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ABSTRACT

Chromatin-based events, prominently gene transcription are the basis of cellular characteristics

 

in 

 

normal 

 

tissues 

 

and 

 

in 

 

cancer 

 

context.

 

Histone 

 

posttranslational 

 

modifications 

 

are

 

parts 

 

of

 

specific 

 

regulatory 

 

circuits 

 

controlling

 

chromatin-based 

 

biological 

 

processes. 

 

A 

 

myriad 

 

of

 

specific 

 

types 

 

of 

 

histone 

 

modifications, 

 

including 

 

site-specific 

 

histone 

 

acetylation 

 

and

 

methylation, 

 

etc. 

 

have 

 

been 

 

characterized

 

with 

 

respect 

 

to

 

their 

 

roles 

 

in 

 

gene 

 

transcriptional

 

regulation. 

 

A 

 

critical

 

family 

 

of 

 

chromatin 

 

regulators

 

bridges

 

histone 

 

modifications 

 

and 

 

gene

 

transcriptional 

 

output 

 

is 

 

the 

 

readers. 

 

The 

 

specificity 

 

of 

 

readers 

 

recognizing 

 

histone

 

modifications 

 

depends 

 

not 

 

only 

 

on 

 

the

 

modifications, 

 

but 

 

also 

 

on 

 

their

 

combinations.

 

Additionally,

 

it 

 

should 

 

be 

 

noted 

 

that 

 

histone 

 

modifications 

 

are 

 

dynamic

 

and 

 

this 

 

process

 

is

 

impacted

 

by a variety of factors, including cellular metabolites.

  

Previously the team identified a gene FASTKD1 whose expression is associated with poor

 

prognosis in acute lymphoblastic leukemia

 

(ALL).

 

During my research,

 

we

 

uncovered that this

 

gene is a negative regulator of general mitochondrial activity,

 

and more specifically controls

 

the mitochondrial respiration.

 

Using gene knockout cell models, we

 

further

 

characterized

 

the

 

link between mitochondrial activity with histone modifications, and

 

highlighted

 

the importance

 

of 

 

fatty 

 

acid 

 

metabolism, 

 

especially 

 

β-oxidation,

 

in

 

mediating

 

histone 

 

modifications. 

 

The

 

association of mitochondrial activity-β-oxidation and histone acylations

 

was also

 

confirmed

 

in

 

patients’ primary blasts.

  

BET 

 

family 

 

proteins 

 

are 

 

specific 

 

readers 

 

of 

 

histone 

 

acetylation 

 

and 

 

mediate 

 

transcription

 

regulation. 

 

Previous 

 

studies 

 

uncovered 

 

that 

 

the 

 

first 

 

bromodomain 

 

of

 

a

 

BET 

 

protein, 

 

Brdt,

 

recognizes 

 

diacetylated 

 

histone 

 

marks 

 

(H4K5acK8ac) 

 

but 

 

not 

 

H4K5 

 

butyrylated 

 

histones. 

 

We  noticed

 

that  

 

FASTKD1-mediated  

 

mitochondrial  

 

activity  

 

prominently  

 

impacts  

 

non-acetyl

 

acylations  but  not  acetylations. Using

 

our

 

gene  knockout  cell  model, we

 

could  

demonstrate

 

that

 

the relative level of the acetyl and acyl marks tunes the bound state of BRD4 

with chromatin.

 

We

 

showed

 

that 

 

an 

 

increased 

 

ratio 

 

of 

 

acyl/acetyl 

 

disfavors 

 

BRD4-chromatin 

 

interaction,

 

resulting  in  a  loose  and  dynamic  bound  state, while  a

decreased

 

ratio favors the binding and

 

leads to a tight interaction. The functional output of this 

dynamic interaction is to re-distribute

 

the BRD4 across the genome.

 

More specifically, dynamic 

BRD4-chromatin  interaction  caused

 

by  high  acyl/acetyl  ratio

 

makes

 

BRD4 more  

available  to  be  recruited  on  gene  transcriptional

 

start  sites

 

(TSS)

 

and  mediate

 

the

 

stimulated

 

expression of a subset of genes mediated by BRD4.

 

Gene 

 

functional 

 

analysis 

 

revealed 

 

that 

 

high 

 

acyl  

 

patients  

 

or  

 

high  

 

acyl/acetyl  

 

cells  

 

displayed

 

increased  

 

expression  

 

of  

 

genes  

 

associated 

 

with 

 

ribosome 

 

synthesis, 

 

cell 

 

cycle 

 

and 

 

decreased

 

expression of genes associated  

with stemness.



UNIVERSITE GRENOBLE ALPES 

6 

 

Based on this work, we propose that cell metabolism, through modulating the histone 

acetyl/acyl ratio, controls a cellular reservoir of BRD4 (and probably many bromodomain-

containing proteins). High acetyl/acyl ratio favors the constitution of a reservoir of non-

functional chromatin-bound BRD4. Low acetyl/acyl ratio, in contrast, increases BRD4 

dynamics and makes it available for recruitment on the sites of action. 

Our work not only added a new piece of evidence regarding the concept of metabolism-

driven epigenetic modifications, but also emphasized on a collective and combinatorial actions 

of the relatively low abundant individual acylations. 

 

 

Keywords: Histone Posttranslational Modification, Mitochondrial Metabolism, FASTKD1, 

Acute Lymphoblastic Leukemia, β-oxidation, BRD4 
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RESUME 

Les événements contrôlés par la chromatine, notamment la transcription des gènes, sont à la 

base des caractéristiques cellulaires dans les tissus normaux ainsi que dans le contexte du cancer. 

Les modifications post-traductionnelles des histones font partie de circuits de régulations 

spécifiques contrôlés par la chromatine. De nombreuses modifications d’histones, notamment 

l'acétylation et la méthylation des histones, ont été caractérisées et leur rôle dans la régulation 

de la transcription a été étudié. Les facteurs régulateurs de la chromatine capables de lire ces 

modifications, établissent un pont entre les modifications des histones et la transcription des 

gènes. La spécificité de ces facteurs peut également dépendre des combinaisons de 

modifications d’histones. Finalement, il convient de noter que les modifications d’histones sont 
dynamiques et qu'elles sont influencées par divers paramètres, notamment les métabolites 

cellulaires. 

Mon laboratoire d’accueil a précédemment identifié un gène nommé FASTKD1 dont 

l'expression est associée à un mauvais pronostic dans la leucémie aiguë lymphoblastique (LAL). 

Au cours de mes recherches, nous avons découvert que la protéine codée par ce gène est un 

régulateur négatif de l'activité mitochondriale globale, et qu'elle contrôle plus spécifiquement 

la respiration mitochondriale. En utilisant des modèles de cellules ou le gene codant pour cette 

protéine est inactivé, nous avons caractérisé le lien entre l'activité mitochondriale et les 

modifications des histones. En particulier, nous avons mis en évidence l'importance du 

métabolisme des acides gras, notamment la β-oxidation, dans l’établissement des modifications 
d’histones par l’acylation. Cette relation entre l’activité mitochondriale, la β-oxidation et 

l’acylation des histones a également été confirmée dans des blastes primaires de patients atteints 
de LAL. 

Les protéines de la famille BET reconnaissent spécifiquement l'acétylation des histones et 

sont impliquées dans la régulation de la transcription. Des études précédentes de mon 

laboratoire ont révélé que le premier bromodomaine de l’une des protéines de la famille BET, 

Brdt, reconnaît les marques d'histones diacétylées (H4K5acK8ac) mais pas les histones H4K5 

butyrylées. A partir de ces données, mon laboratoire avait fait l’hypothèse que le rapport 
acetyl/acyl au niveau des histones devrait impacter la liaison des facteur de la famille BET (Brdt, 

BRD4, etc..) avec la chromatine. Mon travail de thèse a permis de vérifier cette hypothèse en 

déployant d’autres modèles cellulaires. 
En effet, nous avons aussi remarqué que l'activité mitochondriale contrôlée par FASTKD1 a 

un impact important sur les acylations (non-acétyl) mais pas sur les acétylations. En utilisant 

notre modèle de cellules ou le gène codant pour ce facteur est inactivé, nous avons pu démontrer 

que le niveau relatif des marques acétyl et acyl au niveau des histones contrôle l'état de liaison 
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de BRD4 avec la chromatine. Nous avons montré qu'une augmentation du rapport acyl/acétyl 

diminue l'interaction BRD4-chromatine, ce qui entraîne un état de liaison lâche et dynamique, 

tandis qu'une diminution de ce rapport favorise une interaction forte. Le résultat fonctionnel de 

cette interaction dynamique est une redistribution de BRD4 à travers le génome. Plus 

précisément, l'interaction dynamique entre BRD4 et la chromatine causée par un rapport 

acyl/acétyl élevé rend la protéine BRD4 plus disponible pour être recrutée sur les sites 

d’initiation de transcription des gènes (TSS). Ainsi BRD4 contrôle l'expression d'un sous-

ensemble de gènes. L'analyse fonctionnelle de ces gènes a révélé aussi bien chez les patients 

que dans nos cellules modèles, qu’un rapport acyl/acétyl élevé était associé à une expression 
accrue de gènes associés à la synthèse des ribosomes et au cycle cellulaire et à une expression 

réduite des gènes associés à l’état souche.  

Sur la base de ces travaux, nous proposons que le métabolisme cellulaire, en modulant le 

rapport acetyl/acyl des histones, contrôle un réservoir cellulaire de BRD4 (et probablement de 

nombreuses autres protéines contenant un bromodomaine). Un rapport acétyl/acyl élevé 

favorise la constitution d'un réservoir de BRD4 non-fonctionnel lié à la chromatine. Un rapport 

acétyl/acyl faible, au contraire, augmente la dynamique de BRD4 et la rend disponible pour le 

recrutement sur les sites d'action. 

Notre travail non seulement ajoute une nouvelle preuve de l’impact du métabolisme sur les 
modifications épigénétiques qui sous-tendent la biologie de la tumeur, mais également met 

l'accent sur l’action collective des acylations individuelles qui, lorsqu’on les considère chacune 
de manière isolée, sont relativement peu abondantes. 

Mots-clés: Modifications post-traductionnelles des histones, Métabolisme mitochondrial,  

FASTKD1, Leucémie aiguë lymphoblastique, β-oxidation, BRD4 
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INTRODUCTION 

1. Histone post-translational modifications control chromatin-dependent 

biological events 

1.1 Chromatin is a DNA-packaging structure 

1.1.1 Chromatin architecture 

Chromatin is formed of DNA bound to histones. It has long been known that chromatin displays 

two global states : euchromatin which is associated with active or potentially active genomic 

regions, and heterochromatin, which is generally associated with the repressed genome. 

Heterochromatin comprises some structural regions of chromosomes, such as centromeres and 

telomeres (so-called constitutive heterochromatin). It also corresponds to a cell-type specific 

and developmentally-controlled transcriptionally repressed regions, known as facultative 

heterochromatin.  

Chromatin structure undergoes temporal alterations dependent on cell cycle, most 

impressively it condenses during mitosis and decondenses in interphase. Later studies revealed 

that even in interphase, euchromatin is organized into specific areas, known as chromosome 

territories at nuclear scale (Figure 1). Recently, with the development of technologies 

characterizing 3D architecture of chromatin (e.g., 3C, Hi-C etc.), researchers discovered that at 

the megabase scale, chromosomes are segregated in two distinct compartments, designated as 

compartment A and B1, 2. Type A compartment is enriched in active chromatin, where high 

transcriptional activity, DNase I hypersensitivity and active histone marks are found. This 

compartment is likely to be in the central region of nucleus as well as in regions close to the 

nuclear pores. In contrast, Type B compartment is known to have inactive chromatin associated 

with repressive histone marks, silent genes, and late replication timing. This compartment is 

located close to the nuclear periphery and is associated with the nuclear lamina3, 4. The stability 

of these regions tunes the accessibility of the genomic regions to transcriptional machineries, 

thereby regulates cell specific gene transcription programs5. The additional micro-hierarchical 

structures composing chromosome compartments are the so-called topologically associating 

domains (TADs). TADs are partitioned regions with relatively defined boundaries.  In TADs 

chromatin contacts preferentially occur within the same domain. The contacts within the same 

continuous chromatin region or between distant separated chromatin regions are facilitated by 

loop structures. Chromatin loops are kilobases structure whose formation is assisted by 

chromatin architectural proteins, such as CCCTC-binding factor (CTCF) (once known as an 
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insulator protein), cohesions and mediators. These loop structures allow the contacts between 

distal elements, such as promoters-enhancers, or certain DNA elements with transcriptional 

factors and cofactors, thereby playing an important role in gene transcription6, 7. Indeed, TADs 

are viewed as units of gene transcription8, 9. 

 
Figure 1. Hierarchical organization of chromatin. 
Genome is non-randomly placed in cell nucleus. Nucleosome fibers can form loops facilitated by CTCF and the 

cohesin complex. Chromatin loops are ordered in TADs or sub-TADs. TADs domains are located within different 

types of chromatin compartments: type A active chromatin and type B inactive chromatin. At the nuclear scale, 

each chromosome is arranged in a relatively specific place, designated as chromosome territories. Figure taken 

From3. 

 

1.1.2 Chromatin packaging 

In human cells, 2 meters of DNA must be tightly packaged into chromatin in order to fit into a 

micron-sized nucleus. Nucleosome is the basic unit of chromatin compaction. Each nucleosome 

is composed of 145-147 base pairs (bp) of DNA wrapped approximately 1.7 times around the 

histones core in a left-handed manner. Linker histone H1 interacts with both the dyad and 

entry/exit of DNA strand to further compact DNA. Adjacent nucleosomes are linked by DNA 

to form nucleosome arrays (so-called “beads on a string” structure observed under electron 
microscope). The next level of compaction is called “30nm fiber”. Two models applying “30nm 
fiber” have been proposed: 1) the one-start solenoid where nucleosomes are arranged in a single 
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helical stack, with the linker DNA slightly bent; 2) the two-start zig-zag structure where the 

neighboring nucleosomes extend back and forth, and are connected by a relatively straight 

linker. Though controversial, evidence indicated that both modes might exist in the real 

situation, the adoption of which depends on the length of linker DNA. A short linker DNA 

contributes to the formation of solenoid, while nucleosomes with long linkers tend to form zig-

zag structure. As aforementioned, the chromatin fiber could be spatially ordered in the nucleus 

with the assistance of other chromatin bound proteins. During the mitotic cell division, these 

noodle-like chromatin fibers could further be folded into a highly condensed state (Figure 2). 

 

Figure 2. Chromatin Packaging. 
Chromatin is highly packaged structure. Nucleosome is the basic unit of chromatin packaging. When linked, 

nucleosomes form the “beads on a string” structure under EM. Nucleosomes then form 30nm fiber chromatin, 

which can be further folded to highly condensed chromosome during metaphase. From Wikipedia. 

 

Of note, recent studies revealed that the well-organized 30 nm fiber might merely reflect the 

artificial situation in vitro with low nucleosome concentration and low salt conditions. In vivo 

however, given 1) the physiological salt condition, 2) nucleosomes crowding10, and 3) taking 

into account that nucleosomes are irregularly positioned, etc., nucleosomes arrays are not likely 

to fold into 30nm fiber but rather are organized in clutches and stay in an amorphous form 

(Figure 1)11-13.  

1.1.3 Nucleosome core particle structure 

Structure of nucleosome core particle (NCP) has been determined with X-ray crystallography 

with near-atomic resolution (Figure 3)14, 15. Two copies of each H3, H4, H2A, and H2B form the 

disc-like histones core. Each core histone shares similar organization encompassing flexible N-

and C-terminal tails and the histone fold, which consists of three α helices linked by two loops 

(α1-L1-α2-L2-α3) (Figure 3A). For each nucleosome, a segment of ~121bp DNA is organized 

around the histone fold, leaving ~13bp DNA at each entry/exit end. Interactions between core 
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histones and DNA are mainly mediated by the conserved domains of core histones, where 7 

unique DNA binding sites are harbored in every half of nucleosome particle, corresponding to 

the places where the DNA major groove faces the histone octamer. At the entry/exit of 

nucleosome, DNA is bound by the N-terminal α helices of histone H3. Within the histone core, 

two H2A-H2B heterodimers interact with the symmetric (H3-H4)2 heterotetramer through 

H2B-H4 four-helix bundle and H2A docking domain, the latter of which functions to lock H3-

H4 by forming a β-sheet with C-terminus of H4, and can stabilize histone octamer by guiding 

H3 αN, which is interacting with DNA.  

Core histones have long flexible tails containing alkaline lysine and arginine that can 

protrude NCP. For example, tails of H2B and H3 pass through DNA gyres and extend out of 

NCP randomly. Further, the N-terminal tail of H4 can contact the adjacent nucleosome via the 

acidic patch formed by H2A-H2B. Such interaction is crucial for the folding of nucleosome 

arrays and the high-order chromatin packaging. In the case of H2A, the C-terminus could serve 

as a docking domain that interacts with H3-H4, while the N terminal tail binds to the minor 

groove of DNA superhelix. Of note, these alkaline histone tails can be subject to a variety of 

covalent modifications. Apart from interacting with H4, the H2A-H2B acidic patch can act as 

a platform for many protein-nucleosomes complex interactions as well. 

 

Figure 3. Nucleosome core particle structure. 
A. Histone fold domains of H3. Core histones have conserved motifs of histone fold, namely α1-L1-α2-L2-α3 from 

N terminus to C terminus. B. Nucleosome core particle (NCP) is composed of two copies of each H2A, H2B, H3 

and H4. Disc view (left) and gyre view (right) of NCP show the crucial domains and flexible tails of core histones 

respectively. Graphic from16 (A) and from PDB:1KX517 (B). 

1.1.4 Nucleosomes positioning 

Around 75–90% of genomic DNA is wrapped in nucleosomes in eukaryotes. As introduced 

above, in order to be wrapped into nucleosomes, DNA must be bent around a histone octamer. 

Since DNA sequences impact histone octamer binding stability, nucleosomes might be 

A B 
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positioned across the genome depending on the genomic sequences. Indeed, Segal and 

colleagues demonstrated that dinucleotides facilitate the bending direction of DNA, where GC 

and AA, TT or AT are placed alternatively every 10 bp following DNA major and minor groove 

(Figure 4). Such model predicted around ~50% of nucleosomes positioning in yeast and chicken 

genome, indicative of a determinant role for the genomic sequence in directing nucleosome 

positioning18.  

 

 

Figure 4. Sequence preference of nucleosome. 
DNA is wrapped around a histone octamer following a 10bp-periodic sequences of GC/AA, TT or TA dinucleotides. 

From19. 

 

During the last decade, the heterogeneity of nucleosome positioning (referring to the relative 

position of nucleosomes with respect to certain genome DNA sequences) has been uncovered 

using high-throughput sequencing-based approaches. Up to now, the basic features of the 

nucleosome positioning landscape can be roughly summarized as 1) Silent genes harbor 

regularly-spaced, but poorly-positioned nucleosome arrays. 2) At active promoter and enhancer 

regions, nucleosomes are irregularly spaced. 3) At the 5’ end of active genes immediately 

upstream and downstream of TSS, nucleosomes are strongly positioned and phased. A 

nucleosome-free region (NFR) at active gene TSS, separating the -1 and +1 nucleosomes, is 

observed (Figure 5)13. The nucleosome positioning, spacing, and phasing are controlled by the 

internal property of genomic sequences and the action of chromatin remodelers. Since 

nucleosomes are the fundamental barriers for DNA accessibility, alterations of nucleosome 

arrays and the resultant chromatin re-organization might impact tremendously chromatin 

functions. 
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Figure 5. Nucleosome positioning. 
Downstream of TSS of expressed genes, nucleosomes tend to be precisely phased, with strong positioning but 

less regular spacing (left panels). In contrast, in silent domains, nucleosome arrays are highly regular but poorly 

positioned to genomic DNA (right panels). From13. 

 

1.2 Gene transcription is the first highway to biological properties 

Since 1950s, the discovery of DNA structure has paved the way towards understanding life. 

Generations of researchers built their research on this discovery and established the basics of 

the modern biology. What we are learning in middle schools is the central dogma of molecular 

biology, describing the flow of genetic information passing from DNA to RNA and then to 

proteins. Here I will give a brief introduction on the first level of genetic information expression 

in this central dogma, which is gene transcription in eukaryotes. 

1.2.1 Types of RNA polymerases 

Transcription is catalyzed by RNA polymerases, which produce RNAs reverse complementary 

to DNA template. There are three types of RNA polymerases (Pol) in eukaryotes, RNA Pol I, 

II, and III, with each responsible for transcribing distinct types of RNAs. RNA Pol I produces 

large ribosomal RNA, RNA Pol II synthesizes messenger RNA and many non-coding RNAs, 

while RNA Pol III transcribes transfer RNA, small ribosomal RNAs and some other small 

RNAs.  

1.2.2 Promoters and enhancers 

Two key DNA elements involved in transcription are promoters and enhancers. Promoter is a 

region of DNA where RNA polymerases assemble to initiate transcription. Promoter regions 

comprise of core promoter, proximal promoter, and distal promoter. Of them, core promoters 

refer to the minimal DNA region that direct the precise initiation of transcription. Core 
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promoters contain several sequence motifs, including TATA box (5'-TATAAA-3') (~ -30bp), 

initiator (± 3bp), and downstream core promoter element (DPE) (~ +30) etc., and are featured 

by a nucleosome-depleted region (NDR) on the TSS (transcription start site) in the case of 

active promoters20.  

In metazoan, core promoters can be divided into three types according to their activation 

status, the motifs, and the local nucleosomes architecture. The first type is known as “disperse” 
and “broad” promoters mainly found in housekeeping genes. These promoters are featured by 
constitutively activated status, dispersed distribution of transcription initiation, and a typical 

NDR, and often overlap CpG islands. Second type is “sharp” “focused” promoter, which 
possesses sharp initiation, unprecise nucleosome positions, and often contain TATA box and 

initiator elements. These promoters are found in cell-type-specific genes that function during 

differentiation. The third type is “poised” promoter, which are covered by bivalent histone 

histone marks (both active H3K4me3 and repressive H3K27me3). These promoters are found 

in embryonic stem cells, where they control developmental transcription factors and ensure the 

correct expression of development-associated genes in certain tissue type20.  

Enhancers are DNA sequences that can regulate the activity of their target promoters by 

recruiting transcription factors and cofactors. In metazoan, enhancers are relatively large 

elements that can be up to several hundred base pairs and are often placed distant from (e.g., 

kb) the target promoters. Currently, active enhancers are well-predicted by the coverage of 

H3K4me1 and H3K27ac and in the case of active enhancers, by the co-localization of 

p300/CBP21. Similar to promoters, active enhancers harbor NDRs. At both edges of NDR, 

enhancers DNA can be transcribed by RNA Pol II divergently to produce unstable enhancer 

RNAs (eRNAs)22. The existence of eRNAs reflects the active status of enhancers, although their 

actual functions are yet to be determined. It is noteworthy that specific subsets of large 

enhancers, known as locus control regions (also known as super-enhancers, SEs) were 

identified and became famous for their roles in controlling cell type-specific gene expression 

or key oncogenic program. SEs are distinguished by the co-occurrence of transcription factors 

binding, Mediator and Pol II co-activators23. 

In order to regulate distal promoters, enhancers should first physically contact distal promoters, 

which has been suggested to be enabled by the chromatin loop structure, where the interacting 

proteins, including Mediator complexes and cohesions, facilitate the enhancer – promoter 

proximity24. The selectivity of enhancers – promoters communication are driven by 

topologically associating domains (TADs), promoter – proximal tethering elements (PTEs), and 

the promoter DNA accessibility. More details can be found in25.  
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1.2.3 Procedure of RNA Pol II transcription 

Processes of transcription can be divided into three stages, initiation, elongation, and 

termination (Figure 6). Transcription initiation is the process where RNA polymerase II 

recognizes and interacts with promoters, and produces nascent RNA at transcription start sites 

(TSS). Recognition of RNA polymerases is aided by transcription factors (TFs), including 

general transcriptional factors (GTFs) and associated activators or coactivators. TFIID is the 

first GTF that interacts with DNA, followed by sequential recruitment of TFIIA, TFIIB, TFIIF, 

TFIIE, and TFIIH. All the recruited GTFs together with RNA Pol II, form the pre-initiation 

complexes (PICs) at promoter regions. The PICs are in closed form when DNA is still in a 

double helix state, before XBP, the translocase subunit of TFIIH, hydrolyzes ATP, through 

which, unwinds dsDNA and pushes DNA strand towards the catalytic center of RNA 

polymerase to facilitate the synthesis of nascent RNAs. After which, RNA Pol II is released 

from associated GTFs and promoters (termed as promoter escape) and RNA synthesis is hence 

elongated.  

In many cases, RNA Pol II pauses after transcribing around 30-50 nucleotides downstream of 

TSS, which is known as promoter–proximal pause. The paused Pol II is stabilized by 5,6-

dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) sensitivity–inducing factor (DSIF) and 

negative elongation factor (NELF), which consequently, inhibits early processive transcription 

elongation. Release of paused RNA Pol II requires NELF, DSIF and carboxy terminal domain 

(CTD) of Pol II. CTD is phosphorylated by kinase CDK9, which is a subunit of positive 

transcription elongation factor b (P-TEFb). 

Termination of transcription is less well-understood compared to initiation and elongation. 

Once RNA polymerases pass through Poly A signal (5'-AAUAAA-3'), newly synthesized RNA 

will be released from RNA Pol II, and RNA Pol II per se is released from the DNA template. 

Possible mechanisms are that gradual changes of CTD phosphorylation at distinct sites (e.g., 

Ser2 increase while Ser5 decrease) displaces RNA Pol II from DNA. Then recruited 

exonuclease Rat 1 pulls uncapped RNA out from RNA polymerase and degrades it. 
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Figure 6. Gene transcription. 
Transcription initiates with the assembly of Pre-initation complex (PIC) and the synthesis of nascent RNAs (A). 

RNA pol II is then phosphorylated and escapes from promoter to start transcriptional elongation (B). Shortly after 

elongation (30-50nt), RNA pol II pauses, and the processive elongation requires its CTD phosphorylated by P-

TEFb (C). Through all these processes, enhancer can access promoters and regulate each step of transcription. 

TFs: Transcription factors. COFs: Cofactors. MED: Mediator. From20. 

 

1.3 Histone post-translational modifications impact chromatin signaling 

Chromatin serves as the template for various biological processes such as transcription, DNA 

repair, replication, and so forth. Modifications of histones, which are the key component of 

chromatin, are the major regulators in such processes. Histone post-translational modifications 

(PTMs) refer to the chemical moieties covalently added to amino acids on histone tails or 

histone folds. There are various types of histone PTMs, including the well-characterized 

acetylation, methylation, phosphorylation (Figure 7), and the atypical modifications, including 

short chain acylation (e.g., crotonylation, butyrylation, glutarylation, succinylation, etc.), 

serotonylation, lipidation, etc. Histone PTMs are reversible, with certain enzymes responsible 

for adding (termed as “writers”) or removing the groups (termed as “erasers”). Histone PTMs 

can directly alter chromatin structure and organization, or more importantly, recruit effector 

A 

B 

C 
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proteins (termed as “readers”). In this section, I’ll have a general introduction about different 
modifications, their corresponding writers, erasers, readers, and the functions they exert.  

 

Figure 7. Histone N-terminal tail modifications. 
Histone tails are subject to a variety of modifications. P: Phosphorylation. Ac: Acetylation. Me: Methylation. 

Adapted from26. 

1.3.1 Methylation 

Histone methylation mainly occurs on the side chains of lysines or arginines on all histones (H1, 

H2A, H2B, H3, and H4). Lysines can be mono- (me1), di- (me2), or tri-methylated (me3) while 

arginines can be mono- or di-methylated. In the case of arginine di-methylation, two methyl 

groups can possibly be added symmetrically or asymmetrically to amino groups.  

Histone methylation are catalyzed by histone methyltransferases (HMTs) with S-

adenosylmethionine (SAM) as a group donor and can be removed by histone demethylases 

(HDMs) assisted by certain cofactors. Although histone methylation was identified in the 60s 

of last century, it was not until 40 years later when the first methylation modifier, SUV39H1 

(KMT1A) was identified by Jenuwein and colleagues27. Today, two classes of lysine 

methyltransferases (KMTs) and one class of arginine methyltransferases (protein arginine 

methyltransferases, PRMTs) have been identified. Depending on the catalytic domains they 

possess, KMTs can further be divided into 1) SET domain containing methyltransferases, which 

defines the first and the major class of KMTs, and 2) KMTs which does not have a SET domain 

and is represented by DOT1L protein in human28. 

The first member of lysine demethylases (KDMs) LSD1/KDM1A was identified by Yang 

Shi and colleagues and was characterized as a FAD-dependent amine oxidase that demethylates 

H3K4me1 and K3K4me2. A few years later the second class of KDMs were identified and 

designated as jumonji C (JmjC)-domain containing protein, which use α-ketoglutarate (α-KG), 

oxygen and Fe (II) as cofactors to oxidize methyl groups and release formaldehyde. 
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Catalytic activity of HMTs and HDMs is dependent on both the site and the degree of 

methylation. For instance, KMT1A/B (SUV39H1/2) catalyze di- and tri-methylation of histone 

H3 at K9 from monomethylated state, while G9a and GLP (G9a-GLP) catalyzes mono- and di-

methylation of H3K929. Moreover, since some of the HMTs and HDMs are formed in protein 

complexes, the additional components might indeed impact the activity or specificity of the 

catalytic subunit. For example, SET domain containing core enzymes can only catalyze mono- 

and di-methylation of H3K4, while the catalysis of higher level of methylation, H3K4me3, 

requires the presence of holo-enzymatic complexes, which are comprised of additional 

interacting partners (e.g., WRAD)30. In addition, Polycomb repressive complexes 2 (PRC2) is 

a well-studied polycomb group (PcG) family protein that serve as writer for mono-, di-, and tri-

methylation of H3K27. Apart from the catalytic subunit EZH1/2, PRC2 complexes comprise 

additional components, including SUZ12 and EED are required for the enzymatic activity, as 

well as accessory subunits which are either important for enhancing activity of PRC2 

complexes (e.g., AEBP2 and JARID2) or might play a role in the recruitment of PRC2 to 

specific genomic loci (e.g., PCL protein)31, 32.  

 

Figure 8. Writers and erasers of lysine methylation. 
The graph summarizes the known KMTs (left) and KDMs (right) families with their subcellular localization. The 

graph also shows the potential inhibitors and their clinical status relating methylation enzymes. From 33. 

 

Histone methylation does not alter the charge of histone protein but can impact the size and 

hydrophobicity of the amino acids, thereby directly influencing nucleosome structure by 

interfering with histone-histone or histone-DNA interactions. More importantly, histone 

methylation has been suggested to recruit effector proteins. “Readers” of methylation include 
PHD, chromo, PWWP, WD40, etc. domains containing proteins that recognize the specific 
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methyl groups and mediate certain outcomes. To speak roughly, in the case of gene transcription, 

methylation at H3K4 and H3K79 marks active transcription, in contrast, methylation at H3K9, 

H3K27, and H4K20 is associated with gene silencing. 

Different histone methylation marks are distributed in different regions of the genome. 

Thanks to the advancement of high-throughput sequencing technology during the last two 

decades, researchers have mapped the genomic distribution of various site-specific 

methylations and have summarized their coverage patterns in cis-elements (e.g., promoters, 

enhancers), gene regions (e.g., exons, introns, TSS, repetitive regions), and their onsite specific 

roles. For instance, it is well-known that H3K4me3 is enriched in active and poised promoters, 

whereby it could help to recruit RNA pol II34. In addition, H3K27me3 and H3K9me3 are 

hallmarks of facultative and constitutive heterochromatin respectively, and are associated with 

gene silencing29, 35. 

Furthermore, mechanisms concerning the methylation targeting have begun to emerge. 

Specific KDMs and KMTs could directly be recruited to certain loci by transcriptional factors 

or RNA pol II, DNA elements, noncoding RNA etc.28. Functionally, histone methylation can 

either activate or repress gene transcription depending on the different types and their genomic 

locations, as well as can play a role in RNA splicing, genomic stability, and DNA damage 

response etc.36.  

 
Figure 9. Distribution of histone lysine methylation and their association with gene transcription. 
The graph summarizes the genomic distribution of different histone methylation, methylation modifiers, and 

their regulation in transcription. In general, H3K9me3, H3K27me3, H4K20me3 marks inactive genes. In contrast, 
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H3K27me1 enriches in gene bodies of active genes. H3K36me1 is distributed in intergenic regions whereby it 

might confer to the repression of cryptic transcription. More details are reviewed in 28. From 28. 

 

Of note, different histone methylation marks can interfere with the establishment of the other 

methylation marks, as well as other epigenetic modifications. For example, H3K27 methylation 

can be disturbed by active histone marks (e.g., H3K27ac, H3K4me3, H3K36me3 etc.). The 

underlying mechanism is the exclusion of PRC2 from specific chromatin loci35, 37. In addition, 

DOT1L-dependent H3K79me and SET1-dependent H3K4me can be activated by H2BK120 

mono-ubiquitination38. Such crosstalk adds complexity of interpreting the function of histone 

code. 

1.3.2 Phosphorylation 

Histone phosphorylation corresponds to the transfer of phosphate group from ATP to amino 

acids, in most cases, threonine and serine of histone tails. Not surprisingly, histone 

phosphorylation is established by kinases and is removed by phosphatases. Histone 

phosphorylation has been extensively studied and has been implicated in DNA damage repair, 

cell cycle progression, gene transcription and chromatin architecture. 

H2AX phosphorylation at Ser139 (γH2AX) is one of the early events being identified in 
DNA damage response process39. Upon DNA double strand breaks (DSBs), H2AX is 

phosphorylated by PI3K family members (e.g., ATR, ATM), serving as platform for the 

accumulation and retention of MRN, MDC1, and 53BP1 components at DSB sites, which are 

responsible for DNA damage repair. After proper DNA repairment, surviving cells should exit 

checkpoint and recover cell cycle progression. This process is possibly regulated by the 

phosphatase Wip1 which dephosphorylates γH2AX and could be activated by phosphorylation 

of H4 threonine 80 (H4T80P) in S.cerevisiae40.  

Another important function of histone phosphorylation is chromosome architecture, which 

is exemplified by well-characterized H3S10P as well as H3S28P, which are catalyzed by 

Aurora B, IKK, Rsk2, AKT and are important for chromatin condensation and segregation 

during mitosis or meiosis. In addition, phosphorylation at H3T118 has been reported to 

destabilize nucleosomes41. In addition to core histones, phosphorylation of H1 was believed to 

influence nucleosome structure and higher-order chromatin compaction42.  

Histone phosphorylation is also involved in gene transcription through an interplay with 

other histone marks. For example, H3S10P contributes to gene transcription of 14-3-3 family 

proteins through promoting histone acetylation43. Furthermore, recent study revealed that H3.3 

phosphorylation can activate p300 in trans, which is responsible for H3K27ac at enhancers and 

regulates differentiation-specific gene expression44. H4Y88P, which is catalyzed by 

ACK1/TNK2, is crucial to promote androgen receptor - mediated transcription by recruiting 

WDR5/MLL2, which subsequently catalyzes H3K4me345.  
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Histone phosphorylation is also associated with cell stress and apoptosis. H2BSer36 

phosphorylation was suggested to be involved in certain genes transcriptional regulation 

responsive to cell stress, while H2BSer14 phosphorylation catalyzed by PKA and PKC 

mediates DNA fragmentation and cell apoptosis46.  

1.3.3 Acetylation 

Acetylation occurs at the ε-N of lysine side chains. While all the histones can be acetylated, 

acetylation on H3 and H4 is more extensively studied than on H2A or H2B. Traditionally, most 

of the modifications were considered at the lysine residues of N-terminal tails. However, recent 

studies have also included the globular domains of histones, where acetylation could probably 

mediate a different functional output. 

Histone acetylation exhibits a high turn-over rate, with half-life (t1/2) ranging from minutes 

to hours47, 48. The dynamics of histone acetylation is regulated by histone acetyltransferases 

(HATs), which add acetyl groups onto histones using acetyl-CoA as donors, and by histone 

deacetylases (HDACs), which remove acetyl group from modified lysine and release acetate, 

as well as their cofactors.  

Histone acetylation is one of the most prominent epigenetic code underpinning active 

transcription and is involved in various biological processes. In general, acetyl group 

neutralizes the positive charge of lysine residue and reduces interactions between histones and 

DNA as well as between adjacent nucleosomes. More importantly, histone acetylation recruit 

chromatin binding factors that either lead to transcriptional outputs or chromatin remodeling.  

Herein, I’ll give a brief introduction about the HATs, HDACs, readers, and the functional 

outputs of histone acetylation.  

 

1.3.3.1 HATs 

Histone acetyltransferases (HATs) are mainly classified into GNAT (GCN5-related N-

acetyltransferases), MYST (MOZ, Ybf2/Sas3, Sas2, Tip60), p300/CBP as well as other 

undefined families according to their sequence homology and structural similarity. In metazoan, 

HATs often form complexes with other protein partners, wherein the classical HATs serve as 

the catalytic center. HATs complexes can have distinct specificity over nucleosomal histones 

compared to the free histones. It is noteworthy that different HAT complexes often have 

overlapping substrates in vitro and in vivo. 
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Table 1. Mammalian HATs members and their histone acetylation targets. 

Members Acronyms In vitro 

substrates 

In vivo complexes  In vivo substrates Functions 

GNATs family  

HAT1 KAT1 H4K5, H4K12 HAT-B complex Newly synthesized histone H4 Histone deposition and chromatin assembly49, 50 

KAT2A GCN5 H3K14, H4K8, 

H4K16 

2MDa SAGA-like complex 

(STAGA / TFTC / PCAF), 

700kDa (ATAC)  

Core histones, with preference 

for H3 (at K9) 

Global acetylation across the genome and targeted histone 

acetylation at specific loci51. KAT2B PCAF 

MYST family 

KAT5 TIP60 H2A, H3 and H4 NuA4 complex Catalyze nucleosomal H2A, H4, 

and non-histone substrates, 

preference for H2A (at K5)52. 

Chromatin structure alterations, DNA damage response, cell 

cycle progression and transcriptional regulation, act as 

coactivators of corresponding factors (e.g., acetylating ATM and 

p53)53, 54.  KAT8 MOF, 

MYST1 

/ MSL complex, NSL 

complex 

MSL complex specifically 

acetylates nucleosomal H4 at 

K16. 

NSL complex broadly acetylates 

K5, K8 and K16 on nucleosomal 

H4 

KAT6A MYST3, 

MOZ 

H3 and H4 MOZ/MORF complexes 

(contain ING5, MEAF6 and 

BRPF1/2/3 subunits) 

Histone H3 at K9, K14 and K23  Acts more on locus-specific regions, might impact global 

H3K23ac55, 56. 

KAT6B MORF, 

MYST4, QKF  
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KAT7 HBO1, 

MYST2 

H2A, H3 and H4 Form complexes with 

BRPF1/2/3 

Or JADE1/2/3. 

HBO1-BRPF complex 

preferentially acetylate H3, 

especially at K14 and K23. 

HBO1-JADE complex have 

specificity for H4K5, K8, and 

K1257-59. 

DNA replication licensing and transcription activation, through 

promoting pre-replicative complexes loading or by acetylating 

histones at TSS and intragenic regions respectively60, 61.  

KAT3B p300, EP300 H3K18, H3K27, 

H4 N-terminal 

tail 

/ All four core histones, among 

which H3K18ac, H3K27ac are 

preferred62. 

Transcriptional activation, the presence of p300 is one of the 

prominent features of active enhancers63-65. Acetylate a variety 

of non-histone substrates. Interact with a broad list of proteins66. 

KATA3A CBP, 

CREBBP 
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1.3.3.2 HDACs 

Histone deacetylases (HDACs) remove acetyl group from ε-amino of lysine chain, producing 

unmodified lysines and acetate. Mammalian HDACs consist of 18 members, which can be 

classified into four families based on their sequence similarity and their yeast orthologues 

(Figure 10). Class I HDACs contains HDAC1, 2, 3, 8, which possess homology to yeast RPD3 

protein; Class II HDACs are homologous to yeast HDA1, and can be further subclassified into 

IIa (HDAC 4, 5, 7, 9) and IIb (HDAC6, 10); Class III HDACs are known as sirtuin (SIRT) 

family proteins, which are homologous to yeast Sir2 and comprise of sirtuin1-7; Class IV 

HDACs has only one member HDAC11, which is closely related to HDACs of class I and II. 

In general, HDACs members perform catalysis of acetyl groups removal in an either zinc ion 

(Zn2+)-dependent (e.g., HDAC I, II, IV) or nicotinamide adenine dinucleotide (NAD+) 

dependent mechanism (e.g., SIRT family proteins) and they do not seem to have much 

preference for specific acetylated sites in vitro. However, different classes of HDACs tend to 

have distinctive roles in vivo due to their specific subcellular localization. 

 
Figure 10. HDACs. 
HDACs are classified into four families, Class I-IV. Class II can be further divided into IIa and IIb subclasses. The 

members of each family, their domains, subcellular localization are shown in the figure. DAC: Deacetylase 
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catalytic domain. Nucle: Nucleus. Cyto: Cytosol. Mito: Mitochondrial. NLS: Nuclear locolization signal. NES: 

Nucleus export signal. CD1: Catalytic domain 1. CD2: Catalytic domain 2. ZnF: Zinc-finger ubiquitin-binding 

domain. 

 

HDAC1/2 (Class I) are exclusively located in nucleus due to the presence of nuclear 

localization signal (NLS) but lack of nuclear export signal (NES). HDAC3 who possesses both 

NLS and NES and HDAC8, although located predominantly in nucleus, can be found in 

cytoplasm67, 68. HDAC1 and 2 share common domains such as IAC (E/D)E motif, which is 

important for interacting with pocket proteins. HDAC 1 and 2 can dimerize and co-exist in 

many multiple protein complexes such as SIN3, NuRD, CoREST etc., HDAC3 has been 

characterized to interact with N-CoR/SMRT complexes through their deacetylase-activating 

domain (DAD), which is required for activating its inert catalytic activity69, 70. HDAC8 is X-

linked in human and can deacetylate both histone and non-histone substrates. Its catalytic 

activity has been characterized to be retained with many other divalent metal ions in addition 

to Zn2+71, 72.  

