

2
|DvZ(x, v)|2 + 〈DxZ(x, v), v〉 − F (x, v) ≤ 0.

By comparison we obtain Vδ ≥ Z, which proves the first inequality in
eq. (4.15).
In the same way, considering the map Z(x, v) = cF δ

−1(|v|α + 1), we
have

δZ(x, v) +
1

2
|DvZ(x, v)|2 + 〈DxZ(x, v), v〉 − F (x, v)

≥ cF (|v|α + 1) +
1

2
δ−2(cFα)

2|v|2(α−1) − cF |v|α − cF ≥ 0,
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so that Z is a supersolution. By comparison we conclude that the
second inequality in (4.15) holds.

(iv) Let γ∗ be optimal for Vδ(x, v) and let h ∈ Rd. Then

Vδ(x+ h, v) ≤
∫ +∞

0
e−δt

(
1

2
|γ̈∗(t)|2 + F (γ∗(t) + h, γ̇∗(t))

)
dt

≤ Vδ(x, v) +

∫ +∞

0
e−δt (F (γ∗(t) + h, γ̇∗(t))− F (γ∗(t), γ̇∗(t))) dt

≤ Vδ(x, v) +

∫ +∞

0
e−δtcF (1 + |γ̇∗(t)|α)|h| dt,

(4.20)

where the last inequality holds true by assumption (F3). Moreover,
by eq. (4.15) we deduce that there exists a constant Cδ ≥ 0 such that∫ +∞

0
e−δt(c−1

F |γ̇∗(t)|α − cF ) dt ≤ Vδ(x, v) ≤ Cδ(1 + |v|α).

Therefore, by eq. (4.20) we deduce that

Vδ(x+ h, v)− Vδ(x, v) ≤ Cδ(1 + |v|α)|h|,

which implies that Vδ is locally Lipschitz continuous in space and
proves (iv).

We now strengthen a little the convergence in (4.14):

Proposition 4.17. Assume that F satisfies (F1)—(F3). Then

λ = lim
δ→0+

inf
(x,v)∈Td×Rd

δVδ(x, v),

with λ defined in eq. (4.14).

Proof. First we note that, by (i) in Proposition 4.16, the convergence in
(4.14) is locally uniform. Fix R ≥ 0 such that

c−1
F Rα − cF > λ. (4.21)

Then, for any ε > 0, there exists δε > 0 such that for any δ ∈ (0, δε) we have
that

inf
(x,v)∈Td×BR

δVδ(x, v) ≥ λ− ε . (4.22)

Fix (x, v) ∈ Td × Rd and let γ∗δ be a minimizer for Vδ(x, v). We define

τδ =

{
inf{t ∈ [0,+∞] : |γ̇∗δ (t)| ≤ R}, if {t ∈ [0,+∞] : |γ̇∗δ (t)| ≤ R} 6= ∅
+∞, if {t ∈ [0,+∞] : |γ̇∗δ (t)| ≤ R} = ∅.
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By Dynamic Programming Principle we get

Vδ(x, v) =

∫ τδ

0
e−δt

(
1

2
|γ̈∗δ (t)|2 + F (γ∗δ (t), γ̇

∗
δ (t))

)
dt+e−δτδVδ(γ

∗
δ (τδ), γ̇

∗
δ (τδ))

and by assumption eq. (4.1) and definition of τδ we deduce that

δVδ(x, v) ≥ (c−1
F Rα − cF )(1− e−δτδ) + e−δτδδVδ(γ

∗
δ (τδ), γ̇

∗
δ (τδ)). (4.23)

If τδ is finite, we have that |γ̇∗δ (τδ)| is bounded by R and thus, by (4.21) and
eq. (4.22) we deduce that for any δ ∈ (0, δε)

δVδ(x, v) ≥ λ(1− e−δτδ) + e−δτδ(λ− ε) ≥ λ− ε .

By (4.21) and (4.23) the same inequality also holds if τδ = +∞. Hence, we
obtain that

lim
δ→0+

inf
(x,v)∈Td×Rd

δVδ(x, v) ≥ λ− ε .

By eq. (4.14) we infer that

λ = lim
δ→0+

δVδ(0, 0) ≥ lim
δ→0+

inf
(x,v)∈Td×Rd

δVδ(x, v) ≥ λ− ε,

which implies the desired result since ε is arbitrary.

As Vδ is coercive, we cannot use it directly as a test function to test the
fact that a measure is closed. To overcome this issue we approximate Vδ by
family of Lipschitz maps (V R

δ ).

Lemma 4.18 (Approximate problem 1). Assume that F satisfies as-
sumption (F1)—(F3). Let R > 0 and define FR(x, v) = min{F (x, v), R}
for any (x, v) ∈ Td × Rd. Let V R

δ be the unique continuous and bounded
viscosity solution to

δV R
δ (x, v)+

1

2
|DvV

R
δ (x, v)|2+〈DxV

R
δ (x, v), v〉 = FR(x, v), (x, v) ∈ Td×Rd.

(4.24)
Then, the following holds:

(i) V R
δ is globally Lipschitz continuous;

(ii) there are two positive constants c̃1,δ and c̃2,δ such that

δV R
δ (x, v) ≥ c̃1,δ

(
1 + min{|v|α, R}

)
− c̃2,δ (4.25)

for any (x, v) ∈ Td × Rd;

(iii) there is a constant C̃δ ≥ 0 such that

|DxV
R
δ (x, v)| ≤ C̃δ

(
1 + min{|v|α, R}

)
(4.26)

for a.e. (x, v) ∈ Td × Rd;
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(iv) V R
δ converge, as R → +∞, uniformly on compact subsets of Td × Rd

to the map Vδ defined in (4.12).

The proofs of (i) and (iv) are direct consequences of optimal control
theory while the proofs of eq. (4.25) and eq. (4.26) follow the same argument
as for eq. (4.15) and eq. (4.16), respectively and we omit these proofs.

Lemma 4.19. Assume that F satisfies (F1) – (F3). Let FR and V R
δ be

defined in Lemma 4.18. Then we have that

inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + FR(x, v)

)
µ(dx, dv, dw) ≥ inf

(x,v)∈Td×Rd
δV R

δ (x, v).

(4.27)

Remark 4.20. Note that we can allow for a larger class of test functions
in Definition 4.1, i.e. φ ∈ W 1,∞(Td × Rd) ∩ C∞(Td × Rd). Indeed, let
φ ∈W 1,∞(Td×Rd)∩C∞(Td×Rd) and for R > 1 let ξR ∈ C∞

c (Rd) be such
that ξR(x, v) = 1 for (x, v) ∈ Td×BR, ξR(x, v) = 0 for (x, v) ∈ Td×Rd\B2R,
0 ≤ ξR(x, v) ≤ 1 for Td × B2R\BR and there exists a constant M ≥ 0 such
that |DξR(x, v)| ≤ MR−1 for any (x, v) ∈ Td × Rd. Set φR = φξR. Then,
we have that φR ∈ C∞

c (Td×Rd), DφR is uniformly bounded and converges
locally uniformly to Dφ. For µ ∈ C we have:∫

Td×Rd×Rd

(
〈DxφR(x, v), v〉+ 〈DvφR(x, v), w〉

)
µ(dx, dv, dw) = 0. (4.28)

Since µ ∈ P2,α(Td × Rd × Rd), we can pass to the limit in eq. (4.28) as
R→ +∞ by dominate convergence. This proves that∫

Td×Rd×Rd

(
〈Dxφ(x, v), v〉+ 〈Dvφ(x, v), w〉

)
µ(dx, dv, dw) = 0

for φ ∈W 1,∞(Td × Rd) ∩ C∞(Td × Rd).

Proof. Let ξ1,ε ∈ C∞
c (Rd) be such that spt(ξ1,ε) ⊂ Bε, ξ1,ε(x) ≥ 0 and∫

Bε
ξ1,ε(x) dx = 1, and define V R,ε

δ (x, v) = V R
δ ⋆x ξ

1,ε(x, v) where the mol-
lification only holds in x. Then V ε

δ satisfies the following inequality in the
viscosity sense

δV ε
δ (x, v) +

1

2
|DvV

ε
δ (x, v)|2 + 〈DxV

ε
δ (x, v), v〉

≤ FR ⋆ ξ
1,ε(x, v) ≤ FR(x, v) + CF ε(1 + min{|v|α, R})

where the last inequality holds true by (F3) and the definition of FR.
Now, let ξ2,ε ∈ C∞

c (Rd) be such that spt(ξ2,ε) ⊂ Bε, ξ2,ε(v) ≥ 0 and



4.2. ERGODIC BEHAVIOR OF CONTROL OF ACCELERATION 71

∫
Bε
ξ2,ε(v) dv = 1 and define φε,δR (x, v) = ξ2,ε ⋆v V

R,ε
δ (x, v) (where the the

mollification now only holds in v). Then, by eq. (4.26) we have that

|ξ2,ε ⋆v (〈DxV
R,ε
δ (x, ·), ·〉)(v)− 〈Dxφ

ε,δ
R (x, v), v〉|

≤ ε ‖DxV
R,ε
δ ‖L∞(Bε(x,v)) ≤ Cδ ε(1 + min{|v|α, R}),

which implies that

δφε,δR (x, v) +
1

2
|Dvφ

ε,δ
R (x, v)|2 + 〈Dxφ

ε,δ
R (x, v), v〉

≤ δφε,δR (x, v) +
1

2
|Dvφ

ε,δ
R (x, v)|2

+ ξ2,ε ⋆v 〈DxV
R,ε
δ (x, v), v〉+ Cδ ε(1 + min{|v|α, R})

≤ FR ⋆ ξ
2,ε(x, v) + Cδ ε(1 + min{|v|α, R})

≤ FR(x, v) + C1,δ ε(1 + min{|v|α, R})

where the last inequality holds true by assumption (F3). Thus, so far we
have proved that for any (x, v) ∈ Td × Rd

δφε,δR (x, v) +
1

2
|Dvφ

ε,δ
R (x, v)|2 + 〈Dxφ

ε,δ
R (x, v), v〉

≤ FR(x, v) + C1,δ ε(1 + min{|v|α, R}).
(4.29)

Moreover, in view of eq. (4.25) we deduce that there exists a constant C2,δ ≥
0 such that for any (x, v) ∈ Td × Rd we have that

δφε,δR (x, v) ≥ C−1
2,δ min{|v|α, R} − C2,δ. (4.30)

We claim that for ε > 0 small enough, the following holds:

inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + FR(x, v)

)
dµ(x, v, w)

≥ inf
(x,v)∈Td×Rd

(
δφε,δR (x, v)− C1,δ ε

(
1 + min{|v|α, R}

))
.

(4.31)

By Remark 4.20 above, we can test the fact that a measure is closed by
smooth and globally Lipschitz continuous maps. Let E(Td × Rd) be such a
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set. Then

inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + FR(x, v)

)
µ(dx, dv, dw)

= inf
µ∈Pα,2(Td×Rd×Rd)

sup
ψ∈E(Td×Rd)

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v)

− 〈Dxψ(x, v), v〉 − 〈Dvψ(x, v), w〉
)
µ(dx, dv, dw)

≥ sup
ψ∈E(Td×Rd)

inf
µ∈Pα,2(Td×Rd×Rd)

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v)

− 〈Dxψ(x, v), v〉 − 〈Dvψ(x, v), w〉
)
µ(dx, dv, dw)

≥ inf
µ∈Pα,2(Td×Rd×Rd)

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v)

− 〈Dxφ
ε,δ
R (x, v), v〉 − 〈Dvφ

ε,δ
R (x, v), w〉

)
µ(dx, dv, dw)

= inf
(x,v)∈Td×Rd

{
−1

2
|Dvφ

ε,δ
R (x, v)|2 + FR(x, v)− 〈Dxφ

ε,δ
R (x, v), v〉

}
,

which proves eq. (4.31) thanks to eq. (4.29). Recalling (4.30), the right hand
side of eq. (4.31) is coercive in v uniformly in ε for ε small. As in addition
φε,δR converges locally uniformly to V R

δ as ε→ 0, we obtain

lim
ε→0

inf
(x,v)∈Td×Rd

(
δφε,δR (x, v)− C2,δ ε

(
1 + min{|v|α, R}

))
= inf

(x,v)∈Td×Rd
δV R

δ (x, v).

So we can let ε→ 0 in (4.31) to obtain the result.

In the next step, we let R→ +∞ in (4.27):

Lemma 4.21. Assume that F satisfies (F1) – (F3). Let Vδ be defined in
(4.12). Then

inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ(dx, dv, dw) ≥ inf

(x,v)∈Td×Rd
δVδ(x, v).

(4.32)

Proof. We first consider the left-hand side of (4.27), for which we obviously
have, by the definition of FR in Lemma 4.18,

inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + FR(x, v)

)
µ(dx, dv, dw)

≤ inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ(dx, dv, dw). (4.33)
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As for the right hand side of eq. (4.27), we note that, if (xR, vR) ∈ Td × Rd
satisfies

V R
δ (xR, vR) ≤ inf

(x,v)∈Td×Rd
V R
δ (x, v) +R−1,

then, as V R
δ ≤ Vδ and (4.25) holds, we have

c̃1,δ
(
1 + min{|vR|α, R}

)
− c̃2,δ ≤ inf

(x,v)∈Td×Rd
Vδ(x, v) +R−1.

This proves that vR remains bounded in R and we can find a subsequence of
(xR, vR), denoted in the same way, which converges to some (x̄, v̄) ∈ Td×Rd
as R → +∞. Then by local uniform convergence of V R

δ to Vδ, we obtain
that

inf
(x,v)∈Td×Rd

Vδ(x, v) ≤ Vδ(x̄, v̄) = lim
R→+∞

V R
δ (xR, vR) = lim

R→+∞
inf

(x,v)∈Td×Rd
V R
δ (x, v).

(4.34)
Passing to the limit as R → +∞ in (4.27) proves the Lemma thanks to
(4.33) and (4.34).

We are now ready to prove the main result of this section.

Proposition 4.22 (Characterization with closed measures). Assume
that F satisfies (F1) — (F3). For any (x0, v0) ∈ Td × Rd we have that

lim
T→∞

1

T
V T (0, x0, v0) = inf

µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ(dx, dv, dw).

Proof. Let γT(x0,v0) be a minimum for the problem

inf
γ∈Γ0(x0,v0)

JT (γ).

Let us define the probability measures µT by∫
Td×Rd×Rd

φ(x, v, w) dµT (x, v, w) =
1

T

∫ T

0
φ(γT(x0,v0)(t), γ̇

T
(x0,v0)

(t), γ̈T(x0,v0)(t)) dt

for any φ ∈ C∞
c (Td ×Rd ×Rd). By Lemma 4.14, the (µT ) converge, up to a

subsequence (Tn), weak-∗ to a closed measure µ∗. Therefore

lim
T→∞

inf
γ∈Γ0(x0,v0)

1

T
JT (γ)

= lim
n→∞

1

Tn

∫ Tn

0

(
1

2
|γ̈Tn(x0,v0)(t)|

2 + F (γTn(x0,v0)(t), γ̇
Tn
(x0,v0)

(t))

)
dt

= lim
n→∞

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µTn(dx, dv, dw)

≥
∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ∗(dx, dv, dw).
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Thus, taking the infimum over the set of closed measures C we obtain that

lim
T→∞

inf
γ∈Γ0(x0,v0)

1

T
JT (γ) ≥ inf

µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
dµ(x, v, w).

To obtain the opposite inequality, we note that, by (4.32) (which holds
for any δ > 0) and Proposition 4.17, we have

inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v)

)
µ(dx, dv, dw)

≥ lim
δ→0+

inf
(x,v)∈Td×Rd

δVδ(x, v) = λ,

where λ defined in eq. (4.14). Then we can conclude thanks to (4.14).

Proof of Theorem 4.2. The existence of the limit and the fact that it does
not depend on (x, v) is the main statement of Proposition 4.13 while the
characterization of this limit is given by Proposition 4.22.

4.3 Asymptotic behavior of MFG with accelera-
tion

We now turn to MFG problems of acceleration. In order to study the asymp-
totic behavior of these problems, we first need to describe the expected limit:
the ergodic MFG problems of acceleration. The difficulty here is that, as
explained in the previous part, we do not expect the existence of a corrector
and therefore the ergodic MFG problem cannot be phrased in these terms.
We overcome this issue by using the characterization of the ergodic limit
given by Theorem 4.2 in terms of closed measures. This suggests the def-
inition of equilibria for ergodic MFG of acceleration (Definition 4.4). We
prove the existence and the uniqueness of a solution in Proposition 4.23. In
order to pass to the limit in the time-dependent MFG system of accelera-
tion, we first need to rephrase the solution of this system in terms of closed
measures (more precisely in terms of the so-called T−closed measures, see
Definition 4.24). This is the aim of the second part of the section (Theo-
rem 4.25). Thanks to this characterization, we are then able to conclude on
the long time average and complete the proof of Definition 4.4.

4.3.1 Ergodic MFG with acceleration

Following Definition 4.1 we recall that C ⊂ Pα,2(Td × Rd × Rd) denotes
the set of closed measures, i.e. µ ∈ C if it satisfies for any test function
φ ∈ C∞

c (Td × Rd) the following condition:∫
Td×Rd×Rd

(
〈Dxφ(x, v), v〉+ 〈Dvφ(x, v), w〉

)
µ(dx, dv, dw) = 0.
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The candidate limit problem that we are going to study is the following
fixed point problem: we look for a measure µ ∈ C such that

µ ∈ argmin
η∈C

{∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ)

)
η(dx, dv, dw)

}
(4.35)

where π : Td × Rd × Rd, defined as π(x, v, w) = (x, v), is the projection
function.

Proposition 4.23. Assume that F satisfies (F1’) and (F2’). Then, there
exists at least one solution (λ̄, µ̄) ∈ R× C of the ergodic MFG problem.

Moreover, if F satisfies the monotonicity assumption (4.6) and if (λ̄1, µ̄1)
and (λ̄2, µ̄2) are two solutions of the ergodic MFG problem, then λ̄1 = λ̄2.

Proof. Let K be the set of probability measures µ ∈ C such that∫
Td×Rd

(
1

2
|w|2 + c−1

F |v|α) µ(dx, dv, dw) ≤ 2cF ,

where α and cF are given by assumption (F2’). We endow K with the d1
distance and define, for any µ ∈ K, the set Ψ(µ) as the set of minimizers
η̄ ∈ C of the map defined on C

η →
∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ)

)
η(dx, dv, dw) (4.36)

We also denote by Λ(µ) the value of this minimum. First, we show that
the set-valued map Ψ is well-defined from K into K. Indeed, if µ ∈ K and
η̄ ∈ C is any minimum of (4.36), we have by assumption (F2’) (setting
η̃ = δ(x0,0,0) ∈ C for an arbitrary point x0 ∈ Td):∫

Td×Rd×Rd

(
1

2
|w|2 + c−1

F |v|α − cF ) η̄(dx, dv, dw)

≤
∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ)) η̄(dx, dv, dw)

≤
∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ)) η̃(dx, dv, dw) ≤ cF .

So η̄ belongs to K. Moreover, we observe that a solution of the ergodic MFG
problem exists if the set-valued map Ψ has a fixed-point and we prove that
this is the case using the Kakutani fixed-point theorem. Since α > 1, by the
above considerations, we know that the space K is compact with respect to
the d1 distance. Thus, for any µ ∈ K, the set Ψ(µ) is convex and compact.
It remains to check that Ψ has closed graph. Fix a sequence {µj}j∈N ⊂ K
and a sequence {ηj}j∈N ⊂ K such that

µj ⇀
d1 µ, ηj ⇀

d1 η̄, and ηj ∈ Ψ(µj) ∀j ∈ N.
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Let us show that η̄ ∈ Ψ(µ). Note that η̄ ∈ C. It remains to check that η̄ min-
imizes (4.36). By standard lower-semi continuity arguments and continuity
of F , we have:∫

Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ)) η̄(dx, dv, dw)

≤ lim inf
j

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µj)) ηj(dx, dv, dw).

(4.37)

We now check that the right-hand side is not larger that Λ(µ). Indeed, let
η̃ belong to Ψ(µ) and fix η > 0. As η̃ belongs to K we can find R > 0 such
that ∫

(Td×Rd×Rd)\BR

(
1

2
|w|2 + cF |v|α + cF ) η̃(dx, dv, dw) ≤ ε .

As π♯µj converges to π♯µ for the d1 distance, we have by assumption (F1’)
that, for j large enough,

lim
j→+∞

sup
(x,v)∈BR

|F (x, v, π♯µj)− F (x, v, π♯µ)| ≤ ε .

So, by optimality of ηj and the estimates above,

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µj)) ηj(dx, dv, dw) = Λ(µj)

≤
∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µj)) η̃(dx, dv, dw)

≤
∫
BR

(
1

2
|w|2 + F (x, v, π♯µj)) η̃(dx, dv, dw)

+

∫
Bc

R

(
1

2
|w|2 + cF |v|α + cF ) η̃(dx, dv, dw)

≤
∫
BR

(
1

2
|w|2 + F (x, v, π♯µ)) η̃(dx, dv, dw) + 2 ε ≤ Λ(µ) + 2 ε .

Coming back to (4.37), this shows that∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ)) η̄(dx, dv, dw) ≤ Λ(µ),

and therefore that η̄ belongs to Ψ(µ). Therefore, applying Kakutani fixed-
point theorem we have that there exists a fixed point η̄ of Ψ and this is a
solution of the ergodic MFG problem.

Now, we prove that under the monotonicity assumption eq. (4.6) the
critical value is unique. Let (λ̄1, µ̄1) and (λ̄2, µ̄2) be two solutions of the
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ergodic MFG problem. Then, by definition we have that, for i = 1 or i = 2,

λ̄i = inf
µ∈C

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ̄i)

)
µ(dx, dv, dw)

=

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ̄i)

)
µ̄i(dx, dv, dw).

(4.38)

Thus, exchanging the role of µ̄1 and µ̄2 as competitor for λ̄1 and λ̄2, respec-
tively, we get

λ̄1 ≤
∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ̄1)

)
µ̄2(dx, dv, dw) (4.39)

and

λ̄2 ≤
∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, π♯µ̄2)

)
µ̄1(dx, dv, dw). (4.40)

We first take the difference between eq. (4.39) and eq. (4.38) for i = 2 and
we get

λ̄1 − λ̄2 ≤
∫
Td×Rd×Rd

(
F (x, v, π♯µ̄1)− F (x, v, π♯µ̄2)

)
dµ̄2(dx, dv, dw).

Taking the difference between eq. (4.39) for i = 1 and eq. (4.40) we get

λ̄1 − λ̄2 ≥
∫
Td×Rd×Rd

(
F (x, v, π♯µ̄1)− F (x, v, π♯µ̄2)

)
dµ̄1(dx, dv, dw).

Thus, taking the difference of the above expressions we deduce that

0 ≥
∫
Td×Rd×Rd

(
F (x, v, π♯µ̄1)− F (x, v, π♯µ̄2)

)
(µ̄1(dx, dv, dw)−µ̄2(dx, dv, dw))

which implies by monotonicity assumption eq. (4.6) that F (x, v, π♯µ̄1) =
F (x, v, π♯µ̄2). Coming back to (4.39), it follows that λ̄1 = λ̄2.

4.3.2 Representation of the solution of the time-dependent
MFG system

We now consider the time-dependent MFG system (4.4). We have shown in
Chapter 3 that such system has a solution (uT ,mT ) and that the function
uT can be represented as

uT (t, x, v)

= inf
γ∈Γt(x,v)

{∫ T

t

(1
2
|γ̈(s)|2 + F (γ(s), γ̇(s),mT

s )
)
ds+ g(γ(T ), γ̇(T ),mT

T )

}
.

(4.41)
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In order to compare the solution of this time-dependent problem with the
solution of the ergodic MFG problem, which is written in terms of closed
measures, we need to rewrite the time-dependent problem in term of flows
of Borel probability measures on Td × Rd × Rd. The following definition
mirrors the definition of closed measure in the ergodic setting:

Definition 4.24 (T-Closed measures). Let T be a finite time horizon
and let m0 ∈ P1(Td × Rd). If η ∈ C([0, T ];P1(Td × Rd × Rd)), we say
that η is a T -closed measure associated with m0 if for any test function
φ ∈ C∞

c ([0, T ]× Td × Rd) the following holds∫ T

0

∫
Td×Rd×Rd

(
∂tφ(t, x, v) + 〈Dxφ(t, x, v), v〉+ 〈Dvφ(t, x, v), w〉

)
ηt(dx, dv, dw)dt

=

∫
Td×Rd×Rd

φ(T, x, v) ηT (dx, dv, dw)−
∫
Td×Rd×Rd

φ(0, x, v) m0(dx, dv).

(4.42)

We denote by CT (m0) the set of T -closed measures associated with m0 ∈
P1(Td × Rd).

The goal of the subsection is to prove the following equality:

Theorem 4.25. Assume that F satisfies (F1’), (F2’) and g satisfies (G1).
Let M ≥ 0 and assume that∫

Td×Rd

|v|α m0(dx, dv) ≤M. (4.43)

Let (uT ,mT ) be a solution to (4.4). Then

inf
µ∈CT (m0)

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µT (dx, dv, dw)

}
=

∫
Td×Rd

uT (0, x, v) m0(dx, dv).

(4.44)

In addition, there exists a minimizer µ̄T ∈ CT (m0) of the problem in the
left-hand side of (4.44) such that mT

t = π♯µ̄Tt , where π : Td × Rd × Rd →
Td × Rd is the canonical projection on the two first coordinates, i.e. such
that π(x, v, w) = (x, v).

The proof of Theorem 4.25 follows standard arguments but is slightly
technical because the problem is stated in the whole space in velocity. The
main problem is to regularize the map uT in order to have a smooth function
with a compact support which satisfies a suitable (approximate) Hamilton-
Jacobi inequality. The first step towards this aim is the following Lemma:
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Lemma 4.26 (Approximate problem 2). Let f : Td × Rd × [0, T ] → R
be a continuous map with at most a polynomial growth and which is locally
Lipschitz continuous in space locally uniformly in time and g : Td×Rd → R
be a locally Lipschitz continuous map with at most a polynomial growth. Let
R > 0 and let ξR be a smooth cut–off function such that ξR ≥ 0, ξR(x, v) = 1
if (x, v) ∈ Td×BR, 0 ≤ ξR(x, v) ≤ 1 if (x, v) ∈ Td×B2R\BR and ξR(x, v) =
0 if (x, v) ∈ Td×Bc

R. Define fR : Td×Rd× [0, T ] → R and gR : Td×Rd → R
as fR = ξRf and gR = ξRg. Let uTR be the viscosity solution of the following
problem
−∂tuTR(t, x, v) +

1
2 |Dvu

T
R(t, x, v)|2 − 〈Dxu

T
R(t, x, v), v〉

= fR(t, x, v), in [0, T ]× Td × Rd

uT (T, x, v) = gR(x, v), in Td × Rd.
(4.45)

Then, the following hold:

1. uTR has compact support;

2. uTR is Lipschitz continuous in space and velocity variable;

3. uTR converge, as R → +∞, locally uniformly to the solution uT of the
following problem
−∂tuT (t, x, v) + 1

2 |Dvu
T (t, x, v)|2 − 〈Dxu

T (t, x, v), v〉
= f(t, x, v), in [0, T ]× Td × Rd

uT (T, x, v) = g(x, v), in Td × Rd.

The proof of the Lemma follows standard argument in optimal control
and we omit it. Next we prove Theorem 4.25 in the simpler case where F
and g are replaced by FR and gR:

Proposition 4.27. Assume that F satisfies (F1’) and (F2’) and g satisfies
(G1). Let (uT ,mT ) be a solution of system eq. (4.4). For R > 0, let ξR
be a smooth cut–off function as in Lemma 4.26 and let us set FR = ξRF
and gR = ξRg. Let uTR be the continuous viscosity solution of the following
problem
−∂tuTR(t, x, v) +

1
2 |Dvu

T
R(t, x, v)|2 − 〈Dxu

T
R(t, x, v), v〉

= FR(x, v,m
T
t ), in [0, T ]× Td × Rd

uR(T, x, v) = gR(x, v,m
T
T ), in Td × Rd.

(4.46)
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Then

inf
µ∈CT (m0)

{∫ T

0

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v,m

T
t )
)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

gR(x, v,m
T
T ) µT (dx, dv, dw)

}
=

∫
Td×Rd

uTR(0, x, v) m0(dx, dv).

Proof. We first prove that

inf
µ∈CT (m0)

{∫ T

0

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v,m

T
t )
)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

gR(x, v,m
T
T ) µT (dx, dv, dw)

}
≥
∫
Td×Rd

uTR(0, x, v) m0(dx, dv).

(4.47)

We have that

inf
µ∈CT (m0)

{∫ T

0

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v,m

T
t )
)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

gR(x, v,m
T
T ) µT (dx, dv, dw)

}
= inf
µ∈C([0,T ];P1(Td×Rd×Rd))

sup
φ∈C∞

c ([0,T ]×Td×Rd)

∫ T

0

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v,m

T
t )

+ ∂tφ(t, x, v) + 〈Dxφ(t, x, v), v〉+ 〈Dvφ(t, x, v), w〉
)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

(
gR(x, v,m

T
T )− φ(T, x, v)

)
µT (dx, dv, dw)

+

∫
Td×Rd

φ(0, x, v) m0(dx, dv)

≥ sup
φ∈C∞

c ([0,T ]×Td×Rd)

inf
µ∈C([0,T ];P1(Td×Rd×Rd))

∫ T

0

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v,m

T
t )

+ ∂tφ(t, x, v) + 〈Dxφ(t, x, v), v〉+ 〈Dvφ(t, x, v), w〉
)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

(
gR(x, v,m

T
T )− φ(T, x, v)

)
µT (dx, dv, dw)

+

∫
Td×Rd

φ(0, x, v) m0(dx, dv).

In the argument below, the constant cR depends on R and on the data
and may change from line to line. Let ξ1,ε = ξ1,ε(x) be a smooth mollifier
such that spt(ξ1,ε) ⊂ Bε, ξ1,ε(x) ≥ 0 and

∫
Bε
ξ1,ε(x) dx = 1, and define
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uε,R1 = uTR ⋆x ξ
1,ε(t, x, v) (the convolution being in the x variable only). Let

R
′ ≥ R be such that spt(uTR), spt(FR) and spt(gR) are contained in BR′ .

