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Résumé

La segmentation est l’une des tâches les plus importantes dans l’analyse des images médi-

cales. Depuis quelques années, les réseaux de neurones convolutifs (CNN) en constituent

l’état de l’art. Dans ce contexte, nous allons nous focaliser sur les problématiques suiv-

antes. Premièrement, la fonction de perte (loss) est une composante importante qui dirige

l’apprentissage des CNN et décide de la relation entre les étiquettes cibles et les prédic-

tions. Les fonctions de loss standard en particulier, telle que la loss de Dice, ont montré

leurs limites. Deuxièmement, la segmentation est souvent la première étape pour ensuite

estimer les paramètres (également appelés biomarqueurs) de l’image. Ces biomarqueurs

sont utilisés pour établir un diagnostic et un suivi des patients. Une estimation précise des

biomarqueurs est donc capital. Cependant, des erreurs sont susceptibles de se produire

lors de l’étape intermédiaire de segmentation. Récemment, les techniques d’apprentissage

profond ont ouvert la voie à l’estimation directe des biomarqueurs à partir des images, sans

segmentation ou extraction de caractéristique adhoc. La recherche sur ce sujet en est en-

core à ses débuts.

Pour répondre à ces questions, cette thèse propose les contributions suivantes, ré-

sumées en trois points : tout d’abord, nous proposons une nouvelle fonction de perte, basée

sur le coefficient Kappa, qui a la capacité de prendre en compte tous les pixels de l’image, y

compris le vrai négatif, contrairement à la perte standard de Dice. Nous illustrons sa valeur

ajoutée sur un jeu de données public d’images de lésions cutanées. Deuxièmement, nous

contribuons à la prédiction directe de biomarqueurs sans segmentation afin de fournir une

solution d’analyse raisonnable et efficace pour les applications cliniques. Nous proposons

plusieurs architectures de CNN de régression, qui apprennent directement à estimer les

paramètres d’intérêt sans recourir à la segmentation. Un cas d’application est la prédiction

de la circonférence de la tête du fœtus à partir d’images échographiques : nous comparons

segmentation et régression avec un protocole expérimental judicieux. De ce fait, nous

avons pu montrer des résultats prometteurs pour la régression, même si des améliorations

restent possibles. Un autre cas est la prédiction des volumes de la structure cardiaque à

partir d’images de résonance magnétique tridimensionnelles, dans lequel une méthode

de prédiction multi-objectifs est réalisée. Troisièmement, nous étudions l’interprétabilité

des modèles de régression, en étendant les techniques standard de cartes de saillance aux

CNN de régression, qualitativement et quantitativement. Nous avons pu montrer que,

sur la plupart des images, le CNN de régression apprend réellement à identifier la zone cible.

Mots-clés: Analyse d’image médicale, apprentissage profond, segmentation, fonction de

perte, CNN régression, biomarqueurs, interprétabilité, circonférence de la tête du fœtus,

volume des structures cardiaques.
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Abstract

Segmentation is one of most prominent task in medical image processing and analysis.

For a few years now, convolutional neural networks (CNN) have been the state-of-the-art

in this domain. We will focus on CNN for medical image segmentation and analysis from

the following standpoints. First, the loss function is an important component that drives

the CNN training and decides on the relation between target labels and the predictions.

As such, a lot of research is made on loss design, especially since the standard losses, such

as the Dice loss, have shown their limitations. Second, segmentation is often the first step

to subsequently estimate parameters (also called biomarkers) from the image. Medical

experts use biomarkers to diagnose patients’ health status and monitor treatment. Thus

accurate biomarkers estimation is of paramount importance. However, errors are prone

to occur in the intermediate segmentation step. Very recently, deep learning techniques

have open the way to directly estimate biomarkers from images, without segmenting them.

Research on this topic is still as its early stage.

To address the above issues, this thesis proposes the following contributions, summa-

rized in three points : first, we propose a new loss function, that is based on the Kappa

coefficient, that has the ability to take into account all the pixels in the image, including the

true negative, contrary to the standard Dice loss. We illustrate its added value on a public

set of skin lesion images. Second, we contribute to segmentation-free direct biomarker

prediction, from a methodological perspective, so as to provide a reasonable and effective

analysis solution for clinical applications. We propose and study several regression CNN

architectures, that learn directly to estimate the parameters of interest without resorting

to segmentation. One application case is the prediction of fetus head circumference (HC)

from ultrasound images: we comprehensively compare segmentation-based method and

regression (i.e. segmentation-free) method under a fair experimental protocol and are

able to show promising results, even though room for improvement is left. Another case

is prediction of cardiac structure volumes from 3-dimensional (3D) magnetic resonance

images, in which a multi-objective prediction method is achieved. Third, we investigate

the interpretability of the deep regression models, by extending standard saliency maps

techniques to regression CNN. We explained the inner world of the regression CNN models

both qualitatively and quantitatively and are able to show that indeed the regression CNN

is learning to identify the target area.

Keywords: Medical imaging analysis, Deep learning, Segmentation, Loss function, Regres-

sion CNN, Biomarkers, Interpretability, Fetus head circumference, Cardiac structure volume
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CHAPTER 1. INTRODUCTION

1.1 Background

Computer science and technology has helped mankind increase productivity in ev-

ery aspect since its inception. As a branch of it, computer vision (CV) tries to imitate

the human eye to acquire, process, and analyze everything related to media, such

as images, videos. Artificial intelligence (AI) emerged almost simultaneously with

computer science. In the 21st century, techniques based on artificial intelligence

have progressed considerably, and one specific typical approach that has been suc-

cessful is deep learning (DL) techniques. Undoubtedly, computer vision based on

deep learning techniques has contributed greatly in many fields [Chai et al., 2021];

for instance, medical image analysis or computing (MIC), which is the central theme

to be highlighted in this thesis.

Medical image analysis is an interdisciplinary discipline that combines medi-

cal imaging and computer science. The most commonly used imaging modalities

in clinical medicine include radiography (e.g. X-ray), computed tomography (CT),

magnetic resonance imaging (MRI), and ultrasound (US), among others. X-Rays

(radiography) is first discovered in 1895. The principle is emitting electromagnetic

waves to inside the human body, and the projection image is formed. Computed to-

mography (CT scan) developed in 1970s, uses multiple X-Ray machines in different

angles to detect various parts (the soft tissues, blood vessels and bones etc.) of the

body, then, reconstruct these images through computers to create cross-sectional

images of the body. These images provide more detailed information than a normal

X-ray image. Ultrasound (US) was first used for clinical purposes in 1956. Ultra-

sound is an imaging modality that uses high-frequency sound waves rather than ra-

diation. The advantages of US images are real-time, fast, low cost, and not harmful

to human. However, the quality of US images is bad, and noise is included some-

times. Magnetic Resonance Imaging (MRI) is a non-invasive imaging technology

that produces three dimensional detailed anatomical images. The first MRI scan of

the human body was performed in 1977. Based on the principles of nuclear mag-

netic resonance (NMR), MRI techniques use a strong magnetic field to force the

protons inside a substance to align with that field. Based on the electromagnetic

waves emitted by the decaying energy of the nucleus, the location and type of that

nucleus can be known and an image is formed. One special type of MRI is functional

MRI (fMRI), which is used to observe brain structure and determine which areas of

the brain are "activated" when performing certain cognitive tasks. Thus, the brain

4



CHAPTER 1. INTRODUCTION

(a) US of a fetus head
[van den Heuvel et al., 2018b]

(b) US of a cardiac
[Leclerc et al., 2019]

(c) X-Ray of a hand 1

(d) CT of a chest with COVID-
19 [Kwee and Kwee, 2020]

(e) MRI of a cardiac
[Bernard et al., 2018]

(f) PET of a body 2

1 The image is from https://www.imaginghealthcare.com/diagnostic-imaging/digital-x-ray/
2 The image is from https://www.itnonline.com/article/what-pet-imaging

Figure 1.1 – Medical image types

organization can be understood through this way. Positron emission tomography

(PET) is a nuclear imaging technology. The principal of PET is that the tracer is in-

jected into a vein first, then PET systems detect and reconstruct the radiations from

inside the body. Similar technology is Single Photon Emission Computerized To-

mography (SPECT). And hybrid PET imaging systems (with CT or MRI) are practical

in recent decades [Lee, 2010]. These five common modalities of medical imaging

and their usages are summarized in Table 1.1 1. Besides the image types mentioned

above, there are other types of images, such as skin lesion images, fundus images,

histopathology images, etc. Some examples are given in Figure 1.1.

1The information is gathered from
https://blog.radiology.virginia.edu/different-imaging-tests-explained/

5
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CHAPTER 1. INTRODUCTION

Table 1.1 – Five common modalities of medical imaging.

Modality Principle Manner& Duration Usage

X-Ray

X-rays use ionizing

radiation which are

quick, painless tests

that produce images of

structures inside one’s

body, especially bones.

One will lie, sit, or stand

while the x-ray machine

takes images. One may be

asked to move into several

positions. 10-15 minutes.

• bone fractures

• arthritis

• osteoporosis

• infections

• breast cancer

• swallowed items

• digestive tract problems

CT Scan

CT scans use a series

of x-rays to create cross

sections of the inside

of the body, including

bones, blood vessels,

and soft tissues.

One will lie on a table that

slides into the scanner. The

x-ray tube rotates around

one to take images. 10-15

minutes.

• injuries from trauma

• bone fractures

• tumors and cancers

• vascular disease

• heart disease

• infections

• guide biopsies

MRI

MRIs use magnetic

fields and radio waves

to create detailed im-

ages of organs and

tissues in the body.

One will lie on a table that

slides into the MRI machine,

which is deeper and nar-

rower than a CT scanner.

The MRI magnets create

loud tapping or thumping

noises. 45 minutes-1 hour.

• aneurysms

• Multiple Sclerosis (MS)

• stroke

• spinal cord disorders

• tumors

• blood vessel issues

• joint or tendon injuries

Ultrasound

Ultrasound uses high-

frequency sound

waves to produce

images of organs and

structures within the

body.

A technician applies gel to

one’s skin, then presses a

small probe against it, mov-

ing it to capture images of

the inside of one’s body. 30

minutes-1 hour.

• gallbladder disease

• breast lumps

• genital/prostate issues

• joint inflammation

• blood flow problems

• monitoring pregnancy

• used to guide biopsies

PET Scan

PET scans use radioac-

tive drugs (called trac-

ers) and a scanning

machine to show how

one’s tissues and or-

gans are functioning.

One will swallow or have

radiotracer injected. One

then enter a PET scanner

(which looks like a CT scan-

ner) which reads the radia-

tion gives off by the radio-

tracer. 1.5-2 hours.

• cancer

• heart disease

• coronary artery disease

• Alzheimer’s Disease

• seizures

• epilepsy

• Parkinson’s Disease

6



CHAPTER 1. INTRODUCTION

Imaging data accounts for approximately 90% of all medical data and is there-

fore one of the most important sources of evidence for clinical analysis and medical

intervention [Zhou et al., 2021]. The goal of medical image analysis is developing

computational and mathematical methods to solve problems related to medical im-

ages and use them in biomedical research and clinical care [Wikipedia, 2021]. This

field involves several broad tasks: image segmentation, image registration, image

classification, etc.

Nowadays, deep learning techniques have been successfully applied in different

medical imaging analysis tasks, such as image classification, image segmentation,

image registration, image reconstruction, object detection, etc. Medical image anal-

ysis based on AI can extract useful information from images, which can help doctors

or experts to diagnose or make decisions about patients. If medical image analysis

is aided by AI, it can greatly reduce the amount of effort doctors spend on a pa-

tient, especially in less developed areas where medical resources are not sufficient

[Vuong et al., 2019]. Therefore, it is a very meaningful thing in terms of research and

clinical applications. At the same time, one should also be wary of whether current

AI technology (represented by DL) is safe and reliable in facing sensitive subjects

with the AI techniques prospering, and why it makes this or that decision. In other

words, these deep learning models should be developed with great reliability and

transparency in sensitive areas such as medicine or autonomous driving. Conse-

quently, there is a branch of AI called explainable AI (XAI) [Samek et al., 2021], which

is aiming to make the AI reliable and trustworthy.

1.2 Motivation

In this thesis, we focus on medical image segmentation. Image segmentation is

the process of partitioning the image into meaningful regions. In medical imag-

ing, segmentation is often the first step required to estimate parameters (also called

biomarkers) from the image, such as the volume of the segmented region, and is

one of the major task in medical image analysis, useful for computer-aided patient

diagnostic, pronostic and follow-up. More specifically, we address 3 specific issues.

The first issue is the class imbalance problem in supervised learning that occurs in

medical image segmentation; the second issue is biomarker estimation from med-

ical imaging based on deep learning; the third issue is the explainability of some

deep learning model that is applied in medical imaging analysis.

7
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First of all, the deep learning techniques are widely used in various fields. It is a

data-driven, automated predictive machine. The architectures of DL are evolving

rapidly with supervised learning, unsupervised/semi-supervised learning, trans-

fer learning, federated learning, etc. Specifically, Convolutional Neural Networks

(CNN), Recurrent Neural Networks (RNN), attention mechanism and other models

are widely used according to different needs. Recently, the Transformer networks

[Vaswani et al., 2017] are quite popular in Natural Language Processing (NLP) and

computer vision. No matter in which method above, the loss function is an im-

portant and integral part of neural networks. For instance, in supervised learning,

the loss function is used in the neural networks to update the weight parameter

of each neuron in back propagation stage, thus closing the gap between predicted

and target values. The better the loss function is, the successful the performance of

the model is usually, making other variables more consistent. In general, there are

several types of loss functions in image segmentation, including Cross Entropy loss

series and Dice losses which are derived from evaluation metrics [Ma et al., 2021].

In medical image segmentation, one prominent issue is the class imbalance prob-

lem, which refers to the ratio of foreground (segmentation target) and background

in an image is severely unbalanced. For example, when segmenting a tumor from

organ image or a lesion from skin image, in which the tumor or lesion is far smaller

than the background (See Figure 1.2). So in this case, even though the segmentation

results is not well matched the ground truth, the accuracy can still be high, because

the model incorrectly takes into account the correct prediction of the background

to count as the accuracy. Therefore, to this end, this thesis tries to find an optimiza-

tion scheme i.e. loss function that can avoid the class imbalance problem and thus

can really improve the image segmentation accuracy.

Secondly, the biomarker is a vital concept in clinical examination and diagnosis.

Broadly speaking, the definition of a biomarker [Califf, 2018] is deceptively simple:

“A defined characteristic that is measured as an indicator of normal biological pro-

cesses, pathogenic processes or responses to an exposure or intervention.” Specif-

ically, there are two categories of biomarkers: imaging biomarkers and molecular

biomarkers. Obtaining a biomarker from a medical image is relatively straightfor-

ward and easy, whereas obtaining the biomarker at the molecular level requires rig-

orous biochemistry-based experiments. In general, some known biomarkers are

mainly achieved by two steps, which are segmentation step and geometry com-

putation based on segmentation results. That is to say, medical image segmenta-

8



CHAPTER 1. INTRODUCTION

Figure 1.2 – Skin lesion images. The top images are skin photos, the bottom images are
ground truth. The images are from Public ISIC 2018 dataset [Codella et al., 2018].

tion is only an intermediate step, and its further goal is to compute some kind of

biomarker [Califf, 2018] or to serve image classification for determining which dis-

ease is present. Moreover, the problem associated with segmentation methods is

that they are prone to errors and take an extra post processing steps and biomarker

computation. This thesis is thus dedicated to exploring the feasibility to imple-

ment a direct prediction biomarker method so that it can bypass the segmentation-

based approaches, which the regression-based methods just fit this scenario. Re-

gression CNNs were first implemented for head pose estimation and facial land-

mark detection [Riegler et al., 2013, Ahn et al., 2014]. Afterwards, this idea has been

applied in medical imaging analysis in order to solve different kinds of medical data

and improve the performance as well as possible; for example, for left ventricu-

lar volumes prediction[Luo et al., 2016, Degrave et al., 2016, Ge et al., 2019c], mito-

sis counting for breast cancer diagnosis [Chen et al., 2016], aortic diameters estima-

tion [Fernández, 2021], carotid artery indices estimation [Zhao et al., 2021].

The specific application that we will target in this thesis is examination of fetus

growth and development during pregnancy. Head circumference (HC) is one of the

key indexes to check a fetus growing state in clinical diagnose. Figure 1.3 is an exam-

ple of fetus head in the form of ultrasound images. The fetus head is approximated

as an ellipse annotated by experienced sonographers. Generally, a fetus growth is

9
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divided into three trimesters [van den Heuvel et al., 2018a] according to the length

of head circumference. With the aid of deep learning techniques, the segmentation

of head circumference becomes efficient and accurate, but post-processing of the

segmentation results, i.e., ellipse fitting and perimeter calculation, is still required.

Therefore, this thesis is aiming to use a segmentation-free method to directly pre-

dict HC.
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Figure 1.3 – US images of fetus head, the red ellipses are ground truth annotated by sono-
graphers, below the images are the values of head circumferences in millimeter (mm) and
pixels. The images are from Public HC18 dataset [van den Heuvel et al., 2018b].

Another research case is the advance screening and diagnosis of cardiovascular

diseases with the help of deep learning techniques. Cardiovascular diseases (CVD)

are common among all the diseases, which is the leading cause of death globally,

killing an estimated 17.9 million people each year (the information is from World

Health Organization.). Therefore, its importance and urgency has attracted count-

less studies from various aspects. For example, Figure 1.4 shows a group of MR

cardiac images in short-axis view and their ground truth, which including the left

ventricle (LV) in white color, right ventricle (RV) in gray color , myocardium (MYO)

in light gray color, as well as the two states of cardiac: end systole (ES) and end di-

astole (ED), these indices are important for cardiac diseases diagnose. In clinical

medicine, a vital criteria called ejection fraction (EF) which means the rate of the

blood pump with heart beat of left ventricle or right ventricle defined in Equation

1.1:

EF(%) = EDV −ESV

EDV
∗100 (1.1)

in which EDV means the volume of LV or RV in ED phase, ESV means the volume

of LV or RV in ES phase. EF can reflect if the heart of a person is normal or not.

Healthy people have ejection fractions between 50% and 65% [Kumar et al., 2014].

If one’s EF is lower than normal index, which means that ejection volume is low, then
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CHAPTER 1. INTRODUCTION

it could be heart failure, which may be caused by abnormal contraction or diastole

of the heart. Generally, the volume of LV or RV is obtained also through two steps or

more, which are performing segmentation, and then geometric computation. Since

the cardiac data are composed of multiple slices scanned by the MR machine, the

volume is usually calculated by accumulating the area of the cardiac structure slice

by slice. The goal of this thesis is to explore a scheme of directly prediction the

cardiac structure volumes without segmentation intervention.

ED ESGT GT

Figure 1.4 – Cardiac structure MR images. The first two images are one slice of a patient in
ED stage and its ground truth. the last two images are one slice of the same patient in ES
stage and its ground truth. The images are from Public ACDC dataset [Bernard et al., 2018].

Additionally to the cases described above, there are many other medical stud-

ies. For instance, the researches about coronary artery from X-ray image. It’s im-

portant to know the specific indices/biomarkers of coronary artery for diagnosing

the disease of patients, such as diameters (the minimum lumen diameter, MLD;

reference vessel diameter, RVD) and lengths (lesion length, LL) of these vessels

[Zhang et al., 2019]. Changes in kidney volume may reflect whether it is function-

ing properly. Based on this criterion, clinical medicine has defined a kidney disease

called renal artery atherosclerosis (RAS) [Hussain et al., 2016]. Therefore, it is nec-

essary to estimate the volume of the kidney from the scanned images with the help

of segmentation or segmentation-free methods. The problem of adolescent scol-

iosis has also attracted a lot of attention in recent years. The scoliosis diagnosis is

generally based on the idea of Cobb angle, which is defined as the largest angle at a

particular region of the vertebral column [Sun et al., 2017].

Hence estimation of biological indicators has a great demand in clinical

medicine. On the top of that, direct prediction-based methods are beginning to

emerge with an accuracy that remains to be fairly compared to the accuracy of

segmentation-based methods. Therefore, it’s necessary to evaluate and compare

these two kinds of methods from methodological and practical perspectives.

11
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Finally, deep learning models have long been known for their groundbreaking

performance. However, DL models are used like a black box; little is known about

the decision process inside the DL model. In other words, the DL models should

become more explainable or interpretable when making decisions on specific tasks

[Rudin, 2019]. If this technology is to be implemented into practical applications,

such as smart healthcare, autonomous driving and other cutting-edge areas, then

it must be understandable and trustworthy, otherwise it could lead to fatal acci-

dents. In particular, in the segmentation-free approach, we cannot visualize the

prediction results like in the segmentation-based approach. This requires that the

segmentation-free model is evidence-based when making decisions. Therefore, this

study attempts to make an interpretation of the deep learning model according to

the specific medical imaging problem.

1.3 Contributions of the research

A new metric-based loss function

We proposed a new metric-based loss function, called Kappa loss, which considers

all the pixels including background information that Dice loss ignores, the proposed

loss function is proved to be reasonable and superior to Dice loss both in theoretical

and experimental (on several skin lesion datasets) aspects.

Direct biomarker prediction using regression CNNs

We proposed a direct fetus head circumference prediction method (regression

CNNs) from ultrasound images that bypasses the segmentation based approaches

on the public HC18 dataset [van den Heuvel et al., 2018b]. We compared the

segmentation-free methods with the segmentation-based methods in a fair experi-

mental environment.

We utilized regression CNN model to directly predict the three volumes of car-

diac structures simultaneously from 3D magnetic resonance images on the public

ACDC dataset [Bernard et al., 2018], multiple-channel based transfer learning was

achieved on 3D medical images. To address the problem of insufficient data, data

augmentation based on grid search is applied. Moreover, we performed cardiac data

preprocessing including data cropping and slice number unifying and statistically

analyzed and discussed the prediction results.

12
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The explainability of regression CNN

We explained the black box of regression CNNs by several explaining methods in

the forms of saliency maps and quantitative results. Besides, we achieved a cus-

tomized evaluation metrics based on perturbation to quantitatively criticise differ-

ent explaining methods on regression CNNs. The contributions of this thesis is con-

cluded in Figure 1.5.

Skin lesion
photo

Fetus head

ultrasound

Cardiac structure

MRI

Segmentation
Chapter 3

Kappa loss


[ISBI'20]
[JoI'22]

Segmentation-free

Biomarker
estimation

Chapter 4

Regression CNN

[MIDL'20]

Chapter 5

Regression CNN

[submitted]

Explainability [iMiMiC'20]

Figure 1.5 – Contributions of this thesis. Three techniques with respect to three kinds of
medical image data (Application cases).

1.4 Structure of the thesis

The structure of the thesis is organized as follows:

Chapter 2 introduces the state of the art of the medical image segmentation

methods, direct biomarker estimation methods, and explainable AI.

Chapter 3 describes the proposed Kappa loss function.

Chapter 4 presents the work of fetus head circumference prediction.

Chapter 5 focuses on the multi-structure of cardiac volume prediction.

Chapter 6 concludes the thesis and provides perspectives on future work.

The organization of this thesis is shown in Figure 1.6.
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CHAPTER 2. STATE OF THE ART

This chapter presents three states of the art in three domains of interest: med-

ical image segmentation, direct biomarker estimation from medical images, and

explainable AI for computer vision models in deep learning. For each of this field,

we also provide the evaluation metrics and tools used to assess the methods.

2.1 Medical image segmentation methods

2.1.1 Traditional medical image segmentation methods

The definition of segmentation is subdividing an image into its constituent parts

that are homogeneous in certain feature [Ramesh et al., 2021]. Traditional segmen-

tation methods can be divided into the following categories:

Threshold segmentation As the name implies, is an algorithm that divides the im-

age into two parts (background and foreground) based on a pixel threshold given in

advance. Otsu’s method [Otsu, 1979] is the representation of this idea.

Region-based methods Three methodologies are included in this scope. One is re-

gion growing algorithm [Adams and Bischof, 1994]. A seed point and similarity cri-

teria decide the segmentation result. The other one is region split and merge al-

gorithm [Chen and Pavlidis, 1979]. The image is divided into 4 pieces, and if one

of these pieces meets the splitting conditions, then this piece is split into 4 pieces

again, and so on. When the number of splits reaches a certain level, the adjacent

blocks are merged if they meet certain conditions. The third one is watershed ap-

proach [Serge and Lantuéj, 1979]. The idea is that low-intensity pixels are regarded

as valleys of the surface, high-intensity pixels are peaks. When the level rises to a

certain height, water overflows the current valley. This can be achieved by building

dams on the watershed, thus avoiding the pooling of water from both valleys, so

that the image is divided into 2 sets of pixels, one for the valley flooded by water and

one for the watershed line pixels. Eventually the lines formed by these dams then

partition the whole image and achieve segmentation of the image.

Clustering methods Clustering is the partitioning of a data set into different classes

or clusters according to a specific criterion (e.g. distance), so that the similarity of

data objects within the same cluster is as large as possible, while the difference of

data objects not in the same cluster is also as large as possible. The classical cluster-

ing algorithm is the K-Means algorithm [Hartigan and Wong, 1979].

Edge detection It is a fundamental problem in image processing and computer vi-
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sion. The purpose of edge detection is to identify points in a image that have signif-

icant changes in intensity. The edge is formed by separating two areas according to

distinct intensity. Mathematically, edge detection is roughly the calculation of the

derivative of brightness change. Once we have calculated the derivatives, the next

step is to give a threshold to determine where the edges are located. Commonly

used algorithm is Canny algorithm [Canny, 1986].

Graph theory based segmentation The idea of this type of methods is to transform

the pixel points of an image and their neighbors into vertices and edges and weights

on edges in graph theory. Graph cuts and Grab cuts [Rother et al., 2004] are two ex-

amples. They utilize min cut algorithm to cut the edges connected between fore-

ground and background.

Energy optimization algorithm The basic idea is to use a continuous curve to ex-

press the target edge and define a generalized energy function so that the indepen-

dent variable includes the edge curve, so the segmentation process is transformed

into the process of solving the minimum value of the generalized energy function,

which can be generally achieved by solving the Euler equation corresponding to the

function (Euler Lagrange) equation, the position of the curve where the energy is

minimized is where the target profile is located. According to the different forms of

curve expression in the model, the active contour models can be divided into two

categories: parametric active contour model (Snake model [Kass et al., 1988]) and

geometric active contour model (Level set method [Malladi et al., 1995]).

2.1.2 Deep learning based image segmentation

In recent decade, the deep learning techniques have been a great success due to the

excellent performance than the traditional approaches in computer vision, natural

language processing, etc [O’Mahony et al., 2019]. Deep learning essentially consists

of data and models that depend on each other, and scholars have designed vari-

ety of deep neural network models with different learning abilities based on their

own characteristics of data, especially medical data. This section reviews the deep

learning based image segmentation according to the following figure (Figure 2.1).

Model architecture in image segmentation

Fully Convolutional Neural Networks, FCN [Long et al., 2015] which was the first

proposed in image segmentation. The model fuses the shallow layers and deep
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Figure 2.1 – Review of deep learning based image segmentation (Please start reading from
12 o’clock and in clockwise direction).

layers to preserve the the contextual spatial information. The U-Net is a FCN

variant that has with symmetric encoding-decoding path, and skip connections

[Ronneberger et al., 2015]. It is the most popular image segmentation model (Fig-

ure 2.2). In this supervised mode, training images and corresponding labels/ground

truth are fed into the model. Each layer has number of convolutional filters/kernels,

following with activation function as well as pooling operation in order to form fea-

ture maps. The weights of the neurons are obtained by the back-propagation of

the error between the predicted value and the groud truth value, monitored by the

learning rate. The loss function judges how well or how close the predicted value

is from ground truth value, for example Cross Entropy loss is used in U-Net. Be-

sides, this kind of model is actually data-driven, that is to say, a model will have a

robustness and generalizability when training with a great deal of data. Thus, data

augmentation is usually needed to increase the quantity of the data. The decoder

of segmentation models is used to restore the segmentation map for final output,

it can be deconvolution or upsampling layer, the difference is with trainable pa-

rameters or not. As for the output segmentation map, it is actually the pixel-wise
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-off between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Figure 2.2 – Original U-Net architecture. The number of channels is denoted above the box,
different colors mean different operation.

probability of each class generated by activation function Sigmoid (σ = 1
1+e−x ) or

Softmax (s = exi∑K
j=1 e

x j ), where x is element of input vector, K is the number of classes

in multi-class classifier.

Then, 3D U-Net [Çiçek et al., 2016] and V-Net [Milletari et al., 2016] were pro-

posed to deal with 3D medical data. Both these two models have skip connec-

tions among encoder and decoder. Similar encoder-decoder models are SegNet

[Badrinarayanan et al., 2017], LinkNet [Chaurasia and Culurciello, 2017], Deeplab

[Chen et al., 2017], PSPNet [Zhao et al., 2017], FPN [Lin et al., 2017a], U-Net++

[Zhou et al., 2018], Double U-Net [Jha et al., 2020], etc.

Attention-based models In psychology, attention is the cognitive process of se-

lectively focusing on one or several things at the expense of others. The at-

tention mechanism was first used in natural language processing. Then the

Transformer [Vaswani et al., 2017] with only attention mechanism makes further

progress. In computer vision including image segmentation, attention mecha-

nisms are also starting to come to the fore, such as Squeeze-and-excitation net-

works [Hu et al., 2018], Attention U-Net [Oktay et al., 2018], Vision Transformer

[Dosovitskiy et al., 2020], Swin Transformer [Liu et al., 2021a], and the very recent
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ConvNeXT [Liu et al., 2022].

Models for image sequence

In medical image segmentation, some data are based on time series, for instance,

the state of the heart/cardiac is different in each frame, and if we want to know

the two states of the heart in systole and diastole, we have to find out these

two states from different frames. To this end, the Recurrent Neural Networks

(RNN) [Rumelhart et al., 1986] and long short-term memory (LSTM) neural net-

works [Hochreiter and Schmidhuber, 1997] can be applied for extraction of spatial

and temporal information from specific medical data and tasks.

Multi-task models

Multi-task learning [Caruana, 1997] is a machine learning method based on shared

representation, where multiple related tasks are put together to learn. And the

purpose of the shared representation among different tasks is to improve gen-

eralization. The concept of multi-task learning exists because previous mod-

els have been single-task learning. In medical image analysis, tasks such as

object (organs) detection, segmentation (lesion), regression, classification (dis-

ease) have been achieved by multi-task models [Zhang et al., 2012, He et al., 2019,

Si and Roberts, 2019, Lian et al., 2021, Jia et al., 2021].

Weakly supervised models

Due to the annotation of medical images is time-consuming and laborious in

reality. Therefore, the weakly/semi-supervised or unsupervised learning model

[Chapelle et al., 2009] is an expedient way to compensate for the situation where

there is only a small amount of labeled data and a large amount of unlabeled data,

hoping to achieve the same or similar learning results as supervised learning with a

fully labeled dataset. The overall idea of semi-supervised deep learning covers three

types of architectures [Chaudhary, 2020]:

• Self training.

– Pseudo-label [Lee et al., 2013]

– Noisy Student [Xie et al., 2020c]

• Consistency Regularization.
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– π-model [Laine and Aila, 2017]

– Temporal Ensembling [Laine and Aila, 2017]

– Mean Teacher [Tarvainen and Valpola, 2017]

– Virtual Adversarial Training [Miyato et al., 2018]

– Unsupervised Data Augmentation [Xie et al., 2020b]

• Hybrid Method (Combining self training and consistency regularization).

– MixMatch [Berthelot et al., 2019]

– FixMatch [Sohn et al., 2020]

2.1.3 Loss functions

The loss function (also called cost or objective function) is one of key components

in deep learning models that drives the optimization of the neural networks. Be-

cause it dictates how the error between the predicted value and the ground truth

is computed and backpropagated throughout the networks. In this section, we will

introduce 4 types of loss functions, namely Cross Entropy based loss, region based

loss, distance based loss as well as hybrid loss. A review of loss functions is visual-

ized in Figure 2.3.
J. Ma, J. Chen, M. Ng et al. Medical Image Analysis 71 (2021) 102035 

Fig. 1. Overview of 20 loss functions for medical image segmentation. 

tions are usually agnostic to network architectures, and can be 

used for any segmentation tasks in a plug-and-play way. 

