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Quelques problèmes en optimisation non convexe et stochastique

Résumé: Le sujet de cette thèse est l’analyse de divers algorithmes stochastiques
visant à résoudre un problème d’optimisation non convexe.
Nous commençons par un problème d’optimisation lisse en analysant une famille
d’algorithmes adaptatifs avec moments qui comprend entre autres ADAM et la
descente de gradient accélérée de Nesterov. La convergence et la fluctuation des
itérés sont établies. Un résultat général d’évitement des pièges pour les algorithmes
stochastiques sous-tendus par une équation différentielle non autonome est présenté.
Il est appliqué pour établir la non-convergence des itérés aux points-selles.
La suite du manuscrit est consacrée au cas où la fonction que l’on cherche à minimiser
est non lisse. La plupart de nos résultats dans cette partie s’appliquent aux fonc-
tions définissables dans une structure o-minimale. Tout d’abord, nous analysons
la version à pas constants de la descente de sous-gradient stochastique (SGD) et
montrons que ses itérés convergent en grande probabilité vers l’ensemble des points
critiques. Deuxièmement, nous montrons que chaque point critique d’une fonction
Lipschitz, définissable, générique se trouve sur une variété active, satisfaisant une
condition de Verdier et d’angle et est soit un minimum local, un point selle actif ou
un point critique fortement répulsif. Nous montrons, sous des conditions légères sur
les perturbations, que le SGD évite les deux derniers types de points. Une amélio-
ration de la formule de projection pour les fonctions définissables, donnant une
condition de type Lipschitz sur ses sous-gradients de Clarke, est présentée. Enfin,
nous établissons un phénomène d’oscillation des itérés du SGD et de ses extensions
proximales.
Mots clés: optimisation stochastique, évitement des pièges, optimisation non
lisse, semi-algébrique, o-minimalité, stratifications, descente de sous-gradient
stochastique, ADAM, algorithmes adaptatifs avec moments



Some Problems in Nonconvex Stochastic Optimization

Abstract: The subject of this thesis is the analysis of several stochastic algorithms
in a nonconvex setting. The aim is to prove and characterize their convergence.
First, we study a smooth optimization problem, analyzing a family of adaptive al-
gorithms with momentum which includes the widely used ADAM and Nesterov’s
accelerated gradient descent. Convergence and fluctuation of the iterates are es-
tablished. A general avoidance of traps result for stochastic algorithms underlined
by a nonautonomous differential equation is presented and applied to establish the
nonconvergence of the iterates to saddle points.
The rest of the manuscript is devoted to the case where the function that we seek
to minimize is nonsmooth. Most of our results in this part apply to functions de-
finable in an o-minimal structure. Firstly, we analyze the constant step version of
the stochastic subgradient descent (SGD) and show that the iterates converge with
high probability to the set of critical points. Secondly, we show that every critical
point of a generic, definable, locally Lipschitz continuous function is lying on an
active manifold, satisfying a Verdier and an angle condition and is either a local
minimum, an active strict saddle or a sharply repulsive critical point. We show
that, under mild conditions on the perturbation sequence, the SGD escapes active
strict saddles and sharply repulsive critical points. An improvement of the projec-
tion formula for definable functions, giving a Lipschitz-like condition on its Clarke
subgradients is presented and is of independent interest. Finally, we establish an
oscillation phenomena of the iterates of the SGD and its proximal extensions.
Keywords: stochastic approximation, avoidance of traps, nonsmooth opti-
mization, semialgebraic, o-minimality, stratifications, stochastic subgradient
descent, ADAM, Nesterov’s accelerated gradient descent, adaptive algorithms
with momentum
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Résumé substantiel en français

L’objet de cette thèse est l’étude de divers algorithmes stochastiques visant à ré-
soudre des problèmes d’optimisation non convexe. L’objectif dans chacun des cas
est de démontrer et de caractériser la convergence de l’algorithme vers l’ensemble
des points critiques de la fonction à minimiser.

Le chapitre 3, le seul à aborder un problème d’optimisation lisse, analyse une
famille d’algorithmes adaptatifs et à moment qui comprend entre autres ADAM et la
descente de gradient accélérée de Nesterov. En appliquant la méthode de l’ODE, qui
consiste à voir ces algorithmes comme une discrétisation d’Euler d’une équation dif-
férentielle (ED), nous montrons la convergence des itérés envers les points critiques
de la fonction à minimiser. La difficulté principale de l’analyse est que l’équation
différentielle mentionnée est non autonome. Nous établissons dans certains cas un
phénomène de fluctuation des itérés sous forme d’un théorème central limite. Enfin
nous abordons la question d’évitement des pièges. Cette question est importante car
l’ensemble des points critiques d’une fonction est, dans le cas non-convexe, générale-
ment strictement plus large que l’ensemble des minimiseurs (locals) de la fonction.
Cette question avait été abordée auparavant pour des algorithmes sous-tendus par
une ED autonome, l’approche étant basée sur l’application du théorème de la variété
invariante de Poincaré. En utilisant la version non autonome de ce théorème nous
établissons un résultat d’évitement de piège général pour tout algorithme discréti-
sation d’une ED non autonome. Enfin, nous appliquons ce résultat aux algorithmes
étudiés pour montrer la non-convergence presque sûre des itérés envers les points
selles.

Le reste du manuscrit se concentre sur le cas où la fonction à minimiser est
non différentiable. La plupart de nos résultats dans ce cas s’appliquent aux fonc-
tions semi-algébrique ou, plus généralement, aux fonctions définissables dans une
structure o-minimale. Cette classe de fonction, popularisée en optimisation par
les travaux de Bolte, Lewis, Daniilidis et Shiota, comprend la grande majorité des
fonctions étudiées en optimisation, statistiques et traitement de signal.

Le chapitre 4 analyse la version à pas constant de l’algorithme de la descente
de sous-gradient stochastique (SGD). A pas décroissants cet algorithme a déjà été
étudié dans la littérature en supposant l’existence en chaque point d’un estimateur
"oracle" tel que son espérance est égal au sous-gradient de Clarke de la fonction
à minimiser. L’existence d’un tel oracle dans des cas pratiques étant rarement
vérifiée, nous montrons sous des conditions légères, que pour presque tout point
d’initialisation l’existence d’un tel oracle n’est pas nécessaire. Dans un second
temps, nous montrons que quand le pas tend vers zéro, l’interpolation affine des
itérés converge vers l’ensemble des solutions du flot de sous-gradients (au sens de
la convergence uniforme sur les compacts). Enfin, en analysant le SGD à pas fixé
comme une chaîne de Markov, nous montrons que quand le pas tend vers zéro, la
mesure invariante de cette chaîne de Markov tend faiblement vers l’ensemble des
mesures invariantes du flot de sous-gradient. Ce résultat nous permet de montrer
que, quand le pas est petit, les itérés du SGD au pas constant convergent vers les
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points critiques de la fonction en grande probabilité.
Dans le chapitre 5 nous établissons un résultat d’évitement par le SGD des points

selles actifs. Ces points critiques sont d’une grande importance car, comme montré
par les travaux de Davis et Drusvyatskiy, les seuls points critiques que possède
une fonction définissable, faiblement convexe, générique, sont des minima locaux
ou des points selles actifs. Par définition ces points selles actifs se trouvent sur
une variété active telle que la fonction est différentiable sur cette variété et “change
rapidement" en dehors de cette variété. Afin d’étudier le SGD au voisinage de ces
points nous introduisons deux conditions supplémentaires sur la variété active: la
condition de Verdier et la condition de l’angle. La première permet d’avoir une
condition de type Lipschitz entre le "gradient riemannien" de la fonction sur la
variété et ses sous-gradients de Clarke alors que la condition de l’angle permet de
montrer que le SGD converge rapidement vers la variété active. A l’aide de ces deux
conditions, sous des conditions d’isotropie sur les perturbations similaires à celles qui
sont nécessaires dans le cas lisse, nous montrons que le SGD évite un point selle actif
avec probabilité un. De manière indépendante nous établissons une version renforcée
de la formule de projection de Bolte et al. en donnant une condition de type Lipschitz
sur les sous-gradients d’une fonction définissable et Lipschitz. Nous pensons que ce
type de résultat peut être important pour l’étude des problèmes d’optimisation non
lisse et définissable dans une structure o-minimale. En particulier, ce résultat nous
permet de démontrer la généricité de nos deux conditions: les points selles actifs
d’une fonction définissable, faiblement convexe, générique se trouvent sur une variété
active vérifiant les conditions de Verdier et de l’angle. Ainsi, une interprétation
possible des résultats de ce chapitre est que le SGD sur une fonction générique,
définissable et faiblement convexe converge vers un minimum local.

Naturellement, au vu des résultats énoncés ci-dessus on voudrait savoir quels
sont les points critiques d’une fonction définissable, générique sans l’hypothèse de
faible convexité. Nous montrons dans le chapitre 6 l’émergence dans la classe des
fonctions définissables et localement Lipschitz d’un troisième type de point: un point
critique fortement répulsif. Un tel point se trouve sur une variété active telle qu’au
voisinage de cette variété il existe une région répulsive ou les sous-gradients de la
fonction sont dirigés vers la variété. Le premier résultat du chapitre 6 est que tous
les points critiques d’une fonction définissable, localement Lipschitz, générique se
trouvent sur une variété active et sont soit des minima locaux, des points selles
actifs ou des points critiques fortement répulsifs. De plus, les variétés actives cor-
respondantes vérifient toujours les conditions de Verdier et de l’angle introduites
précédemment. La question d’évitement d’un point selle actif étant abordée dans le
chapitre précédent, nous montrons que, sous une condition de densité sur la loi des
perturbations, les points critiques fortement répulsifs sont évités par le SGD avec
probabilité un. Ainsi, une interprétation possible des résultats de ce chapitre est
que le SGD sur une fonction générique, définissable et localement Lipschitz converge
vers un minimum local.

Le chapitre 7 donne une caractérisation de la convergence du SGD et de ses
versions proximales vers l’ensemble des points critiques. Alors que ces algorithmes
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peuvent avoir plusieurs points d’accumulation, nous montrons que le temps mis par
les itérés de passer d’un voisinage d’un de ces points vers un autre tend vers l’infini.
De plus, un phénomène d’oscillations des itérés est établi. Ce type de résultat pour
la descente de gradient déterministe avait été établi auparavant par Bolte, Pauwels
et Ríos-Zertuche en utilisant la théorie des mesures fermées. Dans le chapitre 7 nous
établissons nos résultats sur la base de la théorie sur l’approximation stochastique
et les inclusions différentielles de Benaïm, Hofbauer et Sorin ce qui permet de traiter
les cas déterministe, stochastique et proximal avec une approche unifiée.
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Chapter 1

Introduction

Various problems that arise in machine learning, signal processing and high dimen-
sional statistics can be formulated as an optimization problem consisting into finding
a minimum of a real valued function F : Rd Ñ R.

In practical settings, this function might be unknown or the computation of its
different characteristics (such as the gradient or the Hessian) might be expensive.
In this case, stochastic approximation algorithms are particularly interesting since
at each iteration they require only an estimator of F . When the function of interest
is convex such algorithms can be studied through the tools of convex analysis (see
e.g. [Bottou et al. 2018]). However, in many applications the convexity assumption
fails. In such a case the standard way to analyze the convergence of a stochastic
approximation algorithm is to view it as an Euler-like discretization of its continuous
counterpart: an ordinary differential equation (ODE).

If the corresponding ODE is well behaved then one will usually be able to prove
the convergence of the iterates to the set Z “ tx P Rd : ∇F pxq “ 0u of critical
points of F (see [Benaïm 1999, Kushner & Yin 2003, Borkar 2008]). This, however,
gives only a partial answer to the question of the convergence to the set of (local)
minimizers of F . Indeed, without the convexity assumption, Z is usually strictly
larger than the latter and contains all kinds of spurious points such as local maxima
or saddle points. The nonconvergence of stochastic approximation algorithms to
such points was analyzed in the literature under the name of “avoidance of traps".
(see e.g. [Brandière & Duflo 1996, Pemantle 1990, Benaïm 1999]).

The aim of this thesis is to analyze the convergence of stochastic approximation
algorithms to the set of critical points, when the continuous counterpart is no longer
a simple ODE. We will give various characterizations of this convergence and es-
tablish, among other things, several avoidance of traps results. With the exception
of Chapter 3, which analyzes a family of algorithms driven by a nonautonomous
differential equation, we will focus on the case where the function that we seek to
minimize is nonsmooth. The latter being especially important for various appli-
cations, the most notable one being the training of a neural networks with ReLU
activation functions.

To better understand our approach we start by an illustrative example - the
stochastic gradient descent (SGD). The SGD, an archetype of stochastic approxi-
mations algorithms, dates back to Robbins and Monro [Robbins & Monro 1951] and
is written as follows:

xn`1 “ xn ´ γn∇F pxnq ` γnηn`1 , (1.1)
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where pγnq is a sequence of positive real numbers decreasing to zero and pηn`1q is
a sequence of random perturbations (usually with zero mean) that modelizes our
partial knowledge of F . One can view the SGD as an Euler-like discretization of
the gradient flow:

9xptq “ ´∇F pxptqq . (1.2)

The so-called ODE method [Benaïm 1999, Borkar 2008, Kushner & Yin 2003] al-
lows to rigorously compare the path taken by the iterates of Equation (1.1) to the
solutions to the differential equation (1.2) and to establish that the iterates converge
to the set Z “ tx P Rd : 0 P ∇F pxqu of critical points of F .

In the case of the SGD, the question of the avoidance of saddle points was first ad-
dressed by [Brandière & Duflo 1996] and [Pemantle 1990]. Their technique of proof
is build upon the Poincaré invariant manifold theorem, which states that the set of
points from which ODE (1.2) converges to a saddle point is a manifold of a dimen-
sion strictly smaller than d. The idea of [Brandière & Duflo 1996, Pemantle 1990]
is then to show that, under an isotropic condition on the sequence pηnq, the iterates
of the SGD will be driven away of this invariant manifold.

Throughout this thesis we will study different generalizations of the ODE method
and the ideas of [Brandière & Duflo 1996, Pemantle 1990]. In particular, with the
exception of Chapter 3, which analyzes a family of algorithms driven by a nonau-
tonomous differential equation, we will focus on the case where the function that
we seek to minimize is nonsmooth.

If F is merely locally Lipschitz continuous, then a natural generalization of the
SGD is the stochastic subgradient descent, which reads as follows:

xn`1 P xn ´ γnBF pxnq ` γnηn`1 , (1.3)

where BF pxnq is the set of Clarke subgradients of F at xn, a notion that generalizes
the one of the gradient. Algorithm (1.3) being a generalization of (1.1) we will still
refer to it as the SGD. The set of critical points for the Clarke subgradient is now
Z “ tx P Rd : 0 P BF pxqu, which still contains the (local) minima of F . Following
the work of [Benaïm et al. 2005], the continuous counterpart of this algorithm is no
longer an ODE but a differential inclusion (DI):

9xptq P ´BF pxptqq . (1.4)

To obtain (and characterize) the convergence of Equation (1.3) to Z we first need
to restrict the class of functions that we analyze. Indeed, in full generality the Clarke
subgradient might not even be the right operator to consider. For instance, Rockafel-
lar in [Rockafellar 1981] constructs a Lipschitz function F : Rd Ñ R such that for ev-
ery x P Rd, we have BF pxq “ r´1, 1sd. Results of [Borwein & Wang 1998] show that
this example is actually typical, e.g. almost every continuous function F : r0, 1s Ñ R
has BF pxq “ r0, 1s for all x P r0, 1s 1. This implies that, generally, BF gives us no in-
formation about the behavior of F . In fact, [Daniilidis & Drusvyatskiy 2019] shows

1Here almost every refers to the fact that this set is open and dense in the Baire’s topology. A
topology-independent result of this type was established in [Daniilidis & Flores 2019].
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that pathological dynamics can be exhibited such that pxnq is not even converging
to Z.

While these counterexamples may seem, at first sight, discouraging, in practical
settings such pathological behavior is rare. Indeed, the vast majority of functions
encountered in optimization are functions definable in an o-minimal structure, a
notion popularized in the optimization literature by the work of [Bolte et al. 2007].
The family of definable functions is broad: every semialgebraic function is defin-
able, the exponential and the logarithm are definable. Moreover, the notion of
definableness is stable by many of the elementary operations such as composition,
sum, multiplication and taking the inverse. While definable functions may be nons-
mooth, the nonsmoothness here appear in a very structured manner. Example given,
in [Bolte et al. 2007] the authors have established the so-called projection formula,
which gives a description of the Clarke subgradients of a definable function. More
precisely, the authors of [Bolte et al. 2007] have shown that, given a definable func-
tion F and p an integer, there exists pXiq a finite partition of the domain of F into
Cp manifolds such that F is Cp smooth on Xi and, moreover, if y P Xi, then we
have:

PTyXipBF pyqq “ t∇XiF pyqu , (1.5)

where ∇XiF pyq is the Riemannian gradient of F restricted to Xi at y and PTyXi
denotes the orthogonal projection onto the the tangent space at y of Xi. Equa-
tion (1.5) is the starting point in the proof of various properties of definable functions
such as the nonsmooth Kurdyka-Łojasiewicz inequality or the path differentiability
[Bolte & Pauwels 2019].

In recent years, this implicit smooth structure has allowed a thorough analysis of
algorithms operating on definable functions [Attouch et al. 2011, Bolte et al. 2009,
Davis & Drusvyatskiy 2021]. In particular, the work of [Davis et al. 2020] shows
that under mild conditions on the sequence pηnq, the iterates of Equation (1.3) con-
verge to Z. In this thesis we will give different characterizations of this convergence,
with a particular focus in Chapters 5 and 6 on the question of the avoidance of traps
in a nonsmooth setting.

With Chapter 2 being dedicated to mathematical tools that will be used through-
out this thesis, we finish the present chapter by a detailed descriptions of the main
obtained results.

1.1 Stochastic algorithms with momentum

In Chapter 3, which is based on the publication {5}, we study a class of stochastic
algorithms which admits as a continuous counterpart the following ODE, introduced
in [Belotto da Silva & Gazeau 2018]. Let F : Rd Ñ R be a differentiable function to
minimize and let S : Rd Ñ Rd` be a continuous function. Let h, r, p, q : p0,`8q Ñ

R` be continuous functions and let ε ą 0. Starting from a point pvp0q,mp0q, xp0qq P
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Rd` ˆ Rd ˆ Rd, the differential equation is written as follows:
$

’

’

&

’

’

%

9vptq “ pptqSpxptqq ´ qptqvptq

9mptq “ hptq∇F pxptqq ´ rptqmptq

9xptq “ ´mptq{
a

vptq ` ε

, (1.6)

where for two vectors x, y P Rd, x{y denotes the vector px1{y1, . . . , xd{ydq P Rd.
The main challenge in the analysis of the algorithms that are underlined by this
ODE is the fact that ODE (1.6) is nonautonomous. ODE (1.6) generalizes various
differential equations encountered in stochastic approximation. For instance, its
particular case is

9mptq “ ∇F pxptqq ´ rptqmptq

9xptq “ ´mptq

which can be rewritten as

:xptq ` rptq 9xptq `∇F pxptqq “ 0.

If we choose rptq ” α ą 0, then we obtain the well-known Heavy-Ball with friction
algorithm [Attouch et al. 2000, Gadat et al. 2018]. Choosing rptq “ α{t, with α ą 0,
gives us the Nesterov’s accelerated gradient algorithm which was studied from this
ODE in [Su et al. 2016a].

Going back to ODE (1.6) and choosing this time hptq “ rptq “ apt, λ, α1q, pptq “
qptq “ apt, λ, α2q for apt, λ, αq “ λ´1p1 ´ expp´λαqq{p1 ´ expp´αtqq, λ, α1, α2 ą 0

and S “ ∇Fd2, we recover the widely used ADAM algorithm [Kingma & Ba 2015]
(see also [Belotto da Silva & Gazeau 2020, Sections 2.4-4.2] and [Barakat & Bianchi 2021]
for the stochastic version of this algorithm).

In this chapter we establish the convergence of the stochastic algorithms driven
by ODE (1.6) to the set of critical points of F . In this level of generality, the pre-
sented results are new. Convergence rates in the form of a central limit theorem are
given. Last but not least, an avoidance of traps result is established. This result
extends previous works of [Gadat et al. 2018] obtained in the context of SHB. This
result not only allows to study a broader class of algorithms but also significantly
weakens the assumptions. In particular, [Gadat et al. 2018] uses a sub-Gaussian
assumption on the noise and a rather stringent assumption on the stepsizes. The
main difficulty in the approach of [Gadat et al. 2018] lies in the use of the classical
autonomous version of Poincaré’s invariant manifold theorem. The key ingredient of
our proof is a general avoidance of traps result, adapted to nonautonomous settings,
which we believe to be of independent interest. It extends usual avoidance of traps
results to a nonautonomous setting, by making use of a nonautonomous version of
Poincaré’s theorem [Dalec1kĭı & Krĕın 1974, Kloeden & Rasmussen 2011].

Contributions.
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• First, we analyze ODE (1.6) by showing the existence and the uniqueness of
its solutions. Convergence of these solutions to the set of critical points of F
is established. In particular, no convexity assumption is made and, to the best
of our knowledge, the convergence statement for the ODE that underlines the
Nesterov’s accelerated gradient descent is new.

• Second, we analyze a class of stochastic approximation algorithms that are
Euler-like discretizations of this ODE. Examples of these are ADAM, Ada-
Grad, Heavy-Ball and Nesterov’s accelerated gradient descent. Bounded-
ness and convergence to the set of critical points of F is established. Un-
der additional assumptions, convergence rates in the form of a central limit
theorem are given. These results extend the works of [Gadat et al. 2018,
Barakat & Bianchi 2021] to a more general setting. In particular, we highlight
the almost sure convergence result for the (stochastic) Nesterov’s accelerated
gradient descent in a nonconvex setting, which is, to the best of our knowledge,
new.

• Finally, a general avoidance of traps result is established for algorithms under-
lined by a nonautonomous ODE. An application of this result to the algorithms
that we analyze is given by establishing that, under assumptions on the pertur-
bation sequence similar to [Brandière & Duflo 1996], the iterates avoid saddle
points with probability one.

1.2 Convergence of the stochastic subgradient descent
with a constant stepsize

Chapter 4, based on the publication {4}, analyzes the constant step version of
the SGD (1.3). While from a theoretical point of view, the vanishing step size is
convenient to show the convergence of the algorithm to Z, in practical applications
such as the training of a neural net, a vanishing step size is rarely used because
of slow convergence issues. In most computational frameworks, a possibly small
but nevertheless constant step size is used by default. The price to pay is that
the iterates are no longer expected to converge almost surely to the set Z but to
fluctuate in the vicinity of Z as n is large. Therefore, in this chapter we aim to
establish a result of the type

@ε ą 0, lim sup
nÑ8

Ppdistpxn,Zq ą εq ÝÝÑ
γÓ0

0 . (1.7)

Although this result is weaker than in the vanishing step case, constant step stochas-
tic algorithms can reach a neighborhood of Z faster than their decreasing step
analogues, which is an important advantage in the applications where the accu-
racy of the estimates is not essential. Moreover, in practice they are able to
cope with non stationary or slowly changing environments which are frequently
encountered in signal processing, and possibly track a changing set of solutions
[Benveniste et al. 1990, Kushner & Yin 2003].
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Before proving this convergence result we address the question of the pertinence
of the algorithm (1.3) from a practical standpoint. Indeed, in stochastic approxima-
tion the designer has usually no access to the function F but rather to a sequence
of i.i.d random variables pξnq, following a law µ, and to a function fpx, ξq such that
F pxq “ Eξ„µrfpx, ξqs. In this case, the natural algorithm that comes to mind is:

xn`1 “ xn ´ γvn`1 , (1.8)

where vn`1 is a selection of the Clarke subgradient Bxfpx, ξq (taken relatively to the
first variable) at the point pxn, ξn`1q. Denoting Fn the sigma algebra generated by
px0, . . . , xnq, we can rewrite this algorithm as:

xn`1 “ xn ´ γErvn`1|Fns ` γηn`1 , (1.9)

where ηn`1 “ ´vn`1 ` Ervn`1|Fns is a martingale increment. The issue that arise
in this case is that the continuous counterpart of this equation is now

9xptq P ´Eξ„µrBxfpxptq, ξqs . (1.10)

This differential inclusion is not necessarily an instance of the DI (1.4), because we
do not generally have that Ervn`1|Fns P BF pxnq. Indeed, the interchange E Ø B

holds for convex or smooth functions but fails in general. In [Majewski et al. 2018]
the authors restrict their analysis to Clarke regular functions [Clarke et al. 1998,
§2.4], for which the interchange of the expectation and the subdifferentiation applies.
However, this assumption can be restrictive, since a function as simple as ´|x| is
not regular at the critical point zero.

In Chapter 4 we consider a slightly more general version of algorithm (1.8), which
includes the case where vn`1 is a selection of a so-called conservative field. This no-
tion, introduced in [Bolte & Pauwels 2019], modelizes the output of the celebrated
backpropagation algorithm used in numerical libraries such as PyTorch or Tensor-
flow [Paszke et al. 2017]. A similar issue arise in this case since the interchange
between the expectation and a conservative field might not hold.

Our first result is that, under some mild conditions on the functions F and
fp¨, ξq (for instance if they are definable), for almost every initialization point and
for every n P N, xn almost never hits a nondifferentiable point of fp¨, ξn`1q. As a
consequence, algorithm (1.3) can be rewritten as:

xn`1 “ xn ´ γ∇F pxnq ` γηn`1 ,

and its continuous counterpart is indeed the DI (1.4). Using this result, we show
that the continuous process obtained by a piecewise affine interpolation of pxnq is a
weak asymptotic pseudotrajectory of the DI (1.4). In other words, the interpolated
process converges in probability to the set of solutions to the DI, as γ Ñ 0, for the
metric of uniform convergence on compact intervals.

The proof technique to establish the convergence (1.7) is then rather standard
and consists to view (1.9) as a Markov process. For each γ ą 0, under a drift
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assumption on its kernel, this Markov process admits an invariant distribution µγ .
Every accumulation point of pµγq, in the sense of the weak convergence and when
γ Ñ 0, is then shown to be supported on Z, which in turn implies (1.7).

Contributions.

• We analyze the SGD algorithm with a constant step size in the non-smooth,
non-convex setting. Under mild conditions, we prove that when the initializa-
tion x0 is chosen randomly xn almost never hits a non-differentiable point of
fp¨, ξn`1q and

xn`1 ´ xn
γ

“ ´∇F pxnq ` ηn`1 ,

where pηnq is a martingale difference sequence, and ∇F pxnq is the true gra-
dient of F at xn. This argument allows to bypass the oracle assumption of
[Majewski et al. 2018, Davis et al. 2020].

• We establish that the continuous process obtained by a piecewise affine in-
terpolation of pxnq is a weak asymptotic pseudotrajectory of the DI (1.4). In
other words, the interpolated process converges in probability to the set of so-
lutions to the DI, as γ Ñ 0, for the metric of uniform convergence on compact
intervals.

• We establish the long run convergence of the iterates xn to the set Z of Clarke
critical points of F , in the sense of Equation (1.7). This result holds under
two main assumptions. First, it is assumed that F admits a chain rule, which
is satisfied for instance if F is a definable function. Second, we assume a stan-
dard drift condition on the Markov chain (1.9). Finally, we provide verifiable
conditions of the functions fp¨, sq under which the drift condition holds.

• In many practical situations, the drift condition alluded to above is not sat-
isfied. To circumvent this issue, we analyze a projected version of the SGD
algorithm, which is similar in its principle to the well-known projected gradient
algorithm in the classical stochastic approximation theory.

1.3 SGD escapes active strict saddles

In Chapter 5, which is based on the publication {2}, we address the question
of the avoidance of traps in a nonsmooth setting. The traps that are consid-
ered here are the active strict saddles, a notion that was recently introduced in
[Davis & Drusvyatskiy 2021]. Formally, a Clarke critical point is an active strict
saddle if it lies on an active manifold M such that the Riemannian Hessian of F
on M has at least one negative eigenvalue. An active manifold in this setting is a
manifold M such that i) F varies sharply outside of M , ii) FM , the restriction of F
to M , is smooth. For instance, the function py, zq ÞÑ |z| ´ y2 admits the point p0, 0q
as an active strict saddle (see Figure 1.1).
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Figure 1.1: The point p0, 0q is an active strict saddle of F py, zq “ |z| ´ y2. The
corresponding active manifold is M “ Rˆ tp0, 0qu.

The importance of this notion comes from the fact, proved in [Drusvyatskiy et al. 2016,
Davis & Drusvyatskiy 2021], that, given a weakly convex, definable function F :

Rd Ñ R, for almost every u P Rd, each of the Clarke critical points of the linearly
perturbated function Fupxq

∆
“ F pxq ´ xu, xy is either a local minimum or an active

strict saddle. In that sense, active strict saddles are generic in the class of weakly
convex, definable functions.

In [Davis & Drusvyatskiy 2021] the authors have proven that, upon a random
initialization, proximal methods escape active strict saddles with probability one.
Such a result is possible due to the fact that proximal methods implicitly run a
gradient descent on a smoothened version of F - the Moreau envelope. On the
contrary, in Chapter 5 we analyze algorithm (1.3) which is inherently nonsmoooth.
The aim is to establish that the SGD (with decreasing stepsizes) escapes active strict
saddles with probability one.

The intuition behind our approach could be grasped by looking at the stochas-
tic subgradient descent on the function from Figure 1.1. In this case, it is natu-
ral to write down the iterates pxnq as pyn, znq and to notice that pynq follows an
SGD dynamic on a smoooth function y ÞÑ ´y2. Thus, applying the results of
[Brandière & Duflo 1996, Pemantle 1990] to the sequence pynq, we obtain that, un-
der similar assumptions on the perturbation sequence, Ppyn Ñ 0q “ 0. This implies
that the stochastic subgradient descent avoids p0, 0q with probability one. On an
independent note, observe that in this example the sequence pznq converges to zero
in a very fast manner.

To formalize this type of behavior in a more general setting we have introduced
two additional conditions on the active manifold. The first one, the Verdier condi-
tion, states that for x close to M :

@v P BF pxq, vM « ∇MF pPM pxqq `Opdistpx,Mqq , (1.11)

where PM pxq is the projection of x onto M , ∇MF is the “Riemannian gradient" of
FM and vM is the projection of v along the tangent space of M (see Section 5.3.2
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for a precise statement). A consequence of this condition is that, writing down
pynq “ pPM pxnqq, a simple application of Taylor’s formula gives us:

yn`1 « yn ´ γn∇MF pynq ` γnη
M
n`1 ` γnOpdistpxn,Mqq `Opγ

2
nq , (1.12)

where ηMn`1 is the projection of ηn`1 on the tangent space ofM at yn. That is to say,
up to a residual error term, pynq follows an SGD dynamic on the (smooth) function
FM .

The purpose of the angle condition is to control this residual term. First, a
following observation is made. Let x˚ be a Clarke critical point of F lying on an
active manifold M . Then, on the event rxn Ñ x˚s, for n large enough, we have:

F pxnq ´ F pPM pxnqq Á ‖xn ´ PM pxnq‖ . (1.13)

The angle condition then states that close to M we have:

F pxq´F pPM pxqq Á ‖x´ PM pxq‖ ùñ xv, x´PM pxqy Á ‖x´ PM pxq‖ , @v P BF pxq .

(1.14)
Combining (1.13) with (1.14), we obtain that, for n large enough, the angle between
the set BF pxnq and the normal direction to M is lower bounded. This is used to
show that distpxn,Mq converges to zero in a very fast manner and thus allows to
control the residual term in Equation (1.12).

The angle and the Verdier conditions provide a general way to analyze the
stochastic subgradient descent in a neighborhood of an active manifold by de-
composing the iterates pxnq into a sum of two sequences: pynq “ pPM pxnqq and
pznq “ pxn´ynq. The angle condition ensures the fact that ‖zn‖ “ distpxn,Mq Ñ 0

(and hence xn Ñ M) fast enough. Combining this fact with the Verdier condi-
tion, this implies that pynq, up to a residual term, follows an SGD dynamic on the
smooth function FM . In Chapter 5 we illustrate this proof technique by showing
that, under conditions on pηn`1q similar to the ones obtained in a smooth setting
by [Brandière & Duflo 1996], the stochastic subgradient descent avoids active strict
saddles with probability one.

An important contribution of this chapter is an improvement of the projection
formula (1.5). One of the consequence of Equation (1.5) is that if we have a sequence
pxn, vnq, with xn Ñ y P Xi and vn P BF pxnq, then we always have PTyXipvnq Ñ
∇XiF pyq. In Theorem 5.2.1 of Chapter 5 we reinforce this result by showing that if
F is locally Lipschitz continuous, then there exists (a perhaps finer) finite partition
pXiq such that for any y P Xi, there is C ą 0 such that for any y1 P Xi and x P Rd
that are close enough to y, we have:

@v P BF pxq ,
∥∥∥PTy1Xipvq ´∇XiF py

1q

∥∥∥ ď C
∥∥x´ y1∥∥ . (1.15)

The Verdier condition (1.11) thus merely states that M is one of the element of
this partition. The projection formula was initially proved in [Bolte et al. 2007]
using the fact that the graph of a definable function admits a so-called Whitney-
(a) stratification. Our proof of the reinforced projection formula is based on the
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fact, well known literature on o-minimal theory (see [Loi 1998]), that the graph
of a definable function admits a so-called Verdier stratification. Formula (1.15)
gives us a Lipschitz-like condition on the subgradient operator BF . We believe that
such a result is of independent interest and might be important in the analysis of
nonsmooth algorithms operating in a definable setting.

One of the consequences of the reinforced projection formula that we prove is
that the Verdier and the angle conditions are generic in the class of weakly convex
functions. That is to say, given F : Rd Ñ R a weakly convex and definable function,
for almost every u P Rd, every critical point of Fu is either a local minimum or an ac-
tive strict saddle, with the corresponding active manifold satisfying the Verdier and
the angle conditions. Therefore, a possible interpretation of the results of this chap-
ter is that the stochastic subgradient descent on a generic, weakly convex function
converges to a local minimum.
Contributions.

• Firstly, we bring to the fore the fact that definable functions admit stratifica-
tions of the Verdier type. These are more refined than the Whitney stratifica-
tions which were popularized in the optimization literature by [Bolte et al. 2007].
While such stratifications are well-known in the literature on o-minimal struc-
tures [Loi 1998], up to our knowledge, they have not been used yet in the
field of non smooth optimization. To illustrate their interest in this field,
we study the properties of the Verdier stratifiable functions as regards their
Clarke subdifferentials. Specifically, we refine the so-called projection formula
to the case of definable, locally Lipschitz continuous functions by establish-
ing a Lipschitz-like condition on the (Riemannian) gradients of two adjacent
stratas.

• Secondly, we introduce two additional assumptions on an active manifold:
the Verdier and the angle conditions. We prove that a generic active strict
saddle of a definable and weakly convex function is lying on an active manifold
satisfying both of these conditions.

• Finally, with the help of the Verdier and the angle conditions, we show that
the SGD avoids the active strict saddles if the noise ηn is omnidirectional
enough. We emphasize here that, while our genericity result holds under a
weak convexity assumption, no weak convexity is assumed for our avoidance
of traps result.

1.4 SGD on a generic definable function converges to a
minimizer

In Chapter 5 we have established that, given F : Rd Ñ R a weakly convex, definable
function, for almost every u P Rd, the critical points of Fu are either local minima
or active strict saddles lying on active manifolds satisfying the Verdier and the
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angle conditions. Naturally, one might want to know what happens when the weak
convexity assumption fails. The first part of Chapter 6, which is based on the
publication {1}, addresses this question by classifying the generic Clarke critical
points of locally Lipschitz continuous, definable functions. Specifically, given such a
function F : Rd Ñ R it analyzes the type of points that might appear in:

tx P Rd : 0 P BFupxqu , (Zu)

for a non Lebesgue-null set of u P Rd.
First, we must notice that such a simple classification in a weakly convex setting

comes from the fact that, from a minimization perspective, the local behavior of
F on an active manifold M dictates its shape outside of M . In particular, if F is
weakly convex and x˚ is a local minimum of FM , then x˚ is a local minimum of
F (see [Drusvyatskiy & Lewis 2014]). Looking at an example as simple as py, zq ÞÑ
y2´ |z| (see Figure 1.2), we see that this is no longer true when the weak convexity
assumption fails.

Figure 1.2: The point p0, 0q is a sharply repulsive critical point of F py, zq “ ´|z|`y2.
The corresponding active manifold is M “ Rˆ tp0, 0qu.

This motivates the introduction of a third type of points: a sharply repulsive
critical point. We say that a Clarke critical point x˚ P M is a sharply repulsive
critical point if i) M is an active manifold (for F and x˚), ii) x˚ is a local minimum
of FM , iii) 0 P BLF px

˚qzBF px˚q, where BLF pxq denotes the limiting subgradient
of F at x˚. Intuitively speaking, if x˚ PM is a sharply repulsive critical point, then
there is a large region neighboring M on which the subgradients of F are pointing
towards M . A typical example of this situation is illustrated on Figure 1.2.

In Chapter 6 we show that such an example is generic. More precisely, in Theo-
rem 6.2.5 we establish that for almost every u P Rd, every point in (1.4) is lying on
an active manifold and is either a local minimum, an active strict saddle or a sharply
repulsive critical point (for the function Fu). Moreover, the corresponding active
manifolds satisfy the Verdier and the angle conditions. In this sense, a generic trap
of a definable, locally Lipschitz continuous function is either an active strict saddle
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or a sharply repulsive critical point. We must notice here that almost all of the
points of Theorem 6.2.5 readily follow from the work of [Drusvyatskiy et al. 2016].
However, the question of the genericity of the angle condition seems to be delicate
and our proof of this point is based on some deep results of o-minimal theory.

Since the question of the avoidance of active strict saddles was treated in Chap-
ter 5, the rest of Chapter 6 is devoted to the question of the avoidance of sharply
repulsive critical points. Our first result shows that if x˚ is such a point, then, on
the event rxn Ñ x˚s, for n large enough, we have:

F pxnq ě F px˚q .

While the proof of this inequality readily follows from the observations of Chapter 5,
this result reveals to be interesting. Indeed, it implies that while the iterates pxnq
may in theory converge to x˚ this happens only if the SGD fails to explore the
repulsive region near x˚. In some sense, the algorithm perceive the function F as if
x˚ was indeed its local minimum.

In a second time, we show that a density-like assumption on pηnq forces the
SGD to visit the repulsive region near M and will imply the nonconvergence of the
SGD to a sharply repulsive critical point. We must notice here the difference with
the proof of Chapter 5 on the avoidance of active strict saddles. Indeed, if x˚ is a
sharply repulsive critical point, then asymptotically the sequence pynq “ pPM pxnqq
still follows an SGD dynamic on a smooth function FM . However, since in this case
x˚ is a local minimum of FM this is not sufficient to prove the nonconvergence of
pxnq to M . Therefore, in the setting of Chapter 6 the avoidance of traps result is
established by using a density-like condition on pηnq.

The final Section 6.3.3 shows that, while such a density-like assumption on pηnq
might not hold, a way to ensure it in a standard stochastic approximation model
is to add a small perturbation (e.g. a nondegenerate Gaussian) at each iteration of
(6.1). This fact, combined with the results of Chapter 5 on the avoidance of active
strict saddles, provides a practical way to avoid generic traps of definable functions,
and, therefore, ensure the convergence of the SGD to a local minimum.

We must mention here that shortly after the publication {2} and just before the
submission of {1} a concurrent work [Davis et al. 2021] has appeared. The latter,
sharing a lot of similarities with Chapter 5, analyzes the SGD (and its proximal
versions) in a neighborhood of an active manifold. An avoidance of active strict
saddles result was obtained as well as (local) rates of convergence and asymptotic
normality of the iterates were established. These results support our claim on the
importance of the Verdier and the angle conditions. A major difference with our
work is that their proximal aiming condition assume (close to the active manifold)
the left hand side of formula (1.14). Such an assumption rules out functions with
downward cusps such as py, zq ÞÑ ˘y2 ´ |z|, which are treated in Chapters 5 and 6.
As a consequence, the question of genericity in [Davis et al. 2021] is addressed only
for the class of Clarke regular functions in which sharply repulsive critical points do
not exist. In particular, we believe that convergence rates of a similar kind could
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be obtained upon replacing the proximal aiming condition of [Davis et al. 2021] by
ours angle condition.
Contributions.

