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Titre : Méthodes d’équilibrage du débit pour les systèmes MIMO multi-utilisateurs avec
connaissance parfaite ou partielle du canal.
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Résumé : Avec la progression de l’utilisation
des smartphones, les modèles de systèmes ont
rapidement évolué pour répondre aux besoins
croissants en terme de capacité dans les réseaux
sans fil. En effet, les progrès technologiques
ont été considérables, depuis les communica-
tions point à point mono-utilisateur et mono-
antenne jusqu’aux réseaux cellulaires multi-
cellules et multi-antennes. Depuis la 3G, la
technologie MIMO (multiple-input multiple-
output) pour les communications sans fil est dé-
sormais intégrée aux normes de la large bande
sans fil. L’ajout de plusieurs antennes, tant
du côté de l’émetteur que du côté du récep-
teur, permet le multiplexage spatial (c’est-
à-dire l’envoi simultané de plusieurs flux de
données), qui permet d’augmenter les débits
de données, et l’exploitation de la diversité
spatiale, qui permet d’améliorer considérable-
ment la qualité des liaisons. MIMO Multi-
Utilisateurs (MU) a été un sujet bien étudié
dans le domaine des communications sans fil
en raison du grand potentiel qu’il offre pour
améliorer le débit du système. Par conséquent,
différents critères de conception pour les com-
munications MIMO MU ont été étudiés dans
la littérature. La plupart des conceptions de
liaisons descendantes prennent en compte les
problèmes d’optimisation de la capacité to-
tale de tous les utilisateurs. D’autre part, la
principale limitation des communications sans
fil modernes est l’interférence (intracellulaire
et intercellulaire) due à la réutilisation des
fréquences. Ainsi, dans un scénario MIMO
MU, lors de l’optimisation de l’efficacité glob-

ale, l’allocation de puissance se concentre sur
les bons canaux, c’est-à-dire que les utilisa-
teurs soumis à une forte interférence (e.g., les
utilisateurs en bordure de cellule) sont délais-
sés. Il en résulte une répartition inéquitable
de puissance entre les utilisateurs. Pour pallier
ce problème, différentes notions d’équité sont
introduites, comme l’équité max-min, l’équité
pondérée ou l’équité proportionnelle.

Dans cette thèse, nous nous concentrons
sur l’équité max-min pondérée. En partic-
ulier, nous étudions le problème de l’équilibrage
du débit pondéré par utilisateur dans un sys-
tème MIMO multi-cellules MU. Nous abor-
dons ce dernier dans le cadre d’une formula-
tion conjointe du problème de beamforming et
d’allocation de puissance, visant à satisfaire
l’exigence d’équité. Dans la première partie,
nous considérons la connaissance parfaite du
canal pour résoudre le problème. Dans ce cas,
nous maximisons le débit minimum pondéré
via i) la dualité liaison montante/descendante
et ii) la dualité Lagrangienne. Dans la deux-
ième partie, nous considérons la connaissance
partielle du canal. Nous optimisons le prob-
lème d’équilibrage de débit ergodique via i)
l’erreur quadratique moyenne pondérée (EQM)
en exploitant la relation débit - EQM, et ii)
deux approximations du débit estimé comme
le débit de signal et de puissance d’interférence
estimés (ESIP) au niveau du flux et du signal
reçu. Par ailleurs, nous proposons une stratégie
d’efficacité énergétique au moyen des approches
d’équilibrage des débits proposées.
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Abstract: With the rise in smartphone
usage, the system models have rapidly
evolved to meet ever-growing needs for ca-
pacity in wireless networks. Indeed, there
have been large advances in technology,
from single-user single-antenna point-to-
point communications to multi-cell multi-
antenna cellular networks. In fact, multiple-
input multiple-output (MIMO) technology
for wireless communications is now incor-
porated into wireless broadband standards
since 3G. Adding multiple antennas at both
the transmitter and the receiver sides en-
ables spatial multiplexing (i.e. sending mul-
tiple data streams simultaneously), which
allows to increase data rates, and spa-
tial diversity exploitation, which allows to
greatly improve link quality. The multi-
user MIMO downlink (so-called Broadcast
Channel (BC)) has been a well investigated
subject in wireless communications because
of the high potential it offers in improving
the system throughput. Therefore, different
design criteria for multi-user MIMO com-
munication have been investigated in the lit-
erature. Most of the downlink designs con-
sider optimization problems w.r.t. the sum-
capacity of all users. On the other hand, the
major bottleneck of modern wireless com-
munication is the interference (intracell and
intercell) due to frequency reuse. Thus, in
a multi-user MIMO scenario, when optimiz-
ing the overall efficiency, the power alloca-

tion is focused on the good channels, i.e.,
users that are subject to strong interference
(e.g. cell-edge users) are neglected. The re-
sult is an unfair distribution of rate among
users. In order to avoid this effect, differ-
ent fairness notions have been introduced,
like max-min fairness, weighted fairness, or
proportional fairness.

In this thesis, we focus on the weighted
max-min fairness. In particular, we study
the (weighted) user rate balancing problem
in a multi-cell multi-user MIMO system.
We address this problem by joint beamform-
ing and power allocation optimization, aim-
ing to satisfy the fairness requirements. In
the first part, we consider perfect knowl-
edge of the channel to solve the prob-
lem. Therein, we maximize the minimum
(weighted) rate via i) weighted user Mean
Square Error (MSE) uplink/downlink dual-
ity and ii) Lagrangian duality. In the sec-
ond part, we consider partial knowledge of
the channel. We optimize the ergodic rate
balancing problem via i) weighted expected
MSE by exploiting the rate – MSE rela-
tion, and ii) two approximations of the ex-
pected rate as the Expected Signal and In-
terference Power (ESIP) rate at the stream
level and the received signal level. Further-
more, we study the transmit power mini-
mization problem with fixed user-rate tar-
gets and provide a strategy exploiting the
proposed rate balancing approaches.
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”Live as if you were to die tomorrow. Learn as if you were to live forever.”

M. Gandhi
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to Raphaël Visoz and Ghaya Rekaya, my jury members who have closely followed the
progress of my thesis since the very first year, for their positive comments to my work;
to Mérouane Debbah, for his constant support, enthusiasm and encouragement over the
years, and for taking part of the jury members; to Tharm Ratnarajah, Laura Cottatellucci
and Marios Kountouris, who complete the jury members, for the time they will spend to
evaluate my works.

... all the members of Orange Labs RIDE team, namely, the team manager Pierre Dubois,
for providing an adequate working environment and support; my dear colleagues/friends,
Romain, Rita, Nathalie, Ayat, Ali, Fred, Thierry, Ahmad, Meriem, Stefan, and Amel,
for the constructive exchanges and the memorable time we spent together; to my colleagues
in EURECOM, namely, Christo, Roya, Flavio and Chandan for being supportive.

... all my friends, who always believed in me, for their encouragement and support,
especially, Hakim, Samira, Imen, Wissem, Amel, Houda, Nassima, Amina, and Hayet;
to my second family here in France, namely, tatie Zoubida, Yasmine, Youssra, Karim,
Yasser, Mira, Yassmine, and Wissal; to all my friends from TPMP group for all the fun
and positive vibes we shared together.

Last but not least, to my parents, my everything, for their advice, encouragement and
moral support throughout my existence; to my brother Adel and his little family, for
always motivating me and being there for me; to my wonderful sisters Chahrazed and
Karima, for their good influence and positiveness; to all my relatives.

Thank you all.

iv



Contents

Résumé i
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Chapter 1

Motivation and Related Works

1.1 Motivation

In the past twenty years, we have seen a tremendous growth in the demand for wireless
data rate, and this trend is predicted to continue in the future. Several methods are
proposed to satisfy the ever growing demand of data rates, including the following

• cell densification: putting the access points closer one to another;

• increasing bandwidth for transmission: the introduction of new high frequency bands
in 5G ≥ 6Ghz, allowing the introduction of millimeter-waves (mmWaves) commu-
nications;

• increasing the Spectral Efficiency (SE).

Massive Multiple-Input Multiple-Output (MIMO) has become a key solution to in-
crease the spectral efficiency of wireless cellular systems [1]. In fact, MIMO technology
for wireless communications is now incorporated into wireless broadband standards since
3G. The basic idea behind MIMO technology is that the more antennas the transmitter
and the receiver are equipped with, the more the available signal paths between them will
appear, the better the performance in terms of data rate and energy efficiency the system
will get [2–4].

In downlink communications, the Base Station (BS) with multiple transmit antennas
serves multiple users within the same time and frequency resource block. Therefore, proper
resource allocation is needed to fully harvest the gain in spectral and energy efficiency; for
example: user scheduling, subcarrier allocation, power allocation and precoder (receiver)
design. The latter represents the most important aspect to enhance the performance of
the system in the physical layer, and can be combined with frequency subcarrier allocation
and user scheduling to further boost the performance.

Power allocation optimizatiogn in wireless networks has been an important research
problem for decades, dating back to single-antenna wireless systems. In fact, power control

1



1.1. Motivation

schemes have been studied with different utility functions in the literature. In particu-
lar, the power minimization problem with target Signal-to-Interference-plus-Noise Ratio
(SINR) constraints. Actually, the target SINRs are usually set according to the applica-
tion. For example in Global System for Mobile communication (GSM) the target SINRs
are set to ensure that the quality of a voice call is within an acceptable range. However,
with the evolution of the wireless networks providing mobile data, the target SINRs are
no longer easy to determine in a way to satisfy every user. Therefore, the SINRs and the
power allocation have to be found simultaneously.

The power allocation problem can be formulated as a maximization of some utility
in terms of data rate, by interchanging the SINRs and SE. Depending on the chosen
utility function, we can achieve different points on the Pareto optimal boundary. In other
words, we cannot increase the rate of any of the actif users without lowering the rate
of the other users [5]. The two most commonly used utility functions are i) weighted
max-min fairness, or balancing problem and ii) weighted sum problem. Let us consider
the following example:
A base station transmits data to User Equipement (UE) under constant radio conditions
that can be classified as either good or bad. The ones suffering from bad radio conditions
require more radio resources (e.g., bandwidth, transmission power) than the others to
get the same bit rate. With weighted sum utility maximization, the overall bit rate
is maximized by allocating all resources to those mobiles having a good radio channel.
However, such an allocation is not fair to UEs with bad radio conditions, see Figure
1.1. In this thesis, we focus our interest on the latters by considering max-min fairness
optimization problem [6], which is used to provide the same quality-of-service for all
users according to their priorities and make this value as large as possible. The weighted
max-min fairness problem, also called balancing problem, can be expressed for different
objectives other than SINR, such as the MSE and user rate.

Apart from power control, a BS, when equipped with multiple antennas, creates more
degrees of freedom for resource allocation. By transmit and receive beamforming, the
signal of a particular user can be strengthened which brings array gain, meanwhile inter-
ference can be suppressed [7]. Therefore the beamformer design can be very beneficial
in increasing the users data rates. The optimization of the beamformer and power allo-
cation simultaneously is thus a problem that attracts a lot of interest. In fact, with a
fixed beamformer, the power allocation problem reamins the same as in power allocation
problem which does not consider beamformers. However, the beamformer itself contains
the power allocation parameters, therefore iterative solutions are proposed to solve the
problem by first fixing the power allocation and optimize the beamformer [8], then update
the power allocation with the known methods.

In this thesis, we focus on linear precoders for multi-cell Multi-User (MU) MIMO
scenarios w.r.t. rate balancing. The multi-user MIMO for Downlink (DL) has been a well
investigated subject in wireless communications because of the high potential it offers
in improving the system throughput. Information theory has shown that the capacity
of MU-MIMO channels could be achieved through Dirty Paper Coding (DPC) [9–11].
However, DPC is difficult to implement and computationally complex. Suboptimal linear
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Figure 1.1: Cell edge users suffering from strong intercell interference.

Beamforming (BF) algorithms exist and can be divided into two main categories: the
iterative [12–16] and the closed form (CF) solutions [17–21]. In this work, we focus on
user rate balancing in a way to maximize the minimum per user (weighted) rate in the
network. This balancing problem is studied in [22] without providing an explicit precoder
design. We provide here a solution via the relation between user rate (summed over its
streams) and a Weighted Sum Mean Square Error (WSMSE). But also another ingredient
is required: the exploitation of scale factor that can be freely chosen in the weights for the
weighted rate balancing. User-wise rate balancing outperforms user-wise MSE balancing
or streamwise rate (or MSE/SINR) balancing when the streams of any MIMO user are
quite unbalanced.

1.2 Related Works

Joint beamformer design and power allocation is a problem that attracts a lot of interest.

1.2.1 Joint Design for max WSR

One important and commonly used utility function is the weighted sum performance.
This problem is proposed to maximize the total system throughput, while considering
weights to provide some fairness between the different users. The problem is expressed
as maximizing the Weighted Sum Rate (WSR) [23–25]. The latter has been extensively
studied, in MIMO downlink, via the corresponding MSE minimization problem [26–30].
In fact, using the well-known inverse relation between the SINR and MSE [31], the rate
optimization problem can be equivalently formulated as an MSE minimization problem.
In [26], WSR maximization problem was considered for MIMO Broadcast Channel (BC)
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via weighted Minimum Mean Square Error (MMSE). Therein, an alternating optimization
algorithm, based on well-known transmit/receive MMSE designs, was proposed for finding
a local weighted sum-rate optimum. Actually, while the WSMSE minimization problem
is not jointly convex with respect to the transmit and receive beamformers, it is convex
when either the transmitters or receivers are fixed. Performing alternating optimization of
the transmit and receive beamformers is used to exploit the latter biconvex structure. An
extension of [26] to interfering BC was handled in [27] and further in [28] where practical
signaling issues for the interfering BC were studied.

The sum-MSE (unweighted) minimization problem was considered in [32] to study the
optimality conditions of the uplink-downlink power allocation in detail. Various alterna-
tive convex formulations using techniques of linear matrix inequalities (LMIs) and Second
Order Cone Programming (SOCP) were developed in [33] to minimize the sum-MSE un-
der the total power constraint. However, the obtained results do not hold in general for
weighted sum-MSE optimization. This prevents applying these techniques straightfor-
wardly to, e.g., WMMSE methods. Still, the MSE duality has been successfully exploited
also in the WSR maximization problem [34,35]. Another approach was proposed in [36] to
maximize the WSR for MIMO BC. Therein, the MSE minimization approach via first or-
der approximation of the non-convex objective function is used to design the beamformer.
Then, the non-convex weighted MSE minimization problem is solved using a successive
convex approximation of the Lagrangian function.

1.2.2 Joint Design for Balancing

Most of balancing optimization problems are non-convex and can not be solved directly.
Despite that, several works over the litterature have developped optimal solutions [37,38].
For instance, [39] solved the max-min problem by a sequence of SOCP. Also, [40] showed
that a semidefinite relaxation is tight for the problem, and the optimal solution can be
constructed from the solution to a reformulated semidefinite program. In [41], the authors
proposed an algorithm based on fixed-point that alternates between power update and
beamformer updates, and the nonlinear Perron-Frobenius theory was applied to prove the
convergence of the algorithm.

Another way to solve balancing optimization problems is to convert the problem from
the DL channel to its’ equivalent Uplink (UL) channel, by exploiting the uplink-downlink
duality. Doing so, the transformed problem has better mathematical structure and con-
vexity in the uplink, thus, the computational complexity of the original problem can be
reduced [11], [8]. The uplink-downlink duality has been widely used to design optimal
transmit and receive filters that ensure faireness requirements w.r.t the SINR [8, 42–46],
the MSE [47–49], and the user rate [27].

Actually, optimization problems associated with MIMO systems are more complicated
in the downlink channels, due to the joint design of transmit-receive filters and the coupled
structure of the transmit filter along with power allocation. Most of these problems are
non-convex and can not be solved directly. One way to overcome these difficulties is
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to convert the problem from the downlink channel to its’ equivalent uplink channel, by
exploiting the uplink-downlink duality. Doing so, the transformed problem has better
mathematical structure and convexity in the uplink, thus, the computational complexity
of the original problem can be reduced [11], [8].

The objective being to equalize all user SINRs, the SINR balancing problem is of
particular interest because it is directly related to common performance measures like
system capacity and bit error rates. Maximizing the minimum user SINR in the uplink
can be done straightforwardly since the beamformers can be optimized individually and
SINRs are only coupled by the users’ transmit powers. In contrast, downlink optimization
is generally a nontrivial task because the user SINRs depend on all optimization variables
and have to be optimized jointly. Downlink transmitter optimization for single antenna
receivers with constraint of the total transmit power is comprehensively studied in [8]
and [44] where algorithmic solutions for maximizing the minimal user SINR are proposed.
This SINR balancing technique has been extended to an underlay cognitive radio networks
with transmit power and interference constraints in [45], [46].

Another well-known duality is the stream-wise MSE duality where it has been shown
that the same MSE values are achievable in the downlink and the uplink with the same
transmit power constraint. This MSE duality has been exploited to solve various minimum
mean square error (MMSE) based optimization problems [47], [48]. In [49], three levels
of MSE dualities have been established between MIMO BC and MIMO Medium Access
Control (MAC) with the same transmit power constraint and these dualities have been
exploited to reduce the computational complexity of the sum-MSE and weighted sum-
MSE minimization problems in a MIMO BC. In [48], an iterative algorithm has been
proposed to balance the capacity between users in a multi-user MIMO system by using
stream-wise MSE duality but with a single transmit power constraint. However, this
algorithm can not be applied to solve capacity balancing problem with multiple linear
transmit covariance constraints.

1.3 Thesis Outline

This thesis contains four parts. Part I being the introduction, Chapter 2 follows to provide
the definition of the considered problem and some useful theoretical background.

In Part II, we focus on user rate balancing problem assuming perfect knowledge of the
channel state information at the transmitter. In particular:

In Chapter 3, we consider the user rate balancing problem for a multi-user MIMO
single cell (broadcast channel), under a total transmit power constraint. We use the rate
- MSE relation to transform the problem into minimizing the maximum weighted-matrix
MSE. The latter allows us to enable MSE duality between the downlink and its dual uplink
channels. The results are extended to interfering broadcast channel, i.e., the multi-cell
multi-user case, with total sum power constraint.

In Chapter 4, we study the maximization of the minimum user rate for multi-cell
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MIMO system, considering per cell power constraints. In particular, we exploit the rate
- MSE relation, formulate the balancing operation as constraints leading to Lagrangians
in optimization duality, allowing to transform rate balancing into weighted MSE mini-
mization with Perron Frobenius theory. The Lagrange multipliers for the multiple power
constraints can be formulated as a single weighted power constraint in which the weight-
ing can be optimized via subgradient methods, leading to the satisfaction with equality
of all power constraints.

In Chapter 5, we address the total transmit power minimization problem subject to
per user rate targets. In particular, we exploit user rate balancing optimization to derive
an iterative solution based for the power minimization problem. Actually, minimizing the
total transmit power problem w.r.t. individual rate requirements is a variation of user
rate balancing problem w.r.t. total transmit power.

In the third part of the thesis, namely in Part III, we deal with user rate balancing
under a more realistic channel model with partial CSIT. In particular:

In Chapter 6, we give an overview of balancing works with partial knowledge of the
channel state information at the transmitter. Then, we detail the considered channel
model.

In Chapter 7, we study the ergodic user rate balancing, which corresponds to max-
imizing the minimum (weighted) per user expected rate in the network. We consider
a multi-cell multi-user MIMO system with per cell power constraints and partial CSIT.
The latter combines both channel estimates and channel (error) covariance information.
In particular, we introduce a novel extension to partial CSIT of Chapter 4, which considers
the rate - MSE link to reformulate the user rate balancing problem into WMSE balancing
problem. In partial CSIT, the latter becomes maximizing an expected rate lower bound
in terms of expected MSE, leading to a Weighted Expected MSE (WEMSE) balancing
problem.

In Chapter 8, we exploit a better approximation of the expected rate as the Expected
Signal and Interference Power (ESIP) rate, based on an original minorizer for every in-
dividual rate term. The latter minorizer is appart from the global criterion, thus, the
transmit beamformers can be optimigzed in parallel, which is interesting for distributed
algorithms. Besides, this ESIPrate approach does not require the introduction of receive
beamformers (no processing needed at the user side). We study the ESIPrate approach
within two approximations: i) Received signal level ESIP (R-ESIP) and ii) Stream level
ESIP (S-ESIP). Also, we optimize the total transmit power minimization.

Finally, Part IV includes our conclusions and future works related to work presented
in this thesis

1.4 Contributions

The results obtained during the course of this PhD are published in the following
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Chapter 2

Problem Definition and Background
Theory

2.1 Overview

In wireless communication networks, transmit power is one of the most important degrees
of freedom to control the rate performance. Actually, interference is the limiting factor
for most cellular communication links, due to the broadcast nature of wireless commu-
nications. To overcome this, allocating properly the transmit power from the BS and
the mobile terminals is of vast importance. This problem has been extensively studied
in the past, for both the uplink and downlink transmission. In this chapter, we review
the evolution of power allocation problem in terms of max-min fairness utility from its
original form to the new formulations we developed in this thesis.

The reminder of the chapter is organized as follows. In Section 2.2, we provide a
generalized formulation of the studied problem. Then, we present in Section 2.3 some
theoretical material used in this thesis; namely, the UL-DL duality, Perron Frobenius the-
ory, the link between user rate and MSE expressions, and, WSR maximization approach.
Finally, we conclude in Section 2.4.
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2.2. Problem Definition

2.2 Problem Definition

The weighted max-min fairness problem is used to provide the same Quality-of-Service
(QoS) to all users in the cell. We aim to serve all active users with equal weighted SE
according to their respective priorities and optimize this value as large as possible. In
MISO system, the considered max-min fairness is w.r.t. user rates rk = log(1 + SINRk).
We can then write the objective as a maximization of mink rk. For conventional networks,
the weighted max-min fairness problem can be formulated as follows

max
{pk},t

t

s.t. pk ≤ Pk, ∀k, (2.1)

pk ≥ 0 ∀k,
rk ≥ t ∀k,

where pk denotes the power for user 1 ≤ k ≤ K, and Pk the power constraint.

For a fixed t, we can solve the problem (2.1) using methods for power minimization
problem by omitting the power constraints. Then, the optimal t can be found via bisection
search such that the power constraints are satisfied. Other advanced methods are possible
to solve (2.1) efficiently in a distributed manner. For instance the Perron-Frobenius theory
can applied in the case that effect of noise is ignored [50]. Also, (2.1) can be solved using
non-linear Perron-Frobenius theory [51] and the FastLipschitz optimization approach [52,
53].