Then, we have that uε,R1 satisfies the following inequality in the viscosity
sense

− ∂tu
ε,R
1 (t, x, v) +

1

2
|Dvu

ε,R
1 (t, x, v)|2 − 〈Dxu

ε,R
1 (t, x, v), v〉 ≤ FR ⋆ ξ

1,ε(t, x, v)

≤ FR(x, v,m
T
t ) + CF ε(1 + |v|α)1(x,v)∈Td×B

R
′ .

Now, let ξ2,ε = ξ2,ε(v) be a smooth mollifier such that spt(ξ2,ε) ⊂ Bε,
ξ2,ε(v) ≥ 0 and

∫
Bε
ξ2,ε(v) dv = 1 and define uR,ε2 = ξ2,ε ⋆v u

R,ε
1 (t, x, v)

(the convolution being now in the v variable only). Then, by the Lipschitz
regularity of uTR stated in Lemma 4.26 we have that

|ξ2,ε⋆v〈Dxu
R,ε
1 (t, x, ·), ·〉(v)−〈Dxu

R,ε
2 (t, x, v), v〉| ≤ ε ‖Dxu

R,ε
1 ‖∞ ≤ cR ε 1(x,v)∈Td×B

R
′ .

Hence uε,R2 satisfies in the viscosity sense:

− ∂tu
ε,R
2 (t, x, v) +

1

2
|Dvu

ε,R
2 (t, x, v)|2 − 〈Dxu

ε,R
2 (t, x, v), v〉

≤ FR(x, v,m
T
t ) + cR ε 1(x,v)∈Td×B

R
′ .

We finally regularize uε,R2 in time. Let ξ3,ε = ξ3,ε(t) be a smooth mollifier
such that spt(ξ2,ε) ⊂ Bε, ξ2,ε(t) ≥ 0 and

∫
Bε
ξ2,ε(t) dt = 1 and define

uR,ε3 = ξ3,ε⋆tu
R,ε
2 (t, x, v) (convolution in time). Thus, uR,ε3 , for any (t, x, v) ∈

(−∞, T − ε]× Td × Rd, satisfies (in the classical sense)

− ∂tu
R,ε
3 (t, x, v) +

1

2
|Dvu

R,ε
3 (t, x, v)|2 − 〈Dxu

R,ε
3 (t, x, v), v〉

≤ ξ3,ε ⋆t FR(x, v,m
T
· )(t) + cR ε 1(x,v)∈Td×B

R
′ .

By Theorem 3.25 in Chapter 3 we know that mT is Lipschitz continuous in
time with respect to the d1 distance. Setting ûRε (t, x, v) = uR,ε3 (t − ε, x, v),
ûRε satisfies therefore

− ∂tû
R
ε (t, x, v) +

1

2
|Dvû

R
ε (t, x, v)|2 − 〈Dxû

R
ε (t, x, v), v〉

≤ FR(x, v,m
T
t ) + cR ε 1(x,v)∈Td×B

R
′ .

(4.48)

We note that ûRε is smooth and has a compact support and converges uni-
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formly to uR as ε→ 0. Using ûRε as test function we get

sup
φ∈C∞

c ([0,T ]×Td×Rd)

inf
µ∈C([0,T ];P1(Td×Rd×Rd))

∫ T

0

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v,m

T
t )

+ ∂tφ(t, x, v) + 〈Dxφ(t, x, v), v〉+ 〈Dvφ(t, x, v), w〉
)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

(
gR(x, v,m

T
T )− φ(T, x, v)

)
µT (dx, dv, dw) +

∫
Td×Rd

φ(0, x, v) m0(dx, dv)

≥ inf
µ∈C([0,T ];P1(Td×Rd×Rd))

∫ T

0

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v,m

T
t ) + ∂tû

R
ε (t, x, v)

+ 〈Dxû
R
ε (t, x, v), v〉+ 〈Dvû

R
ε (t, x, v), w〉

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

(
gR(x, v,m

T
T )− ûRε (T, x, v)

)
µT (dx, dv, dw)

+

∫
Td×Rd

ûRε (0, x, v) m0(dx, dv)

= inf
(t,x,v)∈[0,T ]×Td×Rd

{1
2
|Dvû

R
ε (t, x, v)|2 + FR(x, v,m

T
t )− ∂tû

R
ε (t, x, v)

+ 〈Dxû
R
ε (t, x, v), v〉+ gR(x, v,m

T
T )− ûRε (T, x, v)

}
+

∫
Td×Rd

ûRε (0, x, v) m0(dx, dv).

By eq. (4.48) we obtain that

inf
(t,x,v)∈[0,T ]×Td×Rd

{(1
2
|Dvû

R
ε (t, x, v)|2 + FR(x, v,m

T
t ) + ∂tû

R
ε (t, x, v) + 〈Dxû

R
ε (t, x, v), v〉

)
+ gR(x, v,m

T
T )− ûRε (T, x, v)

}
+

∫
Td×Rd

ûRε (0, x, v) m0(dx, dv)

≥− cR ε+ inf
(x,v)∈Td×Rd

{
gR(x, v,m

T
T )− ûRε (T, x, v)

}
+

∫
Td×Rd

ûRε (0, x, v) m0(dx, dv).

As ε→ 0+ we obtain eq. (4.47).
On the other hand, since uTR is a continuous viscosity solution we know

that it can be represented as follows:

uTR(0, x, v) = inf
γ∈Γ0(x,v)

{∫ T

0

(
1

2
|γ̈(t)|2 + FR(γ(t), γ̇(t),m

T
t )

)
dt+ gR(γ(T ), γ̇(T ),m

T
T )

}
.

(4.49)
We define the measure ν ∈ C([0, T ];P1(Td × Rd × Rd)) as∫
Td×Rd×Rd

φ(x, v, w) νt(dx, dv, dw) =

∫
Td×Rd×Rd

φ(γ(x,v)(t), γ̇(x,v)(t), γ̈(x,v)(t)) m0(dx, dv),

for any φ ∈ C∞
c (Td×Rd×Rd) and any t ∈ [0, T ], where γ(x,v) is a measurable

selection of minimizers of problem eq. (4.49), see Lemma 4.28. By the
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regularity of the minimizers it is not difficult to prove that ν ∈ CT (m0).
Moreover, integrating the equality

uTR(0, x, v) =

∫ T

0

(1
2
|γ̈(x,v)(t)|2 + FR(γ(x,v)(t), γ̇(x,v)(t),m

T
t )
)
dt

+ gR(γ(x,v)(T ), γ̇(x,v)(T ),m
T
T )

against the measure m0 we deduce that∫
Td×Rd

uTR(0, x, v) m0(dx, dv)

=

∫
Td×Rd

∫ T

0

(1
2
|γ̈(x,v)(t)|2 + FR(γ(x,v)(t), γ̇(x,v)(t),m

T
t )
)
dt m0(dx, dv)

+

∫
Td×Rd

gR(γ(x,v)(T ), γ̇(x,v)(T ),m
T
T ) m0(dx, dv)

=

∫ T

0

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v,m

T
t )
)
νt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

gR(x, v,m
T
T ) νT (dx, dv, dw)

≥ inf
µ∈CT (m0)

∫ T

0

∫
Td×Rd×Rd

(1
2
|w|2 + FR(x, v,m

T
t )
)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

gR(x, v,m
T
T ) µT (dx, dv, dw).

This completes the proof.

Proof of Theorem 4.25. Using the notation of Proposition 4.27 we know that
for any R ≥ 0

inf
µ∈CT (m0)

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + FR(x, v,m

T
t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

gR(x, v,m
T
T ) µT (dx, dv, dw)

=

∫
Td×Rd

uTR(0, x, v) m0(dx, dv).

Then, on the one hand it is easy to see, by standard optimal control argu-
ments, that for any (x, v) ∈ Td×Rd we have that |uTR(0, x, v)| ≤ C̃1(1+|v|α).
By Dominated Convergence Theorem we get

lim
R→+∞

∫
Td×Rd

uTR(0, x, v) m0(dx, dv) =

∫
Td×Rd

uT (0, x, v) m0(dx, dv).
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On the other hand, without loss of generality we can define a cut-off function
ξR as in Proposition 4.27 such that FR and gR are non-decreasing in R. Thus

lim sup
R→+∞

inf
µ∈CT (m0)

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + FR(x, v,m

T
t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

gR(x, v,m
T
T ) µT (dx, dv, dw)

≤ inf
µ∈CT (m0)

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µT (dx, dv, dw).

To prove the reverse inequality, let {Rj}j∈N and {µjt}j∈N ⊂ CT (m0) be such
that

lim inf
R→+∞

inf
µ∈CT (m0)

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + FR(x, v,m

T
t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

gR(x, v,m
T
T ) µT (dx, dv, dw)

= lim
j→+∞

inf
µ∈CT (m0)

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + FRj (x, v,m

T
t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

gRj (x, v,m
T
T ) µT (dx, dv, dw)

= lim
j→+∞

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + FRj (x, v,m

T
t )

)
µjt (dx, dv, dw)dt

+

∫
Td×Rd×Rd

gRj (x, v,m
T
T ) µ

j
T (dx, dv, dw).

We claim that {µjt}j∈N is tight. Indeed, the lower bound on F and g, there
exists a constant C ≥ 0 such that

sup
j

∫ T

0

∫
Td×Rd×Rd

|w|2 µjt (dx, dv, dw)dt ≤ C (4.50)

and thus it is enough to prove that the moment with respect to v is also
bounded. In order to prove this bound, let ψ ∈ C∞

c (Rd) with ψ(0) = 0
and such that |Dψ(p)| ≤ 1. For φ(t, x, v) = (T − t)ψ(v), we have, by the
definition of a T−closed measure in eq. (4.42),∫ T

0

∫
Td×Rd×Rd

(
− ψ(v) + (T − t)〈Dψ(v), w〉

)
µjt (dx, dv, dw)dt

= − T

∫
Td×Rd

ψ(v) m0(dx, dv)

(4.51)



4.3. ASYMPTOTIC BEHAVIOR OF MFG WITH ACCELERATION 85

and by eq. (4.50) and Cauchy-Schwarz inequality we get∣∣∣∫ T

0

∫
Td×Rd×Rd

(T − t)〈Dψ(v), w〉 µjt (dx, dv, dw)dt
∣∣∣ ≤ TC1/2.

Thus, by eq. (4.51) we obtain that∣∣∣∫
Td×Rd×Rd

ψ(v) µjt (dx, dv, dw)dt
∣∣∣ ≤ C,

for some new constant C. If we choose ψn such that ψn(v) increases in n
and converges to |v|, we get therefore∫ T

0

∫
Td×Rd×Rd

|v| µjt (dx, dv, dw)dt ≤ C.

This implies that {µjt}j∈N is tight and, up to a subsequence still denoted by
µjt , converges to some µ̄ ∈ CT (m0). Then, we have that

inf
µ∈CT (m0)

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µT (dx, dv, dw)

≤
∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µ̄t(dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µ̄T (dx, dv, dw)

≤ lim
j→+∞

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + FRj (x, v,m

T
t )

)
µjt (dx, dv, dw)dt

+

∫
Td×Rd×Rd

gRj (x, v,m
T
T ) µ

j
T (dx, dv, dw)

= lim inf
j→+∞

inf
µ∈CT (m0)

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + FRj (x, v,m

T
t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

gRj (x, v,m
T
T ) µT (dx, dv, dw).

This completes the proof of equality (4.44).
It remain to check the existence of a minimizer µ̄T ∈ CT (m0) of the

problem in the left-hand side such that mT
t = π♯µ̄Tt . For this, let γ(x,v)

denote the measurable selection of minimizers of uT (0, x, v) in (4.41) as in
Lemma 4.28 below and define the measure

µ̄Tt =
(
(x, v) → (γ(x,v)(t), γ̇(x,v)(t), Dvu

T (t, γ(x,v)(t), γ̇(x,v)(t)))
)
♯m0
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for any t ∈ [0, T ]. Note that by [1, Lemma 3.5] µ̄Tt is well-defined since
u(t, x, ·) is differentiable along the optimal trajectory γ(x,v) with

γ̈(x,v)(t) = Dvu
T (t, γ(x,v)(t), γ̇(x,v)(t)), t ∈ [0, T ]

In particular, it is easy to see that µ̄T ∈ CT (m0) and moreover, by [1, Propo-
sition 4.2] we have thatmT

t = π♯µ̄Tt sincemT
t = ((x, v) → (γ(x,v)(t), γ̇(x,v)(t)))♯m0.

By the representation formula of the value function we have that

uT (0, x, v) =

∫ T

0

(1
2
|γ̈(x,v)(t)|2 + F (γ(x,v)(t), γ̇(x,v)(t),m

T
t )
)
dt+ g(γ(x,v)(T ), γ̇(x,v)(T ),m

T
T )

=

∫ T

0

(1
2
|Dvu

T (t, γ(x,v)(t), γ̇(x,v)(t))|2 + F (γ(x,v)(t), γ̇(x,v)(t),m
T
t )
)
dt

+ g(γ(x,v)(T ), γ̇(x,v)(T ),m
T
T ).

Integrating both side against the measure m0 and using the definition of µ̄T ,
we obtain that µ̄T satisfies the equality in (4.44) and therefore is optimal.

Lemma 4.28. Assume that F satisfies (F1’) and (F2’) and g satisfies
(G1). For (x, v) ∈ Td × Rd let Γ∗(x, v) ⊂ Γ0(x, v) be the set of minimizers
of problem eq. (4.41) for t = 0. Then, the set-valued map

Γ∗ : (Td × Rd, | · |) ⇒ (Γ, ‖ · ‖∞), (x, v) 7→ Γ∗(x, v)

has a measurable selection γ(x,v), i.e. (x, v) → γ(x,v) is measurable and, for
any (x, v) ∈ Td × Rd, γ(x,v) ∈ Γ∗(x, v).

Proof. By using classical results from optimal control theory it is not difficult
to see that Γ∗ has a closed graph, see for instance Lemma 3.9 in Chapter 3.
Therefore, by [21, Proposition 9.5] the set-valued map (x, v) ⇒ Γ∗(x, v) is
measurable with closed values. This implies by [26, Theorem A 5.2] the
existence of a measurable selection γ(x,v) ∈ Γ∗(x, v).

4.3.3 Convergence of the solution of the time dependent
MFG system

We now investigate the limit as the horizon T → +∞ of the time-dependent
MFG problem. The main result of this subsection is the following proposi-
tion:

Proposition 4.29 (Convergence of MFG solution). Assume that F
satisfies (F1’), (F2’), (F3’) with α = 2 and the monotonicity condition
(4.6), that g satisfies (G1) and that the initial distribution m0 in eq. (4.4)
belongs to P2(Td × Rd). Let (uT ,mT ) be a solution of the MFG system
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eq. (4.4) and let (λ̄, µ̄) be the solution of the ergodic MFG problem eq. (4.35).
Then

lim
T→+∞

1

T

∫
Td×Rd

uT (0, x, v) m0(dx, dv) = λ̄.

Throughout the section, we assume that the assumption of Proposi-
tion 4.29 are in force. The proof of the proposition—given at the end of the
subsection—is made at the level of the closed and T−closed measures. For
this we first need to discuss how to manipulate them. The first lemma is a
straightforward application of the definition of T−closed measures:

Lemma 4.30 (Concatenation of T -closed measure). Let T, T ′ > 0,
m0 ∈ P2(Td × Rd), µ1 ∈ CT (m0) and µ2 ∈ CT ′

(m1) with m1 = π♯µ1(T ).
Then, the measure

µt :=

{
µ1(t), t ∈ [0, T ]

µ2(t− T ), t ∈ (T, T + T ′]

belongs to CT+T ′
(m0).

Next we explain how to link two measures by a T−closed measure:

Lemma 4.31 (Linking two measures by a T -closed measure). Let
m1

0 and m2
0 belong to P2(Td × Rd). Then, there exists µm1

0→m2
0 ∈ CT=1(m1

0)

such that m2
0 = π♯µ

m1
0→m2

0
1 and∫ 1

0

∫
Td×R2d

(
1

2
|w|2 + cF (1 + |v|2)) µm

1
0→m2

0
t (dx, dv, dw)dt ≤ C2(1 +M2(m

1
0) +M2(m

2
0)),

(4.52)

where M2(m) =
∫
Td×Rd |v|2dm(x, v) (for m ∈ P2(Td × Rd)) and where C2

depends only on α and cF .

Proof. Let (x0, v0) ∈ spt(m1
0) and let (x, v) ∈ spt(m2

0). Then, following the
proof of Lemma 4.8, there exists a curve σ

(x,v)
(x0,v0)

: [0, 1] → Td such that

σ
(x,v)
(x0,v0)

(0) = x0, σ̇(x,v)(x0,v0)
(0) = v0 and σ

(x,v)
(x0,v0)

(1) = y, σ̇(x,v)(x0,v0)
(1) = w with∫ 1

0
(
1

2
|σ̈(x,v)(x0,v0)

(t)|2 + cF (1 + |σ̇(x,v)(x0,v0)
(t)|2))dt ≤ C2(1 + |v|2 + |v0|2). (4.53)

Moreover, by construction, σ depends continuously on (x0, v0, x, v). Let
λ ∈ Π(m1

0,m
2
0) be a transport plan between m1

0 and m2
0 (see (2.2)). We

define the measure µm1
0→m2

0 ∈ C1(m1
0) by∫

Td×Rd×Rd

φ(x, v, w)µ
m1

0→m2
0

t (dx, dv, dw)

=

∫
(T d×Rd)2

φ(σ
(x,v)
(x0,v0)

(t), σ̇
(x,v)
(x0,v0)

(t), σ̈
(x,v)
(x0,v0)

(t)) λ(dx0, dv0, dx, dv)
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for any φ ∈ C∞
c (Td×Rd×Rd). Then, on easily checks that m2

0 = π♯µ
m1

0→m2
0

1

and that, by (4.53):∫ 1

0

∫
Td×R2d

(
1

2
|w|2 + cF (1 + |v|2)) µm

1
0→m2

0
t (dx, dv, dw)dt

≤ C2

∫ 1

0

∫
Td×R2d

(1 + |v|2 + |v0|2) µ
m1

0→m2
0

t (dx, dv, dw)dt

= C2(1 +M2(m
1
0) +M2(m

2
0)).

Proposition 4.32 (Energy estimate). Under the notation and assump-
tion of Proposition 4.29, there exists a constant C ≥ 0 (independent of T )
such that∫ T

0
sup

(x,v)∈Td×Rd

|F (x, v,mT
t )− F (x, v, m̄)|2d+2

(1 + |v|2)2d
dt ≤ CT

1
2 , (4.54)

where m̄ = π♯µ̄, with π(x, v, w) = (x, v).

Proof. The proof consists in building from µ̄ and µT competitors in problems
(4.35) and (4.44) respectively. Let us recall that µT and µ̄ are minimizers
for these respective problems.

We start with problem (4.44). Fix T ≥ 2. We define the measure µ̃T by

µ̃Tt =

{
µm0→m̄
t , t ∈ [0, 1]

µ̄, t ∈ (1, T ],
(4.55)

where µm0→m̄ is the measure defined by Lemma 4.31. We know by Lemma 4.30
that µ̃T belongs to CT (m0). So we can use µ̃T as a competitor in problem
(4.44) to get∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µTt (dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µ

T
T (dx, dv, dw)

≤
∫ 1

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µm0→m̄
t (dx, dv, dw)dt

+

∫ T

1

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µ̄(dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µ̄(dx, dv, dw).

(4.56)
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Next we build from µT a competitor for the minimization problem eq. (4.35)
for which µ̄ is a minimizer. In view of [1, Proposition 4.2] there exists a Borel
measurable maps (x, v) → γ(x,v) such that, for each (x, v) ∈ Td × Rd, γ(x,v)
is a minimizer for uT (0, x, v) in (4.44) and satisfies

∫ T

0

∫
Td×R2d

φ(x, v, w) µTt (dx, dv, dw)dt

=

∫
Td×Rd

∫ T

0
φ(γ(x,v)(t), γ̇(x,v)(t), γ̈(x,v)(t))dtm0(dx, dv)

(4.57)

for any test function φ ∈ C0
b (Td × R2d). By Lemma 4.10 and Remark

4.11, for any λ ≥ 2, there exist Borel measurable maps (x, v) → γ̃(x,v) and
(x, v) → τ(x,v) such that

γ̃(x,v)(0) = γ̃(x,v)(T ) = x, ˙̃γ(x,v)(0) = ˙̃γ(x,v)(T ) = v and γ̃(x,v) = γ(x,v) on [0, τ(x,v)]
(4.58)

and

∫ T

τ(x,v)

(
1

2
|¨̃γ(x,v)(t)|2 + cF (1 + | ˙̃γ(x,v)(t)|2)dt ≤ C3(1 + |v|)2(λ2 + λ−2T ).

(4.59)

Let us define µ̂T by

∫
Td×R2d

φ(x, v, w) µ̂T (dx, dv, dw)

= T−1

∫
Td×Rd

∫ T

0
φ(t, γ̃(x,v)(t), ˙̃γ(x,v)(t), ¨̃γ(x,v)(t))dtm0(dx, dv)

(4.60)

for any test function φ ∈ C0
b (Td×R2d). Note that, by (4.58), µ̂T belongs to

C. So using the closed measure µ̂T as a competitor in problem eq. (4.35) we
deduce that

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µ̄(dx, dv, dw)

≤
∫
Td×R2d

(
1

2
|w|2 + F (x, v, m̄)

)
µ̂T (dx, dv, dw).

(4.61)
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Note that by the definition of µ̂T in (4.60) and by (4.58) and (4.59), we have

T

∫
Td×R2d

(
1

2
|w|2 + F (x, v, m̄)

)
µ̂T (dx, dv, dw)

=

∫
Td×Rd

∫ T

0
(
1

2
|¨̃γ(x,v)(t)|2 + F (γ̃(x,v)(t), ˙̃γ(x,v)(t), m̄))dt m0(dx, dv)

≤
∫
Td×Rd

(∫ τ(x,v)

0
(
1

2
|γ̈(x,v)(t)|2 + F (γ(x,v)(t), γ̇(x,v)(t), m̄))dt

+

∫ T

τ(x,v)

(
1

2
|¨̃γ(x,v)(t)|2 + cF (1 + | ˙̃γ(x,v)(t)|2))dt

)
m0(dx, dv)

≤
∫
Td×Rd

(∫ T

0
(
1

2
|γ̈(x,v)(t)|2 + F (γ(x,v)(t), γ̇(x,v)(t), m̄))dt

+ C3(1 + |v|)2(λ2 + λ−2T )
)
m0(dx, dv).

Plugging this inequality into (4.61) and using the representation of µT in
(4.57) then gives∫

Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µ̄(dx, dv, dw)

≤
∫
Td×R2d

(
1

2
|w|2 + F (x, v, m̄)

)
µ̂T (dx, dv, dw)

≤ T−1

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µTt (dx, dv, dw)dt

+ 2C3(1 +M2(m0))(λ
2T−1 + λ−2),

(4.62)

where M2(m0) =
∫
Td×Rd |v|2dm0(x, v). Putting together (4.56) and (4.62)

(multiplied by T ) then implies that∫ T

0

∫
Td×R2d

(
1

2
|w|2 + F (x, v,mT

t ))dµ
T
t (x, v, w)

+

∫ T

0

∫
Td×R2d

(
1

2
|w|2 + F (x, v, m̄)

)
µ̄(dx, dv, dw)dt

≤
∫ 1

0

∫
Td×R2d

(
1

2
|w|2 + F (x, v,mT

t )

)
µm0→m̄
t (dx, dv, dw)dt

+

∫ T

1

∫
Td×R2d

(
1

2
|w|2 + F (x, v,mT

t )

)
µ̄(dx, dv, dw)dt

+

∫
Td×R2d

g(x, v,mT
T ) µ̄(dx, dv, dw)−

∫
Td×R2d

g(x, v,mT
T ) µ

T
T (dx, dv, dw)

+

∫ T

0

∫
Td×R2d

(
1

2
|w|2 + F (x, v, m̄)

)
µTt (dx, dv, dw)dt+ 2C3(1 +M2(m0))(λ

2 + λ−αT ).
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Using (4.52) to bound the first term in the right-hand side (note that m̄
belongs to Pα,2(Td × Rd × Rd) with α = 2, so that m̄ ∈ P2(Td × Rd)) we
obtain therefore∫ T

0

∫
Td×R2d

(F (x, v,mT
t )− F (x, v, m̄)) (µTt (dx, dv, dw)− µ̄(dx, dv, dw))dt

≤ C2(1 +M2(m0) +M2(m̄)) + 2‖g‖∞ + 2C3(1 +M2(m0))(λ
2 + λ−2T ).

We now use the strong monotonicity condition eq. (4.6) and choose λ = T 1/4

to get ∫ T

0

∫
Td×R2d

(F (x, v,mT
t )− F (x, v, m̄))2dxdvdt ≤ CT

1
2

for a constant C independent of T . Recalling that F satisfies (F3’), we
obtain (4.54) by the interpolation inequality Lemma 4.35 in the Appendix.

Proof of Proposition 4.29. Throughout the proof, C denotes a constant in-
dependent of T and which may change from line to line. Let µT ∈ CT (m0)
be associated with a solution (uT ,mT ) of the MFG system (4.4) as in The-
orem 4.25. By Theorem 4.25 we have that

1

T

∫
Td×Rd

uT (0, x, v) m0(dx, dv)

=
1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µTt (dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µ

T
T (dx, dv, dw)

}
= inf

µ∈CT (m0)

1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µT (dx, dv, dw)

}
.

(4.63)

We first claim that

lim sup
T→+∞

inf
µ∈CT (m0)

1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µT (dx, dv, dw)

}
≤ inf

µ̃∈C

{∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µ̃(dx, dv, dw)

}
.

(4.64)
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In order to prove the claim, we first note that, by Young’s inequality and
Proposition 4.32, we have, for any µ ∈ CT (m0),

∣∣∣∫ T

0

∫
Td×Rd×Rd

(
F (x, v,mT

t )− F (x, v, m̄)
)
µt(dx, dv, dw)dt

∣∣∣
≤
∫ T

0

∫
Td×Rd×Rd

sup
(x′,v′)∈Td×Rd

|F (x′, v′,mT
t )− F (x′, v′, m̄)|

(1 + |v′|2)
d

d+1

(1 + |v|2)
d

d+1 µt(dx, dv, dw)dt

≤ T
1
4

2d+ 2

∫ T

0
sup

(x,v)∈Td×Rd

|F (x, v,mT
t )− F (x, v, m̄)|2d+2

(1 + |v|2)2d
dt

+
(2d+ 1)T

− 1
4(2d+1)

2d+ 2

∫ T

0

∫
Td×Rd×Rd

(1 + |v|2)
2d

(2d+1) µt(dx, dv, dw)dt

≤ CT
3
4 + T

− 1
4(2d+1)

∫ T

0

∫
Td×Rd×Rd

(1 + |v|2) µt(dx, dv, dw)dt.

(4.65)

As g is bounded, we have therefore, for any µ ∈ CT (m0),

1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µT (dx, dv, dw)

}
≤ 1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µt(dx, dv, dw)dt

+ T
− 1

4(2d+1)

∫ T

0

∫
Td×Rd×Rd

(1 + |v|2) µt(dx, dv, dw)dt
}
+ CT− 1

4 + T−1‖g‖∞.

(4.66)

Given µ̃ ∈ C, we know from Lemma 4.31 that there exists µm0→π♯µ̃ such
that ∫ 1

0

∫
Td×R2d

(
1

2
|w|2 + cF (1 + |v|2))µm0→π♯µ̃

t (dx, dv, dw)dt

≤ C2(1 +M2(m0) +M2(π♯µ̃)).

(4.67)

Let us then define µ̃T by

µ̃Tt =

{
µm0→π♯µ̃
t , t ∈ [0, 1]

µ̃, t ∈ (1, T ],
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By Lemma 4.31, µ̃T belongs to CT (m0) and we have, in view of (4.67),

T−1

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µ̃Tt (dx, dv, dw)dt

≤ C2T
−1(1 +M2(m0) +M2(π♯µ̃))

+ T−1(T − 1)

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µ̃(dx, dv, dw)

while ∫ T

0

∫
Td×Rd×Rd

(1 + |v|2) µ̃Tt (dx, dv, dw)dt

≤ C2(1 +M2(m0) +M2(π♯µ̃)) + (T − 1)M2(π♯µ̃).

Therefore, coming back to (4.66) and using the µ̃T built as above from the
µ̃ ∈ C as competitors, we have

inf
µ∈CT (m0)

1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µt(dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µT (dx, dv, dw)

}
≤ inf

µ̃∈C

{∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µ̃(dx, dv, dw)

+ CT
− 1

4(2d+1) (1 +M2(m0) +M2(π♯µ̃))
}
+ CT− 1

4 + T−1‖g‖∞.
(4.68)

Since, by assumption (F2’),∫
Td×Rd×Rd

F (x, v, m̄) µ̃(dx, dv, dw) ≥ c−1
F M2(π♯µ̃)− cF ,

one easily checks that the limit of the right-hand side of (4.68) as T → +∞
is

inf
µ̃∈C

{∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µ̃(dx, dv, dw)

}
.

This proves our claim (4.64).

Next we claim that there exists a closed measure µ̂ ∈ C such that

lim inf
T→+∞

1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µTt (dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µ

T
T (dx, dv, dw)

}
≥
∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µ̂(dx, dv, dw).

(4.69)
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For the proof of (4.69), we work with a subsequence of T → +∞ (still
denoted by T ) along which the lower limit in the left-hand side is achieved.
Coming back to (4.65), we have

1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µTt (dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µ

T
T (dx, dv, dw)

}
≥ 1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µTt (dx, dv, dw)dt

− T
− 1

4(2d+1)

∫ T

0
(1 +M2(π♯µ

T
t ))dt

}
− CT− 1

4 − ‖g‖∞T−1.

By the coercivity of F in assumption (F2’), we can absorb the second term
in the right-hand side into the first one and obtain:

1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µTt (dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µ

T
T (dx, dv, dw)

}
≥ 1

T
(1− C−1T

− 1
4(2d+1) )

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µTt (dx, dv, dw)dt

− CT
− 1

4(2d+1) − CT− 1
4 − ‖g‖∞T−1.