Class IIa family of HDACs possess both NLS and NES and shuttle dynamically between 

nucleus and cytoplasm. Whereas, class IIb HDACs are predominately located in cytoplasm due 

to NES. Subcellular localization of class IIa HDACs are regulated by phosphorylation of several 

conserved sites and the interaction proteins. For instance, phosphorylation of HDAC4 (at 

Ser246, 467, 632), HDAC5 (at Ser259, 497, 661), HDAC7 (at Ser155, 178, 181, 321, 344, 

446,479) and HDAC9 (at Ser220, 451, 611) promotes binding of 14-3-3 family proteins, which 

in turn either mask NLS from importin α or unmask NES from Exportin 1 receptor (CRM-1), 

thereby promotes cytoplasmic localization73.  

Class IIa HDACs exhibit very weak deacetylase activity in vitro and their natural substrates 

are yet to be determined. The reduced activity is due to the amino-acid substitution from 

conserved histidine to tyrosine within the catalytic domain compared to class I and IIb74. Despite 

their weak deacetylase, class IIa HDACs interact with many transcriptional factors such as 

MEF2 proteins, Runx, NF-AT3c etc…, thereby act as transcriptional corepressors75. 

HDAC6 contains tandem catalytic domains, designated as CD1 and CD2, which display 

distinct catalytic activity. CD2 has broad substrate specificity over acetylated lysines, while 

CD1 prefers C-terminal acetyl-lysine residues76. Other domains possessed by HDAC6 include 

a ZnF ubiquitin binding domain, which binds ubiquitin and regulates various ubiquitin-

dependent functions, and a SE14 which promotes cytoplasmic retention of HDAC6. HDAC6 

can deacetylate important non-histone proteins such as α-tubulin, HSP90 and cortactin77.  

HDAC10 is located both in nucleus and cytoplasm. It contains a conserved HDAC domain 

similar to CD1 of HDAC6 and a leucine rich motif with elusive function. HDAC10 is 
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characterized as a weak lysine deacetylase but has a robust polyamine deacetylase activity with 

preference for N8-acetylspermidine78.  

 Protein members of Sirtuin family share NAD+ dependent deacetylase domains but have 

distinct flanking C and N terminal parts, facilitating their different subcellular locations, 

enzymatic activities and substrates specificities. SIRT1 and 2 shuttle between cytoplasm and 

nucleus, SIRT3-5 reside in mitochondrion, while SIRT 6 and 7 are located in nucleus and 

nucleolus respectively. This family utilize acylated lysine and NAD+ as substrates and catalyze 

the production of unacylated lysine, 2’-O-acyl-ADP-ribose and nicotinamide (NAM). Recent 

studies uncovered that these family of proteins can also perform desuccinylation, 

deglutarylation, demalonylation etc., and can act as ADP-ribosyl-transferases and lipoamidases 

as well (Figure 11)79. 

 
Figure 11. Sirtuins are protein deacetylase and ADP-ribosyltransferase. 

A shows the NAD+ dependent deacetylase catalysis by Sirtuin. B shows the ADP ribosylation activity performed 

by Sirtuin. From80. 

 

Among the nuclear members, SIRT1 is the most well-studied member of sirtuin family and 

was firstly identified to deacetylate H3K9ac, H4K16ac and H1K26ac81. Later studies 

characterized SIRT1 as a deacetylase of non-histone substrates, including transcriptional 

regulators, chromatin modifiers, oncoproteins etc… SIRT1 also plays a role in gene 

transcription, cell senescence, stress response and energy homeostasis 82. SIRT2 preferentially 

deacetylates H3K56ac and H4K16ac and other non-histone substrates (e.g., Tubulin, FOXO3A, 

p53 etc.)83, 84. SIRT3-5 are located in mitochondria and are controlling the mitochondrial 

metabolism by deacetylating many enzymes involved in TCA, OXPHOS etc.  

SIRT6 was first identified as a mono-ADP-ribosyl-transferase using NAD+ as a substrate. 

Its known substrates are SIRT6 itself, PARP1 and KAP1. Its auto-deacetylation leads to 

autoregulation of its own activity in DNA damage repair. As a deacetylase, current evidence 

shows that H3K9ac, H3K18ac and H3K56ac are the targets of SIRT6, the removal of these 

marks is associated with gene silencing and chromatin compaction85, 86.  
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SIRT7 has high specificity for H3K18ac but displays weak deacetylase activity compared to 

other nuclear members87. 

HDAC11 is the most recently discovered histone deacetylase and is designated to a new 

distinct class of HDACs, class IV. Studies found that location of HDAC11 varies in different 

cell type and with response to environmental cues. Although identified as robust deacetylase, 

HDAC11 displayed much more efficient deacylase than deacetylase activity. Recently 

increasing evidence has highlighted its potential role in physiology and pathophysiology88-90. 

 

1.3.3.3 Readers of histone acetylation 

Histone acetylation was traditionally viewed as a robust chromatin regulator altering the 

electrostatic potential of nucleosomal histones. However, latter studies argued that this 

mechanism is far from enough to explain the diverse functions of histone acetylation. Indeed, 

later studies revealed that the major players mediating functional output of histone acetylation 

are factors recruited by histone marks, which are called “readers”. According to the modular 
domains they have, readers for acetylated histones are classified into several families, including 

bromodomain (BrD), PHD finger domain, YEATS (Yaf9, ENL, AF9, Taf14, and Sas5) domain, 

and non-canonical bromodomain-containing proteins91.  

 

Bromodomain is the principal structural module that recognizes acetyl-lysine which can be 

found in many chromatin and transcription associated proteins. Although present in diverse 

proteins and have sequence variations, BrD modules share conserved structural fold comprising 

a four-helical (αZ, αA, αB, αC) bundle linked by highly variable loops (ZA and BC), which 

form a hydrophobic pocket (Figure 12)92, 93. Binding between bromodomain and acetylated 

lysine occurs in the way that N-acetylated lysine inserts into the pocket formed by ZA and BC 

loops. This interaction is stabilized by the hydrogen bond between the amide nitrogen of the 

conserved asparagine (Asn803 in PCAF) and the carbonyl oxygen of acetyl-lysine. Water 

molecules participate in the formation of hydrogen bond network as well, especially between 

carbonyl group of acetyl-lysine and conserved tyrosine of BrD94. Some of these BrD containing 

proteins harbor atypical bromodomains (aBrD), where the conserved Asn is replaced by Tyr, 

Thr or Asp, and these aBrDs may not be able to bind acetyllysine95, 96. 
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Figure 12. Bromodomain structure.  

A. (PDB:1N72) shows the structure of bromodomain from p300/CBP. BrD comprises of four helix bundles (αA, 

αB, αC, αD), and two loops (ZA and BC). B and C (PDB:1E6I) show bromodomain from GCN5 binding with H4K16ac 

peptide. C shows hydrogen bonds formed by amide group of bromodomain and carbonyl oxygen group of acetyl-

lysine. Red sphere: oxygen atom; Blue sphere: nitrogen atom; orange rods: histone peptide chain.  

 

In human genome, 61 individual BrDs were found in 42 bromodomain containing proteins93. 

Based on their major functions, bromodomain-containing proteins can be classified into 9 

groups, including HAT-containing proteins (i.e., PCAF, GCN5L2, p300/CBP, TAF1/1L) and 

the accessory proteins of HATs complexes (BRPF1/2/3 and BRD8), HMTs (i.e., ASH1L, MLL), 

chromatin remodeling factors (i.e., SWI/SNF and ISWI complexes members), AAA ATPase 

proteins (i.e., ATAD2, ATAD2B), BET family transcriptional coactivators (i.e., BRD2, BRD3, 

BRD4, BRDT), E2 SUMO/ubiquitin ligases (i.e., TRIM24, TRIM28, TRIM33A/B, TRIM66), 

SP family proteins of PML nuclear bodies (i.e., SP100, SP110A/C, SP140, SP140L), 

transcriptional corepressors (i.e., ZMYND8, ZMYND11), and WD-repeat proteins (BRWD1, 

BRWD3, PHIP)95.  

As noted, the BrDs containing proteins often possess additional domains in parallel with 

BrDs. The most common modules that flank BrD are additional BrDs. Indeed, 11 out of 46 

bromodomain-containing proteins (e.g., TAF1, BET family etc.) possess double bromodomains. 

PBRM1 (encodes polybromo 1) even possesses six BrD modules. Besides tandem BrDs, PHD 

is also predominantly flanking BrD, and BrD-PHD cassette are present in various proteins 

including BRPF1/2/3, BAZ1/2, and TRIM24/28/33/66 etc. Other flanked domains exhibit in 

tandem with BrD include PWWP, SET domain (ASHL1, MLL), HATs domain, AAA ATPase 

domain in certain groups of bromodomain-containing proteins. These multiple domains might 

cooperate in function and bring about diverse regulatory chromatin regulations of BrD 

containing proteins.  

BrDs in tandem could present an increased affinity for multiple acetylated sites. For example, 

two bromodomains in TAF1 form a V-shaped structure, with two binding pockets packed close 
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(~25Å) to each other and thereby enhances the affinity to di-acetylated or tetra-acetylated 

histone (H4K5/8/12/16) than mono-acetylated histone97. BET family proteins, which possess 

double BrDs preferentially bind hyperacetylated chromatin, with each BrD recognizing 

distinctive acetylated sites98, 99. Of note, the first bromodomain (BD1) of Brdt can accommodate 

di-acetylated lysines (H4K5acK8ac) simultaneously, while the second bromodomain (BD2) 

interacts with another acetylated site within the same or in different proteins100.  

PHD is a well-known histone methylation reader domain, therefore PHD-BrD tandem 

containing proteins tend to associate with chromatin presenting specific multivalent patterns. 

For example, it is reported that coupling of the second PHD and the BrD of BPTF, enhances its 

binding to bivalent H4K16ac and H3K4me3 in a trans-histone way within the same nucleosome 

compared to H3K4me3 alone or to the combination of H3K4me3 and H4K12ac/H4K20ac101. In 

addition, PHD-BrD region of TRIM24 recognizes combined unmodified H3K4 and H3K27ac 

in cis respectively, within the same histone tail102. Moreover, ZMYND8 has triple PHD-BrD-

PWWP reader domains, which form a structural cassette that concomitantly interacts with 

histone and DNA driven by H3K14ac103.  

BrD-containing proteins such as p300/CBP, MLL, ASH1L, GCN5L2 possess additional 

catalytic domains and are designated as “writers that read”. Catalytic modules like 
acetyltransferase (ATs), methyltransferase (e.g., SET) domains facilitate the introduction of 

histone modifications to specific genomic sites directed by BrD recognition. For instance, 

bromodomain of p300/CBP binds acetylated histone tails, facilitates their recruitment to 

chromatin and enhances diverse core histone acetylation and gene expression64, 93, 104, 105. 

Additionally, GCN5 bromodomain was required to direct its site specific histone acetylation106. 

As a subunit of MOZ HAT complexe, the bromodomain containing protein BRPF directs the 

catalytic core of the complex, MOZ, to histone tails through interaction with acetylated histones 

via its BrDs107.  

BrDs also present in proteins involved in chromatin structural regulation. These involve 

chromatin remodelers and AAA ATPase proteins (e.g., ATAD2, ATAD2B). For examples, 

SMARCA2, SMARCA4, BRD7, BRD9 and PBRM1 are components of SWI/SNF complexes 

while BAZ1A/B, BAZ2A/B, BPTF and CECR2 present in ISWI complexes. BrDs in chromatin 

remodeling complexes associate with chromatin regions harboring acetylated histone and might 

contribute to their recruitment and local chromatin remodelling108. Bromodomain of ATAD2 

was uncovered to bind diacetylated newly synthesized histones (H4K5acK12ac) and might play 

a role in the replication-coupled chromatin reassembly109. Study on Abo1 (yeast homologue of 

ATAD2) revealed that BrD and AAA+ pore of Abo1 bind with H3 N-terminal tail and load 

histone H3–H4 onto DNA for nucleosome assembly110, 111.  

Plant homeodomain (PHD) finger domain is a small module comprising of around 50-80 

amino acid residues and a zinc binding motif. This domain is known to bind the N terminal tail 
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of histone H3, especially its methylated sites112. However, evidence suggests that PHD finger 

also displays acetyl-lysine recognition capability, as was first exemplified by double PHD 

finger domain of DPF3b binding to H3K14ac113, 114. Additionally, PHD domains in MOZ/MORF 

are able to recognize H3K9ac and H3K14ac, which facilitates their association with chromatin, 

which is important for gene transcription115, 116. Lately, PHD domains of MLL4 and MLL3 were 

identified to specifically recognize H4K16ac. This domain might mediate functional link 

between these proteins, MOF and H4K16ac117. 

 

YEATS (Yaf9, ENL, AF9, Taf14, Sas5) domain is an evolutionally conserved module from 

yeast to human and is found in many chromatin-associated protein complexes. The structure of 

YEATS domain was characterized by Yaf9, a yeast member of YEATS domain containing 

protein, where an immunoglobulin, β sandwich fold comprising of 8 antiparallel β-strands 

capped by 2 short α-helices at one end is adopted118. YEATS domain recognizes acetyl-lysine 

through a serine/threonine-lined aromatic sandwiching cage, whose binding are facilitated by 

relayed hydrogen bonding and multiple sets of CH-π interactions (Figure 13)119.  

 
Figure 13. Structure of YEATS domain binding H3K9ac.  

A. (PDB: 4TMP) The figure shows the structure of YEATS from AF9 binding with H3K9ac peptide. YEATS comprises 

of 8 antiparallel β-strands and 2 short α-helices. B The figure shows the interaction between H3K9ac and YEATS 

structural module.  

 

Human genome encodes four YEATS domain-containing proteins, including AF9, ENL, 

GAS41 (also known as YEATS4) and YEATS2, all of which are implicated in cancer 

development. Specificity for acetylated histone H3 was observed among these members, with 

AF9/ENL binding H3K9ac, H3K18ac and H3K27ac, YEATS2 recognizing H3K27ac, and 

GAS41 preferentially binds acetylated H3K27, H3K14 and H3K18 as well as diacetylated H3, 

following protein dimerization119-123. Of note, recent studies found that YEATS domains act as 

specific acylation readers (e.g., crotonylation) and this will be discussed later in this essay. 
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1.3.3.4 Functional output of histone acetylation  

Since its identification, histone acetylation has been extensively implicated in transcription, 

replication, and damage repair by directly regulating chromatin structure or by serving as 

platforms for recruiting chromatin modifying complexes.  

 

Histone acetylation and Chromatin structure 

Histone acetylation can alter the biochemical or physical properties of histones, therefore 

impacting DNA-histone, histone-histone interaction, and nucleosome dynamics as well as 

higher-order chromatin compaction. For instance, H3K56ac, H3K64ac, H3K122ac were 

suggested to disfavor the histone-DNA contacts within nucleosomes and enhance chromatin 

dynamics124. In addition, histone tails play a crucial role in inter-nucleosome interaction and 

chromatin fiber compaction. Bascom and colleagues revealed that acetylation at tails of all four 

core histones further abolishes tail-tail interactions and decreases long-range contacts125. Indeed, 

the most prominent role of H4 tail in nucleosome structure is that it interacts with acid patch of 

adjacent nucleosomes, acetylation at H4 tail in turn blocks such interaction and inhibits the 

compaction of 30-nm fiber126, 127.  

Histone acetylation further recruits and cooperates with chromatin interacting complexes to 

modify chromatin structure. H4K16ac inhibits nucleosome mobilization by ATP–utilizing 

chromatin assembly and remodeling enzyme ACF127. H3K56ac attracts histone chaperones such 

as CAF1 and Nap1, facilitating nucleosome assembly or enhancing nucleosome opening 

respectively128. H3K115 and H3K122 acetylation cooperate with SWI/SNF and RSC complexes 

to enhance nucleosome disassembly129. These are some non-exhaustive examples of the impact 

of histone acetylation on nucleosome/chromatin structure/organization, but there are other 

mechanisms that would be too long to discuss here.  

 

Transcription activation 

In general, most TFs binding free DNA need to overcome the chromatin barrier to gain access 

to DNA template. Chromatin structure modifications that modulate DNA accessibility can 

largely influence transcription initiation. Not surprisingly, less compacted chromatin at 

promoter and enhancer regions, which for example, are covered by specific histone 

modifications (e.g., H3K27ac, H4K16ac, etc.) or constituted of certain histone variants (e.g., 

H3.3, etc.), promotes TF binding and transcription initiation. Indeed, histone acetylation is 

viewed as general mark of active transcription. Consistently, nucleosomes flanking TSSs are in 

hyperacetylated states in actively transcribed genes130. 

In addition, histone acetylation can recruit transcriptional factors and cofactors, thereby 

contributing to transcriptional activation. For example, BRD4, an important histone acetylation 

reader, can bind promoters and recruit P-TEFb, thereby promoting CDK9-dependent, and, 
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transcription elongation131, 132. Additionally, H3K9ac was described as recruiting super 

elongation complex and enhancing Pol II pause release133. Histone variants and their 

modifications also play a role since for instance, H2A.Zac was found essential for enhancer 

RNA transcription, enhancer promoter interaction and RNA Pol II recruitment134.  

 

Histone acetylation is a highly dynamic mark 

Histone acetylation is a highly dynamic modification. Early in the 1980s, researchers found that 

the half-life (t1/2) of histone acetylation ranged from minutes to hours48. Lately, using time-

resolved approach, Weinert and colleagues identified that a subset of p300/CBP regulated sites 

of histone acetylation has very fast turnover rate, with half-lives of less than 1 hour for 

acetylation on 12 histone sites (including H2B N-terminal acetylation, H3K18/36ac and 

H4K8ac)62. Although theoretically this dynamics could result from histone turnover or 

continuous action of HATs and HDACs, the latter was acknowledged as the predominant 

cause135. Indeed, histone modifications and histone turnover seem to be relatively independent 

events136.  

Acetylation dynamics seems to be important for active transcription. Through genome-wide 

mapping, Wang and colleagues identified that both HATs and HDACs are enriched on highly 

active genes in human cells. They demonstrated that, at active genes, HDACs could indeed, 

remove acetylation marks in order to keep the acetylation at levels supporting transcription, 

while preventing promiscuous intiation137. Gryder and colleagues further illustrated that 

H3K27ac distribution at enhancer regions is balanced by an interplay between p300 and HDAC, 

and this balance is required for core regulatory transcription factors (CR TFs)-mediated active 

transcription in rhabdomyosarcoma. Hyperacetylated state might disrupt core gene regulatory 

network by removing RNA Pol II from core regulatory genetic elements, thereby decreasing 

CR TFs-mediated transcription138.  

 

1.3.4 Acylation 

Apart from the aforementioned classical well-studied modifications, a growing body of studies 

have uncovered a repertoire of short chain non-acetyl acylations during last two decades, 

including propionylation (pr), crotonylation (cr), butyrylation (bu), succinylation (succ), β-

hydroxylbutyrylation (bhb), 2-hydroxyisobytyrylation (hib), malonylation (mal), glutarylation 

(glu), formylation (fo), lactylation (lac) etc…, which will be designated as acylation hereafter 

(Figure 14)139-142. Histone acylations are dynamic and evolutionally conserved modifications, 

which can be detected in various species ranging from yeasts to human. Compared to 

acetylation, these acylations are much less abundant, with most of them covering robustly 1-5% 

of histone H3 and H4, in striking contrast to 15-30% by acetylation143.  
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Similar to acetylation, these novel acylations appear to be driven by the corresponding CoA 

thioesters (acyl-CoA). Not surprisingly, acyl-CoAs level is only 1/10-1/100 of acetyl-CoA in 

vivo, in agreement with the low abundance of histone acylations. Acyl groups can be added 

onto histones through both enzymatic and non-enzymatic chemical reactions in vitro. Of those 

types of acylations, acidic (malonyl, succinyl and glutaryl) and β-hydroxybutyryl moieties were 

reported to favor non-enzymatic reaction to a greater extent than the others.  

Common HATs and HDACs can add or remove acylations as well, but display different 

(lower, in general) efficiency compared to acetylation. An additional similarity between these 

acylations and acetylation is that, these acylations are distributed at TSS and enhancer regions 

and are associated with active gene transcription139, 144, 145. Currently, the function of acylations 

are, to a great extent, far from being understood. 

 
Figure 14. Histone non-acetyl acylations. 
Apart from acetylation, lysines can be modified by other groups including formyl, propionyl, butyryl, crotonyl, β-

hydroxybutyryl (bhb), 2-hydroxyisobutyryl, benzoyl, malonyl, sccuinyl, glutaryl, etc. Among them bhb can be R 

or S forms of enantiomers. From146 

 

1.3.4.1 HATs for acylations 

Simithy and colleagues assessed the capability of seven common HATs (i.e., p300/CBP, GCN5, 

PCAF, Tip60, MOF, NatA) catalyzing diverse acylations in vitro using mass spectrometry and 

found that HATs have lower affinity for longer chain acylations compared to the two-carbon 

acetylation. Among the acylations they tested, most HATs preserve catalytic ability for 

butyrylation and propionylation, but are less efficient in producing acidic acylations (e.g., 

malonyl, succinyl and glutaryl), in branched chain acylations (e.g., β-hydroxybutyryl) and in 

crotonylation 143.  

p300 has promiscuous catalytic activity over various types of acylations including 

propinylation, byutyrylation, crotonylation, β-hydroxybutyrylation and 2-

hydroxyisobutyrylation, and its catalytic activity weakens with increasing length of acyl chains 
147, 148. Crystal structure of p300 reveals that its active site can accommodate acyl chains, 
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however the binding conformation suitable for acyl moiety transfer might require further 

adaptation induced by lysine substrate binding 148.  

Similar to p300/CBP, GCN5/ PCAF was shown to have acyltransferase activity143, 149. 

Structure analysis of human GCN5 binding with acyl-CoAs (i.e., butyryl-CoA, propionyl-CoA) 

revealed that GCN5 active sites are capable of accommodating acyl chains. However the 

binding with butyryl-CoA might obstruct the adoption of incoming lysine substrate, thus 

disfavors the catalysis to occur, which is in agreement with its almost undetectable catalytic 

activity for butyrylation150. Lately, GCN5 was found to be able to succinylate H3 at K79, thanks 

to its catalytic domain which is capable of binding succinyl-CoA via a distinct conformation 

than acetyl-CoA bound state151. 

In addition to p300/CBP and GCN5, MYST family members were described to display 

acyltransferases activity as well. For instance, MOF was shown to act as a histone 

crotonyltransferase (HCT), in a manner that is evolutionally conserved, exemplified by the 

yeast homologue Esa1 possessing HCT as well152. Similarly, Tip60 and its yeast homologue 

Esa1p were found to catalyze 2-hydroxyisobutyrylation147. More recently, Han and colleagues 

reported that MYST family proteins (e.g., MOF, MOZ, HBO1) possess a propionyltransferase 

activity which is as strong as their acetyltransferase activity. This conclusion is supported by 

the crystal structure revealing that MOF binds to propionyl-CoA in a manner resembling MOF- 

acetyl-CoA complex. However, two extra hydrophobic interactions between the propionyl 

group and conserved valine-314 and proline-349 residues of MOF are observed, contributing 

to properly place the propionyl group within catalytic domain153.  

 

1.3.4.2 HDACs for acylations 

Recent studies discovered that class I HDACs (HDAC1, 2, 3, 8) but not class II, are the major 

histone decrotonylases (HDCR) in mammalian cells using their deacetylase catalytic center to 

direct the reaction. Among these enzymes, HDAC1 displays strongest activity and has broad 

specificity for various histone sites. The major amino acid difference between class I and II 

catalytic domain is that the latter has VRPP instead of AGG. Interestingly, when replacing the 

AGG in HDAC1/3 by VRPP, the authors created mutants with retained HDCR but impaired 

HDAC activity. The possible explanation is that the rigid crotonyl group, but not the flexible 

acetyl group retains the ability to reach the narrower catalytic center in the VRPP mutant154. 

HDAC2 and 3 have been reported to remove Khib both in vitro and in vivo as well147. In addition, 

HDAC3 was also characterized to display de-β-hydroxylbutyrylase activity155. HDAC8 was 

shown to remove long chain fatty acylation (e.g., myristoyl, octanoyl, dodecanoyl). However, 

this enzyme is inactive or shows a limited ability to hydrolyze short chain acylations (Kbu, 

Khib, Kcr)156.  
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SIRT family (SIRT1-7) are confirmed histone deacylases and could present distinct site 

specificity from HDACs. Indeed, Zhang and colleagues uncovered that most of the sirtuins are 

capable of binding non-acetyl acyl marks, including longer alkyl chain. More specifically, 

SIRT5 can recognize Kglu, Ksucc, Khib, Kbhb. It should be noted that Khib and Kbhb are also 

recognized by SIRT3; while SIRT2 recognize Ksucc155.  

Consistent with these findings, SIRT1-3 were identified to exhibit de-crotonylase activity 154, 

157. SIRT1-3 and SIRT5 were also found to catalyze the hydrolysis of histone Kbhb. Of note, 

structural studies indicated that the S-form enantiomer of lysine bhb favors de-β-

hydroxylbutyrylase activity compared to R-form bhb. Moreover, SIRT3 displays class 

selectivity and preferentially removes H3 (at K4, K9, K18, K23, K27) and H4K16 bhb but not 

H4K5/8/12bhb. In accord with this selectivity, structural analysis revealed that the glycine 

motif flanking H4K5/8/12 disfavors the recognition by SIRT3155. SIRT4 was shown to catalyze 

the removal of hydroxymethylglutarylation, SIRT5 is able to remove Kmal, Ksucc and Kglu as 

well158, 159. SIRT6 has large pocket suitable for long chain acyl groups (e.g., Kmyr)160, 161. 

 

1.3.4.3 Readers for acylations 

It has been documented that YEATS domains of AF9 and YEATS2 have a preference for 

crotonyl-lysine over acetyl-lysine 162. Structural analysis of AF9 YEATS domain reveals that it 

has an extended aromatic sandwich cage, which favors the π-aromatic stacking and 

hydrophobic contacts between crotonyl and its aromatic ring, thereby facilitates the binding and 

hence showing a preference for crotonyl readout163. Besides, double PHD finger (DPF) domains 

of MOZ and DPF2 have been described to accommodate different types of acyl-lysines, 

including Kbu, Kpr and Kcr, with best preference for Kcr. Structural basis is that Kcr is 

anchored in a “dead-end” pocket of first PHD finger domain through hydrophobic contacts and 
hydrogen bonds164. DPF domain of MORF was shown to bind many acylation marks including 

Kbu, Khib, Kac and Ksucc at K14 of H3 peptides. Molecular basis of MORF-DPF for acyl-

lysine is exemplified by the butyryl moiety, where the recognition is driven by hydrophobic 

electrostatic interactions165. Most bromodomain-containing proteins are only able to bind short 

acetyl or propionyl groups because of restricted size of binding pockets, whereas, some non-

canonical bromodomains who lack the conserved asparagine and have lager pockets, tend to 

accommodate longer acyl groups. Indeed, bromodomains of BRD9, CECR2 recognize butyryl-

lysine, and second BrD of TAF1 can bind both butyryl-lysine and crotonyl-lysine166.  

 

1.3.4.4 Functional output of acylations 

Histone acylations have been studied with respect to metabolic and signaling cues, including 

glycolysis regulation, inflammatory response, nutrient limitation or starvation, and have been 
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implicated in spermatogenesis and cancer167, 168. Similar to acetylation, histone acylations are 

generally associated with active transcription. In vitro essay demonstrated that histone non-

acetyl acylations marks (i.e., butyrylation, crotonylation, β-hydroxybutyrylation, 

propionylation) can stimulate transcription to a comparable extent as acetylation144, 145, 169. Such 

correlation with active transcription is also observed in vivo, where studies documented that 

acylations (i.e., butyrylation, crotonylation, β-hydroxybutyrylation, 2-hydroxyisobutyrylation, 

lactylation) are mainly enriched at active TSS regions and enhancer regions140-142, 144, 145. 

Accordingly, to increase the level of acylations by ectopic expression of HATs, or by exposure 

to higher concentration of acyl-CoAs, or to decrease them by HDACs or by decreased acyl-

CoA concentration resulted in enhanced transcriptional activation, or gene silencing 

respectively152, 154.  

Although acylations were firstly depicted to co-occur with acetylation and have similar 

implications in active transcription, these marks were suggested to play active roles in gene 

transcription, and are not merely by-products of active transcription. In spermatid cells, 29% of 

H4K8hib marks testis specific genes and better defines highly-expressed genes than H4K8ac142. 

In spermatogenic cells, Kac and Kbu are found to co-occur at TSS regions of highly expressed 

genes, however Kbu can compete with Kac and prevent Brdt from binding and might fine-tune 

both specific gene expression program as well as histone eviction mode during late 

spermatogenesis 145. In a study of histone crotonylation by p300/CBP, introduction of p300/CBP 

mutants, which retain HCT but not HAT can enhance transcriptional activation under the 

physiological condition of low concentration of crotonyl-CoA152. However, another study of 

histone crotonylation by p300/CBP indicates that HCT and HAT activities of p300 could not 

be easily separable148.  

The non-redundant role of acylations is further supported by the identification of preferential 

histone acyl readers and writers. For instance, YEATS domain of AF9 preferentially recognizes 

crotonylation that links Kcr with transcriptional activation163. Furthermore, Taf14 YEATS 

domain is essential for transcriptional repression of growth-related genes under nutrient 

limitation in parallel with increased H3K9cr170. GCN5 (also known as KAT2A) preferentially 

binds succinyl-CoA over acetyl-CoA. When in complex with α-KGDH (α-ketoglutarate 

dehydrogenase), it can act as succinyltransferase and catalyze H3K79succ, which is enriched 

on TSS regions and is required for gene expression and cancer proliferation151.  

1.3.5 Other types of modifications 

In addition to the above-mentioned modifications, histones can be subjected to other 

modifications such as ubiquitination (ub), sumoylation, serotonylation (ser), glycation, ADP-

ribosylation, citrullination, long chain fatty acylations (lipidation) that play a role in diverse 

biological processes (Figure 15). 
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Figure 15. Other histone modifications. 

A Glycation. B ADP-ribosylation. C Serotonylation. D Citrullination. 

 

1.3.5.1 Ubiquitination 

Histone ubiquitination is to add a ubiquitin peptide to histone lysines mainly on H2A and H2B 

histones. Ubiquitination is catalyzed by E3 ligases including RNF168, RING1B (RNF2, 

member of PCR1 complexes), BRCA1/BARD1 and RNF20/40, which are responsible for 

ubiquitinating H2A at K13/K15, K119, K127/129, and H2BK120 respectively. Ubiquitin can 

be removed by deubiquitinating enzymes (DUBs), such as ubiquitin-specific protease 

(USP)3/11/44/51 etc. Histone ubiquitination is predominantly involved in DNA damage repair 

and transcriptional regulation through recruiting and organizing DNA repair factors (e.g., 

53BP1) and through cooperating with other chromatin interaction proteins171, 172. Of interest, 

there is an interplay between histone ubiquitination and other histone marks. This is exemplified 

by H2BK120, where mono-ubiquitination at this site activates DOT1L-dependent H3K79me 

and SET1-dependent H3K4me respectively38.  

1.3.5.2 Sumoylation 

Histones are also substrates for small ubiquitin-related modifier (SUMO) proteins, generating 

sumoylation on all core histones. SUMO is added to substrates through E1-E2-E3 enzymatic 

cascade similar to ubiquitylation and can be cleaved by SUMO proteases. Histone sumoylation 

is generally associated with transcriptional repression. Shiio Y. and Eisenman R.N. reported 

that H4 sumoylation could recruit HP1 and HDACs, therefore mediates gene scilencing173. 

Investigators also found an interplay between histone sumoylation and other histone marks, 

such as histone acetylation and ubiquitination. For instance, histone sumolyation was found to 

occur at or adjacent to acetylation sites in yeast, suggesting a role for this modification in 

counteracting acetylation-mediated gene transcription174. Histone sumoylation can be 

stimulated by H2B ubiquitylation and in turn inhibits Ctk1-mediated RNA Pol II 

phosphorylation and transcriptional elongation175. Of note, functions of histone sumoylation 
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should be interpreted cautiously since SUMO occurs on a number of nuclear proteins other than 

histones, including chomatin remodelers and transcriptional coregulators176, 177.  

 

1.3.5.3 Serotonylation 

Recently Farrelly and colleagues identified that histone tails can be serotonylated (5-

hydroxytryptamine). They uncovered that transglutaminase 2 can serotonylate histone H3 that 

carries H3K4me3 mark, which results in the combination of H3K4me3Q5ser marks on histone 

tails. H3K4me3Q5ser is associated with active transcription, which could be explained by the 

potentiation of H3K4me3 activity in recruiting transcriptional machineries, and the fact that 

these dual marks enhance interactions of TFIID complexes with chromatin. H3K4me3Q5ser 

mark is closely linked with neuronal cell differentiation178. The discovery of histone 

serotonylation has linked the chromatin regulatory networks into neurotransmitter-dependent 

cellular signaling. This discovery might pave path for understanding many pathophysiological 

conditions concerning serotonin179, 180. 

 

1.3.5.4 ADP-ribosylation 

Histone ADP-ribosylation refers to the addition of ADP-ribose onto a repertoire of target 

residues including aspartate, glutamate, lysine, arginine, serine and tyrosine and has been found 

to occur on all types of histones181, 182. Histones can be modified by single or several ADP-ribose 

molecules, termed as mono-ADP ribosylation (MARylation) or poly-ADP ribosylation 

(PARylation) respectively. Several ADP-ribose can form either linear or branched chain in the 

case of MARylation. Histone ADP-ribosylation is a reversible modification, which can be 

added by Diphteria toxin-like ADP ribosyltransferases (ARTDs; also called PARPs), and 

removed by ADP-ribosyl hydrolases (ARHs) and poly-ADP-ribose glycohydrolase (PARG). 

Domains that read ADP-ribosylation include PAR-binding motif, PAR-binding zinc finger, 

Macrodomains, WWE domain etc. There is also an interplay between histone ADP-ribosylation 

and other PTMs including acetylation, methylation, phosphorylation etc… which have been 

implicated in chromatin dynamics and cell fate determination181, 183.  

 

1.3.5.5 Citrullination 

Protein citrullination is the conversion of arginine side chain to citrulline by protein (peptidyl) 

arginine deiminases (PADs). In human, there are 5 PAD homologues designated as PAD1-4 

and PAD6 whose activity is regulated by calcium ions. Among them, PAD4 is located in 

nucleus and catalyzes citrullination on H2A, H3, and H4. Besides, PAD4 was also reported to 

catalyze demethylimination, where Arg monomethylation is hydrolyzed into citrulline and 

methylamide. Histone citrullination might be involved in chromatin structure regulation and is 
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associated with transcriptional regulation in combination with other histone PTMs such as 

methylation and acetylation184, 185.  

 

1.3.5.6 Glycation 

Histone tails are susceptible to non-enzymatic covalent modifications (MECMs) on their 

nucleophilic side chains. One of the most prevalently occurred NECMs is glycation, where 

sugar (e.g., glucose, fructose) and their derivatives (e.g., ribose, methylglyoxal, MGO) are 

attached to histones186, 187. Latest studies indicate that histone glycation is reversible, with the 

identification of DJ-1 to be a potential histone deglycase. Histone glycation has been suggested 

to regulate nucleosome stability and assembly, and alter the biophysical properties of 

chromatin188-190. 

 

1.3.5.7 Lipidation 

Protein lipidation (also known as fatty acylation) is the attachment of fatty acids (e.g., 

myristoyl (14:0), palmitoyl (16:0), stearate (18:0), oleate (18:1), arachidonate (20:4), and 

eicosapentaenoate (20:5)) onto proteins via thioester (S-), amide (N-) and ester (O-) bonds 

depending on the residues they associate with. Using unbiased proteomic analysis, Wilson and 

colleagues have discovered H3 variants to be substrates of S-fatty acylation191. Besides, Zou 

and colleagues reported that histone H4ser47 is subjected to O-palmitoylation catalyzed by 

Acyl-CoA:Lysophosphatidylcholine Acyltransferase I (LPCAT1) in response to exogenous 

calcium ions. H4 O-palmitoylation is associated with RNA Pol II activation and increased gene 

transcription192. In addition to histones, other chromatin interacting proteins can also undergo 

fatty acylation, which in turn might participate in chromatin structure and gene transcription 

regulation.  

 

1.3.6 Combinatorial histone modifications 

Apart from the increasing number of the types of histone modifications, an additional 

complexity of signaling by histone PTMs is the combination of different histone marks. A 

special example is the occurrence of bivalent histone marks at primed promoters, which was 

believed to prime the status of the subsequent active or repressed transcription. With the usage 

of tandem mass spectrometry, sequential MNase based ChIP, the combinations of different 

histone modifications have been characterized in a genome-wide scale. One study comes from 

Wang and colleagues, who performed a comprehensive study about the distribution of 39 

histone PTMs on human genome using CD4+ T lymphocytes. They identified a common 

modification ‘backbone’ comprised of 17 modifications that coexist in 3286 active promoters 

and pointed out that these marks tend to colocalize and correlate with each other193.  
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The functional interpretation of combinatorial histone marks can be tackled by reader 

proteins who recognize multiple modifications. The combinatorial readout of histone marks by 

readers comprises: 1) some reading modules recognizing several modification types within the 

same histone protein; 2) reader proteins possessing tandem reading modules, which facilitate 

the recognition of different marks on the same histones (cis-histone), distinct intranucleosomal 

(cis-nucleosome) or internucleosomal histones (trans-nucleosome). 3) reader proteins that 

might co-exist with additional readers or other proteins within a complex (e.g., chromatin 

modifier complexes), which facilitate a series of functional outputs, including the establishment 

of combinatorial pattern of histone marks. More information is provided in194, 195 and 

summarized as Figure 16. 

 

 
Figure 16. Combinatorial readout of histone PTMs. 
The binding specificity of readers protein to histone marks can be influenced by the adjacent histone marks. For 

example, certain reader domains can recognize multiple PTMs simultaneously (A). Combined reader domains 

can recognize different marks on cis-histone (B), different histone proteins of cis-nucleosome (C, left) or of trans-

nucleosomes (C, right). Moreover, reader proteins can form complexes with other proteins, including additional 

readers in vivo. Different subunits in the complexes therefore could exert multiple functions as a whole (D). 

From194. 

A  

C  

B  

D  
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2. Histone modifications are implicated in cancer  

Tumor development is a multistep process analogous to Darwinian evolution, where a 

succession of intracellular alterations contributing to several key biological capabilities are 

selected under environmental pressure, leading to the survival advantage, non-restricted 

proliferation, and dissemination of transformed cells. Two decades ago, D. Hanahan and R.A. 

Weinberg proposed six common hallmarks of cancer capabilities, including sustaining 

proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative 

immortality, inducing angiogenesis, and activating invasion and metastasis196. These 

fundamental principles summarizing a myriad of cancer studies structured our reasoning in 

cancer research. Ten years later, professor Hanahan and Weinberg complemented this 

framework with two additional hallmarks, including energy metabolism reprogramming and 

immune destruction evasion197. They further emphasized that, underpinning these 

characteristics are homeostatic function of a repertoire of intracellular molecular signaling 

networks. Several prominent regulators (e.g., MYC, p53 etc.) participate in multiple layers of 

the proposed hallmarks in diverse types of cancer, and in the crosstalk between cancer cells and 

tumor microenvironment197.  

The oncogenic molecular signaling was originally attributed to genetic alterations. However, 

this concept has been challenged with the explosion and advancement of cancer studies during 

last few decades. One of the challenges comes from the comprehensive study on the profile of 

whole genome based on the next generation sequence (NGS) technology, where genome 

sequencing of thousands of cancers identified that more than half of human cancers harbor 

mutations in genes that control the epigenome. Numerous researches have been carried out on 

cancer epigenetics, which in turn brought forward epigenetic regulatory mechanisms being 

incorporated into the main themes of cancer biology. In general, epigenetic mechanisms might 

contribute to the means by which hallmark capabilities are acquired, or simply they may directly 

control the regulatory circuitry that is already known to govern them. 

The classical definition of epigenetic considers the heritable changes in gene expression 

without DNA sequence alterations, including DNA methylation, histones and RNAs. However 

practically, today epigenetics considers all the signaling to chromatin mechanisms that control 

gene expression. In the context of cancer, the epigenetic aberrations could include mechanisms 

by which the driver oncogenes promote malignant transformation. Furthermore, epigenetics 

can directly affect cancer genetics in that it might lead to genetic mutations (e.g., deamination 

of 5-methylcytosine (5mC) to thymine) and cause genomic instability (e.g., DNA 

hypomethylation at repetitive elements). Moreover, alterations of epigenetic profiles per se 

might serve as decisive factor in cellular reprogramming during malignant transformation. 

Indeed, it has been proposed to cause tumorigenesis especially in those cancer contexts where 
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the driver genetic aberrations are lacking198. Since epigenetics is relatively dynamic because of 

the functions of writers, erasers, readers and remodelers and its link to cell metabolism, 

investigators have envisioned cancer therapeutics by targeting epigenetic enzymes and 

interacting proteins to restore the disrupted epigenetic profiles, and to break the resultant 

oncogenic transcriptional circuitry.  

Herein, I’ll summarize the cancer-related altered epigenetic profiles. I will also give a brief 

overview of the currently-identified aberrations of epigenetic players and their possible roles in 

cancer. Finally, I will summarize the current therapeutic approached to impact the cancer 

epigenome and their clinical efficacy. Since noncoding RNA, DNA methylation and chromatin 

remodelers are not the main topics in this thesis, I will leave out most of the details relating to 

them and will focus on histone modifications.  

 

2.1 Disrupted epigenetic mechanisms contribute to oncogenesis 

2.1.1 Altered epigenetic signatures in cancer 

Cancer cell epigenome displays distinct patterns compared to their normal counterparts. 

Alterations of cancer epigenomic signatures are typically exemplified by the well-characterized 

DNA methylation, which shows global hypomethylation (including intergenic regions and 

repetitive elements) and regional hypermethylation (e.g., CpG islands) in cancer. These 

alterations contribute to cancer establishment and development. For instance, the 

hypermethylation at CpG islands, which are present in most gene promoters, can repress gene 

transcription including that of tumor suppressors. In special cases such as colorectal cancer, 

CpG islands methylator phenotype (CIMP) can be observed, where a set of tumor suppressor 

genes could be repressed simultaneously. Additionally, hypomethylation at repetitive elements 

might lead to genomic instability, which might disrupt normal self-constraint program and 

envision genetic aberrations leading to oncogenesis199. Finally, spontaneous deamination of 5-

methylcytosine (5mC) to thymine is likely to be responsible for generating mutation hotspots 

in somatic cells, which might increase the risk of tumorigenesis. 