With the introduction of multiple antennas at the transmitter, the optimal joint beam-
former design and power allocation problem can be formulated as

max
{gk},{pk}

min
k

rk

s.t. pk ≤ Pk, ∀k, (2.2)

pk ≥ 0 ∀k,

where gk is the transmit beamformer for user k and user rate is now defined as follows

rk = log
(
1 +

pkg
H
k hHkkhkkgk∑

l 6=k plg
H
l hHklhklgl + σ2

,
)

(2.3)

where the channel from BS to user k is denoted as hk, and σ2 is the noise variance.

Now, consider a multi-user MIMO system, the user rate balancing problem becomes
as follows

max
{Gk},{Pk}

min
k

rk

s.t. tr(Pk) ≤ Pk ∀k (2.4)
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where rk is the kth user-rate

rk = ln det
(
I+HkGkPkG

H
kH

H
k

(
σ2
nI+

∑
j 6=k

HkGjPjG
H
jH

H
k

)−1
)

(2.5)

and Gk and Pk denote, respectively, the transmit beamforming matrix and the diagonal
non-negative matrix of transmission stream powers for user k.

Power control schemes for max-min fairness problems in general [54–60], and in par-
ticular for the one defined in (2.4) w.r.t. user rate, provide fairly the same quality of
service for all users, which is a highly desirable feature in future systems. However, from
a network-wide point of view, optimizing this balancing problem leads to a scalability
issue since the performance is limited by the weakest user. In fact, for a considerable
number of cells and active users, the probability of having a user with an extremely poor
channel gets higher due to shadow fading. Thus, all users in the network would suffer
from the weak channel of the worst user.

We want to provide fairness to the weak users in the network, without penalizing all
active users. For that, we formulate the user balancing problem w.r.t. some user weight
r◦k, rewriting (2.4) as follows

max
{Gk},{Pk}

min
k

rk/r
◦
k

s.t. Pk ≤ Pk∀k (2.6)

The introduction of the weights r◦k to the balancing problem changes the optimization
from providing the same rate to providing the same relative rate to all users. These
weights can be considered as user priorities, referring to the type of the requested service,
or can be exploited to assess the achievable user rate during time. In practical networks,
the latters should be updated, after every scheduling decision, according to the channels
quality and former achieved rates. In this thesis, however, we assume the priorities r◦k are
fixed and/or determined from higher layers of the network, then we provide solutions to
the per user (weighted) rate balancing problem.

2.3 Theoretical Background

Precoding (or digital beamforming) techniques are processing techniques that exploits
transmit diversity in order to transmit one or multiple spatially directive signals. The
precoder matrix represents a function of the estimated channel such that a directive
signal (or a beam) is processed before transmission in a way to cancel the interference
from other user’s signals. Downlink communications within one cell (one base station) are
refered to as Broadcast Channel (BC) [10, 61]: the BS transmits independent signals to
its uncoordinated receivers. When considering multi-cell multi-user network, we are in an
Interfering Broadcast Channel (IBC) where receivers suffer not only by the intra-cell, but
also by the inter-cell interference [62–65]. Another model is considered in the literature:
the Interfering Channel (IFC), wherein multiple BSs are serving one UE each [38,66–68].
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Let us consider an IFC (Figure 2.1), with K pairs of multiantenna BSs and single
antenna User Equipment (UE). Each BS bk is equipped with Mbk antennas. The Trans-
mit (Tx) beamformer and Receive (Rx) filter applied at the k-th user in DL and UL
transmissions are denoted as gk and g̃k, respectively. The Rx signal at the k-th UE in
the DL phase, and the output of Rx filter at the bk-th BS in the UL phase are expressed,
respectively, as follows

yk = hkbk
gksk +

∑K
l=1
l 6=k

hkbl
glsl + nk r̃bk = g̃kh̃kbk

s̃k +
∑K

l=1
l 6=k

g̃kh̃kbl
s̃l + g̃kñk

where hkbl
and h̃blk

refer to the channel between the transmitting BS bl and UE k in
DL communication and the transmitting user k and BS bl in the UL, respectively. sk is
the transmitted symbol and nk represents the additive noise. We refer to the respective
quantities in the UL by (̃.).

Hereafter, we provide some useful theoretical background to ensure good comprehen-
sion to interested readers, who may not be experts in the topics discussed here.

2.3.1 UL/DL Duality

In the following, we introduce the UL/DL duality for the aforedescribed Multiple-Input
Single-Output (MISO) DL IFC.

MISO DL IFC

The SINR for the DL channel is expressed as

SINRDL
k =

pkg
H
k hHkkhkkgk∑

l 6=k plg
H
l hHklhklgl + σ2

(2.7)

with pk being the Tx power allocated to the k-th user. It can be observed that the
downlink SINRs (2.7) are coupled both by the transmission powers and the beamforming
vectors, which makes a direct optimization very difficult.

Imposing a set of DL SINR constraints at each mobile station: SINRDL
k = γk, we

obtain in matrix notation the following

Φp + σ = Dp (2.8)

with:

[Φ]ij =

 gHj hHibjhibjgj = |hibjgj|2, j 6= i

0, j = i
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Figure 2.1: MISO Interfering Channel

D = diag{
|h1b1

g1|2

γ1

, . . . ,
|hKbK

gK|2

γK

} , σ = σ21 .

We can determine the TX power solving (2.8) w.r.t. p obtaining

p = (D−Φ)−1σ (2.9)

Feasible (p > 0) if maxi |λi(D−1Φ)| < 1, where λi(X) denotes the eigenvalue λi of matrix
X.

SIMO UL IFC

Now consider the UL scenario, with the same targets γk, see Figure 2.2 the Single-Input
Multiple-Output (SIMO) IFC.

Figure 2.2: SIMO Interfering Channel
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We assume in the following that the UL channel is the reciprocal of the DL one, i.e.,
both channels are described by the same covariances or h̃bij

= hH

jbi
and g̃i = gH

i . This ap-
proach is justified for Time-Division Duplexing (TDD) systems, which use the same carrier
frequency for uplink and downlink. However, the following results are not restricted to
TDD systems. The assumption of channel reciprocity only serves the purpose of com-
paring uplink and downlink achievable regions. The UL/DL duality will be introduced,
afterward, between the actual DL and a virtual UL channel.

The SINR for the UL channel can be written as follows

SINRUL
k =

qkg
H
k hHkbkhkbkgk

gHk (
∑

l 6=k qlh
H
lbk

hlbk + σ2I)gk
(2.10)

which represents the Rayleigh quotient, with qk denoting the UL transmit power at UE k.
We can see that these uplink SINRs are only coupled by the transmission powers. For a
given power allocation, the beamformers which maximize (2.10) are well known [69].

In fact, the optimal UL Rx beamformer, ĝk, is obtained as follows

ĝk = arg max
gk

SINRUL
k = arg max

gk

qkg
H
k hHkbkhkbkgk

gHk Qk(q)gk
(2.11)

whereQk(q) =
∑

l 6=k[q]lh
H
lbk

hlbk +σ2I, and collecting the individual UL transmit powers in
the vector q = [q1 . . . qK ]. The matrices Qk are nonsingular and symmetric, thus (2.11) is
solved by the dominant generalized eigenvectors of the matrix pairs (qkh

H
kbk

hkbk , Qk(q) ),

i.e., ĝk = Vmax(qkh
H
kbk

hkbk , Qk(q) ), 1 ≤ k ≤ K. In case of rank{hHkbkhkbk} = 1, 1 ≤ k ≤ K,
this is equivalent to the scaled MMSE beamforming solution [69]

ĝkz = (
∑
l 6=k

qlh
H
lkhlk + σ2I)−1hHkbk .

Generalized Eigenvectors

• Consider N ×N matrices A = AH ≥ 0, B = BH > 0.

• Generalized eigen vectors Vi and eigen values λi

AVi = λi BVi , B−1AVi = λi Vi , det(A− λB) = 0

λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0, Λ = diag{λ1, . . . , λN}.
Note that the Vi in V = [V1 · · ·VN ] are not orthogonal.

• Let B = B1/2BH/2 and (UHU = I, Γ diagonal)
eigen decomposition B−1/2A B−H/2 = UΓUH . Then

V = B−H/2U , V HAV = Γ , V HBV = Ξ = I , AV = BV Γ

so Λ = Γ. If we normalize diag(V HV ) = I, then Ξ 6= I and Λ = Ξ−1Γ. The
non-singular V simultaneously diagonalizes A, B.
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• Rayleigh quotient is defined as follows

V1 = Vmax(A,B) = arg max
V

V HAV

V HBV
, λ1 = eigmax(A,B) = max

V

V HAV

V HBV

Duality

Imposing the same SINR constraints also in the UL, i.e., SINRUL
k = SINRDL

k = γk it is
possible to rewrite that constraints as

Φ̃q + σ = Dq

with

[Φ̃]ij =

 gHi hHjbihjbigi = |hjigi|2, j 6= i

0, j = i

D = diag{
|h1b1

g1|2

γ1

, . . . ,
|hKbK

gK|2

γK

}.

The power vector can be found as follows

q = (D− Φ̃)−1σ (2.12)

Comparing the definition we can see that Φ̃ = ΦT . This implies that there exists a
duality relationship between the DL MISO and UL SIMO IFCs.

We can extend the results for UL-DL duality for MAC/BC [8] to the MISO/SIMO
IFC, which state that targets γ1, . . . , γK are jointly feasible in UL and DL if and only if
the spectral radius ρ of the weighted coupling matrix satisfies ρ(D−1Φ) < 1. Also, both
UL and DL have the same SINR feasible region under a sum-power constraint, i.e., target
SINRs are feasible in the DL if and only if the same targets are feasible in the UL:∑

i

qi = 1Tq = σ21T (D−ΦT )−11 = σ21T (D−Φ)−11 =
∑
i

pi (2.13)

Using these results it is possible to extend some BF design techniques used in the BC [8]
to the MISO IFC: i) Max-Min SINR (SINR Balancing) and ii) Power minimization under
SINR constraints.

2.3.2 Perron Frobenius Theory

We shall now consider the following weighted SINR balancing formulation

max
p

min
k

SINRDL
k

γk
⇔ min

p
max
k

γk

SINRDL
k

(2.14)

(a)
= min

p
max
k

1

pk
[D−1Φp + D−1σ]k (2.15)
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where (a) follows from (2.8) and p = [p1 . . . pK ]. Consider that the total power is con-
strained by P , i.e., 1Tp = P , reparameterize p = P

1Tp′
p′ which satisfies the power con-

straint for any p′ and rename p′ as p. Then, the SINR balancing becomes as follows

min
p

max
k

[Λ p]k
pk

with Λ = D−1[Φ +
σ2

P
11T ]

Classical nonnegative vectors and matrices: Note that the optimal powers should
satisfy the power constraint with equality. Furthermore, at the optimum we shall have th
equality

SINRDL
k

γk
=

1

∆
, ∀k ↔ Λ p = ∆ p

since otherwise the user with higher SINR can lower its power, reducing interference to
the user with the lowest SINR, which then increases. So, p is an eigen vector of Λ with
eigen value ∆.

Now, for a non-negative matrix Λ, the eigenvalue of the largest magnitude is positive,
and its corresponding eigenvector p can be chosen to be non-negative. For a non-negative
matrix, the non-negative eigen vector corresponding to the eigenvalue of the largest norm
is positive and so is the corresponding eigen value ∆. There is only one such positive
eigen pair which is called Perron Frobenius.

Actually, without physical motivation for the SINR equality, the Collatz-Wielandt
formula for the Perron-Frobenius eigen pair is

∆ = min
p

max
k

[Λ p]k
pk

= eigmax(Λ), p′ = arg min
p

max
k

[Λ p]k
pk

= Vmax(Λ)

The non-smooth optimization criterion minp maxk
γk

SINRDL
k

can be transformed into a

smooth problem

max
λ

min
p
{ t+

∑
k

λk(
γk

SINRDL
k

− t) }

where the λk ≥ 0 are the Lagrange multipliers for the constraints

γi

SINRDL
i

≤ t = max
k

γk

SINRDL
k

.

This leads to the Donsker-Varadhan-Friedland formula

∆ = eigmax(Λ) = max
λ:

∑
k λk=1

min
p

∑
k

λk
[Λ p]k
pk

A related formula is the Rayleigh quotient (λk = pk qk
qTp)

∆ = max
q

min
p

qTΛ p

qTp
⇒ Λ p = ∆ p , qTΛ = ∆ qT
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2.3. Theoretical Background

for which q and p are the left and right Perron Frobenius eigen vectors.

The beamformer optimization now only requires the dual UL powers qk from either:

• the left Perron Frobenius eigen vector q, via Lagrangian duality, in particular g′k =
arg mingk

[qTΛ]k,

• by UL/DL duality from p and SINRUL
k (q) = SINRDL

k (p),

• by iterating interference functions, which correspond to the power method for finding
a largest eigen vector iteratively.

2.3.3 Rate-MSE Relation

In the following, we consider a MIMO IBC with C cells with a total of K users, single
stream each. System-wide user numbering: the Nrk × 1 Rx signal at user k in cell bk is

yk=Hk,bk gk sk︸ ︷︷ ︸
signal

+
∑
i 6=k

bi=bk

Hk,bk gi si

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,j gi si︸ ︷︷ ︸
intercell interf.

+vk

where sk = intended (white, unit variance) scalar signal stream, Hk,bk = Nrk × Ntbk

channel from BS bk to user k. BS bk serves Kbk =
∑

i:bi=bk
1 users. Noise whitened

signal representation is considered: vk ∼ CN (0, INrk
). The Ntbk × 1 spatial Tx filter or

beamformer (BF) is gk.

Treating interference as noise, user k will apply a linear Rx filter fk to maximize the
signal power (diversity) while reducing any residual interference that would not have been
(sufficiently) suppressed by the BS Tx. The Rx filter output is ŝk = fHk yk

ŝk = fHk Hk,bk gk sk +
K∑

i=1,6=k

fHk Hk,bi gi si + fHk vk

= fHk hk,k sk +
∑
i 6=k

fHk hk,i si + fHk vk

where hk,i = Hk,bi gi is the channel-Tx cascade vector.

Hereafter, we introduce the relation between the user rate and user weighted-MSE.
Assuming Gaussian signaling, the achievable rate for user k is given as

rk = log det
(

1− gHk HH
k,bk
R−1
k Hk,bkgk

)
(2.16)

Rk = Rk +Hk,bkgkg
H
k H

H
k,bk

,

Rk =
∑
i 6=k

Hk,bigig
H
i H

H
k,bi

+ INrk
,

17



2.3. Theoretical Background

where Rk, Rk represent the total, interference plus noise Rx covariance matrices, respec-
tively, at UE k.

For a general Rx filter fk we have the MSE ek(fk, g) defined as follows, given g = {gk}

ek(fk, g) = E
{
|ŝk − sk|2

}
= (1− fHk Hkbkgk)(1− gHk HH

kbk
fk) +

∑
i 6=k

fHk Hkbigig
H
i H

H
kbi
fk + ||fk||2 (2.17)

= 1−fHk Hkbkgk−gHk HH
kbk
fk+

∑
i

fHk Hkbigig
H
i H

H
kbi
fk+||fk||2, (2.18)

assuming E{|sk|2} = 1.

We notice that rk can be expressed as a function of the error covariance ek after MMSE
receive filtering. The MMSE receive filter at user k is given as

fMMSE
k = argmin

fk

E{|fHk yk − sk|2} (2.19)

= (gHk H
H
kbk
Hkbkgk +Rk̄)

−1Hkbkgk (2.20)

The per user MSE ek given that the MMSE-receive filter is applied can be written as

ek(f
MMSE
k , g) = E

{
|fMMSEH
k yk − sk|2

}
= (1 + gHk H

H
kbk
R−1
k Hkbkgk)

−1. (2.21)

Given (2.16) and (2.21) the rate for user k can be written as

rk = log det(e−1
k ). (2.22)

2.3.4 WSR Maximization

Maximizing the weighted sum rate of the MIMO IBC system is expressed as follows

[gWSR
1 . . . gWSR

K ] = argmax
g

K∑
k=1

ukrk (2.23)

with uk being the per user weight (or priority): 0 ≤ uk ≤ 1,∀k. The latter definition allow
us to either exclude some user rate from the objective function, or reduce the problem to
sum rate maximization, by assigning uk = 0, or uk = 1,∀k, respectively.

In fact, the WSR maximization problem is a non-convex and complicated function of
g. We discuss in the following the different methods to solve it.

18



2.3. Theoretical Background

From WSR to WSMSE

Using the rate-MSE relation discussed previously, the WSR problem in (2.23) can be
transformed into a weighted sum MSE problem, [26]. The resulting augmented cost
function is as follows

WSMSE(g,f , w) =
K∑
k=1

uk(wk ek(fk, g)− lnwk) + λ(
K∑
k=1

||gk||2 − P )

where λ is the Lagrange multiplier and P denotes the total Tx power constraint.

After optimizing over the aggregate auxiliary Rx filters f = {fk}1≤k≤K and weights
w, we get the WSR back,

min
f ,w

WSMSE(g,f , w) = −WSR(g) +

constant︷ ︸︸ ︷
K∑
k=1

uk

With alternating optimization, we can solve simple quadratic or convex functions,
namely

min
wk

WSMSE ⇒ wk = 1/ek

min
fk

WSMSE ⇒ fk=(
∑
i

Hkgig
H
i H

H
k +INrk

)−1Hkgk

min
gk

WSMSE ⇒ gk=(
∑
i

uiwiH
H
i fif

H
i Hi+λINt)

−1HH
k fkukwk

Using UL/DL duality, the optimal Tx filter gk is of the form of a MMSE linear Rx
for the dual UL, in which λ plays the role of Rx noise variance and ukwk plays the role of
stream variance.

The optimal Lagrange multiplier λ can be found by

i) Bisection: line search on
∑K

k=1 ||gk||2 − P = 0 [22].

ii) Analytical update as in [70,71]: exploiting
∑

k g
H
k
∂WSMSE

∂g∗k
= 0.

iii) Reparameterizing the BF to satisfy the power constraint [20]:

gk =

√
P∑K

i=1 ||g
′
i||2

g
′

k,

with g
′

k now unconstrained

SINRk =
|fkHkg

′

k|2∑K
i=1,6=k |fkHkg

′
i|2 + 1

P
||fk||2

∑K
i=1 ||g

′
i||2

.
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2.3. Theoretical Background

Note that ii) and iii) are equivalent, and lead to the same Lagrange multiplier expres-
sion obtained in [26] on the basis of a heuristic that was introduced in [72] as was pointed
out in [70].

Alternating Minorization Approach

Another way to solve the problem in (2.23) is to use a classical difference of concave
functions (DC) programming approach as in [73, 74]. Actually, the WSR maximization
problem is non concave because of interference, the solution discussed here proposes to
isolate the signal of interest from the sum rate of the rest of the signals.

Considering MU multi-stream MIMO IBC notation, let Qk = GkG
H
k be the transmit

covariance for user k. The WSR maximization problem can be written as

WSR =
K∑
k=1

uk[ln det(Rk)− ln det(Rk)]

with Rk = Hk,bkQkH
H
k,bk

+Rk, Rk = Hk(
∑

i 6=kQi)H
H
k,bi

+ INrk
.

Consider the dependence of WSR on Qk alone, we can write

WSR = uk ln det(R−1

k
Rk) + WSRk , WSRk =

K∑
i=1,6=k

ui ln det(R−1
i
Ri)

where ln det(R−1

k
Rk) is concave in Qk and WSRk is convex in Qk.

Since a linear function is simultaneously convex and concave, consider the first order
Taylor series expansion in Qk around Q̂ (i.e. all Q̂i) with e.g. R̂i = Ri(Q̂), then

WSRk(Qk, Q̂) ≈WSRk(Q̂k, Q̂)− tr{(Qk − Q̂k)Âk},

Âk = − ∂WSRk(Qk, Q̂)

∂Qk

∣∣∣∣∣
Q̂k,Q̂

=
K∑

i=1,6=k

uiH
H
i (R̂−1

i
−R̂−1

i )Hi.

Note that the linearized (tangent) expression for WSRk constitutes a lower bound for
it. Now, dropping constant terms, reparameterizing Qk = GkG

H
k and performing this

linearization for all users, we obtain the following Lagrangian

WSR(G, Ĝ)=
K∑
k=1

uk ln det(I +GH
k H

H
k,bk
R̂−1

k
Hk,bkGk)

−
K∑
k=1

tr{GH
k (Âk + λbkI)Gk}+

C∑
c=1

λcPc.
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2.4. Closing Remarks

The gradient (w.r.t. Gk) of this concave WSR lower bound is actually still the same as
that of the original WSR or of the WSMSE criteria, allowing the following generalized
eigenvector interpretation

HH
k,bk
R̂−1

k
Hk,bkGk = (Âk + λbkI)Gk

1

uk
(I +GH

k H
H
k,bk
R̂−1

k
Hk,bkGk)

or hence
G
′

k = Vmax(H
H
k,bk
R̂−1

k
Hk,bk , Âk + λbkI).

Introducing Pk ≥ 0 and substituting Gk = G
′

k P
1
2
k , the Lagrange multipliers λc, for all c,

are adjusted to satisfy the power constraints
∑

k:bk=c tr{Pk} = Pc.

Let us define Σ
(1)
k = G

′H
k H

H
k R̂

−1

k
HkG

′

k and Σ
(2)
k = G

′H
k ÂkG

′

k. The advantage of this
formulation is that it allows straightforward power adaptation, yielding

WSR =
C∑
c=1

λcPc +
K∑
k=1

[uk ln det(I + PkΣ
(1)
k )− tr{Pk(Σ(2)

k + λbkI)}]

which leads to the following interference leakage aware water filling (jointly for the Pk
and λbk)

Pk(l, l) =
(
uk(Σ

(2)
k (l, l) + λbkI)−1 −Σ

−(1)
k (l, l)

)+

,
∑
k:bk=c

tr{Pk} = Pc ,

for all l s.t. Σ
(i)
k ≥ 0 with i = {1, 2}, and z+ = max(0, z). Note also that as with

any alternating optimization procedure, there are many updating schedules possible, with
different impact on convergence speed. The quantities to be updated are G

′

k,Pk and λc.
The advantage of the DC approach is that it works for any number of streams/user dk,
by simply taking more or less eigenvectors. In other words, we can take the dmax

k max
eigenvectors of the eigenmatrix G

′

k. We mean by the max eigenvectors, the eigenvectors
corresponding to the highest eigenvalues. The waterfilling then automatically determines
(at each iteration) how many streams can be sustained.

