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Résumé

Le Edge Computing propose de répartir le calcul et le stockage des données au plus près
des sources de données d’origine. Cette technologie devient une tendance importante dans
l’informatique. Ceci est principalement dû à l’émergence de l’Internet des objets (IoT) et
de son ensemble d’appareils compacts, e.g., capteurs, actionneurs ou passerelles, dont les
capacités de calcul et de stockage ne cessent de croître. Di�érente du Cloud Computing,
qui cible les grands centres de données, la stratégie de distribution des calculs du Edge
Computing peut potentiellement réduire la pression du réseau et tirer pleinement parti de
la puissance de calcul des périphériques à la bordure du réseau.

A�n de prendre en charge le traitement intelligent des données à la périphérie du réseau,
une stratégie de représentation des connaissances est nécessaire. En 2021, les technologies
appartenant au Web sémantique sont su�samment matures et robustes pour apporter de
l’intelligence au Edge computing. Ces technologies correspondent au modèle de données
RDF (Resource Description Framework), aux langages d’ontologie RDFS (RDF Schema) et
OWL (Web ontology Language), à leurs services de raisonnement associés, au langage de
requête SPARQL. La pierre angulaire d’une telle approche est un système de gestion de base
de données RDF compatible avec les périphériques Edge. Cependant, la plupart des sys-
tèmes de base de données du type RDF sont conçus pour des serveurs puissants ou le Cloud
Computing. Ces systèmes doivent, en partie, leur e�cacité à des stratégies d’indexation
coûteuses, c’est-à-dire basées sur des indices multiples.

Dans le contexte du Edge computing, caractérisé par une empreinte mémoire et une
puissance de calcul relativement limitées, il n’est pas raisonnable d’utiliser l’un de ces sys-
tèmes de base de données RDF. Par conséquent, un nouveau type de RDF store est néces-
saire. Dans ce travail, nous considérons que certaines de ses fonctionnalités doivent être
une approche en mémoire, une empreinte mémoire faible pour le système et ses données,
des techniques d’optimisation des requêtes adaptées pour rendre le traitement des requêtes
aussi rapide que possible. De plus, le raisonnement au moment de l’exécution des requêtes
et le traitement des �ux sont requis par plusieurs des cas d’utilisation que nous avons iden-
ti�és dans des situations réelles.

Dans le but de compresser les données RDF tout en maintenant la vitesse d’interrogation,
nous utilisons abondamment les structures de données succinctes (SDS - Succinct Data
Structure) pour béné�cier simultanément de sa compression de données et de sa vitesse
élevée de récupération des données. Cela nous aide à obtenir un RDF store, nommé Suc-
cinctEdge, compact auto-indexé qui ne nécessite pas d’opération de décompression. Notre
approche de traitement des requêtes est adaptée à notre agencement de stockage et aux
opérations SDS standard, à savoir access, rank et select. Nous prouvons la capacité
de notre approche par une évaluation approfondie.

A�n d’aider à l’accélération du raisonnement RDFS, nous avons conçu notre système
en utilisant une stratégie d’encodage sémantique nommée LiteMat. Ce schéma d’encodage,
qui a été développé et est maintenu par notre équipe de recherche, a été étendu dans cette
thèse de doctorat pour prendre en charge l’héritage multiple, les propriétés transitives et
inverses. Il étend ainsi le pouvoir expressif des ontologies adressées.
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Dans les cas d’utilisation réels de l’IoT, les données proviennent généralement en con-
tinu de capteurs ou d’actionneurs. Pour résoudre ce problème, une extension de Succinct-
Edge a été conçue pour gérer ces données en streaming. Cette extension inclut une struc-
ture de données supplémentaire dans notre système de base de données RDF pour traiter
les données numériques avec des agrégations temporelles et un processeur d’extension
streaming SPARQL adapté pour permettre l’interrogation des données captées sous forme
de �ux. Avec l’aide de cette structure de données supplémentaire et d’un processeur de
requêtes adapté, nous pouvons facilement interroger le graphe RDF dynamique par une
requête SPARQL acceptant les �ux. Cependant, l’exécution d’une requête sur un graphe
dynamique peut imposer de nombreuses recherches répétives sur le graphe, ce qui peut
fortement ralentir le système. A�n de résoudre ce problème, nous séparons une requête en
une partie dynamique et une partie statique. Le résultat de la partie statique est calculé une
seule fois et stocké pendant toute la durée du traitement continu de la requête. Concer-
nant pour la partie dynamique, le résultat obtenu est combiné avec le résultat de la partie
statique pour générer le résultat �nal de chaque exécution de requête. Nous prouvons que
notre système d’extension de streaming est à faible latence et à haut débit avec de bonnes
propriétés de robustesse et de correction.
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Abstract

Edge Computing proposes to distribute computation and data storage closer to original
data sources. This technology is becoming an important trend in IT. This is mainly due
to the emergence of the Internet of Things (IoT) and its set of compact devices, e.g., sen-
sors, actuators or gateways, whose computing and storing capacities are ever-increasing.
Di�erent from Cloud Computing, which targets large data centers, Edge Computing’s com-
putation distribution strategy can potentially reduce network pressure and make full use
of the computation power of edge devices.

In order to support smart data processing at the edge of the network, a knowledge rep-
resentation strategy is needed. In 2021, technologies belonging to the so-called Semantic
Web are mature and robust enough to bring intelligence to Edge computing. These tech-
nologies correspond to the RDF (Resource Description Framework) data model, the RDFS
(RDF Schema) and OWL (Web ontology Language) ontology languages and their associ-
ated reasoning services, the SPARQL query language. A cornerstone of such an approach
is an Edge device compliant RDF database management system. However, most RDF stores
are designed for powerful servers or Cloud Computing. These systems partly owe their
e�ciency to costly indexing strategies, i.e., based on multiples indexes.

In the context of Edge Computing, characterised by relatively limited memory footprint
and computing power, it is not reasonable to use any of these RDF stores. Hence, a novel
kind of RDF store is needed. In this work, we consider that some of its features must be
an in-memory approach, low-memory footprint for both the system and its managed data,
adapted query optimization techniques to make query processing as fast as possible. More-
over, reasoning at query run-time and stream processing are required by several of the use
cases that we have identi�ed in real-world situations.

For the aim of compressing RDF data while maintaining querying speed, we make
an extensive use of Succinct Data Structure (SDS) data structures to bene�t from its data
compression and high data retrieving speed simultaneously. This help us to design a self-
indexed compact RDF store, named SuccinctEdge, which does not require decompression
operation. Our query processing approach is adapted to our storage layout and to standard
SDS operations, namely access, rank and select. We prove the e�ciency of our
approach with a thorough evaluation.

In order to help the acceleration of RDFS reasoning, we have designed our system based
on a semantic-aware encoding strategy named LiteMat. This encoding scheme, which has
been developed and is maintained by our research team, has been extended in this PhD
thesis to support multiple inheritance, transitive and inverse properties. It thus extends the
expressive power of addressed ontologies.

In real IoT use cases, data are usually continuously coming from sensors or actuators. To
address this issue, an extension of SuccinctEdge has been designed to handle those stream-
ing data. This extension includes an extra data structure in our RDF store to process nu-
meric data with time-based aggregations and an adapted SPARQL streaming extension pro-
cessor to permit the querying of streaming data. With the help of this extra data structure
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and the adapted query processor, one can easily query the dynamic RDF graph with stream-
ing compliant SPARQL queries. However, query execution on a dynamic graph may have
many repeating graph searches, which may heavily impact the performance of the system.
In order to solve this problem, we separate a query into dynamic part and static part. The
result of the static part is computed once and stored all along the duration of the continu-
ous query processing. Concerning the dynamic part, the corresponding result is combined
with the static part result to generate the �nal result of each query execution. We prove
that our streaming extension system is of low latency and of high throughput with good
robustness and correctness properties.
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Introduction

La volonté trouve, la liberté choisit.
Trouver et choisir, c’est penser.

– Victor Hugo

1.1 Introduction

With the explosion of information technology in the late 20th century, the Internet has be-
come an important part of our daily life. In order to facilitate communications through the
Internet, the World Wide Web (WWW), which contains a set of widely established stan-
dards, is designed to guarantee interoperability with the Internet at various levels[15]. The
�rst generation of the WWW was aiming at human direct accessibility. With the appear-
ance of the Semantic Web[6], the goal is now to make the Web data machine process-able.
Further work is needed to complete this vision even if many standards and good practices
are known and available.

This need for web data processing is especially true with the emergence of the Internet
of Things (IoT) where small connected devices, e.g., sensors and actuators, are blooming.
In this context, one can question about the interactions of the IoT and the Semantic Web as
it is clear that the latter can help in managing "smartly" the data produced by the former.

Considering the IoT, the wide installation and running of small devices causes an ex-
plosion of the amount of produced data. Until now, this data has generally been transferred
to a central powerful machine or to a set of machines to get it processed. We can consider
that such an approach is no longer tenable for ecological, performance and �nancial rea-
sons. Intuitively, round-trips of information on the network are consuming a lot of energy
and prevent fast decision making. Moreover, either buying and maintaining or renting on
the cloud powerful machines has its economical cost that could be prevented when some
computations can be performed on small devices which are already installed and accessible.
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The small devices reside at the Edge of the network. And data processing performed
at the Edge is usually denoted Edge Computing. This concept gradually enters into the
view of researchers in this domain. This proposition aims at processing data where it is
generated in order to reduce data transmission in the network.

It then seems obvious that combining Semantic Web and Edge Computing may become
an interesting trend where smart, autonomous decisions could be taken at the edge of the
network. Very few research work have investigated the interface of these two computer
science domains. Nevertheless, we consider that, motivated by its potential in real world
use cases, it will gain much more attention in the near future.

In this PhD thesis, we address some important questions toward an integration of Se-
mantic Web approaches to Edge Computing. In the next section, we present three of these
research questions.

1.2 Problem statement

When one considers the combination of the Semantic Web and Edge Computing, one of
the �rst problem that comes into our mind is how to adapt RDF data management to run
on Edge devices. Existing popular and production-ready RDF stores are mostly designed
for centralized, powerful machines which generally have a large memory space and high
computational power, i.e., CPUs with multiple cores.

These machines can easily run an RDF store that depends on multiple indexes, i.e., which
requires a potentially large memory footprint. However, considering the limited resources
on an Edge device, a compact RDF store is needed. Obviously, this should not come at the
cost of query execution performance nor querying capacities. Moreover, to bene�t from the
"intelligence" of the Semantic Web, this RDF store should also support reasoning services.
With the same consideration, an e�cient and compact reasoning mechanism is required.
This reasoning mechanism will support fast reasoning and, in the meantime, can handle
su�cient logical expressiveness to support standard use cases. Another fact that should
be taken into consideration is that the data generated by sensors are coming continuously.
Nevertheless, traditional RDF systems can only handle static RDF graph which are not
adapted to sensors’ data.

Hence, our goal in this thesis is to design and implement an novel kind of RDF store
with the following characteristics: 1) requiring a small memory footprint without losing of
query processing performance, 2) supporting fast reasoning services with enough logical
expressiveness, 3) processing data streams coming from sensors, actuators or gateways.

1.3 Research questions

In this section, with the problem stated previously, we will present the main research ques-
tions studied in this thesis. There are three main questions waiting to be answered:
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RQ1: How to accelerate reasoning services with RDF Schema (RDFS)
and some of its extensions?

Traditionally, RDFS reasoning is performed following the 14 RDF entailment rules pre-
sented in the RDF 1.1 Semantics W3C Recommendation1. In [24], the author is emphasizing
that the entailment of RDFS is decidable, NP-complete in the general case and in P in the
absence of blank nodes. These computational complexity results motivated the identi�ca-
tion of RDFS fragments where reasoning is e�cient, i.e., preferably tractable, in the general
case. One solution that tackles this issue and also addresses practical use cases is the work
presented in [31]. In this work, ρdf is presented as a simple and minimal RDFS fragment
that focuses speci�cally on the entailments that real-world situations are interested in. In
fact, it mainly focuses on reasoning services based on the concept and property hierarchies.

In the context of an RDF store, a naïve approach to retrieve all subconcepts of a given
concept C would be: i) search all direct subconcepts of C, i.e., with {D1 v C}, D1 should
be in the answer set. ii) if the TBox also contains {D2 v D1} then D2 is an indirect
subconcept of C and should also be in the answer set. 3) We repeat the second step until
no more indirect subconcepts of C are discovered.

This approach is obviously quite costly. For example, consider that in the context of an
RDF store, we have an ontology with concepts: {A,B,C,D} together with their subsump-
tion relationships (represented using a Description Logic[3] formalism): {B v A,C v
B,D v C}. In order to reason over this hierarchy, for instance asking whether C v A
holds, we need to execute a query like

(?x, subClassOf, ?y) on (?y, subClassOf, ?z)

Moreover, in order to answer whether D v A holds, a query like

(?x, subClassOf, ?y) on (?y, subClassOf, ?z) on (?z, subClassOf, ?t)

should be computed. As we can see, the amount of work to infer a hierarchical relationship
is exponential considering the concept hierarchy depth. With a deep hierarchical relation-
ship, this will become a very costly approach.

In general, RDF stores are reasoning using either one of the two following approaches:
materialization and query rewriting. The former proposes to perform the reasoning ser-
vices before querying, which may a large memory footprint while the latter proposes to
reason at query-runtime which may further slow down the query processing. In order to
solve these problems, a encoding scheme LiteMat has been proposed. It can be considered
a mix of the two approaches since it precomputes the inferred graphs of the concept and
property hierarchies and attributes unique identi�ers to each mapping entries. Then it uses
this encoding to rewrite queries in need for some reasoning. Thus, it accelerates the reason-
ing services of ρdf and saves storage space at the same time. However, LiteMat is unable to
handle the multi-inheritance cases and it can only support reasoning services with RDFS.
How to improve LiteMat to handle multi-inheritance and how to extend LiteMat towards
more expressive ontology languages are the two investigations that we are highlighting in
this �rst set of research questions.

1https://www.w3.org/TR/rdf11-mt/
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RQ2: How to build an RDF store adapted to small devices?

Most RDF stores have been designed to store large amount of RDF data. To manage them in
an e�cient manner, powerful devices equipped with large memory spaces and high com-
putational power are needed. These compute resources help improve the performance of
an RDF store by, for instance, adding meta-data such as indexes and by providing a query
optimizer that will �nd an e�cient execution plan for given SPARQL query, e.g., , to �nd
satisfying join and triple pattern execution orders. This does not correspond to the charac-
teristics encountered in Edge devices.

In devices with limited resources, saving memory space is a primary consideration. But
one can go a step further by using a compression method that reduces the required mem-
ory footprint. At the moment, many data compression methods impose a decompression
step, i.e., to recreate the original form of the data set, to perform any processing. It thus
slows down the information retrieval process and implies additional computations during
query processing. With the emergence of decompression-free data structures, it should be
possible to propose a storage layout for RDF triples that is both compact and capable of
supporting e�cient query processing.

Additionally, �nding the most optimal join order takes much calculation and requires
some extra meta-data. With limited resources and limited accessible meta-data, how can we
make a compromise between the most optimal join order and query optimization speed?

Finally, in order to bene�t from the logical deduction ability of RDF with ontology, an
e�cient reasoning process should be implemented with an adaptive query processing, this
reasoning service is quite important as inference can make a system intelligent in real use
cases. Thus the third question is how to implement this reasoning service in the RDF store
for small devices.

RQ3: How to extend the RDF store for edge devices to handle the
streaming numeric data generated by sensors in real cases?

In real-world IoT use cases, small devices that perform some computations, like anomaly
detection, are often connected to sensors. These sensors continuously generate various
forms of measures, e.g., numerical data like pressure in gas distribution network. Thus an
RDF store designed for these small devices should have the ability to handle streaming data
with an adapted query logic. In such cases, standard SPARQL queries are generally not
su�cient and a continuous extension is required. The integration of such a component in
the context of our Edge Computing RDF store is a research question by itself.

Based on this, the question of e�cient query processing is emerging. In fact, in practical
continuous IoT queries, a query is generally handling some static part, e.g., sensor charac-
teristic, and a dynamic part, e.g., the latest measure. Our last question deals with how to
make a distinction between the static and dynamic portion of a continuous query in order
to reduce repeated information retrieving comes to be a question.
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1.4 Contributions

The contributions we present in this section address the three research questions. In this
section, we are going to list the contributions according to each of the three questions.

• For question RQ1, we have extended LiteMat toward RDFS++, which is an extension
of RDFS together with owl:sameAs and owl:transitiveProperty , and
to support multiple inheritance cases. More concretely, we have proposed an encod-
ing solution of individuals involved in chain-like and tree-like transitive structures
with an adapted query processing strategy. We have also proposed a simple ABox
transformation together with an ID transformation while looking up dictionaries to
support owl:inverseOf properties.

• For question RQ2, we have designed SuccinctEdge, a compact RDF store for Edge
Computing with the support of rapid query processing and reasoning services. The
basic data structure implemented in SuccinctEdge is based on Succinct Data Structure
(SDS) which is a family of data structures that support e�cient data compression
and quick data retrieving. We have also implemented LiteMat into SuccinctEdge to
support rapid reasoning services. As for query optimization, we have applied a left-
deep join based on query graph analyses and heuristic to make a compromise between
data optimization speed and query performances.

• For question RQ3, we have extended SuccinctEdge to query unbounded graph. This
makes it possible to realize anomaly and risk detection with a continuous analysis of
events received from sensors. During query processing, we have distinguished static
and dynamic portion of a continuous query to avoid unnecessary computations of
parts of a query execution. We have also conducted evaluations of our system in the
aspects of correctness, robustness, latency and throughput.

1.5 Publications

In this section, we are going to list the publications corresponding to the contributions
mentioned above of this thesis.

1. Extending LiteMat toward RDFS++. Olivier Curé, Weiqin Xu, Hubert Naacke,
Philippe Calvez. LASCAR@ESWC 2019: 54-64

2. LiteMat, an Encoding Scheme with RDFS++ and Multiple Inheritance Sup-
port. Olivier Curé, Weiqin Xu, Hubert Naacke, Philippe Calvez. ESWC (Satellite
Events) 2019: 269-284

3. Multiple Inheritance of Ontology Concepts in a Semantic-Aware Encoding
Scheme. Weiqin Xu, Olivier Curé, Philippe Calvez. ISWC Satellites 2019: 105-108

4. SuccinctEdge: A Succinct RDF Store for Edge Computing. Weiqin Xu, Olivier
Curé, Philippe Calvez. Proc. VLDB Endow. 13(12): 2857-2860
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5. Knowledge Graph Management on the Edge. Weiqin Xu, Olivier Curé, Philippe
Calvez. EDBT 2021: 229-240

1.6 Thesis organization

This thesis is organized in six chapters. The main research contributions are presented in
Chapters 3, 4 and 5. More precisely, the chapters can be described as follows:

• In the second chapter, we will introduce some background knowledge correspond-
ing to our research. This includes the Semantic Web, Resource Description Frame-
work(RDF), the SPARQL query language which is designed for querying RDF data
and some extensions of SPARQL. Then we will also introduce RDF Schema with its
extensions and LiteMat, a encoding scheme to accelerate RDFS reasoning services.
Some other important concepts are Edge Computing and RDF stores together with
Succinct Data Structures, a compact data structure which plays an important role in
our RDF system.

• In the third chapter, we will introduce our extensions of LiteMat, which is a semantic-
aware encoding scheme. These extensions include i) how to solve the multi-inheritance
problem of LiteMat, ii)how to support owl:inverseOf and iii)how to support
owl:transitiveProperty . We will also illustrate query processing concern-
ing the extended logic.

• Chapter four starts with a general presentation of SuccinctEdge (our prototype RDF
store for Edge Computing) and a motivating example of our use case. Then we step
into details of the system architecture and data structure especially designed to com-
press data while maintaining query speed. To fully improve the system performance,
we propose a heuristic-based join order optimization and design some algorithms for
fast retrieval of RDF data.

• Chapter �ve extends SuccinctEdge towards streaming processing. In order to adapt
the system to streaming cases, we add some streaming data structures to support
data aggregation and extend SPARQL to streaming query with the inspiration of C-
SPARQL. To fully exploit the potential of this extension, we separate the query graph
model into static and dynamic elements and have the static part calculated once to
avoid repeating searches.

• In the last chapter, we conclude this research work and propose a list of some future
work and perspectives.

12



Chapter 2

Background knowledge

The man who asks a question is a fool
for a minute, the man who does not ask
is a fool for life.

– Confucius
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This chapter introduces several notions which are needed to understand the research
and implementation work that is presented in this PhD thesis.
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2.1 Introduction

In this chapter, we �rst present some important Semantic Web related W3C recommenda-
tions, i.e., RDF, RDFS, OWL and SPARQL, as well as some stream processing SPARQL ex-
tensions. Then, we introduce an encoding strategy for RDFS knowledge bases, i.e., LiteMat.
In another section, we consider concepts pertaining to the IoT and more precisely to Edge
Computing. Important research in the domain RDF data management is presented. This
considers both RDF stores running on standard machines as well as systems especially de-
signed to run on edge devices. Finally, we conclude this chapter with a presentation of
Succinct Data Structures (SDS), a family of data structures that we are widely using in our
SuccinctEdge RDF store system.

2.2 Semantic Web

The "Semantic Web" concept, which was �rst proposed by Tim Berners-Lee in 1999[5], aims
at supporting intelligent services on the Web. The principal approach toward reaching this
goal is to enable machines to automatically interpret Web data via de�ning vocabularies’
semantics used to describe this data. This extension of the Web, which is also called "Web
3.0", is considered as the next generation of the Web. Unsurprisingly, it gained much atten-
tion from a certain research community. The Semantic Web is built around a set of W3C
recommendations. For instance, it uses the Resource Description Framework (RDF) as the
basic data modeling framework. A suitable query language (SPARQL Protocol and RDF
Query Language - SPARQL) has been carefully designed to query RDF data. Moreover, in
order to ensure reasoning mechanisms over RDF data, researchers proposed to add logi-
cal restrictions which are based on di�erent logical languages, e.g., based on Description
Logic (DL)[3]. These restrictions form an ontology language which help to infer implicit
consequences from explicit data represented in RDF.