(4.70)

As in the proof of Proposition 4.32 (see (4.62)), for any λ ≥ 1, we can
find a closed measure µ̂T ∈ C such that∫

Td×R2d

(
1

2
|w|2 + F (x, v, m̄)

)
µ̂T (dx, dv, dw)

≤ T−1

∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µTt (dx, dv, dw)dt

+ 2C3(1 +M2(m0))(λ
2T−1 + λ−2).

Plugging this inequality into (4.70) we find therefore

1

T

{∫ T

0

∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v,mT

t )

)
µTt (dx, dv, dw)dt

+

∫
Td×Rd×Rd

g(x, v,mT
T ) µ

T
T (dx, dv, dw)

}
≥ (1− C−1T

− 1
4(2d+1) )

∫
Td×R2d

(
1

2
|w|2 + F (x, v, m̄)

)
µ̂T (dx, dv, dw)

− 2C3(1 +M2(m0))(λ
2T−1 + λ−2)− CT

− 1
4(2d+1) .
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By assumption (F2’), the functional in the right-hand side of the inequality
is coercive for T large enough. So µ̂T weakly-∗ converges (up to a subse-
quence) to a closed measure µ̂. Taking the lower-limit in the last inequality
then implies (4.69).

Putting together (4.64) and (4.69), we find that µ̂ is a minimizer in the
right-hand side of (4.64) and that the semi-limits and the inequalities in
(4.64) and (4.69) are in fact limits and equalities. So coming back to (4.63)
we find that

lim
T→+∞

1

T

∫
Td×Rd

uT (0, x, v) m0(dx, dv)

= inf
µ̃∈C

{∫
Td×Rd×Rd

(
1

2
|w|2 + F (x, v, m̄)

)
µ̃(dx, dv, dw)

}
.

The right-hand side of this equality is nothing than but λ̄ since (λ̄, µ̄) is a
solution to the the ergodic MFG problem with m̄ = π♯µ̄: this completes the
proof of the proposition.

To complete the proof of Theorem 4.5, we need estimates on the oscilla-
tion of uT . This comes next:

Lemma 4.33. For any R ≥ 1 and (x, v), (x′, v′) ∈ Td ×BR, we have

|uT (0, x, v)− uT (0, x′, v′)| ≤ CR2T
4d+3
4(d+1) ,

where C is independent of T and R.

Proof. Let γ ∈ Γ(x, v) be optimal for uT (0, x, v) in (4.41). We define γ̃ ∈
Γ(x′, v′) by

γ̃(t) =

{
σ(t) if t ∈ [0, 1]
γ(t− 1) if t ∈ [1, T ].

where σ is as in Lemma 4.8 with σ(0) = x′, σ̇(0) = v′, σ(1) = x, σ̇(1) = v
and ∫ 1

0

(1
2
|σ̈(t)|2 + F (σ(t), σ̇(t),mT

t )
)
dt ≤ 2C2R

2.

Note that, as the problem for uT depends on time through (mT
t ), the cost

associated with γ̃ could be quite far from the cost associated with γ. To over-
come this issue, we use in a crucial way Proposition 4.32. Indeed, applying
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(4.54) in Proposition 4.32, we have∫ T

0

∣∣F (γ(t), γ̇(t),mT
t )− F (γ(t), γ̇(t), m̄))

∣∣ dt
≤
∫ T

0
(1 + |γ̇(t)|2)

d
d+1 sup

(y,z)∈Td×Rd

|F (y, z,mT
t )− F (y, z, m̄)|

(1 + |v|2)
d

d+1

dt

≤
(∫ T

0
(1 + |γ̇(t)|2)

2d
2d+1dt

) 2d+1
2d+2

(∫ T

0
sup

(y,z)∈Td×Rd

|F (y, z,mT
t )− F (y, z, m̄)|2d+2

(1 + |v|2)2d
dt

) 1
2d+2

≤ CT
1

4(d+1)

(∫ T

0
(1 + |γ̇(t)|2)dt

) 2d+1
2d+2

.

We have by assumption (F2’) and Lemma 4.6 that∫ T

0
(c−1
F |γ̇(t)|2 − cF )dt ≤ uT (0, x, v) ≤ cFT (1 + |v|2). (4.71)

Therefore∫ T

0

∣∣F (γ(t), γ̇(t),mT
t )− F (γ(t), γ̇(t), m̄))

∣∣ ≤ CT
4d+3
4(d+1) (1 +R2)

2d+1
2d+2 . (4.72)

For the very same reason we also have∫ T

1

∣∣F (γ(t− 1), γ̇(t− 1),mT
t )− F (γ(t− 1), γ̇(t− 1), m̄))

∣∣ ≤ CT
4d+3
4(d+1) (1 +R2)

2d+1
2d+2 ,

(4.73)

because we only used the optimality of γ only in the estimate (4.71). So, by
(4.72) and (4.73) we obtain

uT (0, x′, v′) ≤
∫ T

0

(1
2
|¨̃γ(t)|2 + F (γ̃(t), ˙̃γ(t),mT

t )
)
dt

=

∫ 1

0

(1
2
|σ̈(t)|2 + F (σ(t), σ̇(t),mT

t )
)
dt+

∫ T−1

0

(1
2
|γ̈(t− 1)|2 + F (γ(t− 1), γ̇(t− 1),mT

t )
)
dt

≤ 2C2R
2 +

∫ T

0

(1
2
|γ̈(t)|2 + F (γ(t), γ̇(t), m̄)

)
dt+ CT

4d+3
4(d+1) (1 +R2)

2d+1
2d+2

≤ 2C2R
2 +

∫ T

0

(1
2
|γ̈(t)|2 + F (γ(t), γ̇(t),mT

t )
)
dt+ 2CT

4d+3
4(d+1) (1 +R2)

2d+1
2d+2

≤ uT (0, x, v) + 2C2R
2 + 2CT

4d+3
4(d+1) (1 +R2)

2d+1
2d+2 ,

from which the result derives easily.
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Proof of Theorem 4.5. Proposition 4.23 states the existence of a solution for
the ergodic MFG system and its uniqueness under assumption (4.6). From
Proposition 4.29 we know that

lim
T→+∞

1

T

∫
Td×Rd

uT (0, x, v)m0(dx, dv) = λ̄.

It remains to prove the local uniform convergence of uT to λ̄. Fix R > 0
and ε > 0. We have by Lemma 4.6 that

0 ≤ uT (0, x, v) ≤ cFT (1 + |v|2). (4.74)

As m0 ∈ P2(Td × Rd), there exists R′ ≥ R such that∫
Td×(Rd\BR′ )

(1 + |v|2)m0(dx, dv) ≤ ε . (4.75)

Then, for any (x0, v0) ∈ Td × BR, we have, by Lemma 4.33, (4.74) and
(4.75),

| 1
T
uT (0, x0, v0)− λ̄ | ≤

∣∣∣∣ 1T
∫
Td×Rd

uT (0, x, v)m0(dx, dv)− λ̄

∣∣∣∣
+

1

T

∫
Td×BR′

∣∣uT (0, x, v)− uT (0, x0, v0)
∣∣m0(dx, dv)

+
1

T

∫
Td×(Rd\BR′ )

(|uT (0, x, v)|+ |uT (0, x0, v0)|) m0(dx, dv)

≤
∣∣∣∣ 1T
∫
Td×Rd

uT (0, x, v)m0(dx, dv)− λ̄

∣∣∣∣+ CT−1(R′)2T
4d+3
4(d+1) + cF ε(2 +R2),

from which the local uniform convergence of uT (0, ·, ·)/T to λ̄ can be ob-
tained easily.

4.4 Appendix

4.4.1 Von Neumann minmax theorem

Let A, B be convex sets of some vector spaces and let us suppose that B
is endowed with some Hausdorff topology. Let L : A × B → R be a saddle
function satisfying

1. a 7→ L(a, b) is concave in A for every b ∈ B,

2. b 7→ L(a, b) is convex in B for every a ∈ A.

It is always true that

inf
b∈B

sup
a∈A

L(a, b) ≥ sup
a∈A

inf
b∈B

L(a, b).
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Theorem 4.34 ([64]). Assume that there exists a∗ ∈ A and c∗ > supa∈A infb∈B L(a, b)
such that

B∗ := {b ∈ B : L(a∗, b) ≤ c∗}

is not empty and compact in B, and that b 7→ L(a, b) is lower semicontinuous
in B∗ for every a ∈ A.

Then
min
b∈B

sup
a∈A

L(a, b) = sup
a∈A

inf
b∈B

L(a, b).

4.4.2 An interpolation inequality

Lemma 4.35. Assume that f : Td×Rd → R is locally Lipschitz continuous
with

|f(x, v)|+|Dxf(x, v)|+|Dvf(x, v)| ≤ c0(1+|v|α) for a.e. (x, v) ∈ Td × Rd
(4.76)

for some constants c0 > 0 and α ∈ (1, 2]. There exists a constants Cd > 0
(depending on dimension only) such that

sup
(x,v)∈Td×Rd

|f(x, v)|2d+2

(1 + |v|α)2d
≤ Cdc

2d
0

∫
Td×Rd

|f(x, v)|2dxdv.

Proof. Let (x0, v0) ∈ Td × Rd be such that f(x0, v0) 6= 0 and let R =
|f(x0,v0)|

2c0(3+2|v0|α) . Note that, by our assumption on |f | in (4.76), R is less than
1. Then, for any (x, v) ∈ BR(x0, v0), we have by assumption (4.76) that

|Dxf(x, v)|+|Dvf(x, v)| ≤ c0(1+(1+|v0|)α) ≤ c0(1+2α−1+2α−1|v0|α) ≤ c0(3+2|v0|α),

(where we used the fact that R ≤ 1 and that (a + b)α ≤ 2α−1(aα + bα) in
the first inequality and the fact that α ≤ 2 in the second one). Therefore

|f(x, v)| ≥ |f(x0, v0)| − c0(3 + 2|v0|α)R =
|f(x0, v0)|

2
.

Taking the square and integrating over BR(x0, v0) gives∫
Td×Rd

|f(x, v)|2dxdv ≥ |B1|R2d |f(x0, v0)|2

4
= |B1|

|f(x0, v0)|2d+2

22d+2c2d0 (3 + 2|v0|α)2d
,

which implies the result.



Chapter 5

Singular limit problem for
mean field control of
acceleration

5.1 Assumptions and main results

In this following, we will use the same notation for similar objects for two
problems. However, both the analysis are self contained and there are no
intersections that might create ambiguity.

5.1.1 Control of acceleration

We begin with the analysis of the pure control problem of acceleration with-
out mean field interaction.

Assume that the Lagrangian L0 : R2d → R satisfy the following.

(L1) L0 ∈ C1(R2d);

(L2) there exists C0 ≥ 0 such that for any (x, v) ∈ R2d

1

C0
|v|2 − C0 ≤ L0(x, v) ≤ C0(1 + |v|2), (5.1)

|DxL0(x, v)| ≤ C0

(
1 + |v|2

)
, (5.2)

|DvL0(x, v)| ≤ C0

(
1 + |v|

)
, (5.3)

and, without loss of generality, we assume that L0(x, v) ≥ 0.

99
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We consider the Hamilton-Jacobi equation
−∂tuε(t, x, v) + 1

2 ε |Dvu
ε(t, x, v)|2 − 〈Dxu

ε(t, x, v), v〉
−L0(x, v) = 0, (t, x, v) ∈ [0, T ]× R2d

uε(T, x, v) = g(x), (x, v) ∈ R2d.

(5.4)

and assume the following on the function g : Rd → R.

(TC) g(·) ∈ C1
b (Rd) such that C0 ≥ max

{
1
2 ,

1
2‖Dg(·)‖∞,Rd

}
.

Let Γ be the set of C1 curves γ : [0, T ] → Rd, endowed with the local
uniform convergence of the curve and its derivative, and given (t, x, v) ∈
[0, T ] × R2d let Γt(x, v) be the subset of Γ such that γ(t) = x, γ̇(t) = v.
Similarly, let Γt(x) be the subset of Γ such that γ(t) = x. Define the
functional Jεt,T : Γ → R

Jεt,T (γ) =

∫ T

t

(ε
2
|γ̈(s)|2 + L0(γ(s), γ̇(s))

)
ds+ g(γ(T )), if γ ∈ H2(0, T ;Rd)

and set Jεt,T (γ) = +∞ if γ 6∈ H2(0, T ;Rd). Then, we know that the solution
uε of (5.4) can be represented as

uε(t, x, v) = inf
γ∈Γt(x,v)

Jεt,T (γ), (t, x, v) ∈ [0, T ]× R2d. (5.5)

Let H0 : R2d → R be the Hamiltonian associated with L0, i.e.,

H0(x, p) = sup
v∈Rd

{
− 〈p, v〉 − L0(x, v)

}
.

Theorem 5.1 (Main result 1). Assume (L1), (L2) and (TC). Let uε
be a solution to (5.4). Then, there exists a sequence {εk}k∈N with εk ↓ 0 as
k → ∞, and a function u0 ∈W 1,∞

loc ([0, T ]× Rd) such that for any R ≥ 0

lim
k→∞

uεk(t, x, v) = u0(t, x), uniformly on [0, T ]×BR ×BR.

Moreover, u0 satisfy{
−∂tu0(t, x) +H0(x,Dxu

0(t, x)) = 0, (t, x) ∈ [0, T ]× Rd

u0(T, x) = g(x), x ∈ Rd

and, consequently, for any (t, x) ∈ [0, T ]× Rd we have that

u0(t, x) = inf
γ∈Γt(x)

{∫ T

t
L0(γ(s), γ̇(s)) ds+ g(γ(T ))

}
.



5.1. ASSUMPTIONS AND MAIN RESULTS 101

5.1.2 Mean field control of acceleration

We now list the main assumptions on the Lagrangian L0 : R2d×P1(Rd) →
R.

(M1) L0 is continuous w.r.t. all variables and for any m ∈ P1(Rd) the map
(x, v) 7→ L0(x, v,m) belongs to C1(Rd).

(M2) There exists M0 ≥ 0 such that for any (x, v,m) ∈ R2d × P1(Rd)

1

M0
|v|2 −M0 ≤ L0(x, v,m) ≤ M0(1 + |v|2), (5.6)

|DxL0(x, v,m)| ≤ M0

(
1 + |v|2

)
, (5.7)

|DvL0(x, v,m)| ≤ M0

(
1 + |v|

)
, (5.8)

and, without loss of generality, L0(x, v,m) ≥ 0 for any (x, v,m) ∈
R2d × P1(Rd).

(M3) There exists two moduli θ : R+ → R+ and ω0 : R+ → R+ such that

|L0(x, v,m1)− L0(x, v,m2)| ≤ θ(|x|)ω0(d1(m1,m2)),

for any (x, v) ∈ R2d and m1, m2 ∈ P1(Rd).

Let H0 : R2d × P1(Rd) → R be the Hamiltonian associated with L0, i.e.,

H0(x, p,m) = sup
v∈Rd

{
− 〈p, v〉 − L0(x, v,m)

}
.

We consider the following MFG system
−∂tuε + 1

2 ε |Dvu
ε|2 − 〈Dxu

ε, v〉 − L0(x, v,m
ε
t ) = 0, (t, x, v) ∈ [0, T ]× R2d

∂tµ
ε
t − 〈Dxµ

ε
t , v〉 − 1

ε divv (µεtDvu
ε) = 0, (t, x, v) ∈ [0, T ]× R2d

µε0 = µ0, uε(T, x, v) = g(x,mε
T ), (x, v) ∈ R2d

(5.9)

where mε
t = π1♯µ

ε
t and π1 : R2d → Rd denotes the projection onto the first

factor, i.e., π1(x, v) = x. We assume the following on the boundary data of
the system:

(BC1) µ0 ∈ P(R2d) is absolutely continuous w.r.t. Lebesgue measure, we
still denote by µ0 its density, and it has compact support.

(BC2) g(·,m) belongs to C1
b (Rd) such that M0 ≥ max{1

2 ,
1
2‖Dg(·,m)‖∞,Rd}

and g(x, ·) uniformly continuous w.r.t. space.
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Let Γ be the set of C1 curves γ : [0, T ] → Rd, endowed with the local
uniform convergence of the curve and its derivative, and given (t, x, v) ∈
[0, T ] × R2d let Γt(x, v) be the subset of Γ such that γ(t) = x, γ̇(t) = v.
Similarly, let Γt(x) be the subset of Γ such that γ(t) = x. Define the
functional Jεt,T : Γ → R

Jεt,T (γ) =

∫ T

t

(ε
2
|γ̈(s)|2 + L0(γ(s), γ̇(s),m

ε
s)
)
ds+ g(γ(T ),mε

T ), if γ ∈ H2(0, T ;Rd)

and set Jεt,T (γ) = +∞ if γ 6∈ H2(0, T ;Rd). Then, from Chapter 3 we know
that there exist a solution (uε, µε) ∈W 1,∞

loc ([0, T ]×R2d)×C([0, T ];P1(R2d))
to system (5.9) such that

uε(t, x, v) = inf
γ∈Γt(x,v)

Jεt,T (γ) (5.10)

and for any t ∈ [0, T ] the probability measure µεt is the image of µ0 under
the flow {

γ̇(t) = v(t)

v̇(t) = −1
εDvu

ε(t, γ(t), v(t)).
(5.11)

That is, uε solves the Hamilton-Jacobi equation in the viscosity sense and
µε solves the continuity equation in the sense of distributions.
Remark 5.2. Note that for a.e. (x, v) ∈ R2d there exists a unique solution
to system (5.11), which we will denote by γε(x,v), such that γε(x,v)(0) = x

and γ̇ε(x,v)(0) = v. Moreover, such a curve γε(x,v)(·) is optimal for uε(t, x, v)
satisfying γε(x,v)(t) = x and γ̇ε(x,v)(t) = v as initial condition.

Theorem 5.3 (Main result 2). Assume (M1) – (M3) and (BC). Let
(uε, µε) be a solution to (5.9) and let mε

t = π1♯µ
ε
t for any t ∈ [0, T ]. That

is, there exists a sequence {εk}k∈N with εk ↓ 0, as k → ∞, a function
u0 ∈ W 1,∞

loc ([0, T ] × Rd) and a flow of probability measures {m0
t }t∈[0,T ] ∈

C([0, T ];P1(Rd)) such that for any R ≥ 0

lim
k→∞

uεk(t, x, v) = u0(t, x), uniformly on [0, T ]×BR ×BR

and
lim
k→∞

mεk
t = m0

t , in C([0, T ];P1(Rd)).

Moreover, the following holds.

(i) (u0,m0) ∈W 1,∞
loc ([0, T ]× Rd)× C([0, T ];P1(Rd)) is a solution of

−∂tu0(t, x) +H0(x,Dxu
0(t, x),m0

t ) = 0, (t, x) ∈ [0, T ]× Rd

∂tm
0
t − div

(
m0
tDpH0(x,Dxu

0(t, x),m0
t )
)
= 0, (t, x) ∈ [0, T ]× Rd

m0
0 = m0, u

0(T, x) = g(x,m0
T ), x ∈ Rd,

(5.12)



5.2. PROOF OF THE MAIN RESULT 103

that is, u0 solves the Hamilton-Jacobi equation in the viscosity sense
and m0 is a solution of the continuity equation in the sense of distri-
butions.

(ii) For any t ∈ [0, T ] the probability measure m0
t is the image of m0 under

the Euler flow associated with L0.

Remark 5.4. Let (uε, µε) be a solution to (5.9). Assume that H0 is of
separated form, i.e., there exists a coupling function F : Rd × P1(Rd) → R
such that

H0(x, p,m) = H(x, p)− F (x,m), ∀(x, p,m) ∈ R2d × P1(Rd).

Moreover, assume that F is continuous w.r.t. all variables, that the map
x 7→ F (x,m) belongs to C1

b (Rd) and that the functions F , g are monotone
in the sense of Lasry-Lions, i.e.∫

Rd

(
F (x,m1)− F (x,m2)

)
(m1(dx)−m2(dx)) ≥ 0, ∀ m1,m2 ∈ P1(Rd)∫

Rd

(
g(x,m1)− g(x,m2)

)
(m1(dx)−m2(dx)) ≥ 0, ∀ m1,m2 ∈ P1(Rd).

Then, we know that that there exists a unique solution (u0,m0) ∈W 1,∞
loc ([0, T ]×

Rd)× C([0, T ];P1(Rd)) of (5.12) and thus if (uε,mε) is relatively compact
then convergence of (uε,mε) holds for the whole sequence.

5.2 Proof of the main result

5.2.1 Proof for the control of acceleration

We start our analysis by considering the case of control of acceleration with-
out mean field interaction and first we will show that the value function uε

is locally equibounded and locally equicontinuous.

Lemma 5.5. Assume (L1), (L2) and (TC). Then we have that

−C0T − ‖g‖∞,Rd ≤ uε(t, x, v)| ≤ C0T (1 + |v|2) + ‖g‖∞,Rd

for any (t, x, v) ∈ [0, T ]× R2d and any ε > 0.

Proof. On the one hand, by (5.5), (5.1) and (TC) we deduce that

uε(t, x, v) ≥ −C0T − ‖g‖∞,Rd .

On the other hand, the functions

ζ(t, x, v) = g(x) + C(1 + |v|2)(T − t), (t, x, v) ∈ [0, T ]× R2d



104 CHAPTER 5. SINGULAR LIMIT OF ACCELERATION

is a supersolution to the equation satisfied by uε for a suitable choice of the
real constant C ≥ 0. Indeed, we have that

− ∂tζ(t, x, v) +
1

2 ε
|Dvζ(t, x, v)|2 − 〈Dxζ(t, x, v), v〉 − L0(x, v)

≥ C(1 + |v|2) + 2
(T − t)2C2

ε
|v|2 − 〈Dxg(x), v〉 − C0(1 + |v|2)

≥ C(1 + |v|2)− 1

2
‖Dg(·)‖∞,Rd −

1

2
|v|2 − C0(1 + |v|2)

where the last inequality holds by Young’s inequality. Thus, taking C = 2C0

by (TC) we obtain

C0(1 + |v|2)− 1

2
‖Dg(·)‖∞,Rd −

1

2
|v|2 ≥ 0. □

An immediate consequence of Lemma 5.5 is the following uniform esti-
mate on the velocity of minimizing trajectories for uε.

Corollary 5.6. Assume (L1), (L2) and (TC). Let (t, x, v) ∈ [0, T ] × R2d

and let γε be a minimizer for uε(t, x, v). Then, there exists a constant S ≥ 0
such that ∫ T

t
|γ̇ε(s)|2 ds ≤ S(1 + |v|2)

where S is independent of ε, t, x and v.

Proof. From Lemma 5.5 we know that

uε(t, x, v) ≤ C0T
(
1 + |v|2

)
+ ‖g‖∞,Rd , ∀ (t, x, v) ∈ [0, T ]× R2d.

On the other hand, let (t, x, v) ∈ [0, T ]× R2d and let γε be a minimizer for
uε(t, x, v). Then, we have that

uε(t, x, v) =

∫ T

t

(ε
2
|γ̈ε(s)|2 + L0(γ

ε(s), γ̇ε(s))
)
ds+ g(γε(T ))

≥
∫ T

t
L0(γ

ε(s), γ̇ε(s)) ds− ‖g‖∞,Rd ≥
∫ T

t

(
1

C0
|γ̇ε(s)|2 − C0

)
ds− ‖g‖∞,Rd .

Therefore, combining the above inequalities we get∫ T

t
|γ̇ε(s)|2 ds ≤ 2C0

(
‖g‖∞,Rd + C0T (1 + |v|2)

)
=: S(1 + |v|2). □

We now provide uniform estimates estimates for the gradients of the
value function uε w.r.t. time and space, and we also show that the gradient
w.r.t. the velocity variable decrease linearly in ε.
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Proposition 5.7. Assume (L1), (L2) and (TC). Then, there exists a con-
stant C1 ≥ 0 such that

|∂tuε(t, x, v)| ≤ C1T (1 + |v|2), (5.13)
|Dxu

ε(t, x, v)| ≤ C1T (1 + |v|2), (5.14)
|Dvu

ε(t, x, v)|2 ≤ 2 εC1(1 + |v|2 + |v|4) (5.15)

for a.e. (t, x, v) ∈ [0, T ]× R2d.

Proof. We start by proving (5.13). By similar arguments to the one in
Lemma 5.5 we deduce that

‖uε(t, ·, ·)− g(·)‖∞,R2d ≤ C0(T − t)(1 + |v|2), ∀ t ∈ (0, T ). (5.16)

Moreover, the functions f± : [0, T ]× R2d× → R defined by

f±(t, x, v) = uε(t−h, x, v)±
(
‖uε(T −h, ·, ·)−g(·)‖∞,R2d +h(T − t)(1+ |v|2)

)
are, respectively, supersolution and subsolution to the equation satisfied by
uε. Therefore, by Comparison Theorem [12, Theorem 3.7] we get

|uε(t, x, v)− uε(t− h, x, v)| ≤ ‖uε(T − h, ·, ·)− g(·)‖∞,Rd×BR
+ h(T − t)

which yields to (5.13).
Next we show (5.14). Let (t, x, v) ∈ [0, T ]×R2d and let γε be a minimizer

for uε(t, x, v). Then, by (5.2) we get

uε(t, x+ h, v) ≤
∫ T

t

(ε
2
|γ̈ε(s)|2 + L0(γ

ε(s) + h, γ̇ε(s))
)
ds+ g(γε(T ) + h)

= uε(t, x, v) +

∫ T

t

(
L0(γ

∗(s) + h, γ̇∗(s))− L0(γ
∗(s), γ̇∗(s))

)
ds

+ g(γε(T ) + h)− g(γε(T ))

≤ uε(t, x, v) +

∫ T

t
C0|h|(1 + |γ̇∗(s)|2) ds+ ‖Dg(·)‖∞|h|.

Moreover, from (5.1) we obtain∫ T

t

(
−C0 +

1

C0
|γ̇∗(s)|2

)
ds ≤ uε(t, x, v) ≤ C0T (1 + |v|2) + ‖g‖∞,Rd

which in turn completes the proof of (5.14).
We finally proceed with the proof of (5.15). To do so, we first show the

result assuming that uε belongs to C1([0, T ] × R2d) and then we treat the
general case with an approximation argument.
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Now, assuming that uε ∈ C1([0, T ]× R2d) we have that

−∂tuε +
1

2 ε
|Dvu

ε|2 − 〈Dxu
ε, v〉 − L0(x, v) = 0

in the classical sense. Thus, by (5.1) we obtain
1

2 ε
|Dvu

ε|2 ≤ |∂tuε|+ |Dxu
ε||v| − C0(|v|2 + 1)

≤ |∂tuε|+
1

2
|Dxu

ε|2 + 1

2
|v|2 − C0(|v|2 + 1).

(5.17)

Hence, combining (5.17) with (5.13) and (5.14) we get (5.15).
Let us consider now the general case. Take δ > 0 and let ξ1,δ ∈

C∞
c ([0, T ]) be a smooth mollifier w.r.t. time. Then define the function

uε1,δ(t, x, v) = uε ⋆ ξ1,δ(t, x, v), (t, x, v) ∈ [0, T ]× R2d.

Then, uε1,δ satisfy the following inequality in the viscosity sense

−∂tuε1,δ +
1

2 ε
|Dvu

ε
1,δ|2 − 〈Dxu

ε
1,δ, v〉 ≤ L0(x, v).

Let ξ2,δ ∈ C∞
c (Rd) be a smooth mollifier w.r.t. space and define the function

uε2,δ(t, x, v) = uε1,δ ⋆ ξ
2,δ(t, x, v), (t, x, v) ∈ [0, T ]× R2d.

Then, we have that uε2 δ satisfy the following inequality in the viscosity sense

−∂tuε2,δ+
1

2 ε
|Dvu

ε
2,δ|2−〈Dxu

ε
2,δ, v〉 ≤ L0⋆ξ

2,δ(x, v) ≤ L0(x, v)+C0δ(1+|v|2).

Let ξ3,δ ∈ C∞
c (Rd) be a smooth mollifier w.r.t. velocity variable and define

the function

uε3,δ(t, x, v) = uε2,δ ⋆ ξ
3,δ(t, x, v), (t, x, v) ∈ [0, T ]× R2d.

Then, by Jensen’s inequality we deduce that uε3,δ satisfy

− ∂tu
ε
3,δ +

1

2 ε
|Dvu

ε
3,δ|2 − 〈Dxu

ε
3,δ, v〉 ≤ L0 ⋆ ξ

3,δ(x, v) + Cεδ(1 + |v|2)

≤ L0(x, v) + C0,εδ(1 + |v|2)
(5.18)

in the classical sense. Therefore, applying the argument in (5.17) to the
function uε3,δ, which solves (5.18), we get the result as δ ↓ 0.

Now, define the function u0 : [0, T ]× R2d as

u0(t, x) = inf
γ∈Γt(x)

{∫ T

t
L0(γ(s), γ̇(s)) ds+ g(γ(T ))

}
. (5.19)

Then, by standard arguments in control theory it is easy to prove the fol-
lowing result.
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Lemma 5.8. Assume (L1), (L2) and (TC). Let (t, x) ∈ [0, T ] × Rd and
let γ0 ∈ Γt(x) be a minimizer for u0(t, x). Then, we have that∫ T

t
|γ̇0(s)|2 ds ≤ CT

for some constant CT ≥ 0.

We are now in the position to prove Theorem 5.1. To do so, we first
show in Proposition 5.9 that uε locally uniformly converges to u0 and then in
Proposition 5.10 we prove that any minimizers of uε converges to a minimizer
of u0 at any point of differentiability of u0.

Proposition 5.9. Assume (L1), (L2) and (TC). Then, there exists a se-
quence εk → 0 such that uεk locally uniformly converges to u0.

Proof. It is enough to show that uε converges to u0 pointwise. Indeed, if this
holds then by Lemma 5.5 and by Proposition 5.7 we can apply Ascoli-Arzela
Theorem to obtain that there exists {εk}k∈N such that uεk converges to u0
locally uniformly.