2.4 Closing Remarks

In this chapter, we presented an overview of the evolution of power allocation problem
formulation with respect to max-min fairness utility, leading to the max-min per user
(weighted) rate problem considered in this thesis. We also provided the needed theoretical
background to ensure good comprehension in the next chapters.
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Chapter 3

Rate Balancing via MSE UL/DL duality
with total power constraint: BC

3.1 Overview

In this chapter, we focus on transceiver optimization problem w.r.t. rate balancing. The
problem is to maximize the minimum weighted rate (the ratio of rate and given priority).
User-wise rate is considered, i.e., total rate of each user summed over its streams. The
problem is studied in a multi-user MIMO BC under a total power constraint. This opti-
mization problem is here solved in an alternating manner by exploiting matrix-weighted
MSE uplink/downlink duality with proven convergence to a local optimum. The MSE
duality [47] plays an important role, since it ensures that the same MMSE can be achieved
in both links. This guarantees the convergence in each iteration.

The rest of this chapter is organized as follows. Section 3.2 details the system model
under consideration. The problem formulation in downlink communications and its re-
spective dual problem are given in Section 3.3. We provide the algorithmic solution based
on UL/DL duality in 3.4. Numerical results for validation are presented in Section 3.5.
We finally conclude in Section 3.6.
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3.2. System Model

Figure 3.1: Single cell broadcast channel system model.

3.2 System Model

The considered network is a multi-user MIMO DL system, (see Figure 3.1). We focus
on a Base Station (BS) of M transmit antennas serving K users of each Nk antennas,
(k = 1, ..., K is the users’ index). The channel between the kth user and the BS is denoted
by HH

k ∈ CM×Nk , and HH = [HH
1 , ...,H

H
K ] is the overall channel matrix.

We assume zero-mean white Gaussian noise nk ∈ CNk×1 with distribution CN (0, σ2
nI)

at the kth user. We assume independent unity-power transmit symbols s = [sT
1 . . . s

T
K ]T,

i.e., E
[
ssH
]

= I, where sk ∈ Cdk×1 is the data vector to be transmitted to the kth user,
with dk being the number of streams allowed by user k. The latter are transmitted using
the transmit filtering matrix G = GP 1/2 ∈ CM×Nd , composed of the beamforming matrix
G = [G1 . . .GK ] = [g1 . . . gNd

] with normalized columns ‖gi‖2 = 1 and the diagonal non-

negative DL power allocation P 1/2 = blkdiag{P 1/2
1 , . . . ,P

1/2
K } where diag(Pk) ∈ Rdk×1

+

contains the transmission powers and Nd =
∑K

k=1 dk is the total number of streams. The
total transmit power is limitted, i.e., tr

(
P ) ≤ Pmax, see Figure 3.2.

Similarly, the receive filtering matrix for each user is defined as FH
k = P

−1/2
k βkF

H
k ∈

Cdk×Nk , composed of beamforming matrix F H
k ∈ Cdk×Nk and the diagonal matrices βk con-

tain scaling factors which ensure that the columns of F H
k have unit norm. We define β =

blkdiag{β1, . . . ,βK} = diag{[β1 . . . βNd
]} and F = blkdiag{F1, . . . ,FK} = [f1 . . .fNd

]
with normalized per-stream receivers, i.e., ‖fi‖2 = 1.

The MSE per stream εDL
i between the decision variable ŝi and the transmit data

symbol si is defined as follows

εDL
i = E

{
|ŝi − si|2

}
= β2

i /pif
H
i H

( Nd∑
j=1

pjgjg
H
j

)
HHfi

− 2βiRe
{
fH
i Hgi

}
+ σ2

nβ
2
i /pi + 1,∀i ∈ {1, ..., Nd}. (3.1)
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3.3. Problem Formulation

Figure 3.2: Equivalent downlink channel.

3.3 Problem Formulation

In this work, we aim to solve the weighted user-rate max-min optimization problem under
a total transmit power constraint, i.e., the user rate balancing problem expressed as follows

max
{G,P ,F ,β}

min
k

rk/r
◦
k

s.t. tr
(
P ) ≤ Pmax (3.2)

where rk is the kth user-rate

rk = ln det
(
I+HkGkGH

kH
H
k

(
σ2
nI+

∑
j 6=k

HkGjGH
jH

H
k

)−1
)

(3.3)

and r◦k is the rate scaling factor for user k. However, the problem presented in (3.2) is
complex and can not be solved directly.

Lemma 1. The rate of user k in (3.3) can also be represented as

rk = max
Wk,Fk

[
ln det

(
Wk

)
− tr

(
WkE

DL
k

)
+ dk

]
. (3.4)

where

EDL
k = E

[
(ŝk − sk)(ŝk − sk)

H
]

= (I −FH
kHkGk)(I −FH

kHkGk)
H +

∑
j 6=k

FH
kHjGjGH

jH
H
j Fk + σ2

nFH
kFk (3.5)

is the kth-user DL MSE matrix between the decision variable ŝk and the transmit signal
sk, and W = {Wk}1≤k≤K are auxiliary weight matrix variables with optimal solution

Wk =
(
EDL
k

)−1
and Fk = (σ2

nI +
∑K

j=1HkGjGH
jH

H
k )−1HkGk, [27].

Proof. Appendix A.1.

Now considering both (3.2) and (3.4), and introducing t = mink rk/r
◦
k, we have ∀k

rk/(t r
◦
k) ≥ 1 or rk/r

◦
k ≥ t

(a)⇐⇒ ln det
(
Wk

)
+ dk − tr

(
WkE

DL
k

)
≥ tr◦k (3.6)

⇐⇒
tr
(
WkE

DL
k

)
ln det

(
Wk

)
+ dk − tr◦k

(b)
=
εDL
w,k

ξk
≤ 1
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Figure 3.3: Dual uplink channel.

where (a) follows from (3.4) (with optimal Wk) and (b) from εDL
w,k = tr

(
WkE

DL
k

)
, the

matrix-weighted MSE (WMSE), and ξk = ln det
(
Wk

)
+ dk − rMk the WMSE requirement,

with rMk = tr◦k the individual rate target, i.e. rk ≥ rMk . What we exploit here is a scale
factor t that can be chosen freely in the rate weights rok in (3.2), to transform the rate
weights r◦k into target rates rMk = tr◦k, which at the same time allows to interpret the
WMSE weights ξk as target WMSE values.

Doing so, the initial rate balancing optimization problem (3.2) can be transformed
into a matrix-weighted MSE balancing problem expressed as follows

min
{G,P ,F ,β}

max
k

εDL
w,k/ξk

s.t. tr
(
P
)
≤ Pmax, (3.7)

which needs to be complemented with an outer loop in which Wk =
(
EDL
k

)−1
, t =

mink rk/r
◦
k, r

M
k = tr◦k and ξk = dk + rk − rMk get updated.

The problem in (3.7) is still difficult to be handled directly. In the next sections, we
solve the problem via UL and DL MSE duality. To this aim, we model an equivalent
UL-DL channel plus transceivers pair by separating the filters into two parts: a matrix
with unity-norm columns and a scaling matrix [75]. Then, the UL and DL are proved to
share the same MSE by switching the role of the normalized filters in the UL and DL.
Doing so, an algorithmic solution can be derived for the optimization problem (3.7).

3.3.1 Dual UL Channel

In the equivalent UL model represented in Figure 3.3, we switch between the role of
the normalized transmit and receive filters. In fact, FkQ

1/2
k is the kth transmit filter and

Q−1/2βGH is a multi-user receive filter, where Q = blkdiag
{
Q1, ...,QK

}
with diag(Qk) ∈

Rdk×1
+ being the UL power allocation.

Although the quantities H ,G,F and β are the same, the UL power allocation q =
[q1 . . . qNd

]T = diag(Q) may differ from the DL allocation p = [p1 . . . pNd
]T = diag(P ),

both verifying the same sum power constraint ‖p‖1 = ‖q‖1 ≤ Pmax.
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3.4. Algorithmic Solution via UL-DL MSE Duality

The corresponding UL per stream MSE εUL
i is given by

εUL
i = β2

i /qig
H
i H

H
( Nd∑
j=1

qjfjf
H
j

)
Hgi − 2βiRe

{
gH
i H

Hfi
}

+ σ2
nβ

2
i /qi + 1, ∀i. (3.8)

3.3.2 MSE Duality

With the equivalent DL channel and its dual UL, it has been shown that the same per
stream MSE values are achieved in both links, i.e., εUL/DL = diag

{
[ε

UL/DL
1 . . . ε

UL/DL
Nd

]
}

=

diag
{

[ε1 . . . εNd
]
}

= ε [75].

The UL and DL power allocation, obtained by solving the MSE expressions as in (3.8)
for UL w.r.t. the powers, are given by (see Appendix A.2)

q = σ2
n(ε−D − β2Ψ)−1β21Nd

(3.9)

and

p = σ2
n(ε−D − β2ΨT )−1β21Nd

(3.10)

respectively, where the diagonal matrix D is defined as

[D]ii = β2
i g

H
i H

Hfif
H
i Hgi − 2βiRe{gH

i H
Hfi}+ 1

and

[Ψ]ij =

{
gH
i H

Hfjf
H
j Hgi, i 6= j

0, i = j.

In fact, the MSE duality allows to optimize the transceiver design by switching between
the virtual UL and actual DL channels. The optimal receive filtering matrices in both UL
and DL are MMSE filters and given by

GkβkQ
−1/2
k =

(
HHFQF HH + σ2

nI
)−1
HH

k FkQ
1/2
k (3.11)

and

FkβkP
−1/2
k =

(
HkGPG

HHH
k + σ2

nI
)−1
HkGkP

1/2
k (3.12)

respectively.

3.4 Algorithmic Solution via UL-DL MSE Duality

In this section, the problem (3.7) with respect to the matrix weighted user-MSE is stud-
ied. First, we start by the UL power allocation strategies. Then, the joint optimization
will follow given the MSE duality. In fact, the MSE duality opens up a way to obtain
optimal MMSE receiver designs in (3.11) and (3.12). The DL matrix weighted user-MSE
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optimization problems can be solved by optimizing the weighted MSE values of the dual
UL system. The latter can be formulated as

min
{G,F ,W }

max
k

εUL
w,k/ξk

s.t. tr
(
Q
)
≤ Pmax (3.13)

where εUL
w,k = tr

(
WkE

UL
k

)
, and

EUL
k = (I −Q−1/2

k βkG
H
kH

H
k FkQ

1/2
k )(I −Q−1/2

k βkG
H
kH

H
k FkQ

1/2
k )H

+
∑
j 6=k

Q
−1/2
k βkG

H
kH

H
j FjQjF

H
j HjGkβkQ

−1/2
k + σ2

nQ
−1/2
k βkG

H
kGkβkQ

−1/2
k . (3.14)

Then, based on the equivalent UL/DL channel pair, we derive a general framework for
joint DL MSE design. First, in the UL channel, we find the globally optimal powers
Q according to the optimization problem under consideration; then, we update the UL
receivers as MMSE filters (3.11) and we compute the associated per stream MSE values
εUL
i , ∀i. Second, in the DL channel, we find the DL power allocation P which achieves the

same UL MSE values; and we update the DL receivers as MMSE filters (3.12). Finally,
we update Wk.

The matrix weighted per user MSE can be expressed as follows

εUL
w,k = tr

(
WkE

UL
k

)
(3.15)

= tr
(
Wk

)
+ tr

(
WkQ

−1/2
k βkG

H
kH

H
k FkQkF

H
k HkGkβkQ

−1/2
k

)
− 2Re

{
tr
(
Q

1/2
k WkQ

−1/2
k βkG

H
kH

H
k Fk

)}
+ σ2

ntr
(
WkQ

−1/2
k βkG

H
kGkβkQ

−1/2
k

)
+
∑
j 6=k

tr
(
WkQ

−1/2
k βkG

H
kH

H
j FjQjF

H
j HjGkβkQ

−1/2
k

)
,∀k.

We define Qk = q̃kQ̄k where tr
(
Q̄k

)
= 1 and q̃k is the individual power of the kth user.

Then, the transmit covariance matrix Rk = FkQkF
H
k can be written as Rk = q̃kR̄k with

tr
(
R̄k

)
= 1. Thus, the matrix weighted MSE εw,k becomes a function of q̃ = [q̃1, ..., q̃K ]T

εUL
w,k = ak + q̃−1

k

∑
j 6=k

q̃jbkj + q̃−1
k ckσ

2
n,∀k (3.16)

where

ak = tr
(
Wk

)
+ tr

(
WkQ̄

−1/2
k βkG

H
kH

H
k R̄kHkGkβkQ̄

−1/2
k

)
− 2Re

{
tr
(
Q

1/2
k WkQ

−1/2
k βkG

H
kH

H
k Fk

)}
,

bkj = tr
(
WkQ̄

−1/2
k βkG

H
kH

H
j R̄jHjGkβkQ̄

−1/2
k

)
and

ck = tr
(
WkQ̄

−1/2
k βkG

H
kGkβkQ̄

−1/2
k

)
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.

Actually, problem (3.13) always has a global minimizer q̃opt characterized by the fol-
lowing equations:

∆UL =
εUL
w,k(q

opt)

ξk
, ∀k, (3.17)

‖qopt‖1 = Pmax (3.18)

where ∆UL is the minimum balanced matrix-weighted user MSE.

We aim to form an eigensystem by combining (3.17) and (3.18). For that, we rewrite
(3.16) as

εUL
w q̃ = Aq̃ + σ2

nC1K (3.19)

where εUL
w = diag{εUL

w,1, . . . , ε
UL
w,K},

C = diag
{
c1, . . . , cK

}
, (3.20)

and [A]kj =

{
bkj, k 6= j

ak, k = j.
(3.21)

Now, we define ξ = diag
{

[ξ1 . . . ξK ]
}

and multiply both sides by ξ−1 to have

ξ−1εUL
w q̃ = ξ−1Aq̃ + σ2

nξ
−1C1K . (3.22)

From (3.17), we have ξ−1εUL
w (q̃opt) = ∆ULI. Thus, (3.22) becomes

∆ULq̃ = ξ−1Aq̃ + σ2
nξ
−1C1K . (3.23)

From (3.18), we can reparameterize q̃ = Pmax

1T
Kq
′ q
′

where q
′

is unconstrained. This allows to

rewrite (3.23) as [43]

Λq̃
′
= ∆ULq̃

′
, Λ = ξ−1A+

σ2
n

Pmax

ξ−1C1K1T
K (3.24)

It can be observed that ∆UL is an eigenvalue of the non-negative extended coupling matrix
Λ. However, not all eigenvalues represent physically meaningful values. In particular,
q̃opt > 0 and ∆UL > 0 must be fulfilled.

It is known that for any non-negative irreducible real matrix X with spectral radius
ρ(X), there exists a unique vector q > 0 and λmax(X) = ρ(X) such thatXq = λmax(X)q.
The uniqueness of λmax(Λ) also follows from immediately from the function ∆UL(Pmax)
being strictly monotonically decreasing in Pmax. This rules out the existence of two
different balanced levels with the same sum power. Hence, the balanced level is given by

∆UL, opt = λmax(Λ). (3.25)
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Therefore, the optimal power allocation q̃
′

is the principal eigenvector of the matrix Λ in
(3.24). As noted in [8], we have in fact

λmax(Λ) = min
p̃

max
q̃

p̃HΛq̃

p̃H q̃
= max

p̃
min
q̃

p̃HΛq̃

p̃H q̃
(3.26)

where in [8] p̃ was said to have no particular meaning but actually can be shown to relate
to the DL powers. So, the proposed algorithm provides in the inner loop an alternating
optimization of (3.26) w.r.t. p̃, q̃, F , G [8], [75]. If we take for p̃ the K standard basis
vectors, then we get

λmax(Λ) = min
q̃

max
k

(
Λq̃
)
k

q̃k
(3.27)

which from (3.17), (3.22), (3.24) can be seen to be exactly the WMSE balancing problem
we want to solve.

3.4.1 Algorithm

The proposed optimization framework is summarized hereafter in Table 3.1. Superscripts

(.)(n) and (.)(tmp) denote the nth iteration and a temporary value, respectively. This
algorithm is based on a double loop. The inner loop solves the WMSE balancing problem
in (3.7) whereas the outer loop iteratively transforms the WMSE balancing problem into
the original rate balancing problem in (3.2).

3.4.2 Proof of Convergence

In case the rate weights r◦k would not satisfy rk ≥ r◦k, this issue will be rectified by the scale

factor t after one iteration (of the outer loop). It can be shown that t = mink
r
(m)
k

r
◦(m−1)
k

≥ 1.

By contradiction, if this was not the case, it can be shown to lead to
tr
(
W

(m−1)
k E

(m)
k

)
ξ
(m−1)
k

> 1, ∀k

and hence ∆(m) > 1. But we have

∆(m) =
tr
(
W

(m−1)
k E

(m)
k

)
ξ
(m−1)
k

, ∀k,= maxk
tr
(
W

(m−1)
k E

(m)
k

)
ξ
(m−1)
k

(a)
<maxk

tr
(
W

(m−1)
k E

(m−1)
k

)
ξ
(m−1)
k

= maxk
dk

ξ
(m−1)
k

(b)
< 1 .

(3.28)

Let E = {Ek, k = 1, ..., K} and

f (m)(E) = maxk
tr
(
W

(m−1)
k Ek

)
ξ
(m−1)
k

. Then (a) is due to the fact that the algorithm in fact

performs alternating minimization of f (m)(E) w.r.t. G, F , q̃ and hence will lead to

f (m)(E(m)) < f (m)(E(m−1)). On the other hand, (b) is due to ξ
(m−1)
k = dk + r

(m−1)
k −

r
◦(m−1)
k > dk, for m ≥ 3.
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Table 3.1: User Rate Balancing via UL/DL Duality Algorithm

1. initialize: FH(0,0)
k = (Idk : 0), Q̄(0,0) = Pmax

Nd
I, m = n = 0 and nmax,mmax and fix r

◦(0)
k

2. compute UL receive filter G(0,0) and β(0,0) with (3.11)

3. set W
(0)
k = I and ξ

(0)
k = dk

4. find optimal user power allocation q̃(0,0) by solving (3.24) and compute Q
(0,0)
k =

q̃
(0,0)
k Q̄

(0,0)
k

5. repeat

5.1 repeat

n← n+ 1

UL channel:

• update G(n,m−1) and β(tmp,tmp) with (3.11)

• compute the MSE values εUL,(n) with (3.8)

DL channel:

• compute P (n,m−1) with (3.10)

• update F (n,m−1) and β(tmp,tmp) with (3.12)

• compute the MSE values εDL(n) with (3.1)

UL channel:

• compute Q(tmp,tmp) with (3.9) and Q̄
(n,m−1)
k = Q

(tmp,tmp)
k /tr

(
Q

(tmp,tmp)
k

)
• find optimal user power allocation q̃(n,m−1) by solving (3.24) and compute

Q
(n,m−1)
k = q̃

(n,m−1)
k Q̄

(n,m−1)
k

5.2 until required accuracy is reached or n ≥ nmax

5.3 m← m+ 1

5.4 update W
(m)
k = (E

UL(m)
k )−1, r

(m)
k = ln det(W

(m)
k ), t = mink

r
(m)
k

r
◦(m−1)
k

, r
◦(m)
k =

t r
◦(m−1)
k , and ξ

(m)
k = dk + r

(m)
k − r◦(m)

k

5.5 do n← 0 and set (.)(nmax,m−1) → (.)(0,m) in order to re-enter the inner loop

6. until required accuracy is reached or m ≥ mmax
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Hence, t ≥ 1. Of course, during the convergence t > 1. The increasing rate targets
r
◦(m)
k constantly catch up with the increasing rates r

(m)
k . Now, the rates are upper bounded

by the single user MIMO rates (using all power), and hence the rates will converge and the

sequence t will converge to 1. That means that for at least one user k, r
(∞)
k = r

◦(∞)
k . The

question is whether this will be the case for all users, as is required for rate balancing. Now,

the WMSE balancing leads at every outer iteration m to
tr
(
W

(m−1)
k E

(m)
k

)
ξ
(m−1)
k

= ∆(m),∀k. At

convergence, this becomes dk

ξ
(∞)
k

= ∆(∞) where ξ
(∞)
k = dk + r

(∞)
k − r◦(∞)

k . Hence, if we have

convergence because for one user k∞ we arrive at r
(∞)
k∞

= r
◦(∞)
k∞

, then this implies ∆(∞) = 1

which implies r
(∞)
k = r

◦(∞)
k ,∀k. Hence, the rates will be maximized and balanced.

Remark 1. In fact, the algorithm also converges with nmax = 1, i.e., with only a single
loop.

3.5 Results

In this section, we numerically illustrate the performance of the proposed algorithm. The
simulations are obtained under a channel modeled as follows : HH

k = BkUkAk where
Bk,Ak are of dimensions (M × Nk) and (Nk × Nk) respectively, and have independent
and identically distributed (i.i.d.) elements distributed as CN (0, 1); Uk = µUk, with

the normalization parameter µ = (trace
(
Uk)

)−1/2
and Uk = diag

{
1, α, α2, . . . , αNk−1

}
(α ∈ R being a scalar parameter). This model allows to control the rank profile of the
MIMO channels. For all simulations, we fix α = 0.3 and take 1000 channel realisations
and nmax = 20. The algorithm converges after 4-5 (or 13-15) iterations of m at SNR =
Pmax

σ2
n

=10dB (or 30dB).

Figure 3.4 plots the minimum achieved per user rate using i) our max-min user rate
approach with equal user priorities and ii) the user MSE balancing approach [75], as a
function of the Signal to Noise Ratio (SNR). We observe that our approach outperforms
significantly the unweighted MSE balancing optimization, and the gap gets larger with
more streams. Note that we observe the same behavior with the classical i.i.d. channel
HH

k = Bk , but with a smaller gap (e.g., for 15dB, mink rk(weighted-MSE)
mink rk(unweighted-MSE)

= 1.05 instead of

1.18 with M = 6, Nk = dk = 2 in Figure 3.4).

In Figure 3.5, we illustrate how rate is distributed among users according to their
priorities represented by the rate targets r◦k. We can see that, using the min-max weighted
MSE approach, the rate is equally distributed between the users with equal user priorities,
i.e., r◦k = r◦1 ∀k, whereas with different user priorities, the rate differs from one user to
another accordingly. Furthermore, the Sum Rate (SR) reaches its maximum when user
priorities are equal, as the channel statistics are identical for each user.