We have witnessed the popularity of medical image segmen- 

tation challenges during the past years. These challenges serve as 

public benchmarks to evaluate and compare different segmenta- 

tion methods proposed by researchers around the world. However, 

to the best of our knowledge, there is no comprehensive compari- 

son and evaluation of these loss functions. Most existing loss func- 

tions are proposed and evaluated with different network structures 

as well as on different datasets. Moreover, all the studies only com- 

pared their proposed loss function with a limited number of alter- 

native loss functions. 

Given the diversity of the segmentation tasks and loss func- 

tions, it becomes increasingly difficult to identify which loss func- 

tion can achieve the best performance with the same CNN struc- 

ture. In this paper, we focus on the plug-and-play loss functions 

that can be used in any segmentation tasks, and aim to answer 

the following question: 

Which loss function should we choose for medical image segmen- 

tation tasks? 

Specifically, we first review 20 different loss functions system- 

atically and then evaluate them on four well-known segmentation 

tasks based on six public datasets. Finally, we rank them according 

to their evaluation results. 

The main contributions of this work are summarized as follows: 

• We present the first comprehensive review and comparison of 

the existing plug-and-play loss functions in an organized man- 

ner. 
• We also conduct a large set of experiments for 20 loss functions 

on four segmentation tasks with six public datasets from 10+ 

medical centers, and highlight the most robust loss functions. 
• We build a loss function benchmark library by making the code, 

dataset splits, and segmentation results are publicly available 

at https://github.com/JunMa11/SegLoss, which could greatly ad- 

vance new loss function development in the community. 

The paper is organized as follows. Section 2 presents a tax- 

onomy for 20 loss functions, and Section 3 introduces how do 

we built a fair experimental setting to evaluate these loss func- 

tions based on four popular segmentation tasks. We summarize 

and compare the experimental results of different loss function in 

Section 4 . Section 5 discusses the ranking stability, the loss func- 

tion relationship, and the limitations. Section 6 gives the final con- 

clusion about practical loss function recommendations. 

2. Loss function taxonomy 

We classify loss functions into four categories based on how 

they are derived, namely, the mismatch in distribution, region, 

boundary or some combination of these. Moreover, we explore the 

relationships between these loss functions. Fig. 1 shows the four 

categories and the connections between loss functions. 

Let I be an image on a domain � ⊂ R 

2 or R 

3 , and S, G denote 

the corresponding segmentation result and ground truth, respec- 

tively. s i , g i denote the predicted segmentation and ground truth 

of voxel i, respectively. N is the number of voxels in the image I, 

and C is the number of classes. In the following six subsections, 

we present the key ideas, formulations, and relationships between 

each other. 

2.1. Distribution-based Loss 

Distribution-based loss functions aim to minimize dissimilarity 

between two distributions. The most fundamental function in this 

category is cross entropy; all other functions are derived from cross 

entropy. 

2.1.1. Cross entropy 

Cross entropy (CE) is derived from Kullback-Leibler (KL) diver- 

gence, a measure of dissimilarity between two distributions P and 

Q, which is defined by 

D KL (P | Q ) = 

∑ 

i 

p i log 
p i 
q i 

= −∑ 

i 

p i log q i + 

∑ 

i 

p i log p i 

= H(P, Q ) − H(P ) , 

where H(P, Q ) = − ∑ 

i 

p i log q i is the cross entropy between the dis- 

tribution P and Q, and H(P ) = − ∑ 

i 

p i log p i is the entropy of the 

distribution P . For common machine learning tasks, the data dis- 

tribution P is assumed to be given by the training set. Thus, mini- 

mizing KL divergence between the ground truth distribution P and 

predicted distribution Q is equivalent to minimizing the cross en- 

tropy H(P, Q ) . For a CNN-based segmentation task, the cross en- 

tropy loss is defined by 

L CE = − 1 

N 

C ∑ 

c=1 

N ∑ 

i =1 

g c i log s 
c 
i , (1) 

where g c 
i 
is the ground truth binary indicator of class label c of 

voxel i, and s c 
i 
is the corresponding predicted segmentation proba- 

bility. 

2 

Figure 2.3 – A review of loss functions. The figure is abtained from [Ma et al., 2021].
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Cross Entropy based loss

Cross Entropy loss It describes the distance between two distributions. The smaller

the Cross Entropy, the closer the two are. Taking binary pixel/image classification as

an example, one distribution is the class prediction probability, which is the output

(pi ) of Sigmoid (pi = 1
1+e−xi ) or Softmax (pi = exi∑C

j=1 e
x j ) in multi-class (C), x is weight

value of each pixel/neuron (i ). The other one is the corresponding class ground

truth (gi ). Thus, the average of Binary Cross Entropy loss (BCE) over N pixels in an

predicted image is composed by foreground and background two parts:

BCE =− 1

N

N∑
i=1

[gi · log (pi )+ (1− gi ) · log (1−pi )] (2.1)

If the background is much larger than the foreground, the loss is still small even

though the segmentation result is inaccurate. This is the so-called class imbalance

problem. To solve this class problem, then different weights need to be set on dif-

ferent terms.

Weighted Cross Entropy The wighted cross-entropy (WCE) has been used in

[Ronneberger et al., 2015]. The two-class form of WCE can be expressed as

WCE =− 1

N

N∑
i=1

ωgi log(pi )+ (1− gi ) log(1−pi ), (2.2)

where ω = (N−∑N
i=1 pi )/

∑N
i=1 pi , which is the weight of foreground class. ω is in-

versely proportional to the class frequency in order to penalize the major class (in

this case is the background).

Focal loss Focal loss (FL) [Lin et al., 2017b] is the variant of Cross Entropy loss. It

solved the extreme object-background class imbalance problem by adding two co-

efficients α and γ to balance the weight of one-class examples, and adjust the rate

to increase the importance of correcting mis-classified examples. In the original pa-

per, the best performance was when the γ value was set to an empirical value of 2,

α= 0.75.

FL =− 1

N

N∑
i=1

[α · gγ

i · log(pi )+ (1−α) · (1− gi )γ · log(1−pi )] (2.3)

Distance map penalized cross entropy loss (DPCE), it [Caliva et al., 2019] is also a

variant of Cross Entropy loss. In Equation 2.4, D is the distance penalty term of
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foreground class, specifically, D is euclidean distance matrix 1 of the ground truth.

And ¯ is the Hadamard product 2. In this way, pixels on the boundary can be given

greater weights.

DPCE =− 1

N

N∑
i=1

(1+Di st (gi ))¯ gi log(pi )+ (1− gi ) log(1−pi ) (2.4)

Region based loss

Sensitivity-Specificity error (SSE) This loss function [Brosch et al., 2015] combines

mean squared difference between lesion region (sensitivity) and non-lesion region

(specificity), regularized by a parameter r to control the ratio between this two parts.

The benefit of mean squared errors is generating smooth gradients, so that making

robust optimization results.

SSE = r

∑N
i=1(pi − gi )2pi∑N

i=1 pi
+ (1− r )

∑N
i=1(pi − gi )2(1−pi )∑N

i=1(1−pi )
(2.5)

Dice loss It originates from the Dice coefficient [Dice, 1945] which calculates the

overlap between ground truth and the segmented image. If the Dice score is 1,

which indicates that the predicted image matches perfectly with ground truth data.

Here, in order to make loss converge, let the Dice be negative and plus 1. It was first

used in V-Net [Milletari et al., 2016], now it has been widely used in medical image

segmentation tasks.

DICE = 1− 2
∑N

i=1 pi gi∑N
i=1(pi + gi )

(2.6)

IoU loss Intersection over Union (IoU) loss [Rahman and Wang, 2016] is similar to

the Dice loss, also called Jaccard loss, which is defined as:

IoULoss = 1−
∑N

i=1 pi gi∑N
i=1(pi + gi −pi gi )

(2.7)

Generalized Dice loss The authors [Sudre et al., 2017] add weights on the Dice loss

for multi-class segmentation problem. The weight (w = 1/(
∑N

i=1 gi )2) is inversely

1Please refer to scipy.ndimage.morphology.distance_transform_edt.
2The Hadamard product operates on identically shaped matrices and produces a third matrix of

the same dimensions.

25



CHAPTER 2. STATE OF THE ART

proportional to the ratio of that class.

GDL = 1− 2
∑C

c wc
∑N

i=1 pi gi∑C
c wc

∑N
i=1(gi +pi )

(2.8)

Lovász loss The idea of Lovász loss [Berman et al., 2018] is actually the IoU loss or

Jaccard loss, but they use smooth extensions by Lovász extension in Convex opti-

mization to deal with discrete problem of IoU loss. Specifically, first, they compute

the the misclassified pixels (m):

mi =
1−pi , if gi = 1

pi , otherwise
(2.9)

Second, because the Jaccard loss ∆J is submodular, then the Lovász extension

can be used to compute the loss.

∆J = 1− IoU =
∑N

i=1 mi∑N
i=1 gi ∪∑N

i=1 mi
(2.10)

Lovász loss : ∆J =
N∑

i=1
mi deli (Sor ted(mi )) (2.11)

with deli (·) =∆(·)−∆(·), Sor ted(mi ), being a decreasing ordering the mi .

The author mentions in the paper and in the code that it is best to use it in com-

bination with Cross Entropy loss, or to train the network with Cross Entropy first

and then use the Lovász loss to finetune.

Tversky loss It [Salehi et al., 2017] adapts the Dice loss (Equation 2.6) in order to

achieve a trade off between Precision (Equation 2.20) and Recall (Equation 2.21).

Note that when α= β= 0.5, the Tversky loss becomes Dice loss.

TL = 1−
∑C

c
∑N

i=1 pc
i g c

i∑C
c

∑N
i=1 pc

i g c
i +α

∑C
c

∑N
i=1 pc

i (1− g c
i )+β

∑C
c

∑N
i=1(1−pc

i )g c
i

(2.12)

Focal Tversky loss (FTL) The Focal Tversky loss [Abraham and Khan, 2019] is pro-

posed to improve Precision and Recall balance. The definition is as below, the γ in

the paper is in 1,2,3. Note that when γ= 1, it becomes Tversky loss.

FTL = (TL)
1
γ (2.13)
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Asymmetric similarity loss (ASL) The motivation for ASL loss [Hashemi et al., 2018]

is also to better adjust the weights of FP and FN (and to achieve a better balance

between Precision and Recall), for which a weighting parameter β is introduced,

defined as follows:

ASL = 1−
∑C

c
∑N

i=1 pc
i g c

i∑C
c

∑N
i=1 pc

i g c
i +

β2

1+β2

∑C
c

∑N
i=1 pc

i (1− g c
i )+ 1

1+β2

∑C
c

∑N
i=1(1−pc

i )g c
i

(2.14)

Note that when α+β= 1, the ASL becomes Tversky loss.

Distance based loss

This type of loss functions is aiming to minimize the distance between predicted

results and the ground truth.

Boundary loss (BL) This loss [Kervadec et al., 2019] using the integral framework to

approximate the distance, which can avoid local differential computations involv-

ing boundary curve points. Di st (·) is the distance map same with Equation 2.26,

Equation 2.27, and Equation 2.4. In Equation 2.15, it computes the mismatch re-

gions of the two boundaries.

BL = 1

N

N∑
i=1

[Di st (1− gi )(1− gi )− (Di st (gi )−1)gi ]pi (2.15)

Hausdorff Distance loss (HDL) It comes from the HD evaluation metric (See Equa-

tion 2.26). Because the HD metrics can’t be used as loss functions directly, so the

authors [Karimi and Salcudean, 2019] utilize the distance map to approximate the

distance.

HDL = 1

N

N∑
i=1

[(pi − gi )¯ (Di st (gi )2 +Di st (pi )2)] (2.16)

One should note that both of these two distance-based loss functions are com-

bined with region-based loss in order to keep stability as mentioned in their ex-

periments. [Ribera et al., 2019] have the similar idea based on Hausdorff distance

who proposed a loss function called “weighted Hausdorff distance” loss for object

localization. Another loss function called “contour loss” that takes into account dis-

tance information via the distance map of the ground truth, has shown interesting

smoothing effect in a 3D segmentation setting [Jia et al., 2018].
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Hybrid loss

Another type of loss function is to combine one loss function with another loss func-

tion with a weighted value in order to dealing with the same issue, which is class un-

balanced problem. In the work of [Trullo et al., 2017], they combined Cross Entropy

loss and Weighted Cross Entropy loss. Three hybrid loss functions are listed below:

Dice+Cross Entropy [Taghanaki et al., 2019] this loss simply summarize the Cross

Entropy loss and Dice loss together.

Di ceCE = Cr ossEntr opyloss +Di celoss (2.17)

Dice+Focal loss it [Zhu et al., 2019] combines Dice loss with Focal loss.

Di ceFocal = Di celoss +Focal l oss (2.18)

Exponential Logarithmic loss (ELL) [Wong et al., 2018] combines Dice loss and

Cross Entropy loss in the exponential logarithmic way with respective weighting fac-

tors wDi ce , wCE and γ. In this exponential logarithmic Cross Entropy item, w is the

weight inside of the Cross Entropy loss to reduce the influences of more frequently

seen labels.

ELL = wDi ce E[(−ln(Di ce))γ]+wCEE[w(−ln(pi ))γ] (2.19)

2.1.4 Evaluation metrics in segmentation

Evaluating the segmentation results can reflect the strengths and weaknesses of a

segmentation method. The following evaluation metrics are coefficients commonly

used in medicine, and some are also statistical concepts often used in industrial pro-

duction. Meanwhile, some loss functions are also evolved based on the evaluation

metrics described in Section 2.1.3. Generally, there are two categories of evaluation

metrics in segmentation results, one is region based metrics, the other on is distance

based metrics. Here, we use Seg as segmentation results and GT as ground truth in

the following mathematical expressions.

Region based metrics

Precision Precision (also called positive predictive value) is the proportion of true

positives (TP = Seg ·GT) out of all detected positive instances including false posi-
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fuse prediction

(a) Ground truth mask

fuse prediction

(b) Predicted binary mask

fuse prediction

(c) Overlap between masks

Figure 2.4 – A diagram of Ground truth image (a), predicted image (b) and the overlap be-
tween two masks (c). In (c), green pixels are TP, blue ones are FP, red ones are FN, grey ones
are TN. The figure is adapted from [Taghanaki et al., 2021].

tive (FP = Seg · (1−GT)).

Pr eci si on = TP

TP+FP
(2.20)

Sensitivity (Recall) Sensitivity (also called true positive rate) is the proportion of

true positives out of all positive cases including false negatives (FN = (1−Seg ) ·GT).

Sensi t i vi t y = TP

TP+FN
(2.21)

Specificity Specificity (also called true negative rate) is the proportion of true nega-

tives (TN = (1−Seg ) · (1−GT)) out of all negative cases including false positives.

Speci f i ci t y = TN

TN+FP
(2.22)

Dice coefficient The definition of Dice coefficient [Dice, 1945] is the proportion of

overlap region over segmentation and ground truth in foreground part.

Di ce = 2Seg ·GT

Seg +GT
(2.23)

Jaccard coefficient The idea of Jaccard coefficient is similar with Dice coefficient,

but a little different in mathematical formula.

Jaccar d = Seg ·GT

Seg +GT−Seg ·GT
(2.24)
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The relationship of Jaccard coefficient and Dice is as below [Taghanaki et al., 2021]:

Jaccar d = Di ce

2−Di ce
(2.25)

Distance based metrics

Hausdorff Distance (HD) It is defined as the maximum surface distance (Di st ) be-

tween the segmentation results and ground truth.

HD = Max(Max(Di st (Seg ,GT)),Max(Di st (GT,Seg ))) (2.26)

Average symmetric surface distance (ASSD) It computes the average surface dis-

tance between the segmentation results and ground truth.

ASSD = Mean(Mean(Di st (Seg ,GT)),Mean(Di st (GT,Seg ))) (2.27)

2.2 Direct biomarker estimation methods

In the last section (Section 2.1), we introduce image segmentation methods based

on traditional algorithms and deep learning models. In fact, in medical image seg-

mentation, in most cases, the segmentation result is only an intermediate step.

This is because segmented areas are designed to quantify geometric factors such

as perimeter, area or volume, which are then further translated into some sort of

biomarker in clinical medicine. Therefore, there have been researches that try to

skip segmentation, and focus on direct estimation the biomarker. In the following

sections, we will introduce the direct prediction objects as well as methods.

2.2.1 Traditional machine learning methods on direct estimation

Before deep learning methods coming up, early machine learning techniques are

usually used in direct estimation of indices on different study targets. Basically

these methods need to manually extract the features from input images, then feed-

ing them into regressors to directly estimate the values given the regression loss

and ground truth. Table 2.1 summarizes the traditional machine learning meth-

ods on different applications. Note that the data they use are 2D cardiac images,

which means that they predict the area first then add the areas slice by slice to
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form the volume. Generally, traditional machine learning methods need to building

hand-crafted feature through statistical learning methods like Bhattacharyya coeffi-

cients [Afshin et al., 2012, Zhen et al., 2015b], histogram of oriented gradients (HoG)

[Zhen et al., 2014], supervised descriptor learning (SDL) [Zhen et al., 2015a] etc at

first. Then these features are sent into different models such as artificial neural net-

works (ANN) [Afshin et al., 2012], support vector machine (SVM) [Afshin et al., 2013,

Sun et al., 2017], Bayesian model [Wang et al., 2014, Zhen et al., 2015b] and random

forest [Zhen et al., 2014, Zhen et al., 2015b, Zhen et al., 2015a, Zhen et al., 2016a,

Li et al., 2017] to regress the estimated results by regressional objective function

like mean absolute error or mean square error. Clustering method can also be

used in biomarker estimation, in [Ivanov et al., 2019], the authors address with

LV volume estimation problem in 3 steps: 1.Locate LV; 2. Identify ED, ES, cal-

culate area of LV by performing clustering algorithm so that the largest clus-

ter of the image is considered to be the left ventricle; 3. Compute volume

of LV. There are other machine learning algorithms such as manifold learning

[Wang et al., 2015, Sun et al., 2017, Tan et al., 2020], multi-output and multi-target

regression [Zhen et al., 2016b, Zhen et al., 2017a, Zhen et al., 2017b] and regulariza-

tion method [Gu et al., 2018].

Table 2.1 – Traditional machine learning methods for biomarker estimation from cardiac
images.

Reference Estimation object Method Data

[Afshin et al., 2012] EF Manual feature extraction+ANN 2D Cardiac MRI data
[Afshin et al., 2013] volume of LV Manual feature extraction+SVM 2D Cardiac MRI data
[Wang et al., 2014] volume of bi-LV Manual feature extraction+Bayesian model 2D Cardiac MRI data
[Zhen et al., 2014] volume of bi-LV Manual feature extraction+Random forest 2D Cardiac MRI data
[Wang et al., 2015] clinical variables Manifold learning 2D Cardiac MRI data
[Zhen et al., 2017b] volume of four chamber Multi-ouput and multi-target regression 2D Cardiac MRI CT data
[Ivanov et al., 2019] volume of LV Clustering method 2D Cardiac MRI data

2.2.2 Deep learning methods on direct estimation

Compared to early machine learning methods, which are featured with multi-stage

learning. The deep learning methods often come with end-to-end learning, more

importantly, they can automatically learn features from images by various CNN ar-

chitectures. Therefore, researchers are dedicated to designing high-efficiency net-

works to specific applications. We summarize the deep learning methods on direct

quantification of different applications into Table 2.2 from its origins to recent re-
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search findings, which is mainly in the area of medical imaging.

Table 2.2 – Deep learning methods on direct quantification of different applications.

Reference Application Method

CNN+regression (Reg) model

[Riegler et al., 2013] Head pose estimation Hough Forests with CNNs+Reg
[Luo et al., 2016] LV volume estimation 8-layer CNN models with MSE loss
[Chen et al., 2016] Mitosis counting for breast cancer CNN+Reg layer
[Zhang et al., 2020c] Head Circumference prediction Pretrainded CNN+Reg

Multi-scale

[Zhen et al., 2016a] Bi-ventricle volume estimation Multi-scale kernels
[Luo et al., 2017] LV volume estimation Multi-view input(2CH,top+mid)
[Zhang et al., 2020a] Quantify Coronary Artery Stenosis Multi-view parallel feature fusion
[Li et al., 2020] LV volume estimation Cascaded feature fusion
[Luo et al., 2020b] Bi-ventricle volume estimation Multi-view input and feature fusion

Multi-task

[Xue et al., 2018] Quantify all LV indices(11) CNN+RNN
[Dangi et al., 2018] LV Seg, cardiac indices estimation U-Net+Reg

[Xu et al., 2018] MI Seg and quantification
Multi-task GAN, Generator: Reg+Seg;
Discriminator:Bi-LSTM networks

[Luo et al., 2020a] Bi-ventricle volume estimation
Seg and Reg module and mutual
authentication module between them

[Liu et al., 2020] EF estimation Classification+Regression
[Vesal et al., 2020] LV indices quantification Classification+Segmentation+Regression
[Yu et al., 2021] LV indices quantification Shared parameters between MRI and CT.
[Zhao et al., 2021] Carotid artery indices estimation Cell detection, segmentation, classification

Attention mechanism

[Pang et al., 2019] Multiple indices of spine estimation Cascade feature amplifier network
[Ge et al., 2019a] LV indices quantification Attention junction from Seg to Quantify
[Liu et al., 2021b] LV indices quantification Attention integrated into decoder

Segmentation (Seg)/reconstruction based regression

[Du et al., 2018] estimate the EF Seg results as regression CNN input
[Liu et al., 2018] LV volume estimation Seg module(U-Net) and Regression CNN
[Wang et al., 2019] LV indices quantification Seg module and Regression module

[Pereira et al., 2020] LV indices quantification
Seg results and original images
as regression model input

[Gessert and Schlaefer, 2019] LV indices quantification Seg module and pretrained Reg CNN
[Xue et al., 2017a] LV indices quantification Reconstruction model+Reg CNN

Statistical mixed with deep learning

[Zhen et al., 2016a] Bi-ventricular volume estimation CNN+Random forest model
[Hussain et al., 2016] Kidney volume estimation CNN+Random forest model

Temporal and spatial networks

[Xue et al., 2017c] LV indices quantification RNN/LSTM model+Reg CNN model

[Luo et al., 2019]
ED and ES prediction
LV volume estimation

Two parameter-shared networks
Ranking model+Estimation model

From this table we can know that the application range is rich, and the deep

learning methods are various based on different demands. In this section, we
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broadly classify the studies of deep learning-based direct prediction of biomarker

from medical images into the following categories and will describe it in detail in

the following content.

• Multi-scale learning

• Multi-task learning

• Attention mechanism

• Segmentation and reconstruction based regression

• Hybrid statistical learning with deep learning

• Temporal and spatial networks

Multi-scale learning

The so-called multi-scale is actually sampling the signals/images at different scales,

and usually at different scales we can observe different features to accomplish dif-

ferent tasks. Then the intention of multi-scale learning is to enlarge the reception

field in the networks. The specific network structure can be classified as follows: (1)

Multi-scale input. (2) Multi-scale feature fusion. (3) Multi-scale model fusion. (4)

Combination of the above methods.

Figure 2.5 – Multi view/channel fusion strategy, the input is cardiac top slice, middle slice
and bottom slice, the figure is obtained from [Luo et al., 2017].

Multi-channel fusion Multi-channel or multi-view fusion techniques is to fuse im-

ages of different modals or positions in order to get sufficient features through CNN
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layers. However, there is no accurate solution to point out which combination is the

best fusion. It depends on the quality of data, actually. Therefore, [Luo et al., 2017]

propose multi-view fusion strategy through quite a few experiments. By the end,

they chose the <Top, Mid, 2CH> slice as the final multi-views fusion strategy be-

cause they have the smallest RMSE value, see Figure 2.5.

Multi-feature fusion [Zhen et al., 2016a] utilize multi-scale feature fusion strategy

by applying different sizes of CNN kernels in networks to directly predict the bi-

ventricular volume, see Figure 2.6.

Multi-model fusion Another idea [Zhang et al., 2019, Zhang et al., 2020a] utilise iso-

lated 3D convolution networks in each view then fuse each corresponding regres-

sion models for extracting multi-view features of coronary artery. [Li et al., 2020]

proves that feature fusion (through 3 cascaded modules,the cardiac cycle extraction

module, the motion feature extraction module, and the fully connected regression

module) has a positive effect on the direct estimation of the LV. [Luo et al., 2020b]

not only fuses different views of input medical image slices, but also fuses different

models to dynamically rectify the prediction results.

X. Zhen et al. / Medical Image Analysis 30 (2016) 120–129 123 

Fig. 2. The flowchart of the proposed unsupervised feature learning and random forest regression. [Left block]: unsupervised cardiac image representation learning by multi-scale 

deep networks from a unlabeled dataset. [Right block]: training regression forests and on labeled data. [Bottom block]: joint bi-ventricular volume estimation with the trained 

regressors. 

Fig. 3. The schematic diagram of unsupervised feature learning with the proposed multi-scale deep networks. The three blocks from bottom to top are the input MR images, a 

multi-scale convolutional RBM and an RBM. 

this work is real-valued. The hidden layer is composed of K groups 

each of which is a binary array of N H × N H . Each of the K group in the 

hidden layer is associated with an N W 

× N W 

filter. 

The energy function for a CRBM is defined as 

ll E(v , h ) = −
K ∑ 

k =1 

N H ∑ 

i, j=1 

N W ∑ 

r,s =1 

h k i j W 

k 
rs v i + r−1 , j+ s −1 (1) 

−
K ∑ 

k =1 

b k 

N H ∑ 

i, j=1 

h k i j − c 

N V ∑ 

i, j=1 

v i j , (2) 

where b k is the bias for each group and c is the bias shared by all 

visible nodes. The energy function can be represented in terms of 

convolution as 

E(v , h ) = 

K ∑ 

k =1 

h k • ( ˜ W ∗ v ) −
K ∑ 

k =1 

b k 
∑ 

i, j 

h k i, j − c 
∑ 

i, j 

v i j (3) 

In contrast to the original CRBM, we propose multi-scale CRBM 

(MCRBM) with filters of different sizes, which means we have S ×
K filters with S the number of scales. 

By stacking an RBM on top of the proposed MCRBM, we obtain 

a three-layer network, i.e. , the multi-scale convolutional deep belief 

network (MCDBN). Totally unlabeled cardiac MR images are fed into 

the MCRBM to learn a set of multi-scale filters, i.e. , feature detectors. 

The feature maps from CRBM go further through an RBM to obtain 

more compact representations. 

Figure 2.6 – Multi-feature fusion strategy, the input is cardiac images, the feature maps
are in different size because of different kernel/filter size, the figure is obtained from
[Zhen et al., 2016a].

34



CHAPTER 2. STATE OF THE ART

Multi-task learning
W. Xue et al. / Medical Image Analysis 43 (2018) 54–65 57 

Fig. 2. Overview of DMTRL, which combines a deep convolution neural network (CNN) for cardiac image representation, two parallel recurrent neural network (RNN) for 

temporal dynamic modeling of cardiac sequences, a Bayesian based multitask relationship learning module for LV indices estimation, and a softmax classifier for cardiac 

phase identification. 

Fig. 3. Architecture of the newly designed CNN for cardiac MR images. The op- 

eration type of each layer is encoded in colors. The size and number of convo- 

lution kernel are shown above the diagram, while the dimensionality of output is 

shown below. Our CNN is adequate for robust representation of cardiac images with 

a small size of network parameters. 

2.1. Cardiac image representation by deep CNN 

To obtain expressive representations of cardiac images, we de- 

sign for cardiac images a new CNN which is adequate to capture 

the variations of cardiac structures and appearances with a small 

size of network parameters ( ∼1M). Given the fact that all cardiac 

images share approximately the same spatial layout, which is of 

less variation than natural images, we configure a relatively low 

number of filters for each convolution layer to avoid model redun- 

dancy. As for the kernel size of convolution and pooling, 5 ×5, in- 

stead of the frequently used 3 ×3, is deployed to introduce more 

shift invariance. Dropout and batch normalization are adopted to 

alleviate the training procedure. As can be seen in our experi- 

ments, our CNN is very effective for cardiac images even without 

transfer learning. As a representation learning network, our CNN 

maps each cardiac image X s, f into a fixed-length low dimensional 

vector: 

e s, f = f cnn (X 
s, f | w cnn ) , (1) 

where e s, f ∈ R 

100 , and w cnn is the set of parameters in our CNN. 

The architecture of our CNN is illustrated in Fig. 3 . 

Our CNN captures effectively the structures of cardiac images, 

as shown in Fig. 4 . The 20 filters of layer conv1 captures low 

level visual features of cardiac images, including low frequency ap- 

pearance of the ventricles, textures of the ventricles, cardiac my- 

ocardium as well as the textures in the background. With the low 

level features of cardiac structure in conv1 feature maps as input, 

conv2 layer extracts more complex cardiac structures by combin- 

ing low level features. The high frequency noise or textures, which 

are not related to the cardiac indices, are discarded in this proce- 

dure. The conv3 feature maps, with a resolution of 10 ×10, can- 

not keep the detailed structures. Instead, they extract the indices- 

conv1

conv2

conv3

Fig. 4. Visualization of feature maps obtained by our CNN for an example cardiac 

image. 

related features in each local area from the structures of all conv2 

feature maps during the training procedure. 

2.2. Dynamic modeling of cardiac sequences by RNN 

Accurate modeling of cardiac temporal dynamics improves the 

quantification accuracy of current frame with information from 

neighboring frames. The four tasks in this work can be divided into 

two types: (1) the three types of LV indices, which are mainly re- 

lated to the spatial structure of cardiac LV in each frame, and (2) 

cardiac phase, which is mainly related to the structure difference 

between successive frames. Therefore, we design two RNN mod- 

ules, as shown in Fig. 5 , with each of them extracting the related 

features and modeling the corresponding temporal dynamics. The 

two RNN modules have the same architecture and share the same 

CNN embeddings as input. They differ in the parameters that are 

trained with different supervised information. RNN-1 module will 

be trained to predict the LV indices, while RNN-2 modules will be 

trained to identify cardiac phase. The outputs of RNN modules are 

{ h s, 1 m 

, . . . h s,n F m 

} = f rnn ([ e 
s, 1 , . . . e s,n F ] | w m 

) , (2) 

where m ∈ { rnn 1, rnn 2} and w m 

is the set of parameters in the RNN 

modules. 

In our implementation, we utilize in RNN modules the LSTM 

unit ( Graves, 2012 ), which is capable of learning the long-term 

dynamics in sequential data and avoiding the gradient vanish- 

ing/exploding problem in traditional RNN. The input gate, output 

gate, forget gate and the memory cell in LSTM allow the net- 

work to learn when to forget previous hidden states and when 

to update current hidden states given current input. This strat- 

egy enables LSTM to adaptively memorize and access information 

long term ago. The computation details of LSTM can be found in 

( Graves, 2012 ). 

Figure 2.7 – Multi-task learning with different neural networks, the figure is obtained from
[Xue et al., 2018]

Multi-task learning, which literally means different tasks (models) are integrated

in one networks and they are learning simultaneously. The benefit of multi-task

learning is that the weights are shared in different tasks, so that each task can learn

sufficient and complementary features from input medical data and correspond-

ing loss functions. In [Xue et al., 2017b, Xue et al., 2018, Du et al., 2018], the authors

combine the CNN and RNN architectures to estimate the indices of cardiac and

two phases ED and ES (see Figure 2.7). In [Dangi et al., 2018, Chen et al., 2020b],

the authors combine the U-Net [Ronneberger et al., 2015] and regression layer as

multiple output layers, so that the regression layer can not only learn the input

image but also learn from segmented images, and this two parts of weights are

shared. More advanced, [Luo et al., 2020a] combines the segmentation model (FCN

[Long et al., 2015]) and regression model, they also build a mutual authentication

bridge between this two model through a loss function to minimize the differ-

ence between two output modules. In [Xu et al., 2018], the authors combine the

generator and discriminator network with regression layer to achieve segmenta-

tion and direct estimation of multiple cardiac indices (Myocardial Infarction, MI).

In [Ge et al., 2019a], the authors combine segmentation models with RNN models

as well as regression models. In [Huang et al., 2021b, Liu et al., 2020], there is one

model with two output branches, they are regression layer for direct indices predic-

tion and classification layer, respectively. In [Vesal et al., 2020], their model perform

3 tasks simultaneously, respectively are segmentation, regression and classification.

The multi task learning can also happen in different image modalities. That is to
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say, the parameters from the two networks learned from the source modality (MRI)

are shared with the target modality (CT) [Yu et al., 2021].