• We introduce the concept of a sharply repulsive critical point. Given F : Rd Ñ
R a locally Lipschitz continuous function that is definable in an o-minimal
structure, we show that for a full-measure set of u P Rd, each of the critical
points of the linearly perturbated function Fu is lying on an active manifold
satisfying a Verdier and an angle condition and is either a local minimum, an
active strict saddle or a sharply repulsive critical point.

• We show that if x˚ is a sharply repulsive critical point, then on the event
rxn Ñ x˚s, for n large enough, we have F pxnq ě F px˚q. Furthermore, if the
corresponding active manifold satisfies an angle condition and under a density-
like assumption on the perturbation sequence pηnq we show that the iterates
of the SGD will avoid a sharply repulsive critical point with probability one.
Finally, in a standard stochastic approximation model, we show that such an
assumption can be ensured by adding at each iteration a small perturbation
with a density. The latter, combined with the results of Chapter 5, gives a
practical way to ensure the avoidance of the generic traps by the SGD.

1.5 Oscillations of the SGD and its proximal extensions

The purpose of Chapter 7, which is based on the publication {3}, is to give some
characterizations of the convergence of the algorithm (1.3) and its proximal exten-
sions. Given F, g : Rd Ñ R two locally Lipschitz continuous functions and X a
closed convex set, we are seeking to minimize F ` g over X . A popular choice of
algorithm in this case is the stochastic proximal subgradient descent (SPGD), which
reads as follows:

xn`1 P proxγng,X pxn ´ γnvn ` γnηn`1q , (1.16)

where proxγng,X is the proximal operator for the function g on X and vn is in the set
BF pxnq.

From the work of [Davis et al. 2020] it is known that in this case the iterates
pxnq will converge to the set of composite critical points Z :“ tx : 0 P BF pxq `

Bgpxq `NX pxqu, where NX pxq is the normal cone of X at x. However, the iterates
pxnq might not converge to a unique point. Indeed, in [Rios-Zertuche 2020, Section
2] Ríos-Zertuche considers the deterministic subgradient descent (that is to say
g “ 0, ηn ” 0 and X “ Rd) and constructs F , which verifies main assumptions of
nonsmooth optimization (such as Whitney stratifiability of its graph or Kurdyka-
Łojasiewicz inequality) but the limit set of pxnq is equal to Z “ tx : ‖x‖ “ 1u. This
encourages a more precise study of Equation (1.16).

In Chapter 7 we establish two additional results on the convergence of Equa-
tion (1.16). First, we show that if x, y P Z are two distinct accumulation points, then
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the time that the iterates spend to get from a neighborhood of x to a neighborhood
of y goes to infinity. Secondly, we rewrite Equation (1.16) as:

xn`1 “ xn ´ γnpvn ` v
g
n ` v

X
n q ` γnηn`1 , (1.17)

where vgn P Bgpxn`1q and vXn P NX pxn`1q and establish an oscillation-type phe-
nomena. In a first approximation our results imply that, given δ ą 0 and any
accumulation point x, we have:

řn
i“1 γipvi ` v

g
i ` v

X
i ` ηi`1q1Bpx,δqpxiq

řn
i“1 γi1Bpx,δqpxiq

ÝÝÝÝÑ
nÑ`8

0 . (1.18)

Intuitively speaking, this type of behavior shows that even if xn´x0 “
řn
i“1 γipvi`

vgi `v
X
i `ηi`1q might not converge, the drift coming from the sugbradients vn, v

g
n, vXn

and the perturbation sequence ηn`1, on average, compensate itself. This suggests
that the subgradient descent and its stochastic and proximal versions oscillates
around its accumulation set, with the center of these oscillations moving in a van-
ishing speed.

This type of results was obtained by [Bolte et al. 2020b] for the deterministic
gradient descent using the theory of closed measures. A nice feature of this chapter
is that all of our results are proved using the theory of [Benaïm et al. 2005]. We
feel that this approach gives a simpler proof of the convergence and the oscillation
phenomena of the subgradient descent and its stochastic/proximal extensions.

Contributions.

• We show that the time spent by the SPGD to move from one accumulation
point to another goes to infinity and establish an oscillation-type behavior
of the drift. These two results extend [Bolte et al. 2020b, Theorem 7.] to a
stochastic and a proximal setting. Our technique of proof doesn’t rely on the
theory of closed measures used in [Bolte et al. 2020b] but is build upon the
classical work of Benaïm, Hofbauer and Sorin [Benaïm et al. 2005]. We feel
that this approach gives a simpler proof and allows us to treat the determin-
istic, the stochastic and the proximal cases in a unified manner.
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Chapter 2

Mathematical preliminaries

We gather in this chapter some standard results of variational analysis, differential
geometry and o-minimal theory that will be used throughout this thesis.

2.1 Subgradients

Most of the results of this section can be found in classical monographs on variational
analysis such as [Rockafellar & Wets 1998, Clarke et al. 1998].

When the function of interest is nonsmooth various notions of subgradients gen-
eralize the one of the gradient.

Definition 2.1.1 (Frechet subgradient). Consider f : Rd Ñ R a locally Lipschitz
continuous function and x P Rd. The set BF fpxq Ă Rd of Frechet subgradients of f
at x is the set of v P Rd for which:

lim inf
x1Ñx

fpx1q ´ fpxq ´ xv, x1 ´ xy

‖x1 ´ x‖
ě 0 .

The set BF fpxq can be empty (e.g. for the function fpxq “ ´ ‖x‖ at 0). This
motivates the following definitions.

Definition 2.1.2. Consider f : Rd Ñ R a locally Lipschitz continuous function and
x P Rd. The set BLfpxq of limiting subgradients of f at x is the set of v P Rd for
which there is a sequence pxn, vnq Ñ px, vq, with vn P BF fpxnq for all n P N.

Definition 2.1.3. Consider f : Rd Ñ R a locally Lipschitz continuous function and
x P Rd. The set Bfpxq of Clarke subgradients of f at x is defined as follows

Bfpxq “ convtBLfpxqu ,

where conv denotes the convex hull.

If f is C1 around x, then Bfpxq “ BLfpxq “ BF fpxq “ t∇fpxqu.

Definition 2.1.4 (Clarke critical points). We say that x P Rd is a Clarke critical
point of f if 0 P Bfpxq.

Similarly to the smooth setting, the set of Clarke critical points of f contains
local maxima and minima of f .

Since f is locally Lipschitz continuous, by Rademacher’s theorem, f is differen-
tiable almost everywhere. The following proposition describes an alternative char-
acterization of Bf .
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Proposition 2.1.1 ([Clarke et al. 1998, Theorem 8.1]). Assume that f : Rd Ñ R
is locally Lipschitz continuous. Denote D Ă Rd the set of points at which f is
differentiable and let A Ă Rd be any Lebesgue-null set. Then

Bfpxq “ convtv : there is a sequence xn Ñ x s.t. xn P D XAc, ∇fpxnq Ñ vu .

The key notion in the analysis of the stochastic subgradient descent is the one
of path-differentiability.

Definition 2.1.5 (Path-differentiability [Bolte & Pauwels 2019]). A locally Lips-
chitz continuous function f : Rd Ñ R is said to be path-differentiable if for every
absolutely continuous curve c : p0, 1q Ñ Rd, one has for almost every t P p0, 1q,

pf ˝ cq1ptq “ xv, 9cptqy, @v P Bfpcptqq .

Examples of path-differentiable functions include convex, concave, semialgebraic
and more generally definable (see Section 2.4) functions [Bolte & Pauwels 2019].
In nonsmooth optimization, the path-differentiability condition is often a crucial
hypothesis in order to obtain relevant results e.g., on the convergence of iterates
[Bolte et al. 2007, Davis et al. 2020, Bolte & Pauwels 2019]. In particular, as we
will see in Section 2.2.2 path-differentiability of a function will ensure that it is a
Lyapounov function for the subgradient flow.

2.2 Asymptotic pseudotrajectories and differential in-
clusions

2.2.1 ODE method

The ODE method analyzes the convergence properties of a stochastic approximation
algorithm by studying its continuous counterpart: an ordinary differential equation.

Setting up the stage, let G : Rd Ñ Rd be a continuous function and consider the
following ODE:

9xptq “ Gpxptqq . (2.1)

For x0 P Rd, we denote Φpx0q : R` Ñ Rd the solution to this ODE starting at x0.
The key notion of the ODE method is the one of the asymptotic pseudotrajectory
(APT).

Definition 2.2.1 (Asymptotic pseudotrajectory (APT) [Benaïm 1999]). We say
that a continuous function X : R` Ñ Rd is an asymptotic pseudotrajectory for the
ODE (2.1) if for all T ą 0, we have:

sup
hPr0,T s

‖Xpt` hq ´ ΦhpXptqq‖ ÝÝÝÝÑ
tÑ`8

0 .
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We endow CpR`,Rdq, the space of continuous functions from R` to Rd, with
the metric of uniform convergence on compact intervals of R`:

dCpx, yq “
ÿ

nPN
2´n

˜

1^ sup
tPr0,ns

}xptq ´ yptq}

¸

. (2.2)

Equivalently, X is an APT for the ODE (2.1) if

dCpXpt` ¨q,ΦpXptqqq ÝÝÝÝÑ
tÑ`8

0 .

As the following example shows, the notion of an APT naturally arise in the study
of stochastic approximation algorithms.

Example 2.2.1. Consider an Rd-valued sequence pxnq satisfying the following equa-
tion:

xn`1 “ xn ` γnGpxnq ` γnηn`1 , (2.3)

where pγnq is a positive sequence and pηn`1q are Rd-valued. One can view Equa-
tion (2.3) as an Euler-like discretization of (2.1). Assume the following.

• pγnq is such that
řn
i“0 γi Ñ `8.

• The sequence pxnq is bounded.

• For every T ą 0, we have:∥∥∥∥∥∥
NpT,nq
ÿ

i“n

γiηi`1

∥∥∥∥∥∥ ÝÝÝÝÑnÑ`8
0 ,

where for n P N and T ą 0, NpT, nq “ suptk ě n :
řk
i“n γi ď T u.

Then the linearly interpolated process X : R` Ñ Rd defined as:

Xptq “ xn `
t´ τn
γn`1

pxn`1 ´ xnq, if t P rτn, τn`1q ,

where τn “
řn
i“0 γi, is an APT of the ODE (2.1) (see [Benaïm 1999, Proposition

4.1]).

Remark 1. A typical situation when the assumption on pηnq in Example 2.2.1 is
verified is when

řn
i“0 γiηi`1 converges. For instance, this is the case when pηnq is a

sequence of martingale increments relatively to some filtration, limnÑ`8
řn
i“0 γ

2
i ă

`8 and supnPN Er‖ηn‖2
s ă `8.

To further characterize the convergence of a stochastic algorithm we need the
notion of a Lyapounov function.

Definition 2.2.2 (Lyapounov function). Let A be a set in Rd. A continuous func-
tion V : Rd Ñ R is a Lyapounov function for A and the ODE (2.1) if for all x P Rd,
the function t ÞÑ V pΦtpxqq is decreasing and is strictly decreasing as soon as x R A.
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Example 2.2.2. Let f : Rd Ñ R be C1 and consider the ODE (2.1), with G “ ´∇f .
Then f is a Lyapounov function for its set of critical points. Indeed,

fpΦtpxqq “ fpxq ´

ż t

0
‖∇fpΦupxqq‖2 du .

When a process is an APT of an ODE with a Lyapounov function more can be
said about its convergence properties.

Proposition 2.2.1 ([Benaïm 1999, Proposition 5.7 and 6.4]). Let X be a bounded
APT of the ODE (2.1), let A Ă Rd and let V be a Lyapounov function for A.
Denote

LX “
č

tPR`

Xprt,`8qq

the limit set of X. If V pAq is of empty interior, then the following holds.

• We have that LX Ă A.

• The function V is constant on LX.

Notice that in the context of Example 2.2.1 the set LX is equal to the set of
accumulation points of pxnq.

Example 2.2.3. Let f : Rd Ñ R be C1 and consider the setting of Example 2.2.1,
with G “ ´∇f . Applying Proposition 2.2.1, we obtain that fpxnq converges and
every accumulation point of pxnq is a critical point of f .

2.2.2 Differential inclusions

In nonsmooth analysis the notion of an ODE is replaced by the one of a differential
inclusion (DI).

We say that H : Rd Ñ Rd is a set valued map if for each x P Rd, we have that
Hpxq is a subset of Rd. Consider the DI:

9xptq P Hpxptqq . (2.4)

We say that an absolutely continuous curve (a.c.) x : R` Ñ Rd is a solution to (2.4)
starting at x P Rd, if xp0q “ x and Equation (2.4) holds for almost every t ě 0. We
denote SHpxq the set of these solutions.

Various notions of continuity exist for set valued maps. The one that will be
important for us is the notion of upper semicontinuouty.

Definition 2.2.3. We say that a set valued map H : Rd Ñ Rd is upper semi
continuous at x P Rd if for every U , a neighborhood of Hpxq, there is δ ą 0 such
that

‖y ´ x‖ ď δ ùñ Hpyq Ă U .

We say that H is upper semi continuous (usc) if it is upper semicontinuous at every
point.
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For a locally Lipschitz continuous function f : Rd Ñ R, the set valued map
Bf : Rd Ñ Rd is upper semi continuous. Moreover, for x P Rd, the set Bfpxq
is nonempty, convex and compact. For this type of maps, we have the following
existence result.

Proposition 2.2.2 ([Aubin & Cellina 1984]). Assume that for each x in Rd, Hpxq
is nonempty, convex and compact and that there is a constant C ě 0 s.t. supt‖v‖ :

v P Hpxqu ď Cp1` ‖x‖q. Assume that H is usc, then for every x P Rd, the set SHpxq
is nonempty.

The notion of an APT generalizes to the case of differential inclusions.

Definition 2.2.4 ([Benaïm et al. 2005]). We say that a continuous curve X : R` Ñ
Rd is an APT of the DI (2.4) if for all T ą 0,

sup
hPr0,T s

inf
xPSHpxptqq

‖Xpt` hq ´ xphq‖ ÝÝÝÝÑ
tÑ`8

0 . (2.5)

Example 2.2.4. Consider an Rd-valued sequence pxnq satisfying the following in-
clusion:

xn`1 P xn ` γnHpxnq ` γnηn`1 , (2.6)

with pγnq, pηnq satisfying the assumptions of Example 2.2.1 and H satisfying the as-
sumptions of Proposition 2.2.2. Assume that pxnq is bounded, then the linearly inter-
polated process constructed from pxnq is an APT for the DI (2.4) (see [Benaïm et al. 2005,
Theorem 4.1]).

There is a notion of a Lyapounov function in the context of differential inclusions.

Definition 2.2.5 (Lyapounov function (DI)). Let A be a set in Rd. A continuous
function V : Rd Ñ R is a Lyapounov function for A and the DI (2.4) if for all
x P Rd, t ą 0 and x P SHpxq, we have:

V pxptqq ď V pxq ,

with strict inequality as soon as x R A.

Example 2.2.5. Let f : Rd Ñ R be a locally Lipschitz continuous, path-differentiable,
function. Consider the DI (2.4), with H “ ´Bf . For x P Rd, consider x P SHpxq.
By path-differentiability of f we have:

fpxptqq “ fpxp0qq ´

ż t

0
‖ 9xpuq‖2 du .

In particular, f is a Lyapounov function for this DI and the set tx P Rd : 0 P Bfpxqu

of Clarke critical points of F .

Similarly to Proposition 2.2.1, a Lyapounov function allows to characterize the
convergence properties of an APT related to a DI.



22 Chapter 2. Mathematical preliminaries

Proposition 2.2.3 ([Benaïm et al. 2005, Theorem 3.6 and Proposition 3.27]). As-
sume that H verifies the assumptions of Proposition 2.2.2, X is a bounded APT of
the DI (2.4) and V is a Lyapounov function for a set A. Assume that V pAq is of
empty interior and denote LX the limit set of X. The following holds.

• We have that LX Ă A.

• The function V is constant on LX.

Example 2.2.6. Let f : Rd Ñ R be a path-differentiable function. Consider the
setting of Example 2.2.4, with H “ ´Bf . We have that fpxnq converges and the
accumulation points of xn are in the set tx P Rd : 0 P Bfpxqu of Clarke critical
points of f .

Remark 2. In the context of the preceding example it is not necessary to have the
existence of a C ě 0 such that:

supt‖v‖ : v P Bfpxqu ď Cp1` ‖x‖q .

Indeed, since the sequence pxnq is bounded, it is not hard to construct f̃ that agrees
with f on a compact set containing pxnq and such that Bf̃ satisfies all of the as-
sumptions of Proposition 2.2.2. Such a construction is presented in Chapter 7,
Section 7.4.1.

Remark 3. Example 2.2.6 along with the preceding remark provides a simple proof of
the main result of [Davis & Drusvyatskiy 2021] on the convergence of the stochastic
subgradient descent towards the set of (Clarke) critical points.

2.3 Submanifolds

In this section we present some standard results of differential geometry. An inter-
ested reader can find more on this subject in [Lafontaine 2015, Boumal 2020].

We say that a smooth function is an immersion if its Jacobian is injective at
each point.

Definition 2.3.1 (Submanifold). Consider p ě 1. We say that M Ă Rd is a Cp

submanifold of dimension k if for each y P M , there is U a neighborhood of y,
V Ă Rk a neighborhood of 0 and ϕ : V Ñ U a Cp immersion such that ϕp0q “ y,
ϕpV q “ U XM and ϕ is an homeomorphism on its image.

The function ϕ from the preceding proposition is called a local parametrization
of M around y.

Definition 2.3.2 (Tangent and normal spaces). Consider p ě 1 and let M be a Cp

submanifold of dimension k. Consider y P M , ϕ as in Definition 2.3.1 and denote
Jϕpyq the Jacobian of ϕ at y. The tangent space of M at y, denoted TyM , is a
vector space of dimension k defined as:

TyM “ Im Jϕpyq .

The normal space of M at y is NyM “ pTyMq
K.
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Remark 4. Another characterization of the tangent space that we will use is:

TyM “ tv P Rd : there is a Cp curve γ :s ´ ε, εrÑM,γp0q “ y, 9γp0q “ vu .

Definition 2.3.3. Consider p ě 1. We say that a function f : M Ñ Rk is Cp if
M is a Cp submanifold and for every y P M , there is a neighborhood U of y and a
Cp function F : U Ñ Rk that agrees with f on M X U . We call F a (local) smooth
extension of f around y.

Lemma 2.3.1. Consider p ě 1 and M Ă Rd a Cp manifold of dimension k. Let
ϕ,U, V be as in Definition 2.3.1. Then the map ϕ´1 : M X U Ñ V is Cp.

Proof. By [Lafontaine 2015, Theorem 1.21] there is Ṽ Ă Rd a neighborhood of
zero, U 1 Ă U a neighborhood of y and ϕ̃ : V Ñ U 1 a Cp diffeomorphism such
that ϕ̃px1, . . . , xk, 0, . . . , 0q “ ϕpx1, . . . , xkq. As a consequence, ϕ̃´1 is smooth and
PRk ˝ ϕ̃

´1 is a local smooth extension on ϕ´1 around y, where PRk is the projection
onto the first k coordinates.

If a function on a manifold is C1, then as in the euclidian case we can define its
gradient.

Definition 2.3.4 ([Boumal 2020, Proposition 3.53]). Let f : M Ñ R be C1, y PM
and F be a local smooth extension of f around y. We define ∇Mfpyq, the gradient
of f at y as:

∇Mfpyq “ PTyM∇F pyq ,
where PTyM is the orthogonal projection onto TyM . This definition is independent
from our choice of F .

Definition 2.3.5 (critical points). Let f : M Ñ R be C1. We say that x˚ PM is a
critical point of f if ∇Mfpx

˚q “ 0.

Every local extremum of a function defined on a submanifold is a critical point.
In the euclidian setting the type of a critical point can be determined by the Hessian.
A similar information is available for functions defined on a submanifold.

Definition 2.3.6. Consider M a C2 submanifold of Rd of dimension greater than
0. Let f : M Ñ R be C2 and let x˚ PM be a critical point of f . Consider ϕ a local
parametrization around x˚ and denote H the Hessian of f ˝ ϕ at ϕ´1px˚q.

i) We say that x˚ is a nondegenerate critical point if H is invertible.

ii) We say that x˚ is a saddle point if H has at least one negative eigenvalue.

The consistency of the preceding definition comes from the fact that that if x˚

is a critical point of f , then for ϕ1, ϕ2, any two local parametrizations of M around
x˚, we have:

H1 “

´

Jϕ´1
2 ˝ϕ1

pϕ´1px˚qq
¯T

H2Jϕ´1
2 ˝ϕ1

pϕ´1px˚qq ,

where for i P t1, 2u, Hi is the Hessian of f ˝ϕi at ϕ´1
i px

˚q and Jϕ´1
2 ˝ϕ1

is the Jacobian
of ϕ´1

2 ˝ ϕ1. 1 The proof of this result can be found in [Victor 1974, Page 42-43].
1By Lemma 2.3.1 the composition ϕ´1

2 ˝ ϕ1 is indeed C2.
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Remark 5. An equivalent point of view on saddle points is given by the notion of
the Riemannian Hessian. Let f : M Ñ R be C2 and x˚ be a critical point of f , we
define the (Riemannian) Hessian of f at a x˚ as the quadratic form Hf px

˚q, defined
on Rd ˆ Rd by:

Hf,M px
˚q : v ÞÑ vTPTx˚MJGpx

˚qPTx˚Mv ,

where G is a C1 function, defined on a neighborhood of x˚, which agrees with ∇Mf

on M . This definition is independent of the choice of G (see [Boumal 2020, Section
5.5]) and a saddle point in this context is a critical point x˚ such that Hf,M px

˚q has
at least one negative eigenvalue.

The following lemma gathers useful properties of PM , the projection onto M .

Lemma 2.3.2 ([Lewis & Malick 2008, Lemma 4]). Consider p ě 1 and let M Ă Rd
be a Cp submanifold and y be in M . There is r ą 0 such that PM : Bpy, rq ÑM is
well defined, is Cp´1 and the following properties hold.

i) For y1 PM XBpy, rq, the Jacobian of PM at y1 is the projection onto Ty1M .

ii) For x P Bpy, rq, we have x´ PM pxq P NPM pxqM .

We finish this section by a lemma that gives us a Taylor-like expansion of f
around a point on a manifold.

Lemma 2.3.3. Let f : M Ñ R be C2 and consider y PM . For y1 PM , we have:

fpy1q “ fpyq ` x∇Mfpyq, y
1 ´ yy `Op

∥∥y1 ´ y∥∥2
q .

Proof. Consider F a local smooth extension of f around y and ϕ a local parametriza-
tion of M around y. We have:

fpy1q “ fpyq ` x∇F pyq, y1 ´ yy `Op
∥∥y1 ´ y∥∥2

q .

Moreover, in the neighborhood of y:

y1 ´ y “ ϕpϕ´1py1qq ´ ϕpϕ´1pyqq

“ Jϕpϕ
´1pyqqpϕ´1py1q ´ ϕ´1pyqq `Op

∥∥ϕ´1py1q ´ ϕ´1pyq
∥∥2
q

“ Jϕpϕ
´1pyqqpϕ´1py1q ´ ϕ´1pyqq `Op

∥∥y1 ´ y∥∥2
q ,

where the last equality comes from the fact that ϕ´1 is Lipschitz around y (since
it is C2). Moreover, Im Jϕpϕ

´1pyqq “ TyM . Therefore, py1 ´ yq ´ PTyM py
1 ´ yq “

Op‖y1 ´ y‖2
q. This implies:

fpy1q “ fpyq ` x∇Mfpyq, y
1 ´ yy `Op

∥∥y1 ´ y∥∥2
q .
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2.4 o-minimality

An o-minimal structure can be viewed as an axiomatization of diverse proper-
ties of semialgebraic sets. In an o-minimal structure, pathological sets such as
Peano curves or the graph of the function sin 1

x do not exist. To our knowledge
the first work to link ideas between optimization and o-minimal structures was
[Bolte et al. 2007], where the authors analyzed the structure of the Clarke sub-
differential of definable functions and extended the Kurdyka-Łojasiewicz inequal-
ity [Kurdyka 1998] to the nonsmooth setting. Nowadays, a rich body of liter-
ature enforces this link, see e.g. [Davis et al. 2020, Drusvyatskiy & Lewis 2010a,
Bolte et al. 2009, Attouch et al. 2011, Bolte & Pauwels 2019]. A nice exposure about
usefulness of o-minimal theory in optimization is [Ioffe 2009]. Results on the Verdier
andWhitney stratification of definable sets can be found in [Coste 2002, van den Dries & Miller 1996,
Loi 1998].

2.4.1 Definition and basic properties

Most of the results of this section can be found in [Coste 2002, van den Dries & Miller 1996].
An o-minimal structure is a family O “ pOnqnPN˚, where On is a set of subsets

of Rn, verifying the following axioms.

1. If Q : Rn Ñ R is a polynomial, then tQpxq “ 0u P On.

2. If A and B are in On, then the same is true for AXB, AYB and Ac.

3. If A P On and B P Om, then AˆB P On`m.

4. If A P On, then the projection of A on its first (n´ 1) coordinates is in On´1.

5. Every element of O1 is exactly a finite union of intervals and points.

Sets contained in O are called definable. We call a map f : Rk Ñ Rm definable if
its graph is definable. Definable sets and maps have remarkable stability properties,
for instance, if f and A are definable, then fpAq and f´1pAq are definable, any
composition of two functions definable in the same o-minimal structure is definable,
and many others. Let us look at some examples of o-minimal structures.
Semialgebraic. Semialgebraic sets form an o-minimal structure. A set A Ă Rn is
semialgebraic if it is a finite union of intersections of sets of the form tQpxq ď 0u,
where Q : Rn Ñ R is some polynomial. A function is semialgebraic if its graph is
a semialgebraic set. Example of such functions include any piecewise polynomial
functions but also functions such as x ÞÑ xq, where q is any rational number. It can
be shown that any o-minimal structure contains every semialgebraic set.
Globally subanalytic. There is an o-minimal structure that contains, for ev-
ery n P N, sets of the form tpx, tq : t “ fpxqu, where f : r´1, 1sn Ñ R is an
analytic function that can be analytically extended in the neighborhood of the hy-
percube. This comes from the fact that subanalytic sets are stable by taking a
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projection, which was shown by Gabrielov [Gabrielov 1968, Gabrielov 1996]. The
sets belonging to this structure are called globally subanalytic (see [Bolte et al. 2009,
Bierstone & Milman 1988] for more details).
Log-exp. There is an o-minimal structure that contains globally sub-analytic sets
as well as the graph of the exponential and the logarithm (see [Wilkie 2009]). As
a consequence of this result it can be shown that the loss of a neural network is a
definable function [Davis et al. 2020].

In the following we fix some o-minimal structure O. Definable will always means
definable in O.

An attractive property of definable sets is that they can be constructed by means
of first order formulas. A first order formula is constructed according to the following
rules.

i) If Q : Rn Ñ R is a polynomial, then Qpxq “ 0 and Qpxq ą 0 are first order
formulas.

ii) If A Ă Rn is definable, then x P A is a first order formula.

iii) If Φpxq and Ψpxq are first order formulas, “Ψpxq and Φpxq", “Ψpxq or Φpxq",
“not Φpxq" and “Ψpxq ùñ Φpxq" are first order formulas.

iv) If Φpx, yq is a first order formula, where px, yq P RnˆRl, and A Ă Rn is defin-
able, then “Dx P A Ψpx, yq" and “@x P A Ψpx, yq" are first order formulas.

Proposition 2.4.1 ([Coste 2002, Theorem 1.13]). If Φpxq is a first order formula,
then the set of x that satisfies Φpxq is a definable set.

The following lemmas show that one dimensional, definable functions behave
particularly well.

Lemma 2.4.2 (Monotonicity lemma [van den Dries & Miller 1996, Theorem 4.1 ]).
Let f : pa, bq Ñ R, with ´8 ď a ă b ď `8, be a definable function and p ě 0.
There is a finite subdivision a “ a0 ă ¨ ¨ ¨ ă ak “ b such that on each interval
pai, ai`1q f is Cp and either constant or strictly monotone.

Lemma 2.4.3 (de l’Hôpital inverse rule [Bolte et al. 2009, Lemma 1]). Let φ, ψ : r0, εq Ñ

R be two definable functions that are C1 on p0, εq and continuous at 0, with φp0q “
ψp0q “ 0. Assume that @t P p0, εq we have ψ1ptq ą 0 and there is l P R s.t.
limtÑ0

φptq
ψptq “ l. Then limtÑ0

φ1ptq
ψ1ptq “ l.

Lemma 2.4.4 (Definable choice). Let A Ă Rn ˆ Rl be a definable set. Let πn
denote the projection on the first n coordinates. Then there is a definable function
ρ : πnpAq Ñ Rl s.t. for any x P πnpAq, px, ρpxqq P A.

Lemma 2.4.5 (Curve selection lemma [van den Dries & Miller 1996, Theorem 4.6],
[Bolte et al. 2009]). Let A Ă Rn be a definable set and a P A. For any p ą 0, there
is ε ą 0 and a definable curve γ : p´ε, 1q Ñ Rn such that γ is Cp, γp0q “ a and
γpp0, 1qq Ă A.
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Every definable set can be partitioned into simpler sets called cells. The defini-
tion is by induction on n.

Definition 2.4.1. A Cp cell of R is either a point tau or an open interval pa, bq,
with ´8 ď a ă b ď `8. Assume that we have constructed the Cp cells of Rn, then
there are two types of Cp cells in Rn`1.
Graphs. D1 “ tpx, ζ1pxqq : x P Du, where D is a Cp cell of Rn and ζ1 : D Ñ R is
a Cp definable function.
Bands. D1 “ tpx, yq : ζ1pxq ă y ă ζ2pxqu, where D is a Cp cell of Rd and
ζ1, ζ2 : D Ñ R are Cp definable functions.

Definition 2.4.2 (Cylindrical Definable Cell Decomposition (cdcd)). A Cp cdcd of
Rn is a finite partition of Rn into Cp cells. We say that a cdcd of Rn is compatible
with a family A1, . . . , Ak, where Ai Ă Rn if every set of the family is a finite union
of cells of cdcd.

Proposition 2.4.6 (Cell decomposition [van den Dries & Miller 1996, 4.2]). Given
a finite family of definable sets A1, . . . , Ak Ă Rn, there is a Cp cdcd of Rn compatible
with A1, . . . , Ak.

Proposition 2.4.7 (Piecewise smoothness). Let A Ă Rn be a definable set and
f : A Ñ R be a definable function. For any p ě 0, there is a Cp cdcd of Rn
compatible with A such that f is continuous on any of its cell.

To each cell we can inductively associate a dimension.

Definition 2.4.3 (Dimension of a cell). Dimension of a point is 0, dimpa, bq “ 1.
If a cell D1 “ tpx, ζ1pxqq : x P Du is a graph, then dimD1 “ dimD. If a cell
D1 “ tpx, yq : ζ1pxq ă y ă ζ2pxqu is a band, then dimD1 “ dimD ` 1.

With this definition in hand, Proposition 2.4.6 allows us to define the dimension
of any definable set.

Definition 2.4.4 (Dimension of a definable set). Given A Ă Rn, choose a Cp cdcd
of Rn compatible with A. We define dimA as the maximum dimension of a cell of
this cdcd contained in A, dimA is then independent of the chosen cdcd.

Dimension of definable sets verifies many intuitive properties.

Proposition 2.4.8 ([Coste 2002, Section 3.3]).

1. Let A,B be two definable sets. Then dimpAYBq “ maxpdimA,dimBq.

2. Let A, B be definable. Then dimpAˆBq “ dimA` dimB.

3. If A and f : AÑ Rn are definable, then dimpfpAqq ď dimA.

4. Let A Ă Rnˆl be definable. For x P Rn, denote Ax “ ty P Rl : px, yq P

Au. Then for d P N, the set Ad “ tx P Rn : dimAx “ du is definable and
dimpAXAd ˆ Rlq “ dimAd ` d.
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Remark 6. It can be established by induction that every Cp cell of dimension k

is a k-dimensional submanifold (see [Coste 2002, Chapter 6]). Since the Hausdorff
dimension of a k-dimensional Cp submanifold is k, this implies that the Hausdorff
dimension of a definable set is equal to its “definable dimension" in the sense of
Definition 2.4.4.

We finish this section by a result that can be viewed as parametrized version of
the curve selection lemma. Its proof is an adaptation of [Loi 1998, Lemma 1.7].

Lemma 2.4.9 (Wing lemma). Let V, S be definable sets such that V Ă SzS. Assume
that dimV “ k, with k ą 0, let p be an integer and denote PV the projection onto
V . There is a definable set U Ă V , open in V , a constant c ą 0 and a definable Cp

map ρ : U ˆ p0, cq Ñ S such that PV pρpy, tqq “ y and ‖PV pρpy, tqq ´ y‖ “ t.

Proof. First, notice that by Proposition 2.4.6 and Remark 6, without loss of general-
ity, we can assume that V is a k-dimensional manifold and, therefore, the projection
on V is well defined on its neighborhood.

Let A Ă V ˆ Rˆ S be the following definable set:

A “ tpy, t, xq : y P V, x P S, t ą 0, PV pxq “ y, ‖PV pxq ´ y‖ “ tu .

Let ε : V Ñ RY t`8u be defined as εpyq :“ inftt ą 0 : Dx P S, py, t, xq P Au.
Claim: dimpty : εpyq ą 0uq ă k. By contradiction suppose that the dimension is k.
Then by Proposition 2.4.7 there is a set B Ă V , open in V , such that ε is continuous
on B. Shrinking B, we can assume that there is a constant c ą 0 such that @y P B,
εpyq ą c. This implies that B Ć SzS, a contradiction.
Therefore, there is U open in V such that for each y P U , δ ą 0 there is t ă δ and
x P S such that py, t, xq P A. Fix y P U , the set tt : Dx P S, py, t, xq P Au Ă R is
definable and therefore it is a finite union of points and intervals. Therefore, for
each y P U , there is δ ą 0 s.t. for every t ă δ, there is x P S and py, t, xq P A. Let
δ : U Ñ R be a function defined as δpyq “ suptt1 : @t P p0, t1q, Dx P S, py, t, xq P Au.
We know that for all y P U , δpyq ą 0. Moreover, upon replacing U by a smaller
open set, we can assume that δ : U Ñ R is continuous. Upon shrinking U one more
time, we have the existence of c ą 0 such that c ă δpyq.
By the curve selection lemma there is ρ : U ˆ p0, cq Ñ S s.t. py, t, ρpy, tqq P A.
Applying Proposition 2.4.7 to ρ, we obtain that, upon shrinking U and reducing c,
ρ is Cp on U ˆ p0, cq, which finishes the proof.

2.4.2 Stratifications

Various types of cdcd decompositions exist depending on how the neighboring cells
fit together. The notion that will be important for us is the notion of stratification.

Let A be a set in Rd, a Cp stratification of A is a finite partition of A into a
family of stratas pSiq such that each of the Si is a Cp submanifold verifying

Si X Sj ‰ H ùñ Si Ă SjzSj .
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Given a family tA1, . . . , Aku of subsets of of A, we say that a stratification pSiq is
compatible with tA1, . . . , Aku, if each of the Ai is a finite union of stratas. We say
that a stratification pSiq is definable, if every strata Si is definable.

Different types of stratifications exist depending on how tangent spaces of neigh-
boring stratas fit together. Let us first define the asymmetric distance between two
vector spaces E1, E2:

dapE1, E2q “ sup
uPE1,‖u‖“1

distpu,E2q. (2.7)

Note that due to the lack of symmetry da is not a distance. Nevertheless, we have
that dapE1, E2q “ 0 ùñ E1 Ă E2. A distance d between E1 and E2 is then
classically defined as

dpE1, E2q “ maxtdapE1, E2q,dapE2, E1qu . (2.8)

This distance is equal to zero if and only if E1 “ E2. For a sequence of vector spaces
pEnqnPN, we will denote En Ñ E if dpEn, Eq Ñ 0.

Definition 2.4.5. We say that a Cp stratification pSiq satisfies a Whitney-(a) prop-
erty, if for every couple of distinct stratas Si, Sj, for each y P Si X Sj and for each
sequence pxnqnPN P pSjqN such that xn Ñ y, we have:

w-(a) dpTxnSj , τq Ñ 0 ùñ TySi Ă τ . (2.9)

We will refer to pSiq as a Whitney Cp stratification.

It is known (see [Coste 2002, van den Dries & Miller 1996]) that every definable
function f admits a Whitney Cp (for any p) stratification pXiq of its domain such
that f is Cp on each strata. The following “projection formula” relates the Clarke
subdifferential Bfpyq of f at y, to ∇Xifpyq.

Lemma 2.4.10 (Projection formula, [Bolte et al. 2007, Lemma 8]). Let f : Rd Ñ R
be a locally Lipschitz, definable function and p a positive integer. There is pSiq, a
definable Whitney Cp stratification of Graphpfq, such that if one denotes by Xi the
projection of Si onto its first d coordinates, the restriction f : Xi Ñ R is Cp and
the family pXiq is a Whitney Cp stratification of Rd. Moreover, for any y P Xi and
v P Bfpyq, we have PTyXipvq “ ∇Xifpyq.

Lemma 2.4.10 has important consequences. One of them (see [Davis et al. 2020,
Section 5] is that every locally Lipschitz continuous and definable function is path-
differentiable.

Lemma 2.4.11 ([Davis et al. 2020, Theorem 5.8]). Let f : Rd Ñ R be a locally
Lipschitz continuous function. If Graphpfq admits a Whitney C1 stratification, then
f is path-differentiable.
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A Verdier stratification is a special case of Whitney stratification, which posit a
stronger condition on the (asymmetric) distance between adjacent stratas. Whereas
the Whitney stratification can now be considered as well known in optimization
community, the Verdier stratification is comparatively less popular. We illustrate
its advantage by establishing in Theorem 5.2.1 a Lipschitz-like condition in the
“projection formula" (Lemma 2.4.10). We believe that this strengthened result is of
independent interest.

Definition 2.4.6. Let pSiq be a Cp stratification of some set A Ă Rd. We say that
pSiq satisfies a Verdier property (v), if for every couple of distinct stratas Si, Sj and
for each y P Si X Sj ‰ H, there are two positive constants δ, C such that:

pvq
y1 P Bpy, δq X Si
x P Bpy, δq X Sj

ùñ dapTy1Si, TxSjq ď C
∥∥y1 ´ x∥∥ . (2.10)

We refer to pSiq as a Verdier Cp stratification of A.

It is clear from the definitions that a Verdier Cp stratification is always a Whitney
Cp stratification. A fundamental result is that every definable set admits a Verdier
stratification.

Proposition 2.4.12 ([Loi 1998, Theorem 1.3]). Let tA1, . . . , Aku be a family of
definable sets of Rd. For any p ě 1, there is a Verdier Cp stratification of Rd
compatible with tA1, . . . , Aku.

In Chapter 5 this proposition will be used to prove a reinforced version of
Lemma 2.4.10.



Chapter 3

Stochastic optimization with
momentum: convergence,

fluctuations, and traps avoidance

3.1 Introduction

Given a probability space Ξ, an integer d ą 0, and a function f : Rd ˆ Ξ Ñ R,
consider the problem of finding a local minimum of the function F pxq ∆

“ Eξrfpx, ξqs
w.r.t. x P Rd, where Eξ represents the expectation w.r.t. the random variable ξ on
Ξ. This chapter focuses on the case where F is possibly non-convex. It is assumed
that the function F is unknown to the observer, either because the distribution of ξ
is unknown, or because the expectaction cannot be evaluated. Instead, a sequence
pξn : n ě 1q of i.i.d. copies of the random variable ξ is revealed online.

While the Stochastic Gradient Descent is the most classical algorithm that is
used to solve such a problem, recently, several other algorithms became very popular.
These include the Stochastic Heavy Ball (SHB), the stochastic version of Nesterov’s
Accelerated Gradient method (S-NAG) and the large class of the so-called adaptive
gradient algorithms, among which Adam [Kingma & Ba 2015] is perhaps the most
used in practice. As opposed to the vanilla Stochastic Gradient Descent, the study of
such algorithms is more elaborate, for three reasons. First, the update of the iterates
involves a so-called momentum term, or inertia, which has the effect of “smoothing”
the increment between two consecutive iterates. Second, the update equation at
the time index n is likely to depend on n, making these systems inherently non-
autonomous. Third, as far as adaptive algorithms are concerned, the update also
depends on some additional variable (a.k.a. the learning rate) computed online as
a function of the history of the computed gradients.

In this chapter, we study in a unified way the asymptotic behavior of these algo-
rithms in the situation where F is a differentiable function which is not necessarily
convex, and where the stepsize of the algorithm is decreasing.