Let R ≥ 0, let (t, x, v) ∈ [0, T ]× Rd × BR and let γε be a minimizer for
uε(t, x, v). Then, we have that

uε(t, x, v) =

∫ T

t

(ε
2
|γ̈ε(s)|2 + L0(γ

ε(s), γ̇ε(s))
)
ds+ g(γε(T ))

≥
∫ T

t
L0(γ

ε(s), γ̇ε(s)) ds+ g(γε(T ))

≥ inf
γ∈Γt(x)

∫ T

t
L0(γ(s), γ̇(s)) ds+ g(γ(T )) = u0(t, x).

On the other hand, for any R ≥ 0 et (t, x, v) ∈ [0, T ]× Rd ×BR and let
γ0 ∈ Γt(x) be a minimizer for u0(t, x). If γ̇0(t) = v, by the Euler equation
and the regularity of L0 we have that γ ∈ C2([0, T ]) and thus we can use γ0
to estimate uε(t, x, v) from above. So, we get

uε(t, x, v) ≤
∫ T

t

(ε
2
|γ̈0(s)|2 + L0(γ

0(s), γ̇0(s))
)
ds+ g(γ0(T )) ≤ u0(t, x) + o(1).

(5.20)

If this is not the case, we observe that

uε(t, x, v) = uε(t, x, v)− uε(t, x, γ̇0(t)) + uε(t, x, γ̇0(t)) ≤ o(1) + uε(t, x, γ̇0(t))

where the last inequality holds by (5.15). Thus, in order to conclude it is
enough to estimate uε(t, x, γ̇0(t)) as in (5.20). Therefore, we obtain

u0(t, x) ≤ uε(t, x, v) ≤ u0(t, x) + o(1)

which implies that uε converges to (5.19) pointwise.
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Proposition 5.10. Assume (L1), (L2) and (TC). Let (t, x, v) ∈ [0, T ] ×
R2d be a point of differentiability for u0(t, x) and let γε be a minimizer for
uε(t, x, v). Then, γε uniformly converges to a curve γ0 ∈ AC([0, T ];Rd) and
γ0 minimize u0 at (t, x).

Proof. Let us start by proving that γε uniformly converges, up to a subse-
quence. By Corollary 5.6 we know that∫ T

t
|γ̇ε(s)|2 ds ≤ S(1 + |v|2).

Thus, for any s ∈ [t, T ], by Hölder’s inequality we have that

|γε(s)| ≤ |x|+
√
T
√
S(1 + |v|2)

1
2 .

Therefore, γε is bounded in H1(0, T ;Rd) which implies that by Ascoli-Arzela
Theorem there exists a sequence {εk}k∈N and a curve γ0 ∈ AC([0, T ];Rd)
such that γεk converges uniformly to γ0.

We proceed now that γ0 is a minimizer for u0(t, x). First, we observe
that

lim inf
ε→0

∫ T

t

(ε
2
|γ̈ε(s)|2 + L0(γ

ε(s), γ̇ε(s))
)
ds+ g(γε(T ))

≥ lim inf
ε→0

∫ T

t
L0(γ

ε(s), γ̇ε(s)) ds+ g(γε(T )).

(5.21)

Since γε is uniformly bounded in H1(0, T ), by lower-semicontinuity of the
functional we deduce that

lim inf
ε→0

∫ T

t
L0(γ

ε(s), γ̇ε(s)) ds+ g(γε(T ))

≥
∫ T

t
L0(γ

0(s), γ̇0(s)) ds+ g(γ0(T )).

Moreover, given (t, x, v) ∈ [0, T ]×Rd×BR, for any R ≥ 0, by Proposition 5.9
we have that

uε(t, x, v) ≤ u0(t, x) + o(1)

and by definition

uε(t, x, v) =

∫ T

t

(ε
2
|γ̈ε(s)|2 + L0(γ

ε(s), γ̇ε(s))
)
ds+ g(γε(T )).

Hence, we have that

o(1) + u0(t, x) ≥
∫ T

t

(ε
2
|γ̈ε(s)|2 + L0(γ

ε(s), γ̇ε(s))
)
ds+ g(γε(T ))
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which implies the result passing to the limit as ε ↓ 0 in (5.21) since

u0(t, x) ≥
∫ T

t
L0(γ

0(s), γ̇0(s)) ds+ g(γ0(T )). □

Proof of Theorem 5.1. The result follows by Proposition 5.9 and Proposi-
tion 5.10.

5.2.2 Proof for mean field game of acceleration

In order to prove the main result we proceed by steps analyzing the behavior
of the value function uε and of the flow of probability measures mε sepa-
rately. First, we show that uε is equibounded and we prove that, up to a sub-
sequence, mε converges to a flow of probability measure in C([0, T ];P1(Rd)).
Then, we address the convergence of the value function, up to a subsequence,
to a solution of a suitable Hamilton-Jacobi equation and we study the limit
of its minimizing trajectories. Finally, we are able to characterize the limit
flow of measures as solution of a suitable continuity equation which cou-
pled with the Hamilton-Jacobi equation, previously found, define the MFG
system (5.12).

Lemma 5.11. Assume (M1) – (M3) and (BC). Then we have that

−TM0 − ‖g(·,mε
T )‖∞,Rd ≤ uε(t, x, v) ≤M0T (1 + |v|2) + ‖g(·,mε

T )‖∞,Rd ,

for any (t, x, v) ∈ [0, T ]× R2d and for any ε > 0.

Proof. First, since uε satisfy (5.10), from (5.6) and (BC) follows that for
any (t, x, v) ∈ [0, T ]× R2d there holds

uε(t, x, v) ≥ −C0T − ‖g(·,mε
T )‖∞,Rd .

On the other hand, the function

ζ(t, x, v) = g(x,mε
T ) + C(1 + |v|2)(T − t), (t, x, v) ∈ [0, T ]× R2d

is a supersolution to the equation satisfied by uε for a suitable choice of the
real constant C ≥ 0. Indeed, we have that

− ∂tζ(t, x, v) +
1

2 ε
|Dvζ(t, x, v)|2 − 〈Dxζ(t, x, v), v〉 − L0(x, v)

≥ C(1 + |v|2) + 2
(T − t)2C2

ε
|v|2 − 〈Dxg(x,m

ε
T ), v〉 −M0(1 + |v|2)

≥ C(1 + |v|2)− 1

2
‖Dg(·,mε

T )‖∞,Rd −
1

2
|v|2 −M0(1 + |v|2)

where the last inequality holds by Young’s inequality. Thus, taking C = 2M0

by (BC) we obtain

M0(1 + |v|2)− 1

2
‖Dg(·,mε

T )‖∞,Rd −
1

2
|v|2 ≥ 0. □
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Corollary 5.12. Assume (M1) – (M3) and (BC). Let (t, x, v) ∈ [0, T ]×
R2d and let γε be a minimizer for uε(t, x, v). Then, there exists a constant
Q1 ≥ 0 such that∫ T

t
|γ̇ε(s)|2 ds ≤ Q1(1 + |v|2), ∀ ε > 0.

where Q1 is independent of ε, t, x and v.

Proof. On the one hand, from Lemma 5.11 we know that

uε(t, x, v) ≤M0T
(
1 + |v|2

)
+ ‖g(·,mε

T )‖∞,Rd , ∀ (t, x, v) ∈ [0, T ]× R2d.

On the other hand, let (t, x, v) ∈ [0, T ]× R2d and let γε be a minimizer for
uε(t, x, v). Then, by (5.6) we have that

uε(t, x, v) =

∫ T

t

(ε
2
|γ̈ε(s)|2 + L0(γ

ε(s), γ̇ε(s),mε
s)
)
ds+ g(γε(T ),mε

T )

≥
∫ T

t
L0(γ

ε(s), γ̇ε(s),mε
s) ds− ‖g(·,mε

T )‖∞,Rd

≥
∫ T

t

(
1

M0
|γ̇ε(s)|2 −M0

)
ds− ‖g(·,mε

T )‖∞,Rd .

Therefore, combining the above inequalities we get∫ T

t
|γ̇ε(s)|2 ds ≤ 2M0

(
‖g(·,mε

T )‖∞,Rd +M0T (1 + |v|2)
)
=: Q1(1 + |v|2)

where Q1 depends only on M0, T and ‖g(·,mε
T )‖∞,Rd which is bounded

uniformly in mε
T .

Corollary 5.13. Assume (M1) – (M3) and (BC). Then, there exists a
constant Q2 ≥ 0 such that for any s1, s2 ∈ [0, T ] with s1 ≤ s2 there holds

d1(m
ε
s2 ,m

ε
s1) ≤ Q2|s1 − s2|

1
2 , ∀ ε > 0

where Q2 is independent of ε.

Proof. We first recall that for any t ∈ [0, T ] we know that mε
t = π1♯µ

ε
t where

µεt is the image of µ0 under the flow (5.11) whose space marginal we denote
by γε(x,v) for (x, v) ∈ R2d.

Let s1, s2 ∈ [0, T ] be such that s1 ≤ s2. Then, by (2.3) we have that

d1(m
ε
s1 ,m

ε
s2) ≤

∫
Rd

|γε(x,v)(s1)− γε(x,v)(s2)| µ0(dx, dv)
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and thus, appealing to Corollary 5.12 and the Hölder inequality we obtain

d1(m
ε
s1 ,m

ε
s2) ≤ |s1 − s2|

1
2

(∫
R2d

Q1(1 + |v|2) µ0(dx, dv)
) 1

2

.

So, since µ0 has compact support we get the result setting

Q2 =

(∫
R2d

Q1(1 + |v|2) µ0(dx, dv)
) 1

2

. □

We are now ready to prove that the flow of probability measures mε

converges in C([0, T ];P1(Rd)), up to a subsequence. First, we recall that
for any t ∈ [0, T ] the measure mε

t is the space marginal of µεt which is given
by the push-forward of the initial distribution µ0 under the optimal flow
(5.11), that is{

γ̇(x,v)(t) = v(t), γ(x,v)(0) = x

v̇(t) = −1
εDvu

ε(t, γ(x,v)(t), v(t)), v(0) = v.

Theorem 5.14. Assume (M1) – (M3) and (BC). Then, the flow of mea-
sures {mε

t}t∈[0,T ] is tight and there exists a sequence {εk}k∈N such that mεk

converges to some probability measure m0 in C([0, T ];P1(Rd)).

Proof. Since mε
t = π1♯µ

ε
t , for any t ∈ [0, T ], where µεt is given by push-

forward of µ0 under the flow (5.11), we know that∫
Rd

|x|2 mε
t (dx) =

∫
R2d

|γε(x,v)(t)|
2 µ0(dx, dv).

So, we are interested in estimating the curve γε(x,v) for any (x, v), uniformly
in ε > 0. In order to get it, from Corollary 5.12 we immediately deduce that

|γε(x,v)(s)| ≤ |x|+
√
T
√
Q1(1 + |v|2)

1
2 , ∀ s ∈ [0, T ].

Hence, for any t ≥ 0 we have that∫
Rd

|x|2 mε
t (dx) =

∫
Rd

|γε(x,v)(t)|
2 µ0(dx, dv)

≤
∫
R2d

C0

(
|x|2 + TQ1(1 + |v|2)

)
µ0(dx, dv)

for some constant C0 ≥ 0. Thus, since µ0 has compact support we deduce
that {mε

t}t∈[0,T ] has bounded second-order momentum, uniformly in ε > 0
and, consequently, {mε

t}t∈[0,T ] is tight. Therefore, by Prokhorov Theorem
and Ascoli-Arzela Theorem there exists a sequence {εk}k∈N and measure
m0 ∈ C([0, T ];P1(Rd)) such that mεk → m0 in C([0, T ];P1(Rd)).
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Next, we turn to the convergence of uε. Before proving it, we need
preliminary estimates on the oscillation of the value function w.r.t. velocity
variable and then w.r.t. time and space variable. In particular, we will show
that the function uε(t, x, ·) has uniformly decreasing oscillation which will
allowed us to conclude that the limit function does not depend on v.

Lemma 5.15. Assume (M1) – (M3) and (BC). Let R ≥ 0 and let (x, v0),
(x, v) ∈ Rd × BR. Then, there exists CR ≥ 0 and a parametric curve
σ : [0,

√
ε] → Rd such that

σ(0) = σ(
√
ε) = x, σ̇(0) = v0, σ̇(

√
ε) = v

and
1√
ε

∫ √
ε

0

(ε
2
|σ̈(s)|2 + L0(σ(s), σ̇(s),m

ε
s)
)
ds ≤ CR

where CR is independent of ε, x, v and v0.

Proof. Let R ≥ 0 and let (x, v0), (x, v) ∈ Rd × BR. Define the curve σ :
[0,

√
ε] → Rd by

σ(t) = x+ v0t+Bt2 +At3

with A, B ∈ R satisfying the following conditions

σ(0) = σ(
√
ε) = x, σ̇(0) = v0, σ̇(

√
ε) = v.

Thus, we obtain {
B = −(2v0 + v) ε−

1
2

A = (v + v0) ε
−1 .

Hence, we get

∫ √
ε

0

(ε
2
|σ̈(s)|2 + L0(σ(s), σ̇(s),m

ε
s)
)
ds

≤
∫ √

ε

0

(ε
2
|2B + 6At|2 +M0(1 + |v + 2tB + 3t2A|2)

)
ds ≤ Ĉ

√
εR2

for some positive constant Ĉ and the proof is thus complete.

Lemma 5.16. Assume (M1), (M2) and (BC). Let R ≥ 0, let T > 1 and
ε > 0. Then, there exists ĈR(ε) ≥ 0 such that for any t ∈ [0, T ], any x ∈ Rd,
and any v, w in BR there holds

|uε(t, x, v)− uε(t, x, w)| ≤ ĈR(ε)

and ĈR(ε) → 0 as ε ↓ 0.
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Proof. Fix R ≥ 0 and take (x, v), (x,w) ∈ Rd ×BR. Let γε be a minimizer
for uε(t, x, v) and define the curve

γ̂(s) =

{
σ(s− t), s ∈ [t, t+

√
ε]

γε(s−
√
ε), s ∈ [t+

√
ε, T ]

where σ : [0,
√
ε] → R2d connects, in the sense of Lemma 5.15, (x,w) with

(x, v). Then, we obtain

uε(t, x, w)− uε(t, x, v) ≤
∫ t+

√
ε

t

(ε
2
|σ̈(s− t)|2 + L0(σ(s− t), σ̇(s− t),mε

s)
)
ds

+

∫ T

t+
√
ε

(ε
2
|γ̈ε(s−

√
ε)|2 + L0(γ

ε(s−
√
ε), γ̇ε(s−

√
ε),mε

s)
)
ds

+ g(γε(T −
√
ε),mε

T )− uε(t, x, v)

=

∫ t+
√
ε

t

(ε
2
|σ̈(s− t)|2 + L0(σ(s− t), σ̇(s− t),mε

s−t)
)
ds

+

∫ T

t+
√
ε

(ε
2
|γ̈ε(s−

√
ε)|2 + L0(γ

ε(s−
√
ε), γ̇ε(s−

√
ε),mε

s−
√
ε)
)
ds

+ g(γε(T ),mε
T ) + g(γε(T −

√
ε),mε

T )− g(γε(T ),mε
T )− uε(t, x, v)

+

∫ t+
√
ε

t

(
L0(σ(s− t), σ̇(s− t),mε

s)− L0(σ(s− t), σ̇(s− t),mε
s−t)

)
ds

+

∫ T

t+
√
ε

(
L0(γ

ε(s−
√
ε), γ̇ε(s−

√
ε),mε

s)− L0(γ
ε(s−

√
ε), γ̇ε(s−

√
ε),mε

s−
√
ε

)
ds.

Now, from Lemma 5.15 we know that∫ t+
√
ε

t

(ε
2
|σ̈(s− t)|2 + L0(σ(s− t), σ̇(s− t),mε

s−t)
)
ds ≤ CR

√
ε, (5.22)

and, moreover, from the optimality of γε we get∫ T

t+
√
ε

(ε
2
|γ̈ε(s−

√
ε)|2 + L0(γ

ε(s−
√
ε), γ̇ε(s−

√
ε),mε

s−
√
ε)
)
ds− uε(t, x, v)

≤−
∫ T

T−
√
ε

(ε
2
|γ̈ε(s)|2 + L0(γ

ε(s), γ̇ε(s),mε
s)
)
ds ≤ 0.

(5.23)

Then, as observed before from Corollary 5.12 we obtain that

|γε(s)| ≤ |x|+
√
T
√
Q1(1 + |v|2)

1
2 , ∀ s ∈ [0, T ]

and we also know that the curve σ is bounded. Hence, by (M3) and Corol-
lary 5.13 we deduce that there exists P (ε) ≥ 0, with P (ε) → 0 as ε ↓ 0, such
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that∫ t+
√
ε

t

(
L0(σ(s− t), σ̇(s− t),mε

s)− L0(σ(s− t), σ̇(s− t),mε
s−t)

)
ds

+

∫ T

t+
√
ε

(
L0(γ

ε(s−
√
ε), γ̇ε(s−

√
ε),mε

s)− L0(γ
ε(s−

√
ε), γ̇ε(s−

√
ε),mε

s−
√
ε

)
ds

+ g(γε(T −
√
ε),mε

T )− g(γε(T ),mε
T ) ≤ P (ε)

(5.24)

where we have used that the modulus θ in (M3) is bounded from the bound-
edness of γε and σ. Therefore, combining (5.22), (5.23) and (5.24) we get
the result.

Proposition 5.17. Assume (M1) – (M3) and (BC). Then, for any R ≥ 0
there exists a modulus ωR : R+ → R+ and a constant C1 ≥ 0, independent
of R, such that for any ε > 0 the following holds:

|uε(t, x, v)− uε(s, x, v)| ≤ ωR(|t− s|), ∀ (t, s, x, v) ∈ [0, T ]× [0, T ]×BR ×BR

(5.25)
|Dxu

ε(t, x, v)| ≤ C1T (1 + |v|2), a.e. (t, x, v) ∈ [0, T ]× Rd × Rd.
(5.26)

Proof. We begin by proving (5.26). Let (t, x, v) ∈ [0, T ] × Rd × Rd and let
γε be a minimizer for uε(t, x, v). Then, from (5.7) we get

uε(t, x+ h, v) ≤
∫ T

t

(ε
2
|γ̈ε(s)|2 + L0(γ

ε(s) + h, γ̇ε(s),mε
s)
)
ds+ g(γε(T ) + h,mε

T )

= uε(t, x, v) +

∫ T

t

(
L0(γ

ε(s) + h, γ̇ε(s),mε
s)− L0(γ

ε(s), γ̇ε(s),mε
s)
)
ds

+ g(γε(T ) + h,mε
T )− g(γε(T ),mε

T )

≤ uε(t, x, v) +

∫ T

t
M0|h|(1 + |γ̇ε(s)|2) ds+ ‖Dg(·,mε

T )‖∞,Rd |h|.

By (5.6) and by Lemma 5.11 we obtain

∫ T

t

(
1

M0
|γ̇∗(s)|2 −M0

)
ds ≤ uε(t, x, v) ≤M0T (1 + |v|2) + ‖g(·,mε

T )‖∞,Rd

which, in turns, yields to the conclusion.
Next, we proceed to show (5.25). Let R ≥ 0 and take (t, x, v) ∈ [0, T ]×

BR ×BR. Let γε be a minimizer for uε(t, x, v) and let h ∈ [0, T − t]. Then,
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we have that

uε(t+ h, x, v)

≤
∫ T

t+h

(ε
2
|γ̈ε(s− h)|2 + L0(γ

ε(s− h), γ̇ε(s− h),mε
s)
)
ds+ g(γ(T − h),mε

T )

=

∫ T

t+h

(ε
2
|γ̈ε(s− h)|2 + L0(γ

ε(s− h), γ̇ε(s− h),mε
s−h)

)
ds+ g(γε(T ),mε

T )

+

∫ T

t+h

(
L0(γ

ε(s− h), γ̇ε(s− h),mε
s)− L0(γ

ε(s− h), γ̇ε(s− h),mε
s−h)

)
ds

+ g(γε(T − h),mε
T )− g(γε(T ),mε

T )

≤ uε(t, x, v) +

∫ T

t+h
θ(|γε(s− h)|)ω0(d1(m

ε
s,m

ε
s−h)) ds+ ‖Dg(·,mε

T )‖∞,Rd |h|

where the last inequality holds by (M3). Hence, from Corollary 5.12 we
know that

|γε(s)| ≤ |x|+
√
T
√
Q1(1 + |v|2)

1
2 , ∀ s ∈ [0, T ]

and thus θ(·) turns out to be bounded. Therefore, appealing to Corol-
lary 5.13 we obtain

uε(t+ h, x, v)− uε(t, x, v) ≤ Tθ(R)ω0(|h|
1
2 ) + ‖Dg(·,mε

T )‖∞,Rd |h|. (5.27)

On the other hand, let R ≥ 0 and let (t, x, v) ∈ [0, T ] × BR × BR. For
h ∈ [0, T − t], define the curve γ : [t, t + h] → Rd by γ(s) = x + (s − t)v.
Then, by Dynamic Programming Principle we deduce that

uε(t, x, v) ≤
∫ t+h

t

(ε
2
|γ̈(s)|2 + L0(γ(s), γ̇(s),m

ε
s)
)
ds

+ uε(t+ h, γ(t+ h), γ̇(t+ h))

=

∫ t+h

t
L0(x+ (s− t)v, v,mε

s) ds+ uε(t+ h, x+ hv, v)

≤ M0(1 +R2)|h|+ uε(t+ h, x, v) + C1T (1 +R2)|h|

(5.28)

where we applied (5.6) and Equation (5.26) to get the last inequality. There-
fore, combining (5.27) and (5.28) the proof is complete.
Remark 5.18. Next, we study the behavior of the value function uε as
ε→ 0 and before doing that we recall the following argument needed to get
uniform convergence from point-wise convergence.

Assume that there exists a nonnegative function Θ(δ0, ε0, R0) such that

Θ(δ0, ε0, R0) → 0, as ε0, δ0 ↓ 0,
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and assume that for any |t1 − t2|+ |x1 − x2| ≤ δ0, any ε ≤ ε0 and any |xi|,
|vi| ≤ R0 (i = 1, 2) there holds

|uε(t1, x1, v1)− uε(t2, x2, v2)| ≤ Θ(δ0, ε0, R0).

Then: if uε converge point-wise then uε converges locally uniformly and the
limit function does not depend on v.

Let m0 ∈ C([0, T ];P1(Rd)) be the flow of measures obtained in Theo-
rem 5.14 as limit of the flow mεk in C([0, T ];P1(Rd)) for some subsequence
εk ↓ 0. Define the function u0 : [0, T ]× R2d → R by

u0(t, x) = inf
γ∈Γt(x)

{∫ T

t
L0(γ(s), γ̇(s),m

0
s) ds+ g(γ(T ),m0

T )

}
. (5.29)

We will prove now that for the subsequence εk the sequence of value functions
uεk locally uniformly converge to u0.

Theorem 5.19. Assume (M1) – (M3) and (BC). Then, there exists a
subsequence εk ↓ 0 such that uεk locally uniformly converges to u0.

Proof. We proceed to show first the point-wise convergence of uεk to u0, for
some subsequence εk ↓ 0, and then, using Remark 5.18, i.e., constructing
such a modulus Θ, we deduce that the convergence is locally uniform.

From Theorem 5.14, let εk be the subsequence such that mεk → m0 in
C([0, T ];P1(Rd)) as k → ∞. Let R ≥ 0, let (t, x, v) ∈ [0, T ]×Rd ×BR and
let γεk be a minimizer for uεk(t, x, v). Then, we have that

uεk(t, x, v)

=

∫ T

t

(εk
2
|γ̈εk(s)|2 + L0(γ

εk(s), γ̇εk(s),mεk
s )
)
ds+ g(γεk(T ),mεk

T )

≥
∫ T

t
L0(γ

εk(s), γ̇εk(s),mεk
s ) ds+ g(γεk(T ),mεk

T )

≥ inf
γ∈Γt(x)

{∫ T

t
L0(γ(s), γ̇(s),m

0
s) ds+ g(γ(T ),m0

T )

}
+ g(γεk(T ),mε

T )− g(γεk(T ),m0
T )

+

∫ T

t

(
L0(γ

εk(s), γ̇εk(s),mεk
s )− L0(γ

εk(s), γ̇εk(s),m0
s)
)
ds ≥ u0(t, x)− o(1)

where the last inequality holds by (M1) and the convergence of mεk in
C([0, T ];P1(Rd)).

On the other hand, let R ≥ 0 and take (t, x, v) ∈ [0, T ]× Rd × BR. Let
γ0 ∈ Γt(x) be a solution of

inf
γ∈Γt(x)

{∫ T

t
L0(γ(s), γ̇(s),m

0
s) ds+ g(γ(T ),m0

T )

}
.
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Next, we distinguish two cases: first, when γ̇0(t) = v and then when γ̇0(t) 6=
v. Indeed, if γ̇0(t) = v, by the Euler equation and the C2-regularity of
L0 we have that γ ∈ C2([0, T ]). Hence, we can use γ0 as a competitor for
uεk(t, x, v) and we get

uεk(t, x, v) ≤
∫ T

t

(ε
2
|γ̈0(s)|2 + L0(γ

0(s), γ̇0(s),mεk
s )
)
ds+ g(γ0(T ),mεk(T ))

≤
∫ T

t

(ε
2
|γ̈0(s)|2 + L0(γ

0(s), γ̇0(s),m0
s)
)
ds+ g(γ0(T ),m0(T ))

+

∫ T

t

(
L0(γ

0(s), γ̇0(s),mεk
s )− L0(γ

0(s), γ̇0(s),m0
s)
)
ds

+ g(γ0(T ),mεk(T ))− g(γ0(T ),m0(T ))

≤ u0(t, x) + o(1)

(5.30)

where the last inequality again follows from the convergence of mεk in
C([0, T ];P1(Rd)). If this is not the case, i.e., γ̇0(t) 6= v, from Lemma 5.16
we deduce that

uεk(t, x, v) = uεk(t, x, v)− uεk(t, x, γ̇0(t)) + uεk(t, x, γ̇0(t)) ≤ o(1) + uεk(t, x, γ̇0(t)).

Thus, in order to conclude it is enough to estimate uεk(t, x, γ̇0(t)) as in
(5.30). Therefore, we obtain

u0(t, x)− o(1) ≤ uεk(t, x, v) ≤ u0(t, x) + o(1)

which implies that uεk point-wise converges to u0.
Finally, in order to conclude we need to show that the convergence is

locally uniform. From (5.25), (5.26) and Lemma 5.16 we have that for any
R ≥ 0 and any (t1, x1, v1), (t2, x2, v2) ∈ [0, T ]×BR ×BR there holds

|uε(t1, x1, v1)− uε(t2, x2, v2)|
≤ ωR(|t1 − t2|) + C1|x1 − x2|+ CR

√
ε.

Therefore, setting

Θ(δ0, ε0, R0) = ωR0(δ0) + C1δ0 + CR0

√
ε0

by Remark 5.18 we deduce that the convergence is locally uniform and the
proof is thus complete.

After proving the convergence of uε, we go back to the analysis of the
flow of measures and in particular we will characterize it in terms of the limit
function u0. In order to do so, we study the convergence of minimizers for
uε and appealing to such a result we will show that m0 ∈ C([0, T ];P1(Rd))
solves a continuity equation with vector field DpH0(x,Dxu

0), in the sense
of distribution.
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Proposition 5.20. Assume (M1) – (M3) and (BC). Let (t, x, v) ∈ [0, T ]×
R2d be such that u0 is differentiable at (t, x) and let γε be a minimizer for
uε(t, x, v). Then, γε uniformly converges to a curve γ0 ∈ AC([0, T ];Rd) and
γ0 is the unique minimizer for u0(t, x) in (5.29).

Proof. Let us start by proving that γε uniformly converges, up to a subse-
quence. By Corollary 5.12 we know that∫ T

t
|γ̇ε(s)|2 ds ≤ Q1(1 + |v|2).

Thus, for any s ∈ [t, T ], by Hölder inequality we have that

|γε(s)| ≤ |x|+
√
T
√
Q1(1 + |v|2)

1
2 .

Therefore, γε is bounded in H1(0, T ;Rd) which implies that by Ascoli-Arzela
Theorem there exists a sequence {εk}k∈N and a curve γ0 ∈ AC([0, T ];Rd)
such that γεk converges uniformly to γ0.

We show now that such a limit γ0 is a minimizer for u0(t, x). First, we
observe that

lim inf
k→∞

[∫ T

t

(εk
2
|γ̈εk(s)|2 + L0(γ

εk(s), γ̇εk(s),mε
s)
)
ds+ g(γεk(T ),mεk

T )

]
≥ lim inf

k→∞

[∫ T

t
L0(γ

εk(s), γ̇εk(s),mεk
s ) ds+ g(γεk(T ),mεk

T )

]
.

Then, as observed at the beginning of this proof γε is uniformly bounded
in H1(0, T ). So by lower-semicontinuity of L and Theorem 5.14 we deduce
that

lim inf
k→∞

[∫ T

t
L0(γ

εk(s), γ̇εk(s)) ds+ g(γεk(T ),mεk
T )

]
≥
∫ T

t
L0(γ

0(s), γ̇0(s),m0
s) ds+ g(γ0(T ),m0

T ).

(5.31)

Moreover, for any R ≥ 0 taking (t, x, v) ∈ [0, T ] × Rd × BR, from Theo-
rem 5.19 we obtain

uεk(t, x, v) ≤ u0(t, x) + o(1)

and we recall that

uεk(t, x, v) =

∫ T

t

(εk
2
|γ̈εk(s)|2 + L0(γ

εk(s), γ̇εk(s),mεk
s )
)
ds+g(γεk(T ),mεk

T ).

Hence, we get

o(1) + u0(t, x) ≥
∫ T

t

(εk
2
|γ̈εk(s)|2 + L0(γ

εk(s), γ̇εk(s),mεk
s )
)
ds+ g(γεk(T ),mεk

T ).
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Therefore, passing to the limit as ε ↓ 0 from (5.31) we obtain

u0(t, x) ≥
∫ T

t
L0(γ

0(s), γ̇0(s),m0
s) ds+ g(γ0(T ),m0

T )

which proves that γ0 is a minimizer for u0(t, x). Since u0 is differentiable
at (t, x) ∈ Rd there exists a unique minimizing trajectory and thus we have
that the uniform convergence of γε holds for the whole sequence.