2.2.1 Resource Description Framework

The birth of RDF can be traced back to 1997[39]. The design of was in�uenced by various
predecessor languages and its �rst o�cial appearance was in a W3C publication in 1999[21].
From that time, RDF has become a W3C recommendation for representing web resources
and their metadata.

The RDF data model is based on the notion of triples of the form (subject, predicate, ob-
ject). A set of triples forms a directed graph where subjects and objects are nodes and pred-
icates are directed edges. Given three distinct sets U , B and L respectively corresponding
to sets of URIs, blank nodes and literals, the signature of a triple (subject, predicate, object)
is :

(U ∪B)× (U)× (U ∪B ∪ L)

Intuitively, URIs are similar to Uniform Resource Locator(URL) but URIs don’t necessar-
ily correspond to actual web pages. Blank Nodes are just nodes in an RDF graph which
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Figure 2.1: RDF graph example

don’t have intrinsic names. Literals consist of a lexical form with a datatype URI (with
a language tag in addition if the datatype URI is http://www.w3.org/1999/02/22-rdf-syntax-
ns#langString). Literals are used for values such as strings, numbers, and dates. This sig-
nature indicates that a subject could be a URI or a Blank Node, a predicate could only be a
URI and a object could be a URI, a Blank Node or a Literal.

Figure 2.1 shows an example of an RDF graph where blank nodes correspond to green
circles, URIs to labelled black circles and literals are rectangles. This �gure describes an
observation of a sensor in an IoT use case. We have an observation which is generated at
a certain time, this observation has a measure result which is 18.015 Mol. From this RDF
graph, one can easily retrieve information using a query language such as SPARQL. We will
present SPARQL in the next sub-section.

2.2.2 RDF query languages

Once the Semantic knowledge model standard is settled, an adapted query language is
needed to retrieve information from an RDF graph. SPARQL1 is the o�cial W3C recom-
mendation for querying RDF data.

SPARQL

SPARQL is a query language especially designed for RDF data. Similar to SQL, SPARQL
also uses SELECT...WHERE... clauses to represent a searching query. Unlike SQL, the

1https://www.w3.org/TR/sparql11-query/
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?t ?v ?u
"2020-02-21T9:00:02+00"ˆˆxsd:dataTime "18.015"ˆˆxsd:double unit:Mol

Table 2.1: Result table of query graph 2.2

content of the WHERE clause is a Basic Graph Pattern(BGP) which consists of multiples
Triple Patterns(TPs). Hence, the graph represented in a WHERE clause is matched to an
RDF graph to produce the query result. Each TP in a BGP is represented in the form of
(Subject PredicateObject)where some elements can be replaced with variables. Given the
following distinct sets of URIs U , Blank Nodes B, Literals L and variables V , the signature
of a SPARQL TP:

Tp = (U ∪B ∪ V )× (U ∪ V )× (U ∪B ∪ L ∪ V )

A basic graph pattern matches a subgraph of the RDF data when RDF terms from that
subgraph may be bound to the variables and the result is an RDF graph equivalent to the
subgraph[43]. Once all the matched subgraphs are found, we can output the answer set
according to the required variables that are indicated in the SELECT clause.

From the SPARQL query presented in Query 2.1, we can construct the BGP of Figure
2.2. This graph can be matched to Figure 2.1. The query execution will yield some variable
bindings for ?t, ?v and ?u such as displayed in table 2.1.

SELECT ?t ?v ?u WHERE{
?a sosa:resultTime ?t .
?a sosa:hasResult ?b .
?b qudt:numericValue ?v .
?b qudt:unit ?u .
?u rdf:type qudt:ChemistryUnit .

}

Query 2.1: SPARQL query example

SPARQL extensions

Although SPARQL is relatively rich for querying RDF data, it lacks some features for query-
ing streaming data, i.e., unbounded data that are coming with at a certain velocity. Some
research have been conducted in order to �ll this gap and there exists some SPARQL exten-
sions aiming at querying RDF streaming data, e.g., Streaming SPARQL[7], CQELS[27] and
C-SPARQL[4].

Streaming SPARQL extends the SPARQL language to allow the de�nition of time and
count based windows over data stream[7]. It usually uses a FROM STREAM clause with
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Figure 2.2: SPARQL graph pattern example

an URI to set an input as a data stream. The RANGE key word serves to give out the data
window size and the SLIDE key word indicates the delay of each data window movement.

C-SPARQL also uses a FROM STREAM clause to indicate the input data stream and
RANGE key word is also applied to indicate the data window size. However, C-SPARQL
assumes a data window could be either sliding or tumbling. With the sliding mode, the
data window is moved by the frequency indicated by STEP key word. The tumbling mode
applies a consume-and-drop strategy which slides the data window by its range.

Unlike the two previous proposals, CQELS applies the STREAM key word to a portion
of graph pattern. It is designed to handle queries that also depend on some static data. Each
STREAM key word with a portion of graph pattern is called a Stream Graph Pattern. Like
Streaming SPARQL, a Stream Graph Pattern can also use RANGE and SLIDE clauses to
de�ne a time-based stream window. Moreover, the RANGE key word can be replaced by
Triple, NOW and ALL. Triple indicates a triple-based window whose size is determined
by the number of triples, NOW refers to the triples at the current timestamp andALL keeps
all the triples.

2.2.3 Ontology languages

Reasoning is the functionality that provides some "intelligence" to RDF data,i.e., based on
a logic-based ontology, we can obtain implicit consequences from explicit data. The less
expressive W3C ontology language is RDFS. But di�erent fragments of Description Logic
(DL) have been used to design some additional ontology languages for the Semantic Web.
These di�erent fragments became the standards for the OWL pro�les.

In RDF stores, the reasoning process is usually addressed by two distinct approaches:
materialization (a.k.a. graph saturation) and query rewriting (a.k.a. query reformulation).
A combination of these solutions is possible. Materialization and query-rewriting are the
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two representatives. Materialization suggests to pre-infer all the knowledge with the given
ontology and store all the results in the database. This makes the query processing e�cient
as the only thing that needs to be done is searching into the database. However, a large
amount of memory footprint is demanded by materialization because the newly generated
data often takes much more space than the original data. With query rewriting, instead of
pre-inferring all the knowledge, the system rewrites the original query using the knowl-
edge’s ontology. Query rewriting processes inferences online at query run-time. Although
it reduces the overall memory footprint of the RDF store, this heavily increases query exe-
cution duration.

RDF Schema (RDFS)

In an RDF graph, an element denoted an instance could be the subject of a triple containing
rdf:type as the predicate and the object of this triple indicates the class this instance belongs
to. However, knowing the basic class of an instance is not enough in many cases, people
also want to infer some extra terminological knowledge. In order to enable RDF graph
with terminological knowledge, RDFS was equipped with reasoning rules to infer concept
as well as property hierarchies. Moreover, RDFS is also capable to infer concept typing
via the rdfs:domain and rdfs:range properties. Focusing on these inference rules
correspond to addressing the ρdf RDFS fragments. RDFS also provides some other inference
rules but they are less relevant in real-world use cases.

RDFS presents to be the most basic support of logical inference with RDF data, it is also
the most widely used logical syntax in real use cases.

Ontology Web Language (OWL)

The Ontology Web Language, which is abbreviated as OWL, is a W3C recommendation for
the modeling of ontologies. It provides a greater expressiveness compared to that of RDFS.
The �rst version of OWL contains 3 sub-languages which are denoted as OWL Full, OWL
DL and OWL Lite witht he former the more expressive and the latter the less expressive.
OWL Full has a very high expressive power but is undecidable. It is thus almost never used
in real-world use cases. The set of constructors in OWL DL is the same as in OWL Full but
it adds constraints on the descriptions of concept and property. As a consequence, OWL
DL is decidable and there exists some relatively e�cient algorithms for reasoning with it.
OWL Lite presents to be the least expressive language among the three. It was intended to
be an easier language to use than OWL DL since its set of constructs is a sub set of OWL
DL. Nevertheless, practically it was considered to be easier to use for a standard Semantic
Web end-user/developper.

There also exists OWL 2, referring to the second version of OWL, which adds several
new features to OWL[22]. OWL 2 contains 5 sub languages which are OWL 2 FULL, OWL
2 DL, OWL 2 EL, OWL 2 QL and OWL 2 RL. OWL 2 DL is compatible with OWL 1 DL with
the support of some extra features. OWL 2 EL permits to process all standard inference
types with polynomial time algorithms. It is designed for creating a very large ontology
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with a limited amount of OWL features. OWL 2 QL is designed for data-driven applica-
tions, thus all of its standard inference types can also be processed with polynomial time
algorithms. Di�erent from OWL 2 El, OWL 2 QL allows conjunctive query answering by
using conventional relational database[21]. OWL 2 RL is designed for using rule-based rea-
soning engine to make inferences in polynomial time. OWL 2 FULL contains both OWL 2
DL features and RDFS, it is the most expressive sub language of OWL 2. However, similar
to OWL FULL, it is also undecidable.

OWL enhances RDF with a great power of logical deduction and the cost of reasoning is
a direct consequence of the expressive power of the underlying ontology. Finding a trade-
o� between the computational complexity of reasoning and the expressive power of the
ontology language has been an important aspect of the research on the Semantic Web.

RDFS++

Although RDFS o�ers an interesting entry into reasoning with RDF data, it is not enough
for some real world use cases. Yet, OWL is often too powerful to handle these cases. In
order to make a compromise between RDFS and OWL, ontology designers frequently mix
some RDFS with some OWL constructs. This is often referred as RDFS++.

A common, but not strict (i.e., the set of OWL constructs is open), description of RDFS++
is RDFS plus owl:sameAs and owl:transitiveProperty. owl:sameAs states that two URIs
actually refer to the same thing, this property is usually used to map the identical instances
in two di�erent RDF graphs. owl:transitiveProperty indicates a property is transitive,e.g.,
given three instances {a,b,c} and a transitive property {p} with the facts {(a,p,b), (b,p,c)}, a
new triple {(a,p,c)} can be inferred based on the transitive principal.

RDFS++ can satisfy many use cases without reaching the complex reasoning services
of OWL2 DL. This makes a light weight RDFS system with the support of logical arti�cial
intelligence possible.

2.2.4 LiteMat, an encoding scheme for RDFS

Due to the string lengths of URIs and literals, most RDF stores adopt an encoding approach
for the representation of RDF triples. Even with the extra payload of associated dictionaries,
this approach generally yields a smaller memory footprint for the stored data. A typical
approach is to attribute an arbitrary identi�er to each RDF element, e.g., URIs (including
instances, concepts and properties), literals and blank nodes. LiteMat suggests to encode the
identi�ers of the concept (respectively property) hierarchy with a semantic aware method.
A direct impact of this approach is to improve query reformulation at query run-time.

LiteMat[11] is an encoding scheme for RDF and RDFS data that o�ers a trade-o� be-
tween materialization (of inferred triples) and query rewriting, in order to obtain complete
result sets from queries requiring some inferences. It uses an integer interval based en-
coding for the Knowledge Graph (KG) elements that e�ciently and e�ectively captures in
a compressed manner cliques and hierarchical structures. In [11], researchers are apply-
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Figure 2.3: LiteMat Encoding example

ing this encoding to the ρdf[30] fragment of RDFS, i.e., supporting inferences associated to
rdfs:subClassOf,rdfs:subPropertyOf,rdfs:domain andrdfs:range prop-
erties. More recently, StriderR[47] extended LiteMat to support the owl:sameAs prop-
erty which is quite popular in the Linked Data community. Intuitively, a special encod-
ing (a tuple containing clique ID and local ID) was applied to all individuals present in
owl:sameAs cliques and a representative of this clique was automatically selected among
them. Like LiteMat, the work presented in [48] models the concept and property sub-
sumption hierarchies with an intelligent integer identi�cation that is used to rewrite SQL
queries in the ontology-based data access Quest system [49]. With the latest extension of
LiteMat, researchers go further with a smart identi�cation solution for individuals involved
in owl:sameAs cliques as well as support for inverse properties and transitive structures
taking the form of chains and trees.

The idea of LiteMat is to implement the hierarchical information into the encoding of
an ontology element by using a bit-wise strategy. In Figure 2.3(a), we present LiteMat’s
encoding for the TBox in 2.3(b). In a �rst step, the assignment of an identi�er, using a
binary representation, for each concept is performed in a top-down recursive manner, i.e., it
starts by setting the top concept (>) at 1, and proceeds level-wise on the element hierarchy
until all leaves have been processed. Intuitively, for each concept denoted α, we count
the number N of direct sub concepts (including α itself), e.g., in our running example >
, we have N=4 for >. At this level, d log(N) e provides the number of bits necessary to
represent each sub concept. Then, these sub concepts (excluding α) are pre�xed by the
binary identi�er of α and uniquely get a binary representation of a value ∈ [1, N − 1].
For instance, the concept A is pre�xed with ’1’ (>’s identi�er and is assigned the value
1 on 2 bits, i.e., ’01’, yielding the binary string ’101’). Finally, a normalization step makes
sure that all identi�ers are encoded on the same binary string length. This is performed
as follows: once all concepts have been encoded in the �rst step, we get the size L of the
longest encoding string (i.e., 5 in our running example). Then all concept identi�ers with
an encoding length lower than L are appended with ’0’ until their length reaches L. This
normalization step is represented with red ’0’ in Figure 2.3(a). The last column of this �gure
provides the integer identi�er corresponding to each concept.

LiteMat proposes an e�cient query processing approach that takes advantage of the
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semantic-aware encoding. In fact, whenever a query requires to reason over the concept
or property hierarchies, the system simply introduces new variables that are �ltered on the
identi�ers of the encoding scheme.

Consider the concept hierarchy of Figure 2.3(b) and the following BGP: {?x rdf:type
B}. A frequent rewriting that ensures to retrieve an exhausitve answer set would be {?x
rdf:type B} UNION {?x rdf:type B1} UNION {?x rdf:type B2}. Although costly on a query
processing point of view, this rewriting also requires to access the ontology to discover sub
concepts of B. In LiteMat, the system would identify that B has several sub concepts (only
requiring an access to the concept dictionary), replace B with a new variable (e.g., ?y) and
add a FILTER clause that restricts the accepted values of this new variable. This restriction
corresponds to an interval of integer values where the lower bound is the identi�er of B
and the upper bound is easily computing (i.e., using 2 bit shift operations and an addition)
from the identi�er ofB. This computation requires an identi�er metadata stating the index
on the bit string where the normalization has started. Considering that the identi�ers ofB,
B1 and B2 are respectively 24, 25 and 26, the LiteMat rewriting would be: {?x rdf:type ?y.
FILTER (?y≥24 && ?y<28)}. This rewriting is also applied when sub property relationships
are used. In general, the more complex the query, the more e�cient the rewriting and its
performance execution.

2.3 Edge Computing

Edge Computing is a concept related to the IoT. A general architecture of IoT is shown in
Figure 2.4, di�erent devices compose the three displayed layers. The �rst layer is the cloud,
which usually consists of powerful machines with very large bandwidth internet connec-
tion. The second layer, Fog computing, has more devices than the cloud. These devices
are generally less powerful than those of the cloud but still maintain enough computation
power. The last layer is the Edge where the devices are even less powerful but the number
of these devices is much larger than that of the other two layers. Many real use cases have
implemented services for this layer, e.g., smart wearable, smart home and smart city[41].

Other use cases such as smart farming and smart grids[16] are still the tip of the ice-
berg. It is estimated in [23] that at the end of 2021, there will be 10.07 billion IoT devices
installed world wide. These devices are usually micro controllers, Arduinos2 or Raspberry
Pis3. Micro-controllers and Arduinos are very small computers which are energy-e�cient
but function-limited. They can not even run an operating system which is often required
in many real use cases. Raspberry Pis are more powerful than the two previous and are
relatively still resource-limited. With such a huge number of these small devices (billions
over the whole IoT), transferring all the data to the cloud to get it processed will not only
consume enormous calculation power in the cloud but also occupy large network band-
width. With this background, the need to design systems and services for Edge Computing
becomes an important consideration for the future of IT.

Edge Computing[2] corresponds to a processing paradigm that brings storage, manage-
2https://www.arduino.cc/
3https://www.raspberrypi.org/
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Figure 2.4: IoT general architecture

ment, and processing of huge amounts of data closer to the location where it needs to be
performed. This location indicates the edge devices where the data is generated. Although
Edge computing is not a new concept[18], it has gradually become a hop topic since the
ubiquity of Cloud Computing. Unlike Cloud Computing which does all the computation in
a data center equipped with powerful machines, Edge Computing distributes computation
to a large number of small devices which are closer to data sources and only the mini-
mum information is transferred through the network. This can e�ciently reduce the net-
work pressure which is usually the bottle neck of a linked system. More over, distributed
computation can also reduce the server’s pressure which, while doing a huge amount of
calculation, is limited by the thermal problem and hardware technology. Especially, Edge
Computing can also, in some aspects, contribute to data security where the Edge device
may not have all the information of the whole system.

As such, this emerging trend complements a cloud computing approach by supporting
the design of highly local context aware and responsive services, hence eliminating round
trips to the Cloud, as well as mask cloud computing outages.

2.4 RDF stores

RDF has shown its ability to model Web resources, including Semantic Web ones. But it
does not provide any hints on how to manage RDF data. That is issues such as how to store
RDF data in e�cient compressed manner and process SPARQL queries in a cost-e�ective
way are still open. Many attempts have been made to answer these questions. Existing RDF
stores are mostly designed for classical usage, which means they are designed for powerful
machines with su�cient resources such as memory, computational power, etc. , or even for
a cluster of machines. However, in recent years, more and more attention has been paid for
RDF stores running on small devices which are resource-limited. In the following part of
this section, we are going to present RDF stores within these two categories: classical RDF
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stores and RDF stores for the edge.

2.4.1 Classical RDF stores

Classical RDF stores are often designed for powerful, centralized machines which aim to
handle a large amount of data and to do very fast query processing. These machines al-
ways have enough memory space and other computing resources. That is the reason why
they often maintain multiples indexes and uncompressed data structure which are per-
sisted on disks. Some representatives of classical RDF stores are Jena TDB, RDF4J[8], RDF-
3X[35][37], RDFox[34] and Hexastore[53] which are implemented for research use. Others
such as Stardog, GraphDB, AllegroGraph and Oracle are mainly for commercial purpose.
In order to adapt to the requirement of Cloud computing in recent years, some previously
mentioned systems also o�er the distributed version, e.g., Stardog, AllegroGraph.

Classical RDF stores are able to handle very large data sets while in real case the data
may come from widely spread small devices, thus collecting data from these devices may
become the bottle neck of the system performance. Moreover, with the growth of the de-
vices’ number, the scalability and robustness of a knowledge graph management system
based on classical RDF stores can potentially become a problem as the pressure of the net-
work becomes very high. That is why in recent years, RDF stores for edge devices and edge
computing in knowledge graph management gradually gained attention.

2.4.2 RDF stores for edge devices

RDF stores for edge devices often require a compressed data structure, few indexes with
a light-weight query optimizer while still be able to handle su�cient-size data set. Some
other requirements such as device-adapted storage strategy, streaming processing and en-
ergy e�ciency are also taken into consideration in some existing systems. Typical RDF
stores for edge devices are RDF4Led[51], Fed4Edge[38], µRDF Store[9] and Wiselib Tu-
pleStore[20]. RDF4Led is a disk-based RDF store that has been evaluated on Raspberry
Pis. It relies on indexes and is equipped with rich query optimizer nevertheless it does
not support reasoning services. Fed4Edge is a decentralized streaming RDF engine, the
system’s optimizations mainly focus on query federations. µRDF Store and Wiselib Tuple-
Store are dedicated to micro-controllers where the optimizations are designed for extremely
resource-limited environments. Each of these systems has its own consideration for their
adapted environment and adapted optimizations for the environment, e.g., data store struc-
ture, adapted data bu�er for disk-based storage, etc. . We will more details on these systems
in detail in Section 4.5.

2.5 Succinct Data structures

Succinct Data structures(SDS) represents a family of data structures that stores data in a
compact way, but still allows some e�cient data access operations without decompression.
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Figure 2.5: Wavelet Tree example with its dictionary

There are di�erent types of SDS, among which we consider Wavelet Tree (WT) and BitMap
(BM). SuccinctEdge represents an RDF graph into a combination of these two structures to
reach a very compact storage layout without loss of query e�ciency.

BM is the most basic SDS. It is a sequence of bits with some extra information to support
the e�cient execution of SDS operations. BM is the basic building block of WT’s nodes (as
each node in the tree is a BM), but it also relates di�erent WTs in SuccinctEdge’s triple
representation (further details in Section 4.3).

WT [33], whose name reveals some a�nity with the idea of the wavelet packet decom-
position in signal processing, refers to a data structure which decomposes a data sequence
into a set of nodes of a balanced binary tree. An example of a WT is given in Figure 2.5b.
Suppose that we have a sequenceABFECBCCADEF , where each letter is mapped with
an identi�er in an incremental order, e.g., A is denoted with 0, B is denoted with 1 (see dic-
tionary in Figure 2.5a). A tree structure is constructed from this sequence as follows: each
level of this tree divides the sequence of previous nodes into two sub-sequences by the cor-
responding bit. For example, from root to the �rst level, ABFECBCCADEF is divided
into ABCBCCAD and FEEF by the �rst bit of each identi�er entry. This strategy is
applied recursively until each leaf is computed.