 

Histone modifications alterations are extensively implicated in cancer, both at a global level 

of the whole genome and at specific loci. For instance, an overall loss of acetylated and 

trimethylated forms of H4 (predominantly H4K16ac and H4K20me3) was detected in several 

cancers. Loss of these histone marks co-occurs with DNA hypomethylation at repetitive 

regions200. Furthermore, changes in histone modification patterns have been reported in a variety 

of tumors and are associated with prognosis201-203. Similar to DNA methylation, histone 

modifications may repress or activate oncogenic transcriptional circuits and might act as 

epigenetic drivers of cancer204. Certain histone modifications are associated with chromatin 
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alterations and genetic mutations, suggesting the existence of a crosstalk between chromatin 

organization and genetic abnormalities205, 206.  

 

2.1.2 Epigenetic players in cancer 

In addition to the general alterations of the epigenetic patterns, genetic studies and exosome 

sequencing projects have led to the discoveries of writers, erasers, and readers of histone PTMs 

among the frequently altered genes in cancers. Alterations of epigenetic modifiers in different 

cancer contexts can result from gene mutation (gain-of-function mutation or loss-of-function 

mutation), translocation, gene amplification, overexpression and silencing from non-genetic 

causes, etc.207-209. In many cases, epigenetic modifiers can be either oncogenic or tumor-

suppressive depending on the cell contexts. An additional layer of histone modification 

signaling circuits is through reader proteins. Aberrations of readers proteins have been reported 

in cancer, exemplified by BRD4-NUT fusion protein that acts as the oncogenic driver in midline 

carcinoma210. It is worth noting that, although numerous aberrations concerning epigenetic 

players have been identified in cancer, many of their roles are not fully understood. Moreover, 

in many cases, the understanding of the precise role of epigenetic players in cancer can be 

complicated due to their direct involvement in many intracellular signaling networks (e.g., act 

on non-histone substrates) other than via histone modulation and gene transcription. 
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Table 2. Common HMTs and their regulatory contexts in cancer. 

Name Histone targets Types of aberrations Cancer types Roles in cancer 

EZH2 H3K27me gain-of-function mutation 

(Y641 mutations211-213, A677 

mutaion214), loss-of-function 

mutation, amplification, 

dysregulation207-209 

Melanoma, lymphoid 

malignancies212, 215 

Generally associated with accelerated transformation and 

progression, can be tumor-suppressive in certain types of 

cancer216, 217.  

MLL/KMT2 family H3K4me Translocates with more than 

70 partner genes (e.g., AF4, 

AF9, AF10, ENL family and p-

TEFb)  

Acute leukemias Oncogenic in hematological malignancies through activating 

transcriptional factors that control hematopoietic stem cell 

program, including Hoxa9 and Meis1218-220.  

Nonsense or frameshift 

mutations 221 

Colorectal cancer, 

glioblastoma, melanoma, 

pancreatic carcinoma, 

hepatocellular carcinoma 

KMT2A/B cooperate with genuine oncogenes in 

transcription regulation222, 223.  

KMT2C/D/F might be either oncogenic or tumor suppressive 

in solid tumors221. 

NSD family H3K36me NSD1 mutation, NUP98-NSD1 

fusion 

Human papillomavirus (HPV)-

negative head and neck 

squamous cell carcinoma 

(HNSCC), laryngeal, prostate, 

pancreatic ductal tumors,  

acute myeloid leukemia 

Loss-of-function NSD1 mutations confer to decreased risk of 

death in HNSCC224. NSD1 expression is associated with 

cancer metastasis in various solid tumors225-227. 

NUP98-NSD1 binds gene elements adjacent to HoxA7/9228 

and predicts poor outcome in AML229-231.  

NSD2 mutation (E1099K, 

activating mutation) 

Acute lymphoblastic leukemia 

(ALL), mantle cell lymphoma, 

chronic lymphocytic 

leukemia232 

Contribute to abnormal gene expression programs 

associated with oncogenesis and cancer aggressiveness233, 

234.  

Correlated with clonal evoluation and drug resistance in 

ALL235, 236. 
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NSD2 overexpression Neuroblastoma, breast, 

bladder, prostate tumor, and 

multiple myeloma 

NSD2 overexpression in t(4;14)+ multiple myeloma lead to 

an altered epigenomic landscape featured by increased 

H3K36me2 and concomitantly decreased H3K27me3. 

Transcriptional profile demonstrated that genes in p53 

pathway, cell cycle regulation and integrin signaling were 

affected237. Associated with poor outcome in 

neuroblastoma238. 

NSD3 amplification and 

overexpression, translocation 

(NUP98-NSD3, NSD3-NUT) 

Breast cancer, 

myelodysplastic syndrome, 

acute myeloid leukemia, 

midline carcinoma239-241.  

Play a role in maintaining the dynamics of H3K4 and H3K36 

methylation242, transcriptional regulation of BRD4 targeted 

genes239, 243. Amplification was correlated with tumor grade 

and poor prognosis in breast cancer244. 

SETD2 H3K36me3 Mutations (missense 

mutations, focal deletions, and 

bi-allelic loss) 

Clear cell renal cell carcinoma, 

high grade gliomas, colorectal 

cancer, and hematopoietic 

malignancies245-247. 

Associated with DNA damage responses (e.g., DNA 

mismatch repair, double strand break repair etc.)248-250, RNA 

splicing machineries251-253. Required for cancer proliferation, 

DNA damage response respectively254-256.  

In general, SETD2 has tumor-suppressive potentials across 

various cancer entities, whose inactivating mutations are 

associated with chemotherapy resistance257.  

DOT1L H3K79me1/2/3 Aberrant activation, missense 

mutation, 

Gastric cancer258, MLL-

rearranged leukemias 

Aberrant activation of DOT1L has been implicated in MLL 

rearrange leukemia, where its recruitment by MLL fusion 

partners, such as AF4, AF9, AF10, and ENL causes 

transcriptional activation of genes required for leukemia 

development (e.g., HoxA9)259.  
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SUV39/KMT1 family H3K9me SUV39H1 overexpression Melanoma and gastric 

cancer260 

Context-dependent roles in cancer. SUV39H1 

overexpression is associated with cancer development and 

poor prognosis in melanoma and gastric cancer. However, in 

cervical cancer, metastatic tumor cells displayed the feature 

of SUV39H1-low chromatin state261-263. 

SETDB2 mutation Clear-cell renal cell 

carcinoma, ALL 

Plays an oncogenic role in acute lymphoblastic leukemia. In 

contrast, its low expression is associated with poor 

prognosis in renal cell tumor264, 265. 

G9a overexpression Breast cancer, gastric cancer, 

leukemia 

Promote cancer survival and tumorigenesis via repressing 

specific genes (e.g., hypoxic response associated genes), or 

activating oncogenes (e.g., mTOR), or activating metabolic 

pathways (e.g., serine-glycine biosynthetic pathway, iron 

metabolism) in various cancer cells266-269. Cooperates with 

transcriptional factor YY1 to prevent tumor progression in 

leukemic cells270. G9a depletion was shown to exhibit 

distinct roles as repressive in short-term tumor initiation but 

confers to more aggressive behaviors in long-term 

progression in skin tumors271. 

SMYD2/KMT3C H3K36, non-histone 

substrates (e.g., 

STAT3, NF-κB, p53) 

Overexpression Breast tumor, chronic 

lymphocytic leukemia, 

pediatric acute lymphoblastic 

leukemia 

Associated with cancer progression and poor prognosis in 

these entities272-274. 



UNIVERSITE GRENOBLE ALPES 

55 

 

SMYD3/KMT3E Non-histone 

substrates 

Amplification, overexpression Liver cancer, colon tumor, 

chronic lymphocytic leukemia 

Play an oncogenic role via methylating non-histone 

proteins273, 275-278. 

SETD8/KMT5A H4K20me Overexpression Papillary thyroid cancer, 

breast cancer 

Might regulate genes associated with metabolic 

reprogramming279, 280. 

SETD7/SET7/SET9/KMT7 H3K4me1, non-

histone substrates 

Dysregulation Colorectal cancer, breast 

cancer, hepatocellular 

carcinoma 

Either oncogenic or tumor-suppressive depending on 

different cancer models281-283. 

PRMT family Arginine 

methylation of non-

histone substrates 

Amplification, overexpression, 

dysregulation 

Breast cancer, melanoma, 

glioblastoma, leukemia 

enhanced PRMT5 activity promotes leukemia growth in 

acute myeloid leukemia284.  

 

Table 3. Common KDMs and their implications in cancer. 

Name Histone targets Implications in cancer 

LSD1 H3K4me1/2, 

H3K9me1/2 

Overexpression of LSD is associated with cancer aggressiveness in neuroblastoma, leukemias285-287. LSD1 is required to maintain 

oncogenic program controlled by driver oncogenes in acute lymphoblastic leukemias288-290. LSD1 dysregulation is directly involved 

in activating oncogenes such as p21, CCNA2, E2F1, E-cadherin etc. in solid tumors286, 291.  

LSD1 was also characterized as a tumor suppressor in breast cancer292-294.  

UTX/KDM6A H3K27me2/3 UTX/KDM6A mutations (e.g., missense, truncating and indels mutations), gene amplifications, and gene fusions, dysregulation are 

found in various solid tumors and hematological malignancies295. Tumor suppressive or oncogenic in different types of cancers296-

300. 

JMJD3/KDM6B Loss of JMJD3 is associated with poor prognosis in colorectal cancer and is associated with aggressive pancreatic ductal 

adenocarcinoma301, 302.  
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JMJD3/KDM6B is oncogenic in leukemias303. Overexpression of JMJD3 is associated with poor prognosis in esophageal squamous 

cell carcinoma304, clear renal cell carcinoma, glioma, non-small cell lung cancer305-307, multiple myeloma308. 

KDM5A H3K4me2/3 NUP98-KDM5A was detected in acute megakaryoblastic leukemia and is associated with worse outcome309, 310. Expression of 

KDM5A promotes cell proliferation in lung, ovarian cancer311 312. 

KDM5A is downregulated in metastatic glioma313.  

KDM5B Oncogenic in various solid cancers whose expression is associated with poor prognosis314-319 

KDM5B promotes the drug tolerance of melanoma propagating cells320. 

KDM5C KDM5C mutation has been discovered in clear cell renal carcinoma cells245, 321. KDM5C overexpression was identified in breast, 

gastric, and prostate cancer and is associated with metastasis and poor prognosis322-324. KDM5C point mutation was identified in 

acute myeloid leukemia and is associated with chemo-resistance325 

KDM5D KDM5D is frequently deleted in metastatic types and its low level is associated with drug resistance and poor prognosis in prostate 

tumors326-328. KDM5D can also play a role in metastasis of gastric cancer329, 330.  

 

Table 4. Common HATs and their implications in cancer. 

Name Targets Implications in cancer 

p300/CBP Histones and 

non-histone 

substrates 

Loss of heterozygosity (LOH) mutations concerning p300/CBP have been identified in gastric, colon, cervical cancers, leukemia and 

lymphomas and are markers for poor prognosis331-334. 

MLL-CBP, MLL-p300, MOZ-p300, MOZ-CBP translocations can be found in acute myeloid leukemia, chronic myelomonocytic leukemia 

and myelodysplastic syndrome335-341.  

Generally p300/CBP displays tumor-suppressive functions342-345. 

Mutation or translocation mediated oncogenic activities can be attributed by their regulation of non-histone proteins (e.g., BCL6, p53, 

AML1, NF-κB)345-349. 
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GCN5/PCAF Histones and 

non-histone 

substrates 

Somatic mutations and deregulation were identified in many tumors204, 350, 351.  

The major oncogenic role of GCN5/PCAF is to cooperate with bona fide oncoproteins (e.g., Myc, E2F1 etc.) and promotes their activities352-

356. 

PCAF/GCN5 are also suggested to exert tumor-suppressive functions357, 358. 

MOZ Histones and 

non-histone 

substrates 

The oncogenic roles of MYST family are mainly through transcriptional activation, DNA damage repair, DNA replication etc. dependent 

or independent of their acetyltransferase activity towards histones61, 359.  

MOZ-CBP, MOZ-p300, MOZ-TIF2, MORF-CBP can be found in acute leukemias360. 

HBO1 Histones and 

non-histone 

substrates 

HBO1 can be oncogenic in cancer cells and its overexpression has been identified in many cancers due to gene amplification361-364.  

Can be tumor-suppressing through upregulation of tumor suppressor365.  

NUP98-HBO1 chimera could induce chronic myeloid monocytic leukemia366. 

TIP60 Histones and 

non-histone 

substrates 

Has bivalent roles in human cancer52. TIP60 acetylates p53 and regulates cell cycle progression and apoptosis367, 368. TIP60 was also found 

to promote androgen receptor, c-Myc and NF-κB mediated gene transcription and cell transformation369, 370. 
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HDACs 

HDACs are involved in a variety of cancers including hematological and solid tumors204. A high 

level of HDACs is generally associated with aggressive disease and inferior outcomes of 

patients371-373. In fewer cases, HDACs have putative tumor-suppressive effects, as exemplified 

by the identification of HDAC2 loss of function mutation in epithelial cancers, where its re-

expression causes a reduced tumor growth374, 375. Deregulated HDAC activity in cancer results 

mostly from overexpression, which has been detected in cohorts of primary samples and diverse 

cancer cell lines, presenting a specific application domain for HDAC inhibitors in cancer 

treatment376, 377. In many cases, aberrant enzymatic activity has also been identified and accounts 

for altered epigenomic profiles and the oncogenic roles of HDACs378, 379. Additionally, 

oncogenic effects of HDACs can be mediated by abnormal recruitment by key regulators. For 

example, in acute leukemia, HDAC-containing repressor complexes can be recruited by PML-

RARα, AML1-ETO, which in turn contribute to the oncogenic chimera proteins-induced 

leukemogenesis380, 381.  

Mechanisms of HDAC contribution to tumorigenesis are diverse and to a large extent, 

context-dependent. This is partially due to the fact that HDACs can impact various key 

molecules and intracellular regulatory pathways by deacetylating histone and non-histone 

substrates. Hagelkruys and colleagues have reviewed studies of HDACs and cancer in 2011, 

where they highlighted various aspects of HDACs activities in cancer biology, predominantly 

including cell proliferation and cell cycle, apoptosis, differentiation, DNA damage response, 

metastasis, angiogenesis, autophagy, etc.382. 
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Table 5. Histone deacetylases regulate various hallmarks of cancer. 

Hallmark 

capabilities 

HDACs members Signaling networks 

Proliferation and 

cell cycle 

progression 

HDAC1 and HDAC2 Inhibition of HDAC1 and HDAC2 leads to increased p21, p57 and p27, causing cell cycle arrest at G1 phase383, 384.  

HDAC3, 4, 5 Inhibits p21385-387. HDAC4 was also reported to act as corepressor on cyclin D1 promoter388. HDAC3 can induce G2/M arrest via 

impaired Aurora B activity 389 

HDAC6 Deacetylate α-tubulin and impairing BCL3 translocation and cyclin D1 expression77. 

HDAC10 cyclin A2 expression and regulate G2/M progression390. 

SIRT1 and SIRT2 Inhibition of SIRT1 and SIRT2 induces decreased expression of cyclin D1/E, CDK2/4/6 and leads to G0/G1 arrest in colorectal cancer 

cells391. SIRT2deacetylates tubulin and regulates heterochromatin structure392-394 

SIRT3-5 SIRT3 could deacetylate p53 and is antiproliferative. In contrast, it could also regulates energy metabolism and promotes 

proliferation395, 396.  

SIRT6 Activation of SIRT6 inhibits cell proliferation and induces cell cycle arrest in hepatocellular carcinoma397. 

Apoptosis HDACs Inhibition of HDACs promotes cell apoptosis by directly activating intrinsic and extrinsic pathways (e.g., caspase-8, 10 expression)398, 

399, or by sensitizing cells to apoptosis via downregulating antiapoptotic proteins (e.g., cFLIP, Bcl2, survivin, XIAP, Mcl-1 etc)371, 400-403 

[494-496]. 

SIRTs Inhibition of SIRT1/2 inhibition was found to activate caspase-3, -8 and -9391. Ectopic overexpression of SIRT6 could upregulate Bcl-

2 expression and decrease cleaved caspase-3 and Bax404. Knocking out SIRT4 confer to 5-FU chemoresistance via inhibiting cell 

apoptosis405. 

Differentiation HDAC1, 2, 3 AML1/ETO can bind with HDAC1, 2 and 3 and recruit them to promoters of AML1 targeted genes in acute leukemia406. 

HDAC3 PML-RARα could recruit HDAC3 as component of nuclear receptor corepressor (NCoR) complexes and repress gene expression 

program associated with hematopoietic differentiation407. 
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HDAC3 deacetylase activity and NCoR/HDAC3 complex were shown critical in regulating differentiation in rhabdomyosarcoma via 

blocking myoblast determination protein 1 (MYOD1)-mediated myogenic differentiation408. 

HDAC6 HDAC6 depletion was shown to decrease cancer stem cells pluripotency and promote differentiation in tetratocarcinoma409. 

DNA-Damage 

Response 

HDAC1, 2 HDAC1 and HDAC2 promote nonhomologous end-joining (NHEJ)410. HDACs were also reported to regulate proteins in DNA damage 

response, such as ATM, ATR, FUS, KU70, Rad52 etc.411, 412.  

Class IIb HDACs 

(HDAC6, 10) 

HDAC6 and HDAC10 have been shown to deacetylate DNA mismatch repair protein 2 (MSH2), leading to MSH2 ubiquitination and 

degradation and therefore impair mismatch repair413, 414. 

SIRT1 SIRT1 was reported to interact with several DDR proteins, including KU70, APE1, XPA, PARP-1 etc.371.  

SIRT6 SIRT6 was found to regulate base excision DNA repair415 and contribute to the activation of PARP1 and therefore promotes both HR 

and NHEJ416, 417. 

Metastasis HDACs HDACs were found to silence epithelial markers and promotes epithelial-mesenchymal transition (EMT)418-420. 

SIRT1 SIRT1 could be recruited to CDH1 promoter and regulate cell migration in prostate cancer cells421, 422. SIRT1 was also reported to 

inhibit metastasis via deacetylating Smad4 in breast epithelial cells and in oral squamous cell carcinoma423, 424. 

SIRT2 SIRT2 is required for gastric cancer metastasis. SIRT2 inhibitor, SirReal2 could inhibit SIRT2 activity and decrease cell migration, which 

is associated with impaired mitochondrial metabolism and RAS/ERK/JNK/MMP-9425.  

SIRT6 SIRT6 could promote EMT via interacting with Snail and through suppressing TET1 transcription by removing H3K9ac at its promoter 

regions426. 

Angiogenesis Class I HDACs upregulated in hypoxia and could interact with HIF-1α427, 428, promote HIF-1α protein stability429-431. 

HDAC2 and HDAC3 act as co-repressor of VEGF432.  

Class IIa HDACs Increase HIF-1α transcription and repress pro-angiogenic genes433, 434. HDAC7 could repress matrix metalloproteinase10 (MMP10), 

therefore promote blood vessel development and vascular integrity maintenance435, 436.  
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Class IIb HDACs  HDAC6 regulates HIF-1α and VEGF and positively437, 438 or negatively regulate angiogenesis439.  

SIRT1 Deacetylates HIF-1α and inhibits its activity440. SIRT1 activation could downregulate VEGF expression and suppress angiogenesis in 

human osteosarcoma441. SIRT1 was also reported to decrease VEGF biological activity through promoting PAR modification of 

VEGF442. 

SIRT6 SIRT6 was reported to exert anti-angiogenic effect by repressing the expression of VEGF and FGF-2 in endothelia cells443.  

Autophagy HDAC1 Induce autophagic cell death by promoting accumulation of LC3-II in liver cancer cells444. 

HDAC3 could promote the expression and the activity of proteasome and induce autophagy445. 

HDAC6 An important regulator of basal autophagic flux as well as a central component for ubiquitin proteasome system409, 446, mitophagy447 

etc. 

HDAC10 HDAC10 could ensure efficient autophagosome-lysosome fusion and protect cells against cytotoxic drug in neuroblastomas448. 

SIRT1 Directly deacetylates autophagy-associated proteins, including Atg5, Atg7, Atg8, and LC3 and contributes to the induction of 

autophagy449-451. 

Directly upregulate transcriptional level of autophagy associated proteins (e.g., LC3-II, beclin-1)452, 453. 

SIRT3, 5 Trigger autophagy in osteosarcoma, mesothelioma, breast cancer, colorectal cancer, and diffuse large B cell lymphomas454-457. 

SIRT6 Regulate autophagy in melanoma, esophageal cancer, hepatocellular carcinoma458-461.  

Required for the activation of the AMPK-ULK1-mTOR signaling in ROS triggered autophagy.  

Pharmacological activation of SRIT6 could confer to autophagy-related cell death in cancer cell lines462. 
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READERS 

As discussed above, histone modifications, especially acetylation and acylation signaling 

largely relys on readers and their impact on chromatin structure and gene transcription. Indeed, 

numerous studies depicted histone PTM readers as key players in oncogenic transcription 

program, chromatin structure regulations, DNA damage response, genome integrity. For 

example, BRD4 is well-known for its oncogenic role in regulating Myc transcription in diverse 

cancers463. In addition, YEATS domain-containing protein ENL, links histone acetylation to 

cancer-driving genes’ expression (e.g., MYC, HOX) in acute leukemia as well as in Wilms 

tumor120, 464-466. Indeed, acetylation readers, predominantly including BET family members, have 

been extensively studied and exploited as therapeutic targets in various cancers.  

 

BET 

BET family proteins comprise of BRDT, BRD2, BRD3 and BRD4. Of them BRDT is 

exclusively present in the male geminal tissue, while the other three members are ubiquitously 

expressed in all tissues. BET family members share two tandem BrDs and C-terminal extra-

terminal (ET) domain. BrDs of BET specifically bind acetylated histones, while the C terminal 

extended domain is involved in recruiting chromatin regulator factors. BRD4 was firstly 

characterized as a scaffold for transcription machineries, predominantly in association with 

elongation factors P-TEFb. It therefore promotes RNA Pol II - dependent transcription. 

Furthermore, BRD4 might have an intrinsic kinase activity, which can directly phosphorylates 

CTD Ser2 of RNA Pol II 467. Besides, BRD4 is found as a cofactor of Mediator complexes, 

which integrates information from transcription factors and coactivators at enhancer regions to 

promoters and RNA polymerases, therefore regulates transcription initiation468. BRD4 was also 

shown to possess intrinsic acetyltransferase activity. It can acetylate H3K122 and contributes 

to nucleosome eviction and chromatin decompaction, therefore promoting transcription469. 

However, these properties of BRD4 were not reported by any other group and should be taken 

into account with caution. Functionally, BRD4 is involved in cell identity determination via 

accumulating on hyper-acetylated regions (both promoters and enhancers) as well as by 

regulating lineage specific transcription factors during embryonic development and cell 

differentiation. While in transformed cells, oncogenic role of BRD4 is represented by its impact 

on 1) the expression of key oncogenic factors; 2) the expression of cell identity program. 

Oncogenic role of BRD4 was firstly investigated in NUT midline cancer. BRD4 gene could 

be translocated to NUT gene, generating a driver oncoprotein BRD4-NUT that blocks 

differentiation. Mechanistically, BRD4-NUT forms discrete nuclear foci that are enriched with 

p300 and acetylated histones dependent the BrDs of BRD4, which binds acetylated histones, 

and AD1 domain of NUT, which binds and activates p300. The BRD4-NUT chromatin foci 

sequester p300, which becomes depleted from the differentiation-associated genes, leading to 
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a global hypoacetylation and silencing of differentiation program in BRD4-NUT midline 

carcinoma210, 470, 471. 

Most studies on BRD4 in cancers, prominently in hematological malignancies are focusing 

on its role in regulating of MYC in various cancers. Targeting BRD4 via bromodomain 

inhibitors or protein degradation, selectively down-regulates MYC and MYC-dependent target 

genes, prompting cell-cycle arrest and repressing cell proliferation in multiple myeloma, 

Burkitt's lymphoma, acute myeloid leukemia, colorectal cancer, gastric cancer, bladder cancer 

etc.472-476. Interestingly, BRD4 was shown to directly phosphorylate MYC at Thr58, leading to 

MYC protein ubiquitination and degradation477. In addition to MYC, BRD4 also regulates other 

key oncogenic pathways. For example, BET inhibition disrupts the key oncogenic driver, 

Forkhead box protein M1 (FoxM1) and its down-stream pathway and leads to antitumor effect 

in ovarian cancer478. In prostate cancer, BRD4 could promote the expression of HOXB13, which 

is a lineage-specific transcription factor and maintains pro-proliferative network in castration 

resistance cells479. Besides, genomic profiling identified that BRD4 binds to cell type-specific 

enhancer regions and can activate STAT5 pathway in AML cells480. 

The functional specificity of BRD4 in mediating oncogene expression in cancer has been 

partly explained by its specific action on the super-enhancers (SEs). SEs are large clusters of 

enhancers featured by enriched transcription machineries and chromatin remodelers, possibly 

compartmentalized by liquid-liquid phase separation481, 482, often marked by H3K27ac and 

H3K4me1, and lineage-specific transcription factors and oncogenic factors. The involvement 

of BRD4 in SEs has been characterized in multiple myeloma, where BRD4, Mediator, and P-

TEFb were found to be enriched on SEs. Inhibition of BRD4 using BETi leads to loss of BRD4 

preferentially at SEs, thereby disrupting SE - mediated oncogene expression including c-MYC 

in multiple myeloma483.  

Apart from acting as master regulator of transcription, BRD4 has also been implicated in 

RNA splicing, DNA damage response and telomere regulation463. BRD4 was found to interact 

with splicing machinery and to regulate alternative splicing484, 485. Several studies reported that 

BRD4 is required for DNA damage repair (e.g., NHEJ, HR) in cancer cells486-488. 

Mechanistically, BRD4 can be recruited by increased H4 acetylation that occurs at DNA double 

strand breaks and serves as platform for DNA repair machineries. BRD4 was found to interact 

with 53BP1 and might stabilize its binding with DNA repair complex at break sites487. In 

addition, BRD4 as discussed above, might have intrinsic acetyltransferase and kinase activities, 

which might acetylate or phosphorylate DNA repair proteins and regulate their functions467, 481. 

BRD4 could also positively regulate DNA damage checkpoint activation by interacting with 

components including DNA pre-replication factor CDC6, chromatin condensing II complex 

(SMC2) or by transcriptional regulation of damage response protein TopBP1489-492.  
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Recently, BRD4 has been also implicated in telomere maintenance in cancer cells493. BRD4 

was found to be involved in regulation of telomerase complex component TERT in TERT 

promoter mutated cancers494, 495. Inhibition of BRD4 with BET-inhibitors or genetic depletion 

of BRD4 reduces TERT expression in TERT promoter mutated cancers496.  

 

Other readers 

In addition to BRD4, other readers have also been implicated in cancers. For example, BRD3 

was also identified as fusion partner of NUT, with the fusion protein functioning similar to 

BRD4-NUT. BRD7 has been characterized as a tumor-suppressive factor in nasopharyngeal 

carcinoma, breast cancer, prostate cancer, etc497. Mechanistically, BRD7 can act as a coactivator 

of p53 and its target genes, thereby promoting p53-dependent senescence and suppresses 

tumorigenicity498. In breast cancer, BRD7 interacts with BRCA1 and regulates estrogen receptor 

gene expression 499. Besides, it could decrease the expression of transcriptional activator YB1, 

therefore blocks epithelial-mesenchymal transition and tumor metastasis500. BRD9 is the 

subunit of SWI-SNF chromatin-remodeling complex. BRD9 plays an oncogenic role in acute 

myeloid leukemia (AML) and squamous cell lung cancer by regulating MYC transcription501, 

502. YEATS domain-containing protein ENL has been implicated in leukemia and Wilms tumor, 

where it regulates oncogene expression (e.g., MYC, HOX) and the mediated oncogenic 

program120, 464-466. Another member of YEATS protein, GAS41 was found to bind H3K27ac, 

H314ac and to promote H2A.Z deposition. GAS41 is necessary for cell growth and survival in 

non-small cell lung cancer122. YEATS4 was reported to promote cell proliferation by activating 

Wnt/β-catenin in gastric cancer cells503. 

p300/CBP possesses both bromodomains, transcription binding domains as well as a 

acetyltransferase module. p300/CBP has been implicated as a critical mediator of histone marks 

in actively transcribed regions. p300/CBP bromodomain is required for sustaining cell type-

specific gene expression, inhibition of bromodomain of p300/CBP decreases H3K27ac and 

chromatin accessibility at target genes, thereby accelerating induced pluripotent stem cells 

(iPSCs) cellular reprogramming105.  

 

2.2 Histone PTMs’ therapeutic implications in cancer 

Epigenetic drugs have been developed to target DNA/histone-modifying enzymes, histone 

readers, or other chromatin-associated proteins. Some of these drugs have displayed promising 

efficacy in treating cancers in research and in clinical usage. For example, DNMTi (azacytidine 

and decitabine) has been approved by US Food and Drug Administration (FDA) for treatment 

of myelodysplastic syndrome (MDS) or AML, and has achieved 15% response rate in these 

patients504, 505. Following DNMTi, a variety of epigenic drugs were developed, some had been 
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approved by US FDA and entered clinical trials or are still under research (Table 6). In general, 

there are three major classes of epigenetic drugs according to the enzymes they target and the 

potential mechanisms they exploit: 1) those who impact deregulated epigenetic profiles, 

including HDACi, DNMTi; 2) those who disrupt specific key oncogenes and oncogenic 

programs, represented by BETi, HDACi, DNMTi; 3) those that are exploited in specific cancer 

types, including DOT1Li, LSD1i. Epigenetic drugs have been tested either as monotherapy or 

in combination with additional epigenetic drugs or traditional chemotherapies to achieve 

therapeutic efficacy204.  

Here, I describe the therapeutic strategies by targeting epigenetic players and their working 

mechanisms in cancers. 

 

2.2.1 Impact of deregulated epigenetic profiles in cancer establishment and develoment 

As introduced above, cancer cells tend to have altered epigenetic profiles including DNA 

methylation and histone modifications. These changes, could on one hand directly deregulate 

the expressions of key oncogenes or tumor suppressors, and on the other hand allow for 

oncogenic genome reprogramming. A permissive chromatin state is required for oncogenic 

transcription factor activity and for the occurrences of mutations 506, 507. Therapeutic strategies 

targeting the cancer-specific altered epigenetic profiles are well documented by the use of 

DNMTi (e.g., azacytidine, decitabine)507. In the case of HDAC, an increasing body of studies 

has focussed on the development and characterization of various generalist or class-specific 

HDAC inhibitors. 

Over last decades, dozens of HDAC inhibitors have been evaluated on tumors, among which 

pan-HDACi Vorinostat (SAHA), belinostat and romidepsin have been approved for treating T 

cell lymphomas, and another pan-HDACi panobinostat was approved for treating 

refractory/relapsed multiple myeloma. Lately, more selective HDACi, for example, class I 

HDACs inhibitor entinostate (MS-275), HDAC1, 2, 3, 10 inhibitor chidamide have been 

developed.  

HDACi have been tested as monotherapy or in combination with hypomethylating agents 

azacytidine, histone demethylating agents (named as KMTi hereafter) as well as 

chemotherapeutic regimens in cancer treatment508. In general, HDACi displayed higher efficacy 

in hematological malignancies than in solid tumors, possibly in part due to the short half-life of 

the molecules that prevent these agents to reach therapeutic concentrations in solid tumors509.  

HDACi could act at multiple levels given that they increase global histone acetylation and 

enhance chromatin decompaction. Additionally, they also act on numerous non-histone 

proteins510. It is clear that several studies have indicated that HDACi treatment efficacy could 

at least in part be attributed to its impact on chromatin landscape. For example, using ATAC-
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seq technology, Qu and colleagues reported that clinical response to HDACi in cutaneous T 

cell lymphoma is associated with a gain in DNA accessibility511. In addition, using high-grade 

gliomas, which possess a reshaped chromatin landscape (i.e., loss of H3K27me3 and gain of 

H3K27ac) as models, Krug and colleagues demonstrated that DNA methyltransferases and 

histone deacetylase inhibitors could exaggerate the increased H3K27ac at and repeat elements, 

leading to their induced activation and thereby conferring to therapeutic vulnerability512. 

 

2.2.2 Epigenetic drugs regulate crucial oncogenic or tumor-suppressive signaling 

In addition to their impact on global epigenetic pattern, HDACi or DNMTi could also exert 

anti-tumor functions by bringing about changes on specific oncogenes/tumor suppressors or 

oncogenic programs513. For instance, DNMTi azacitidine and decitabine causes robust 

demethylation of specific tumor suppressor gene promoters such CDKN2B, or global gene-

specific demethylation concomitant with genome-wide DNA hypomethylation514-516. HDACi 

treatment resulted in differential expression of many oncoproteins (e.g., PI3-kinase catalytic 

subunit PI3KCB) and tumor suppressors (e.g., programmed cell death protein 4 PDCD4) in 

malignant B- and T- cell lines517. In addition, HDACi was reported to directly increase the 

acetylated c-Myc at K323 and hence regulating c-Myc mediated oncogenic program518.  

Epigenetic drugs (HDACi, KMTi and DNMTi) have also been documented to impact cell 

differentiation, metabolic reprogramming, cell immunity etc. For instance, Combination of 

LSD1/HDAC inhibitors increase H3K27ac and H3K4me1 and control differentiation-

associated genes expression in diffuse intrinsic pontine glioma519. Treatment with 

DNMTi/HDACi was also reported to downregulate IRF4 and MYC and induce a gene 

expression profile of mature plasma cells in myeloma cells520. In the case of immune response, 

DNMTi treatment was reported to upregulate the expression of tumor associated antigens (e.g., 

surface marker of MHC, cancer testis antigens, etc.). In addition, DNMTi combined with 

HDACi was reported to induce interferon-α/β based transcription program and enhanced 

antigen presentation, accompanied by altered host immunity, therefore contributing to tumor 

immune cell invasion of non-small-cell lung cancers521. Epigenetic drugs could also facilitate 

metabolic reprogramming and therefore make the cancer cells sensitive to the corresponding 

treatment. For example, in glioblastoma models, HDACi treatment triggered metabolic 

reprogramming of cells with impaired glycolysis and enhanced oxidative phosphorylation, by 

suppressing c-Myc and increasing transcriptional drivers of fatty acid oxidation, PGC1α and 

PPARD522. Other regulators targeted by epigenetic drugs that are involved in the cell cycle, 

proliferation, apoptosis, angiogenesis etc. had been discussed in section 2.1.2 and are reviewed 

in204, 523. 
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The most prominent epigenetic drugs that control oncogene expression is exemplified by 

BET factors bromodomain inhibitors (BETi). I have already mentioned that BETi inhibiting 

BRD4 disrupts BRD4-mediated SEs. BETis (e.g., birabresib, venetoclax, molibresib) have been 

tested in several small cohorts in solid and hematological tumors, where they achieved some 

responses in clinical studies. Preclinical studies also indicated that a combined treatment of 

BETi with additional epidrugs/other therapies including HDACi, CDKi, bcl2 inhibitors, 

hormone therapy, standard chemotherapy etc,.. could be advatageous.524-526. Additionally, BETi 

resistance have been reported in several researches, which had prompted investigators 

searching for specific combinatorial strategies527, 528.  

 

2.2.3 Epigenetic drugs targeting specific types of cancers 

Some types of cancers are known to be driven by specific aberrations of epigenetic modifying 

enzymes (e.g., MLL rearranged leukemia), making them the most promising targets for treating 

the corresponding cancers. Small molecules inhibitors targeting interaction between MLL and 

Menin has been developed and has displayed effective anti-tumor effects in MLL-rearranged 

leukemia cells and in mouse models529. DOT1L is aberrantly regulated in MLL-rearranged 

leukemia and is required for leukemogenesis of this cancer subtype, small molecules inhibitors 

targeting DOT1L were shown to be effective in MLL-rearranged leukemia 530-532.  

In addition, inhibitors of LSD1 are active in a subset of small cell lung carcinoma with 

specific DNA methylation patterns533. In AML, LSD1i displayed antileukemic effect through 

enhancing PU.1- and C/EBPα - dependent differentiation program in MLL-AF9 leukemia 

cells534. IDH mutations have been identified and characterized as key oncogenic events in 

glioma, leukemia etc…. In these cases, IDH inhibitors could be used as a targeted therapy 535, 

536. EZH2 gain of function mutations have been identified in lymphoma, and the inhibition of 

EZH2 exerted cytotoxic effects in cancer cells carrying these mutations208, 537, 538.  

Of note, the situation could be very complex and it is not always easy to define a precise 

therapeutic strategy based on the use of epidrugs. For example, DOT1L inhibition could also 

lead to the deregulation of oncoproteins including Myc, which can be detrimental in a variety 

of cancers539-542. 
Table 6. Epigenetic drugs .  

Compound Target Cancer type Phase 

Azacitidine DNMT MDS EMA and FDA 

Decitabine DNMT AML, MDS EMA and FDA 

Guadecitabine DNMT AML Phase III 

Belinostat HDAC class I and II Peripheral T cell lymphoma FDA 

Panobinostate HDAC class I, II and 

IV 

Multiple myeloma FDA 

Romidepsin HDAC class I  Cutaneous T cell lymphoma FDA  
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Vorinostat HDAC class I, class II 

and class IV 

Cutaneous T cell lymphoma FDA  

Abexinostat  HDAC class I, class II 

and class IV 

Lymphoma (DLBCL, FL, MCL) , advanced 

solid tumor 

Phase I and phase 

II  

ACY-241  HDAC6  Multiple myeloma  Phase I  

AR-42  HDAC class I, class II 

and class IV 

Haematological malignancies Phase I  

CUDC-907  HDAC class I and 

class IIb 

Solid tumours and haematological 

malignancies 

Phase I  

CXD101  HDAC class I  Solid tumours and haematological 

malignancies 

Phase I  

Entinostat  HDAC class I  Breast cancer  Phase III  

Givinostat  HDAC class I and 

class II 

Haematological malignancies Phase II  

Mocetinostat  HDAC class I  Solid tumours and haematological 

malignancies 

Phase II  

Resminostat  HDAC1, HDAC3 and 

HDAC6 

Hepatocellular carcinoma Phase II  

Ricolinostat  HDAC6  Solid tumours and haematological 

malignancies 

Phase II  

CPI-0610  Pan-BET  R/R lymphoma Phase I  

TEN-010  Pan-BET  AML, MDS and solid tumours Phase I  

BAY1238097  Pan-BET  Solid tumours and lymphomas Phase I  

OTX015  Pan-BET  Acute luekemia, R/R lymphoma or MM, 

NSCLC, NMC, CRPC, recurrent 

glioblastoma 

Phase I and phase 

II  

INCB054329  Pan-BET  Leukaemias and solid tumours Phase I and phase 

II  

BMS-986158  Pan-BET  Solid tumours  Phase I and phase 

II  

FT-1101  Pan-BET  AML and MDS  Phase I  

GSK525762  Pan-BET  R/R AML Phase I  

PLX51107 Pan-BET  Advanced solid tumors Phase I 

ABBV-075 Pan-BET  R/R AML and R/R solid tumors Phase I 

AG-881  Pan-IDH1/2 mutant Glioma with IDH mutations Phase I  

AG-120  IDH1 mutant Advanced solid tumors with IDH1 

mutations, including including 

cholangiocarcinoma, chondrosarcoma, 

and glioma 

Phase I 

IDH305  IDH1 mutant Grade II or III gliomas with IDH1 mutations 

that have progressed after observation or 

radiation therapy. 

Phase II 

AG-221  IDH2 mutant Advanced solid tumors with IDH2 

mutations, including glioma, 

angioimmunoblastic T cell lymphoma, 

Phase I and phase 

II  
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intrahepatic cholangiocarcinoma, 

chondrosarcoma. 

BAY1436032 IDH1 mutant Solid tumors with IDH1 mutations Phase I 

DS-3201b EZH2  R/R NHL Phase I 

CPI-1205  EZH2  R/R B-cell lymphomas  Phase I  

EPZ-6438 

(Tazemetostat) 

EZH2  Lymphomas Phase I and phase 

II  

GSK2816126 EZH2  R/R DLBCL, tFL, other NHL, solid tumors, 

and MM 

Phase I 

EPZ-6438 combined 

with prednisolone 

EZH2  B-cell lymphoma, advanced solid tumors, 

DLBCL, FL, tFL, PMBL 

Phase I and phase 

II  

GSK2879552  LSD1  AML and small-cell lung cancer Phase I and phase 

II  

EPZ-5676 DOT1L R/R MLL-rearranged leukaemias Phase I  

Abbrevations: AML: acute myeloid leukemia; MDS: myeodysplasic syndrome; MM:multiple myeloma; NHL: 

non-Hodgkin lymphoma; R/R relapsed/refractory; DLBCL: difuse large B cell lymphoma; MCL: mantle cell 

lymphoma; FL: follicular lymphoma; tFL: transformed FL; NSCLC: non small cell lung cancer; NMC: NUT-midline 

carcinoma; CRPC: castration-resistant prostate cancer; IDH: isocitrate dehydrogenase; PMBL: primary 

mediastinal large B-cell lymphoma. 

Note: This table is adapted from 507, 543. 

3. Cell metabolism is a major driver of histone modifications 

As noted above, histone PTMs are dynamic and are constantly regulated by counteracting 

enzymes designated as writers and erasers. Most of these enzymes utilize metabolic cofactors 

to exert their catalytic reactions. This situation hence creates a tight interplay between cell 

metabolism and histone modifications. For instance, KMTs, PRMTs and DNMTs utilize SAM, 

KATs utilize acetyl-CoA or acyl-CoA, and kinases utilize ATP respectively as co-substrates to 

transfer the chemical moieties to DNA or to the amino acid residues of histones. In contrast, 

JmjC family demethylases (JMJD or JHJM for short) require α-ketoglutarate, SIRT family 

deacetylases require NAD as cofactors to remove the modifications.  