Our starting point is a generic non-autonomous Ordinary Differential Equation
(ODE) introduced by Belotto da Silva and Gazeau [Belotto da Silva & Gazeau 2020]
(see also [Barakat & Bianchi 2021] for Adam), depicting the continuous-time ver-
sions of the aforementioned florilegium of algorithms. The solutions to the ODE are
shown to converge to the set of critical points of F . This suggests that a general
provably convergent algorithm can be obtained by means of an Euler discretization
of the ODE, including possible stochastic perturbations. Special cases of our general



32 Chapter 3. Stochastic optimization with momentum

algorithm include SHB, Adam and S-NAG. We establish the almost sure bound-
edness and the convergence to critical points. Under additional assumptions, we
obtain convergence rates, under the form of a central limit theorem. These results
are new. They extend the works of [Gadat et al. 2018, Barakat & Bianchi 2021] to
a general setting. In particular, we highlight the almost sure convergence result of
S-NAG in a non-convex setting, which is new to the best of our knowledge.

Next, we address the question of the avoidance of “traps”. In a non-convex set-
ting, the set of critical points of a function F is generally larger than the set of local
minimizers. A “trap” stands for a critical point at which the Hessian matrix of F has
negative eigenvalues, namely, it is a local maximum or saddle point. We establish
that the iterates cannot converge to such a point, if the noise is exciting in some
directions. The result extends previous works of [Gadat et al. 2018] obtained in the
context of SHB. This result not only allows to study a broader class of algorithms
but also significantly weakens the assumptions. In particular, [Gadat et al. 2018]
uses a sub-Gaussian assumption on the noise and a rather stringent assumption
on the stepsizes. The main difficulty in the approach of [Gadat et al. 2018] lies in
the use of the classical autonomous version of Poincaré’s invariant manifold theo-
rem. The key ingredient of our proof is a general avoidance of traps result, adapted
to non-autonomous settings, which we believe to be of independent interest. It
extends usual avoidance of traps results to a non-autonomous setting, by making
use of a non-autonomous version of Poincaré’s theorem [Dalec1kĭı & Krĕın 1974,
Kloeden & Rasmussen 2011].

Chapter organization. In Section 3.2, we introduce and study the ODE’s gov-
erning our general stochastic algorithm. We establish the existence and uniqueness
of the solutions, as well as the convergence to the set of critical points. In Sec-
tion 3.3, we introduce the main algorithm. We provide sufficient conditions under
which the iterates are bounded and converge to the set of critical points. A central
limit theorem is stated. Section 3.4 introduces a general avoidance of traps result
for non-autonomous settings. Next, this result is applied to the proposed algorithm.
Sections 3.5, 3.6 and 3.7 are devoted to the proofs of the results of Sections 3.2, 3.3
and 3.4, respectively.

Notations. Given an integer d ě 1, two vectors x, y P Rd, and a real α, we denote
by x d y, xdα, x{y, |x|, and

a

|x| the vectors in Rd whose i-th coordinates are
respectively given by xiyi, xαi , xi{yi, |xi|,

a

|xi|. Inequalities of the form x ď y are
to be read componentwise. The standard Euclidean norm is denoted } ¨ }. Notation
MT represents the transpose of a matrix M . For x P Rd and ρ ą 0, the notation
Bpx, ρq stands for the open ball of Rd with center x and radius ρ. We also write
R` “ r0,8q. If z P Rd and A Ă Rd, we write distpz,Aq

∆
“ inft}z ´ z1} : z1 P Au. By

1Apxq, we refer to the function that is equal to one if x P A and to zero elsewhere.
The set of zeros of a function h : Rd Ñ Rd1 is zerh “ tx : hpxq “ 0u. Let D be a
domain in Rd. Given an integer k ě 0, the class CkpD,Rq is the class of D Ñ Rmaps
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such that all their partial derivatives up to the order k exist and are continuous. For
a function h P CkpD,Rq and for every i P t1, . . . , du, we denote as Bki hpx1, . . . , xdq

the kth partial derivative of the function h with respect to xi. When k “ 1, we just
write Bihpx1, . . . , xdq. The gradient of a function F : Rd Ñ R at a point x P Rd is
denoted as ∇F pxq, and its Hessian matrix at x is ∇2F pxq as usual. For a function
S : Rd Ñ Rd, the notation ∇Spxq stands for the jacobian matrix of S at point x.

3.2 Ordinary Differential Equations

3.2.1 A general ODE

Our starting point will be a non-autonomous ODE which is almost identical to the
one introduced in [Belotto da Silva & Gazeau 2020] and close to the one in [Barakat & Bianchi 2021].
Let F be a function in C1pRd,Rq, let S be a continuous Rd Ñ Rd` function, let
h, r, p, q : p0,8q Ñ R` be four continuous functions, and let ε ą 0. Let v0 P Rd` and
x0,m0 P Rd. Starting at vp0q “ v0, mp0q “ m0, and xp0q “ x0, our ODE on R`
with trajectories in Z`

∆
“ Rd` ˆ Rd ˆ Rd reads
$

’

’

&

’

’

%

9vptq “ pptqSpxptqq ´ qptqvptq

9mptq “ hptq∇F pxptqq ´ rptqmptq

9xptq “ ´mptq{
a

vptq ` ε

(ODE-1)

This ODE can be rewritten compactly in the following form. Write z0 “ pv0,m0, x0q,
and let zptq “ pvptq,mptq, xptqq P Z` for t P R`. Let Z

∆
“ Rd ˆ Rd ˆ Rd, and define

the map g : Z` ˆ p0,8q Ñ Z as

gpz, tq “

»

–

pptqSpxq ´ qptqv

hptq∇F pxq ´ rptqm

´m{
?
v ` ε

fi

fl (3.1)

for z “ pv,m, xq P Z`. With these notations, we can rewrite (ODE-1) as

zp0q “ z0, 9zptq “ gpzptq, tq for t ą 0.

By setting Spxq “ ∇F pxqd2 when necessary and by properly choosing the functions
h, r, p, and q, a large number of iterative algorithms used in Machine Learning
can be obtained by an Euler’s discretization of this ODE. For instance, choosing
hptq “ rptq “ apt, λ, α1q and pptq “ qptq “ apt, λ, α2q with apt, λ, αq “ λ´1p1 ´

expp´λαqq{p1 ´ expp´αtqq and λ, α1, α2 ą 0, one obtains a version of the Adam
algorithm [Kingma & Ba 2015] (see [Belotto da Silva & Gazeau 2020, Sections 2.4-
4.2] for details). To give another less specific example, if we set p “ q ” 0, then the
resulting ODE covers a family of algorithms to which the well-known Heavy Ball
with friction algorithm [Attouch et al. 2000] belongs. For a comprehensive and more
precise view of the deterministic algorithms that can be deduced from (ODE-1) by
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an Euler’s discretization, the reader is referred to [Belotto da Silva & Gazeau 2020,
Table 1].

In this chapter, since we are rather interested in stochastic versions of these
algorithms, Equation (ODE-1) will be the basic building block of the classical “ODE
method” which is widely used in the field of stochastic approximation [Benaïm 1999].
In order to analyze the behavior of this equation in preparation of the stochastic
analysis, we need the following assumptions.

Assumption 3.2.1. The function F belongs to C1pRd,Rq and ∇F is locally Lips-
chitz continuous.

Assumption 3.2.2. F is coercive, i.e., F pxq Ñ `8 as }x} Ñ `8.

Note that this assumption implies that the infimum F‹ of F is finite, and the
set zer∇F of zeros of ∇F is nonempty.

Assumption 3.2.3. The map S : Rd Ñ Rd` is locally Lipschitz continuous.

Assumption 3.2.4. The continuous functions h, r, p, q : p0,`8q Ñ R` satisfy:

i) h P C1pp0,`8q,R`q, 9hptq ď 0 on p0,`8q and the limit h8
∆
“ limtÑ8 hptq is

positive.

ii) r and q are non-increasing and r8
∆
“ limtÑ8 rptq , q8

∆
“ limtÑ8 qptq are posi-

tive.

iii) p converges towards p8 as tÑ8.

iv) For all t P p0,`8q, rptq ě qptq{4 and r8 ą q8{4.

These assumptions are sufficient to prove the existence and the uniqueness of the
solution to (ODE-1) starting at a time t0 ą 0. The following additional assumption
extends the solution to t0 “ 0.

Assumption 3.2.5. Either h, r, p, q P C1pr0,`8q,R`q, or the following holds:

i) For every x P Rd, we have Spxq ě ∇F pxqd2.

ii) The functions h
p ,

h
q´2r , t ÞÑ thptq, t ÞÑ trptq, t ÞÑ tpptq, t ÞÑ tqptq are bounded

near zero.

iii) There exists t0 ą 0 such that for all t ă t0, 2rptq ´ qptq ą 0 .

iv) There exists δ ą 0 such that h
r ,

p
q P C

1pr0, δq,R`q .

v) The initial condition z0 “ pv0,m0, x0q P Z` satisfies

m0 “ ∇F px0q lim
tÓ0

hptq

rptq
and v0 “ Spx0q lim

tÓ0

pptq

qptq
.
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Remark 7. The functions h, r, p, q corresponding to Adam satisfy these conditions.
We leave the straightforward verifications to the reader. We just observe here that
the function S that will correspond to our stochastic algorithm in Section 3.3 below
will satisfy Assumption 3.2.5–i) by an immediate application of Jensen’s inequality.

The following theorem slightly generalizes the results of [Belotto da Silva & Gazeau 2020,
Theorem 3 and Theorem 5].

Theorem 3.2.1. Let Assumptions 3.2.1 to 3.2.4 hold true. Consider z0 P Z` and
t0 ą 0. Then, there exists a unique global solution z : rt0,`8q Ñ Z` to (ODE-1)
with initial condition zpt0q “ z0. Moreover, zprt0,`8qq is a bounded subset of Z`.
As tÑ `8, zptq converges towards the set

Υ
∆
“ tz‹ “ pp8Spx‹q{q8, 0, x‹q : x‹ P zer∇F u . (3.2)

If, additionally, Assumption 3.2.5 holds, then we can take t0 “ 0.

Remark 8. Theorem 3.2.1 only shows the convergence of the trajectory zptq towards
a set. Convergence of the trajectory towards a single point is not guaranteed when
the set Υ is not countable.

Remark 9. A simpler version of (ODE-1) is obtained when omitting the momentum
term. It reads:

#

9vptq “ pptqSpxptqq ´ qptqvptq

9xptq “ ´∇F pxptqq{
a

vptq ` ε .
(ODE-11)

This ODE encompasses the algorithms of the family of RMSProp [Tieleman & Hinton 2012],
as shown in [Barakat & Bianchi 2021, Belotto da Silva & Gazeau 2020]. The ap-
proach for proving the previous theorem can be adapted to (ODE-11) with only minor
modifications. In the proofs below, we will point out the particularities of (ODE-11)
when necessary.

The following paragraph is devoted to a particular case of (ODE-1), which
does not satisfy Assumption 3.2.4, and which requires a more involved treatment
than (ODE-11).

3.2.2 The Nesterov case

The authors of [Cabot et al. 2009], [Su et al. 2016b] and others studied the ODE

:xptq `
α

t
9xptq `∇F pxptqq “ 0, α ą 0, F P C1pRd,Rq,

which Euler’s discretization generates the well-known Nesterov’s accelerated gradi-
ent algorithm, see also [Attouch et al. 2018, Aujol et al. 2019]. This ODE can be
rewritten as

#

9mptq “ ∇F pxptqq ´ α
tmptq

9xptq “ ´mptq,
(ODE-N)
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which is formally the particular case of (ODE-1) that is taken for pptq “ qptq “ 0,
hptq “ 1, and rptq “ α{t. Obviously, this case is not covered by Assumption 3.2.4.
Moreover, it turns out that, contrary to the situation described in Remark 9 above,
this case cannot be dealt with by a straightforward adaptation of the proof of Theo-
rem 3.2.1. The reason for this is as follows. Heuristically, the proof of Theorem 3.2.1
is built around the fact that the solution of (ODE-1) “shadows” for large t the solu-
tion of the autonomous ODE

$

’

’

&

’

’

%

9vptq “ p8Spxptqq ´ q8vptq

9mptq “ h8∇F pxptqq ´ r8mptq
9xptq “ ´

mptq?
vptq`ε

,

and the latter can be shown to converge to the set Υ defined in Equation (3.2),
either under Assumption 3.2.4 or for the algorithms covered by Remark 9. This
idea does not work anymore for (ODE-N), for its large–t autonomous counterpart

#

9mptq “ ∇F pxptqq
9xptq “ ´mptq.

can have solutions that do not converge to the critical points of F . As an example
of such solutions, take d “ 1 and F pxq “ x2{2. Then, t ÞÑ pcosptq, sinptqq is an
oscillating solution of the latter ODE.

Yet, we have the following result. Up to our knowledge, the proof of the conver-
gence below as tÑ `8 is new.

Theorem 3.2.2. Let Assumptions 3.2.1 and 3.2.2 hold true. Then, for each x0 P

Rd, there exists a unique bounded global solution pm, xq : R` Ñ RdˆRd to (ODE-N)
with the initial condition pmp0q, xp0qq “ p0, x0q. As t Ñ `8, pmptq, xptqq converges
towards the set

Ῡ
∆
“ tp0, x‹q : x‹ P zer∇F u. (3.3)

3.2.3 Related works

The continuous-time dynamical system (ODE-1) we consider was first introduced in
[Belotto da Silva & Gazeau 2020, Equation (2.1)] with S “ ∇Fd2. Theorem 3.2.1
above is roughly the same as [Belotto da Silva & Gazeau 2020, Ths. 3 and 5], with
some slight differences regarding the assumptions on the function F , or Assump-
tion 3.2.4-iv). We point out that the main focus of [Belotto da Silva & Gazeau 2020]
is to study the properties of the deterministic continous-time dynamical system
(ODE-1). In the present chapter, we highlight that the purpose of Theorem 3.2.1
is to pave the way to our analysis of the corresponding stochastic algorithms in
Section 3.3.

Concerning Theorem 3.2.2, the existence and the uniqueness of a global so-
lution to (ODE-N) has been previously shown in the literature, for instance in
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[Cabot et al. 2009, Proposition 2.1] or in [Su et al. 2016b, Theorem 1]. The conver-
gence statement in Theorem 3.2.2 is new to the best of our knowledge. In partic-
ular, we stress that we do not make any convexity assumption on F . The closest
result we are aware of is the one of Cabot-Engler-Gadat [Cabot et al. 2009]. In
[Cabot et al. 2009, Proposition 2.5], it is shown that if xptq converges towards some
point x̄, then necessarily x̄ is a critical point of F . Our result in Theorem 3.2.2
strengthens this statement, by establishing that xptq actually converges to the set
of critical points.

3.3 Stochastic Algorithms

In this section, we discuss the asymptotic behavior of stochastic algorithms that
consist in noisy Euler’s discretizations of (ODE-1) and (ODE-N) studied in the
previous section.

We first set the stage. Let pΞ,T , µq be a probability space. Denoting as BpRdq
the Borel σ-algebra on Rd, consider a BpRdqbT –measurable function f : RdˆΞ Ñ

R that satisfies the following assumption.

Assumption 3.3.1. The following conditions hold:

i) For every x P Rd, fpx, ¨q is µ–integrable.

ii) For every s P Ξ, the map fp¨, sq is differentiable. Denoting as ∇fpx, sq its
gradient w.r.t. x, the function ∇fpx, ¨q is integrable.

iii) There exists a measurable map κ : Rd ˆ Ξ Ñ R` s.t. for every x P Rd :

a) The map κpx, ¨q is µ–integrable,
b) There exists ε ą 0 s.t. for every s P Ξ,

@u, v P Bpx, εq, }∇fpu, sq ´∇fpv, sq} ď κpx, sq}u´ v} .

Under Assumption 3.3.1, we can define the mapping F : Rd Ñ R as

F pxq “ Eξrfpx, ξqs (3.4)

for all x P Rd, where we write Eξϕpξq “
ş

ϕpξqµpdξq. It is easy to see that the
mapping F is differentiable,

∇F pxq “ Eξr∇fpx, ξqs

for all x P Rd, and ∇F is locally Lipschitz.
Let pγnqně1 be a sequence of positive real numbers satisfying

Assumption 3.3.2. γn`1{γn Ñ 1 and
ř

n γn “ `8.

Define for every integer n ě 1

τn “
n
ÿ

k“1

γk .

Let pΩ,F ,Pq be a probability space, and let pξn : n ě 1q be a sequence of iid random
variables defined from pΩ,F ,Pq into pΞ,T , µq with the distribution µ.
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3.3.1 General algorithm

Our first algorithm is a discrete and noisy version of (ODE-1). Let z0 “ pv0,m0, x0q P

Z` and h0, r0, p0, q0 P p0,8q. Define for every n ě 1

hn “ hpτnq, rn “ rpτnq, pn “ ppτnq, and qn “ qpτnq. (3.5)

The algorithm is written as follows.

Algorithm 1 (general algorithm)
Initialization: z0 P Z`.
for n “ 1 to niter do
vn`1 “ p1´ γn`1qnqvn ` γn`1pn∇fpxn, ξn`1q

d2

mn`1 “ p1´ γn`1rnqmn ` γn`1hn∇fpxn, ξn`1q

xn`1 “ xn ´ γn`1mn`1{
?
vn`1 ` ε .

We suppose throughout this chapter that 1 ´ γn`1qn ě 0 for all n P N. This
will guarantee that the quantity

?
vn ` ε is always well-defined (see Algorithm 1).

This mild assumption is satisfied as soon as q0 ď
1
γ1

since the sequence pqnq is
non-increasing and the sequence of stepsizes pγnq can also be supposed to be non-
increasing.

Since this algorithm makes use of the function ∇fpx, ξqd2 , a strengthening of
Assumption 3.3.1 is required:

Assumption 3.3.3. In Assumption 3.3.1, Conditions ii) and iii) are respectively
replaced with the stronger conditions

ii’) For each x P Rd, the function ∇fpx, ¨qd2 is µ -integrable.

iii’) There exists a measurable map κ : Rd ˆ Ξ Ñ R` s.t. for every x P Rd:

a) The map κpx, ¨q is µ–integrable.

b) There exists ε ą 0 s.t.

@u, v P Bpx, εq, }∇fpu, sq´∇fpv, sq}_}∇fpu, sqd2´∇fpv, sqd2} ď κpx, sq}u´v}.

Under Assumption 3.3.3, we can also define the mapping S : Rd Ñ Rd as:

Spxq “ Eξr∇fpx, ξqd2s

for all x P Rd. Notice that Assumptions 3.2.1 and 3.2.3 are satisfied for F and S.

Assumption 3.3.4. Assume either of the following conditions.

i) There exists q ě 2 s.t. for every compact set K Ă Rd,

sup
xPK

Eξ}∇fpx, ξq}2q ă 8 and
ÿ

n

γ1`q{2
n ă 8 .
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ii) For every compact set K Ă Rd, there exists a real σK ‰ 0 s.t.

Eξ expxu,∇fpx, ξq ´∇F pxqy1xPK ď exp
`

σ2
K}u}

2{2
˘

and

Eξ expxu,∇fpx, ξqd2 ´ Spxqy1xPK ď exp
`

σ2
K}u}

2{2
˘

,

for every x, u P Rd. Moreover, for every α ą 0,
ř

n expp´α{γnq ă 8 .

Remark 10. We make the following comments regarding Assumption 3.3.4.

• Assumption 3.3.4-i) allows to use larger stepsizes in comparison to the classical
condition

ř

n γ
2
n ă 8 which corresponds to the particular case q “ 2.

• Recall that a random vector X is said to be subgaussian if there exists a real
σ ‰ 0 s.t. Eexu,Xy ď eσ

2}u}2{2 for every constant vector u P Rd. In Assump-
tion 3.3.4-ii), the subgaussian noise offers the possibility to use a sequence of
stepsizes with an even slower decay rate than in Assumption 3.3.4–i).

Assumption 3.3.5. The set F ptx : ∇F pxq “ 0uq has an empty interior.

Remark 11. Assumption 3.3.5 excludes a pathological behavior of the objective
function F at critical points. It is satisfied when F P CkpRd,Rq for k ě d. Indeed,
in this case, Sard’s theorem stipulates that the Lebesgue measure of F ptx : ∇F pxq “
0uq is zero in R.

Theorem 3.3.1. Let Assumptions 3.2.2, 3.2.4, and 3.3.2–3.3.5 hold true. Assume
that the random sequence pzn “ pvn,mn, xnq : n P Nq given by Algorithm 1 is
bounded with probability one. Then, w.p.1, the sequence pznq converges towards the
set Υ defined in Equation (3.2). If, in addition, the set of critical points of the
objective function F is finite or countable, then w.p.1, the sequence pznq converges
to a single point of Υ.

We now deal with the boundedness problem of the sequence pznq. We introduce
an additional assumption for this purpose.

Assumption 3.3.6. The following conditions hold.

i) ∇F is (globally) Lipschitz continuous.

ii) There exists C ą 0 s.t. for all x P Rd, Eξr}∇fpx, ξq}2s ď Cp1` F pxqq ,

iii)
ř

n γ
2
n ă 8 .

Theorem 3.3.2. Let Assumptions 3.2.2, 3.2.4, 3.3.2, 3.3.3, 3.3.4-i) (with q “ 2)
and 3.3.6 hold. Then, the sequence pvn,mn, xnq given by Algorithm 1 is bounded
with probability one.

Remark 12. The above stability result requires square summable step sizes. Show-
ing the same boundedness result under the Assumption 3.3.4 that allows for larger
step sizes is a challenging problem in the general case. In these situations, the
boundedness of the iterates can be sometimes ensured by ad hoc means.
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Remark 13. We can also consider the noisy discretization of (ODE-11) introduced
in Remark 9 above. This algorithm reads

#

vn`1 “ p1´ γn`1qnqvn ` γn`1pn∇fpxn, ξn`1q
d2 (3.6a)

xn`1 “ xn ´ γn`1∇fpxn, ξn`1q{
?
vn`1 ` ε (3.6b)

for pv0, x0q P Rd` ˆ Rd. With only minor adaptations, Theorem 3.3.1 and Theo-
rem 3.3.2 can be shown to hold as well for this algorithm. We refer to the concomi-
tant paper [Gadat & Gavra 2020, Sec. 2.2] for the link between this algorithm and the
seminal algorithms AdaGrad [Duchi et al. 2011] and RMSProp [Tieleman & Hinton 2012].

3.3.2 Stochastic Nesterov’s Accelerated Gradient (S-NAG)

S-NAG is the noisy Euler’s discretization of (ODE-N). Given α ą 0, it generates
the sequence pmn, xnq on Rd ˆ Rd given by Algorithm 2.

Algorithm 2 (S-NAG with decreasing steps)

Initialization: m0 “ 0, x0 P Rd.
for n “ 1 to niter do
mn`1 “ p1´ αγn`1{τnqmn ` γn`1∇fpxn, ξn`1q

xn`1 “ xn ´ γn`1mn`1 .

Assumption 3.3.7. Assume either of the following conditions.

i) There exists q ě 2 s.t. for every compact set K Ă Rd,

sup
xPK

Eξ}∇fpx, ξq}q ă 8 and
ÿ

n

γ1`q{2
n ă 8 .

ii) For every compact set K Ă Rd, there exists a real σK ‰ 0 s.t.

Eξ expxu,∇fpx, ξq ´∇F pxqy1xPK ď exp
`

σ2
K}u}

2{2
˘

,

for every x, u P Rd. Moreover, for every α ą 0,
ř

n expp´α{γnq ă 8 .

Theorem 3.3.3. Let Assumptions 3.2.2, 3.3.1, 3.3.2, 3.3.5 and 3.3.7 hold true.
Assume that the random sequence pyn “ pmn, xnq : n P Nq given by Algorithm 2
is bounded with probability one. Then, w.p.1, the sequence pynq converges towards
the set Ῡ defined in Equation (3.3). If, in addition, the set of critical points of the
objective function F is finite or countable, then w.p.1, the sequence pynq converges
to a single point of Ῡ.

The almost sure boundedness of the sequence pynq is handled in what follows.

Theorem 3.3.4. Let Assumptions 3.2.2, 3.3.1, 3.3.2 and 3.3.6 hold. Then, the
sequence pyn “ pmn, xnq : n P Nq given by Algorithm 2 is bounded with probability
one.

Remark 14. Assumption 3.3.4-i) in Theorem 3.3.2 is not needed for Theorem 3.3.4.
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3.3.3 Central Limit Theorem

In this section, we establish a conditional central limit theorem for Algorithm 1.

Assumption 3.3.8. Let x‹ P zer∇F . The following holds.

i) F is twice continuously differentiable on a neighborhood of x‹ and the Hessian
∇2F px‹q is positive definite.

ii) S is continuously differentiable on a neighborhood of x‹.

iii) There exists M ą 0 and bM ą 4 s.t.

sup
xPBpx‹,Mq

Eξr}∇fpx, ξq}bM s ă 8 . (3.7)

Under Assumptions 3.2.4-i) to iii), it follows from Equation (3.5) that the se-
quences phnq, prnq, ppnq and pqnq of nonnegative reals converge respectively to h8, r8, p8
and q8 where h8, r8 and q8 are supposed positive. Define v‹

∆
“ q´1

8 p8Spx‹q. Con-
sider the matrix

V
∆
“ diag

´

pε` v‹q
d´ 1

2

¯

. (3.8)

Let P be an orthogonal matrix s.t. the following spectral decomposition holds:

V
1
2∇2F px‹qV

1
2 “ Pdiagpπ1, ¨ ¨ ¨ , πdqP

´1 ,

where π1 ď ¨ ¨ ¨ ď πd are the (positive) eigenvalues of V
1
2∇2F px‹qV

1
2 . Define

H ∆
“

„

´r8Id h8∇2F px‹q

´V 0



where Id is the d ˆ d identity matrix. Then the matrix H is Hurwitz. Indeed, it
can be shown that the largest real part of the eigenvalues of H coincides with ´L,
where

L
∆
“
r8
2

˜

1´

d

ˆ

1´
4h8π1

r2
8

˙

_ 0

¸

ą 0 . (3.9)

Assumption 3.3.9. The sequence pγnq is given by γn “ γ0

nα for some α P p0, 1s,
γ0 ą 0. Moreover, if α “ 1, we assume that γ0 ą

1
2pL^q8q

.

Theorem 3.3.5. Let Assumptions 3.2.4-i) to iii), 3.3.3, 3.3.8 and 3.3.9 hold. Con-
sider the iterates zn “ pvn,mn, xnq given by Algorithm 1. Set θ ∆

“ 0 if α ă 1 and
θ

∆
“ 1{p2γ0q if α “ 1. Assume that the event tzn Ñ z‹u, where z‹ “ pv‹, 0, x‹q, has

a positive probability. Then, given that event,

1
?
γn

„

mn

xn ´ x‹



ñ N p0,Γq ,
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where ñ stands for the convergence in distribution and N p0,Γq is a centered Gaus-
sian distribution on R2d with a covariance matrix Γ given by the unique solution to
the Lyapunov equation

pH` θI2dqΓ` ΓpH` θI2dq
T “ ´

„

Covph8∇fpx‹, ξqq 0

0 0



.

In particular, given tzn Ñ z‹u, the vector ?γn´1pxn ´ x‹q converges in distribution
to a centered Gaussian distribution with a covariance matrix given by:

Γ2 “ V
1
2P

»

–

Ck,`
r8´2θ
h8

pπk ` π` `
2θpθ´r8q

h8
q `

pπk´π`q2

2pr8´2θq

fi

fl

k,`“1...d

P´1V
1
2 (3.10)

where C ∆
“ P´1V

1
2Eξ

“

∇fpx‹, ξq∇fpx‹, ξqT
‰

V
1
2P .

A few remarks are in order.

• The matrix Γ2 coincides with the limiting covariance matrix associated to the
iterates

#

mn`1 “ mn ` γn`1ph8V∇fpxn, ξn`1q ´ r8mnq

xn`1 “ xn ´ γn`1mn`1 .

This procedure can be seen as a preconditioned version of the stochastic heavy
ball algorithm [Gadat et al. 2018] although the iterates are not implementable
because of the unknown matrix V . Notice also that the limiting covariance Γ2

depends on v‹ but does not depend on the fluctuations of the sequence pvnq.

• When h8 “ r8 (which is the case for Adam), we recover the expression of the
asymptotic covariance matrix previously provided in [Barakat & Bianchi 2021,
Section 5.3] and the remarks formulated therein.

• The assumption r8 ą 0 is crucial to establish Theorem 3.3.5. For this reason,
Theorem 3.3.5 does not generalize immediately to Algorithm 2. The study of the
fluctuations of Algorithm 2 is left for future works.

3.3.4 Related works

In [Gadat et al. 2018], Gadat, Panloup and Saadane study the SHB algorithm,
which is a noisy Euler’s discretization of (ODE-1) in the situation where h “ r

and p “ q ” 0 (i.e., there is no v variable). In this framework, if we set h “ r ”

r ą 0 in Algorithm 1 above, then Theorem 3.3.1 above recovers the analogous case
in [Gadat et al. 2018, Theorem 2.1], which is termed as the exponential memory
case. The other important case treated in [Gadat et al. 2018] is the case where
hptq “ rptq “ r{t for some r ą 0, referred to as the polynomially memory case.
Actually, it is known that the ODE obtained for hptq “ rptq “ r{t and p “ q ” 0

boils down to (ODE-N) after a time variable change (see, e.g., Lemma 3.5.3 below).
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Nevertheless, we highlight that the stochastic algorithm that stems from this ODE
and that is studied in [Gadat et al. 2018] is different from the S-NAG algorithm
introduced above which stems from a different ODE (ODE-N). Hence, the conver-
gence result of Theorem 3.3.3 for the S-NAG algorithm we consider is not covered
by the analysis of [Gadat et al. 2018].

The specific case of the Adam algorithm is analyzed in [Barakat & Bianchi 2021]
in both the constant and vanishing stepsize settings (see [Barakat & Bianchi 2021,
Ths. 5.2-5.4] which are the analogues of our Ths. 3.3.1-3.3.2). Note that we deal with
a more general algorithm in the present chapter. Indeed, Algorithm 1 offers some
freedom in the choice of the functions h, r, p, q satisfying Assumption 2.4 beyond the
specific case of the Adam algorithm studied in [Barakat & Bianchi 2021]. Apart
from this generalization, we also emphasize some small improvements. Regarding
Theorem 3.1, we provide noise conditions allowing to choose larger stepsizes (see As-
sumption 3.4 compared to [Barakat & Bianchi 2021, Assumption 4.2]). Concerning
the stability result (Theorem3.3.2), we relax [Barakat & Bianchi 2021, Assumption
5.3-(iii)] which is no more needed in the present chapter (see Assumption 3.3.6)
thanks to a modification of the discretized Lyapunov function used in the proof (see
Section 6.4 compared to [Barakat & Bianchi 2021, Section 9.2]).

In most generality, the almost sure convergence result of the iterates of Algo-
rithm 1 using vanishing stepsizes (Ths. 3.3.1-3.3.2) is new to the best of our knowl-
edge. Moreover, while some recent results exist for S-NAG in the constant stepsize
and for convex objective functions (see for e.g. [Assran & Rabbat 2020]), Ths. 3.3.3
and 3.3.4 which tackle the possibly non-convex setting are also new to the best of
our knowledge.

In the work [Gadat & Gavra 2020] that was posted on the arXiv repository a few
days after our submission, Gadat and Gavra study the specific case of the algorithm
described in Equation (3.6) encompassing both Adagrad and RMSProp, with the
possibility to use mini-batches. For this specific algorithm, the authors establish a
similar almost sure convergence result to ours [Gadat & Gavra 2020, Theorem 1] for
decreasing stepsizes and derive some quantitative results bounding in expectation
the gradient of the objective function along the iterations for constant stepsizes
[Gadat & Gavra 2020, Theorem 2]. We highlight though that they do not consider
the presence of momentum in the algorithm. Therefore, their analysis does not cover
neither Algorithm 1 nor Algorithm 2.

In contrast to our analysis, some works in the literature explore the constant step-
size regime for some stochastic momentummethods either for smooth [Yan et al. 2018]
or weakly convex objective functions [Mai & Johansson 2020]. Furthermore, con-
cerning Adam-like algorithms, several recent works control the minimum of the
norms of the gradients of the objective function evaluated at the iterates of the
algorithm over N iterations in expectation or with high probability [De et al. 2018,
Zhou et al. 2018, Chen et al. 2018, Zou et al. 2019, Chen et al. 2019, Zaheer et al. 2018,
Alacaoglu et al. 2020a, Défossez et al. 2020, Alacaoglu et al. 2020b] and establish
regret bounds in the convex setting [Alacaoglu et al. 2020b].

Similar central limit theorems to Theorem 3.3.5 are established in the cases of
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the stochastic heavy ball algorithm with exponential memory [Gadat et al. 2018,
Theorem 2.4] and Adam [Barakat & Bianchi 2021, Theorem 5.7]. In comparison to
[Gadat et al. 2018], we precise that our theorem recovers their result and provides a
closed formula for the asymptotic covariance matrix Γ2. Our proof of Theorem 3.3.5
differs from the strategies adopted in [Gadat et al. 2018] and [Barakat & Bianchi 2021].

3.4 Avoidance of Traps

In Theorem 3.3.1 and Theorem 3.3.3 above, we established the almost sure conver-
gence of the iterates xn towards the set of critical points of the objective function
F for both Algorithms 1 and 2. However, the landscape of F can contain what is
known as “traps” for the algorithm, namely, critical points where the Hessian matrix
of F has negative eigenvalues, making these critical points local maxima or saddle
points. In this section, we show that the convergence of the iterates to these traps
does not take place if the noise is exciting in some directions.

Starting with the contributions of Pemantle [Pemantle 1990] and Brandière and
Duflo [Brandière & Duflo 1996], the numerous so-called avoidance of traps results
that can be found in the literature deal with the case where the ODE that underlies
the stochastic algorithm is an autonomous ODE. Obviously, this is neither the case
of (ODE-1), nor of (ODE-N). To deal with this issue, we first state a general
avoidance of traps result that extends [Pemantle 1990, Brandière & Duflo 1996] to
a non-autonomous setting, and that has an interest of its own. We then apply this
result to Algorithms 1 and 2.

3.4.1 A general avoidance-of-traps result in a non-autonomous set-
ting

The notations in this subsection and in Sections 3.7.1–3.7.2 are independent from
the rest of the chapter. We recall that for a function h : Rd Ñ Rd1 , we denote by
Bki hpx1, . . . , xdq the kth partial derivative of the function h with respect to xi.

The setting of our problem is as follows. Given an integer d ą 0 and a continuous
function b : Rd ˆ R` Ñ Rd, we consider a stochastic algorithm built around the
non-autonomous ODE 9zptq “ bpzptq, tq. Let z‹ P Rd, and assume that on V ˆ R`
where V is a certain neighborhood of z‹, the function b can be developed as

bpz, tq “ Dpz ´ z‹q ` epz, tq, (3.11)

where epz‹, ¨q ” 0, and where the matrix D P Rdˆd is assumed to admit the following
spectral factorization: Given 0 ď d´ ă d and 0 ă d` ď d with d´` d` “ d, we can
write

D “ QΛQ´1, Λ “

„

Λ´

Λ`



, (3.12)

where the Jordan blocks that constitute Λ´ P Rd´ˆd´ (respectively Λ` P Rd`ˆd`)
are those that contain the eigenvalues λi of D for which <λi ď 0 (respectively
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<λi ą 0). Since d` ą 0, the point z‹ is an unstable equilibrium point of the ODE
9zptq “ bpzptq, tq, in the sense that the ODE solution will only be able to converge to
z‹ along a specific so-called invariant manifold which precise characterization will
be given in Section 3.7.1 below.

We now consider a stochastic algorithm that is built around this ODE. The
condition d` ą 0 makes that z‹ is a trap that the algorithm should desirably avoid.
The following theorem states that this will be the case if the noise term of the
algorithm is omnidirectional enough. The idea is to show that the case being, the
algorithm trajectories will move away from the invariant manifold mentioned above.

Theorem 3.4.1. Given a sequence pγnq of nonnegative deterministic stepsizes such
that

ř

n γn “ `8,
ř

n γ
2
n ă `8, and a filtration pFnq, consider the stochastic

approximation algorithm in Rd

zn`1 “ zn ` γn`1bpzn, τnq ` γn`1ηn`1 ` γn`1ρn`1

where τn “
řn
k“1 γk. Assume that the sequences pηnq and pρnq are adapted to Fn,

and that z0 is F0–measurable. Assume that there exists z‹ P Rd such that Equa-
tion (3.11) holds true on V ˆ R`, where V is a neighborhood of z‹. Consider the
spectral factorization (3.12), and assume that d` ą 0. Assume moreover that the
function e at the right hand side of Equation (3.11) satisfies the conditions:

i) epz‹, ¨q ” 0.

ii) On V ˆ R`, the functions Bn2 B
k
1epz, tq exist and are continuous for 0 ď n ă 2

and 0 ď k ` n ď 2.

iii) The following convergence holds :

lim
pz,tqÑpz‹,8q

}B1epz, tq} “ 0 . (3.13)

iv) There exist t0 ą 0 and a neighborhood W Ă Rd of z‹ s.t.

sup
zPW,tět0

‖B2epz, tq‖ ă ` 8 and sup
zPW,tět0

∥∥B2
1epz, tq

∥∥ ă ` 8 .

Moreover, suppose that :

v)
ř

n }ρn`1}
2
1znPW ă 8 almost surely.

vi) lim supEr}ηn`1}
4 |Fns1znPW ă 8, and Erηn`1 |Fns1znPW “ 0.

vii) Writing η̃n “ Q´1ηn “ pη̃
´
n , η̃

`
n q with η̃˘n P Rd

˘, for some c2 ą 0, it holds that

lim inf Er}η̃`n`1}
2 |Fns1znPW ě c2

1znPW .

Then, Pprzn Ñ z‹sq “ 0.
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Remark 15. Assumptions i) to iv) of Theorem 3.4.1 are related to the function
e defined in Equation (3.11), which can be seen as a non-autonomous perturbation
of the autonomous linear ODE 9zptq “ Dpzptq ´ z‹q. These assumptions guarantee
the existence of a local (around the unstable equilibrium z‹) non-autonomous invari-
ant manifold of the non-autonomous ODE 9zptq “ bpzptq, tq with enough regularity
properties, as provided by Proposition 3.7.1 and Proposition 3.7.3 below.

3.4.2 Application to the stochastic algorithms

3.4.2.1 Trap avoidance of the general algorithm 1

In Theorem 3.3.1 above, we showed that the sequence pznq generated by Algorithm 1
converges almost surely towards the set Υ defined in Equation (3.2). Our purpose
now is to show that the traps in Υ (to be characterized below) are avoided by the
stochastic algorithm 1 under a proper omnidirectionality assumption on the noise.

Our first task is to write Algorithm 1 in a manner compatible with the state-
ment of Theorem 3.4.1. The following decomposition holds for the sequence pzn “
pvn,mn, xnq, n P Nq generated by this algorithm:

zn`1 “ zn ` γn`1gpzn, τnq ` γn`1ηn`1 ` γn`1ρ̃n`1,

where ρ̃n`1 “

´

0 , 0 , mn?
vn`ε

´
mn`1?
vn`1`ε

¯

, and where ηn`1 is the martingale increment
with respect to the filtration pFnq which is defined by Equation (3.28).

Observe from Equation (3.2) that each z‹ P Υ is written as z‹ “ pv‹, 0, x‹q

where x‹ P zer∇F , and v‹ “ q´1
8 p8Spx‹q (in particular, x‹ and z‹ are in a one-

to-one correspondence). We need to linearize the function gp¨, tq around z‹. The
following assumptions will be required.

Assumption 3.4.1. The functions F and S belong respectively to C3pRd,Rq and C2pRd,Rd`q.

Assumption 3.4.2. The functions h, r, p, q belong to C1pp0,8q,R`q and have bounded
derivatives on rt0,`8q for some t0 ą 0.

Lemma 3.4.2. Let Assumptions 3.2.4-i) to iii), 3.4.1 and 3.4.2 hold. Let z‹ “
pv‹, 0, x‹q P Υ. Then, for every z P Z` and every t ą 0, the following decomposition
holds true:

gpz, tq “ Dpz ´ z‹q ` epz, tq ` cptq,

where D “

»

–

´q8Id 0 p8∇Spx‹q
0 ´r8Id h8∇2F px‹q

0 ´V 0

fi

fl , cptq “

»

–

pptqSpx‹q ´ qptqv‹
0

0

fi

fl ,

and the function epz, tq (defined in Section 3.7.3.1 below for conciseness) has the
same properties as its analogue in the statement of Theorem 3.4.1.