SDS support three operations to access data: Rank, Select and Access. Given a se-
quence S, the operation S. Access(i) (also denoted as S[i]) refers to the (i + 1)th element
in S. S.Rank(i, c) returns the number of occurrences of c from S’s beginning to index i. Fi-
nally, S.Select(i, c) returns the index of ith occurrence of element c in S. These operations
can be computed in O(1) for BM and O(log n) for WT where n is the size of the vocabulary.
Figure 2.5(c) provides an example over a simple BM. The Access(4) operation returns the
5th bit in a BM, which is 0. The operation Rank(4, 1) asks for the number of 1 occurrences
from index 0 to index 4, of which the result will be 2. The operation Select(2, 1) searches
for the position where 1 appears the 2nd time, this returns 3 as the result. Some reserach
have demonstrated that the help of RRR vectors [44], the Rank, Select and Access can be
processed very e�ciently over a BM.
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Figure 2.6: RRR vector example

A RRR vector proposes to divide a bitmap into blocks. An example shown in �gure 2.6
highlights how to store a bitmap in the form of an RRR vector. A BM is split into small
blocks which are of given size, here of size 3. For each block, we store the popcount and
the o�set corresponding to the block’s permutation order. Moreover, we can also use a
superblock to store a certain number of blocks to further reduce calculation. With the help
of RRR vector, we can calculateRank and Select operation over a BM inO(1) time[32][45].

As Rank, Select and Access over a BM can be executed in O(1) time, we can now
analyse these operations over a WT.

The algorithm to computeRank(i, c) over a WT proposes to compute ri = Rank(ri−1, bi)
recursively, where ri corresponds to the result of current iteration and bi corresponds to the
i-th bit of c. This algorithm can help to execute Rank(i, c) over a WT with a complexity
of O(log(n)). For example, to compute Rank(6, B) over �gure 2.5(b), we can 1) compute
Rank(6, 0) (0 corresponds to the �rst bit of B) over the root level of the WT, thus we get
4 as the result. Then, the second step is to compute Rank(4 + 1, 0) (0 corresponds to the
second bit of B) over the left branch of the root, thus we get the new result 3. Finally we
compute Rank(3 + 1, 1) (1 corresponds to the third bit of B) to get Rank(6, B) = 2.

Select operation can also be done in O(log(n)) time. The idea is to inverse the steps
of a Rank operation. For example, to compute Select(2, B), we 1) compute Select(2, 1) (1
corresponds to the last bit of B) over the supernode SN of the leaf B, this give us 2 as the
result. The next step is 2) compute Select(2 + 1, 0) (0 corresponds to the 2nd last bit of B)
over the supernode of SN to get the result 3. The last step is 3) compute Select(3+1, 0) (0
corresponds to the �rst bit of B) over the root, and we have the �nal result Select(2, B) = 5.

Access over WT is also of complexity O(log(n)). Given an example as Access(5) over
�gure 2.5b, the �rst step is to computeAccess(5) over the root. Once having 0 as the result
(corresponding to the �rst bit of the �nal result), we then computeRank(5+1, 0) = 4 thus
we get the corresponding index as 4 − 1 = 3 in the second layer. Because we have 0 as
the result’s �rst bit, we go down to the left branch LB and execute Access(3) = 0. Up to
this step we have 00 as the �rst two bits of the result. With the same strategy, we compute
Rank(3 + 1, 0) = 3 over LB and Access(3) = 1 over the left branch of LB. Finally, the
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result of Access(5) over this WT comes to be 001 which corresponds to B.
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LiteMat, an encoding scheme for RDFS++

La seule bonne monnaie est la pensée.

– Platon
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LiteMat is an important component of SuccinctEdge. It provides a compact representa-
tion for knowledge bases and an e�cient approach to RDFS reasoning via query rewriting.
Considering compactness, the binary encoding of knowledge base entries, i.e., ABox in-
dividuals, ontology concepts and properties, is compatible with emerging data structures
which are adapted to in-memory storage, self-indexing and a decompression-free approach.
The chapter’s main objective is to present our latest LiteMat contributions: support for mul-
tiple inheritance and an ontology expressiveness extension with the integration of transi-
tive and inverse properties.
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3.1 Introduction

As introduced in Section 2.2.4, LiteMat corresponds to an encoding schema for RDF data and
RDFS ontologies. Its main advantage compared to other encoding approaches, e.g., those
found in most RDF stores [1][54][35][19], is that it can be quali�ed as semantic-aware. This
means that the integer values associated to ontology concepts and properties are conveying
the semantics of their respective hierarchies. As a result, systems that are using LiteMat can
e�ciently support the most common RDFS reasoning services via a query reformulation
approach.

Nevertheless, LiteMat has its set of limitations. One of them is the multiple inheritance
problem which appears in some real-world ontologies. Essentially encountered in concept
hierarchies, it corresponds to the fact that a concept has more than one super concept.
Given LiteMat’s top-down, single-ancestor directed encoding scheme, providing an e�cient
solution to the multiple inheritance problem is not that simple. Precisely speaking, the idea
of LiteMat is to encode an element by applying the encoding of its direct ancestor as the
pre�x. This idea leads to a problem where if an element has more than one direct ancestor, it
may have multiple possible encodings which breaks the rule that an element can only have
a unique identi�er in the dictionary. In this work, we propose a solution that �ts nicely
with LiteMat’s encoding approach, i.e., it keeps its binary encoding strategy and limits data
structures overload. Moreover, it provides good performance measures on SPARQL query
processing.

Another LiteMat extension that we are presenting in this chapter concerns ontology
expressiveness. In fact, we propose a solution for transitive and inverse properties. Con-
sidering owl:inverseOf properties, we apply a simple transformation of the encoded
ABox and a property dictionary look-up at query processing-time. Our approach consid-
ering the owl:transitiveProperty property is more involved and is based on i)
an encoding solution of the individuals involved in chains and trees of these properties
and ii) an associated query processing strategy. Due to a lack of an e�cient solution, di-
rected acyclic graphs (DAG) of transitive properties, which are relatively rare in practice,
are currently being materialized.

The contributions presented in this chapter permit to extend LiteMat toward RDFS++
expressiveness and to support multiple inheritance in the ontology hierarchies. These ex-
tensions concern both an encoding scheme that results in a more compact KG representa-
tion and an adapted query processing.

3.2 Multiple inheritance in LiteMat

In this section, we present LiteMat’s encoding scheme using the ontology concept hierarchy
displayed in Figure 3.1(b) where both plain and dashed arrows represent a subsumption
relationship, e.g., A1 → A corresponds to A1 v A in the DL formalism. Note that this
method can also be applied to property hierarchies.

We can observe that two multiple inheritance situations occur in this concept hierarchy.
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Figure 3.1: LiteMat Encoding (a dashed arrow points to a representative)

In fact, concepts E and F have respectively 3 and 2 super classes. With LiteMat’s encoding
scheme, it is clear that multiple inheritance poses a problem since each ontology concept
must have a single identi�er. For instance, in our running example, we can provide three
di�erent identi�ers to E: one computed from A1, another one from B and a last one from
C .

The pre�x, i.e., before the normalization step, identi�er of E computed from A1 will
be 100111, as a consequence, the identi�ers of E1 and E2 will have respectively 10011101
and 10011110 as a pre�x. However, if we compute the identi�er of E from B, the pre�x
comes to be 101001, then the pre�x identi�ers attributed toE1 andE2 will be 10100101 and
10100110 respectively. Another possibility is to compute the identi�er ofE based onC , thus
we obtain 101101 as E’s pre�x identi�er and, therefore, distribute 10110101 and 10110110
to E1 and E2. It is obvious that the identi�er of a concept will vary if it has multiple super
concepts. Further more, this will also have impact on its sub concept hierarchies recursively.

Multi-inheritance poses issues to LiteMat’s encoding. Thus in the following section, we
propose a solution to this issue.

3.2.1 Encoding scheme

Our support of multiple inheritance is based on the notion of a representative. A represen-
tative, denoted Cr, is selected among the super concepts C1,..,Cn of a concept SC . That is
the integer identi�er of SC will be computed following Litemat’s approach based on the
Cr identi�er. It is obvious that with this approach SC loses every connection to its non-
representative direct and indirect super concepts. Hence it is necessary to keep track of
these super concepts. In the following, the remaining super classes of SC , i.e., {C1,..,Cn}\
Cr are considered as non-representative of SC .

Let consider that the representative of the conceptE isA1. Hence, the non-representatives
ofE are the conceptsB andC . In Figure 3.1(b)(where each concept has its identi�er in sub-
script), a representative is pointed by a dashed arrow and we can observe that the identi�ers
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of concepts E, E1 and E2 (resp. 156, 157 and 158) are computed from A1’s identi�er (i.e.,
152).

To support an e�cient query processing, we require a key/value data structure, denoted
nonRep. Intuitively, each non representative of the ontology is an entry in that data struc-
ture and the value associated to a key corresponding to a set containing all the sub concepts
involved in a multiple inheritance with the key concept as one of its super concept. In our
running example, nonRep(B) = {E} and nonRep(C) = {E,F}.

3.2.2 Query processing and optimization

The query processing presented in Section 2.2.4 is extended to produce complete and correct
result sets for ontologies involving multiple inheritance. The extension coincides to the
addition of disjunction in the generated FILTER clause of the rewritten SPARQL queries.
Like in the original rewriting approach of Section 2.2.4, the disjuncts correspond to interval
descriptions for a given query variable. An interval is computed using the nonRep data
structure. Note that queries involving representatives do not necessarily involve inferences
involving the concept and property hierarchies.

We consider this chapter’s running example (Figure 3.1) and the following BGP, denoted
Q, which involves a multiple inheritance:

{?x rdf:type C}

The query rewriting denoted Q′ corresponds to:

{ ?x rdf:type ?y. filter((?y ≥ 176 && ?y<192)
‖ (?y ≥ 156 && ?y < 160) ‖ (?y ≥ 168 && ?y < 176))}

InQ′, the �rst disjunct corresponds to the standard interval de�ned in Section 2.2.4 and
the last two are computed using the nonRep data structures. That is, we search whether the
conceptC is involved in a multiple inheritance by checking its presence as a key in nonRep.
If it is the case, it will return a set of concepts and for each of these concepts a disjunct is
added to the FILTER clause over that variable. In our running example, nonRep(C) returns
a set with concepts E and F , resp. the identi�ers 156 and 168. These values correspond
to the lower bounds of the intervals and upper bounds are compute as stated in LiteMat’s
query reformulation approach.

Based on the intervals present in this FILTER clause, a simple optimization can be per-
formed. It has the possible e�ect of reducing the number of disjuncts in the �lter clause of
a query reformulation. The optimized queries are Q′′ :

{?x rdf:type ?y. filter((?y≥168 && ?y<192) ‖ (?y≥156 &&
?y<160))

This optimized rewriting now contains two conjuncts instead of three. In more involved
queries, this optimization can have an important impact on query performance.
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3.3 RDFS++ extensions for LiteMat

3.3.1 Support for owl:inverseOf

Concerning owl:inverseOf properties, we propose the following simple approach.
For each URI property and its inverse, denoted 〈p, p−〉, we retain in our ABox[14], only one
of the two URIs which is therefore denoted as the property representative, i.e., pr. For each
pair 〈p, p−〉 in the ABox, a representative, pr, is selected based on the largest number of
occurrences over the pair 〈p, p−〉.

In the LiteMat property dictionary associated to the locate function[10], i.e., URI to iden-
ti�er key-value structure, both property URIs are associated to the same integer identi�er:
both pr and p− are associated to a unique pid value as computed in [11]. In the extract prop-
erty dictionary, i.e., id to URI key-value structure, only the representative property is stored
since answers to queries requiring an extract operation on the property are expressed with
the representative pr.

During the ABox encoding, all triples already expressed with pr are normally encoded
using the individuals and properties dictionaries. Concerning all triples expressed with p−r ,
e.g., i1 p−r i2, they are transformed as follows: the subject and object of the original triples
respectively become the object and subject of a new triple and the property is switched to
the representative.

Example: Let parentOf owl:inverseOf childOf be a TBox axiom and parentOf
is selected as the representative in this property pair. Table 3.1 displays an original ABox
and its resulting transformation.

Original ABox Transformed ABox
dominique parentOf jean. dominique parentOf jean.
dominique parentOf pierre. dominique parentOf pierre.
marie childOf pierre. pierre parentOf marie.

Table 3.1: TBox encoding facts

A similar transformation is applied to graph patterns of a SPARQL query whenever the
inverse of a representative is identi�ed in a BGP. Starting with the following query:

SELECT ?x ?y WHERE {?x childOf ?y}

The corresponding reformulation would be:

SELECT ?y ?x WHERE {?y parentOf ?x}.

This would return an answer with 3 tuples including the pair 〈 pierre, marie 〉.
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3.3.2 Support for owl:transitiveProperty

Let consider a function trans(G, p) = G′, with G an RDF graph, p a transitive property
and G′ a subgraph of G solely composed of triples with the p property. Intuitively, G′ is
composed of, not necessarily connected, chains, trees or DAGs of individuals (see Figure
3.2 for examples of the �rst two structures).

In this section, we propose two encoding schemes: one for the chain and another one
for tree structures that are following the logical approach of LiteMat. That is, it provides
semantic-aware identi�ers to ABox individuals encountered in these structures. In the cur-
rent state of the LiteMat data management system, the transitive closure of DAG transitive
structures is materialized.

The characteristics that we are aiming for in this encoding schemes are: (i) compact-
ness since no materialization is required for the chain and tree structures, (ii) determin-
ism since the identi�er of each individual in a chain or tree is computed deterministically
and (iii) scalability since all encoding tasks are performed in a distributed manner on a
distributed engine, namely Apache Spark and its GraphX graph computing component.

In both the chain and tree encoding, our processing starts with the computation of
trans(G, p) for all transitive properties of the associated ontology, resulting in a set of
subgraphs. Then, the system computes the connected components for each of these sub-
graphs. Intuitively, the connected components operation groups vertices into connected
subgraphs. This can easily be performed in a scalable manner with Spark’s GraphX compo-
nent. GraphX’s API comes with a connected component function that runs in a distributed
manner over a cluster of machines. The resulting connected component is assigned a dis-
tinct identi�er corresponding to the lowest node identi�er of the connected component.
The encoding of individuals in these graphs is made of a quadruple of integer values which
correspond to: fid which is 0 if the transitive structure is a chain or 1 if it is a tree, pid the
identi�er of the transitive property, ccid the connected component identi�er and lid a local
node identi�er. This procedure can be summarized in algorithm 1.

The chain and tree structures are distinguished by the computation of their local identi-
�ers. Figure 3.2 presents in each node the label of the individuals (i.e., URIs) and its identi�er.
In the case of a chain structure, it is su�cient to assign integer values that de�ne a total
order over the set of lid of a given triple 〈fid, pid, ccid〉. With such an approach, the compu-
tation of all descendants (respectively ancestors) of a given individuals 〈fid, pid, ccid, lidi〉
will amount to retrieve individuals identi�ed by 〈fid, pid, ccid, lidx〉 for all lidi < lidx (re-
spectively, lidi > lidx).

The encoding of tree structures is more involved. For instance, in Figure 3.2(b), individ-
uals E,F and G do not belong in the transitive closure of B or D. In this case, the incremental,
naive assignment of local identi�er is not su�cient to e�ciently detect that a node is not
in the transitive closure of another node in this graph. We adopt a local node identi�er ap-
proach that is inspired by our LiteMat binary approach. Intuitively, the encoding algorithm
is recursively assigning binary identi�ers in a top-down manner from the root of the tree.
The root node starts with a single bit set to 1. Then we identify all directly linked individu-
als for a node. The size of this set of individuals justi�es the length of the binary encoding

32



LiteMat, an encoding scheme for RDFS++

Algorithm 1: Compute transitive closures.
Input: Graph G, Transitive properties set P
Output: A set of transitive closures S

1 for a property pi in P do
2 Retrieve the sub-graph gi where all the edges are pi from G;
3 for each connected component ccj in gi do
4 if ccj is a transitive chain then
5 Transitive closure identi�er idt ← (0, idpi , idccj);
6 else
7 if ccj is a transitive tree then
8 Transitive closure identi�er idt ← (1, idpi , idccj);
9 end

10 end
11 Add idt and ccj to S;
12 end
13 end
14 return S;

for each of these individuals. For instance, in Figure 3.2(b), A has three directly connected
individuals (namely B, C and D) so two bits are necessary to encode them. The temporary
local identi�er at each level starts with counter set to 1 and is incremented by 1, and each of
these individuals is pre�xed with the identi�er of their local root. Thus the identi�er of B in
Figure 3.2(b) is 101 (with the left most bit inherited from A and 01 computed at this level).
This computation is performed recursively until all nodes are assigned a value. A �nal step
consists in normalizing the temporary identi�er: all identi�ers have to be encoding with
the same binary length. In our example, F and G are the identi�ers with the longest binary
encoding (i.e., 6 bits) so all nodes of the tree are right-completed with bits set at 0 to reach
the same length. The identi�ers for each node in Figure 3.2(b) are displayed in each box,
the gray 0 of an identi�er are the results of the normalization while the local fragment is in
black.

Given this local identi�er strategy, we can easily �nd whether a given node is in the
transitive closure of another node of that same graph. This operation is based on checking
whether the subtraction of two identi�ers is contained in a given interval. Let consider
the connected component graph of a transitive property. Due to the normalization step, all
identi�ers of this connected component are encoded using n bits. Moreover, we introduce a
function, localLength, that returns the non-normalized binary encoding length of a node.
For instance, in Figure 3.2(b), localLength of A,C and G are respectively 1, 3 and 6. For
two nodes of this graph, α and β, β is in the transitive closure of α if β − α is included in
[0, 2n−localLength(α)[.

Using this approach, we can e�ciently compute that G is in the transitive closure of A,
B and E but not of B, D and F.

33



Chapter 3

Figure 3.2: A chain and a tree of a transitive property. Dotted red arrows correspond to the
transitive closure. In each node, a label and its local identi�er (lid)

Since LiteMat’s owl:sameAs encoding scheme, i.e., a tuple 〈cliqueId, localId〉, does
not rely on a local identi�cation total order, it is possible to composeowl:sameAs identi-
�ers with transitive ones. This means that individuals involved in a chain or tree transitive
structure can be involved in a owl:sameAs clique by reusing their identi�ers in the
sameAs encoding scheme. In such a case, the localId corresponds to the whole transitive
identi�er.

3.4 Query processing in the presence of transitive prop-
erties

We now present query processing with a BGP involving a transitive property. We consider a
BGP containing a single triple pattern asking for all subjects (respectively objects) related,
via a transitive property, to an object (respectively subject). A similar approach can be
applied for more complex BGPs.

3.4.1 Query encoding

As with most RDF triples, the query needs to be translated to an identi�er-based form
which requires look-ups to several LiteMat dictionaries. Using the property dictionary, we
obtain the identi�er of the property and we will also get the information that this property
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is transitive. Then, we search for the identi�er of the object (respectively subject). In a full
materialization case, this identi�er corresponds to a single identi�er while in the case of
LiteMat, it corresponds to a 4-tuple identi�er, i.e., 〈�d, pid, ccid, lid〉.

3.4.2 Variable assignments

While the full materialization approach requires a complete scan over all triples plus an
extraction from the individuals dictionary, the same query can be answered much more
e�ciently with LiteMat. Intuitively, due to LiteMat’s semantic-aware encoding, we can
rely solely on some simple computation to directly search for answers in the dictionary.
In fact, we will search for all individual dictionary entries where the key is of the form
〈fid, pid, ccid,X〉 where one of the following computations is performed:

• if fid corresponds to a chain, i.e., fid = 0, then the system retrieves all values lower
then lid.

• if fid is a tree, i.e., fid = 1, then the system retrieves all values comprised between
]lid, ((lid >> lid encoding length)+1)<< lid encoding length)[

3.5 Related Work

Most RDF stores are encoding the triple elements, i.e., URIs, blank nodes and literals, of
their data sets. That is, instead of storing triple elements they are storing a triple of integer
values where each value is associated to one triple element. These mappings are persisted
in dictionaries and most systems store them in two distinct dictionaries: String to Id and
an Id to String data structures.

For the String to Id dictionary, a B+-tree is generally used while the Id to String dic-
tionary can e�ciently be addressed by a standard array for its constant time direct access
[35]. Most encoding schema used in RDF stores used an arbitrary approach. That is, no
meaning is given to the dictionary identi�ers.

LiteMat is not one of a kind to propose a smart encoding. In fact, the Waterfowl system
[13], designed and developed by our research group, is the main in�uence behind LiteMat.
Moreover, in [48], the authors present an approach where each entity (concept or property)
in the corresponding hierarchy is assigned a numeric value according to a breadth-�rst visit
of the hierarchy. Then, there is a guarantee that any sub-hierarchy is associated to a con-
secutive set of numeric values, i.e., an interval. Like in LiteMat, each entity is associated to
an interval covering the indexes of all its sub-entities. Considering String to Id operations,
an entity will be encoded using the smallest integer of its interval, i.e., the one induced
by the breadth-�rst visit. This so called Semantic Index can be constructed in polynomial
time in the size of the entity hierarchies. Using this Semantic Index, any query over entity
hierarchies can now be expressed as a simple range queries.

Nevertheless, both of these smart encoding scheme are pushing their logical approaches
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as far as LiteMat is currently doing. With the RDFS++ extension presented in this chapter,
LiteMat is reaching an expressive level that the other two systems are not addressing.

3.6 Evaluation

3.6.1 Multiple inheritance evaluation

Our multiple inheritance experimentation consists in evaluating the performance of the
database construction and query processing phases. In the database construction phase,
we evaluate the duration and memory consumption dimensions. In the query processing
phase, we compare LiteMat against a full materialization approach using a set of SPARQL
queries. Our implementation can be accessed at this github link1. We will explain these
two phases in detail within the following section.

Experimental setting

The experimentation was run on a MacBook pro with a 2.9 GHz Intel Core i5 and 8 GB
LPDDR3 RAM.

Datasets and query workload

The purpose of this evaluation is to compare the performance of LiteMat approach with
that of a full materialization (denoted FullMat) approach in the context of TBox with multi-
ple inheritance. In this evaluation, we test some simple BGPs which enables us to use some
auto-generated ontologies containing only a hierarchy of concepts as data sets. Each ontol-
ogy is associated with an ABox that involves only some facts in form of {X rdf:type
Y } where X is an instance and Y is a concept.