Segmentation and reconstruction based regression

Due to the original images have unclear features and noise, it’s natural to think up

of using segmentation or reconstruction results to estimate the indices from med-

ical images. There are several indices estimation methods are based on the seg-

mentation results [Liao et al., 2017, Du et al., 2018, Wang et al., 2019, Liu et al., 2018,

Tao et al., 2019, Pereira et al., 2020], they first utilise segmentation neural networks

(e.g. U-Net [Ronneberger et al., 2015]) to obtain binary or multi-class segmenta-

tion results, then it will be is easier to estimate indices through regression CNN.

The same idea was used in [Gessert and Schlaefer, 2019], but the models (2D and

3D CNN) are initialized with pretrained weights from ImageNet [Deng et al., 2009].

This operation require two kinds of labels, one is ground truth contour of to-be-

segmented images, the other is ground truth of indices. In [Xue et al., 2017a], they

set up a encoder (convolution) and decoder (deconvolution) networks to recon-

struct the input medical data, then the multiple indices of cardiac are estimated

from the reconstructed images, see Figure 2.8.

W. Wang et al.: Quantification of Full LV Metrics via Deep Regression Learning

FIGURE 4. The overview of the segmentation component. (a) The DenseNet architecture for segmentation. Features of
cardiac MR images are extracted mainly through three dense blocks and three transition blocks. Each ‘‘deconv’’ here
corresponds to the sequence ‘‘deconv-BN-ReLU’’ and there are two different segmentation results from the DenseNet:
the left ‘‘true’’ segmentation result is generated from the predicted category labels while the right ‘‘soft’’ one is
produced by weighting three probability maps. Details of the dense block and the transition block are illustrated in
(b) and (c), where k (= 16 in our network) represents the growth rate of feature channels, and θ (= 0.5 in our
network) determines the output number of channels. (a) The DenseNet architecture for segmentation. (b) Dense block.
(c) Transition block.

FIGURE 5. The CNN for regression component. The CNN consists of three convolution layers and two fully
connected layers, each convolution contains convolution and ReLU operations. The soft segmentation results
of cardiac MR image from the DenseNet are as input for the CNN.

is effective enough for the regression task, since it can easily
learn more task-relevant representations from the segmented
images.

C. TRAINING STRATEGY
1) PRE-TRAINING THE DENSENET
Wefirst pre-train the DenseNet to provide good initial param-
eters for the following end-to-end training. Objective function
of the DenseNet can be expressed as follows:

ŷcs,f ,(m,n) = fDense(xs,f |wDense), (2)

where X = xs,f are the input cardiac images, and Y =
ŷcs,f ,(m,n) are the category labels for each pixel. s = 1 · · · S
denotes diverse subjects, and f = 1 · · ·F represents frame
sequence, c ∈ {background,myocardium, cavity}. (m, n)
denotes the pixel index, and wDense is the parameters set of
DenseNet. The DenseNet is trained by minimizing the mean
log-likelihood cost, and the loss for category prediction is

Llog = −
∑

s,f ,(m,n)
∑

c y
c
s,f ,(m,n)logŷ

c
s,f ,(m,n)

S × F ×M × N
, (3)

where ycs,f ,(m,n) is the annotated category for each pixel.

VOLUME 7, 2019 47921

Figure 2.8 – Segmentation results as input training data, the outputs are indices of cardiac,
the figure is obtained from [Wang et al., 2019].

Hybrid statistical learning with deep learning

Although deep learning-based methods have excellent performance, the previ-

ous statistical or machine learning methods also performed well. Thus, some re-

searchers combine machine learning and deep learning methods to get a better re-

sults. In [Zhen et al., 2016a], they combine CNNs with random forest to estimate bi-
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ventricles, see Figure 2.9. In kidney volume estimation, [Hussain et al., 2016] also

combine CNNs with dual regression forests.
X. Zhen et al. / Medical Image Analysis 30 (2016) 120–129 123

Fig. 2. The flowchart of the proposed unsupervised feature learning and random forest regression. [Left block]: unsupervised cardiac image representation learning by multi-scale

deep networks from a unlabeled dataset. [Right block]: training regression forests and on labeled data. [Bottom block]: joint bi-ventricular volume estimation with the trained

regressors.

Fig. 3. The schematic diagram of unsupervised feature learning with the proposed multi-scale deep networks. The three blocks from bottom to top are the input MR images, a

multi-scale convolutional RBM and an RBM.

this work is real-valued. The hidden layer is composed of K groups 

each of which is a binary array of N H × N H . Each of the K group in the 

hidden layer is associated with an N W 

× N W 

filter. 

The energy function for a CRBM is defined as 

ll E(v , h ) = −
K∑

k =1

N H∑
i, j=1 

N W∑
r,s =1

h k i j W 

k 
rs v i + r−1 , j+ s −1 (1) 

−
K∑

k =1

b k 

N H∑
i, j=1

h k i j − c 

N V∑
i, j=1

v i j , (2) 

where b k is the bias for each group and c is the bias shared by all 

visible nodes. The energy function can be represented in terms of 

convolution as 

E(v , h ) = 

K∑
k =1

h k • ( ˜ W ∗ v ) −
K∑

k =1

b k 
∑
i, j

h k i, j − c 
∑
i, j

v i j (3) 

In contrast to the original CRBM, we propose multi-scale CRBM 

(MCRBM) with filters of different sizes, which means we have S ×
K filters with S the number of scales. 

By stacking an RBM on top of the proposed MCRBM, we obtain 

a three-layer network, i.e. , the multi-scale convolutional deep belief 

network (MCDBN). Totally unlabeled cardiac MR images are fed into 

the MCRBM to learn a set of multi-scale filters, i.e. , feature detectors. 

The feature maps from CRBM go further through an RBM to obtain 

more compact representations. 

Figure 2.9 – The flowchart of the feature learning and random forest regression, the figure is
obtained from [Zhen et al., 2016a].

Temporal and spatial networks

In cardiovascular disease diagnose, Ejection Fraction (EF, see Equation 1.1) is

a common metric, of which doctors need to know the volume in ED and ES

two phases, one way for identifying ED or ES is recognizing them by experi-

enced doctors’ eyes. For instance, in the ACDC dataset [Bernard et al., 2018], the

ED and ES are already labeled by experts. However, with the number of im-

ages increasing, manual recognizing two phases is labouring. Thus, researchers

come up with automatic identifying ED and ES by using temporal and spatial

networks [Xue et al., 2017c, Luo et al., 2019, Ge et al., 2019b]. Specifically, the net-

works [Xue et al., 2017c] are composed of Recurrent Neural Networks (RNN) or Long

Short-term Memory (LSTM) and CNNs. Fig. 2.10 is one temporal regression CNN

networks. The input data usually is 4D MRI or CT data, that is 3D image as well as

different frames of the process of a heart beat. The networks [Luo et al., 2019] con-

sists of a shared weights framework but has two outputs, one is the temporal ordered

value (judging ED or ES), the other one is estimated volume of LV, each task has a

corresponding loss function, this is also counted as multitask learning. A more flexi-

ble networks [Liu et al., 2021b] that can support any number of frame input so that it

predicts the left ventricle indices frame-by-frame through encoder (gated recurrent

unit, GRU [Chung et al., 2014]) and decoder (GRU with attention mechanism).
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Fig. 2. An overview of the proposed framework, temporal regression network (TempReg-Net).
Note that only convolutional layers are shown and Conv1 and Conv2 and Conv5 layers are fol-
lowed by Pooling layers of size 3x3 and stride 2.

poral patterns of the cardiac sequences, and give predictions for the ED and ES frames
during testing. The contribution of our work is twofold: 1) A deep temporal regression
network is designed to recognize the ED and ES frames; and 2) A temporal structured
loss is proposed to improve the accuracy of the network. Although deep learning has
been widely used for medical image analysis [2, 7, 12, 16], our network architecture is
novel and carefully designed for this use case. This approach has several advantages
compared to the previous methods: 1) No prior information or interaction is needed
in the detection framework, since our system automatically learns everything from the
patterns of the data.2) Since RNN is able to learn long-term patterns, our framework
can detect the complex and long temporal dynamics in the cardiac sequence.

2 Methodology

In this section, we provide an overview of our TempReg-Net framework. Then, we show
that our framework can be trained end-to-end by jointly optimizing the regression and
temporal structured constraints.

2.1 TempReg-Net Architectures

Fig. 2 shows an overview of the proposed TempReg-Net framework, combining CNN
and RNN (more specifically, the Long Short Term Memory (LSTM)). First, a feature

LSTM:每个时刻的输出是一个概率分布向量，其中最大值的下标决定了输出哪个词。

Figure 2.10 – Temporal regression CNN networks, which can predict ED or ES phase from
continuous sequence of cardiac frames, the figure is obtained from [Kong et al., 2016].

Attention mechanism
Convolutional Block Attention Module 5

MaxPool

AvgPool
Channel Attention

MC

Channel Attention Module

[MaxPool, AvgPool] Spatial Attention
MS

Spatial Attention Module

Input feature F

Channel-refined 
feature F’

Shared MLP

conv
layer

Fig. 2: Diagram of each attention sub-module. As illustrated, the channel
sub-module utilizes both max-pooling outputs and average-pooling outputs with
a shared network; the spatial sub-module utilizes similar two outputs that are
pooled along the channel axis and forward them to a convolution layer.

We first aggregate spatial information of a feature map by using both average-
pooling and max-pooling operations, generating two different spatial context de-
scriptors: Fc

avg and Fc
max, which denote average-pooled features and max-pooled

features respectively. Both descriptors are then forwarded to a shared network
to produce our channel attention map Mc ∈ RC×1×1. The shared network is
composed of multi-layer perceptron (MLP) with one hidden layer. To reduce
parameter overhead, the hidden activation size is set to RC/r×1×1, where r is
the reduction ratio. After the shared network is applied to each descriptor, we
merge the output feature vectors using element-wise summation. In short, the
channel attention is computed as:

Mc(F) = σ(MLP (AvgPool(F)) +MLP (MaxPool(F)))

= σ(W1(W0(F
c
avg)) +W1(W0(F

c
max))),

(2)

where σ denotes the sigmoid function, W0 ∈ RC/r×C , and W1 ∈ RC×C/r. Note
that the MLP weights, W0 and W1, are shared for both inputs and the ReLU
activation function is followed by W0.

Spatial attention module. We generate a spatial attention map by utilizing
the inter-spatial relationship of features. Different from the channel attention,
the spatial attention focuses on ‘where’ is an informative part, which is com-
plementary to the channel attention. To compute the spatial attention, we first
apply average-pooling and max-pooling operations along the channel axis and
concatenate them to generate an efficient feature descriptor. Applying pooling
operations along the channel axis is shown to be effective in highlighting informa-
tive regions [33]. On the concatenated feature descriptor, we apply a convolution

Figure 2.11 – Attention mechanism in computer vision. The figure is obtained from
[Woo et al., 2018].

The attention mechanism is an additional option to amplify the learned fea-

tures so that the model can well predict the values. It origins from natural lan-

guage processing, then popular in computer vision. There are several kinds

of attention methods: content-base attention [Graves et al., 2014], additive at-
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tention [Bahdanau et al., 2014], [Luong et al., 2015] proposed location base atten-

tion, general attention and dot-product attention, scaled dot-product attention

[Vaswani et al., 2017]. The attention mechanism in computer vision is usually di-

vided into three major attention domains. The main ones are: spatial domain,

channel domain, and mixed domain [Woo et al., 2018], see Figure 2.11. Now quite a

few literature start to utilize attention mechanism in different biomarker prediction

tasks [Pang et al., 2018, Pang et al., 2019, Ge et al., 2019a, Liu et al., 2021b].

Medical image datasets used for direct estimation

We list the public medical image datasets that have been used for direct estima-

tion, see Table 2.3. These challenges are oriented to segmentation tasks at first, and

mainly focused on cardiac images. The other dataset of different organs or tissues

mentioned in this survey were not publicly accessible.

Table 2.3 – Public medical image datasets used in direct estimation.

Datasets Year
Number of subjects

Ground truth Type
training set test set

HC18 1 2018 999 335 head circumference US
Sunnybrook 2 2009 45 - LV, MYO, Pathology MRI
LVSC 3 2011 100 100 LV, Pathology MRI
MICCAI RV 4 2012 16 32 RV MRI
Kaggle 5 2015 500 300 Cardiac Volumes MRI
ACDC 6 2017 100 50 LV, RV, MYO, Pathology MRI
LVQUAN18 7 2018 145 30 Cardiac indices MRI
LVQUAN19 8 2019 56 30 Cardiac indices MRI

1 https://hc18.grand-challenge.org/
2 http://smial.sri.utoronto.ca/LVChallenge/Home.html
3 www.cardiacatlas.org/challenges/lv-segmentation-challenge/
4 http://rvsc.projets.litislab.fr/
5 www.kaggle.com/c/second-annual-data-science-bowl
6 https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html
7 https://lvquan18.github.io/
8 https://lvquan19.github.io/

Due to these original datasets are not suitable for directly use in different meth-

ods, for instance, the amount, the size, the dimension, etc. Thus it’s necessary to

apply preprocessing before using them on specific tasks and solutions. In general,

data augmentation, normalization, resizing and cropping, Region of Interest (ROI)
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identification as well as slice selection in 3D data are common operations.

2.2.3 Evaluation metrics in regression

In general, the evaluation criteria in regression mainly compares the error between

prediction results and ground truth value from medical images in different statisti-

cal methods. Some of these evaluation metrics can be also used as regression loss

functions.

Mean absolute error (MAE) measures the error from predicted value and ground

true value, see Formula 2.28, where N is the number of total samples, xi and yi are

estimated and ground truth values.

MAE = 1

N

N∑
i=1

|xi − yi | (2.28)

Percentage MAE Usually only the MAE is not enough, one should also know the

ratio of the prediction error compared to the true result. Thus the percentage MAE

(PMAE) is defined by Formula 2.29, which is also called error rate.

Error rate =
∑N

i=1 |xi − yi |
yi ∗N

(2.29)

Correlation coefficient Another common used metrics is correlation coefficient r ,

see Formula 2.30, x and y are the mean values estimated and ground truth values.

r =
∑N

i=1(xi −x)(yi − y)√∑N
i=1(xi −x)2(yi − y)2

(2.30)

Root mean square error (RMSE) is also used in comparing the estimated value and

ground truth value.

RMSE =
√∑N

i=1(xi − yi )2

N
(2.31)

Statistical significance tests. These tests can be performed when the scores ob-

tained by two methods are close, in order to decide the wheter the difference be-

tween them is significant or not. The t-test helps to determine whether the differ-

ence between two set of values, based on the average, is significant. The paired

Wilcoxon test is a non-parametric alternative to paired t-test used to compare

paired data. It’s used when the data are not normally distributed.
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2.2.4 Perspectives

Through this survey one can find that the direct quantification methods have

promising prospects on medical images, such as in the fields of head circumference

prediction, spine Cobb angle prediction, kidney disease diagnose by volume pre-

diction, and cardiovascular disease diagnose by some medical indices prediction.

Especially in cardiac problem, great efforts are put by plenty of researchers through

various traditional machine learning or deep learning based methods. However,

due to the quality and types of medical images as well as deep learning models are

various, thus the author have the following perspectives.

Data type: Currently, the medical images cover MRI, CT, Ultrasound, X-Rays, they

are 2D or 3D formats. But in this survey, almost all the studies convert the 3D images

into 2D slices. For example, in cardiac indices or volume estimation problem, they

input 2D slice or 2D+Time slice, but not the whole 3D scanned data, that is to say,

they predict the area first then sum up the area of each slice.

Preprocessing: Because of the complexity of dataset, data preprocessing is neces-

sary in every research. If the data amount is limited, then data augmentation should

be performed before or during model training process. Moreover, data resizing,

cropping and normalization are common operation in deep learning. If the target

is small in the whole image, then ROI detection can largely reduce processing time

and improve efficiency, for instance in cardiac data, it just needs to focus on two or

four chambers but not the other parts of body. Also, certain slice selection can be

done depend on specific demand which may improve the performance because of

clear features. However, because this step (data and preprocessing strategy) in each

experiment is very different from the other papers, which leads to the results hard

to be compared.

Methods: We can clearly see that the deep learning methods in recent years dom-

inate in various applications. In deep learning methods, they are divided into sev-

eral sub branches such as multi-scale learning, multi-task learning, attention mech-

anism, combining traditional machine learning with deep learning methods, etc.

Therefore, when the data is appropriate and the model is designed reasonably, sat-

isfactory results can generally be obtained. However, interpretability is quite impor-

tant in medical imaging analysis and disease diagnose. If human being can under-

stand and trust the explainable unseenable deep learning black box, then this type

of deep learning methods are reliable to applied in clinical medical applications and

become a right-hand man.

41



CHAPTER 2. STATE OF THE ART

In the future, in addition to the existed research objects, the author believes that

there will be more and more clinical medical indices that can be directly estimated

by various efficient deep learning methods with less errors. So that they can assist

doctors in their judgment and decision-making. For example, in oncology, the an-

thropometric parameters like muscle body mass (MBM), fat body mass (FBM), lean

body mass (LBM), visceral adipose tissue (VAT), and subcutaneous adipose tissue

(SAT) etc [Decazes et al., 2019] are important indices to evaluate a human’s health

state, which are potential possible applications.

2.3 Explainable Artificial Intelligence

In this section, we will present the explanation methods and tools that have been

developed for deep learning models for vision applications, as well as how to evalu-

ate these methods.

2.3.1 Explanation methods

Saliency maps
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Figure 2.12 – A test image (a cat) from CIFAR dataset and the gradient-based saliency map
of the test image predicted on a customize CNN model. A saliency map in which pixels are
colored by their contribution to the classification.

A saliency map is supposed to highlight the pixels that most contributed to the

network’s decision, with regards to one specific image; it is also called pixel attri-
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bution [Molnar, 2019]. Figure 2.12 is an example of saliency map based on a im-

age classification task from CIFAR-10 (Canadian Institute For Advanced Research)

dataset [Krizhevsky et al., 2009]. The saliency map is a main carrier to visually ex-

plain the deep learning models. In the following contents, we will introduce several

types of explanation methods that can generate saliency maps.

One can also extract the feature maps in the intermediate of the model in order

to observe what each layer has learned. Figure 2.13 shows feature maps of different

layers. The output of each feature map is the weight value of each neuron.
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Figure 2.13 – A test image (a cat) from CIFAR dataset and feature maps of different layers of
a customize CNN model.
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Gradient based methods

Gradient [Simonyan et al., 2013]: The gradient of the output neuron with respect

to the input. The input here is an image that can be represented {x1, x2, ...xN}, the

corresponding output neuron is a predicted value y . Putting ∆x to each pixel of

the image to see the change of y , which is y +∆y , then computing ∆y
∆x . Then the

saliency map can be generated by calculating the impact of each input pixel to the

output value (gradient). The area with higher brightness represents the greater the

influence of this pixel on the prediction result.

Grad-CAM [Selvaraju et al., 2017]: Gradient-weighted Class Activation Mapping

uses the gradients of any target concept or certain class, flowing into the final

convolutional layer to produce a coarse localization map highlighting the impor-

tant regions in the image for predicting the concept. It is a generalization of CAM

[Zhou et al., 2016] method.

SmoothGrad [Smilkov et al., 2017]: it averages the gradient over number of inputs

with added noise. See Equation 2.32, where n is the number of random samples in

a neighborhood of an input x, N(0,σ2) represents Gaussian noise. G is gradient.

Ĝ(x) = 1

n

n∑
1

G(x +N(o,σ2)) (2.32)

Input*Gradient [Shrikumar et al., 2016]: It multiplies the input image with the gra-

dient value.

Integrated Gradients [Sundararajan et al., 2017]: It integrates the gradient along a

path from the input to a reference.

IG(i nput ,r e f ) = (i nput − r e f )∗
∫ 1

0
∆G(α∗ i nput + (1−α)∗ r e f )dα (2.33)

DeConvNet [Zeiler and Fergus, 2014]: it performs the mapping with a Deconvolu-

tional Network, which including unpooling, recitfication and filtering in the unsu-

pervised way. It applies a ReLU in the gradient computation instead of the gradient

of a ReLU.

Guided BackProp [Springenberg et al., 2015]: it applies a ReLU in the gradient

computation additionally to the gradient of a ReLU. In other words, it combines the

methods Gradient and DeConvNet. See Fig 2.14, in which it compares the different

methods among Gradient, DeConvNet and Guided Backpropagation.
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Figure 2.14 – Comparison of gradients, deconvnet, guided backpropagation methods (Fig-
ure is adapted from [Springenberg et al., 2015].

Attribution based methods

Class Activation Mapping (CAM) [Zhou et al., 2016]: the predicted class score is

mapped back to the previous convolutional layer to generate the class activation

maps (CAMs). The CAM highlights the class-specific discriminative regions. Specif-

ically, they utilise global average pooling to produce the spatial average of the fea-

ture map of each unit at the last convolutional layer. A weighted sum of these values

is used to generate the final output. Similarly, a weighted sum of the feature maps

of the last convolutional layer is computed to obtain class activation maps.

DeepTaylor [Montavon et al., 2017]: It computes for each neuron a rootpoint

((x̃i )i ), that is close to the input, but which’s output value is 0, and uses this dif-

ference to estimate the attribution of each neuron recursively. Decomposition is

continuous everywhere in the input domain: Two nearby points in the input space

always have a similar explanation (provided that the function is continuous). Fur-

thermore, the magnitude of the decomposition (size of the arrow) is proportional to

the function value at a given point in space. Whereas sensitivity analysis measures

a local effect.

[x f ] j =
∑

i
c j

∂x j

∂xi

∣∣∣
(xi )i=(x̃i )i

· (xi − x̃i ) (2.34)

Layer Relevance Propagation (LRP) [Bach et al., 2015]: It attributes recursively to

each neuron’s input relevance proportional to its contribution of the neuron output.
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The magnitude of the contribution of each pixel or intermediate neuron is called

“relevance” values R.

R j =
∑
k

a j w j k∑
0, j a j w j k

Rk

Here, j and k are two neurons of any consecutive layers. We already know the rele-

vance R in the output layer, so we’ll start from there and use this formula iteratively

to calculate R for every neuron of the previous layer. a denotes the activation of the

respective neuron, and w is the weight between the two neurons.

Perturbation based methods

Local Interpretable Model-Agnostic Explanations (LIME) [Ribeiro et al., 2016]:

The principle of LIME method is to perturb the input and see how the predictions

change. This turns out to be a benefit in terms of interpretability, because it can per-

turb the input by changing components that make sense to humans (e.g., words or

parts of an image), even if the model is using much more complicated components

as features (e.g., word embeddings).

Meaningful Perturbation [Fong and Vedaldi, 2017]: Similar to LIME method, in the

work of meaningful perturbation, they delete some areas of the image and observe

the influence to model’s prediction. Their method is faster to converge than LIME.

Miscellaneous

Anchors [Ribeiro et al., 2018]: It’s a method of rule-based, model-agnostic explana-

tions called anchors, designed to exhibit both these properties. Anchors highlight

the part of the input that is sufficient for the classifier to make the prediction, mak-

ing them intuitive and easy to understand.

SHapley Additive exPlanations (SHAP) [Castro et al., 2009]: SHAP assigns each

feature an importance value for a particular prediction. It calculates the marginal

contribution of features to the model output, and then explain the “black box

model” from both global and local levels. SHAP constructs an additive explanatory

model, and all features are regarded as “contributors”.

RISE [Petsiuk et al., 2018]:It estimates importance empirically by probing the

model with randomly masked versions of the input image and obtaining the cor-

responding outputs.

DeepDream [Mordvintsev et al., 2015]: The idea in DeepDream is to choose a layer

(or layers) and maximize the “loss” in a way that the image increasingly “excites”
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the layers. The complexity of the features incorporated depends on layers chosen

by users, i.e, lower layers produce strokes or simple patterns, while deeper layers

give sophisticated features in images, or even whole objects.

Testing with Concept Activation Vector (TCAV) [Kim et al., 2018]: Unlike saliency

explaining a single example, TCAV tries to explain a concept in terms of human-

friendly and find the corresponding visual pattern.

So far, most of explanation methods are based on post-hoc methods. In this

section, we list and introduce classic explanation methods. In the end, Table 2.4

summarizes the main high cited explanation methods that are used in different ar-

eas.

2.3.2 Applications of explainable AI

According to the research of the existing literature, the XAI technology are used in

various media or data such as text, image, graph, audio, electrocardiogram (ECG)

etc. See Table 2.5. Moreover, explanation techniques would show up in each field

such as medical, transportation, finance etc as long as they apply deep learning

methods in these solutions.

Table 2.5 – Applications and medium of explanation methods

Media Applications

Text NLP [Liu et al., 2019], Finance, Social media, Sales, Human resources, Energy

Image Medical images[Tjoa and Guan, 2021], Natural images

Graph GNN explainer [Ying et al., 2019]

Audio Speech recognition [Becker et al., 2018]

ECG DeepExplain ECG [Raghunath et al., 2020]

2.3.3 Evaluation of explanation methods

With widely used of explanation techniques on deep learning architectures, the

evaluation standards of XAI should be established. In [Arya et al., 2019], they state

the evaluations of XAI should be of: Competence, Fairness, Safety, Usability,Human-

AI collaboration, Accountability, Privacy, in [Goebel et al., 2018], they propose:

Comprehensibility, Succinctness, Actionability, Reusability, Accuracy, Complete-

ness. In [Samek et al., 2021], they propose Faithfulness/Sufficiency, Human Inter-

pretability, Applicability and Runtime. From these evaluation critics We can see
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that they are still abstract and not so mature to perform. In this section, we list 3

executable methods, they are:

• Sanity checks [Adebayo et al., 2018b]

• Area over Perturbation Curve [Samek et al., 2017]

• Input variant [Kindermans et al., 2019]

Sanity checks

In the method of sanity checks [Adebayo et al., 2018b], they propose an idea to ex-

plain a deep neural networks model, that is to perform sanity checks on a certain

model in both input data and model parameter two aspects to see the change of

saliency maps.

The model parameter randomization test: Comparing the trained and untrained

two models, if there is no difference in the saliency maps, it indicates that the

saliency map method is not sensitive to the inspection of the model parameters and

is not helpful.

The data randomization test: Compare the data with labels and the data with re-

placement labels on the same trained model. If there is no difference in the saliency

map, it means that the saliency map method does not depend on the relationship

between the image and the label.

Another of their finding is that the image processing algorithm edge detection

can also have a visual effect similar to saliency map, because it can extract the edge

where the gradient is significant. Meanwhile, it does not rely on deep learning mod-

els or training data. This comparison indicates that visual analysis is not so suffi-

cient and effective in judging whether an interpretation method is sensitive to mod-

els or data. The quantitative methods should be applied in the evaluation.

Therefore, the intention of so-called sanity check is to remove some explanation

methods that are not sensitive to changes in models and data before implementing

a specific method.

Area over Perturbation Curve

Explanation methods (also called analyzers, methods that analyzes the model) per-

form differently depending on the model, the task at hand, the data, etc. In order to
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quantitatively evaluate those analyzers, [Samek et al., 2017] build upon the pertur-

bation analysis, originally designed to assess explanation methods in classification

networks. Let us first describe the perturbation process and then the evaluation

metric.

First, the input image to be analyzed is subsampled by a grid. Each subwindow

of the grid is ranked according to its importance w.r.t. to the pixel-wise saliency

scores assigned by the analyzers. Then, the information content of the image is

gradually corrupted by adding perturbation (Gaussian noise) to each subwindow,

starting with the most relevant subwindow, w.r.t. the ranking just mentioned. The

effect of this perturbation on the model performance is measured with the predic-

tion error. This procedure is repeated for each subwindow.

Generally, the accuracy of model will drop quickly when important information

is removed and remains largely unaffected when perturbing unimportant regions.

Thus, the analyzers can be compared by measuring how quickly their performance

drops. That is to say, the quicker the model performance drops after introducing

perturbation, the better the analyzer is capable of identifying the input components

responsible for the output of the model.

The quantitative evaluation proposed in [Samek et al., 2017] for classification

network, consists in computing the difference between the score f (x) indicating

the certainty of the presence of an object in the image x, in the presence and in

the absence of perturbation. This difference is called Area over Perturbation Curve

(AOPC) and defined more precisely defined in in [Samek et al., 2017] as:

AOPCAnal y zer =
1

N

N∑
n=0

( f (xn)(0) − 1

K

K∑
k=0

f (xn)(k)) (2.35)

where N is the number of images, K is the number of perturbation steps, x is the

input image.

Input variant

[Kindermans et al., 2019] checks the reliability of saliency methods by pre-

processing the input images, and they found that saliency methods that do not sat-

isfy input invariance so that result in misleading attribution. This indicates that the

saliency methods sometimes are not one hundred percent reliable so that inspire

people to either abandon this method or seeks for other methods instead of saliency

methods.
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2.3.4 Libraries and tools of XAI

Table 2.6 – Explanation tools through different platforms.

Tools Category Tools Category

Heatmapping3 web CNN Explainer4 web

Explainable AI Demos5 web A Neural Network Playground6 web

Summit7 web NeuralDivergence8 web

SCIN9 web Neuroscope free software

LUCID10 library Keras-vis11 library

DeepExplain12 library iNNvestigate13 library

TensorFlow Graph Visualizer14 library tf-explain15 library

TorchRay16 library Captum17 library

What-If Tool18 library SHAP19 library

Interpret20 library Eli521 library

Skater22 library GANDissect23 library

Yellowbrick24 library AIF36025 library

Alibi Explain26 library AIX36027 library

Explainable AI28 commercial exAID29 commercial

H2o30 commercial DASL31 commercial

SCOPA32 commercial

3 http://www.heatmapping.org/ 4 https://poloclub.github.io/cnn-explainer/

5 https://lrpserver.hhi.fraunhofer.de/ 6 https://playground.tensorflow.org/

7 https://fredhohman.com/summit/ 8 http://haekyu.com/neural-divergence/

9 https://www.dfki.de/skincare/classify.html 10 https://github.com/tensorflow/lucid

11 https://raghakot.github.io/keras-vis/ 12 https://github.com/marcoancona/DeepExplain

13 https://github.com/albermax/innvestigate 14 https://www.tensorflow.org/tensorboard/graphs

15 https://tf-explain.readthedocs.io/en/latest/ 16 https://github.com/facebookresearch/TorchRay

17 https://captum.ai/ 18 https://pair-code.github.io/what-if-tool/

19 https://github.com/slundberg/shap 20 https://github.com/slundberg/shap

21 https://github.com/TeamHG-Memex/eli5 22 https://github.com/oracle/Skater

23 https://github.com/CSAILVision/GANDissect 24 https://github.com/DistrictDataLabs/yellowbrick

25 https://github.com/Trusted-AI/AIF360 26 https://github.com/SeldonIO/alibi

27 https://github.com/Trusted-AI/AIX360 28 https://cloud.google.com/explainable-ai

29 https://exaid.kl.dfki.de/ 30 https://www.h2o.ai/products-dai-mli/

31 https://www.decodedhealth.com/ 32 https://datalanguage.com/scopa-scalable-explainable-ai

Plenty of XAI tools have been developed to users in specific areas. See Table 2.6,

some of them are website of tutorials or visualization of interaction with user in-

put images (or model parameters). There are many Python libraries about various

explanation methods that can directly be installed locally and used by users. More

sophisticatedly, there have been commercial explanation tools. This phenomena

indicates that the explainable AI is everywhere and of much necessity in different

areas and quite a lot researcher are dedicated in making the deep learning technol-
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ogy understandable and trustable.

2.3.5 Perspectives

In some sensitive areas, such as autonomous driving and smart healthcare, the in-

terpretability of deep models is essential because it is about whether the model’s

decisions are safe and reliable or explainable. Explainable AI validates the inter-

pretability of existing deep learning models only in one aspect; other techniques

are still needed to validate the robustness of the models.

Besides saliency methods, graph knowledge can be used in machine learning

which can augment (intermediate) features with more semantics [Lecue, 2020]. The

mentioned above explanation methods are mainly post-hoc methods, that is to

say the deep learning methods themselves are not explainable. There is one voice

claiming that the deep learning models should be self-explainable [Rudin, 2019].

2.4 Conclusion

In this chapter, we present related work in three major research areas, starting

with medical image segmentation methods, where we introduce traditional image

segmentation methods as well as various models and methods based on machine

(deep) learning, where the loss function also plays a very important role in deep

learning. Some of these loss functions are evolved from evaluation criteria in seg-

mentation. Secondly, we present the method of direct biomarker prediction. In

these methods, there is also a transition from traditional machine learning methods

to deep learning regression models among others. Finally, we present in detail the

concepts, methods, tools and application areas of explainable artificial intelligence.