These results are extended to multi-user IBC case in [76]. Therein, we consider a
multi-cell case and solve the user rate balancing problem using diagonal weight matrices
by diagonalizing the user signal error covariance matrices, which allows to link the per
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3.5. Results

Figure 3.4: Minimum rate in the system vs. SNR: K = 3.

Figure 3.5: Rate distribution among users: K = 3, SNR= 10 dB, M = 6, Nk = dk = 2.
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3.5. Results

Figure 3.6: Minimum rate in the system vs. SNR: Channel comparison for K = 3,M =
6, Nk = dk = 2.

stream and per user power allocation problems. In fact, define a modified transmit uplink
filter as

F̆kQ̆
1/2
k = FkQ

1/2
k Vk , Ĕ

UL

k = Σk , (3.29)

where Vk is given by the eigenvalue decomposition EUL
k = VkΣkV

H
k . This operation allows

us to diagonalize {EUL
k ,Wk} and does not change the user rates [26], but changes the

identity of the streams (layers) of a user and the power distribution over them.

In Figure 3.6, we plot the minimum achieved rate as in Figure , using the classical
i.i.d. Gaussian channel and diagonal matrix weights. We observe the same behavior with
the classical i.i.d. Gaussian channel, but with a smaller gap. Also, we can see that the
balanced rate obtained using diagonal {Wk} outperforms the balanced rate derived with
non-diagonal weight matrices.

In Figure 3.7, we illustrate how rate is distributed among users according to their
priorities represented here by r◦kc for multi-cell case. We denote by C,Kc,Mc, the number
of cells and number of users and transmit antennas per cell; while Nkc and dkc denote the
number of receive antennas and streams allowed per user kc, respectively.
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Figure 3.7: Rate distribution among users: SNR= 10 dB, C = 2, Kc = 3,Mc = 12, Nkc =
dkc = 2.

3.6 Closing Remarks

In this chapter, we optimized the rate distribution over the streams of a user, within the
rate balancing of the users for a single cell multi-user BC. In this regard, we proposed
an iterative algorithm to balance the rate between the users in a MIMO system. The
latter was derived by transforming the max-min rate optimization problem into a min-
max weighted MSE optimization problem to enable MSE duality. Numerical comparisons
between the proposed weighted rate balancing approach and unweighted MSE balancing
were provided.

37



3.6. Closing Remarks

38



Chapter 4

Rate Balancing via Lagrangian duality
with per cell power constraints: IBC

4.1 Overview

In the previous chapter, we have investigated the performance improvements of weighted
matrix MSE balancing under total power constraints via UL-DL duality. In this chapter,
we move to per cell power constraints case, considering the problem of user rate balancing
for the downlink transmission of multi-user multi-cell MIMO systems. Due to the multiple
streams per user, user rate balancing involves both aspects of balancing and sum rate
optimization. We exploit the rate MSE relation, formulate the balancing operation as
constraints leading to Lagrangians in optimization duality, allowing to transform rate
balancing into weighted MSE minimization with Perron Frobenius theory. The Lagrange
multipliers for the multiple power constraints can be formulated as a single weighted
power constraint in which the weighting can be optimized to lead to the satisfaction with
equality of all power constraints. Actually, various problem formulations are possible,
including single cell full power transmission leading to a dual norm optimization problem,
and per cell rate balancing which breaks the balancing constraint between cells.

The rest of this chapter is organized as follows. Section 4.2 provides the details of
the considered multi-cell IBC. In section 4.3, we introduce the Lagrangian duality to
solve the user rate balancing problem. Simulation results are provided in Section 4.4 to
validate the proposed algorithms and demonstrate their performance improvement over
e.g. unweighted MSE balancing. Finally, conclusions are given in Section 4.5.
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4.2. System Model and Problem Formulation

Figure 4.1: Downlink channel of user k in cell bk.

4.2 System Model and Problem Formulation

We consider a MIMO system with C cells. Each cell c has one base station (BS) of Mc

transmit antennas serving Kc users, with total number of users
∑

cKc = K. We refer to
the BS of user k ∈ {1, . . . , K} by bk. Each user has Nk antennas. The channel between
the kth user and the BS in cell j is denoted by HH

k,j ∈ CMj×Nk . We consider zero-mean
white Gaussian noise nk ∈ CNk×1 with distribution CN (0, σ2

nI) at the kth user.

We assume independent unity-power transmit symbols sc = [sT
K1:c−1+1 . . . s

T
K1:c

]T, i.e.,

E
[
scs

H
c

]
= I, where sk ∈ Cdk×1 is the data vector to be transmitted to the kth user, with

dk being the number of streams allowed by user k and K1:c =
∑c

i=1 Ki. The latter is
transmitted using the transmit filtering matrix Gc = [GK1:c−1+1 . . .GK1:c ] ∈ CMc×Nc , with

Gk = p
1/2
k Gk, Gk being the beamforming matrix, pk is non-negative downlink power

allocation of user k and Nc =
∑

k:bk=c dk is the total number of streams in cell c. Each
cell is constrained with Pmax,c, i.e., the total transmit power in c is limitted such that∑

k:bk=c pk ≤ Pmax,c. The received signal at user k in cell bk is

yk = Hk,bkGksk︸ ︷︷ ︸
signal

+
∑
i 6=k
bi=bk

Hk,bkGisi

︸ ︷︷ ︸
intracel interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,jGisi︸ ︷︷ ︸
intercell interf.

+nk (4.1)

Similarly, the receive filtering matrix for each user k is defined as FH
k = p

−1/2
k FH

k ∈
Cdk×Nk , composed of beamforming matrix FH

k ∈ Cdk×Nk . The received filter output is
ŝk = FH

k yk. Figure 4.1 illustrates the described model.

4.2.1 Problem Formulation

In this work, we aim to solve the weighted user-rate max-min optimization problem under
per cell total transmit power constraint, i.e., the user rate balancing problem expressed
as follows

max
G,p

min
k

rk/r
◦
k

s.t.
∑
k:bk=c

pk ≤ Pmax,c, 1 ≤ c ≤ C (4.2)
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where rk is the kth user-rate

rk = lndet
(
I+R−1

k
Hk,bkGkGH

kH
H
k,bk

)
= ln det

(
R−1

k
Rk

)
, (4.3)

Rk = σ2
nI+

∑
l 6=k

Hk,blGlGH
l H

H
k,bl

, (4.4)

Rk = Rk+Hk,bkGkGH
kH

H
k,bk

, (4.5)

Rk and Rk are the interference plus noise and total received signal covariances, and r◦k is
the rate priority (weight) for user k. However, the problem presented in (4.2) is complex
and can not be solved directly.

Lemma 2. The rate of user k in (4.3) can also be represented as [27]

rk = max
Wk,Fk

[
ln det

(
Wk

)
− tr

(
WkEk

)
+ dk

]
. (4.6)

where

Ek = E
[
(ŝk − sk)(ŝk − sk)

H
]

= (I −FH
kHk,bkGk)(I −FH

kHk,bkGk)
H +

∑
l 6=k

FH
kHk,blGlGH

l H
H
k,bl

Fk + σ2
nFH

kFk (4.7)

is the kth-user downlink MSE matrix between the decision variable ŝk and the transmit
signal sk, and {Wk}1≤k≤K are auxiliary weight matrix variables with optimal solution
W opt

k =
[
Ek

]−1
and the optimal receivers are

Fk = R−1
k Hk,bkGk. (4.8)

Now consider both (4.2) and (4.6), and let us introduce ξk = ln det
(
Wk

)
+ dk − rMk ,

the WMSE requirement, with target rate rMk . Assume that we shall be able to concoct an
optimization algorithm that ensures that at all times and for all users the matrix-weighted
MSE (WMSE) satisfies εw,k = tr

(
WkEk

)
≤ dk and ln det

(
Wk

)
≥ rMk or hence ξk ≥ dk. This

leads ∀k to

εw,k
ξk
≤ 1 ⇐⇒ ln det

(
Wk

)
+ dk − tr

(
WkEk

)
≥ rMk (4.9)

(a)
=⇒ rk/r

M
k ≥ 1

where (a) follows from (4.6). To get to (4.9), what we can exploit in (4.2) is a scale factor
t that can be chosen freely in the rate weights r◦k in (4.2). We shall take t = mink rk/r

◦
k,

which allows to transform the rate weights r◦k into target rates rMk = tr◦k, and at the same
time allows to interpret the WMSE weights ξk as target WMSE values.

Doing so, the initial rate balancing optimization problem (4.2) can be transformed
into a matrix-weighted MSE balancing problem expressed as follows
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min
G,p,F

max
k

εw,k/ξk

s.t.
∑
k:bk=c

pk ≤ Pmax,c, 1 ≤ c ≤ C (4.10)

which needs to be complemented with an outer loop in which Wk =
(
Ek

)−1
, t = mink rk/r

◦
k,

rMk = tr◦k and ξk = dk + rk − rMk get updated. The problem in (7.13) is still difficult to be
handled directly.

4.3 Proposed Solution

In this section, the problem (4.10) with respect to the matrix weighted user-MSE is
studied. The per user matrix weighted MSE (WMSE) can be expressed as follows

εw,k = tr
(
WkEk

)
= tr

(
Wk

)
− tr

(
WkG

H
kH

H
k,bk
Fk
)
− tr

(
WkF

H
k Hk,bkGk

)
+ p−1

k

K∑
l=1

pltr
(
WkF

H
k Hk,blGlG

H
l H

H
k,bl
Fk
)

+ σ2
np
−1
k tr

(
WkF

H
k Fk

)
. (4.11)

Define the diagonal matrix D of signal WMSE contributions

[D]ii = tr
(
Wi

)
− tr

(
WiG

H
i H

H
i,bi
Fi
)
− tr

(
WiF

H
i Hi,biGi

)
+ tr

(
WiF

H
i Hi,biGiG

H
i H

H
i,bi
Fi
)
, (4.12)

and the matrix of weighted interference powers

[Ψ]ij =

{
tr
(
WiF

H
i Hi,bjGjG

H
jH

H
i,bj
Fi
)
, i 6= j

0, i = j.
(4.13)

We can rewrite (4.11) as, with p = [p1 · · · pK ]T

εw,i = [D]ii + p−1
i [Ψp]i + σ2

np
−1
i tr

(
WiF

H
i Fi

)
(4.14)

Collecting all user WMSEs in a vector εw = diag(εw,1, . . . , εw,K), we get

εw1K = diag(p)−1 [(D + Ψ)diag(p)1K + σ] (4.15)

where σ is a (K × 1)vector defined as

[σ]i = σ2
ntr
(
WiF

H
i Fi

)
. (4.16)
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By multiplying both sides of (4.15) with diag(p), we get

εwp = (D + Ψ)p+ σ. (4.17)

Let ξ = diag(ξ1, . . . , ξK), then

ξ−1εw p = ξ−1(D + Ψ)p+ ξ−1σ. (4.18)

Actually, problem (4.10) always has a global minimizer p characterized by the equality
ξ−1εw(p) = ∆I, i.e.,

∆p = ξ−1(D + Ψ)p+ ξ−1σ. (4.19)

Now, consider the following problem

max
G,p,F

min
k

rk/r
◦
k

s.t.
C∑
c=1

θcc
T
c p ≤

C∑
c=1

θcPmax,c (4.20)

where cc is a column vector with cc(j) = 1 for K1:c−1 + 1 ≤ j ≤ K1:c, and 0 elsewhere.
This problem formulation is a relaxation of (4.2), and θ = [θ1 · · · θC ]Tcan be interpreted
as the weights on the individual power constraints in the relaxed problem. The power
constraint in (4.20) can be interpreted as a single weighted power constraint

(θTCT
C ) p ≤ θTpmax (4.21)

with CC = [c1 · · · cC ] ∈ RK1:C×C
+ and pmax = [Pmax,1 · · ·Pmax,C ]T. Reparameterize p =

θTpmax

θTCT
Cp
′ p
′
where now p

′
is unconstrained, which allows us to write (4.19) as follows (rewrit-

ing p
′

as p)

∆p = Λp with Λ = ξ−1(D + Ψ) +
1

θTpmax

ξ−1σ θTCT
C . (4.22)

Now with (4.22), the WMSE balancing problem of (4.10) becomes

min
p

max
k

εw,k
ξk

= min
p

max
k

[Λp]k
pk

(4.23)

According to the Collatz–Wielandt formula [77, Chapter 8], the above expression corre-
sponds to the Perron-Frobenius (maximal) eigenvalue ∆ of Λ and the optimal p is the
corresponding Perron-Frobenius (right) eigenvector

Λp = ∆p. (4.24)

Note that this implies the equality ξ−1εw = ∆ I as announced in (4.19).
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4.3.1 Algorithmic Solution via Lagrangian Duality

The max-min weighted user rate optimization problem (4.2) can be reformulated as

min
t,G,p
− t

s.t. t r◦k − rk ≤ 0, cT
c p− Pmax,c ≤ 0 . (4.25)

Introducing Lagrange multipliers to augment the cost function with the constraints
leads to the Lagrangian

max
λ′ ,µ

min
t,G,p
L

L = −t+
∑
k

λ
′

k(t r
◦
k − rk) +

∑
c

µc(c
T
c p− Pmax,c) (4.26)

Integrating the result (4.6), we get a modified Lagrangian

max
λ
′
,µ

min
t,G,p,F ,W

L

L = −t+
∑
k

λ
′

k(tr(WkEk)− ξk) +
∑
c

µc(c
T
c p− Pmax,c) (4.27)

From (4.20), we get µc = µθc. Introducing λk = λ
′

kξk, we can rewrite (with some abuse
of notation since actually minW continues to apply to tr(WkEk)− ξk(Wk))

max
λ,µ

min
t,G,p,F ,W

L

L = −t+
∑
k

λk(
tr(WkEk)

ξk
− 1) + µ

∑
c

θc(c
T
c p− Pmax,c) (4.28)

We shall solve this saddlepoint condition for L by alternating optimization. As far as
the dependence on λ,G,p,F is concerned, we have (omitting the power constraint)

max
λ

min
G,p,F

∑
k

λk
tr(WkEk)

ξk
(4.29)

which is of the form Weighted Sum MSE (WSMSE). Optimizing w.r.t. Rxs Fk leads to
the MMSE solution mentioned in Lemma 1. To optimizing w.r.t. the Txs Gk, we can
follow the approach in [26], which is based on [78], but needs to be adapted to a weighted
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sum power constraint. We get a shorter derivation by following [20]. To that end, consider
a reparameterization of the Tx filters to inherently satisfy the power constraint (see (4.21)
where pi = tr{GH

i Gi}) :

Gk =

√
θTpmax∑

i θbitr{GH
i Gi}

Gk . (4.30)

involving a unique system-wide scale factor (and note Gk 6= Gk). Introducing (4.30)
directly into (4.29) does not lead to a quadratic criterion. However, reinterpreting the
WSMSE (4.29) as a weighted sum rate via Lemma 2, we get

WSR =
∑
k

λk
ξk

ln det(R−1

k
Rk) (4.31)

withRk as in (4.4) but with Gi replaced by Gi and with the noise covariance term replaced
by ∑

i θbitr{GH
i Gi}

θTpmax

Σk (4.32)

where in fact Σk = σ2
nI. Using ∂ ln det(A) = tr{A−1 ∂A} and e.g. (R−1

i
Ri)

−1R−1
i

=

R−1
i , we get

∂WSR
∂G∗k

= 0 = λk
ξk
HH

k,bk
R−1
k Hk,bkGk

−
(∑

i 6=k
λi
ξi
HH

i,bk
R−1
i
Hi,bkGiG

H
i H

H
i,bk
R−1
i Hi,bk

)
Gk

−
(∑K

i=1
λi
ξi

tr{ΣiR
−1
i
Hi,bkGiG

H
i H

H
i,bk
R−1
i }
)
θbkGk

(4.33)

Now if we note that F i = R−1
i Hi,biGi = R−1

i
Hi,biGiEi, Wi = E−1

i and R−1
k Hk,bkGk =

Fk = FkWkEk = FkWk(I −FH
kHk,bkGk), then (4.33) leads to

Gk=
( K∑
l=1

HH
l,bk

F lW
′
lFH

l Hl,bk +σ2
nθbk

∑
l tr(W

′
lFH

l F l)∑
c θcPmax,c

I
)−1
HH

k,bk
FkW

′
k

Gk =
√
pkGk ,Gk =

1√
tr{GH

k Gk}
Gk (4.34)

where W ′
k = λk/ξkWk, and accounting for the fact that the user powers are actually

optimized by the Perron-Frobenius theory. Note that this result for Gk would also be
obtained by direct optimization of (4.28), but we needed the extra development above to
get the expression for the Lagrange multiplier µ. The Perron-Frobenius theory also allows
for the optimization of the Lagrange multipliers λk. With (4.23), we can reformulate
(4.29) as

∆ = max
λ:
∑

k λk=1
min
p

∑
k

λk
[Λp]k
pk

(4.35)

which is the Donsker–Varadhan–Friedland formula [77, Chapter 8] for the Perron Frobe-
nius eigenvalue of Λ. A related formula is the Rayleigh quotient

∆ = max
q

min
p

qTΛp

qTp
(4.36)
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where p, q are the right and left Perron Frobenius eigenvectors. Comparing (4.36) to
(4.35), then apart from normalization factors, we get λk/pk = qk or hence λk = pkqk.

The proposed optimization framework is summarized in Table 4.1; Table 4.2 represents
the power optimization algorithm ensuring the per cell power constraints. Superscripts
refer to iteration numbers. The algorithm in Table 4.1 is based on a double loop. The
inner loop solves the WMSE balancing problem in (4.10) whereas the outer loop iteratively
transforms the WMSE balancing problem into the original rate balancing problem in (4.2).

4.4 Results

In this section, we numerically evaluate the performance of the proposed algorithm. The
simulations are carried out over normalized flat fading channels, i.e., each element is i.i.d.
and normally distributed : starting from i.i.d. [Hk,j]mn ∼ CN (0, 1). For all simulations,
we take 500 channel realisations and nmax = 20. The algorithm converges after 4-5 (or
13-15) iterations of m at SNR = 15dB (or 30dB).

In Figure 4.2 (only), the singular values are modified to a geometric series αi to control
the MIMO channel conditioning, in particular α = 0.3. Fig. 4.2 plots the minimum
achieved per user rate using i) our max-min user rate approach for equal priorities with
total sum-power constraint and per cell power constraints, and ii) the user MSE balancing
approach [75] w.r.t. the Signal to Noise Ratio (SNR). We observe that our approach
outperforms significantly the unweighted MSE balancing optimization. Furthermore, the
gap between the achieved balanced rate using per cell power constraints and the one
obtained with total sum-power constraint over cells is very tiny.

In Figure 4.3, which illustrates the difference between the per cell power constraint
Pmax,c and the total power allocated per cell, i.e., cT

Kc,c
p, for per cell power contraints and

total sum-power constraint, we observe that using Table 4.2 we ensure the per cell power
constraint with equality, unlike the total sum-power constraint which verifies the total
power over cells.

In Figure 4.4, we illustrate how rate is distributed among users according to their
priorities represented by the rate targets r◦k. We can see that, using the min-max weighted
MSE approach, the rate is equally distributed between the users with equal user priorities,
i.e., r◦k = r◦1 ∀k, whereas with different user priorities, the rate differs from one user to
another accordingly.

4.5 Closing Remarks

In this chapter, we addressed the multiple streams per user case (MIMO links) for which we
considered user rate balancing, not stream rate balancing, in multi-cell downlink channel.
Actually, we optimized the rate distribution over the streams of a user, within the rate
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Table 4.1: User Rate Balancing via Lagrangian Duality Algorithm

1. initialize: G
(0,0)
k = (Idk : 0)T, p

(0,0)
k = q

(0,0)
k = Pmax,c

Kc
, m = n = 0 and fix nmax,mmax

and r
◦(0)
k , initialize W

(0)
k = Idk and ξ

(0)
k = dk

2. initialize F
(0,0)
k in F (0,0)

k = p
(0,0)−1/2
k Fk from (4.8)

3. repeat

3.1. m← m+ 1

3.2. repeat

n← n+ 1

i update Gk in Gk = p
1/2
k Gk from (4.34)

ii update Fk in Fk = p
−1/2
k Fk from (4.8)

iii update p and q using Table 4.2

3.3 until required accuracy is reached or n ≥ nmax

3.4 compute E
(m)
k with (4.7) and update W

(m)
k = (E

(m)
k )−1

3.5 compute r
(m)
k = ln det(W

(m)
k ) and determine t = mink

r
(m)
k

r
◦(m−1)
kc

, r
◦(m)
k =

t r
◦(m−1)
k ,

and ξ
(m)
k = dk + r

(m)
k − r◦(m)

k

3.6 set n← 0 and set (.)(nmax,m−1) → (.)(0,m) in order to re-enter the inner loop

4. until required accuracy is reached or m ≥ mmax
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Table 4.2: Power Distribution Optimization

1. for given θ(0), α= α0∑
c Pmax,c

, C={θ∈RC≥0 : θ0, 1T
Cθ = 1}

2. repeat

2.1. compute Λ(θ), update p and q as right and left Perron Frobenius eigen
vectors of Λ

2.2. update θ using the subgradient projection method, [79] :

θ(i+1) = Pc
{
θ(i) − αĝ(p(i))

}
,

where ĝ(p(i)) = pmax −CT
C p

(i) and PC is the projection operator onto C.

2.3. i← i+ 1

3. until required accuracy is reached

balancing of the users under per cell power constraints. In this regard, we proposed an
iterative algorithm to balance the rate between the users in a MIMO system. The latter
was derived by transforming the max-min rate optimization problem into a min-max
weighted MSE optimization problem which itself was shown to be related to a weighted
sum MSE minimization via Langrangian duality. Moreover, we reformulated the multiple
power constraints as a single weighted constraint satisfying with equality of all power
contraints. We provided comparison between our weighted MSE balancing approach and
the min-max unweighted MSE optimization. Simulation results showed that our solution
maximizes the minimum rate.
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Chapter 5

From Rate Balancing to Power
Minimization

5.1 Overview

In the previous chapters, we have focused on (weighted) user rate balancing. So far, we
have considered the weighting factors as user priorities since the considered optimization
aims to maximize (as large as possible) the minimum user rate in the system w.r.t. the
users priorities. However, these weights can represent target rates, and every set of these
targets also corresponds to a point on the boundary of the achievable rate region, which
is defined as the set of all feasible rate points, when all users are active simultaneously
under a total power constraint. Each point on the boundary corresponds to an optimal
transmission strategy, depending on the chosen weights. When the achievable rates are
larger than the target rates, a power efficient strategy w.r.t. that individual rate targets are
jointly achieved with minimum total transmit power. In this Chapter, we study the power
minimization problem w.r.t. per user rate constraints, via rate balancing optimization.