In order to construct our multiple inheritance datasets, we �rst generate a hierarchy in
form of a tree where each node is a concept. Once we add a certain concept to the bottom of
the tree, there will be a 30% chance that this concept is involved in a multiple inheritance.
If so, we will choose a certain number of concepts from higher levels as its super concepts
and register the corresponding triples. After the ontology construction, we will pick 50%
of the concepts and create triples like {X rdf:type Y } in the ABox.

1https://github.com/xwq610728213/multipleInheritanceEvaluation
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Figure 3.3: Database construction time of LiteMat vs a full materialization

DataSet Maximum Maximum Maximum TboxSize AboxSize
Depth Branches Inheritance (KB) (KB)

Data set 1 5 4 4 25 8
Data set 2 6 6 3 476 176
Data set 3 6 5 3 90 34
Data set 4 7 3 3 22 8
Data set 5 7 5 4 514 169
Data set 6 8 3 3 51 18

Table 3.2: Details of testing data sets

Table 3.2 shows details of each data set. Maximum Depth gives the depth of the deepest
concept in the hierarchy. Maximum Branches indicates how many branches a node can
possess in maximum. While generating sub concepts of a certain concept, we will choose
a random number between 0 and Maximum Branches as the number of its sub concepts.
Once a concept is chosen to be part of a multiple inheritance, Maximum Inheritance limits
the number of its direct super concepts. For example, Data set 1 is a DAG structure with a
maximum depth of 5, each node has [0, 4] branches and a multiple inheritance concept has
[2, 4] super concepts. More details can be found with the link2.

Database construction performance

In this section, we compare LiteMat encoding with the FullMat encoding in two aspects,
database construction time and memory consumption.

2https://github.com/xwq610728213/MultiInheritanceGenerator
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Figure 3.4: Memory space required by LiteMat vs a full materialization

Figure 3.3 shows the comparison of database construction time between LiteMat and
FullMat within each data set. The database construction time includes encoding elements,
constructing dictionary and other necessary data structures, e.g., triple store for FullMat and
nonRep list for LiteMat. Obviously, LiteMat constructs database much faster than FullMat
in all tests because FullMat must deduce all possible statements, i.e., direct and indirect ones,
during database construction, which takes some time, while LiteMat encodes elements only
by direct connections.

The comparison of memory consumption is given in �gure 3.4. We can not directly
compare the RAM consumption during runtime. Thus we store the in-memory data struc-
tures, e.g., dictionary, triple store and nonRep structure, into �les and directly compare the
size of these �les. Because the size of these �les is proportional to the RAM consumption,
we consider the comparison in size of these �les re�ects the relation of RAM consumption
between two approaches. As we can conclude from the �gure, although the dictionary of
LiteMat is a little bit larger than that of FullMat, considering the nonRep list of Litemat is
much smaller than the triple store of FullMat, our LiteMat approach takes much less total
space than FullMat.

Query performance

As for query evaluation, we only test the query pattern in form of {?x rdf:type C},
which is a frequently appearing triple pattern in queries concerning concept hierarchy.
This query pattern demands all the instances belonging to a concept C or its sub-concepts.
We randomly retrieve 15 concepts as C from the ontology and generate 15 queries for each
data sets, and compare the query processing time between LiteMat and FullMat.

Figure 3.5 shows the results. Each cross in the �gure represents the answering time of a
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Figure 3.5: Query answering time distribution of LiteMat vs full materialization

query with di�erent approaches. The big black point indicates the median of the 15 queries
answering times. As we can see from the �gure, the median of query answering time with
LiteMat is always smaller than that of FullMat, thus we can say our LiteMat approach per-
forms better in the most of queries. However, there exists some queries where LiteMat takes
more time than FullMat. One reason is that in order to answer these queries, LiteMat needs
to search nonRep data structure many times, because some values of a nonRep structure
appear as the key (or the super concept of the key) in other nonRep structure.

3.6.2 Transitive property evaluation

Experimental setting

The evaluation was conducted on a cluster composed of three Dell PowerEdge R410 run-
ning a Debian GNU/Linux distribution with a 3.16.0-4-amd64 kernel version. Each machine
has 64GB of DDR3 RAM, a 900GB 7200rpm SATA disk and two Intel Xeon E5645 proces-
sors. Each processor is constituted of 12 cores running at 2.40GHz and allowing to run two
threads in parallel (hyper threading). The machines are connected via a 1GB/s Ethernet
network adapter. We used Spark version 2.3.2 and implemented all experiments in Scala
version 2.11.6. More details on the scripts can be found here3. The Spark con�guration of
our evaluation runs our prototype on a subset of the cluster corresponding to 36 cores and
24GB of RAM per machine.

3https://github.com/xwq610728213/LitematPlusPlus
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Datasets and query workload

In this evaluation, we are aiming to test and stress our approaches with di�erent sizes of
transitive chains and trees. We thus resort to a synthetic benchmark solution, namely the
Lehigh University BenchMark (LUBM)[17], a well-established benchmark on the univer-
sity domain that contains a transitive property, named lubm:subOrganisationOf.
Since both the rdfs:domain and rdfs:range of this property are the Organization
concept, we can use it to create long chain and tree structures.

Table 3.3 presents the datasets that we are using throughout this experimentation. In-
tuitively, the name of each dataset describes the number of universities, e.g., 5K or 10K for
respectively 5.000 and 10.000 universities, a letter, i.e., either ’c’ or ’t’ which respectively
stand for chain and tree structures and a number that corresponds to the maximum depth
of the structure. Note that the 5K_c20 and 10_c20 correspond to large shallow trees which
are supposed to mitigate the advantages provided by LiteMat. In total, 10 datasets are eval-
uated, 4 chains and 6 trees.

In this section, we provide an evaluation of our query processing solution. We are now
considering answering a single triple pattern that retrieves either all the ancestors or de-
scendants of a group in the transitive closure of thelubm:subOrganisationOf prop-
erty. These two queries have been executed over the some of the 10K datasets and respec-
tively correspond to:

SELECT ?X WHERE {?x lubm:subOrganisationOf C} to compute an-
cestors and

SELECT ?X WHERE {C lubm:subOrganisationOf ?x} to retrieve descen-
dants where C is an individual involved in the queried dataset, for instance, this could be:
<http://www.Department10.University1000.edu/ResearchGroup1>.

This limited evaluation already provides some valuable insight on the potential of LiteMat
query processing with transitive properties.

Dataset Depth sizes #Branches #Triples Size (MB) #Triples Increase due to
name [min,max] [min,max] materialized materialization
5K_c20 [10, 20] 1 1.689.907 318,4 23.579.485 x 14
5K_c100 [20, 100] 1 6.752.637 1.280 230.004.339 x 34.1
5K_t5 [10, 20] [1, 5] 5.062.616 957.9 39.362.874 x 7.8
5K_t10 [20, 100] [5, 10] 12.624.667 2.400 109.223.271 x 8.7
5K_t20 [2, 5] [10, 20] 5.898.803 1.120 14.064.044 x 2.4
10K_c20 [10, 20] 1 3.376.055 636,8 48.712.856 x 14.4
10K_c100 [20, 100] 1 13.522.653 2.560 461.042.361 x 34.1
10K_t5 [10, 20] [1, 5] 10.119.755 1.920 71.304.115 x 7.0
10K_t10 [20, 100] [5, 10] 25.260.771 4.800 216.690.752 x 8.6
10K_t20 [2, 5] [10, 20] 11.804.988 2.240 28.155.826 x 2.4

Table 3.3: Characteristics of evaluated datasets
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Figure 3.6: Memory space required by LiteMat vs a full materialization

Compression and encoding performance

In this section, we are mainly interested in two performance dimensions: the memory
space reduction provided by LiteMat compared to a full materialization and the duration of
LiteMat’s encoding against the full materialization computation.

Figure 3.6 presents comparisons of the memory space required by the LiteMat approach
against a full materialization. In the latter approach, both the set of materialized triples as
well as the dictionaries are required to answer inference-enabled SPARQL queries while in
the case of LiteMat, only the dictionaries are necessary. The �gure emphasizes that, for any
datasets, both dictionaries are about the same size, with the ones of FullMat being a little
bit more compact for trees due to the overhead LiteMat identi�ers, i.e., a long value for the
materialization against a 4-tuple of long values and an integer for LiteMat.

Obviously, for long chains and large trees, the amount of materialized triples can be
quite important, i.e., for 5K_c100 and 10K_c100, the set of materialized triples of 34 times
larger than to their original triple sets. Figure 3.3 and the LiteMat approaches correspond to
only 10% of their sizes. Considering 5K_c20 and 10K_c20, LiteMat’s approach is still around
70% of total materialized approach.

Figure 3.7 provides some details on the duration of the di�erent computation steps in-
volved in both the full materialization and LiteMat approaches. The common steps of these
two approaches are the loading of the dataset and the computation of the connected com-
ponents. We can see that the time taken by the former is quite negligible compared to the
other tasks. Unsurprisingly, the computation of the connected components takes a lot of
time on all experimentation. The LiteMat encoding and full materialization share a com-
mon naïve encoding of individuals step (which is included in both times). Overall, we note
that for chains of a transitive property, the di�erence between both approaches is not sig-
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Figure 3.7: Durations (in seconds) for the full materialization and LiteMat approaches

ni�cant, i.e., LiteMat is only between 2 and 3% faster than the full materialization. This
is not true for structures taking the form of a tree. In that case, LiteMat’s encoding is 45
to 50% faster when the depths of structure is relative large for transitive properties, i.e.,
[10,20] and [20,100]. We consider that this is mainly due to the recursive parsing of the tree
to compute the transitive closure. The duration di�erence between the two approaches is
less important, i.e., around 11%, when the tree structure depths lies in the [2,5] range.

Query processing

Our preliminary evaluation of the query processing consists of a cold retrieval of all descen-
dants of a give individual and the average of �ve hot queries that retrieve all descendants
(i.e., hot1) and ancestors (i.e., hot2). Figure 3.8 provides measures conducted on the largest
datasets of our experimentation, e.g., 10K_c100 and 10K_t20 of respectively 9.8GB and 6GB
for the materialized approaches. In order to provide a complete overview of the approaches,
In this �gure, all measures (loading time, cold, hot1 and hot2) emphasize shorter execution
times for LiteMat. Considering the loading times, LiteMat is between 6 to 10 times faster
than the complete materialization. This is mainly due to the fact that LiteMat solely re-
lies on the dictionaries and not on the triples set. This aspect impacts the cold runs where
LiteMat is between 2 and 8 times faster then the full materialization. Finally, for hot runs,
LiteMat is 2 to 3 times faster than a complete materialization.

3.7 Conclusion

In this chapter, we have extended the expressiveness of LiteMat to reach the level of RDFS++
with multiple inheritance. This has been achieved by pushing the original logical approach
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Figure 3.8: Query processing on chains and trees with full materialization and liteMat (times
in seconds)

of LiteMat that consists in assigning meaningful identi�ers to elements of the TBox and
the ABox. The evaluation of transitive structures taking the forms of chains and trees has
been demonstrated with properties such as low memory footprint, speed of encoding and
e�ciency of query processing.

Nevertheless, there is room for improvement in directions such as a more e�cient sup-
port of graph transitive structures and the fact that certain individuals can be contained in
structures of di�erent transitive properties. The optimization of query processing, consid-
ering both RDFS++ and multiple inheritance aspects, is another direction for future work.
On the implementation side, we are considering using indexed Spark abstractions and are
considering algorithms such as those presented in [25] to compute connected components.
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SuccinctEdge

Now is no time to think of what you do
not have. Think of what you can do with
what there is.

– Ernest Hemingway
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In this chapter, we provide details on the design and implementation of SuccinctEdge, an
in-memory, self-indexed, compact and reasoning-enabled RDF store for Edge Computing.
We demonstrate its e�ciency on real-world and synthetic data sets.
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4.1 Introduction

As said in this thesis introduction, Edge computing emerges as an innovative platform for
services requiring low latency decision making. Its success partly depends on the existence
of e�cient data management systems. We consider that knowledge graph management
systems have a key role to play in this context due to their data integration and reasoning
features.

Our prototype system, SuccinctEdge1, has been designed for Edge Computing from the
get go and adopts the RDF data model. The adoption of this data model is motivated by the
data integration and reasoning facilities it provides. Considering the former, the Linked
Data principles2 together with the large set of Knowledge Graphs (KGs) available via the
Linked Open Data initiatives3 ease the design of Internet of Things (IoT) applications. For
instance, ontologies such as the Sensor, Observation, Sample, Actuator (SOSA 4), Quan-
tities, Units, Dimensions, and Types (QUDT) 5 or Smart Applicances Reference (SAREF)6

considerably simplify the task of describing, manipulating and connecting sensors and ac-
tuators. These ontologies also serve smart measure management when reasoning services
are introduced in SPARQL queries to infer implicit consequences from explicitly repre-
sented knowledge.

SuccinctEdge favors a compressed, single index storage approach to a solution based
on multiple indexes that could potentially improve query execution but at the cost of a
higher memory footprint. The applications we are targeting with SuccinctEdge are the
processing of a �ow of RDF graphs (sent from sensors or actuators) which are sharing a
common topology. These graphs are continuously queried by a set of SPARQL queries. In
a typical use case, these queries are searching for anomalies occurring over a network of
sensors (see Section 4.2 for a motivating example). As a result, these queries are executed
once per graph instance.

Our system makes an intensive use of succinct data structures (SDS)[33], a family of data
structures that adopts a compression rate close to theoretical optimum, but simultaneously
allows e�cient decompression-free query operations on the compressed data. Together
with our single index approach, SDS guarantees a low memory footprint that �ts with an
in-memory storage approach. The decompression-free aspects also tends to reduce the
number of CPU cycles on standard queries and inferences.

SuccinctEdge’s reasoning services are based on the LiteMat encoding solution[12]. This
approach prevents inference materialization and reduces the cost of the SPARQL query
rewriting task, the two most frequent reasoning solutions in RDF stores. As a result of
encoding most triple entries with integer values, this approach improves the e�ciency of
graph pattern matching and compresses RDF data sets, thus limiting the memory footprint

1https://github.com/xwq610728213/SuccinctEdge
2https://www.w3.org/wiki/LinkedData
3https://lod-cloud.net/
4http://www.w3.org/TR/ns/sosa
5http://qudt.org/schema/qudt
6https://ontology.tno.nl/saref.ttl
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of a given graph.

SuccinctEdge is addressing the compact storage and e�cient querying of RDF data via
SPARQL queries in the presence of RDFS reasoning in an Edge Computing environment.
The main contributions of this chapter are to (i) present a self-index, compact, in-memory
storage layout based on the bitmap and wavelet tree SDSs, (ii) propose a decompression-
free (i.e., the SDS compressed graph does not need any decompression step to enable query
execution), e�cient query processing and optimization of SPARQL BGPs which are trans-
formed into access, rank and select SDS operations, (iii) support reasoning during query
processing using a smart encoding approach and (iv) propose a simple and automatic ap-
proach to express complex queries requiring inferences by preventing end-users from learn-
ing the details of used ontologies and ontology annotations used at each sensor.

We demonstrate the e�ciency of our implementation on an evaluation conducted on
real-world and synthetic data sets. This chapter is organized as follows. In Section 4.2,
we motivate our approach with a real-world example in an industrial setting. Section 4.3
presents the overall architecture of SuccinctEdge. The query optimizer and processor is
presented in Section 4.4. Section 4.5 relates our research to existing work and Section 4.6
provides a detailed experimentation. We conclude the chapter and present directions for
future work in Section 4.7.

4.2 Motivating example

In this chapter, we consider an upcoming deployment of SuccinctEdge at some of ENGIE’s
buildings where an IoT network is deployed. ENGIE is a multinational company operating
in �elds such as energy transition, generation and distribution.

Our running example focuses on data harvested from a building management system
with a �rst focus on potable water distribution. Intuitively, a �ow of measures are obtained
from a network of sensors. A thorough analysis permits to detect anomalies such as leaks
or other abnormal situations from, for instance, pressure and �ow measurements. The mea-
sures are usually represented as text �les (e.g., CSV) but, thanks to some mapping assertions
and dedicated digital services deployed through APIs, are transformed into a form of RDF
graph (to be detailed later in this chapter) and annotated with concepts and properties of a
domain ontology.

Figure 4.1 presents an extract of such a graph which concerns pressure and chemistry
measures related to the water distribution management. Given such graph instances, our
SuccinctEdge system executes queries that can detect some patterns such as anomalies
linked to the water management system, e.g., incorrect chemistry properties, network leak,
etc. In a non edge computing context, each measure would transit on a computing network
to a more powerful machine that could process the anomaly detection. Such an approach
has several drawbacks: (i) it makes an intensive use of the computing network via large
amount of message exchanges. As a consequence, the network can rapidly be overloaded,
e.g., devices on the edge of the network generally have low bandwidth, (ii) the high-end
computing machine also risks to be overcharged and stressed from the amount of data
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received (potentially from hundreds to thousands of sensors) and (iii) sending these data
packets over the network is not cost-free for these sensors, e.g., in terms of energy con-
sumption.

In a context where anomalies are the exception, it makes sense to detect anomalies
as close as possible to the sensors since it would require to (i) send fewer data over the
computing network as that would occur only in anomaly cases, (ii) reduce decision latency
and (iii) keep the high-end computing machine unstressed.

Figure 4.1: Graph extract of our use-case (green nodes are blank nodes)

In our experimentation at ENGIE, we are designing a query-based anomaly detection
approach that does not require from the end-users a high level of expertise on the underly-
ing domain ontologies and its reasoning services. Hence these users only express queries in
relatively high concept terms and do not have to worry about the inferences which are han-
dled automatically by the system. Expressing a query with abstract concepts, i.e., high in
the concept hierarchy, permits to write a single query that can tackle sensors performing
similar measures but annotated with di�erent concepts and possibly with di�erent mea-
sure units. This is an important requisite for our use case where di�erent sensor brands
and types can coexist in a given network. The simplicity of this approach was expected
from ENGIE for productivity reasons. In fact, it enables its sensor personnel to concentrate
on their tasks and not on adapting a given query to the potentially large number of sensors
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in an industrial setting. Moreover, adding new sensors with di�erent types in a platform is
easier as long as they conform to a set of standard ontologies.

For instance, in the following real-world example, 2 sensor platforms are measuring
similar values, e.g., pressure and chemistry-related, but each sensor annotates them with
di�erent concepts. Considering Station1 the pressure and chemistry are respectively an-
notated with qudt : PressureOrStressUnit and qudt : Chemistry, while for Station2, it
is resp. qudt : Pressure and qudt : AmountOfSubstanceUnit. Moreover, the pressure
value in Station1 is expressed in Bar while it is measured in HectoPascal in Station2.

Since, the QUDT ontology7 states that:

qudt : AmountOfSubstanceUnit v qudt : Chemistry v qudt : ScienceUnit and
qudt : PressureOrStressUnit v qudt : PressureUnit v qudt : MechanicsUnit, a
single SPARQL query can be written to address the peculiarities of each sensor at these
2 stations. The following query detects anomalies related to an incorrect pressure value
(either expressed in Bar or HectoPascal) for sensors of stations 1 and 2:

SELECT ?t ?v ?u WHERE{
?x a sosa:Platform ; sosa:hosts ?s .
?s sosa:observes ?o ; a sosa:Sensor .
?o sosa:hasResult ?y ; a sosa:Observation ;
sosa:resultTime ?ts . ?y a sosa:Result ;
qudt:numericValue ?v1; qudt:unit ?u1 .
?u1 a qudt:PressureUnit. FILTER (?newV<3.00 || ?newV>4.50)
BIND(if(regex(str(?u1),"http://qudt.org/vocab/unit/BAR"),

?v1,
if(regex(str(?u1),"http://qudt.org/vocab/unit/HectoPA"),

?v1/1000,0)
) as ?newV) .

}

Query 4.1: Anomaly detection SPARQL query example

4.3 Architecture overview

Before providing an overview of the SuccinctEdge RDF store, we describe a standard run-
ning setting at an ENGIE building. Typically, the person responsible for the building main-
tenance supervises a set of IoT devices from a SuccinctEdge server. From this central com-
puter, the administrator is able to register new IoT devices installed in this set of buildings.
Each IoT device typically runs a SuccinctEdge instance (client) which can execute many
SPARQL queries. The administrator receives alerts from SuccinctEdge instances has ab-
normal sensor measures are occurring. Hence, each sensor modi�cation (e.g., a sensor is

7https://qudt.org/
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Figure 4.2: Architecture overview of SuccinctEdge

replaced due to a failure, a sensor data schema is modi�ed) must go through an admin-
istration step which is performed on a central computer. Apart from such maintenance
operations, this server also performs the pre-processing task consisting of encoding on-
tologies using the LiteMat scheme. In this context, and we consider in a large number of
industrial settings, the ontologies are stable and thus rarely change. As explained previ-
ously, in SuccinctEdge, these ontologies take the form of a set of dictionaries (since their
semantics are encoded via the use of LiteMat). These dictionaries are broadcasted to the
di�erent SuccinctEdge instances running at the edge.

An overview of SuccinctEdge’s architecture is presented in Figure 4.2. Like most RDF
stores, all triples are encoded according to some dictionaries. The underlying basic con-
cept of a dictionary is to provide a bijective function mapping long terms (e.g., URIs, blank
nodes or literals) to short identi�ers (e.g., integers). More precisely, a dictionary should
provide two basics operations : string-to-id and id-to-string (also referred in
the literature as locate and extract operations). In a typical use of SuccinctEdge, the
query engine will call the locate operation to rewrite the query into a list to match the
data encoding, while the extract operation will be called to translate the result into the
original format. In our case, we are obviously using LiteMAt as the encoding solution.