The above three research areas correspond to the research themes of this doc-

toral dissertation, i.e., in the next chapters we present several contributions for our

own methods and experimental results around the problems in segmentation, the

problem of biomarker estimation, and the problem of explainability of deep learn-

ing models.
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3.1 Motivation

Today, CNN are the state-of-the-art in medical image segmentation. One key com-

ponent of CNN is the loss function, that drives the backpropagation of the error

between the predicted value and and the reference label. Cross Entropy is a widely

used, standard loss function. However, as mentioned in previous chapter (Chapter

2.1), class imbalance problem is prone to happen especially in skin images, in which

the lesion only takes a small proportion in the whole image. In order to handle class

imbalance, weights can be assigned to samples of different classes. The Dice loss

function [Milletari et al., 2016], a soft approximation of the well-known Dice metric,

is specifically designed for image segmentation. However, the Dice loss only consid-

ers foreground (i.e. object) pixels, and does not take into account the background

pixels in the image.

Therefore, in this work, we propose a loss function called Kappa loss, based on

the Kappa index, that can not only deal with class imbalance problems in medical

image segmentation, but also considers the whole information of an image. The

motivating factor spurring our approach is rooted in the fact that all pixels should

be taken into account, since a large part of the image is occupied by object (or in

our case melanoma) pixels. We believe that by using the Kappa loss, we will enforce

the constrain on the true negative pixels in addition to the true positive ones, just

reaching a better balance between the two classes. On the other hand, we segment

the skin lesion images using deep convolutional neural networks. We demonstrate

the efficiency of the proposed loss on images of skin lesions or moles, which are

typical cases where the lesion takes a significant part of the image.

3.2 The clinical problem: skin cancer detection from

lesion segmentation

3.2.1 Diagnosis of skin lesion

Melanoma is a type of skin cancer, that, if not detected and treated within limited

time, may be fatal, since it can spread to other organs quickly. According to a survey

[Allan, 2019], in 2019, about 7230 people (4740 men and 2490 women) will lose their

lives because of melanoma in the USA. Dermatologists establish their diagnosis by

visual inspections of moles, and by extracting texture, size and shape analysis infor-
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mation. One first step is often the segmentation of the mole. Manual segmentation

by dermatologists as described in [Jafari et al., 2016] is a time-consuming process,

hardly compatible with the usual workload of medical experts, and that can be sub-

jective.

Figure 3.1 – Samples of skin images: 1st column is from dataset Skin-Cancer-Detection, 2nd
column from ISIC 2017, 3rd&4th column from ISIC 2018. In the skin image of 2-4th column,
the object is large with respect to the image.

3.2.2 Related works in skin lesion segmentation

For the skin lesion image segmentation, early works utilized computer vision based

methods. Computer vision based image segmentation methods have been thor-

oughly investigated before the advent of deep learning. [Yuan et al., 2009] uses ac-

tive contour to detect border of skin lesion. In [Zhou et al., 2011], the authors com-

bine gradient vector flow with mean shift to segment the skin lesion images. Prepro-

cessing is performed in [Schaefer et al., 2011] to tackle the problem of low contrast

and color between background and object. [Pennisi et al., 2016] presents Delaunay

Triangulation to extract the contour of skin lesion image. Region merging based ap-

proach is used in [Wong et al., 2011]. In [Jain et al., 2015], authors apply image pro-

cessing tools to extract features (Asymmetry, Border, Color, Diameter) of skin lesion

in order to classify the image as melanoma or not. Later on, deep learning based

skin image segmentation methods were proposed. The work of [Jafari et al., 2016]

includes 3 steps: preprocessing (image filtering), CNN, selection of largest area. In

[Attia et al., 2017], the authors spend effort on aggregating convolutional and recur-

rent neural networks. In [Yuan et al., 2017], authors implement a CNN with a loss

function based on Jaccard distance that can deal with class imbalance problem.

[Xie et al., 2020a] design a deep learning architecture using attention mechanism

that can generate high-resolution feature maps to preserve spatial details.
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3.3 The Kappa loss

3.3.1 From metrics to loss

The Dice index (DI) is widely known as an overlap measure in binary image seg-

mentation, defined as the ratio between twice the intersection of two regions over

their union. The DI values range from 0 to 1, 0 meaning empty overlap while 1 in-

dicates perfect match. The Dice Index was originally designed to be an inter-rater

agreement [Dice, 1945], independently from the pixel labeling problem.

Table 3.1 – Counts of agreement and disagreement from two raters. a +d is the number of
targets for which two raters agreed, b + c is the number of targets for which they disagreed,
N = a +b + c +d .

Ground Truth (Rater 1)

+ - Total

Predicted
Results

(Rater 2)

+ a b a +b
- c d c +d
Total a + c b +d N

Let us define as a the number of counts where raters agree positively, d the num-

ber of counts where raters agree negatively, and b and c where the two raters dis-

agree with each other, N is the sum of a,b,c and d (see Table 3.1).

In the image segmentation, we regard the two raters as ground truth and the

predicted image, Figure 3.2 shows the interpretation of number of counts with re-

spect to the segmentation problem. More specifically, the element a is foreground

(represented by positive “+”) shared by both of ground truth and predicted area, b

is foreground of predicted image and background of ground truth, c is foreground

of ground truth and background of predicted image, d is background (represented

by negative “-”) shared by both of ground truth and predicted area.

According to the definition of Dice index and the distribution of Venn diagram

(Figure 3.2), one can write the DI as:

DI = 2a

2a +b + c
(3.1)

Note that in Equation 3.1, the d counts where raters disagree negatively are not

taken into account in this definition. While other agreement rates can take into
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fuse prediction

c b

d

a

Ground truth Predicted area

Figure 3.2 – Venn diagram of ground truth and predicted area. Ground truth contour vs
predicted contour, with a, b, c the number of pixels included in both contours, only in the
predicted area, only in the ground truth, respectively.

account these true negative. In particular, the Kappa coefficient [Hubert, 1977], a

chance-corrected measure of agreement voted by two raters, is defined as:

Kappa = 2(ad −bc)

(a +b)(b +d)+ (a + c)(c +d)
(3.2)

As recalled in the pioneering paper [Zijdenbos et al., 1994] that first uses the Dice

index as a metric to evaluate segmentation quality, the Dice index is a limit case of

the Kappa index when d À a,b,c:

lim
d→∞

Kappa = 2a

2a +b + c
= DI, (3.3)

Thus, that is to say, the Dice index only considers the foreground pixels to com-

pute the overlap of the predicted region and the ground truth, based on the assump-

tion that region or object pixels are small compared to the background area. How-

ever in some cases, especially in medical skin images, this assumption does not

hold. We show examples of such cases, in the 3 images on the right in Figure 3.1.

This is the rationale behind the use of the kappa index as loss function: all pixels

in the image are taken into account, and not only the foreground pixels. Note that

a weighted version of the kappa index has shown to be a loss of choice for ordinal

classification, in comparison to logarithmic loss [de La Torre et al., 2018]. However,

it was not introduced in the context of image segmentation.

59



CHAPTER 3. KAPPA LOSS FOR SKIN LESION SEGMENTATION

3.3.2 Definition of the Kappa loss

In order for the Kappa coefficient to be used as a loss function in a CNN, it has to be

differentiable so that its gradient may be computed. Thus the probabilities (i.e. out-

put values of the last layer of the networks) have to be used, instead of hard labels,

in the definition of the Kappa loss. We rewrite elements a, b, c and d by taking into

account the predicted segmentation (or probability) at pixel i , denoted as pi , and

the ground truth at this same pixel, denoted as gi . The pixel-wise representation

of these elements is shown in Formula 3.4, where N is the number of pixels in the

image.

a =
N∑

i=1
(pi gi ),

b =
N∑

i=1
(1−pi )gi ,

c =
N∑

i=1
(1− gi )pi ,

d =
N∑

i=1
(1−pi )(1− gi )

(3.4)

We obtain the soft approximation of the Kappa loss by replacing the affectations

from Formula (3.4) in Formula (3.2).

Kappa loss = 1− 2(ad −bc)

(a +b)(b +d)+ (a + c)(c +d)
(3.5)

Then, substituting the soft proxy of Equation 3.4 into Kappa loss (Formula 3.5)

and simplifying it, we get:

Kappa loss = 1− 2
∑N

i=1 pi gi −∑N
i=1 pi ·∑N

i=1 gi /N∑N
i=1 pi +∑N

i=1 gi −2
∑N

i=1 pi gi /N
(3.6)

Deriving the Kappa loss with respect to predicted probabilities at pixel j , the

gradient of Kappa loss is as Formula 3.7:

∂Kappa

∂p j
=−2

g j (
∑

gi +∑
pi −2

∑
pi

∑
gi /N)

(
∑

pi +∑
gi −2

∑
pi gi /N)2

+
∑

pi gi (1−2
∑

gi /N2)+ (
∑

gi )2/N)

(
∑

pi +∑
gi −2

∑
pi gi /N)2

(3.7)
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In the case of Dice loss, Formula (3.6) of Kappa loss boils down to Dice loss

[Milletari et al., 2016]:

Dice loss = 1− 2
∑N

i=1 pi gi∑N
i=1 pi +∑N

i=1 gi
(3.8)

For this Dice loss, variants of this definition may have p2
i + g 2

i instead of

pi + gi in the denominator, or include a smoothness term (a small value)

added to the denominator and the numerator [Sudre et al., 2017, Wong et al., 2018,

Pedemonte et al., 2018], but that only helps in case of missing labels and is not crit-

ical. At this point, we have verified the theoretical derivation of Kappa loss and its

derivability. Next, we will verify its feasibility and performance in combination with

U-Net in our experiments.

3.3.3 CNN for image segmentation

fuse prediction

c b

d

a

Ground truth Predicted area

input
image

256*256*3

predicted

image

Batch normalization
Convolution 3*3, ReLU

Max pooling

Concatenation
Dropout

Upsampling

16

32

64

128

256

64

32

16

256 128

128

64

32

Figure 3.3 – Architecture of customized U-Net. Each box corresponds to a multi-channel
feature map. The number of channels is denoted above the box, different colors mean dif-
ferent operation.

We have used the well-known U-Net architecture, one of the most popular CNN

for medical image segmentation [Ronneberger et al., 2015], to implement the Kappa
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loss function. The U-Net is a fully convolutional network with an encoder-decoder

architecture and skip connections. Compared to the original architecture, we sim-

plified the network, given the limited amount of images. The original U-Net in-

cludes 64 filters at the first level, for a total of 31,031,685 parameters. We set the ini-

tial number of filters to be 16 (3×3), so the number of parameters is 1,946,449. We

also add a batch normalization [Ioffe and Szegedy, 2015] operation after each ReLU

activation function to avoid gradient vanishing. In order to avoid overfitting, we use

drop out to reduce parameters in the U-Net with a rate of 0.5.

3.4 Experiments and results

3.4.1 Datasets

We use 6 publicly available datasets of skin images with mole or melanoma, to as-

sess the proposed Kappa-based loss function. They are: Skin-Cancer-Detection

(SCD, 206 images, supplied by Vision and Image Processing Lab, University of Wa-

terloo), split into two subsets which are melanoma (Mel, 119 images) and not-

melanoma (Non-mel, 87 images), and 3 datasets from International Skin Imaging

Collaboration (ISIC) [Codella et al., 2018, Tschandl et al., 2018, Codella et al., 2017,

Gutman et al., 2016] which have 2594, 2000 and 900 images respectively. In the lat-

ter, images not only include a lesion part but also present noise such as hair, which

increases the difficulty of segmentation. Moreover, the object (lesion area) in the

image of dataset SCD or ISIC 2018 varies from one to another in size. We split

each dataset into training set, validation set and test set, respectively, with the same

amount of images in each set. Images are resized to 256 × 256.

3.4.2 Experimental settings

Because the amount of medical data is limited, we use data augmentation to in-

crease the number of it. Data augmentation including rotation, shifting, shearing,

zooming and flipping is used in training. Protocol is a 3-fold cross validation. The

optimizer is Adam [Kingma and Ba, 2014] with a learning rate of 1e−4. The batch

size is 4. The model is trained for 100 epochs. Evaluation metrics are the Dice in-

dex (DI) and the Hausdorff distance (HD), which is the maximum point-to-point

distance between two contours. The implementation tool is based on Keras and

Tensorflow 1.0. Tesla P100 GPU server is used in the experiments.
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3.4.3 Results

Quantitative analysis

We trained the U-Net described in the previous section from scratch on the 6

datasets independently, with two different loss functions, the Dice loss that will be

the baseline, and the Kappa loss. Results are shown in Table 3.2. The Hausdorff

distances between Kappa and Dice losses are similar, which means that Kappa is

not correcting distant, false positive pixels, except for the first dataset (Non-mel),

where HD drops by 7%. However, substantial improvement on the Dice Index (DI)

is obtained for the Kappa loss, in comparison to the Dice loss, for several datasets.

Table 3.2 – Averaged Dice index (DI) and Hausdorff distance (HD) values (± standard devia-
tion), for Dice and Kappa losses on 6 different datasets (87, 119, 206, 900, 2000, 2594 images
respectively).

Dice loss Kappa loss
dataset DI ↑ HD(mm) ↓ DI ↑ HD(mm) ↓

Non-mel 0.65±0.11 5.06±1.79 0.73±0.11 4.70±2.02
Mel 0.80±0.06 6.70±1.93 0.81±0.03 6.59±1.88
SCD 0.82±0.04 7.94±1.72 0.83±0.03 7.91±1.68
ISIC-16 0.80±0.05 8.42±2.19 0.84±0.01 8.41±2.25
ISIC-17 0.80±0.05 8.07±1.93 0.84±0.05 8.03±1.94
ISIC-18 0.81±0.03 7.59±2.60 0.82±0.04 7.52±2.66

Qualitative analysis

Some segmentation results are shown in Figure 3.4, which shows that in some cases,

the Kappa loss can help to make the segmentation more accurate. Looking at Fig-

ure 3.5, we can also observe that the Kappa loss converges faster than Dice loss un-

der the same U-Net model settings.

Key feature maps of Kappa loss

According to example images in Figure 3.6, we extract several feature maps of U-Net

from different layers with Dice loss and Kappa loss respectively (Figure 3.7-3.12).

Such that we can know the intermediate inference process. These three skin lesion

images are with noise, small lesion and large lesion area from dataset ISIC 2016.

Those feature maps are selected from encoder and decoder of U-Net. One can find
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Figure 3.4 – Examples of segmentation results. From up to down: skin lesion image, ground
truth, segmentation result with Dice and Kappa loss.

that the inner world of model with Dice loss and Kappa loss have different atten-

tions. The U-Net with Kappa loss seems focus more on skin lesion itself. While the

U-Net with Dice loss is a little more distracting (Features around the lesion area are

also emphasized.) This may be due to the fact that Kappa loss has background pix-

els as a constraint term compared to Dice loss, thus making the Kappa loss function

more stringent for each weight of neuron update during the backpropagation.
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Figure 3.5 – Loss function (left) and DI metric (right) during the 100 epochs of training pro-
cess on the dataset ISIC 2016.

Skin image Ground truth Dice loss Kappa loss

Figure 3.6 – Skin lesion segmentation results of U-Net with Dice loss and Kappa loss respec-
tively.
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Figure 3.7 – Feature maps of U-Net with Dice loss on a noisy skin lesion image.

0 100 200

0

50

100

150

200

250

original img

0 50 100

0

20

40

60

80

100

120

layer 8 - conv2d_4

0 20 40 60

0

10

20

30

40

50

60

layer 13 - conv2d_6

0 10 20 30

0

5

10

15

20

25

30

layer 18 - conv2d_8

0 5 10 15

0
2
4
6
8

10
12
14

layer 24 - conv2d_10

0 10 20 30

0

5

10

15

20

25

30

layer 32 - conv2d_13

0 20 40 60

0

10

20

30

40

50

60

layer 39 - conv2d_16

0 100 200

0

50

100

150

200

250

layer 49 - conv2d_20

0 100 200

0

50

100

150

200

250

layer 53 - conv2d_22

Figure 3.8 – Feature maps of U-Net with Kappa loss on a noisy skin lesion image.
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Figure 3.9 – Feature maps of U-Net with Dice loss on a skin image with small lesion.
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Figure 3.10 – Feature maps of U-Net with Kappa loss on a skin image with small lesion.
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Figure 3.11 – Feature maps of U-Net with Dice loss on a skin image with large lesion.

0 100 200

0

50

100

150

200

250

original img

0 50 100

0

20

40

60

80

100

120

layer 8 - conv2d_4

0 20 40 60

0

10

20

30

40

50

60

layer 13 - conv2d_6

0 10 20 30

0

5

10

15

20

25

30

layer 18 - conv2d_8

0 5 10 15

0
2
4
6
8

10
12
14

layer 24 - conv2d_10

0 10 20 30

0

5

10

15

20

25

30

layer 32 - conv2d_13

0 20 40 60

0

10

20

30

40

50

60

layer 39 - conv2d_16

0 100 200

0

50

100

150

200

250

layer 49 - conv2d_20

0 100 200

0

50

100

150

200

250

layer 53 - conv2d_22

Figure 3.12 – Feature maps of U-Net with Kappa loss on a skin image with large lesion.
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3.5 Conclusion

In this work, we have proposed a new loss function, based on the Kappa index, to be

used in CNN for medical image segmentation. Different from the Dice loss (which is

as a baseline in this study), this loss function considers all pixels (background pixels

included) in the evaluation of the predicted segmentation, i.e., the Kappa loss is a

generalization of Dice loss. We believe that by enforcing constraint on both positive

and negative pixels, segmentation accuracy or convergence may be improved. We

have shown the Kappa loss differentiability and used the state-of-the-art U-Net ar-

chitecture to implement it. We compared the Kappa loss quantitatively to the Dice

loss on several public datasets of melanoma and skin segmentation. Promising re-

sults were obtained, showing the potential of the Kappa loss.

However, our work only compares the proposed Kappa loss with Dice loss, fu-

ture work involves extending our benchmarking experiments to other loss func-

tions, to further investigate the behavior of Kappa loss with respect to other loss

functions; and generalizing the Kappa loss to multi-label image segmentation, as

was proposed for the generalized Dice loss in [Sudre et al., 2017]. Kappa loss could

also be used in multi-scale approaches, when segmentation is required inside a re-

gion of interest (e.g. bounding box), where there is a balance between positive and

negative pixels. On the other hand, the proposed Kappa loss could also be used in

other target segmentation tasks beside skin lesion segmentation, which is also part

of author’s work in the future. Meanwhile, the skin lesion segmentation is just an in-

termediate step for skin cancer diagnose, in other words, the specific indices such as

ABCDEs [Rigel et al., 2005] need to be further quantified according to the skin lesion

segmentation results.
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4.1 Motivation

Very often, medical image segmentation is the first step to compute pa-

rameters from the image, such as volume: for example, the cardiac ven-

tricles are segmented in magnetic resonance images in order to estimate

the cardiac contractile function via some indices (e.g. ejection fraction)

[Petitjean and Dacher, 2011]. Another example is anthropometry, where measuring

the skeletal muscle body mass and fat body mass, which is a significant pronos-

tic factors in cancer, are estimated from the segmentation of muscle and fat in CT

images [Zhen et al., 2015b, Hussain et al., 2016, Pang et al., 2018, Luo et al., 2020a,

Zhang et al., 2020a, Zhang et al., 2020c].

Instead of resorting to segmentation, which is a costly and error-prone process,

one can attempt to estimate the (single or multiple) characteristics or biomarkers,

directly. Works on this topic have gotten a second wind with the breakthrough

of deep learning, that allows to take advantage of the power of feature represen-

tation and to perform an end-to-end regression. However direct, “segmentation-

free” approaches rely on much less information to estimate the biomarker, and it

is not clear yet if segmentation-free approaches can reach the level of accuracy of

segmentation-based approaches. To our knowledge, there is no study that rigor-

ously compares segmentation based methods and segmentation-free methods for

a given application of biomarker estimation, and quantifies the gap between them.

This observation motivates the present contribution, where we propose a fair, quan-

titative comparison of segmentation-based and segmentation-free (i.e. regression)

approaches to estimate how far regression-based approaches stand from segmen-

tation approaches, for a problem that has a major clinical impact: the estimation

of the head circumference in US images. This estimation is important to accurately

assess the growth of the fetus.

In this chapter, we investigate several settings, i.e. state of the art segmentation

models and various backbones for the regression CNN architectures, to obtain the

best of both worlds, and investigate also time and memory consumption in addition

to estimation accuracy. To make the segmentation-free approaches more convinci-

ble, we adapt explanation methods in regression CNN and provide an interpretation

of what a saliency map is, in the regression case. We are thus able to gain insight into

the CNN regression model for our HC prediction problem, and see what pixels con-

tribute the most to the estimation of the HC: we expect them to be those of the head
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contour. We also address the problem of evaluating the explanation methods, in the

regression case. Adebayo’s sanity checks consist in performing randomization tests,

in the data or in the model, and evaluate the changes in the produced saliency maps

[Adebayo et al., 2018b]. Another example is Samek’s proposal, that has particularly

inspired us [Samek et al., 2017], to compare and assess different explanation meth-

ods. The principle is to inject noise gradually in the image, in locations that have

been highlighted by the saliency maps, and see how the prediction is affected by

this perturbation. However, the method is designed for classification networks and

requires some adaptation.

4.2 HC measurement from US images

4.2.1 Background

Automated measurement of fetus head circumference (HC) is performed through-

out the pregnancy as a key biometric to monitor fetus growth and estimate gesta-

tional age. In clinical routine, this measurement is performed on ultrasound (US)

images, via manually tracing of the skull contour, along to fitting it to an ellipse,

this being done by sonographers. Figure 4.1 is one sample of fetus head of ul-

trasound (US) image, from the HC18 public dataset [van den Heuvel et al., 2018b]

used in this paper. Identifying the head contour is challenging due to low signal-

to-noise ratio in US images, and also because the contours have fuzzy (and some-

times missing) borders (Figure 4.1). Manual contouring is an operator-dependant

operation, which is measured by experienced sonographers by calipers, subject to

intra and inter-variability, which yields inaccurate measurements, as measured in

[Sarris et al., 2012]: the 95% limits of agreement have been measured to ±7mm for

the intra-operator variability and ±12mm for the inter-operator variability. Another

study concluded that the sonographic measured HC consistently underestimates

the actual postpartum HC by an average of 13.5 mm or 4% [Melamed et al., 2011].

Usually, automating the measurement of fetus head circumference in US images

is achieved through automatic segmentation methodology. Segmentation methods

typically involves image-processing or machine learning based approaches, some

post-processing of the result, so as to fit it into an ellipse. This process involves

multiple steps, is adhoc, and can be prone to error. Let us emphasize on the fact

that here, the segmentation is just an intermediate step to compute a characteristic
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Figure 4.1 – US images of fetus head from HC18 dataset [van den Heuvel et al., 2018b]. Red
ellipses are head contours. Below the image is given the corresponding head circumference
(HC). Images may have different pixel size.

from the image, i.e. the length of the head contour.

4.2.2 Related works on head circumference estimation

Several approaches have been proposed in the literature to measure the head

circumference in US images, based on image segmentation [Li et al., 2017,

Lu et al., 2005, Jardim and Figueiredo, 2005]. Some follow a two-step approach,

namely fetus head localization and segmentation refinement. For example, in

[van den Heuvel et al., 2018a], the first step consists in locating the fetus head with

Haar-like features used to train a random forest classifier; and the second step con-

sists in the measurement of the HC, via ellipse fitting and Hough transform. Similar

method is used in [Li et al., 2017].The above segmentation method is based on tradi-

tional machine learning. In recent years, deep learning-based head circumference

segmentation algorithms have improved in terms of performance and efficiency.

These approaches build upon deep segmentation models also in a two-step pro-

cess, contour prediction and ellipse fitting [Kim et al., 2019]. In [Budd et al., 2019],

the standard segmentation model U-Net [Ronneberger et al., 2015] is trained us-

ing manually labeled images, and segmentation results are fitted to ellipses. The

mean absolute error (MAE) tested on HC18 dataset in [Budd et al., 2019] is 1.90

mm, the Dice accuracy is 0.982, the Hausdorff distance (HD) is 1.292 mm. In

[Sobhaninia et al., 2019], authors build upon the same idea, combining image seg-

mentation and ellipse tuning together in a multi-task learning network. Their seg-

mentation accuracy is 0.968 in Dice score, 1.72 mm in HD, 2.12 mm in MAE. In

[Fiorentino et al., 2021], the authors use first a region-proposal CNN for head lo-

calization, and a regression CNN trained on distance fields to segment the HC.

[Moccia et al., 2021] advances the work [Fiorentino et al., 2021] since they propose
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Mask-R2CNN neural network to perform HC distance-field regression for head de-

lineation in an end-to-end way, which does not need prior HC localization or post-

processing for outlier removal. All these methods rely on a segmentation of the fetus

head as a prerequisite to estimating the HC.

The segmentation free approaches for biomarker estimation have been intro-

duced in Chapter 2. Throughout the above literature, there are no studies based on

ultrasound images and there are no methods to directly measure fetus head circum-

ference. Therefore, based on the above studies that have been successfully imple-

mented for objects such as the heart, one of the core tasks of this thesis is to find a

scheme to directly predict fetus head circumference, to explore the explainability of

the method, and to compare it with segmentation-based methods.

4.3 Methodological framework

Figure 4.2 shows both architectures of segmentation-based and segmentation-free

(regression-based) approaches. We will describe these two models in detail in the

following sections.

HC

EFpp

pp post processing

HC Head Circumference
Regression layer

Segmentation method

Regression method

ConvNet

ConvNet

ConvNet HC

EF Ellipse Fitting

Figure 4.2 – Overview of head circumference estimation process based on either deep
segmentation-based method or deep regression-based method. HC: Head circumference,
pp: post-processing (The dotted box means it is optioanal), EF: Ellipse fitting.
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4.3.1 Head circumference estimation based on segmentation

CNN segmentation model

We investigate several segmentation architectures which are the state of the

art network in medical image segmentation, to segment the contour of fe-

tus head: the well-known U-Net model [Ronneberger et al., 2015], U-Net++

[Zhou et al., 2018], DoubleU-Net [Jha et al., 2020], FPN [Lin et al., 2017a], LinkNet

[Chaurasia and Culurciello, 2017], PSPNet [Zhao et al., 2017]. We trained these ar-

chitectures from scratch but also investigate transfer learning as a way to mitigate

the limited number of images in the HC18 dataset. Even though the natural im-

ages from ImageNet1 [Deng et al., 2009] and US images have obvious dissimilar-

ities, some generic representations can be learnt from a large-scale dataset, that

might be beneficial to other types of images, and they have proven so in the context

of MR images [Wacker et al., 2020]. Thus we have used various backbone models,

namely VGG16 [Simonyan and Zisserman, 2015], ResNet50 [He et al., 2016a], Effi-

cientNet [Tan and Le, 2019], pre-trained on the ImageNet dataset, for all architec-

tures mentioned above. For the loss function, we use the Dice loss, highlighted by

[Ma et al., 2021] to be one of the best loss function for medical image segmentation.

We also used Kappa loss [Zhang et al., 2020b] in our experiments for fetus head seg-

mentation, the experimental results demonstrate that both Dice loss and Kappa loss

performs equally well. Therefore, in the following segmentation experiments, we

show the results with Dice loss.

Post-processing of segmentation results

It can happen that the segmentation results have some noise or incomplete

part such as holes, which can cause inaccurate ellipse fitting. Thus some post-

processing is applied on the segmentation results: contours are detected from the

segmentation map by Canny filter [Canny, 1986], then the largest connected com-

ponent is kept when several contours are detected. Generally, the shape of the max-

imum contour is irregular and this randomly shaped contour needs to be fitted to

an ellipse before obtaining the ellipse parameters.

1The most highly-used subset of ImageNet is the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) 2012-2017 image classification and localization dataset. This dataset spans 1000 ob-
ject classes and contains 1,281,167 training images, 50,000 validation images and 100,000 test im-
ages.
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HC computation based on segmentation results

To my knowledge, there are three ways to measure the length of an ellipse based on

a given binary image.

1. Counts the number of pixel points of the ellipse outline in the image.

2. The Euclidean distance between the locations of each contour pixel point is

calculated and then accumulated to obtain the arc length of the ellipse 2.

3. Apply the formula for calculating the circumference of an ellipse.

The common drawback of the first two methods is that the calculated ellipse

perimeter is larger than the actual ellipse perimeter when there are duplicate pixel

points on the ellipse contour. So in this work, we use the third method of calculating

the elliptical perimeter.

After post-processing the segmented results, the next step is to perform ellipse

fitting in order to get the parameters (long axis, short axis, center points, angle) of

the ellipse to compute its length. The length of an ellipse denoted HC is approx-

imated by Ramanujan approximation method (Equation 4.1) [Barnard et al., 2001]

in which h = (a−b)2

(a+b)2 , a and b being the long and short axis of the ellipse:

HC =π(a +b)(1+ 3h

10+p
4−3h

) (4.1)

4.3.2 Head circumference estimation using regression CNN

Regression CNN model

As shown in Figure 4.2, the regression CNN are composed of a CNN backbone and

regression layer (linear activation function), which can learn the features of input fe-

tus head to estimate HC value directly. The function of CNN backbone is to extract

key features from input training data. Afterwards, these feature maps are flattened

into one long feature vector. The feature vector are activated by linear function (Ac-

tually keep unchanged). The backbone CNN that we experimented are state-of-the-

art architectures: VGG16 [Simonyan and Zisserman, 2015] (16 in VGG16 refers to it

has 16 layers that have weights.), ResNet50 [He et al., 2016a] (It is a variant of ResNet

model which has 48 convolution layers along with 1 MaxPooling and 1 Average Pool-

ing layer.), EfficientNetb2 [Tan and Le, 2019] (It has various architecture versions

2OpenCV library function arcLength is used.
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from b0 to b7.), DenseNet121 [Huang et al., 2017] (The number 121 corresponds

to the number of layers with trainable weights (exclude batch norm)), Xception

[Chollet, 2017], MobileNet [Howard et al., 2017], InceptionV3 [Szegedy et al., 2016]

(The versions including Inception V1, V2, V3, V4 and Inception-ResNet.). In order

to improve model convergence, and for the reasons stated above in the previous

section, these models have been pretrained on ImageNet [Deng et al., 2009], and

we fine-tune3 them for the task at hand.

Loss functions

MAE loss The loss functions commonly used in regression CNN include the Mean

Absolute Error (MAE) loss (also called L1 loss), defined as:

MAE loss = 1

N

N∑
i=1

|pi − gi | (4.2)

Where pi is the probability of predicted pixels, gi the real value of head circum-

ference in pixels, and N the number of pixels in an image. MAE loss function is more

stable when dealing with outliers.

However, MAE has a serious problem (when used for neural networks): the gra-

dient of the update is always the same, i.e., the gradient is large even for small values

of loss. This is detrimental to the learning of the model. To solve this drawback, we

can use a varying learning rate (e.g. Adam optimizer [Kingma and Ba, 2014]) that

reduces the learning rate when the loss is close to a minimum.

MSE loss Mean Square Error (MSE) loss (L2 loss) is defined in Equation 4.3. The MSE

performs well and converges effectively even with a fixed learning rate. Because the

gradient of the MSE loss increases as the loss increases and decreases as the loss

tends to 0. The gradient of the MSE loss increases as the loss increases and decreases

as the loss tends to 0. This leads to more accurate results at the end of training using

the MSE model. But, since the MSE loss takes the square of the error, so if the error

> 1, then the MSE will further increase the error. If there are outliers in the data,

then the error value will be large, so a model using MSE will give greater weight to

the outliers compared to using MAE to calculate the loss.

3Fine-tuning is arguably the most widely used approach for transfer learning when working with
deep learning models. Generally, it starts with a pre-trained model on the source task and trains it
further on the target task [Guo et al., 2019]
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MSE loss = 1

N

N∑
i=1

(pi − gi )2 (4.3)

Huber loss There is another loss function called the Huber loss (HL), in which it

combines the MSE loss and MAE loss through a hyper parameter δ. Here δ= 1, that

is to say, when the error is less than 1, the Huber loss becomes MSE loss, otherwise,

it becomes parametric MAE loss. Thus, the benefit of Huber loss can dynamically

call the loss function according the change of error so that utilizing the strengths of

MAE and MSE losses in suitable case.