Using this lemma, the algorithm iterate zn`1 can be rewritten as an instance of
the algorithm in the statement of Theorem 3.4.1, namely,

zn`1 “ zn ` γn`1bpzn, τnq ` γn`1ηn`1 ` γn`1ρn`1, (3.14)
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where in our present setting, bpz, tq “ gpz, tq ´ cptq “ Dpz ´ z‹q ` epz, tq and
ρn “ cpτn´1q ` ρ̃n. In the following assumption, we use the well-known fact that
a symmetric matrix H has the same inertia as AHAT for an arbitrary invertible
matrix A.

Assumption 3.4.3. Let x‹ P zer∇F , let v‹ “ q´1
8 p8Spx‹q, and define the diagonal

matrix V “ diagppv‹ ` εq
d´ 1

2 q as in (3.8). Assume the following conditions:

i)
ř

n pq8pn ´ p8qnq
2
ă 8 ,

ii) The Hessian matrix ∇2F px‹q has a negative eigenvalue.

iii) There exists δ ą 0 such that supxPBpx‹,δq Eξr}∇fpx, ξq}
8s ă 8 .

iv) Defining Πu as the orthogonal projector on the eigenspace of V
1
2∇2F px‹qV

1
2

that is associated with the negative eigenvalues of this matrix, it holds that

ΠuV
1
2Eξp∇fpx‹, ξq ´∇F px‹qqp∇fpx‹, ξq ´∇F px‹qqTV

1
2 Πu ‰ 0.

Theorem 3.4.3. Let Assumptions 3.2.4, 3.3.3, and 3.4.1, 3.4.2 hold true. Let
z‹ P Υ be such that Assumption 3.4.3 holds true for this z‹. Then, the eigenspace
associated with the eigenvalues of D with positive real parts has the same dimension
as the eigenspace of ∇2F px‹q associated with the negative eigenvalues of this matrix.
Let pzn “ pvn,mn, xnq : n P Nq be the random sequence generated by Algorithm 1
with stepsizes satisfying

ř

n γn “ `8 and
ř

n γ
2
n ă `8. Then, Pprzn Ñ z‹sq “ 0.

The assumptions and the result call for some comments.

Remark 16. The definition of a trap as regards the general algorithm in the state-
ment of Theorem 3.4.1 is that the matrix D in Equation (3.11) has eigenvalues with
positive real parts. Theorem 3.4.3 states that this condition is equivalent to ∇2F px‹q

having negative eigenvalues. What’s more, the dimension of the invariant subspace
of D corresponding to the eigenvalues with positive real parts is equal to the dimen-
sion of the negative eigenvalue subspace of ∇2F px‹q. Thus, Assumption 3.4.3–iv)
provides the “largest” subspace where the noise energy must be non zero for the pur-
pose of avoiding the trap.

Remark 17. Assumptions 3.4.2 and 3.4.3-i) are satisfied by many widely studied
algorithms, among which RMSProp and Adam.

Remark 18. The results of Theorem 3.4.3 can be straightforwardly adapted to the
case of (ODE-11). Assumption 3.4.3-iv) on the noise is unchanged.

In the case of the S-NAG algorithm, the assumptions become particularly sim-
ple. We state the afferent result separately.
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3.4.2.2 Trap avoidance for S-NAG

Assumption 3.4.4. Let x‹ P zer∇F and let the following conditions hold.

i) The Hessian matrix ∇2F px‹q has a negative eigenvalue.

ii) There exists δ ą 0 such that supxPBpx‹,δq Eξr}∇fpx, ξq}
4s ă 8 .

iii) Π̃uEξp∇fpx‹, ξq ´ ∇F px‹qqp∇fpx‹, ξq ´ ∇F px‹qqTΠ̃u ‰ 0, where Π̃u is the
orthogonal projector on the eigenspace of ∇2F px‹q associated with its negative
eigenvalues.

Theorem 3.4.4. Let Assumptions 3.2.4, 3.3.1, 3.4.1 and 3.4.4 hold. Define y‹ “
p0, x‹q. Let pyn “ pmn, xnq : n P Nq be the random sequence given by Algorithm 2
with stepsizes satisfying

ř

n γn “ `8 and
ř

n γ
2
n ă `8. Then, Ppryn Ñ y‹sq “ 0 .

3.4.3 Related works

Up to our knowledge, all the avoidance of traps results that can be found in the lit-
erature, starting from [Pemantle 1990, Brandière & Duflo 1996], refer to stochastic
algorithms that are discretizations of autonomous ODE’s (see for e.g., [Benaïm 1999,
Sec. 9] for general Robbins Monro algorithms and [Mertikopoulos et al. 2020a, Sec. 4.3]
for SGD). In this line of research, a powerful class of techniques relies on Poincaré’s
invariant manifold theorem for an autonomous ODE in a neighborhood of some
unstable equilibrium point. In our work, we extend the avoidance of traps results
to a non-autonomous setting, by borrowing a non-autonomous version of Poincaré’s
theorem from the rich literature that exists on the subject [Dalec1kĭı & Krĕın 1974,
Kloeden & Rasmussen 2011].

In [Gadat et al. 2018], the authors succeeded in establishing an avoidance of
traps result for their non-autonomous stochastic algorithm which is close to our S-
NAG algorithm (see the discussion at the end of Section 3.3.4 above), at the expense
of a sub-Gaussian assumption on the noise and a rather stringent assumption on the
stepsizes. The main difficulty in the approach of [Gadat et al. 2018] lies in the use
of the classical autonomous version of Poincaré’s theorem (see [Gadat et al. 2018,
Remark 2.1]). This kind of difficulty is avoided by our approach, which allows to
obtain avoidance of traps results with close to minimal assumptions. More recently,
in the contribution of [Gadat & Gavra 2020] discussed in Sec. 3.3.4, the authors es-
tablish an avoidance of traps result ([Gadat & Gavra 2020, Theorem 3]) for the al-
gorithm described in Equation (3.6) using techniques inspired from [Pemantle 1990,
Benaïm 1999]. As previously mentioned, this recent work does not handle momen-
tum and hence neither Algorithm 1 nor Algorithm 2. Moreover, as indicated in our
discussion of [Gadat et al. 2018], our strategy of proof is different.

Taking another point of view as concerns the trap avoidance, some recent works
[Lee et al. 2019, Du et al. 2017, Jin et al. 2017, Panageas & Piliouras 2017, Panageas et al. 2019]
address the problem of escaping saddle points when the algorithm is deterministic
but when the initialization point is random. In contrast to this line of research, our
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work considers a stochastic algorithm for which randomness enters into play at each
iteration of the algorithm via noisy gradients.

3.5 Proofs for Section 3.2

3.5.1 Proof of Theorem 3.2.1

The arguments of the proof of this theorem that we provide here follow the approach
of [Belotto da Silva & Gazeau 2020] with some small differences. Close arguments
can be found in [Barakat & Bianchi 2021]. We provide the proof here for com-
pleteness and in preparation of the proofs that will be related with the stochastic
algorithms.

3.5.1.1 Existence and uniqueness

The following lemma guarantees that the term
a

vptq ` ε in (ODE-1) is well-defined.

Lemma 3.5.1. Let t0 P R` and T P pt0,8s. Assume that there exists a solution
zptq “ pvptq,mptq, xptqq to (ODE-1) on rt0, T q for which vpt0q ě 0. Then, for all
t P rt0, T q, vptq ě 0.

Proof. Assume that ν ∆
“ inftt P rt0, T q, vptq ă 0u satisfies ν ă T . If vpt0q ą 0,

Gronwall’s lemma implies that vptq ě vpt0q expp´
şt
t0
qptqq on rt0, νs which is in

contradiction with the fact that vpνq “ 0. If vpt0q “ 0, since ν ă T , there exists
t1 P pt0, νq s.t. 9vpt1q ă 0. Hence, using the first equation from (ODE-1), we obtain
vpt1q ą 0. This brings us back to the first case, replacing t0 by t1.

Recall that F‹ “ inf F is finite by Assumption 3.2.2. Of prime importance in
the proof will be the energy (Lyapunov) function E : R` ˆ Z` Ñ R, defined as

Eph, zq “ hpF pxq ´ F‹q `
1

2

›

›

›

›

›

m

pv ` εqd
1
4

›

›

›

›

›

2

, (3.15)

for every h ě 0 and every z “ pv,m, xq P Z`. This function is slightly differ-
ent from its analogues that were used in [Alvarez 2000, Barakat & Bianchi 2021,
Belotto da Silva & Gazeau 2020].

Consider pt, zq P p0,`8q ˆ Z` and set z “ pv,m, xq. Then, using Assump-
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tion 3.2.1, we can write

BtEphptq, zq ` x∇zEphptq, zq, gpz, tqy

“ 9hptqpF pxq ´ F‹q ´
1

4
x

md2

pv ` εqd
3
2

, pptqSpxq ´ qptqvy

` x
m

pv ` εqd
1
2

, hptq∇F pxq ´ rptqmy ´ x
m

pv ` εqd
1
2

, hptq∇F pxqy

ď ´

ˆ

rptq ´
qptq

4

˙

›

›

›

›

›

m

pv ` εqd
1
4

›

›

›

›

›

2

` 9hptqpF pxq ´ F‹q ´
pptq

4
xSpxq,

md2

pv ` εqd
3
2

y.

(3.16)

With the help of this function, we can now establish the existence, the uniqueness
and the boundedness of the solution of (ODE-1) on rt0,8q for an arbitrary t0 ą 0.

Lemma 3.5.2. For each t0 ą 0 and z0 P Z`, (ODE-1) has a unique solution on
rt0,8q starting at zpt0q “ z0. Moreover, the orbit tzptq : t ě t0u is bounded.

Proof. Let t0 ą 0, and fix z0 P Z`. On each set of the type rt0, t0 ` As ˆ B̄pz0, Rq

where A,R ą 0 and B̄pz0, Rq Ă p´ε,8qd ˆ Rd ˆ Rd, we easily obtain from our
assumptions that the function g defined in (3.1) is continuous, and that gp¨, tq is
uniformly Lipschitz on t P rt0, t0`As. In these conditions, Picard’s theorem asserts
that (ODE-1) starting from zpt0q “ z0 has a unique solution on a certain maximal
interval rt0, T q. Lemma 3.5.1 shows that vptq ě 0 on this interval.

Let us show that T “ 8. Applying Inequality (3.16) with pv,m, xq “ pvptq,mptq, xptqq
and using Assumption 3.2.4, we obtain that the function t ÞÑ Ephptq, zptqq is decreas-
ing on rt0, T q. By the coercivity of F (Assumption 3.2.2) and Assumption 3.2.4–
i), we get that the trajectory txptqu is bounded. Recall the equation 9mptq “

hptq∇F pxptqq ´ rptqmptq. Using the continuity of the functions ∇F , h and r along
with Gronwall’s lemma, we get that tmptqu is bounded if T ă 8. We can show a
similar result for tvptqu. Thus, tzptqu is bounded on rt0, T q if T ă 8 which is a
contradiction, see, e.g., [Hartman 2002, Cor.3.2].

It remains to show that the trajectory tzptqu is bounded. To that end, let us
apply the variation of constants method to the equation 9mptq “ hptq∇F pxptqq ´
rptqmptq. Writing Rptq “

şt
t0
rpuq du, we get that

d

dt

´

eRptqmptq
¯

“ eRptqhptq∇F pxptqq.

Therefore, for every t ě t0 ,

mptq “ e´Rptqmpt0q `

ż t

t0

eRpuq´Rptqhpuq∇F pxpuqqdu .

Using the continuity of ∇F together with the boundedness of x, Assumption 3.2.4
and the triangle inequality, we obtain the existence of a constant C ą 0 independent
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of t s.t.

‖mptq ´mpt0q‖´ ‖mpt0q‖ ď Chpt0q

ż t

t0

e´
şt
u rpsq dsdu

ď Chpt0q

ż t

t0

e´r8pt´uqdu ď
Chpt0q

r8
.

The same reasoning applies to vptq using the continuity of S and Assumption 3.2.4.
This completes the proof.

We can now extend this solution to t0 “ 0 along the approach of [Belotto da Silva & Gazeau 2020],
where the detailed derivations can be found. The idea is to replace hptq with
hpmaxpη, tqq for some η ą 0 and to do the same for p, q, and r. It is then easy
to see that the ODE that is obtained by doing these replacements has a unique
global solution on R`. By making η Ñ 0 and by using the Arzelà-Ascoli theorem
along with Assumption 3.2.5, we obtain that (ODE-1) has a unique solution on R`.

3.5.1.2 Convergence

The first step in this part consists in transforming (ODE-1) into an autonomous
ODE by including the time variable into the state vector. More specifically, we
start with the following ODE:

„

9zptq

9uptq



“

„

gpzptq, uptqq

1



with
„

zp0q

up0q



“

„

z0

t0



,

then, we perform the following change of variable in time
„

z

u



ÞÑ

„

z

s “ 1{u



allowing the solution to lie in a compact set.
We initialize the above ODE at a time instant t0 ą 0. Define the functions

H,R,P,Q : R` Ñ R` by setting Hpsq “ hp1{sq, Rpsq “ rp1{sq, Ppsq “ pp1{sq;
Qpsq “ qp1{sq for s ą 0; Hp0q “ h8, Rp0q “ r8, Pp0q “ p8 and Qp0q “ q8. Our
autonomous dynamical system can then be described by the following system of
equations:

$

’

’

’

’

’

&

’

’

’

’

’

%

9vptq “ PpsptqqSpxptqq ´ Qpsptqqvptq

9mptq “ Hpsptqq∇F pxptqq ´ Rpsptqqmptq

9xptq “ ´
mptq?
vptq`ε

9sptq “ ´sptq2

(3.17)

Since the solution of the ODE 9sptq “ ´sptq2 for which spt0q “ 1{t0 is sptq “ 1{t,
the trajectory tsptqu is bounded. The three remaining equations are a reformulation
of (ODE-1) for which the trajectories have already been shown to exist and to be
bounded in Lemma 3.5.2. In the sequel, we denote by Φ : Z`ˆR` Ñ Z`ˆR` the
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semiflow induced by the autonomous ODE (3.17), i.e., for every u “ pz, sq P Z` ˆ
R`, Φpu, ¨q is the unique global solution to the autonomous ODE (3.17) initialized at
u. Observe that the orbits of this semiflow are precompact. Moreover, the function
Φppz, 0q, ¨q is perfectly defined for each z P Z` since the associated solution satisfies
the ODE (3.19) defined below, which three first equations satisfy the hypotheses of
Lemma 3.5.2.

Consider now a continuous function V : Z` ˆ R` Ñ R defined by:

V puq “ E pHpsq, zq , u “ pz, sq P Z` ˆ p0,8q.

As for Inequality (3.16) above, we have here that

d

dt
V pΦpu, tqq ď ´

ˆ

rptq ´
qptq

4

˙

›

›

›

›

›

mptq

pvptq ` εqd
1
4

›

›

›

›

›

2

` 9hptqpF pxptqq ´ F‹q ´
pptq

4
xSpxptqq,

mptqd2

pvptq ` εqd
3
2

y

if s ą 0, and the same inequality with p 9hptq, pptq, rptq, qptqq being replaced with
p0, p8, r8, q8q otherwise.

Since V ˝Φpu, ¨q is non-increasing and nonnegative, we can define V8
∆
“ limtÑ8 V pΦpu, tqq.

Let ωpuq ∆
“

Ş

są0

Ť

těs Φpu, tq be the ω-limit set of the semiflow Φ issued from u.
Recall that ωpuq is an invariant set for the flow Φpu, ¨q, and that

distpΦpu, tq, ωpuqq ÝÝÝÑ
tÑ8

0,

see, e.g., [Haraux 1991, Theorem 1.1.8]). In order to finish the proof of Theo-
rem 3.2.1, we need to make explicit the structure of ωpuq.

We know from La Salle’s invariance principle that ωpuq Ă V ´1pV8q. In partic-
ular,

@y P ωpuq, @t ě 0, V pΦpy, tqq “ V pyq “ V8 (3.18)

by the invariance of ωpuq.
From ODE (3.17), we have that any y P ωpuq is of the form y “ pz, 0q since

sptq Ñ 0. As a consequence, Φpy, ¨q is a solution to the autonomous ODE
$

’

’

’

’

’

&

’

’

’

’

’

%

9vptq “ p8Spxptqq ´ q8vptq

9mptq “ h8∇F pxptqq ´ r8mptq
9xptq “ ´

mptq?
vptq`ε

9sptq “ 0 .

(3.19)

The three first equations can be written in a more compact form :

9zptq “ g8pzptqq (3.20)
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where zptq “ pvptq,mptq, xptqq, and

g8pzq “ lim
tÑ8

gpz, tq “

»

–

p8Spxq ´ q8v

h8∇F pxq ´ r8m
´m{

?
v ` ε

fi

fl

for each z P Z`. Consider y “ pv,m, x, 0q P ωpuq. Using Equation (3.18), we obtain
that dV pΦpy, tqq{dt “ 0, which implies that

´

r8 ´
q8
4

¯

›

›

›

›

›

mptq

pvptq ` εqd
1
4

›

›

›

›

›

2

`
p8
4
xSpxptqq,

mptqd2

pvptq ` εqd
3
2

y “ 0

for all pvptq,mptq, xptq, 0q “ Φpy, tq. As a consequence, Assumption 3.2.4-iv) gives
mptq “ m “ 0, and then, xptq “ x for some x s.t. ∇F pxq “ 0 using ODE (3.19).
We now turn to showing that vptq “ v “ p8Spxq{q8. We have proved so far that
any element y P ωpuq is written y “ pv, 0, x, 0q where ∇F pxq “ 0. The component
vp¨q of Φpy, ¨q is a solution to the ODE 9vptq “ p8Spxq ´ q8vptq and is thus written

vptq “
p8Spxq

q8
` e´q8t

´

v ´
p8Spxq

q8

¯

. (3.21)

Fixing x, let Sx be the section of ωpuq defined by:

Sxωpuq “
!

y P ωpuq : y “ pṽ, 0, x, 0q , ṽ P Rd`
)

.

As ωpuq is invariant, we have Sxωpuq “ SxΦpωpuq, tq for all t ě 0. Since the
set tṽ P Rd` s.t. pṽ, 0, x, 0q P Sxωpuqu lies in a compact, we deduce from Equa-
tion (3.21) that this set is reduced to the singleton tp8Spxq{q8u and in particular
v “ p8Spxq{q8. Therefore, the union of ω-limit sets of the semiflow Φ induced by
ODE (3.17) coincides with the set of equilibrium points of this semiflow. The latter
set itself corresponds to the set of points pz, 0q s.t. z P zer g8. It remains to notice
that Υ “ zer g8 to finish the proof.

Remark 19. Commenting on Remark 9, the same proof works for (ODE-11) by
using the function F ´ F‹ as a Lyapunov function. The corresponding limit set (as
tÑ `8) is then of the form

tz̃8 “ pṽ8, x̃8q P Rd` ˆ Rd : ∇F px̃8q “ 0 , ṽ8 “ p8Spx̃8q{q8u.

Similarly, if we set p “ q ” 0 in (ODE-1) and we keep what remains in Assump-
tion 3.2.4, the function hptqpF pxq´F‹q`

1
2}m}

2 works as a Lyapunov function, and
the limit set has the form tp0, xq : ∇F pxq “ 0u.

3.5.2 Proof of Theorem 3.2.2

The existence and the uniqueness of the solution to (ODE-N) have been shown in
the literature. We refer to [Cabot et al. 2009, Proposition 2.1-2.2.c)] for an identical
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statement of this result and [Su et al. 2016b, Theorem 1, Appendix A] for a complete
proof. The boundedness of the solution follows immediately from the coercivity of
F together with the fact that the function t ÞÑ F pxptqq ` 1

2}mptq}
2 is nonincreasing.

Concerning the convergence statement, our proof is based on comparing the solu-
tions of (ODE-N) to the solutions of the ODE in [Gadat et al. 2018, Equation (2.3)].
We first note that under a change of variable, a solution to (ODE-N) gives a solution
to [Gadat et al. 2018, Equation (2.3)].

Lemma 3.5.3. Let pm, xq be a solution to (ODE-N). Define yptq “
κmpκ

?
tq

2
?
t

, uptq “

x
`

κ
?
t
˘

, with κ “
?

2α` 2 and β “ κ2

4 . Then, py, uq verifies
#

9yptq “
β
t p∇F puptqqq ´ yptqq

9uptq “ ´yptq .
(3.22)

Proof. By simple differentiation, we get:

9yptq “
β

t

„

∇F
´

xpκ
?
tq
¯

´
α

κ
?
t
m
´

κ
?
t
¯



´
κ

4t
3
2

m
´

κ
?
t
¯

“
β

t
p∇F puptqq ´ yptqq ,

9uptq “ ´
κ

2
?
t
m
´

κ
?
t
¯

“ ´yptq .

Consider a solution pm, xq of (ODE-N) starting at pm0, x0q P Rd ˆ Rd. As in
Section 3.5.1.2, for every t0 ą 0, on rt0,`8q, we have that pm, x, sq is a solution to
the autonomous ODE

$

’

’

&

’

’

%

9mptq “ ∇F pxptqq ´ αsptqmptq
9xptq “ ´mptq

9sptq “ ´sptq2 ,

(3.23)

starting at pm0, x0, 1{t0q. Denote by ΦN “ pΦ
m
N ,Φ

x
N ,Φ

s
N q the semiflow induced by

ODE (3.23) and ωN ppm0, x0, 1{t0qq its limit set.
Define py, uq as in Lemma 3.5.3. Starting at pypt0q, upt0q, 1{t0q, we also have that

py, u, sq is a solution on rt0,`8q to the “autonomized” Heavy-Ball ODE
$

’

’

&

’

’

%

9yptq “ βsptqp∇F puptqqq ´ yptqq

9uptq “ ´yptq

9sptq “ ´sptq2 .

(3.24)

Denote by ΦH “ pΦ
y
H ,Φ

u
H ,Φ

s
Hq the semiflow induced by ODE (3.24) and ωHppypt0q, upt0q, 1{t0qq

its limit set.

Lemma 3.5.4. For any compact set K Ă R2d`1 and any T ą 0, the family of
functions

 

Φpz, ¨q : r0, T s Ñ R2d`1
(

zPK
, where Φ is either ΦH or ΦN , is relatively

compact in pC0pr0, T s,R2d`1q, ‖¨‖8q.
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Proof. The map Φ : R2d`1ˆR` Ñ R2d`1 is continuous, hence uniformly continuous
on K ˆ r0, T s. The result follows from the application of the Arzelà-Ascoli theorem
to the family

 

Φpz, ¨q : r0, T s Ñ R2d`1
(

zPK
.

Let pm,x, 0q P ωN ppm0, x0, 1{t0qq. There exists a sequence ptkq of nonnega-
tive reals such that pm,x, 0q “ limkÑ8pmptkq, xptkq, 1{tkq. For any T ą 0 , us-
ing Lemma 3.5.4, up to an extraction, we can say that the sequence of functions
tΦN ppmptkq, xptkq, 1{tkq, ¨quk converges towards pm̃, x̃, 0q in C0pr0, T s,Rdq, where pm̃, x̃q
is a solution to

#

9̃mptq “ ∇F px̃ptqq
9̃xptq “ ´m̃ptq ,

(3.25)

with pm̃p0q, x̃p0qq “ pm,xq. Moreover, by Lemma 3.5.3, we also have that:

sup
hPr0,T 2{κ2s

∥∥∥x̃pκ?hq ´ Φx
N ppmptkq, xptkq, 1{tkq, κ

?
hq
∥∥∥

“ sup
hPr0,T 2{κ2s

∥∥∥x̃pκ?hq ´ Φu
Hppmptkq, xptkq, 1{tkq, hq

∥∥∥ ÝÝÝÝÑ
kÑ`8

0 . (3.26)

Using Lemma 3.5.4, up to an additional extraction, we get on C0pr0, T 2{κ2s,R2d`1q

that tΦHppxptkq,mptkq, 1{tkq, ¨quk converges to pu, y, 0q, where pu, yq is a solution to
#

9yptq “ 0

9uptq “ ´yptq .
(3.27)

Therefore, uptq “ A ` Bt for some A and B in Rd. Imagine that B ‰ 0. We
previously proved that x (and therefore u) is bounded by some constant C ą 0.
Let T 1 ą C`}A}

}B} . Up to an extraction, we obtain that tΦHppxptkq,mptkq, 1{tkq, ¨quk

converges to u1 on C0pr0, T 1s,R2d`1q, with u1ptq “ A1`B1t for some A1 and B1 in Rd.
We then have by uniqueness of the limit that A1 “ A and B1 “ B. As a consequence,
‖u1pT 1q‖ “ ‖A`BT 1‖ ą C and we obtain a contradiction. Hence B “ 0.

This implies that u is constant. Then, if we go back to Eqs. (3.26) and (3.25),
we get that x̃ is constant, hence m̃ ” 0 and then ∇F px̃q ” 0. In particular, this
means that m “ m̃p0q “ 0 and ∇F pxq “ ∇F px̃p0qq “ 0.

3.6 Proofs for Section 3.3

3.6.1 Preliminaries

We first recall some useful definitions and results. Let Ψ represent any semiflow on
an arbitrary metric space pE, dq. As in the previous section, a point z P E is called an
equilibrium point of the semiflow Ψ if Ψpz, tq “ z for all t ě 0. We denote by ΛΨ the
set of equilibrium points of Ψ. A continuous function V : E Ñ R is called a Lyapunov
function for the semiflow Ψ if VpΨpz, tqq ď Vpzq for all z P E and all t ě 0. It is called
a strict Lyapunov function if, moreover, tz P E : @t ě 0, VpΨpz, tqq “ Vpzqu “ ΛΨ.
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If V is a strict Lyapunov function for Ψ and if z P E is a point s.t. tΨpz, tq : t ě

0u is relatively compact, then it holds that ΛΨ ‰ ∅ and dpΨpz, tq,ΛΨq Ñ 0, see
[Haraux 1991, Theorem 2.1.7]. A continuous function z : r0,`8q Ñ E is said to be
an asymptotic pseudotrajectory (APT, [Benaïm & Hirsch 1996]) for the semiflow Ψ

if limtÑ`8 supsPr0,T s dpzpt` sq,Ψpzptq, sqq “ 0 for every T P p0,`8q .

3.6.2 Proof of Theorem 3.3.1

Recall that Φ is the semiflow induced by the autonomous ODE (3.17) which is an
“autonomized” version of our initial (ODE-1). In the remainder of this section, the
proof will be divided into two main steps : (a) we show that a certain continuous-
time linearly interpolated process constructed from the iterates of our algorithm 1 is
an APT of Φ; (b) we exhibit a strict Lyapunov function for a restriction to a carefully
chosen compact set of a well chosen semiflow related to Φ. Then, we characterize the
limit set of the APT using [Benaïm 1999, Theorem 5.7] and [Benaïm 1996, Propo-
sition 3.2]. The sequence pznq converges almost surely to this same limit set.

(a) APT. For every n ě 1, define z̄n “ pvn,mn, xn´1q (note the shift in the index
of the variable x). We have the decomposition

z̄n`1 “ z̄n ` γn`1gpz̄n, τnq ` γn`1ηn`1 ` γn`1ςn`1 ,

where g is defined in Equation (3.1),

ηn`1 “
`

pnp∇fpxn, ξn`1q
d2 ´ Spxnqq, hnp∇fpxn, ξn`1q ´∇F pxnqq, 0

˘

, (3.28)

is a martingale increment and where we set ςn`1 “ pς
v
n`1, ς

m
n`1, ς

x
n`1q with the com-

ponents defined by:
$

’

’

&

’

’

%

ςvn`1 “ pnpSpxnq ´ Spxn´1qq

ςmn`1 “ hnp∇F pxnq ´∇F pxn´1qq

ςxn`1 “ p
γn
γn`1

´ 1q mn?
vn`ε

.

We first prove that ςn Ñ 0 a.s. by considering the components separately. The
components ςmn`1 and ςvn`1 converge a.s. to zero by using Assumptions 3.2.1, 3.2.3,
together with the boundedness of the sequences ppnq and phnq (which are both
convergent). Indeed, since ∇F is locally Lipschitz continuous and the sequence pznq
is supposed to be almost surely bounded, there exists a constant C s.t. }∇F pxnq ´
∇F pxn´1q} ď C}xn´xn´1} ď

C
ε γn}mn}. The same inequality holds when replacing

∇F by S which is also locally Lipschitz continuous. The component ςxn`1 also
converges a.s. to zero by observing that }ςxn`1} ď |1 ´ γn

γn`1
|.}mn}{

?
ε and using

Assumption 3.3.2 together with the a.s. boundedness of pznq. Now consider the
martingale increment sequence pηnq, adapted to Fn. Take δ ą 0. Since pznq is a.s
bounded, there is a constant C 1 ą 0 such that Ppsup ‖xn‖ ą C 1q ď δ. Denoting
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η̃n
∆
“ ηn1‖xn‖ďC1 and combining Assumptions 3.2.4 with 3.3.4-i) we can show using

convexity inequalities that
sup
n

E}η̃n`1}
q ă 8.

Then, we deduce from this result together with the corresponding stepsize assump-
tion from 3.3.4-i) and [Benaïm 1999, Proposition 4.2] (see also [Métivier & Priouret 1987,
Proposition 8]) the key property:

@T ą 0 , max
!›

›

›

L´1
ÿ

k“n

γk`1η̃k`1

›

›

›
: L “ n` 1, . . . , Jpτn ` T q

)

a.s.
ÝÝÝÑ
nÑ8

0 (3.29)

where Jptq “ maxtn ě 0 : τn ď tu. Hence, for all T ą 0, with probability at least
1´ δ :

max
!›

›

›

L´1
ÿ

k“n

γk`1ηk`1

›

›

›
: L “ n` 1, . . . , Jpτn ` T q

)

ÝÝÝÑ
nÑ8

0 . (3.30)

Since δ can be chosen arbitrary small, Equation (3.30) remains true with probability
1. This result also holds under Assumption 3.3.4-ii) (instead of 3.3.4-i)) by applying
[Benaïm 1999, Proposition 4.4].

Let z : r0,`8q Ñ Z` be the continous-time linearly interpolated process given
by

zptq “ z̄n ` pt´ τnq
z̄n`1 ´ z̄n
γn`1

p@n P N , @t P rτn, τn`1qq

(where τn “
řn
k“1 γk). Let t0 ą 0. Define u : rt0,8q Ñ Z ˆ p0, 1{t0s by

uptq “

„

zptq

1{t



, for t ě t0 ą 0.

Using Equation (3.30) and the almost sure boundedness of the sequence pznq
along with the fact that ςn converges a.s. to zero, it follows from [Benaïm 1999,
Proposition 4.1, Remark 4.5] that uptq is an APT of the already defined semiflow Φ

induced by (3.17). Remark that it also holds that zptq is an APT of the semiflow
Φ8 induced by (3.20). As the trajectory of uptq is precompact, the limit set

Lpuq “
č

tět0

uprt,8qq

is compact. Moreover, it has the form

Lpuq “

„

S

0



, where S
∆
“

č

tět0

zprt,8qq . (3.31)

Our objective now is to prove that

S Ă ΛΦ8 . (3.32)
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In order to establish this inclusion, we study the behavior of the restriction Φ|L of
the semiflow Φ to the set L (which is well-defined since L is Φ-invariant). Remark
that

Φ|L “

„

Φ8|S

0



,

where Φ8 is the semiflow associated to (3.20). In the second part of the proof, we
establish Equation (3.32) combining item (a) we just proved with [Benaïm 1999,
Theorem 5.7] and [Benaïm 1999, Proposition 6.4]. In order to use the latter propo-
sition, we prove a useful proposition in item (b).
(b) Strict Lyapunov function and convergence. For every δ ą 0 and every
z “ pv,m, xq P Z`, define:

Wδpv,m, xq
∆
“ E8pzq ´ δx∇F pxq,my ` δ}q8v ´ p8Spxq}2 , (3.33)

where, under Assumption 3.2.4-i), the function E8 is defined by

E8pzq
∆
“ lim

tÑ`8
Ept, zq “ h8pF pxq ´ F‹q `

1

2

›

›

›

›

›

m

pv ` εqd
1
4

›

›

›

›

›

2

. (3.34)

Proposition 3.6.1. Let t0 ą 0 and let Assumptions 3.2.1 to 3.2.4 and 3.3.5 hold
true. Let S be the limit set defined in Equation (3.31). Let Φ

8
: S ˆ rt0,`8q Ñ S

be the restriction of the semiflow Φ8 to S i.e., Φ
8
pz, tq “ Φ8pz, tq for all z P S, t ě

t0.Then,

i) S is compact.

ii) Φ
8 is a well-defined semiflow on S.

iii) The set of equilibrium points of Φ
8 is equal to ΛΦ8 X S.

iv) There exists δ ą 0 s.t. Wδ is a strict Lyapunov function for the semiflow Φ
8.

Proof. The first point is a consequence of the definition of S and the boundedness of
z. The second point stems from the definition of Φ8. Observing that Φ

8 is valued
in S, the third point is immediate from the definition of ΛΦ8 . We now prove the last
point. Consider z P S and write Φ

8
pz, tq under the form Φ

8
pz, tq “ pvptq,mptq, xptqq.

Notice that this quantity is bounded as a function of the variable t. For any map
W : Z` Ñ R, define for all t ě t0, LWptq

∆
“ lim supsÑ0 s

´1pWpΦ
8
pz, t ` sqq ´

WpΦ
8
pz, tqqq . Introduce Gpzq ∆

“ ´x∇F pxq,my and Hpzq
∆
“ }q8v ´ p8Spxq}

2 for
every z “ pv,m, xq P Z`. Consider δ ą 0 (to be specified later on). We study
LWδ

“ LE8 ` δLG ` δLH . Note that Φ
8
pz, tq P S X Z` for all t ě t0 by an

analogous result to Lemma 3.5.1 for Φ8. Thus, t ÞÑ E8pΦ
8
pz, tqq is differentiable

at any point t ě t0 and LE8ptq “
d
dtE8pΦ

8
pz, tqq. Using similar derivations to

Inequality (3.16), we obtain that

LE8ptq ď ´
´

r8 ´
q8
4

¯

›

›

›

›

›

mptq

pvptq ` εqd
1
4

›

›

›

›

›

2

. (3.35)
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We now study LG. For every t ě t0,

LGptq “ lim sup
sÑ0

s´1p´x∇F pxpt` sqq,mpt` sqy ` x∇F pxptqq,mptqyq

ď lim sup
sÑ0

s´1}∇F pxptqq ´∇F pxpt` sqq}}mpt` sq} ´ x∇F pxptqq, 9mptqy .

Let L∇F be the Lipschitz constant of ∇F on the bounded set tx : pv,m, xq P Su.
Define C1

∆
“ supt }

a

vptq ` ε}. Then,

LGptq ď L∇F lim sup
sÑ0

s´1}xptq ´ xpt` sq}}mpt` sq} ´ x∇F pxptqq, 9mptqy

ď L∇F } 9xptq}}mptq} ´ x∇F pxptqq, 9mptqy

ď L∇F } 9xptq}}mptq} ´ h8}∇F pxptqq}2 ` r8x∇F pxptqq,mptqy

ď

¨

˝

L∇FC
1
2
1

ε
1
4

`
r8C1

2u2
1

˛

‚

›

›

›

›

›

mptq

pvptq ` εqd
1
4

›

›

›

›

›

2

´

ˆ

h8 ´
r8u

2
1

2

˙

}∇F pxptqq}2

(3.36)

where we used the classical inequality |xa, by| ď }a}2{p2u2q ` u2}b}2{2 for any non-
zero real u to derive the last above inequality. We now study LH . For every t ě t0,

LHptq “ lim sup
sÑ0

s´1p}q8vpt` sq ´ p8Spxpt` sqq}
2 ´ }q8vptq ´ p8Spxptqq}

2q

“ lim sup
sÑ0

s´1pp2
8}Spxptqq ´ Spxpt` sqq}

2

` 2p8xSpxptqq ´ Spxpt` sqq, q8vpt` sq ´ p8Spxptqqyq

` lim
sÑ0

s´1p}q8vpt` sq ´ p8Spxptqq}
2 ´ }q8vptq ´ p8Spxptqq}

2q .

The second term in the righthand side coincides with´2q8xp8Spxptqq´q8vptq, 9vptqy “

´2q8}p8Spxptqq´q8vptq}
2. Denote by LS the Lipschitz constant of S on the set tx :

pv,m, xq P Su. Note that s´1p}Spxpt` sqq ´Spxptqq}2q ď L2
Ss}s

´1pxpt` sq ´ xptqq}2

which converges to zero as sÑ 0. Thus,

LHptq “ ´2q8}p8Spxptqq ´ q8vptq}
2

` lim sup
sÑ0

2p8s
´1xSpxptqq ´ Spxpt` sqq, q8vpt` sq ´ p8Spxptqqy

ď ´2q8}p8Spxptqq ´ q8vptq}
2 ` 2p8} 9xptq}LS}q8vptq ´ p8Spxptqq}

ď
p8

ε
1
2u2

2

›

›

›

›

›

mptq

pvptq ` εqd
1
4

›

›

›

›

›

2

´ p2q8 ´ p8u
2
2L

2
Sq}p8Spxptqq ´ q8vptq}

2 . (3.37)

Recalling that LWδ
“ LE8 ` δLG ` δLH and combining Eqs. (3.35), (3.36)

and (3.37), we obtain for every t ě t0,

LWδ
ptq ď ´Mpδq

›

›

›

›

›

mptq

pvptq ` εqd
1
4

›

›

›

›

›

2

´ δ

ˆ

h8 ´
r8u

2
1

2

˙

}∇F pxptqq}2

´ δ
`

2q8 ´ p8u
2
2L

2
S

˘

}p8Spxptqq ´ q8vptq}
2 . (3.38)
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where Mpδq ∆
“ r8 ´

q8
4 ´ δ

˜

r8C1

2u2
1
`

L∇FC
1
2
1

ε
1
4

`
p8

ε
1
2 u2

2

¸

. Now select u1, u2 small

enough s.t. h8´ r8u2
1{2 ą 0 and 2q8´ p8u

2
2L

2
S ą 0. Then, choose δ in such a way

that Mpδq ą 0. Thus, there exists a constant c depending on δ s.t.

@t ě t0, LWδ
ptq ď ´c

¨

˝

›

›

›

›

›

mptq

pvptq ` εqd
1
4

›

›

›

›

›

2

` }∇F pxptqq}2 ` }p8Spxptqq ´ q8vptq}2
˛

‚ .

(3.39)
It can easily be seen that for every z P S, t ÞÑWδpΦ

8
pz, tqq is Lipschitz contin-

uous, hence absolutely continuous. Its derivative almost everywhere coincides with
LWδ

, which is nonpositive. Thus, Wδ is a Lyapunov function for Φ
8. We prove that

the Lyapunov function is strict. Consider z “ pv,m, xq P S s.t. WδpΦ
8
pz, tqq “

Wδpzq for all t ě t0. The derivative almost everywhere of t ÞÑ WδpΦ
8
pz, tqq is

identically zero, and by Equation (3.39), this implies that

´c

¨

˝

›

›

›

›

›

mptq

pvptq ` εqd
1
4

›

›

›

›

›

2

` }∇F pxptqq}2 ` }p8Spxptqq ´ q8vptq}2
˛

‚

is equal to zero for every t ě t0 a.e. (hence, for every t ě t0, by continuity of Φ
8). In

particular for t “ t0, m “ ∇F pxq “ 0 and p8Spxq´q8v “ 0. Hence, z P zer g8XS.
This concludes the proof since ΛΦ8 “ zer g8.

End of the Proof of Theorem 3.3.1. Finally, Assumption 3.3.5 implies that
WδpΛΦ8 X Sq is of empty interior. Recall that Assumptions 3.2.1 and 3.2.3 both
follow from Assumption 3.3.3 made in Theorem 3.3.1. Given Proposition 3.6.1, the
proof is concluded by applying [Benaïm 1999, Proposition 6.4] to the restricted semi-
flow Φ̄8 (with pM,Λq “ pS,ΛΦ̄8q). Note that a Lyapunov function for ΛΦ̄8 is what
is called a strict Lyapunov function. Such a function is provided by Proposition 3.6.1.
We obtain as a conclusion of [Benaïm 1999, Proposition 6.4] that S Ă ΛΦ̄8 . This
gives the desired result (Equation (3.32)) given Proposition 3.6.1-iii).

The last assertion of Theorem 3.3.1 is a consequence of [Benaïm 1999, Cor. 6.6].

3.6.3 Proof of Theorem 3.3.3

We can rewrite the iterates from Algorithm 2 as follows:
#

mn`1 “ mn ` γn`1p∇F pxnq ´ α
τn
mnq ` γn`1p∇fpxn, ξn`1q ´∇F pxnqq

xn`1 “ xn ´ γn`1mn`1 .