In this chapter, I will introduce the compartmentalization and maintenance of several key 

epimetabolites pools, as well as the biochemical pathways that generate or consume these 

molecules. I will also give examples of how these metabolites change in response to nutritional 

perturbations and how they impact histone modifications. Finally, I will briefly discuss how the 

resultant epigenetic alterations regulate nuclear gene transcription programmes, which in turn 

impact other biological processeses such as cell fate determination.  
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3.1 SAM  

3.1.1 One-carbon metabolism 

S-adenosylmethionine (SAM) is involved in the methionine cycle (Figure 17). SAM is 

synthesized from methionine and ATP, a reaction which is catalyzed by methionine 

adenosyltransferase (MAT). After the methyl group is transferred for methylation usage, SAM 

is converted to S-adenosyl homocysteine (SAH), which then is hydrolyzed to homocysteine 

(hCys) and adenosine by SAH hydrolase (SAHH). Homocysteine is then remethylated and 

converted back to methionine by vitamin B12-dependent methionine synthase (MS) using 5-

methyl-tetrahydrofolate (5-mTHF, MTHF) as methyl group donor or alternatively, in the case 

of liver, by betaine homocysteine methyltransferase (BHMT) with the production of 

dimethylglycine (DMG).  

Methionine cycle is fueled by the folate cycle. 5-mTHF in folate cycle donates its one-carbon 

methyl group to homocysteine. After transferring the methyl group, 5-mTHF is converted to 

THF. THF is then used to produce 5,10-meTHF by receiving methyl group from serine, which 

subsequently is converted to glycine by serine hydroxymethyltransferase (SHMT). This 

reaction that converts serine to glycine is reversible. The last step to complete folate cycle is to 

convert 5,10-meTHF back to 5-mTHF via NADPH-dependent catalysis acted by 5,10 

methylenetetrahydrofolate reductase (MTHFR). 

 
Figure 17. One carbon metabolism. 
The methionine cycle (red, middle) can provide methyl group in the form of SAM to fuel biochemical reactions, 

such as histone methylation (yellow, right). The methyl group in the methionine cycle is provided by the folate 

cycle (blue, left). The main donor of the above one-carbon unit is serine. SAM: S-adenosylmethionine; MAT: 

Methionine adenosyltransferase; SAH: S-adenosyl homocysteine; SAHH: SAH hydrolase; hCys: homocysteine; MS: 

methionine synthase; MET: methionine; THF: tetrahydrofolate; 5-mTHF: 5-methyl-tetrahydrofolate; BHMT: 

betaine homocysteine methyltransferase; 5;10-meTHF: 5;10; methylenetetrahydrofolate. From544. 
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3.1.2 SAM in histone methylation 

SAM is the methyl donor for histone and DNA methylation processes. As co-product of 

methylation reaction, SAH is a potential inhibitor of methyltransferases. Thus, the level of SAM 

and the ratio of SAM/SAH tunes the methylation state of chromatin. Indeed, the modulation of 

SAM levels and SAM/SAH ratio through changes of methionine supplementation affects global 

DNA/histone methylation status, with H3K4me3 displaying the most prominent change. ChIP-

seq analysis of H3K4me3 revealed that only the level of this mark but not the genomic 

distribution altered upon methionine restriction. This correlation between H3K4me3 level and 

methionine availability was observed both in cell line and in the mice liver545. SAM generation 

and SAM/SAH ratio maintained by glucose and serine metabolism were also suggested to 

support H3K36me3, which mediates IL-1β production for inflammation response in 
macrophages546.  

 

3.1.3 Methionine supplement 

As an essential amino acid, methionine can be absorbed from the environment and not 

surprisingly, its intracellular level is affected by amino acid transporter (e.g., LAT1). 

Knockdown of LAT1 results in methionine as well as SAM reduction, which is concomitant 

with decreased H3K27me3, H3K4me and H4K20me marks547. In addition to the uptake of 

methionine, dietary intake of other nutrients that participate in SAM production and 

maintenance (e.g., SAM, folic acid, vitamin B12, Choline and its metabolite, betaine) might 

modulate histone methylation548, 549.  

 

3.1.4 Serine metabolism 

Serine synthesis pathway (SSP) starts with the glycolytic intermediate 3-phosphoglycerate (3-

PG) being converted to 3-hydroxypyruvate by phosphogycerate dehydrogenase (PHGDH). 3-

hydroxypyruvate is then used to produce phosphoserine through a transamination reaction 

catalyzed by phosphoserine aminotransferase (PSAT1), phosphoserine is dephosphorylated by 

phosphoserine phosphatase (PSPH) and produces serine550.  

Since serine is a one-carbon source that contributes to folate cycle, serine metabolism can 

impact SAM production and might regulate histone methylation. In addition, serine can support 

de novo ATP synthesis, which is required for SAM production from methionine551. Indeed, 

elevated serine synthesis pathway mediated by loss of LKB1 leads to high SAM level through 

upregulation of PSAT1 and PSPH, which results in DNA hypermethylation552, 553.  
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3.1.5 SAM compartmentalization 

In addition to the global intracellular level, the subcellular compartmentalization of SAM also 

impacts histone methylation because of different accessibility to the chromatin-modifying 

enzymes. For example, SAM was found in the nuclear compartment in yeast and was suggested 

to control specific gene expression. Li and colleagues identified that, in yeast, SESAME 

(Serine-responsive SAM-containing Metabolic Enzyme complex) interacts with Set1 and is 

recruited to target genes554. 

 

3.2 Acetyl-CoA 

3.2.1 Production and utilization of acetyl-CoA 

Acetyl-CoA can be produced in mitochondrion, cytoplasm and nucleus and are generated from 

diverse nutrient sources, including pyruvate, fatty acid, amino acids, acetate, and citrate (Figure 

18).  

In mitochondrial compartment, pyruvate generated from glycolysis enters into 

mitochondrion and is converted to acetyl-CoA by pyruvate dehydrogenase complex (PDC). 

Acetate is ligated to CoA by acyl-CoA synthetase short-chain family members 1 and 3 

(ACSS1/3). Fatty acids undergo β-oxidation through rounds of dehydrogenation, hydration, 

dehydrogenation and thiolase, producing one acetyl-CoA and one fatty acyl-CoA (with a 

reduction of 2C) during each round. Amino acids (e.g., tryptophan, lysine, phenylalanine, 

tyrosine etc.) can be converted to acetoacetyl-CoA and acetyl-CoA through multiple steps. 

Acetyl-CoA generated in mitochondrion enters into tricarboxylic acid (TCA) cycle and is 

completely oxidized, releasing ATP through coupling with oxidative phosphorylation. 

For the moment there is no known acetyl-CoA carrier in the mitochondrial membrane, 

therefore acetyl-CoA must be converted to citrate before it shuttles to cytoplasm. Acetyl-CoA 

and oxaloacetate are then regenerated in cytosol by ATP citrate lyase (ACLY). Another source 

of acetyl-CoA outside of mitochondrion is through acetyl-CoA synthase (AceCS1/ACSS2), 

which is located in cytosol/nucleus and uses acetate as substrate. In addition, PDC can be 

translocated to nucleus, where it can produce acetyl-CoA for nuclear usage. Acetyl-CoA in 

cytoplasm and nucleus is used for histone and non-histone protein acetylation as well as de 

novo fatty acid and cholesterol biosynthesis.  



UNIVERSITE GRENOBLE ALPES 

73 

 

 
Figure 18. Production and utilization of acetyl-CoA. 
Acetyl-CoA can be produced in mitochondrion, cytosol and nucleus. Acetyl-CoA produced in mitochondrion can 

be exported to cytosol in the form of citrate, where it is converted back to acetyl-CoA under the reaction of ACLY. 

In addition, ACSS2 can generate acetyl-CoA from acetate in cytosol and in nucleus. PDC can be translocated to 

nucleus, where it produces acetyl-CoA from pyryvate. ACLY: Acetyl-CoA lyase; ACSS2: Acetyl-CoA synthase; PDC: 

Pyruvate dehydrogenase complex. From555. 

 

3.2.2 Acetyl-CoA links cellular metabolism to histone acetylation 

Undoubtedly, acetyl-CoA availability dictates histone acetylation level in vitro. It is well-

documented that this also applies to intracellular situation. In mammals, concentration of 

acetyl-CoA ranges approximately 2-20 μM in cultured cells depending on nutrient availability556. 

The cellular acetyl-CoA is likely also available in the nucleus as it can be judged by the 

occurrence of nuclear histone/protein acetylation. Given that Michaelis constant (Km) of KATs 

for acetyl-CoA are micromolar 557, 558, fluctuation of acetyl-CoA might indeed impact the 

catalytic activity of KATs and the resultant histone acetylation under the physiological 

condition. Besides, the ratio of acetyl-CoA:CoA was suggested to modulate KATs activity and 

histone acetylation levels, as the reaction product of CoA can act as an inhibitor of KATs556. 

Acetyl-CoA pool for histone acetylation is replenished by various nutritional sources. 

Glucose is one of the major sources that fuels cell growth of tumor cells. A large body of 

evidence suggests that glucose derived acetyl-CoA is the major driver of histone acetylation 

during cell proliferation. Consistently, limitation of glucose or inhibition of glycolysis leads to 

decreased acetyl-CoA production and hence histone acetylation559-561. However, when supplied 

with medium-chain fatty acid, McDonnell and colleagues reported that lipid-derived acetyl-

CoA contributes to 90% of certain sites of histone acetylation, even supplied with abundant 

glucose. Considering that fatty acid oxidation occurs in mitochondria, theoretically, the 

generated acetyl-CoA needs to be exported from mitochondria via citrate shuttle in order to be 
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used for histone modification in the nucleus. However, in the above-mentioned experimental 

setting, the knock down of ACLY and ACSS2, did not affect the increased histone acetylation 

by octanoate supplement, suggesting that the fatty acids derived acetyl-CoA might be exported 

through a yet unknown major pathway different from the citrate cycle562. In addition, in the case 

of ACLY deficiency, acetate was found to compensate for acetyl-CoA production through 

upregulation of ACSS2, which supported histone acetylation and lipid synthesis563. These 

studies, in addition to documenting metabolic adaptation, also implicate a delicate choice of 

priority for metabolites contributing to histone acetylation, and have raised the question of 

whether there are other undetermined possibilities for transporting acetyl-CoA across 

subcellular compartments (e.g., acetylcarnitine-carnitine system)564, 565. 

Acetyl-CoA pool homeostasis for histone acetylation is sustained by catabolic and anabolic 

metabolism. In addition to protein acetylation, intracellular acetyl-CoA can also be consumed 

in TCA cycle or serve as building blocks for lipid biosynthesis, therefore perturbation of 

mitochondrial respiration and lipid synthesis might in turn impact protein acetylation by 

competing with the usage of acetyl-CoA. Inhibition of acetyl-CoA carboxylase expression, 

which catalyzes the first and rate-limiting step of fatty acid synthesis, results in increased acetyl-

CoA available for histone acetyltransferases and enhances histone acetylation566, 567. Yucel and 

colleagues reported that compared to proliferating muscle stem cell (MuSCs), quiescent and 

differentiated MuSCs have elevated utilization of glucose and acetyl-CoA for mitochondrial 

respiration, and therefore have decreased acetylation568. Conversely, using mitochondrial DNA 

mutated cell model, and inhibition of mitochondrial translation, Kopinski and colleagues 

identified that decrease of mitochondrially derived acetyl-CoA causes a reduction in histone 

H4 acetylation569.  

The signaling between metabolic state and histone acetylation via acetyl-CoA can rewire the 

transcriptional program in response to nutrient availability. For example, in adipocyte, 

expression of glucose transporter gene GLUT4 is dependent on glucose and ACLY, which fuels 

acetyl-CoA production and histone acetylation at Slc2a (encoding GLUT4) locus, suggesting a 

positive feedback between glucose metabolism and gene expression570. Under hypoxic stress, 

acetyl-CoA produced from acetate induces H3 hyperacetylation at the promoter regions of 

ACACA and FASN genes and therefore enhances lipid synthesis571.  

Of note, evidences began to flourish uncovering that acetyl-CoA concentration alterations 

can impact specific sets of genes and therefore could contribute to cell fate and cell 

functioning560. For example, toll-like receptor activation induces glycolytic flux and ACLY 

activation, which enhances acetyl-CoA production and histone acetylation, thereby facilitating 

the transcription of LPS (lipopolysaccharide) -inducible gene sets572. During the muscle 

regeneration process, glucose metabolism program determines histone acetylation profile, 

which dominates stem cell and cell-cycle genes transcription and cell functioning568. In 
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glioblastoma cells, ACSS2 is phosphorylated and translocated into nucleus, where it binds with 

transcription factor EB (TFEB) and enhances lysosomal and autophagy-related gene expression 

via recycling acetate and providing acetyl-CoA to TFEB targeted gene promoters573. The above 

examples demonstrate the crucial role of cellular metabolism in determining cellular 

phenotypes and point to epigenetic metabolites as potential targets for therapeutic usage. One 

key question arises as how the level of acetyl-CoA impacts histone acetylation at specific loci 

and regulates specific sets of genes. Campbell and Wellen summarized two possibilities that 

explain this issue560: 1) spatiotemporal regulation of acetyl-CoA production (i.e., spatiotemporal 

control); and 2) transcription factor ability to respond to acetyl-CoA concentrations.  

 

2.2.3 Spatiotemporal control of acetyl-CoA 

The cytoplasm and nucleus are likely to constitute a single compartment with respect to acetyl-

CoA, because of the existence of nuclear pores that are large enough for small molecules to 

pass through. This supposition implies the occurrence of an interplay between nuclear and 

cytoplasmic acetyl-CoA pool. Recent evidences, however, suggest that acetyl-CoA may not 

exchange freely between nuclear and cytoplasmic compartments. Mammalian cells are filled 

with macromolecules (e.g., protein concentration range from 50 to 250g/L, nucleic acid 20-

50g/L), and these molecules are not homogenously distributed and could cause macromolecular 

crowding, therefore the diffusion of molecules might be largely perturbed especially between 

sites that are spatially far away574. This principle points to the possibility of a local 

compartmentalization in nucleus where small metabolites are generated close enough to where 

they are consumed (onsite generation)575. To this end, PDC, ACLY and ACSS2 have been found 

to be present in nucleus. For example, under oxygen and serum limitation, nuclear ACSS2 can 

capture acetate released from histone deacetylation to maintain histone acetylation576. In 

neuronal cells model, Mews and colleagues have identified that ACSS2 increases in the nucleus 

of differentiating neurons and is recruited to chromatin, where it directly regulates histone 

acetylation and controls memory-related neuronal genes expression577. ACLY was found to be 

phosphorylated in response to DNA damage, whereby it orchestrates acetyl-CoA production 

and enables H4 acetylation near DNA double-strand breaks, therefore enhances BRCA1 

mediated homologous recombination of DSB repair578. PDC was found to be translocated from 

mitochondrion to nucleus in response to serum, growth factor, or mitochondrial stress and in a 

cell-cycle-dependent manner, where it catalyzes synthesis of acetyl-CoA for acetylation of core 

histones579. In mammals, nuclear PDC accumulation was found to be crucial and indispensable 

for zygotic gene expression by maintaining histone acetylation580. The spatiotemporal control 

of epimetabolites has yielded an exciting perspective for metabolic signaling to epigenome and 

gene regulation specificity. More comprehensive studies are needed to address the current 
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questions, such as the existence of microcompartments for metabolites, the molecular 

mechanism of nuclear translocation of acetyl-CoA producing enzymes. It is also important to 

identify proteins that interact with metabolite-producing enzymes and understand how cells 

sense environmental cues and initiate the process of enzyme translocation etc.555.  

 

2.2.4 Transcription factors mediating specific sets of genes expression in response to 

acetyl-CoA concentration alteration 

Increasing evidence indicate that acetyl-CoA abundance can impact gene transcription via the 

regulation of transcription factors.  

 Firstly, transcription factors per se can be acetylated, which might consequently impact its 

subcellular location, protein stability and trans-activating capacity. For example, elevated 

acetyl-CoA levels resulted from ACC1 inhibition induces Smad2 acetylation, which then 

translocates into the nucleus and activates Snail and Slug mediated epithelial-mesenchymal 

transition program and promotes cancer invasion567.  

Similarly, in chondrocyte, inhibition of ACLY reduces acetylation of p65, NF-κB and H3K27, 
which attenuate IL-1β induced gene transcription. Besides, under these conditions SOX9 

acetylation is reduced, promoting its nuclear localization and increasing the mRNA level of 

aggrecan and Col2a1581.  

Secondly, transcription factors can be regulated by acetyl-CoA levels through an indirect 

mechanism. For example, a change of acetyl-CoA abundance regulates H3K27ac at specific 

loci correlated with integrin signaling and cell adhesion. This pathway participates to the 

modulation of calcium signalings, which trigger nuclear translocation of the transcription factor 

NFAT1 (nuclear factor of activated T cells), where it mediates acetyl-CoA dependent genes 

transcription582.  

Thirdly, acetyl-CoA can regulate specific sets of genes through transcriptional coregulators. 

For instance, BET family proteins which read acetylated lysine can recruit Mediator complex 

and regulate a set of genes which are dependent on locus control regions463. In leukemia cells, 

acetyl-CoA reduction mediated by AMPK depletion can reduce BET-dependent gene 

expression program by decreasing histone acetylation and therefore displacing BET protein 

from chromatin583.  

 

3.3 Acyl-CoAs 

Similar to acetyl-CoA, acyl-CoAs are key factors linking cellular metabolism to chromatin 

regulations. Recent studies documented that many HATs (e.g., p300/CBP, GCN5) can also 

utilize acyl-CoAs to generate respective histone modifications, and that the concentrations of 
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acyl-CoAs are correlated with the level of respective histone acylations. However, while acetyl-

CoA metabolism and compartmentalization are extensively studied, the process of acyl-CoA 

metabolism and their signaling to chromatin modifications remain poorly understood. From a 

biochemical point of view, non-acetyl acyl-CoAs are generated during lipid metabolism, amino 

acid catabolism, ketogenesis and can be directly converted from short chain fatty acids provided 

by intestinal microbiota fermentation. It is postulated that, since many of the biochemical 

processes generating acyl-CoAs occur in mitochondrion, the export of these metabolites is 

needed for nuclear usage, via yet unknown mechanisms. Similar to the compartmentalization 

of acetyl-CoA, the production and maintenance of acyl-CoAs in cytoplasmic and nuclear 

compartments could also exist, but this is in need of further studies.  

Here I will introduce the metabolic pathways involving acyl-CoA generation. I will 

emphasize on the current evidences about their role in histone acylations. I will discuss the 

possible mechanisms contributing to compartmentalization and enabling their nuclear 

availability. Finally, I will also give examples of their functional output considering chromatin-

based biological events. 

 

3.3.1 Lipid metabolism 

Many acyl-CoAs are present as intermediates in lipid metabolism, including β-oxidation, fatty 

acid and cholesterol synthesis.  

Fatty acid uptake is coupled with CoA esterification by acyl-CoA synthetases (ACSs) known 

as lipid activation. This reaction consumes energy leading to ATP breakdown to AMP and 

pyrophosphate (PPi). ACSs present several members, who have specificity for different lipids 

depending on the carbon-chain of lipids, namely, long chain specific acyl-CoA synthetases 

(ACSL), medium chain acyl-CoA synthetases (ACSM), and short chain acyl-CoA synthetases 

(ACSS). ACSL is associated with outer membrane of mitochondria, peroxisomes and 

endoplasmic reticulum, and ACSM are located in mitochondrial matrix while ACSS can be 

found both in mitochondrial matrix or cytosol.  

In mammals, both peroxisome and mitochondria ensure lipid oxidation but with separate 

enzymatic systems and have distinct features. Some types of lipids such as very long chain fatty 

acids (VLCFA), branched-chain fatty acids, bile acid intermediates and long chain dicarboxylic 

acids are poorly taken up by mitochondrion and are mainly degraded in peroxisome. However, 

peroxisome β-oxidation only generates shortened fatty acids (i.e., medium chain acyl-CoA, C6-

8), while mitochondrion can proceed complete oxidation of lipids584.  

Long chain fatty acyl-CoA cannot penetrate mitochondrial membrane and must be assisted 

by carnitine-acylcarnitine shuttle system. The acyl group of fatty acyl-CoA is transferred to 

carnitine at the outer membrane catalyzed by carnitine palmitoyl-transferase I (CPT I), acyl-
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carnitine can then cross the membrane through carnitine translocation catalyzed by carnitine-

acyl-cartnine translocase (CACT). Acyl-carnitine is then converted back to acyl-CoA and 

carnitine at the inner membrane by carnitine palmitoyl-transferase II (CPT II). In contrast, 

medium (C6-12) and short chain (C4-6) can directly enter mitochondrial and are then activated 

to the corresponding acyl-CoAs in mitochondrial matrix.  

β-oxidation process proceeds as repetitive cycles of four reactions, namely 1) 

dehydrogenation, which introduced double bond between α and β carbon, 2) hydration which 

add water molecules and breaks the carbon double bond, 3) dehydrogenation, which 

dehydrogenate 3-hydroxyacyl-CoA to 3-ketoacyl-CoA, and 4) thiolation which cleaves the 

bond between α and β carbon in the presence of CoA, producing one acetyl-CoA and a 

shortened acyl-CoA (Figure 19). Acetyl-CoA produced here can then enter TCA cycle for 

complete oxidation. These reactions are catalyzed by acyl-CoA dehydrogenase, enoyl-CoA 

hydratase, 3 (β)-hydroxyacyl-CoA dehydrogenase, 3-ketoacyl-CoA thiolase (acyl-CoA 

acetyltransferase) respectively. In mammals, the first step of β-oxidation is catalyzed by several 

dehydrogenase, with (very) long chain acyl-CoA dehydrogenase ((V)LCAD) catalyzing C12-

24, medium chain acyl-CoA dehydrogenase (MCAD) catalyzing C6-12, and short chain acyl-

CoA dehydrogenase (SCAD) catalyzing C4-6. The last 3 steps of LCFAs and MCFAs are 

mainly catalyzed by mitochondrial trifunctional proteins (MTP, or TFP abbreviated), while 

SCFAs are catalyzed by ECHS, HADH and KAT respectively585. 

 
Figure 19. β-oxidation.  

β-oxidation spiral contains dehydrogenation, hydration, dehydrogenation and thiolation. Through each round of 

β-oxidation, a acetyl-CoA and a shortened acyl-CoA (-2C) are produced.  
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From (bio.libretexts.org/Bookshelves/Biochemistry/Book%3A_Biochemistry_Free_and_Easy_ 

(Ahern_and_Rajagopal)/06%3A_Metabolism_I_-

_Oxidative_Reductive_Processes/6.11%3A_Fatty_Acid_Oxidation)  

 

Even chain FA can produce butyryl-CoA while odd chain FA produces propionyl-CoA 

through β-oxidation. Propionyl-CoA can be further converted to methylmalonyl-CoA catalyzed 

by propionyl-CoA carboxylase (PCC), and then to succinyl-CoA through several reactions. 

Crotonyl-CoA can be produced from butyryl-CoA by SCAD, and the crotonyl-CoA could 

further be converted to L (S)-β-hydroxybutyryl-CoA through enoyl-CoA hydratase in β-

oxidation.  

Fatty acid synthesis (FAS) occurs in the cytoplasm or mitochondrion (mtFAS) and the 

chemical reactions are reversibly similar to β-oxidation except a few differences. Chemical 

reaction of de novo FAS starts with two acetyl-CoA forming malonyl-CoA catalyzed by acetyl-

CoA carboxylase (ACC). Malonyl-CoA then forms malonyl-ACP (acyl-carrier protein), which 

then becomes fatty acyl-ACP, following the addition of two carbons to the growing chain of 

fatty acyl-ACP during each cycle of fatty acid synthesis. The carbon chains of fatty acyl-ACP 

keep growing by rounds of condensation, reduction, dehydration, and reduction until it reaches 

16 or 18. The three differences between FAS and FAO are, 1) ACP is used for stabilizing acyl 

esters; 2) NADPH instead of NAD system is used; 2) D (R)-form rather than L (S) enantiomers 

are generated during the spiral. In mammals, cytoplasmic FAS is catalyzed by a single complex 

called fatty acid synthase (FASN), comprising of 6 catalytic subunits and an ACP. mtFAS was 

firstly characterized in yeasts where it mainly produces octanoate and then converted to lipoic 

acid, which is an important cofactor for a number of mitochondrial enzymes. In mammalian 

cells however, mtFAS is less characterized586. 

Evidences suggests that lipid metabolism might be an important source of acyl-CoA for 

histone acylations. For instance, crotonate supplementation can stimulate histone crotonylation, 

which is due to the increased conversion to acyl-CoA by ACSS2144, 587. Depletion of PCC, which 

consumes propionyl-CoA, causes an increase in propionyl-CoA and histone propionylation 

(H3K14pr) in mouse livers. However, SCAD knockout mice did not show increased H3K14bu, 

although an increase of butyryl-CoA and non-histone protein butyrylation were observed in 

liver cells169. Using highly synchronized yeast metabolic cycle, Gowans and colleagues reported 

that histone crotonylation coincides with expression of genes in β-oxidation in the metabolic 

cycle170. In mitochondrion, short chain acyl-CoA can be converted to acyl-carnitine by carnitine 

acetyltransferase (CrAT), indicating the possibility of acyl-CoA being exported out of 

mitochondrion and this could support its export and the subsequent histone propionylation588. 

Lately, Choi and colleagues identified that many FAO enzymes including ACSL1, HADHA 

and ACAA2 are located in the nucleus, implicating the generation of acyl-CoA in nuclear 

compartment589. Besides, the cytosolic FAS process and peroxisomal FAO are two other 
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possibilities to fuel cytocylic/nuclear compartment of acyl-CoA pools. For example, succinyl-

CoA, succinate and glutarate might be produced through dicarboxylic metabolism in 

peroxisome590. Fang and colleagues observed that the expression of peroxisomal acyl-CoA 

oxidase ACOX3 is increased during endoderm differentiation of embryonic stem cells, which 

along with other crotonyl-CoA producing enzymes (e.g., ACSS2) enhances histone 

crotonylation and control the gene expression program of endodermal differentiation587. 

3.3.2 Ketogenesis, TCA cycle and amino acid catabolism 

Ketogenesis occurs in the mitochondria of liver cells triggered by glucose depletion conditions 

such as fasting. The reaction starts with two molecules of acetyl-CoA being converted to 

acetoacetyl-CoA by thiolase, which is then modified by an additional acetyl-CoA molecule and 

generates hydroxylmethylglutrayl-CoA (HMG-CoA) by HMG-CoA synthase. HMG-CoA 

lyase then cleaves HMG-CoA and produces acetoacetate. Acetoacetate either makes acetone 

through non-enzymatic decarboxylation or D (R)-β-hydroxybutyrate catalyzed by β-

hydroxybutyrate dehydrogenase.  

The contribution of ketogenesis to histone acylations is documented in several studies. For 

example, mice liver cells exhibited higher intracellular acyl-CoA levels and increased histone 

butyrylation, β-hydroxybutryrylation after fasting141, 591. It is worth noting that ketone bodies 

might contribute to histone modifications through increased acyl-CoA generation or through 

directly inhibiting HDAC activity. β-hydroxybutyrate, as well as other short chain fatty acids 

(e.g., butyrate) which is predominantly produced by intestinal microbiota, are known as HDAC 

inhibitors592, 593.  

TCA cycle links acetyl-CoA oxidation with energy production, which is coordinated by 

several metabolic intermediates including oxaloacetate, citrate, isocitrate, α-KG, succinyl-CoA, 

succinate, fumarate, malate. Succinyl-CoA is generated from α-KG, which is catalyzed by α-

ketoglutarate dehydrogenase (α-KGDH) and is hydrolyzed to succinate by succinyl-CoA 

synthetase. The resultant succinate can subsequently be converted to fumarate by succinate 

dehydrogenase (SDH).  

Although succinylation occurs prominently on mitochondrial proteins through non-

enzymatic reaction, recent studies revealed that histones and extramitochondrial non-histone 

proteins could also be succinylated. Indeed, TCA cycle enzymes have been suggested to impact 

histone succinylation. For example, it is documented that SDH depleted MEF cells, which have 

TCA cycle defect, displayed higher intracellular succinyl-CoA concentration and increased 

histone succinylation594. In addition, α-KGDH complex was found to be present in nucleus 

where it produces succinyl-CoA for chromatin succinylation151, 589.  

Succinyl-CoA is an abundant metabolite with its concentration ranging 0.1 - 0.6 mM inside 

mitochondria595. Succinyl-CoA might be exported through carnitine / succinyl-carnitine system 
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and produce a cytosol/nuclear succinyl-CoA pool, as suggested by the evidence that succinate 

can be exported from mitochondrion through dicarboxylate carrier SLC25A10 596.  

Amino acid catabolism might be another source for acyl-CoAs. Ketogenic amino acids such 

as lysine, leucine and tryptophan can be converted to acetoacetyl-CoA and participate in 

ketogenesis. Methionine and branched chain amino acids (BCAA, e.g., valine, isoleucine) can 

be converted to propionyl-CoA through multiple steps. The most abundant amino acid, 

glutamine is subjected to glutamate production catalyzed by glutaminase. Glutamate can then 

be converted to α-ketoglutarate (α-KG) through a reversible reaction catalyzed by glutamate 

dehydrogenase and therefore participates TCA cycle, which as described above, might impact 

acyl-CoAs pool. 

 

Figure 20. Acyl-CoAs metabolism 

Acyl-CoAs can be produced and consumed in various catabolic and anabolic pathways including β-oxidation, 

glutaminolysis, glycolysis, ketogenesis and amino acid catabolism. The various pathways involved and the key 

corresponding metabolites are indicated in the figure and are highlighted in different color. β-oxidation is labeled 

in red, ketogenesis is labeled in orange, cholesterol and fatty acid synthesis are labeled in magenta, TCA cycle in 

blue, amino acid metabolism in cyan, glycolysis in olive green. From597. 

 

3.3.3 Glycolysis 

Lactate is produced from pyruvate in the last step of glycolysis catalyzed by lactate 

dehydrogenase (LDH). In response to hypoxia or mitochondrial complex I inhibition, which 
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induces glycolysis and lactate production, macrophages displayed increased level of histone 

lactylation. Consistently, inhibition of glycolysis using 2-DG or inhibiting PDH (pyruvate 

dehydrogenase) and LDH by sodium dichloroacetate (DCA) and Oxamate respectively, reduce 

lysine lactylation140. 

 

3.4 Other metabolites (NAD, FAD, PKM2, IDH) 

3.4.1 NAD 

In mammals, nicotinamide adenine dinucleotide (NAD) is synthesized from tryptophan or 

vitamin B3 precursors, which are provided by diet. Tryptophan is degraded through kynurenine 

pathway, which produces quinolinic acid and then nicotinic acid mononucleotide (NAMN). 

Vitamin B3 includes nicotinamide (NAM, NM), nicotinic acid (NA), nicotinamide riboside 

(NR) and nicotinic acid riboside (NAR), which can either generate NAMN (e.g., NA is used) 

or nicotinamide mononucleoside (NMN) (e.g., NR, NAM as sources). NAMN and NMN are 

then converted to their corresponding dinucleotide (NAAD or NAD+) by NMN 

adenylyltransferases (NMNAT), of which NAAD is amidated to NAD+ by NAD synthetase 

(NADS)598. NAD exists as NAD+ and the reduced state NADH in cells which senses 

intracellular metabolic state.  

NAD is a cofactor for SIRT family deacetylase. During deacetylation reaction, acetyl group 

cleaved from acetyl-lysine is transferred to ADP-ribose of NAD, generating O-acetyl-ADP 

ribose and unmodified lysine (See Figure 11). Therefore, NAD homeostasis can regulate 

histone acetylation in a SIRT-dependent manner. For example, knocking down NMNAT1 

results in decreased intracellular NAD and increased levels of histone acetylation in retina599. 

Similarly, expression of nicotinamide phosphoribosyltransferase (NAMPT), which catalyzes 

the generation of NMN from NAM was shown to increase NAD levels and activate SIRT1, 

which consequently reduces histone acetylation and represses histone gene expression599. 

During the transition from quiescence to proliferation of muscle stem cell, decreased 

intracellular NAD level resulting from metabolism reprogramming leads to reduced SIRT1 

activity, which promotes H4K16ac and transcriptional activation of muscle genes600.  

NAD also serves as co-substrates for ADP-ribosylation. ADP-ribose transferases use NAD 

and transfer single or several ADP-ribosyl moieties from NAD to acceptor proteins including 

histones, generating protein ADP-ribosylation (See Figure 11). Adding NAD to cell nuclei 

increased tremendously protein ADP-ribosylation601. Nuclear NAD+ synthase NMNAT-1 can 

promote histone H2B ADP-ribosylation via synthesizing NAD and directing poly (ADP-ribose) 

polymerase (PARP)-1 catalytic activity, which subsequently inhibits phosphorylation of 

adjacent residue and precludes adipocyte differentiation129.  
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3.4.2 FAD 

FAD is synthesized from riboflavin (vitamin B2). The reaction starts from generation of 

riboflavin mononucleotide from riboflavin catalyzed by riboflavin kinase, resultant riboflavin 

mononucleotide can then be converted to FAD by FAD synthase (FADS). FAD is a cofactor 

for numerous biochemical processes, including histone demethylation. Lysine demethylases 

LSD1/KDM1A and LSD2/KDM1B are FAD-dependent oxidase that remove methyl group 

with the conversion of FAD to FADH2602. FADS was found to be located in nucleus, although 

less abundant than its mitochondrial counterpart, which might contribute to nuclear pool of 

FAD603.  

 

3.4.3 α-KG 

α-KG pool is maintained through several nutritional pathways. It is generated through the action 

of glutamate dehydrogenase (GDH, GLUD) from glutamate or from isocitrate by isocitrate 

dehydrogenase (IDH), and can be converted to succinyl-CoA by α-KGDH during TCA cycling. 

Therefore, metabolites such as fumarate and succinate are TCA products downstream of α-KG 

can competitively inhibit the generation of α-KG. As a cofactor for DNA demethylase TET and 

JmjC family of histone demethylases, α-KG has been widely studied for its role in histone 

methylation and gene expression regulation. For example, intracellular α-KG/succinate ratio 

was shown to regulate H3K27me3 and DNA methylation, which in turn impact pluripotency-

associated gene expression604. Fumarate and succinate accumulation by dysfunctional fumarate 

hydratase (also known as fumarase) and succinate dehydrogenase leads to genome-wide 

increase of histone and DNA methylation by inhibiting α-KG dependent dioxygenases605.  

 

3.4.4 PKM2 

Pyruvate kinase M2 (PKM2) is a tumor specific kinase and is well-established for aerobic 

glycolysis. PKM2 was found to bind to and phosphorylate histone H3, which promotes HDAC3 

dissociation and CCND1, MYC gene expression606. PKM2 was also suggested to directly 

phosphorylate H2AX and promotes genomic instability in tumor cells607. 

 

3.4.5 IDH 

Isocitrate dehydrogenase (IDH) catalyzes reversible conversion of isocitrate to α-KG in TCA 

cycle. IDH1 and IDH2 were found frequently mutated in glioblastoma and in myeloid leukemia 

patients. Mutated IDH1/2 could produce 2-hydroxyglutarate (2-HG) from α-KG, which 

competes with α-KG for the active site of demethylases and subsequently inhibits α-KG-
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dependent dioxygenases, including histone demethylases and TET family of DNA 

methylcytosine hydroxylases608. Consistently, IDH1/2 mutated cancer cells have altered 

genome-wide histone and DNA methylation that contributes to oncogenic programs (e.g., 

suppression of differentiation associated genes)609, 610.  

 

In conclusion, metabolic state impacts the nuclear genome in many ways and hence tunes all 

chromatin-based biological activities in response to nutritional cues, adding a new layer of 

complexity to intracellular signaling. The metabolism-nucleus crosstalk is, to a large extent, 

mediated by metabolites, which act as cofactors for epigenomic modifications. Unraveling the 

regulation of nuclear accessibility to epigenomic metabolites is an important challenge in 

modern biology. For instance, it would be critical to know what are the nuclear compartments 

or sub-compartments of metabolites and how they are impacted by fluctuations of other non-

nuclear pools and by nutrient signaling.  

Additionally, the question of how metabolites specifically impact specific genomic outputs, 

is a very important one. Answer to these questions would undoubtedly help us to solve many 

issues in modern biology and to provide the community with a deep understanding of what we 

call epigenetics. Given the fact that alterations of the cellular metabolism have been observed 

in many diseases including cancer, understanding of the metabolism-nucleus signaling and the 

key players would also shed a new light on new therapeutical approaches. 

 

4. Metabolism-driven histone modifications contribute to cancer biology 

4.1 Cancer cells have reprogrammed metabolism 

Cancer cells depend on their reprogrammed metabolism to maintain unrestricted proliferation 

and to survive environmental stress (e.g., hypoxia, nutrients restriction). This metabolic 

rewiring also allows to meet the demand for energy supply, macromolecules biosynthesis and 

redox homeostasis. Pavlova and Thompson summarized six metabolic hallmarks harbored by 

cancer cells, including deregulated glucose and amino acid uptake, increased demand for 

nitrogen, plastic modes for nutrient acquisition, increased biosynthesis using metabolites, 

metabolism driven gene regulation and cell signaling and metabolic interactions with 

microenvironment611. As described above, since chromatin signaling is impacted by cellular 

metabolism, the specific crosstalk between metabolism and chromatin should be commonly 

adopted in all cancers and hence this crosstalk should be considered as a pillar of cancer biology. 

Herein I will firstly introduce metabolic characteristics of cancer cells, including the altered 

metabolism of glucose, amino acid and then the enhanced biosynthesis of intracellular biomass. 

In the second part of this chapter, I’ll briefly introduce metabolic signaling to cell nucleus, give 
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examples of how metabolic alterations impact or even dominate cell behavior through 

epigenetic modulation.  

 

4.1.1 Enhanced glucose uptake and glycolysis 

Cancer cells require continuous supply of nutrients to build cytoskeleton and macromolecules 

for assembling new cells. In mammalian cells, glucose and glutamine are two important 

nutrients that are used for macromolecules biosynthesis. Indeed, increased glucose uptake was 

observed in cancer cells by Warburg more than a century ago. Compared with nonproliferating 

adult cells, cancer cells prefer to use glycolysis even when supplied with abundant oxygen 

(termed as aerobic glycolysis)612. Although carbon sources produce much less ATP (reducing 

equivalents) through glycolysis than coupled with the TCA cycle. Based on this, positron 

emission tomography (PET) imaging that determines glucose uptake of tissues using 

radioactive glucose has been used in the clinics for tumor staging and diagnosis.  

Increased glucose uptake and utilization in glycolysis had been proposed to result from 

dysfunctional mitochondria following early studies. However, later researches identified that 

many cancer cells did have functional mitochondria and intact oxidative phosphorylation 

machineries. One hypothesis of such metabolic switch is to enhance glycolytic intermediates 

production which fuel various biosynthetic pathways, including nucleosides and amino acids. 

Indeed, such a metabolism is also adopted by rapidly dividing embryonic cells, demonstrating 

its role in support of cell proliferation. Moreover, elevated pentose phosphate pathway (PPP), 

which deviates from lactate production after the first rate-limiting step of glycolysis, has been 

observed in cancer cells. PPP supplies ribose for nucleotides synthesis as well as generates 

NADPH for fatty acid synthesis613. An additional glycolytic intermediate which is required for 

biomass production is dihydroxyacetone phosphate (DHAP). DHAP is produced from 

glyceraldehyde-3-phosphate, and is utilized in the biosynthesis of phospholipids when 

converted into glycerol-3-phosphate.  

Besides biosynthesis, enhanced glucose uptake and glycolysis protects cancer cells from 

excessive oxidative damage. On one hand, reduced use of glucose to fuel the TCA cycle and 

hence the reduced coupled oxidative phosphorylation, restrict the production of reactive oxygen 

species (ROS) from mitochondrial respiration614, 615. On the other hand, increased production of 

NADPH from alternative pathway (e.g., PPP) helps to maintain the redox homeostasis in 

response to oxidative stress. Consistently, inhibition of glucose uptake and glycolytic enzymes 

have been considered as serious anti-cancer strategies616, 617.  

Enhanced glucose uptake and glycolysis are mediated by altered cell signaling. PI3K-Akt 

signaling pathway is a master regulator of glucose uptake. PI3K-Akt signaling promotes 

expression of the major glucose transporter GLUT-1 and its translocation to the cell surface618, 
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619. In addition, Akt can activate hexokinase (HK) and phosphofructokinase (PFK), which 

catalyze rate-limiting steps in glycolysis620, 621. Other oncogenic pathways (e.g., RAS, MYC) 

and mutations of tumor suppressors (e.g., TP53) have also been reported to be associated with 

glycolysis197. Enhanced glycolysis is also coupled with changes in expression/activity of key 

metabolic enzymes. Cancer cells predominantly express M2 form of pyruvate kinase (PK), 

which depending on its homo-multimerizations PKM2 could possess limited catalytic activity 

compared to M1, expressed in most normal cells. PKM2 in its less active form induces the 

accumulation of glycolytic intermediates which could be used in synthetic processes, such as 

nucleic acid-, phospholipid-, and amino acid synthesis. Besides, the expression of pyruvate 

dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits pyruvate dehydrogenase, 

is also increased in cancer cells and hence further restricts the use of pyruvate into TCA cycle615, 

622. 

The Warburg effect is likely to be triggered by limited supply of oxygen and nutrients in 

tumor microenvironment. Under hypoxic condition, hypoxia-inducible factor 1α (HIF-1α) is 
stabilized, which in turn induces the expression of metabolic enzymes involved in glycolysis, 

including GLUT, PKM2, PDK1 and LDHA, and leads to glycolytic reprogramming623-625. 

Furthermore, acidic environment resulted from glycolysis could stabilize HIF-1α and couid 

reinforce its function626. In addition, PKM2 is activated by metabolites (e.g., fructose 

bisphosphate, serine), therefore the nutrient-depleted tumor microenvironment disfavors 

glucose entry into TCA cycle627, 628.  

Interestingly, solid tumors have been described to contain metabolically distinct 

subpopulations, those who adopt glycolysis and produce lactate, and those who utilize lactate 

as major carbon source629, 630. The coexistence of both lactate producing and lactate consuming 

cells might somehow reflect the cooperation of tumor cells and the adaptation to intratumoral 

environment197. During last few decades, a subpopulation of slow cycling cells has been 

identified in many types of solid tumors as well as in hematological malignancies. Those slow-

growing, stem-like cells might constitute a minor fraction of the cells. In contrast to bulk tumor 

cells, these cells could be more resilient to environmental stress (e.g., chemotherapies, nutrients 

limitation, etc.), therefore they could be responsible for replenishing bulk tumors after treatment 

and disease relapse631, 632. Interestingly, in contrast to rapidly dividing bulk tumor cells, quiescent 

cells display higher dependence on oxidative phosphorylation633-635. 