HL =


1

N

N∑
i=1

1

2
(pi − gi )2, for |pi − gi | < δ

1

N

N∑
i=1

δ∗ (|pi − gi |− δ

2
), otherwise

(4.4)

We will investigate all three of them in our experiments, as there is no heuristic to

choose one loss over the other, as highlighted in [Lathuilière et al., 2019].

Model configuration

Table 4.1 – Number of trainable parameters (#) of segmentation and regression CNN mod-
els. M = million. Backbone names: B1 = VGG16, B2 = ResNet50, B3 = EfficientNetb2, B4 =
DenseNet121, B5 = Xception, B6 = MobileNet, B7 = InceptionV3. Reg=Regression.

Segmentation models # param (M) Regression models # param (M)

Original U-Net 31.06 Reg-B1 15.15
U-Net-B1, B2, B3 23.75, 32.51, 14.23 Reg-B2 23.63

DoubleU-Net 29.29 Reg-B3 76.73
U-Net++ B1, B2, B3 24.15, 34.34, 16.03 Reg-B4 70.04

FPN-B1, B2, B3 17.59, 26.89, 10.77 Reg-B5 20.91
LinkNet-B1, B2, B3 20.32, 28.73, 10.15 Reg-B6 3.26
PSPNet-B1, B2, B3 21.55, 17.99, 9.41 Reg-B7 21.82

The number of trainable parameters of each model is listed in Table 4.1. Due to

space limitations, we cannot list all the CNN models, instead we list several models

with outstanding performance in recent years. In this work, several CNN backbone

models in segmentation and regression respectively are utilized in order to fine tune

the networks with the HC18 dataset. For segmentation models, the weights of en-

coder and decoder are set to be trainable, the activation function of last layer is Sig-
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moid function because of binary pixel-wise classification. For regression models,

both the weights of CNN feature extractor part and regression layer are trainable.

Because the number of training data of HC18 is limited, to avoid over-fitting, we

set the dropout rate as 0.7; in other words, 30% of parameters in regression CNN

models are kept. The activation function of last layer in Regression CNN is linear

function.

4.3.3 Explainability of regression CNN

If deep learning methods are the gold standard in most image processing tasks, they

are often considered as black boxes and fails to provide explainable decisions. In

this work, we investigate various saliency maps methods, to leverage their ability at

explaining the predicted value of the regression CNN. Since saliency maps methods

have been developed for classification CNN mostly, we provide an interpretation for

regression saliency maps, as well as an adaptation of a perturbation-based quanti-

tative evaluation of explanation methods.

Explanation methods for CNN

In Chapter 2, we have reviewed plenty of explanation methods. In this study, we

use several post-hoc explanation methods to investigate or valid the explainabil-

ity of regression CNNs. Two categories of explanation methods are generally con-

sidered, which yields a saliency map that estimates how much each pixel con-

tributes to the prediction. They are perturbations-based or propagation-based. In

perturbation-based approaches, the goal is to estimate how perturbation applied to

the input image, such as blurring or injecting noise, changes the predicted class

[Fong and Vedaldi, 2017, Zintgraf et al., 2017]. In propagation-based techniques,

the idea is to backpropagate a relevance signal from the output to the input. Both

of these two types explanation methods can valid the model’s explainability. In

this work, for convenience, we use the latter category (propagation-based) of meth-

ods that actually encompass three classes, which can be directly called via a public

Python package Innvestigate [Alber et al., 2019]:

• (i) Sensitivity (gradient-based) methods: The Gradient [Simonyan et al., 2013]

method; the SmoothGrad [Smilkov et al., 2017] method; the In-

put*Gradient [Shrikumar et al., 2016] method; and the Integrated Gradients

[Sundararajan et al., 2017].
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• (ii) Deconvolution methods. The DeConvNet [Zeiler and Fergus, 2014]

method; the Guided BackProp [Springenberg et al., 2015] method.

• (iii) Layer-wise Relevance Propagation (LRP) variants: LRP [Bach et al., 2015]

method; DeepTaylor [Montavon et al., 2017] method.

In the classification setting, a saliency map provides an estimation of how much

each pixel contributes to the class prediction. In the regression setting, the saliency

map will provide an estimation of how much each pixel is impacting the model, and

is contributing to decrease the prediction error, as measured by the loss function,

that is in general the MAE or MSE.

Evaluation of explanation methods based on perturbation

Only using saliency maps for visualizing the highlight area that the regression CNN

models learn from input images are not convincible enough. Because there is no

evidence which saliency map is suitable for our proposed regression CNN. There-

fore, in this study, we use a perturbation-based method to quantitatively evaluate

different explanation methods. In Chapter 2, we introduced some evaluation meth-

ods on various explanation methods, and Area over Perturbation Curve (AOPC)

[Samek et al., 2017] is one of evaluation methods that build upon the perturbation

analysis in classification tasks. Here, we propose to adapt the AOPC to the regression

case. Generally, in classification or segmentation tasks, the evaluation metrics is ac-

curacy, while in regression CNN model, the metrics is loss value between true value

and predicted value. If we denote by ε(x)(0) the prediction error of initial image eval-

uated by the analyzer and ε(xn)(k)(1 ≤ k ≤ K) the prediction error of the perturbed

image (xn)(k) at step k, we can define the AOPCregression
Analyzer as:

AOPCr eg r essi on
Anal y zer = 1

N

N∑
n=0

(ε(xn)(0) − 1

K

K∑
k=0

ε(xn)(k)) (4.5)

A larger AOPC score in absolute value means that an analyzer has a steep decrease

when the perturbation steps is increasing. It means on the one hand, the regres-

sion CNN models are sensitive to the noise, which demonstrates that the models

are capable to learn the key features from input images; on the other hand, the high

AOPC score means that an explanation method can well detect the key features that

the models learned from input images.
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4.4 Experiments and results

4.4.1 HC18 Dataset pre-processing and experimental settings

The HC18 dataset

The HC18 dataset [van den Heuvel et al., 2018b] contains 999 US images acquired

during the various trimesters of the pregnancy, along with the corresponding

ground truth of the skull contour map and HC values. The reference contour of

fetus head is annotated as ellipse shape by professional sonographer and the HC

value as well as pixel size of each image is given in a text file. The gestational age

range of this dataset is 10-40 weeks [van den Heuvel et al., 2018b].

Data pre-processing

Image preprocessing includes a resizing from 800×540 pixels to 224×224, and nor-

malization by subtracting the mean and dividing by standard deviation. The HC

values are normalized by dividing by the maximum value of HC, in order to improve

convergence. We split the dataset into training set (600 images), validation set (199

images) and test set (200 images) in random order. We augment the data of the train-

ing set by performing horizontal flipping, and rotation with 10 degrees, the amount

of training data is 1800 images.

Experiment configuration

In order to create a fair experimental environment, both approaches, segmentation

or regression, are evaluated with the same protocol, namely with 5-fold cross vali-

dation, the folds being identical for all the methods. We set the optimizer as Adam

with a learning rate of 10−4. The batch size is 16. The training takes 100 epochs.

The implementation is based on deep learning framework Keras. In the segmenta-

tion experiments, we use the exsisted public Python library Segmentation Models

[Yakubovskiy, 2019]. The programs are executed on Tesla P100 GPU server with 16

GB memory.

Evaluation metrics

Evaluation metrics for the segmentation results are the Dice index (DI), the Haus-

dorff distance (HD), and the Average symmetric surface distance (ASSD). The mean
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absolute error (MAE) and the percentage MAE (PMAE) are used to compare the pre-

dicted and the ground truth HC values.

4.4.2 HC estimation based on segmentation CNN

We train and test 6 different segmentation architectures (U-Net, U-Net++, DoubleU-

Net, FPN, LinkNet, PSPNet) with three pretrained CNN backbones (VGG16,

ResNet50, EfficientNet). Besides, we added the original U-Net architecture

[Ronneberger et al., 2015] that does not have any backbone. We found that the seg-

mentation models pretrained on ResNet50 outperformed the other two CNN back-

bones. As shown in Table 4.2, that contains both the segmentation accuracy and the

HC estimation MAE. From this table, one can gather that:

Segmentation-wise, all segmentation models obtained similar scores, as shown

by values un columns DI, HD and ASSD in the Table 4.2. And these seg-

mentation accuracy have outperformed that in the literature [Budd et al., 2019,

Sobhaninia et al., 2019]. However, when it comes to the estimation error of the HC,

the U-Net-B2 and LinkNet-B2 are the best architectures, as assessed by a two-sided,

paired Student’s t-test between pair of method scores, that resulted in a p-value in-

ferior to 0.05 for these 2 networks. Both networks achieve an MAE value (after post-

processing) of 1.08 mm and 1.15 mm respectively. Post-processing allows indeed

to obtain a small enhancement in the MAE value compared to the results without

post-processing. Transfer learning techniques help to improve the segmentation

accuracy when comparing U-Net with pretrained ResNet50 and U-Net with initial

ResNet50.

We also analysed some segmentation results (Figure 4.3) on some vague US fetus

head images, the influence of noise and artifacts of images in segmentation-based

methods is less than that in the segmentation-free methods (presented in Figure

4.10).

4.4.3 HC estimation based on regression CNN

We train and test regression CNN architectures with 7 different pretrained CNN

backbones, experimented with 3 regression loss functions (MAE loss, MSE loss and

Huber loss) on the HC18 dataset. The evaluations of direct HC estimation are given

in Table 4.3. One can find that the Regression EfficientNet (Reg-B3-L1) in conjunc-

tion with the MAE loss, performs better than the other CNN models: the resulting
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Figure 4.3 – Segmentation results on three large fetus head and vague US images with U-
Net-B2 and LinkNet-B2.

MAE for this regression network is 1.83 mm. This error is not only smaller than the

error (1.90mm) based on segmentation methods in the literature [Budd et al., 2019],

but also much smaller than the error in manual measurements intra (7 mm) and

inter-variability (12 mm) of sonographers. Therefore, our proposed method have

promising potential for the clinical practice. However, the comparison to manual

variability should be handled with care as these results have not been obtained on

the same dataset.

4.4.4 Agreement analysis of segmentation CNN vs. regression CNN

Comparison of HC estimation accuracy

To compare the performance of the segmentation-free vs. the segmentation ap-

proaches, we have gathered the 2 best results from Tables 4.2 and 4.3 into Table 4.4.

From this table, one can see that the best segmentation approach (U-Net-B2: U-Net

with pretrained ResNet50 with post-processed segmentation results) is better than

the best regression approach (Reg-B3-L1) by 40.7%.
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Table 4.3 – Average performance of 21 regression CNN models over 5 fold cross validation.
The results are mean and ± standard deviation. MAE = Mean Absolute Error, PMAE = Per-
centage MAE. B1 = VGG16, B2 = ResNet50, B3 = EfficientNetb2, B4 = DenseNet121, B5 =
Xception, B6 = MobileNet, B7 = InceptionV3, L1 = MAE loss, L2 = MSE loss, L3 = Huber Loss.

Model MAE(mm) MAE(px) PMAE(%)

Reg-B1-L1 3.04±2.97 22.41±19.94 1.94±2.19
Reg-B2-L1 3.24±3.31 24.11±22.65 2.14±2.61
Reg-B3-L1 1.83±2.11 13.57±13.53 1.17±1.43
Reg-B4-L1 12.59±12.49 93.63±83.53 8.68±11.25
Reg-B5-L1 2.96±2.79 22.39±19.34 1.89±1.97
Reg-B6-L1 3.23±3.29 24.29±22.11 2.13±2.50
Reg-B7-L1 3.34±3.49 26.04±27.89 2.28±2.99
Reg-B1-L2 3.16±3.28 23.83±23.13 2.13±2.69
Reg-B2-L2 3.73±3.48 28.41±26.99 2.55±3.15
Reg-B3-L2 2.35±2.74 17.32±17.95 1.53±2.02
Reg-B4-L2 5.69±5.92 43.54±44.89 3.87±4.97
Reg-B5-L2 3.12±3.07 23.77±22.19 1.99±2.27
Reg-B6-L2 4.68±4.17 35.39±30.59 3.10±3.36
Reg-B7-L2 4.33±4.67 32.29±32.60 2.87±3.78
Reg-B1-L3 3.37±3.72 25.75±26.36 2.33±3.05
Reg-B2-L3 3.12±2.97 24.03±23.69 2.11±2.66
Reg-B3-L3 2.78±3.03 20.62±20.22 1.79±2.13
Reg-B4-L3 9.15±9.07 70.49±67.38 6.20±7.39
Reg-B5-L3 3.40±3.09 26.08±21.34 2.19±2.28
Reg-B6-L3 4.30±4.44 32.48±32.45 2.86±3.67
Reg-B7-L3 6.29±13.86 48.39±111.02 4.33±11.25

Table 4.4 – Comparison of HC estimation for the 2 best segmentation and regression models.
B2: Resnet50. B3: EfficientNet, L1 = MAE loss, L2 = MSE loss. The results are mean and ±
standard deviation. MAE = Mean absolute error, PMAE = Percentage MAE. The best results
are in bold. (p value<0.05)

Metrics MAE(mm) MAE(px) PMAE(%)

Methods Segmentation-based methods

U-Net-B2 1.08±1.25 7.87±7.51 0.65±0.68

LinkNet-B2 1.15±1.32 8.45±8.39 0.69±0.77

Segmentation-free methods

Reg-B3-L1 1.83±2.11 13.57±13.53 1.17±1.43

Reg-B3-L2 2.35±2.74 17.32 ±17.95 1.53 ±2.02
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Comparison of learning curves

The learning curves during training and validation stages are generated. We can

also notice from Figure 4.4 that both segmentation and regression methods are cor-

rectly fitting the data during training and validation stages, in which the fitting of

the segmentation-based method being even smoother.
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Figure 4.4 – Learning curves of segmentation (U-Net-B2, LinkNet-B2) vs. segmentation-free
method (Reg-B3-L1, Reg-B3-L2) in training and validation stage. The x-axis represents the
training epochs; the y-axis is the loss.

Agreement analysis of prediction results

We also analyse the agreement between the estimated HC values by both types of

methods against the real HC values via linear regression. From Figure 4.5, one can

first observe a remarkable linear correlation between the prediction and the refer-

ence values, for all 4 models, whether it is segmentation or regression models. There
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is a tiny fluctuation in regression CNN models in the right top which illustrates that

the regression models have a tendency to underestimate the large HC values (this

trend will also appear in the Bland-Altman analysis).
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Figure 4.5 – Scatter plots of the 2 best segmentation models U-Net-B2 and LinkNet-B2, and
regression models (L1 = MAE loss, L2 = MSE loss). The x-axis represents the ground truth
HC and the y-axis the predicted HC (in mm).

Bland-Altman plot analysis

The Bland-Altman plot is another way to analyze the agreement between two mea-

surements, by plotting the difference between the measurements vs their mean,

that makes it easy to spot a bias between the measurements. From the Bland-

Altman plot in Figure 4.6, obtained on a fold of 200 test images, we observe that

regression approaches struggle with larger fetus head images, which is interesting

since segmentation approaches usually fail on small structures. One can also see
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that for the segmentation models, 8 out of 200 points are outside the 95% agreement

limit; for regression models, there are 12 outliers out of 200, mostly distributed in

larger HC values. Unsurprisingly, room for improvement is left for regression-based

approaches. One can also identify the 95% agreement limits: for the best segmen-

tation model, they are [-3.12mm, 0.7mm], and for the best regression model, they

are [-3.25mm, 2.92mm]. We can compare these limits to the 95% agreement lim-

its on inter-operator variability, which is ±12 mm [Sarris et al., 2012, Table 1 page

272]: the fact that they are greatly smaller highlights the high relevance of both of

segmentation-based and segmentation-free approaches as alternative to automati-

cally estimate the HC from US images.
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Figure 4.6 – Bland–Altman plots of the segmentation and regression CNN models. The x-axis
represents the average value of ground truth and predicted HC; the y-axis, the difference
between ground truth and predicted HC (in mm). The horizontal red solid lines represent
the upper and lower limits of 95% consistency. The middle dotted green line represents the
mean of the difference.
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4.4.5 Memory usage and computational efficiency

In addition to prediction accuracy, we also compared the memory usage and

computational efficiency of both segmentation-based and segmentation-free ap-

proaches. In the aspect of memory usage of a CNN model in theory, Algorithm 4.14

gives the pseudo code of estimating memory cost of a model. It simply consists of

three parts: the memory of embedded model, the memory of model layers as well

as the memory of model weights.

Algorithm 4.1 The estimated memory cost of a model
Input: Regression CNN Model, batch_size.
Output: Total memory (gigabytes).

1: procedure MEMORY_USAGE(Model, batch_size)
2: shapes_mem_count = 0
3: internal_model_mem_count = 0
4: for layer_i in Model.layers do
5: if layer_type == ‘Model’ then . Embedded model
6: internal_model_mem_count +=
7: MEMORY_USAGE(batch_size, layer_i)
8: end if
9: single_layer_mem = 1

10: out_shape = layer_i.output_shape . Model layers
11: for s in out_shape do
12: single_layer_mem *= s
13: shapes_mem_count += single_layer_mem
14: end for
15: end for
16: trainable_count =SUM(model.trainable_weights) . Model weights
17: non_trainable_count = SUM(model.non_trainable_weights)
18: number_size = 8.0 . One byte has 8 bits in float 64.
19: total_memory = number_size*(batch_size*shapes_mem_count + trainable_-

count + non_trainable_count)
20: gbytes = total_memory/(10243)+ internal_model_mem_count
21: return gbytes
22: end procedure

4The source code reference of computing the theoretical memory of a model:
https://gist.github.com/jizhang02/ef8eb45450f3d943fea37c6544d3808c
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Theoretical memory usage of CNN models

The theoretical memory usage of a CNN during training requires to store the net-

work parameters and the activation outputs of every layer, used to compute the

gradients, for each batch. As show in Table 4.5, as one could expect, regression CNN

models requires less memory storage in general, than the segmentation-based ap-

proaches, see column Mem-M. However in practice, the gap between regresssion

and segmentation models is not so large, as shown by the actual memory cost in

the prediction stage, defined as the maximum used memory when the inference is

stable (computed using Python library Memory Profiler). In particular, the best re-

gression method (Reg-B3-L1) is even requiring more memory than segmentation

methods.

Table 4.5 – Training and predicting time and memory cost of segmentation vs.
segmentation-free models on test set (200 images). B1 = VGG16, B2 = ResNet50, B3 = Ef-
ficientNetb2, B4 = DenseNet121, B5 = Xception, B6 = MobileNet, B7 = InceptionV3, L1 =
MAE loss, Mem-M= theoretical memory of model, Mem-P= memory in prediction stage, GB
= gigabyte.

Methods
Train

(s/epoch)
Predict

(s/test set)
Mem-M (GB) Mem-P (GB)

Segmentation-based methods

U-Net-B2 29 68.26 3.06 1.84
DoubleU-Net 70 114.21 7.21 2.40
U-Net++-B2 68 172.45 7.26 2.34
FPN-B2 44 101.30 5.47 2.04
LinkNet-B2 30 80.36 3.82 1.90
PSPNet-B2 88 225.38 11.06 4.04

Segmentation-free methods
Reg-B1-L1 17 30.86 0.96 1.36
Reg-B2-L1 20 48.28 2.31 1.73
Reg-B3-L1 38 36.95 2.29 2.68
Reg-B4-L1 21 65.55 3.01 1.69
Reg-B5-L1 35 51.78 2.15 1.67
Reg-B6-L1 14 18.71 1.03 1.14
Reg-B7-L1 17 22.55 1.09 1.60
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Computational efficiency

As Table 4.5 shows, the training time per epoch over 1800 training US images for

the segmentation method U-Net-B2 (U-Net with ResNet50), takes 29 seconds on

a Tesla P100 GPU. For the best regression model Reg-B3-L1 (EfficientNet), it takes

20 seconds. In the prediction stage with a Intel Core i7 CPU, 32 GB RAM, the Re-

gression Reg-B3-L1 only takes 36.95 seconds over 200 test images; in other words,

predicting one image requires 0.18 second, to be compared to 0.35 seconds of the

U-Net-B2. Segmentation-based methods require longer time at training but also at

inference time, than segmentation-free methods. As a conclusion, whereas the ad-

vantage of using regression-based approach is clear computationwise, there is no

clear evidence that regression models are less memory greedy, in the experimen-

tal conditions we set up. It’s worthy to note that with the continuous progress of

hardware and computing power, such time error between segmentation-based and

segmentation-free methods may be ignored in clinical practice.

Figure 4.7 compare the best segmentation-based and segmentation-free meth-

ods in terms of memory cost during the model prediction stage. From the figure, we

can find that predicting the same number of images, the segmentation-free method

takes less time than the segmentation method. This is because there are two pro-

cesses in the segmentation model, image feature extraction (Encoder) and feature

upsampling (Decoder).
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Figure 4.7 – Memory cost of U-Net, B2=ResNet during prediction stage. The maximum used
memory of models (when the inference is stable) is after the red vertical line.
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Figure 4.8 – Memory cost of Regression B3=EfficientNet, L1=MAE during prediction stage.
The maximum used memory of models is after the red vertical line.

4.4.6 Comparison of HC estimation with state-of-the-art

Table 4.6 – Comparison of HC estimation with state-of-the-art on HC18 dataset.
B2=ResNet50, B3=EfficientNetb2, L1=MAE loss, DI=Dice Index, N/A=Not applicable.

Metrics MAE(mm) DI(%)

Segmentation-based methods
[Sobhaninia et al., 2019] 2.12±1.87 96.84±2.89
[Budd et al., 2019] 1.81±1.65 98.20±0.80
[Fiorentino et al., 2021] 1.90±1.76 97.75±1.32
[Moccia et al., 2021] 1.95±1.92 97.90±1.11
U-Net-B2(Proposed) 1.08±1.25 98.80±0.9

Segmentation-free methods
Reg-B3-L1(Proposed) 1.83±2.11 N/A

At last, the proposed segmentation-based methods and segmentation-free

methods are compared with state-of-the-art (SotA) methods (Table 4.6). In the

SotA solutions, segmentation intervention are still needed although their models

are fancy. For example, in [Fiorentino et al., 2021], 3 steps including fetus head lo-

calization, segmentation, ellipse fitting are performed for computing HC, which

seems to be cumbersome. While the proposed two kinds of methods can effectively

estimate HC through simple architectures such as U-Net with ResNet or regression

EfficientNet with the benefit of transfer learning. One should also note that the sota
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methods are not that comparable with each other due to their different experiment

protocols. For instance, in [Budd et al., 2019], they trained HC18 dataset combined

with other fetus head US images.

4.4.7 Explainability of regression CNN

Because we can see the segmented results directly from segmentation models, and

the HC is calculated according to the fitted ellipse, thus the results are trustable.

However, contrary to segmentation models, regression models come at a cost of

low explainability, i.e. the model is not providing explicit explanations along with

the HC prediction.

In order to shed the light on what is indeed learnt by the regression CNN, we use

a post-hoc explanation method to analyse the regression model. In our previous

work [Zhang et al., 2020d], we showed that the Layer-wise Relevance Propagation

(LRP) method [Bach et al., 2015] was appropriate to explain CNN regression mod-

els for this application. The idea of LRP is to compute a relevance score for each

input pixel layer by layer in backward direction. It first forward-passes the image

so as to collect activation maps and backpropagates the error taking into account

the network weights and activations, yielding saliency maps [Morch et al., 1995],

in which the areas that most contributed to a decision are highlighted. Note that

in [Dobrescu et al., 2019], authors also used LRP method to explain the results of

a regression CNN that aims at counting leaf on plant photographs. We agree that

Class Activation Map methods such as Grad CAM [Selvaraju et al., 2017] may be in-

teresting since they provide promising human-interpretable visual explanations for

a given CNN architecture. Their principle is to using a global average pooling layer,

and to compute the saliency map as the weighted combination of the resulting fea-

ture maps at the second last (before softmax) layer. Since we do not have classes

here but regressed values, it might be interesting to explore “regression activation

map” as defined in [Wang and Yang, 2018].

One can discover from Figure 4.9 that the regression CNN can indeed find the

key features from head contour on the input US images and relies on, to some ex-

tent, on many contour pixel to make the HC estimation. This indicates that the pre-

dictions of regression CNN are reliable to some extent. On the other hand, we can

tell from Figure 4.9 that the feature extraction capability of each regression CNN is

different according to the red contribution points.
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Figure 4.9 – Saliency maps of different regression CNNs explained by LRP method. Row
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We also display some saliency maps where regression models fail to make an

accurate estimation (see Figure 4.10). We observe that the features extracted by re-

gression CNN models are fooled by hypersignal (i.e. high intensity pixels) above the

head, which leads to increased predicted HC values. This illustrates the case where

the background is heterogeneous and makes it difficult for the network to distin-

guish the head contour and thus to accurately estimate the head circumference.

For more analysis on explainability of regression CNNs, please refer to Appendix A.
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Figure 4.10 – Saliency maps of regression CNN models on 3 cases of bad prediction results.
(1) Input fetus head US images and ground truth HC values; (2) Regression EfficientNet with
MAE loss and predicted HC; (3) Regression EfficientNet with MSE loss and predicted HC;
(4) Regression EfficientNet with Huber loss and predicted HC. Red points means positive
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4.4.8 Evaluation of explanation methods

Qualitative evaluation of explanation methods

We visualize the saliency maps provided by the 8 selected explanation methods in

Figure 4.11. From these images, we can barely see the features retrieved by explana-

tion method DeConvNet and Gradient in both models, that is to say these two meth-

ods seem somehow insensitive to the models. This may be explained by the gradi-

ent shattering problem [Balduzzi et al., 2017] for the gradient method. Regarding

DeConvNet’s saliency map, it may be due to the the architecture of deconvolution

network which reconstructs the convolution networks reversely. In addition, for

Reg-ResNet50, methods Gradient, GuidedBackprop and SmoothGrad fail to high-

light the head contour. We will see that these observations are confirmed by the

quantitative evaluation.
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Figure 4.11 – Comparison of different saliency maps with Reg-VGG16 and Reg-ResNet50. P:
predicted HC value, T: ground truth HC value (in pixels).

Quantitative evaluation of explanation methods

Here, we compare the explanation methods through perturbation analysis. In this

experiment, the input image of size 128×128 pixels is divided into a grid of 4×4 sub-

windows of size 32×32 pixels. Gaussian noise with mean value 0 and standard de-
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viation 0.3 is added to each subwindow, according to their importance assigned by

analyzers during the 16 steps. The input data is the test data set (200 images) and

corresponding ground truth. Thus it is slightly time consuming than the saliency

map. Figure 4.12 is an example of the perturbation process of Gradient analyzer.
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Figure 4.12 – Perturbation process for the saliency map produced by the Gradient method.
Step 0 is the original input image. From step 1 to step 15, Gaussian noise is added gradually
on the image subwindows. The perturbation order of these subwindows corresponds to the
saliency scores assigned by the Gradient method analysis, i.e. the most contributing pixels
are perturbed first. Red: noise, blue: original image pixels.

In Figure 4.13, we show the evolution of the prediction error w.r.t. the quantity

of noise added at each perturbation steps, on first the most significant subwindow

in the analyzer’s sense, to the least significant one. One can observe that consis-

tently, the prediction error is increasing, as the level of noise increases. Methods

with the steepest curve, LRP and Input*gradient, exhibit the largest sensitivity to

perturbations, and as such, should highlight the contributing pixels, in the sense

of this criterion. Interestingly the Integrated gradient analyzer seems to be relevant

for VGG16, but not for Reg-ResNet50. In the future, it will be interesting to vary the

subwindow size to see if results are affected. We expect that a finer grid will be bet-

ter suited to a thin structure like the head skull. We adapted the evaluation metric

of the regression CNN model from accuracy to predicted error, thus, with the noise

added gradually according to the importance, the loss increases, the faster the loss

increase, which means the better analyzer it is.

If the relevant features are blocked by Gaussian noise, the model can not predict

well, then the analyzer can not detect the relevant feature neither. Therefore, the

sensitive analyser will drop steeply, while the insensitive analyser does not change a

lot. To quantify this criteria, the area of perturbation curve (AOPC, Equation 4.5) is

regarded as score of one explanation method, for instance, in Figure 4.12, the AOPC

value is the difference between accuracy of input image and the average accuracy

of 15 perturbed images. Different from classification or segmentation CNN models,
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Figure 4.13 – Prediction error (in pixels) of different analyzers during each perturbation step
based on Regression VGG16 and Regression ResNet50 model. The horizontal axis is the
perturbation steps.

the evaluation metrics of regression CNN model is the loss between ground truth

and predicted value, not the accuracy, thus we convert the loss by adding a negative

sign. In Table 4.7, we compared AOPC scores on regression VGG16 and regression

ResNet50 models respectively. Since the AOPC is the difference between the pre-

diction error with and without perturbation, we expect that the analyzer that are

indeed perturbed by the noise will return a large AOPC score, in absolute value. We

can see that the regression ResNet50 has higher AOPC score than regression VGG16

model. Again we can gather from this table that both the LRP and Input*Gradient

methods perform well in those two models. Note that other explanation methods

have inconsistent performance depending on the model. This highlights the neces-

sity to choose the proper explanation method before analyzing a specific model.

Table 4.7 – Performance (AOPC scores) of different explanation methods after perturbation,
with two regression models. G: Gradient, SG: SmoothGrad, DCN: DeConvNet, DT: Deep-
Taylor, GB: GuidedBackprop, I*G: Input*Gradient, IG: IntegratedGradients. Lower is better.
Best scores in bold.

Model G SG DCN DT GB I*G IG LRP

Reg_VGG16 -7.31 -7.39 -2.87 -7.40 -1.66 -9.19 -9.49 -9.17
Reg_ResNet50 -11.53 -11.84 -9.25 -9.89 -9.72 -14.75 -5.60 -14.58

In our head circumference estimation study, we use the selected explanation

method to analyse different regression CNNs. On the one hand, the model’s ex-

plainability can be proved that the direct HC prediction using regression CNN is
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reasonable and effective. On the other hand, different regression CNN models can

be compared in the aspect of feature extraction ability. For more information about

the experiments of explainability of regression CNNs, please refer to Appendix A.

4.5 Conclusion

In this work, we have addressed the problem of HC estimation from US images via

both a conventional segmentation approach with post-processing and ellipse fit-

ting, and a regression-based approach that can directly predict HC without segmen-

tation intervention. Our idea was to quantify how far regression-based approaches

stand from segmentation approaches, when the final task is to estimate a parame-

ter, i.e. a biomarker, from the image. Although segmentation-based methods pro-

vide explainable results for the HC estimation because the segmentation result is

visible, they often require dedicated post-processing steps. On the other hand, re-

gression approaches based on CNN are end-to-end, less costly and prone to error

and even though they do not offer explicit explainability, this aspect can be explored

using saliency maps for example [Zhang et al., 2020d]. In our study, we have ex-

plored both segmentation and segmentation-free approaches with state-of-the-art

CNN architectures and backbones. By setting the same experimental conditions,

we have proposed a fair, quantitative comparison of these two approaches, in order

to assess if the direct estimation approach is viable for this task. Even though the

estimation error is much higher with the regression networks, the results are still

promising and in line with inter-operator variability. Trade-off between prediction

error and computation efficiency of two types of methods are existed. Therefore,

direct estimation, regression-based approaches have a high potential that should

be deepened in the future. Whereas we used general-purpose architectures for our

regression methods, it will be interesting to investigate customized architecture for

this task, and that include attention mechanisms.

In the future work, we will assess the generic regression CNNs on other med-

ical datasets to estimate multiple biomarkers. Besides, we plan to investigate

the segmentation-free approaches with other, recent CNN architectures that have

higher ability of feature representation, e.g transformer architectures, as well as

multi-task learning which combines segmentation branch and regression branch.

For the regression loss functions, in this work, we explored MAE, MSE as well as

Huber loss (with a fixed hyper parameter δ = 1), the performance of these three
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losses are various with different regression CNN models and input data. There is

no heuristic which one is better. Therefore, in the future work, we will explore the

other loss function such as Robust loss [Barron, 2019] which is a generalization loss

of different regression loss functions.
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5.1 Motivation

As we have seen in the previous chapter, medical image segmentation is often

a prerequisite step toward the computation of biomarkers. In Chapter 4, we

tackled the problem of head circumference estimation. In this chapter we fo-

cus on another problem that could benefit from direct estimation: estimating

the volume of cardiac ventricular cavities and left myocardium from MR images

[Petitjean and Dacher, 2011]. This problem is more complex since US images are

2D in the case of head circumference estimation and here MR images are 3D. Mor-

ever, in US images, the zone to be segmented, i.e. the skull, is dense and thus ap-

pears directly as a contour, whereas in the MR images, the cardiac ventricles and

myocardium are in the mediastinum, in the middle of other organs, and their re-

spective boundaries are not especially highlighted.