The Triple store component adopts a single index based on the predicate, subject, object
(PSO) triple permutation. That is, the triples of the graph are sorted in ascending order over
the P, S and O values of our dictionaries. The PSO order is motivated by the fact that the
basic graph pattern of queries submitted to SuccinctEdge have predicates �lled in with
URIs (as opposed to variables). This corresponds to typical IoT use cases where queries
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Figure 4.3: RDF graph representation: (a) as a PSO-based forest and (b) in SuccinctEdge as
a combination of wavelet trees and bitmaps (only considering object properties)

are retrieving information from measures rather than serving to discover patterns in the
graphs. In fact, there is no need for discovery since the graph patterns are well known in
advance and are very rarely modi�ed (i.e., mostly due to sensor failure in industrial use-
cases).

The Triple store component also highlights that we make a distinction between object
(except for rdf:type) and datatype properties. In the former, objects are individuals and
thus encoded with the respective instance dictionary while in the latter, objects are literals
and stored using a �at data structure to store literals. This last data structure is motivated
by the fact that it is not reasonable to create an entry in the instance dictionary for each
new literal value. Intuitively, a sensor generally sends numerical values corresponding to
physical measurement at a given time. Depending on the precision of these measures, the
amount of di�erent values to store in the instance dictionary is potentially in�nite. So, we
prefer to store the values as they have been sent by sensors, possibly with some redundancy,
in order to prevent a complex and costly individual dictionary management.

In terms of data structures, WTs are used for the property and subject layers as well as
the object layer for object properties. In order to relate a WT of one layer to another, we are
using a BM. Figure 4.3(b) represents the triple set of Figure 4.3(a) where a WT corresponds
to balanced tree of BMs. Intuitively the PS (respectively SO) bitmap permits to link a given
P (resp. S) to several S (resp. O) values. In Figure 4.3(b), p1 is connected to s1, s2 and s4
because the PS bitmap starts with a 100 sequence: ’1’ states that the sequence of p1 starts
with a given subject (s1) and the ’00’ states that 2 other subjects are linked to p1. Moreover,
the 4th bit in the PS BM (i.e., set to ’1’) starts the sequence of the second property entry in
the P WT (i.e., p2).

Finally, triples containing a rdf:type property are stored in the RDFType store lay-
out. These triples generally represent an important proportion of the triple set in real-world
RDF data sets. We simply store them in a red-black tree in order to maintain the search com-
plexity to O(log(n)) while being fast when we insert rdf:type triples during database
construction.
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4.4 Query processing and optimization

In this section, we present the query optimization and processing solutions developed for
SuccinctEdge. Their main goals are respectively to de�ne an e�cient TP join ordering, by
combining heuristic and cost-based approaches, and to generate a physical plan composed
of SDS operations (i.e., access, rank and select).

Figure 4.4: Query, query graph and join ordering

4.4.1 Query Optimization

The design of our query optimizer considers the limitations of the devices on which Suc-
cinctEdge is running on, i.e., limited memory space and computing power. Due to these con-
straints, our system only generates left-deep join trees which generally reduce the amount
of memory used by the search process.

As stated in [36], join ordering is the most crucial issue in SPARQL query optimiza-
tion. This is mainly due to the potentially high number of triple patterns and thus of join
operations that one can �nd in BGPs. For instance, in our IoT building management exper-
imentation, we have frequently encountered queries in the range of 10 joins.

In order to optimize a given SPARQL query, our query engine constructs a query graph
where each TP of the SPARQL query corresponds to a node of the query graph. Each query
graph node is also annotated to state whether its property is rdf:type or not. The
nodes in this graph are connected if they share a common variable, hence forming a join.
Moreover, the edges of this query graph are labeled with a join type, either SO or SS for
respectively subject-object and subject-subject joins.

Figure 4.4(b) displays the query graph associated with the SPARQL query presented in
Figure 4.4(a). This query contains 7 TPs, denoted tp1 .. tp7. The dotted nodes in the query
graph correspond to rdf:type TPs.

Given a query graph, our optimizer uses Algorithm 2 to produce a join order. Intu-
itively, starting from a given TP, it invokes an overloaded getMostSelective method to
search for the next TP to join with. This method uses a set of static rules together with
some data statistics. In terms of the former, we have been in�uenced by Heuristic 1 of [50]
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which de�nes an execution order for the 8 possible TP combinations. In the context of
SuccinctEdge, we do not need to consider all combinations since TPs with either zero or
three variables, i.e., (s, p, o) and (?s, ?p, ?o), are highly unlikely to occur in a real-world IoT
SPARQL query. Intuitively, this heuristic states that TPs with the fewest variables should be
executed �rst. Our adaptation re-orders the original proposition by taking into account the
fact that our access paths are limited to PSO for non rdf:type properties and to SO/OS
paths for rdf:type triples. As presented in Section 4.3, the latter access path (SO/OS on
rdf:type) is more e�cient than the one based on the SDS structures. Our TP order is
thus:

(s,rdf:type,?o)>(?s,rdf:type,o)>(s,p,?o)>(?s,p,o)>(?s,p,?o), where p denotes any property
di�erent from rdf:type and the relation tp1 > tp2 states that tp1 should be executed
before tp2. The (s,p,?o)>(?s,p,o) order is due to the navigation mode in our multi-layer
SDS triple representation which is PSO based, i.e., it is more e�cient to retrieve objects
given a subject/property pair than to compute subjects from a property/object pair. The
?s rdf:type ?o TP is not considered relevant in a practical IoT context.

Algorithm 2: Computation of a TP order
Input: query graph G
Output: ordered sequence of TPs

1 tpOrder ← ∅;
2 n← getMostSelective(rdf : type);
3 tpOrder ← tpOrder + n;
4 while not all G nodes are in tpOrder do
5 n← getMostSelective(tpOrder);
6 tpOrder ← tpOrder + n;
7 end
8 return tpOrder;

This �rst heuristic is generally not su�cient to decide which TP to execute �rst among
a set of other TPs. Hence, we are considering a second heuristic that takes into considera-
tion the linearity required by a left-deep join tree and examines the types of join possible
between TPs. Due to the PSO self-index SDS structure used for non-rdf:type triples, SS
joins are preferred over SO joins, i.e., S ./ S > S ./ O. Other forms of joins, i.e., SP, OP, PP
have a lower priority since they are rarely encountered in the setting where SuccinctEdge
is relevant.

In order to minimize intermediate results, the optimizer also relies on a set of statistics
computed at dictionary creation-time. Intuitively, each dictionary persists the number of
occurrences of each of its entries, i.e., concept, property and non-literal individuals. Our
statistic approach considers the hierarchy position of a given concept or property when
computing the total number of triples it is involved in. For example, with the following
concept hierarchy C2 v C1 v C0 and C3 v C0, the set of triples involving instances of
concept C0 will be the set of instances of type Ci with i ∈ (0, 1, 2, 3). A similar process is
applied to get the correct statistics for properties involved in a property hierarchy. Finally,
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some statistics are also computed at run-time, e.g., the BM and WT data structures facilitate
the computation of certain statistics. For instance, Algorithm 3 computes the number of
triples containing a certain property.

Algorithm 2 �rst starts with the identi�cation of the most selective rdf:type TP
with an SS join. In the case it does not �nd an rdf:type TP or �nds only rdf:type
TP connected with SO joins, it then selects a non-rdf:type TP to start with. In the
case several TPs satisfy our constraint, the statistics permit to take a decision. That �rst
TP is appended to our tpOrder sequence. We then loop over the remaining nodes of the
query graph until all TPs have been added to the sequence. At each iteration of the loop,
the getMostSelectivemethod considers TPs in the tpOrder sequence and searches for the
next TP to append to this sequence. This search is again based on our two heuristics and
the usage of statistics.

Example: The left-deep join tree displayed in Figure 4.4(c) has been de�ned using Al-
gorithm 2 considering that tp2 is more selective than tp1, i.e., the number of occurrences
of C2 is lower than the one of C1. Once tp2 has been selected, the optimizer has the choice
to join it with tp6 or tp7. tp7 is chosen since a SS join is preferred to a SO join. At this
stage, the number of occurrences of concept C3, i.e., tp3, can be lower than the number of
already computed binding for ?x, and thus tp3 is selected. Given that tp2, tp7 and tp3 have
already been considered, tp6 is the only alternative that can be considered and similarly for
the remaining TPs, i.e., tp5, tp4 and tp1.

Algorithm3:Compute the number of triples corresponding to a certain predicate.
Input: Predicate p
Output: Number n

1 idp ← FindIdFromDictionary(p);
2 indexp ← wtp.select(1, idp);
3 indexsBegin ← bitmapps.select(indexp + 1, 1);
4 indexsEnd ← bitmapps.select(indexp + 2, 1);
5 indexoBegin ← bitmapso.select(indexsBegin + 1, 1);
6 indexoEnd ← bitmapso.select(indexsEnd + 2, 1);
7 n← indexoEnd − indexoBegin;
8 return n;

4.4.2 Query processing

Once an order is de�ned by SuccinctEdge’s query optimizer, our system translates TPs into
SDS’s standard operations: access, rank and select. We are using an additional
function, namely rangeSearch(a, b, c), which �nds all the occurrences of value c in the
interval (a, b). It uses a binary search, i.e., due to the ordering imposed on subjects for a
given property, and returns the indexes of matching values. The use of this function speeds
up query execution since it e�ciently prunes searches by just computing the boundaries
of the Subject WT, i.e., �rst and last subject values of a given property, instead of scanning
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all values of that interval. A similar optimization is used when searching objects of given
property/subject pair, i.e., using the boundary of Object WT.

We now present three translation examples in Algorithm 4, 5 and 6 for respectively
the (s, p, ?o), (?s, p, o) and (?s, p, ?o) TPs. Algorithm 4 shows how to retrieve an answer
set with a (s, p, ?o) TP. The idea is to �rst compute an interval of object values related
to a given predicate and subject pair. This is performed by navigating through our BM
and WT structures. All the objects in this interval are the results of this TP. Algorithm 5
retrieves all the subjects of a (?s, p, o) TP. Unlike Algorithm 4, we can not locate all the
subjects directly. So our strategy is to get the interval of all the objects corresponding to
the known predicate top-down, after which we locate the object in this interval (there may
be multiple appearances) and get the corresponding subjects. Algorithm 6 aims to retrieve
all the subjects and object with a given predicate of a (?s, p, ?o) TP. The strategy is to �nd
the interval of subjects with the help of predicate’s index. Then, for each subject in this
interval, we retrieve all the corresponding objects and add these triples to result set.

Algorithm 4: Search the triple pattern (s, p, ?o)

Input: Subject s, predicate p
Output: Results res

1 idp ← FindIdFromDictionary(p);
2 ids ← FindIdFromDictionary(s);
3 indexp ← wtp.select(1, idp);
4 indexsBegin ← bitmapps.select(indexp + 1, 1);
5 indexsEnd ← bitmapps.select(indexp + 2, 1);
6 for indexs in wts.rangeSearch(indexsBegin, indexsEnd, ids) do
7 indexoBegin ← bitmapso.select(indexsBegin + 1, 1);
8 indexoEnd ← bitmapso.select(indexsEnd + 2, 1);
9 for indexo ← indexoBegin to indexoEnd do
10 ido ← wto[indexo];
11 add (ids, idp, ido) into res;
12 end
13 end
14 return res;

In cases where reasoning services over properties are necessary to provide an exhaus-
tive answer set, we can replace indexp with a continuous interval corresponding to a
LiteMat interval. This interval is e�ciently computed given the order imposed on leaves
of a certain WT, e.g., Property WT for the property hierarchy. The larger and deeper a
property hierarchy, the more e�cient this optimization approach since it prevents from
navigating in the complete tree of a given WT. An example of this replacement is shown
in Algorithm 7, which is transformed from Algorithm 6 in case of a property hierarchy
reasoning. Similar transformations can be applied to Algorithms 4 and 5.

TPs containing rdf:type are processed di�erently using the RDFType store compo-
nent, where some simple structure look-ups permit to e�ciently retrieve to subjects of a
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Algorithm 5: Search the triple pattern (?s, p, o)

Input: Predicate p, object o
Output: Results res

1 idp ← FindIdFromDictionary(p);
2 indexp ← wtp.select(1, idp);
3 indexsBegin ← bitmapps.select(indexp + 1, 1);
4 indexsEnd ← bitmapps.select(indexp + 2, 1);
5 indexoBegin ← bitmapso.select(indexsBegin + 1, 1);
6 indexoEnd ← bitmapso.select(indexsEnd + 2, 1);
7 for indexo in wto.rangeSearch(indexoBegin, indexoEnd, ido) do
8 indexs ← bitmapso.rank(indexo + 1, 1)− 1;
9 ids ← wts[indexs];

10 add (ids, idp, ido) into res;
11 end
12 return res;

given concept or the concepts of a given subject.

The next step corresponds to joining the results obtained from the execution of TPs.
This occurs when di�erent TPs share a common variable. One of our joining approach
amounts to propagate variable assignments from one TP to another. Consider the triple set
of Figure 4.3(a) and TPs (?s, p1, o1) and (?s, p2, ?o). The �rst TP gets the following assign-
ments: ?s : {s1, s2} which will serve to dynamically generate (s1, p2, ?o) and (s2, p2, ?o)
for the second triple.

During the join operation, we can bene�t from a merge join (due to the original PSO
value order) in certain cases when the values assigned to a joining variable to the TP are kept
in order. For instance, in the case of a star-shaped BGP, e.g., (?s, p1, o1) and (?s, p2, ?o),
thanks to the facts that all the subjects connected to a certain predicate are ordered and
that all the objects connected to one certain subject are also ordered, we can perform a
merge join on the subject variable. Figure 4.5 provides a graph pattern (on the right side)
and an RDF Graph (left side). From the �rst TP, we can retrieve {(p1, s1, o1), (p1, s2, o1)}
as the answer set. Clearly, since the subjects are ordered for a given predicate, the system
can easily use a merge join with the 2nd TP of the query. In cases where the order is not
guaranteed, we use nested loop joins.

Previous executions steps are repeated until all the TPs have been processed. Then the
answer set of the query is translated using our dictionaries and presented to the end-user
or application.
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Algorithm 6: Search the triple pattern (?s, p, ?o)

Input: Predicate p
Output: Results res

1 idp ← FindIdFromDictionary(p);
2 indexp ← wtp.select(1, idp);
3 indexsBegin ← bitmapps.select(indexp + 1, 1);
4 indexsEnd ← bitmapps.select(indexp + 2, 1);
5 for indexs ← indexsBegin to indexsEnd do
6 ids ← wts[indexs];
7 indexoBegin ← bitmapso.select(indexs + 1, 1);
8 indexoEnd ← bitmapso.select(indexs + 2, 1);
9 for indexo ← indexoBegin to indexoEnd do
10 ido ← wto[indexo];
11 add (ids, idp, ido) into res;
12 end
13 end
14 return res;

Algorithm 7: Search the triple pattern (?s, p, ?o) with property hierarchy reason-
ing
Input: Predicate p
Output: Results res

1 idpBegin ← FindIdFromDictionary(p);
2 Compute idpEnd with help of LiteMat;
3 indexpbegin ← wtp.select(1, idpBegin);
4 for each idp from indexpBegin to position i where wtp.access(i) > idpEnd do
5 indexsBegin ← bitmapps.select(indexp + 1, 1);
6 indexsEnd ← bitmapps.select(indexp + 2, 1);
7 for indexs ← indexsBegin to indexsEnd do
8 ids ← wts[indexs];
9 indexoBegin ← bitmapso.select(indexs + 1, 1);

10 indexoEnd ← bitmapso.select(indexs + 2, 1);
11 for indexo ← indexoBegin to indexoEnd do
12 ido ← wto[indexo];
13 add (ids, idp, ido) into res;
14 end
15 end
16 end
17 return res;
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Figure 4.5: Merge join example

4.5 Related work

Existing RDF systems can be classi�ed with two aspects, storage mode and computing
mode, where storage mode refers to hard-drive based storage or RAM based storage, com-
puting mode indicates it is designed for Cloud Computing (or a single powerful server) or
Edge Computing. In the following parts of this section, we are going to list some existing
RDF systems within these two aspects.

Apache Jena

Apache Jena is a very popular open-source, Java-based Semantic Web framework, it is
equipped with various types of programming interfaces such as APIs to manipulate RDF(S)
and OWL, an API for RDF query processing, denoted ARQ. The system supports di�erent
data management solutions, among which Jena TDB, with its in-memory and disk-based
persistence, is getting the most of our interest.

The in-memory version provides RAM-based approach to store RDF data. It permits to
process a query at a higher speed compared to disk-based approach. However, this RAM-
based approach doesn’t consider data compression aspect which could be important in an
edge device. The hard-drive version persists all information on disk. The data set of this
latter version consists of Node Table, Triple and Quad Indexes and Pre�xes Table. Taking
a closer look to Triple and Quad Indexes. This part holds multiple indexes which can gain
higher query speed by sacri�cing memory footprint.

RDF4J

RDF4J[8] is an open source RDF management system, it supports SPARQL 1.1 and the
read/write of di�erent RDF data �le formats(RDF/XML, N-triples etc. ).

RDF4J o�ers both RAM based and hard-drive based storage mode, the RAM based mode
has an excellent performance for small data sets while the disk persisted mode is designed
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for medium-sized data sets in the order of 100 million triples. We consider RDF4J is not
designed for Edge Computing as data compression doesn’t appear at the core of its design
principle.

RDF-3X

RDF-3X[35][37] represents as a fast, disk-based RDF store. The system proposes to create 6
full indexes(SPO, SOP, POS, PSO, OSP, OPS), 6 aggregated indexes(SP, PS, SO, OS, PO, OP)
together with 3 one-value indexes(S, P, O) for all the RDF triples. With this fully indexed
RDF data structure, the system can give responses to any kind of triple patterns(TPs) with
the minimum searching e�ort, which means no matter where the variables situate in a TP,
the system can always search into the proper index where most of the potential results are
neighbored.

As for query processing, RDF-3X bene�ts from a bottom-up dynamic programming
algorithm, where for the potentially occurred star-shape joins at the bottom, the operations
have an opportunity be intensively optimized with a merge join strategy thanks to all kinds
of indexes in the system.

Due to these characteristics, RDF-3X targets powerful servers rather than small Edge
devices.

RDFox

RDFox[34] is an RAM based, centralized RDF system designed for powerful servers. [42]
presented a distributed system based on RDFox approach but it seems like the system is not
maintained.

RDFox stores RDF data in a data structure called TripleTable which contains a TripleList
where a number of indexes are implemented in order to accelerate query processing.

RDFox supports rule-based Datalog inferences with a materialization strategy which
proposes to store all the newly generated data by inference in the database. It support also
owl:sameAs by applying a query rewriting strategy. During our evaluation, we tried to
experimented RDFox on a Raspberry Pi but we could run the system on this type of device.

WaterFowl

WaterFowl[13] was designed as a �rst attempt to use SDS for RDF storage and query pro-
cessing. Although its compactness can be used in an edge computing setting, it lacks the
di�erent object storage implementation and query processing (including optimization) fea-
tures of SuccinctEdge.
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RDF4Led

RDF4Led[51] is an RDF database system designed for Edge Computing, its design considers
the �ash-based storage structure with an algorithm which can reduce the join memory
footprint.

The system bene�ts from a molecule-based storage model at the physical layer together
with a bu�er layer to accelerate the page searching. More over, the system is implemented
with a join propagation algorithm which can e�ciently reduce the memory consumption
during the join operation.

µRDF Store

µRDF[9] is an RDF store designed for micro-controller with very limited memory. It store
RDF triples only once with a navigational queries optimized index. This reduce the need
of memory as their experiment sets are of 8-64K RAM. As for query processing, consid-
ering to avoid large intermediate results in their memory-limited device, µRDF applies a
greedy strategy: as soon as a binding is found for a triple pattern, the next triple pattern is
processed.

However, µRDF’s aiming environment is too resource-constrained to implement a su�cient-
function RDF store which usually demands join optimization and reasoning services.

Wiselib TupleStore

Wiselib TupleStore[20] is an RDF store designed for light-weight OS e.g., TinyOS and Con-
tiki, it applies B+ tree based hash set which is used for dictionary and tuple container im-
plementations. Based on this fundamental data structure, the system supports three basic
operations: insert, query and erase to operate on its RDF data, insert and erase allow
to modify the RDF data and query permits to extract information based on a basic triple
pattern.

Although Wiselib TupleStore is a good attempt of RDF store for edge devices, its desired
devices are too resource-constrained, which could be the reason why the system doesn’t
support queries with multiple triple patterns which demand join operations. More over, the
system doesn’t support reasoning services which could be useful in real case.

Header Dictionary Triples(HDT)

Finally, it makes sense to write about Header Dictionary Triples (HDT)[29] which is not a
full-�edge RDF store but a popular compact data structure and binary serialization for RDF
data. The Triples component of HDT requires that triples are sorted in a speci�c order,
e.g., SPO. The triples are stored in so-called Bitmap Triples which represents a forest of
RDF trees, e.g., each tree is rooted with a given subject value. The remaining tree layers,
e.g., for P and O, each correspond to a sequence of identi�ers and a bit sequence which
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connects layers like our BMs. Like HDT, SuccinctEdge represents RDF triples as trees but it
makes an extensive use of WTs and depends on three di�erent storage approaches, namely
Object-triple-store, Datatype-triple-store and RDFType-store. Moreover, SuccinctEdge is
equipped with a full-�edged query processing component and supports RDFS reasoning
within SPARQL queries.

4.6 Evaluation

4.6.1 Experimental setting

Our experimentation is conducted on a Raspberry Pi 3B+ which can be considered as a
typical edge computing device on which we can run some sophisticated programs. This
small computer is equipped with a Cortex-A53 (ARMv7l) 32-bit SoC 1.4GHz CPU and 1GB
LPDDR2 SDRAM. A SD-card, a widely used memory solution on such devices, of 8GB is
used as persistent storage.

Considering the evolution of technology, it is widely accepted that edge computing
devices will be more and more powerful in the near future. Hence, it is quite obvious that
devices with su�cient calculation power and memory, e.g., Raspberry Pis, Odroids, etc. ,
will be deployed at the edge of networks.