(3.40)
We prove that the sequence pyn “ pmn, xnq : n P Nq of iterates of this algorithm

converges almost surely towards the set Ῡ defined in Equation (3.3) if it is supposed
to be bounded with probability one. The proof follows a similar path to the proof
in Section 3.5.2.
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Indeed, denote by X and M the linearly interpolated processes constructed re-
spectively from the sequences pxnq and pmnq and let sptq “ 1{t. Recall that
ΦN “ pΦm

N ,Φ
x
N ,Φ

s
N q is the semiflow induced by (3.23). As in Section 3.6.2, we

have that Z ∆
“ pM,X, sq is an APT of (3.23). In particular, this means that

@T ą 0 , sup
hPr0,T s

‖Xpt` hq ´ Φx
N pZptq, hq‖ ÝÝÝÑ

tÑ8
0 . (3.41)

By Lemma 3.5.3, we also have that

sup
hPr0,T 2{κ2s

∥∥∥Xpt` κ?hq ´ Φx
N pZptq, κ

?
hq
∥∥∥

“ sup
hPr0,T 2{κ2s

∥∥∥Xpt` κ?hq ´ Φu
HpZptq, hq

∥∥∥ ÝÝÝÑ
tÑ8

0 . (3.42)

Let pm,xq be a limit point of the sequence pynq and let T ą 0. Using Lemma 3.5.4,
we can proceed in the same manner as in Section 3.5.2 and get a sequence ptkq such
that

pMptk ` ¨q,Xptk ` ¨qq Ñ pm, xq and pΦy
HpZptkq, ¨q,Φ

u
HpZptkq, ¨qq Ñ py, uq ,

where pmp0q, xp0qq “ pm,xq , and pm, xq and px, uq are respectively solutions to (3.25)
and (3.27). As in the end of Section 3.5.2, we obtain that u and x are constant,
therefore m ” 0 and ∇F pxq ” 0 , which finishes the proof.

3.6.4 Proof of Theorem 3.3.2

The idea of the proof is to apply Robbins-Siegmund’s theorem [Robbins & Siegmund 1971]
to

Vn “ hn´1F pxnq `
1

2
xmd2

n ,
1

?
vn ` ε

y

(note the similarity of Vn with the energy function (3.15)). Since inf F ą ´8, we
assume without loss of generality that F ě 0. In this subsection, we use the notation
∇fn`1 as a shorthand notation for ∇fpxn, ξn`1q and C denotes some positive con-
stant which may change from line to line. We write En “ Er¨ |Fns for the conditional
expectation w.r.t the σ-algebra Fn. Define Pn

∆
“ 1

2xDn,m
d2
n y, with Dn

∆
“ 1?

vn`ε
.

We have the decomposition:

Pn`1 ´ Pn “
1

2
xDn`1 ´Dn,m

d2
n`1y `

1

2
xDn,m

d2
n`1 ´m

d2
n y. (3.43)

We estimate the vector

Dn`1 ´Dn “

?
vn ` ε´

?
vn`1 ` ε

?
vn`1 ` εd

?
vn ` ε

.
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Remarking that vn`1 ě p1´ γn`1qnqvn and using the update rule of vn, we obtain
for a sufficiently large n that

?
vn ` ε´

?
vn`1 ` ε “ γn`1

qnvn ´ pn∇fd2
n`1

?
vn ` ε`

?
vn`1 ` ε

ď γn`1qn
vn

p1`
?

1´ γn`1qnq
?
vn ` ε

“
γn`1qn

1`
?

1´ γn`1qn

?
vn d

?
vn

?
vn ` ε

ď cn`1
?
vn`1 where cn`1

∆
“

γn`1qn
?

1´ γn`1qnp1`
?

1´ γn`1qnq
.

(3.44)

It is easy to see that cn`1{γn Ñ q8{2. Thus, for any δ ą 0, cn`1 ď pq8 ` 2δqγn{2

for all n large enough. Using also that ?vn`1{
?
vn`1 ` ε ď 1, we obtain

Dn`1 ´Dn ď
q8 ` 2δ

2
γnDn . (3.45)

Substituting the above inequality in Equation (3.43), we obtain

Pn`1 ´ Pn ď

ˆ

q8 ` 2δ

2

˙

γn
2
xDn,m

d2
n`1y `

1

2
xDn,m

d2
n`1 ´m

d2
n y

ď
q8 ` 2δ

2
γnPn `

ˆ

1`
q8 ` 2δ

2
γn

˙

1

2
xDn,m

d2
n`1 ´m

d2
n y .

Using md2
n`1 ´ md2

n “ 2mn d pmn`1 ´ mnq ` pmn`1 ´ mnq
d2, and noting that

Enpmn`1 ´mnq “ γn`1hn∇F pxnq ´ γn`1rnmn,

En
1

2
xDn,m

d2
n`1 ´m

d2
n y “ γn`1hnx∇F pxnq,

mn
?
vn ` ε

y ´ 2γn`1rnPn

`
1

2
xDn,Enrpmn`1 ´mnq

d2sy .

There exists δ ą 0 such that r8´ q8
4 ´

δ
2 ą 0 by Assumption 3.2.4-iv). As γn`1

γn
rn´

q8
4 Ñ r8 ´

q8
4 , for all n large enough, γn`1

γn
rn ´

q8
4 ą r8 ´

q8
4 ´

δ
2 ą 0. Hence, for

all n large enough,

EnPn`1 ´ Pn ď ´2

ˆ

r8 ´
q8
4
´
δ

2

˙

γnPn ` γn`1hnx∇F pxnq,
mn

?
vn ` ε

y

` Cγ2
nx∇F pxnq,

mn
?
vn ` ε

y ` CxDn,Enrpmn`1 ´mnq
d2sy . (3.46)

Using the inequality xu, vy ď p}u}2 ` }v}2q{2 and Assumption 3.3.6-ii), it is easy to
show the inequality x∇F pxnq, mn?

vn`ε
y ď Cp1 ` F pxnq ` Pnq. Moreover, using the

componentwise inequality phn∇fn`1 ´ rnmnq
d2 ď 2h2

n∇fd2
n`1 ` 2r2

nm
d2
n along with

Assumption 3.3.6-ii) and the boundedness of the sequences phnq, prnq and pγn`1{γnq,
we obtain

xDn,Enrpmn`1 ´mnq
d2sy ď Cγ2

np1` F pxnq ` Pnq . (3.47)
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Combining Equation (3.46) and Equation (3.47), we get

EnpPn`1 ´ Pnq ď γn`1hnx∇F pxnq,mn d Dny ` Cγ2
np1 ` F pxnq ` Pnq . (3.48)

Denoting by M the Lipschitz coefficient of ∇F , we also have

F pxn`1q ď F pxnq ´ γn`1x∇F pxnq,mn`1 dDn`1y `
γ2
n`1M

2
}mn`1 dDn`1}

2 .

(3.49)

Using (3.45) and the update rule of mn, we have
‖mn`1 dDn`1 ´mn dDn‖2

ď C ‖pmn`1 ´mnq dDn‖2
` C ‖mn`1 d pDn`1 ´Dnq‖2

ď Cγ2
n`1p‖∇fn`1‖2

` ‖mn dDn‖2
q ` Cγ2

n`1 ‖mn`1 dDn‖2

ď Cγ2
n`1p‖mn dDn‖2

` ‖∇fn`1‖2
q .

(3.50)

Finally, recalling that Vn “ hn´1F pxnq ` Pn, phnq is decreasing, combining
Equation (3.48),(3.49),(3.50), and using Assumption 3.3.6, we have

EnrVn`1s ď Vn ` γn`1hnx∇F pxnq,En rmn dDn ´mn`1 dDn`1sy

` Cγ2
n`1

´

1` F pxnq ` Pn ` ‖mn dDn‖2
¯

` Cγ2
n`1Enr‖mn dDn ´mn`1 dDn`1‖2

s

ď Vn ` Cγ
2
n

´

1` F pxnq ` Pn ` ‖mn dDn‖2
` En

”

‖∇fn`1‖2
ı¯

ď Vn ` Cγ
2
np1` F pxnq ` Pnq

ď p1` Cγ2
nqVn ` Cγ

2
n ,

where we used Cauchy-Schwarz’s inequality and the fact that ‖mn dDn‖2
ď CPn.

By the Robbins-Siegmund’s theorem [Robbins & Siegmund 1971], the sequence pVnq
converges almost surely to a finite random variable V8 P R`. Then, the coercivity
of F implies that pxnq is almost surely bounded.

We now establish the almost sure boundedness of pmnq. Assume in the sequel
that n is large enough to have p1´ γn`1rnq ě 0. Consider the martingale difference
sequence ∆n`1

∆
“ ∇fn`1 ´∇F pxnq. We decompose mn “ m̄n ` m̃n where m̄n`1 “

p1 ´ γn`1rnqm̄n ` γn`1hn∇F pxnq and m̃n`1 “ p1 ´ γn`1rnqm̃n ` γn`1hn∆n`1,
setting m̄0 “ 0 and m̃0 “ m0. We prove that both terms m̄n and m̃n are bounded.
Consider the first term: }m̄n`1} ď p1´γn`1rnq}m̄n}`γn`1 supk }hk∇F pxkq} , where
the supremum in the above inequality is almost surely finite by continuity of ∇F .
We immediately get that if ‖m̄n‖ ě supk }hk∇F pxkq}

r8
, then ‖m̄n`1‖ ď }m̄n}. Thus

‖m̄n`1‖ ď
supk }hk∇F pxkq}

r8
` sup

k
γk`1}hk∇F pxkq} ,

which implies that m̄n is bounded.
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Consider now the term m̃n:

Enr}m̃n`1}
2s “ p1´ γn`1rnq

2}m̃n}
2 ` γ2

n`1h
2
nEnr}∆n`1}

2s ď }m̃n}
2 ` γ2

n`1h
2
nEnr}∆n`1}

2s .

Then, the inequality Enr}∆n`1}
2s ď Enr}∇fn`1}

2s combined with Assumption 3.3.4-
i) and the a.s. boundedness of the sequence pxnq imply that there exists a finite
random variable CK (independent of n) s.t. Enr}∇fn`1}

2s ď CK. As a consequence,
since

ř

n γ
2
n`1 ă 8 and the sequence phnq is bounded, we obtain that a.s.:

ÿ

ně0

γ2
n`1h

2
nEnr}∆n`1}

2s ď CCK
ÿ

ně0

γ2
n`1 ă `8 .

Hence, we can apply the Robbins-Siegmund theorem to obtain that supn }m̃n}
2 ă 8

w.p.1. Finally, it can be shown that pvnq is almost surely bounded using the same
arguments, decomposing vn into v̄n ` ṽn as above. Indeed, first, we have:

Enr}ṽn`1}
2s ď }ṽn}

2 ` γ2
n`1p

2
nEnr}∇fd2

n`1 ´ Spxnq}
2s .

Second, it also holds that:

Enr}∇fd2
n`1 ´ Spxnq}

2s ď Enr}∇fd2
n`1}

2s ď Enr}∇fn`1}
4s .

Then, using Assumption 3.3.4-i) and the a.s. boundedness of the sequence pxnq,
there exists a finite random variable C 1K (independent of n) s.t. Enr}∇fn`1}

4s ď C 1K.
Moreover, the sequence ppnq is bounded and

ř

n γ
2
n`1 ă 8. As a consequence, it

holds that a.s:
ÿ

ně0

γ2
n`1p

2
nEnr}∇fd2

n`1 ´ Spxnq}
2s ď CC 1K

ÿ

ně0

γ2
n`1 ă `8 .

It follows that the Robbins-Siegmund theorem can be applied to the sequence }ṽn}2

as for the sequence }m̃n}
2 to obtain that supn }ṽn}

2 ă 8 w.p.1.

3.6.5 Proof of Theorem 3.3.4

The proof of Theorem 3.3.2 easily adapts to Algorithm 2 by replacing Vn by

Ṽn
∆
“ F pxnq `

1

2
‖mn‖2 .

The boundedness of pmnq is an immediate consequence of the convergence of Ṽn.

3.6.6 Proof of Theorem 3.3.5

We shall use the following result.

Theorem 3.6.2 (adapted from [Pelletier 1998], Theorem 7). Let k ě 1. On some
probability space equipped with a filtration F “ pFnqnPN, consider a sequence of r.v.
on Rk given by

Zn`1 “ pI ` γn`1H̄qZn ` γn`1bn`1 `
?
γn`1ηn`1
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and Er}Z0}
2s ă 8, where H̄ is a k ˆ k Hurwitz matrix, pbnq and pηnq are random

sequences, and γn “ γ0n
´α for some γ0 ą 0 and α P p0, 1s. Let Ω0 P F8 have a

positive probability. Assume that the following holds almost surely on Ω0:

i) Erηn`1|Fns “ 0.

ii) There exists a constant b̄ ą 2 s.t. supně0 Er}ηn`1}
b̄|Fns ă 8.

iii) Erηn`1η
T
n`1|Fns “ Σ`∆n where Er}∆n}1Ω0s Ñ 0 and Σ is a positive semidef-

inite matrix.

iv) The sequence pbnq is the sum of two sequences pbn,1q and pbn,2q, adapted to F ,
s.t. supně0 Er}bn,1}2s ă 8, Er}bn,1}1Ω0s Ñ 0 and bn,2 Ñ 0 a.s. on Ω0.

Then, given Ω0, pZnq converges in distribution to the unique stationary distribution
µ‹ of the generalized Ornstein-Uhlenbeck process

dXt “ H̄Xtdt`
?

ΣdBt

where pBtq is the standard Brownian motion and
?

Σ is the unique positive semidefi-
nite square root of Σ. The distribution µ‹ is the zero mean Gaussian distribution with
covariance matrix Γ given as the solution to pH̄` 1α“1

2γ0
IkqΓ`ΓpH̄` 1α“1

2γ0
Ikq

T “ ´Σ.

Proof. The proof is identical to the proof of [Pelletier 1998, Theorem 7], only sub-
stituting the inverse of the square root of Σ by the Moore-Penrose inverse. Fi-
nally, the uniqueness of the stationary distribution µ‹ and its expression follow from
[Karatzas & Shreve 1991, Theorem 6.7, p. 357]

We define vn “ v̄n ` δn where δ0 “ 0, v̄0 “ v0 and

δn`1 “ p1´ γn`1qnqδn ` γn`1ppn ´ qnq
´1
8 p8qSpxnq

v̄n`1 “ p1´ γn`1qnqv̄n ` γn`1qnq
´1
8 p8Spxnq ` γn`1pnp∇fpxn, ξn`1q

d2 ´ Spxnqq .

For every z “ pv,m, xq P Z` and δ ě 0, we define

rnpz, δq
∆
“

»

—

–

qnq
´1
8 p8pSpx´ γn

m?
v`δ`ε

q ´ Spxqq

hnp∇F px´ γn m?
v`δ`ε

q ´∇F pxqq
γn
γn`1

p 1?
v`ε

´ 1?
v`δ`ε

q dm

fi

ffi

fl

.

Moreover, for every z “ pv,m, xq P Z` and every n P N, we set

gnpzq “

»

—

–

qnq
´1
8 p8Spxq ´ qnv

hn∇F pxq ´ rnm
´

γn
γn`1

m?
v`ε

fi

ffi

fl

.

Defining ζn “ pv̄n,mn, xn´1q and recalling the definition of pηnq from Equation (3.28),
we have the decomposition

ζn`1 “ ζn ` γn`1gnpζnq ` γn`1ηn`1 ` γn`1rnpζn, δnq .



66 Chapter 3. Stochastic optimization with momentum

Define z‹
∆
“ px‹, 0, v‹q. Note that gnpz‹q “ 0. Evaluating the Jacobian matrix Gn

of gn at z‹, we obtain that there exist constants C ą 0, M̄ ą 0 and n0 P N s.t. for
all n ě n0,

}gnpzq ´Gnpz ´ z‹q} ď C}z ´ z‹}
2 p@z P Bpz‹, M̄qq , (3.51)

where Gn is given by

Gn
∆
“

»

—

–

´qnId 0 qnq
´1
8 p8∇Spx‹q

0 ´rnId hn∇2F px‹q

0 ´
γn
γn`1

V 0

fi

ffi

fl

,

where ∇S is the Jacobian of S and the matrix V is defined in Equation (3.8). We
define

G8
∆
“ lim

n
Gn “

»

–

´q8Id 0 p8∇Spx‹q
0 ´r8Id h8∇2F px‹q

0 ´V 0

fi

fl .

One can verify that G8 is Hurwitz, and that the largest real part of its eigenvalues
is ´L1, where L1 ∆

“ L^ q8 and L is defined in Equation (3.9).
We define Ωp0q

∆
“ tzn Ñ z‹u. We assume PpΩp0qq ą 0. Using for instance

[Delyon et al. 1999, Lemma 4 and Lemma 5], it holds that δnpωq Ñ 0 for every ω P
Ωp0q, and since xnpωq ´ xn´1pωq Ñ 0 on that set, we obtain that Ωp0q “ tζn Ñ z‹u.
Let M P p0, M̄q be a constant, whose value will be specified later on. For every
N0 P N, define Ω

p0q
N0

∆
“ tζn Ñ z‹ and supněN0

}ζn´z‹} ďMu. We seek to show that
?
γn
´1pζn´ z‹q ñ ν given Ωp0q, for some Gaussian measure ν, using Theorem 3.6.2.

As Ω
p0q
N0
Ò Ωp0q, it is sufficient to show that the latter convergence holds given Ω

p0q
N0

,
for every N0 large enough. From now on, we consider that N0 is fixed. We define
the sequence pζ̃nqněN0 as ζ̃N0 “ ζN0 and for every n ě N0,

ζ̃n`1 “ ζ̃n ` γn`1g̃npζ̃nq ` γn`1pηn`1 ` rnpζ̃n, δnqq1An

where An is the event defined by

An
∆
“

n
č

k“N0

t}xk ´ x‹} ďMu X t}ζ̃n ´ z‹} ďMu

and
g̃npzq

∆
“ gnpzq1}z´z‹}ďM ´Kpz ´ z‹q1}z´z‹}ąM ,

where K ą 0 is a large constant which will be specified later on. The sequences
pζ̃nqněN0 and pζnqněN0 coincide on Ω

p0q
N0

. Thus, it is sufficient to study the weak
convergence of pζ̃nqněN0 .

An estimate of }rnpζ̃n, δnq}1An. We start by studying the sequence p}δn}1Anq.
Unfolding the update rule defining δn and using the fact that pqnq is a sequence of
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positive reals converging to q8 ą 0, we obtain that

}δn}1An ď
n
ÿ

k“1

»

–

n
ź

j“k`1

|1´ γjqj´1|

fi

fl γk|pk´1 ´ qk´1q
´1
8 p8|}Spxk´1q}1An

ď C
n
ÿ

k“1

exp

¨

˝´β
n
ÿ

j“k`1

γj

˛

‚γk|pk´1 ´ qk´1q
´1
8 p8|

∆
“ wn ,

for some β ą 0. The sequence pwnq is deterministic and converges to zero by
[Delyon et al. 1999, Lemma 4]. There exists n1 ě n0 s.t. wn ď M . As v ÞÑ 1?

v`ε

is Lipschitz and ∇F and S are locally Lipschitz, for every z “ pv,m, xq and δ s.t.
}z ´ z‹} ďM and }δ} ďM , we have

}rnpz, δq} ď Cγn`1}pv ` δ ` εq
d´ 1

2 }}m} ` C}pv ` δ ` εqd´
1
2 ´ pv ` εqd´

1
2 }}m}

ď Cγn`1}z ´ z‹} ` C}δ}}z ´ z‹} .

This implies that for every n ě n1,

}rnpζ̃n, δnq}1An ď Cpγn`1 ` wnq}ζ̃n ´ z‹} . (3.52)

Tightness of
?
γn
´1pζ̃n ´ z‹q. We decompose

ζ̃n`1 ´ z‹ “ pI3d ` γn`1Gnqpζ̃n ´ z‹q ` γn`1

´

gnpζ̃nq ´Gnpζ̃n ´ z‹q
¯

1
}ζ̃n´z‹}ďM

´ γn`1pK `Gnqpζ̃n ´ z‹q1}ζ̃n´z‹}ąM ` γn`1pηn`1 ` rnpζ̃n, δnqq1An . (3.53)

For a given t ą 0, we write G8 “ B´1
t GtBt the Jordan-like decomposition of G8,

where the ones of the second diagonal of the usual Jordan decomposition are replaced
by t, and where Bt is some invertible matrix. We define Sn

∆
“ Btpζ̃n ´ z‹q. Setting

G
ptq
n

∆
“ BtGnB

´1
t , we obtain

Sn`1 “ pI3d ` γn`1G
ptq
n qSn ` γn`1Bt

´

gnpζ̃nq ´Gnpζ̃n ´ z‹q
¯

1
}ζ̃n´z‹}ďM

´ γn`1pK `Gptqn qSn1}ζ̃n´z‹}ąM ` γn`1Btpηn`1 ` rnpζ̃n, δnqq1An .

Choose A P p0, 2L1q and A1 P pA, 2L1q. There exists γ̄ and t ą 0 s.t. for every
γ ă γ̄, }I ` γGt}2 ď 1 ´ γpA1 ` 2L1q{2, where } ¨ }2 is the spectral norm. As
G
ptq
n Ñ Gt, there exists n2 ě n1, such that for all n ě n2, }I ` γG

ptq
n }2 ď 1 ´ γA1.

Recall the notation En “ Er¨ |Fns. We expand }Sn`1}
2 and use the inequality

›

›

›
gnpζ̃nq ´Gnpζ̃n ´ z‹q

›

›

›

2
1
}ζ̃n´z‹}ďM

ď C}Sn}
2 to obtain after straightforward alge-

bra

En}Sn`1}
2 ď p1´ γn`1A

1q}Sn}
2 ` Cγ2

n`1}Sn}
2

` Cγ2
n`1pEn}ηn`1}

2 ` }rnpζ̃n, δnq}
2q1An

` 2γn`1Re
´

S˚nBt

´

gnpζ̃nq ´Gnpζ̃n ´ z‹q
¯¯

1
}ζ̃n´z‹}ďM

´ 2γn`1Re
´

S˚npK `Gptqn qSn

¯

1
}ζ̃n´z‹}ąM

` 2γn`1Re
´

S˚nBtrnpζ̃n, δnq
¯

1An .
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Choose c ∆
“ pA1 ´Aq{2. If M is chosen small enough,

}gnpζ̃nq ´Gnpζ̃n ´ z‹q}1}ζ̃n´z‹}ďM ď
c

2
}Bt}

´1}B´1
t }}ζ̃n ´ z‹} .

Moreover, choosing K ą supn }G
ptq
n }2, it holds that Re

´

S˚npK `G
ptq
n qSn

¯

ě 0.
Then,

En}Sn`1}
2 ď p1´ γn`1pA

1 ´ cqq}Sn}
2 ` Cγ2

n`1}Sn}
2

` Cγ2
n`1pEn}ηn`1}

2 ` }rnpζ̃n, δnq}
2q1An ` 2γn`1}Bt}}Sn}}rnpζ̃n, δnq}1An .

Using Equation (3.52),

En}Sn`1}
2 ď p1´ γn`1pA

1 ´ c´ wnqq}Sn}
2 ` Cγ2

n`1p1` w
2
nq}Sn}

2

` Cγ2
n`1En}ηn`1}

2
1An .

Therefore, there exists n3 ě n2 s.t. for all n ě n3,

E}Sn`1}
2 ď p1´ γn`1AqE}Sn}2 ` Cγ2

n`1Ep}ηn`1}
2
1}xn´x‹}ďM q .

The second expectation in the righthand side is bounded uniformly in n by the
condition (3.7). Using [Delyon et al. 1999, Lemma 4 and Lemma 5], we conclude
that supn γ

´1
n E}Sn}2 ă 8. Therefore, supn γ

´1
n E}ζ̃n ´ z‹}

2 ă 8, which in turn
implies supn γ

´1
n Ep}ζn ´ z‹}21Ω

p0q
N0

q ă 8.

Strongly perturbed iterations. We define ỹn “
?
γn
´1pζ̃n ´ z‹q. Define

Ḡn
∆
“ γ´1

n`1

ˆ
c

γn
γn`1

´ 1

˙

I3d `

c

γn
γn`1

Gn .

The sequence Ḡn converges to Ḡ8
∆
“ G8 `

1α“1
2γ0

I3d. Recalling Equation (3.53), we
can write

ỹn`1 “ pI3d ` γn`1Ḡ8qỹn ` γn`1r̄n `
?
γn`1η̄n`1

where η̄n`1 “ ηn`11An and r̄n “ r̄n,1 ` r̄n,2 ` r̄n,3, where

r̄n,1
∆
“
?
γn`1

´1rnpζ̃n, δnq1An ` pḠn ´ Ḡ8qỹn

r̄n,2
∆
“
?
γn`1

´1
´

gnpζ̃nq ´Gnpζ̃n ´ z‹q
¯

1
}ζ̃n´z‹}ďM

r̄n,3
∆
“ ´

?
γn`1

´1
pK `Gnqpζ̃n ´ z‹q1}ζ̃n´z‹}ąM .

We now check that the assumptions of Theorem 3.6.2 are fulfilled. On the event
Ω
p0q
N0

, we recall that ζ̃n “ ζn, hence r̄n,3 is identically zero. Moreover, using Equa-
tion (3.52), it holds that for all n large enough,

}r̄n,1} ď C

ˆ
c

γn
γn`1

pγn`1 ` wnq ` }Ḡn ´ Ḡ8}

˙

}ỹn}
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and therefore, Er}r̄n,1}2s Ñ 0. Now consider the term r̄n,2. By Equation (3.51),

}r̄n,2} ď C
?
γn`1

´1
}ζ̃n ´ z‹}

2
1
}ζ̃n´z‹}ďM

.

Thus, }r̄n,2}2 ď C}ỹn}
2 which implies that supněN0

Er}rn,2}2s ă 8. Moreover,
Er}r̄n,2}s ď C

?
γn`1E}ỹn}2 tends to zero. Finally, consider η̄n`1. Using condi-

tion (3.7), there exist M ą 0 and bM ą 4 s.t.

Enr}η̄n`1}
bM {2s ď Enr}ηn`1}

bM {2s1}xn´x‹}ďM

ď CEnr}∇fpxn, ξn`1q}
bM s1}xn´x‹}ďM ď C .

Moreover, Enrη̄n`1s “ 0 and finally, almost surely on Ω
p0q
N , Enrη̄n`1η̄

T
n`1s converges

to

Σ
∆
“

»

—

–

Eξ

«

„

p8p∇fpx‹, ξqd2 ´ Spx‹qq

h8∇fpx‹, ξq

 „

p8p∇fpx‹, ξqd2 ´ Spx‹qq

h8∇fpx‹, ξq

Tff
0

0

0 0 0

fi

ffi

fl

.

(3.54)
Therefore, the assumptions of Theorem 3.6.2 are fulfilled for the sequence ỹn. We
obtain the desired result for the sequence pmn, xn´1q. We now show that the same
result also holds for the sequence pmn, xnq. For this purpose, observe that

1
?
γn

„

mn

xn ´ x‹



“
1
?
γn

„

mn

xn´1 ´ x‹



`

«

0
1?
γn
pxn ´ xn´1q

ff

.

Then, notice that }xn´xn´1?
γn

} “
?
γn}

mn?
vn`ε

} ď

b

γn
ε }mn} Ñ 0 as n Ñ 8 since it is

assumed that zn Ñ z‹ (which implies in particular that mn Ñ 0). Hence, it holds
that ?γn´1pxn ´ xn´1q converges a.s. to 0. We conclude by invoking Slutsky’s
lemma.
Proof of Equation (3.10). We have the subsystem:

H̃Γ` ΓH̃T “

„

´h2
8Q 0

0 0



where H̃ ∆
“

„

pθ ´ r8qId h8∇2F px‹q

´V θId



(3.55)

and where Q ∆
“ Cov p∇fpx‹, ξqq. The next step is to triangularize the matrix H̃

in order to decouple the blocks of Γ. For every k “ 1, . . . , d, set ν˘k
∆
“ ´ r8

2 ˘
a

r2
8{4´ h8πk with the convention that

?
´1 “ ı (inspecting the characteristic

polynomial of H, these are the eigenvalues of H). Set M˘ ∆
“ diag pν˘1 , ¨ ¨ ¨ , ν

˘
d q and

R˘
∆
“ V ´

1
2PM˘PTV ´

1
2 . Using the identities M` `M´ “ ´r8Id and M`M´ “

h8 diag pπ1, ¨ ¨ ¨ , πdq, it can be checked that

RH̃ “

„

R´V ` θId 0

´V V R` ` θId



R, where R ∆
“

„

Id R`

0 Id



.

Set Γ̃
∆
“ RΓRT. Denote by pΓ̃i,jqi,j“1,2 the blocks of Γ̃. Note that Γ̃2,2 “ Γ2,2. By

left/right multiplication of Equation (3.55) respectively by R and RT, we obtain
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pR´V ` θIdqΓ̃1,1 ` Γ̃1,1pV R
´ ` θIdq “ ´h

2
8Q (3.56)

pR´V ` θIdqΓ̃1,2 ` Γ̃1,2pR
`V ` θIdq “ Γ̃1,1V (3.57)

pV R` ` θIdqΓ̃2,2 ` Γ̃2,2pR
`V ` θIdq “ V Γ̃1,2 ` Γ̃T

1,2V . (3.58)

Set Γ̄1,1 “ P´1V
1
2 Γ̃1,1V

1
2P . Define C ∆

“ P´1V
1
2QV

1
2P . Equation (3.56) yields

pM´ ` θIdqΓ̄1,1 ` Γ̄1,1pM
´ ` θIdq “ ´h

2
8C .

Set Γ̄1,2 “ P´1V
1
2 Γ̃1,2V

´ 1
2P . Equation (3.57) is rewritten pM´ ` θIdqΓ̄1,2 `

Γ̄1,2pM
` ` θIdq “ Γ̄1,1. The component pk, `q is given by

Γ̄k,`1,2 “ pν
´
k ` ν

`
` ` 2θq´1Γ̄k,`1,1 “

´h2
8Ck,`

pν´k ` ν
`
` ` 2θqpν´k ` ν

´
` ` 2θq

.

Set finally Γ̄2,2 “ P´1V ´
1
2 Γ2,2V

´ 1
2P . Equation (3.58) becomes

pM` ` θIdqΓ̄2,2 ` Γ̄2,2pM
` ` θIdq “ Γ̄1,2 ` Γ̄T

1,2 .

Thus,

Γ̄k,`2,2 “
Γ̄k,`1,2 ` Γ̄`,k1,2

ν`k ` ν
`
` ` 2θ

“
´h2

8Ck,`

pν`k ` ν
`
` ` 2θqpν´k ` ν

´
` ` 2θq

ˆ

1

ν´k ` ν
`
` ` 2θ

`
1

ν`k ` ν
´
` ` 2θ

˙

.

After tedious but straightforward computations, we obtain

Γ̄k,`2,2 “
h2
8Ck,`

pr8 ´ 2θqph8pπk ` π`q ` 2θpθ ´ r8qq `
h2
8pπk´π`q2

2pr8´2θq

,

and the result is proved.

3.7 Proofs for Section 3.4

3.7.1 Preliminaries

Most of the avoidance of traps results in the stochastic approximation literature
deal with the case where the ODE that underlies the stochastic algorithm under
study is an autonomous ODE 9z “ hpzq. In this setting, a point z‹ P zerh is
called a trap if hpzq admits an expansion around z‹ of the type hpzq “ Dpz ´

z‹q ` op}z ´ z‹}q, where the matrix D has at least one eigenvalue which real part
is (strictly) positive. Initiated by Pemantle [Pemantle 1990] and by Brandière and
Duflo [Brandière & Duflo 1996], the most powerful class of techniques for establish-
ing avoidance of traps results makes use of Poincaré’s invariant manifold theorem
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for the ODE 9z “ hpzq in a neighborhood of some point z‹ P zerh. The idea is to
show that with probability 1, the stochastic algorithm strays away from the max-
imal invariant manifold of the ODE where the convergence to z‹ of the ODE flow
can take place. As previously mentioned, since we are dealing with algorithms
derived from non-autonomous ODEs, we extend the results of [Pemantle 1990,
Brandière & Duflo 1996] to this setting. The proof of Theorem 3.4.1 relies on a non-
autonomous version of Poincaré’s theorem. We borrow this result from the rich liter-
ature that exists on the subject [Dalec1kĭı & Krĕın 1974, Kloeden & Rasmussen 2011].

Let us start by setting the context for the non-autonomous version that we shall
need for the invariant manifold theorem. Given an integer d ą 0 and a matrix
D P Rdˆd, consider the linear autonomous differential equation

9zptq “ Dzptq, (3.59)

which solution is obviously zptq “ eDtzp0q for t P R. Let us factorize D as in (3.12),

and write D “ QΛQ´1 with Λ “

„

Λ´

Λ`



where we recall that the Jordan blocks

that constitute Λ´ P Rd´ˆd´ (respectively Λ` P Rd`ˆd`) are those that contain the
eigenvalues λi of D such that <λi ď 0 (respectively <λi ą 0). Let us assume here
that both d´ and d` are positive. It will be convenient to work in the basis of the
columns of Q by making the variable change

z ÞÑ y “

„

y´

y`



“ Q´1z,

where y˘ P Rd˘ . In this new basis, the ODE (3.59) is written as
„

9y´

9y`



“

„

Λ´

Λ`

 „

y´

y`



, (3.60)

which solution is y˘ptq “ expptΛ˘qy˘p0q. One can readily check that for each couple
of real numbers α` and α´ that satisfy

0 ă α´ ă α` ă mint<λi : <λi ą 0u, (3.61)

there exists a so-called exponential dichotomy of the ODE solutions, which amounts
in our case to the existence of two constants K´,K` ě 1 such that

} expptΛ´q} ď K´eα
´t for t ě 0,

} expptΛ`q} ď K`eα
`t for t ď 0,

see, e.g., [Horn & Johnson 1994].
We now consider a non-autonomous perturbation of this ODE, which is repre-

sented in the basis of the columns of Q as

9yptq “ hpyptq, tq with hpy, tq “

„

Λ´

Λ`



y ` εpy, tq, (3.62)
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and ε : Rd ˆ RÑ Rd is a continuous function. In the sequel, we shall be interested
in the asymptotic behavior of this equation for the large values of t, and therefore,
restrict our study to the interval I “ rt0,8q for some given t0 ě 0 that we shall
fix later. We assume that εp0, ¨q “ 0 on I. We denote as φ : I ˆ I ˆ Rd Ñ Rd
the so-called general solution of (3.62), which is defined by the fact that φp¨, t, xq is
the unique noncontinuable solution of (3.62) such that φpt, t, xq “ x for t P I and
x P Rd, assuming this solution exists and is unique for each px, tq P Rd ˆ I.

In the linear autonomous case provided by the ODE (3.60), the subspace

G “
"ˆ

t,

„

y´

0

˙

P Rˆ Rd : y´ P Rd
´

*

is trivially invariant in the sense that if pt, yq P G, then, ps, φps, t, yqq P G for each
s P R. This concept can be generalized to the non-linear and non-autonomous
case. We say that the C1 function w : Rd´ ˆ I Ñ Rd` defines a global non-
autonomous invariant manifold for the ODE (3.62) if wp0, tq “ 0 for all t P I,
and, furthermore, if for each t P I and each y´ P Rd´ , writing y “ py´, wpy´, tqq,
the general solution φps, t, yq “ pφ´ps, t, yq, φ`ps, t, yqq with φ˘ps, t, yq P Rd˘ ver-
ifies φ`ps, t, yq “ wpφ´ps, t, yq, sq for each s P I. The non-autonomous invariant
manifold is the set

G “
"ˆ

t,

„

y´

wpy´, tq

˙

P Iˆ Rd : y´ P Rd
´

*

,

which obviously satisfies pt, yq P G ñ ps, φps, t, yqq P G for each s P I.
These invariant manifolds are described by the following proposition, which is a

straightforward application of [Pötzsche & Rasmussen 2006, Theorem A.1] (see also
[Kloeden & Rasmussen 2011, Theorem 6.3 p. 106, Rem. 6.6 p. 111]). It is useful to
note that under the conditions provided in the statement of this proposition, the
existence of the general solution φ of the ODE (3.62) is ensured by Picard’s theorem.

Proposition 3.7.1. Let I “ rt0,8q for some t0 ě 0. Assume that the function
εpy, tq is such that εp0, ¨q ” 0 on I, the function εp¨, tq is continuously differentiable
for each t P I, and furthermore, the Jacobian matrix B1εpy, tq satisfies

|ε|1
∆
“ sup
py,tqPRdˆI

}B1εpy, tq} ă
α` ´ α´

4K
(3.63)

with K “ K´`K``K´K`pK´_K`q and α´, α` chosen as in Equation (3.61).
Then, for each δ P p2K|ε|1, pα` ´ α´q{2q and each γ P pα´ ` δ, α` ´ δq, the set

G “
"

pt, yq P Iˆ Rd : sup
sět
}φps, t, yq} exppγpt´ sqq ă 8

*

is nonempty, and does not depend on γ. Moreover, this set is a global invariant
manifold for the ODE (3.62) that is defined by a continuously differentiable mapping
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w : Rd´ ˆ IÑ Rd`. In addition, if the partial derivatives Bk1ε : Rd ˆ I exist and are
continuous for k P t1, . . . ,mu with globally bounded partial derivatives

|ε|k
∆
“ sup
py,tqPRdˆI

}Bk1εpy, tq} ă 8 , (3.64)

under the gap condition
mα´ ă α`, m P N˚, (3.65)

the partial derivatives Bk1w : Rd´ ˆ I exist and are continuous with

sup
py´,tqPRd´ˆI

}Bk1wpy
´, tq} ă 8 for all k P t1, . . . ,mu. (3.66)

Finally, if Bn2 B
k
1ε exist and are continuous for 0 ď n ă m and 0 ď k ` n ď m, then

w is m-times continuously differentiable.

Let us partition the function hpy, tq as

hpy, tq “

„

h´py, tq

h`py, tq



“

„

Λ´y´ ` ε´py, tq

Λ`y` ` ε`py, tq



, (3.67)

where h˘ : Rd ˆ IÑ Rd˘ , y˘ P Rd˘ and ε˘ : Rd ˆ IÑ Rd˘ . With these notations,
the previous proposition leads to the following lemma.

Lemma 3.7.2. In the setting of Proposition 3.7.1, for each t in the interior of I
and each vector y “ py´, y`q such that y˘ P Rd˘ and y` “ wpy´, tq, it holds that

h`py, tq “ B1wpy
´, tqh´py, tq ` B2wpy

´, tq . (3.68)

Assume that α´ is small enough so that Inequality (3.65) and Equation (3.64) hold
true with m “ 2. Assume in addition that Bn2 B

k
1ε exists and is continuous for 0 ď

n ă 2 and 0 ď k`n ď 2, and furthermore, that there exists a bounded neighborhood
V Ă Rd of zero such that

sup
py,tqPVˆI

‖B2εpy, tq‖ ă `8. (3.69)

Then, there exists a neighborhood V´ Ă Rd´ of zero such that

sup
py´,tqPV´ˆI

∥∥B1B2wpy
´, tq

∥∥ ă `8 , (3.70)

sup
py´,tqPV´ˆI

∥∥B2
2wpy

´, tq
∥∥ ă `8 . (3.71)

Proof. By Proposition 3.7.1, the general solution φps, t, yq of the ODE (3.62) can be
written as φps, t, yq “ pφ´ps, t, yq, φ`ps, t, yqq with φ`ps, t, yq “ wpφ´ps, t, yq, sq for
each s P I. Equating the derivatives with respect to s of the two members of this
equation and taking s “ t, we get the first equation.
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Writing g : Rd´ ˆ I Ñ Rd, py´, tq ÞÑ py´, wpy´, tqq, Equation (3.68) can be
rewritten as

B2wpy
´, tq “ h`pgpy´, tq, tq ´ B1wpy

´, tqh´pgpy´, tq, tq. (3.72)

By Proposition 3.7.1, the function w is twice differentiable, and we can write

B2
2wpy

´, tq “ B1h
`B2g ` B2h

` ´ pB1B2wqh
´ ´ pB1wqpB1h

´B2g ` B2h
´q, (3.73)

where, e.g., h` is a shorthand notation for h`pgpy´, tq, tq. It holds from Equa-
tion (3.67) and the assumptions of Proposition 3.7.1 that for each py, tq P Rd ˆ I,

}B1hpy, tq} ď }Λ} ` }B1εpy, tq} ď C, (3.74)

where the constant C ą 0 is independent of py, tq and can change from an inequal-
ity to another in the remainder of the proof. By the mean value inequality and
Proposition 3.7.1, we also get that

}wpy´, tq} “ }wpy´, tq ´ wp0, tq} ď sup
pu,sq

}B1wpu, sq} }y
´ } ď C}y´},

thus, }gpy´, tq} ď C}y´}. By the mean value inequality again,∥∥hpgpy´, tq, tq∥∥ “ ∥∥hpgpy´, tq, tq ´ hp0, tq∥∥ ď sup
pu,tq

‖B1hpu, tq‖
∥∥gpy´, tq∥∥

ď C
∥∥gpy´, tq∥∥ ď C}y´}.