 

4.1.2 Increased demand for glutamine and elevated glutaminolysis (Glutamine addiction) 

Increased demand for glutamine by proliferating cells was firstly described by Eagle in the 

1950s, when he demonstrated that cultured HeLa cells require 10- to 100-fold excessive of 

glutamine in culture medium relative to other amino acids636. Later studies found that glutamine 
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is depleted from the environment in tumor samples compared to normal tissues637, 638. Indeed, 

deprivation of glutamine could lead to cell cycle arrest and cell death in certain cellular 

contexts639, 640. Such dependence of glutamine is known as glutamine addiction.  

Glutamine addiction ensures glutamate-derived macromolecules biosynthesis. Glutamine is 

transported across cell membrane via amino acid transporters, ASCT2 (also known as SLC1A5) 

and SN2 (also known as SLC38A5). Once imported into cytoplasm, glutamine can be converted 

into substrates through multiple steps that fuel the TCA cycle. Glutamine is firstly converted to 

glutamate by glutaminase (GLS). Glutamate is then converted into α-KG either by glutamate 

dehydrogenase (GLUD), which generates ammonium and NADH/NADPH, or by 

transaminases (oxaloacetate transaminase, GOT; glutamate–pyruvate transaminase, GPT; 

phosphoserine transaminase, PSAT). In addition, glutamine is the important nitrogen donor for 

the biosynthesis of nitrogen-containing molecules (e.g., bases of nucleotides, nonessential 

amino acids, polyamines etc.). Transaminases in glutaminolysis promote the generation of 

nonessential amino acids (NEAAs) from glutamine, including aspartate, alanine, and 

phosphoserine. The deamination of glutamine into glutamate donates an amide group to enable 

nucleotides synthesis de novo and the synthesis of amino sugars and NAD+ cofactors641. 

Glutamine is also involved in oxidative stress by serving as substrate for glutathione (GSH) 

synthesis. L-glutamate and cysteine form γ-glutamylcysteine (GCL) catalyzed by glutamate-

cysteine ligase (GCLC), which together with glycine, generates GSH by glutathione synthase 

(GSS). Glutathione is an important antioxidant used to deplete peroxide and is vital to multiple 

cellular processes.  

Similar to glucose, positron emission tomography (PET) imaging has also exploited radio 

labeled glutamine (18F or 11C) to assess glutamine uptake and utilization by cancer cells, which 

has shown great potential in cancer diagnosis and therapeutic monitoring in some tumor 

contexts642-644. This is especially interesting for tumors that cannot be effectively distinguished 

by glucose uptake, for example, tumors in brain tissues where physiological heavy glucose 

utilization is found.  

Glutamine metabolism is strictly controlled in cancer. C-Myc is the major driver of glutamine 

utilization by various cancer cells645, 646. It increases the expression of glutamine transporters 

ASCT2 and SN2, therefore enhances glutamine uptake. Furthermore, it can upregulate GLS1, 

phosphoribosyl pyrophosphate synthetase (PRPS2), carbamoyl-phosphate synthetase 2 (CAD) 

and promote the utilization of glutamine to glutamate647-649. Other factors that regulate glutamine 

metabolism include oncogenes KRAS, PI3K/Akt/mTOR, and tumor suppressors such p53, Rb, 

LKB1etc. LKB1 and Rb have been reported to inhibit ASCT2 expression and reduce glutamine 

uptake650, 651. KRAS decreases the expression of GLUD but enhances the expression of GOT 

and therefore increases NADPH production652. mTOR can repress SIRT4 expression, which is 
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responsible for inhibition of GDH653. PI3K/Akt and p53 were reported to promote the generation 

of GSH and therefore protect cells from ROS damage654, 655.  

 

4.1.3 Altered metabolism of other amino acids 

4.1.3.1 Increased biosynthesis of serine 

Mammalian cells can acquire serine from the environment via alanine/serine/cysteine/ 

threonine (ASCT) transporters (e.g., ASCT1, ASCT2), system A transporters (e.g., SAT1, 

SAT2) and alanine/serine/cysteine (ASC) transporter system656. Serine can be biosynthesized 

from glycolytic intermediate 3-phosphoglycerate (3-PG) via the phosphorylated pathway, 

which requires the action of several enzymes including phosphoglycerate dehydrogenase 

(PHGDH), phosphoserine aminotransferase (PSAT1), and phosphoserine phosphatase (PSPH). 

Additionally, serine can be generated from glutamate transaminase reaction by the catalysis of 

PSAT1 and PSPH.  

Serine is consumed in folate cycle. The generation of 5,10-methylenetetrahydrofolate (CH2-

THF) from tetrahydrofolate (THF) requires the donation of one carbon unit by serine 

accompanied by the production of glycine with the action of serine hydroxymethyltransferase 

(SHMT). The produced CH2-THF is needed for thymidine synthesis, and when converted to 

10-formyl-tetrahydrofolate (CHO-THF) through folate cycle, is needed for purine synthesis. In 

addition, folate cycle provides carbon source for SAM pool through methionine cycle. 

Collectively, serine contributes to nucleoside biosynthesis as well as supports SAM production 

and protein methylation. As noted above, serine can be used for GSH production and thus plays 

an important role in redox homeostasis. 

Increased serine metabolism has been observed in tumor cells657. Some tumors depend on the 

availability of serine supply, depletion of serine suppresses cell proliferation in those cancer 

contexts658. Elevated expression of enzymes involved in the serine metabolism, including 

PHGDH amplification and increased activity of SHMT1 (cytosolic SHMT) have been 

identified in a variety of cancers659-661. Furthermore, increased serine synthesis pathway (SSP) 

such as PHGDH overexpression is associated with higher tumor grade in gliomas662. The 

contributions of serine metabolism to tumor cells proliferation and survival could, at least 

partially, provide carbon for nucleotide synthesis and might involve other biological processes 

utilizing one carbon substrates including protein methylation and might also involve redox 

homeostasis551. 

Serine metabolism is regulated by various factors (e.g., p53, c-Myc, TAp73, ATF4, G9a, 

NRF2, PKCζ) in tumors613. Asparagine serves as amino acid exchange factor for serine and 

threonine transport. In human cervical cancer cell lines, inhibition of asparagine synthase or 

deprivation of asparagine supplement impair the uptake of serine, leading to an increased 
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expression of SSP enzymes to compensate for decreased serine uptake663. p53 is a critical 

regulator for cells to deal with extracellular depletion of serine. Upon serine starvation, p53 

activates p21 to promote GSH production to limit ROS stress664, 665. In addition, the oncogene c-

Myc has been found to regulate serine and glycine metabolism (e.g., increases PSPH expression 

and enhances SSP) under normal as well as starvation conditions666.  

 

4.1.3.2 Addiction to branched-chain amino acids  

Branched-chain amino acids (BCAAs) including leucine, isoleucine and valine are essential 

amino acids that must be acquired from diet or from protein degradation. BCAAs are 

metabolized in cancer cells by branched-chain aminotransferase (BCAT1 in cytosol, BCAT2 

in mitochondrion) into branched-chain α-keto acids (BCKAs). In this process α-KG is 

converted to glutamate by receiving the amide group. The produced glutamate could be used in 

nucleotide and nonessential amino acid synthesis as aforementioned. BCKAs can be further 

catabolized to produce acetyl-CoA or succinyl-CoA613, 667. To this end, BCAAs metabolism are 

enhanced in certain types of cancer and are required for cancer growth668. Furthermore, BCAT1 

was found to be associated with wild-type IDH expression and balance α-KG with 2-HG 

oncometabolites in glioblastoma and ovarian cancer669. In addition, accumulated intracellular 

BCAAs levels, especially leucine, can activate mammalian target of rapamycin (mTOR) via 

cytosolic leucine sensor proteins and promote cancer progression670. 

Increased catabolism of tryptophan has also been observed in some types of cancer. 

Tryptophan-2,3-dioxygenase (TDO), which is responsible for the conversion of tryptophan to 

kynurenine was found to be overexpressed in various tumors671, 672. Tryptophan catabolism can 

modulate immune cell function including promoting Treg and inhibit effector T cell function, 

therefore contributes to tumor invasion673, 674.  

Asparagine metabolism plays a crucial role in tumor survival, although the mechanism has 

not been clearly elucidated. Asparagine is produced from aspartate by asparagine synthetase 

(ASNS) using glutamine as amide donor. Acute lymphoblastic leukemia cells lack ASNS and 

rely on exogenous asparagine. Based on this fact, L-Asparaginase that can deplete extracellular 

asparagine, has been used as an anticancer treatment in ALL675, 676. 

 

4.1.3.3 De novo lipid synthesis 

While the de novo biosynthesis of fatty acids is low in normal adult tissues, tumor cells possess 

increased lipid synthesis677, 678. Lipid synthesis enzymes are upregulated in tumor samples and 

their inhibition reduces tumor growth679-681. The increased lipid synthesis might not only 

facilitate the formation of lipid bilayers but also enables the alteration of cell membrane 

composition with increased oxidative damage-resistant saturated fatty acids682. 
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4.1.4 Utilization of acetate, ammonia, ketone bodies, lactate 

Cancer cells face deficient nutrients supply. In addition to glucose and glutamine, tumor cells 

are able to take advantage of nonconventional nutritional sources including acetate, ammonia, 

ketone bodies and lactate.  

Lactate: 

As noted, cancer cells have increased aerobic glycolysis as well as lactate production. Lactate 

has been found to be absorbed by cancer cells and be oxidized in mitochondrial respiration for 

ATP production in several cancer cells683. Lactate might also be the carbon source for lipid 

synthesis in lung cancer cell lines (i.e., HeLa and H460)684.  

Acetate: 

ACSS2 enzyme, which utilizes acetate for the production of acetyl-CoA, was found to be 

upregulated in breast, ovarian and lung tumor samples613. Acetate-deriven acetyl-CoA 

contributes to cancer growth through modulating histone acetylation as well as providing 

carbon for fatty acid and phospholipid.  

Keton bodies: 

Ketone bodies are mainly synthesized by liver cells (ketogenesis) and are transported and 

utilized by extrahepatic tissues such as brain and skeletal muscle (ketolysis). The normal 

hepatocytes per se are not able to perform ketolysis due to the lack of the key ketolytic enzyme 

OXCT1. However, the reactivation of ketolysis resulting from increased OXCT1 expression 

has been discovered in liver cancer cells in response to starvation685.  

Ammonium ions: 

Free ammonium ions often accumulate in tumor environment. It has been found that 

ammonia can be used for glutamine production by cancer-associated fibroblasts and then 

transferred to and be used by cancer cells686. Ammonia might also be a source for proline, 

aspartate, glutamate and BCAA generation in breast cancer cells687. In addition, cancer cells 

have been reported to use exogenous proteins, including living cells, apoptotic bodies under 

nutritional stress611.  

 

4.2 Cell metabolism signals to nucleus via epigenetic modifications 

Emerging evidences suggest that cellular metabolism is not merely the adapted outcome of 

extracellular nutrition, but can in turn transmit the information of nutritional availability to 

nucleus via metabolites and metabolic enzymes. Accordingly, they coordinate chromatin 

behavior and gene expression and the metabolic state. This coordination is highlighted in cancer, 

as cancer cells have metabolic reprogramming and display metabolic plasticity to survive 

nutritional perturbations. The crosstalk between cell metabolism and chromatin, and their 

contribution to cell biology have received much attention. 
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As described above, acetyl-CoA is the central metabolite bridging multiple biosynthetic and 

catabolic pathways, and is the substrate for protein acetylation. Various studies have 

documented that, the abundance of acetyl-CoA could link cellular metabolism to the cancer cell 

behavior via epigenetic modifications of histone and non-histone proteins.  

Akt phosphorylates ACLY and enhances its activity688. Increased glucose availability as well 

as introduction of Akt increase acetyl-CoA abundance, thereby leading to increased global 

histone acetylation, which in turn promotes gene expression and tumor development556. AMPK 

was shown to be required for acetyl-CoA homeostasis and histone acetylation. Depletion of 

AMPK reduces histone acetylation and displaces BET protein, the combination of BET 

inhibitor and AMPK inhibitors suppresses the development of MLL-rearranged AML583. ACC1 

catalyzes carboxylation of acetyl-CoA to malonyl-CoA for de novo fatty acid synthesis. TGFβ-

activated kinase mediated phosphorylation of ACC1 inhibits its activity, leading to increased 

acetyl-CoA levels and the acetylation of transcription factor SMAD2, thereby conferring to 

increased metastasis in breast and lung cancer567. Similarly, metformin treatment results in 

AMPK-dependent ACC phosphorylation, leading to increased acetylation of histone and non-

histone proteins (e.g., NF-kB p65 subunit) and enhanced expression of NF-kB target genes689. 

In addition to acetyl-CoA, a number of studies reported that DNA and histone methylation is 

sensitive to intracellular SAM levels690-692. 

Metabolic enzymes have been implicated in tumorigenesis as well. IDH1/2 mutations have 

been identified in glioblastoma and in leukemia cells. IDH1/2 mutants can produce 

oncometabolite 2-HG from α-KG, which competitively inhibit α-KG dependent demethylases 

and result in DNA and histone hypermethylation that contribute to tumorigenesis693. In addition, 

α-KGDH binds GCN5/KAT2A and produces succinyl-CoA at local sites, which promotes 

GCN5 dependent H3K79 succinylation and facilitates gene expression and tumor growth151.  

Collectively, these findings suggest that metabolic reprogramming might play an important 

role in cancer biology through epigenetic modulations.  

  



UNIVERSITE GRENOBLE ALPES 

92 

 

5. Identification of a gene associated with poor prognosis in ALL 

5.1 Overview of ALL  

Acute lymphoblastic (lymphocytic) leukemia (ALL) is a hematological malignant disorder 

which derives from clonal lymphoid precursors. More than 75% of ALL patients are B cell type 

(B-ALL). ALL affects mostly children, with about 60% of the patients are below 20 years694. 

Typically, the clinical manifestations include hematopoietic failure, e.g., anemia, thrombopenia 

and leukopenia, and the resultant signs and symptoms, e.g., fatigue, dyspnea etc. Patients can 

also display splenomegaly, hepatomegaly, or lymphadenopathy when leukemic blasts infiltrate 

the corresponding organs. Diagnosis is defined by cell smear showing that leukemic blasts 

comprise > 25% of nucleated cells in bone marrow. The more precise diagnosis of ALL relies 

on the definition of characteristic molecular and cytogenetic alterations as well as on 

immunophenotyping, which not only provides information that is useful for diagnosis and risk 

stratification, but also contributes to treatments guidance. 

Traditional treatment strategy corresponds to multiagents-based chemotherapy, with the 

conventional backbone consisting of cyclophosphamide, anthracyclines, and corticoids. 

Currently, the treatment strategy is strictly dependent on patients’ risk stratification in order to 
orient intensive chemotherapy towards the high-risk patients and to save the low-risk patients 

from excessive toxicity of chemotherapy. Thanks to the adoption and development of risk-

adapted treatment strategies, the last 5 decades have seen the improvement of patient 

managment so as ALL is now one of the most curable cancer, with long term survival of 

pediatric patients approaching 90%. However, around 10-15% of pediatric patients still undergo 

relapse. Traditionally, the salvage therapies are Allogenous hematopoietic stem cell 

transplantation (Allo-HCT) following second complete remission (CR). However, with the 

adoption of multiple agents-based chemotherapy during the initial treatment, the relapsed 

patients are often resistant to the chemotherapy, therefore it could be difficult to reach second 

CR. Besides, a small percentage of patients develop resistance at the early onset of treatment 

(designated as refractory cases). Indeed, relapse and refractory (r/r) are still the main cause for 

treatment failure in childhood patients.  

Additionally, the treatment for adult patients is much more challenging, with nearly half of 

adult patients relapse and 5-year overall survival (OS) falls to less than 50%695. The main 

reasons of dismal outcome of adult patients are higher frequency of cytogenetic abnormalities 

(such as Ph-like, hypodiploidy, near-haploidy, complex karyotype etc.), less tolerance over 

childhood regimens (such as the usage of asparaginase), less treatment adhesion and obedience, 

higher relapse and resistance rate, etc.  
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Hematologists and researchers are trying to improve the adult patients’ outcome. Inspired by 
the success of childhood ALL treatment, adolescents and young adults (AYA, 15-39 years) are 

also prescribed with pediatric ALL regimens now. However, older patients cannot tolerate 

childhood regimen especially the frequent applications of L-asparaginase. Another promising 

approach is the use of targeted therapy. Indeed, targeted therapy increases the response rate of 

older adults who cannot tolerate multi-agents based chemotherapy. Lately, new therapies, such 

as monoclonal antibodies (e.g., CD19, CD20, CD22 antibodies, etc.), bispecific anti-T 

receptor/CD19 antibody blinatumomab, and chimeric antigen receptor (CAR) T cell therapy 

(e.g., CD19 CAR) have brought additional choices for treating r/r patients696-698. However, there 

are limitations associated with these approaches such as immune escape, less persistence, the 

high expenses of antibodies, and the less experienced techniques etc.699  

Prognostic factors are the main bases for risk stratification and treatment choices. 

Traditionally, prognostic factors include age, immunophenotype, WBC count at disease onset, 

the infiltration of central nervous system (CNS), morphological CR status etc. Adults (>35 

years), T cell subtype, high WBC (>30×109 in B-ALL, >100×109 in T-ALL), delayed 

remission (>4 weeks) or not remission are poor prognostic factors. More recently, minimal 

residue diseases (MRD), which refers to the residual blasts after initial therapy has been 

incorporated to the evaluation for prognosis and used to monitor the relapse.  

Cytogenetic and molecular abnormalities are important prognostic factors. In B-ALL, the Ph 

chromosome, MLL rearrangement, hypodiploidy, etc. are associated with poor outcome. In 

contrast, ETV6-RUNX1 fusion, hyperdiploidy, E2A-PBX1 translocation, triosmy (+4, +10, 

+17) etc., are associated with good prognosis. Notably, the novel Ph-like subtype whose 

transcriptional profile is much alike those seen in the Ph positive blasts, but lack of BCR-ABL1 

oncoprotein, has been identified. Ph-like cases are featured by frequent mutations of B cell 

development and differentiation genes, activation of cytokine receptor genes and kinase 

pathways, and is associated with persistent MRD and higher relapse rate compare to non Ph-

like counterparts700. Besides, MEF2D rearrangement, DUX4 rearrangement, ZNF384 

rearrangement, PAX5 mutation, IKZF1deletion etc., have been reported to predict prognosis.   

Prognostic factors involving genetic abnormalities might provide evidence for the 

development of targeted therapies. The most successful example is the exploitation of tyrosine 

kinase inhibitors (TKIs). Nowadays, TKIs combined with chemotherapy has been the 

standardized treatment strategy for BCR-ABL1 positive patients. In addition, the inhibitors 

targeting JAK-STAT have entered clinical trials.  

In conclusion, the treatment of high-risk and r/r ALL cases remains challenging. Currently, 

risk-adapted chemotherapy remains the first-line treatment strategy. Identifying prognostic 

factors and understanding the corresponding pathophysiology could not only minimize relapse 

rate by early application of intensified chemotherapy but also could help to decide Allo-HCT 
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at CR1 for high-risk patients. In addition, this would guide the clinicians to prescribe the 

optimal treatment and to avoid the unnecessary toxicity of the intensified chemotherapy for 

standard risk patients. This would also point to new targeted therapies.  

 

5.2 Ectopic activation of testis-specific genes is associated with cancer aggressiveness 

Tissue development and differentiation is a programed process. Mature tissues composed of 

differentiated cells are generated by successive expression of specific genes. Under these 

conditions many tissue-specific genes remain silent. These genes’ expression activation and 

silencing are precisely controlled by the cell-type specific epigenetic profile. Malignant 

transformed cells have a life-sustaining capability, which is facilitated by the activation of genes 

underlying the so-called cancer hallmarks.  

The abnormal signaling in cancer cells is to some extent established and stabilized by an 

altered epigenetic landscape. One common feature displayed in multiple cancers is a genome-

wide DNA hypomethylation and locus-specific hypermethylation (e.g., CpG islands). 

Methylation-mediated repression of critical tumor suppressor genes has been well documented 

to be oncogenic events701. Additionally, global DNA hypomethylation contributes to a higher 

genomic instability (e.g., chromosome rearrangements) which is a frequent cancer-associated 

event. However, an unexplored feature of cancer is the oncogenic activity of the many genes 

that are aberrantly activated due to DNA hypomethylation.  

Most of the cancer-specific hypomethylated genes are testis-specific genes (termed as 

cancer-testis, C/T, also termed as cancer-germline, C/G), whose expression is restricted in 

normal adult tissues. Generally, testis-specific factors play a role in spermatogenesis. It is 

postulated that the ectopic activation of C/T genes might contribute to the signaling network 

required for cell transformation and/or malignancy maintenance702, 703. This theory has been 

documented by several studies. For instance, Janic and colleagues have identified a soma-to-

germline transformation with an ectopic expression of germline genes during malignant brain 

tumorigenesis in Drosophila, while inhibition of these germline genes suppress tumor growth704. 

There are many examples of the functional studies of the C/T genes in cancer. One interesting 

example is the aberrantly activated PRAME gene, which was found to be an antagonist for 

retinoic acid receptor (RAR), inhibiting the RAR-dependent cell differentiation program705.  

The ectopic activation of C/T genes can be associated with cancer behavior and patients’ 
prognosis. In most cases, the frequent activation of C/T genes indicate higher tumor grade and 

poor outcome706. For instance, in a cohort of 293 lung cancer cases, Rousseaux and colleagues 

have identified an ectopic gene expression signature associated with a subset of highly 

aggressive tumors, predictor of patient’s outcome707. In addition, Emadali and colleagues 

discovered that an ectopically-expressed gene CYCLON, is associated with cancer 
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aggressiveness and resistance to anti-CD20 antibody in high-risk lymphoma. CYCLON gene 

expression is driven by MYC and could be sensitive to the BET inhibitor JQ1. The depletion 

of CYCLON could reverse drug resistance708.  

Higher expression of C/T genes could occur in cancer stem cells (CSCs) compared to the 

bulk cells. For example, MAGEA9 is highly expressed in CSCs in hepatocellular carcinoma. 

In addition, compared to the bulk of leukemic blasts, CD34+CD38- cells (known as leukemic 

stem cells) have higher expression of MAGEA1.  

C/T genes are plausible candidates for immunotherapy since they could be immunogens. For 

instance, CD4+ T cell immunotherapy targeting MAGEA3 has achieved partial response in 

advanced esophageal cancer, urothelial carcinoma and osteoblastoma709. Anti-C/T tumor 

vaccines have been tested in multiple types of cancers, some of the corresponding clinical trials 

show the low-toxicity and promising efficacy of this approach710.   

Indeed, increasing evidence indicate that C/T genes can be important in cancer development, 

with demonstrated oncogenic roles in establishing/promoting multiple cancer hallmarks.  

Examples are C/T genes role in growth signaling, metabolism reprogramming, resisting 

apoptosis etc… Some of these mechanisms have been reviewed by Tongelen and colleaguess 

and are summarized in (Figure 21)703. What is fascinating about C/T genes is that, because of their 

limited expression in normal tissues, they could be promising therapeutic targets in cancer with 

minimized side effects710. 
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Figure 21. C/T genes contribute to various pro-tumoral processes. 
Examples of C/T genes sustaining cancer hallmarks, including cell proliferation, angiogenesis, metastasis, 

apoptosis, senescence etc... For more details, please refer to703. From703. 

 

5.3 Identification of six genes’ signature associated with patients’ outcome in ALL 

Previously, a work conducted in collaboration between the Grenoble team and the Shanghai 

Institute of Hematology identified six genes whose combined expression is associated with 

prognosis in ALL711. In this work, they firstly screened genes that are exclusively expressed in 

testis/placenta/embryonic stem (ES) cells but not in normal adult tissues. In the next step, genes 

that are sporadically expressed in normal bone marrow were filtered out. The rest of the 

remaining genes were subjected to screening for ectopically activated genes in ALL. Among 

the imposed criteria, was an expression above mean values + 3 standard deviations of 112 

normal adult tissues and occurring in more than 10% of the ALL blasts. Finally, genes whose 

expression was associated with prognosis in ALL were screened out and were ranked by the p-

value of their association with prognosis. This leads to the identification of 6 genes (AK022211, 

FASTKD1, STARD4, CAMSAP1, PCGF6 and SH3RF) (Figure 22). 

 

Figure 22. Identification of six gene signature in ALL. 
The figure shows the workflow to screen genes ectopically expressed in ALL that are associated with prognosis 

in two ALL cohorts, GSE11877 and GSE7440. After ranking the p-value of the gene’s association with prognosis, 
the top six genes were screened out and used for further study. ES: Embryonic stem cells; BM: Bone marrow. 

From711 
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Among these 6 genes, expression of AK022211, FASTKD1 and STARD4 is associated with 

poor prognosis, termed as “negative genes”, while the expression of CAMSAP1, PCGF6 and 

SH3RF is associated with good prognosis, termed as “positive genes”. Further, they designed 
an algorithm combining these 6 genes, which can stratify childhood ALL. Patients with blasts 

expressing one or more of the “negative genes” plus none or only one of the “positive genes” 
are assigned as group P3, while the others are assigned as P1 and P2 based on the expression 

state of “negative genes” plus at least two “positive genes”. These assignments successfully 
stratified patients into relatively good (P1&P2) and poor (P3) outcomes.  

 
Figure 23. Six genes’ signature stratify prognosis in two childhood ALL cohorts. 
AK022211, FASTKD1 and STARD4 whose expression is associated with poor outcome are designated as negative 

genes. CAMSAP1, PCGF6 and SH3RF3, whose expression is associated with good outcome are designated as 

positive genes. Tumors expressing at least one of negative genes and less than 2 of the positive genes are defined 

as P3 group, while the rest are defined as P1&P2 group. This six genes-based algorithm stratifies patients’ 
prognosis in GSE11877 (N=207) and GSE7440 (N=59) cohorts. Compared to P3 group (red line), P1&P2 group of 

patients (grey line) present a better outcome. From711. 

 

Furthermore, the six gene’s algorithm was applied to another two adult cohorts and 
successfully predicted patients’ outcome as well. Notably, compared with childhood patients, 

adult cases identified higher frequency of patients that have been assigned to P3 group, which 

is in accord with the overall worse prognosis of the adult patients observed in the clinics. 

Following a supervised analysis of the global transcriptomic data, the gene expression profile 

of the aggressive P3 group was identified. The authors of this work found that in childhood and 

in the adult cohorts, P3 group exhibited similar expression pattern. One interesting feature of 

this gene expression profile is that a group of hematopoietic stem cell genes was activated, 

while genes involved in proliferation and cell cycle were inhibited. These data suggest that the 

aggressive leukemia might acquire non-dividing and stem-like properties. Indeed, standard 

treatments of ALL are based on cytotoxic agents, many of which target important steps in cell 

division (such as DOX inhibits DNA topoisomerase II) and metabolism (MTX inhibit 

dihydrofolate reductase and thus purine and pyrimidine synthesis), thereby cause severe effects 
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in rapidly proliferated cells, low-cycling cells are documented to be less sensitive to 

chemotherapies and are viewed as the leading causes for refraction/relapse632.  

These authors further checked ectopically activated genes individually with respect to their 

association with prognosis. Among which FASTKD1 alone was significantly associated with 

shorter survival in two ALL cohorts (GSE11855 and GSE7440) (Figure 24)711.  

 

Figure 24. FASTKD1 is associated with poor prognosis. 
FASTKD1 predicts outcome in two cohorts (GSE11877 N=207, GSE7440 N=59): expression of FASTKD1 (black line) 

is associated with poorer prognosis. HR: Hazard ratio. From711. 

 

5.4 FASTKD1 is a potential regulator of mitochondrial activity 

 

5.4.1 Mitochondrial genome 

Mitochondrial genome (mtDNA) is alike bacterial DNA in that it is compacted and organized 

into nucleoid structures. Mitochondrial nucleoids are genetic units of mtDNA segregation and 

allocation to the separate mitochondria during mitochondrial fission712. Each mitochondrial 

nucleoid contains 1-2 copies of mtDNA (1.4 on average in human cells and 1.1–1.5 on average 

in mouse cells)713. mtDNA is a double-strand circular DNA comprising of approximately 16.5 

kb. mtDNA genes are encoded by the two strands named here chains: the heavy chain (H) 

encodes 2 rRNAs, 14 tRNAs and 12 mRNAs, and the light chain (L) that encodes ND6 mRNA 

and 8 tRNAs (Figure 25). All of the 13 polypeptides are enter the respiratory complexes, also 

known as oxidative phosphorylation (OXPHOS) complexes, including complex I, III, IV and 

V.  
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Figure 25. mtDNA. 
mtDNA is double strand circular DNA that encodes 13 mRNAs: ND1-4, ND4L, ND5-6, CO I-III, CYTB, ATP6/8. This 

figure also shows the important structures of mtDNA. For instance, the D-loop is located at non-coding region 

(NCR). More details about D-loop are described in714. From714. 

 

5.4.2 mtDNA transcripts processing and maturation 

mtDNA is transcribed from both strands, producing polycistronic transcripts corresponding to 

almost the entire length of mtDNA. mtDNA transcripts (mtRNAs hereafter) are subsequently 

processed and matured giving rise to functional mtRNAs. Primary mtRNAs are processed in 

dynamic protein structures called RNA granules (MRG), which are composed of mtRNAs and 

the associated RNA-binding proteins. Most of the mtRNAs are processed via tRNA punctuation, 

where tRNAs flanking most of the mt-mRNAs and mt-rRNAs coding regions are cleaved by 

RNase P and RNase Z at the 5’ ends and 3’ends of ORFs, respectively. The resultant mRNAs 

will be polyadenylated with shorter poly-A tails than nuclear mRNAs, and are capped with 

NAD+. This cap influences mRNA stability and protein translation. The mtRNAs processing, 

maturation, degradation and translation are tightly regulated by a repertoire of factors associated 

with MRGs712. 

 

5.4.3 OXPHOS complexes 

In mammalian cells, OXPHOS complexes are consisted of multiple subunits encoded by 

mtDNA and nuclear genome (nDNA). Complex I (also known as NADH dehydrogenase) is the 

largest enzyme of electron transport chain (ETC), it oxidizes NADH to NAD+ and transfers 

two electrons each cycle via flavin mononucleotide (FMN), iron–sulphur (Fe-S) clusters to 

ubiquinone (UbQ), namely NADH→FMN→Fe-S→Q, and produces ubiquinol (QH2). 
Complex I consists of ~44 subunits, of them ~37 subunits come from nDNA, while the other 7 

subunits (ND1-6, ND4L) are encoded by mtDNA. Complex II (also known as succinate 

dehydrogenase, SDH or succinate-coenzyme Q reductase) forms the second entrance door for 

electrons. In complex II electrons transfer from succinate via FAD, Fe-S to UbQ, namely 
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succinate→FAD→Fe-S→Q and produce ubiquinol and fumarate. Complex II is composed of 

four subunits, SDHA, SDHB, SDHC, SDHD, which are all encoded by nDNA. Complex III 

(known as cytochrome C reductase) transfers electrons from ubiquinol (QH2) to cytochrome C. 

Complex III is a symmetric dimer, with each monomer composed of ~11 subunits, among them 

cytB is encoded by the mtDNA, while the rest of ~10 subunits are encoded by nDNA. Complex 

IV (known as cytochrome C oxidase) receives electrons from cytochrome C and reduces 

oxygen to water molecule. Complex IV contains 13 subunits, among them COX1-3 are encoded 

by mtDNA, while the other ~10 are encoded by the nDNA. Except complex II, all respiratory 

complexes pump protons across inner mitochondrial membrane. The created proton gradient 

drives the rotation of F1F0 ATP synthase (known as complex V), thereby, generating ATP. 

ATP synthase is formed by ~14 subunits, two of them (ATP6, ATP8) are encoded by mtDNA 

(Figure 26)715.  

 

 

 
Figure 26. OXPHOS complexes. 
OXPHOS complexes are composed of Complex I-V. Each Complex contains multiple subunits encoded by either 

mtDNA or nDNA. Complex I, III and IV pump proton across IMM. The resultant gradient is then used to generate 

ATP by complex V (also known as ATP synthase). OMM: Outer mitochondrial membrane; IMM: Inner 

mitochondrial membrane; coQ: Coenzyme Q, ubiquinone ; CytC: Cytochrome C. From716. 

 

In eukaryotes, OXPHOS is the major source of energy. OXPHOS complexes consume 

NADH, FADH2, which are mainly produced by the TCA cycle and β-oxidation of fatty acids 

and produce ATP. Besides ATP production, OXPHOS contributes to the generation of harmful 

superoxide ions prominently by complex I and III and therefore contributes to the cell oxidative 

stress. OXPHOS-mediated oxidative stress was traditionally proposed to be harmful to cancer 

cells survival. However, increasing evidence shows that some types of cancers rely on 

OXPHOS, leading to the OXPHOS as therapeutic targets in these cancer contexts717, 718. 
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5.4.4 FASTKD1 regulates mtRNAs biology 

FASTKD1 is one member of the FAS-induced serine/threonine kinase domain containing 

protein family (FASTK) which consists of five other members, FASTKD2-5 and FASTK. 

FASTK family protein were reported to localize in mitochondria719. These proteins share 

FAST_1, FAST_2 domains, which are of unknown function as well as RAP domain which is 

predicted to be a RNA binding module (Figure 27)720, 721. While FASTK has been documented to 

be a kinase, the other members do not appear to ensure any catalytic activity because of the lack 

of a conserved active site. Studies revealed that these proteins interact with the newly 

synthesized mitochondrial RNAs (mtRNAs) in mitochondrial RNA granules (MRGs), which 

are sites for posttranscriptional mtRNAs processing, maturation and mitochondrial ribosome 

biogenesis. Therefore they could regulate mitochondrial gene expression and the activity of 

respiratory complexes719, 722, 723. Indeed, FASTKD1 is documented as a negative regulator of 

ND3 gene721.  

 
Figure 27. Domains of FASTK family proteins. 
FASTK family encompasses five members, FASTK, FASTKD1-5. They share MLS (brown), FAST_1 (green), FAST_2 

(red) and RAP (navy) domains. MLS (MTS), mitochondrial localization signal; LC, low complexity; FAST_1/FAST_2, 

FAST kinase like domains 1/2; RAP, putative RNA-binding domain particularly abundant in Apicomplexans. 

From722. 

 

A few studies uncovered the role of FASTK family proteins in cell biology and diseases. 

FASTK was found to be a survival protein, which is displaced from mitochondrion under stress 

and protect cells from UV-induced apoptosis. FASTKD2 is the only member that has been 

linked with mitochondrial encephalomyopathy724. In addition, FASTKD1 was reported to 

decrease complex I-dependent respiration and protect mouse embryonic fibroblasts (MEFs) 

from oxidative stress induced death725. 
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THESIS OBJECTIVES 

FASTKD1 is a potential regulator of mitochondrial activity and according to the team’s 
previous study, is associated with poor prognosis in acute lymphoblastic leukemia. Based on 

this, my thesis project aims to characterize its oncogenic role in ALL. Since it is established 

that cell metabolism could regulate histone PTMs, this project was built on the link between 

mitochondrial metabolism and histone PTMs.  

The preferential impact of FASTKD1 on mitochondrial activity and hence on histone non-

acetyl acylations prompted us to investigate their roles in transcriptional regulations. A previous 

study from our laboratory suggested that the balance of histone acyl/acetyl marks impacts BET 

- chromatin interaction dynamics. Therefore, taking FASTKD1 as a tool, we also considered 

this hypothesis as well. Following this hypothesis, a role for acyl/acetyl-driven alteration of 

BRD4 dynamics and its impact on gene expression was considered. 

 

 Specifically, the main body of thesis project aims to:  

1) characterize the function of FASTKD1 in regulating mitochondrial activity 

2) document the correlation between mitochondrial activity and histone PTMs 

3) substantiate the hypothesis that the relative levels of acyl/acetyl influence BET - 

chromatin interaction dynamics 

4) address the role of mitochondrial metabolism-driven alteration of histone acyl/acetyl 

in transcriptional regulation 
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RESULTS 

1. FASTKD1 represses mitochondrial activity in ALL 

1.1 Exogenous expression and depletion of FASTKD1 in B-ALL cell lines 

To study the function of FASTKD1 in ALL, we carried out the ‘loss of function’ and ‘gain of 
function’ experiments. I first tested several commercial antibodies from Abcam, Abclonal and 
Origine company, none of them displayed specific or stable signal in various ALL cell lines. 

We also generated our own antibody in house but still failed to get valid signal. Therefore, 

during all the following project, I either used flag-tag for exogenously expressed protein, or use 

qPCR to determine transcriptional level of this gene. 

After introducing LeGO-FASTKD1-flag recombinant DNA into REH and NALM6, 

expression of the protein was checked with anti-flag antibody as well as with qPCR, the latter 

of which displayed 8 (NALM6) or 12 folds (REH) of mRNA upregulated than in empty vector 

(EV) transfected cells (Figure 28A). In the case of knockdown effect, 5 out of 10 shRNAs 

successfully knocked down the mRNA level to less than 1/2 in REH, as well as 3shRNAs in 

RS4;11, and NALM6 cell lines, which is shown in Figure 28B.  

Two pieces of single guide RNAs targeting exon 4 and exon 7 respectively were used 

separately to generate knockout cell lines. After co-transfection of lenti-cas9 and lentiguide 

RNAs, multiplex cell populations were firstly genotyped with PCR amplification to check if 

gene-editing occurred. Multiple spikes were observed around sgRNA targeting sequence in 

sanger sequence map, indicating that a certain percentage of cells have been edited (Figure 28C, 

left). Genotype of both alleles of single clone was determined by PCR amplification followed 

by TA cloning. Knockout clones showing frame-shift indels were nominated as ko-1, ko-2 

(Figure 28C, right) and were used for further experiments. 
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Figure 28. Exogenous expression and depletion of FASTKD1 in B-ALL cell lines.  

A. Overexpression of FASTKD1 in REH and NALM6 cells. Flag tag is at the C terminus of FASTKD1 protein. Anti-

flag antibody was used to probe the FASTKD1-flag protein (left panels). Relative FASTKD1 mRNA level was 

determined using RT-qPCR. Compared to the corresponding control cells (LeGO-EV), the expression of FASTKD1 

A  

C  

B  
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was increased by more than 10 folds in gene overexpressing REH cells, and more than 8 folds in gene 

overexpressing NALM6 cells (right panels). Data shown are mean ± SEM based on at least three independent 

RNA extractions. 

B. Knocking down FASTKD1 gene using shRNAs approach in REH (left), RS4;11 (middle) and NALM6 (right) cell 

lines. Relative mRNA level of FASTKD1 was measured using RT-qPCR and is shown in the figure. For each figure, 

control (shCtl) is labeled as black bar, and the shRNAs introduced cells are shown as grey bars. Data shown are 

mean ± SEM based on at least three independent RNA extractions. 

C. Knocking out FASTKD1 gene with CRISPR/sgRNA in REH cells. Left panels show the genotypes of wild-type cells 

(WT) and the multiclones (KO) after co-introduced with cas9 and sgRNA. Right panels show the genotypes of two 

single clones that are depleted of FASTKD1, designated as ko-1 and ko-2 respectively. 

1.2 FASTKD1 overexpression or depletion do not cause significant phenotypic alterations 

in ALL cell lines 

Since FASTKD1 is associated with inferior outcome in ALL, and was reported to confer a 

protective role in MEF cells under oxidative stress conditions725, we also tested if 

overexpression or depletion of FASTKD1 cause any changes in ALL cell lines. For this purpose, 

we counted the cells for cell proliferation, performed CCK-8 assay to measure cell viability 

after exposure to chemotherapy (DEX, Ara-C), PI staining to detect cell cycle. Unfortunately, 

none of these experiments gave stable or significant differences between control and gene-

depleting or gene-overexpressing cells (Figure 29). 

 

A  

B 
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Figure 29. Deletion or overexpression of FASTKD1 do not impair cell proliferation, cell cycle or chemotherapy 

responses in ALL cell lines. 
A. Cell cycle analysis of knockdown cells in RS4;11, NALM6 and REH knockout cells. Cells were harvested and 

fixated with 70% ethanol. After RNase treatment and PI staining, fluorescence signal was collected with flow 

cytometry and analysed with Flowjo.  

B. Cell cycle analysis of FASTKD1 overexpressing REH (upper panel) and NALM6 (lower panel) cell lines. Compared 

with control (LeGO-EV) cells, the FASTKD1 expressing cells (LeGO-FAKD1) do not show significant changes in cell 

cycle. 

C. Cell number of FASTKD1 control (LeGO-EV) and overexpressing (LeGO-FAKD1) cells was counted for 10 days. 

REH 
C 

D  

E  
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D. Cell viability assay for overexpressed REH and NALM6 cells (left panels), and knockdown REH and RS4;11 cells 

(right panels). Cells were exposed to different concentrations of (dexamethasone, Dex) or cytarabine (Ara-C) as 

indicated in the figure for 48 h. Cells were then harvested and yielded to CCK8 analysis to determine the cell 

viability. 

1.3 FASTKD1 represses mitochondrial activity 

Following the previous studies uncovering that FASTKD1 plays a role in mitochondrial 

biology721, its role in mitochondrion was also checked in our ALL cell lines. Firstly, with 

FASTKD1 overexpressing cell line, we confirmed that this protein is located in mitochondrion 

in ALL cell lines (Figure 30A). RNA-seq analysis on FASTKD1 knockdown and knockout cells 

revealed that depletion of FASTKD1 led to the upregulation of all mtRNAs encoded by mtDNA 

(Figure 30B). Repressive function of FASTKD1 in mitochondrial transcription (with ND2 and 

ND3 as the most affected genes) was also validated with qPCR (Figure 30C). Protein level of 

respiratory complexes were checked with cocktail OXPHOS antibody, demonstrating that 

FASTKD1 represses the expression of OXPHOS complexes, especially complex I in protein 

level (Figure 30D). Finally, we measured the oxygen consumption rate (OCR) using seahorse 

XFe96 analyzer and uncovered that both the basal level and maximal level of OCR increased 

in KO cells (Figure 30E).  