4.6.2 Datasets and queries

The experimentation uses both synthetic and real-world data sets. This duality is motivated
by the current lack of large graphs emitted from sensors at our industrial partner. In fact, our
real-world data sets, which correspond to the water management distribution in ENGIE’s
building, consist of 250 and 500 triples. They are denoted with their number of triples in
this experimentation.

Due to these size limitations, it is not possible to stress SuccinctEdge in terms of graph
sizes. Hence, we are also experimenting with the synthetic Lehigh University Benchmark
(LUBM)8 which can be easily con�gured to produce large data sets. Starting from a LUBM
with one university, i.e., composed of over 103.000 triples (denoted 100K), we created several
triple subsets of 1.000, 5.000, 10.000, 25.000 and 50.000 triples which are respectively denoted
as 1K, 5K, 10K, 25K and 50K in the remaining of this section. They are used to evaluate the
behaviors of the �ve evaluated data management systems. Note that some of these synthetic
data sets have triple set size way beyond what most sensors are currently emitting in real-
world industrial use-cases. All submitted queries are detailed in Appendix A..1 and data
sets are available on the system’s Github page.

8http://swat.cse.lehigh.edu/projects/lubm/
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Figure 4.6: Construction time comparison

4.6.3 Experimentation results

In this section, we are aiming to compare the previously mentioned RDF stores (i.e., Jena
TDB, Jena in-memory, RDF4Led, RDF4J and SuccinctEdge) on the following dimensions:
graph construction time, memory footprint (i.e., the storage space taken by di�erent sys-
tems with the previous data sets), query execution performances on di�erent triple patterns
and basic graph patterns. Lastly, we evaluate the performance (duration time) of queries
which necessitate reasoning services to produce an exhaustive answer set.

Back-end construction time

The back-end construction time corresponds to the time taken by each system to read the
data set �le and to construct its proper storage layout (including indexes in the case of all
systems except SuccinctEdge which is self-index) on which queries can be asked.

In order to fully evaluate the performances of all the systems, we compare the back-
end construction time of these systems with data sets ranging from 250 to over 100.000
triples. Figure 4.6 provides details on this experimentation. SuccinctEdge doesn’t show
much advantage when data set is rather small (up to 1.000 triples). We attribute this to
the fact that the SDS-Lite library which is responsible for creating SuccinctEdge’s BMs
and WTs has an important start-up overhead that is relatively important compared to the
e�ective duration of the structures. We consider that this may be optimized in future work,
but it is out of the scope of this thesis. However, as the data sets grow larger, our system
outperforms all other systems.
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Figure 4.7: Dictionary size comparison

Storage size

As SuccinctEdge is an in-memory RDF system, it is di�cult to directly compare the memory
occupation against Jena TDB and RDF4Led (which are both disk-based RDF stores). We
persisted all the data structures existing in SuccinctEdge to disk in order to make a fair
comparison.

We separately consider the dictionary and triple storage spaces. Figure 4.7 provides the
three systems’ dictionary sizes for all 8 data sets. In all cases, Jena TDB requires the largest
memory footprint and SuccinctEdge takes about half of the size of RDF4Led.

Considering the triple storage space, displayed in Figure 4.8, SuccinctEdge consumes
much smaller space thanks to its SDS-based storage implementation and self-index ap-
proach. This enables to reach one of our goal which is to store as much data as possible in
a given amount of RAM.

We are also comparing the main-memory footprint of SuccinctEdge with the in-memory
systems, i.e., RDF4J and Jena_InMem. In this evaluation, it is not possible to distinguish
between the space used for the dictionaries and the data sets. So we provide the total space
amount. Figure 4.9 yields the experiment results. We can see that as the amount of data
grows, SuccinctEdge gradually shows its strength in saving memory space. We mainly
attribute this to the size of the indexes stored by both RDF4J and Jena_InMem.
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Figure 4.8: Storage size without dictionary comparison

Figure 4.9: RAM footprint comparison
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Table 4.1: Data retrieval for a single S,P,?o TP. The �rst row represents the number of triples
in the answer set. All times in ms. Bold times are a column’s most e�cient.

Query performance
Query name S6 S7 S8 S9 S10
Selectivity 4 66 129 257 513

SuccinctEdge 0.3 3.5 6.2 10.9 23.3
RDF4Led 12 28 33 47 84
Jena TDB 7 16 22 27 33

Jena_InMem 5 11 15 19 29
RDF4J 3 6 10 11.1 13

Triple pattern query

Considering query processing, we start the evaluation with single triple patterns,i.e., ex-
cluding the cost of join operations, in order to directly compare the performance of data
retrieval in di�erent systems.

We �rst consider the two interesting triple patterns containing a single variable in the
context of SuccinctEdge: S,P,?o (queries S1 to S5) and ?s,P,O (queries S6 to S10) . Moreover,
we consider these two triple patterns with di�erent selectivity, i.e., result sets ranging from
4 to 521 tuples. Table 4.1 and 4.2 provide the results of this experimentation for the LUBM1
dataset (over 100.000 triples).

As said previously, in an IoT setting, we are mainly interested in executing a query on
the freshest data and such a query is generally execute only once per graph instance. Hence,
we are only considering hot runs.

SuccinctEdge outperforms other systems on almost all query selectivity. It is only on
relatively non-selective, at least considering an IoT context, that SuccinctEdge gets beaten
by RDF4J (S4, S5 and S10). Considering our potable water distribution running example,
the answer set of each query is clearly very selective. That is only a small set of tuples are
retrieved from a speci�c query out of a given measure. We consider that this will be the case
for many industrial situations. Thus, high selective queries is clearly the main playground
for RDF stores running in Edge computing. In the case of selective queries, SuccinctEdge
can be up to one order of magnitude faster than its RDF4J most direct competitor, e.g., Table
4.1 S6 with a result set of size 4.

Figure 4.10 shows the results of several randomly picked ?s,P,?o queries (triple patterns
with a constant predicate and variable subject and object, denoted S11 to S15). We can see
from the results that SuccinctEdge outperforms the other systems. Clearly, the conclusion
obtained on single triple patterns with a single variable that the more selective, the more
e�cient SuccinctEdge is compared to the other systems, is con�rmed. We attribute this to
SuccinctEdge’s in-memory approach and structure which is ?s,P,?o-friendly due to its PSO
self-index approach. Moreover Jena TDB and RDF4Led also have PSO or POS indexes but
are disk-based database, for whom, loading data from disk takes a non-negligible time. The
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Table 4.2: Data retrieval for a single ?s,P,O TP. The �rst row represents the number of
triples in the answer set. All times in ms. Bold times are a column’s most e�cient.

Query performance
Query name S1 S2 S3 S4 S5
Selectivity 5 17 135 283 521

SuccinctEdge 0.7 1.5 10.1 20.7 32.0
RDF4Led 6 9 51 71 81
Jena TDB 7 8 30 32 41

Jena_InMem 7 8 15 21 27
RDF4J 3 3 11 16 21

Figure 4.10: Data retrieval of queries with only one triple pattern of type ?s,P,?o, the x-axis
represents the number of triples in the answer set.

numbers of triples in the answer sets of our single variable TP experimentation are much
smaller than that of the ?s,P,?o. This leads to greater di�erences between the di�erent
systems. This is again due to the fact that RDF4Led and Jena TDB are loading data from
disk. Nevertheless, we can consider that retrieving over 500 tuples at a time from a single
sensor is already quite unusual for an IoT use case. The comparison with in-memory stores
(RDF_InMem and RDF4J) highlights that SuccinctEdge is faster for answer sets lower than
10.000 tuples. At 16.000 result set tuples, The three systems behave similarly. Again, from
the point of view of our experimentation partner, this is currently unusual for real-world
industrial IoT use cases.
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Figure 4.11: Queries with multiple triple pattern (x-axis corresponds to the number of tuples
in the answer set)

Graph pattern query

We now compare performances over queries containing multiple triple patterns, i.e., requir-
ing joins. Four queries with di�erent selectivity values (answer sets ranging from 540 to
close to 8.000 tuples) have been executed. They are denoted M1 to M5 and contain up to 10
TPs in the BGP. We can see in Figure 4.11 that RDF4Led and SuccinctEdge are always out-
performing Jena TDB. SuccinctEdge is either more e�cient than RDF4Led or slightly less
e�cient that RDF4Led. This showcases that in some cases RDF4Led �nds a better TP query
ordering strategy than SuccinctEdge and/or bene�ts from its large set of available indexes.
Considering the latter, it is a price we are willing to pay for a lower memory footprint.
Nevertheless, the former reason emphasizes that we can improve our query optimizer.

The comparison with the in-memory RDF stores emphasizes that the three systems
behave similarly except for highly selective queries where SuccinctEdge is again more ef-
�cient. The di�erences between the query executions depend on the patterns used in the
BGP of these �ve queries. Overall, we are satis�ed that our system, with a single index, is
at least at the same level than the two other systems.

Queries with RDFS reasoning

Our �nal experimentation concerns queries requiring some reasoning services. We have
generated six queries (denoted R1 to R6) containing a mixture of RDFS:subClassOf and
RDFS:subPropertyOf inferences. These queries present di�erent selectivity characteristics,
ranging from 15 to 8.345 tuples in the answer sets and contain up to 10 TPs in the BGP.

For SuccinctEdge, the reasoning service is automatically supported by LiteMat’s encod-
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Figure 4.12: Queries with RDFS reasoning (x-axis corresponds to the number of tuples in
the answer set)

ing and is hence native in the system. This is not the case for the other systems for which
we have rewritten each query as the union of all the possible sub-queries. Since RDF4Led
doesn’t support the SPARQL UNION clause no results are presented in Figure 4.12 for this
system. Obviously, SuccinctEdge is much more e�cient than Jena TDB. It is quite logical
that the more entailments the query requires, the more e�cient SuccinctEdge is compared
to a system like Jena TDB.

As for Jena_InMem, it performs better than Jena TDB while still falling behind Succinct-
Edge. When compared with RDF4J, SuccinctEdge performs better or similarly depending
on the complexity of the reasoning services, i.e., number of SPARQL UNION clauses. Note
that we provide manual query rewriting to the Jena and RDF4J systems while these systems
could implement the reasoning task with their APIs. In doing so, we provide a clear advan-
tage to these systems since they do not have to load the ontology to perform the reasoning.
Moreover, the extra cost of computing the UNION rewriting is not considered in the times
of the Jena and RDF4J executions.

4.7 Conclusion

We have presented the �rst, to the best of our knowledge, KG inference-enabled data man-
agement system designed for Edge computing that is equipped with reasoning services,
in fact RDFS++. Thanks to its design characteristics, i.e., unique index, compactness, in-
memory approach, we have demonstrated that SuccinctEdge outperforms its direct com-
petitors on the following dimensions: query performance on di�erent query patterns, e�-
ciency of reasoning services, back-end size and creation time.

The system is currently being deployed at some building facilities at ENGIE and should
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help in detecting anomalies in resource, e.g., gas, water, distribution and energy consump-
tion. Due to its generic nature, SuccinctEdge is relevant for many IoT use cases such as
anomaly and risk detection, supervising energy production and distribution.

In the future, we are aiming to improve the query optimizer and support queries ranging
several graphs. We are also considering to design a more e�cient management of objects
linked to datatype properties and to increase the expressiveness of supported ontology
languages, e.g., OWL2RL. Moreover, we are considering the possibility of exchanging in-
formation with a larger graph portion that would reside in a database management system
residing on the Cloud.
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Streaming SuccinctEdge

Those who �ow as life �ows know they
need no other force.

– Lao Tzu

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Data �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Semantic consideration . . . . . . . . . . . . . . . . . . . . 75

5.3 Streaming SuccinctEdge presentation . . . . . . . . . . . . . . . . 76
5.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 Continuous SPARQL extension . . . . . . . . . . . . . . . 78
5.3.3 Query processing . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.4 Data stream exchange modes . . . . . . . . . . . . . . . . 80

5.4 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.1 Messaging systems . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 SPARQL continuous query extensions . . . . . . . . . . . 82

5.5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . 83
5.5.2 Comparison against HDT . . . . . . . . . . . . . . . . . . 84
5.5.3 Query processing . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.4 SuccinctEdge-Mosquitto evaluations . . . . . . . . . . . . 85
5.5.5 SuccinctEdge-Edgent evaluations . . . . . . . . . . . . . . 87

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

In this chapter, we present extensions that enable the continuous query processing of
unbounded data emitted from multiple sensors.
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5.1 Introduction

In this chapter, we extend SuccinctEdge with the capacity to process unbounded data, i.e.,
data streams. This is an important features in an IoT context where anomalies and other
exceptional situations must be detected as early as possible. Designing such a new version
of SuccinctEdge requires the extension of some components, e.g., continuous query pro-
cessor, and additional software modules, e.g., dealing with the continuous arrival of data
streams. Considering the latter, providing guarantees on low latency (the time between the
start and the completion of an event) and high throughput (the total amount of work done
in a given time) is a primordial design aspect. In order to address this issue, we experi-
mented with two existing open source messaging systems. One of our extension relies on
the Eclipse Mosquitto1 system. This lightweight message broker is suitable for Edge devices
and o�ers a set of essential features for a stream processing platform. The other extension
bene�ts from Apache Edgent2, which provides analytic capability of data coming from mul-
tiple sensor devices while still saving memory footprint. Using these frameworks enables
us to concentrate on tasks such as query processing and optimization, reasoning and sup-
porting several streaming models and window strategies. To the best of our knowledge,
our system, named Streaming SuccinctEdge, is the �rst system ful�lling the need for RDF
stream processing at the Edge with reasoning capacities. In fact, the KG compliant Edge
computing ecosystem either proposes RDF stores for Edge devices which are not handling
data streams, e.g., RDF4Led [51], or RDF Stream Processing (RSP) engines which have not
been designed considering Edge computing use cases, e.g., C-SPARQL [4], CQELS [27] or
bigSR[46]. The only comparable system is Fed4Edge[38] but it does not support reasoning
services.

Concretely, our contributions are: (i) an evolution of SuccinctEdge toward querying
unbounded RDF graphs and hence providing anomaly and risk detection based on a tem-
poral analysis of events received from sensors, (ii) the support of di�erent stream process-
ing models, i.e., true streaming and microbatch, and window strategies, i.e., tumbling and
sliding, (iii) a rewrite of SuccinctEdge’s query execution components: support for a con-
tinuous SPARQL extension, a new inference-enabled query optimization approach based
on the distinction between static and dynamic portions of continuous queries, and (iv) a
thorough evaluation of the correctness, robustness, latency and throughput dimensions in
a real-world scenario.

This chapter is organized as follows. In the next section, we introduce a real-world mo-
tivating example. Section 5.3, provides an overview of our Streaming SuccinctEdge system.
We present some related work in Section 5.4. We evaluate our system in Section 5.5 and
conclude the chapter in Section 5.6.

1https://mosquitto.org/
2https://github.com/apache/incubator-retired-edgent
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5.2 Motivating example

5.2.1 Data �ow

This running example represents a frequent use case in sensor-based anomaly detection
analysis and corresponds to a real world scenario encountered at our energy partner. It
takes place in a building where hundreds of sensors are monitored. Data produced by these
sensors are continuously ingested and analyzed in order to detect anomalies, e.g., water
leak, energy over-consumption.

Figure 5.1 presents the typical data �ow of this IoT setting. It begins with the installation
of a new sensor (step 1). The people responsible for this installation, denoted the IoT Per-
sons, declare to platform Administrators the schema associated to the measures retrieved
from this device (step 2). Note that this approach is also applied when an existing sensor is
replaced. Therefore, we consider that it is not possible for a sensor to be changed without
the administrators being aware of it. The Administrators then ask a team of domain experts

Figure 5.1: Data �ow for setting a Streaming SuccinctEdge platform

to map this schema, e.g., CSV, to a semantic representation, e.g., OWL. A large set of ontolo-
gies are available to annotate the IoT and sensor domains, e.g., Sensor, Observation, Sample,
Actuator (SOSA3), Quantities, Units, Dimensions, and Types (QUDT4) or Smart Applicances

3http://www.w3.org/TR/ns/sosa
4http://qudt.org/schema/qudt
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Reference (SAREF5). The semantic representation of these data is an important incentive
to use the RDF data model in such a use case. In the context of our experimentation at
ENGIE (a multinational company operating in �elds such as energy transition, generation
and distribution), the use of these ontologies considerably simpli�ed the task of describing,
manipulating and connecting sensors and actuators. Domain experts are also responsible
for providing relevant queries, i.e., those enabling anomaly and risk detection (step 3).

Administrators can then perform the encoding, using LiteMat, of ontologies required by
this new graph (step 4) and transform the SPARQL queries into optimized queries expressed
in terms of SDS operations (step 5). These physical query plans are expressed in a small
set of operations supported by SuccinctEdge and are sent to the appropriate SuccinctEdge
client (step 6). These queries are then executed continuously when receiving messages
from the sensors (step 7). These queries can only be modi�ed upon Administrators request,
e.g., when the connected sensor is changed. In case an anomaly is detected by a query, a
message is sent from the SuccinctEdge client to the SuccinctEdge server with some con-
text information such as device and query identi�ers, abnormal data and event time of the
anomaly (step 8). Moreover, both SuccinctEdge’s client and server maintain some metadata,
e.g., query/sensor, client instance/sensor, client instance/mosquitto associations, etc.

Another version of our system extension relies on Apache Edgent framework. As shown
in �gure 5.2, the principal data �ow is quite similar to the one based on Mosquitto. But here,
the measures produced by sensors are ingested by an Apache Edgent instance which itself
communicates with a SuccinctEdge client. The Edgent-SuccinctEdge connection can either
be a one-to-one (device n) or one-to-many (devices 1 and 2).

Figure 5.2: Data �ow for setting a Streaming SuccinctEdge platform

5https://ontology.tno.nl/saref.ttl
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5.2.2 Semantic consideration

Figure 5.3 presents an extract of a graph processed by a Streaming SuccinctEdge instance.
It contains some measures related to the distribution of some commodities, e.g., water or
gas, in a building. Given such a graph, our system executes queries that can detect some
anomaly patterns, e.g., distribution network leaks.

Figure 5.3: Graph extract of our use-case

In our experimentation at ENGIE and on the Waves project6, we found out that sev-
eral types and brands of sensors are frequently being used to observe similar measures,
e.g., pressure, �ow. These sensors may also produce measures expressed in di�erent units,
e.g., Bar, Pascal, psi, Torr for pressure measures; ft3/min, gal/min, m/min, m3/h for
volume per time unit. In this context, it is necessary to integrate all retrieved informa-
tion into a single information system. The ability to associate KG concepts and properties
to the measures produced by these sensors is a �rst step toward this semantic integra-
tion. Moreover, domain experts generally de�ne concepts of observable properties, e.g.,
AtmosphericTemperature, which can be organized into hierarchies and can hence be used
for reasoning purposes. RDFS++ inferences are e�ciently processed in SuccinctEdge, via
query rewriting, thanks to the usage of LiteMat.

A second semantic integration step consists in making it easier to write SPARQL queries
by automatically transforming queries to the characteristics of a sensor, e.g., based on con-
cept annotations and units being used. To support these requirements, we encourage do-
main experts to express queries in relatively high concept terms. Hence, they do not have
to worry about the inferences which are handled automatically by the system. Express-
ing a query with abstract concepts, i.e., high in the concept hierarchy, permits to write a
single query that can tackle sensors performing similar measures but annotated with dif-
ferent concepts and possibly with di�erent measure units. This is an important requisite
for our use case where di�erent sensor brands and types coexist in a given network. This
approach’s simplicity was highly expected by ENGIE for productivity reasons. In fact, it

6https://waves-rsp.org/index.html
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enables its sensor sta� to concentrate on their tasks and not on adapting a given query to
a potentially large number of sensors in industrial settings.

Let consider two sensor platforms. The �rst station corresponds to the one described
in Figure 5.3 where the pressure is typed as qudt : PressureOrStressUnit and is ex-
pressed in the Bar unit. In the second one, a similar pressure measure is typed as qudt :
PressureUnit and is expressed in the HectoPA unit. Since, the QUDT ontology7 states
that: qudt : PressureOrStressUnit v qudt : PressureUnit, a single SPARQL query
(detailed in Section 5.3.2) can be written to address the speci�city of each sensor at these
stations.

5.3 Streaming SuccinctEdge presentation

In this section, we present the main design principles of SuccinctEdge. We also detail com-
ponents dedicated to stream processing that have been introduced to our �rst version of
SuccinctEdge.

5.3.1 Architecture

SuccinctEdge adopts a self-index approach. This means that a single copy of RDF triples
is stored in the system. The predicate, subject, object (PSO) triple permutation order has
been selected because the queries submitted to SuccinctEdge rarely have variables at the
predicate position. In fact in such a setting, there is no need to run discovery queries, i.e.,
queries that permit to understand what kind of information is contained in a graph, since
the application’s KG is stable and well-understood by domain experts.

Given our PSO indexing approach, we make a distinction between datatype properties,
i.e., where the object is a literal, and object properties, i.e., where the object is not a literal.
In most use cases we have encountered, the relationships between instances in the RDF
graphs rarely change because they represent the connections between physical objects, e.g.,
platforms, sensors. We can thus represent all triples containing an object property (except
rdf:type for which a special storage is proposed) with a combination of WTs and BMs data
structures. Intuitively, each predicate, subject, object set is stored as a WT (respectively
WTp, WTs and WTo) and two BMs respectively connect the WTp to WTs and WTs to
WTo.