Remark 5.21. Since u0 is locally Lipschitz continuous w.r.t. time and Lip-
schitz continuous w.r.t. space, we have that Proposition 5.20 holds for a.e.
(t, x) ∈ [0, T ]× Rd.

Let u0 be as in (5.29) and let γ0t (·) be the flow associated with the vector
field

x 7→ DpH0(x,Dxu
0(t, x),m0

t ),

that is, {
γ̇0t (x) = DpH0(γ

0
t (x), Dxu

0(t, γ0t (x)),m
0
t ), t ∈ [0, T ]

γ0(x) = x.

Note that such a flow exists since the vector field x 7→ DpH0(x,Dxu
0(t, x),m0

t )
is Lipschitz continuous by the Lipschitz continuity of the value function u0

and by the regularity of the Hamiltonian H0. We also recall that the mea-
sure µε is the image of µ0 under the flow (5.11), which is optimal as observed
in Remark 5.2 for uε(0, x, v) for a.e. (x, v) ∈ R2d, and thus, for any function
φ ∈ C∞

c (Rd) the measure mε
t is given by∫

Rd

φ(x) mε
t (dx) =

∫
R2d

φ(γε(x,v)(t)) µ0(dx, dv). (5.32)

We finally recall that by assumption µ0 is absolutely continuous w.r.t. Lebesgue
measure.

Corollary 5.22. Assume (M1) – (M3) and (BC). Then, we have that

m0
t = γ0t (·)♯m0, ∀ t ∈ [0, T ]. (5.33)

Moreover, m0 ∈ C([0, T ];P1(Rd)) solves{
∂tm

0
t − div

(
m0
tDpH0(x,Dxu

0(t, x),m0
t )
)
= 0, (t, x) ∈ [0, T ]× Rd

m0
0 = m0, x ∈ Rd,

in the sense of distributions.
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Proof. From Theorem 5.14 let εk ↓ 0 be such thatmεk → m0 in C([0, T ];P1(Rd)).
Then, since µ0 is absolutely continuous w.r.t. Lebesgue measure by Propo-
sition 5.20 we have that

γεk(x,v)(t) → γ0t (x), µ0-a.e. (x, v), ∀t ∈ [0, T ].

Therefore, from (5.32), for ε = εk, as k → ∞ we get∫
Rd

φ(x) m0
t (dx) =

∫
Rd

φ(γ0t (x)) m0(dx), ∀ t ∈ [0, T ]

which proves (5.33). Moreover, again by Proposition 5.20 we have that γ0t
is a minimiser for u0(0, x) since it is the limit of γε(x,v) which is optimal
uε(0, x, v) and we are taking (x, v) in a subset of full measure w.r.t. µ0.
Therefore, from the optimality of γ0 we get{

γ̇0t (x) = DpH0(γ
0
t (x), Du

0(t, γ0t (x)),m
0
t ), t ∈ (0, T ]

γ00(x) = x.

Hence, for any ψ ∈ C∞
c ([0, T )× Rd) we obtain

d

dt

∫
Rd

ψ(t, x) m0
t (dx) =

d

dt

∫
Rd

ψ(t, γ0t (x)) m0(dx)

=

∫
Rd

(
∂tψ(t, γ

0
t (x)) + 〈Dxψ(t, γ

0
t (x)), DpH0(γ

0
t (x), Dxψ(t, γ

0
t (x)),m

0
t )
)
m0(dx)

=

∫
Rd

(
∂tψ(t, x) + 〈Dxψ(t, x), DpH0(x,Dxψ(t, x),m

0
t )
)
m0
t (dx)

and integrating, in time, over [0, T ] we get the result.
We are now ready to prove the main result.

Proof of Theorem 5.3. Let {εk}k∈N be such thatmεk → m0 in C([0, T ];P1(Rd)
and uεk → u0 locally uniformly on [0, T ] × R2d. Then, appealing to The-
orem 5.19 and Corollary 5.22 we deduce that (u0,m0) is a solution to the
MFG system

−∂tu0(t, x) +H0(x,Dxu
0(t, x),m0

t ) = 0, (t, x) ∈ [0, T ]× Rd

∂tm
0
t − div

(
m0
tDpH0(x,Dxu

0(t, x),m0
t )
)
= 0, (t, x) ∈ [0, T ]× Rd

m0
0 = m0, u

0(T, x) = g(x,m0
T ) x ∈ Rd

which completes the proof.



Chapter 6

Asymptotic analysis for
Hamilton-Jacobi equations
associated with
sub-Riemannian control
systems

6.1 Settings and assumptions
For m ∈ N and i = 1, . . . ,m, let

fi : Rd → Rd

and
ui : [0,∞) → R

be smooth vector fields and measurable controls, respectively, and consider
the following controlled dynamics of sub-Riemannian type

γ̇(t) =
m∑
i=1

fi(γ(t))ui(t) = F (γ(t))U(t), t ∈ [0,+∞) (6.1)

where F (x) = [f1(x)| . . . |fm(x)] is an d×m real matrix and U(t) = (u1(t), . . . , um(t))
⋆1.

For any s0, s1 ∈ R such that s0 < s1 and x, y ∈ Rd we set

Γx→s0,s1 = {(γ, u) ∈ AC([s0, s1];Rd)× L2(s0, s1;Rm) : γ̇(t) = F (γ(t))u(t), γ(s0) = x},
Γ→y
s0,s1 = {(γ, u) ∈ AC([s0, s1];Rd)× L2(s0, s1;Rm) : γ̇(t) = F (γ(t))u(t), γ(s1) = y},

Γx→y
s0,s1 = Γx→s0,s1 ∩ Γ→y

s0,s1 .

1(u1, . . . , um)⋆ denotes the transpose of (u1, . . . , um)

121
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Throughout the Chapter we assume the vector fields fi to satisfy the
following:

(F0) there exists a constant cf ≥ 1 such that for any i = 1, . . . ,m

|fi(x)| ≤ cf (1 + |x|), ∀x ∈ Rd. (6.2)

In literature, under assumption (F0) the distribution {fi}i=1,...,m is called
regular.

By (6.2) and Gronwall’s inequality we get the following estimate for the
trajectories of (6.1).

Lemma 6.1. Let x ∈ Rd, t ≥ 0 and (γ, u) ∈ Γx→0,t . If u ∈ L∞(0, t;Rm) then
we have that

|γu(s)| ≤ (|x|+ cf‖u‖∞s)ecf∥u∥∞s, ∀ s ∈ [0, t].

Moreover, still from (6.2) we obtain the following.

Lemma 6.2. Let x ∈ Rd, t ≥ 0 and (γ, u) ∈ Γx→0,t . Then there exists a
constant κ(‖u‖2, t) ≥ 0 such that

|γ(s)| ≤ κ(‖u‖2, t)(1 + |x|), ∀ s ∈ [0, t] (6.3)

and

|γ(t2)−γ(t1)| ≤ cfκ(‖u‖2, t)(1+ |x|)‖u‖2|t2− t1|
1
2 , 0 ≤ t1 ≤ t2 ≤ t. (6.4)

Proof. We begin by proving (6.3). For any s ∈ [0, t] we have that

|γ(s)| ≤ |x|+
∫ t

0
|F (γ(s))||u(s)| ds

≤ |x|+
∫ t

0
cf (1 + |γ(s)|)|u(s)| ds

≤ |x|+ cf

(∫ t

0

(
1 + |γ(s)|

)2
ds

) 1
2

‖u‖2.

Thus, we get

|γ(s)|2 ≤ C

(
|x|2 + c2f t‖u‖22 + c2f‖u‖22

∫ t

0
|γ(s)|2 ds

)
which implies the (6.3) by Gronwall’s inequality.
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We now proceed to show (6.4). Fix t1, t2 such that 0 ≤ t1 ≤ t2 ≤ t.
Then, we have that

|γ(t2)− γ(t1)| ≤
∫ t2

t1

|F (γ(s))||u(s)| ds

≤ cf

∫ t2

t1

(1 + |γ(s)|)|u(s)| ds

≤ cfκ(‖u‖2, t)(1 + |x|)
∫ t2

t1

|u(s)| ds

where the last inequality holds by (6.3). Hence, by Hölder’s inequality we
obtain

|γ(t2)− γ(t1)| ≤ cfκ(‖u‖2, t)(1 + |x|)‖u‖2|t2 − t1|
1
2 .

This completes the proof of the lemma.
Let the Lagrangian L : Rd × Rm → R be such that

(L0) L ∈ C2(Rd × Rm) and L(x, u) ≥ L(x, 0) for any (x, u) ∈ Rd × Rm.

(L1) There exist a non-decreasing function β : [0,∞) → R and a constant
ℓ1 ≥ 0 such that

L(x, u) ≤ β(|x|)(1 + |u|2), ∀ (x, u) ∈ Rd × Rm

|DxL(x, u)| ≤ ℓ1(1 + |u|2), ∀ (x, u) ∈ Rd × Rm

D2
uL(x, u) ≥

1

ℓ1
, ∀ (x, u) ∈ Rd × Rm.

(L2) There exists a compact set KL ⊂ Rd and a constant δL > 0 such that

inf
x∈Rd\KL

L(x, 0) ≥ δL + min
x∈KL

L(x, 0). (6.5)

Observe that a special class of functions L which satisfy (L0) is the
class of Lagrangians L ∈ C2(Rd × Rm) which are convex w.r.t. u ∈ Rd and
reversible, that is, L(x, u) = L(x,−u) for any (x, u) ∈ Rd × Rm. Moreover,
note that by (L0), (L1) and (L2) we obtain

L(x, u) ≥ 1

2ℓ1
|u|2 + L(x∗, 0), ∀ (x, u) ∈ Rd × Rm (6.6)

where x∗ ∈ KL is such that

L(x∗, 0) = min
x∈KL

L(x, 0).

Furthermore, set
δ∗(x) = dSR(x, x

∗), ∀ x ∈ Rd

and observe that, by Corollary 2.7, there exists a nondecreasing function
D : R+ → R+ with

δ∗(x) ≤ D(|x|), ∀ x ∈ Rd. (6.7)
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6.2 Boundedness of optimal trajectories

We consider the following minimisation problem: for any T > 0 and x ∈ Rd

to minimize
∫ T

0
L(γ(s), u(s)) ds over all (γ, u) ∈ Γx→0,T (6.8)

and we set

VT (x) = inf
(γ,u)∈Γx→

0,T

∫ T

0
L(γ(s), u(s)) ds, ∀ x ∈ Rd. (6.9)

For any x ∈ Rd we say that a trajectory-control pair (γ, u) ∈ Γx→0,T is
optimal if it solves (6.8).

Remark 6.3. We observe that by using classical technics from optimal con-
trol theory one can easily obtain the existence of optimal trajectory-control
pairs for (6.8) (see, for instance, [26, Theorem 7.4.4]).

In this section, we prove the uniform boundedness of optimal trajectories
for (6.8) starting from a given compact set. We begin by deriving a uniform
bound for the Lebsegue measure of all times at which an optimal trajectory
may lie outside the compact set KL of assumption (L3).

Proposition 6.4. Assume (F0), and (L0) – (L2). For any R ≥ 0 there
exists a constant MR ≥ 0 such that for any x ∈ BR, any T ≥ δ∗(x), and
any optimal pair (γx, ux) ∈ Γx→0,T for (6.8) we have that

L1 ({t ∈ [0, T ] : γx(t) 6∈ KL}) ≤MR. (6.10)

Proof. Fix R ≥ 0 and let x ∈ BR. Let (γ̄x, ūx) ∈ Γx→x∗

0,δ∗(x) be a solution of
(2.5) and recall that, as observed in (6.7), δ∗(x) ≤ D(R). Define the control

ûx(t) =

{
ūx(t), t ∈ [0, δ∗(x)]

0, t ∈ (δ∗(x), T ].

Then, (γ̂x, ûx) ∈ Γx→x∗
0,T and we obtain

VT (x) ≤
∫ δ∗(x)

0
L(γ̄x(t), ūx(t)) dt+ (T − δ∗(x))L(x∗, 0)

=: c1(x, δ
∗(x)) + (T − δ∗(x))L(x∗, 0).

(6.11)

Invoking Corollary 2.7 once again, we have that c1(x, δ∗(x)) ≤ C1(R) for
some positive constant C1(R). Now, let (γx, ux) ∈ Γx→0,T be optimal for (6.8).
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Then, we have that

VT (x) =

∫ T

0
L(γx(t), ux(t)) dt ≥

∫ T

0
L(γx(t), 0) dt

≥ c2(x, δ
∗(x)) +

∫ T

δ∗(x)
L(γx(t), 0)1KL

(γx(t)) dt+

∫ T

δ∗(x)
L(γx(t), 0)1Kc

L
(γx(t)) dt

≥ c2(x, δ
∗(x)) + L(x∗, 0)L1

(
{t ∈ [δ∗(x), T ] : γx(t) ∈ KL}

)
+

(
inf

x∈Rd\KL

L(x, 0)

)
L1
(
{t ∈ [δ∗(x), T ] : γx(t) 6∈ KL}

)
= c2(x, δ

∗(x)) + L(x∗, 0)L1
(
{t ∈ [δ∗(x), T ] : γx(t) ∈ KL}

)
+

(
inf

x∈Rd\KL

L(x, 0)

)(
T − δ∗(x)− L1

(
{t ∈ [δ∗(x), T ] : γx(t) ∈ KL}

))
(6.12)

where

c2(x, δ
∗(x)) :=

∫ δ∗(x)

0
L(γx(t), 0) dt.

From (6.12) it also follows that

VT (x) ≥ c2(x, δ
∗(x)) + L(x∗, 0)(T − δ∗(x)),

which, together with (6.11), yields

c2(x, δ
∗(x)) ≤ c1(x, δ

∗(x)) ≤ C1(R). (6.13)

Hence, we have that

c3(δ
∗(x)) := c1(δ

∗(x))− c2(δ
∗(x)) ≥ 0, c3(δ

∗(x)) ≤ C1(R).

So, combining (6.11) and (6.12) and recalling (L2), we deduce that

c3(δ
∗(x)) ≥

(
inf

x∈Rd\KL

L(x, 0)− L(x∗, 0)
) (

T − δ∗(x)− L1
(
{t ∈ [δ∗(x), T ] : γu(t) ∈ KL}

))
≥ δLL1

(
{t ∈ [δ∗(x), T ] : γx(t) 6∈ KL}

)
.

Therefore,

L1
(
{t ∈ [0, T ] : γx(t) 6∈ KL}

)
≤ c3(δ

∗(x))

δL
+ δ∗(x).

Recalling that δ∗(x) ≤ D(R) and setting

MR :=
C1(R)

δL
+D(R)

we obtain the conclusion.
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Theorem 6.5. Assume (F0), and (L0) – (L2). For any R ≥ 0 there exist
two constants PR, QR ≥ 0 such that for any x ∈ BR, any T ≥ δ∗(x), and
any optimal pair (γx, ux) ∈ Γx→0,T for (6.8) we have that∫ T

0
|ux(t)|2 dt ≤ PR (6.14)

and
|γx(t)| ≤ QR, ∀ t ∈ [0, T ]. (6.15)

Proof. We begin with the proof of (6.14). Since (γx, ux) ∈ Γx→0,T is optimal
for (6.8) we have that

VT (x) =

∫ T

0
L(γx(t), ux(t)) dt ≥

1

2ℓ1

∫ T

0
|ux(t)|2 dt+ TL(x∗, 0). (6.16)

On the other hand, let (γ̄x, ūx) ∈ Γx→x∗

0,δ∗(x) be a solution of (2.5) and define
the control

ûx(t) =

{
ūx(t), t ∈ [0, δ∗(x)]

0, t ∈ (δ∗(x), T ],

that is, (γ̂x, ûx) ∈ Γx→x∗
0,T . By the definition of VT we deduce that

VT (x) ≤
∫ δ∗(x)

0
L(γ̄x(t), ūx(t)) dt+ (T − δ∗(x))L(x∗, 0). (6.17)

Combining (6.16) and (6.17) we obtain

1

2ℓ1

∫ T

0
|ux(t)|2 dt ≤

∫ δ∗(x)

0
L(γ̄x(t), ūx(t)) dt− δ∗(x)L(x∗, 0).

In order to prove (6.14), we need an upper bound for the term∫ δ∗(x)

0
L(γ̄x(t), ūx(t)) dt.

Observe that, since ‖ūx‖∞,[0,δ∗(x)] ≤ 1 and δ∗(x) ≤ D(R), Lemma 6.1 en-
sures that

|γ̄x(t)| ≤ (R+ cfD(R))ecfD(R) =: Λ(R), ∀ t ∈ [0, δ∗(x)]. (6.18)

Therefore, by assumption (L1) we deduce that∫ δ∗(x)

0
L(γ̄x(t), ūx(t)) dt ≤ 2β(Λ(R)).
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Hence, (6.14) follows taking

PR = 2ℓ1(2β(Λ(R)) +D(R)L(x∗, 0)).

We now proceed to prove (6.15). Let (γx, ux) ∈ Γx→0,T be a solution of
(6.8). Clearly, we just need to estimate |γx(t)| for all times at which the
optimal trajectory lies outside the compact set KL. Let t̄ ∈ [0, T ] be such
that γx( t̄ ) 6∈ KL and set

t0 =

{
sup{t ∈ [0, t̄ ] : γx(t) ∈ KL}, if {t ∈ [0, t̄ ] : γx(t) ∈ KL} 6= ∅
0, if {t ∈ [0, t̄ ] : γx(t) ∈ KL} = ∅

We only consider the case of t0 6= 0 since the reasoning is similar when
t0 = 0. Since γx is a solution of (6.1) we deduce that for any t ∈ [t0, t̄]

|γx(t)| ≤ |γx(t0)|+ cf

∫ t

t0

(
1 + |γx(s)|)|ux(s)| ds

≤|γx(t0)|+ cf‖ux‖2,[t0,t̄]
(∫ t

t0

(
1 + |γx(s)|2

)
ds

) 1
2

.

Hence, appealing to (6.10) and (6.14) we deduce that

|γx(t)|2 ≤ C̄

(
|γx(t0)|2 + ‖ux‖22,[t0,t̄]MR + ‖ux‖22,[t0,t̄]

∫ t

t0

|γx(s)|2 ds
)

≤ C̄

(
|γx(t0)|2 + PRMR + PR

∫ t

t0

|γx(s)|2 ds
)

for some constant C̄ ≥ 0. Thus, recalling that |t − t0| ≤ MR by Proposi-
tion 6.4, the Gronwall inequality yields

|γx(t)| ≤ C̄|γx(t0)|2PRMRe
PRMR , ∀ t ∈ [t0, t̄]

and we set QR := C̄|γx(t0)|2PRMRe
PRMR . Since |γx(t0)| ≤ max{|y| : y ∈

KL} and |γx(t)| ≤ max{|y| : y ∈ KL} for all times t at which γx(t) ∈ KL, we
get the conclusion.

6.3 Long-time average and ergodic constant
In this section, we investigate the existence of the limit

lim
T→∞

1

T
VT (x) (x ∈ Rd),

where VT (x) is defined in (6.9), as well as the related problem of the existence
of solutions to the ergodic Hamilton-Jacobi equation

c+H(x,Dχ(x)) = 0 (x ∈ Rd) (6.19)
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for some c ∈ R, where H : Rd ×Rd → R is the Hamiltonian associated with
L, that is,

H(x, p) = sup
u∈Rm

{
m∑
i=1

ui〈p, fi(x)〉 − L(x, u)

}
, ∀ (x, p) ∈ Rd × Rd. (6.20)

6.3.1 Long-time average

In order to prove the main result of this section, that is, Theorem 6.8, we
need to show, first, that the value function VT is locally equicontinuous
uniformly in T .

Lemma 6.6. Assume (F0), and (L0) – (L2). For any R ≥ 0 there exist
two constants TR ≥ 0 and K(R) ≥ 0 such that

|VT (x)− VT (y)| ≤ K(R)dSR(x, y), ∀ T ≥ TR ∀ x, y ∈ BR.

Proof. Let x, y ∈ BR, set δ = dSR(x, y) and let T ≥ dSR(x, y) =: TR. Let
(γ̄y, ūy) ∈ Γy→x

0,δ be a solution of (2.5), let (γx, ux) ∈ Γx→0,T be a solution of
(6.8), and define the control

ûy(t) =

{
ūy(t), t ∈ [0, δ]

ux(t− δ), t ∈ (δ, T ].

Then, we have that

VT (y)− VT (x) ≤
∫ T

0
L(γ̂y(t), ûy(t)) dt−

∫ T

0
L(γx(t), ux(t)) dt

≤
∫ δ

0
L(γ̄y(t), ūy(t)) dt+

∫ T

δ
L(γx(t− δ), ux(t− δ)) dt−

∫ T

0
L(γx(t), ux(t)) dt

=

∫ δ

0
L(γ̄y(t), ūy(t)) dt+

∫ T−δ

0
L(γx(s), ux(s)) ds−

∫ T

0
L(γx(s), ux(s)) ds

=

∫ δ

0
L(γ̄y(t), ūy(t)) dt−

∫ T

T−δ
L(γx(s), ux(s)) ds.

(6.21)

First, by (6.6) we get∫ T

T−δ
L(γx(s), ux(s)) ds ≥ δL(x∗, 0).

Then, since ‖ūy‖∞ ≤ 1 and δ ≤ c(R), by Lemma 6.1 we have that

|γ̄y(t)| ≤ (R+ cfc(R))e
cf c(R) =: Λ(R), ∀ t ∈ [0, δ]. (6.22)
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Thus, by (L1) we obtain∫ δ

0
L(γ̄y(s), ūy(s)) ds ≤ 2δβ(Λ(R)).

Hence, going back to (6.21), from Corollary 2.7 it follows that

VT (y)− VT (x)

≤
∫ δ

0
L(γ̄y(s), ūy(s)) ds−

∫ T

T−δ
L(γx(s), ux(s)) ds

≤δ(2β(Λ(R))− L(x∗, 0)) = K(R)dSR(x, y)

where K(R) := c̃2(2β(Λ(R)) − L(x∗, 0)). Switching x and y in the above
reasoning completes the proof.

Lemma 6.7. Assume (F0), and (L0) – (L2). For any R ≥ 0 there exists
a constant CR ≥ 0 such that for any x ∈ BR, any T > 0, and any optimal
pair (γx, ux) ∈ Γx→0,T of (6.8) there exists a pair (γT , uT ) ∈ Γx→x

0,T such that∫ T

0
L(γT (t), uT (t)) dt ≤

∫ T

0
L(γx(t), ux(t)) dt+ CR.

Proof. Fix R ≥ 0, x ∈ BR, and take an optimal pair (γx, ux) ∈ Γx→0,T . If
γx(T ) = x then it is enough to take CR = 0 and (γT , uT ) = (γx, ux). If this
is not the case, let δ0 ∈ (0, T ) be such that

δ0 = dSR(γx(T − δ0), x).

Note that such a number δ0 exists since g(δ) := dSR(γx(T − δ), x) − δ, for
δ ∈ [0, T ], is a continuous function satisfying

g(T ) =− T < 0

g(0) = dSR(γx(T ), x) > 0.

For simplicity of notation set y = γx(T − δ0) and observe that |y| ≤ QR
by Theorem 6.5. Let (γ̄y, ūy) ∈ Γy→x

0,δ0
be a solution of (2.5) and define the

control

uT (t) =

{
ux(t), t ∈ [0, T − δ0]

ūy(t+ δ0 − T ), t ∈ (T − δ0, T ].

Then∫ T

0
L(γT (t), uT (t)) dt =

∫ T−δ0

0
L(γx(t), ux(t)) dt+

∫ δ0

0
L(γ̄y(t), ūy(t)) dt

=

∫ T

0
L(γx(t), ux(t)) dt−

∫ T

T−δ0
L(γx(t), ux(t)) dt+

∫ δ0

0
L(γ̄y(t), ūy(t)) dt.
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By (6.6) we obtain ∫ T

T−δ0
L(γx(t), ux(t)) dt ≥ δ0L(x

∗, 0).

Let R′ = max{R,QR}. Then, since ‖ūy‖∞,[0,δ0] ≤ 1 and |y| ≤ QR, by
Lemma 6.1 we also have that

|γ̄y(t)| ≤ (QR + cfR
′)ecfR

′
=: Λ(R)

for any t ∈ [0, δ0]. So, we obtain

−
∫ T

T−δ0
L(γx(t), ux(t)) dt+

∫ δ0

0
L(γ̄y(t), ūy(t)) dt

≤ −δ0L(x∗, 0) +
∫ δ0

0
L(γ̄y(t), ūy(t)) dt ≤ δ0

(
2β(Λ(R))− L(x∗, 0)

)
.

The conclusion follows taking

CR = R′(2β(Λ(R))− L(x∗, 0)
)
. □

Theorem 6.8 (Existence of the critical constant). Assume (F0), and
(L0) – (L2). There exists a constant α(L) ∈ R, called the critical constant
(or Mañé’s critical value), such that

lim
T→∞

sup
x∈BR

∣∣∣∣ 1T VT (x)− α(L)
∣∣∣∣ = 0, ∀ R > 0. (6.23)

Proof. Let R ≥ 0. By Lemma 6.6, for all x ∈ BR we deduce that

|VT (x)− VT (0)| ≤ K ′(R). (6.24)

Hence, to obtain the conclusion it suffices to prove the existence of the limit

lim
T→∞

1

T
VT (0) =: α(L) . (6.25)

For this purpose let {Tn}n∈N and {(γn, un)}n∈N ⊂ Γ0→
0,Tn

be such that

lim inf
T→∞

1

T
VT (0) = lim

n→∞

1

Tn
inf

(γ,u)∈Γ0→
0,Tn

∫ Tn

0
L(γ(t), u(t)) dt

= lim
n→∞

1

Tn

∫ Tn

0
L(γn(t), un(t)) dt.

(6.26)

By Lemma 6.7 there exists a sequence (γ0n, u0n) ∈ Γ0→0
0,Tn

and a constant C0 ≥ 0
such that∫ Tn

0
L(γ0n(t), u

0
n(t)) dt ≤

∫ Tn

0
L(γn(t), un(t)) dt+ C0. (6.27)
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Next, for any n ∈ N let û0n be the periodic extension of u0n, i.e., û0n is Tn-
periodic and û0n(t) = u0n(t) for any t ∈ [0, Tn]. Then, we have that

lim sup
T→∞

1

T
VT (0) ≤ lim sup

T→∞

1

T

∫ T

0
L(γ̂0n(t), û

0
n(t)) dt, ∀ n ∈ N (6.28)

by using û0n as a competitor in (6.9). Then, by periodicity and (6.27) we
obtain

lim sup
T→∞

1

T

∫ T

0
L(γ̂0n(t), û

0
n(t)) dt

=
1

Tn

∫ Tn

0
L(γ0n(t), u

0
n(t)) dt ≤

1

Tn

∫ Tn

0
L(γn(t), un(t)) dt+

C0

Tn
.

Therefore, recalling (6.28) and (6.26) we conclude that

lim sup
T→∞

1

T
VT (0) ≤ lim

n→∞

(
1

Tn

∫ Tn

0
L(γn(t), un(t)) dt+

C0

Tn

)
= lim inf

T→∞

1

T
VT (0).

This yields (6.25), thus completing the proof.

Corollary 6.9. Assume (F0), and (L0) – (L2). Then, we have that

α(L) = L(x∗, 0).

Proof. First, we recall that

α(L) = lim
T→∞

1

T
VT (0) = lim

T→∞

1

T
inf

(γ,u)∈Γ0→
0,T

∫ T

0
L(γ(s), u(s)) ds.

So, taking (γx, ux) ∈ Γ0→
0,T optimal for VT (0) we obtain

α(L) = lim
T→∞

1

T

∫ T

0
L(γx(s), ux(s)) ds ≥ lim

T→∞

∫ T

0
L(x∗, 0) ds = L(x∗, 0)

since, by assumption (L0) and (L2), we have that L(x, u) ≥ L(x∗, 0) for
any (x, u) ∈ Rd × Rm.

On the other hand, we observe that, owing to Theorem 6.8, the value of
α(L) could be computed replacing 0 in (6.25) with any other point of Rd.
So,

α(L) = lim
T→∞

1

T
VT (x

∗).

This implies that

α(L) = lim
T→∞

1

T
inf

(γ,u)∈Γx∗→
0,T

∫ T

0
L(γ(s), u(s)) ds ≤ lim

T→∞

1

T

∫ T

0
L(x∗, 0) ds = L(x∗, 0)

which yields the conclusion.
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Remark 6.10. Note that in view of Theorem 6.8 we have that

lim
T→∞

sup
x∈BR

∣∣∣∣∣ 1T inf
(γ,u)∈Γx→

0,T

∫ T

0

(
L(γ(s), u(s))− α(L)

)
ds

∣∣∣∣∣ = 0, ∀ R ≥ 0.

Moreover, from Corollary 6.9 we deduce that

min
(x,u)∈Rd×Rm

L(x, u)− α(L) = 0.

Therefore, by replacing L with L̂(x, u) := L(x, u)−α(L) one can reduce the
analysis to the case of α(L̂) = min(x,u)∈Rd×Rm L̂(x, u) = 0.

6.3.2 Application to Abel means

Now, we move to the analysis of the ergodic equation

c+H(x,Dχ) = 0, x ∈ Rd

showing the existence of viscosity solutions to such an equation by studying
the limit behavior of solutions to the discounted problem

λvλ(x) +H(x,Dvλ(x)) = 0, x ∈ Rd (6.29)

as λ ↓ 0. To do so, define the function

vλ(x) = inf
(γ,u)∈Γx→

0,∞(e−λtdt)

{∫ +∞

0
e−λtL(γ(t), u(t)) dt

}
, (6.30)

where

Γx→0,∞(e−λtdt) :=
{
(γ, u) ∈ L∞

loc(0,∞;Rd)× L2
loc(0,∞;Rm) :

(γ, u) ∈ Γx→0,T ∀ T > 0, and
∫ ∞

0
e−λt|u(t)|2 dt <∞

}
.

Hereafter, we assume the following.