In this work, we investigate how a vanilla regression CNN can perform to esti-

mate automatic multi-structure cardiac volume without segmentation. The method

is performed on public “Automatic Cardiac Diagnosis Challenge” dataset (ACDC),

the predicting targets are the volume of RV, LV, and MYO, respectively.

This chapter is organized as follows: in Section 5.2 we present some background

in MR image processing for cardiac function evaluation. Section 5.3 we introduce

the dataset preprocessing and regression models. Experimental results and limi-

tations are discussed and presented in Section 5.4. And conclusions are drawn in

Section 5.5.

5.2 Background on cardiac function evaluation

The cardiovascular diseases (CVDs) are one of most common diseases in the world,

which is the leading cause of death globally, taking an estimated 17.9 million lives

each year. CVDs are a group of disorders of the heart and blood vessels and in-

clude coronary heart disease, cerebrovascular disease, rheumatic heart disease and

other conditions. More than four out of five CVD deaths are due to heart at-

tacks and strokes, and one third of these deaths occur prematurely in people un-

der 70 years of age according to the information of World Health Organization

[WHO, 2021]. Measuring the volume of cardiac sub-structures is a basic opera-

tion for assessing the cardiac function. For instance, the ejection fractions and

stroke volumes of left and right ventricular in both end diastolic and end systolic
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(a) Diagram of a human heart

RV

MYO

LV

(b) Cardiac slices

Figure 5.1 – The structures of a human cardiac. (a) Diagram of a human heart (The figure
is taken from Wikimedia Commons); (b) 3 structures (RV, MYO, LV) of cardiac in short axis
view (The figure is taken from [Ibrahim, 2011]).

phases, as well as the mass of left ventricle. These biometrics are all related to

whether a patient’s cardiac function is normal or not. In clinical routine, the con-

ventional practice is delineation of cardiac, which is semi-automatic, though, then

following step is calculating volume or area based on segmentation results. With

the boost of deep learning techniques on medical imaging, the automatic segmen-

tation of cardiac has been promoted to a new level. Common cardiac data for-

mat is magnetic resonance imaging (MRI), computed tomography (CT) and ultra-

sound images. Current main segmentation applications of cardiac are bi-ventricle

(left ventricle, LV, right ventricle, RV) and bi-atrium (left atrium, LA, right atrium,

RA), coronary artery as well as myocardium (MYO). At last, the doctors make the

diagnose based on the indices of different cardiac structures. Figure 5.1 shows

the diagram of a human heart as well as a MR image of the cardiac with 3 struc-

tures (RV, MYO, LV). Nowadays, there are plenty of researches that focus on car-

diac segmentation [Chen et al., 2020a], which involves different types of deep learn-

ing techniques, for instance, fully convolutional neural networks (CNN) with 2D

or 3D kernels [Jang et al., 2017, Isensee et al., 2017, Yang et al., 2017], generative ad-

versarial networks (GAN) [Savioli et al., 2018], and recent transformers as encoders

[Chen et al., 2021b] has further improved the segmentation accuracy, etc. How-

ever, for quantifying the segmented results, it still needs two steps (segmenta-
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tion+quantification) to obtain the volume of cardiac structures.

Based on the above literature we know that segmentation-based methods are

still more popular for the current prediction of the structural volume of the cardiac,

but later direct prediction methods have also emerged (See Chapter 2), and among

these direct prediction methods for certain biomarkers, there are gradually begin-

ning to be studies for cardiac biomarkers, but the methods for data preprocessing

and data augmentation are not very transparent, and there is a lack of interpretable

studies of the models, so we have further supplemented and improved this work.

5.3 Methodology

5.3.1 ACDC dataset and preprocessing

The ACDC dataset

The public “Automatic Cardiac Diagnosis Challenge” dataset (ACDC) dataset

[Bernard et al., 2018] is used in this study. These data are obtained on two differ-

ent MRI scanners with different magnetic strengths. Generally, the image quality

is better when the magnetic strength is higher. The dataset contains 100 magnetic

resonance images (MRI) subjects in training set, each subject has 3 manual anno-

tated labels, i.e., left ventricular (LV), myocardium (MYO), right ventricle (RV). Each

subject has end diastolic (ED) and end systolic (ES) phase. Because the machine ac-

quires consecutive frames within one heartbeat cycle. The ED stage and ES stage are

selected by an experienced specialist or physician by observing changes in the size

of the heart chambers. These subjects are divided into 4 types of disease, myocardial

infarction (MINF), dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy

(HCM), abnormal right ventricle (ARV), and patients with normal cardiac (NOR).

For the ground truth, there are masks of three cardiac structures annotated by ex-

perts, and the volumes of RV, MYO and LV. The volume of the cardiac is calculated

according to the following formula. In Formula 5.1, N is the number of slice in each

subject, S_RV is the summary of pixels (area) belong to RV class in one slice (same

as S_MYO, S_LV ), px_x (mm) is pixel size of x dimension, px_y (mm) is pixel size of

y dimenstion, space_z (mm) is the slice thickness. The principle of this formula is

to superimpose the area of each slice, so that the cumulative calculated area is the

volume of the different structures of the cardiac. For uniformity of units (millime-

ters and milliliters), the result of the calculation is divided by 1000 to turn it into a
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volume in milliliters.

Volume =



RV =
N∑
i

S_RV∗px_x∗px_y∗ space_z/1000

MYO =
N∑
i

S_MYO∗px_x∗px_y∗ space_z/1000

LV =
N∑
i

S_LV∗px_x∗px_y∗ space_z/1000

(5.1)

Data cleaning

Data cleaning is to remove some data that are outliers from the main part, which is

necessary before performing certain methods on specific dataset. Otherwise, it will

affect the experimental results and accuracy. In ACDC dataset, in order to make sure

the ground truth volumes of each subject offered by the authors of ACDC dataset are

correct, we check the consistence of given volumes and volumes computed through

Formula 5.1. We found that there are 6 patients out of 100 pairs subjects (including

ED and ES) whose volumes of cardiac are seriously deviated from the computed

volumes. And the difference are up to hundred level which can not be ignored. See

Table 5.1. The left subjects in given volumes are consistent with computed volumes

(because their differences are less than 1). Thus, we will remove these 6 patients in

the experiments.

Table 5.1 – Abnormal samples in ACDC dataset, S is the total pixel numbers of all sllices,
V_c is volume from calculation (see Formula 5.1), V_gt is volume from given data, Diff is the
difference between V_g and V_c.

Patient spacing(x,y,z) shape(z,y,x) S(pixel) V_c(ml) V_gt(ml) Diff(ml)

P019 (1.445,1.445,10) (11, 256, 216) 32269 673.78 868.59 194.81
P078 (1.367,1.367,10) (8, 256, 216) 25813 482.36 630.20 147.84
P079 (1.367,1.367,10) (9, 256, 216) 18667 348.83 455.74 106.91
P080 (1.758,1.758,10) (6, 256, 216) 9173 283.50 223.95 59.55
P093 (1.563,1.563,7) (10, 224, 180) 23491 401.71 57.35 344.35
P099 (1.786,1.786,5) (16, 224, 154) 27180 433.49 866.71 433.21

Data preprocessing

Image cropping and ROI detection From Table 5.1 we can also see that each origi-

nal data has different sizes in 3 dimensions. Moreover, the cardiac takes small pro-
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portion in each slice (See Figure 5.2). And this is not conducive to the training of

convolutional neural networks. Because the model requires the fixed shape of input

data and the target/feature should be as clear as possible.

Therefore, we perform data cropping to uniform the shape of 3D MR images and

find the region of interest (ROI) of cardiac. We first find the maximum bounding

box of the cardiac from ground truth images1. Then we crop the MR images based

on the maximum bounding box (See Algorithm 5.1).

Algorithm 5.1 Cardiac MRI cropping algorithm
Input: Original Cardiac MRI and ground truth (GT).
Output: Cropped Cardiac MRI.

1: for subject_i in GT_Dataset do . Finding max Bounding box in ground truth
dataset.

2: Max_BoundingBox = (x0, y0,∆x,∆y)
3: for slice_k in subject_i do
4: if BoundingBox_k > Max_BoundingBox then
5: Max_BoundingBox = BoundingBox_k
6: end if
7: end for
8: end for
9: for subject_i in MRI_Dataset do . Cropping in MRI dataset

10: for slice_k in subject_i do
11: slice_k = Crop(d Max_BoundingBox e)
12: end for
13: end for

From Figure 5.2, we can see that the cropped MI image maximizes the reten-

tion of the cardiac target and removes other organs or noise from the image, which

facilitates the learning of features in the image by the deep model.

Uniforming number of slices After completing the fixation of the cardiac target in

the two-dimensional direction, the number of slices should also be consistent for

each MRI data, i.e., we added or removed cardiac slices at minimal cost in order to

satisfy the principle of constant input data size. Specifically, we select the median

of all data depths in the ACDC dataset as the uniform number of slices, and for data

above that number, we remove them from the bottom of the cardiac (because the

area of the slices at the bottom of the cardiac is the smallest), and for data below that

number, we duplicate the slices at the bottom of the cardiac and accumulate them

1In this step, we remove 3 extreme examples because the size of bounding box are even larger than
the size of images of others.
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P001_fm01 SA_reg_efn for
one slice

SA_reg_VGG
for one slice

SA_reg_efn for
nine slices

SA_reg_vgg for
nine slices

SA_reg_vgg_frozen
for nine slices

crpped_P001_fm01P001_fm01 P001_fm01_gt

Figure 5.2 – One slice of original ACDC data and ground truth (gt), the size is 182*216, the
right column is the cropped MRI cardiac subject and its ground truth, the size is 100*100.

until we reach that number. At last, the shape of a 3D MR image is (100×100×9).

Data augmentation based on grid search

After the above data preprocessing steps, there are 182 valid images whose shapes

are (100× 100× 9). However, this number of data sets is far from sufficient for a

deep neural network model with a large number of learnable parameters and can

easily lead to overfitting. Usually, data augmentation is the common way to increase

the number of images, specifically through image processing techniques (rotation,

translation, etc.) to increase the diversity of images.

In this study, given the small amount of raw data, we develop an efficient au-

tomatic data augmentation algorithm. The algorithm is based on a backtracking

method to find a subset without duplicates, i.e., this is a grid search to enumerate

different combinations of image processing algorithms to add a custom number of

images.

First of all, we list 10 different basic image processing algorithms. Then, the

index of these functions are sent into the Algorithm 5.3 2.

¬.’aug_rotate’; ­.’aug_rotate_r’; ®. ’aug_flip_h’;

¯. ’aug_flip_v’; °.’aug_trans_x’; ±. ’aug_trans_y’; ². ’aug_shear_x’;

³. ’aug_shear_y’; ´. ’aug_gauss’; µ. ’aug_gamma_correct’.

Having the above 10 single data augmentation methods, we use backtracking

2The source code is at
https://gist.github.com/jizhang02/4f4a08aa54fe39e4a0ac9b272562bde4
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Algorithm 5.2 Cardiac MRI slice uniforming algorithm
Input: Original Cardiac MRI.
Output: Cardiac MRI with same number of slices.

1: Gold_Slice = 9
2: for subject_i in MRI_Dataset do
3: Initialize Novoid_subject
4: Initialize Minarea
5: Initialize Mindex . The index of Minarea
6: for slice_k in subject_i do
7: if slice_k != NULL then
8: Novoid_subject_i = append(slice_k) . Remove void slice
9: if Area(slice_k)<Minarea then

10: Minarea = Area(slice_k)
11: Mindex = k
12: end if
13: end if
14: end for
15: while Number_Slice_Novoid_subject_i < Gold_Slice do
16: Novoid_subject_i.append(slice_Mindex) . Append the Minarea slice
17: end while
18: while Number_Slice_Novoid_subject_i > Gold_Slice do
19: delete Novoid_subject_i[-1] . Delete from the last slice
20: end while
21: end for

method to find all the subsets of these 10 methods, then 210 = 1024 different combi-

nations (subsets) will be generated. For example, the original dataset has 182 sub-

jects, if the user wants to generate 5000 subjects, then we take 5000/182 = 28 com-

binations from 1024. This ensures each subject is different from the others. In this

work, we generate 28*182 = 5096 synthetic images.

5.3.2 Regression CNN

2D convolution for 3D data

Given that MRI or CT images are in a 3-dimensional format, the third (z direction)

dimension is the depth of the organ scan or the number of slices. From the point of

view of the image, it can also be considered to be composed of multiple channels,

see Figure 5.3.

When dealing these 3D cardiac data with deep convolutional neural networks, it
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Algorithm 5.3 Data augmentation based on grid search
Input: Index of function list. . Functions of data augmentation
Output: Subsets without duplicate.

1: Initialize result . Store all the subsets
2: Initialize temp_set . Temporal set
3: procedure BACKTRACKING(nums, startIndex)
4: if startIndex >= nums.size then
5: return
6: end if
7: for startIndex in nums.size do . Horizontal traversal
8: temp_set.append(nums[startIndex])
9: result.append(temp_set)

10: BACKTRACKING(nums, startIndex+1) . Vertical traversal
11: temp_set = temp_set[-1]
12: end for
13: end procedure
14: procedure SUBSETS(Index of function list)
15: BACKTRACKING(Index of function list,0)
16: return result
17: end procedure

would be natural to think of using a 3-dimensional convolution kernel to learn the

neighborhood features and spatial information of that data, for example, the seg-

mentation models 3D U-Net [Çiçek et al., 2016], V-Net [Milletari et al., 2016], etc. In

addition to 3D convolution, it is possible to utilize 2D convolutional neural net-

works on 3D images, in which each slice is regarded as one input channel. The

literature [Yang et al., 2021], [Hassanzadeh et al., 2020], [Vu et al., 2020] has proved

the feasibility of 2D CNN on multiple image slices.

For 2D convolution, the input layer and the filter have the same depth, in other

words, the number of image channels is the same with the number of convolutional

kernels/filters. The filter slides in 2D direction. Then the input and the filter are

summed together into one feature map, each element is a pixel. Iteratively, the fea-

ture map goes deeper with more filters, which depends on the architecture of CNN

model.

For 3D convolution, the filter is a 3D kernel, which is generally (3× 3× 3), the

filter moves on 2D channel first, then moves in z direction. The output is a 3D ma-

trix. That is to say, each element is a voxel. Afterwards, the 3D feature map goes into

next layers with more 3D filters. Because 3D convolutions can describe the spa-
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Figure 5.3 – One of preprocessed 3D cardiac data from ACDC dataset. The cardiac slices can
be regarded as image channels.

tial relationships of objects in the 3D space. It is beneficial for some applications,

such as 3D segmentation/reconstruction of biomedical imagining, which is related

to voxel-wise classification. Figure 5.4 shows the 2D and 3D convolution process on

3D data.

In our study, our task is image-wise regression. That is, the prediction results of

the model are determined based on the most important feature of the whole image.

Thus, this feature can be learned either by 2D or 3D convolutional kernels. However,

2D convolution and 3D convolution models are much different in terms of time and

space complexity, and when combined with the above figure (Figure 5.4), 3D con-

volution models require a large number of training parameters, and this huge num-

ber of parameters requires large memory space and computational power. Table

5.2 compares 2D regression CNN with 3D regression CNN in the aspects of number

of parameters, model memory and training time, etc. The backbone is based on

VGG16 [Simonyan and Zisserman, 2015]. The convolution kernel of 2D regression
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(a) 2D convolution (b) 3D convolution

Figure 5.4 – 2D (a) and 3D (b) convolution on 3D image. For 2D convolution, the input layer
and the filter have the same depth (channel number = kernel/filter number), the output is
a one-layer matrix. For 3D convolution, the filter moves on 2D channel then moves in z
direction, the output is a 3D matrix. The figure is taken from Towardsdatascience.

VGG is (3×3), (3×3×3) in 3D regression VGG. One can find that the 2D regression

VGG takes less time and memory than that with 3D regression VGG. Therefore, con-

sidering the above analysis, we will choose 2D regression CNN to predict the volume

of different structures of 3D cardiac data.

Table 5.2 – Comparison of 2D regression VGG and 3D regression VGG. The training time is
on the GPU server; the model memory is theoretical requirement; the inferencing memory
is actual memory cost during the prediction stage of a model; M=Million; GB=Gigabytes;
N/A=Not applicable.

Model type
# of

param (M)
Training time

s/epoch
Model

memory (GB)
Inferencing

memory (GB)
RegVGG_2D 14.72 21 0.518 0.83
RegVGG_3D 44.93 719 3.724 N/A*

* The 5-fold training time of regression VGG 3D (around 100 hours) exceeds the maximum GPU
time (48 hours).

The architecture of regression CNN

Regression CNNs We design a deep regression CNN architecture shown in

Figure 5.5. Any CNN model can be a backbone to learn the feature from

training dataset, for instance, VGG16 [Simonyan and Zisserman, 2015], ResNetV2

[He et al., 2016b] or EfficientNet [Tan and Le, 2019]. For the regression part, after the

feature maps were flatten into fully connected layer, we simply use linear regression
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on it to predict the volume of 3 structures of cardiac. This model is similar to our

previous work on fetus head circumference prediction. The difference lies in the

initial input layer and the final output layer. Our work is a multi-structured volume

prediction of 3D cardiac data.
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Figure 5.5 – The architecture of regression CNN for predicting the volume of RV, MYO, LV
directly. The input training data are preprocessed MRI images (224,224,9), the ground truth
are the volume of 3 structures of cardiac. FC is fully connected layer after feature represen-
tation, the FC layer goes through linear regression layer, the output is the predicted volumes
(vol_RV, vol_MYO, vol_LV).

Loss functions Same as previous work, the regression CNN model is optimized by

regression loss function such as mean absolute error (MAE) loss or mean square

error (MSE) loss or Huber loss (HL) [Esmaeili and Marvasti, 2019].

Explainability of regression CNNs Because we can see the segmented results di-

rectly from segmentation models, and the cardiac volume is calculated according

to the segmented areas, thus the results are trustable. However, the regression CNN

models come at the cost of a low interpretability, i.e. the model is seen as a black box,

which does not provide explanations along with the cardiac volume prediction. To

this end, we use a post-hoc explanation method to analyse the regression model,

in our previous work [Zhang et al., 2020d], we validated that the method Layer-wise

Relevance Propagation (LRP) [Bach et al., 2015] can well explain the regression CNN

models in the form of saliency maps [Morch et al., 1995].
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Transfer Learning from RGB to multi-channel cardiac MRI data

In order to further improve the model’s performance, we use transfer learning strat-

egy to load CNN backbones that are pretrained on ImageNet [Deng et al., 2009]. Al-

though ImageNet images and MR images have obvious dissimilarities, some generic

representations can be learnt from a large-scale dataset, that might be beneficial to

other types of images, and they have proven so in the context of brain MR images

[Wacker et al., 2020]. Since these pre-trained models are trained on natural RGB im-

ages, the input depth of the models is 3 channels, which will not work in multi-

slice data. To solve this problem, we loop through the layers of the pre-trained CNN

model and replicate the average of the existed weights to new channels in each layer

so that it can ensure the input layer matches the subsequent layers.

5.4 Experiments and results

5.4.1 Experiment protocol

The ACDC [Bernard et al., 2018] dataset in this study has 182 subjects after data

preprocessing. We split it into the training set (100), the validation set (32), the

test set (50). The total training set has 2900 3D MR images including data aug-

mentation. The optimizer is Adam. The learning rate is 1e−4, the batch size

is 16. The algorithm is completed using Python and Keras library with GPU

p1003. The training epoch is 100. 5-fold cross validation is performed. The

structure of regression CNN is: 2D convolutional kernel with multi-class vol-

ume prediction. For example, the input shape is (N,224,224,9), N is the num-

ber of input images, the image is resized to 224*224, one image has 9 slices.

In the experiments, we train three different regression CNN backbones, which

are VGG16 [Simonyan and Zisserman, 2015], ResNet50V2 [He et al., 2016b] and Ef-

ficientNet [Tan and Le, 2019] respectively. These pretrained models originally only

had three channels, in this work, we expand these three channels into 9 channels

in order to match the data shape. We perform data normalization both in MRI im-

ages ((img−µ)/σ) and ground truth volumes (gt/max(gt)). The evaluation metrics

are mean absolute error (MAE) and percentage MAE (PMAE). We also conducted

plenty of additional experiments including cardiac data scale, cardiac slice selec-

3The server is supplied by Centre Régional Informatique et d’Applications Numériques de Nor-
mandie (https://www.criann.fr)
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tion, the influence of data augmentation, the hyper parameters selection etc., for

more details please refer to Appendix B.

5.4.2 Results

Prediction error on 2D regression VGG16 vs. 3D regression VGG16

In the previous section (Section 5.3.2), we theoretically compare the difference of 2D

convolution and 3D convolution. In this experiment, we train the 3D cardiac MRI

data using 2D regression VGG and 3D regression VGG, respectively. For the sake of

fairness, both these two models are trained from scratch. In Table 5.3, we compares

the prediction error on test set between the 2D and 3D regression VGG16. One can

find that the 2D regression VGG has smaller prediction error than the 3D ones. Thus,

through this results combined with the theoretical analysis based on the previous

2D regression VGG, including training parameters, memory, and training time, we

conclude that the 2D regression VGG on multi-slice data offers the best compro-

mise. Therefore, in the following experiments, we use all 2D regression CNNs to

train and predict the data in order to save time and memory.

Table 5.3 – The prediction error of cardiac structures volume: RV, MYO, LV on 2D regression
VGG16 vs. 3D regression VGG16. ± is stand deviation.

Structure RV MYO LV

Model MAE(ml) ↓ PMAE(%) ↓ MAE(ml) PMAE(%) MAE(ml) PMAE(%)
RegVGG_2D 46.32±42.79 54.49±77.70 36.82±38.82 29.90±29.76 30.02±33.56 33.80±47.66
RegVGG_3D 56.01±40.56 62.95±74.23 40.29±37.45 34.38±34.93 65.15±42.34 86.24±109.43

* The results of regression 2D VGG and 3D VGG are from one fold.
Because of GPU time limit (48 hours).

Prediction results of cardiac structure volumes

The following experiments are based on the results of 2D regression CNNs. We use

regression VGG16, regression ResNetV2 and regression EfficientNet to separately

train the multi-slice data to predict the volumes of three structures of the cardiac

simultaneously. In the supervised learning mode, the input ground truth is the vol-

umes of each cardiac structure. We trained the cardiac data of end diastolic (ED)

and end systolic (ES) phase together, in other word, the ED and ES of the one pa-

tient are in the same fold (training, validation and test). In Table 5.4, what they have

in common is that these CNN backbones are pre-trained on the ImageNet public
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dataset [Deng et al., 2009]. From this table one can find that the prediction errors

(MAE) are large, and the RV structure is the most difficult to predict. The regression

ResNet with MAE loss has lower prediction error than the other models. So we take

this model as a analysis example in the following sections.

Table 5.4 – Prediction error on volume of 3 cardiac structures using regression CNN models
with 3 different loss functions, MAE loss, MSE loss and Huber loss (HL). The 3 CNN back-
bones are VGG16, ResNetV2, EfficientNetb2 (efn). The models are trained on 2900 training
images. The results are average results of 5-fold cross validation.

Model MAE_RV(ml) PMAE(%) MAE_MYO(ml) PMAE(%) MAE_LV(ml) PMAE(%)
MAE loss
Reg_VGG 50.51±39.81 65.64±92.96 41.58±34.38 36.43±37.59 35.29±29.49 40.20±52.63
Reg_ResNet 43.11±36.57 51.63±69.46 36.98±29.25 31.96±29.44 33.19±26.48 39.09±47.45
Reg_efn 49.55±40.88 60.76±83.83 36.70±32.26 33.50±36.88 33.51±26.93 39.78±52.15
MSE loss
Reg_VGG 50.65±40.57 67.29±94.96 42.40±36.86 38.05±41.40 36.02±28.39 42.90±57.95
Reg_ResNet 43.82±34.47 56.33±79.52 38.11±29.74 34.63±33.99 33.28±26.27 42.01±53.51
Reg_efn 49.24±40.20 64.68±103.61 36.10±31.35 31.88±34.57 33.03±27.80 38.31±49.99
HL loss
Reg_VGG 49.02±38.38 62.88±86.09 40.14±35.26 35.07±37.47 33.11±27.63 37.30±52.79
Reg_ResNet 49.29±38.12 66.20±93.30 35.13±31.27 30.99±32.11 32.75±28.30 41.57±56.69
Reg_efn 49.11±39.99 65.08±103.74 36.79±31.14 32.62±34.80 33.28±28.10 37.29±46.31

Comparison with state-of-the-art

We compared our method with the state-of-the-art (SotA) on the same ACDC

dataset. In the Table 5.5, many of their results have separate EDV (left) and ESV

(right). The SotA is based on direct prediction (segmentation-free) methods and

segmentation methods. One can find that out method has a large gap with the al-

ready existing methods, especially segmentation ones, which is a little bit disap-

pointing and shows that at this point, direct estimation of cardiac structures volum

with vanilla CNN is a bit early. However, the comparison should be handled with

care. In this table, the segmentation-based or segmentation-free methods predict

the area of the cardiac structures slice by slice and then accumulate them to obtain

the volume of the cardiac structures. Another point is that the experimental proto-

col and the test set are not the same. Therefore, there may be some bias to compare

those results with the our method.
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Table 5.5 – Comparison with state-of-the-art methods on ACDC dataset. The SotA methods
have the separate ED (left) and ES (right) results on cardiac structures: RV, MYO, LV.

Structure RV MYO LV

Methods MAE(ml) PMAE(%) MAE(ml) PMAE(%) MAE(ml) PMAE(%)

Segmentation-free methods

[Luo et al., 2020a] N/A N/A N/A N/A N/A 5.1±3.2 N/A

[Luo et al., 2020b] 8.1±3.5 4.9±3.1 N/A N/A N/A 9.2±4.5 5.9±4.5 N/A

[Zhen et al., 2016a] 12.4±5.2 10.9±9.7 N/A N/A N/A 14.8±8.9 10.2±7.9 N/A

Our method 43.11±36.57 51.63±69.46 36.98±29.25 31.96±293.44 33.19±26.48 39.09±47.45

Segmentation-based methods

[Zheng et al., 2018] N/A N/A N/A N/A N/A 12±9.1 N/A

[Vigneault et al., 2018] N/A N/A N/A N/A N/A 11.1±5.3 N/A

[Liao et al., 2017] N/A N/A N/A N/A N/A 15.8±9.6 9.9±9.5 N/A

[Ngo et al., 2017] N/A N/A N/A N/A N/A 17.1±11.5 16.8±12.5 N/A

[Avendi et al., 2017] 16.1±13.1 14.1±16.6 N/A N/A N/A 17.5±16.9 19.2±20.3 N/A

[Bernard et al., 2018] * 10.6 N/A N/A 7.1 N/A 10.4 N/A N/A

[Isensee et al., 2017] 7.9 N/A N/A 7.3 N/A 5.1 N/A N/A

* This is the average segmentation-based results of all deep learning methods in ACDC challenge.

5.4.3 Discussions

The aim of our work is to directly predict the volume of cardiac structures without

intermediate segmentation steps. Based on our previous experience for predicting

the fetus head circumference from 2D ultrasound images, we use the same model

framework, that is regression CNNs, to implement our idea. However, in this study,

we met several problems during the experiments, which we discuss below.

2D vs. 3D regression CNN model

On a theoretical level, both 2D and 3D regression CNN model can train and infer-

ence from multi-slice MRI cardiac data. The difference is that the convolution is

done in a different way at the cost of a different order of magnitude of the number

of parameters. On a experimental level, the 3D regression CNN model takes much

more computation memory and training time than 2D regression CNN model dur-

ing training on GPU server, while the model does not predict well, which indicates

that the 2D regression CNN model is more practical.

Loss functions

The prediction error of regression CNN model with three regression loss functions

respectively doesn’t have significant difference or pattern (See Table 5.4). But during
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(c) Huber Loss

Figure 5.6 – Learning curves of regression ResNet model with different loss functions. Blue
curve is training loss, red curve is valid loss.

training process, the loss evolution (See Figure 5.6) witnessed that the Huber Loss

converge consistently between training and validation stage. Another problem that

one can observe that the model is over fitting, because the training loss is decreasing

while the valid loss almost doesn’t change.

Prediction results analysis

The quality of the data is uneven, which may hinder the prediction of the model.

Figure 5.7 shows cardiac images of two patients. One can find that signal and noise

are co-existed in each slice. The feature of three cardiac structures are not obvious

and the marginal areas of the cardiac are either highlight white interference caused

by the device acquiring the image, or fluid produced by the cardiac itself. From

cardiac images, one can also find out that the right ventricle has irregular shape

that may result in biased prediction results (Figure 5.7). The positions of the cardiac

structures are also moving and thus inconsistent in these two patients.

ground truth:      RV: 125.07 ml  MYO: 133.87 ml  LV: 204.66 ml

predicted value: RV: 113.09 ml  MYO: 154.65 ml  LV: 170.77 ml


ground truth:      RV: 63.02 ml   MYO: 122.37 ml   LV: 115.92 ml

predicted value: RV: 79.85 ml   MYO: 125.40 ml   LV: 119.93 ml


Figure 5.7 – Two cardiac data outliers predicted by regression ResNet, especially the RV
structure has large bias compared to ground truth. The data are P047fm01, P053fm12 re-
spectively.
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We performed a statistical analysis of the prediction results for a test set with

50 cardiac data. Among three cardiac structures (RV, MYO, LV), RV has the high-

est mean absolute error predicted by regression CNN model (Figure 5.8). This is

expected as it is known in the clinic to be the most difficult to estimate. The Bland-

Altman plot (Figure 5.10) of predicted cardiac structure volumes also demonstrates

that the large bias of three cardiac structures compared to ground truth values, es-

pecially in RV.

From a pathological point of view, in order to ensure the generalization of the

model, the model is trained with the data evenly distributed according to the pathol-

ogy. Based on this fact, the prediction of RV volume is also difficult in data with

abnormal RV cardiac disease (Figure 5.8). Besides RV disease, the prediction bias

is also large to the patients with dilated cardiomyopathy (DCM) and hypertrophic

cardiomyopathy (HCM) (Figure 5.9).
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Figure 5.8 – The mean absolute error of three cardiac structures (RV, MYO, LV) according to
different pathologies. The prediction results are from Regression ResNet.
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Figure 5.9 – Box plot of predicted cardiac volumes of three cardiac structures (RV, MYO, LV)
according to different pathologies. The prediction results are from Regression ResNet.
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Figure 5.10 – Bland-Altman plot of cardiac structure volume predicted by proposed regres-
sion ResNet model. The x-axis represents the average value of ground truth and predicted
volume; the y-axis, the difference between ground truth and predicted volume (in ml). The
horizontal black dotted lines represent the upper and lower limits of 95% consistency. The
middle solid red line represents the mean of the difference.

Saliency maps of Regression CNN

We generated and analyzed saliency maps of the regression CNN model for cardiac

structure volume prediction using the LRP algorithm based on iNNvestigate library

[Alber et al., 2019], see Figure 5.11. From the saliency maps on one slice, we can see

that the model focuses on the RV and LV, while the MYO has a lesser influence in

this image. Besides, the two CNN backbones EfficientNetb2 and VGG16 have differ-

ent feature distributions, which reflects their ability of feature extraction. Another
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groups of saliency maps are the model whose input is 9-slice data, which means

the model has 9 channels at the first input layer. Therefore the subsequent convo-

lution layers are also increased in multiples of 9. For instance, zooming in on the

slice of the seventh, the white noise at the edges in cardiac image induces feature

extraction from the model, and the LV structure can still be faintly seen (red area in

the center), which leads to a large bias in the prediction results of the model. This

demonstrates the need for noise reduction in image data, if accurate predictions are

to be obtained.