Meanwhile, the data generated by sensors, i.e., numerical measures, which are objects
of some datatype properties, change continually. A high update rate is not adapted to a WT
storage for the two following reasons: (i) each object value would require a single identi�er
but this is not reasonable since these values are mostly numerical and thus possibly in�nite,
(ii) updating a WT can not be performed e�ciently. Figure 5.4 shows the details of the data
structures used for triples containing a datatype property. Properties and subjects are stored
as in the object properties part, i.e., with 2 WTs and a BM. A BM connects the subject WT

7https://qudt.org/
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Figure 5.4: Data type property structure with two WTs and two BMs

to an object layer, denoted O). In this layer, each object represents a dynamic data which is
timestamped and frequently appended. There, the system stores a pointer for each object
which is pointed to a queue-like structure. When new data comes in, we push it to the
front of the queue. These queue-like structures have some auxiliary functions to optimize
the aggregation operations (i.e., MIN, MAX, AVG, SUM, COUNT) present in a query. The
corresponding function is activated on demand from the system, e.g., it may depend on
the streaming semantic (more on this in the next sub-section). When we execute a triple
pattern (TP) with datatype property, we search the index interval of objects using the WTs
and BMs of the �rst two layers, then for each object in this interval, we take the value in
its corresponding data queue and compute the function indicated in the query.

Example 5.1: We consider the data transfer of 2 di�erent sensors (S1 and S2) is given
in Figure 5.4. We assume that each sensor measures a single value, i.e., S1V and S2V. "S1T"
represents the timestamp received from Sensor1 and "S1V" refers to its measure, respec-
tively, "S2T" and "S2V" indicate the timestamp and measure of Sensor2. We can see that
SuccinctEdge has distributed a queue-like structure for each data series.

Even though two sensors send their data at di�erent frequencies, e.g., Sensor 1 (resp.
2) emit a message every 200ms (resp. 300ms), SuccintEdge can still handle the situation
thanks to a map structure implementation to distribute each data-type object to a set of its
corresponding sensor. By using this data structure, we can easily keep all the data sequences
from one sensor in the same length. Moreover, sliding and tumbling streaming windows
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impose the maintenance of cursors on these structures.

5.3.2 Continuous SPARQL extension

Several projects have extended SPARQL to support the continuous querying of RDF streams.
As a well-established approach, [4] has in�uenced our own SPARQL extension. Compared
to the C-SPARQL syntax, we are currently only supporting logical windows, i.e., time-based,
and our RANGE description block appears in the SELECT clause. In addition to tumbling
windows, we also support sliding windows using the STEP keyword. We can also associate
an aggregation operation to each query variable.

Example 5.2: The following query (corresponding to our motivating example) detects
anomalies related to an incorrect pressure value (either expressed in Bar or HectoPascal)
for sensors at stations 1 and 2. We can see that in the RANGE clause a tumbling window
of 5 seconds is required and ?v1, which is a numerical variable, is followed by a [MAX]
which indicates that for each binding of ?v1 in the result set, we take the maximum in the
data window. The FILTER clause detects anomalies, the BIND clause performs some data
transformations.

SELECT ?x ?s ?ts ?v1[MAX]
[RANGE 5000 MS TUMBLING] WHERE {
?x a sosa:Platform; sosa:hosts ?s.
?s sosa:observes ?o; a sosa:Sensor.
?o sosa:hasResult ?y; a sosa:Observation;
sosa:resultTime ?ts.
?y a sosa:Result; qudt:numericValue ?v1;
qudt:unit ?u1. ?u1 a qudt:PressureUnit.
FILTER (?newV<3.00 || ?newV>4.50)
BIND(if(regex(str(?u1),
"http://qudt.org/vocab/unit/BAR"),?v1,
if(regex(str(?u1),
"http://qudt.org/vocab/unit/HectoPA"),
?v1/1000,0)) as ?newV)}

Query 5.1: Streaming anomaly detection SPARQL query example

5.3.3 Query processing

The query processor described in Section 4.4 has been extended with a decomposition of
a query’s BGP. The motivation for this new query processor is two-fold and based on an
observation of real-world IoT settings. First, continuous queries analyzing streaming data
are (i) generally highly selective, i.e., return rather small answer sets (tens of tuples), and (ii)

78



Streaming SuccinctEdge

retrieve static, e.g., sensor and entity identi�ers, and dynamic, e.g., analysis of recent mea-
sures and their timestamps, information. Moreover, a sensor can produce a set of measures
corresponding to di�erent types of information, e.g., pressure, �ow, pH, etc.. But most of
the time, a single value is produced per information type in a given sensor output.

Second, the graph associated to a sensor rarely changes except if the sensor is replaced.
As stated in Section 5.2.1, the replacement of a sensor in our IoT ecosystem is necessarily
noti�ed to the team of administrators of the overall platform. In general, this forces to
check or re-execute steps 3 to 6 of Figure 5.1.

Taking into account these two observations, our new query processor makes a distinc-
tion between a static subset of the BGP and a dynamic one. Intuitively, when a sensor
produces its �rst measures, the complete BGP of the continuous query is executed and the
bindings of the distinguished variables of the static part of the BGP are cached by Suc-
cinctEdge. Note that this query execution may involve some form of (RDFS) reasoning
which are handled by LiteMat’s rewriting facility. Then, for successive measures produced
by this same sensor, only the dynamic portion of the BGP needs to be executed and inte-
grated in the query result set. The dynamic distinguished variables correspond to objects
of datatype properties and thus do not in�uence a query’s graph pattern matching since
they correspond to graph leaves. The execution of this dynamic BGP subset may require
the computation of aggregation functions and some data transformation, e.g., transform a
pressure from Bar to Pascal. The main design principle of our query processing component
is to take advantage of this aspect and to compute a physical plan only once for a given
query. This drastically improves query execution since in a continuous query processing
setting, a query may be computed an unde�ned number of times. This approach is reminis-
cent to a parameterized query, aka prepared statement, where a query is pre-compiled and
only needs some parameters to complete its execution. In our streaming context, the pa-
rameters correspond to the dynamic part of the BGP, i.e., the objects associated to datatype
properties (including timestamps or measures) or the result of applying an aggregation
function over them.

In Query 5.1, the cached static part corresponds to the ?x and ?s variables, respec-
tively the platform and sensor URIs, while the dynamic part corresponds to the ?ts and
?v1[MAX] variables, respectively the event timestamp and maximum pressure value of a
pressure measure whose maximum value exceeds a certain threshold.

We have seen in Figure 5.1 that the computation of the physical plan is performed at
a SuccinctEdge server which has generally more resources, in terms of CPU and memory,
than an Edge device where a SuccinctEdge client is running. SuccinctEdge’s query opti-
mizer mixes heuristics with a cost-based approach. The statistics of the latter are stored in
the dictionaries of LiteMat which remain on the machine running the SuccinctEdge server.
The remaining of the query evaluation is performed on a SuccinctEdge client.

Algorithm 8 summarizes the computation process of a continuous query.

In this algorithm, we must point out that the datatype-object’s data structure in Suc-
cinctEdge ’s TripleStore is in charge of updating sensor’s data and computing time-based
aggregation automatically. Once we want to show out the result, the output data can be
reached via the pointer stored in datatype clauses in R.
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Algorithm 8: Process a continuous query over streaming data.
Input: Physical plan of a query Q
Output: Result set R

1 for each triple pattern TP in Q do
2 if The predicate presents to be non-datatype then
3 Compute the result set RTP of TP ;
4 Compute R = R on RTP ;
5 end
6 else
7 Compute the result set RTP of TP where the objects are pointed to certain

data structures in the 3rd layer of Datatype TripleStore;
8 Compute R = R on RTP ;
9 end

10 end
11 for each data structure pointed by a datatype object do
12 Settle updating parameter (window, window mode, time-base aggregation

mode etc. ) to the data structure pointed by the object;
13 end
14 return R;

5.3.4 Data stream exchange modes

Streaming SuccinctEdge supports two data stream exchange modes. In Figure 5.5, data
events are represented as shapes. In the true streaming mode, each sensor is immediately
sent to its SuccinctEdge client, via Mosquitto. In the microbatch mode, the sensor retains a
certain amount of events, typically corresponding to the length of a temporal window. Once
the boundary of this window is attained, the complete set of data is sent to the SuccinctEdge
client, also via Mosquitto. This mode limits the number of data exchanged over the network.
These two modes can run under the sliding and tumbling window semantics.

Figure 5.5: Supported exchange modes

Another version with Apache Edgent supports three modes of data exchange. The three
modes are summarized in Figure 5.6. In this �gure, data events are represented as shapes.
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In the Event-at-a-time mode, each data stream received by Edgent is directly sent to Suc-
cinctEdge for further processing, e.g., computing aggregations within a SPARQL query. In
this mode, the window management is fully handled by SuccinctEdge. In the Event-set-at-
a-time mode (aka micro-batch), we are using Edgent capacity to retain a certain amount
of events, typically corresponding to the length of a temporal window. Once the boundary
of this window is attained, the complete set of data is sent to SuccinctEdge. This mode
does not require SuccinctEdge to handle window management and limits the number of
data exchanged over the network. Finally, the aggregate-at-a-time mode takes advantage
of Edgent analytical capacity which computes aggregate functions, including User De�ned
Functions (UDF) on its data. Once a window boundary is reached, the result of this com-
putation is sent to SuccinctEdge which can then integrate into its query processing.

Figure 5.6: Supported exchange modes

5.4 Related works

In this section, we present systems in the messaging and continuous SPARQL querying
categories.

5.4.1 Messaging systems

We consider two open-source systems which propose the mechanisms required for a mes-
saging system and streaming broker. Note that we do not consider systems such as Apache
Kafka [26] and Apache Pulsar8 which are designed to run on the Cloud or large servers.

Apache Edgent

Apache Edgent9 is an open source Java library designed to reduce the load on data centers
by having analytic capabilities at the edge. It is capable of performing analytical operations
on streams of data coming from multiple devices while leaving a small memory footprint,
hence allowing it to run on edge devices. Edgent allows to transform data easily by provid-
ing windows, streams and standard operations on aggregation functions such as average,

8https://pulsar.apache.org/
9https://edgent.incubator.apache.org/
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count, sum, min and max. More complex transformations are also possible via the de�nition
of UDF.

Eclipse Mosquitto

Eclipse Mosquitto[28] is a lightweight message broker that implements MQTT (Message
Queuing Telemetry Transport), a publish-subscribe message protocol that generally uses
TCP/IP. It has been designed to run on devices with limited resources such as sensors, i.e.,
handling over 1.000 clients on less than 3MB of RAM. Therefore, it is particularly well suited
for the Edge computing environment.

In the context of our Streaming SuccinctEdge platform, Mosquitto supports the data
exchange between SuccinctEdge’s server and client as well as between SuccinctEdge client
and sensors (see Figure 5.1).

5.4.2 SPARQL continuous query extensions

In this section, we present two of the main continuous query extension that have been
designed for the SPARQL query language.

C-SPARQL

C-SPARQL[4] extends SPARQL towards streaming processing. It supports two types of time
window mode over data streams: sliding window and tumbling window. Sliding window is
moved smoothly in time series while tumbling window obeys a consume-and-drop strategy
which slides the window at a time by a prede�ned range. Moreover, C-SPARQL supports
declaration of stream origins by using FROM STREAM key words. STEP key word is
used to indicate updating frequency on a sliding window and RANGE key word serves
at declaring the window size. The aggregation of C-SPARQL presents to be an extension
of SQL-style aggregation, which means it can aggregate data from a certain column of the
result set. However, in our cases of sensor data, the aggregation will be applied on data
coming from a certain sensor over time series, which is out of C-SPARQL’s consideration.

CQELS

CQELS[27] is designed more for large static data sets, such as LINKED DATA, together with
large streaming data set, e.g., LINKED STREAM DATA. Di�erent from C-SPARQL which is
implemented over existing streaming data management system and triple stores, CQELS is
built with its own components. It is considered that with such an approach, the system may
perform and adapt better to input data’s changes. Like C-SPARQL, CQELS also supports
RANGE to indicate window size of a sliding window, while it lacks the support of tumbling
window which may reduce computational pressure in real use cases. Just like C-SPARQL,
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CQELS doesn’t consider aggregations of data over time series from a certain sensor, which
could be often required in anomaly detection cases.

5.5 Experimentation

In this section, we compare the new storage layout of SuccinctEdge against HDT and RDF
stores that have been designed for Edge computing or could run on such environments. We
evaluate our system correctness and robustness. Then, we study its latency and throughput
characteristics. Evaluation are conducted on several scenarios, running di�erent window
strategies and exchange modes.

5.5.1 Experimental setting

Our experimentation are conducted on a Raspberry Pi 3B+. It is equipped with a Cortex-
A53 (ARMv7l) 32-bit SoC 1.4GHz CPU and 1GB LPDDR2 SDRAM. A SD-card of 8GB is used
if data needs to be persisted.

SuccinctEdge is implemented in C++ (version 14) and uses the SDS-lite library10. In-
stallation details can be found on github11. Eclipse Mosquitto (version 2.0) runs using a
JDK version 1.8. Data is transferred using the TCP protocol. Apache Edgent version 1.2.0-
incubating has been installed and runs using a JDK version 1.8. Data is transferred between
Edgent and SuccinctEdge using the TCP protocol. Considering our comparison with HDT,
we used HDT-Java (version 2.1.2) for the size, construction time and queries with a sin-
gle TP (Q1 to Q4) evaluations. We used HDT-Jena (version 2.1.2) for queries requiring
joins, i.e., Q5 to Q8 with respectively 2, 2, 2 and 3 TPs in the BGP. In the query processing
evaluation, we are comparing the query processing component of Streaming SuccinctEdge
against RDF4Led[51], an in-memory Apache Jena12 (version 3.15) database implementation
and RDF4J’s Memory Store13 (version 3.4.0)

The context of this evaluation is anchored in our running example (Section 5.2.1) where
real-world pressure measures are analyzed. In fact, abnormal measures are those that do
not belong to a 4 to 5 bars interval. We have de�ned �ve di�erent scenarios to demonstrate
the correctness of our system. They are presented in Figure 5.7 and intuitively state that
no anomalies are occurring (Scenario 0), few anomalies happen due to pressure values un-
der and above a certain threshold (Scenario 1), series of anomalies are followed by correct
measures (Scenario 2), continuous anomalies after a certain time due to varying measures
being above a the max threshold (Scenario 3) and continuous anomalies after some time
due to a complete loss of pressure (Scenario 4).

10https://github.com/simongog/sdsl-lite
11https://github.com/xwq610728213/SuccinctEdgeWithStreaming
12https://jena.apache.org/
13https://rdf4j.org/
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Figure 5.7: Experimentation scenarios on pressure measures

5.5.2 Comparison against HDT

In this section, we compare some aspects of HDT with the SuccinctEdge/LiteMat pair. This
comparison is performed in a non-streaming setting since HDT does not natively support
a streaming mode. Hence, the Mosquitto vs Edgent issue is not important, since they share
the same query processing approach, in this �rst experimentation. Nevertheless, the eval-
uation has been conducted on the Mosquitto implementation.

Moreover, with this evaluation, we are mainly interested on the compactness, creation
duration and query processing of these two systems. This is motivated by the fact that HDT
is becoming an important serialization for RDF data.

Figure 5.8 emphasizes that HDT is more compact and takes less time for the construction
of its RDF representation than SuccinctEdge. Considering the size, SuccinctEdge pays the
price of its datatype representation which is currently not compressed and which represents
around 50% of the LUBM data sets. The longer construction times of SuccinctEdge are
explained by a complex storage layout based on layers of WTs and BMs and the queue-like
structure for objects of data properties. Nevertheless, this storage design is responsible for
the fast query execution that we will witeness in the next sections.

The in-memory and query processing e�ciency of SuccinctEdge is demonstrated in Ta-
ble 5.1. For queries with a single TP, i.e., Q1 to Q4, SuccinctEdge is up to an order of mag-
nitude more e�cient than HDT for queries with a small answer set, i.e., under 50 tuples for
Q1 and Q2. For Q3 with around 500 tuples in the answer set, both systems are comparable.
HDT is two times more e�cient for large result sets (Q4). Considering queries with mul-
tiple TPs,i.e., Q5 to Q8, SuccinctEdge can be up to two orders of magnitude more e�cient
that HDT-Jena. More information about these queries can be found in Appendix A..2. Over
all queries, SuccintEdge particularly outperforms HDT in the presence of TP joins and for
small result sets which are especially relevant in streaming event-driven applications.
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Figure 5.8: HDT and SuccinctEdge comparisons. Left : Size of data and dictionaries, Right:
Construction time

Queries Answer set HDT SuccinctEdge Queries Answer set HDT SuccinctEdge
Q1 3 5 0.45 Q5 3 381 0.545
Q2 41 11 1.609 Q6 41 383 6.4
Q3 512 13 14.4 Q7 540 367 36
Q4 7790 41 98 Q8 7790 426 133

Table 5.1: Query processing, answer sets in number of tuples and times in ms

5.5.3 Query processing

In 4.6, we have demonstrated that SuccinctEdge’s query execution outperforms most of its
direct competitors, i.e., RDF4Led, Apache Jena and RDF4J. In this section, we are checking
if Streaming SuccinctEdge retains this advantage when considering its novel storage layout
and query processor.

First, the query optimization and generation of a physical plan is still e�cient in Stream-
ing SuccinctEdge since for queries ranging from 6 to 12 TPs, the time taken by these two
tasks range between 3 and 9ms. Recall that this is performed o�-line in Step 5 of Figure
5.1. So the overhead of parsing, optimizing and generating a physical plan for this SPARQL
extension is rather low.

Since none of RDF4Led, Jena or RDF4J can process RDF streams, we are only evaluating
them in a static setting anchored in our running example. Figure 5.9 presents the execution
of 6 queries in�uenced from the query of Example 2 and di�ering by the number of TPs
in the BGP: M1/R1, M2/R2 and M3/R3 have resp. 6, 9 and 12 TPs and R queries imply
some reasoning. All queries are executed on a synthetic graph of 3.000 triples. We can see
that the new query processor of SuccinctEdge retains its properties and outperforms its
competitors.

5.5.4 SuccinctEdge-Mosquitto evaluations

The evaluation of SuccinctEdge-Mosquitto streaming architecture considers the correct-
ness, robustness of the system as well as the system’s latency and throughput. In the la-
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Figure 5.9: Query performance of SuccinctEdge in static mode. ’M’ queries do not require
any reasoning. ’R’ queries require reasoning on the concept hierarchy.

scenario Window type stream mode # expected # detected
anomalies anomalies

0 tumbling ts, m 0 0
sliding

1,2,3 tumbling ts, m 9 9
1,2,3 sliding ts, m 26 26

4 tumbling ts, m 5 5
4 sliding ts, m 25 25

Table 5.2: Correctness with ts: true streaming, m: microbatch and all times in ms

tency and throughput evaluations, we distinguish the experiment into single sensor per
client case and multiple sensors per client case.

Correctness and robustness

These scenarios have all been evaluated in di�erent setting: window strategies (tumbling
and sliding windows) and stream communication modes (true streaming and microbatch).
Table 5.2 presents results obtained from an experimentation over 30 seconds with 5 seconds
windows (similar results were obtained for 60 seconds and 10 seconds windows). The re-
sults emphasize that in all scenarios, window strategies and stream communication modes
our system detects the correct number of anomalies.

The scenarios have also been tested over a setting implying several sensors communi-
cating with a single SuccinctEdge client, i.e., up to 40, and with di�erent frequencies, i.e.,
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with two sets of 20 sensors sending messages respectively every 200 and 300ms. The same
100% correctness has been observed. Finally, we evaluated a 40 sensors platform under slid-
ing windows (from 5 sec to 5 min steps), true streaming (5 min to 1 hour) for over 3 days
without any system failure.

Latency and throughput

When considering latency and throughput properties, we are not considering the execu-
tion of the query which retrieves and caches the static portion of the query since this is
amortized by our query processing approach. Rather, we are only considering the impact
of successive measure receptions, i.e., computation of the aggregate functions, anomaly
detection and integration of the dynamic and static parts of the query.

• Single sensor per client:
This experimentation was performed on Scenarios 2 and 3 (the most demanding ones)
with a single sensor connected to a Mosquitto and SuccinctEdge client. We have
evaluated the latency over many situations: sensor sending at rates of 1 and 100
measures/second, true streaming and microbatch, window lengths in [5, 120) seconds,
tumbling and sliding windows (with steps in [1, 30) seconds). In all cases, the average
latency was around 150µs. Thus a client can support a throughput of over 6.500
measures par second.

• Multiple sensors per client:
The evaluation conducted over multiple sensors con�rms the query latency observed
for a single sensor up to a certain number of sensors. In fact, Figure 5.10, highlights
that for one measure per second, SuccinctEdge scales to at least 80 sensors. But be-
tween 50 and 60 sensors, at a sending rate of 100 measures per second, SuccinctEdge
is not able to process its queries. Therefore, for a setting where each sensor sends
a measure every 10ms, a new SuccinctEdge client is needed every 50 or so sensors.
Considering the cost of a Raspberry Pi, this is not a limitation of our overall streaming
solution.

5.5.5 SuccinctEdge-Edgent evaluations

The architecture SuccinctEdge-Edgent considers the same dimension than the Mosquitto-
based implementation, i.e., correctness, robustness and latency within its three data ex-
change modes.

Correctness, robustness and latency

Tables 5.3 to 5.7 enable the evaluation of the correctness of our di�erent approaches and
present the average latency observed in each experimentation. In all scenarios, each execu-
tion is running for 30 seconds. The window sizes are set to 5 seconds and when the sliding
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Figure 5.10: Average query processing latency (in µs) with 1 to 40 sending with a streaming,
sliding (5sec steps), windows of 10 sec, Scenario 3 setting

window strategy is used, its step is de�ned at 1 second. The aggregation functions that are
serving to detect anomalies are based on computing aggregation functions, e.g., minimum,
maximum and average, on values of pressure measures.

We can see that in all scenarios, our system is correct. That is, it detects the expected
number of anomalies.