To confirm that increased mitochondrial activity is mediated by depletion of FASTKD1, we 

re-expressed FASTKD1 in ko-1 cells, which in turn repressed the mitochondrial gene 

expression (Figure 30F). In addition, mtDNA copy number showed no significant difference 

between control and knockout cells, which is consistent with previous study uncovering that 

FASTKD1 regulates post-transcriptional processes of mitochondrial genes (Figure 30H).  
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 Figure 30. FASTKD1 is a negative regulator of mitochondrial respiration.  

A. Immunofluorescence to detect the localization of FASTKD1-flag in overexpressing cell line. Anti-Flag signal 

overlaps Mitotracker dye. Scale bar = 50μM.  

B. Heatmap of mitochondrial transcriptomic data of FASTKD1 knockdown (sh-1, sh-2) and knockout (ko-1, ko-2) 

cell lines (REH). Data shown are from three independent RNA extractions. 

C. Relative level of ND2 and ND3 in FASTKD1 knockdown (left) and knockout (right); GAPDH was used as internal 

control. Fold changes of gene expression level were calculated via 2-∆∆Ct and are represented by mean ± SEM 

based on at least three independent experiments. Statistical differences between WT and two knockout clones, 

or between shCtl and shRNAs groups were calculated with Fisher’s LSD post one-way ANOVA test using SPSS v20. 

* p<0.05, ** p<0.01, ***p<0.001. 

D. Protein level of OXPHOS complexes. OXPHOS cocktail antibodies were used to probe each respiratory complex. 

Complex I is represented by NDUFB8 subunit, Complex II is represented by SDHB, Complex III is represented by 

UQCRC2, Complex IV is represented by COX1, Complex V (ATP synthase) is represented by ATP5A subunit. 

E. Mitochondrial activity assessed by seahorse XFe96 mito stress test. Oxygen consumption rate (OCR, pmol/min 

per 1×105 cells) was measured at basal level as well as after injection of Oligomycin A (1 μM), FCCP (1 μM), 
Rotenone (0.5 μM) and Antimycin A (1 μM) respectively. Data shown are Mean ± SEM based on 5 replicates of 

seeding cells. 

E D  

F  
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F. Quantification of ND2 and ND3 relative level after FASTKD1 was re-expressed into ko-1 cell lines with qPCR. 

Data shown are mean ± SEM based on 3 RNA extractions. GAPDH was used as internal control. Statistical analysis 

was done as indicated in C. 

G. mtDNA copy number was determined using qPCR. The relative quantity of mtCOX normalized by actin gene 

(DNA) in ko-1, ko-2 and WT cells was shown in the figure. Data are represented by mean ± SEM based on 3 DNA 

extractions. Statistical significance was determined using one-way ANOVA. n.s. not significant. 

2. Mitochondrial activity and β-oxidation drive histone PTMs 

2.1 Mitochondrial metabolism drives histone modifications 

It is well established that cell metabolism could influence nuclear gene expression by regulating 

DNA methylation or histones acetylation. Indeed, as previously discussed, metabolites can act 

as substrates (SAM, acetyl-CoAs etc) or cofactors (FAD, α-KG etc) for enzymes capable of 

adding or removing histone post-translational modifications. More emerging evidences suggest 

that in cancer cells, metabolic alterations and subsequent changes in chromatin modifications 

could potentially modulate cellular characteristics and impact tumor establishment and growth.  

Since our previous data demonstrated that FASTKD1 could regulate the mitochondrial 

activity, we postulated that depletion of FASTKD1 might also affect mitochondrial metabolic 

activities and hence affect histone PTMs, specially histone acylation. To this end, we performed 

MS analysis in an unbiased manner the change of histone acylation with a focus on 

propionylation and butyrylation. As shown in Figure 31A, there is an increased level of H4K5 

and H4K8/12bu in two ko cells compared to WT cells. We performed western blot analysis to 

validate these findings by an independent approach. After the knockout of FASTKD1, we 

observed an overall change in various site-specific of histone modifications, especially 

affecting non-acetyl acylations: butyrylation, beta-hydroxybutyrylation, crotonylation, 

lactylation and succinylation (Figure 31B). Since many of the novel acylations are of unknown 

function, we focused our latter research on histone crotonylation and butyrylation, which have 

been reported to mark active transcription. Interestingly, our data showed that there was an 

increase in H4 lysine 5/8 butyrylation/crotonylation in FASTKD1 KO cells, while no 

significant change was observed in acetylation of the same sites (Figure 31B). We further treated 

the cells with OXPHOS inhibitors, rotenone, which is known to inhibit complex I, and 

discovered a decrease of histone acylation (Figure 31C).  
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Figure 31. Mitochondrial activity drives histone modifications. 

A. Histones acid extracts from WT and two knockout cell lines were subjected to HPLC/MS/MS to determine 

different H3 and H4 PTMs indicated in the figure. Column represents the relative amount in KO versus WT. 

B. Western blot of the indicated histone PTMs using total cell protein extracts from WT and two ko cell lines. 

Histone acetylation (ac), butyrylation (bu), crotonylation (cr), β-hydroxybutyrylation (bhb), lactylation (lac), and 

succinylation were probed with indicated site-specific anti-PTM antibodies. 

C. WT and knockout cells (ko-1, ko-2) were exposed to 0.5μM rotenone for the indicated time. Total protein was 

used for probing H4K5bu and H4K5ac.  
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2.2 Fatty acid metabolism (β-oxidation) is a major driver of histone acetylation-acylation 

Acyl-CoAs are predominantly involved in lipid metabolism, including FA biosynthesis, degradation. 

They are also involved in ketogenesis, ketolysis and amino acid catabolism. Since in KO cells, several 

acylations marks (bu, cr, bhb) changed, from a biochemical point of view, we hypothesized that fatty 

acid metabolism could be involved. To study the role of fatty acid metabolism in histone acylation, 

we take advantage of some compounds that either fuels or inhibit fatty acid metabolism (Figure 32A). 

Octanoate is an 8-carbon fatty acid which is known to fuel beta-oxidation. Addition of octanoate to 

the cell culture medium drastically enhanced the overall level of histone modifications, including 

acetylation, butyrylation, and crotonylation (Figure 32B). Additionally, treatment of cells with 

crotonate (4 carbon non-saturated fatty acid) not only increased histone crotonylation but also 

acetylation (Figure 32 

Figure 32C). Repressing acyl-CoA thiolase (KAT) involved in β-oxidation spiral with 

ranolazine attenuates the basal, as well as octanoate induced acetylation and acylation (Figure 

32D). Furthermore, inhibition of long chain fatty acid-CoA synthetase (ACSL) enzymes with 

Triacsin C, or of acetyl-CoA carboxylase 1 (ACACA, producing malonyl-CoA from acety-CoA 

in lipid de novo synthesis) with ND-630 reduced histone acylation (Figure 32E&F). Finally, we 

also knocked down key enzymes in β-oxidation. These data suggest that β-oxidation indeed 

might be the important pathway in driving histone acylation and acetylation.  
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Figure 32. β-oxidation drives histone acylations. 

A. Treatment strategy targeting fatty acid metabolism. ACC, Acetyl-CoA carboxylase; ACSL, long chain acyl-CoA 

ligase; CPT, carnitine palmitoyltransferase. 

Western blot analysis of H4K5ac and H4K5bu were performed in urea cell extracts from cells pre-treated with 

the indicated chemical compounds. REH (upper panel) and SEM (lower panel) cells were treated with octanoate 

for 24 hours with the indicated concentrations (B). REH was treated with crotonate for 6 hours with the indicated 

concentrations before western blot analysis (C). REH WT and two ko cell lines were exposed to 0.3 mM ranolazine 

with and without 2 mM octanoate for 24 hours (D), or with100 nM ND-630 for 6 hours (E) , or with 3 μM Triacsin 
C for 16h (F).  

2.3 Mitochondrial activity is associated with β-oxidation and histone acylation in B-ALL 

patients’ samples 

Inspired by our data one cell lines, we come back to ALL patients’ samples. Bone marrow 
samples from a cohort of 31 B-ALL patients were acquired and protein and RNA were extracted 

in parallel and used to monitor specific gene expression by RT-qPCR and the occurrence of 

histone PTMs by ELISA. First, we found that CPT1A mRNA level is highly correlated with 

ND2 (rs = 0.531) and ND3 (rs = 0.508) (Figure 33A, B), implicating the correlation of 

mitochondrial activity and β-oxidation in patients. Besides, the positive correlation between 

D  
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mitochondrial activity and histone acylation (H4K5cr/bu), and between CPT1A and H4K5cr/bu 

were determined in B-ALL patients (Figure 33C, D). 

 
Figure 33. Mitochondrial activity is associated with β-oxidation and histone acylation in B-ALL 

patients. 
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RNAs and proteins were extracted from same batch of patients’ bone marrow mononuclear cells samples (n=31) 

using AllPrep DNA/RNA/Protein Mini Kit (Qiagen). ND3 and CPT1A mRNA levels were determined by RT-qPCR 

and were represented by -ΔCt (subtracted from GAPDH). H4K5cr and H4K5bu were measured by ELISA 

normalized with respect to H3. Correlation of ND2 and CPT1 mRNA levels (A) and ND3 and CPT1A mRNA levels 

(B) were determined by spearman correlation. rs and P value are indicated at corresponding figures.  

C. Patients were divided into two groups using ROC curve according to the contribution of ND2 (C) or CPT1A (D) 

value to H4K5cr/bu. Patients with low level of ND2 (n=13) have reduced level of H4K5cr/bu compared to high 

ND2 group (n=18). Similarly, patients with low level of CPT1A (n=20) have reduced level of H4K5cr/bu compared 

to high CPT1A group (n=11). Each dot or triangle represent one individual. Bar is median ± quartile range. 

3. Acyl/acetyl determines the dynamic interaction of BET with chromatin 

3.1 BRD4 binds acetylated but not K5 acylated histones 

BET family proteins are important readers that link acetylation with transcriptional regulation. 

Previous study indicated that first bromodomain (BD1) of BRDT accommodates diacetylated 

lysine residue (H4K5acK8ac) but not when the K5 residue is butyrylated (i.e., H4K5buK8ac). 

Therefore the ratio of acyl/acetyl might impact BET-chromatin interaction dynamics: higher 

ratio disfavors BRDT-chromatin interaction, resulting in a loose and dynamic bound state, 

while a decreased ratio favors a tight binding and leads to a stable interaction145. We noticed 

that FASTKD1-mediated mitochondrial activity prominently impacts non-acetyl acylations but 

not acetylations, therefore we decided to take this cell model as a tool to test such hypothesis. 

In this setting, we considered BRD4, the ubiquitously expressed BET protein. We tested 

BRD4’s ability to bind H4K5 and K8 ac/bu peptides following a pull down experiment. As 

expected, BRD4’s binding to an acetylated H4 tail peptide can be inhibited by butyrylation, 

especially H4K5bu (Figure 34).  

 

Figure 34. The binding of BRD4 to acetylated peptides are perturbed by K5bu.  
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Cell extracts were prepared from REH WT cells and was incubated with beads conjugated with the indicated 

modified peptides. BRD4 was visualized after the pull-down assays.  

3.2 Acyl/acetyl ratio determines BRD4 binding affinity to chromatin in REH cells 

As described in the introduction part, we proposed the hypothesis that BRD4 binds to chromatin 

in a dynamic manner, furthermore, such binding dynamics is determined by acyl/acetyl ratio. 

Since our previous data suggested that the depletion of FASTKD1 increases dramatically 

histone butyrylation and crotonylation but not significantly acetylation. This situation should 

in turn result in an increased acyl/acetyl ratio. We decided to take use of these cell line models 

to verify our hypothesis. Firstly, we confirmed that the altered acyl/acetyl did not change the 

amount of total BRD4, nor the ability of BRD4 binding with chromatin in control and KO cell 

lines (Figure 35A). To visualize the bound state of BRD4 to chromatin, we took advantage of 

salt elution assay and JQ1 dissociation assay. Indeed, we obtained more soluble BRD4 in KO 

cells using a lysis buffer containing 200 mM NaCl compared to WT cells, which suggest less 

tightly bound state of BRD4 to chromatin in KO cells (Figure 35B). Similarly, when treating 

cells with low dose of JQ1 to competitively dissociate BRD4 with chromatin, we obtained more 

soluble BRD4 in KO cells, which is in accord with a more dynamic binding in vivo (Figure 

35C). Furthermore, we treated REH cell nuclei with butyryl-CoA to increase butyryl/acetyl ratio 

and performed salt elution assay to obtain BRD4. As shown in Figure 35D, we eluted more 

BRD4 in butyryl-CoA treated compared to control cell nuclei. Collectively, these data suggest 

that increased acyl/acetyl ratio contributes to loosely bound state between BRD4 and chromatin 

in REH cells. 
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Figure 35. Acyl/acetyl ratio determines the BRD4 binding affinity to chromatin.  

A. REH WT and two KO cell lines were extracted with lysis buffer containing 500 mM salt, the supernatants 

containing total BRD4 were then collected and diluted to reach a concentration of 250 mM, which used in a 

peptide pull-down assay with the indicated peptides. BRD4 was then eluted from beads and probed following a 

western blot analysis. 

 

B. REH WT and two KO cells were used to extract proteins with lysis buffers containing increased concentrations 

of NaCl. After centrifugation to pellet nuclei, supernatants were used to detect soluble BRD4. In this figure BRD4 

appeared to be less tightly bound to chromatin in KO cell groups when salt concentrations reached 200mM (red 

text). 
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C. Western blot of soluble BRD4 dissociated by JQ1. WT and two ko cell lines were pre-exposed to JQ1 

(concentrations as indicated) before cell lysis in a buffer containing 100 mM NaCl. Less tightly bound BRD4 was 

dissociated from chromatin in KO cells when treated with 0.5 μM JQ1. 

D. Nuclei from REH cells were used for acylation reaction. Left panel shows the H4K5bu and H4K5ac level after 

acylation reaction. Acylated nuclei were used in a salt elution assay similar to B (right panel). 

3.3 Acyl/acetyl ratio determines BRD4-chromatin binding dynamics in COS-7 cells 

Previously, Pr. Heinz Neumann and Dr. Martin Spinck constructed several mutants of CobB 

which displayed distinctive deacetylase, decrotonylase or debutyrylase activity730. We therefore 

transfected this protein and its mutants in order to change the balance of acylation/acetylation 

status. Unfortunately, we failed to establish stable changes of de-ac/bu/cr marks after transient 

transfection of either wild type or mutated CobB following different series of experiments (data 

not shown). We also established stable cell lines expressing wild type CobB and managed to 

obtain a stable increased acyl/acetyl ratio in CobB-expressing cells. The increased acyl/acetyl 

ratio was observed both with western blot analysis and ELISA (Figure 36A&B). Next, we 

performed salt elution assay in control and CobB-expressing cells. Similarly, we obtained more 

soluble BRD4 in CobB expressing cells, which is in accord with a more dynamic binding of 

BRD4 in this group of cells. To visualize the dynamics of BRD4 in live cells, we decided to 

perform FRAP experiment on BRD4. According to our previous experience, BRD4 was found 

to be very dynamic in COS cells. Therefore we reasoned that it might be difficult to record an 

even more dynamic movement by FARP on BRD4 in COS-CobB cells. To solve this problem, 

we performed FRAP experiment on BRD4-NUT, given that it forms stable foci on chromatin 

dependent on histone acetylation and BRD4 bromodomains471. Using this system, we observed 

faster recovery after photobleaching, with shorter t1/2 of recovery time in CobB transfected 

cells (6.26 ± 0.33s VS 8.94 ± 0.73s, and a higher mobile fraction in CobB expressing cells (0.84 

± 0.05 VS 0.76 ± 0.02), indicative of a more dynamic binding of BRD4 in CobB expressing 

group (Figure 36C&D). These data suggest that acyl/acetyl ratio determines binding dynamics 

between BRD4 and chromatin. 
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Figure 36. Acyl/acetyl ratio determines BRD4-chromatin binding dynamics in COS-7 cells. 

A. COS-7 cells stably expressing CobB were used in this experiment. Left panels showed the levels of histones 

acetylation and butyrylation in control and CobB expressing cells. Left panel shows the expression of the 

exogenous CobB-HA.  

B. H4K5ac, H4K5bu, H4K5cr levels were determined between control and CobB-expressing COS-7 cells. CobB 

expressing cells displayed a significant decreased H4K5ac but mildly decreased H4K5bu and H4K5cr. Median and 

interquartile range from 5 datasets are plotted in the boxplot and the Whiskers represent the top and bottom 

quartiles. Mean values were indicated as “+”. 
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C. COS-7 control and CobB-expressing cells were extracted with lysis buffer containing increased concentrations 

of NaCl.  After centrifugation to pellet nuclei, supernatants were used to detect soluble BRD4. In this figure 

BRD4 appeared less tightly bound to chromatin in CobB-expressing group when salt concentrations reached 150 

mM (red text). 

D. FRAP experiment on BRDR-NUT was performed in COS-7 control and in CobB-expressing cells and GFP 

florescence was recorded after photobleaching. Datasets for each cell group were individually fitted onto the 

single exponential model described in materials and methods. Data shown is mean± 2SEM based on 8 replicates. 

The t1/2 values were calculated from the FARP curve. 

4. Acyl/acetyl drives BET redistribution across genome  

4.1 H4K5cr is enriched on highly acetylated chromatin and is associated with active 

transcription 

We performed ChIP-seq on H4K5cr, H4K5ac to visualize the distribution of these marks across 

the genome. RNA-seq analysis was also performed to determine the transcriptional output of 

these alterations. First, we confirmed the correlation between histone acylation (H4K5cr in our 

case) with transcriptional activation, as it has been characterized and reported in previous 

publications142, 144, 167. Furthermore, we identified that higher H4K5cr/ac ratio marks the most 

active genes (Figure 37A). Ever since the discovery of short chain histone acylations, these 

marks have been suggested to be redundant with acetylation, given that they overlap with 

acetylation and are relatively of low abundance. However, in our work, we uncovered that the 

correlation between histone acetylation and crotonylation does not always follow a linear 

correlation. Indeed, by comparing all the genes TSSs’ coverage of these two marks, we 
identified that at low level of histone acetylation, there is a linear correlation between H4K5ac 

and H4K5cr, whereas, at high levels of acetylation, a 3rd degree polynomial correlation better 

fits their correlation (Figure 37B, right panel). Besides, we found that in FASTKD1 KO cells 

which harbor increased acyl/acetyl, such deviation between the fitted linear correlation and 3rd 

degree polynomial correlation is even more obvious (Figure 37B, left panel). Collectively, these 

data suggest that, H4K5cr preferentially occurs on highly acetylated area and covers the highly 

active genes. 
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Figure 37. H4K5cr is enriched on the highly acetylated TSS regions and is associated with active 

transcription. 

A. Heatmap of H4K5cr and H4K5ac distribution across genome from WT cells. According to the level of H4K5ac/cr 

ratio, genes are divided into 5 groups, as shown in the figure (left panel). Those which are covered by high 

H4K5cr/ac marks are most highly transcribed (right panel). 

B. Total level of H4K5ac and H4K5cr on gene TSSs. As shown in the figure, most gene TSSs which are covered with 

low to median level of H4K5ac are also covered with modest level of H4K5cr, as shown by the linear correlation 

between H4K5ac and H4K5cr in the figure. However, genes that are covered by very high level of H4K5ac are 

covered with extremely high level of H4K5cr, as shown by the 3rd degree polynomial correlation between H4K5ac 

and H4K5cr. In ko-1 and ko-2 cells, the polynomial correlation is even more obvious than the control cells, as 

indicated by the red arrows in the figure.  

4.2 Altered H4K5cr/ac drives a redistribution of BRD4 genomic localization 

As described above, our previous results suggested that a higher acyl/acetyl ratio favors the 

dynamic movement of BRD4. Since the total amount of BRD4 does not increase in KO cells, 
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we hypothesized that the increasing acyl/acetyl ratio might result in a re-distribution of BRD4 

on genomic regions. To characterize the genomic distribution of BRD4, we performed ChIP-

seq analysis. We could identify that BRD4 is enriched over the nucleosome free region (NFR) 

surrounded by the +1 and -1 nucleosomes (Figure 38A, left panel). When grouping gene TSS 

regions (± 2000bp) according to their transcriptional activity, we better visualized that H4K5cr, 

H4K5ac and BRD4 preferentially cover active genes (Figure 38A). In the case of BRD4, the 

highly active genes are covered by high levels of BRD4 on the NFR-associated regions (Figure 

38B). In addition, cells with an increased acyl/acetyl ratio (FASTKD1 KO), we observed an 

increased enrichment of BRD4 at the NFR regions. These data suggest that, upon increased 

acyl/acetyl marks, BRD4 can be released from various genomic regions towards the NFRs of 

active genes.  

 

Figure 38. H4K5cr/ac ratio confers to BRD4 genomic re-distribution.  

Anti-BRD4, H4K5ac and H4K5cr ChIP were performed in WT, ko-1 and ko-2 cells.  
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A. (Left panel) Distribution of BRD4 on all TSS regions (TSS ± 2000). A peak on nucleosome free regions (NFRs) 

other than -1/+1 nucleosome was identified at TSS (shown as blue). TSS regions were then divided into four 

groups according to their expression state (right panels). H4K5ac, H4K5cr and BRD4 distributions were indicated 

in each group of genes. As shown in the figure, the most highly expressed genes are associated with high H4K5cr 

and H4K5ac, and are mostly enriched with BRD4 at NFRs. 

B. ChIP signals of BRD4 were mapped on TSS regions in different groups described in A. As shown in the figure, 

the most highly expressed genes are mostly enriched with BRD4 at NFRs, in ko-1 and ko-2, such enrichment is 

more obvious.  

4.3 Genomic redistribution of BRD4 regulates the expression of sets of genes in REH cells 

and ALL patients 

BRD4 is a master regulator of gene transcription, therefore the redistribution of BRD4 should 

result in an alteration of specific gene transcription. To uncover the transcriptional changes 

mediated by BRD4, we treated the WT cells with BRD4 bromodomain inhibitor, JQ1 and 

performed RNA-seq analysis. Using GSEA, we identified that a subset of genes upregulated in 

FASTKD1 KO cells are enriched in genes downregulated in JQ1 treated cells. Of note, we also 

identified a subset of genes upregulated in FASTKD1 KO cells enriched in downregulated 

genes in JQ1 treated cells (Figure 39A, B). This data demonstrate that these two sets of genes in 

FASTKD1 KO groups are JQ1 sensitive, and the differential expression of these genes in KO 

compared to WT group is likely attributed to the redistribution of BRD4 in KO cells. 

Furthermore, we also identified that genes downregulated and upregulated in FASTKD1 KO 

groups are also enriched in different groups of B-ALL patients samples with high or low 

acylation level respectively (Figure 39C, D). We further performed Gene Ontology analysis and 

identified that genes that encode mitochondrial membrane protein, cell cycle are upregulated, 

while genes that encode stemness are downregulated in FASKTD1 KO cells or in JQ1 treated 

cells (Figure 39E). 
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Figure 39. Genomic redistribution of BRD4 regulates specific sets of genes in REH cells and ALL 

patients.  

Volcano plot demonstrating the differential gene expression signature between FASTKD1 KO (A) and control, and 

between B-ALL blasts with high H4K5 acylations (crotonylation and/or butyrylation, n = 15) and B-ALL blasts with 

low acylations (n = 10) (C). Y axis: -log10 (p-value); x-axis: log (ratio of normalized expression values between ko 

and WT cells) (A), log (ratio of normalized expression values between B-ALL with high and low acylation levels) 

(C). The genes down-regulated or up-regulated with a fold change >1.5 and a Student t-test p-value < 0.05 are 

respectively represented in blue and red. 

B. The two gene groups defined in A were respectively used as genesets for GSEA plots to test for their 

enrichment/depletion in the JQ1-treated REH cells. These plots show a significant depletion of genes up or down 

regulated in FASTKD1 KO cells. These genes are therefore JQ1 sensitive. 

D. The two gene groups defined in C were respectively used as genesets for GSEA plots to test for their 

enrichment/depletion in the FASTKD1 KO cells. These plots show significant depletion or enrichment of genes 

respectively down or up regulated in FASTKD1 KO cells suggesting that the transcriptional effect of high acylation 

in B-ALL blasts is similar to the effect of FASTKD1 ko- induced high acylation in REH cells. 

E. GeneSet Enrichment Analysis (GSEA) plots representative of genesets enriched or depleted in the 

transcriptomic signature of KO versus WT cells (left panels), of JQ1 treated versus untreated (middle panels) REH 

cells and B-ALL with high versus low H4K5cr/bu levels (right panel). NES = normalized enrichment score; Pval = 
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nominal p-value, a p-value of 0 indicates a p-value < 1/2000 (since our analysis was performed with 2000 

permutations); FDR = False discovery rate adjusted for gene set size and multiple hypotheses testing. 
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DISCUSSION 

1. Oncogenic role of FASTKD1 in ALL 

An increasing body of evidence established that reactivation of C/T genes initiates additional 

cell signaling required for cell transformation and tumor aggressiveness702. Based on this theory, 

my colleagues previously established specific data mining strategies to identify ectopically 

activated C/T genes, which are correlated with prognosis in ALL. Among the identified genes 

the expression of the single gene FASTKD1 predicts inferior outcome711. My PhD thesis project 

aimed to unravel the oncogenic role of this gene in ALL.  

FASTKD1 belongs to the FASTK family, which are known to be involved in mitochondrial 

mtRNA biology, from RNA processing to translation. Among the six proteins of this family, 

FASTK, FASTKD2-5 have all been reported to be required for the proper expression of various 

mitochondrial mRNAs and are required for ETC stoichiometry and function712. In contrast, 

FASTKD1 appears to be the only member that negatively regulates mitochondrial mRNAs 721. 

FASTK family proteins possess distinctive specificities over mitochondrial mRNAs. For 

instance, FASTK was reported to protect ND6 from mitochondrial degradosome-mediated 

degradation, while FASTKD1 specifically represses ND3 expression719, 723, 738, 739. FASTKD2 and 

FASTKD5 were characterized to profoundly regulate the overall biogenesis of mitochondrial 

proteins722, 740.  

In our previous experiment, we confirmed that FASTKD1 is a negative regulator in mtRNA 

biology. However, in our study, compared to Boehm and colleagues’ study721, depletion of 

FASTKD1 leads to an overall upregulation of mitochondrial mRNAs in addition of ND3. This 

discrepancy might be attributed to the different cell models used in our work. Besides, we 

uncovered that FASTKD1 does not influence mtDNA copy number of cells, implicating that it 

is the regulation of mitochondrial mRNAs. Indeed, our data indicate that FASTKD1 should act  

at transcriptional or post-transcriptional levels, such as RNA processing and degradation.  

Previous studies indicate that OXPHOS activity is associated with cancer cell survival or 

tumor progression, although it remains enigmatic whether it is oncogenic or tumor-

suppressive741-743. Traditionally, high OXPHOS activity generates high reactive oxygen species 

(ROS), which in turn damage the tumor cells. Indeed, this has been viewed as one of the major 

mechanisms underpinning dysfunctional mitochondrial activity in solid tumors. We also 

measured the ROS in FASTKD1-depleted cells but found no significant changes (data not 

shown), indicating that the redox balance could be well-maintained in our model system. As 

FASTKD1 represses mitochondrial respiration, we assumed that it might protect cells from 

stress. However, although we monitored various phenotypic changes after depletion or 
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overexpression of FASTKD1, no impact on the cell proliferation, chemotherapeutic responses 

and the cell cycle were observed. We also cultured FASTKD1-deleted and overexpressing cells 

to FBS starvation but still no significant difference was observed compare to control cells (data 

not shown). Such observations implicate that the oncogenic role of FASTKD1 in ALL is either 

modest or more delicate to detect.  

Cancer aggressiveness relays on a series of pathological events that favor resilient cellular 

characteristics in cancer as well as the manifestation of refractory or relapsed diseases in the 

clinics. In general, aggressive cancers can be classified as: 1) cancer cells that are primarily 

resistant to therapies, i. e., the percentage of blasts barely reduces after the initial therapy; 2) 

the bulk of blasts is eliminated after initial therapy, but a small fraction of cells survive and 

induces the development of a tumor in a short term; 3) patients achieve morphological complete 

remission but develop relapse in the long run.  

The primary resistance or short-term relapse might result from the enhanced ability of the 

cells to export chemotherapeutic drugs, or to acquired anti-apoptotic capabilities, etc. In 

contrast, long-term relapse is mediated by persistent cancer re-initiating cells. Such cancer re-

initiating cells possess some common characteristics, such as dormancy and stemness632. Indeed, 

in the previous work leading to the identification of the six marker genes, thanks to their cell 

stratifying ability, we could uncovered that tumoral cells from patients who have poor outcome 

have acquired “stem-like” characteristics711.  

However, it is noteworthy that relapsed or refractory diseases are complex traits and could 

depend on may linked or independent oncogenic events. Indeed, we know that 1) the in vivo 

environment (e.g., bone marrow microenvironment) of tumoral cells is much more complicated 

than that of cell lines; 2) the relapse-inducing cells are minor clones; 3) the acquisition of cancer 

aggressiveness could be a multiple-step process. These considerations might partially explain 

why in our in vitro studies we did not detect any frank oncogenic activity associated with 

FASTKD1 expression.  

In conclusion, this part of work addressed the repressive role of FASTKD1 on mitochondrial 

activity, and uncovered that FASTKD1 does not influence the proliferation nor the viability of 

REH cells in vitro. We also identified a correlation between the mitochondrial gene expression 

and prognosis by reviewing clinical data of B-ALL and T-ALL cohorts (not shown). Supporting 

the conclusion of our molecular studies. Collectively, this part of my work uncovered the 

correlation between mitochondrial activity and cancer prognosis in ALL. 

2. Mitochondrial activity affects histone PTMs 

It has long been established that cell metabolism affects histone modifications. Since more than 

two decades ago, the perturbation of acetyl-CoAs has been documented to impact the protein 
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acetylation, including histone acetylation744, 745. With the identification of novel types of 

modifications, including crotonylation, butyrylation, succinylation etc., more evidences have 

emerged concerning the process of cellular metabolism-driven histone modifications in 

physiology and diseases, including cancer.  

For the last few decades, studies have revealed the spatiotemporal control of metabolite 

production. Indeed, metabolites, including acetyl-CoA, non-acetyl acyl-CoA have different 

subcellular compartments. Normally, cytosolic and nuclear compartments are believed to share 

the same metabolite pool because of the existence of permissive nuclear pores. Mitochondrion, 

however is a distinctive compartment because of its non-permissive membranes. Although 

transport systems have been characterized for the export of acetyl-CoA and import of fatty acids, 

there are still many obscure aspects of CoA derivatives’ export that need to be understood. 

Lately, more studies have described metabolite compartmentalization and the underlying 

mechanisms. Two new concepts have been introduced regarding the metabolism-driven histone 

modifications. Firstly, various metabolic enzymes, including the TCA enzymes have been to 

found to be located in the nucleus, whereby they produces the corresponding metabolites for 

histone modifcations594. Secondly, several studies indicate that other than the citrate shuttle, 

there might be unknown mechanisms regarding the metabolites cross-talk between 

mitochondrial and nuclear compartment. For instance, McDonnell and colleagues have reported 

that fatty acid is the major fuel of histone aceylation and the produced acetyl-CoA could impact 

histone acetylation in a manner that is independent of the citrate shuttle562. In addition, Murphy 

and colleagues have pointed out that sccinyl-CoA might be shuttled through carnitine-

succinylcarnitine system, while succinate can be exported from mitochondrion through 

dicarboxylate carrier SLC25A10 and supplies the cytosol/nuclear succinyl-CoA pool596. With 

our cell model and in patients tumoral cells, we established the link between mitochondrial 

activity and histone PTMs, prominently non-acetyl acylations, where an increased 

mitochondrial activity drives a higher level of histone H4 acylations (e.g., crotonylation, 

butyrylation, β-hydroxybutyrylation, etc.).  

As cancer cells have almost ubiquitously reprogrammed metabolism, metabolism-driven 

histone modifications could be a common mechanism underpinning tumor biology. Indeed, 

although only tested in a small patient samples cohort, our studies uncovered that mitochondrial 

metabolism-driven histone modifications (H4K5cr and H4K5bu) also occurs in tumoral 

samples. However, more precise models need to be established to address the functional roles 

of the interplay between cell metabolism and its epigenome and to precisely characterize the 

resultant changes (e.g., cell fate), as well as to demonstrate the specific epigenetic patterns 

underpinning the corresponding functions in cancer biology. 

Collectively, metabolism-driven histone modifications have begun to emerge as one of the 

crucial oncogenic mechanisms. Our work on mitochondrial activity – fatty acid metabolism – 
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histone PMTs added one piece of evidence to these mechanisms. For the moment, the precise 

epimetabolic pathways active in cancer cells remain enigmatic. More specially there are many 

questions regarding metabolic enzymes translocation, metabolites shuttling etc. In the case of 

functional output of metabolism-driven epigenome programming, it would be important to 

define the types of epigenetic patterns that are required for specific aspects of cancer biology. 

Furthermore, the mechanisms underpinning specific epigenetic alterations and gene expression 

programs are to be understood. All these fields await further investigations and might shed light 

on novel mechanisms underlying cancer establishment and development. 

3. The ratio of acyl/acetyl tunes BET-chromatin interaction dynamics 

Previous studies showed that the first bromodomain (BD1) of BET family protein has very 

weak affinity over monoacetylated lysine. However, this binding is greatly enhanced by 

multiple acetylated sites, e.g., tetra-acetyllysine (H4K5acK8acK12acK16ac). In contrast, the 

second bromodomain (BD2) of BET can bind mono and multiple modified histones, including 

histone H3. Interestingly, the binding of BD2 to tetra-acetylated H4 has only 1/10 the affinity 

of the binding affinity of BD1 to tetra-acetylated H493. Moreover, Morinière and colleagues 

have identified that BD1 binds simultaneously H4K5ac and H4K8ac and that the affinity of 

BD1 binding to diacetylated histone H4 tail is almost equal of its binding to tetra-acetylated 

histone H4 tail100. These data suggest that the interaction between BD1 and H4K5acK8ac is the 

major interaction underlaying the binding of BET to acetylated H4.  

Furthermore, it has been suggested that the butyrylation at H4K5 can preclude the binding 

of acetylated H4 peptides by BD1. A structural model considering the interaction between 

BRDT BD1- H4K5buK8ac in comparison with BRD4 - H3K14bu revealed that the butyrylated 

lysine at H4K5 position results in a steric clash between the histone peptide and the ZA loop of 

BD1. Furthermore, the conformational adaptation of H4K5buK8ac into BD1-binding pocket 

might indeed disrupt many of the interactions between acetylated H4 peptides and BD1100. Our 

data was in accord with these findings, where the binding between BRD4 and acetylated H4 is 

abolished by the butyrylation at H4K5 site (Figure 34). 

In the literature there are evidences indicating that H4 hyperacetylation is strictly ordered 

where histone H4 acetylation occurs from K16 and spreads over N terminal lysine residues 

(“zipper acetylation”). This theory is supported by the observations that only H4K16 acetylation, 

H4K16K12 di-acetylaion, K4K16K12K8 tri-acetylation and the tetra-acetylation of all four 

lysines (H4K5K8K12K16) were identified using mass spectrometry analysis of histone 

modifications. This situation was observed in a variety of organisms ranging from lower 

eukaryotes to human cells746-748. In this context, the presence of K5acK8ac is considered as a 

mark for H4 hyperacetylation and often indicates active transcription749. As demonstrated before, 
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in spermatocytes and round spermatids, there is a co-occurrence of H4 acetylation and H4 

butyrylation marks (H4K5K8 ac/bu) around the TSS regions (TSS±5000), of the most active 

genes. Furthermore, the BRDT bound regions are enriched with a higher degree of the co-

coverage of these four marks, even though H4K5bu perturbs BRDT - H4 interaction. 

Considering that histone acetylation and butyrylation are dynamic marks which undergo rapid 

turnover, the authors from my host laboratory proposed the hypothesis that explains such a 

paradox: BET (BRDT) binds with acetylated chromatin in a dynamic manner. Based on this 

hypothesis, the dynamics of BET-chromatin is tuned by the relative level of histone butyrylation 

over acetylation : increased butyrylation disfavors BRDT – H4 interaction and thus contributes 

to a more dynamic interaction. In contrast, increased acetylation favors a tight binding145. 

In our work, we brought additional arguments in favor of the above theory which seems to 

be also valid in a completely different system. Firstly, the above theory applies not only to 

butyrylation, but also to all other histone acylations (more than 3 carbons, >3C abbreviated). 

This is based on the evidence that: 1) short chain acylations, for example crotonylation, β-

hydroxybutyrylation etc. have similar to butyrylation and longer chain acyl groups and the 

corresponding histone acylations should be less likely to properly interact with BD1. 2) Similar 

to acetylation, all these newly identified histone acylations have a rapid turnover rate. 3) These 

acylations systematically co-occur with histone acetylation (this will be further discussed in the 

next section). Secondly, the relative level of histone acetylation over acylation is tuned by 

acetyl/acyl-CoA level, which are themselves controlled by cell metabolism. The point has been 

covered in the introduction part.  

Based on our data, we proposed that the interaction between BET proteins (BRD4 in our 

case) and chromatin are determined by acyl/acetyl ratio. A higher acyl/acetyl ratio leads to a 

more dynamic BRD4-chromatin interaction, whereas a lower ratio contributes to a tighter 

chromatin binding by BRD4. Among different experiments we performed, BRD4 elution assay 

and FRAP experiments directly support this hypothesis (Figure 35, Figure 36). 

In conclusion, we discovered that acyl/acetyl ratio controls BET - chromatin interaction 

dynamics. As acyl/acetyl marks can be regulated by metabolic state, factors such as FASTKD1 

that control the mitochondrial activity, could in turn control the metabolism – chromatin 

signaling. Since cancer cells present a systematic altered metabolism and given that BRD4 is 

broadly involved in various cancer types, the mechanism we uncovered here might largely 

contribute to oncogenesis. 

In the next section, I will discuss how this dynamic pattern impact the BRD4 mediated 

biological processes including gene transcription. 
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4. Acyl/acetyl ratio controls BRD4 genomic redistribution and gene 

transcription 

Since their identification, functional studies on histone acylations revealed redundant activities. 

Although much less abundant than acetylation, histone acetylation co-occurs with histone 

acetylation on active genes. However, there are some evidences supporting a distinct role for 

non-acetyl histone acylation in gene transcription. Among these evidences we can enumerate 

the identification of specific readers and writers for these acylations. However, here also we are 

missing convincing arguments in favor of the distinctive roles of these factors compared to 

those known to control histone acetylation.  

Herein, we found that histone acylation, H4K5cr for example, is associated with active 

transcription, as reported in previous studies. Furthermore, we uncovered that, high ratio of 

cr/ac marks the most actively transcribed genes. Indeed, the ChIP-seq analysis revealed that 

metabolism-driven H4K5cr preferentially occurs on highly acetylated chromatin. As described 

in chapter III, longer chain acylations (>3C) preclude BET-chromatin interaction. We therefore 

reasoned that chromatin loci presenting high acyl/acetyl ratio should favor the release of BET 

proteins from the corresponding regions. This observation allowed us to propose the reservoir 

theory for BET factors. This hypothesis was previously proposed for a transcription factor 

MIFF which is released from low-affinity regions and as a result of its acetylation. Acetylated 

MIFF becomes then available to bind its high affinity regulatory elements750. In our case, BRD4 

is displaced from regions gaining a higher acyl/acetyl ratio and becomes available for binding 

to other genomic regions, i. e., the TSS of highly active genes. 

Gene transcription initiates with PICs assembly at the promoter regions upstream of TSS. 

Nucleosome free regions (NFRs) were firstly identified on Pol II promoters in yeast upstream 

of TSS751, 752 and were then found on active gene.TSSs in human cells13, 753. Since most of the 

transcription factors preferentially access free DNA, NFRs could theoretically allow 

transcription factors to assemble in order to initiate transcription. NFRs were also suggested to 

modulate enhancer-promoter communication754. In our work, using MNase ChIP-seq, we 

observed that the NFRs could interact with BRD4. Furthermore, the redistribution of BRD4 

driven by acyl/acetyl ratio impacts the presence of BRD4 at NFRs, which in turn might control 

gene transcriptional alterations. Our results identified subsets of both upregulated and 

downregulated genes in high acyl/acetyl cell group (FASTKD1 KO) that are also among the 

JQ1 sensitive genes. This observation also comes in support of our model on the regulation of 

BRD4 activity by the changing acyl/acetyl ratio.   

It is noteworthy that we also monitored the acylation-tuned transcriptional output in patients’ 
samples. Indeed, the gene set enrichment analysis showed that tumors with higher histone 
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acylation groups have enhanced expression of genes involved in mitochondrial component, cell 

cycle and ribosome synthesis. They also present decreased expression of stemness associated 

genes in cell lines and in primary blasts. These are in accord with less aggressive tumors, and a 

relatively favorable outcome in this group of patients. 

Collectively, our work highlights the importance of these relatively low abundant histone 

marks in regulating gene transcription. More specifically, these acylations preferentially 

regulate highly transcribed genes where in combination with acetylation, they tune BRD4 

availability across various genomic regions. Therefore, our work also proposes a new 

hypothesis on the functional importance of histone PTM combination, in addition to their 

individual role.  
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Abstract 

In addition to acetylation, histones are modified by a series of competing longer chain 
acylations. Most of these acylation marks are enriched and co-exist with acetylation on active 
gene regulatory elements. Their seemingly redundant functions have hindered the 
understanding of histone acylations’ specific roles. Here, by using an acute lymphoblastic 
leukaemia (ALL) cell model and blasts from B-ALL patients, we demonstrate a role for 
mitochondrial activity in controlling histone acylation/acetylation ratio, especially at H4K5. An 
increase of the ratio of non-acetyl acylations (crotonylation or butyrylation) over acetylation on 
H4K5 weakens BRD4 bromodomain-dependent chromatin interaction and enhances BRD4 
nuclear mobility and availability for binding transcription start site regions of active genes. Our 
data suggest that the metabolism-driven control of the histone acetylation/longer chain 
acylation(s) ratio could constitute a common mechanism regulating the bromodomain factors’ 
functional genomic distribution. 
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Introduction 

Since the discovery of histone lysine propionylation and butyrylation in 2007 (Chen et al., 2007), 

an increasing number of different histone acylations has been reported. The vast majority of 

these histone post-translational modifications (PTMs) occur at sites already known to be 

acetylated and hence overall these new histone PTMs could collectively be considered as 

acetylation competing marks. Functional studies carried out on these histone marks in different 

biological systems have shown that they are all associated with active genes and directly 

stimulate transcription, similar to histone acetylation (Kebede et al., 2017; Goudarzi et al., 2016; 

Dai et al., 2014; Sabari et al., 2015; Smestad et al., 2018; Xie et al., 2016; Bao et al., 2019; 

Huang et al., 2018; Zhang et al., 2019).  