By Equation (3.72) and Proposition 3.7.1, this implies that∥∥B2gpy
´, tq

∥∥ “ ∥∥B2wpy
´, tq

∥∥ “ ∥∥h` ´ pB1wqh
´
∥∥ ď C

∥∥y´∥∥ , and (3.75)∥∥B1B2wpy
´, tq

∥∥ “ ∥∥B1h
`B1g ´ pB

2
1wqh

´ ´ pB1wqpB1h
´B1gq

∥∥ ď Cp
∥∥y´∥∥` 1q.

(3.76)

Let V´ Ă Rd´ be a small enough neighborhood of zero so that gpy´, tq P V for each
y´ P V´, which is possible by the inequality }gpy´, tq} ď C}y´}. By the assumption
on }B2εpy, tq} in the statement of Lemma 3.7.2, we have

@y´ P V´,
∥∥B2hpgpy

´, tq, tq
∥∥ “ ∥∥B2εpgpy

´, tq, tq
∥∥ ď C. (3.77)

The bound (3.70) is an immediate consequence of Equation (3.76). Getting back to
Equation (3.73), the bound (3.71) follows from the inequalities (3.74)–(3.77).

Proposition 3.7.1 deals with the case where the function ε is globally Lipschitz
continuous. In practical cases, such a strong assumption is not necessarily verified.
In particular, for the ODEs we consider for our application, it is not satisfied (see
the function e defined in Subsec. 3.7.3.1 below). Nonetheless, recall that we only
need the existence of a local non-autonomous invariant manifold, i.e. defined in the
vicinity of an arbitrary solution such as the trivial zero solution (since we suppose
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here εp0, ¨q “ 0) whereas the aforementioned strong assumption provides a global
non-autonomous invariant manifold. Indeed, as for the avoidance of traps result
we intend to show, we will only need to look at the behavior of our ODE in the
neighborhood of a trap z‹. Therefore, in prevision of the proof of Theorem 3.4.1,
we localize the ODE (3.62) in the neighborhood of zero. This is the purpose of the
next proposition.

Proposition 3.7.3. Let I “ rt0,`8q for some t0 ě 0 and let h : Rd ˆ I Ñ Rd be
defined as in Equation (3.62). Assume that εp0, ¨q ” 0 on I, that the function εp¨, tq
is continuously differentiable for every t P I and that

lim
py,tqÑp0,`8q

‖B1εpy, tq‖ “ 0 . (3.78)

Then, there exist σ ą 0, t1 ą 0, a function ε̃ : Rd ˆ I1 Ñ Rd where I1
∆
“ rt1,`8q

and a function h̃ : Rd ˆ I1 Ñ Rd defined for every y P Rd, t P I1 by h̃py, tq “

Λy ` ε̃py, tq s.t. h̃ and ε̃ verify the assumptions of Proposition 3.7.1 and for every
py, tq P Bp0, σqˆI1, we have that h̃py, tq “ hpy, tq and ε̃py, tq “ εpy, tq. Moreover, for
any δ ą 0, we can choose σ, t1 respectively small and large enough s.t. the mapping
w : Rd´ ˆ I1 Ñ Rd` obtained from Proposition 3.7.1 (applied to h̃ and ε̃) satisfies

|w|1 “ sup
py,tqPRd´ˆI1

}B1wpy, tq} ă δ . (3.79)

Furthermore, Equation (3.68) holds for h̃ and w for all py, tq P Bp0, σq ˆ I1. If,
additionally, Equation (3.69) holds for ε, then there exists σ1 ď σ such that

sup
py´,tqPBp0,σ1qˆI1

∥∥B1B2wpy
´, tq

∥∥ ă `8 , (3.80)

sup
py´,tqPBp0,σ1qˆI1

∥∥B2
2wpy

´, tq
∥∥ ă `8 . (3.81)

Proof. The idea of the proof is to localize the function hpy, tq to a neighborhood of
zero in the variable y for the purpose of applying Proposition 3.7.1. This cut-off tech-
nique is known in the non-autonomous ODE literature, see, e.g., [Kloeden & Rasmussen 2011,
Theorem 6.10]. Let ψ : Rd Ñ r0, 1s be a smooth function such that ψpyq “ 1 if
}y} ď 1, and ψpyq “ 0 if }y} ě 2. Let C “ maxy }∇ψpyq} where ∇ψ is the Jacobian
matrix of ψ. Thanks to the convergence (3.78), we can choose t1 ą 0 large enough
and σ ą 0 small enough so that

sup
pt,yqPrt1,8qˆBp0,2σq

}B1εpy, tq} ă
α` ´ α´

4Kp1` 2Cq
,

and we set I1 “ rt1,8q. Writing ε̃py, tq “ ψpy{σqεpy, tq, it holds that for each
pt, yq P I1 ˆ Rd,

}B1ε̃py, tq} ď σ´1C1}y}ď2σ}εpy, tq} ` 1}y}ď2σ}B1εpy, tq}

ď

ˆ

max
}y}ď2σ

}B1εpy, tq}

˙

`

σ´1C}y} ` 1
˘

1}y}ď2σ

ď
α` ´ α´

4K
,
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where we used the mean value inequality along with εp0, tq “ 0 to obtain the sec-
ond inequality. Thus, the function h̃py, tq “ Λy ` ε̃py, tq satisfies all the assump-
tions of Proposition 3.7.1. In addition, the function ε̃ coincides with the function ε
on Bp0, σ1q ˆ I1, and so it is for the functions h̃ and h. Finally, it follows from
[Kloeden & Rasmussen 2011, Theorem 6.3] that

|w|1 ď
2K2

α` ´ α´ ´ 4K|ε̃|1
|ε̃|1

(note that L in [Kloeden & Rasmussen 2011, Theorem 6.3] corresponds to |ε̃|1 with
our notations). Using Equation (3.78), we can make |ε̃|1 as small as needed by
choosing σ, t1 respectively small and large enough, which gives us Equation (3.79).
The proof of the last two equations follows from the application of Lemma 3.7.2 to
h̃ and w. The result is immediate after noticing that for py, tq P Rd ˆ I1, we have
‖B2ε̃py, tq‖ ď ‖B2εpy, tq‖.

3.7.2 Proof of Theorem 3.4.1

We shall rely on the following result of Brandière and Duflo. Recall that pΩ,F ,Pq
is a probability space equipped with a filtration pFnqnPN.

Proposition 3.7.4. ([Brandière & Duflo 1996, Proposition 4]) Given a sequence
pγnq of deterministic nonnegative stepsizes such that

ř

k γk “ `8 and
ř

k γ
2
k ă `8,

consider the Rd–valued stochastic process pznqnPN given by

zn`1 “ pI ` γn`1Hnqzn ` γn`1ηn`1 ` γn`1ρn`1.

Assume that z0 is F0–measurable and that the sequences pηnq, pρnq together with the
sequence of random matrices pHnq are pFnq–adapted. Moreover, on a given event
A P F , assume the following facts:

i)
ř

n }ρn}
2 ă 8.

ii) lim supEr}ηn`1}
2`a |Fns ă 8 for some a ą 0, and Erηn`1 |Fns “ 0.

iii) lim inf Er}ηn`1}
2 |Fns ą 0.

Let H P Rdˆd be a deterministic matrix such that the real parts of its eigenvalues
are all positive. Then,

P pAX rzn Ñ 0s X rHn Ñ Hsq “ 0.

We now enter the proof of Theorem 3.4.1. Recall the development (3.11) of
bpz, tq near z‹ and the spectral factorization (3.12) of the matrix D. To begin with,
it will be convenient to make the variable change y “ Q´1pz ´ z‹q, and set

hpy, tq “ Q´1bpQy ` z‹, tq “ Λy ` ẽpy, tq,
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with ẽpy, tq “ Q´1epQy ` z‹, tq, in such a way that our stochastic algorithm is
rewritten as

yn`1 “ yn ` γn`1hpyn, τnq ` γn`1η̃n`1 ` γn`1ρ̃n`1

where η̃n is as in the statement of the theorem and ρ̃n “ Q´1ρn. Observe that the
assumptions on the function e in the statement of the theorem remain true for ẽ
with z‹ replaced by zero.

If the matrix Λ has only eigenvalues with (strictly) positive real parts, i.e.,
d´ “ 0, then we can apply Proposition 3.7.4 to the sequence pznq. Henceforth, we
deal with the more complicated case where d´ ą 0.

Apply Proposition 3.7.3 to h to obtain h̃ and σ, t1 respectively small and large
enough and w : Rd´ ˆ I1 Ñ Rd` where I1 :“ rt1,`8q. By Assumption iv) of
Theorem 3.4.1 and Proposition 3.7.3 we can choose σ1 ď σ such that Equation (3.80)
and Equation (3.81) hold. Now, given p P N, let us define the event

Ep “ r@n ě p, }yn} ă σ1, τn P I1s .

On Ep, it holds that hpyn, τnq “ h̃pyn, τnq and

@n ě p, yn`1 “ yn ` γn`1hpyn, τnq ` γn`1η̃n`1 ` γn`1ρ̃n`1

“

„

y´n
y`n



` γn`1

„

h´pyn, τnq

h`pyn, τnq



` γn`1

„

η̃´n`1

η̃`n`1



` γn`1

„

ρ̃´n`1

ρ̃`n`1



(3.82)

where h is partitioned as in (3.67), and where η̃˘n , ρ̃˘n P Rd˘ . Note that, by Propo-
sition 3.7.3 and Assumptions vi) and vii) on the sequence pηnq, we can choose σ, t1
respectively small and large enough such that

lim inf Er
∥∥η̃`n`1

∥∥2
|Fns1Eppynq´2 lim supEr

∥∥B1wpy
´
n , τnqη̃

´
n`1

∥∥2
|Fns1Eppynq ą

c2

2
.

(3.83)
This inequality will be important in the end of our proof. Let t be in the interior
of I1, and let y “ py´, y`q be in a neighborhood of 0. Make the variable change
py´, y`q ÞÑ pu´, u`q with

u` “ y` ´ wpy´, tq,

u´ “ y´,

where w is the function defined in the statement of Proposition 3.7.3, and let

W pu´, u`, tq “ h`py, tq ´ B1wpy
´, tqh´py, tq ´ B2wpy

´, tq

“ h`ppu´, u` ` wpu´, tqq, tq

´ B1wpu
´, tqh´ppu´, u` ` wpu´, tqq, tq ´ B2wpu

´, tq.

By Proposition 3.7.3 and Lemma 3.7.2, it holds that W pu´, 0, tq “ 0. Moreover,
W pu´, ¨, tq P C1 by the assumptions on h. Therefore, writing yprq “ pu´, ru` `
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wpu´, tqq for r P r0, 1s, and using the decomposition (3.67), we get that

W pu´, u`, tq “

ż 1

0
B2W pu

´, ru`, tqu` dr

“ Λ`u`

`

ż 1

0

ˆ

B1ε
`pyprq, tq

„

0

Id`



´ B1wpu
´, tqB1ε

´pyprq, tq

„

0

Id`

˙

u`dr.

We can also write yprq “ py´, ry``p1´ rqwpy´, tqq. Recalling that wp0, tq “ 0 and
that }B1wpy

´, tq} is bounded on Rd´ ˆ I, we get by the mean value inequality that
‖wpy´, tq‖ ď C ‖y´‖ where C ą 0 is a constant. Thus, ‖yprq‖ ď p1`Cq ‖y‖. More-
over, εpy, tq “ Q´1epQy, tq for }y} ă σ. Thus, we get by (3.13) that ‖B1εpyprq, tq‖Ñ
0 as py, tq Ñ p0,8q uniformly in r P r0, 1s. Using again the boundedness of
}B1wp¨, ¨q}, we eventually obtain that

W pu´, u`, tq “
`

Λ` `∆py, tq
˘

u`, with lim
py,tqÑp0,8q

∆py, tq “ 0.

On the event Ep, assume that n ě p, and write

u`n “ y`n ´ wpy
´
n , τnq, u´n “ y´n ,

(see Equation (3.82)). Choosing α´ ą 0 small enough so that the gap condi-
tion (3.65) is satisfied with m “ 2, we have by Taylor’s expansion

wpy´n`1, τn`1q ´ wpy
´
n , τnq “ wpy´n`1, τn`1q ´ wpy

´
n , τn`1q ` wpy

´
n , τn`1q ´ wpy

´
n , τnq

“ B1wpy
´
n , τn`1qpy

´
n`1 ´ y

´
n q ` γn`1B2wpy

´
n , τnq ` εn`1 ` ε

γ
n`1 ,

with ‖εn`1‖ ď sup
y´Pry´n ,y

´
n`1s

∥∥B2
1wpy

´, τn`1q
∥∥∥∥y´n`1 ´ y

´
n

∥∥2
,

and
∥∥εγn`1

∥∥ ď sup
τPrτn,τn`1s

∥∥B2
2wpy

´
n , τq

∥∥ γ2
n`1 .

Using this equation, we obtain

u`n`1 ´ u
`
n “ γn`1W pu

´
n , u

`
n , τnq ` γn`1

`

η̃`n`1 ´ B1wpy
´
n , τn`1qη̃

´
n`1

˘

` γn`1

`

ρ̃`n`1 ´ B1wpy
´
n , τn`1qρ̃

´
n`1

˘

´ εn`1 ´ ε
γ
n`1

` γn`1

`

B1wpy
´
n , τnq ´ B1wpy

´
n , τn`1q

˘

h´pyn, τnq ,

which leads to

u`n`1 “ u`n ` γn`1

`

Λ` `∆pyn, τnq
˘

u`n ` γn`1η̄n`1 ` γn`1ρ̄n`1, (3.84)

with η̄n`1 “ η̃`n`1 ´ B1wpy
´
n , τnqη̃

´
n`1 and

ρ̄n`1 “ ρ̃`n`1 ´ B1wpy
´
n , τnqρ̃

´
n`1 ´ 1γn`1ą0

εn`1 ` ε
γ
n`1

γn`1

`
`

B1wpy
´
n , τnq ´ B1wpy

´
n , τn`1q

˘

h´pyn, τnq . (3.85)
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To finish the proof, it remains to check that the noise sequence satisfies the
assumptions of Proposition 3.7.4 on the event Ap “ EpXryn Ñ 0s. In the remainder,
C 1 will indicate some positive constant which can change from an inequality to
another one.

First, we verify that
ř

n }ρ̄n}
2 ă 8 on Ap by controlling each one of the terms

of ρ̄n. Combining the boundedness of B1wp¨, ¨q with the summability assump-
tion

ř

n }ρ̃n`1}
2
1znPW ă `8 a.s., we immediately obtain on Ap that

ř

n }ρ̃
`
n`1 ´

B1wpy
´
n , τnqρ̃

´
n`1}

2 ă `8 given our choice of σ. Moreover, it holds that
`

}εγn`1}{γn`1

˘2
ď

C 1γ2
n`1 by invoking Proposition 3.7.3. In addition, using the boundedness of B2

1wp¨, ¨q,
we can write

1γn`1ą0

›

›

›

›

εn`1

γn`1

›

›

›

›

2

ď 1γn`1ą0
C 1

γ2
n`1

‖yn`1 ´ yn‖4

ď C 1γ2
n`1p‖hpyn, τnq‖

4
` ‖η̃n`1‖4

` ‖ρ̃n`1‖4
q .

A coupling argument (see [Brandière & Duflo 1996, p. 401]) shows that we can sim-
plify the condition
lim supEr}ηn`1}

4 |Fns1znPW ă 8 to Er}ηn`1}
4 |Fns1znPW ă C 1. The latter condi-

tion implies that Er1Ap
ř

n γ
2
n`1 ‖ηn`1‖4

s ď
ř

nC
1γ2
n`1, and therefore

ř

n γ
2
n`1 ‖ηn`1‖4

1Ap ă

`8 a.s. As a consequence, noticing also the boundedness of phpyn, τnqq and pρ̃nq on

Ap, we deduce that
ř

n 1γn`1ą0

›

›

›

εn`1

γn`1

›

›

›

2
ă `8 on Ap. We now briefly control the

last term of ρ̄n. By the mean value inequality, we obtain that

›

›

`

B1wpy
´
n , τnq ´ B1wpy

´
n , τn`1q

˘

h´pyn, τnq
›

›

ď γn`1 sup
py´,tq

∥∥B2B1wpy
´, tq

∥∥ }h´pyn, τnq} ď C 1γn`1 ,

where the last inequality stems from Proposition 3.7.3-Equation (3.80) together
with the boundedness of the sequence phpyn, τnqq. In view of Equation (3.85) and
the above estimates, we deduce that

ř

n }ρ̄n`1}
2
1Ap ă `8 a.s. on Ap.

We verify the remaining conditions on the noise sequence pη̄nq. We can easily re-
mark that Erη̄n`1|Fns “ 0 and ‖η̄n`1‖ ď C 1 ‖ηn`1‖ onAp. Hence, lim supEr}η̄n`1}

4 |Fns1znPW ă

8. The last condition, meaning that the noise is exciting enough, stems from noting
that

2 lim inf Er‖η̄n`1‖2
|Fns1Ap ě lim inf Er

∥∥η̃`n`1

∥∥2
|Fns1Ap

´ 2 lim supEr
∥∥B1wpy

´
n , τnqη̃

´
n`1

∥∥2
|Fns1Ap

ą
c2

2
,

where we used our choice of σ, t1 and Equation (3.83).
Noticing that ryn Ñ 0s Ă r∆pyn, τnq Ñ 0s, we can now apply Proposition 3.7.4

to the sequence pu`n q (see Equation (3.84)) with A “ Ap to obtain

P
`

Ap X ru
`
n Ñ 0s

˘

“ P
`

Ap X ru
`
n Ñ 0s X r∆pyn, τnq Ñ 0s

˘

“ 0 .
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We now show that ryn Ñ 0s Ă ru`n Ñ 0s , which amounts to prove that wpy´n , τnq Ñ
0 given yn Ñ 0. To that end, upon noting that wp0, ¨q ” 0 and that B1wp¨, ¨q is
bounded, it suffices to apply the mean value inequality, writing :

}wpy´n , τnq} “ }wpy
´
n , τnq ´ wp0, τnq} ď sup

py´,tq

}B1wpy
´, tq} }y´n } ď K}y´n } .

We have shown so far that PpApq “ 0. Since yn “ Q´1zn and ryn Ñ 0s Ă
Ť

pPNEp,
we finally obtain that

Przn Ñ 0s “ Pryn Ñ 0s “ P

˜

ď

pPN
pryn Ñ 0s X Epq

¸

“ P

˜

ď

pPN
Ap

¸

“ 0.

Theorem 3.4.1 is proven.

3.7.3 Proofs for Section 3.4.2.1

3.7.3.1 Proof of Lemma 3.4.2

The matrix D coincides with ∇g8pz‹q, where the function g8 is defined in (3.20).
As such, its expression is immediate. Recalling that p8Spx‹q ´ q8v‹ “ 0, we get

gpz, tq ´Dpz ´ z‹q “

»

—

–

pptqSpxq ´ qptqv ´ p8∇Spx‹qpx´ x‹q ` q8pv ´ v‹q
hptq∇F pxq ´ rptqm´ h8∇2F px‹qpx´ x‹q ` r8m

´m
´

pv ` εq´
1
2 ´ pv‹ ` εq

´ 1
2

¯

fi

ffi

fl

“

»

—

–

´qptq ` q8 0 ppptq ´ p8q∇Spx‹q
0 r8 ´ rptq phptq ´ h8q∇2F px‹q
m

2pv‹`εq
3
2

0 0

fi

ffi

fl

»

–

v ´ v‹
m

x´ x‹

fi

fl

`

»

—

—

–

pptqpSpxq ´ Spx‹q ´∇Spx‹qpx´ x‹qq
hptqp∇F pxq ´∇2F px‹qpx´ x‹qq

´md

ˆ

1?
v`ε

´ 1?
v‹`ε

` v´v‹

2pv‹`εq
3
2

˙

fi

ffi

ffi

fl

`

»

–

pptqSpx‹q ´ qptqv‹
0

0

fi

fl

∆
“ epz, tq ` cptq.

Under the assumptions made, it is easy to see that the function epz, tq has the
properties required in the statement of Theorem 3.4.1.

3.7.3.2 Proof of Theorem 3.4.3

Consider the matrix D defined in the statement of Lemma 3.4.2. A spectral analysis
of this matrix as regards its eigenvalues with positive real parts is done in the
following lemma.

Lemma 3.7.5. Let D be the matrix provided in the statement of Lemma 3.4.2.
Each eigenvalue ζ of the matrix D such that <ζ ą 0 is real, and its algebraic and
geometric multiplicities are equal. Moreover, there is a one-to-one correspondence
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ϕ between these eigenvalues and the negative eigenvalues of V
1
2∇2F px‹qV

1
2 . Let

d` be the dimension of the eigenspace of V
1
2∇2F px‹qV

1
2 that is associated with its

negative eigenvalues, let

W “

»

—

–

w1
...

wd`

fi

ffi

fl

P Rd
`ˆd

be a matrix which rows are independent eigenvectors of V
1
2∇2F px‹qV

1
2 that generate

this eigenspace, and denote as βk ă 0 the eigenvalue associated with wk. Then, the
rows of the rank d`-matrix

A` “
”

0d`ˆd, WV
1
2 , ´diagpr8 ` ϕ

´1pβkqqWV ´
1
2

ı

P Rd
`ˆ3d

generate the left eigenspace of D, the row k being an eigenvector for the eigenvalue
ϕ´1pβkq.

Proof. It is obvious that the block lower-triangular matrix D has d eigenvalues equal
to ´q8 and 2d eigenvalues which are those of the sub-matrix

rD “

„

´r8Id h8∇2F px‹q

´V 0



.

Given λ P C, we obtain by standard manipulations involving determinants that

detp rD´λq “ detpλpr8`λq`h8V∇2F px‹qq “ detpλpr8`λq`h8V
1
2∇2F px‹qV

1
2 q.

Denoting as tβkudk“1 the eigenvalues of h8V
1
2∇2F px‹qV

1
2 counting the multiplici-

ties, we obtain from the last equation that the eigenvalues of rD are the solutions of
the second order equations

λ2 ` r8λ` βk “ 0, k “ 1, . . . , d.

The product of the roots of such an equation is βk, and their sum is ´r8 ď 0.
Thus, denoting as ζk,1 and ζk,2 these roots, it is easy to see that if βk ě 0, then
<ζk,1,<ζk,2 ď 0, while if βk ă 0, then both ζk,i are real, and only one of them is
positive. Thus, we have so far shown that the eigenvalues of D which real parts are
positive are themselves real, and there is a one-to-one map ϕ from the set of positive
eigenvalues of D to the set of negative eigenvalues of V

1
2∇2F px‹qV

1
2 . Moreover, the

algebraic multiplicity of the eigenvalue ζ ą 0 of D is equal to the multiplicity of
ϕpζq.

Let us now turn to the left (row) eigenvectors of D that correspond to these
eigenvalues. To that end, we shall solve the equation

uD “ ζu with u “ r0, u1, u2s, u1,2 P R1ˆd, (3.86)

for a given eigenvalue ζ ą 0 of D. Developing this equation, we get

´r8u1 ´ u2V “ ζu1, h8u1∇2F px‹q “ ζu2.
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If we now write ũ1 “ u1V
´ 1

2 and ũ2 “ u2V
1
2 , this system becomes

´r8ũ1 ´ ũ2 “ ζũ1, h8ũ1V
1
2∇2F px‹qV

1
2 “ ζũ2,

or, equivalently,

ũ2 “ ´pr8 ` ζqũ1, ũ1

´

ζ2 ` r8ζ ` h8V
1
2∇2F px‹qV

1
2

¯

“ 0,

which shows that ũ1 is a left eigenvector of V
1
2∇2F px‹qV

1
2 associated with the

eigenvalue ϕpζq. What’s more, assume that r is the multiplicity of ϕpζq, and, without
generality loss, that the submatrix Wr,¨ made of the first r rows of W generates the
left eigenspace of ϕpζq. Then, the matrix

”

0rˆd Wr¨V
1
2 ´pr8 ` ζqWr¨V

´ 1
2

ı

is a r-rank matrix which rows are independent left eigenvectors that generate the
left eigenspace of D for the eigenvalue ζ. In particular, the algebraic and geometric
multiplicities of this eigenvalue are equal. The same argument can be applied to the
other positive eigenvalues of D.

We now have all the elements to prove Theorem 3.4.3. Recall Equation (3.14):

zn`1 “ zn ` γn`1bpzn, τnq ` γn`1ηn`1 ` γn`1ρn`1,

where bpz, tq “ gpz, tq´cptq “ Dpz´z‹q`epz, tq and ρn “ cpτn´1q` ρ̃n. With these
same notations, we check that Assumptions i)–vi) in the statement of Theorem 3.4.1
are satisfied. The function epz, tq satisfies Assumptions i)–iv) by Lemma 3.4.2.
We now verify that the sequence pρnq fulfills Assumption v). First, observe that
ř

n }cpτnq}
2 ă 8 under Assumption 3.4.3-i). Then, we control the second term pρ̃nq.

After straightforward derivations, one can show the existence of a positive constant
C (depending only on ε and a neighborhood W of z‹) such that

}ρ̃n`1}
2
1znPW ď Cp}mn ´mn`1}

2 ` }vn`1 ´ vn}
2q1znPW . (3.87)

Using the boundedness of the sequences phnq and prnq together with the update rule
of mn and Assumption 3.4.3-iii), there exists a positive constant C 1 independent of
n (which may change from an inequality to another) such that

E
“

}mn ´mn`1}
2
1znPW

‰

ď γ2
n`1C

1E
“

p1` Eξ
“

}∇fpxn, ξq}2
‰

q1znPW
‰

ď C 1γ2
n`1 .

(3.88)
A similar result holds for E

“

}vn ´ vn`1}
2
1znPW

‰

following the same arguments.
In view of Eqs. (3.87)-(3.88) and the assumption

ř

n γ
2
n`1 ă `8, it holds that

E
“
ř

n }ρ̃n`1}
2
1znPW

‰

ă `8. Therefore,
ř

n }ρ̃n`1}
2
1znPW ă `8 a.s., which com-

pletes our verification of condition v) of Theorem 3.4.1. Assumption vi) follows
from condition 3.4.3-iii). Finally, let us make Assumption vii) of Theorem 3.4.1

more explicit. Partitioning the matrix Q´1 as Q´1 “

„

B´

B`



where B˘ has d˘ rows,
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Lemma 3.7.5 shows that the row spaces of B` and A` are the same, which implies
that Assumption vii) can be rewritten equivalently as Er‖A`ηn`1‖2

|Fns1znPW ě

c2
1znPW . By inspecting the form of ηn provided by Equation (3.28) (written as a

column vector), one can readily check that Assumption 3.4.3-iv) implies Assump-
tion vii) of Theorem 3.4.1 for a small enough neighborhood W, using the continuity
of the covariance matrix V

1
2Eξp∇fpx, ξq ´∇F pxqqp∇fpx, ξq ´∇F pxqqTV

1
2 when x

is near x‹.

3.7.4 Proof of Theorem 3.4.4

As mentioned in Section 3.4.2.2, the proof of Theorem 3.4.4 is almost identical to
the one of Theorem 3.4.3. We point out the main differences here. In Lemma 3.4.2,

replace D by D̃ “

„

0 h8∇2F px‹q

´Id 0



and set cptq “ 0. Then, in Lemma 3.7.5,

replace the matrix V 1{2∇2F px‹qV
1{2 by the Hessian ∇2F px‹q.





Chapter 4

Constant step stochastic
approximation involving the

Clarke subdifferentials of non
smooth functions

4.1 Introduction

In this chapter, we study the asymptotic behavior of the constant step Stochastic
Gradient Descent (SGD) when the objective function is neither differentiable nor
convex. Given an integer d ě 1 and a probability space pΞ,T , µq, let f : Rd ˆ Ξ Ñ

R, px, sq ÞÑ fpx, sq be a function which is assumed to be locally Lipschitz, generally
non-differentiable and non-convex in the variable x, and µ-integrable in the variable
s. The goal is to find a local minimum, or at least a critical point of the function
F pxq “

ş

fpx, sqµpdsq “ Efpx, ¨q, i.e., a point x‹ such that 0 P BF px‹q, where BF is
the so-called Clarke subdifferential of F . It is assumed that the function f is available
to the observer along with a sequence of independent Ξ-valued random variables
pξkqkPN on some probability space with the same probability law µ. The function
F itself is assumed unknown due to, e.g., the difficulty of computing the integral
Efpx, ¨q. Such non-smooth and non-convex problems are frequently encountered in
the field of statistical learning. For instance this type of problem arises in the study
of neural networks when the activation function is non-smooth, which is the case of
the commonly used ReLU function.

We say that a sequence of random variables pxnqnPN on Rd is a SGD sequence
with step size γ ą 0 if, with probability one,

xn`1 “ xn ´ γ∇fpxn, ξn`1q (4.1)

for every n such that the function fp¨, ξn`1q is differentiable at point xn, where
∇fpxn, ξn`1q represents the gradient w.r.t. the variable xn. When fp¨, ξn`1q is
non-differentiable at xn, the update equation xn Ñ xn`1 is left undefined. The
practioner is free to choose the value of xn`1 according to a predetermined selection
policy. Typically, a reasonable choice is to select xn`1 in the set xn´γBfpxn, ξn`1q,
where Bfpx, sq represents the Clarke subdifferential of the function fp¨, sq at the
point x. When such a policy is used, the resulting sequence will be referred to as
a Clarke-SGD sequence. A second option used by practioners is to compute the
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derivative using the automatic differentiation provided in popular API’s such as
Tensorflow, PyTorch, etc. i.e., for all n,

xn`1 “ xn ´ γafp¨,ξn`1qpxnq (4.2)

where ah stands for the output of the automatic differentiation applied to a function
h. We refer to such a sequence as an autograd sequence. This approach is useful
when fp¨, sq is a composition of matrix multiplications and non-linear activation
functions, of the form

fpx, sq “ `pσLpWLσL´1pWL´1 ¨ ¨ ¨σ1pW1Xsqqq, Ysq , (4.3)

where x “ pW1, ¨ ¨ ¨ ,WLq are the weights of the network represented by a finite se-
quence of L matrices, σ1, ¨ ¨ ¨ , σL are vector-valued functions, Xs is a feature vector,
Ys is a label and `p¨, ¨q is some loss function. In such a case, the automatic differ-
entiation is computed using the chain rule of function differentiation, by means of
the celebrated backpropagation algorithm. When the mappings σ1, ¨ ¨ ¨ , σL, `p¨, Ysq

are differentiable, the chain rule indeed applies and the output coincides with the
gradient. However, the chain rule fails in case of non-differentiable functions. The
properties of the map ah are studied in the recent work [Bolte & Pauwels 2019].
In general, ahpxq may not be an element of the Clarke-subdifferential Bhpxq. It
can even happen that ahpxq ‰ ∇hpxq at some points x where h is differentiable.
However, the set of such peculiar points is proved to be Lebesgue negligible. As a
consequence, if the initial point x0 is chosen random according to some density w.r.t.
the Lebesgue measure, an autograd sequence can be shown to be a SGD sequence
in the sense of Equation (4.1) under some conditions.

The aim of this chapter is to analyze the asymptotic behavior of SGD sequences
in the case where the step γ is constant.

About the literature. In two recent papers [Majewski et al. 2018] and [Davis et al. 2020],
a closely related algorithm is analyzed under the assumption that the step size is
vanishing, i.e., γ is replaced with a sequence pγnq that tends to zero as n Ñ 8.
From a theoretical point of view, the vanishing step size is convenient because, un-
der various assumptions, it allows to demonstrate the almost sure convergence of
the iterates xn to the set

Z ∆
“ tx P Rd : 0 P BF pxqu (4.4)

of critical points of F . However, in practical applications such as neural nets, a
vanishing step size is rarely used because of slow convergence issues. In most com-
putational frameworks, a possibly small but nevertheless constant step size is used
by default. The price to pay is that the iterates are no longer expected to converge
almost surely to the set Z but to fluctuate in the vicinity of Z as n is large. In this
chapter, we aim at establishing a result of the type

@ε ą 0, lim sup
nÑ8

Ppdpxn,Zq ą εq ÝÝÑ
γÓ0

0, (4.5)
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where d is the Euclidean distance between xn and the set Z. Although this result is
weaker than in the vanishing step case, constant step stochastic algorithms can reach
a neighborhood of Z faster than their decreasing step analogues, which is an impor-
tant advantage in the applications where the accuracy of the estimates is not essen-
tial. Moreover, in practice they are able to cope with non stationary or slowly chang-
ing environments which are frequently encountered in signal processing, and possibly
track a changing set of solutions [Benveniste et al. 1990, Kushner & Yin 2003].

The second difference between the present chapter and the papers [Majewski et al. 2018]
and [Davis et al. 2020] lies in the algorithm under study. In [Majewski et al. 2018,
Davis et al. 2020], the iterates are supposed to satisfy the inclusion

xn`1 ´ xn
γn`1

P ´BF pxnq ` ηn`1 (4.6)

for all n, where pηnq is a martingale increment noise w.r.t. the filtration pσpx0, ξ1, . . . , ξnqqně1.
Under the assumption that γn Ñ 0 as nÑ8, the authors of [Majewski et al. 2018,
Davis et al. 2020] prove that almost surely, the continuous time linearly interpolated
process constructed from a sequence pxnq satisfying (4.6) is a so-called asymptotic
pseudotrajectory [Benaïm et al. 2005] of the Differential Inclusion (DI)

9xptq P ´BF pxptqq , (4.7)

that will be defined on R` “ r0,8q. Heuristically, this means that a sequence pxnq
satisfying (4.6) shadows a solution to (4.7) as n tends to infinity. This result is
one of the key ingredients to establish the almost sure convergence of xn to the set
Z. Unfortunately, a SGD sequence does not satisfy the condition (4.6) in general
(setting apart the fact that γ is constant). To be more precise, consider a Clarke-
SGD sequence as defined above. For all n, xn`1 “ xn ´ γBfpxn, ξn`1q, which in
turn implies

xn`1 ´ xn
γ

P ´EBfpxn, . q ` ηn`1 ,

where pηnq is a martingale increment noise sequence, and where EBfpx, . q repre-
sents the set-valued expectation

ş

Bfpx, sqdµpsq. The above inclusion is analogous
to (4.6) in the case where BF pxq “ EBfpx, ¨q for all x i.e., if one can interchange the
expectation E and the Clarke subdifferential operator B. Although the interchange
holds if e.g., the functions fp¨, sq are convex (in which case Bfpx, sq would coincide
with the classical convex subdifferential), one has in general BEfpx, ¨q Ă EBfpx, ¨q
and the inclusion can be strict [Clarke et al. 1998, Proposition 2.2.2]. As a conse-
quence, a Clarke-SGD sequence does not admit the oracle form (4.6) in general. For
such a sequence, the corresponding DI reads

9xptq P ´EBfpxptq, . q , (4.8)

but unfortunately, the flow of this DI may contain spurious equilibria (an example
is provided in this chapter). In [Majewski et al. 2018] the authors restrict their
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analysis to regular functions [Clarke et al. 1998, §2.4], for which the interchange of
the expectation and the subdifferentiation applies. However, this assumption can
be restrictive, since a function as simple as ´|x| is not regular at the critical point
zero.

A second example where the oracle form Equation (4.6) does not hold is given
by autograd sequences. Such an example is studied in [Bolte & Pauwels 2019], as-
suming that the step size is vanishing and that ξ takes its values over a finite set. It
is proved that, the autograd sequence is an almost sure asymptotic pseudotrajectory
of the DI 9xptq P ´Dpxptqq, for some set-valued map D which is shown to be a con-
servative field with F as a potential. Properties of conservative fields are studied in
[Bolte & Pauwels 2019]. In particular, it is proved that D “ t∇fu Lebesgue almost
everywhere. Despite this property, the DI 9xptq P ´Dpxptqq substantially differs from
(4.7). In particular, the set of equilibria may be strictly larger than the set Z of
critical points of F .

Contributions

• We analyze the SGD algorithm (4.1) in the non-smooth, non-convex setting,
under realistic assumptions: the step size is assumed to be constant along the
iterations, and we neither assume the regularity of the functions involved, nor
the knowledge of an oracle of BF as in (4.6). Our assumptions encompass
Clarke SGD sequences and autograd sequences as special cases.

• Under mild conditions, we prove that when the initialization x0 is randomly
chosen with a density, all SGD sequences coincide almost surely, irrespective
to the particular selection policy used at the points of non-differentiability.
In this case, xn almost never hits a non-differentiable point of fp¨, ξn`1q and
Equation (4.1) actually holds for all n. Moreover, we prove that

xn`1 ´ xn
γ

“ ´∇F pxnq ` ηn`1 ,

where pηnq is a martingale difference sequence, and ∇F pxnq is the true gra-
dient of F at xn. This argument allows to bypass the oracle assumption of
[Majewski et al. 2018, Davis et al. 2020].

• We establish that the continuous process obtained by piecewise affine interpo-
lation of pxnq is a weak asymptotic pseudotrajectory of the DI (4.7). In other
words, the interpolated process converges in probability to the set of solu-
tions to the DI, as γ Ñ 0, for the metric of uniform convergence on compact
intervals.

• We establish the long run convergence of the iterates xn to the set Z of Clarke
critical points of F , in the sense of Equation (4.5). This result holds under
two main assumptions. First, it assumed that F admits a chain rule, which
is satisfied for instance if F is a so-called tame function. Second, we assume
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a standard drift condition on the Markov chain (4.1). Finally, we provide
verifiable conditions of the functions fp¨, sq under which the drift condition
holds.

• In many practical situations, the drift conditions alluded to above are not
satisfied. To circumvent this issue, we analyze a projected version of the SGD
algorithm, which is similar in its principle to the well-known projected gradient
algorithm in the classical stochastic approximation theory.

Chapter organization

Section 4.2 recalls some known facts about Clarke subdifferentials, conservative fields
and differential inclusions. In Section 4.3, we study the elementary properties of
almost-everywhere gradient functions, defined as the functions ϕpx, sq which coincide
with ∇fpx, sq almost everywhere. Practical examples are provided. In Section 4.4,
we study the elementary properties of SGD sequences. Section 4.5 establishes the
convergence in probability of the interpolated process to the set of solutions to the
DI. In Section 4.6, we establish the long run convergence of the iterates to the set of
Clarke critical points. Section 4.7 is devoted to the projected subgradient algorithm.
The proofs are found in Section 4.8.

4.2 Preliminaries

4.2.1 Notations

If ν, ν1 are two measures on some measurable space pΩ,Fq, ν ! ν 1 means that ν
is absolutely continuous w.r.t. ν. The ν-completion of F is defined as the sigma-
algebra consisting of the sets S Ă Ω such that there exist A,B P F with A Ă S Ă B

and νpBzAq “ 0. For these sets, νpSq “ νpAq.
If E is a metric space, we denote by BpEq the Borel sigma field on E. Let d be

an integer. We denote by MpRdq the set of probability measures on BpRdq and by
M1pRdq

∆
“ tν P MpRdq :

ş

}x}νpdxq ă 8u. We denote as λd the Lebesgue measure
on Rd. When the dimension is clear from the context, we denote as λ this Lebesgue
measure. For a subset K Ă Rd, we denote by

MabspKq
∆
“ tν PMpRdq : ν ! λ and supppνq Ă Ku ,

where supppνq represents the support of ν.
If P is a Markov kernel on Rd and g : Rd Ñ R is a measurable function, Pg

represents the function on Rd Ñ R given by Pgpxq “
ş

P px,dyqgpyq, whenever
the integral is well-defined. For every measure π P MpRdq, we denote by πP the
measure given by πP “

ş

πpdxqP px, ¨q. We use the notation πpgq “
ş

g dπ whenever
the integral is well-defined.

For every x P Rd, r ą 0, Bpx, rq is the open Euclidean ball with center x and
radius r. The notation 1A stands for the indicator function of a set A, equal to one
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on that set and to zero otherwise. The notation Ac represents the complementary
set of a set A and clpAq its closure.