(L2’) There exists a compact set K ⊂ Rd such that

min
x∈K

L(x, 0) = 0, and inf
x∈Rd\K

L(x, 0) > 0.

We recall that in view of Remark 5.10 assumption (L2’) is not restrictive
and, moreover, by Corollary 6.9 we have that α(L) = 0. Furthermore, (L2’)
stands for the corresponding of (L2) given so far.

Note that vλ(x) ≥ 0 for any x ∈ Rd. Then vλ is the continuous viscosity
solution of (6.29).
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Proposition 6.11. Assume (F0), and (L0) – (L2’). Then, for any R ≥ 0
we have that:

(i) {λvλ}λ>0 is equibounded on BR;

(ii) there exists a constant CR ≥ 0 such that

|vλ(x)− vλ(y)| ≤ CRdSR(x, y), ∀ x, y ∈ BR. (6.31)

Remark 6.12. Recalling that rR is the uniform degree of nonholonomy of
the distribution {fi}i=1,...,m associated with the compact BR, Corollary 2.7
and (6.31) yield

|vλ(x)− vλ(y)| ≤ CRc̃2|x− y|
1
rR ∀ x, y ∈ BR.

Proof of Proposition 6.11: Let R ≥ 0 and let x ∈ BR. Taking (γ̄, ū) ∈
Γx→0,∞(e−λtdt) such that (γ̄(t), ū(t)) ≡ (x, 0), by (L1) we get

λvλ(x) ≤ λ

∫ +∞

0
e−λtL(x, 0) dt

≤ β(R)

∫ +∞

0
λe−λt dt = β(R).

On the other hand, by (L2’) we have that

λvλ(x) ≥ 0.

Thus, for any λ > 0 we conclude that

λ|vλ(x)| ≤ β(R), ∀ x ∈ BR.

In order to prove (ii), for any fixed x, y ∈ BR set δ = dSR(x, y). Let
(γ̄y, ūy) ∈ Γy→x

0,δ be a solution of (2.5). Let (γx, ux) ∈ Γx→0,+∞(e−λtdt) be such
that ∫ ∞

0
e−λtL(γx(t), ux(t)) dt ≤ vλ(x) + λ.

Define a new control

ûy(t) =

{
ūy(t), t ∈ [0, δ]

ux(t− δ), t ∈ (δ,+∞),
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and so (γ̂y, ûy) ∈ Γy→0,∞(e−λtdt). Then, we have that

vλ(y)− vλ(x)

≤
∫ δ

0
e−λtL(γ̄y(t), ūy(t)) dt+

∫ +∞

δ
e−λtL(γx(t− δ), ux(t− δ)) dt

−
∫ +∞

0
e−λtL(γx(t), ux(t)) dt+ λ

=

∫ δ

0
e−λtL(γ̄y(t), ūy(t)) dt+ (e−λδ − 1)

∫ +∞

0
e−λsL(γx(s), ux(s)) ds+ λ

=

∫ δ

0
e−λtL(γ̄y(t), ūy(t)) dt+

(
− δλ+ o(δλ)

)
(vλ(x) + λ) + λ

where
lim
q→0

o(q)
q

= 0.

By point (i) we have that δλvλ(x) ≤ δβ(R) and for λ ≤ 1 we obtain o(δλ) ≤
δ. Moreover, by Lemma 6.1 we know that

|γ̄y(t)| ≤ (|y|+ cfδ)e
cf δ =: Λ(R), ∀ t ∈ [0, δ]

since ‖ūy‖∞,[0,δ] ≤ 1. Thus, by (L1) we deduce that∫ δ

0
e−λtL(γ̄y(t), ūy(t)) dt ≤

∫ δ

0
β(|γ̄y(t)|)(1 + |ūy(t)|2) dt ≤ 2δβ(Λ(R)).

Therefore, setting CR = 2β(Λ(R)) we obtain (6.31) recalling that δ =
dSR(x, y).

Note that, the above proof fails for general control systems, i.e., of the
form (6.1), under the assumption (LUGC) since, a priori, TR might not be
of the order of |x− y|.

Theorem 6.13 (Existence of correctors). Assume (F0), and (L0) –
(L2’). Then there exists a continuous function χ : Rd → R and a sequence
λn ↓ 0 such that, for any R ≥ 0,

lim
n→∞

vλn(x) = χ(x), uniformly on BR.

Moreover, we have that:

(i) χ(x) ≥ 0, χ(x∗) = 0 and χ is locally Lipschitz continuous w.r.t. dSR,
that is, for any R ≥ 0 there exists a constant ℓR ≥ 0 such that

|χ(x)− χ(y)| ≤ ℓRdSR(x, y), ∀ x, y ∈ BR. (6.32)

(ii) χ is a viscosity solution of the ergodic Hamilton-Jacobi equation

H(x,Dχ(x)) = 0 (x ∈ Rd). (6.33)
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Proof. First, we observe that, by an adaptation of [8, Theorem 5] (see The-
orem 6.21 in Section 6.5.1), we have that

0 = lim
T→+∞

1

T
V T (x) = lim

λ→0
λvλ(x) (6.34)

locally uniformly in space. We recall that vλ(x) is a continuous viscosity
solution of

λvλ(x) +H(x,Dvλ(x)) = 0 (x ∈ Rd)

Since vλ(x
∗) = 0, by Proposition 6.11 we deduce that {vλ}λ>0 is equi-

bounded and equicontinuous. So, applying the Ascoli-Arzelá Theorem and
a diagonal argument we deduce that there exists a sequence λn ↓ 0 such
that {vλn(x)}n∈N is locally uniformly convergent, i.e., for any R ≥ 0

lim
n→∞

vλn(x) =: χ(x) uniformly on BR.

Hence, from (L2’) we immediately deduce that χ(x) ≥ 0 and, again, since
vλ(x

∗) = 0 we get χ(x∗) = 0. Furthermore, from (6.31) we get (6.32).
Finally, the stability of viscosity solutions ensures that χ is a solution of
(6.33), which proves (ii).

Definition 6.14 (Critical equation and critical solutions). The equa-
tion

H(x,Dχ(x)) = 0 (x ∈ Rd) (6.35)

is called the critical (or, ergodic) Hamilton-Jacobi equation. A continuous
function χ is called a critical subsolution (resp. supersolution) if it is a
viscosity subsolution (resp. supersolution) of (6.35) and a critical solution
if it is both a subsolution and a supersolution.

6.4 Representation formula
In this last section, we construct a critical solution that can be represented
as the value function of a sub-Riemannian optimal control problem. Such
a solution, which is useful to develop the Aubry-Mather theory in the sub-
Riemannian case, will be obtained as the asymptotic limit as t→ ∞ of the
Lax-Oleinik semigroup, applied to χ given by Theorem 6.13.

We begin by giving the definition of dominated functions.

Definition 6.15 (Dominated functions). Let a, b ∈ R such that a < b
and let x, y ∈ Rd. Let ϕ be a continuous function on Rd. We say that ϕ is
dominated by L− c, and we denote this by ϕ ≺ L− c, if for any trajectory-
control pair (γ, u) ∈ Γx→y

a,b we have that

ϕ(y)− ϕ(x) ≤
∫ b

a
L(γ(s), u(s)) ds− c (b− a).
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Let us introduce, now, the following class of functions

S =

{
φ ∈ C(Rd) : φ(x) ≥ 0 ∀ x ∈ Rd, φ ≺ L

}
endowed with the topology induced by the uniform convergence on compact
sets. Then, for any x ∈ Rd, any t ≥ 0 and any φ ∈ S define the functional

Fφ : Γ→x
0,t → R

as

Fφ(γ, u) = φ(γ(0)) +

∫ t

0
L(γ(s), u(s)) ds

and

Ttφ(x) = inf
(γ,u)∈Γ→x

0,t

{
φ(γ(0)) +

∫ t

0
L(γ(s), u(s)) ds

}
. (6.36)

Before proceeding to derive several properties of Ttφ, including the fact that
Ttφ(x) ≥ 0, we first show that the class S is non-empty.

Lemma 6.16. Assume (F0), and (L0) – (L2’). Then, the function χ
constructed in Theorem 6.13 belongs to S.

Proof. Let χ be the critical solution given in Theorem 6.13, i.e.,

χ(x) = lim
n→∞

vλn(x)

where the limit is uniform on compact subsets of Rd. Recall that

vλ(x) = inf
(γ,u)∈Γx→

0,∞(eλt dt)

∫ ∞

0
e−λtL(γ(t), u(t)) dt.

Next, we show that χ ∈ S. From Theorem 6.13 we know that χ(x) ≥ 0
for any x ∈ Rd. Hence, we only need to prove that χ ≺ L. To do so,
let R ≥ 0 and let x, y ∈ BR. Fix a, b ∈ R and let (γ, u) ∈ Γx→y

a,b . Let
(γy, uy) ∈ Γy→0,∞(e−λt dt) be λ-optimal for vλ(y), that is,∫ ∞

0
e−λtL(γy(t), uy(t)) dt ≤ vλ(y) + λ.

and define the control

ũ(t) =

{
u(t+ a), t ∈ [0, b− a]

uy(t− a+ b), t ∈ (b− a,∞).
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Then, (γ̃, ũ) ∈ Γx→0,∞

vλ(x)− vλ(y) ≤
∫ ∞

0
e−λtL(γ̃(t), ũ(t)) dt−

∫ ∞

0
e−λtL(γy(t), uy(t)) dt+ λ

=

∫ b−a

0
e−λtL(γ(t+ a), u(t+ a)) dt

+

∫ ∞

b−a
e−λtL(γy(t), uy(t)) dt−

∫ ∞

0
e−λtL(γy(t), uy(t)) dt+ λ

≤
∫ b

a
L(γ(t), u(t)) dt+

(
e−λ(b−a) − 1

)∫ ∞

0
e−λtL(γy(t), uy(t)) dt+ λ

=

∫ b

a
L(γ(t), u(t)) dt− (b− a)λvλ(y)(1 + o(1)) + λ.

Therefore, since λ = λn as n→ ∞ from the previous estimate we get

χ(x)− χ(y) ≤
∫ b

a
L(γ(t), u(t)) dt

which completes the proof.

Theorem 6.17 (Lax-Oleinik semigroup). Assume (F0), and (L0) –
(L2’). The following holds.

1. For any φ ∈ S there exists a function Nφ : Rd → R, which is bounded
on compact sets, such that for any (t, x) ∈ [0,∞) × Rd there exists a
trajectory-control pair (γx, ux) ∈ Γ→x

0,t such that

Fφ(γx, ux) ≤ Nφ(x). (6.37)

2. For any φ ∈ S the following holds. For any R ≥ 0 there exists a
nondecreasing function Cφ : [0,∞) → [0,∞) such that for any (t, x) ∈
[0,∞)×BR and any (γ, u) ∈ Γ→x

0,t satisfying (6.37) we have that

dSR(x, γ(0)) ≤ Cφ(R) := β(R)D(R) + max
x∈BR

φ(x). (6.38)

3. For any x ∈ Rd, any t ≥ 0 and any φ ∈ S we have that Ttφ(x) ≥ 0.
Moreover, for any (t, x) ∈ [0,∞)×Rd the infimum in (6.36) is attained.

4. For any φ ∈ S and any c ∈ R we have that Tt(φ+ c) = Ttφ+ c for all
t ≥ 0.

5. Tt is a semigroup on S, i.e., Tt : S → S and for any s, t ≥ 0 and
φ ∈ S

T0φ = φ, Ts(Ttφ) = Ts+tφ.



138CHAPTER 6. ASYMPTOTIC BEHAVIOR OF SUB-RIEMANNIAN SYSTEMS

6. Tt is continuous on S w.r.t. the topology induced by the uniform con-
vergence on compact subsets.

Remark 6.18. We recall that, according to [2, Theorem 3.31], a set K is
compact in (Rd, dSR) if and only if K is compact in Rd w.r.t. the Euclidean
distance.

Proof. We begin by proving (1). To do so, we consider two cases: first, we
take (t, x) ∈ [D(|x|),∞) × Rd and, then, (t, x) ∈ [0, D(|x|)) × Rd. Recall
that D(·) is defined in (6.7) and satisfies δ∗(x) ≤ D(|x|).

Define the function Nφ : Rd → R as

Nφ(x) =

{
φ(x∗) +D(|x|)β(|x|), (t, x) ∈ [D(|x|),∞)× Rd

φ(x) +D(|x|)β(|x|), (t, x) ∈ [0, D(|x|))× Rd.

Note that, since φ ∈ S we deduce that Nφ is bounded on any compact subset
of Rd.

We now proceed with the first part of the proof, i.e., we show that for
any (t, x) ∈ [D(|x|),∞)× Rd there exists (γx, ux) ∈ Γ→x

0,t such that

Fφ(γx, ux) ≤ Nφ(x).

Let (γ0, u0) ∈ Γx
∗→x

0,δ∗(x) be optimal for (2.5) and define the control

ux(s) =

{
0, s ∈ [0, t− δ∗(x))

u0(s− t+ δ∗(x)), s ∈ [t− δ∗(x), t].

so that (γx, ux) ∈ Γx
∗→x

0,t . Then

Fφ(γx, ux) = φ(x∗) +

∫ t

t−δ∗(x)
L(γ0(s− t+ δ∗(x)), u0(s− t+ δ∗(x))) ds

= φ(x∗) +

∫ δ∗(x)

0
L(γ0(s), u0(s)) ds ≤ φ(x∗) +

∫ δ∗(x)

0
L(γ0(s), u0(s)) ds

Let us estimate the rightmost term above. Recalling that |u0(s)| ≤ 1 for
any s ∈ [0, δ∗(x)] we have that

|γ0(t)| ≤ (|x∗|+ cfδ
∗(x))ecf δ

∗(x) =: Λ(|x|), ∀ t ∈ [0, δ∗].

Thus, we get∫ δ∗(x)

0
L(γ0(s), u0(s)) ds ≤ δ∗(x)β(Λ(|x|)) ≤ D(|x|)β(Λ(|x|)).

Hence, we obtain

Fφ(γ, u) ≤ φ(x∗) +D(|x|)β(Λ(|x|)) (6.39)
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which completes the proof of (1) for (t, x) ∈ [D(|x|),∞)× Rd.
We now consider the case (t, x) ∈ [0, D(|x|)) × Rd. Let (γx, ux) ∈ Γ→x

0,t

be defined as

ux(s) = 0, γx(s) ≡ x, s ∈ [0, D(|x|)).

Then

Fφ(x, 0) ≤ φ(x) + tL(x, 0) ≤ φ(x) +D(|x|)β(|x|). (6.40)

This completes the proof of (1).
We proceed now with the proof of (2). In order to prove (6.38) we

estimate from below Fφ(γ, u), for any (γ, u) ∈ Γ→x
0,t satisfying (6.37), and

then we combine such estimate with the definition of Nφ(·). In view of (1)
we also analyze two cases: first, we show that the conclusion holds for any
(t, x) ∈ [D(|x|),∞)×Rd and then we do the same for (t, x) ∈ [0, D(|x|))×Rd.

Let (t, x) ∈ [D(|x|),∞) × Rd and let (γ, u) ∈ Γ→x
0,t satisfy (6.37). Then,

by (6.6) we have that

Fφ(γ, u) ≥ φ(γ(0)) +
1

2ℓ1

∫ t

0
|u(s)|2 ds ≥ 1

2ℓ1
dSR(x, γ(0))

2. (6.41)

Therefore, combining (6.41) with (6.39) we have that

1

2ℓ1
dSR(x, γ(0))

2 ≤ D(|x|)β(|x|) + φ(x∗) (6.42)

which implies (6.38) for (t, x) ∈ [D(|x|),∞)× Rd by the continuity of φ.
Now, let (t, x) ∈ [0, D(|x|))× Rd and observe that inequality (6.41) still

holds true. So, we combine such estimate with (6.40) to obtain

1

2ℓ1
dSR(x, γ(0))

2 ≤ D(|x|)β(|x|) + φ(x) (6.43)

which implies (6.38) for any (t, x) ∈ [0, D(|x|))×Rd, again, by the continuity
of φ. Hence, from (6.42) and (6.43) we get, for any R ≥ 0, any (t, x) ∈
[0,∞)×BR and any (γ, u) ∈ Γ→x

0,t satisfying (6.37),

dSR(x, γ(0)) ≤ Cφ(R) := β(R)D(R) + max
x∈BR

φ(x).

Now, given (t, x) ∈ [0,∞)×Rd, let φ ∈ S and let (γ, u) ∈ Γ→x
0,t be optimal

for Ttφ(x). Then, by definition we have that

Ttφ(x) ≥ φ(γ(0)) +
1

2ℓ1

∫ t

0
|u(s)|2 ds ≥ 0.

The existence of minimizing pairs (γ, u) ∈ Γ→x
0,t follows by classical results

in optimal control theory (see, for instance, [26, Theorem 7.4.4]). This
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completes the proof of (3). Then, (4) is a direct consequence of the definition
of Ttφ.

In order to prove (5), from the previous point we know that for any
(t, x) ∈ [0,∞) × Rd and any φ ∈ S we have that Ttφ(x) ≥ 0. Moreover,
the proof of the fact that Ttφ(x) ≺ L and of the semigroup property, the
latter being based on the dynamic programming principle, is similar to the
proof of [42, (1) of Proposition 3.3] and [41, Proposition 4.6.2.] and will be
omitted here.

We finally show (6). Let R ≥ 0, let x ∈ BR and let t ≥ 0. Let {φn}n∈N ∈
S and let φ ∈ S be such that φn → φ locally uniformly. Then, on the one
hand, taking (γφx , u

φ
x) ∈ Γ→x

0,t optimal for Ttφ(x) we obtain

Ttφn(x)− Ttφ(x) ≤ φn(γ
φ
x (0))− φ(γφx (0)).

Hence, from (2) we deduce that there exists a constant Cφ(R) ≥ 0 such that

Ttφn(x)− Ttφ(x) ≤ ‖φn(·)− φ(·)‖∞,BCφ(R)
. (6.44)

Similarly, on the other hand, let (γnx , unx) ∈ Γ→x
0,t optimal for Ttφn(x). Then,

from (2) there exists a constant Cφn(R) ≥ 0 such that

Ttφ(x)−Ttφn(x) ≤ φ(γnx (0))−φn(γnx (0)) ≤ ‖φn(·)−φ(·)‖∞,BCφn (R)
. (6.45)

Again in view of (2) by the locally uniform convergence of the sequence
φn the constant Cφn(R) can be chosen uniform w.r.t. n ∈ N. Therefore,
combining (6.44) and (6.45) the proof of (6) is complete.

We call Tt the Lax-Oleinik semigroup, adapted to the sub-Riemannian
systems. Now, recall that we are interested in finding a critical solution χ
such that

χ(x) = Ttχ(x), ∀ t ≥ 0, ∀ x ∈ Rd.

Hereafter, we take χ a critical solution in S (the existence of which is guar-
anteed by Theorem 6.13). We will show that Ttχ(x) converges as the t→ ∞
to the function χ we are looking for.

Proposition 6.19. Assume (F0), and (L0) – (L2’). Then, for any R ≥ 0
we have that

(i) {Ttχ}t≥0 is equibounded on BR;

(ii) {Ttχ}t≥1 is equicontinuous on BR.

Proof. In order to prove(i) we argue as in Theorem 6.17. Let R ≥ 0, let
t ≥ 0 let x ∈ BR. Let (γx, ux) ∈ Γ→x

0,t be optimal for Ttχ(x). Since χ is
Lipschitz continuous w.r.t. dSR the following holds

χ(x) ≤ ℓRdSR(x, 0), ∀ x ∈ BR. (6.46)
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Then, since χ ≥ 0 from (6.6) we obtain

Ttχ(x) ≥ χ(γ(0)) +
1

2ℓ1

∫ t

0
|ux(s)|2 ds =

1

2ℓ1
dSR(x, γx(0))

2 (6.47)

which is bounded by (2) in Theorem 6.17. Then, on the one hand, if t ∈
[D(R),∞) by (6.39) and (6.46) we obtain

Ttχ(x) ≤ χ(x∗) +D(R)β(R) ≤ ℓRKdSR(x
∗, 0) +D(R)β(R) (6.48)

where RK stands for the diameter of K. On the other hand, if t ∈ [0, D(R))
by (6.40) and (6.46) we get

Ttχ(x) ≤ χ(x) +D(R)β(R) ≤ ℓRdSR(x, 0) +D(R)β(R). (6.49)

Hence, combining (6.47) with (6.48) and, also, (6.47) with (6.49) the proof
of (i) is complete.

We proceed to show (ii), that is, the equicontinuity of Ttχ(x) for t ≥ 1.
Let R ≥ 0, let x, y ∈ BR and let t ≥ 1.

To begin with, assume that dSR(x, y) > 1. Then, we have that

|Ttχ(x)− Ttχ(y)| ≤ 2‖Ttχ‖∞,BR
≤ 2‖Ttχ‖∞,BR

dSR(x, y).

We now consider the other case, i.e., dSR(x, y) ≤ 1. Let (γ0, u0) ∈
Γy→x
0,dSR(x,y) be optimal for (2.5) and let (γy, uy) ∈ Γ→y

0,t be optimal for Ttχ(y).
Then, define the control

ũ(s) =

{
uy(s+ dSR(x, y)), s ∈ [0, t− dSR(x, y)]

u0(s− t+ dSR(x, y)), s ∈ (t− dSR(x, y), t]

and call γ̃ the corresponding trajectory, that is, (γ̃, ũ) ∈ Γ→x
0,t . Note that ũ

can be used to estimate Ttχ(x) from above. We have that

Ttχ(x)− Ttχ(y)

≤ χ(γ̃(0))− χ(γy(0)) +

∫ t

0
L(γ̃(s), ũ(s)) ds−

∫ t

0
L(γy(s), uy(s)) ds

= χ(γy(dSR(x, y)))− χ(γy(0)) +

∫ t

0
L(γy(s), uy(s)) ds

−
∫ dSR(x,y)

0
L(γy(s), uy(s)) ds+

∫ dSR(x,y)

0
L(γ0(s), u0(s)) ds−

∫ t

0
L(γy(s), uy(s)) ds

= χ(γy(dSR(x, y)))− χ(γy(0))−
∫ dSR(x,y)

0
L(γy(s), uy(s)) ds+

∫ dSR(x,y)

0
L(γ0(s), u0(s)) ds.

(6.50)

We estimate first the integral terms. By (6.6) we immediately obtain∫ dSR(x,y)

0
L(γy(s), uy(s)) ds ≥ 0.
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Moreover, since ‖u0‖∞,[0,dSR(x,y)] ≤ 1 we have that

|γ0(t)| ≤ (|x|+ cfdSR(x, y))e
cfdSR(x,y), ∀ t ∈ [0, dSR(x, y)].

So, we get∫ dSR(x,y)

0
L(γ0(s), u0(s)) ds ≤ dSR(x, y)

(
|x|+ cfdSR(x, y)

)
ecfdSR(x,y).

Combining both inequalities we have that

−
∫ dSR(x,y)

0
L(γy(s), uy(s)) ds+

∫ dSR(x,y)

0
L(γ0(s), u0(s)) ds

≤ dSR(x, y)
(
|x|+ cfdSR(x, y)

)
ecfdSR(x,y).

(6.51)

Therefore, in order to obtain the results we need to estimate

χ(γy(dSR(x, y)))− χ(γy(0)). (6.52)

First, we claim that |γy(0)| and |γy(dSR(x, y))| are bounded. Indeed,
observe that from (2) in Theorem 6.17 and the equivalence of the sub-
Riemannian topology with the Euclidean one we deduce that

|γy(0)| ≤ 2max{R,Cχ(R)}.

Moreover, by Lemma 6.2 we know that

|γy(s)| ≤ κ(‖uy‖2, 1)(1 + |γy(0)|), ∀ s ∈ [0, dSR(x, y)].

So, in particular,

|γy(dSR(x, y))| ≤ κ(‖uy‖2, 1)(1 + |γy(0)|).

We claim that ‖uy‖2,[0,dSR(x,y)] is bounded by a constant that only depends
on R. Indeed, from (i) we know that Ttχ(y) is locally uniformly bounded
and by (6.6) we know that

Ttχ(y) ≥ χ(γy(0)) +
1

2ℓ1

∫ t

0
|uy(s)|2 ds ≥

1

2ℓ1

∫ t

0
|uy(s)|2 ds.

Thus, we obtain

1

2ℓ1

∫ t

0
|uy(s)|2 ds ≤ ‖Ttχ(y)‖∞,BR

and this completes the proof of the claim since Ttχ is locally equibounded
by (i). For simplicity of notation, let Ry ≥ 0 be such that

|γy(dSR(x, y))| ≤ Ry, |γy(0)| ≤ Ry.
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Moreover, we denote by ry ≥ 1 the degree of nonholonomy associated with
the compact set BRy .

Hence, going back to by the Lipschitz continuity of χ w.r.t. dSR we get

χ(γy(dSR(x, y)))− χ(γy(0)) ≤ ℓRydSR(γy(dSR(x, y)), γy(0)).

Then, by Corollary 2.7 we have that

χ(γy(dSR(x, y)))− χ(γy(0)) ≤ c̃2|γy(dSR(x, y))− γy(0)|
1
ry (6.53)

where c̃2 depends only on Ry. Next, from Lemma 6.2 we have that

|γy(dSR(x, y))−γy(0)| ≤ κ
(
‖uy‖2,[0,dSR(x,y)], dSR(x, y)

)
(1+|γy(0)|)dSR(x, y)

1
2 .

Hence, we get that there exists a constant C ′
R ≥ 0 such that

χ(γy(dSR(x, y))− χ(γy(0)) ≤ C ′
RdSR(x, y)

1
2ry . (6.54)

Therefore, combining (6.50), (6.51) and (6.54) we obtain

Ttχ(x)− Ttχ(y) ≤ dSR(x, y)
(
|x|+ cfdSR(x, y)

)
ecfdSR(x,y) + C ′

RdSR(x, y)
1

2ry .

Finally, exchanging the role of x and y the proof of the equicontinuity is
complete.

Theorem 6.20. Assume (F0), and (L0) – (L2’). Then, there exists a
continuous function χ such that

lim
t→∞

Ttχ(x) = χ(x) (6.55)

uniformly on BR for any R ≥ 0. Moreover, we have that

χ(x) = Ttχ(x), t ≥ 0, x ∈ Rd

and χ satisfies
H(x,Dχ(x)) = 0, (x ∈ Rd) (6.56)

in the viscosity sense.

Proof. In order to prove the existence of the limit in (6.55), we first show
that the map

t 7→ Ttχ(x)

is nondecreasing for any x ∈ Rd. Indeed, we have that

Ttχ(x) ≤ Tt (Tsχ(x)) = Tt+sχ(x)

where the inequality holds since χ ≺ L. This implies that

Ttχ(x) ≤ Tt+sχ(x)
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and so we have that

Ttχ(x) ≤ Tt′χ(x), ∀ t ≤ t′.

Therefore, since by Proposition 6.19 we have that Ttχ is locally equibounded
it follows that the pointwise limit

lim
t→∞

Ttχ(x)

exists for all x ∈ Rd. Moreover, again by Proposition 6.19 we know that the
family Ttχ is locally equicontinuous. Thus the above limit is locally uniform.

Let us set
χ(x) = lim

t→∞
Ttχ(x), ∀ x ∈ Rd

Next, we show that χ(x) = Ttχ(x) for any x ∈ Rd and any t ≥ 0. Indeed,
let s ≥ 0. Then

Tsχ(x) = lim
t→∞

Ts
(
Ttχ(x)

)
= lim

t→∞
Ts+tχ(x)

where we have used the continuity of the semigroup Tt and property (4) in
Theorem 6.17. Hence, we get

Tsχ(x) = lim
t→∞

Ts+tχ(x) = χ(x).

So, we have that

χ(x) = Ttχ(x) = inf
(γ,u)∈Γ→x

0,t

{
χ(x) +

∫ t

0
L(γ(s), u(s)) ds

}
(6.57)

The proof of the fact that from (6.57) the function χ solves (6.56) in the
viscosity sense is similar to the proof of [42, Proposition 5.1, Proposition
5.2].

6.5 Appendix

6.5.1 Abelian-Tauberian Theorem

In this appendix, we give a new formulation of the Abelian-Tauberian The-
orem, stated in [8, Theorem 5], tailored for the proof of Theorem 6.13.

Theorem 6.21. Let ψ(t, x) be the solution of{
∂tψ(t, x) +H(x,Dψ(t, x)) = 0, (t, x) ∈ [0, T ]× Rd

ψ(T, x) = 0, x ∈ Rd.

For any λ > 0, let ψλ(x) be the solution of

λψ(x) +H(x,Dψ(x)) = 0, x ∈ Rd.

Then:
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(i) if {λψλ(· )}λ>0 locally uniformly converges to a constant d̄ ∈ R as
λ ↓ 0, then { 1

T ψ(0, · )}T>0 locally uniformly converges to d̄ as T → ∞;

(ii) if { 1
T ψ(0, · )}T>0 locally uniformly converges to a constant d̄ ∈ R as

T → ∞, then {λψλ(·)}λ>0 locally uniformly converges to d̄ as λ ↓ 0.

This result can be proved arguing as in [8, Theorem 5] keeping in mind
the following differences:

1. the uniform convergence on the full space Ω is replaced by the locally
uniform convergence on Rd;

2. whenever the boundedness assumption on L is used in [8] one here has
to invoke the boundedness of optimal pairs (γ, u) in L∞(0, T ;Rd) ×
L2(0, T ;Rm).
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Chapter 7

Aubry-Mather Theory for
sub-Riemannian control
systems

7.1 Settings and assumptions

For m ∈ N and i = 1, . . . ,m, let

fi : Rd → Rd

and
ui : [0,∞) → R

be smooth vector fields and measurable controls, respectively, and consider
the following controlled dynamics of sub-Riemannian type

γ̇(t) =
m∑
i=1

fi(γ(t))ui(t) = F (γ(t))U(t), t ∈ [0,+∞) (7.1)

where F (x) = [f1(x)| . . . |fm(x)] is an d×m real matrix and U(t) = (u1(t), . . . , um(t))
⋆1.