Comparative high-resolution genome mapping also revealed that, in the majority of active 

chromatin loci, these histone acylations co-exist with acetylation (Tan et al., 2011; Dai et al., 

2014; Goudarzi et al., 2016; Sabari et al., 2015; Kebede et al., 2017; Crespo et al., 2020). 

Additionally, although these acylations are mostly mapped at gene transcriptional start site 

(TSS)- associated regions, as would be expected for active histone marks, their relative 

abundance corresponds to only a small fraction in comparison with acetylated histones (Simithy 

et al., 2017). Finally, although different acyl-donor groups may result from different metabolic 

pathways, their redundant functions do not leave much room for any metabolic-specific action. 

These observations therefore raise an important unsolved issue in modern biology, which is the 

specific functional significance of these histone acylations compared to acetylation.  

An answer to this issue came from the discovery of specific domains in various proteins that 

show a better affinity for binding to longer chain acyl groups on histones compared to 

acetylation. For instance, YEATS and DPF domains present a better binding activity for 

crotonylated histones than for acetylated histones (Andrews et al., 2016a; Li et al., 2016; Xiong 

et al., 2016). 

An unexplored possibility to solve this issue is coming from in vitro data showing that most 

bromodomains lose their affinity for chromatin regions bearing histones with acyl groups 

longer than three carbons (Flynn et al., 2015; Goudarzi et al., 2016; Olp et al., 2017).  

The functional consequence of the differential effects of histone acylation on bromodomain–
chromatin interaction was first considered in the context of the late stages of differentiation of 

male germinal cells, during which a large-scale histone hyperacetylation is coupled to a 

genome-wide histone removal involving the testis-specific BET factor, Brdt (Shiota et al., 

2018). Using this specific system, we discovered that H4 bearing butyrylation at K5 and K8 

escapes this wave of replacement and survives longer in late spermatogenic cells than histone 

H4 bearing the corresponding acetylation. This observation supports the hypothesis that, since 

Brdt’s first bromodomain is unable to bind H4 when it is modified by butyrylation specifically 
at K5 (Goudarzi et al., 2016), the corresponding histones “escape” acetylation and the 

consequent Brdt-dependent removal.  
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However, these observations remained correlative and the hypothesis of the modulation of the 

action of BET factors by an interplay between histone acetylation and acylation, awaited 

confirmation.  

Here, by taking advantage of ALL cell biology, we directly demonstrate that a modified histone 

acetyl/acyl ratio, specifically at H4K5, controls the dynamics of interaction between chromatin 

and the ubiquitously expressed member of BET double bromodomain factor, BRD4, whose 

expression and activity are frequently dysregulated in many unrelated cancers (Fujisawa and 

Filippakopoulos, 2017). The emerging general concept developed here is that a mixture of 

finely tuned competing histone acetylation and longer chain acylations defines bromodomain 

factors functional availability.  
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Results 

 

Aberrant activation of FASTKD1 is associated with a general shut-down of mitochondrial 

activity 

 

We previously identified FASTKD1 as an ectopically expressed gene in childhood and adult B-

ALL (Wang et al., 2015). FASTKD1 presents a mitochondrial targeting signal and hence is 

expected to exert its function in mitochondria (Jourdain et al., 2017). To investigate its function, 

we first identified the established B-ALL cell line REH, expressing FASTKD1 and then 

generated REH cell lines stably expressing two different anti-FASTKD1 shRNAs (Fig. S1A) or 

used the CRISPR/Cas9 system to knock-out the gene (Fig. S1B). RNA-seq were generated from 

the two FASTKD1 knock-down as well as two independent FASTKD1 knock-out clones (Fig. 

S1A, S1B). Focusing on mitochondrial gene expression, we observed that the inactivation of 

FASTKD1 leads to a significant enhancement of mitochondrial encoded gene expression (Fig. 

1A). 

This activation of mitochondrial gene expression was also independently confirmed by RT-

qPCR, by evaluating the expression of ND2 and ND3 genes after treating cells with a series of 

five different anti-FASTKD1 shRNAs as well as in the two FASTKD1 ko cell lines (Fig. 1B, 

upper panels, Fig. S1C). Finally, FASTKD1-Flag re-expressed in the FASTKD1 ko cells 

resulted in the mitochondrial localization of the ectopically expressed FASTKD1-Flag and the 

downregulation of mitochondrial gene expression (Fig. S2, Fig. 1B, lower panels).  

All these data demonstrate that FASTKD1 should logically down-regulate mitochondrial 

activity.  

To test this hypothesis, mitochondrial respiration was measured from control REH cells or from 

the two FASTKD1 ko clones. The results show an enhancement of respiration in both FASTKD1 

ko clones compared to the control REH cells, in perfect agreement with a role for FASTKD1 

in the decrease of mitochondrial activity, more specifically the respiration (Fig. 1C). 

 

Mitochondrial activity is a driver of histone acylation 

 

FASTKD1 appeared to us as an excellent factor to investigate the relationship between 

mitochondrial activity and histone acetylation/acylation (Matilainen et al., 2017; Lozoya et al., 

2019; Haws et al., 2020; Trefely et al., 2020) in the specific context of ALL. We focussed on 

histone H3 and H4 propionylation and butyrylation, since, while all bromodomains bind 

acetyllysines and propionyllysines, many of them are unable to bind butyryllysine (Flynn et al., 

2015). 

Histone extracts from wild-type REH cells and the two derived FASTKD1 ko cell lines were 

used in an unbiased approach to measure changes in histone butyrylation and propionylation. 

After trypsin-digestion of histones, the resulting peptides were directly quantified using a label 

free mass spectrometry method.  
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These analyses were performed without prior enrichment of modified histone peptides (with 

anti-PTM antibodies) to detect and visualize the most abundant modified peptides. 

This analysis demonstrated that histone H4 K5, K8 and K12 butyrylation is the most responsive 

to FASTKD1 depletion (Fig. 2A, Table S1, S2 and S3). A more detailed analysis of the mass 

spectrometry data also highlighted the occurrence of unique peptides with a combination of 

acetylation and butyrylation-propionylation (data file S1). This observation is indicative of 

continuing exchange of acylations at a particular lysine site.    

We then decided to focus on H4 K5 and K8 to confirm these findings. Immunodetection of 

histone PTMs in protein extracts showed a clear increase in both butyrylation and crotonylation 

of H4K5 and H4K8 in the two FASTKD1 ko cell lines. The corresponding histone acetylation 

level did not show any noticeable change in FASTKD1 ko cell lines (Fig. 2B).  

These results suggest the existence of a direct relationship between the studied histone 

acylations and the extent of mitochondrial activity. To confirm this conclusion, we treated 

control and FASTKD1 ko cell lines with the electron transport chain poison Rotenone and 

demonstrated that the impairment of mitochondrial activity severely affects the maintenance of 

histone H4K5 butyrylation and H4K5 crotonylation (Fig. 2C). This treatment with Rotenone 

had relatively little effects on acetylation, probably due to the considerably higher levels and 

more stable pools of acetyl-CoA and acetylated histones. 

Overall, these data also suggest that histone butyrylation and crotonylation could be more 

sensitive to a change in mitochondrial activity than histone acetylation.  

 

Fatty acid synthesis  -oxidation is a major driver of histone butyrylation and 

crotonylation 

 

Fatty acid synthesis and -oxidation particularly involve the generation of acyl-CoA derivatives 

that could potentially be used to add the corresponding acyl groups on histones (Pougovkina et 

al., 2014 ; McDonnell et al., 2016; Gowans, 2019; Tarazona et al., 2020). We therefore first 

used a competitive inhibitor of acyl-CoA synthetase, Triascin C, to prevent the synthesis of 

fatty acids and monitored the effect on H4K5K8 aceylation and butyrylation (Fig. 2H, scheme). 

The treatment of cells with Triascin C abolished the increase of H4 butyrylation at H4K5 

observed in FASTKD1 ko lines, with no remarkable effect on the acetylation of this residue 

(Fig. 2D). Additionally, we decided to target the enzyme that catalyses the first step of fatty 

acid synthesis, acetyl-CoA carboxylase (ACC1, Fig. 2H, scheme), by using the ACC1 inhibitor 

ND-630. The inhibition of acetyl-CoA carboxylase also abolished the increased level of 

H4K5bu compared to the parental cells, with no remarkable effect on H4K5ac (Fig. 2E).  

In order to also test the role of fatty acid oxidation (FAO) in histone acylations, we sought an 

approach based on treating the cells with octanoate, a molecule directly usable in FAO 

(McDonnell et al., 2016). The octanoate treatment increases the levels of H4K5 acetylation, 

butyrylation and crotonylation in REH cells (Fig.2F and S3). However, compared to acetylation, 

the increase in H4K5bu-cr is more remarkable (Fig. S3).  
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In order to further test the role of FAO in histone acylation, we also used Ranolazine, an 

inhibitor of FAO, and showed that the treatment of cells with this inhibitor abolishes the 

increase in H4K5bu observed in the FASTKD1 ko clones (Fig. 2G). 

 

 

-oxidation and mitochondrial activity are major sources of histone acylation in ALL 

malignancies 

 

To generalize our conclusions on the relationship between mitochondrial activity and histone 

acylations, we quantitatively measured H4K5cr and H4K5bu by ELISA in 31 B-ALL patient 

malignant cells samples (Table S4). Using RT-qPCR, we quantified in the same samples, 

Carnitine Palmitoyltransferase 1A (CPT1A) mRNA, encoding a protein involved in the 

transport of long chain acyl groups into mitochondria controlling the fatty acids -oxidation 

potential of the cells, and the mitochondrial gene ND2 mRNA, as an indicator of mitochondrial 

activity. 

Figure 3A shows that there is a tendency for coregulation between the expression of CPT1A 

mRNA, as a measure of -oxidation potential, and the expression level of ND2, as a measure 

of mitochondrial activity (rs = 0.531).  

From our functional data obtained in REH cells (Fig. 1 and 2), we expected to find a relationship 

between the level of mitochondrial transcription (ND2 mRNA) and the intensity of H4K5 

crotonylation and butyrylation. To test this hypothesis, ALL samples were divided into two 

groups as a function of the expression of ND2. A ROC curve of the RT-qPCR output values 

was used to define a cut-off value at -dCt=1.2782, which we used to stratify the ALL into two 

groups of 13 (42%) low ND2 expressing and 18 (58%) high ND2 expressing samples. The 

results showed that, similarly to REH cells, patients’ ALL cells with higher mitochondrial 
activity are associated with higher levels of H4K5 crotonylation and butyrylation (Fig. 3B and 

3C).  

 

All these data support and extend our conclusions on the major role of mitochondrial activity 

and -oxidation in driving histone acylation. 

 

The H4K5 acyl/acetyl ratio is a major determinant of BRD4 - chromatin interactions 

 

In a previous work, by analysing the function of histone H4K5K8 butyrylation in spermatogenic 

cells and its impact on the function of the testis-specific BET factor Brdt, we observed that, 

during late spermatogenesis, H4K5bu-containing nucleosomes escape the acetylation- and 

Brdt-dependent histone removal (Goudarzi et al., 2016).  

Our present data suggest that similarly, in the case of ALL cells, a change in the ratio of H4K5 

acetyl/butyryl-crotonyl could also affect the interaction between BRD4 and chromatin. 
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Using a peptide pull-down assay with a H4 N-terminal tail peptide bearing all combinations of 

acetylation and butyrylation at K5 and K8, we demonstrate the inability of BRD4 to bind H4, 

when the peptide is modified by a butyryl group at K5 (Fig. 4A). A depletion of FASTKD1 and 

a change of mitochondrial activity did not affect the total level of BRD4 in a high salt nuclear 

extract (Fig. 4B, input, also see Fig. 4C) nor its ability to bind to an acetylated H4 tail peptide 

(Fig. 4B, pull down).  

These data suggest that H4 butyrylation at H4K5 should affect the ability of BRD4 to interact 

with chromatin. Accordingly, an increase in H4K5bu-cr, as observed in our FASTKD1 ko cells, 

should to some extent loosen the interaction of BRD4 with chromatin compared to the wild-

type cells. 

In order to test this hypothesis, we used wild-type and FASTKD1 ko REH cells to compare the 

strength of BRD4-chromatin binding, with the prediction that, in FASTKD1 ko cells, a loose 

BRD4 – chromatin interaction should be observed due to the increase in the H4K5 acyl/acetyl 

ratio. Accordingly, wild-type and FASTKD1 ko cells were lysed in a buffer containing 

increasing salt concentrations and, after centrifugation, the respective amounts of BRD4 

released in the supernatant or remaining bound to chromatin were visualized by 

immunoblotting. Figure 4C (upper panels) shows that, in the presence of 200 mM NaCl, both 

FASTKD1 ko clones released higher amounts of BRD4 compared to wild-type cells, suggesting 

a weaker binding of BRD4 to chromatin.  

In order to further support our observation, we also treated our cells with increasing 

concentrations of the BRD4 small molecule inhibitor, JQ1. We reasoned that a more dynamic 

BRD4-chromatin interaction should make BRD4 bromodomains more sensitive to an inhibition 

by JQ1. After treating cells with the solvent, or 0.1, 0.5 or 5 M of JQ1, the respective amounts 

of BRD4 in soluble protein extracts and in the chromatin-bound fractions were analysed. Figure 

4C (lower panels) shows that, at 0.5 M concentration, the JQ1 treatment leads to an increase 

in the soluble pool of BRD4 in FASTKD1 ko cell, compared to wild-type cells. 

 

Finally, in order to directly test the effect of a change in the histone acetylation/butyrylation-

crotonylation ratio on the efficiency of BRD4 binding, we sought another approach to 

demonstrate a change in the dynamics of BRD4 in live cells. For this purpose, we used a 

previously characterized COS-7 cell-based system and induced a change in the ratio of histone 

acetylation/butyrylation-crotonylation in these cells. We had previously shown that the 

expression of the oncogenic fusion protein, BRD4-NUT, in COS-7 cells creates well-defined 

nuclear foci, which depend on chromatin acetylation and BRD4 bromodomains (Reynoird et 

al., 2010). In addition, these BRD4-NUT induced foci are large and stable enough to allow in 

vivo approaches such as Fluorescent Recovery After Photobleaching (FRAP) assays.  

First, we stably expressed CobB, a bacterial NAD+ deacetylase appropriately modified for 

expression in mammalian cells (Spinck et al, 2020), in COS-7 cells and visualized the effect of 

this deacetylase on the acetyl/butyryl-crotonyl ratio. Figures 4D and S4A show that the ectopic 

expression of CobB, while preferentially decreasing the level of H4K5ac, has no noticeable 
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effect on H4K5bu and H4K5cr in vivo in these cells. Therefore, our prediction was that, in the 

CobB-expressing cells, this increase in the H4K5acyl/acetyl ratio should be associated with an 

increased dynamic of the BRD4 – chromatin interaction. We also performed the salt extraction 

assay described above, in the control and in CobB-expressing COS-7 cells and observed that, 

similar to REH cells, an increase in the H4K5acyl/acetyl ratio enhances the salt elution of BRD4 

from chromatin (Fig. S4B).  

Finally, FRAP was used to precisely measure the dynamics of GFP-BRD4-NUT chromatin 

interactions in these cells. Figure 4E shows that the ectopic expression of CobB and an 

increased H4K5acyl/acetyl ratio clearly increases the dynamics of BRD4 - chromatin 

interaction.  

 

A metabolically driven increase in H4K5 acylations preferentially occurs on highly 

acetylated chromatin regions 

 

The distribution of H4K5cr-bu/H4K5ac ratio was the investigated at high resolution in a 

genome-wide manner. The H4K5cr, H4K5bu and H4K5ac ChIP-mapping allowed us to 

visualize the relationship between H4K5cr and H4K5bu with H4K5ac in each of the cell lines 

considered. To this end, we plotted the ChIP-seq read counts corresponding to H4K5cr and 

H4K5bu as a function of the read counts corresponding to H4K5ac on gene TSSs. This 

representation shows a linear correlation between H4K5cr-bu and H4K5ac on TSSs associated 

with relatively low levels of H4K5ac. However, at higher levels of H4K5ac, this linear 

relationship between the considered histone modifications is distorted with an increasing 

H4K5cr-bu/ H4K5ac ratio, and this part of the correlation plot best fits a non-linear (exponential 

regression) model (Fig. 5A). 

 

The H4K5cr-bu/H4K5ac ratio controls BRD4 genomic distribution 

 

Two independent anti-BRD4 ChIP-seq were performed to evaluate the impact of the change in 

H4K5cr-bu/ac ratio on the binding of BRD4 to chromatin at high resolution. Focussing on gene 

TSS, we found that BRD4 accumulates on the TSS of highly active genes.  

By comparing the levels of these TSS region-bound BRD4 between wild-type and FASTKD1 

ko cells, in both anti-BRD4 ChIP-seq experiments we found significantly higher levels of 

BRD4 present on the highly active TSSs in the two ko cell lines (see Fig. 5B and C, showing 

heatmap and metagene profiles for all genes in the first experiment, also see Fig S5A showing 

heatmaps and profiles for a selection of genes with the highest BRD4 peaks in both anti-BRD4 

ChIP-seq experiments). Since there was no change either in the total level of BRD4 (Fig. 4B, 

input and Fig. 4C) nor in its ability to bind acetylated H4 tail (Fig. 4B, pull down) in our 

FASTKD1 ko cells compared to wild-type cells, we concluded that the observed increase in 

BRD4 on active gene TSSs in FASTKD1 ko cells, should be due to a redistribution of BRD4. 

Therefore, the increased BRD4 binding to the TSS of highly active genes is very likely a 
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consequence of the genome-wide increase in BRD4 mobility making BRD4 more available for 

binding active gene TSS regions. 

 

Functional significance of the genomic redistribution of BRD4 in REH cells and in ALL 

malignancies 

 

We reasoned that the genes that show a change in expression in FASTKD1 ko cells compared 

to wild-type cells, should to some extent, also be sensitive to the BET bromodomain inhibitor 

JQ1. To this end, we generated RNA-seq from wild-type REH cells treated with different doses 

of JQ1 and compared the differentially regulated genes (JQ1-responsive genes) with the genes 

that are differentially expressed between wild-type and FASTKD1 ko REH cells. Interestingly, 

a significant number of genes differentially expressed in FASTKD1 ko cells compared to wild-

type cells are found among the JQ1-responsive genes (Fig. 6A and 6B). Indeed, a subset of 

genes that are down-regulated in FASTKD1 ko REH cells are also down-regulated in wild-type 

REH cells treated with JQ1 (Fig. 6B, upper panel). Additionally, a significant subset of genes 

among those that are upregulated in FASTKD1 ko cells are also down regulated in wild-type 

JQ1 treated cells (Fig. 6B, lower panel). 

The observation that both FASTKD1 ko down- and up- regulated genes are significantly 

enriched among JQ1-sensitive genes suggests that both up- and down- regulated genes have a 

BRD4 dependent expression. 

This is also illustrated by Figure S5 which shows that genes associated with BRD4 peaks are 

JQ1 sensitive. Indeed, to demonstrate the relationship between the redistribution of BRD4 

between wild-type and FASTKD1 ko cells, genes whose TSS regions were associated with high 

BRD4 peaks and increasing BRD4 binding in ko cells were selected (Fig. S5A). This group of 

genes was used as a geneset for a GSEA analysis to test for its enrichment/depletion in the 

transcriptomes of JQ1 treated REH cells. Figure S5B shows a significant depletion of this group 

of genes, visualizing their down regulation in JQ1 treated cells, which demonstrates that their 

expression is BRD4 dependent.   

 

In order to show that this H4K5 acylation- and BRD4- dependent regulatory circuit could also 

be involved in B-ALL tumour cells, we analysed the transcriptomes of a subset of B-ALL 

tumours (Table S4) for which we had measurements of H4K5bu and H4K5cr levels (Fig. 3). 

We generated RNA-seq from 25 B-ALL samples and identified the genes differentially 

expressed between the two groups of H4K5cr-bu high (n=15) and H4K5cr-bu low (n=10) B-

ALL (Fig. S6). We then compared the list of differentially expressed genes between these two 

categories of ALL cells (Fig. 6C), with the list of differentially expressed genes between REH 

wild-type and FASTKD1 ko REH cells (Fig. 6A), which also showed higher levels of H4K5cr-

bu compared to wild-type cells (Fig. 2). Interestingly, the two transcriptional signatures share 

similarities since a significant number of genes are regulated in the same manner in FASTKD1 
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ko REH and in H4K5cr-bu high B-ALL (Fig. 6D). It is worthy to recall that the common point 

between these two systems is the comparison between the state of H4K5 acylations.  

 

Accordingly, the Gene Set Enrichment Pathway Analysis (GSEA) shows that, in both REH 

FASTKD1 ko cells and patients’ H4K5cr-bu high B-ALL cells, the genes encoding for 

mitochondrial functions are significantly upregulated, confirming the presence of active 

mitochondria in these cells (Fig. S7 top panels). Other common features are shared by the 

expression signatures of both these cells, including high translational and proliferation/cell 

cycle related activities, and a significant depletion in hematopoietic stem cells genes (Fig. S7). 
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Discussion 

 

Fatty acid -oxidation has recently been shown to be a major source of acetyl-CoA driving 

histone acetylation (McDonnel et al., 2016). Our present investigations reveal that 

mitochondrial activity and fatty acid -oxidation in particular, is also the main source of histone 

acylations. Interestingly, this conclusion is in full agreement with the recent finding identifying 

fatty acid -oxidation, which in yeast takes place in the peroxisomes, as a driver of histone 

crotonylation in S. cerevisiae, particularly during Yeast Metabolic Cycles (Gowans et al., 2019).  

As demonstrated here, histone acylations preferentially occur, and hence concentrate, on 

regions with high levels of histone acetylations. The functional meaning of this observation is 

that the sum of a series of low abundance histone acylations and their local concentration on 

specific regions could make a significant contribution to non-acetyl histone modifications, in 

terms of stoichiometry and in terms of gene expression regulation, by competing with histone 

acetylation. This situation should have a direct effect on the stability of the interaction of 

bromodomains with chromatin. Indeed, structural studies have demonstrated why most of the 

bromodomains are unable to bind longer acyllysine modifications and how these modifications 

could attract other types of binder factors (Andrews et al., 2016b). Consequently, an increase 

in histone acylations/acetylation ratio, while destabilising chromatin binding by bromodomains, 

could in contrast stabilise the interaction of factors bearing YEATS and DPF domains, which 

could in turn enhance the displacement of bromodomain factors and their increased availability. 

 

Another important concept developed here is that of a bromodomain factor “reservoir”. The 
pool of BRD4 bound to the genome-wide bulk of acetylated nucleosomes could be considered 

as a reservoir of BRD4. As shown here, a general increase of >3C acylations on H4K5 leads to 

a global increase in the solubility of BRD4. This “mobile” fraction of BRD4 would be released 
from numerous genomic sites and concentrate on a limited number of “hyperdynamic” 
chromatin loci, such as active gene TSSs. This explains the increase in BRD4 binding observed 

upon FASTKD1 inactivation at highly active gene TSSs in our ChIP-seq mappings. This 

mechanism also makes BRD4 available for interactions with TSS-bound non-histone factors, 

including the acetylated cyclin T1 subunit of pTEF-b, in a bromodomain-dependent (Schroder 

et al., 2012) and independent (Lambert et al., 2019) manner. 

We also took advantage of the quantitative measurements of H4K5bu and H4K5cr in B-ALL 

samples to investigate the relationship between gene expression and the level of H4K5 

acylations.  

The correlation between the level of expression of the mitochondrial gene ND2 and the level of 

H4K5bu-cr in these patients’ samples suggests that our observation made in REH cells can be 
extended to patients’ B-ALL blast cells, where high mitochondrial transcriptional activity is 

also associated with an increased H4K5 acylation / acetylation ratio.  
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Based on all these data we propose that the activation of mitochondrial activity leads to an 

increase in the H4K5 acylation (butyrylation, crotonylation, etc..), loosening the binding of the 

genome-wide bulk of acetylated nucleosomes by BRD4 (BRD4 reservoir), making it available 

for recruitment and binding at active gene regulatory sites (Fig. 7). In the frame of ALL, we 

also propose that a decrease of mitochondrial activity in blasts due to aberrant FASTKD1 

expression or for any other reasons, could favour a gene expression pattern associated with 

aggressive forms of this pathology (Wang et al., 2015).   

Overall, this work highlights several important concepts in the biology of chromatin and 

transcription. We propose that there is a systematic co-existence of histone acetylation and 

histone acylations at chromatin dynamic spots. With respect to bromodomain factors’ function, 
histone acylations should be considered collectively and not individually. Namely, in terms of 

stoichiometry relative to acetylation, >3C histone acylations, including butyrylation, 

crotonylation, etc., are permanently exchanged and hence should be considered as one 

functional entity. Histone acylations occur and concentrate on regions of high histone 

acetylation. The ratio of histone acyl/acetyl is a critical functional parameter, which is tuned by 

upstream cell metabolic reactions. Mitochondrial activity and -oxidation in particular, are 

important drivers of histone acylations. Histone acyl/acetyl ratio fine tunes the availability of 

BRD4 for recruitment at its sites of action and could represent a general mean of controlling 

bromodomain-containing factors availability and function.  
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Figure Legends 
 

Figure 1: FASTKD1 controls mitochondrial genome expression and mitochondrial 

activity. 

 

A- Total RNAs from REH cells stably expressing two independent anti-FASTKD1 shRNAs 

(sh-1 and sh-2) or bearing CRISPR/Cas9-directed inactivation of FASTKD1 gene (ko-1 and ko-

2) were sequenced and the standardized and normalized read counts representing mitochondrial 

gene expression in the different conditions are shown on a heatmap. 

B- The expression of ND2 and ND3 genes encoded by the mitochondrial genome was monitored 

by RT-qPCR in REH cells stably expressing empty vector (shCtl) or five independent anti-

FASTKD1 shRNAs (upper left panel). The expression of ND2 and ND3 was also monitored by 

RT-qPCR in wild-type and the two FASTKD1 ko REH cells (upper right panel). FASTKD1 ko-

1 cells were used to re-express FASTKD1-Flag and the expression of ND2 and ND3 was 

monitored by RT-qPCR in the wild-type, ko-1 and the FASTKD1 rescued cells (lower panel). 

Fold changes of gene expression level were calculated via 2^-ddCt and are represented by mean 

± SEM based on at least three independent experiments. Statistical differences between wild-

type and two ko, or between shCtl and shRNAs groups were calculated with Fisher’s Least 
Significant Difference (LSD) post one-way ANOVA test. * p<0.05, ** p<0.01, ***p<0.001. 

C- Wild-type and the two FASTKD1 ko REH clones were assayed for the respiration capacity 

using the standard Seahorse Mito Stress assay. The data shown are the mean value  ±  SEM 

of 5 biological replicates’ measurements. 
 

See Figure S1 for information on the generation of REH knock-down and knock-out cells.  

See Figure S2 for the mitochondrial targeting of FASTKD1 (related to Fig. 1B) 

 

Figure 2: FASTKD1 gene inactivation, mitochondrial activation and -oxidation lead to 

an increase of H4K5K8 acylations. 

 

A- Histone extracts from wild-type and FASTKD1 ko cells were analysed by label free mass 

spectrometry method. The relative abundance of the indicated identified site-specific 

modifications was determined and expressed as the ratio FASTKD1 ko to wild-type. The 

corresponding core histone peptides were used to normalize the considered modified peptides. 

Please note that K8bu and K12bu containing peptides could not be distinguished following 

these analyses. Consequently, the quantification regarding these two modification sites were 

plotted as H4K8bu-K12bu.   

B- Total extracts from wild-type and FASTKD1 ko cells were used to detect the indicated H4K5 

and H4K8 modifications as well as actin in two parallel immunoblots using the corresponding 

specific antibodies as indicated. The specificities of these antibodies were confirmed by dot 

blot analyses on peptides bearing the target H4K5 acylations as well as unrelated acylations 

(data file S1).  
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C- Wild-type and FASTKD1 ko cells were treated with Rotenone (0.5 M) for one or two hours. 

Protein extracts were prepared, and the corresponding immunoblots were probed as in B. 

D- Wild-type and FASTKD1 ko cells were treated with Triacsin (3 M) for 16 hours and protein 

extracts were prepared and analysed as in B. 

E- Wild-type and FASTKD1 ko cells were treated with ND-630 (100 nM) for 6 hours, extracts 

were prepared and analysed as in B. 

F- Wild-type REH cells were treated with the indicated concentrations of octanoate for 24 hours 

and the indicated histone PTMs were analysed as in B. 

G- Wild-type and FASTKD1 ko cells were treated with Ranolazine (0.5 mM) for 6 hours and 

protein extracts were analysed as in B. 

H- The scheme represents the metabolic pathways and the key enzymes targeted by the 

indicated inhibitors in this series of experiments (D to G). FAO stands for Fatty Acids Oxidation. 

 

See Figure S3 for accumulation of H4K5 acetylation and various acylations in FASTKD1 wild-

type and ko cells after octanoate treatment (related to Fig. 2F).  

See Tables S1, S2 and S3 for details on the unbiased determination of histone H3 and H4 

propionylation and butyrylation (related to Fig. 2A). 

 

Figure 3: -oxidation and mitochondrial activity correlate with histone acylations in B-

ALL tumour cells 

 

A- Total RNAs and proteins were extracted from 31 adult B-ALL patients’ primary cells and 
the relative levels of Carnitine Palmitate Transferase 1A (CPT1A), ND3 and GAPDH mRNAs 

were measured by RT-qPCR and plotted as shown. 

B and C- In the same samples the relative amounts of H4K5cr, H4K5bu and H3, were measured 

by ELISA. ALL samples were divided into two groups as a function of normalized ND2 

expression, low (in blue) and high (in red) based on the ROC curve of the RT-qPCR values, as 

described in the text. In each group the normalized ELISA values H4K5cr/H3 ratio (B) and 

H4K5bu/H3 ratio (C) are plotted. For each group, the median value (black line) and interquartile 

range (coloured horizontal lines) are shown. Statistical significance of histone acylations 

between ND2 high and low group was analysed with Mann-Whitney U test. 

See Table S4 for the Characteristics of B-ALL patients samples. 

 

Figure 4: H4K5 acyl/acetyl ratio controls the dynamics of BRD4-chromatin interaction 

 

A- Total wild-type REH cell extracts were used in pull-down experiments with the indicated 

peptides. After pull-down the peptide-bound proteins were recovered in SDS-PAGE loading 

buffer, submitted to PAGE and BRD4 was visualized using the corresponding antibody.  

B- High salt extracts (total BRD4) from wild-type and FASTKD1 ko cells were prepared and a 

peptide pull-down experiment was performed using unmodified H4 tail peptide or the 

corresponding acetylated peptide.  
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C- Wild-type and FASTKD1 ko cells were lysed in a buffer containing the indicated 

concentrations of NaCl. After centrifugation, the corresponding supernatants and pellets (salt 

extracts and nuclei, respectively) were analysed by immunoblotting for the presence of BRD4. 

Actin was also visualized as a loading control for the soluble extracts and H3 for the nuclei 

fraction (upper panels).  

Wild-type and FASTKD1 ko cells were treated with the indicated concentrations of JQ1 for 3 

hours, cells were lysed, and the nuclei pelleted by centrifugation. The soluble extracts and the 

nuclei fractions (“soluble” and “nuclei”, respectively) were analysed as above (lower panels). 
D- Protein extracts were prepared from COS-7 cells stably expressing the Ha-tagged bacterial 

deacetylase CobB or from control cells and used to visualize of CobB-ha and actin (upper panel), 

or H4 and its indicated modified forms using cell extracts (middle panel). 1X to 3X indicate 

increasing amounts for extracts loadings: one-fold to three-folds. 

The relative amounts of H4, H4K5ac, H4K5bu and H4K5cr were measured by ELISA in COS-

7 cells or in cells expressing CobB-ha in biological triplicates and were repeated for at least 

three times and the values presented in the lower panel (see also Fig. S4). 

E- COS-7 cells described in “D”, expressing CobB-ha or not, were transfected with a GFP-

BRD4-NUT expression vector, and for each condition, 8 GFP-BRD4-NUT foci (one in each of 

8 different cells) were bleached and the recovery of GFP fluorescence (FRAP) was monitored 

as a function of time. The 16 datasets corresponding to each FRAP experiment were 

individually fitted allowing for the determination of the half-life (t1/2) of fluorescence recovery 

and the mobile fractions (values indicated below the figure). The mean ± 2 SEM are shown for 

each time point. Scale bar represents 10μm. 

See Figure S4A for the selective action of CobB on H4K5 acetylation compared to butyrylation 

and crotonylation in COS-7 cells (related to Fig. 4D).  

See Figure S4B for the effect of CobB expression in COS-7 cells on BRD4 - chromatin 

interaction stability (related to Fig. 4E).  

Figure 5: Characterization of H4K5cr-bu/H4K5ac ratio and BDR4 redistribution 

between wild-type and FASTKD1 ko cells 

 

A- Chromatin from wild-type and FASTKD1 ko REH cells (one sample for each genotype wild-

type, ko-1 and ko-2) was extensively digested by micrococcal nuclease (MNase) and the 

resulting nucleosomes were respectively immunoprecipitated with anti-H4K5ac, anti-H4K5cr 

and anti-H4K5bu antibodies and sequenced. The reads were aligned and the RPKM normalized 

read counts values were converted into a 10 bp bin matrix of the signal 2Kb upstream and 

downstream TSS regions (TSS +/-2000 bp), using deepTools2 as described in STAR methods. 

For all TSS, the mean normalized read counts/TSS were calculated for each genotype (wild-

type, ko-1 and ko-2) and each experiment H4K5cr, H4K5bu and H4K5ac. Considering each 

genotype, the TSS regions were then plotted according to their mean normalized read counts 
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for H4K5cr (upper panels) or H4K5bu (lower panels) ChIP-seq (y-axis) as a function of their 

mean normalized read counts for H4K5ac ChIP-seq (x-axis). In order to evaluate the 

relationship between the measured parameters, the non-acetyl acylation (H4K5cr or H4K5bu) 

and the acetylation of H4 lysine 5 (H4K5ac), in wild-type cell and in the two FASTKD1 ko 

cells, a linear regression model (grey lines) and an exponential regression model (red lines) 

were fitted. 

 

B and C- Anti-BRD4 ChIP-seqs were performed on the MNase digested chromatin of wild-

type and FASTKD1 ko cell lines. The heatmap (B) and profiles (C) show BRD4 ChIP-seq 

normalized read counts in wild-type as well as in FASTKD1 ko REH cells over all gene TSS 

centred regions (TSSs +/- 2000 bp). The TSS were ranked as a function of their transcriptional 

activity in wild-type REH cells and grouped into quartiles, Q1, Q2, Q3 and Q4, the first quartile 

(Q1: 75-100%) corresponding to the 25% genes with highest expression and the fourth quartile 

to the lowest 25% (Q4: 0-25%); (B) These gene groups are shown on the heatmap from top to 

bottom: highest (Q1: 75-100%) to lowest (Q4: 0-25%) gene expression levels; (C) The profiles 

corresponding to the different quartile groups are shown in different colours as indicated. 

 

Figure 6: Mitochondrial activity drives H4K5 acylation and directs BRD4 – dependent 

gene expression in REH cell line and in B-ALL patients blasts  

A- Volcano plot illustrating the differential gene expression signature between FASTKD1 ko 

(ko-1 and ko-2) and wild-type REH cells. Y axis: -log10 (p-value); x-axis: log (ratio of 

normalized expression values between ko and wild-type cells). The genes down-regulated or 

up-regulated with a fold change >1.5 and a Student t-test p-value < 0.05 are respectively 

represented in blue and red. 

B- The two gene groups defined in A were respectively used as genesets for GSEA plots to test 

for their enrichment/depletion in the JQ1-treated REH cells. These plots show a significant 

depletion of genes up or down regulated in FASTKD1 ko cells. Both these genes’ categories are 
therefore JQ1 sensitive. 

C- Volcano plot illustrating the differential gene expression signature between B-ALL blasts 

with high H4K5 acylations (crotonylation and/or butyrylation, n = 15) and B-ALL blasts with 

low acylations (n = 10). Y axis: -log10 (p-value); x-axis: log (ratio of normalized expression 

values between B-ALL with high and low acylation levels). The genes down-regulated or up-

regulated with an absolute fold change >1.5 and a Student t-test p-value < 0.05 are respectively 

represented in blue and red. 

D- The two gene groups defined in C were respectively used as genesets for GSEA plots to test 

for their enrichment/depletion in the FASTKD1 ko REH cells. These plots show significant 

depletion or enrichment of genes respectively down or up regulated in FASTKD1 ko cells 

suggesting that the transcriptional effect of high acylation in B-ALL blasts is similar to the 

effect of FASTKD1 ko - induced high acylation in REH cells. 
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See Figure S6 showing differential expression between B-ALL blasts with high compared to 

low acylation levels.  

See Figure S7 for the GSEA of the transcriptomic signatures of REH cells (FASTKD1 ko versus 

wild-type, or JQ1 treated versus untreated) and B-ALL with high versus low H4K5cr/bu levels.  