P001_fm01 SA_reg_efn for
one slice

SA_reg_vgg
for one slice

SA_reg_efn for
nine slices

SA_reg_vgg for
nine slices

SA_reg_vgg_frozen
for nine slices

(a) Single slice (P001fm01), SA_reg_efn (left), SA_reg_VGG (right)

(b) 9-slice (P047fm01), SA_reg_ResNet

Figure 5.11 – Saliency maps of regression CNN models on cardiac images. The first image
is one single input cardiac slice and its saliency map (SA) of regression EfficientNet (reg_-
efn) and regression VGG (reg_VGG). The second image is the 9-slice input cardiac and their
saliency maps of the regression ResNet model. Red color means positive contributions, blue
color means negative contributions.
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5.5 Conclusion

In the general practice, the ventricle cavities and the myocardium are first seg-

mented, and then the areas and volumes are calculated based on the result of the

segmentation. In this study, we investigated how regression-based CNN models can

directly predict the volume of cardiac structures (RV, MYO, LV) without segmenta-

tion intermediate steps. Our method was validated on the ACDC dataset. We first

preprocessed the ACDC data set by cropping and unifying the slice number to 9.

Data augmentation is used, based on grid search method, to increase the amount of

data. Transfer learning is applied in this study: the CNN backbones are pretrained

on ImageNet. The predicted results of cardiac structures were analyzed and dis-

cussed that large bias exists, especially in RV structure. We also analysed the model’s

interpretability through a post-hoc explaining method. The saliency maps tells that

this regression-based methods are reliable to some extent. Although the idea of di-

rect estimation has big potential in a clinical setting, results are not fully convincing

yet and the prediction error need to be further reduced. We could first explore the

estimation of the area from single slice, then computing the volume. We also believe

that with more adhoc or specific architectures, that would be better adapted to the

data (3D, noise), could allow to enhance the results.
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6.1 Conclusions

In this thesis, we have proposed some contributions in medical image segmenta-

tion, biomarker estimation through regression CNN and explainability in regress-

sion CNN, that we summarize below and give our perspectives.

6.1.1 A loss function based on the Kappa index

Summary

The class imbalance problem cannot be ignored in image segmentation when using

supervised deep learning techniques. One loss function that is already well known

for solving the class imbalance is Dice loss [Milletari et al., 2016], which is based on

Dice index. The Dice loss calculates the overlap area between predicted positive

area and ground truth positive area. That is to say, the Dice loss does not take the

background pixels into account.

We proposed a loss function which is based on Kappa index, called Kappa loss.

Different from Dice loss, we consider all the pixels including the background infor-

mation (negative area in prediction and ground truth). The skin lesion segmenta-

tion experiments results showed that our proposed Kappa loss can not only surpass

the Dice loss by a small margin but also the model has better convergence than the

U-Net with Dice loss. At this point, we have added a new member to the family of

loss functions, namely the Kappa loss function.

Perspective

In this part of work, we have proposed Kappa loss and proved the generalization

of it compared to Dice loss. However, more experiments can be performed in the

coming days. Firstly, we can valid more medical image dataset besides the skin le-

sion images using Kappa loss in segmentation. Secondly, since our proposed Kappa

loss can deal with both class imbalance and class balanced problems, therefore, we

can divide the dataset into different sub-datasets according to the size of the image

targets to verify this loss function. Thirdly, we will compare the other loss functions

with proposed Kappa loss on more different imaging datasets.
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6.1.2 Biomarker prediction

Fetus head circumference prediction

The fetus head circumference (HC) is one of key biomarkers for monitoring a fetus

growing stage. Conventional fetus head circumference prediction is performed by

segmentation methods. However, the segmentation-based methods require more

than one step: contour segmentation and ellipse fitting, then the head circumfer-

ence calculation.

In this work, a direct HC prediction approach was proposed. We utilize regres-

sion CNN model to directly predict fetus HC from ultrasound images without inter-

mediate segmentation steps. The regression CNN is composed of a CNN backbone

and a regression layer. Transfer learning strategy is used in order to improve the pre-

diction accuracy. The loss function is regression loss (MAE loss, MSE loss or Huber

loss).

Another contribution of this work is that we compared the proposed

segmentation-free (regression CNNs) with segmentation-based methods in a fair

experimental environment from several aspects. We used the same dataset (HC18

[van den Heuvel et al., 2018b]) including data preprocessing and dataset split and

GPU server to train and estimate the HC value. We evaluated the explainability

of regression CNNs, the prediction error of two approaches, the theoretical mem-

ory as well as practical computation efficiency of two models, the learning curves

of two models during training, and agreement analysis of two prediction results.

The experiments results of segmentation-free methods are comparable to that of

segmentation–based methods although improvement room is left. Nevertheless,

the HC prediction error of both segmentation-based and segmentation-free meth-

ods are smaller than the manual variability. Moreover, trade-off is existed be-

tween prediction error and computation efficiency of segmentation-based and our

segmentation-free models.

Cardiac structure volume prediction

There is a more complicated case about direct biomarker prediction is cardiac

multi-structure volume prediction from 3D MR imaging. With many lives lost each

year due to cardiovascular disease, a quick and effective examination of the patient’s

heart is critical, but the patient to doctor ratio varies from region to region and hos-

pital to hospital. Therefore, designing automated and effective diagnostic methods
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to assist physicians can greatly reduce the amount of effort physicians spend on an

individual patient, allowing for early prevention or treatment of the patient.

In this study, we utilized regression CNNs to directly predict the cardiac struc-

ture (RV, MYO, LV) volumes. Before training the the models on ACDC dataset

[Bernard et al., 2018], we performed preprocessing the data in the aspects of car-

diac area cropping, slice number uniforming as well as data augmentation given

that each subject has different shape in the original dataset and the amount of the

data is small. For the regression CNN model, transfer learning is also used in our

method, for which the CNN backbones are pretrained on the natural images dataset

(ImageNet [Deng et al., 2009]). But in this study, we adapted the proposed regres-

sion CNN models from RGB channel to multi-channel to fit in the training data in

order to copy the weights from pretrained CNN backbones. Several experiments

have been conducted and analyzed. The experiments have promising results ex-

cept for the volume of RV structure which is difficult to estimate. So far, we have

extended the modality of medical images from 2D ultrasound images to 3D MRI

images using our regression CNNs. And the prediction targets/biomarkers are also

proceeded from single head circumference to multi-structure cardiac volume.

Perspectives

In this part of work, our proposed regression CNN models can predict the fetus head

or cardiac structure volumes directly from medical images. The other measurable

biomarkers can also be estimated via this method without segmentation. Besides,

since our proposed model are simple which consists of only CNN backbones and

a regression layer in the last layer, thus more advanced architecture can be used

on this method. As for regression loss functions, other loss functions can also be

explored besides MAE, MSE and Huber loss. For the cardiac structure volume pre-

diction, room for improvement is left, one possible reason is the low quality of the

cardiac images. The other MRI cardiac datasets will be validated by our models with

high ability of feature extraction.

6.1.3 Explainable AI in medical imaging

Saliency maps of regression CNN models in medical images

In this thesis, we made a survey about explainable AI (XAI). In the specific applica-

tion of XAI, we generated saliency maps from several post-hoc explaining methods
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on the regression CNNs. In the HC prediction problem, we utilized explaining meth-

ods to valid the interpretability of regression CNN models in the form of saliency

maps. The experiment results indicated that the highlighted areas of saliency maps

match the contours of the fetus head as observed by the human eye, and these

highlighted areas are the main contribution to the predictions made by the model.

Therefore, we can know that the regression CNN has the ability to learn features and

to make predictions based on that feature. We also validated the explainability of re-

gression CNNs on 3D cardiac imaging using one explaining method. We can know

the flaws and bias of input images from saliency maps.

Evaluation metrics of explaining methods in regression CNNs

Besides the saliency maps that can visually show the highlighted features learned

by deep learning models generated by certain explaining method. There is another

method that can quantitatively evaluate each explaining method based on the per-

turbation method. In our study, we adapted the criteria (AOPC score) from classifi-

cation CNN to regression CNN. On the one hand, we used this criteria to evaluate if

an explaining method is effective. On the other hand, it can be used to evaluate of

one regression CNN model is better than others.

Perspectives

In this part of work, we valid the explainability of regression CNN models using

post-hoc propagation-based methods via saliency maps. On the other hand, the

perturbation-based methods can also be used to valid the feature learning ability of

deep learning models.

6.2 Future work

In the future work, we will continue to do further exploration and optimization

along the existing research. we will explore more possibilities in two levels, which

are technical level and medical imaging level respectively.
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6.2.1 Technology innovation

Geometric deep learning

Most of current deep learning models are based on data-driven, in other words,

the model’s performance is excellent as long as the data has huge amount and

good quality so that the model can learn various features/information from

them. Geometric deep learning is intended to avoid The Curse of Dimensionality

[Indyk and Motwani, 1998] by the idea of symmetry prior to keep the data invari-

ance in the forms of graphs or grids or other mathematical representations. Thus,

this technology will be a study topic in the future.

Attention mechanisms in computer vision

Attention mechanisms are originated in the field of natural language processing.

It was later applied to the field of computer vision and achieved remarkable re-

sults. In particular, the Transformer model [Vaswani et al., 2017] and Vision Trans-

former [Dosovitskiy et al., 2020] of recent years, which has only attention structures,

completely replaces the convolutional neural layer. Their performances surpass the

CNN based deep learning models. In addition, to some extent, the attention mech-

anism model also carries a self-explanatory property, which can improve the cred-

ibility of the model. Therefore, its application to medical image analysis is of great

interest.

Making the deep learning models explainable

In deep learning-based medical image analysis, the prediction results made by the

model are required to be as accurate and trustworthy as possible, otherwise seri-

ous medical incidents may occur. This requires us to interpret the model post-

hoc on the one hand, and on the other hand to make the model capable of self-

interpretation.

6.2.2 Medical imaging problems in practice

Verify the other medical datasets

In future works, we plan to verify the proposed segmentation-free (regression

based) methods on the other medical datasets. Despite the success of this method
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in fetal head circumference prediction, we hope that it can obtain similar results

to the segmentation-based method on more other organs or tissues of medical im-

ages. At that time, new problems and challenges may be encountered, such as the

pre-processing of images, or the generalization ability of the model, which we will

analyze specifically based on the specific problem.

Making the methods applicable in clinical application

Because advanced technologies are created for practical problems, we im in future

work, to investigate the needs of real medical problems, for example, from the prob-

lem of pre-processing medical images generated in the machine, to the physician’s

expectation to get specialized medical images. This will enable doctors to focus on

the patient itself and alleviate the time and effort spent on the other tasks. Another

perspective is to implement deep learning technologies into clinical medicine ap-

plications, designing simple, reliable and effective automated algorithms to assist

doctors in diagnosing or examining patients.
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APPENDIX A. THE EXPLAINABILITY OF REGRESSION CNNS

A.1 The explainability of regression models

A.1.1 The explainability of regression VGG and regression ResNet

Last section describes the performance of each explanation methods. Now, we can

utilize these explanation methods to compare different regression CNN models.

As shown in Figure 4.11, both regression VGG16 and regression ResNet50 are

successful in learning the features from ultrasound images to assess the HC. From

Table 4.7, we can gather that the regression ResNet50 has slight better performance

on the whole, since AOPC values are larger in absolute value.

A.1.2 Saliency maps for correct vs incorrect prediction
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Figure A.1 – Saliency map of Reg-VGG16 and Reg-ResNet50 with Input*Gradient explanation
method. P and T: resp. predicted and ground truth HC values (pixels).

In this experiment, we arbitrarily pick one of the best performing methods from

the previous results, and thus the use Input*Gradient explanation method to gener-

ate saliency maps from images with small prediction error (Figure A.1 (a)), and with

large prediction error (Figure A.1 (b)). We can see that the well predicted images

have obvious head contour, at least in the 2 last rows of Figure A.1 (a). The models

are able to learn the features from these images, therefore the saliency maps show
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key features. However, it is not always the case: the first row shows a small pre-

diction error, and the head contour are not specifically highlighted. For the badly

predicted images, the saliency maps highlight features that are spread and not lo-

calized into meaningful segments. The models can not learn the features from these

images. However, beyond the score, it seems to be related to the quality of the im-

ages: This probably due to irregular and blurry head features, and fan-shaped areas

existed in the images which could affect the decision of model. Therefore, perform-

ing image preprocessing before training is an effective way to improve the perfor-

mance of models.

A.1.3 Comparison of saliency maps for different loss functions

In addition to comparing the saliency maps of different regression CNN models as

well as the saliency maps on good/bad prediction results. We further compare the

performance of different regression loss functions in regression CNNs through dif-

ferent saliency maps. We use 8 different explanation methods to generate saliency

maps on regression VGG16 and regression ResNet50 tested on one same input US

fetus head image with MAE loss, MSE loss, and Huber loss, respectively. See Fig-

ure A.2 and Figure A.3.

Through those two figures, several finding can be concluded:

• The MSE loss is slightly sensitive than the MAE loss (See Figure A.2(d), Fig-

ure A.3(a),(b)). This is due to the square item in the MSE loss, which will

change obviously than MAE loss with absolute item.

• Because the Huber loss is a compound loss of MAE loss and MSE loss with a

weight value between them. It performs alike with MAE loss and MSE loss.

• As has been discussed before, the regression CNN models and explanation

methods have different performance in each saliency maps, which can help

to select the better ones. This groups of figures follow the same rule.
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Figure A.2 – Saliency maps of different explanation methods under 3 different loss functions
and regression CNN model VGG16 (V) and ResNet50 (R).

A ∩ BA B Left atrium

Left ventricle

Myocardium 

Back-
groundc a b

d

Ground truth Predicted area

CNN

Activat
ion:

Softmax 
or

Sigmoid

Output

Input data
+Ground 
truth CNN

Activat
ion:
Linear

Output

Input data
+Ground 
truth

(x,y)

b
a

θ

·

a bc

d

GT Predicted

Background

Ground
truth

Input
image

Dice
loss

Kappa
loss

T:1460.887

P:1460.927

T:1603.158

P:1602.629

T:1435.984

P:1436.291

T:1370.156

P:1370.114

T:1078.668

P:1078.071

integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient

T:611.512

P:783.749

T:825.363

P:907.824

T:1749.276

P:1682.574

T:439.102

P:641.133

T:1702.345

P:1043.316
integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient

integrated_gradients lrp.zinput_t_gradientdeep_taylordeconvnetsmoothgradgradient
T:439.102
P:640.119

T:677.418
P:914.546

T:709.437
P:1004.321

T:1451.893
P:1310.306

T:1284.397
P:1455.413

guided_backprop

integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient
T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

VGG good

vgg

VGG bad

Resnet good

Resnet bad

Resnet

T:1167.234
P:1167.479

IntegratedGradients

Deconvolution Guided Backprop

DeepTaylor LRP

Sensitivity SmoothGrad Input*Gradient

T:1435.984

P:1436.291

IntegratedGradients

Deconvolution Guided Backprop

DeepTaylor LRP

Sensitivity SmoothGrad Input*Gradient

Resnet good and bad

T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

T:439.102
P:640.119

T:677.418
P:914.546

T:709.437
P:1004.321

T:1451.893
P:1310.306

T:1284.397
P:1455.413

Ellipse fittingSegmentation result

HC

Encoder-Decoder 
model

Training data

Ground truth

HC

HC
Regression 
layer

Regression CNN

b
a
s
e
_
r
e
g
_
M
A
E
_
w
/
o
_
D
A lrp.z

guided_backpr

op deconvnet smoothgrad gradient
deep_taylor

input_t_gradie

nt

integrated_gradie

nts

b
a
s
e
_
r
e
g
_
M
A
E

s
i
m
p
l
e
_
c
n
n
_
M

A
E

r
e
s
n
e
t
5
0
_
M
S
E

v
g
g
1
6
_
M
A
E

r
e
s
n
e
t
5
0
_
M
A
E

Exception

Exception

109.195 mm 225.885mm 318.212mm

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15

Input Base_Reg_w/o_DA Base_Reg_CNN Simple_Reg_CNN VGG16_Reg_CNN ResNet50_Reg_CNN

Step 15Step 14Step 13Step 12Step 11Step 10Step 9Step 8Step 7

Step 6Step 5Step 4Step 3Step 2Step 1Step 0Saliency mapImage

T: 1590.909

P: 1554.130 DeConvNet GuidedBackprop

DeepTaylor LRP IntegratedGradients

Input*GradientSmoothGradGradient

DeConvNet GuidedBackprop

DeepTaylor LRP IntegratedGradients

Input*GradientSmoothGradGradient

T: 1590.909

P: 1619.628

Input
T:1430.134

Reg_VGG16
P:1139.599

Reg_ResNet50
P: 1431.891

Input*Gradient LRP

T:1603.158

P:1602.629

T:1435.984

P:1436.291

Gt:1430.1337424327
vgg:1139.59982

df:34.1355424327101 
res:1431.8911 

df:1.75735756729
486

lrp.z

Input* 

gradient

T:1461.556

P:983.918

T:1435.853

P:983.627

T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:939.252
P:1079.555

T:904.314
P:1043.524

T:1460.887
P:1460.92
7

T:1370.156
P:1370.114

T:1078.668
P:1078.071

T:611.512
P:783.749

T:439.101
P:641.133

T:1702.344
P:1043.316

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

T:439.101
P:640.119

T:677.418
P:914.545

T:709.436
P:1044.321

(a) Good prediction on Reg-
VGG16

(b) Bad prediction on Reg-
VGG16

(c) Good prediction on Reg-
ResNet50

(d) Bad prediction on Reg-
ResNet50

637,785,805 isbad349,094,651 isgood

T:439.101

Reg-VGG16

P:640.119 P:641.133

T:1167.234 P:1164.690 P:1167.479

Reg-ResNet50 Reg-VGG16 Reg-ResNet50Good prediction Bad prediction

T:1451.892 P:1241.393 P:1310.305

T:592.494 P:601.844 P:595.122

T:1284.396 P:1416.249 P:1455.412

T:1436.142 P:1438.405 P:1438.910

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

GradientUS image Input*Gradient LRP DeConvNet

01 2

3

4

5 6

7

8

9

10

11

12

15

1314

Medical
Image

Images

DiseasesClasses

TasksLabels

DeepTaylor

MAE MSE

VGG16

HL

ResNet50Gradient

GuidedBackprop

MAE MSE

VGG16

HL

ResNet50

Input*Gradient

MAE MSE

VGG16

HL

ResNet50

Integrated_gradi
ent

MAE MSE

VGG16

HL

ResNet50

LRP

MAE MSE

VGG16

HL

ResNet50

SmoothGrad

MAE MSE

V

HL

R

MAE MSE

VGG16

HL

ResNet50

DeConvNet

MAE MSE

VGG16

HL

ResNet50

Posterior
probability

Prior
probability

Adjustment 
factor

(a) SmoothGrad

A ∩ BA B Left atrium

Left ventricle

Myocardium 

Back-
groundc a b

d

Ground truth Predicted area

CNN

Activat
ion:

Softmax 
or

Sigmoid

Output

Input data
+Ground 
truth CNN

Activat
ion:
Linear

Output

Input data
+Ground 
truth

(x,y)

b
a

θ

·

a bc

d

GT Predicted

Background

Ground
truth

Input
image

Dice
loss

Kappa
loss

T:1460.887

P:1460.927

T:1603.158

P:1602.629

T:1435.984

P:1436.291

T:1370.156

P:1370.114

T:1078.668

P:1078.071

integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient

T:611.512

P:783.749

T:825.363

P:907.824

T:1749.276

P:1682.574

T:439.102

P:641.133

T:1702.345

P:1043.316
integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient

integrated_gradients lrp.zinput_t_gradientdeep_taylordeconvnetsmoothgradgradient
T:439.102
P:640.119

T:677.418
P:914.546

T:709.437
P:1004.321

T:1451.893
P:1310.306

T:1284.397
P:1455.413

guided_backprop

integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient
T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

VGG good

vgg

VGG bad

Resnet good

Resnet bad

Resnet

T:1167.234
P:1167.479

IntegratedGradients

Deconvolution Guided Backprop

DeepTaylor LRP

Sensitivity SmoothGrad Input*Gradient

T:1435.984

P:1436.291

IntegratedGradients

Deconvolution Guided Backprop

DeepTaylor LRP

Sensitivity SmoothGrad Input*Gradient

Resnet good and bad

T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

T:439.102
P:640.119

T:677.418
P:914.546

T:709.437
P:1004.321

T:1451.893
P:1310.306

T:1284.397
P:1455.413

Ellipse fittingSegmentation result

HC

Encoder-Decoder 
model

Training data

Ground truth

HC

HC
Regression 
layer

Regression CNN

b
a
s
e
_
r
e
g
_
M
A
E
_
w
/
o
_
D
A lrp.z

guided_backpr

op deconvnet smoothgrad gradient
deep_taylor

input_t_gradie

nt

integrated_gradie

nts

b
a
s
e
_
r
e
g
_
M
A
E

s
i
m
p
l
e
_
c
n
n
_
M

A
E

r
e
s
n
e
t
5
0
_
M
S
E

v
g
g
1
6
_
M
A
E

r
e
s
n
e
t
5
0
_
M
A
E

Exception

Exception

109.195 mm 225.885mm 318.212mm

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15

Input Base_Reg_w/o_DA Base_Reg_CNN Simple_Reg_CNN VGG16_Reg_CNN ResNet50_Reg_CNN

Step 15Step 14Step 13Step 12Step 11Step 10Step 9Step 8Step 7

Step 6Step 5Step 4Step 3Step 2Step 1Step 0Saliency mapImage

T: 1590.909

P: 1554.130 DeConvNet GuidedBackprop

DeepTaylor LRP IntegratedGradients

Input*GradientSmoothGradGradient

DeConvNet GuidedBackprop

DeepTaylor LRP IntegratedGradients

Input*GradientSmoothGradGradient

T: 1590.909

P: 1619.628

Input
T:1430.134

Reg_VGG16
P:1139.599

Reg_ResNet50
P: 1431.891

Input*Gradient LRP

T:1603.158

P:1602.629

T:1435.984

P:1436.291

Gt:1430.1337424327
vgg:1139.59982

df:34.1355424327101 
res:1431.8911 

df:1.75735756729
486

lrp.z

Input* 

gradient

T:1461.556

P:983.918

T:1435.853

P:983.627

T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:939.252
P:1079.555

T:904.314
P:1043.524

T:1460.887
P:1460.92
7

T:1370.156
P:1370.114

T:1078.668
P:1078.071

T:611.512
P:783.749

T:439.101
P:641.133

T:1702.344
P:1043.316

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

T:439.101
P:640.119

T:677.418
P:914.545

T:709.436
P:1044.321

(a) Good prediction on Reg-
VGG16

(b) Bad prediction on Reg-
VGG16

(c) Good prediction on Reg-
ResNet50

(d) Bad prediction on Reg-
ResNet50

637,785,805 isbad349,094,651 isgood

T:439.101

Reg-VGG16

P:640.119 P:641.133

T:1167.234 P:1164.690 P:1167.479

Reg-ResNet50 Reg-VGG16 Reg-ResNet50Good prediction Bad prediction

T:1451.892 P:1241.393 P:1310.305

T:592.494 P:601.844 P:595.122

T:1284.396 P:1416.249 P:1455.412

T:1436.142 P:1438.405 P:1438.910

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

GradientUS image Input*Gradient LRP DeConvNet

01 2

3

4

5 6

7

8

9

10

11

12

15

1314

Medical
Image

Images

DiseasesClasses

TasksLabels

DeepTaylor

MAE MSE

VGG16

HL

ResNet50Gradient

GuidedBackprop

MAE MSE

VGG16

HL

ResNet50

Input*Gradient

MAE MSE

VGG16

HL

ResNet50

Integrated_gradi
ent

MAE MSE

VGG16

HL

ResNet50

LRP

MAE MSE

VGG16

HL

ResNet50

SmoothGrad

MAE MSE

VGG16

HL

ResNet50

MAE MSE

V

HL

R

DeConvNet

MAE MSE

VGG16

HL

ResNet50

Posterior
probability

Prior
probability

Adjustment 
factor

(b) DeepTalyor

A ∩ BA B Left atrium

Left ventricle

Myocardium 

Back-
groundc a b

d

Ground truth Predicted area

CNN

Activat
ion:

Softmax 
or

Sigmoid

Output

Input data
+Ground 
truth CNN

Activat
ion:
Linear

Output

Input data
+Ground 
truth

(x,y)

b
a

θ

·

a bc

d

GT Predicted

Background

Ground
truth

Input
image

Dice
loss

Kappa
loss

T:1460.887

P:1460.927

T:1603.158

P:1602.629

T:1435.984

P:1436.291

T:1370.156

P:1370.114

T:1078.668

P:1078.071

integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient

T:611.512

P:783.749

T:825.363

P:907.824

T:1749.276

P:1682.574

T:439.102

P:641.133

T:1702.345

P:1043.316
integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient

integrated_gradients lrp.zinput_t_gradientdeep_taylordeconvnetsmoothgradgradient
T:439.102
P:640.119

T:677.418
P:914.546

T:709.437
P:1004.321

T:1451.893
P:1310.306

T:1284.397
P:1455.413

guided_backprop

integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient
T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

VGG good

vgg

VGG bad

Resnet good

Resnet bad

Resnet

T:1167.234
P:1167.479

IntegratedGradients

Deconvolution Guided Backprop

DeepTaylor LRP

Sensitivity SmoothGrad Input*Gradient

T:1435.984

P:1436.291

IntegratedGradients

Deconvolution Guided Backprop

DeepTaylor LRP

Sensitivity SmoothGrad Input*Gradient

Resnet good and bad

T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

T:439.102
P:640.119

T:677.418
P:914.546

T:709.437
P:1004.321

T:1451.893
P:1310.306

T:1284.397
P:1455.413

Ellipse fittingSegmentation result

HC

Encoder-Decoder 
model

Training data

Ground truth

HC

HC
Regression 
layer

Regression CNN

b
a
s
e
_
r
e
g
_
M
A
E
_
w
/
o
_
D
A lrp.z

guided_backpr

op deconvnet smoothgrad gradient
deep_taylor

input_t_gradie

nt

integrated_gradie

nts

b
a
s
e
_
r
e
g
_
M
A
E

s
i
m
p
l
e
_
c
n
n
_
M

A
E

r
e
s
n
e
t
5
0
_
M
S
E

v
g
g
1
6
_
M
A
E

r
e
s
n
e
t
5
0
_
M
A
E

Exception

Exception

109.195 mm 225.885mm 318.212mm

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15

Input Base_Reg_w/o_DA Base_Reg_CNN Simple_Reg_CNN VGG16_Reg_CNN ResNet50_Reg_CNN

Step 15Step 14Step 13Step 12Step 11Step 10Step 9Step 8Step 7

Step 6Step 5Step 4Step 3Step 2Step 1Step 0Saliency mapImage

T: 1590.909

P: 1554.130 DeConvNet GuidedBackprop

DeepTaylor LRP IntegratedGradients

Input*GradientSmoothGradGradient

DeConvNet GuidedBackprop

DeepTaylor LRP IntegratedGradients

Input*GradientSmoothGradGradient

T: 1590.909

P: 1619.628

Input
T:1430.134

Reg_VGG16
P:1139.599

Reg_ResNet50
P: 1431.891

Input*Gradient LRP

T:1603.158

P:1602.629

T:1435.984

P:1436.291

Gt:1430.1337424327
vgg:1139.59982

df:34.1355424327101 
res:1431.8911 

df:1.75735756729
486

lrp.z

Input* 

gradient

T:1461.556

P:983.918

T:1435.853

P:983.627

T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:939.252
P:1079.555

T:904.314
P:1043.524

T:1460.887
P:1460.92
7

T:1370.156
P:1370.114

T:1078.668
P:1078.071

T:611.512
P:783.749

T:439.101
P:641.133

T:1702.344
P:1043.316

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

T:439.101
P:640.119

T:677.418
P:914.545

T:709.436
P:1044.321

(a) Good prediction on Reg-
VGG16

(b) Bad prediction on Reg-
VGG16

(c) Good prediction on Reg-
ResNet50

(d) Bad prediction on Reg-
ResNet50

637,785,805 isbad349,094,651 isgood

T:439.101

Reg-VGG16

P:640.119 P:641.133

T:1167.234 P:1164.690 P:1167.479

Reg-ResNet50 Reg-VGG16 Reg-ResNet50Good prediction Bad prediction

T:1451.892 P:1241.393 P:1310.305

T:592.494 P:601.844 P:595.122

T:1284.396 P:1416.249 P:1455.412

T:1436.142 P:1438.405 P:1438.910

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

GradientUS image Input*Gradient LRP DeConvNet

01 2

3

4

5 6

7

8

9

10

11

12

15

1314

Medical
Image

Images

DiseasesClasses

TasksLabels

DeepTaylor

MAE MSE

VGG16

HL

ResNet50Gradient

GuidedBackprop

MAE MSE

VGG16

HL

ResNet50

Input*Gradient

MAE MSE

VGG16

HL

ResNet50

Integrated_gradi
ent

MAE MSE

VGG16

HL

ResNet50

LRP

MAE MSE

V

HL

R

SmoothGrad

MAE MSE

VGG16

HL

ResNet50

MAE MSE

VGG16

HL

ResNet50

DeConvNet

MAE MSE

VGG16

HL

ResNet50

Posterior
probability

Prior
probability

Adjustment 
factor

(c) LRP

A ∩ BA B Left atrium

Left ventricle

Myocardium 

Back-
groundc a b

d

Ground truth Predicted area

CNN

Activat
ion:

Softmax 
or

Sigmoid

Output

Input data
+Ground 
truth CNN

Activat
ion:
Linear

Output

Input data
+Ground 
truth

(x,y)

b
a

θ

·

a bc

d

GT Predicted

Background

Ground
truth

Input
image

Dice
loss

Kappa
loss

T:1460.887

P:1460.927

T:1603.158

P:1602.629

T:1435.984

P:1436.291

T:1370.156

P:1370.114

T:1078.668

P:1078.071

integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient

T:611.512

P:783.749

T:825.363

P:907.824

T:1749.276

P:1682.574

T:439.102

P:641.133

T:1702.345

P:1043.316
integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient

integrated_gradients lrp.zinput_t_gradientdeep_taylordeconvnetsmoothgradgradient
T:439.102
P:640.119

T:677.418
P:914.546

T:709.437
P:1004.321

T:1451.893
P:1310.306

T:1284.397
P:1455.413

guided_backprop

integrated_gradients lrp.zinput_t_gradientdeep_taylorguided_backpropdeconvnetsmoothgradgradient
T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

VGG good

vgg

VGG bad

Resnet good

Resnet bad

Resnet

T:1167.234
P:1167.479

IntegratedGradients

Deconvolution Guided Backprop

DeepTaylor LRP

Sensitivity SmoothGrad Input*Gradient

T:1435.984

P:1436.291

IntegratedGradients

Deconvolution Guided Backprop

DeepTaylor LRP

Sensitivity SmoothGrad Input*Gradient

Resnet good and bad

T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

T:439.102
P:640.119

T:677.418
P:914.546

T:709.437
P:1004.321

T:1451.893
P:1310.306

T:1284.397
P:1455.413

Ellipse fittingSegmentation result

HC

Encoder-Decoder 
model

Training data

Ground truth

b
a
s
e
_
r
e
g
_
M
A
E
_
w
/
o
_
D
A lrp.z

guided_backpr

op deconvnet smoothgrad gradient
deep_taylor

input_t_gradie

nt

integrated_gradie

nts

b
a
s
e
_
r
e
g
_
M
A
E

s
i
m
p
l
e
_
c
n
n
_
M

A
E

r
e
s
n
e
t
5
0
_
M
S
E

v
g
g
1
6
_
M
A
E

r
e
s
n
e
t
5
0
_
M
A
E

Exception

Exception

109.195 mm 225.885mm 318.212mm

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15

Input Base_Reg_w/o_DA Base_Reg_CNN Simple_Reg_CNN VGG16_Reg_CNN ResNet50_Reg_CNN

Step 15Step 14Step 13Step 12Step 11Step 10Step 9Step 8Step 7

Step 6Step 5Step 4Step 3Step 2Step 1Step 0Saliency mapImage

T: 1590.909

P: 1554.130 DeConvNet GuidedBackprop

DeepTaylor LRP IntegratedGradients

Input*GradientSmoothGradGradient

DeConvNet GuidedBackprop

DeepTaylor LRP IntegratedGradients

Input*GradientSmoothGradGradient

T: 1590.909

P: 1619.628

Input
T:1430.134

Reg_VGG16
P:1139.599

Reg_ResNet50
P: 1431.891

Input*Gradient LRP

T:1603.158

P:1602.629

T:1435.984

P:1436.291

Gt:1430.1337424327
vgg:1139.59982

df:34.1355424327101 
res:1431.8911 

df:1.75735756729
486

lrp.z

Input* 

gradient

T:1461.556

P:983.918

T:1435.853

P:983.627

T:1448.378
P:1448.044

T:1459.317
P:1459.018

T:939.252
P:1079.555

T:904.314
P:1043.524

T:1460.887
P:1460.92
7

T:1370.156
P:1370.114

T:1078.668
P:1078.071

T:611.512
P:783.749

T:439.101
P:641.133

T:1702.344
P:1043.316

T:1167.234
P:1167.479

T:1584.000
P:1584.222

T:1467.546
P:1467.337

T:439.101
P:640.119

T:677.418
P:914.545

T:709.436
P:1044.321

(a) Good prediction on Reg-
VGG16

(b) Bad prediction on Reg-
VGG16

(c) Good prediction on Reg-
ResNet50

(d) Bad prediction on Reg-
ResNet50

637,785,805 isbad349,094,651 isgood

T:439.101

Reg-VGG16

P:640.119 P:641.133

T:1167.234 P:1164.690 P:1167.479

Reg-ResNet50 Reg-VGG16 Reg-ResNet50Good prediction Bad prediction

T:1451.892 P:1241.393 P:1310.305

T:592.494 P:601.844 P:595.122

T:1284.396 P:1416.249 P:1455.412

T:1436.142 P:1438.405 P:1438.910

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3 4

5

6

7

8 9

10

11

12

1314

15

GradientUS image Input*Gradient LRP DeConvNet

01 2

3

4

5 6

7

8

9

10

11

12

15

1314

DeepTaylor

MAE MSE

VGG16

HL

ResNet50Gradient

GuidedBackprop

MAE MSE

VGG16

HL

ResNet50

Input*Gradient

MAE MSE

VGG16

HL

ResNet50

Integrated_gradi
ent

MAE MSE

VGG16

HL

ResNet50

LRP

MAE MSE

VGG16

HL

ResNet50

SmoothGrad

MAE MSE

VGG16

HL

ResNet50

MAE MSE

VGG16

HL

ResNet50

DeConvNet

MAE MSE

V

HL

R

b

Black Box
Deep Learning 

Model
HC value

Explanation
methods

Input x
Prediction f(x)

Saliency map

Explanation
methods

Visual
comparison

Quantitative
evaluation

Selected 
analyzers

Models 
comparison

Data
comparison

Medical
Image

Images

Diseases

Classes

Tasks

Labels

Data

input

train from
scratch

fine 
tuning

input

ground truth Kappa+Focal
(predicted)

Dice
(predicted)

Kappa
(predicted)

Kappa+Focal
(fitted)

Dice
(fitted)

Kappa
(fitted)

train from
scratch

fine 
tuning

ground truth Kappa+Focal
(predicted)

Dice
(predicted)

Kappa
(predicted)

Kappa+Focal
(fitted)

Dice
(fitted)

Kappa
(fitted)

Segmented results Contour detection Ellipse fitting

a

b
.