The rest of the chapter is organized as follows. In Section 5.2 we formulate the power
minimization problem w.r.t. per user rate targets. Solution via rate balancing is pro-
vided in Section 5.3, using either UL/DL duality or Lagrangian duality. We present the
numerical results for the solution in Section 5.4, and finally, conclude in Section 5.5.
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5.2 Problem Formulation

Under the same system model assumptions as in Section 3.2, we consider downlink BC.
We have so far considered the rate balancing problem, we refer to this problem as Max-
Min Rate (MMR), namely

MMR: max min1≤k≤K rk/r
o
k

under total power constraints Pmax,

where rk and rok denote the individual user rate and the corresponding priority, respec-
tively.

Here, we consider the total transmit power minimization (PM) problem. In fact, when
having a set of balanced {rk/rok}1≤k≤K , we can consider the following problem

PM: minimize the total transmission power P

while fulfilling mink
rk
rok

= rk
rok

= 1 ∀k.

where P = ||p||1 is the total transmit power.

This optimization is interesting from a network operator’s perspective. In fact, it
minimizes intercell interference and improves the power efficiency of the system. In order
to make the PM problem more practical, let us consider the user priorities rok, as a set of
defined user target rates, i.e., rok = rMk . The latters are considered as feasible if and only
if the optimum of MMR is greater than or equal to one, i.e.,

rk
rok
≥ 1, ∀k.

While optimizing the PM problem, we have to take into account that the predefined
target rates may be unsupported along with the power minimization. Therefore, the de-
sign of the algorithmic solution for PM should be in a two-stage approach: First test for
feasibility, then minimize the transmission power. In case the rate targets are infeasible,
the user rates are fairly balanced between users according to their targets, without reach-
ing them. In other words, users achieve reduced rates. If this drop in rates is important,
resource management is needed to properly relax the initial conditions (e.g., by reducing
the number of users).

We consider the following optimization problem

min
p,G

f(||p||1, t)

s.t. rk(p,G)/rMk ≥ t, ∀k
||p||1 ≤ Pmax (5.1)
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where

f(||p||1, t) = u(t− 1)(||p||1 + t)− t (5.2)

with u(x) =

{
0, x < 0

1, x ≥ 0.
(5.3)

The problem in (5.1) describes MMR problem when t < 1. When t ≥ 1 (5.1) becomes as
follows

P opt = min
p,G

||p||1

s.t. rk(p,G)/rok ≥ 1, ∀k
||p||1 ≤ Pmax (5.4)

5.3 Proposed Solution

Let us denote the function R(Pmax,G) as follows

R(Pmax) = max
G
R(Pmax,G) = max

p,G
min
k

rk(p,G)/rok

s.t. ||p||1 ≤ Pmax, ∀k (5.5)

such that, at iteration (i), we have

min
k

rk(p
(i−1),G(i))

rok
≤ R(Pmax,G

(i)) ≤ max
k

rk(p
(i−1),G(i))

rok
,

and at convergence

min
k

rk(p,G)

rok
= R(Pmax,G) = max

k

rk(p,G)

rok
.

Let us now assume that R(Pmax,G) > 1 holds, then t > 1. In other words, the
rate targets are feasible; thus, we have additional degrees of freedom that can be used to
minimize the total transmission power. In fact, the PM problem is closely related to the
MMR problem. Both of them become equivalent if we set Pmax = P opt in (5.5). Therefore,
a modified version of the algorithms solving (5.5) from Chapters 3 and 4 can be used to
solve PM in (5.4).

The designed algorithm is summarized within two steps:

• First, we have to make sure that the predefined targets ro1, . . . , r
o
K are feasible. In

other words, there exists at least one iteration n which verifies t(n) ≥ 1. For that,
the algorithm iterates the same steps as for the rate balancing problem in Tables
3.1 and 4.1 until the condition is verified. In case the targets remain infeasible, i.e.,
t(n) < 1 for n→∞, we must relax the initial conditions.
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• The second step is taken into consideration only if the targets are feasible. Thus,
the condition t(n) ≥ 1 here is fulfilled, and the power minimum (5.4) can be found
by changing the power allocation policy for the subsequent iterations. In fact, we
proceed to minimizing the total transmit power while constraining rk = rok, ∀k,
instead of maximizing the achievable rate margin under total power constraint.

The key idea of this design is to change the power control policy when the user rate
targets are feasible. In fact we have the following

t = min
k

rk
rok

= 1 (5.6)

⇔ WMSEk

ξk
= 1 (5.7)

or,
rk = rok ⇔WMSEk = ξk (5.8)

In the previous chapters, the transmit beamformers are optimized along with power allo-
cation for MMR using either UL/DL duality or Lagrangian duality. Hereafter, we provide
the power allocation which fulfills the design goal for both approaches.

5.3.1 UL-DL duality based approach

In the MMR optimization using UL/DL duality, the power allocation is optimized in
the virtual UL. Therefore, we minimize the total transmit power in the UL channel, i.e.,
||q||1, and the DL total power will be minimized accordingly. Moreover, the constraints
are considered under the matrix-weighted MSE formulation in the dual UL, namely

WMSEUL
k = ξk, ∀k.

Collecting the per user UL WMSE in a diagonal matrix εUL
w , we have (3.19)

εUL
w q = Aq + σ2

nC1K

with A and C respectively defined in (3.21) and (3.20).

To achieve the targets ξ = diag([ξ1 . . . ξK ]) for fixed Gk,Fk and βk, the optimal power
allocation is given by

q = σ2
n(ξ −A)−1C1K . (5.9)

Thus, we set the new total power constraint Pmax for the MMR problem as Pmax = P ,
with

P = 1TKq. (5.10)

The corresponding iterative algorithm summarized in Table 5.1.

Note1: In the designed algorithm, we drop the inner loop from MMR optimization.
Thus, we optimize the PM problem under one loop, unlike in Table 3.1.

Note2: We have followed here the derivations from Chapter 3 which considers BC,
with a total power constraint. However, the extension to IBC with total power constraint
is straightforward.
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Table 5.1: Power Minimization via UL/DL Duality Algorithm

1. for fixed rok, initialize: FH(0)
k = (Idk : 0), Q̄(0) = Pmax

Nd
I, P = Pmax, m = 0 and mmax

2. compute UL receive filter G(0) and β(0) with (3.11)

3. set W
(0)
k = I, ξ

(0)
k = dk and t(0) ← 0

4. find optimal user power allocation q̃(0) by solving (3.24) and compute Q
(0)
k =

q̃
(0)
k Q̄

(0)
k

5. repeat

5.1 m← m+ 1

5.2 UL channel:

• update G(m) and β(tmp) with (3.11)

• compute the MSE values εUL,(m) with (3.8)

5.3 DL channel:

• compute P (m) with (3.10)

• update F (m) and β(tmp) with (3.12)

• compute the MSE values εDL(m) with (3.1)

5.4 UL channel:

• compute Q(tmp) with (3.9) and Q̄
(m)
k = Q

(tmp)
k /tr

(
Q

(tmp)
k

)
if t(m−1) < 1

find optimal user power allocation q̃(m) by solving (3.24) with Pmax = P ,

Q
(m)
k = q̃

(m)
k Q̄

(m)
k

else

update q with (5.9) and set P = ||q||1
end if

5.5 update W
(m)
k = (E

UL(m)
k )−1, r

(m)
k = ln det(W

(m)
k ), t(m) = mink

r
(m)
k
r◦k

if t(m) < 1

update ξ
(m)
k = dk + r

(m)
k − t(m)rok

else

update ξ
(m)
k = dk + r

(m)
k − rok (imposing rate targets are fulfilled, i.e., t = 1)

end if

6. until required accuracy is reached or m ≥ mmax
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5.3.2 Lagrangian duality based approach

Considering the rate balancing via Lagrangian duality as in Chapter 4, the power allo-
cation is obtained directly in the DL channel. Since the MMR problem is formulated as
max-min weighted-matrix MSE, the related power minimization problem is constrained
by

WMSEk = ξk, ∀k.

Similarly to what has been considered for the PM based on UL/DL duality, we collect
the per user WMSE in a diagonal matrix εw to obtain (4.17) as follows

εwp = (D + Ψ)p+ σ.

where D,Ψ and σ, are defined in (4.12), (4.13) and (4.16), respectively.

The corresponding optimal power allocation to achieve the targets ξ is then

p = (ξ −D −Ψ)−1σ. (5.11)

Then, we set the new power constraint for MMR optimization as Pmax = P with

P = 1TKp. (5.12)

which completes the optimization framework.

The proposed algorithm is summarized in Table 5.2. In Chapter 4, IBC with per cell
power constraints is considered, and subgradient method is used to verify the latters. The
corresponding iterative alogrithm turns inside the MMR algorithm when optimizing the
power allocation. Here, we drop the subgradient loop and consider BC with total power
constraint. The joint optimization of beamformers and power minimization is obtained
with Table 5.2.

Note4: Extension to IBC with a total power constraint is straightforward.

5.4 Results

In this section, we numerically evaluate the performance of the proposed algorithm. The
simulations are carried out over normalized flat fading channels, i.e., each element is i.i.d.
and normally distributed : starting from i.i.d. [Hk,j]mn ∼ CN (0, 1). For all simulations,
we take 500 channel realisations and mmax = 100.

Figure 5.1 illustrates an example of the PM algorithm execution. The upper subfigure
shows the achieved per user rates vs. the number of iterations, while the lower subfigure
shows the total transmit power vs. the number of iterations. As we can see, the user rates
meet their targets in a very good approximation after convergence, and the total transmit
power is minimized accordingly.
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Table 5.2: Power Minimization via Lagrangian Duality Algorithm

1. for predefined targets rok, initialize: G
(0)
k = (Idk : 0)T, p

(0)
k = q

(0)
k = Pmax

K
, m = 0

and fix mmax,

2. initialize W
(0)
k = Idk , ξ

(0)
k = dk and do t(0) ← 0

3. compute F
(0)
k in F (0)

k = p
(0)−1/2
k Fk from (4.8)

4. repeat

4.1 m← m+ 1

4.2 update Gk in Gk = p
1/2
k Gk from (4.34)

4.3 update Fk in Fk = p
−1/2
k Fk from (4.8)

4.4 if t(m−1) < 1

update p and q as right and left Perron Frobenius eigen vectors of Λ

else

update p using (5.11) and set P = ||p||1
update q as left Perron Frobenius eigen vector of Λ(Pmax = P )

end if

4.5 compute E
(m)
k with (4.7) and update W

(m)
k = (E

(m)
k )−1

4.6 compute r
(m)
k = ln det(W

(m)
k ) and determine t = mink

r
(m)
k

rok
,

if t(m) < 1

update ξ
(m)
k = dk + r

(m)
k − t(m)rok

else

update ξ
(m)
k = dk + r

(m)
k − rok (imposing rate targets are fulfilled, i.e., t = 1)

end if

5. until required accuracy is reached or m ≥ mmax
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Figure 5.1: Example of total PM algorithm execution: M = 12, K = 3, dk = Nk = 2.

In Table 5.3, we can see that for a fixed number of users, the more we increase the
number of transmit antennas, the more we reduce the number of iterations; the average
execution time however remains the same because of the increasing computational oper-
ations per iteration. On the other hand, for a fixed number of transmit antennas, the
number of iterations increases with the increase of the number of active users as well as
the average execution time.

In Figure 5.2, we plot the achieved minimum total power w.r.t. user targets for
different configurations. In particual, we consider BC, limited by Pmax = 40dBm, and
evaluate how performs the PM algorithm to guarantee the predefined target rates. The
targets here are considered equal for all the active users in the system. We can see that

Table 5.3: Average Execution Time (AET) and number of iterations

antennas M 12 32 64

AET (s) 2.1983 2.2784 2.299

iterations ∼ 15 ∼ 10 ∼ 8

(a) SNR = 30dB, K = 3, Nk = dk = 2

users K 8 10 16 32

AET (s) 5.2029 6.3609 12.554 163.269

iterations ∼ 13 ∼ 15 ∼ 16 ∼ 38

(b) SNR = 30dB, M = 64, Nk = dk = 2
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Figure 5.2: Minimum power vs. user rate targets.

the total transmit power is reduced considerably according to the number of users, their
rate targets and the configuration of the system. Of course, the more we increase transmit
antennas, the more we reduce the total transmit power for the same number of users/rate
targets configuration.

Figure 5.3 represents the achieved rate and the total transmit power for both PM
and MMR approaches. We observe that for equal user rate targets, under constrained
Pmax = 10dBm, MMR guarantees the same achievable rate no matter the values of targets
(but of course, for feasible targets). In contrast, the PM approach minimizes the total
transmit power as long as R ≥ 1 till equality of the condition, and thus user rates equal
the predefined user targets. See that when the target rates equal the achievable balanced
rate with MMR, P = Pmax, i.e., no further minimization is supported. Therefore, the
optimization problem of MMR provides performance measure that reflects the quality
of the corporate multi-user channel and insights about the maximum feasible user rate
targets.

5.5 Closing Remarks

In this chapter, we investigated the total power minimization problem subject to a set
of user rate targets. An iterative strategy was derived via rate balancing to optimize
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Figure 5.3: Comparison of the achieved per user rates with PM and MMR approaches:
C = 1, Mc = 12, Nk = dk = 2 and K = 3.

the problem. Simulation results showed that, for appropriate (feasible) user rate targets,
arbitrary points within the achievable rate region can be achieved with minimal expense
of transmission power.
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Part III

Rate Balancing with Imperfect CSIT
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Chapter 6

Channel Model with Partial CSIT

6.1 Overview

In the previous part, we have studied the joint beamforming design and power allocation
w.r.t. rate balancing assuming perfect knowledge of the channel. Indeed, in order to
fully exploit the spatial diversity gain in the MIMO broadcast channel, Channel State
Information at the Transmitter (CSIT) is required to separate the spatial channels for
different users. However, CSIT is difficult to obtain and is never perfect. In this part, we
consider imperfect CSIT; namely, partial CSIT in terms of transmit covariance matrices
and channel estimates.

In this chapter, we introduce the channel model with partial CSIT. In Section 6.2, we
provide the motivation to considering imperfect CSIT and related works w.r.t. max-min
balancing problems. In Section 6.3, we describe the considered channel model with the
presence of only partial CSIT. Finally, we conclude in Section 6.4.
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6.2 Why Partial CSI

In downlink communications, when a certain knowledge of the Channel State Informa-
tion (CSI) at the transmitter is available, the system throughput can be maximized. In
practical, obtaining CSI at the receiver is easily possible via training, whereas CSI at the
transmitter acquires reciprocity or feedback from the receiver. Therefore, many works ad-
dress the problem of optimizing the performance of MIMO systems with the presence of
CSIT uncertainties, better known as partial CSIT. Among the different optimization crite-
ria, we distinguish the transmit power minimization, and the max-min/min-max problems
w.r.t. either SINR [8,44–46,79], MSE [47–49] or user rate. The latter is the focus of this
work. In particular, we study Multi-Cell MIMO User Rate Balancing with Partial CSIT.

Perfect CSIT

In perfect CSIT case, [43] studies the balancing problem w.r.t. SINR for MISO sys-
tem using uplink/downlink duality. In fact, most of max-min beamforming problems are
transformed into the dual problem power minimization problem in the uplink. In [80],
SINR balancing problem subject to multiple weighted-sum power constraints for MISO
system is solved by exploiting Perron-Frobenius theory and uplink/downlink duality, and
an iterative subgradient projection algorithm is used to satisfy the per-stream power con-
straints. Similarly, MSE duality, which states that the same MSE values are achievable
in the downlink and the uplink with the same transmit power constraint, has been ex-
ploited to solve max-min beamforming problems w.r.t. MSE. In [49], three levels of MSE
dualities are established between MIMO BC and MIMO MAC with the same transmit
power constraint; these dualities are exploited to reduce the computational complexity
of the sum-MSE and weighted sum-MSE minimization problems (with fixed weights) in
a MIMO BC. On the other hand, we prove that user-wise rate balancing outperforms
user-wise MSE balancing or streamwise rate (or MSE/SINR) balancing when the streams
of any MIMO user are quite unbalanced in [76,81,82].

Partial CSIT

In contrast, due to the inevitability of channel estimation error, CSI can never be per-
fect. This motivates [83] to consider an MSE-based transceiver design problem where the
channel knowledge is modeled in terms of channel mean and variance both at the trans-
mitter and receivers. Then, an iterative algorithm is proposed to solve the expected MSE
balancing problem by switching between the broadcast and the multiple access channels.
Also, SINR balancing problem with imperfect CSIT is studied in [84] for multi-cell multi-
user MISO system. Therein, the authors introduce an alternative biased SINR estimate
to incorporate the knowledge of the channel estimation error, outperforming the unbi-
ased maximum-likelihood estimate. In [85], CSI error matrix is represented as a bounded
hyper-spherical region within some radius, leading to a robust max-min SINR problem
for single-stream MIMO system. The latter is solved as semidefinite program problem,
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where robust transmit and receive beamformers are obtained using alternating optimiza-
tion. Rate balancing problem is studied in [86], for broadcast MISO channel, where the
case of erroneous CSI at the receiver is considered. The authors use duality w.r.t. SINR
to solve the balancing problem: they transform the BC problem into dual MAC problem
taking into consideration the erroneous receiver CSI. Actually, in the single stream per
user case (e.g. in MISO systems), balancing w.r.t. SINR, MSE or user rate is equivalent
(in the unweighted case). Another rate balancing work for MISO system is studied in
[87], wherein the statistical properties of the channel are exploited and an algorithm for
optimal downlink beamforming is derived using uplink/downlink duality.

6.3 Considered Model

6.3.1 Joint Mean and Covariance Gaussian CSIT

In this section we drop the user index k for simplicity. Assume that the channel has a
(prior) Gaussian distribution with zero mean and separable correlation model

H = C1/2
r H

′
C

1/2
t (6.1)

where C
1/2
r , C

1/2
t are Hermitian square-roots of the Rx and Tx side covariance matrices

EHHH = tr{Ct} Cr

EHHH = tr{Cr} Ct

(6.2)

and the elements of H
′

are i.i.d. ∼ CN (0, 1). Now, the Tx dispose of a (deterministic)
channel estimate

Ĥd = H +C1/2
r H̃

′

dC
1/2
d (6.3)

where again the elements of H̃
′

d are i.i.d. ∼ CN (0, 1), and typically Cd = σ2
H̃
INt . The

combination of the estimate with the prior information leads to the (posterior) Linear
Minimum Mean Square Error (LMMSE) estimate

Ĥ = Ĥd (Ct +Cd)
−1Ct = H +C

1/2
r H̃

′
pC

1/2
p

Cp = Cd (Ct +Cd)
−1Ct

(6.4)

where Ĥ and H̃
′
p are independent (or decorrelated if not Gaussian). Note that we get for

the MMSE estimate of a quadratic quantity of the form

EH|Ĥd
HHH = ĤHĤ + tr{Cr}Cp = S . (6.5)

Let us emphasize that this MMSE estimate implies S = arg minT EH|Ĥd
||HHH − T ||2.

It averages out to

EHd
S = EH,Hd

HHH = EHH
HH = tr{Cr}Ct . (6.6)
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Hence, if we want the best estimate for HHH (which appears in the signal or interference

powers), it is not sufficient to replace H by Ĥ but also the (estimation error) covariance
information should be exploited. Other useful expressions are

EH|Ĥd
HHQH = ĤHQĤ + tr{CrQ}Cp (6.7)

and

EH|Ĥd
HPHH = ĤPĤH + tr{CpP }Cr . (6.8)

Note that ρP = E tr{ĤHĤ}
tr{Cr} tr{Cp} is a form of Ricean factor that represents the posterior chan-

nel estimation quality. Perhaps more instructive is the deterministic channel estimation
quality. From (6.3)

ρD = E tr{HHH}
E tr{(C1/2

r H̃
′
dC

1/2
d )HC

1/2
r H̃

′
dC

1/2
d }

=
E tr{C1/2

t H
′H CrH

′
C

1/2
t }

E tr{C1/2
d H̃

′H
d Cr H̃

′
dC

1/2
d }

= tr{Cr} tr{Ct}
tr{Cr} tr{Cd}

= tr{Ct}
tr{Cd}

=
1
M

tr{Ct}
σ2
H̃

= 1
σ2
H̃

(6.9)

where we used tr{Ct} = M from Section 6.3.3. On the other hand

ρP =
tr{Ct −Cp}

tr{Cp}
=

tr{Ct (Ct +Cd)
−1Ct}

tr{Cd (Ct +Cd)−1Ct}
. (6.10)

6.3.2 Further Explanations

If C
1/2
r , C

1/2
t are not Hermitian square-roots, which means e.g. Ct = C

1/2
t C

H/2
t , then the

more general formula is

H = C1/2
r H

′
C
H/2
t (6.11)

where the elements of H̃ are i.i.d. ∼ CN (0, 1). Note that the matrices Cr, Ct are unique
up to scale factor that leaves their (Kronecker) product unchanged. One can check that
we still have

EHHH = tr{Ct} Cr

EHHH = tr{Cr} Ct .
(6.12)

Now let h = vec(H), which also has zero mean. From (6.11), we get, using vec(ABC) =
(CT ⊗ A) vec(B),

h = (C
∗/2
t ⊗C1/2

r )h
′

(6.13)

where h
′

= vec(H
′
). With (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) and Ch′h′ = INrNt , this

leads to the covariance matrix

Chh = CT
t ⊗Cr (6.14)
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exploiting Ct = CH
t and hence C∗t = CT

t . This leads to the term ”Kronecker model”. In
a first instance, consider a deterministic channel estimate

ĥd = h− h̃d = h+C
1/2

h̃dh̃d
h̃
′

d (6.15)

where Ch̃′dh̃
′
d

= INrNt . The combination of the estimate with the prior information leads

to the (posterior) LMMSE estimate

ĥ = Chh(Chh +Ch̃dh̃d
)−1ĥd = h− h̃p (6.16)

with error covariance matrix

Ch̃ph̃p
= (C−1

hh +C−1

h̃dh̃d
)−1 (6.17)

assuming the last two matrices are invertible. Now consider the Kronecker model in (6.14).
Under what conditions can we have a Kronecker model for Ch̃ph̃p

? Clearly it should be
helpful to consider a Kronecker model for

Ch̃dh̃d
= CT

t,d ⊗Cr,d . (6.18)

So the question becomes, when can a sum of two Kronecker products be written as a
Kronecker product? We can scale one of the terms in the sum to become identity (by
multiplying with its inverse), and we can use the eigen decomposition of the second term
to reduce it to a diagonal form. The question then is, when can we write

I ⊗ I +C ⊗D = A⊗B (6.19)

where C, D are diagonal, which implies A, B to be diagonal. Note that for diagonal
matrices, (6.19) could be written in terms of the vectors of the diagonal elements, leading
to Khatri-Rao products, but we shall stay with the diagonal matrices. We shall denote
the diagonal elements of A, B, C, D as ai, bi, ci, di. Due to the scale ambiguity in a
product, we can fix a1 = 1. Equation diagonal block i in (6.19), we get

ai B = I + ciD (6.20)

which for i = 1 becomes B = I + c1D. Subtracting (6.20) for i > 1 from (6.20) for i = 1,
we get

(ai − 1) B = (ci − c1)D (6.21)

where we assume that for at least one i, ai 6= 1 and ci 6= c1 (note that the case ”or” would
lead to the implication of either B or D being zero which is not possible for positive
(semi) definite matrices). So, we assume that A and C are not a multiple of identity.
Then (6.21) together with (6.20) for i = 1 imply that B and D are multiples of I. In
summary, either A and C or B and D are multiples of I. Going back to (6.17), for
Ch̃ph̃p

to have a Kronecker structure requires that either Ct,d is a multiple of Ct, or Cr,d

is a multiple of Cr. Since the Tx side is too important to have such constraint, we shall
consider that Cr is a multiple of Cr,d.
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Now, using orthogonal pilots and white Rx noise (or i.i.d. pilots) will lead to Ch̃dh̃d
=

σ2
h̃
I or

Ct,d = σ2
h̃
I = Cd , Cr,d = Cr = I (6.22)

and

Ch̃ph̃p
= CT

p ⊗ I . (6.23)

We can now write the (posterior) LMMSE estimate (6.16) as

ĥ = ((CT
t (CT

t +CT
d )−1)⊗ I)ĥd = h− h̃p (6.24)

which can be written as

Ĥ = Ĥd(Ct +Cd)
−1Ct = H − H̃p (6.25)

with (Tx side) error covariance matrix

Cp = (C−1
t +C−1

d )−1 = Cd (Ct +Cd)
−1Ct . (6.26)

6.3.3 Normalizations and Rx SNR

Consider the Rx signal model

y = H x+ v (6.27)

with white noise Cvv = σ2
vIN . For computation of the Rx SNR, we consider omnidirec-

tional transmission Cxx = P
M
IM where P = tr{Cxx} is the BS Tx power constraint.