For any s0, s1 ∈ R such that s0 < s1 and x, y ∈ Rd we set

Γx→s0,s1 = {(γ, u) ∈ AC([s0, s1];Rd)× L2(s0, s1;Rm) : γ̇(t) = F (γ(t))u(t), γ(s0) = x},
Γ→y
s0,s1 = {(γ, u) ∈ AC([s0, s1];Rd)× L2(s0, s1;Rm) : γ̇(t) = F (γ(t))u(t), γ(s1) = y},

Γx→y
s0,s1 = Γx→s0,s1 ∩ Γ→y

s0,s1 .

Throughout the paper we assume the vector fields fi to satisfy the fol-
lowing.

1(u1, . . . , um)⋆ denotes the transpose of (u1, . . . , um)

147
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(F0) There exists an integer r0 ≥ 1 such that fi ∈ Cr0−1(Rd), for any
i = 1, . . . ,m, and

∆r0(x) = Rd, ∀x ∈ Rd;

(F1) There exists a constant cf ≥ 1 such that for any i = 1, . . . ,m

|fi(x)| ≤ cf (1 + |x|), ∀ x ∈ Rd; (7.2)

(F2) m ≤ d, F ∈ C1,1
loc (R

d) and for any x ∈ Rd the matrix F (x) has full
rank m.

Observe that, from (F2) we have that the vector fields fi are linearly inde-
pendent.

By (F1) and Gronwall inequality we get the following estimate on solu-
tions of (7.1).

Lemma 7.1. Let x ∈ Rd, t ≥ 0 and (γ, u) ∈ Γx→0,t . If u ∈ L∞(0, t;Rm) then
we have that

|γ(s)| ≤ (|x|+ cf‖u‖∞t)ecf∥u∥∞t, ∀ s ∈ [0, t].

We now state the assumptions on the Lagrangian L : Rd × Rm → R.

(L0) L ∈ C2(Rd × Rm) is reversible, that is L(x, u) = L(x,−u) for any
(x, u) ∈ Rd × Rm;

(L1) There exists a positive constant ℓ1, C1 such that

D2
uL(x, u) ≥

1

ℓ1
, (x, u) ∈ Rd × Rm

|DxL(x, u)| ≤ C1(1 + |u|2), (x, u) ∈ Rd × Rm;

and L is locally semiconcave in space uniformly w.r.t. u ∈ Rm.

(L2) There exists ℓ2 ≥ 0 such that

L(x, u) ≤ ℓ1|u|2 + ℓ2, (x, u) ∈ Rd × Rm

(L3) There exists a compact set KL ⊂ Rd and a constant δL > 0 such that

inf
x∈Rd\KL

L(x, 0) ≥ δL + min
x∈KL

L(x, 0); (7.3)

Note that by (L0), (L1) and (L3) we obtain

L(x, u) ≥ 1

2ℓ1
|u|2 + L(x∗, 0), ∀ (x, u) ∈ Rd × Rm (7.4)
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where x∗ ∈ KL is such that

L(x∗, 0) = min
x∈KL

L(x, 0).

Let H : Rd × Rd → R be the Hamiltonian associated with L, that is,

H(x, p) = sup
u∈Rm

{
m∑
i=1

ui〈p, fi(x)〉 − L(x, u)

}
, ∀ (x, p) ∈ Rd × Rd. (7.5)

Since the subject of this Chapter is deeply connected with the prob-
lem studied in Chapter 6, we first recall the main results of such Chapter.
Consider the following minimization problem: for any T > 0 and any x ∈ Rd

to minimize
∫ T

0
L(γ(s), u(s)) ds over all (γ, u) ∈ Γx→0,T (7.6)

and define the function VT : Rd → R by

VT (x) = inf
(γ,u)∈Γx→

0,T

∫ T

0
L(γ(s), u(s)) ds, ∀ x ∈ Rd. (7.7)

For any x ∈ Rd we say that a trajectory-control pair (γ, u) ∈ Γx→0,T is optimal
if it solves (7.6). Note that, the existence of optimal trajectory-control pairs
for (7.6) is a well-known result (see, e.g., [26, Theorem 7.4.4]).

Then, we know that for any R ≥ 0 there exist two constants PR, QR ≥
0 such that for any x ∈ BR, any T ≥ dSR(x, x

∗), and any optimal pair
(γx, ux) ∈ Γx→0,T for (7.6) the following holds:∫ T

0
|ux(t)|2 dt ≤ PR (7.8)

and
|γx(t)| ≤ QR, ∀ t ∈ [0, T ]. (7.9)

Moreover, there exists α(L) ∈ R such that for any R ≥ 0

lim
T→+∞

1

T
VT (x) = α(L), uniformly on BR (7.10)

and a continuous viscosity solution χ : Rd → R of the ergodic Hamilton-
Jacobi equation

α(L)+H(x,Dχ(x)) = 0, x ∈ Rd. (7.11)

Furthermore, such a solution che ne represented as

χ(x) = inf
(γ,u)∈Γ→x

0,t

{
χ(γ(0)) +

∫ t

0
L(γ(s), u(s)) ds

}
− α(L) t (7.12)
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for any (t, x) ∈ [0, T ]× Rd.
We say that α(L) is the critical constant for our problem and χ is any

critical solution to the ergodic equation (7.11). Hereafter, we will always
work with critical solutions that satisfy (7.12).

Differently from Chapter 6 here we also need to assume the following on
the sub-Riemannian system:

(S) there are no singular minimizing controls of problem (7.6).

The above extra assumption is needed for the critical solution χ to be more
regular. Indeed, under (S) any critical solution is locally semiconcave and
consequently locally Lipschitz continuous, see [25, Theorem 1].
Remark 7.2. (i) Observe that the sub-Riemannian systems in Exam-

ple 2.5 fit assumption (S), see for instance [25, Theorem 5.1].

(ii) In view of the assumptions on L, we deduce that for any R ≥ 0 there
exists a constant C̃R ≥ 0 such that

|H(x, p)−H(y, p)| ≤ C̃R(1 + |p|)|x− y|, ∀ x, y ∈ BR. (7.13)

7.2 Characterization of the ergodic constant
We begin by introducing a class of probability measures that adapts the
notion of closed measures to sub-Riemannian control systems. Set

P2
c (Rd×Rm) =

{
µ ∈ P(Rd × Rm) :

∫
Rd×Rm

|u|2 µ(dx, du) < +∞, spt(π1♯µ) compact
}

where π1 : Rd × Rm → Rd denotes the projection onto the first factor, i.e.
π1(x, u) = x.

Recall that F (x) = [f1(x)| . . . |fm(x)] is the real d×m matrix in (7.1).

Definition 7.3 (F -closed measure). We say that µ ∈ P2
c (Rd × Rm) is

an F-closed measure if∫
Rd×Rm

〈F ⋆(x)Dφ(x), u〉 µ(dx, du) = 0, ∀ φ ∈ C1(Rd).

We denote by CF the set of all F -closed measures.

Closed measures were first introduced in [43] in order to overcome the
lack of regularity of the Lagrangian L. Indeed, if L is merely continuous,
then there is no Euler flow and, consequently, it makes no sense to introduce
invariant measure as in [41]. Similarly, in our setting such a flow does
not exists and for this reason the use of closed measures turns out to be
necessary. Moreover, as we will show in the next result, such measures
collect the behavior of minimizing trajectories for (7.7) as the time horizon
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T goes to infinity. We now proceed to construct one closed measure that
will be particularly useful to study the Aubry set.

Fix x0 ∈ Rd and for any T > 0 let the pair (γx0 , ux0) ∈ Γx0→0,T be optimal
for (7.6). Define the probability measure µTx0 by∫
Rd×Rm

φ(x, u) µTx0(dx, du) =
1

T

∫ T

0
φ(γx0(t), ux0(t)) dt, ∀ φ ∈ Cb(Rd×Rm).

(7.14)
Then, we have the following.

Proposition 7.4. Assume (F0) – (F2), (L0) – (L3) and (S). Then,
{µTx0}T>0 is tight and there exists a sequence Tn → ∞ such that µTnx0 weakly-∗
converges to an F -closed measure µ∞x0.

Proof. First, from (7.9) it follows that {π1♯µTx0}T>0 has compact support,
uniformly in T . Thus, such a family of measures is tight. Let us prove that
{π2♯µT }T>0 is also tight.

On the one hand, taking the null control we have that

1

T
vT (x0) ≤

1

T

∫ T

0
L(x0, 0) ds ≤ ℓ2.

On the other hand, since (γx0 , ux0) is a minimizing pair for VT (x0), from
(7.4) we get

1

T
vT (x0) =

1

T

∫ T

0
L(γx0(t), ux0(t)) dt

=

∫
Rd×Rm

L(x, u) µTx0(dx, du) ≥
∫
Rd×Rm

(
1

2ℓ1
|u|2 + L(x∗, 0)

)
µTx0(dx, du)

which implies that

1

2ℓ1

∫
Rd×Rm

|u|2 µTx0(dx, du) ≤ ℓ2 − L(x∗, 0).

Consequently, the family of probability measures {π2♯µTx0}T>0 has bounded
second order moment (w.r.t. T ). So, {π2♯µTx0}T>0 is tight.

Since {π1♯µTx0}T>0 and {π2♯µTx0}T>0 are tight, so is {µTx0}T>0 by [7, The-
orem 5.2.2]. Therefore, by Prokhorov’s Theorem there exists {Tn}n∈N, with
Tn → ∞, and µ∞x0 ∈ P2

c (Rd × Rm) such that µTnx0 ⇀
∗ µ∞x0 .

We now show that µ∞x0 is an F -closed measure, that is∫
Rd×Rm

〈F ⋆(x)Dψ(x), u〉 µ∞x0(dx, du) = 0, ∀ ψ ∈ C1(Rd).
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By definition we have that∫
Rd×Rm

〈F ⋆(x)Dψ(x), u〉µTnx0 (dx, du) =
1

Tn

∫ Tn

0
〈F ⋆(γx0(t)Dψ(γx0(t)), ux0(t)〉 dt

=
1

Tn

∫ Tn

0
〈Dψ(γx0(t), γ̇x0(t)〉 dt =

ψ(γx0(Tn))− ψ(x0)

Tn
.

Then, from (7.9) we know that γx0(Tn) ∈ BQ|x0|
. So, we get

lim
n→∞

ψ(γx0(Tn))− ψ(x0)

Tn
= 0

and, consequently,∫
Rd×Rm

〈F ⋆(x)Dψ(x), u〉 µ∞x0(dx, du) = 0. □

Set

P2
R(Rd × Rm) =

{
µ ∈ P2

c (Rd × Rm) : spt(π1♯µ) ⊂ BR

}
.

The following property, which is interesting in its own right, will be cru-
cial for the characterization of the critical constant derived in Theorem 7.8
below.

Proposition 7.5. Assume (F0) – (F2), (L0) – (L3) and (S). Then, for
any R ≥ Q0, where Q0 is given in (7.9), we have that

inf
µ∈CF∩P2

R(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du) = − inf
ψ∈C1(Rd)

sup
x∈BR

H(x,Dψ(x)).

(7.15)

Lemma 7.6. Assume (F0) – (F2), (L0) – (L3) and (S). Then, for any
R ≥ Q0, where Q0 is given in (7.9), we have that

inf
µ∈CF∩P2

R(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du)

= inf
µ∈P2

R(Rd×Rm)
sup

ψ∈C1(Rd)

∫
Rd×Rm

(
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

)
µ(dx, du).

(7.16)

The proof of the above lemma is based on an argument which is quite
common in optimal transport theory see, for instance, [67, Theorem 1.3].
We give the reasoning for the reader’s convenience.
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Proof. Since L is bounded below we have that

inf
µ∈CF∩P2

R(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du)

= inf
µ∈P2

R(Rd×Rm)

{∫
Rd×Rm

L(x, u) µ(dx, du) + ω(µ)

}
where

ω(µ) =

{
0, µ ∈ CF

+∞, µ 6∈ CF.

So, observing that

ω(µ) = sup
ψ∈C1(Rd)

−
∫
Rd×Rm

〈F ⋆(x)Dψ(x), u〉 µ(dx, du)

we obtain (7.16).

Lemma 7.7. Let ϕ ∈ C(Rd × Rm) be such that

ϕ0 ≤ ϕ(x, u) ≤ Cϕ(1 + |u|2), ∀ (x, u) ∈ Rd × Rm

for some constants ϕ0 ∈ R and Cϕ ≥ 0. Let {µj}j∈N ∈ P2(Rd × Rm) and
let µ ∈ P2(Rd × Rm) be such that µj ⇀∗ µ as j → ∞. Then, we have that

lim inf
j→∞

∫
Rd×Rm

ϕ(x, u) µj(dx, du) ≥
∫
Rd×Rm

ϕ(x, u) µ(dx, du). (7.17)

Proof. We first prove (7.17) assuming that ϕ0 = 0 and then we remove such
a constraint.

For any ε > 0 we have that∫
Rd×Rm

ϕ(x, u) µ
Tj
x0(dx, du) =

∫
Rd×Rm

ϕ(x, u)

1 + ε |u|2
(1 + ε |u|2) µTjx0(dx, du)

≥
∫
Rd×Rm

ϕ(x, u)

1 + ε |u|2
µ
Tj
x0(dx, du).

From the growth assumption on ϕ we deduce that the function ϕ(x,u)
1+ε |u|2 is

bounded and so by weak-∗ convergence we get

lim inf
j→+∞

∫
Rd×Rm

ϕ(x, u) µ
Tj
x0(dx, du) ≥

∫
Rd×Rm

ϕ(x, u)

1 + ε |u|2
µ∞x0(dx, du).

Therefore, as ε ↓ 0 we obtain (7.17).
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For ϕ0 6= 0, we have that∫
Rd×Rm

[(ϕ(x, u)− ϕ0) + ϕ0] µ
Tj
x0(dx, du)

=

∫
Rd×Rm

ϕ(x, u)− ϕ0
1 + ε |u|2

(1 + ε |u|2) µTjx0(dx, du) + ϕ0

≥
∫
Rd×Rm

ϕ(x, u)− ϕ0
1 + ε |u|2

µ
Tj
x0(dx, du) + ϕ0.

Thus, we obtain

lim inf
j→+∞

∫
Rd×Rm

ϕ(x, u) µ
Tj
x0(dx, du) ≥

∫
Rd×Rm

ϕ(x, u)− ϕ0
1 + ε |u|2

µ∞x0(dx, du) + ϕ0

which in turn yields the result as ε ↓ 0.
Proof of Proposition 7.5. We divide the proof into two steps.
(1): Define F : C1(Rd)× P2

R(Rd × Rm) → R by

F(ψ, µ) =

∫
Rd×Rm

(
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

)
µ(dx, du).

We will apply the Minimax Theorem ([64, Theorem A.1]) to prove that

inf
µ∈P2

R(Rd×Rm)
sup

ψ∈C1(Rd)

∫
Rd×Rm

(
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

)
µ(dx, du)

= sup
ψ∈C1(Rd)

inf
µ∈P2

R(Rd×Rm)

∫
Rd×Rm

(
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

)
µ(dx, du).

In order to check that the hypothesis of such a theorem are satisfied, let
us define

c∗ = 1 + L(x∗, 0).

We claim that the level set

E :=
{
µ ∈ P2

R(Rd × Rm) : F(0, µ) ≤ c∗
}

is compact in
(
P2
R(Rd ×Rm), d1

)
. Indeed, for any given µ ∈ P2

R(Rd ×Rm)
we know that π1♯µ has compact support contained in BR. Moreover, the co-
ercivity of L implies that for any given µ ∈ E we have that π2♯µ has bounded
second moment which in turn yields the tightness of the family π2♯µ for any
µ ∈ P2

R(Rd ×Rm). Thus, the level set is compact by Prokhorov’s Theorem
and [7, Theorem 5.2.2]. Moreover, from Lemma 7.7 we have that F(ψ, µ)
is lower-semicontinuous w.r.t. µ in P2

R(Rd × Rm). Therefore, applying the
Minimax Theorem ([64, Theorem A.1]) we obtain

inf
µ∈P2

R(Rd×Rm)
sup

ψ∈C1(Rd)

∫
Rd×Rm

(
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

)
µ(dx, du)

= sup
ψ∈C1(Rd)

inf
µ∈P2

R(Rd×Rm)

∫
Rd×Rm

(
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

)
µ(dx, du).
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(2): Proof of (7.15). By (7.16) we get

inf
µ∈CF∩P2

R(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du)

= inf
µ∈P2

R(Rd×Rm)
sup

ψ∈C1(Rd)

∫
Rd×Rm

(
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

)
µ(dx, du)

= sup
ψ∈C1(Rd)

inf
µ∈P2

R(Rd×Rm)

∫
Rd×Rm

(
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

)
µ(dx, du).

Now, the coercivity of L ensures the existence of the

min
(x,u)∈BR×Rm

{
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

}
.

Therefore, by taking a Dirac mass centered at any minimizer of the above
function, one deduce that

sup
ψ∈C1(Rd)

inf
µ∈P2

R(Rd×Rm)

∫
Rd×Rm

(
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

)
µ(dx, du)

sup
ψ∈C1(Rd)

min
(x,u)∈BR×Rm

{
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

}
.

= sup
ψ∈C1(Rd)

(
− max

(x,u)∈BR×Rm

{
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

})
= − inf

ψ∈C1(Rd)
max

(x,u)∈BR×Rm

{
L(x, u)− 〈F ⋆(x)Dψ(x), u〉

}
=− inf

ψ∈C1(Rd)
max
x∈BR

H(x,Dψ(x))

where the last equality holds true observing that

max
(x,u)∈BR×Rm

{
〈F ⋆(x)Dψ(x), u〉 − L(x, u)

}
= max

x∈BR

sup
u∈Rm

{
〈F ⋆(x)Dψ(x), u〉 − L(x, u)

}
= sup

x∈BR

H(x,Dψ(x)).

This completes the proof.

The following characterization of the critical value is essential for the
analysis in Section 7.3.

Theorem 7.8. Assume (F0) – (F2), (L0) – (L3) and (S). Then, for any
R ≥ Q0, where Q0 is given in (7.9), we have that

α(L) = inf
µ∈CF∩P2

R(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du) = inf
µ∈CF

∫
Rd×Rm

L(x, u) µ(dx, du).

(7.18)
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Lemma 7.9. Assume (F0) – (F2), (L0) – (L3) and (S). Let χ be a critical
solution. Then, for any R ≥ 0 there exists a constant κR ≥ 0 such that for
any ε > 0

α(L)+H(x,Dχε(x)) ≤ κR ε, ∀ x ∈ BR (7.19)

where χε(x) = χ ⋆ ξε(x) and ξε is a smooth mollifier.

Proof. From (S) we have that χ belongs to W 1,∞
loc (Rd). So,

α(L)+H(x,Dχ(x)) = 0, a.e. x ∈ Rd. (7.20)

Let R ≥ 0 and let x0 ∈ BR. Then, by Jensen’s inequality we get

α(L)+H(x0, Dχε(x0)) =α(L)+H
(
x0,

∫
Rd

Dχ(x0 − y)ξε(y) dy

)
≤
∫
Rd

[
α(L)+H(x0, Dχ(x0 − y))

]
ξε(y) dy.

Moreover, writing∫
Rd

[
α(L)+H(x0, Dχ(x0 − y))

]
ξε(y) dy

=

∫
Rd

[
α(L)+H(x0 − y,Dχ(x0 − y))

]
ξε(y) dy︸ ︷︷ ︸

I

+

∫
Rd

[
H(x0, Dχ(x0 − y))−H(x0 − y,Dχ(x0 − y))

]
ξε(y) dy︸ ︷︷ ︸

II

,

by (7.20) we deduce that I = 0 and by (7.13) we get II ≤ κR ε.

Proof of Theorem 7.8. We divide the proof into two steps.
Step 1: We first show that for any R ≥ Q0, where Q0 is given in (7.9),

α(L) = inf
µ∈CF∩P2

R(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du).

Indeed, by (7.10) we know that

α(L) = lim
T→+∞

1

T
vT (0).

Hence, appealing to Lemma 7.7 and recalling that L(x, u) ≥ L(x∗, 0) we
obtain

α(L) = lim
T→∞

∫
Rd×Rm

L(x, u) µT0 (dx, du) ≥
∫
Rd×Rm

L(x, u) µ∞0 (dx, du).

(7.21)
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Recalling that µ∞0 ∈ CF ∩ P2
R(Rd × Rm) for any R ≥ Q0, we deduce that

α(L) ≥ inf
µ∈CF∩P2

R(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du).

Next, by Proposition 7.5 we have that for any ψ ∈ C1
c (Rd)

inf
µ∈CF∩P2

R(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du) = − inf
ψ∈C1(Rd)

sup
x∈BR

H(x,Dψ(x)).

(7.22)

Let χ be a critical solution. For ε ≥ 0 let χε(x) = χ ⋆ ξε(x), where ξε is a
smooth mollifier. From Lemma 7.9 we know that for any R ≥ 0

α(L)+H(x,Dχε(x)) ≤ κR ε, x ∈ BR.

Then, using χε in (7.22) we obtain

inf
µ∈CF∩P2

R(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du)

≥ − sup
x∈BR

H(x,Dχε(x)) ≥ α(L)−κR ε .

Hence, as ε ↓ 0 we get

inf
µ∈CF∩P2

R(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du) ≥ α(L)

and this completes the first step.
Step 2: Now we prove that

α(L) = inf
µ∈CF

∫
Rd×Rm

L(x, u) µ(dx, du),

that is, we remove the constraint µ ∈ P2
R(Rd × Rm).

Let {µj}j∈N ⊂ CF be such that

lim
j→∞

∫
Rd×Rm

L(x, u) µj(dx, du) = inf
µ∈CF

∫
Rd×Rm

L(x, u) µ(dx, du). (7.23)

Since µj ∈ CF ⊂ P2
c (Rd × Rm) we deduce that there exists {Rj}j∈N such

that
spt(µj) ⊂ BRj .

Moreover, without loss of generality, we can assume that for any j ∈ N

inf
µ∈CF∩P2

Rj
(Rd×Rm)

∫
Rd×Rm

L(x, u) µ(dx, du) =

∫
Rd×Rm

L(x, u) µj(dx, du).
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Since, for j sufficiently large, we have proved that

α(L) =
∫
Rd×Rm

L(x, u) µj(dx, du)

the conclusion follows from (7.23).

Corollary 7.10. Assume (F0) – (F2), (L0) – (L3) and (S). Then the
following holds.

(i) α(L) = L(x∗, 0) = minx∈KL
L(x, 0).

(ii) For any x0 ∈ Rd we have that

α(L) =
∫
Rd×Rm

L(x, u) µ∞x0(dx, du)

where µ∞x0 is given in Proposition 7.4.

Remark 7.11. Note that point (i) of the conclusion has beed already proved
in [23, Corollary 5.4]. Here we propose a different approach which relies on
(7.18).

Proof. (i) On the one hand, by Theorem 7.8, we have that

α(L) = inf
µ∈CF

∫
Rd×Rm

L(x, u) µ(dx, du) ≥ L(x∗, 0)

where the inequality holds true by (7.4).
On the other hand we observe that the Dirac measure δ(x∗,0) is F -closed.

So,

α(L) = inf
µ∈CF

∫
Rd×Rm

L(x, u) µ(dx, du) ≤
∫
Rd×Rm

L(x, u) δ(x∗,0)(dx, du) = L(x∗, 0).

(ii) Recalling Lemma 7.7 we obtain

α(L) = lim
T→∞

∫
Rd×Rm

L(x, u) µT0 (dx, du) ≥
∫
Rd×Rm

L(x, u) µ∞0 (dx, du).

Thus, the conclusion follows from Theorem 7.8 recalling that µ∞x0 is F -closed
by Proposition 7.4.

7.3 Aubry set
We denote by L∗ the Legendre Transform of L, that is,

L∗(x, p) = sup
u∈Rm

{
〈p, v〉 − L(x, u)

}
,



7.3. AUBRY SET 159

and we observe that

H(x, p) = L∗(x, F ∗(x)p), (x, p) ∈ Rd × Rd. (7.24)

Moreover, since L satisfies (L0) – (L2) we know that L∗ is coercive and
strictly convex in p.

Definition 7.12 (Dominated functions and calibrated curves). Let
c ∈ R and let φ be a continuous function on Rd.

1. We say that φ is dominated by L− c and we denote this by φ ≺ L− c,
if for any a, b ∈ R, with a < b, and any trajectory-control pair (γ, u) ∈
Γ
γ(a)→γ(b)
a,b we have that

φ(γ(b))− φ(γ(a)) ≤
∫ b

a
L(γ(s), u(s)) ds− c (b− a).

2. We say that the first component γ : [a, b] → Rd, with a, b ∈ R and
a < b, of a trajectory-control pair (γ, u) ∈ Γ

γ(a)→γ(b)
a,b is a calibrated

curve for φ if

φ(γ(b))− φ(γ(a)) =

∫ b

a
L(γ(s), u(s)) ds− c (b− a).

We denote by Cal(φ) the set of all calibrated curves for φ.

For any t ≥ 0 and for any x, y ∈ Rd we denote by At(x, y) the action
functional, also called fundamental solution of the critical equation, i.e.,

At(x, y) = inf
(γ,u)∈Γx→y

0,t

{∫ t

0
L(γ(s), u(s)) ds

}
.

We note that φ ≺ L − α(L) if and only if for any x, y in Rd and for any
t ≥ 0 we have that

φ(y)− φ(x) ≤ At(x, y)− α(L) t. (7.25)

Then, Peierls’s barrier is defined as

A∞(x, y) = lim inf
t→∞

[
At(x, y)− α(L) t

]
, x, y ∈ Rd. (7.26)

Lemma 7.13. The following properties hold.

(i) For any x, y ∈ Rd we have that 0 ≤ A∞(x, y) <∞.

(ii) For any x, y, z ∈ Rd we have that

A∞(x, z) ≤ A∞(x, y) + A∞(y, z) (7.27)

and, for any t ≥ 0 we have that

A∞(x, z) ≤ A∞(x, y) +At(y, z)− α(L) t. (7.28)
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Proof. Point (i) follow by (L2) and the reversibility of L, respectively. Point
(ii) follows by similar arguments as in [43].

Definition 7.14 (Projected Aubry set). The projected Aubry set A is
defined by

A =
{
x ∈ Rd : A∞(x, x) = 0

}
.

Lemma 7.15. Assume (F0) – (F2), (L0) – (L3) and (S). Let (x, y) ∈ R2d

be such that
h := A∞(x, y) ∈ R.

Let {tn}n∈N ∈ R and (γn, un) ∈ Γx→y
0,tn

be such that

tn → +∞ and lim
n→+∞

∫ tn

0
L(γun(s), un(s)) ds− α(L) tn = h. (7.29)

Then, there exists a subsequence, still denoted by (γn, un), and a trajectory-
control pair (γ̄, ū) ∈ Γx→y

0,∞ such that

(i) {un}n∈N weakly converges to ū in L2 on any compact subset of [0,∞);

(ii) {γn}n∈N uniformly converges to γ̄ on every compact subset of [0,∞).

Proof. From (7.26) it follows that there exists n̄ ∈ N such that for any n ≥ n
we have that ∫ tn

0
L(γn(s), un(s)) ds− α(L) tn ≤ h+ 1.

On the other hand, by (L2) we obtain∫ tn

0
L(γn(s), un(s)) ds− α(L) tn ≥ 1

2ℓ1

∫ tn

0
|un(s)|2 ds− (L(x∗, 0) + α(L))tn.

Appealing to (i) in Corollary 7.10 we have that L(x∗, 0) + α(L) = 0. So,∫ tn

0
|un(s)|2 ds ≤ 2ℓ1(h+ 1), ∀n ≥ n.

Therefore, there exists a subsequence, still denoted by {un}, that weakly
converges to an admissible control ū in L2 on any compact subset of [0,+∞).
Moreover, let R ≥ 0 be such that |x| ≤ R. Then, by (7.9) for any t > 0 we
have that

|γn(s)|2 ≤ QR, ∀ s ∈ [0, t], ∀ n ≥ n

and ∫ tn

0
|γ̇n(s)|2 ds ≤

∫ tn

0
c2f
(
1 + |γn(s)|

)2|un(s)|2 ds
≤ c2f (1 +QR)2ℓ1(h+ 1), ∀ s ∈ [0, t], ∀ n ≥ n.
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Hence, {γn}n∈N is uniformly bounded in W 1,2(0, t;Rd) for any t > 0. Then,
by the Ascoli-Arzela Theorem, up to extracting a further subsequence,
{γn}n∈N uniformly converges to a curve γ̄ on every compact subset of [0,+∞).

Now, we claim that (γ̄, ū) satisfies (7.1). Indeed, for any t ≥ 0 we have
that

γn(t) = x+

m∑
i=1

∫ t

0
uni (s)fi(γn(s)) ds.

Thus, by the locally uniform convergence of γn it follows that fi(γn(t)) →
fi(γ̄(t)), locally uniformly, for any t ≥ 0, as n → +∞ for any i = 1, . . . ,m.
Therefore, taking v ∈ Rd we deduce that

〈v, γn(t)〉 = 〈v, x〉+
m∑
i=1

∫ t

0
uni (s)〈fi(γn(s)), v〉 ds, ∀ t ≥ 0.

As n→ +∞ we get

〈v, γ̄(t)〉 = 〈v, x〉+
m∑
i=1

∫ t

0
ūi(s)〈fi(γ̄(s)), v〉 ds, ∀ t ≥ 0.

Since v ∈ Rd is arbitrary the conclusion follows.
Remark 7.16. Arguing as in the proof of Lemma 7.15, one can prove the
following. Given h ∈ R, {tn}n∈N and (γn, un) ∈ Γx→y

−tn,0 such that

tn → +∞ and lim
n→+∞

∫ 0

−tn
L(γun(s), un(s)) ds− α(L) tn = h.

Then, there exists a subsequence, still denoted by (γn, un), and a trajectory-
control pair (γ̄, ū) such that

(i) {un}n∈N weakly converges to ū in L2 on any compact subset of (−∞, 0];

(ii) {γn}n∈N uniformly converges to γ̄ on every compact subset of (−∞, 0].

Proposition 7.17. Assume (F0) – (F2), (L0) – (L3) and (S). For each
x, y ∈ Rd there exists (γ̄, ū) ∈ Γ→y

−∞,0 such that

A∞(x, y)−A∞(x, γ̄(−t)) =
∫ 0

−t
L(γ̄(s), ū(s)) ds−α(L) t, ∀ t ≥ 0. (7.30)

Moreover, for each x ∈ Rd the map y 7→ A∞(x, y) is a critical solution on
Rd.