HC_annotation

HC
Regression 
layer

Regression CNNTraining data

Image Ground truth Kappa loss Dice loss Kappa+Focal loss VGG+Kappa+Focal lossVGG+Dice lossVGG+Kappa loss

DI: 0.87 
HC_Diff: 12.2

DI: 0.94 
HC_Diff: 13.02

DI: 0.30 
HC_Diff: 63.99

DI: 0.87 
HC_Diff: 5.44

DI: 0.95 
HC_Diff: 2.55

DI: 0.33 
HC_Diff: 30.93

DI: 0.92 
HC_Diff: 4.06

DI: 0.93 
HC_Diff: 0.66

DI: 0.77 
HC_Diff: 1.02

DI: 0.92 
HC_Diff: 3.97

DI: 0.93 
HC_Diff: 2.28

DI: 0.77 
HC_Diff: 7.62

DI: 0.80 
HC_Diff: 17.32

DI: 0.87 
HC_Diff: 6.32

DI: 0.65 
HC_Diff: 30.78

DI: 0.85 
HC_Diff: 4.76

DI: 0.87 
HC_Diff: 34.01

DI: 0.58 
HC_Diff: 18.75

DI: 0.95 
HC_Diff: 1.54

DI: 0.96 
HC_Diff: 3.93

DI: 0.70 
HC_Diff: 14.39

DI: 0.95 
HC_Diff: 2.22

DI: 0.97 
HC_Diff: 0.35

DI: 0.68 
HC_Diff: 29.28

DI: 0.95 
HC_Diff: 2.03

DI: 0.94 
HC_Diff: 0.22

DI: 0.66 
HC_Diff: 32.19

DI: 0.95 
HC_Diff: 1.49

DI: 0.94 
HC_Diff: 1.69

DI: 0.71 
HC_Diff: 55.84

DI: 0.92 
HC_Diff: 1.47

DI: 0.95 
HC_Diff: 0.95

DI: 0.77 
HC_Diff: 17.07

DI: 0.92 
HC_Diff: 3.35

DI: 0.95 
HC_Diff: 1.51

DI: 0.75 
HC_Diff: 25.46

Image Ground truth Kappa loss Dice loss Kappa+Focal loss VGG+Kappa+Focal lossVGG+Dice lossVGG+Kappa loss

Posterior
probability

Prior
probability

Adjustment 
factor

(d) DeConvNet

Figure A.3 – Saliency maps of different explanation methods under 3 different loss functions
and regression CNN model VGG16 (V) and ResNet50 (R)
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A.1.4 Comparison of AOPC scores for different loss functions

The other supplementary experiment including comparing AOPC scores of two re-

gression models with 3 loss functions and prediction error maps of different analysis

methods by adding perturbations. See Figure A.4 and Table A.1.

Quantitative analysis

Table A.1 is the experiment of adding perturbation on test images (200 images), then

the regression CNN models go through each explanation method. For instance,

in Gradient explanation method (The second column), the Regression ResNet with

Huber loss has the lowest AOPC value (-24.17), which means this model is the most

sensitive than the others. That is to say, the Regression ResNet with Huber loss iden-

tify the right feature from test images. Therefore, one can known which loss function

is more suitable in this way.

Table A.1 – Performance (AOPC scores) of different explanation methods after perturbation,
with two regression models and three loss functions. G: Gradient, SG: SmoothGrad, DCN:
DeConvNet, DT: DeepTaylor, GB: GuidedBackprop, I*G: Input*Gradient, IG: IntegratedGra-
dients. Lower is better. Best scores in bold.

Model G SG DCN DT GB I*G IG LRP

RegVGG_MAE -7.31 -7.39 -2.87 -7.40 -1.66 -9.19 -9.49 -9.17
RegVGG_MSE -7.80 -7.18 -5.36 -9.10 -2.99 -14.57 N/A -14.46
RegVGG_HL -23.39 -21.63 -24.59 -27.78 -18.86 -29.47 N/A -29.27
RegResNet_MAE -11.53 -11.84 -9.25 -9.89 -9.72 -14.75 -5.60 -14.58
RegResNet_MSE -11.31 N/A -11.18 -19.41 N/A -32.48 -20.49 -32.51
RegResNet_HL -24.17 -24.27 N/A -22.66 -28.42 -37.12 -22.81 -38.12

Qualitative analysis

Figure A.4 shows the perturbation process on two different regression CNN mod-

els with three different loss functions respectively. The test images are divided into

16 subareas, the perturbation are added on each subarea one by one based on the

importance of prediction score. One can find the prediction error becomes higher

after the feature is blocked by the perturbation in most of curves. The steepest curve

demonstrates that this explanation method is the most effective to capture the fea-

ture of images that the regression CNN has learned.

139



APPENDIX A. THE EXPLAINABILITY OF REGRESSION CNNS

0 2 4 6 8 10 12 14
Perturbation steps

58

60

62

64

66

68

70

72

Pr
ed

ict
io
n 

ER
RO

R 
of

 a
na

ly
ze

rs
 (p

ix
el

s)

gradient
smoothgrad
deconvnet
guided_backprop
deep_taylor
input_t_gradient
integrated_gradients
lrp

(a) VGG_MAE

0 2 4 6 8 10 12 14
Perturbation steps

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

Pr
ed

ict
io
n 

ER
RO

R 
of

 a
na

ly
ze

rs
 (p

ix
el

s)

gradient
smoothgrad
deconvnet
guided_backprop
deep_taylor
input_t_gradient
integrated_gradients
lrp

(b) ResNet_MAE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Perturbation steps

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

Pr
ed

ict
ed

 E
RR

OR
 o

f a
na

ly
ze

rs
 (p

ix
el

s)

gradient (AOPC: -7.805)
smoothgrad (AOPC: -7.181)
deconvnet (AOPC: -5.356)
guided_backprop (AOPC: -2.990)
deep_taylor.bounded (AOPC: -9.098)
input_t_gradient (AOPC: -14.568)
lrp.z (AOPC: -14.460)

(c) VGG_MSE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Perturbation steps

40

50

60

70

80

Pr
ed

ict
ed

 E
RR

OR
 o

f a
na

ly
ze

rs
 (p

ix
el

s)

gradient (AOPC: -11.305)
deconvnet (AOPC: -11.187)
deep_taylor.bounded (AOPC: -19.048)
input_t_gradient (AOPC: -32.487)
integrated_gradients (AOPC: -20.495)
lrp.z (AOPC: -32.505)

(d) ResNet_MSE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Perturbation steps

50

60

70

80

Pr
ed

ict
ed

 E
RR

OR
 o

f a
na

ly
ze

rs
 (p

ix
el

s)

gradient (AOPC: -23.389)
smoothgrad (AOPC: -21.626)
deconvnet (AOPC: -24.588)
guided_backprop (AOPC: -18.859)
deep_taylor.bounded (AOPC: -27.779)
input_t_gradient (AOPC: -29.468)
lrp.z (AOPC: -29.268)

(e) VGG_HL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Perturbation steps

50

60

70

80

90

Pr
ed

ict
ed

 E
RR

OR
 o

f a
na

ly
ze

rs
 (p

ix
el

s)

gradient (AOPC: -24.174)
smoothgrad (AOPC: -24.269)
guided_backprop (AOPC: -28.421)
deep_taylor.bounded (AOPC: -22.665)
input_t_gradient (AOPC: -37.125)
integrated_gradients (AOPC: -22.814)
lrp.z (AOPC: -37.120)

(f) ResNet_HL

Figure A.4 – Perturbation steps of different analyzers under Regression VGG16 and Regres-
sion ResNet model with loss function MAE, MSE, HL, repectively.
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A.2 Conclusion

Understanding whether the model can learn the relevant features in images and

take the right decision is crucial in the medical domain. Whereas there have been a

wealth of works in classification networks, there is a void for interpreting regression

networks.

In this study, we address the problem of estimating the head circumference in fe-

tal head directly from US images. We use several post-hoc explanation techniques

that produce saliency maps and adapt a perturbation based quantitative evaluation

method, to assess the relevance of the saliency maps. We also investigate the ex-

plainability of regression losses including the MAE loss, MSE loss and Huber loss.

The experimental results proved that the regression CNN models are able to

learn the key features from the input ultrasound fetus images, and in particular,

the head circumference. One finding is that for this application, Gradient and De-

ConvNet method are particularly insensitive to different CNN models or data, and

that ResNet50 seem to have better learnt the head features. Thus so far, we have ex-

tended the model property from classification to regression and explored a specific

regression task.

Moreover, we should not only explain the model but also get some feedback ac-

cording to explanation results, for example, in our case, the content of images can

also affect the model’s decision, because for those images that the model have bad

predictions, the explanation methods cannot show clear features, neither. Finally,

the performance of explanation methods used in this work are different from each

to others. However, relying only on the saliency maps or on the perturbation meth-

ods is far from being enough to get insights from a black box. Despite explanation

methods have emerged, there is room for improvement as they are not yet mature

enough but this is a step toward more reliable and safe deep learning approaches in

medical fields.
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Additional experiments on ACDC

dataset
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B.1 The influence of data modality

The data modality in this study refers to the different slices of cardiac data, the

different training scale. In this section, we explore the influence of different data

modalities. Besides, we respectively valid the prediction ability of regression CNN

on single cardiac structure and multi cardiac structures.

B.1.1 Selection of cardiac slices

Motivation

In short axis view of cardiac MR images, each slice represents a part of cardiac. All

the slices stacked up is a complete cardiac. However, when using deep learning

models to learn relevant features from these slices, it is not necessarily the case that

the more complete the information is, the better; instead, some redundant slices

can lead to prediction errors caused by noise. For example, in the ACDC dataset,

some of the slices of the subject contain little or no information about the cardiac

structure. For this reason, feature extraction may benefit from appropriate stream-

lining of the cardiac slices. In related works, [Luo et al., 2017] explored various com-

binations of slices from single image at different position to two images, and then

three images etc. Their experiments results showed that when the input view is the

combination of Top+Middle+Bottom slice from a cardiac, the model has the best

performance.

Experiments on different slice combinations

In this experiment, we explored different slice combinations on ACDC dataset in-

spired by [Luo et al., 2017]. We respectively take the Top slice, Top+Middle+Bottom

slices (the 2th, 3th, 4th slice of cardiac), Top three slices (2th, 3th, 4th), Middle three

slices (4th, 5th, 6th), Bottom three slices (6th, 7th, 8th), and the entire 9 slices. Experi-

mental results (Table B.1) showed that the model’s performance is better when the

input training data has three slices of a cardiac, which implies that too few slice (one

slice only) or too many slices (9 slices) does not bring effective information to the

regression CNN models.
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Table B.1 – Prediction error (mean absolute error, MAE) on volume of 3 cardiac structures
from different slice combinations using regression VGG model. The numbers in brackets
are the serial numbers of the slices.

Input views MAE_RV(ml) MAE_MYO(ml) MAE_LV(ml)

Single Slice (Top) 46.81 37.06 50.24
3-slice (258)th 36.53 31.33 28.45
3-slice (234)th 31.44 27.58 28.31
3-slice (456)th 37.77 25.03 23.40
3-slice (678)th 36.55 27.97 26.03
Entire slices (1-9)th 46.83 39.80 36.43

B.1.2 Different training data scale

Since medical images are more complex to acquire and pre-process than natural

images, and the annotation of targets in medical images is labouring work. The

insufficient amount of data is a big obstacle for data-driven deep neural network

based models. Data augmentation can remedy the problem of insufficient original

data. We use grid search method (Algorithm 5.3) to generate different images.

We use regression VGG16 to predict the volumes of three structures of the car-

diac from 1000, 2000 and 2900 training images respectively. From Table B.2, the

model’s prediction error decreased clearly on 2000 training images than that on

1000 images. However, when the training images are 2900, the model’s prediction

error get larger, which indicated that not the more training data, the model has bet-

ter performance.

Table B.2 – Prediction error on volume of 3 cardiac structures with different input data scale
using regression VGG16. ± is stand deviation. The models are trained on 1000, 2000, and
2900 training images, separately.

# of images MAE_RV(ml) PMAE(%) MAE_MYO(ml) PMAE(%) MAE_LV(ml) PMAE(%)
1000 47.45±38.33 60.29±83.00 39.67±33.66 34.09±33.55 35.88±28.35 44.62±57.82
2000 44.75±39.20 54.62±72.54 39.39±34.13 33.88±34.63 32.71±27.14 37.77±46.85
2900 50.51±39.81 65.64±92.96 41.58±34.38 36.43±37.59 35.29±29.49 40.20±52.63

In this experiment, we evaluate the prediction error of regression VGG that is

trained on different number of augmented training data. In Figure B.1, we can see

that when there is only original training data, the prediction error is pretty high.

As the augmented data gradually increased, the prediction error of the model de-

creased until it reached a very small value, and then the error began to increase

again. This indicates that on the one hand, training a CNN model requires sufficient
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amount of data, and on the other hand, it also points out that negative effects may

occur when there is too much homogeneous augmented data. Same observation

results and conclusion is given in [Huang et al., 2021a].
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Figure B.1 – Prediction error with the influence of different number of augmented training
data. The horizontal axis stands for the amount of original training data plus x times of
augmented data. The vertical axis is the prediction error rate.

B.1.3 Single cardiac structure prediction vs. Multi-structure

In the above experiments, the three structures of cardiac are estimated simultane-

ously by regression CNNs. In this experiment, we explore the performance on single

cardiac structure prediction. See the table below (Table B.3). One can find that the

model’s prediction error on single structure is lower than the multi-structure predic-

tion. That makes sense because predicting one target once is easier than predicting

multi-targets at the same time for a regression CNN model. Despite that, in the car-

diac multi-structure estimation case, it’s more practical for applying multi-structure

prediction model.
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Table B.3 – The prediction error of each single cardiac structure and multi-structure on re-
gression VGG16.

RV MYO LV

MAE(ml) PMAE(%) MAE(ml) PMAE(%) MAE(ml) PMAE(%)
Multi 50.51±39.81 65.64±92.96 41.58±34.38 36.43±37.59 35.29±29.49 40.20±52.63
Single 44.25±39.21 47.87±55.91 41.16±34.99 33.34±30.36 29.95±25.60 34.38±42.02

B.2 Determination of hyper parameters

In this section, we explore the hyper parameters in three aspects. First, in model

training level, we valid different batchsize and learning rate; Second, in training data

level, we valid different ratio of training, validation and test set; Third, we study the

influence of data type (pathologies in ACDC dataset) distributed in each training,

validation and test set.

B.2.1 Batchsize and learning rate

When training a dataset, one need to specify how many epochs this model is to be

trained on the training set. In general, the epoch is chosen to be between 100 and

200, depending on experience. If it is too small, the model is not trained sufficiently,

and if it is too large, it will take too long and the loss will no longer decrease. In

practical situations, when the computing power of the device is average, the model

cannot train all the data at once in one epoch. Therefore, the dataset can be divided

into small batches to be trained one by one according to the computing power, the

batchsize is the number of images in one batch.

In deep learning techniques, updating the weights of each neuron of the neural

networks is achieved by means of a specified optimization algorithm, such as Adam

optimizer [Kingma and Ba, 2014]. The weight update also has a rate, i.e., a learning

rate. The learning rate is as important as the optimization algorithm. If it is too

large, the optimization will diverge; if it is too small, the training will take too long

or we will end up with sub-optimal results.

In this experiment, we explored the different learning rates and batchsize (Table

B.4). When the learning rate is set large, the prediction error on volume of cardiac

structures is also larger than the other two groups. One reason could be the model

cannot optimize well if the model learns too rush. Another reason could be the

model is pretrained on ImageNet, in that case the model is trained with the learning
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rate 1e-4, then the pretrained weights in the model become confused with the larger

learning rate during training. For batch size, frankly, no clear pattern can be found

from this table. It depends on the learning rate actually.

Table B.4 – Prediction error (mean absolute error in milliliter, MAE) on volume of 3 cardiac
structures with different parameter settings in the aspects of batchsize and learning rate
using regression VGG model. ± is standard deviation.

lr 1e-3 1e-4 1e-5
bs RV MYO LV RV MYO LV RV MYO LV
4 55.9±40.1 41.2±35.1 65.4±49.2 47.6±41.2 38.4±32.9 32.8±26.7 44.2±37.3 38.5±30.7 34.1±28.1
8 54.0±40.0 42.7±34.1 60.7±45.0 48.0±42.2 40.3±35.3 33.8±29.4 45.4±37.2 37.1±30.8 33.9±27.9

12 51.3±40.3 46.0±39.5 43.3±34.3 44.9±37.0 40.4±32.5 32.9±25.9 43.9±35.8 37.3±30.9 34.1±26.6
16 48.7±39.1 42.7±36.4 39.2±29.5 49.4±42.0 39.6±34.5 34.1±28.2 46.1±37.3 39.2±31.2 36.5±29.7
20 45.8±38.0 43.1±35.9 37.2±30.8 43.8±38.8 40.7±33.5 32.2±25.8 44.5±38.1 36.9±31.3 35.5±28.3
30 47.1±39.1 39.8±33.3 36.3±26.8 46.2±38.9 39.0±31.8 34.1±27.2 45.1±38.6 38.6±32.1 36.1±28.7
40 49.4±39.7 41.2±33.5 37.5±27.8 46.9±37.0 38.3±30.8 34.1±25.2 45.5±38.1 38.3±31.0 37.0±29.7

Furthermore, we describe the learning curves with respect to different learning

rates and batchsize. See Figure B.2. One can find that when the learning rate is small

(1e-5), the model learns slowly and doesn’t converge yet within 100 epochs. For the

batchsize, it seems that a larger batchsize can reduce the gap between training loss

and valid loss. The reason for this phenomenon is to be demonstrated by further

research.

B.2.2 Dataset splitting

In order to train any machine learning model, no matter what type of dataset is

used, one must split the dataset into training data and test data, and a small part of

data for validation. When splitting a dataset there are two competing concerns:

– If the training data is less, the model’s performance may have greater variance.

Because the model does not recognize new and unseen data very well.

– If the testing data is less, the model’s performance statistic will have greater

variance.

Thus, the data should be split in such a way that neither is too high, it depends more

on the amount of data at hand. Because the number of medical images is limited,

in addition to do cross-validation to the data, it is crucial to choose the appropriate

splitting ratio.

In this experiment, we test several data splitting ways. The prediction error of

the model is shown in Table B.5. When the training data is sufficient, the prediction
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(d) lr:1e-3, bs:16
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(e) lr:1e-4, bs:16
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(f) lr:1e-5, bs:16
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Figure B.2 – Learning curves (loss changing) of different learning rates (ls) and batchsize (bs)
during training stage. Blue dotted line is training loss, red dotted line is valid loss.

error is small, that is with data augmentation, the prediction error is decreased with

larger ratio on training data, which is because the model is generalized very well

through a great deal of training data. While when the training data is insufficient,

that is without data augmentation, the prediction error is large and unstable, which

is as result of not well generalized model and less statistics samples.

B.2.3 Data type distribution

During the experiment, we found that the RV structure is difficult to predict than

the other two structures (MYO and LV). This may due to the training data and test

data are not evenly distributed with respect to the each disease type. Since in ACDC

dataset, there are 5 types of cardiac, i.e. 4 diseases and 1 normal type. For this, we

149



APPENDIX B. ADDITIONAL EXPERIMENTS ON ACDC DATASET

Table B.5 – Prediction error (mean absolute error in milliliter, MAE) on volume of 3 cardiac
structures from different data splitting settings using regression VGG model with/without
data augmentation. The data is split into (train, valid, test). ± is standard deviation.

with data augmentation without data augmentation
Data split RV MYO LV RV MYO LV
(70,52,60) 51.9±41.8 34.9±32.4 36.4±27.3 52.6±41.4 40.6±36.2 43.9±35.7
(100,32,50) 45.0±36.0 36.0±30.8 32.6±25.1 48.8±34.4 32.4±28.1 40.0±30.7
(110,32,40) 43.1±32.0 28.3±24.9 29.2±21.5 48.4±32.8 31.9±26.1 40.3±29.9
(120,32,30) 35.7±31.5 29.0±27.6 28.2±22.6 51.6±36.5 35.5±35.0 41.9±34.0
(130,32,20) 37.5±33.1 28.8±23.0 27.2±23.0 41.6±32.9 36.9±33.5 36.0±27.2
(140,32,10) 38.3±28.2 30.8±23.7 26.9±17.5 45.1±34.2 33.5±26.3 39.1±26.4

try to take the same ratio of patients in each type in training and test set. So that the

model can be trained in a relatively generic mode. Table B.6 summarize 182 subjects

in ACDC dataset.

Table B.6 – Data distribution in ACDC dataset based on pathology.

Number Pathology Train Valid Test
36 DCM 20 6 10
38 HCM 20 8 10
38 MINF 20 8 10
34 NOR 20 4 10
36 RV 20 6 10
Total
182 5 100 32 50

Table B.7 compares the prediction error between the evenly distributed training

and test data and randomly distributed training and test data with respect of 5 types

of pathologies. From this table one can see that the performance of regression CNN

models have a little improvement when the training data have the same amount of

each disease type. The experimental results demonstrate that the idea of making

training and test data evenly distributed in various data types is good for model’s

generalization ability.
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Table B.7 – The prediction error of cardiac structure on regression VGG16, ResNet50 and
EfficientNet (efn) respectively using evenly distributed data and randomly distributed data
with respect to 5 types of pathologies respectively.

RV MYO LV

MAE(ml) PMAE(%) MAE(ml) PMAE(%) MAE(ml) PMAE(%)
Random distribution

Reg_VGG 50.51±39.81 65.64±92.96 41.58±34.38 36.43±37.59 35.29±29.49 40.20±52.63
Reg_ResNet 43.11±36.57 51.63±69.46 36.98±29.25 31.96±29.44 33.19±26.48 39.09±47.45
Reg_efn 49.55±40.88 60.76±83.83 36.70±32.26 33.50±36.88 33.51±26.93 39.78±52.15

Evenly distribution
Reg_VGG 45.0±36.0 55.6±73.8 36.0±30.8 32.0±33.4 32.6±25.1 40.6±57.6
Reg_ResNet 36.1±30.6 41.9±53.0 26.2±23.2 22.4±23.4 26.9±24.0 31.9±43.8
Reg_efn 39.7±33.2 47.0±63.8 27.4±25.5 23.6±25.0 30.4±24.0 33.6±42.3

B.3 Estimating cardiac volume using Transformer

B.3.1 Transformer

Self-Attention mechanism

The attention mechanism in deep learning can be broadly interpreted as a vector of

importance weights: to predict or infer an element, such as a pixel in an image or a

word in a sentence, we use an attention vector to estimate the degree of its associ-

ation with other elements and use the weighted sum of their values as an approxi-

mation of the target. Attention mechanisms have evolved to the point where there

are many categories [Weng, 2018]. In Transformer model [Vaswani et al., 2017], the

authors use Self-Attention mechanism, whose mathematical definition is as below:

Attention = Softmax(
QKT√

dk

)V (B.1)

A common understanding is that the same matrix is given 3 names Q, K, V1. Two

of the matrices (Matrix Q and Transposition of matrix K) do the dot product, then

normalized (Softmax), and then multiplied with the third matrix (V). dk is the di-

mension of matrix K. The dot product is divided by the scaling factor
√

dk so that

the gradient value remains stable during the training process (avoid gradient van-

ishing). The geometric meaning of dot product is the angle between two vectors, the

projection of one vector onto the other vector. A large value of the projection indi-

1The names of Q, K, V are based on the concept of information retrieval system, where Q means
Query, K means Key, V means Value.
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cates that the two vectors are highly correlated. Thus, to put it bluntly, the attention

mechanism measures the similarity of two matrices.

Multi-Head Attention mechanism

In Transformer model, Multi-Head Attention is used, which is adding all the heads

(h) together, each head is an Attention. In order to fit/optimize the model, trainable

weights matrices are multiplied with each head as well as the whole Multihead.

Multihead = Concat (head1,head2, · · · ,headh)Wo (B.2)

where headi = At tenti on(QWQ
i ,KWK

i ,VWV
i )

B.3.2 Vision Transformer

The architecture of Vision Transformer
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3 METHOD

In model design we follow the original Transformer (Vaswani et al., 2017) as closely as possible.
An advantage of this intentionally simple setup is that scalable NLP Transformer architectures – and
their efficient implementations – can be used almost out of the box.

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x ∈ RH×W×C into a
sequence of flattened 2D patches xp ∈ RN×(P 2·C), where (H,W ) is the resolution of the original
image, C is the number of channels, (P, P ) is the resolution of each image patch, andN = HW/P 2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z00 = xclass), whose state at the output of the Transformer encoder (z0L) serves as the
image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0L. The classification head is implemented by a MLP with one hidden layer at pre-training
time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

3

Figure B.3 – Vision Transformer model. An image is split into certain number of patches.
The position information is added in each patch. A learnable classification matrix is also
added. The figure is obtained from [Dosovitskiy et al., 2020].

With the fiery success of Transformer in text dealing, Vision Transformer (ViT)

[Dosovitskiy et al., 2020] is proposed in computer vision. The ViT model is inspired

from Transformer [Vaswani et al., 2017], which is actually a Multilayer perceptron
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(MLP) with attention blocks. There are no recurrence and convolutions but atten-

tion mechanism in this model. The core idea of ViT is Self Attention and Multi-Head

Attention mechanism. The principle of them has been explained in the last section.

Different from Transformer, the input of ViT is patches of images. An image is split

into certain number of patches. The position information of each patch is added in

each patch. A learnable matrix is also added for final classification. In every Trans-

former Encoder, the occurrence of Layer Normalization is to normalize the opti-

mization space and accelerate convergence. Besides, residual Networks are added

in the encoder to prevent from network degradation problems [He et al., 2016a].

MLP unit includes linear transformation with ReLU activation functions.

Regression ViT

In this work, we use ViT to directly predict the volume of cardiac structures, which

is a regression task. To achieve this goal, we change the last activation function from

ReLU in MLP Head into linear activation function. We use regression loss function

such as MAE, MSE or Huber loss instead of loss functions for classification.

B.3.3 Experiments and analysis

Experiment protocol

ACDC dataset (182 subjects, (100×100×9) in each subject.) is used in this experi-

ment. The dataset is split into (100, 32, 50) for training, validation, test set respec-

tively. The training set is added with data augmentation, which is 2900 images.

For the model hyper-parameter setting, the patch size is set to 10, so the number

of patches is 100. The dimension of linear projection is 128; the number of Trans-

former Encoder is 8; in Multi-Head Attention block, the number of heads is 4; in

MLP, the transformation unit is from 256 to 128; in final MLP Head, the transforma-

tion unit is from 1024 to 512. The optimizer is AdamW [Loshchilov and Hutter, 2019]

with weight decay rate 1e-4. The batchsize is 8, the learning rate is 1e-4, the training

epoch is 100. The loss function is MAE, MSE and Huber loss. The model is imple-

mented in Python with deep learning library Tensorflow 2.6.0. The model is trained

from scratch for 5-fold cross-validation in a P100 GPU server.
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Table B.8 – Prediction error (mean absolute error in milliliter, MAE) and error rate (PMAE, %)
on volume of 3 cardiac structures using Vision Transformer with 3 different loss functions
(MAE, MSE, Huber Loss=HL). ± is standard deviation.

Structure RV MYO LV
Model MAE(ml) PMAE(%) MAE(ml) PMAE(%) MAE(ml) PMAE(%)
ViT_MAE 29.61±26.09 24.80±17.74 23.51±19.28 19.79±14.68 24.13±22.23 27.78±25.49
ViT_MSE 28.26±23.32 26.55±22.19 24.75±20.21 21.43±17.52 28.21±20.01 40.29±41.63
ViT_HL 28.89±24.67 26.48±20.90 23.27±20.12 20.05±17.01 28.29±19.71 42.40±44.88

Experiment results

In the computation efficiency aspect, the regression ViT model just took around 1

hour and half to train, which is faster than the regression CNNs (4 hours in Regres-

sion VGG16, 10 hours in Regression ResNet50). We tested the prediction error of ViT

model under different loss functions separately. It can be found from Table B.8 that

the prediction error of the three structures are average, and the all the prediction

errors are slightly lower compared to regression CNNs. The author believes it has

great potential to obtain better performance in this application. Because the origi-

nal ViT paper [Dosovitskiy et al., 2020] also points out that the performance of ViT is

higher when the dataset is of great deal. In addition of data amount, there are many

hyper-parameters in the ViT model as described in the previous section which are

factors to optimize the model. Thus it is necessary to keep experimenting which

combination of hyper-parameters in ViT will achieve the best performance in the

future works.

B.4 Conclusion

In this appendix, we added extra experiments on ACDC dataset in different aspects.

For the data, we validated the input view, i.e. different number of slices, we found

that the regression CNN model can not well learn the feature comprehensively from

the entire slices of a cardiac, which implies that too much information may mean

disruptions for a model. We also explored the influence of data augmentation at

different scale, the experiments results showed that sufficient training data is good

to the model’s performance. For the model level, we explored different hyper pa-

rameters such as batchsize and learning rate to find suitable ones. For the dataset

splitting, several dataset splitting ways with respect to ratio of training, validation

and test set were tried on the limited number of medical dataset. Besides, we dis-
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tributed the same number of patients according to different pathologies in training,

validation and test set in order to ensure the model’s generalization ability. At last,

the Vision Transformer model is investigated for predicting the volume of cardiac

structures. The experimental results demonstrate that the potential in regression

ViT model is existed and can be explored further in the future works.
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