4.2.2 Clarke Subdifferential and Conservative Fields

In this section we briefly review some recent results of [Bolte & Pauwels 2019]. A
set-valued map D : Rd Ñ Rd is called a conservative field, if for each x P Rd, Dpxq is
a nonempty and compact subset of Rd, D has a closed graph, and for each absolutely
continuous a : r0, 1s Ñ Rd, with ap0q “ ap1q, it holds that:

ż 1

0
min

vPDpaptqq
x 9aptq, vydt “

ż 1

0
max

vPDpaptqq
x 9aptq, vydt “ 0 .

We say that a function F : Rd Ñ R is a potential for the conservative field D if for
every x P Rd and every absolutely continuous a : r0, 1s Ñ Rd, with ap0q “ 0 and
ap1q “ x,

F pxq “ F p0q `

ż 1

0
min

vPDpaptqq
x 9aptq, vydt . (4.9)

In this case, such a function F is locally Lipschitz continuous, and for every abso-
lutely continuous curve a : r0, 1s Ñ Rd, the function t ÞÑ F paptqq satisfies for almost
every t P r0, 1s,

d

dt
F paptqq “ xv, 9aptqy p@v P Dpaptqqq ,

that is to say, F admits a “chain rule” [Bolte & Pauwels 2019, Lemma 2]. Moreover,
by [Bolte & Pauwels 2019, Theorem 1], it holds that D “ t∇F u Lebesgue almost
everywhere.

We say that a function F is path differentiable if there exists a conservative field
D such that F is a potential for D. If F is path differentiable, then the Clarke
subdifferential BF is a conservative field for the potential F [Bolte & Pauwels 2019,
Corollary 2]. Another useful example of a conservative field for composite functions
is the automatic differentiation field [Bolte & Pauwels 2019, Section 5]. A broad
class of functions used in optimization are path differentiable, e.g. any convex,
concave, regular or tame.

4.3 Almost-Everywhere Gradient Functions

4.3.1 Definition

Let pΞ,T , µq be a probability space, where the σ-field T is µ-complete. Let d ą 0

be an integer. Consider a function f : Rd ˆ Ξ Ñ R. We denote by ∆f
∆
“ tpx, sq P

Rd ˆ Ξ : x P Dfp¨,squ the set of points px, sq s.t. fp¨, sq is differentiable at x. We
denote by ∇fpx, sq the gradient of fp¨, sq at x, whenever it exists.

The following technical lemma, which proof is provided in Section 4.8.1, is es-
sential.
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Lemma 4.3.1. Assume that f is BpRdqbT -measurable and that fp¨, sq is contin-
uous for every s P Ξ. Then ∆f P BpRdq b T , and the function ϕ0 : Rd ˆ Ξ Ñ Rd
defined as

ϕ0px, sq “

"

∇fpx, sq if px, sq P ∆f

0 otherwise,
(4.10)

is BpRdq b T -measurable. Moreover, if fp¨, sq is locally Lipschitz continuous for
every s P Ξ, then pλb µqp∆c

f q “ 0.

Thanks to this lemma, the following definition makes sense.

Definition 4.3.1. Assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ.
A function ϕ : Rd ˆ Ξ Ñ Rd is called an almost everywhere (a.e.)-gradient of f if
ϕ “ ∇f λb µ-almost everywhere.

By Lemma 4.3.1, we observe that a.e.-gradients exist, since pλ b µqp∆c
f q “ 0.

Note that in Definition 4.3.1, we do not assume that ϕ is BpRdq b T {BpRdq-
measurable. The reason is that this property is not always easy to check on practical
examples. However, if one denotes by BpRdq bT the λbµ completion of the σ-field
BpRdq bT , an immediate consequence of Lemma 4.3.1 is that any a.e.-gradient of
f is a BpRdq bT {BpRdq-measurable function.

4.3.2 Examples

Lazy gradient function. The function ϕ0 given by Equation (4.10) is an a.e.
gradient function.

Clarke gradient function. We shall refer to as a Clarke gradient function as any
function ϕpx, sq such that

#

ϕpx, sq “ ∇fpx, sq if px, sq P ∆f ,

ϕpx, sq P Bfpx, sq otherwise.
(4.11)

Note that the inclusion ϕpx, sq P Bfpx, sq obviously holds for all px, sq P Rd ˆ Ξ,
because ∇fpx, sq is an element of Bfpx, sq when the former exists. However, con-
versely, a function ψpx, sq P Bfpx, sq does not necessarily satisfy ψpx, sq “ ∇fpx, sq
if px, sq P ∆f (see the footnote1). By construction, a Clarke gradient function is an
a.e. gradient function.

Selections of conservative fields.

Proposition 4.3.2. Assume that for every s P Ξ, fp¨, sq is locally Lipschitz, path
differentiable, and is a potential of some conservative field Ds : Rd Ñ Rd. Consider
a function ϕ : Rd ˆ Ξ Ñ Rd which is BpRdq b T {BpRdq measurable and satisfies
ϕpx, sq P Dspxq for all px, sq P Rd ˆ Ξ. Then, ϕ is an a.e. gradient function for f .

1If a locally Lipschitz function g is differentiable at a point x, we have t∇gpxqu Ă Bgpxq but the
inclusion could be strict (the two sets are equal if g is regular at x): for example, gpxq “ x2 sinp1{xq

is s.t. ∇gp0q “ 0 and Bgp0q “ r´1, 1s. There even exist functions for which the set of x s.t.
t∇gpxqu Ĺ Bgpxq is a set of full measure (see [Lebourg 1979, Proposition 1.9]).



92 Chapter 4. Constant step SGD

Proof. Define A ∆
“ tpx, sq s.t. ϕpx, sq ‰ ∇fpx, squ. Applying Fubini’s theorem we

have:
ż

1Apzqλb µpdzq “

ż ż

1Appx, sqqλpdxqµpdsq “ 0 ,

where the last equality comes from the fact that for every s, Ds “ t∇fp¨, squ λ-a.e.
[Bolte & Pauwels 2019, Theorem 1].

We provide below an application of Proposition 4.3.2.

Autograd function. Consider Equation (4.3), which represents a loss of a neu-
ral network. Although f is just a composition of some simple functions, a direct
calculation of the gradient (if it exists) may be tedious. Automatic differentiation
deals with such functions by recursively applying the chain rule to the components
of f . More formally consider a function f : Rd Ñ R that can be written as a
closed formula of simple functions, mathematically speaking this means that we
can represent f by a directed graph. This graph (with q ą d vertices) is defined
through a set-valued function parentspiq Ă t1, . . . , i ´ 1u, a directed edge in this
setting will be j Ñ i with j P parentspiq. Associate to each vertex a simple func-
tion gi : R|parentspiq| Ñ R, given an input x “ px1, . . . , xdq P Rd we recursively
define xi “ gippxjqjPparentspiqq for i ą d and finally fpxq “ xq. For instance,
if f is a cross entropy loss of a neural network, with activation functions being
ReLu or sigmoid functions, then gi are some compositions of simple functions log,
exp, 1

1`x2 , norms and piecewise polynomial functions, all being path differentiable
[Bolte & Pauwels 2019, section 6], [Davis et al. 2020, Section 5.2]. Automatic dif-
ferentiation libraries calculate the gradient of f by successively applying the chain
rule (in the sense pg1 ˝ g2q

1 “ pg11 ˝ g2qg
1
2) to the simple functions gi. While the

chain rule is no longer valid in a nonsmooth setting (see e.g. [Kakade & Lee 2018]),
it is shown in [Bolte & Pauwels 2019, Section 5] that when the simple functions are
path-differentiable, the output of automatic differentiation (e.g. autograd in Py-
Torch ([Paszke et al. 2017])) is a selection of some conservative field D for f . We
refer to [Bolte & Pauwels 2019] for a more detailed account. We denote by af pxq
the output of automatic differentiation of a function f at some point x.

Assume that Ξ “ N and for each s P Ξ, fp¨, sq is defined through a recursive
graph of path differentiable functions (in the machine learning paradigm fp¨, sq will
represent the loss related to one data point, while F p¨q is the average loss). By
Proposition 4.3.2, the map px, sq ÞÑ afp¨,sqpxq is an a.e. gradient function for f .

4.4 SGD Sequences

4.4.1 Definition

Given a probability measure ν on BpRdq, define the probability space pΩ,F ,Pνq as
Ω “ RdˆΞN, F “ BpRdq bT bN, and Pν “ ν b µbN. We denote by px0, pξnqnPN˚q

the canonical process on Ω Ñ Rd i.e., writing an elementary event in the space Ω

as ω “ pωnqnPN, we set x0pωq “ ω0 and ξnpωq “ ωn for each n ě 1. Under Pν , x0
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is a Rd-valued random variable with the probability distribution ν, and the process
pξnqnPN˚ is an independent and identically distributed (i.i.d.) process such that the
distribution of ξ1 is µ, and x0 and pξnq are independent. We denote by F the
λb µbN-completion of F .

Let f : Rd ˆ Ξ Ñ R be a BpRdq bT {BpRq-measurable function.

Definition 4.4.1. Assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ.
A sequence pxnqnPN˚ of functions on Ω Ñ Rd is called an SGD sequence for f with
the step γ ą 0 if there exists an a.e.-gradient ϕ of f such that

xn`1 “ xn ´ γϕpxn, ξn`1q p@n ě 0q .

4.4.2 All SGD Sequences Are Almost Surely Equal

Consider the SGD sequence

xn`1 “ xn ´ γϕ0pxn, ξn`1q, (4.12)

generated by the lazy a.e. gradient ϕ0. Denote by Pγ : Rd ˆBpRdq Ñ r0, 1s the
kernel of the homogeneous Markov process defined by this equation, which exists
thanks to the BpRdq b T -measurability of ϕ0. This kernel is defined by the fact
that its action on a measurable function g : Rd Ñ R`, denoted as Pγgp¨q, is

Pγgpxq “

ż

gpx´ γϕ0px, sqqµpdsq. (4.13)

Define Γ as the set of all steps γ ą 0 such that Pγ maps MabspRdq into itself:

Γ
∆
“ tγ P p0,`8q : @ρ PMabspRdq, ρPγ ! λu .

Proposition 4.4.1. Consider γ P Γ and ν P MabspRdq. Then, each SGD sequence
pxnq with the step γ is F {BpRdqbN-measurable. Moreover, for any two SGD se-
quences pxnq and px1nq with the step γ, it holds that Pν rpxnq ‰ px1nqs “ 0. Finally,
the probability distribution of xn under Pν is Lebesgue-absolutely continuous for each
n P N.

Note that Pν ! λ b µbN since ν ! λ. Thus, the probability Pν rpxnq ‰ px1nqs is
well-defined as an integral w.r.t. λb µbN.

Proof. Let pxnq be the lazy SGD sequence given by (4.12). Given an a.e. gradient
ϕ, define the SGD sequence pznq as z0 “ x0, zn`1 “ zn ´ γϕpzn, ξn`1q for n ě 0.
The sequence pxnq is F {BpRdqbN-measurable thanks to Lemma 4.3.1. Moreover,
applying recursively the property that ρPγ ! λ when ρ ! λ, we obtain that the
distribution of xn is absolutely continuous for each n P N.

To establish the proposition, it suffices to show that zn is F {BpRdq-measurable
for each n P N, and that Pνrzn ‰ xns “ 0, which results in particular in the
absolute continuity of the distribution of zn. We shall prove these two properties by
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induction on n. They are trivial for n “ 0. Assume they are true for n. Recall that
zn`1 “ zn ´ γ∇fpzn, ξn`1q if pzn, ξn`1q P A, where A P BpRdq bT is such that
pλ b µqpAcq “ 0, and xn`1 “ xn ´ γ∇fpxn, ξn`1q1pxn,ξn`1qP∆f

. The set B “ tω P

Ω : zn`1 ‰ xn`1u satisfies B Ă B1 YB2, where

B1 “ tω P Ω : zn ‰ xnu and B2 “ tω P Ω : pzn, ξn`1q R Au.

By induction, B1 P F and PνpB1q “ 0. By the aforementioned properties of A,
the F -measurability of zn, and the absolute continuity of its distribution, we also
obtain that B2 P F and PνpB2q “ 0. Thus, B P F and PνpBq “ 0, and since xn`1

is F -measurable, zn`1 is F -measurable.

Proposition 4.4.1 means that the SGD sequence does not depend on the specific
a.e. gradient used by the practioner, provided that the law of x0 has a density and
γ P Γ. Let us make this last assumption clearer. Consider for instance d “ 1 and
suppose that fpx, sq “ 0.5x2 for all s. If γ “ 1, the SGD sequence xn`1 “ xn´ γxn
satisfies x1 “ 0 for any initial point and thus, does not admit a density, whereas
for any other value of γ, xn has a density for all n, provided that x0 has a density.
Otherwise stated, Γ “ R`zt1u in this example.

It is desirable to ensure that Γ contains almost all the points of R`. The next
proposition shows that this will be the case under mild conditions. The proof is
given in 4.8.2.

Proposition 4.4.2. Assume that for µ–almost every s P Ξ, the function fp¨, sq

satisfies the property that at λ–almost every point of Rd, there is a neighborhood of
this point on which it is C2. Then, Γc is Lebesgue negligible.

This assumption holds true as soon as for µ-almost all s, fp¨, sq is tame, since
in this case Rd can be partitioned in manifolds on each of which fp¨, sq is C2

([Bolte et al. 2007]), and therefore fp¨, sq is C2 (in the classical sense) on the union
of manifolds of full dimension, and therefore almost everywhere.

4.4.3 SGD as a Robbins-Monro Algorithm

We make the following assumption on the function f : Rd ˆ Ξ Ñ R.

Assumption 4.4.1. i) There exists a measurable function κ : Rd ˆ Ξ Ñ R`
s.t. for each x P Rd,

ş

κpx, sqµpdsq ă 8 and there exists ε ą 0 for which

@y, z P Bpx, εq, @s P Ξ, |fpy, sq ´ fpz, sq| ď κpx, sq}y ´ z}.

ii) There exists x P Rd such that fpx, ¨q is µ-integrable.

By this assumption, fpx, ¨q is µ-integrable for each x P Rd, and the function

F : Rd Ñ R, x ÞÑ

ż

fpx, sqµpdsq (4.14)
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is locally Lipschitz on Rd. We denote by Z the set of (Clarke) critical points of F ,
as defined in Equation (4.4).

Let pFnqně0 be the filtration Fn “ σpx0, ξ1, . . . , ξnq. We denote by En “
Er¨|Fns the conditional expectation w.r.t. Fn, where Fn, stands for the λ b µN-
completion of Fn.

Theorem 4.4.3. Let Assumption 4.4.1 holds true. Consider γ P Γ and ν P

MabspRdq XM1pRdq. Let pxnqnPN˚ be a SGD sequence for f with the step γ. Then,
for every n P N, it holds Pν-a.e. that

i) F , fp¨, ξn`1q and fp¨, sq (for µ-almost every s) are differentiable at xn.

ii) xn`1 “ xn ´ γ∇fpxn, ξn`1q.

iii) Enrxn`1s “ xn ´ γ∇F pxnq.

Theorem 4.4.3 is important because it shows that Pν-a.e., the SGD sequence
pxnq verifies

xn`1 “ xn ´ γ∇F pxnq ` γηn`1

for some random sequence pηnq which is a martingale difference sequence adapted
to pFnq.

4.5 Dynamical Behavior

4.5.1 Assumptions and Result

In this section we prove that the SGD sequence pxnqnPN˚ (which is by Theorem 4.4.3,
under the stated assumptions, unique) closely follows a trajectory of a solution to
the DI (4.7) as the step size γ tends to zero. To state the main result of this section,
we need to strengthen Assumption 4.4.1.

Assumption 4.5.1. The function κ of Assumption 4.4.1 satisfies:

i) There exists a constant K ě 0 s.t.
ş

κpx, sqµpdsq ď Kp1` }x}q for all x.

ii) For each compact set K Ă Rd, supxPK
ş

κpx, sq2µpdsq ă 8.

The first point guarantees the existence of global solutions to (4.7) starting from
any initial point (see Section 2.2.2).

Assumption 4.5.2. The closure of Γ contains 0.

By Proposition 4.4.2, Assumption 4.5.2 is mild. It holds for instance if every
fp¨, sq is a tame function.

We recall that S´BF pAq is the set of solutions to (4.7) that start from any point
in the set A Ă Rd.
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Theorem 4.5.1. Let Assumptions 4.4.1–4.5.2 hold true. Let tpxγnqnPN˚ : γ P p0, γ0su

be a collection of SGD sequences of steps γ P p0, γ0s. Denote by xγ the piecewise
affine interpolated process

xγptq “ xγn ` pt{γ ´ nqpx
γ
n`1 ´ x

γ
nq p@t P rnγ, pn` 1qγqq .

Then, for every compact set K Ă Rd,

@ε ą 0, lim
γÑ0
γPΓ

˜

sup
νPMabspKq

Pν pdCpxγ ,S´BF pKqq ą εq

¸

“ 0 ,

where the distance dC is defined in (2.2). Moreover, the family of distributions
tPνpxγq´1 : ν PMabspKq, 0 ă γ ă γ0, γ P Γu is tight.

The proof is given in Section 4.8.4.
Theorem 4.5.1 implies that the interpolated process xγ converges in probability

as γ Ñ 0 to the set of solutions to (4.7). Moreover, the convergence is uniform
w.r.t. to the choice of the initial distribution ν in the set of absolutely continuous
measures supported by a given compact set.

4.5.2 Importance of the Randomization of x0

In this paragraph, we discuss the case where x0 is no longer random, but set to
an arbitrary point in Rd. In this case, there is no longer any guarantee that the
iterates xn only hit the points where a gradient exist. We focus on the case where
pxnq is a Clarke-SGD sequence of the form (4.11), where the function ϕ is assumed
BpRdqbT {BpRdq measurable for simplicity. By Assumption 4.4.1, it is not difficult
to see that ϕpx, ¨q is µ-integrable for all x P Rd and, denoting by Epϕpx, ¨qq the
corresponding integral w.r.t. µ, we can rewrite the iterates under the form:

xn`1 “ xn ´ γEϕpxn, ¨q ` γηn`1,

where ηn`1 “ Erϕpxn, ¨qs´ϕpxn, ξn`1q is a martingale difference sequence for the fil-
tration pFnq. Obviously, Eϕpx, ¨q P EBfpx, ¨q. As said in the introduction, we need
Eϕpx, ¨q to belong to BF pxq in order to make sure that the algorithm trajectory
shadows the DI 9xptq P ´BF pxptqq. Unfortunately, the inclusion BF pxq Ă EBfpx, ¨q
can be strict, which can result in the fact that the DI 9xptq P ´EBfpxptq, ¨q gener-
ates spurious trajectories that converge to spurious zeroes. The following example,
which can be easily adapted to an arbitrary dimension, shows a case where this
phenomenon happens.

Example 4.5.1. Take a finite probability space Ξ “ t1, 2u and µpt1uq “ µpt2uq “

1{2. Let fpx, 1q “ 2x1xď0 and fpx, 2q “ 2x1xě0. We have F pxq “ x, and therefore
BF p0q “ t1u, whereas Bfp0, 1q “ Bfp0, 2q “ r0, 2s and therefore

ş

Bfp0, sqµpdsq “

r0, 1s. We see that 0 P EBfp0, ¨q while 0 R BF p0q. Furthermore, the trajectory defined
on R` as

xptq “

"

1´ t for t P r0, 1s
0 for t ą 1

, xp0q “ 1,



4.6. Long Run Convergence 97

is a solution to the DI 9xptq P ´EBfpxptq, ¨q, but not to the DI 9xptq P ´BF pxptqq.

Example 4.5.2. Consider the same setting as in the previous example. Consider a
stochastic gradient algorithm of the form (4.1), initialized at x0 “ 0 with ϕ such that
ϕp0, 1q “ ϕp0, 2q “ 0. Then, the iterates xγn are identically zero. This shows that the
stochastic gradient descent may converge to a non critical point of F . Theorem 4.5.1
may fail unless a random initial point is chosen.

4.6 Long Run Convergence

4.6.1 Assumptions and Result

As discussed in the introduction, the SGD sequence pxnq is not expected to con-
verge in probability to Z when the step is constant. Instead, we shall establish the
convergence (4.5). The “long run” convergence referred to here is understood in this
sense.

In all this section, we shall focus on the lazy SGD sequences described by Equa-
tion (4.12). This incurs no loss of generality, since any two SGD sequences are equal
Pν-a.e. by Proposition 4.4.1 as long as ν ! λ. Our starting point is to see the process
pxnq and as a Markov process which kernel Pγ is defined by Equation (4.13). Our
first task is to establish the ergodicity of this Markov process under the convenient
assumptions. Namely, we show that Pγ has a unique invariant probability measure
πγ , i.e., πγPγ “ πγ , and that }Pnγ px, ¨q ´ πγ}TV Ñ 0 as n Ñ 8 for each x P Rd,
where } ¨ }TV is the total variation norm. Further, we need to show that the family
of invariant distributions tπγuγPp0,γ0s for a certain γ0 ą 0 is tight. The long run
behavior referred to above is then intimately connected with the properties of the
accumulation points of this family as γ Ñ 0. To study these properties, we get back
to the DI 9x P ´BF pxq (we recall that a concise account of the notions relative to
this dynamical system and needed in this chapter is provided in Section 2.2.2). The
crucial point here is to show, with the help of Theorem 4.5.1, that the accumula-
tion points of tπγu as γ Ñ 0 are invariant measures for the set-valued flow induced
by the DI. In its original form, this idea dates back to the work of Has’minskĭı
[Has’minskĭı 1963]. We observe here that while the notion of invariant measure for
a single-valued semiflow induced by, say, an ordinary differential equation, is classi-
cal, it is probably less known in the case of a set-valued differential inclusion. We
borrow it from the work of Roth and Sandholm [Roth & Sandholm 2013].

Having shown that the accumulation points of tπγu are invariant for the DI 9x P

´BF pxq, the final step of the proof is to make use of Poincaré’s recurrence theorem,
that asserts that the invariant measures of a semiflow are supported by the so-called
Birkhoff center of this semiflow (again, a set-valued version of Poincaré’s recurrence
theorem is provided in [Aubin et al. 1991, Faure & Roth 2013]). To establish the
convergence (4.5), it remains to show that the Birkhoff center of the DI 9x P ´BF pxq

coincides with zer BF . The natural assumption that ensures the identity of these
two sets will be that F admits a chain rule [Clarke et al. 1998, Bolte et al. 2007,
Davis et al. 2020].
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Our assumption regarding the behavior of the Markov kernel Pγ reads as follows.

Assumption 4.6.1. There exist measurable functions V : Rd Ñ r0,`8q, p : Rd Ñ
r0,`8q, α : p0,`8q Ñ p0,`8q and a constant C ě 0 s.t. the following holds for
every γ P ΓX p0, γ0s.

i) There exists R ą 0 and a positive Borel measure ρ on Rd (R, ρ possibly de-
pending on γ) such that

@x P clpBp0, Rqq, @A P BpRdq, Pγpx,Aq ě ρpAq.

ii) supclpBp0,Rqq V ă 8 and infBp0,Rqc p ą 0. Moreover, for every x P Rd,

PγV pxq ď V pxq ´ αpγqppxq ` Cαpγq1}x}ďR. (4.15)

iii) The function ppxq converges to infinity as }x} Ñ 8.

Assumptions of this type are frequently encountered in the field of Markov chains.
Assumption 4.6.1–(i)) states that clpBp0, Rqq is a so-called small set for the kernel
Pγ , and Assumption 4.6.1–(ii)) is a standard drift assumption. Taken together,
they ensure that the kernel Pγ is a so-called Harris-recurrent kernel, that it admits
a unique invariant probability distribution πγ , and finally, that this kernel is ergodic
in the sense that }Pγpx, ¨q´πγ}TV Ñ 0 as nÑ8 (see [Meyn & Tweedie 2009]). The
introduction of the factors αpγq and Cαpγq in Equation (4.15) guarantees moreover
the tightness of the family tπγuγPp0,γ0s.

In Section 4.6.2, we provide sufficient and verifiable conditions ensuring the
validity of Assumption 4.6.1 for Pγ .

As announced above, we also need:

Assumption 4.6.2. The function F defined by (4.14) admits a chain rule, namely,
for any absolutely continuous curve z : R` Ñ Rd, for almost all t ą 0, @v P
BF pzptqq, xv, 9zptqy “ pF ˝ zq1ptq .

Assumption 4.6.2 is satisfied as soon as F is path-differentiable, for instance when
F is either convex, regular, Whitney stratifiable or tame (see [Bolte & Pauwels 2019,
Proposition 1]and [Bolte et al. 2007, Davis et al. 2020]).

Theorem 4.6.1. Let Assumptions 4.4.1-4.5.2 and 4.6.1-4.6.2 hold true. Let tpxγnqnPN˚ :

γ P p0, γ0su be a collection of SGD sequences of step-size γ. Then, the set Z “

tx : 0 P BF pxqu is nonempty and for all ν PMabspRdq and all ε ą 0,

lim sup
nÑ8

Pν pdpxγn,Zq ą εq ÝÝÝÑ
γÑ0
γPΓ

0. (4.16)
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4.6.2 The Validity of Assumption 4.6.1

In this paragraph, we provide sufficient conditions under which Assumption 4.6.1
hold true. A simple way to ensure the truth of Assumption 4.6.1-(i)) is to add a
small random perturbation to the function ϕ0px, sq. Formally, we modify algorithms
described by Equation (4.12) and (4.18), and write

xn`1 “ xn ´ γϕ0pxn, ξn`1q ` γεn`1

where pεnq is a sequence of centered i.i.d. random variables of law µd, independent
from tx0, pξnqu, and such that the distribution of ε1 „ µd has a continuous and
positive density on Rd. The Gaussian case ε1 „ N p0, aIdq where a ą 0 is some
small variance is of course a typical example of such a perturbation.

Consider now a fixed γ and denote by rP the Markov kernel induced by the
modified equation.

Proposition 4.6.2. Let Assumption 4.5.1 hold true. Then, for each R ą 0, there
exists ε ą 0 such that

@x P clpBp0, Rqq, @A P BpRdq, rP px,Aq ě ε λpAX clpBp0, 1qqq,

Thus, Assumption 4.6.1-(i)) is satisfied for rP .

We now turn to the assumptions 4.6.1-(ii)) and 4.6.1-(iii)).

Proposition 4.6.3. Assume that there exists R ě 0, C ą 0, and a measurable
function β : Ξ Ñ R` such that the following conditions hold:

i) For every s P Ξ, the function fp¨, sq is differentiable outside the ball clpBp0, Rqq.
Moreover, for each x, x1 R clpBp0, Rqq, }∇fpx, sq ´∇fpx1, sq} ď βpsq}x ´ x1}

and
ş

β2dµ ă 8.

ii) For all x R clpBp0, Rqq,
ş

}∇fpx, sq}2µpdsq ď Cp1` }∇F pxq}2q.

iii) lim}x}Ñ8 }∇F pxq} “ `8.

iv) Function F is lower bounded i.e., inf F ą ´8.

Then, it holds that

PγF pxq ď F pxq ´ γp1´ γKq1}x}ą2R}∇F pxq}2 ` γ2K1}x}ą2R ` γK1}x}ď2R (4.17)

for some constant K ą 0. In particular, Assumptions 4.6.1-(ii)) and 4.6.1-(iii)) hold
true.

We finally observe that this proposition can be easily adapted to the case where
the kernel Pγ is replaced with the kernel rP of Proposition 4.6.2.
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4.7 The Projected Subgradient Algorithm

In many practical settings, the conditions of Proposition 4.6.3 that ensure the truth
of Assumptions 4.6.1–(ii)) and 4.6.1–(iii)) are not satisfied. This is for instance
the case when the function f is described by Equation (4.3) with the mappings σ`
at the right hand side of this equation being all equal to the ReLU function. In
such situations, it is often pertinent to replace the SGD sequence with a projected
version of the algorithm. Given an a.e.-gradient ϕ of the function f and a non empty
compact and convex set K Ă Rd, a projected SGD sequence pxγ,Kn q is given by the
recursion

xγ,K0 “ x0, xγ,Kn`1 “ ΠKpx
γ,K
n ´ γϕpxγ,Kn , ξn`1qq , (4.18)

where ΠK stands for a Euclidean projection onto K. Our purpose is to generalize
Theorem 4.5.1 to this situation. This generalization is not immediate for several
reasons. First, the projection step is likely to introduce spurious local minima. As
far as the iterates (4.18) are concerned, the role of differential inclusion (4.7) is now
played by the differential inclusion:

9xptq P ´BF pxptqq ´NKpxptqq , (4.19)

where NKpxq stands the normal cone of K at point x. The set of equilibria of the
above differential inclusion coincides with the set

ZK :“ tx P Rd : 0 P ´BF pxq ´NKpxqu ,

which we shall refer to as the set of Karush-Kuhn-Tucker points. A second theo-
retical difficulty is related to the fact that Proposition 4.4.1 does no longer hold.
Indeed, it can happen x0 has a density, but the next iterates xγ,Kn don’t. The reason
is that xγ,Kn generally has a non zero probability to be in the (Lebesgue negligible)
border of K, that is, clpKqz intpKq, where clpKq and intpKq respectively stand for
the closure and the interior of K.

We shall focus here on the case where K “ clpBp0, rqq with r ą 0. We shall use
Πr, x

γ,r
n , Nr as shorthand notations for ΠK, x

γ,K
n , and NK respectively. In this case

Nrpxq “ t0u if ‖x‖ ă r, Nrpxq “ tλx : λ ě 0u if ‖x‖ “ r and Nrpxq “ H otherwise.
We make the following assumption.

Assumption 4.7.1. For every x P Rd, the law of ϕ0px, ξq, where ξ „ µ, is absolutely
continuous relatively to Lebesgue.

Assumption 4.7.1 is much stronger than Assumption 4.5.2. Indeed, it implies
that the distribution of xγ,rn ´ γϕpxγ,rn , ξn`1q is always Lebesgue-absolutely contin-
uous. It is useful to note though that Assumption 4.7.1 holds upon adding at each
step a small random perturbation to ϕ0 as in Section 4.6.2 above.

In order to state our first result in this framework, we need to introduce some
new notations. We let Sprq :“ tx : ‖x‖ “ r, x P Rdu be the sphere of radius r. By
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[Folland 2013, Theorem 2.49], there is a unique measure2 %1 on Sp1q such that for
any positive function f : Rd Ñ R, we have:

ż

fpxqλdpdxq “

ż 8

0

ż

Sp1q
fprθqrd´1%1pdθqλ

1pdrq . (4.20)

We define the measure %r on Sprq as %rpAq “ %1pA{rq for each Borel set A Ă Sprq.
We denote as M r the set of measures ν “ ν1 ` ν2, where ν1 P Mabs and ν2 ! %r.
For a set C Ă Rd we define M rpCq as the measures in M r that are supported on C.
Notice that MabspCq ĂM rpCq.

The next proposition, which is proven in the same way as Proposition 4.4.1,
shows that for almost every r ą 0, all projected SGD sequences are almost surely
equal.

Proposition 4.7.1. Let Assumption 4.7.1 hold true. Then, for almost every r ą 0,
@ν PM r, each projected SGD sequence pxγ,rn q is F {BpRdqbN-measurable. Moreover,
for any two projected SGD sequences pxγ,rn q and pyγ,rn q, it holds that Pν rpxγ,rn q ‰ pyγ,rn qs “

0. Finally, under Pν , for every n P N, the probability distribution of xγ,rn is in M r.

By Proposition 4.7.1 we can focus on the lazy projected SGD sequence:

xγ,rn`1 “ Πrpx
γ,r
n ´ γϕ0px

γ,r
n , ξn`1qq . (4.21)

We define its associated kernel

P rγ gpxq “

ż

gpΠrpx´ γϕ0px, sqqqµpdsq . (4.22)

The next two theorems are analogous to Theorems 4.4.3 and 4.5.1.

Theorem 4.7.2. Let Assumptions 4.4.1 and 4.7.1 hold. Then for almost every
r ą 0 , @ν PM r, for every n P N it holds Pν-a.e.

i) F , fp¨, ξn`1q and fp¨, sq (for µ-a.e. s) are differentiable at xγ,rn .

ii) xγ,rn`1 P x
γ,r
n ´ γ∇fpxγ,rn , ξn`1q ´ γNrpΠrpx

γ,r
n ´ γ∇fpxγ,rn , ξn`1qqq.

Theorem 4.7.3. Let Assumptions 4.4.1–4.5.1 and 4.7.1 hold true. Denote xγ,r the
piecewise affine interpolated process:

xγ,rptq “ xγ,rn ` pt{γ ´ nqpxγ,rn`1 ´ x
γ,r
n q p@t P rnγ, pn` 1qγqq .

Then, for almost every r ą 0, for every compact set K Ă clpBp0, rqq,

@ε ą 0, lim
γÑ0

˜

sup
νPMrpKq

Pν pdCpxγ,r, S´BF´NrpKqq ą εq

¸

“ 0 .

Moreover, for any γ0 ą 0, the family of distributions tPνpxγ,rq´1 : ν P M rpKq, 0 ă
γ ă γ0u is tight.

2As it is clear from Equation (4.20) we can see pλ1, %1q as a polar coordinates representation of
the Lebesgue measure λd.
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We compare Theorems 4.4.3 and 4.5.1. First, because of the projection step
(and with the help of Assumption 4.7.1), the law of the n-th iterate is no longer
in Mabs, but in M r. Second, the continuous counterpart of Equation (4.18) is now
the differential inclusion (4.19) Note that, if the solutions of the DI (4.7) that start
from K all lie in clpBp0, rqq, then the set of these solutions coincides with the set of
solutions of the DI (4.19) that start from K.

The analysis of the convergence of the iterates in the "long run" is greatly sim-
plified by the introduction of the projection step. Compared to Assumption 4.6.1,
we only assume the existence of a small set for P rγ , the drift condition of the form
4.6.1-(ii))–(iii)) is then automatically satisfied, thanks to the projection step (see
Section 4.8.5).

Assumption 4.7.2. There is R ą 0 and γ0 ą 0 such that for every γ P p0, γ0s there
is ργ such that Assumption 4.6.1-(i)) hold for pR, ργq (note that R is independent
of γ here).

As shown in Section 4.6.2, Assumption 4.7.2 holds upon adding to ϕ0 a small
random perturbation.

Theorem 4.7.4. Let Assumptions 4.4.1-4.5.1 and 4.6.2–4.7.2 hold. Let tpxγ,rn qnPN˚ :

γ P p0, γ0su be a collection of projected SGD sequences of step-size γ. Then, for al-
most every 0 ă r ď R, the set Zr “ tx : 0 P BF pxq ` Nrpxqu is nonempty and for
all ν PM r and all ε ą 0,

lim sup
nÑ8

Pν pdpxγ,rn ,Zrq ą εq ÝÝÝÑ
γÑ0

0. (4.23)

Theorem 4.7.4 is analogous to Theorem 4.6.1. Notice that, since Mabs Ă M r,
x0 can still be initialized under a Lebesgue-absolutely continuous measure. On the
other hand, as explained in the beginning of this section, due to the projection step,
the iterates, instead of converging to Z, are now converging to the set of Karush-
Kuhn-Tucker points related to the DI (4.19).

4.8 Proofs

4.8.1 Proof of Lemma 4.3.1

By definition, px, sq P ∆f means that there exists dx P Rd (the gradient) s.t. fpx`
h, sq “ fpx, sq ` xdx, hy ` op‖h‖q. That is to say px, sq belongs to the set:

č

εPQ

ď

δPQ

č

0ă‖h‖ďδ

"

py, sq :

ˇ

ˇ

ˇ

ˇ

fpy ` h, sq ´ fpy, sq ´ xdx, hy

‖h‖

ˇ

ˇ

ˇ

ˇ

ă ε

*

. (4.24)

In addition, using that fp¨, sq is continuous, the above set is unchanged if the inner
intersection over 0 ă ‖h‖ ď δ is replaced by an intersection over the h s.t. 0 ă
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‖h‖ ď δ and having rational coordinates i.e., h P Qd. Define:

∆1
f :“

č

ε1PQ

ď

dPQd

č

εPQ

ď

δPQ

č

0ă‖h‖ďδ
hPQd

"

px, sq :

ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xd, hy

‖h‖

ˇ

ˇ

ˇ

ˇ

ă ε` ε1
*

(4.25)
By construction, ∆1

f is a measurable set. We prove that ∆1
f “ ∆f . Consider

px, sq P ∆f and let dx be the gradient of fp¨, sq at x. By (4.24) for all ε P Q, there
is a δ P Q such that:

px, sq P
č

hďδ,hPQd

"
ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xdx, hy

h

ˇ

ˇ

ˇ

ˇ

ă ε

*

For any ε1 ą 0, choose d1 P Qd such that ‖d1 ´ dx‖ ď ε1. Using the previous
inclusion, for all ε, there exists therefore δ P Q s.t.

px, sq P
č

hďδ,hPQd

"ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xdq, hy

h

ˇ

ˇ

ˇ

ˇ

ă ε` ε1
*

which means ∆f Ă ∆1
f . To show the converse, consider px, sq P ∆1

f . Let pε1kq be a
positive sequence of rationals converging to zero. By definition, for every k, there
exists dk P Qd s.t. for all ε, there exists δkpεq, s.t. for all (rational) h ď δkpεq,

ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xdk, hy

h

ˇ

ˇ

ˇ

ˇ

ă ε` ε1k . (4.26)

Moreover, one may choose δkpεq ď δ0pεq. Inspecting first the inequality (4.26) for
k “ 0, we easily obtain that the quantity fpx`h,sq´fpx,sq

h is bounded uniformly in
h s.t. 0 ă }h} ď δ0pεq. Using this observation and again Equation (4.26), this in
turn implies that pdkq is a bounded sequence. There exists d P Rd and s.t. dk Ñ d

along some extracted subsequence. Now consider ε ą 0 and choose k such that
‖dk ´ d‖ ă ε

2 and ε1k ă
ε
2 . For all h ď δkpε{2q,

ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xd, hy

h

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

fpx` h, sq ´ fpx, sq ´ xdk, hy

h

ˇ

ˇ

ˇ

ˇ

` ‖d´ dk‖ ă ε

This means that d is the gradient of fp¨, sq at x, hence ∆1
f Ă ∆f . Hence, the first

point of the Lemma 4.3.1 is proved.
Denoting as ei the ith canonical vector of Rd, the ith-component rϕ0si in Rd of

the function ϕ0 is given as

rϕ0px, sqsi “ lim
tÑ0

fpx` tei, sq ´ fpx, sq

t
1∆f

px, sq,

and the measurability of ϕ0 follows from the measurability of f and the measurability
of 1∆f

.
Finally, assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ.

From Rademacher’s theorem [Clarke et al. 1998, Ch. 3], fp¨, sq is almost everywhere
differentiable, which reads

ş

p1 ´ 1∆f
px, sqqλpdxq “ 0. Using Fubini’s theorem,

ş

RdˆΞp1´ 1∆f
px, sqq λpdxq b µpdsq “ 0, and the last point is proved.
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4.8.2 Proof of Proposition 4.4.2

The idea of the proof is to show that for almost every γ and s we have that gs,γpxq :“

px´ γ∇fpx, sqq1∆f
px, sq is almost everywhere a local diffeomorphism.

In order to prove that we define for each px, sq P Rd ˆ Ξ the pseudo-hessian
Hpx, sq P Rdˆd as

Hpx, sqi,j “ lim sup
tÑ0

x∇fpx` tej , sq1∆f
px` tej , sq ´∇fpx, sq, eiy

t
1∆f

px, sq .

Since it is a limit of measurable functions, H is BpRdq b T measurable, and
if fp¨, sq is two times differentiable at x then Hpx, sq is just the ordinary hessian.
Now we define lpx, s, γq “ detpγHpx, sq ´ Idq if every entry in Hpx, sq is finite, and
lpx, s, γq “ 1 otherwise, it is a BpRdqbT bBpR`q measurable function (as a sum of
two measurable functions). By the inverse function theorem we have that if fp¨, sq
is C2 at x and if detpγHpx, sq ´ Idq ‰ 0, then gs,γp¨q is a local diffeomorphism at x.
Therefore lpx, s, γq ‰ 0 implies either the latter or fp¨, sq is not C2 at x (or both).
Let λd, λ1 denote Lebesgue measures respectively on Rd and R`, we have by Fubini’s
theorem:
ż

1lpx,s,γq“0λ
dpdxq b µpdsq b λ1pdγq “

ż

λd b µptpx, sq : lpx, s, γq “ 0uqλ1pdγq

“

ż ż ż

1lpx,s,γq“0λ
1pdγqλdpdxqµpdsq

“ 0 ,

where the last equality comes from the fact that for px, sq fixed lpx, s, γq “ 0 only
if 1{γ is in the spectrum of Hpx, sq which is finite. Therefore we have a Γ a set of
full measure in R` such that for γ P Γ we have λd b µptpx, sq : lpx, s, γq “ 0uq “ 0.
Once again applying Fubini’s theorem we get that for almost every s P Ξ we have
tx : gs,γp¨q is a local diffeomorphism at xuq is of λd-full measure (since for each s,
fp¨, xq is almost everywhere C2). Finally, for A Ă Rd, γ P Γ and ν P MabspRdq, we
have

νPγpAq “ ν b µptpx, sq : gs,γpxq P Auq ď λd b µptpx, sq : gs,γpxq P Auq ,

and by Fubini’s theorem,

λd b µptpx, sq : gs,γpxq P Auq “

ż

λdptx : gs,γpxq P Auqµpdsq

“

ż

λdptx : gs,γpxq P A and fp¨, sq is C2 at xuqµpdsq

“

ż

λdptx : gs,γpxq P A and gs,γp¨q is a local diffeomorphism at xuqµpdsq .