Given the white noise, for the Rx SNR we need to compute the Rx signal power as

E‖H x‖2 = P
M

E tr{HHH} = P
M

E‖h‖2

= P
M

tr{Chh} = P
M

tr{Ct} tr{Cr}
(6.28)

where we used (6.14). Consider normalizing the channel

tr{Chh} = tr{Ct} tr{Cr} = N tr{Ct} = N M (6.29)

where N is the number of Rx antennas, i.e. each MIMO channel element has variance 1.
So, this implies tr{Ct} = M . Then we get

ρR = SNRRx = E‖H x‖2/σ2
v = N

P

σ2
v

= NSNRTx = N ρT . (6.30)

The channel estimation SNR is ρD.
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6.3.4 Concrete Channel Model for Simulations

So we’ll use Cr = IN . Essentially what remains to be specified is the model for Ct. We
can consider a multipath channel model

Ct =

Np∑
n=1

αi
vHi vi

viv
H
i (6.31)

which leads to tr{Ct} =
∑Np

n=1 αi = M . Here the number of (equivalent) paths NP leads
to the rank of Ct. So the ”Power Delay Profile (PDP)” {αi} should be normalized to
have total energy equal to M . Particular choices for the PDP is a uniform PDP, in which
αi = M/Np. Another choice would be exponentially decreasing αi = ci−1α1 induced by a
particular choice for αNP

/α1 = cNP−1.

The antenna array responses vi could be chosen as i.i.d. vectors of M i.i.d. elements
CN (0, 1). Note that in (8.56) the vi get equivalently normalized to unit norm. Another
choice would be to choose the Vandermonde vectors of a Uniform Linear Array (ULA)
at λ/2 spacing with a random i.i.d. distribution of Direction of Arrival (DoA) angles
according to a certain pdf (e.g. uniform over a certain sub interval of (−π

2
, π

2
) ).

Finally another important choice is the variation of channel estimation SNR. One
choice is for it to be proportional to the SNR: ρD = β ρR for some β (of the order of 1).
Another choice is to take ρD to be constant.

6.4 Closing Remarks

In this chapter, we provided an overview of the channel knowledge assumptions in the
state of the art considering balancing problem. Also, we described in details the considered
model for partial CSIT part.
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Chapter 7

WEMSE Balancing

7.1 Overview

In chapter 4, we have considered the user rate balancing problem for perfect CSIT. In
this chapter, we consider a multi-cell multi-user MIMO system with partial CSIT, which
combines both channel estimates and channel (error) covariance information. In fact,
we focus on ergodic user rate balancing, which corresponds to maximizing the minimum
(weighted) per user expected rate in the network. In particular, we introduce a novel
extension of chapter 4 to partial CSIT, maximizing an expected rate lower bound in
terms of expected MSE. Furthermore, we introduce analytical expression for the per cell
power constraints by solving the problem via Lagrangian duality.

The rest of chapter is organized as follows. The considered system model is described
in Section 7.2 along with the problem formulation for partial CSI. The proposed solution
for the dual Lagrangian problem and the corresponding precoders are derived in Section
7.3, including the analytical expression of the Lagrangian parameter for per cell power
constraints. Numerical results are carried out in Section 7.4. We finally conclude in
Section 7.5.
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7.2 System Model

For the same multi-cell multi-user MIMO system model described in Chapter 4, we con-
sider the channel model detailed in Section 6.3 to solve the ergodic rate balancing problem
formulated below.

7.2.1 Expected Rate Balancing Problem

Here, we aim to solve the weighted user-rate max-min optimization problem under per
cell total transmit power constraint, i.e., the user rate balancing problem expressed as
follows

max
G,p

min
k

rk/r
◦
k

s.t.
∑
k:bk=c

pk ≤ Pmax,c, 1 ≤ c ≤ C (7.1)

where rk is the kth user-rate

rk = lndet
(
I+R−1

k
Hk,bkGkGH

kH
H
k,bk

)
= ln det

(
R−1

k
Rk

)
, (7.2)

Rk = σ2
nI+

∑
l 6=k

Hk,blGlGH
l H

H
k,bl

, (7.3)

Rk = Rk+Hk,bkGkGH
kH

H
k,bk

, (7.4)

Rk and Rk are the interference plus noise and total received signal covariances, and
r◦k is the rate priority (weight) for user k. Actually, in the presence of partial CSIT, we
shall be interested in balancing the expected (or ergodic) rates

max
G,p

min
k

rk/r
◦
k

s.t.
∑
k:bk=c

pk ≤ Pmax,c, c = 1, . . . , C (7.5)

where rk = EH|Ĥ rk. We shall need

Sk,i=Ĥk,biGiG
H
i Ĥ

H
k,bi

+tr{GH
i Ck,biGi}I, Sk = Sk,k (7.6)

Rk =EH|ĤRk =σ2
nI+

∑
i 6=k

piSk,i , Rk = Rk + pkSk (7.7)

However, the problem presented in (7.5) is complex and can not be solved directly.
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Lemma 3. The rate of user k in (7.2) is lower bounded as [88]

rk = EH|Ĥ max
Wk,Fk

[
ln det

(
Wk

)
− tr

(
WkEk

)
+ dk

]
(7.8)

≥ max
Wk,Fk

rlk , r
l
k = ln det

(
Wk

)
− tr

(
WkEk

)
+ dk (7.9)

where Ek = E
[
(ŝk − sk)(ŝk − sk)

H
]

= I −FH
k Ĥk,bkGk − GH

k Ĥ
H
k,bk

Fk + σ2
nFH

kFk

+
K∑
l=1

FH
k

(
Ĥk,blGlGH

l Ĥ
H
k,bl

+ tr{GH
l Ck,blGl}I

)
Fk (7.10)

is the kth-user downlink Expected Mean Square Error (EMSE) matrix between the deci-
sion variable ŝk and the transmit signal sk, and {Wk}1≤k≤K are auxiliary weight matrix

variables with optimal solution W opt
k = E

−1
k and the optimal receivers are

Fk = R
−1

k Ĥk,bkGk. (7.11)

Note that rlk is a lower bound for any Wk,Fk and so is maxWk,Fk
rlk. Now consider

both (7.5) and (7.9), and let us introduce ξk = ln det
(
Wk

)
+dk−rMk , the matrix-Weighted

Expected Mean Square Error (WEMSE) requirement, with target rate rMk . Assume that
we shall be able to concoct an optimization algorithm that ensures that at all times and
for all users the WEMSE satisfies εw,k = tr

(
WkEk

)
≤ dk and ln det

(
Wk

)
≥ rMk or hence

ξk ≥ dk. This leads ∀k to

εw,k
ξk
≤ 1 ⇐⇒ ln det

(
Wk

)
+ dk − tr

(
WkEk

)
≥ rMk (7.12)

(a)
=⇒ rlk/r

M
k ≥ 1

where (a) follows from (7.9). To get to (7.12), what we can exploit in (7.5) is a scale factor
t that can be chosen freely in the rate weights r◦k in (7.5). We shall take t = mink r

l
k/r
◦
k,

which allows to transform the rate weights r◦k into target rates rMk = tr◦k, and at the same
time allows to interpret the WEMSE weights ξk as target WEMSE values.

Doing so, the initial rate balancing optimization problem (7.5) can be transformed
into a WEMSE balancing problem expressed as follows

min
G,p,F

max
k

εw,k/ξk

s.t.
∑
k:bk=c

pk ≤ Pmax,c, 1 ≤ c ≤ C (7.13)

which needs to be complemented with an outer loop in which Wk = E
−1

k , t = mink r
l
k/r
◦
k,

rMk = tr◦k and ξk = dk + rlk − rMk get updated. The problem in (7.13) is still difficult to be
handled directly.
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7.2.2 The Weighted User EMSE Optimization

In this section, the problem (7.13) with respect to the matrix weighted user EMSE is
studied. The per user matrix WEMSE can be expressed as follows

εw,k = tr
(
WkEk

)
(7.14)

= tr
(
Wk

)
− 2 tr

(
WkG

H
k Ĥ

H
k,bk
Fk
)

+ σ2
np
−1
k tr

(
WkF

H
k Fk

)
+ p−1

k

K∑
l=1

pltr
(
WkF

H
k

(
Ĥk,blGlG

H
l Ĥ

H
k,bl

+tr{GH
l Ck,blGl}I

)
Fk
)

Define the diagonal matrix D of signal WEMSE contributions

[D]ii = tr
(
Wi

)
− 2 tr

(
WiG

H
i Ĥ

H
i,bi
Fi
)

+ tr
(
WiF

H
i

(
Ĥi,biGiG

H
i Ĥ

H
i,bi

+ tr{GH
i Ci,biGi}I

)
Fi
)
,

and the matrix of weighted interference powers

[Ψ]ij =

{
tr{WiF

H
i

(
Ĥi,bjGjG

H
j Ĥ

H
i,bj

+tr{GH
j Ci,bjGj}I

)
Fi}, i 6= j

0, i = j.

We can rewrite (7.14) as, with p = [p1 · · · pK ]T

εw,i = [D]ii + p−1
i [Ψp]i + σ2

np
−1
i tr

(
WiF

H
i Fi

)
(7.15)

Collecting all user WEMSEs in a vector εw = diag(εw,1, . . . , εw,K), we get

εw1K = diag(p)−1 [(D + Ψ)diag(p)1K + σ] (7.16)

where the K × 1 vector σ is defined as

σi = σ2
n tr
(
WiF

H
i Fi

)
.

By multiplying both sides of (7.16) with diag(p), we get

εwp = (D + Ψ)p+ σ . (7.17)

Let ξ = diag(ξ1, . . . , ξK), then

ξ−1εw p = ξ−1(D + Ψ)p+ ξ−1σ . (7.18)

Actually, problem (7.13) always has a global minimizer p characterized by the equality
ξ−1εw(p) = ∆I, i.e.,

∆p = ξ−1(D + Ψ)p+ ξ−1σ . (7.19)

Now, consider the following problem

max
G,p,F

min
k

r̄k/r
◦
k

s.t.
C∑
c=1

θcc
T
c p ≤

C∑
c=1

θcPmax,c (7.20)
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7.3. Proposed Solution

where cc is a column vector with cc(j) = 1 for K1:c−1 + 1 ≤ j ≤ K1:c, and 0 elsewhere.
This problem formulation is a relaxation of (7.5), and θ = [θ1 · · · θC ]Tcan be interpreted
as the weights on the individual power constraints in the relaxed problem. The power
constraint in (7.20) can be interpreted as a single weighted power constraint

(θTCT
C ) p ≤ θTpmax (7.21)

with CC = [c1 · · · cC ] ∈ RK1:C×C
+ and pmax = [Pmax,1 · · ·Pmax,C ]T. Reparameterize p =

θTpmax

θTCT
Cp
′ p
′
where now p

′
is unconstrained, which allows us to write (7.19) as follows (rewrit-

ing p
′

as p)

∆p = Λp with Λ = ξ−1(D + Ψ) +
1

θTpmax

ξ−1σθTCT
C . (7.22)

Now with (7.22), the WEMSE balancing problem of (7.13) becomes

min
p

max
k

εw,k
ξk

= min
p

max
k

[Λp]k
pk

(7.23)

According to the Collatz–Wielandt formula [77, Chapter 8], the above expression corre-
sponds to the Perron-Frobenius (maximal) eigenvalue ∆ of Λ and the optimal p is the
corresponding Perron-Frobenius (right) eigenvector

Λp = ∆p. (7.24)

Note that this implies the equality ξ−1εw = ∆ I as announced in (7.19).

7.3 Proposed Solution

The max-min weighted user rate optimization problem (7.5) can be reformulated as

min
t,G,p
− t

s.t. t r◦k − rlk ≤ 0, cT
c p− Pmax,c ≤ 0 ,∀k, c. (7.25)

Introducing Lagrange multipliers to augment the cost function with the constraints leads
to the Lagrangian

max
λ′ ,µ

min
t,G,p
L

L = −t+
∑
k

λ
′

k(t r
◦
k − rlk) +

∑
c

µc(c
T
c p− Pmax,c) (7.26)

Integrating the result (7.8), we get a modified Lagrangian

max
λ′ ,µ

min
t,G,p,F ,W

L (7.27)

L = −t+
∑
k

λ
′

k(tr(WkEk)− ξk) +
∑
c

µc(c
T
c p− Pmax,c)
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7.3. Proposed Solution

We get µc = µoθc where µo is the Lagrange multiplier associated with the constraint in
(7.20). Introducing λk = λ

′

kξk, we can rewrite (with some abuse of notation since actually
minW continues to apply to tr(WkEk)− ξk(Wk))

max
λ,µ

min
t,G,p,F ,W

L

L = −t+
∑
k

λk(
tr(WkEk)

ξk
− 1) + µo

∑
c

θc(c
T
c p− Pmax,c) (7.28)

We shall solve this saddlepoint condition for L by alternating optimization. As far as the
dependence on λ, µ,G,p,F is concerned, we have

max
λ

min
G,p,F

∑
k

λk
ξk

tr(WkEk) (7.29)

+
∑
c

µc
( ∑
i:bi=c

tr{GH
i Gi} − Pmax,c)

which is of the form Weighted Sum EMSE (WSEMSE). Optimizing w.r.t. Txs Gk:

∂L
∂G∗k

= 0

= −λk
ξk
ĤH

k,bk
FkWk + µbkGk +

(∑
i

λi
ξi

(
ĤH

i,bk
F iWiFH

i Ĥi,bk+tr{F iWiFH
i }Ci,bk

))
Gk

(7.30)

This leads to

G′k=
( K∑
l=1

(
ĤH
l,bk

F lW
′
lFH

l Ĥl,bk+tr{F iW
′
iFH

i }Ci,bk
)
+ µbkI

)−1
ĤH
k,bk

FkW
′
k ,

Gk =
√
pkGk , Gk =

1√
tr{G ′Hk G′k}

G′k (7.31)

where W ′
k = λk/ξkWk, and accounting for the fact that the user powers are actually

optimized by the Perron-Frobenius theory. Note that we can solve for µc by multiplying
(7.30) from the left by GH

k and summing over the users in cell c:

µc =
1

Pmax,c
btr{

∑
k:bk=c

[λk
ξk

GH
k Ĥ

H
k,bk

FkWk−

GH
k

(∑
i

(
ĤH

i,bk
F iW

′
iFH

i Ĥi,bk+tr{F iW
′
iFH

i }Ci,bk

))
Gk

]
}c+ (7.32)

where we noted that Fk = FkWkEk = FkWk(I −FH
k Ĥk,bkGk) and bxc+ = x if x ≥ 0

and is zero otherwise. This nonnegativity constraint on µc stems from the fact that
µc = − ∂L

∂Pmax,c
≥ 0 since indeed the WSMSE can only get smaller if we allow a larger

power budget. We then get θc = µc/
∑

c′ µc′ .
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7.4. Results

The Perron-Frobenius theory also allows for the optimization of the Lagrange multi-
pliers λk. With (7.23), we can reformulate (7.29) as

∆ = max
λ:
∑

k λk=1
min
p

∑
k

λk
[Λp]k
pk

(7.33)

which is the Donsker–Varadhan–Friedland formula [77, Chapter 8] for the Perron Frobe-
nius eigenvalue of Λ. A related formula is the Rayleigh quotient

∆ = max
q

min
p

qTΛp

qTp
(7.34)

where p, q are the right and left Perron Frobenius eigenvectors. Comparing (7.34) to
(7.33), then apart from normalization factors, we get λk/pk = qk or hence λk = pkqk.

The proposed optimization framework is summarized in Table 7.1. Superscripts refer
to iteration numbers. The algorithm in Table 7.1 is based on a double loop. The inner
loop solves the WEMSE balancing problem in (7.13) whereas the outer loop iteratively
transforms the WEMSE balancing problem into the original rate balancing problem in
(7.5). The proof of convergence of this transformation is similar to the one in [81].

7.4 Results

In this section, we numerically evaluate the performance of the proposed algorithm. Con-
sidering the channel model from Section 6.3, we use for the multipath channel model,

Ct =

Np∑
n=1

αi
vHi vi

viv
H
i (7.35)

with tr{Ct} =
∑Np

n=1 αi = Mc, αi = ci−1α1 and the vi are i.i.d. vectors of Mc i.i.d.
elements CN (0, 1). We take Np = Mc/K. For all simulations, we take nmax = 20, though
typically 2-3 inner loop iterations suffice. The algorithm converges after 4-5 (or 13-15)
(outer) iterations of m at SNR = 15dB (or 40dB). For all (partial CSIT) algorithms, we
evaluate the actual expected rate rk = EH|Ĥ rk by Monte Carlo averaging over 500 channel
realizations. The partial CSIT algorithms evaluated are the proposed WEMSE and also
Naive Partial CSIT which corresponds to perfect CSIT by assuming the channel estimates
to be the true channels. Perfect CSIT algorithms are obtained from WEMSE setting
ρD =∞. We also evaluate Lower Bound (LB) WEMSE, which considers ln(det(WkEk)).

We compare the average rate obtained from WEMSE-based method with the one
obtained from balancing the EMSE between user in Figure 7.1, for BC MU-MIMO. Per
user EMSE balancing approach is presented in [83], which consists on minimizing the
maximum per user EMSE for a DL communicating cell. The latter is a direct extension
of [47] under partial CSIT. We observe that solving the max-min expected rate, formulated
as WEMSE, results in a better average rate as compared to the one obtained from EMSE
approach.
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Table 7.1: WEMSE based User Rate Balancing Algorithm

1. initialize: G
(0,0)
k = (Idk : 0)T, p

(0,0)
k = q

(0,0)
k = Pmax,c

Kc
, m = n = 0 and fix nmax,mmax

and r
◦(0)
k , initialize W

(0)
k = Idk and ξ

(0)
k = dk

2. initialize F
(0,0)
k in F (0,0)

k = p
(0,0)−1/2
k Fk from (7.11)

3. repeat

3.1. m← m+ 1

3.2. repeat

n← n+ 1

i update Gk, Gk, µc from (7.31),(7.32)

ii update Fk = p
1/2
k Fk from (7.11)

iii update p and q using (7.34)

3.3 until required accuracy is reached or n ≥ nmax

3.4 compute E
(m)

k and update W
(m)
k = (E

(m)

k )−1

3.5 determine t = mink
r
l (m)
k

r
◦(m−1)
kc

, r
◦(m)
k = t r

◦(m−1)
k , and ξ

(m)
k = dk + r

l (m)
k − r◦(m)

k

3.6 set n← 0 and set (.)(nmax,m−1) → (.)(0,m) in order to re-enter the inner loop

4. until required accuracy is reached or m ≥ mmax
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7.5. Closing Remarks
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Figure 7.1: Average Rate with Partial CSIT vs. SNR for MU-MIMO BC Channel,
C = 1, K = 3,Mc = 12, Nk = dk = 2, ρD = 10.

Figure 7.2 considers a MU-MISO cell in order to compare the performances with the
approach proposed in [86]. The latter solves the rate balancing problem for partial CSIT
by optimizing the BC vector along with the constructed dual MAC vector achieving both,
using duality, the same values of the mutual information lower bound. We can see that
the resulting curve (refered to as Vect. Opt. in the Figure) coincides with the one from
WEMSE approach along with the one from EMSE approach.