Figure 7: Control of BRD4 reservoir by mitochondrial activity and cell metabolism: a 

working model 

Enhanced mitochondrial activity leads to a global increase of histone H4K5 

acylation/acetylation ratio. Bromodomain containing factors, such as BRD4, lose their tight 

binding to the genome-wide acetylated nucleosomes (reservoir pool) and therefore become 

available to be redistributed from this reservoir pool towards specific and localized genome 

regions including active genes’ TSSs (functional pool).  
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1.2 Key resource table 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rabbit monoclonal anti-BRD4 (WB and ChIP) Bethyl Lab Cat# A301-985A100, 

RRID: AB_2620184 

Rabbit polyclonal anti-H4K5bu (WB and ELISA) PTM biolabs Cat#PTM-313 

Rabbit polyclonal anti-H4K5bu (ChIP) PTM biolabs Cat#PTM-310 

Rabbit polyclonal anti-H4K8bu (WB) PTM biolabs Cat#PTM-311 

Rabbit polyclonal anti-H4K5cr (WB, ChIP and ELISA) PTM biolabs Cat#PTM-521 

Rabbit polyclonal anti-H4K8cr (WB) PTM biolabs Cat#PTM-522 

Rabbit polyclonal anti-H4K5ac (WB) PTM biolabs Cat#PTM-119 

Rabbit polyclonal anti-H4K8ac (WB) PTM biolabs Cat#PTM-120 

Rabbit polyclonal anti-H4K5bhb (WB) PTM biolabs Cat#PTM-1205 

Rabbit polyclonal anti-H4K5lac (WB) PTM biolabs Cat#PTM-1407 

Rabbit monoclonal anti-H4K5ac (ChIP) Abcam Cat#ab51997; RRID: 

AB_2264109 

Rabbit polyclonal anti-HA (WB and ELISA) Abcam Cat#ab9110; RRID: 

AB_307019 

Rabbit polyclonal anti-H4 (WB and ELISA) Abcam Cat#ab10158;  

RRID: AB_296888 

Mouse monoclonal anti-Flag M2 (IF) Sigma-Aldrich Cat#F1804; RRID: 
AB_262044 

Mouse monoclonal Anti-β-Actin (WB) Sigma-Aldrich Cat#A5441; RRID: 

AB_476744 

Rabbit polyclonal H3 antibody (ELISA) Abcam Cat#ab1791; RRID: 

AB_302613 

Goat anti-Rabbit IgG (H+L)-HRP (WB and ELISA) Bio-rad Cat#1706515, RRID: 

AB_2617112 

Goat anti-Mouse IgG (H+L)-HRP (WB) Bio-rad Cat#170-6516; 

RRID: AB_11125547 

Goat anti-Rabbit IgG, HRP linked antibody (ELISA) Cell Signaling 

Technology 

Cat#7074; RRID: 

AB_2099233 

Goat anti-Mouse IgG (H+L), DyLight 405 (IF) Invitrogen Cat# 35501BID; 

RRID: AB_2533209 

Bacterial and Virus Strains  

One shot Stbl3 Competent E. coli Invitrogen Cat#C737303 

Biological Samples 

B-ALL patients’ bone marrow samples, see Table S4 This paper N/A 

Chemicals, Peptides, and Recombinant Proteins 

JQ-1 (Emadali et al., 2013) N/A 

Rotenone Sigma-Aldrich Cat#R8875 

Oligomycin A Sigma-Aldrich Cat#75351 
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Antimycin A Sigma-Aldrich Cat#A8674 

FCCP Sigma-Aldrich Cat#C2920 

Sodium octanoate Sigma-Aldrich Cat#C5038 

Ranolazine Sigma-Aldrich Cat#R6152 

Triacsin C Sigma-Aldrich Cat#T4540 

ND-630 (Firsocostat) MedChemExpress Cat#HY-16901 

Puromycin Sigma-Aldrich Cat#P8833 

Mitotracker Red Invitrogen Cat#M7512 

Micrococcal nuclease S7 Sigma-Aldrich Cat#10107921001 

Lipofectamine 2000 Invitrogen Cat#11668019 

Complete Mini protease inhibitors  Sigma-Aldrich Cat #11836153001 

All histone peptides used in this study (H4 /H4K5acK8ac 

/H4K5buK8bu /H4K5acK8bu /H4K5buK8ac /H4K5bu 

/H4K8bu) 

(Goudarzi et al., 2016) N/A 

 LymphoPrep™ Solution Axis Shield PoC Cat#1114547 

Gelatin solution Sigma-Aldrich Cat#G1393 

TRIzol reagent Invitrogen Cat#15596018 

Trichostatin A (TSA) Sigma-Aldrich Cat#T8852 

Trichloroacetic Acid (TCA) Sigma-Aldrich Cat#T-0699 

n-Butryric acid Sigma-Aldrich Cat#B-2503 

Dynabeads protein G Thermo Fisher Cat#10007D 

Streptavidin Sepharose beads GE Healthcare Cat#17-5113-01 

Seahorse XF base medium Agilent Cat#103334-100 

Seahorse XFe96 FluxPak Agilent Cat#102601-100 

pMD19 T-vector TAKARA Cat#3270 

3,3’,5,5’-Tetramethylbenzidine (TMB) substrate Abcam Cat#ab171523 

Stop solution for TMB Substrate Abcam Cat#ab171529 

Critical Commercial Assays 

SuperScript III First-Strand Sythesis Invitrogen REF#18080-051 

HieffTM qPCR SYBR® Green Master Mix (Low Rox Plus) Yeasen Cat#11202ES08 

AllPrep DNA/RNA/Protein Mini Kit QIAGEN Cat#80004 

NextSeq® 500/550 High Output v2.5(150 Cycles) Illumina Cat#20024907 

MicroPlex Library Preparation Kit v2  Diagenode Cat#C05010012 

TruSeq Stranded Total RNA (RiboZero 

Human/Mouse/Rat) Library Prep 

Illumina Cat#RS-122-2201 

Deposited Data 

All deposited data superseries This study GSE164072 

ChIP-seq H4K5ac and H4K5cr (REH WT and KO) This study GSE164016 
ChIP-seq BRD4 (REH WT and KO) This study GSE164031 
RNA-seq REH WT and FASTKD1 KO This study GSE164043 
RNA-seq REH WT ctrl and JQ1 This study GSE164045 
RNA-seq B-ALL (25 patients) This study GSE164060 
RNA-seq REH control and FASTKD1 sh (knock down) This study GSE164071 
Original western blot images This study Mendeley DOI: 

https://data.mendele

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164072
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164016
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164031
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164043
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164045
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164060
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164071
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y.com/drafts/2hk6dh

mcbr 

Experimental Models: Cell Lines 

Human: acute lymphoblastic leukemia cell line REH ATCC CRL-8286; RRID: 

CVCL_1650 

Human: acute lymphoblastic leukemia cell line REH 

depleted of FASTKD1 (ko-1) 

This study N/A 

Human: acute lymphoblastic leukemia cell line REH 

depleted of FASTKD1 (ko-2) 

This study N/A 

Cercopithecus aethiops: SV40 transformed kidney 

fibroblast cell line COS-7 

ATCC CRL-1651; RRID: 

CVCL_0224 

Oligonucleotides 

sgRNA targeting sequences: FASTKD1 #1: 

GTTATCTTCAACAACTCTAA 

(Sanjana et al., 2014) N/A 

sgRNA targeting sequences: FASTKD1 #2: 

AAATAGCTGATATTGTTCAT 

(Sanjana et al., 2014) N/A 

shRNA targeting sequences: FASTKD1 #1: 

ACTTGCGTGCAACATCTTAAT 

This study N/A 

shRNA targeting sequences: FASTKD1 #2: 

GTCGGTTCTTACGCCTTATTAC 

This study N/A 

shRNA targeting sequences: FASTKD1 #3: 

GCCAGTTTGAATGGAACTCTAT 

This study N/A 

shRNA targeting sequences: FASTKD1 #4: 

GCTTCGTCTAAGAGCTATTTG 

This study N/A 

shRNA targeting sequences: FASTKD1 #5: 

ATTCGTCCATTCAGCGTATTG 

This study N/A 

Primers see table S5 This study N/A 

Recombinant DNA 

Plasmid: lentiGuide-Puro Kind gift from Feng 

Zhang(Sanjana et al., 

2014) 

Addgene plasmid # 

52963; RRID: 

Addgene_52963 

Plasmid: lentiCas9-Blast 

 

Kind gift from Feng 

Zhang(Sanjana et al., 

2014) 

Addgene plasmid # 

52962; RRID: 

Addgene_529 62 

Plasmid: LeGO-iG2 Kind gift from Boris 

Fehse(Weber et al., 

2008) 

Addgene plasmid # 

27341; RRID: 

Addgene_27341 

Plasmid: LeGO-FASTKD1-3xflag This study N/A 

Plasmid: Co1491-IRES-RFP This study, kindly 

provided by Corinne 

Albiges-Rizo 

N/A 

Plasmid: Co1491-NLS-CobB-HA This study, primary 

CMV-NLS-CobB 

construct is a kind gift 

from Heinz 

N/A 
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Neumann(Spinck et 

al., 2020) 

Plasmid: pLVX-shRNA1 Clontech Cat#632177 

Plasmid: BRD4-NUT-GFP (Reynoird et al., 2010) N/A 

Plasmid: pMD2.G  Kind gift from Didier 

Trono 

Addgene plasmid 

#12259; RRID: 

Addgene_12259 

Plasmid: psPAX2   Kind gift from Didier 

Trono 

Addgene plasmid 

#12260; RRID: 

Addgene_12260 

Plasmid: pRSV-Rev Kind gift from Didier 

Trono (Dull et al., 

1998) 

Addgene plasmid # 

12253; RRID: 

Addgene_12253 

Software and Algorithms 

STAR v2.5.2b (Dobin et al., 2013) https://github.com/al

exdobin/STAR 

Bowtie2 aligner (Langmead and 

Salzberg, 2012) 

http://bowtie-

bio.sourceforge.net/

bowtie2/index.shtml 

DeepTools2 (Ramírez et al., 2016) https://deeptools.rea

dthedocs.io/en/devel

op/ 

R package DEseq2 Bioconductor  http://bioconductor.o

rg/packages/3.12/bio

c/html/DESeq2.html 

HTseq v0.9.1 (Anders et al., 2015) https://htseq.readthe

docs.io 

Mascot v2.3.01 Matrix Science http://www.matrixsci

ence.com 

Qual Browser v3.0.63 Thermo Fisher N/A 

ImageJ  (Schneider et al., 

2012) 

https://imagej.nih.go

v/ij/ 

GraphPad Prism 5 Graphpad http://bowtie-

bio.sourceforge.net/

bowtie2/index.shtml 

ZEISS ZEN lite ZEISS https://www.zeiss.co

m/microscopy/int/pro

ducts/microscope-

software/zen-

lite.html 

SPSS Statistics v20 IBM https://www.ibm.com

/support/pages/down

loading-ibm-spss-

statistics-20 
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1.3 STAR* Methods 

 

RESOURCE AVAILABILITY 

Lead contact 

Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the Lead Contact, Saadi Khochbin (saadi.khochbin@univ-grenoble-alpes.fr). 
 

Materials Availability 

Plasmids and cell lines generated in this study are available upon request.  
 

Data and Code Availability • The ChIP-seq data and RNA-seq data generated during this study haven been deposited at 
GEO and are publicly available as of the date of publication. Accession numbers are listed 
in the key resources table. Original western blot images have been deposited at Mendeley 
and are publicly available as of the date of publication. The DOI is listed in the key 
resources table. Microscopy data reported in this paper will be shared by the lead contact 
upon request. • This study does not report original code. • Any additional information required to reanalyze the data reported in this paper is available 
from the lead contact upon request. 

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS  

Cell lines and cell cultures 

Human lymphoblastic leukemia cell line REH (Female, CVCL_1650) was obtained from 
National Collection of Authenticated Cell Cultures and was authenticated by STR analysis prior 
to use. REH and the derivative cells were maintained in RPMI-1640 (Gibco) supplemented with 
10% FBS (Dominique DUTSCHER), 4mM L-glutamine (Gibco) and 1% Penicillin-
Streptomycin (Gibco). COS-7 (Male, CVCL_0224) were purchased from ATCC, and were 
cultured in DMEM (Low glucose, 1g/L, Gibco) supplemented with 10% FBS, 4mM L-
glutamine and 1% Penicillin-Streptomycin. All cells were incubated at 37°C with 5% CO2.  
 

CRISPR/Cas9 mediated knockout cell line 

REH cells were co-introduced with lenti-Cas9 and lenti-sgRNAs plasmids (targeting sequences 
indicated in Key Resource Table) using the lentivirus infection approach described in the 
method details. 3 days after infection, positive cells with sgRNAs were enriched using 1.0μg/ml 
puromycin (Sigma-Aldrich, Cat# P8833). Genotypes of the resultant cell populations were 
analysed by PCR amplification (primers shown in Table S5) and sanger sequencing. Successful 
genome-editing of cell populations was documented by multi-spikes in the sequence map of 
PCR products. After being seeded into 96-well plates for 2-3 weeks, single cell clones were 
obtained and genotypes of each allele of single cell clones was analysed through sanger 
sequencing following TA cloning of PCR products. Knockout clones with frameshift indels 
within the exons were used for further experiments.  
 

B-ALL patients’ bone marrow samples 
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All the patients (n = 31) enrolled in this study were newly diagnosed in Ruijin hospital (See 
Table S4). Bone marrow aspiration was conducted at diagnosis. Mononuclear cells were 
enriched from BM samples by density gradient centrifugation with LymphoPrep™ Solution 
(Axis Shield PoC, Cat#1114547) and were stored at -80°C as dry pellets for further 
experimental analysis. This study was approved by the ethical board of Shanghai Institute of 
Hematology. All patients and their guardians were provided with informed consent for sample 
collection and research in agreement with the Declaration of Helsinki. 
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METHOD DETAILS 

 

Drug treatment and sample preparations 

For sodium octanoate (Sigma-Aldrich, Cat#C5038) treatment, 5 x105/ml REH cells were 
seeded into 6-well plates, treated with or without indicated concentrations of sodium octanoate 
for 24 hours. For other compounds, REH wild-type, ko-1 and ko-2 cells were seeded at the 
density of 7.5 x105/ml in 6-well plates. Treatment strategy was as following: 100 nM ND-630 
(MedChemExpress, Cat#HY-16901) for 6 hours, 0.5 μM Rotenone (Sigma-Aldrich, 
Cat#R8875) for 1 and 2 hours respectively, 0.5 mM Ranolazine (Sigma-Aldrich, Cat#R6152) 
for 6 hours, 3 μM Triacsin C (Sigma-Aldrich, Cat#T4540) for 16 hours. After exposition to the 
different compounds, these cells were lysed with 8 M urea and subjected to sonication 
(Biorupter, High, 30s ON/OFF, total 10min) to obtain total protein. Protein solutions were 
quantified using Bradford assay (Bio-rad) before being added with SDS-PAGE loading buffer 
for western blot analysis.  
For JQ1 treatment, REH wild-type cells were exposed to 0.1 μM or 0.5 μM JQ1 or DMSO as 
control respectively for 24 hours. 5x106 cells were then harvested and yielded to RNA 
extraction with 500 μl TRIzol reagent (Invitrogen, Cat#15596018) according to the provider’s 
protocol. Precipitated RNA was dissolved in DEPC-treated water and used for RNA-
sequencing.  
For salt elution experiments around 1x107 REH wild-type, ko-1 and ko-2 or 4x106 COS-7 
control and CobB-ha expressing cells were harvested, washed twice with ice cold PBS, and 
split into equal aliquots. Each aliquot of cells was lysed in LSDB lysis buffer (50mM HEPES 
pH7.0, 3mM MgCl2, 20% glycerol, 0.1% NP-40, 1mM DTT, 1xprotease cocktail inhibitors) 
containing different concentrations of salts and 10mM sodium butyrate for 30 min on ice. For 
REH cells, the KCl concentrations of 100, 150, 200 or 250 mM were respectively used and for 
COS-7 cells, the KCl concentrations of 100, 150, 200 mM KCl were respectively added to the 
lysis buffer. After centrifugation at 12000g 4°C for 10min, the supernatants were saved to detect 
soluble BRD4, while the nuclei pellets were subjected to SDS-PAGE loading buffer to detect 
chromatin tightly bound BRD4. 
For JQ1 treatment assay correlated with Figure 4C, lower panel, 1x106 /ml REH wild-type, ko-
1 and ko-2 cells were exposed to 0.1 μM, 0.5 μM or 5 μM JQ1 or DMSO as control in 6-well 
plates. After 3 hours, cells were collected and lysed in LSDB lysis buffer with 100 mM KCl 
and 10 mM sodium butyrate for 30 min on ice. After centrifugation at 12000g for 10 min at 
4°C, supernatants were collected to detect soluble BRD4, while the nuclei pellets were 
subjected to SDS-PAGE loading buffer to detect chromatin tightly bound BRD4. 
 

Plasmids, shRNA and sgRNA 

FASTKD1 (NM_024622) was chemically synthesized and was cloned into LeGO-iG2 
(Addegene #27341) vector to generate LeGO-FASTKD1-3x Flag construct. Co1491-IRES-RFP 
modified from pSicoR PGK (Addgene #12084) was kindly provided by Corinne Albiges-Rizo. 
Co1491-NLS-CobB-HA was subcloned from CMV-NLS-CobB, which was kindly provided by 
Heinz Neumann (Spinck et al., 2020). shRNAs and sgRNAs were designed using GPP Web 
Portal(https://portals.broadinstitute.org) or referring to GeCKO v2 library (Sanjana et al., 2014) 
with the corresponding targeting sequences indicated in the Key Resource Table, and were 
cloned into pLVX-shRNA1 (Clontech, Cat#632177) and LentiGuide-Puro plasmid (Addgene 

https://portals.broadinstitute.org/
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plasmid#52963) respectively. All plasmids were confirmed by sanger sequencing before being 
used in this study. 
 

 

 

Lentivirus production and infection 

5μg lentiviral transfer and package plasmids were co-transfected into 293T cells in each well 
of 6-well plates using lipofectamine 2000 (Invitrogen, Cat#11668019) according to the 
manufacturer’s instructions. For pLVX-shRNA1, lentiCas9-blast, lentiGuide-Puro and the 
derivative plasmids, second generation packaging plasmids (psPAX2 and pMD2G) were used 
for generating viral particles, and an additional pRSV-Rev plasmid was used for transferring 
LeGO-iG2 and Co1491-IRES-RFP backbone as well as the subcloned plasmids. Virus 
supernatants were collected at 24 and 48 hours after plasmid transfection and precleared with 
0.45 μm filter (Millipore). Amicon Ultra-15 fiters (Millipore) were used to concentrate virus 
supernatants by centrifugation at 4000 rpm 4°C for 30 min. Concentrated virus was diluted with 
complete growth medium and immediately used to infect the cells of interests. Infection was 
performed in 12-well plates, with each well containing 1ml diluted virus medium and 2x105 
REH cells, or at 20% confluency in the case of COS-7 cells. 24 hours after infection, virus 
medium was washed out and replaced with fresh culture medium. Cells were then maintained 
regularly before further selection. For shRNA knockdown, positive cells were enriched 3 days 
after virus infection by 1.0 μg/ml puromycin treatment and were maintained for an average of 
1 week before experimental analysis. For CobB and FASTKD1 re-expressing cells, RFP and 
GFP positive cells were respectively sorted with FacsAria IIu- cell sorter (BD Biosciences) 1-
2 weeks after infection. 
 

Histone preparation 

Histone samples were prepared by acid extraction protocol as previously described with minor 
modifications (Buchou et al., 2017). In brief, 1x107 REH wild-type, ko-1 and ko-2 cells, or 
1x107 COS-7 control and CobB expressing cells were lysed in 1 ml lysis buffer (0.06% NP-40, 
10 mM HEPES pH 7.0, 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 1xprotease cocktail 
inhibitor) with 10 mM sodium butyrate for 10 min on ice. Cell nuclei were pelleted by 
centrifugation at 250g 4°C for 5 min, and subjected to histones extraction using 0.2 M H2SO4 
for 16 hours at 4°C. After centrifugation at 16000 g for 10 min at 4°C, solubilized histones were 
collected and then precipitated by adding TCA drop by drop to the final volume of 20%. Histone 
pellets were then washed once with cold acetone + 0.1%HCl, twice with cold acetone and were 
dried completely in air.   
 

MS quantification of histone acylations 
5 μg of each histone sample from REH wild-type, ko-1 and ko-2 cells were separated by SDS-
PAGE and each spliced histone band was in-gel digested with trypsin. The tryptic peptides were 
analyzed by Orbitrap Fusion following an EASY-nLC 1000 HPLC system (Thermo Fisher 
Scientific, San Jose, CA). Mass spectrometry data were analyzed by Mascot software (version 
2.3.01, Matrix Science Ltd., London, UK) against an in-house human histone sequence 
database (83 sequences; 13,870 residues) generated from the UniProt database (updated on 
01/27/2015). All identified MS/MS spectra were manually verified. Peptides containing 
modifications were manually quantified using the Qual Browser (version 3.0.63, Thermo Fisher 
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Scientific, San Jose, CA) by the area under the curve (AUC) of the extracted precursor ion of 
each peptide. Acylated histone peptides were normalized to the corresponding histone peptides. 
The relative abundance of indicated histone acylations in two ko clones versus wild-type cells 
was plotted in the column chart. 
 

Peptide pull-down assay 

Peptides pull-down assay was performed using a protocol described previously (Goudarzi et al., 
2016). Briefly, peptides (H4 /H4K5acK8ac /H4K5buK8bu /H4K5acK8bu /H4K5buK8ac 
/H4K5bu /H4K8bu) were first bound to beads by incubating equal amount of each type of 
peptide with Streptavidin Sepharose beads (GE Healthcare, Cat#17-5113-01) in PBS 
supplemented with 100ng/ml TSA for 20min. Bound beads were then washed with PBS and 
LSDB lysis buffer (50 mM HEPES pH 7.0, 3 mM MgCl2, 20% glycerol, 0.1% NP-40, 1 mM 
DTT, 1xprotease cocktail inhibitors) with 25mM KCl and 10mM sodium butyrate.  
Around 1x107 FASTKD1 ko or wild-type cells were harvested and lysed in 500 μl LSDB lysis 
buffer with 500 mM KCl and 10 mM sodium butyrate for 20 min on ice. After centrifugation 
at 12000g for 10 min at 4 °C, protein supernatants were collected and diluted with LSDB lysis 
buffer with 10 mM sodium butyrate to achieve the salt concentration of 250 mM. A small 
volume of diluted protein supernatants was saved for input, and the rest was split into equal 
aliquots, each incubated with the corresponding conjugated beads for 2 hours at 4 °C. Beads 
then were pelleted and washed twice with LSDB lysis buffer with 250mM KCl and 10 mM 
sodium butyrate and once with PBS with 10 mM sodium butyrate. After incubating with 1x 
SDS-PAGE loading buffer at 100°C for 5min, pulled-down complexes were eluted from beads 
and preserved for western blotting analysis.  
 

Western blotting 

Western blotting with SDS-PAGE were carried out according to standard procedures using the 
antibodies listed in Key Resource Table. After adding ECL substrates (Bio-rad), revelation was 
performed with Chemidoc (Bio-rad) or Vilber Chemiluminescence system (Vilber). The 
dilutions of antibodies used in this study are as follows: anti-BRD4 (Bethyl Lab, 1:2000), anti-
H4K5bu (PTM biolabs, 1:1000), anti-H4K8bu (PTM biolabs, 1:1000), anti-H4K5cr (PTM 
biolabs, 1:1000), anti-H4K8cr (PTM biolabs, 1:1000), anti-H4K5ac (PTM biolabs, 1:1000), 
anti-H4K8ac (PTM biolabs, 1:1000), anti-H4K5bhb (PTM biolabs, 1:1000), anti-H4K5lac 
(PTM biolabs, 1:1000), anti-HA (Abcam, 1:2000), anti-H4 (Abcam 1:1000), Anti-β-Actin 
(Sigma-Aldrich, 1:5000), Goat anti Rabbit IgG(H + L)-HRP (Bio-rad, 1:5000), Goat anti-
Mouse IgG (H + L)-HRP (Bio-rad, 1:10000). 
 

Relative quantification of histone acylations with ELISA  

Indirect ELISA was set up according to a protocol described previously (Dai et al., 2011). Total 
protein was obtained from 5x106 mononuclear cells of each patient in parallel with RNA 
extraction using AllPrep DNA/RNA/Protein Mini Kit (Qiagen) following the manufacturer’s 
instructions. In the case of COS-7 control and CobB expressing cells, histones prepared through 
acid extraction protocol were used for ELISA assay. These precipitated proteins were dissolved 
in a small volume of 8 M urea and quantified by Bradford reagent (Bio-rad). Protein solution 
was diluted with PBS and coated into triplicate wells of 96-well flat-bottom plates (Nunc-
Immuno products, Thermo Fisher) at 4°C for 16 hours. The amount of protein being coated was 
optimized according to the histone marks being detected and the protein samples being used. 
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In the case of total protein of B-ALL patients’ samples, the protein amount for each well was 
as follows: 2.5μg for H4K5cr and H4K5bu detection, 0.0125 μg for H3 detection. In the case 
of protein from COS-7 control and CobB expressing cells, the amount of protein for each well 
was as follows: 0.15μg for H4K5bu and H4K5ac detection, 0.3 μg for H4K5cr detection, 0.015 
μg for H4 detection. Coated plates were then blocked with 5% BSA for 1 hour at room 
temperature and sequentially incubated with primary antibodies accordingly and secondary 
antibodies. Dilutions of the antibodies used in this assay were: H4K5cr (PTM biolabs, 1:500), 
H4K5bu (PTM biolabs, 1:500), H3 (Abcam,1:5000), H4K5ac (Abcam, 1:2000), H4 (Abcam, 
1:1000), HRP linked Goat anti Rabbit IgG (Bio-rad or CST, 1:4000). After the addition of TMB 
substrate (Abcam, Cat#ab171523) and acid stop solution (Abcam, Cat#ab171529), the signal 
intensity was recorded at OD 450 nm. Relative quantity of histone marks was calculated based 
on the value of signal intensity.  

 

Immunofluorescence 

Empty vector and FASTKD1-Flag expressing cells were treated with 250 nM Mitotracker Red 
(Invitrogen, Cat#M7512) dye for 20 min at 37 ºC in CO2 incubator. Approximately 8x104 cells 
were then collected, washed once with PBS and spined onto glass slide at 800 rpm for 5 min. 
Fixation was performed using 4% paraformaldehyde for 15 min, followed by permeabilization 
with 0.3% Triton-X100 for 10 min at room temperature. After being blocked with 10% BSA 
for 1 hour at room temperature, slides were sequentially incubated with anti-Flag antibody 
(Sigma-Aldrich, 1:500 dilution) and anti-Mouse IgG DyLight 405 (Invitrogen, 1:500 dilution). 
Fluorescent images were captured by confocal laser scanning microscope (TCS SP8, Leica) 
under a 63x 1.40 numeric aperture oil-immersion lens and were processed with ImageJ. 
 

Fluorescence recovery after photobleaching (FRAP) 

2x105 COS-7 control and CobB expressing cells were seeded in 1-well Chambered Coverglass 
(LAB-TEK brand products, Thermo Fisher) respectively the day before being transfected with 
1μg BRD4-NUT-GFP plasmid using lipofectamine 2000 (Invitrogen). 24 hours after 
transfection, FRAP was performed on 8 independent cells of each group using fluorescent 
microscope (LSM710 NLO-LIVE7-Confocor3, Zeiss) equipped with a 488 nm laser and a 
LP505 filter. A circular region on GFP foci was bleached for 1.592 seconds and the recovery 
of fluorescence was recorded each second for a duration of 75 seconds after photobleaching by 
software ZEN lite. Immunofluorescence photos of BRD4-NUT-GFP foci from control and 
CobB expressing cells were captured before FRAP. 

For the data analysis and plotting, fluorescence intensity was normalized and rescaled to a 
reference axis from 0 to 1. 8 datasets from each cell group were individually fitted using the 

single exponential model: 𝐼(𝑡) = 𝛼(1 − 2−𝑡𝜅) . The 8 biological replicates giving the best 

fitting statistics were used to calculate the average half-life (t1/2) of fluorescence recovery (κ) 
and average mobile fractions (α). Values of mean ± 2 SEM are shown in the figure. FRAP curve 
was plotted on the mean of the 8 biological replicates ± 2 SEM at each time point. 
 

Metabolic assay 

Metabolic assay was performed according to the Seahorse XF Cell Mito Stress Test user 
manuals. Briefly, 1 × 105 REH wild-type, ko-1 and ko-2 cells were resuspended in 180 μl assay 
medium formulated as pH 7.4 ± 0.1 bicarbonate-free Seahorse XF base medium (Agilent, 
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Cat#103334-100), with 10 mM glucose (Gibco), 1 mM sodium pyruvate (Gibco) and 4 mM L-
glutamine (Gibco). Resuspended cells were then seeded in XF96 cell culture plates (Agilent, 
Cat#102601-100), which had previously been coated with 0.1% gelatin (Sigma-Aldrich, 
Cat#G1393) for at least 1 hour at room temperature. The seeded plates were then incubated at 
37 °C for 1 hour in a non-CO2 incubator before being loaded onto Seahorse XFe96 Analyzer 
(Agilent). Oxygen consumption rate (OCR) was measured at basal level as well as after 
injection of 1 µM oligomycin A (Sigma-Aldrich, Cat#75351), 1 µM FCCP (Sigma-Aldrich, 
Cat#C2920), 0.5 µM rotenone (Sigma-Aldrich, Cat#R8875) and 1 µM antimycin A (Sigma-
Aldrich, Cat#A8674). OCR values (pmol/min) were normalized to cell number. Mean ± SEM 
based on 5 replicates were plotted in the figure. 
 

RT-qPCR  

5x106 cells from FASTKD1 wild-type and two ko clones, or from shCtl and two shRNAs 
knockdown cell lines were collected and lysed in 500 μl TRIzol reagent (Invitrogen, 
Cat#15596018). Total RNA was obtained by phenol-chloroform extraction and isopropanol 
precipitation using standard procedure. For B-ALL patients’ samples, total RNA was extracted 
from 5x106 mononuclear cells of each patient using AllPrep DNA/RNA/Protein Mini Kit 
(Qiagen, Cat# 80004) following the manufacturer’s instructions.  
cDNA was produced from 1μg RNA with superscript III transcriptase (Invitrogen, Cat#18080-
051) using random hexamers according to the manufacturer’s instructions. Quantitative PCR 
(qPCR) was performed with SYBR green reagent (Yeasen, Cat#11202ES08) on ViiA 7(The 
Applied Biosystem) using primers described in Table S5. CPT1A and ND2 with patients’ 
samples were calculated via -dCt against GAPDH. The correlation between CPT1A and ND2 
was analysed with Spearman correlation. Mean values of triplicates were plotted with 
scatterplot using GraphPad Prism 5. Fold changes of gene expression levels were calculated via 
2^-ddCt and are represented by mean ± SEM based on at least three independent experiments. 
Statistical differences between wild-type and two ko, or between shCtl and shRNAs groups 
were calculated with Fisher’s Least Significant Difference (LSD) post one-way ANOVA test. 
* p<0.05, ** p<0.01, ***p<0.001. 
 

RNA-seq 

Three independent RNA extractions from FASTKD1 wild-type and two ko clones (ko-1, ko-2), 
or from control and two knockdown cell lines (sh-1, sh-2), or from solvent and JQ1 treated 
wild-type cells, or from 25 B-ALL patients’ bone marrow samples were sequenced. For each 
sample, 1 µg RNA samples (RIN = 10) were used for libraries preparations with TruSeq 
Stranded Total RNA (RiboZero Human/Mouse/Rat) Library Prep (Illumina, Cat#RS-122-2201) 
according to manufacturer’s instructions. Each library was quantified on Qubit with Qubit® 
dsDNA HS Assay Kit (Life Technologies) and the size distribution was examined on the 
Fragment Analyzer with High Sensitivity NGS Fragment Analysis kit (Agilent). Libraries 
prepared from solvent and JQ1 treated cells samples were sequenced on Illumina NS500 (PE75) 
at the TGML Platform of Aix-Marseille Université, and those prepared from FASTKD1 control 
and knockdown, wild-type and knockout cells samples, and B-ALL patients’ samples were 
sequenced on Hiseq 4000 (PE150) platform in Novagene company.  
The sequenced reads were aligned from raw sequence fastq data using STAR v2.5.2b software 
on UCSC hg19 reference genome. The aligned reads were normalized, and log transformed 
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using the R bioconductor package DEseq2 
(http://bioconductor.org/packages/3.12/bioc/html/DESeq2.html). 
The standardized and normalized read counts of mitochondrial genes were used to generate a 
heatmap in Figure 1A. Supervised transcriptomic analyses were performed to identify genes 
significantly up-and down regulated between two conditions using thresholds of Student t-test 
p-value <0.05 and fold change absolute value of 1.5. 
 

ChIP-seq  

ChIP assays for H4K5cr, H4K5ac and BRD4 were carried out as previously described with 
minor modifications (Buchou et al., 2017, Barral et al. 2017). Around 5 -10 x107 REH wild-
type, ko-1 and ko-2 cells were harvested and lysed in 1.5 ml lysis buffer (0.05% Triton-X 100, 
15 mM Tris-HCl pH 7.4, 60 mM KCl, 15 mM NaCl, 0.34 M sucrose, 2 mM EDTA, 0.5 mM 
EGTA, 1 mM DTT, 0.65 mM spermidine, 1x protease cocktail inhibitors) with 10 mM sodium 
butyrate and incubated for 5 minutes at 4°C. Cell nuclei were pelleted by centrifugation at 250 
g for 5 min at 4°C and resuspended in MNase buffer (10 mM Tris-HCl pH 7.5, 10 mM KCl, 2 
mM CaCl2) with10 mM sodium butyrate. Then the cell nuclei solution was subjected to 
micrococcal nuclease S7 (Sigma-Aldrich, Cat#10107921001) digestion (5U MNase per 100μg 
nuclei) at 37°C for 20 min to obtain mononucleosomes. Small aliquots of mononucleosomes 
solutions were collected for input and used to check the efficiency of digestion before 
immunoprecipitation.  
 
Immunoprecipitations were carried out as follows: 5 μg anti-H4K5cr (PTM biolabs, Cat#PTM-
521), anti-H4K5bu (PTM biolabs, Cat#PTM-310), anti-H4K5ac (abcam, Cat#ab51997), anti-
BRD4 (Bethyl lab, Cat#A301-985A100) antibodies were coupled with 50 µl Dynabeads protein 
G (Thermo Fisher, Cat#10007D) respectively according to the manufacturer’s instructions. 
Digested mononucleosomes solutions were diluted with LSDB500 buffer (50 mM HEPES pH 
7.0, 3mM MgCl2, 500 mM KCl, 20% glycerol, protease cocktail inhibitors) with 10 mM sodium 

butyrate to achieve the final KCl concentration of 350 mM. For each reaction, around 100 μg 
chromatin was incubated with antibody-coupled beads at 4°C for 16 hours. Immunoprecipitated 
beads were then washed three times with LSDB350 buffer (50 mM HEPES pH 7.0, 3 mM 
MgCl2, 350 mM KCl, 20% glycerol, protease cocktail inhibitors) with 10 mM sodium butyrate 
and one time with elution buffer (10 mM Tris-HCl pH 8.5, 1 mM EDTA). ChIP samples were 
eluted from beads with elution buffer containing 1%SDS at 65°C for 15 min and were purified 
by phenol-chloroform extraction and ethanol precipitation in parallel with input samples. 
For sequencing, ChIP libraries were prepared using MicroPlex Library Preparation Kit v2 
(Diagenode) according to manufacturer’s instructions. Each library was quantified on Qubit 
with Qubit® dsDNA HS Assay Kit (Life Technologies) and size distribution was examined on 
the Fragment Analyzer with High Sensitivity NGS Fragment Analysis kit (Agilent). 
ChIP libraries against H4K5cr, H4K5ac and BRD4 (1st experiment) were sequenced on a High-
output flow cell (400M clusters) using the NextSeq® 500/550 High Output v2.5 150 cycles kit 
(Illumina), in paired-end 75/75nt mode, according to manufacturer’s instructions at the TGML 
Platform of Aix-Marseille University. 
ChIP libraries against H4K5bu and BRD4 (2nd experiment) were sequenced using the NovaSeq 
6000 in PE150 mode according to manufacturer’s instructions at the Novogene company. 
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Raw fastq files were processed by 5 prime trimming, keeping 30 bp-length fragments, using 
`fastx_trimmer` (with options -l 30 -Q33). The trimmed fastq files were aligned on the USCS 
human hg38 genome using the Bowtie2 aligner (Langmead and Salzberg, 2012), with options 
–end-to-end, –no-mixed, –no-discordant. The aligned reads were filtered according to 
alignment quality (mapping quality score > 30) and normalized using bamCoverage by Reads 
Per Kilobase per Million mapped reads (RPKM) for the anti K5ac, K5cr and Kbu ChIP-seq and 
scaling factors for the anti-BRD4 ChIP-seq. 
For the anti-BRD4 ChIP-seq, scaling factors were computed according to the Spike in free 
method (Jin et al., 2020). Accordingly, for the first experiment, the respective scaling factors 
4.25, 3.58 and 5.81 were applied when calculating the BRD4 ChIP-seq read coverage in wild-
type, ko1 and ko2 cells. For the second experiment the corresponding scaling factors of 4.85, 
4.6 and 5.72 were respectively applied. 
The aligned read counts were converted into a 10 bp bin matrix of the signal 2Kb upstream and 
downstream genes TSS, using computeMatrix (from the package deepTools2, Ramírez et al., 
2016), heatmaps and profiles were generated using the respective deepTools2 packages, 
plotHeatmap and plotProfile. 
 
Script for bamCoverage normalizing with RPKM: 
bamCoverage -b myfile_notrim.srt.bam --extendReads --binSize 4 --minMappingQuality 30 --
normalizeUsing RPKM -o myfile_notrim.bw 
Script for bamCoverage with scaling factors: 
bamCoverage -b my_file.bam --extendReads --numberOfProcessors 4 --binSize 4 --
minMappingQuality 30 --normalizeUsing None --scaleFactor my_value -o my_file.bw 
 
Scripts for computeMatrix and plotHeatmap 
computeMatrix reference-point -R tss_grch38.bed -S \ 
  file1.bw \ 
  file2.bw \ 
  … 
  --outFileName matrix_tss_grch38.txt.gz --referencePoint TSS --binSize 10 --
beforeRegionStartLength 2000 --afterRegionStartLength 2000 --numberOfProcessors 32 --
sortRegions keep 
plotHeatmap --matrixFile matrix_tss_grch38.txt.gz --outFileName hm_tss_grch38.png --
colorMap YlOrRd --sortRegions descend 
 
QUANTIFICATION AND STATISTICAL ANALYSIS  

Statistical analysis was performed with SPSS v20. Details of the number and type of replication 
for each experiment were described in method details or figure legends where appropriate. Each 
dot represents one individual in patients’ experiment. Data were presented as median with 
interquartile range for non-normally distributed populations of patients’ samples or mean ± 2 
standard error of the mean (SEM) for FRAP experiment. All other data were presented as mean 
± SEM. When comparing normally distributed two groups, statistical significance was 
determined by Student t-test. When comparing multiple groups, Fisher’s LSD post one-way 
ANOVA test was used to determine the significance between groups. When comparing non-
normally distributed data, Mann-Whitney U test was used to determine the significance, and 
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Spearman correlation was used to determine the correlation. p < 0.05 were considered 
statistically significant. Statistics are *p < 0.05, **p < 0.01, ***p < 0.001.  
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1.6 Supplementary data 

 

Supplementary Figure S1: Generation of stable FASTKD1 knock-down and knock out REH cell lines 

(related to Figure 1A). 

 

A- Viral expression vectors expressing two independent anti-FASTKD1 shRNAs or an empty vector were 

established and used to generate RNA-seq data (Fig. 1A). The raw reads corresponding to the FASTKD1 gene 

were aligned on FASTKD1 gene exons and shown on the same diagram. 

B- The CRISPR/Cas9 system was used to knock-out FASTKD1 gene in REH cells using two different guide RNAs. 

The genomic DNAs of a pool of cells after CRISPR/Cas9 genome modification were sequenced around the 

targeted regions (indicated as multi-clones). Limit dilution of the two resulting multi-clone cells allowed for the 

isolation of single cell clones called ko-1 and ko-2. The sequence of the two isolated FASTKD1 clones and the 

corresponding sequence alterations are shown.  

C- The level of FASTKD1 expression was monitored by RT-qPCR in REH cells stably expressing an empty vector 

(shCtl) or five independent anti-FASTKD1 shRNAs as indicated. Fold changes of gene expression level were 

calculated via 2^-ddCt and are represented by mean ± SEM based on at least three independent experiments.  
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Supplementary Figure S2: Ectopically expressed FASTKD1 targets mitochondria (related to Figure 1B). 

 

FASTKD1-Flag was expressed in REH cells and its intracellular localization was visualized using an anti-Flag 

immunodetection. In parallel mitochondria were visualised by mito-tracker as indicated. Scale bars represent 20 

μm. 
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Supplementary Figure S3: Treatment of cells with octanoate leads to the accumulation of histone acetylation, 

butyrylation and crotonylation (related to Figure 2F). 

 

The experiment shown in Fig. 2F was repeated three more times and the corresponding blots were used to detect 

the indicated proteins. The results of one of these experiments are shown on the left. The relative protein levels 

were quantified from the corresponding immunoblots using the Image J software. The data are represented by 

mean ± SEM based on 4 independent experiments. Statistical significance was determined using LSD post one-

way ANOVA. * p<0.05, **p<0.01, *** p<0.001.   
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A                              B 

 

 

Supplementary Figure S4: H4K5 acyl/acetyl ratio controls the dynamics of BRD4-chromatin interaction 

(related to Figure 4D and E). 

 

A – The experiment shown in Figure 4D was repeated twice again independently (Exp1 and Exp2, respectively) 

and the extracts were probed with different antibodies to visualize the indicated H4K5 modifications.  

B - The salt elution approach used in the experiments shown in Figure 4C (upper panel), was applied to COS-7 

cells control or expressing CobB-ha. After salt elution, nuclei were pelleted and BRD4 and actin were visualized 

in the soluble fraction (upper rows). BRD4 and histone H3 were also visualized in the pellet fraction (named 

“chromatin”).  
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Supplementary Figure S5. Genes with increased BRD4 peaks in FASTKD1 ko cells are sensitive to a JQ1 

treatment (related to Figure 5B and 6B). 

 

A. The heatmap shows BRD4 ChIP-seq normalized read counts in wild-type as well as in FASTKD1 ko REH cells 

over the TSS centred regions of genes whose BRD4 binding increases in ko (TSSs +/- 2000 bp), in two independent 

experiments. Genes associated with high BRD4 peaks which increased in FASTKD1 ko were selected according 

to the following criteria. Their TSS+/- 2000bp was associated with i/ the highest BRD4 signals (top 5% in one or 

both BRD4 ChIP experiments) and ii/ a high (top 5%) signal ratio ko/wild-type (between at least one ko and wild-

type REH cells). This list encompasses 2848 genes.  

B. The gene group defined in A was used as a geneset for a GSEA plot to test for its enrichment/depletion in JQ1 

treated REH cells. This plot shows a significant depletion of this group of genes, visualizing their down regulation 

in JQ1 treated cells, which demonstrates that their expression is BRD4 dependent. 
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Supplementary Figure S6: Differential gene expression between B-ALL blasts with high and low H4K5 

acylation levels (related to Figure 6C). 

 

A- Plot showing H4K5 crotonylation (y-axis) as a function of butyrylation (x-axis) as detected by ELISA in B-

ALL blasts samples selected for RNA-seq. The red dotted lines show the thresholds of butyrylation (value = 0.6) 

and crotonylation (value = 2) used to define the high and low acylation groups for each acylation. The red circles 

correspond to samples for which RNA-seq was performed in duplicates following two independent experiments. 

B- Supervised transcriptomic analysis comparing B-ALL blasts with high H4K5 butyrylation and/or high 

crotonylation (n = 15) with B-ALL blasts with low H4K5 acylation (n = 10). 

Volcano plot illustrating the differential gene expression signature between B-ALL blasts with high H4K5 

acylations (crotonylation and/or butyrylation, n = 15) and B-ALL blasts with low acylations (n = 10). Y axis: -

log10 (p-value); x-axis: log (ratio of normalized expression values between B-ALL with high and low acylation 

levels). The genes down-regulated or up-regulated with a fold change >1.5 and a Student t-test p-value < 0.05 are 

respectively represented in blue and red.   
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Supplementary Figure S7: GeneSet Enrichment Analysis (GSEA) of the transcriptomic signature of REH 

cells wild-type or FASTKD1 ko or treated with JQ1 and B-ALL with high H4K5cr/bu levels (related to 

Figure 6). 

 

GeneSet Enrichment Analysis (GSEA) plots representative of genesets enriched or depleted in the transcriptomic 

signature of REH FASTKD1 - ko versus wild-type cells (left panels), of JQ1 treated versus untreated (middle 

panels) REH cells and B-ALL with high versus low H4K5cr/bu levels (right panel). GSEA preranked analysis and 

plots were generated using the python GSEA script and MsigDB genesets available on the Broad Institute website 

(described https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideFrame.html, genesets from http://www.gsea-

msigdb.org/gsea/downloads.jsp). NES = normalized enrichment score; Pval = nominal p-value, a p-value of 0 

indicates a p-value < 1/2000 (since our analysis was performed with 2000 permutations); FDR = False discovery 

rate adjusted for gene set size and multiple hypotheses testing. 

 

 

  

https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideFrame.html
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
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Table S1: Relative quantitative analysis of site-specific histone H3 and H4 propionylation and butyrylation in 

wild-type and two FASTKD1 ko clones (related to Figure 2A). All the identified peptides with Mascot score 

above 20 were manually verified. The relative ratios of abundance of histone peptides in wild type and FASTKD1 

ko REH cells histone samples were calculated by the peak area of the corresponding peaks. The PTM with more 

than 1.5 times variations are highlighted (see Table S2 for details).  
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Table S2: Relative quantitative analysis of site-specific histone H3 and H4 propionylation and butyrylation in 

wild-type and two FASTKD1 ko clones (related to Figure 2A). Detailed quantitative analyses of site-specific 

histone propionylation and butyrylation used to generate Table S1 is shown.  
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Table S3: Relative quantitative analysis of site-specific histone H3 and H4 propionylation and butyrylation in 

wild-type and two FASTKD1 ko clones (related to Figure 2A). 

Normalization information (upper Table): values of the precursor ion AUC used to normalize the amount of each 

histone in label-free quantification.  

Coverage information (lower Table): values of histone coverage for each experiment.  
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Table S4: Characteristics of B-ALL patients samples (related to Figure 3, 6C&D, S6, S7). 
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Table S5: Primers used in this study (related to STAR Methods). 
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