When considering latency and throughput properties, we are not considering the �rst
execution of the query which retrieves and caches the static portion of the query. Rather,
we are only considering the impact of successive measure receptions, i.e., computation of
the aggregate functions, anomaly detection and integration of the dynamic and static parts
of the query. We consider latency as the time interval between receiving an event, i.e., a
measure, set of measures or result of an aggregation function, in SuccinctEdge and seeing
the e�ect of processing this event in SuccinctEdge. Intuitively, it corresponds to how long
it takes for an event to be processed. Moreover, we consider that throughput indicates how
many events the system can process per unit of time. So it is a measure of the system’s
processing capacity.

We can see in Tables 5.3 to 5.7 that the latency is always under 1ms. So we can consider
a throughput of 1.000 events per second.

As shown in Tables 5.3 to 5.7, in our running setting, SuccinctEdge has a latency of 1ms.
Aggregating data is a trivial task for both SuccinctEdge and Edgent but the inter process
communications (IPC) appear to be limiting the system.
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Table 5.3: Evaluation of Scenario 0 - 5 and 10 seconds windows

Mode Window Aggregation Expected Detected Average
strategy functions Anomalies Anomalies latency (ms)

Event Tumbling min/max/avg 0 0 <1
Event Sliding min/max/avg 0 0 <1

EventSet Tumbling min/max/avg 0 0 <1
EventSet Sliding min/max/avg 0 0 <1

Agg Tumbling min/max/avg 0 0 <1
Agg Sliding min/max/avg 0 0 <1

Table 5.4: Evaluation of Scenario 1 - 5 seconds window

Mode Window Aggregation Expected Detected Average
strategy function Anomalies Anomalies latency (ms)

Event Tumbling min/max 9 9 <1
Event Sliding min/max 26 26 <1

EventSet Tumbling min/max 9 9 <1
EventSet Sliding min/max 26 26 <1

Agg Tumbling min/max 9 9 <1
Agg Sliding min/max 26 26 <1

Maximum processing capacity

We have just seen that Streaming SuccinctEdge presents interesting, at least for a standard
industrial IoT context, latency and throughput characteristics considering our running set-
ting. In this experimentation, we are searching for the maximum processing capacity on a
Raspberry Pi 3B+, i.e., 1 GB of RAM. This is being performed by running Scenario 3 with 1
measure every 100µseconds for certain amount of time. Table 5.8 con�rms a 1ms latency
until SuccinctEdge reaches a limit of 6.000.000 events in a streaming window. This limit is
characterized by an "out of memory" message from the process running SuccinctEdge. We
obtained a similar output when running the same experimentation with the Aggregate-at-
a-time mode, i.e., the aggregate function is computed on Edgent.

5.6 Conclusion

In this chapter, we have presented an original attempt to process RDF stream at the edge
of a computing infrastructure. The main characteristics of our system, which is denoted
as Streaming SuccinctEdge, are compactness and the ability to infer implicit consequences
on-the-�y. Two architectures have been designed and implemented. They are based on
two di�erent open source messaging systems. They both presented interesting properties,
expected in a sensors’ streaming data context where data are produced at a high velocity.
Nevertheless, in the furture we will only retain the Eclispe Mosquitto approach. This is
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Table 5.5: Evaluation of Scenario 2 - 5 seconds window

Mode Window Aggregation Expected Detected Average
strategy function Anomalies Anomalies latency (ms)

Event Tumbling min/max 9 9 <1
Event Sliding min/max 26 26 <1

EventSet Tumbling min/max 9 9 <1
EventSet Sliding min/max 26 26 <1

Agg Tumbling min/max 9 9 <1
Agg Sliding min/max 26 26 <1

Table 5.6: Evaluation of Scenario 3 - 5 seconds window

Mode Window Aggregation Expected Detected Average
strategy function Anomalies Anomalies latency (ms)

Event Tumbling min/max 6 6 <1
Event Sliding min/max 26 26 <1

EventSet Tumbling min/max 6 6 <1
EventSet Sliding min/max 26 26 <1

Agg Tumbling min/max 6 6 <1
Agg Sliding min/max 26 26 <1

mainly due to fact that Apache Edgent’s implementation and maintenance is abandoned.
In fact, Edgent never reach Apache’s top level status. When we �rst started on Edgent im-
plementation, the Apache project did not seem to be in jeopardy. This is a disappointment
because Edgent presented several interesting features such the ability to de�ne analytic-
oriented UDFs.

Nevertheless, Mosquitto also has its set of great features. With the Mosquitto Suc-
cinctEdge’s implementation, we conducted a thorough experimentation over the most fre-
quently used streaming models (true streaming and microbatch) and window strategies
(sliding and tumbling) emphasized the correctness, robusteness and scalability of the sys-
tem. In the near future, Streaming SuccinctEdge will execute in a large industrial setting
and we are eager to study its behavior. As future work, communication and cooperation
across SuccinctEdge clients will be integrated.
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Table 5.7: Evaluation of Scenario 4 - 5 seconds window

Mode Window Aggregation Expected Detected Average
strategy function Anomalies Anomalies latency (ms)

Event Tumbling min/max 5 5 <1
Event Sliding min/max 25 25 <1

EventSet Tumbling min/max 5 5 <1
EventSet Sliding min/max 25 25 <1

Agg Tumbling min/max 5 5 <1
Agg Sliding min/max 25 25 <1

Table 5.8: Latency for Event-at-a-time mode, average function, 1 measure per 100 µseconds

duration (seconds)
15sec 30 60 150 300 600

Events per window
(in thousands) 150 300 600 1.500 3.000 6.000

Window strategy
Tumbling <1 ms <1ms <1ms <1ms <1ms _

Sliding <1ms <1ms <1ms <1ms <1ms _
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Conclusion

Study the past, if you would divine the
future.

– Confucius
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In this section, we conclude this PhD thesis and propose some future works. The con-
tributions are split into 3 major parts, LiteMat extensions, SuccinctEdge design and stream-
ing extension of SuccinctEdge. Future works are concentrated on pushing SuccinctEdge
towards server-edge cooperation and adapting SuccinctEdge to more concrete use cases.
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6.1 Summary of contributions

The contributions of this thesis can be summarized as follows.

6.1.1 LiteMat extensions

The solution of the multi-inheritance problem of LiteMat

Lite was originally not able to handle multi-inheritance of concept hierarchies. To address
this problem, our solution is to choose a representative among the direct super concepts of a
certain conceptC and encodeC based on the encoding of this representative. The relations
betweenC and other non-representatives are stored in a key/value data structure. Together
with the data structure, we design an adapted query processing approach. We compared
our solution with full materialization in the aspects of database construction and query
answering performances. The results prove that our solution performs better than full
materialization in most cases.

Extension of LiteMat towards transitive property

The e�cient handling of transitive property is sometimes required in real-world queries.
This is the main motivation for our extension of LiteMat towards this kind of ontology
property. We propose two di�erent encoding schemes for elements in chain and tree tran-
sitive structure. Both satisfy the requirement of compactness, determinism and scalability.
We also propose the scenario of generating the encoding of each element with the adapted
query processing to do fast reasoning. We prove that our solution performs better than the
full materialization strategy both in memory occupation and query speed by evaluating two
strategy with data sets ranging from 1.7 million triples to 11.8 million triples. As for future
research directions, we point out that the strategy could be extended towards the case that
an individual may be contained in multiple transitive structures.

6.1.2 SuccinctEdge - an RDF store for edge devices

An RDF store dedicated to edge devices

With the big bang of the deployment of small devices such as sensors, the management of
these sensors’ data becomes a problem. Hence a dedicated RDF store is needed. Currently,
state of the art RDF stores are mostly designed for large servers. So they do not meet the
characteristics of an Edge environment. In fact, very few RDF stores have been designed
for Edge Computing. This motivated us to design and implement our own system. Suc-
cinctEdge makes full use of LiteMat to accelerate reasoning services and to store RDF data.
Considering this section we highlight four components: a query engine which supports im-
portant optimizations such as join order deduction, a dictionary which stores the mapping
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between RDF elements and identi�ers, a RDFtype store which store rdf : type property,
and a triple store which stores all the other triples. SuccinctEdge can be considered as the
�rst in-memory RDF store for edge device with support of fast RDFS reasoning.

A triple store based on SDS

An edge device often has limited resources such as memory space and computational power.
Thus, an RDF store for such devices must have a small memory footprint without a heavy
decompression need to retrieve information. To satisfy these requirements, we make inten-
sive use of SDS to compress RDF data into one index, this allows us to get a compact RDF
store. Note that LiteMat is highly relevant in this context due to the binary aspects of SDS.
We designed some adapted algorithms based on the three basic SDS operations to retrieve
information from our data structure without decompression, these algorithms ensure that
SuccinctEdge can still maintain a high querying speed. During the evaluation, we demon-
strated that SuccinctEdge has a great data compression ability and a good query processing
speed compared with Jena TDB, RDF4Led and RDF4J.

Aquery optimizermaking compromise between calculation complexity and query
e�ciency

One of the most costly operation in a database system during query processing happens to
be join ordering. That is the reason why di�erent join orders of a query can cause great
di�erence in query speed. However, calculating the best join order often takes much cal-
culation and requires much extra meta-data to be stored in the database system. Aiming
to reduce calculation complexity while still getting an e�cient enough join order, we de-
signed a heuristic-based join optimizer. This optimizer generates left-deep join plans with
a light weight algorithm. The join plan will be then utilised in the result-searching phase of
query processing. Thanks to the query optimizer, SuccinctEdge presents satisfying query
performances in most cases.

6.1.3 Extensions towards streaming processing

A streaming extension of SuccinctEdge aiming at processing streaming numeric
data

Data collected from sensors frequently come continuously. Thus some special data struc-
ture is required to store and process sensors’ data. We split the triple store of SuccinctEdge
into two part according to the type of triple’s predicate (data-type and non-data-type). For
the data-type part, WT is no longer suitable for objects layer as updating WT frequently can
not be performed e�ciently. In this case, we link each data-type object to a queue-like struc-
ture to store and aggregate dynamic data. This helps SuccinctEdge to support queries on
dynamic graph and to e�ciently process time-based data-aggregation operations. Thanks
to our newly designed data structure, the system can handle data coming from di�erent
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sensors at di�erent frequencies. As for query processing, our streaming approach split a
query into dynamic and static parts, the temporary result of the static part is maintained
during the continuous query execution, while the dynamic part is calculated continuously.
The �nal result of a continuous query is generated by merging the newly produced dynamic
result to the maintained static result. This approach has a great e�ect on accelerating query
processing for the reason that it can reduce repeating query processing of the static part of
a query.

A SPARQL extension that permits to query dynamic RDF graph

To query from the streaming data stored in non-data-type triple store, an extension of
SPARQL is required as SPARQL can not handle continuous RDF querying. We designed
our SPARQL extension inspired from C-SPARQL syntax which is one of the well-designed
approaches for continuous querying. This extension supports logical window aggregation
of streaming data where the window size can be indicated by RANGE keyword. It also
supports sliding and tumbling window modes which could satisfy di�erent cases. These
extensions can deal with most of our use cases in querying the dynamic RDF graph on an
edge devices.

Two di�erent architectures of Streaming SuccinctEdge

We designed two di�erent architectures of Streaming SuccinctEdge as our prototype sys-
tems to process streaming sensor data. One is based on Apache Edgent, the other is based
on Eclipse Mosquitto. The two prototypes are evaluated under di�erent data-exchange
modes which are designed according to frameworks’ characteristics. We evaluated the two
architectures in the aspects of correctness, robustness, throughput and latency with di�er-
ent streaming modes, di�erent window sizes and di�erent sensors’ numbers and prove that
both approaches are of low latency, high throughput and good scalability.

6.2 Future Work

Now that we’ve de�ned an architecture for an RDF store that runs on Edge Computing, it’s
time to integrate some collaborations between these nodes. Hence, it does not come at a
surprise that future work on SuccinctEdge will mainly concentrate on distribution aspects.
In the following, we present the research that will soon be conducted on SuccinctEdge.

6.2.1 Distributed query processing

Intraquery parallelism

As presented in Figure 5.1, a SuccinctEdge server receives SPARQL queries from a domain
experts. These queries are translated and sent to SuccinctEdge clients. Currently, our sys-
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Figure 6.1: Graph pattern distribution strategies

tem is dealing with cases corresponding to Figure 6.1(a), i.e., a query is broadcasted to clients
that can execute a query in its entirety. In some situations, a SPARQL query could only be
answered using the data retrieved from di�erent SuccinctEdge clients. This corresponds
to Figure 6.1(b). In that case, the query processor at a SuccinctEdge server will break up
a single query into a number of subqueries. Each subquery will be executed at a di�erent
SuccinctEdge client. This approach corresponds to intraquery parallelism encountered in
distributed database systems[40]. This extension is also related to the research conducted
in triple pattern fragments[52] and its decomposition of a BGP into a set of distinct TPs.

We consider that the current state of metadata stored at a SuccinctEdge server can en-
able intraquery parallelism in our Edge computing device.

Combining query answer sets

At the moment, a SuccinctEdge client can query di�erent sensors with a single or di�er-
ent queries. But it is not currently able to query a set of sensors with the same query.
This scenario is nonetheless quite relevant in use cases where one needs to con�rm an
anomaly detection from a set of sensors. For instance, consider a building where sensors
are measuring the temperature in each o�ce. The building is, for example, equipped with
a SuccinctEdge client at each �oor of the building. Probably, detecting an anomaly at the
�oor level requires that a certain amount of temperature anomalies are discovered in each
(or a majority) of the o�ces at that level. In order to support such a feature, we require to
combine the answer of queries executed over the data emitted by di�erent sensors into a
single query.

Another future work consists in combining the result sets computed at di�erent Suc-
cintcEdge clients at a SuccinctEdge server or client. These two solutions are respectively
depicted in Figure 6.2(a) and (b).
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Figure 6.2: Result set collection strategies

6.2.2 Producing a summary of sensor data

The e�cient management of edge device’s memory is an important aspect of an RDF store
running at the Edge. With the continuous reception of sensor data, we know that at some
point the memory at the SuccinctEdge client will be saturated. So currently our approach
is to �ush the main memory to leave some space for the next measures. This may not be
acceptable because we may miss some interesting information by doing so. Such informa-
tion could be submitted to an analytical database system (running on on the SuccinctEdge
server machine, which is powerful and equipped with large disks, or the Cloud) to discover,
for instance, valuable anomaly patterns. Nevertheless, one of our priorities is to preserve
to network bandwidth by being as frugal as possible when sending messages over the net-
work. Hence, one of the solution is to create summaries of data collected at SuccinctEdge
clients. An e�cient approach is needed to generate, compress and later easily process these
summaries.
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�eries

A..1 Queries for SuccinctEdge evaluation

A total of 26 queries have been evaluated over a LUBM data set consisting of over 100.000
triples. They can be dispatched into 2 groups: whether their contain a single triple pat-
tern or multiple ones. In this section, we list only the most prominent queries and provide
templates for the other ones. Moreover, we present their main characteristics. The inter-
ested reader can access all of them on the paper companion GitHub page1. The following
pre�xes apply to all queries: lubm <http://swat.cse.lehigh.edu/onto/univ-bench.owl#>, rdf
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

A..1.1 Single triple pattern queries

This �rst set of queries contain a single triple pattern in the WHERE clause. We distinguish
between queries with a single variable, either at the object (denoted sp?) or subject (denoted
?po) position, from queries with two variables (denoted ?p?). As explained in the paper, we
do not consider that variables at the property position make sense in SuccinctEdge’s use
cases.

SP?o queries

The identi�cation of these 5 queries range from S1 to S5. We used the following query
template:

SELECT ?X WHERE {X1 P1 ?X}

For S1, P1 binds to the lubm:takesCourse property and X1 is an undergraduate student
1https://github.com/xwq610728213/SuccinctEdge
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Table A..1: Query summary with the following notations: ’SS’ and ’OS’ respectively cor-
respond to subject, subject and object,subject joins; ’Co’ for concept hierarchy inferences,
’Pr’ for property hierarchy inferences

Query performance
Systems S1-5 S6-10 S11-15 M1 M2 M3 M4 M5 R1 R2 R3 R4 R5 R6

TP number 1 1 1 2 3 5 3 11 5 5 3 6 3 11
TP type(s) sp? ?po ?p? ?p? ?p? ?p? ?p? ?p? ?p? ?p? ?p? ?p? ?p? ?p?

?po ?po ?po ?po ?po ?spo ?po ?po ?spo
sp?o sp?

Join type - - - SS SS SS,OS OS SS,OS SS,OS SS,OS SS SS,OS OS SS,OS
OO OO

Join number 0 0 0 1 2 4 4 10 4 2 2 5 2 10
Path length 1 1 1 1 1 3 3 4 3 3 1 3 3 4
Selectivity [4,513] [5,521] [540,15972] 540 1874 1874 7790 33 15 555 1874 1874 8345 34

Derived 0 0 0 0 0 0 0 0 15 540 1874 1874 555 1
triples

Reasoning - - - - - - - - Co Co Co Co Pr Pr
type Pr Pr Pr

constant. For queries S2 to S5, P1 binds to lubm:publicationAuthor and the X1 bind to
di�erent publication instances. The selectivity of these queries are in Table 4.1.

?sPO queries

These queries are identi�ed from S6 to S10 and correspond to the following query template:

SELECT ?X WHERE { ?X P1 O1 }

P1 and O1 correspond to property and individual constants which for S6 to S10 respectively
take the values (all properties are in the lubm namespace) : advisor/assistant professor
constant, takesCourse/ course constant, worksFor/department constant, name/ publication
constant, memberOf/ department constant.

?sP?o queries

S11: SELECT ?X ?Y ?Z WHERE { ?X lubm:worksFor ?Z }
S12: SELECT ?X ?Y ?Z WHERE { ?X lubm:teacherOf ?Y}
S13: SELECT ?X ?Y ?Z WHERE {

?X lubm:undergraduateDegreeFrom ?Y .}
S14: SELECT ?X ?Y ?Z WHERE { ?X lubm:emailAddress ?Y }
S15: SELECT ?X ?Y ?Z WHERE { ?X lubm:name ?Y }

A..1.2 Multiple triple patterns queries

In this set of queries, the BGP is composed of several triple patterns. The 11 queries in this
category can be decomposed into those requiring or not some reasoning services (either
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based on concept or property hierarchies).

Non-inference queries

All pre�xed with ’M’.

M1: SELECT ?X ?Y ?Z WHERE { ?X lubm:worksFor ?Z .
?X lubm:name ?Y .}

M2: SELECT ?X ?Y ?Z WHERE { ?X lubm:memberOf ?Z .
?X rdf:type lubm:GraduateStudent .
?X lubm:undergraduateDegreeFrom ?Y .}

M3: SELECT ?X ?Y ?Z WHERE { ?X lubm:memberOf ?Z .
?X rdf:type lubm:GraduateStudent .
?Z rdf:type lubm:Department .
?Z lubm:subOrganizationOf ?Y .
?Y rdf:type lubm:University .}

M4: SELECT ?X ?Y ?Z WHERE { ?X lubm:memberOf ?Z .
?Z lubm:subOrganizationOf ?Y .
?Y rdf:type lubm:University }

M5: SELECT * WHERE {
<http://www.Department0...Publication14>
lubm:publicationAuthor ?p. ?st lubm:memberOf ?o2.
?p a lubm:AssociateProfessor. ?p lubm:worksFor ?o.
?o a lubm:department. ?o lubm:subOrganizationOf ?u.
?u a lubm:University. ?p lubm:teacherOf ?te.
?te a lubm:Course. ?st lubm:takesCourse ?te.
?st a lubm:UndergraduateStudent. }

Inference queries

The identi�er of these queries is pre�xed with an ’R’ since they involve a form of reasoning.

R1: SELECT ?X ?Y ?Z WHERE { ?X rdf:type lubm:Person .
?Z rdf:type lubm:Department . ?X lubm:headOf ?Z .
?Z lubm:subOrganizationOf ?Y .
?Y rdf:type lubm:University .}

R2: SELECT ?X ?Y ?Z WHERE { ?X rdf:type lubm:Person .
?Z rdf:type lubm:Department . ?X lubm:worksFor ?Z .
?Z lubm:subOrganizationOf ?Y .
?Y rdf:type lubm:University .}

R3: SELECT ?X ?Y ?Z WHERE { ?X lubm:memberOf ?Z .
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?X rdf:type lubm:Student .
?X lubm:undergraduateDegreeFrom ?Y .}
R4: SELECT ?X ?Y ?Z ?N WHERE { ?X rdf:type lubm:Person .
?Z rdf:type lubm:Department . ?X lubm:memberOf ?Z .
?Z lubm:subOrganizationOf ?Y . ?Y lubm:name ?N.
?Y rdf:type lubm:University . }
R5: identical to M4 but computes inferences over the
memberOf property
R6: identical to M5 but computes inferences over the
memberOf and worksFor properties.

A..2 Queries for Streaming SuccinctEdge evaluation

This section contains all the queries Evaluated over streaming SuccinctEdge.

A..2.1 Queries for comparison against HDT

In this section, queries Q1-Q8 correspond to all the queries tested in Section 5.5.2.

Q1: SELECT ?X WHERE {
<http://www.Department0.University0.edu/FullProfessor0>

lubm:teacherOf ?X .
}
Q2: SELECT ?X WHERE {
?X lubm:worksFor <http://www.Department0.University0.edu> .
}
Q3: SELECT ?X WHERE {
?X lubm:memberOf <http://www.Department1.University0.edu> .
}
Q4: SELECT ?X ?Z WHERE { ?X lubm:memberOf ?Z .}
Q5: SELECT ?X ?Y WHERE {
<http://www.Department0.University0.edu/FullProfessor0>

lubm:teacherOf ?X .
?X rdf:type ?Y .}
Q6: SELECT ?X WHERE {
?X lubm:worksFor <http://www.Department0.University0.edu> .
?X lubm:name ?Y .}
Q7: SELECT ?X ?Y ?Z WHERE { ?X lubm:worksFor ?Z .
?X lubm:name ?Y .}
Q8: SELECT ?X ?Y ?Z WHERE { ?X lubm:memberOf ?Z .

110



�eries

?Z lubm:subOrganizationOf ?Y .
?Y rdf:type lubm:University .}
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