7.5 Closing Remarks

In this chapter, we addressed the multiple streams per MIMO user case for which we
considered user Erate (Expected rate) balancing, in a multi-cell downlink channel. In
particular, we provided an extension of the proposed solution in Chapter 4 to partial
CSIT. We transformed the maxmin Erate optimization problem into a min-max weighted
EMSE optimization problem which itself was shown to be related to a weighted sum
EMSE minimization via Lagrangian duality, involving linearizing the EMSE balancing
problem by transforming to EMSE constraints. The associated Lagrange multipliers and
user powers get found as left and right eigen vectors of a weighted interference matrix in
the Perron-Frobenius theory. Numerical results confirmed that our solution maximizes
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7.5. Closing Remarks
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Figure 7.2: Average Rate with Partial CSIT vs. SNR for MU-MISO BC Channel,
C = 1, K = 4,Mc = 8, Nk = dk = 1, ρD = 10.

the average Erate as compared to the unweighted EMSE optimization for multistream
MU MIMO scenario.
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Chapter 8

ESIP method for rate balancing

8.1 Overview

In this chapter, we introduce a new algorithm by exploiting a better approximation of
the expected rate as the Expected Signal and Interference Power (ESIP) rate. Whereas
the ESIP approach have been considered in previous sum utility optimization work, the
algorithm here is based on an original minorizer for every individual rate term, different
from existing DC programming approaches in sum utility optimization. Furthermore, we
investigate the ESIPrate approach within two approximations: i) Received signal level
ESIP (R-ESIP) and ii) Stream level ESIP (S-ESIP). Actually, the use of the expectation
operator makes the optimization a daunting task. Therefore, we aim to study which
approximation is more simpler to optimize. In [89], a refined analysis of the gap between
expected Weighted Sum Rate (WSR) and RESIP-WSR appears, where the actual gap
disappears in case of only covariance CSIT. Here, we study study how different R/S-ESIP
based approaches are.

The rest of this chapter is organized as follows. The problem formulation with the
corresponding derivations for R/S-ESIP approches are presented in Section 8.2. The de-
tails of the proposed solution via Lagrangian duality is given in Sections 8.3. In Section
8.4, we consider the total transmit power minimization via ESIPrate approach. Discus-
sions of numerical results are carried out in Section 8.5. Finally, Section 8.6 draws some
conclusions.
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8.2. ESIP Approach

8.2 ESIP Approach

Considering the same rate balancing problem as in Chapter 7, with imperfect CSIT, we
follow here another approximation of the expected rate expression. The following approach
will use a rate minorizer for every rk, similar but not identical to what is used as in the DC
programming approach which for the optimization of Gk keeps rk and linearizes the rk.
The approach does not require the introduction of Rxs. We consider again the (ergodic)
rate balancing problem (7.5) where rk = EH|Ĥ rk is now approximated by the Expected

Signal and Interference Power (ESIP) rate

rk= EH|Ĥ lndet
(
I+pkG

H
k H

H
k,bk
R−1

k
Hk,bkGk

)
≈ EH|Ĥ lndet

(
I+pkG

H
k H

H
k,bk

(EH|ĤRk)
−1Hk,bkGk

)
= EH|Ĥ lndet

(
I+pkG

H
k H

H
k,bk
R
−1

k Hk,bkGk

)
≤ lndet

(
I+pk EH|ĤG

H
kH

H
k,bk
R
−1

k Hk,bkGk

)
(8.1)

= rs,Sk = f s,Sk (
1

pk
Rk) = lndet

(
I+GH

k B
S

k(
1

pk
Rk) Gk

)
, (8.2)

B
S

k(T k) = ĤH
k,bk
T
−1

k Ĥk,bk + tr{T−1

k }Ck,bk (8.3)

where the rk approximation rsk in (8.2) in general is neither an upper nor lower bound but
in the Massive MIMO limit becomes a tight upper bound.

Let us now consider the following

rk≈ EH|Ĥ lndet
(
I+pkG

H
k H

H
k,bk
R
−1

k Hk,bkGk

)
= EH|Ĥ lndet

(
I+pkR

−1

k Hk,bkGkG
H
k H

H
k,bk

)
≤ lndet

(
I+pkR

−1

k EH|ĤHk,bkGkG
H
kH

H
k,bk

)
(8.4)

= rs,Rk = f s,Rk (
1

pk
Rk) = lndet

(
I+pkR

−1

k Sk

)
. (8.5)

This ergodic rate differs from the ergodic rate in (8.2), because in (8.5) the average is taken
over the expected received signal covariance matrix of user k, Sk of dimension (Nk×Nk).
Whereas in (8.2), the average is taken over the expected stream level signal covariance
matrix of dimension (dk × dk).

Lemma 4. The approximates rk, rs,.k , can be obtained as f s,.k ( 1
pk
Rk) = minT k

f s,.
k

(T k,
1
pk
Rk)

with

f s,S
k

= lndet
(
I+GH

kB
S

k(T k)Gk

)
+tr{W̆ S

k (T k−
1

pk
Rk)} (8.6)

and

f s,R
k

= lndet
(
I+T

−1

k Sk

)
+tr{W̆ R

k (T k−
1

pk
Rk)} (8.7)
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where

W̆ S
k = T

−1

k

(
Ĥk,bkXk Ĥ

H
k,bk

+ tr{XkCk,bk}I
)
T
−1

k (8.8)

with Xk = Gk

(
I+GH

kB
S

k(T k)Gk

)−1

GH
k (8.9)

and

W̆ R
k = T

−1

k −
(
T k + Sk

)−1
(8.10)

The optimizer is T k = 1
pk
Rk. Also, f s

k
is a minorizer for f sk( 1

pk
Rk) as a function of 1

pk
Rk.

Indeed, since f sk(.) is a convex function, it gets minorized by its tangent at any point:

f sk(
1

pk
Rk) ≥ f s

k
= f sk(T k)+tr{∂f

s
k(T k)

∂T k

(
1

pk
Rk−T k)} (8.11)

and W̆k = −∂fsk(T k)

∂T k
. Note that for the Perron-Frobenius theory, we need a function that

is linear in
pk
pk

, hence we need to work with 1
pk
Rk instead of Rk.

8.3 Proposed Solution

The modifications in the Lagrangian formulation in Section 4.3.1 are now

LESIP = −t+
∑
k

λ̆
′

k(t r
o
k − f sk) +

∑
c

µc(c
T
c p− Pmax,c), (8.12)

where the Lagrangian for stream level ESIP is

LSESIP =− t−
∑
k

λ̆
′

k

(
lndet

(
I+GH

kB
S

kGk

)
− 1

pk
tr{W̆ S

kRk}+ tr{W̆ S
k T k}−t rok

)
+
∑
c

µc(c
T
c p− Pmax,c) (8.13)

=− t+
∑
k

λ̆k(
1

pk ξ̆S
k

tr{W̆ S
kRk}−1) +

∑
c

µc(c
T
c p− Pmax,c) (8.14)

with ξ̆S
k = tr{W̆ S

k T k}+ lndet
(
I+GH

kB
S

kGk

)
− t rok, (8.15)

λ̆
′

k = λ̆k/ξ̆
S
k ,B

S

k = B
S

k(T k),
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and the Lagrangian for received signal level is

LRESIP =− t−
∑
k

λ̆
′

k

(
lndet

(
I+T

−1

k Sk

)
− 1

pk
tr{W̆ R

k Rk}+ tr{W̆ R
k T k}−t rok

)
+
∑
c

µc(c
T
c p− Pmax,c) (8.16)

=− t+
∑
k

λ̆k(
1

pk ξ̆R
k

tr{W̆ R
k Rk}−1) +

∑
c

µc(c
T
c p− Pmax,c) (8.17)

with ξ̆R
k = tr{W̆ R

k T k}+ lndet
(
I+T

−1

k Sk

)
− t rok, (8.18)

The balancing of the rates in (7.5) or equivalently the weighted interference plus noise
powers in (8.14) or (8.17), i.e.,

max
λ̆

min
G,p

∑
k

λ̆k

ξ̆k

tr(W̆kRk)

pk
+
∑
c

µc
( ∑
i:bi=c

tr{GH
i Gi} − Pmax,c) (8.19)

leads to the same problem formulation as in (7.23) with this time

Λ̆ = ξ̆−1Ψ̆ +
1

θTpmax

ξ̆−1σ̆θTCT
C with (8.20)

[Ψ̆]ij =

tr{W̆i(Ĥi,bjGjG
H
j Ĥ

H
i,bj

+tr{GH
j Ci,bjGj}I)}, i 6= j

0, i = j
(8.21)

σi = σ2
n tr{W̆i}, ξ̆ = diag(ξ̆1, . . . , ξ̆K) . (8.22)

The Tx BF and stream power optimization will be based on
∑

i
λ̆i
ξ̆i
f s
i
, for both SESIP

and RESIP approximates, which becomes (apart from noise terms) as described in the
following.

SESIP Tx BF

We have from (8.13) (see Appendix B.1)∑
k

λ̆k

ξ̆k
f s,S
k

=
∑
k

λ̆k

ξ̆S
k

lndet
(
I+GH

kB
S

kGk

)
−
∑
k

tr{pkGH
k A

S

kGk} (8.23)

with A
S

k=
∑
i 6=k

λ̆i

pi ξ̆i

(̂
HH

i,bk
W̆ S

i Ĥi,bk +tr{W̆ S
i }Ci,bk

)
. (8.24)

For the optimal Tx BF Gk, the gradient of LSESIP yields

∂LSESIP

∂G∗
= 0⇔ λ̆k

ξ̆S
k

B
S

kGk (I +GH
k B

S

kGk)
−1−pk(A

S

k + µbkI)Gk = 0 . (8.25)
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The solution is the dk maximal generalized eigen vectors

G
′

k = V1:dk(B
S

k,A
S

k + µbkI),Gk=G
′

kP
1/2

k ,Gk=Gk
√
pk (8.26)

where the P k = diag(pk,1, . . . , pk,dk), tr{P k} = 1, are the relative stream powers. Indeed,
(8.25) represents the definition of generalized eigen vectors. Consider

Σ
(1)
k =G

′H
k B

S

kG
′

k, Σ
(2)
k =G

′H
k A

S

kG
′

k (8.27)

then the generalized eigen vectors G
′

k of Bk,A
S

k + µbkI lead to diagonal matrices Σ
(1)
k ,

Σ
(2)
k +µbkG

′H
k G

′

k. Note that the normalizedG
′

k are not orthogonal. Then (8.25) represents
the generalized eigen vector condition with associated generalized eigen values in the

diagonal matrix pk ξ̆k
λ̆k

(I + Σ
(1)
k P k). Also, plugging in generalized eigen vectors into (8.23)

reveals that one should choose the eigen vectors associated to dk maximal eigen values
to maximize (8.23). Now, premultiplying both sides of (8.25) by pkG

H
k , summing over all

users k : bk = c, taking trace and identifying the last term with
∑

k:bk=c pktr{GH
kGk} =

Pmax,c allows to solve for

µc=
1

Pmax,c

⌊ ∑
k:bk=c

tr{ λ̆k
ξ̆k

Σ
(1)
k P k(I+Σ

(1)
k P k)

−1−pkΣ(2)
k P k}

⌋
+

. (8.28)

The P k are themselves found from an interference leakage aware water filling (ILAWF)
operation. Substituting G

′

k into term k of (8.23), dividing by pk, and accounting for the
constraint tr{P k} = 1 by Lagrange multiplier νk, we get the Lagrangian

λ̆k

pk ξ̆k
ln det

(
I+Σ

(1)
k P k

)
− tr{(Σ(2)

k + νkI)P k} = (8.29)

λ̆k

pk ξ̆k
ln det

(
I+Σ

(1)
k P k

)
− tr{(diag(Σ

(2)
k )+νkI)P k}.

Maximizing w.r.t. P k leads to the ILAWF

P k =

⌊
λ̆k

pk ξ̆k
(diag(Σ

(2)
k ) + νkI)−1 − Σ

−(1)
k

⌋
+

(8.30)

where the Lagrange multiplier νk is adjusted (e.g. by bisection) to satisfy tr{P k} = 1.

Elements in P k corresponding to zeros in Σ
(1)
k should also be zero.

RESIP Tx BF

We have from (8.16)∑
k

λ̆k

ξ̆k
f s,R
k

=
∑
k

λ̆k

ξ̆R
k

lndet
(
I+T

−1

k Sk

)
−
∑
k

tr{pkGH
k A

R

kGk}, (8.31)

with A
R

k =
∑
i 6=k

λ̆i

pi ξ̆i

(̂
HH

i,bk
W̆ R

i Ĥi,bk +tr{W̆ R
i }Ci,bk

)
. (8.32)
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For the optimal Tx BF Gk, the gradient of LRESIP yields

∂LRESIP

∂G∗
= 0⇔ λ̆k

ξ̆R
k

B
R

kGk −pk(A
R

k + µbkI)Gk = 0 , (8.33)

with B
R

k = ĤH
k,bk

(I + T
−1

k Sk)
−1T

−1

k Ĥk,bk +tr{(I + T
−1

k Sk)
−1T

−1

k }Ck,bk . (8.34)

The solution is the dk maximal generalized eigen vectors

G
′

k = V1:dk(B
R

k ,A
R

k + µbkI),Gk=G
′

kP
1/2

k ,Gk=Gk
√
pk. (8.35)

Then, we can solve for µc by multiplying (8.33) from the left by GH
k and summing over

the users in cell c, i.e.,

µc = 1/Pmax,c

∑
k:bk=c

[ λ̆k
ξ̆k
GH
k B

R

kGk −pkGH
k A

R

k Gk

]
. (8.36)

Now, we have to find the corresponding P̄k. Substituting P̄k in (8.31), we can write
the following

lndet
(
I+

dk∑
i=1

pk,i[Jk]i,i

)
−

dk∑
i=1

pk,iak,i (8.37)

where P̄k = diag(p̄k), p̄k = [p1 . . . pdk ], ak,i =
pk ξ̆

R
k

λ̆k
[G
′

k]
H
:,iA

R

k [G
′

k]:,i, and

[Jk]i,i = T
−1

k (Ĥk,bk [G
′

k]:,i[G
′

k]
H
:,iĤ

H
k,bk

+ [G
′

k]
H
:,iCk,bk [G

′

k]:,iI).

Let Uk(p̄k) =
∑dk

i=1 pk,i[Jk]i,i and ak = [a1 . . . adk ], we can rewrite (8.37) as

lndet
(
I +Uk(p̄k)

)
− akp̄Tk − νk1dk p̄Tk . (8.38)

with νk being the Lagrangian multiplier for the constraint ||p̄k||1 = 1 and 1dk is a line
vector of ones, of length dk.

In the following, we omit the user indices k for simplicity. Consider the Taylor series
expansion for matrices X,Y of dimension Nk,

ln det(X + Y ) ≈ ln det(X) + tr{X−1Y } − 1

2
tr{X−1Y X−1Y }. (8.39)

Let p̄ = ˆ̄p + ˜̄p and choose X = I + U(ˆ̄p) and Y = U(˜̄p), we obtain the following
Lagrangian

˜̄pvT − 1

2
˜̄pZ ˜̄pT − a˜̄pT − ν1˜̄pT (8.40)

where v = [v1 . . . vdk ] with vi = tr{(I + U(ˆ̄p))−1[J ]i,i}, and Z is a matrix with the
elements [Z]i,j = tr{(I +U(ˆ̄p))−1[J ]i,i(I +U (ˆ̄p))−1[J ]j,j}. Taking the gradient of (8.40)
w.r.t. ˜̄p, we get

vT −Z ˜̄pT − aT − ν1T = 0 (8.41)

⇔˜̄pT = Z−1(vT − aT − ν1T ) (8.42)
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thus
p̄T = [ˆ̄pT +Z−1(vT − aT − ν1T )]+ (8.43)

and ν gets determined by p̄1T = 1. Having ˆ̄p being p̄ at the current iteration i, we can
write

p̄T (i+1) = [p̄T (i) +Z−1(vT − aT − ν1T )]+ (8.44)

and thus
P = diag(p̄). (8.45)

8.3.1 Discussion

The approaches SESIP and RESIP lead to two precoder designs resulting from taking the
expectation of dk dimensional vs. Nk dimensional matrices, respectively. Actually, the
smaller the dimension, the more averaging occurs of the fixed amount of random entries,
and so bringing in the expectation E inside log det() should be a tighter upper bound for
the smaller dimension case. Nevertheless, when dk = Nk, this reasoning stops applying
and either one can be larger or smaller. Simulation results, however, have shown that the
difference is negligible when dk = Nk, S/R-ESIP becoming then equivalent.

8.3.2 Algorithm

Table 8.1 details the Algorithms 7.1 and 7.2 for SESIP and RESIP, respectively.

8.3.3 Covergence

From the problem formulation in (8.19) (omitting the power constraints), let us define

∆ESIP = 1

ξ̆k

tr(W̆kRk)

pk
, we have

∆ESIP(m) = max
k

1

ξ̆
(m−1)
k

tr(W̆
(m−1)
k R

(m)

k )

p
(m)
k

(a)

≤ max
k

1

ξ̆
(m−1)
k

tr(W̆
(m−1)
k R

(m−1)

k )

p
(m−1)
k

(b)

≤ 1 (8.46)

where (a) holds due the minimization step at the mth iteration, and (b) is satisfied due to

the definition of ξ̆
(m−1)
k = tr{W̆ (m−1)

k T
(m−1)

k }+ r
s(m−1)
k − t ro(m−1)

k ≥ tr{W̆ (m−1)
k T

(m−1)

k } =
tr(W̆

(m−1)
k R

(m−1)

k
)

p
(m−1)
k

. Hence, t ≥ 1. Of course, during the convergence t > 1. The increasing

rate targets {r◦(m)
k } constantly catch up with the increasing rates {r(m)

k }. Now, the rates
are upper bounded by the single user MIMO rates (using all power), and hence the rates
will converge and the sequence t will converge to 1. That means that for at least one
user k, r

(∞)
k = r

◦(∞)
k . The question is whether this will be the case for all users, as is

required for rate balancing. Now, the weighted interference plus noise powers balancing

leads at every outer iteration m to 1

ξ̆
(m−1)
k

tr(W̆
(m−1)
k R

(m)

k
)

p
(m)
k

= ∆ESIP(m), ∀kc. At convergence,
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this becomes
tr{W̆ (∞)

k T
(∞)
k }

ξ̆
(∞)
kc

= ∆(∞) where ξ̆(∞)
k = tr{W̆ (∞)

k T
(∞)
k } + r

s(∞)
k − r◦(∞)

k . Hence, if

we have convergence because for one user k∞ we arrive at r(∞)
k∞

= r
◦(∞)
k∞

, then this implies

∆(∞) = 1 which implies r(∞)
k = r

◦(∞)
k , ∀k. Hence, the rates will be maximized and balanced.

8.4 To Power Minimization

8.4.1 Total power minimization

We consider following optimization problem

min
p,G

f(||p||1, t)

s.t. rk(p,G)/rMk ≥ t, ∀k
||p||1 ≤ Pmax (8.47)

where

f(||p||1, t) = u(t− 1)(||p||1 + t)− t (8.48)

with u(x) =

{
0, x < 0

1, x ≥ 0.
(8.49)

The problem in (8.47) describes MMR problem when t < 1. When t ≥ 1 (8.47) becomes
a total transmit power minimization problem subject to per user rate targets (BC case),
as

min
p,G
||p||1

s.t. rk(p,G)/rok ≥ 1, ∀k
||p|| ≤ Pmax (8.50)

rok here are the rate targets, i.e., rok = rMk , thus, t = 1.

Similar to Chapter 5, total power minimization is held in a two-stage process:

1) When t < 1, we proceed to rate balancing as we do not have enough power to
guarantee all rate targets.

2) When t ≥ 1, we change the power allocation strategy considering the constraints
are fulfilled which minimizes the total transmit power.

Since the ESIP-based MMR problem is formulated as max-min weighted interference
plus noise powers, the related power minimization problem is constrained by

rk = rok ⇔ 1/pktr{W̆kRk} = ξ̆k, ∀k.
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Table 8.1: ESIPrate based User Rate Balancing Algorithm

1. initialize: G
(0,0)
k = (Idk : 0)T, p

(0,0)
k = q

(0,0)
k = Pmax,c

K
, m = n = 0 and fix nmax,mmax,

r
◦(0)
k , ξ̆

(0)
k , and W̆

(0)
k = I

2. repeat

2.1. m← m+ 1

2.2. repeat

n← n+ 1

i update Ak from (8.24) Algorithm 7.1] or (8.32) [Algorithm 7.2]

ii update µc and G
′

k from (8.26),(8.28) [Algorithm 7.1] or (8.35),(8.36)
[Algorithm 7.2]

iii update P k from (8.30) Algorithm 7.1] or (8.45) [Algorithm 7.2]

iv update p and q as maximal eigen vectors of Λ̆ in (8.20)

2.3 until required accuracy is reached or n ≥ nmax

2.4 compute B
S

k(T k) and update W̆ S
k from (8.8)[Algorithm 7.1] or compute

B
R

k (T k) and update W̆ R
k from (8.10)[Algorithm 7.2]

2.5 compute r
s (m)
k = lndet

(
I+GH

k Bk(
1
pk
Rk) Gk

)
[Algorithm 7.1] or r

s (m)
k =

lndet
(
I+T

−1

k Sk

)
[Algorithm 7.2] and determine t = mink

r
s (m)
k

r
◦(m−1)
kc

, r
◦(m)
k =

t r
◦(m−1)
k

2.6 update ξ̆S
k from (8.15) [Algorithm 7.1] or ξ̆R

k from (8.18) [Algorithm 7.2]

3. until required accuracy is reached or m ≥ mmax
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Similarly to what has been considered for the PM in Chapter 5, we collect the per
user weighted interference plus noise powers in a diagonal matrix ε̆w as follows

[ε̆w]k,k = 1/pktr{W̆kRk} (8.51)

ε̆w1K = diag(p)−1
[
Ψ̆p+ σ

]
(8.52)

The corresponding optimal power allocation to achieve the targets ξ̆ is then

p = (ξ̆ − Ψ̆)−1σ, . (8.53)

Then, we set the new power constraint for MMR optimization as Pmax = P with

P = ||p||1. (8.54)

which completes the optimization framework. The proposed algorithm is summarized in
Table 8.2.

Total power minimization for IBC

For IBC case, one can proceed as follows:

1) when t < 1, optimize the rate balancing problem while fulfilling the per cell power
constraints by the means of Lagrangian multipliers µc.

2) when t ≥ 1, change the power allocation strategy p to meet the targets with equality,
which minimizes the total transmit power P = ||p||1. In this case, the corresponding
MMR problem is constrained only by this new total transmit power, thus, the
Lagrangian depends on µo =

∑
c µc.

8.4.2 Per cell power minimization/balancing

Now, consider the following power minimization problem

min
p,G

P s

s.t. rk(p,G)/rok ≥ 1, ∀k∑
k:bk=c

tr{GH
kGk} ≤ P s, ∀c

Pc ≤ Pmax,c, ∀c (8.55)

where P s = maxc Pc and Pc = cTc p =
∑

k:bk=c tr{GH
kGk}.