Proof. Fix x, y ∈ Rd and let {tn}n∈N, (γn, un) ∈ Γx→y
−tn,0 be such that

tn → ∞, and lim
n→∞

∫ 0

−tn
L(γn(s), un(s)) ds− α(L) tn = A∞(x, y).
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Then, from Remark 6.16 there exists (γ̄, ū) such that un weakly converges
to ū and γn uniformly converges to γ̄, on every compact subset of (−∞, 0].

Let R ≥ 0 be such that |x| ≤ R. Fix t ∈ [0,∞), take n ∈ N such that
dn = dSR(γ̄(−t), γn(−t)) ≤ 1 and tn > t+1. Let (γ0, u0) ∈ Γ

γn(−t)→γ̄(−t)
−t,−t+dn be

optimal for (2.5) and let ũn ∈ L2(−tn,−t+ dn) be given by

ũn(s) =

{
un(s), s ∈ [−tn,−t]
u0(s), s ∈ (−t,−t+ dn].

We denote by γ̃n the associated trajectory, that is, (γ̃n, ũn) ∈ Γ
x→γ̄(−t)
−tn,−t+dn .

Then, defining the control ûn(s) = ũn(s− tn), denoting by γ̂n the associated
trajectory by (L2) and the fact that ‖u0‖∞ ≤ 1 we get

Atn−t+dn(x, γ̄(−t))− α(L)(tn − t+ dn)

≤
∫ tn−t+dn

0
L(γ̂n(s), ûn(s)) ds− α(L)(tn − t+ dn)

≤
∫ −t

−tn
L(γn(s), un(s)) ds+

∫ −t+dn

−t
L(γ0(s), u0(s)) ds− α(L)(tn − t+ dn)

≤
∫ −t

−tn
L(γn(s), un(s)) ds+ (ℓ2 + ℓ1 − α(L))dn − α(L)(tn − t).

Hence, from the lower-semicontinuity of the action we obtain

A∞(x, γ̄(−t)) +
∫ 0

−t
L(γ̄(s), ū(s)) ds− α(L) t

≤ lim inf
n→+∞

{
Atn−t+dn(x, γ̄(−t))− α(L)(tn − t− dn)

}
+

∫ 0

−t
L(γ̄(s), ū(s)) ds− α(L) t

≤ lim inf
n→+∞

{
(ℓ2 + ℓ1 − α(L))dn +

∫ −t

−tn
L(γn(s), un(s)) ds− α(L)(tn − t)

}
+ lim inf

n→+∞

{∫ 0

−t
L(γn(s), un(s)) ds− α(L) t

}
.

By combining together the terms inside the brackets we get

A∞(x, γ̄(−t)) +
∫ 0

−t
L(γ̄(s), ū(s)) ds− α(L) t

≤ lim inf
n→+∞

{
(ℓ2 + ℓ1 − α(L))dn +

∫ 0

−tn
L(γn(s), un(s)) ds− α(L) tn

}
= A∞(x, y).

Therefore, we obtain

A∞(x, y)− A∞(x, γ̄(−t)) ≥
∫ 0

−t
L(γ̄(s), ū(s)) ds− α(L) t. (7.31)
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Next, we claim that

A∞(x, y)− A∞(x, γ̄(−t)) ≤
∫ 0

−t
L(γ̄(s), ū(s)) ds− α(L) t. (7.32)

Indeed, by (7.28) we have that

A∞(x, y)− A∞(x, γ̄(−t)) ≤ At(γ̄(−t), y)− α(L) t.

Hence, defining the control

û(s) = ū(s− t), s ≥ 0

and denoting by γ̂ the associated trajectory, we deduce that

A∞(x, y)− A∞(x, γ̄(−t)) ≤ At(γ̄(−t), y)− α(L) t

≤
∫ t

0
L(γ̂(s), û(s)) ds− α(L) t =

∫ 0

−t
L(γ̄(s), ū(s)) ds− α(L) t.

By combining (7.31) and (7.32) we obtain (7.30). The fact that y 7→
A∞(x, y) is a critical solution for any x ∈ Rd can be proved by a standard
argument which uses the dynamic programming principle.

7.3.1 Compactness of the Aubry set

In this section, we prove that the projected Aubry set A is a compact subset
of Rd. We begin with some preliminaries.

Proposition 7.18. Assume (F0) – (F2), (L0) – (L3) and (S). For any
x ∈ Rd there exists Tx ≥ 0 such that, for any t ≥ Tx, any optimal pair
(γx, ux) ∈ Γx→0,t for (7.6) satisfies

L1 ({s ∈ [0, t] : γx(s) ∈ KL}) > 0.

Proof. We proceed by contradiction,. Suppose that there exist x0 ∈ Rd,
{tk}k∈N with tk → ∞, and a sequence of optimal pairs (γk, uk) ∈ Γx0→0,tk

of
(7.6) such that

L1 ({s ∈ [0, tk] : γk(s) ∈ KL}) = 0.

On the one hand, we have that∫ tk

0
L(γk(s), uk(s)) ds > tk inf

y∈Kc
L

L(y, 0). (7.33)

On the other hand, having fixed any optimal pair (γ0, u0) ∈ Γx0→x∗

0,δ(x0)
for (2.5)

and for any k ∈ N such that tk > δ(x0) define the control

ũk(s) =

{
u0(s), s ∈ [0, δ(x0)]

0, s ∈ (δ(x0), tk].
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Then, since ‖u0‖∞ ≤ 1 it follows that∫ tk

0
L(γk(s), uk(s)) ds ≤

∫ tk

0
L(γ̃k(s), ũk(s)) ds

≤ δ(x0)(ℓ1 + ℓ2) + (tk − δ(x0))L(x
∗, 0).

(7.34)

Thus, combining (7.33) and (7.34) and dividing by tk we get

inf
y∈Kc

L

L(y, 0) <
1

tk
δ(x0)(ℓ1 + ℓ2) +

(
1− δ(x0)

tk

)
L(x∗, 0)

Moreover, by (L3) we deduce that

L(x∗, 0) + δL <
1

tk
δ(x0)(ℓ1 + ℓ2) +

(
1− δ(x0)

tk

)
L(x∗, 0)

With δL > 0. Taking the limit as k → ∞ in the above inequalities yields
δL ≤ 0 which is a contradiction.

In view of the reversibility of L, the above Lemma implies the following.

Corollary 7.19. Assume (F0) – (F2), (L0) – (L3) and (S). For any
x ∈ Rd there exists Tx ≥ 0 such that for any t ≥ Tx, any optimal pair
(γx, ux) ∈ Γ→x

−t,0 for problem (7.6) we have that

L1 ({s ∈ [−t, 0] : γx(s) ∈ KL}) > 0.

We observe that since calibrated curves are, in particular, minimizing
trajectories for (7.6) then Corollary 7.19 can be applied to such curves.
This is a key point to deduce that the projected Aubry set is bounded, as
we show below.

Proposition 7.20. Assume (F0) – (F2), (L0) – (L3), and (S). Then A
is bounded.

Proof. Let x0 ∈ Rd be such that A∞(x0, x0) = 0. By Proposition 7.17 there
exists (γ̄, ū) ∈ Γ→x0

−∞,0 such that γ̄ is a calibrated curve for A∞(x0, · ) and,
by Corollary 7.19, we know that there exists t0 ∈ (−∞, 0] such that

γ̄(t0) ∈ KL.

Thus, the the trajectory γ̃ associated with the control

ũ(s) = ū(s+ t0),

for s ∈ [0,−t0], with γ̃(−t0) = x0, is a calibrated curve for A∞(x0, · ) such
that γ̃(0) ∈ KL. Then, from (7.9) this implies that there exists RL ≥ 0 such
that x0 ∈ BRL

.
Next, we show that the projected Aubry set is closed.
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Proposition 7.21. Assume (F0) – (F2), (L0) – (L3) and (S). A is a
closed subset of Rd.

Proof. Let {xn}n∈N be a sequence in A such that lim
n→∞

xn = x ∈ Rd. Then,
we have to show that x ∈ A.

By definition we have that there exist sequence {tkn}n∈N and {(γkn , ukn)}n∈N ∈
Γxn→xn
0,tkn

such that∫ tkn

0
L(γkn(s), ukn(s)) ds− α(L) tkn ≤ 1

n
.

Then, by Lemma 7.15 there exists (γ̄, ū) such that ukn weakly converges
to ū and γkn uniformly converges to γ̄, on every compact subset of [0,∞),
respectively. Let us define dn = dSR(xn, x) and the control

ũn(s)


un1 (s), s ∈ [−dn, 0]
ukn(s), s ∈ (0, tkn ]

un2 (s), s ∈ (tkn , tkn + dkn ]

where (γn1 , u
n
1 ) ∈ Γx→xn

−dn,0 and (γn2 , u
n
2 ) ∈ Γxn→x

tkn ,tkn+dkn
are optimal for (2.5), on

their respective intervals. Hence, we have that (γ̃n, ũn) ∈ Γx→x
−dk,tkn+dkn

and,
thus, we get

A∞(x, x) ≤ lim inf
n→∞

[Atkn+2dn(x, x)− α(L)(tkn + 2dn)]

≤ lim inf
n→∞

(∫ 0

−dn
L(γn1 (s), u

n
1 (s)) ds+

∫ tkn

0
L(γkn(s), ukn(s)) ds− α(L) tkn

+

∫ tkn+dn

tkn

L(γn2 (s), u
n
2 (s)) ds− 2α(L) dn

)
≤ lim

n→∞

(
dn(ℓ1 + ℓ2) +

1

n

)
= 0.

The proof is thus complete since, by definition, A∞(x, x) ≥ 0 for any x ∈
Rd.

Theorem 7.22 (Compactness of the Aubry set). Assume (F0) – (F2),
(L0) – (L3) and (S). Then, A is a nonempty compact set.

Proof. The fact that A is compact follows from Proposition 7.20 and Propo-
sition 7.21. Moreover, (L3) and Corollary 7.10 ensure that A is nonempty
since x∗ ∈ A.

7.4 Horizontal regularity of critical solutions
In this section we show that any critical solution is differentiable along the
range of F , see the definition below, at any point lying on the projected
Aubry set.
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Definition 7.23 (Horizontal differentiability). We say that a continu-
ous function ψ on Rd is differentiable at x ∈ Rd along the range of F (x)
(or, horizontally differentiable at x) if there exists qx ∈ Rm such that

lim
v→0

ψ(x+ F (x)v)− ψ(x)− 〈qx, v〉
|v|

= 0. (7.35)

Clearly, if ψ is Frechét differentiable at x, than ψ is differentiable along
the range of F (x) and qx = F ⋆(x)Dψ(x).

For any ψ ∈ C(Rd) we set D+
Fψ(x) = F ∗(x)D+ψ(x).

Lemma 7.24. Assume (F0) – (F2), (L0) – (L3) and (S). Let ψ ∈ C(Rd)
be locally semiconcave. Then, ψ is differentiable at x ∈ Rd along the range
of F (x) if and only if D+

Fψ(x) = {qx}.

Proof. We first prove that if D+
Fψ(x) is a singleton then ψ is differentiable

at x along the range of F (x). Let {qx} = D+
Fψ(x) and take px ∈ D+ψ(x).

Then

ψ(x+ F (x)v)− ψ(x)− 〈px, F (x)v〉 ≤ o(|F (x)v|) ≤ o(|v|).

Therefore, we deduce that

lim sup
v→0

ψ(x+ F (x)v)− ψ(x)− 〈qx, v〉
|v|

≤ 0.

In order to prove the reverse inequality for the lim inf, let {vk}k∈N be any
sequence such that vk 6= 0, vk → 0 as k → +∞ and let

pk ∈ D+ψ(x+ F (x)vk).

Then
1

|vk|
(
ψ(x+ F (x)vk)− ψ(x)− 〈px, F (x)vk〉

)
=

1

|vk|
(
ψ(x+ F (x)vk)− ψ(x)− 〈pk, F (x)vk〉+ 〈pk − px, F (x)vk〉

)
≥ 1

|vk|
o(|F (x)vk|)− |F ∗(x)pk − qx||vk|.

By the upper-semicontinuity of D+ψ we have that |F ∗(x)pk − qx| → 0 as
k ↑ ∞. Since since this is true for any sequence vk → 0, we conclude that

lim inf
v→0

ψ(x+ F (x)v)− ψ(x)− 〈qx, v〉
|v|

≥ 0.

We now prove that, if ψ is differentiable along the range of F (x), then
D+
Fψ(x) is a singleton. To do so, let p ∈ D+ψ(x) and let qx ∈ Rm be as in

(7.35). Then, we know that

lim
h↓0

ψ(x+ hF (x)θ)− ψ(x)

h
≥ 〈qx, θ〉.
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Moreover, by definition we have that for any θ ∈ Rd

lim
h↓0

ψ(x+ hF (x)θ)− ψ(x)

h
≤ 〈F ∗p, θ〉.

Therefore,
〈qx, θ〉 ≤ 〈F ∗p, θ〉, ∀ θ ∈ Rd.

Thus F ∗(x)p = qx.

Hereafter, the vector qx given in Definition 7.23 will be called the horizontal
differential of ψ at x ∈ Rd and will be denoted by DFψ(x).

The next two propositions ensure that any critical solution χ is differen-
tiable along the range of F at any point lying on a calibrated curve γ. The
proof consists of showing that D+

Fχ is a singleton on γ. We recall that

L∗(x, p) = sup
v∈Rd

{
〈p, v〉 − L(x, v)

}
is the Legendre Transform of L. We will rather write the critical equation
using L∗, instead of the Hamiltonian H, to underline the role of horizontal
differentiability.

Proposition 7.25. Assume (F0) – (F2), (L0) – (L3) and (S). Let χ be
a critical subsolution and let (γ, u) be such that γ : [0,∞) → Rd is calibrated
for χ. Then we have that

α(L)+L∗(γ(τ), p) = 0, ∀ p ∈ D+
Fχ(γ(τ))

for all τ > 0.

Proof. On the one hand, since χ is a subsolution of (7.11) we have that

α(L)+H(γ(τ), p) ≤ 0, ∀ p ∈ D+χ(γ(τ)).

So, from (7.24) and recalling that D+
Fχ(x) = F ∗(x)D+χ(x) for any x ∈ Rd

we get
α(L)+L∗(γ(τ), p) ≤ 0, ∀ p ∈ D+

Fχ(γ(τ)).

Thus, it is enough to prove the reverse inequality.
Let h ≥ 0, then since γ is a calibrated curve for χ we have that

χ(γ(τ))− χ(γ(τ − h)) =

∫ τ

τ−h
L(γ(s), u(s)) ds− α(L)h.

Then, by the definition of super-differential we get

χ(γ(τ))− χ(γ(τ − h)) ≤ 〈p, γ(τ)− γ(τ − h)〉+ o(h)

= 〈p,
∫ τ

τ−h
γ̇(s) ds〉+ o(h) =

∫ τ

τ−h
〈F ∗(γ(s))p, u(s)〉 ds+ o(h)
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Therefore, we conclude that∫ τ

τ−h
L(γ(s), u(s)) ds− α(L)h ≤

∫ τ

τ−h
〈F ∗(γ(s))p, u(s)〉 ds+ o(h)

or

−α(L) ≤ 1

h

∫ τ

τ−h

(
〈F ∗(γ(s))p, u(s)〉 − L(γ(s), u(s))

)
ds+ o(1)

≤ 1

h

∫ τ

τ−h
L∗(γ(s), F ∗(γ(s))p) ds+ o(1).

Thus, for h→ 0 we obtain the conclusion.

Proposition 7.26. Assume (F0) – (F2), (L0) – (L3) and (S). Let χ be
a critical solution and let (γ, u) be such that γ : [0,∞) → Rd is calibrated
for χ. Then, for any τ > 0 we have that χ is differentiable at γ(τ) along
the range of F (γ(τ)).

Proof. We recall that from [25, Theorem 1] we have that χ is semiconcave.
By Proposition 7.25 we know that

α(L)+L∗(γ(τ), p) = 0

for any p ∈ D+
Fχ(γ(τ)). Moreover, we have that L∗(x, ·) is strictly con-

vex and the set D+
Fχ(x) is convex. Therefore, the above equality implies

that D+
Fχ(γ(τ)) is a singleton. Consequently, Lemma 7.24 ensure that χ is

differentiable at γ(τ) along the range of F (γ(τ)).

We are now ready to prove the differentiability of any critical solution
on the Aubry set.

Theorem 7.27 (Horizontal differentiability on the Aubry set). As-
sume (F0) – (F2), (L0) – (L3) and (S). Let χ be a critical solution. Then,
the following holds.

(I) For any x ∈ A there exists a trajectory-control pair (γx, ux) ∈ Γ→x
−∞,0∩

Γx→0,∞ such that

A∞(γx(t), x) = −
∫ t

0
L(γx(s), ux(s)) ds+ α(L) t (7.36)

and

A∞(x, γx(−t)) = −
∫ 0

−t
L(γx(s), ux(s)) ds+ α(L) t (7.37)

(ii) γx : R → Rd is calibrated for χ.
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(iii) χ is horizontally differentiable at x ∈ A.

Proof. We start by proving (7.36). Since x ∈ A. We have that A∞(x, x) = 0
. So there exist {tn}n∈N and (γ+n , u

+
n ) ∈ Γx→x

0,tn such that

tn → +∞ and lim
n→+∞

∫ tn

0
L(γ+n (s), u

+
n (s)) ds− α(L) tn = 0. (7.38)

Then, by Lemma 7.15 there exists (γ+x , u+x ) such that u+n weakly converges to
u+x and γ+n uniformly converges to γ+x , on every compact subset of [0,∞), re-
spectively. Fix t ∈ [0,+∞), fix n large enough such that dn := dSR(γ

+
x (t), γ

+
n (t)) ≤

1 and t + 1 < tn. Let (γ0, u0) ∈ Γ
γ+x (t)→ γ+n (t)
t,t+dn

be a solution of (2.5) and let
ũn ∈ L2(t, tn + dn) be such that

ũn(s) =

{
u0(s), s ∈ [t, t+ dn]

u+n (s), s ∈ (t+ dn, tn].

Then, recalling that ‖u0‖∞ ≤ 1 we obtain∫ tn

t
L(γ̃n(s), ũn(s)) ds =

∫ t+dn

t
L(γ0(s), u0(s)) ds+

∫ tn

t+dn

L(γn(s), un(s)) ds

≤ (ℓ1 + ℓ2)dn +

∫ tn

t+dn

L(γn(s), un(s)) ds.

Now, defining ûn(s) = ũn(s−t) and denoting by γ̂n the associated trajectory
we get

A∞(γ+x (t), x) ≤ lim inf
n→+∞

[
Atn−t − α(L)(tn − t)

]
≤ lim inf

n→+∞

[∫ tn−t

0
L(γ̂n(s), ûn(s)) ds− α(L)(tn − t)

]
≤ lim inf

n→+∞

[∫ t+dn

t
L(γ0(s), u0(s)) ds+

∫ tn

t+dn

L(γn(s), un(s)) ds− α(L)(tn − t)

]
≤ lim inf

n→+∞

[(
ℓ1 + ℓ2

)
dn +

∫ tn

t+dn

L(γ+n (s), u
+
n (s)) ds− α(L)(tn − t)

]
= lim inf

n→+∞

[(
ℓ1 + ℓ2

)
dn +

∫ tn

0
L(γ+n (s), u

+
n (s)) ds− α(L) tn −

∫ t+dn

0
L(γ+n (s), u

+
n (s)) ds+ α(L) t

]
Then, by (7.39), the uniform convergence of γn and the fact that dn ↓ 0 we
deduce that∫ t

0
L(γ+(s), u+x (s)) ds− α(L) t+ A∞(γ+x (t), x) ≤ 0.
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Moreover, we also have that

A∞(x, γ+x (t)) = A∞(x, γ+x (t))− A∞(x, x) ≤
∫ t

0
L(γ+n (s), u

+
n (s)) ds− α(L) t

and A∞(x, γ+x (t)) + A∞(γ+x (t), x) ≥ 0. Therefore, we obtain∫ t

0
L(γ+x (s), u

+
x (s)) ds− α(L) t+ A∞(γ+x (t), x) = 0.

Similar arguments show that there exists (γ−x , u
−
x ) ∈ Γ→x

−∞,0 such that (7.37)
holds. Indeed, it is enough to consider {tn}n∈N and (γ−n , u

−
n ) ∈ Γx→x

−tn,0 such
that

tn → +∞ and lim
n→+∞

∫ 0

−tn
L(γ−n (s), u

−
n (s)) ds− α(L) tn = 0. (7.39)

Then, by Remark 6.16 there exists (γ−x , u
−
x ) such that u−n weakly converges

to u−x and γ−n uniformly converges to γ−x , on every compact subset of [0,∞),
respectively. Therefore, defining the control

ux(s) =

{
u+x (s), s ∈ [0,∞)

u−x (s), s ∈ (−∞, 0]

and denoting by γx the associated trajectory the proof of (i) is complete.
Next, we prove (ii), that is, γx is a calibrated curve for χ. From (7.12)

we know that χ ≺ L− α(L) and thus for any t ≥ 0 the following hold

χ(γx(t))− χ(x) ≤
∫ t

0
L(γx(s), ux(s)) ds− α(L) t.

Moreover, again from (7.12) we deduce that

χ(x)− χ(γx(t)) ≤ As(γx(t), x)− α(L) s

for any s ≥ 0. Thus, we get

χ(x)− χ(γx(t)) ≤ A∞(γx(t), x) = −
∫ t

0
L(γx(s), ux(s)) ds+ α(L) t.

This proves that γx is a calibrated curve for χ on [0,∞). Similarly, one can
prove that the same holds on (−∞, 0]. Moreover, if we consider −s < 0 < t
we can write

χ(γx(t))− χ(γx(−s)) = χ(γx(t))− χ(x) + χ(x)− χ(γx(−s))

=

∫ t

0
L(γx(τ), ux(τ)) dτ − α(L) t+

∫ 0

−s
L(γx(τ), ux(τ)) dτ − α(L) s

=

∫ t

−s
L(γx(τ), ux(τ)) dτ − α(L)(t+ s),
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and this completes the proof of (ii).
Finally, by (ii) and Proposition 7.26 we deduce that χ is differentiable

at x ∈ A along the range of F (x).

Proposition 7.28. Assume (F0) – (F2), (L0) – (L3) and (S). Let χ be
a critical solution. Let x ∈ A and let (γx, ux) be such that γx is a calibrated
curve for χ on R with γx(0) = x. Then, we have that

γx(t) ∈ A, t ≥ 0. (7.40)

Proof. In order to prove (7.40) it is enough to show that

A∞(γx(t), γx(t)) ≤ 0, t ≥ 0 (7.41)

since it is always true that A∞(γx(t), γx(t)) ≥ 0 for any t ≥ 0. From (7.27)
the following holds

A∞(γx(t), γx(t)) ≤ A∞(γx(t), x) + A∞(x, γx(t)), t ≥ 0. (7.42)

Since γx is calibrated for χ we deduce that

A∞(x, γx(t)) =

∫ t

0
L(γx(s), ux(s)) ds− α(L) t. (7.43)

and
A∞(γx(t), x) = −

∫ t

0
L(γx(s), ux(s)) ds+ α(L) t. (7.44)

Hence, combining (7.43) and (7.44) with (7.42) we get (7.41) which we recall
that it implies (7.40).

Corollary 7.29. Assume (F0) – (F2), (L0) – (L3) and (S). Let χ be a
critical solution, let x ∈ A and let γx be calibrated for χ. Then, γx satisfies
the state equation with control

ux(t) = DpL
∗(γx(t), DFχ(γx(t))), t ≥ 0.

Moreover,
DFχ(γx(t)) = DuL(γx(t), ux(t)), t ≥ 0.

Proof. Let χ be a critical solution, let x ∈ A and let γx be a calibrated curve
for χ. Let ux be the control associated with γx. Then, from the Maximum
Principle and the inclusion of the dual arc into the superdifferential of the
corresponding value function, e.g. [26, Theorem 7.4.17], we have that

〈DFχ(γx(t)), ux(t)〉 = L(γx(t), ux(t)) + L∗(γx(t), DFχ(γx(t))

for any t ≥ 0. Note that, DFχ(γx(t)) is well-defined by Proposition 7.26.
Hence, by the properties of the Legendre Transform we obtain

ux(t) = DpL
∗(γx(t), DFχ(γx(t))), t ≥ 0

and
DFχ(γx(t)) = DuL(γx(t), ux(t)), t ≥ 0. □
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Remark 7.30. Following the classical Aubry-Mather theory for Tonelli Hamil-
tonian systems, one can define the Aubry set Ã ⊂ Rd × Rm as

Ã =
⋂

{(x, u) ∈ A× Rm : DFχ(x) = DuL(x, u)}

where the intersection is taken over all the critical solutions χ. Note that
such a set is nonempty since (x∗, 0) ∈ Ã.
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MOTS CLÉS

Jeux á champs moyen, Contrôle optimal, Equations de Hamilton-Jacobi

RÉSUMÉ

Les travaux de cette thése concernent l'analyse de systémes de jeu á champmoyen (MFG) du premier ordre avec contrôle
de l'accélération et l'étude du comportement en temps moyen long de systémes de contrôle de type sous-riemannien.
Plus précisément, dans la premiére partie nous commençons par étudier le caractére bien posé du systéme MFG asso-
cié á un probléme de commande á équation linéaire en espace et en état de commande. En particulier, nous prouvons
l'existence et l'unicité des solutions généralisées et nous étudions également leur régularité. Ensuite, nous nous concen-
trons sur le systéme MFG avec contrôle de l'accélération, un cas particulier de celui décrit ci-dessus, et nous étudions le
comportement en temps moyen long des solutions en montrant la convergence vers une constante ergodique. Ici, comme
pour l'analyse précédente, le principal probléme est le manque de convexité et de coercivité stricte du Hamiltonien par
rapport á la variable de quantité de mouvement. Cela conduit par exemple á la non-existence de solutions de viscosité
continue aux équations ergodiques de Hamilton-Jacobi et, par conséquent, ce permet pas de définir le systéme MFG
ergodique au sens classique. Nous concluons cette premiére partie en établissant un lien entre le systéme MFG avec
contrôle de l'accélération et le systémeMFG classique. Pour ce faire, nous étudions le probléme de perturbation singuliére
pour le systéme d'accélération MFG, c'est-á-dire que nous analysons le comportement des solutions aux systémes de
jeu á champ moyen dont le coût d'accélération devient nul. Encore une fois, nous résolvons le probléme en utilisant des
techniques de calcul des variations en raison du probléme résultant du manque de convexité et de coercivité strictes du
Hamiltonien par rapport á la variable de quantité de mouvement.
Dans la deuxiéme partie, nous nous concentrons sur les systémes de contrôle affine sans dérive (de type sous-
riemannien). A la différence du cas de l'accélération, nous montrons qu'il existe une constante critique et que l'équation
ergodique de Hamilton-Jacobi associée á une telle constante qui posséde des solutions de viscosité continues. Pour
cela nous faisons appel á la géométrie sous-riemannienne sur l'espace d'état. Toujours en utilisant les propriétés de
cette géométrie, nous définissons le semi-groupe de Lax-Oleinink et nous prouvons l'existence d'un point fixe de ce
semi-groupe. Nous concluons cette partie, et donc cette thése, en étendant la célébre théorie d'Aubry-Mather au cas
du systéme de contr�le sous-riemannien. Nous montrons d'abord une formule de représentation variationnelle de la
constante critique et, á partir de celle-ci, nous définissons l'ensemble de Mather et l'ensemble d'Aubry. En utilisant une
approche dynamique, nous étudions les propriétés analytiques et topologiques de tels ensembles comme, par exemple,
la différentiabilité horizontale de la solution critique en tout point se trouvant dans l'un des deux ensembles. Enfin, nous
appliquons ces résultats pour étudier le caractére bien posé du systéme MFG ergodique associé á de tels systémes de
contrôle.

ABSTRACT

The work in this thesis concerns the analysis of first-order mean field game (MFG) systems with control of acceleration
and the study of the long time-average behavior of control systems of sub-Riemannian type.
More precisely, in the first part we begin by studying the well-posedness of the MFG system associated with a control
problem with linear state equation. In particular, via a relaxed approach, we prove the existence and the uniqueness of
mild solutions and we also study their regularity. Then, we focus on the MFG system with control of the acceleration, a
particular case of the one above, and we investigate the long time-average behavior of solutions showing the convergence
to the critical constant. Here, as for the previous analysis, the main issues are the lack of strict convexity and coercivity of
the Hamiltonian with respect to the momentum variable. Indeed, for instance, when studying the asymptotic behavior of
the control system this lead us to a non existence result of continuous viscosity solutions to the ergodic Hamilton-Jacobi
equation. Consequently, it does not allowed us to the define the ergodic MFG system as one would expect. We conclude
this first part establishing a connection between the MFG system with control of acceleration and the classical one. To do
so, we study the singular perturbation problem for MFG system of acceleration, that is, we analyze the behavior of solutions
to the system when the acceleration cost goes to zero. Again, we solve the problem by using variation techniques due
to the problems arising from the lack of strict convexity and coercivity of the Hamiltonian with respect to the momentum
variable.
In the second part, we concentrate the attention to drift-less affine control systems (sub-Riemannian type). Differently
from the case of acceleration, we prove that there exists a critical constant and the ergodic Hamilton-Jacobi equation
associated with such a constant has continuous viscosity solutions. This is possible appealing to the properties of the
sub-Riemannian geometry on the state space. Still using the properties of this geometry we finally define the Lax-Oleinink
semigroup and we prove the existence of a fixed point of such semigroup. We conclude this part, and thus this thesis,
extending the celebrated Aubry-Mather Theory to the case of sub-Riemannian control system. We first show a variational
representation formula for the critical constant and from this we define the Aubry set. By using a dynamical approach
we study the analytical and topological properties of such sets as, for instance, horizontal differentiability of the critical
solution at any points lying in such a set.

KEYWORDS

Mean field games, optimal control, Hamilton-Jacobi equations
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