Similar to the total power minimization case, the optimal power allocation to achieve
the targets ξ̆ is again

p = (ξ̆ − Ψ̆)−1σ.
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Table 8.2: SESIPrate based Total Power Minimization Algorithm

1. For predefined rok, initialize: G
(0,0)
k = (Idk : 0)T, p

(0,0)
k = q

(0,0)
k = Pmax,c

K
, m = n = 0

and fix nmax,mmax, ξ̆
(0)
k , and W̆

(0)
k = I, t(0) = 0

2. repeat

2.1 m← m+ 1

2.2 update Ak from (8.24)

2.3 update G
′

k from (8.26)

2.4 update P k from (8.30)

if t(m−1) < 1

update p and q as maximal eigen vectors of Λ̆ in (8.20)

else

update p with (8.53) and do P = ||p||1 (8.54)

update q as maximal left eigen vector of Λ̆(Pmax = P )

end if

2.5 compute B
S

k(T k) and update W̆ S
k from (8.8)

2.6 compute r
s (m)
k = lndet

(
I +GH

k B
S

k(
1
pk
Rk) Gk

)
and determine t(m) =

mink
r
s (m)
k

r◦k

2.7 if t(m) < 1

update ξ̆
S,(m)
k = tr{W̆ S,(m)

k T
(m)

k }+ r
s(m)
k − t(m)rok

else

update ξ̆
S,(m)
k = tr{W̆ S,(m)

k T
(m)

k }+ r
s(m)
k − rok

end if

3. until required accuracy is reached or m ≥ mmax
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The per cell transmit powers Pc are obtained as follows

Pc = cTc p.

The defined optimization problem aims to minimize the maximum transmit power among
BSs, namely P s = maxc Pc. Therefore, we set the new power constraints for MMR
optimization as Pmax,c = P s, identical ∀ c. Doing so, µc(Pmax,c = P s) will make sure that
all transmit powers cTc p do not exceed the minimized maximum P s, i.e., Pc = cTc p ≤ P s.
Of course, at convergence, we have Pc = P s ∀ c.

8.5 Results

In this section, we numerically evaluate the performance of the proposed algorithms. We
use the channel model from Section 6.3, as in Chapter 7, we consider for the multipath
channel model,

Ct =

Np∑
n=1

αi
vHi vi

viv
H
i (8.56)

with tr{Ct} =
∑Np

n=1 αi = Mc, αi = ci−1α1 and the vi are i.i.d. vectors of Mc i.i.d.
elements CN (0, 1). We take Np = Mc/K.

Figure 8.1 shows the difference between the approximates received signal level and
stream level ESIP, by considering Nk 6= dk. We can see that for Nk = dk, both R- and
S-ESIP are equivalent, whereas for Nk ≥ dk, S-ESIPrate outperforms R-ESIPrate, and
the more Nk/dk increases, the more we have gap, especially at intermediate values for
SNR.

In Figure 8.2, we evaluate the average rate w.r.t. SNR, in broadcast channel (only
one communicating cell), for varying levels of channel estimation error σ2

H̃
. It is clear

that the gap between SESIP and RESIP increases when ρD = 1/σ2
H̃

decreases. In the
following, we take Nk = dk and refer to the (S/R)-ESIP approches by ESIP as they are
both equivalent.

Figure 8.3 represents the average attained rate using the proposed algorithms for differ-
ent configurations of the system (single and multi-cell). We can see that ESIPrate outper-
forms WEMSE and suffers little loss compared to perfect CSIT, and that the UB ESIPrate
provides a tight upper bound. Note also that for fixed ρD as considered here, Naive satu-
rates at high SNR, whereas WEMSE appears to suffer Degree-of-Freedom (DoF) (slope)
loss.

In Figure 8.4, we consider varying levels of channel estimation error σ2
H̃

. It is clear that

when ρD = 1/σ2
H̃

is proportional to SNR, all algorithms (only) suffer from varying SNR
offset, but ESIPrate still outperforms WEMSE as the signal link channel error covariance
is accounted for in the interference power instead of in the signal power.

Figure 8.5 which illustrates the convergence of the user rates w.r.t. the number of
iterations for one channel realization, with SNR = 20dB and ρD = 10. We observe that
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Figure 8.1: Average Rate with Partial CSIT w.r.t. SNR: R-ESIP vs. S-ESIP, C = 2, Kc =
3, and ρD = 10.

the rates obtained using ESIP (either with (8.2) or (8.5)) and ln(det(WkEk)) are balanced.
Both approaches converge after about 5 iterations of the outer loop, while the inner loop
converges after 2-3 iterations. Of course, due to the CSIT imperfections, the actual rates
exhibit some randomness.

In Figure 8.6, we plot the achieved average rate and total transmit power using Table
8.2, for BC. We set identical user targets rok = 4, ∀k and Pmax = 10SNRσ2

n/10. We can see
that, when the rate targets are feasible, (i.e., rk(Pmax)/rok ≥ 1 with MMR optimization),
the user rates using perfect CSIT and ESIPrate UB meet the targets with equality and
the total transmit power is minimized accordingly. Also, the same total minimized power
P is achieved ∀ Pmax. In this figure, this case corresponds to SNR> 10dB. When the
targets are infeasible, Table 8.2 acts as MMR algorithm since the power minimization is
not possible.

Figure 8.7 illustrates the minimized total transmit power for both perfect and imperfect
CSIT vs. number of transmit antennas. We observe that we need more power in partial
CSIT case to reach the user targets, due to the uncertainties. However, when we increase
the number of Tx antennas for a fixed number of users, the transmit power gap between
perfect and partial CSIT gets smaller.

Figure 8.8 plots the achieved rate using per cell power minimization for IBC scenario,
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Figure 8.2: Average Rate with Partial CSIT w.r.t. SNR: R-ESIP vs. S-ESIP, C = 1, K =
3, Nk = 3, and dk = 2.

and Figure 8.9 illustrates the corresponding transmitted power per cell. We can that,
when the rate targets are feasible, the transmit power is minimized within each cell with
equality while fulfilling the rate targets.

8.6 Closing Remarks

In this chapter, we considered the ESIP Erate approximation, for which we introduced an
original minorizer, judiciously chosen to be amenable to the Perron-Frobenius theory. We
furthermore introduced original explicit power constraint Lagrange multiplier solutions,
which can handle the case in which some cell power constraints are met with inequality,
as can happen in a multi-cell scenario. The simulation results exhibit the different SNR
behavior of the Erate lower bound vs. actual Erate, showed that the upper bound is
a quite tight approximation, and that the ESIP partial CSIT approach with LMMSE
channel estimation leads to very limited performance loss compared to perfect CSIT.
In the multi-cell case, the proposed algorithms can handle scenarios in which the CSIT
quality could be very different between intracell and intercell links.
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Chapter 9

Conclusions and Future Directions

In this thesis, we have investigated the weighted max-min fairness w.r.t. per user rates,
namely, rate balancing problem subject to total transmit power constraint for multi-cell
multi-user MIMO systems.

In the first part, we have addressed the problem with perfect knowledge of the channel
at the transmitter, for broadcast and interfering broadcast channels. At a first stage, we
have exploited the MSE - rate relation to enable uplink/downlink duality. In fact, the
maximization of the minimum (weighted) rate has been reformulated as a minimization
of the maximum matrix-weighted MSE. Then, MSE duality has been used, consisting
on achieving the same per user weighted MSE at both uplink and downlink links. This
has conducted to the solution in an alternating manner between both links. At a second
stage, we have considered the Lagrangian duality to solve the rate balancing problem.
Actually, the min max weighted matrix MSE balancing operation has been reformulated
as constraints in the dual problem. The corresponding Lagrangian has been therefore
introduced, leading to alternating optimization to reach the saddle point. Also, various
aspects of Perron Frobenius theory have been exploited in the process. Moreover, we
have considered per cell power constraints for which the Lagrangian multipliers could be
formulated as a single weighted power constraint. The weighting could be then optimized
leading to the satisfaction with equality of all power constraints. Subgradient projection
method has been used to this end. The main conclusions of this part are the following

• the max-min rate optimization problem can be transformed into a min-max weighted
MSE optimization problem which itself was shown to be related to a weighted sum
MSE minimization via Langrangian duality;

• the optimization can be held in the uplink channel (via UL/DL duality), or directly
in the downlink channel considering either diagonal or non-diagonal matrix weighted
MSE;

• the min max matrix-weighted MSE optimization provides appreciable performance
improvements as compared to optimizing the conventional unweighted per user MSE
balancing problem;
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• balancing the weighted user rate via matrix-weighted MSE approach distributed the
rate equally between the users with equal when the weights are equal, when not,
the rate differs from one user to another accordingly;

• reformulating the multiple power constraints as a single weighted constraint ensures
the per cell power constraint with equality, unlike the total sum power constraint
which verifies the total power over cells.

In the second part, we have considered only partial CSIT to solve the rate balancing
problem, as the knowledge of the channel at the transmitter side is never perfect. In
particular, we have focused on ergodic user rate balancing problem, which corresponds
to maximizing the minimum (weighted) per user expected rate in the network. The
partial CSIT that has been taken into account combines both channel estimates and
channel (error) covariance information. Firstly, we have introduced the extension of the
matrix-weighted MSE balancing formulation to partial CSIT, namely, maximizing an
expected rate lower bound in terms of expected MSE. Secondly, we have provided a second
algorithm by exploiting a better approximation of the expected rate as the expected
signal and interference power rate, based on an original minorizer for every individual
rate term. We have studied the latter within two approximations: i) Received signal level
ESIP and ii) Stream level ESIP. Furthermore, we have introduced original explicit power
constraint Lagrange multiplier solutions, which can handle the case in which some cell
power constraints are met with inequality, as can happen in a multi-cell scenario. The
main conclusions of this part are as follows

• optimizing the WEMSE provides a lower bound of the achieved average rate, both
suffering from Degree-of-Freedom (slope) loss for fixed level of channel estimation
error, as compared to perfect CSIT;

• ESIPrate is proved to outperform WEMSE and suffers little loss compared to perfect
CSIT, moreover, ESIPrate based optimization provides a tight upper bound;

• the R/S-ESIP comparison via simulations motivates the use of SESIP rate approach
when the number of streams is lower than the number of receive antennas, confirming
the intuition: averaging a smaller dimensional matrix results in a tighter bound;

• for a number of streams equaling the number of receive antennas, as also in high
or low SNR regimes, the difference between the two approximations (R/S-ESIP) is
negligible.

On the other hand, we have considered a more practical scenario: the case when
the per user weights/priorities represents individual user targets/requirements. In this
context, maximizing the jointly achievable rate margin under total power constraint is
closely related to minimizing the total transmission power while satisfying a set of user
rate constraints. In particular, if we set the total power as the minimized power in the max-
min optimization problem, both problems becomes equivalent. The main cgonclusions to
this regard are in the following
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• maximizing the minimum user rate to user rate target ratio provides a single perfor-
mance measure that reflects the quality of the multi-user channels, such a measure is
required by the upper layers (e.g., medium access control), to decide whether spatial
multiplexing is meaningful or not;

• the transmission power minimization problem w.r.t. per user rate targets is a vari-
ation of user rate balancing problem subject to total power constraint;

• when the individual rate targets are feasible, i.e., if they can be jointly supported,
the total transmission power can be minimized via rate balancing approaches and
the achieved per user rates jointly meet their respective targets.

The extension of minimizing the total transmit power from BC to IBC is direct via
rate balancing under total transmit power constraint instead of per cell power constraint.
Doing so, the overall transmit power of the system is minimized accordingly when the
rate targets are feasible; the distribution of this transmit power between cells is however
not balanced. Therefore, per cell transmit power balancing problem has been considered,
wherein, the optimization is achieved through the single objective optimization: minimiz-
ing the maximum transmit power among cells. The study has been handled with perfect
and partial CSIT, the main obtained conclusions are the following

• minimizing the maximum transmit power among cells, subject to individual rate
targets, minimizes the per cell transmit powers equally, when targets are feasible,
otherwise MMR operates maintaining the per cell power constraints;

• when user rate targets are supported, the minimized per cell transmit powers with
perfect CSIT are below the ones minimized considering partial CSIT, while both of
them reach the target rates.

Despite the fact that the methods considered in this thesis present contributions in
terms of user rates and power allocation, especially for MU MIMO scenarios, there still
exist several challenges which need to be investigated in the future. In fact, we have
considered the optimization problem in the physical layer, assuming full buffers (each
user is continuously receiving data). It would be of great interest to consider the following
directions.

With transmit power minimization via rate balancing, the algorithm optimizes the
max-min (weighted) user rate problem if we are in some SNR regime that does not support
the individual rate targets. In this case, i) the user rate to target rate ratios are equally
balanced between users, ii) none of the users meet their targets, and iii) the obtained
user rates to user rate target reduction is fair (equal) for all users.

• If this reduction can still ensure some QoS, (e.g., rk/r
o
k = 98%, ∀k), we can still

consider the allocation. Otherwise, we must relax the initial conditions, by reducing
the number of users. Actually, MMR optimization balances the user rate ratios by
allocating more power to users in bad conditions and less power to users with good
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channel quality, under a sum power equaling the total power constraint (or per cell
power constraint in IBC). Given that, we can consider a scheduling policy which
drops the user with the highest individual power, namely k∗ = argmaxk pk, with k∗

denoting the user to be dropped, until feasibility of the targets for the remaining
users.

• Balancing weighted user rates between the selected users ensures instantaneous fair-
ness between the users that are scheduled together, not all active users. It would
be of interest to study the average (in time) rate balancing problem, to ensure
long term fairness between all active users. Indeed, there are several works of long
term user fairness based on Proportional Fair (PF) scheduling [90–95]. Actually,
PF represents a tradeoff between sum SE and max-min (unweighted) fairness. PF
schemes exploit the weights in WSR optimization while scheduling. In particular,
it considers the users’ current average throughput in a period of time. Then, the
instantaneous channel quality to average throughput ratio determines whether the
user can be scheduled or not, taking account of long term fairness. In this regard,
additional effort to exploit the user weights in MMR is of high interest, in order to
have a more realistic view to the system.

• There are applications that require a quasi-constant Quality-of-Experience (QoE)
such as multimedia transmissions. In such cases, buffering may be needed and it
is important to maintain a minimum throughput by considering max-min rate and
power minimization optimizations. However, an end-to-end study considering a well
defined traffic model is needed to provide more realistic insights.

• Furthermore, one could extend our works for systems with large dimensions. Do-
ing so, large system analysis can be used to provide approximations for Massive
MIMO (ma-MIMO) to simplify beamforming. Also, a study of the gap between
perfect and imperfect CSIT at high SNR regime can be handled for ESIPrate based
optimizations. In fact, simulation results have shown that ESIPrate curves have a
similar behavior to perfect CSIT curves, with a parallel gap at high SNR. It would
be interesting to characterize analytically this gap in order to better serve user in
partial CSIT.

• In case of unfeasibility of user rate targets, user selection is not the only way to relax
the problem. One can also use antenna selection under ma-MIMO assumptions. In
fact, the individual targets may be not supported when BSs are equipped with lim-
ited antennas. However, the QoS requirements may become feasible as the number
of antennas increases. Thus, the total transmit power minimization problem can be
considered as jointly solving the antenna selection and beamforming design. Paper
[96] has solved the problem for fixed beamforming directions when the number of an-
tennas is large. Therein, not only transmitter power, but also hardware-consumed
power is considered which increases with the number of antennas. Thus, energy
efficiency is improved by turning on and off antennas. Asymptotic results based
analysis is handled to provide the number of antennas that are needed to ensure
QoS constraints.
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Appendix A: Rate Balancing via MSE
UL/DL Duality

A.1 Proof of Lemma 3.4

First, by checking the first order optimality condition of (3.4) with respect to Fk, we get

WH
k (RkF∗k −HkGk) = 0

⇒ F∗k = R−1
k HkGk (A.1)

where Rk = σ2
nI +

∑K
j=1HkGjGH

jH
H
k and F∗ is the optimal solution of (3.4).

By plugging in the optimal value F∗ in (3.5), we obtain

EDL,opt
k = I − GH

kH
H
k R

−1
k HkGk. (A.2)

Hence plugging EDL,opt
k in (3.4) yields

max
Gk,Wk

log det(Wk)− tr
(
WkEk

)
+ dk

= max
Wk

log det(Wk)− tr
(
WkE

DL,opt
k

)
+ dk. (A.3)

The first order optimality condition of (A.3) with respect to Wk implies

W ∗
k = (EDL,opt

k )−1 (A.4)

By plugging in the optimal W ∗
k in (A.3), we can write
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A.2. MSE Duality

max
Gk,Wk

log det(Wk)− tr
(
WkE

DL
k

)
+ dk

= − log det(EDL,opt
k ) (A.5)

= − log det(I −HkGkGH
kH

H
k R

−1
k )

= − log det((Rk −HkGkGH
kH

H
k )R−1

k )

= log det
(
Rk(Rk −HkGkGH

kH
H
k )−1

)
= log det

(
RkR

−1

k

)
, (A.6)

which is the rate of user k in (3.3).

A.2 MSE Duality

Given F , G, and a total power limit Pmax, the same MSE values ε1 . . . εNd
can be achieved

in the downlink channel (Figure 3.2) and uplink channel (Figure 3.3).

With matrices

[D]ii = β2
i g

H
i H

Hfif
H
i Hgi − 2βiRe{gH

i H
Hfi}+ 1

and

[Ψ]ij =

{
gH
i H

Hfjf
H
j Hgi, i 6= j

0, i = j.

we can rewrite the downlink MSE (3.1) and uplink MSE (3.8) as

εDL
i = [D]ii + β2

i /pi[Ψ
Tp]i + σ2

nβ
2
i /pi, ∀i, (A.7)

and

εUL
i = [D]ii + β2

i /qi[Ψq]i + σ2
nβ

2
i /qi, ∀i, (A.8)

respectively.

Collecting all layer MSEs in a diagonal matrix εUP/DL = diag
{

[ε
UP/DL
1 . . . ε

UP/DL
Nd

]
}

we
obtain

εUL1Nd
= Q−1

[
(D + β2Ψ)Q1Nd

+ σ2
nβ

21Nd

]
, (A.9)

and

εDL1Nd
= P−1

[
(D + β2ΨT )P1Nd

+ σ2
nβ

21Nd

]
. (A.10)
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A.2. MSE Duality

If λmax((ε−D)−1β2Ψ) < 1, then there exists a strictly positive power allocation

q = σ2
n(ε−D − β2Ψ)−1β21Nd

(A.11)

such that εUP
i = εi, ∀i. This is an immediate consequence of the convergence properties of

the Neumann series in which (A.11) can be decomposed (see [97], and the power control
literature [98] for more details). Conversely, by a similar reasoning as shown in [97] in
the context of SINR, we know that if there exists a q > 0 such that εUP

i = εi, ∀i, then
λmax((ε−D)−1β2Ψ) < 1 holds.

In the same way it can be shown that downlink targets εi ∀i, can be achieved if and
only if λmax((ε−D)−1β2ΨT) < 1. If the targets are feasible, then they can be achieved
by a strictly positive power allocation

p = σ2
n(ε−D − β2ΨT )−1β21Nd

.

The same spectral radius of (ε−D)−1β2Ψ and (ε−D)−1β2ΨT, implies that q > 1
exists, if and only if p > 1 exists.

Both allocations have the same total power. This can be verified by

‖q‖1 = 1TNd
q = σ2

n1
T
Nd

(ε−D − β2Ψ)−1β21Nd
(A.12)

=σ2
n1

T
Nd

[
β−2(ε−D)−Ψ

]−1
1Nd

(A.13)

=σ2
n1

T
Nd

[
β−2(ε−D)−ΨT

]−1
1Nd

(A.14)

=σ2
n1

T
Nd

(ε−D − β2ΨT )−1β21Nd
(A.15)

= 1TNd
p = ‖p‖1 ≤ Pmax, (A.16)

i.e., the same feasible layer MSE values can be achieved in both links with the same
total transmit power ‖q‖1 = ‖p‖1 ≤ Pmax.

117



A.2. MSE Duality

118



Appendix B: ESIP Method for Rate
Balancing

B.1 Minorizor Optimization Formulation

From (8.13), apart from the power constraints and constant terms, we focus the opti-

mization on
∑

kλ̆
′

k lndet
(
I+GH

kB
S

kGk

)
−
∑

k

λ̆
′
k

pk
tr{W̆ S

kRk}. The first term corresponds

to the first term in (8.23) with λ̆
′

k = λ̆k/ξ̆
S
k . By developing the second term, we obtain

the following

∑
k

λ̆k

pkξ̆
S
k

tr{W̆ S
kRk} =

∑
k

λ̆k

pkξ̆
S
k

tr{W̆ S
k (σ2

nI +
∑
i 6=k

piSk,i)} (B.1)

= σ2
n

∑
k

λ̆k

pkξ̆
S
k

tr{W̆ S
k }+

∑
k

∑
i 6=k

piλ̆k

pkξ̆
S
k

tr{W̆ S
k Sk,i}

= σ2
n

∑
k

λ̆k

pkξ̆
S
k

tr{W̆ S
k }+

∑
i

∑
k 6=i

pkλ̆i

piξ̆S
i

tr{W̆ S
i Si,k} (B.2)

where (B.1) follows from (7.7) and we inverse between the indices k and i to get (B.2), using∑
k

∑
i 6=k =

∑
k,i,i6=k =

∑
i

∑
k 6=i. The first term in (B.2) is constant, we focus the optimization

on the second term which becomes as follows using (7.6)

∑
k,i,k 6=i

pkλ̆i

piξ̆S
i

tr{W̆ S
i Si,k} =

∑
k,i,k 6=i

pkλ̆i

piξ̆S
i

tr{W̆ S
i (Ĥi,bkGkG

H
k Ĥ

H
i,bk

+tr{GH
kCi,bkGk}I)}

=
∑
k,i,k 6=i

pkλ̆i

piξ̆S
i

tr{GH
k (ĤH

i,bk
W̆ S

i Ĥi,bk +tr{W̆ S
i }Ci,bk)Gk}

=
∑
k

pk tr{GH
k

∑
i 6=k

λ̆i

piξ̆S
i

(ĤH
i,bk
W̆ S

i Ĥi,bk +tr{W̆ S
i }Ci,bk)Gk}

=
∑
k

pk tr{GH
kA

S
kGk} (B.3)

which corresponds to the second term of (8.23) and thus completes the formulation.
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