Now by separability of Rd there is a countable family of open neighborhoods pViqiPN
such that for any open set O we have O “

Ť

jPJ Vj . The set of x where gp¨, s, γq is
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a local diffeomorphism is an open set, hence

tx : gs,γpxq P A and gs,γp¨q is a local diffeomorphism at xu “
ď

iPI

ViXtx : gs,γpxq P Au .

Since an image of a null set by a diffeomorphism is a null set we have

λdptx : gs,γpxq P Au X Viq “ 0 .

Hence, νPγpAq “ 0, which proves our claim.

4.8.3 Proof of Theorem 4.4.3

Take ν ! λ and a SGD sequence pxnqnPN, let S1 Ă Rd be the set of x for which
∇fpx, sq exists for µ- almost every s, i.e.,

S1
∆
“

"

x P Rd :

ż

Ξ
p1´ 1∆f

px, sqq µpdsq “ 0

*

.

When Assumption 4.4.1 holds, Rademacher’s theorem, lemma 4.3.1 and Fubini’s
theorem imply that S1 P BpRdq and λpRdzS1q “ 0. Hence, for µ-a.e. s we have
fp¨, sq differentiable at x0, and since ξ1 „ µ, fp¨, ξ1q is differentiable at x0. Now
by Rademacher’s theorem again, the set S2 Ă Rd where F is differentiable satisfies
λpRdzS2q “ 0, therefore F is differentiable at x0. Moreover, with probability one x0

is in S1 X S2. Define Apxq ∆
“ ts P Ξ : px, sq R ∆fu. By Assumption 4.4.1, }∇fpx, ¨q}

is µ-integrable. Moreover, for all x P S1 X S2 and all v P Rd

x

ż

∇fpx, sq1∆f
px, sqµpdsq, vy “

ż

ΞzApxq
x∇fpx, sq, vyµpdsq

“

ż

ΞzApxq
lim

tPR˚Ñ0

fpx` tv, sq ´ fpx, sq

t
µpdsq

“ lim
tPR˚Ñ0

ż

Ξ

fpx` tv, sq ´ fpx, sq

t
µpdsq

“ lim
tPR˚Ñ0

F px` tvq ´ F pxq

t
“ x∇F pxq, vy

where the interchange between the limit and the integral follows from Assump-
tion 4.4.1 and the dominated convergence theorem. Hence,∇F pxq “

ş

∇fpx, sq1∆f
px, sqµpdsq

for all x P S1XS2. Now denote by νn the law of xn. Since we assumed that ν0 ! λ,
it holds that Pνpx0 P S1 X S2q “ 1. Therefore, with probability one,

x1 “ x11S1XS2px0q “ px0 ´ γ∇fpx0, ξ1qq1S1XS2px0q “ x0 ´ γ∇fpx0, ξ1q .

Thus, x1 is integrable whenever x0 is integrable, and E0px1q “ x0´γ∇F px0q. Since
by Assumption ν1 ! λ we can iterate our argument for x2 and then for all xn and
the conclusions of Theorem 4.4.3 follow.
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4.8.4 Proof of Theorem 4.5.1

We want to apply [Bianchi et al. 2019, Theorem 5.1.], and therefore verify its as-
sumptions [Bianchi et al. 2019, Assumption RM]. In order to fall in its setting we
first need to rewrite our kernel in a more appropriate way. As BF takes nonempty
compact values, it admits a measurable selection ϕpxq P BF pxq [Aliprantis & Border 2006,
Lemma 18.2 and Corollary 18.15]. Take γ P Γ, a SGD sequence pxγnq and notice that
by Theorem 4.4.3 it is Pν almost surely always in DF X S1, where S1 is the set of x
where ∇fpx, sq exists for µ-a.e. s. Therefore its Markov kernel can be equivalently
defined as:

P 1γpx, gq
∆
“ 1DFXS1pxqPγpx, gq ` 1pDFXS1qcpxqgpx´ γϕpxqq .

Now we can apply [Bianchi et al. 2019, Theorem 5.1.] with hγps, xq “ ´p1DFXS1pxq∇F pxq`
1pDFXS1qcpxqϕpxqq (note that it is independent of s) and we have hpx, sq P Hpx, sq “

Hpxq
∆
“ ´BF pxq. As we show next, [Bianchi et al. 2019, Assumption RM] now eas-

ily follows.
First, it is immediate from the general properties of the Clarke subdifferential that
the set-valued map ´BF is proper and uppersemicontinuous with convex and com-
pact values, hence the assumption (iii) of [Bianchi et al. 2019, Assumption RM].
Assumption (ii) is immediate by the uppersemicontinuity of ´BF . Moreover, we
obtain from Assumption 4.5.1 that there exists a constant K ě 0 such that

}BF pxq} ď Kp1` }x}q.

Thus, S´BF is defined on the whole Rd, and S´BF is closed in pCpR`,Rdq,dq (see
[Aubin & Cellina 1984]), hence assumption (v). Finally, assumption (vi) comes from
Assumption 4.5.1.

We remark that although, [Bianchi et al. 2019, Theorem 5.1] deals with a family
of measures pPaqaPK, the proofs remain unchanged when we consider pPνqνPMabspKq.

4.8.5 Proof of Theorems 4.6.1 and 4.7.4

Both theorems are proved in the same way. In the following Qγ will denote either
Pγ and in this case H will denote ´BF , or Qγ “ P rγ and H “ ´BF ´Nr. The proof
will be done in three steps:

• Lemma 4.8.2: Qγ has a unique invariant probability distribution πγ , with
πγ P Mabs if Qγ “ Pγ and πγ P M r otherwise, moreover Qγ is ergodic in the
sense of the Total Variation norm.

• Lemma 4.8.3: The family tπγuγPp0,γ0s is tight.

• Proposition 4.8.4: The accumulation points of tπγuγPp0,γ0s as γ Ñ 0 are in-
variant for the DI 9x P Hpxq.
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Before stating Lemma 4.8.2, we recall a general result on Markov processes. Let
Q : Rd ˆBpRdq Ñ r0, 1s be a Markov kernel on Rd. A set B Ă Rd is said to be
a small-set for the kernel Q if there exists a positive measure ρ on Rd such that
Qpx,Aq ě ρpAq for each A P BpRdq, x P B.

Proposition 4.8.1. Assume that B is a small set for Q. Furthermore, assume
that there exists a measurable function W : Rd Ñ r0,8q that is defined on Rd and
bounded on B, and a real number b ě 0, such that

QW ďW ´ 1` b1B. (4.27)

Then, Q admits a unique invariant probability distribution π, and moreover, the
ergodicity result

@x P Rd, }Qnpx, ¨q ´ π}TV ÝÝÝÑ
nÑ8

0 (4.28)

holds true.

Indeed, by [Meyn & Tweedie 2009, Theorem 11.3.4], the kernel Q is a so-called
positive Harris recurrent, meaning among others that it has a unique invariant
probability distribution. Moreover, Q is aperiodic, hence the convergence (4.28), as
shown by, e.g., [Meyn & Tweedie 2009, Theorem 13.0.1].

Lemma 4.8.2. Assume that either Assumptions 4.6.1-(i)) 4.6.1-(ii)) hold if Qγ “
Pγ or Assumption 4.7.2 holds and r ď R if Qγ “ P rγ , then for every γ P p0, γ0s, the
kernel Qγ admits a unique invariant measure πγ. Moreover,

@x P Rd,
›

›Qnγ px, ¨q ´ πγ
›

›

TV ÝÝÝÑnÑ8
0. (4.29)

Finally, if Qγ “ Pγ, assumptions of Theorem 4.4.3 hold true and γ P Γ then πγ is
absolutely continuous w.r.t. the Lebesgue measure. If Qγ “ P rγ and assumptions of
Theorem 4.7.2 hold true, then πγ PM r.

Proof. By the inequality (4.15), the kernel Pγ satisfies an inequality of the type (4.27),
namely, PγV ď V ´ αpγqθ ` Cαpγq1}x}ďR, for some θ, C ą 0. Similarly, under As-
sumption 4.7.2 and r ď R, we have that for every x P clpBp0, rqq:

P rγ px,Aq “ Pγpx,Π
´1
r pAqq ě ργpΠ

´1
r pAqq ,

that is to say clpBp0, rqq is a small set for P rγ . Inequality of the type Assump-
tion 4.6.1-(ii))–(iii)) then hold for e.g. C “ r, αpγq “ 1, V “ ‖x‖ ` r1‖x‖ąr and
p “ ‖x‖.

Consider the case whereQγ “ Pγ , to prove that πγ is absolutely continuous w.r.t.
the Lebesgue measure, consider a λ-null set A. By the convergence (4.29), we obtain
that for any x P Rd, Pnγ px,Aq Ñ πγpAq. Now take ν ! λ. By Proposition 4.4.1, we
have that νPnγ ! λ. Hence, by the dominated convergence theorem,

0 “ νPnγ pAq “

ż

Pnγ px,Aqνpdxq Ñ

ż

πγpAqνpdxq “ πγpAq .

If Qγ “ P rγ we obtain the same result with the help of Proposition 4.7.1.
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Lemma 4.8.3. Let either Assumptions 4.6.1-(i)) – 4.6.1-(iii)) hold if Qγ “ Pγ or
Assumption 4.7.2 hold and r ď R if Qγ “ P rγ . Let πγ be the invariant distribution
of Qγ. Then, the family tπγ : γ P p0, γ0su is tight.

Proof. If Qγ “ P rγ then the family πγ is supported by clpBp0, rqq and is, therefore,
tight. Otherwise we iterate (4.15), to obtain:

n
ÿ

k“0

Qk`1
γ V ď

n
ÿ

k“0

QkγV ´ αpγq
n
ÿ

k“0

Qkγp` Cpn` 1qαpγq .

Therefore, since 0 ď QkγV ă `8 we have:

αpγq
n
ÿ

k“0

Qkγp ď V ` Cpn` 1qαpγq .

For a fixedM ą 0 we will bound now πγpp^Mq. Since πγ is an invariant distribution
for Qγ , we have πγP kγ “ πγ . Hence, we have:

πγpp^Mq “
1

n` 1

n
ÿ

k“0

πγQ
k
γpp^Mq ď

1

n` 1

n
ÿ

k“0

πγpQ
k
γp^Mq

ď πγ

ˆ„

V

pn` 1qαpγq
` C



^M

˙

.

Letting n Ñ `8, by the dominated convergence theorem we obtain πγpp ^Mq ď

πγpC ^Mq. And therefore by monotone convergence theorem πγppq ď C.
Fix now ε ą 0, there is a K ą 0 such that C

K ď ε, and by coercivity of p there is
r ą 0 such that:

πγp‖x‖ ą rq ď πγpp ą Kq ď
C

K

where the last bound comes from Markov’s inequality. This concludes the proof.

The next proposition will show that any accumulation point of πγ is an invariant
measure for the set-valued flow induced by the DI 9xptq P Hpxptqq, first we introduce
some definitions. Define the shift operator Θt : CpR`,Rdq Ñ CpR`,Rdq by Θtpxq “

xpt ` ¨q, and the projection operator p0 : CpR`,Rdq Ñ Rd by p0pxq “ xp0q. Then,
we have the following definition (see [Roth & Sandholm 2013] for details):

Definition 4.8.1. We say that π PMpRdq is an invariant distribution for the flow
induced by the DI 9xptq P Hpxptqq, if there is ν PMpCpR`,Rdqq, such that:

i) supp ν P SHpRdq,

ii) νΘ´1
t “ ν,

iii) νp´1
0 “ π.
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Proposition 4.8.4. Let Assumptions 4.4.1–4.5.2 and 4.6.1 hold true. Denote by
πγ the unique invariant distribution of Pγ. Let pγnq be a sequence on p0, γ0s XΓ s.t.
γn Ñ 0 and πγn converges narrowly to some probability measure π. Then, π is an
invariant distribution for the flow induced by 9xptq P ´BF pxptqq.

Similarly, under Assumptions 4.4.1–4.5.1 and 4.7.1–4.7.2, for r ď R, denoting
πγ the unique invariant distribution of P rγ , if πγn Ñ π, then π is an invariant
distribution for the flow induced by 9xptq P ´BF pxptqq ´Nrpxptqq.

Proof. Consider the case whereQγ “ Pγ . The proof essentially follows [Bianchi et al. 2019,
section 7.]. Fix an ε ą 0 and write πn instead of πγn for simplicity. By Lemma 4.8.3
we have a compact K such that πnpKq ą 1´ ε, we thus can define the conditional
measures πKn pAq :“ πnpAXKq

πnpKq
. Moreover, we have πKn P MabspKq, therefore we can

apply Theorem 4.5.1 and get that there is a compact set C of CpR`,Rdq such that
PπKγn ,γnX´1

γn pCq ě 1´ ε. Now we have

Pπn,γnp¨q “
ż

Rd
Pa,γnp¨qπnpdaq ě

ż

K
Pa,γnp¨qπnpdaq ě πnpKqPπ

K
n ,γnp¨q ,

hence
Pπγn ,γnX´1

γn pCq ě πnpKqPπ
K
γn
,γnX´1

γn pCq ě p1´ εq
2 .

Since ε is arbitrary this proves the tightness of vn :“ Pπγn ,γnX´1
γn . Take πn Ñ π and

vn Ñ v P MpCpR`,Rdqq. We now prove that v is an invariant distribution for the
flow induced by the DI associated to ´BF (see Definition 4.8.1.)
We have πn “ vnp

´1
0 , by continuity of p0. Thus, π “ vp´1

0 . Therefore, we have (iii)
of Definition 4.8.1. Let η ą 0. By weak convergence of vn,

vptx P CpR`,Rdq : dpx, S´BF pRdqq ď ηuq ě lim sup
n

vnptx P CpR`,Rdq : dpx, S´BF pRdqq ď ηuq

and

vnptx P CpR`,Rdq : dpx,S´BF pRdqq ď ηuq ě vnptx P CpR`,Rdq : dpx,S´BF pKqq ă ηuq

ě πnpKqPπ
K
γn
,γnpdpXγn , S´BF pKqq ă ηq

ě p1´ εqPπ
K
γn
,γnpdpXγn ,S´BF pKqq ă ηq .

The last term converges to 1´ε, by Theorem 4.5.1, and by weak convergence we have
vptx P CpR`,Rdq : dpx,S´BF pRdqq ě ηuq ě p1´εq, now letting η Ñ 0, by monotone
convergence we have vpS´BF pRdqqq ě 1 ´ ε which proves (i) of Definition 4.8.1.
Finally, the second point of Definition 4.8.1 is shown just like in [Bianchi et al. 2019,
section 7.].

The proof of the case Qγ “ P rγ is substantially the same under straightforward
adaptations.

After some definitions we recall an important result about the support of a
flow-invariant measure. The limit set Lf of a function f P CpR`,Rdq is

Lf “
č

tě0

fprt,8qq,
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and the limit set LSHpaq of a point a P Rd for SH is

LSHpaq “
ď

xPSHpaq

Lx.

A point a P Rd is said SH-recurrent if a P LSHpaq. The Birkhoff center BCSH of SH is
the closure of the set of its recurrent points:

BCSH “

!

a P Rd : a P LSHpaq

)

.

In [Faure & Roth 2013] (see also [Aubin et al. 1991]), a version of Poincaré’s recur-
rence theorem, well-suited for our set-valued evolution systems, was provided:

Proposition 4.8.5. Each invariant measure for SH is supported by BCSH .

With the help of Proposition 4.8.5 we can finally prove Theorem 4.6.1.

Proof. Take γ P Γ, ε ą 0 and pxγnq an associated SGD sequence. We have by (4.28):

lim sup
nÑ8

Pν rdistpxγn,Zq ą εs “ πγptx P Rd : dpx,Zq ą εuq .

Now take any sequence γi Ñ 0 with γi P Γ, and πγi the associated invariant distri-
bution, we know from Lemmas 4.8.3-4.8.4 that we can extract a subsequence such
that πγi Ñ π, with π an invariant measure for the evolution system S´BF . Therefore
by weak convergence we have:

lim
iÑ`8

πγiptx P R
d : dpx,Zq ą 2εuq ď lim

iÑ`8
πγiptx P R

d : dpx,Zq ě εuq

ď πptx P Rd : dpx,Zq ě εuq,

where the last line comes from the Portmanteau theorem. We show that suppπ Ă S,
and therefore the last term is equal to zero, which concludes the proof. To that end,
we make use of Proposition 4.8.5, that shows that each invariant measure of S´BF
is supported by BCS´BF . Thus, it remains to show that BCS´BF “ Z (which at the
same time will ensure us that Z is nonempty). It is obvious that Z Ă BCS´BF . To
show the reverse inclusion, take a P LS´BF paq. Then, there exists a solution x to the
differential inclusion such that xp0q “ a and a P Lx. But under Assumption 4.6.2 it
holds ([Davis et al. 2020, lemma 5.2]) that } 9xptq} “ }B0F pxptqq} almost everywhere,
and, moreover,

@t ě 0, F pxptqq ´ F pxp0qq “ ´

ż t

0
}B0F pxpuqq}

2du.

Therefore xptq “ a for each t ě 0, thus, a P S. Observing that Z is a closed set
(since BF is graph-closed, see [Clarke et al. 1998, Proposition 2.1.5]), we obtain that
BCS´BF “ Z.

Similarly, take γi Ñ 0 and and pxγi,rn q the associated projected SGD sequences.
After an extraction we get that πγi Ñ π, with π an invariant measure for the flow
S´BF´Nr and:
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lim
γiÑ0

lim sup
nÑ8

Pν rdistpxγi,rn ,Zrq ą 2εs ď πptx P Rd : dpx,Zrq ą εuq .

Taking a P LS´BF´Nr paq
, and x a solution to the associated differential inclusion

with xp0q “ a, we get under Assumption 4.6.2 [Davis et al. 2020, Lemma 6.3.] that
‖ 9xptq‖ “ mint‖v‖ : v P BF pxptqq `Nrpxptqqu, and moreover,

@t ě 0, F pxptqq ´ F pxp0qq “ ´

ż t

0
‖ 9xpuq‖2 du .

That is to say xptq “ a and a P Zr, which finishes the proof.

4.8.6 Proof of Proposition 4.6.2

Denote as ρ the probability distribution of the random variable γε1. By assumption,
ρ has a continuous density that is positive at each point of Rd. We denote as f
this density. Let θx be the probability distribution of the random variable Z “

x´ γϕ0px, ξ1q, which is the image of µ by the function x´ γϕ0px, ¨q. Our purpose
is to show that

Dε ą 0, @x P clpBp0, Rqq, @A P BpRdq, pθxbρq rZ ` γη1 P As ě ε λpAXclpBp0, 1qqq.

Given L ą 0, we have by Assumption 4.5.1 and Markov’s inequality that there exists
a constant K ą 0 such that

θx rZ R clpBp0, Lqqs ď
K

L
p1` }x}q.

Thus, taking L large enough, we obtain that @x P clpBp0, Rqq, θx rZ R clpBp0, Lqqs ă

1{2. Moreover, we can always choose ε ą 0 is such a way that fpuq ě 2ε for u P
clpBp0, L`1qq, by the continuity and the positivity of f on the compact clpBp0, L`

1qq. Thus,

pθx b ρq rZ ` γη1 P As “

ż

A
du

ż

Rd
θxpdvq fpu´ vq

ě

ż

AXclpBp0,1qq
du

ż

clpBp0,Lqq
θxpdvq fpu´ vq

ě 2ε

ż

AXclpBp0,1qq
du

ż

clpBp0,Lqq
θxpdvq

ě ε λpAX clpBp0, 1qqq.

4.8.7 Proof of Proposition 4.6.3

By Lebourg’s mean value theorem [Clarke et al. 1998, Theorem 2.4], for each n P N,
there exists αn P r0, 1s and ζn P BF punq with un “ xn´αnγ∇fpxn, ξn`1q1∆f

pxn, ξn`1q,
such that

F pxn`1q “ F pxnq ´ γxζn,∇fpxn, ξn`1qy1∆f
pxn, ξn`1q,



112 Chapter 4. Constant step SGD

and the proof of this theorem (see [Clarke et al. 1998, Theorem 2.4] again) shows
that un can be chosen measurably as a function of pxn, ξn`1q.

In the following, for the ease of readability, we make use of shorthand (and abu-
sive) notations of the type 1}x}ą2Rx∇F pxq, ¨ ¨ ¨y to refer to x∇F pxq, ¨ ¨ ¨y if }x} ą 2R

and to zero if not. We also denote ∇fpxn, ξn`1q as ∇fn`1 to shorten the equations.
We write

F pxn`1q “ F pxnq ´ γ1}xn}ď2Rxζn,∇fn`1y1∆f
pxn, ξn`1q

´ γ1}xn}ą2Rxζn ´∇F pxnq,∇fn`1y ´ γ1}xn}ą2Rx∇F pxnq,∇fn`1y.

We shall prove that

EnF pxn`1q ď F pxnq ´ γ1}xn}ą2R}∇F pxnq}2 ` γK1}xn}ď2R

` γ2K1}xn}ą2R

ˆ

p1` }∇F pxnq}q
´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

`

ż

}∇fpxn, sq}2 µpdsq
˙

(4.30)

where the constant K ą 0 is an absolute finite constant that can change from line
to line in the derivations below. To that end, we write

F pxn`1q “ F pxnq ´ γ1}xn}ď2R1}un}ďRxζn,∇fn`1y1∆f
pxn, ξn`1q

´ γ1}xn}ď2R1}un}ąRxζn,∇fn`1y1∆f
pxn, ξn`1q

´ γ1}xn}ą2R1}un}ďRxζn ´∇F pxnq,∇fn`1y

´ γ1}xn}ą2R1}un}ąRx∇F punq ´∇F pxnq,∇fn`1y

´ γ1}xn}ą2Rx∇F pxnq,∇fn`1y (4.31)

We start with the second term at the right hand side of this inequality. Noting from
Assumption 4.5.1 that

1}un}ďR}ζn} ď sup
}x}ďR

}BF pxq} ď sup
}x}ďR

ż

}Bfpx, sq}µpdsq ď sup
}x}ďR

ż

κpx, sqµpdsq ď K,

we have

γ1}xn}ď2R1}un}ďR|xζn,∇fpxn, ξn`1qy| ď γK1}xn}ď2R}∇fn`1},

and by integrating with respect to ξn`1 and using Assumption 4.5.1 again, we get
that

γ1}xn}ď2REnr1}un}ďR|xζn,∇fn`1y1∆f
pxn, ξn`1q|s ď γK1}xn}ď2R. (4.32)

Using Assumption 4.5.1, the next term at the right hand side of (4.31) can be
bounded as

γ1}xn}ď2R1}un}ąR|xζn,∇fn`1y1∆f
pxn, ξn`1q|

ď γ1}xn}ď2R1}un}ąR}∇F punq} }∇fn`1}

ď γ1}xn}ď2RK p1` }xn} ` γ}∇fn`1}q }∇fn`1}

ď γK1}xn}ď2R

`

1` }∇fn`1} ` γ}∇fn`1}
2
˘

,
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which leads to

γ1}xn}ď2REnr1}un}ąR|xζn,∇fn`1y1∆f
pxn, ξn`1q|s ď γK1}xn}ď2R (4.33)

by using Assumption 4.5.1.
We tackle the next term at the right hand side of (4.31). Fix a x‹ R clpBp0, Rqq.

By our assumptions it holds that each x R clpBp0, Rqq,

}∇fpx, sq} ď }∇fpx‹, sq} ` βpsq}x´ x‹} ď β1psqp1` }x}q,

where β1p¨q is square integrable thanks to Assumption 4.5.1. Since
ż

β1psq2µpdsq “

ż 8

0
µrβ1p¨q ě

?
t s dt ă 8,

it holds that µrβ1p¨q ě 1{t s “ otÑ0pt
2q. Using triangle inequality, we get that

1}xn}ą2R1}un}ďR “ 1}xn}ą2R1}xn´αnγ∇fn`1}ďR ď 1}xn}ą2R1}∇fn`1}ěp}xn}´Rq{γ

ď 1}xn}ą2R1β1pξn`1qě
}xn}´R
γp1`}xn}q

ď 1}xn}ą2R1β1pξn`1qě
R

γp1`2Rq
.

Using this result, we write

γ1}xn}ą2R1}un}ďR|xζn,∇fn`1y| ď Kγ1}xn}ą2R1}un}ďR}∇fn`1}

ď Kγ1}xn}ą2R}∇fn`1}1β1pξn`1qě
R

γp1`2Rq

Consequently,

γ1}xn}ą2REnr1}un}ďR|xζn,∇fn`1y|s ď γK1}xn}ą2R

´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

µrβ1p¨q ě K{γs1{2

ď γ2K1}xn}ą2R

´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

.

(4.34)

Similarly,

γ1}xn}ą2R1}un}ďR|x∇F pxnq,∇fn`1y| ď γK1}xn}ą2R}∇F pxnq} }∇fn`1}1β1pξn`1qě
R

γp1`2Rq
,

thus,

γ1}xn}ą2REn
“

1}un}ďR|x∇F pxnq,∇fn`1y|
‰

ď γ2K1}xn}ą2R}∇F pxnq}
´

ż

}∇fpxn, sq}2 µpdsq
¯1{2

.

(4.35)
We have that ∇F is Lipschitz outside clpBp0, Rqq. Thus, the next to last term at
the right hand side of (4.31) satisfies

γ1}xn}ą2R1}un}ąR|x∇F punq ´∇F pxnq,∇fn`1y| ď γ2K1}xn}ą2R}∇fn`1}
2,
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and we get that

γ1}xn}ą2R1}un}ąREn r|x∇F punq ´∇F pxnq,∇fn`1y|s ď γ2K1}xn}ą2R

ż

}∇fpxn, sq}2µpdsq.
(4.36)

Finally, we have

´ γ1}xn}ą2REn rx∇F pxnq,∇fn`1ys “ ´γ1}xn}ą2R}∇F pxnq}2. (4.37)

Inequalities (4.32)–(4.37) lead to (4.30).
Using Assumption (iii) of Proposition 4.6.3, Inequality (4.30) leads to Inequal-

ity (4.17). The validity of Assumptions 4.6.1-(ii)) and 4.6.1-(iii)) can then be checked
easily.

4.8.8 Proof of Proposition 4.7.1

The next Lemma is the key ingredient in the proofs of Section 4.7.

Lemma 4.8.6. Assume that fp¨, sq is locally Lipschitz continuous for every s P Ξ.
Then for λ1 b λd b µ-almost all pr, x, sq with r ą 0, it holds that pΠrpxq, sq P ∆f .
For λ1 b λd-almost all pr, xq with r ą 0, it holds that Πrpxq P DF .

Proof. Our first aim is to show that
ż

1∆c
f
pΠrpxq, sqλ

1pdrq b λdpdxq b µpdsq “ 0 . (4.38)

First, note by Fubini’s theorem that

0 “

ż

1∆c
f
px, sqλdpdxqbµpdsq “

ż

ΞˆR`

ż

Sp1q
1∆c

f
prθ, sqrd´1%1pdθq µbλ

1pdsˆdrq ,

(4.39)
that is to say, %ptθ : prθ, sq P ∆fuq “ 0 for µ b λ1 almost every ps, rq with r ą 0.
Decompose Equation (4.38) as

ż

1∆c
f
pΠrpxq, sq λ

1pdrq b λdpdxq b µpdsq

“

ż

1‖x‖ěr1∆c
f
pΠrpxq, sq λ

1pdrqbλdpdxqbµpdsq`

ż

1‖x‖ăr1∆c
f
px, sq λ1pdrqbλdpdxqbµpdsq.

Since for each s, fp¨, sq is differentiable almost everywhere, we have by Fubini’s
theorem:

ż

1‖x‖ăr1∆c
f
px, sq λ1pdrq b λdpdxq b µpdsq “ 0.

Similarly,
ż

1‖x‖ěr1∆c
f
pΠrpxq, sq λ

1pdrq b λdpdxq b µpdsq

“

ż

1‖x‖ěr1∆c
f

´ rx

‖x‖
, s
¯

λ1pdrq b λdpdxq b µpdsq

“

ż

R`

ż

ΞˆR`

ż

Sp1q
1r1ěr1∆c

f
pr1θ, sqpr1qd´1%pdθq µb λ1pdsˆ drq λ1pdr1q

“ 0 ,
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with the last equality coming from Equation (4.39). Hence (4.38). The second
statement can be proven along similar lines.

Consider r ą 0 such that the conclusion of Lemma 4.8.6 hold. Then the al-
most sure equality of all projected SGD sequence is proven in the same way as
in Proposition 4.4.1. We can therefore consider the lazy projected SGD sequence
xγ,rn`1 “ Πrpx

γ,r
n ´ γϕ0px

γ,r
n , ξn`1qq. By Assumption 4.7.1 the law of xγ,rn`1{2

∆
“

xγ,rn ´ γϕ0px
γ,r
n , ξn`1q is Lebesgue-absolutely continuous. Take A a borel set of

Rd such that λpAq “ %rpAq “ 0. Then

Ppxγ,rn`1 P Aq ď Ppxγ,rn`1{2 P Aq ` P

¨

˝r
xγ,rn`1{2∥∥∥xγ,rn`1{2

∥∥∥ P A
˛

‚ .

The first term is equal to zero by Lebesgue-absolutely continuity of the law of xγ,rn`1{2.
For the second term we write:

P

¨

˝r
xγ,rn`1{2∥∥∥xγ,rn`1{2

∥∥∥ P A
˛

‚“

ż

pr1qd´1
1Aprθq%pdθqλ

1pdr1q “

ż

pr1qd´1%rpAqλ
1pdr1q “ 0 ,

which finishes the proof.

4.8.9 Proof of Theorems 4.7.2 and 4.7.3

Noting that the law of xγ,rn ´ γϕ0px
γ,r
n , ξn`1q is Lebesgue-absolutely continuous by

Assumption 4.7.1, the first point of Theorem 4.7.2 comes from Lemma 4.8.6. The
second point comes upon noticing that Πrpxq ´ x P ´NrpΠrpxqq.

Theorem 4.7.3 is proved in the same way as Theorem 4.5.1, by applying [Bianchi et al. 2019,
Theorem 5.1.] with hps, xq “ ´∇F pxq ´ 1{γpx´ γ∇fpx, sq ´Πrpx´ γ∇fpx, sqqq P
´∇F pxq ´Nrpx´ γ∇fpx, sqq and Hpxq “ Hps, xq “ ´BF pxq ´Nrpxq.





Chapter 5

Stochastic subgradient descent
escapes active strict saddles

5.1 Introduction

Stochastic approximation algorithms that operate on non-convex and non-smooth
functions have recently attracted a great deal of attention, owing to their numerous
applications in machine learning and in high-dimensional statistics. The archetype
of such algorithms is the so-called Stochastic Subgradient Descent (SGD), which
reads as follows. Given a locally Lipschitz function f : Rd Ñ R which is not
necessarily smooth nor convex, the Rd–valued sequence pxnq of iterates generated
by such an algorithm satisfy the inclusion

xn`1 P xn ´ γnBfpxnq ` γnηn`1, (5.1)

where the set–valued function Bf is the so-called Clarke subdifferential of f , the
sequence pγnq is a sequence of positive step sizes converging to zero, and ηn`1 is
a zero-mean random vector on Rd which presence is typically due to the partial
knowledge of Bf by the designer. It is desired that pxnq converges to the set of local
minimizers of the function f .

Before delving into the subject of convergence towards minimizers, let us first
consider the set Z :“ tx P Rd : 0 P Bfpxqu of Clarke critical points of f , which
is generally larger than the set of minimizers, in the non-convex case. In order
to ensure the convergence of pxnq to Z, the sole local Lipschitz property of f is
not enough (see [Daniilidis & Drusvyatskiy 2019] for a counterexample), and some
form of structure for the function f is required. Since the work of Bolte et.al.
[Bolte et al. 2007] in optimization theory, it is well known that the so-called defin-
able on an o-minimal structure (henceforth definable) functions, which belong to
the family of Whitney stratifiable functions (cf. Section 2.4), is relevant for the con-
vergence analysis of pxnq and beyond. This class of functions is general enough so as
to contain all the functions that are practically used in machine learning, statistics,
or applied optimization. In this framework, the almost sure convergence of pxnq to
Z was established by Davis et.al. in [Davis et al. 2020]. Another work in the same
line is [Majewski et al. 2018]. Bolte and Pauwels [Bolte & Pauwels 2019] generalize
the algorithm (5.1) by replacing Bf with an arbitrary so-called conservative field.
The constant step size regime γn ” γ is considered in [Bianchi et al. 2021a].

Thanks to these contributions, the convergence of pxnq to the set Z is now well
understood. However, as said above, Z is in general strictly larger than the set of
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minimizers, and can contain “spurious” points such as local maximizers or saddle
points. The issue of the non-convergence of the sequence given by (5.1) towards
spurious critical points is therefore crucial. The present chapter investigates this
issue.

Before getting into the core of our subject, it is useful to make a quick overview
of the results devoted to the avoidance of spurious critical points by the iterative
algorithms. The rich literature on this subject has been almost entirely devoted to
the smooth setting. In this framework, the research has followed two main axes:

• The noisy case, where the analogue of the sequence pηnq in the smooth ver-
sion of Algorithm (5.1) is non zero. Here, the seminal works of Peman-
tle [Pemantle 1990] and Brandière and Duflo [Brandière & Duflo 1996] allow
to establish the non-convergence of the Stochastic Gradient Descent (and,
more generally, of Robbins-Monro algorithms) to a certain type of spurious
critical points, sometimes referred to as traps or strict saddle. A critical point
of a smooth function f is called a trap if the Hessian matrix of f at this point
admits at least one negative eigenvalue. With probability one, the sequence
pxnq cannot converge to a trap, provided that the projection of the random
perturbation ηn onto the eigenspace of corresponding to the negative eigenval-
ues of the Hessian matrix (henceforth, eigenspace of negative curvature) has
a non vanishing variance.

• The noiseless case where ηn ” 0, studied for smooth functions by [Lee et al. 2016].
Here the authors show that for Lebesgue almost all initialization points, the
algorithm with constant step will avoid the traps.

While both of these approaches rely on the center-stable invariant manifold theorem
which finds its roots in the work of Poincaré, they are different in spirit. Indeed,
in [Lee et al. 2016] the trap avoidance is due to the random initialization of the
algorithm, whereas in [Brandière & Duflo 1996, Pemantle 1990], it is due to the
inherent stochasticity brought by the sequence pηnq.

We now get back to the non-smooth case. Here, the only paper that tackles
the problem of the spurious points avoidance is, up to our knowledge, the recent
contribution [Davis & Drusvyatskiy 2021] of Davis and Drusvyatskiy. The spurious
points that were considered in this reference are the so-called active strict saddles.
Informally, a critical point is an active strict saddle if it lies on a manifold M such
that i) f varies sharply outside ofM , ii) the restriction of f toM is smooth, and iii)
the Riemannian Hessian of f onM has at least one negative eigenvalue. For instance,
the function f : R2 Ñ R, py, zq ÞÑ |z| ´ y2 admits the point p0, 0q as an active strict
saddle with M “ Rˆ t0u, and the restriction of f to M is the function fM py, 0q “
´y2, which obviously has a second-order negative curvature. In this setting, and
assuming that f is weakly convex, the article [Davis & Drusvyatskiy 2021] focuses
on the noiseless case, and study variants of the (implicit) proximal point algorithm
rather than the (explicit) subgradient descent. Similarly to [Lee et al. 2016], they
show that for Lebesgue almost every initialization point, different versions of the
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proximal algorithm avoid active strict saddles with probability one. Such a result is
possible due to the fact that proximal methods implicitly run a gradient descent on
a smoothened version of f - the Moreau envelope.

Contrary to [Davis & Drusvyatskiy 2021], the algorithm (5.1) studied in this
chapter is explicit, meaning that it does not require the computation of a proxi-
mal operator associated with the non-smooth function. In this situation, the sole
randomization of the initial point is not sufficient to expect an avoidance of active
strict saddles. Here, in the same line as [Pemantle 1990, Brandière & Duflo 1996],
our analysis strongly relies on the presence of the additive random perturbation ηn.

In the framework of definable functions, we investigate the problem of the avoid-
ance of the active strict saddle points. Our approach goes as follows. First, we need
to show that the iterates pxnq converge sufficiently fast to M , thanks to the sharp-
ness of f outside this manifold. To that end, we first rely on the fact that when f
is definable, its graph always admits a so-called Verdier stratification, which is per-
haps less known than the Whitney stratification, and is a refinement of the latter
[Loi 1998]. The key advantage of the Verdier over the Whitney stratification lies in a
Lipschitz-like condition on the (Riemannian) gradients of f on two adjacent stratas,
which is established in the chapter. Our second tool is an assumption that we term
as the angle condition. Roughly, this assumption provides a lower bound on the
inner product between the subgradients of f at x and the normal direction from M

to x when the point x is near M . The angle condition allow to control the distance
between the iterate xn of Algorithm (5.1) and the manifoldM . As the restriction fM
of f toM is smooth, the projected iterates, using the Verdier stratification property,
are shown to follow a dynamics which is similar to a (smooth) Stochastic Gradient
Descent, up to a residual term induced by the projection step. In that sense, the
avoidance of active strict saddles in the non-smooth setting follows from the avoid-
ance of traps in the smooth setting, as established in [Brandière & Duflo 1996]. We
show that the strict saddle is avoided under the assumption that the (conditional)
noise covariance matrix has a non zero projection on the subspace with negative
curvature associated with fM near the active strict saddle.

Before pursuing, it is important to discuss the matter of the genericity of the
assumptions that we just outlined. First, since our avoidance results are restricted
to the active strict saddles, the question of the presence of critical points that are
neither local minima nor active strict saddles is immediately raised. Actually, this
question was considered in [Drusvyatskiy et al. 2016, Davis & Drusvyatskiy 2021].
It is established there that if f is definable and weakly convex, then for Lebesgue
almost all vectors u P Rd, the function fupxq

∆
“ fpxq ´ xu, xy admits a finite num-

ber of Clarke critical points, and that each of these points is either an active strict
saddle or a local minimizer. In that sense, in the class of definable weakly con-
vex functions, spurious critical points generically coincide with active strict saddles.
We also need to inspect the generality of the Verdier and the angle conditions. In
Theorem 5.3.2 below, we show that these assumptions are automatically satisfied
when f is weakly convex. From these considerations, we conclude that generically
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in the sense of [Drusvyatskiy et al. 2016, Davis & Drusvyatskiy 2021], the SGD al-
gorithm (5.1) converges to a local minimum when f is a weakly convex function,
assuming that the noise is omnidirectional enough at the strict saddles. We empha-
size the fact that, while the genericity of the active strict saddles is established in
the above sense for weakly convex functions, no assumption on weak convexity is
made for our avoidance of traps result.

Let us summarize the contributions of this chapter:

• Firstly, we bring to the fore the fact that definable functions admit stratifica-
tions of the Verdier type. These are more refined than the Whitney stratifica-
tions which were popularized in the optimization literature by [Bolte et al. 2007].
While such stratifications are well-known in the literature on o-minimal struc-
tures [Loi 1998], up to our knowledge, they have not been used yet in the
field of non smooth optimization. To illustrate their interest in this field,
we study the properties of the Verdier stratifiable functions as regards their
Clarke subdifferentials. Specifically, we refine the so-called projection formula
(see [Bolte et al. 2007, Proposition 4] and Lemma 2.4.10 below) to the case of
definable, locally Lipschitz continuous functions by establishing a Lipschitz-
like condition on the (Riemannian) gradients of two adjacent stratas.

• With the help of the Verdier and the angle conditions, we show that the SGD
avoids the active strict saddles if the noise ηn is omnidirectional enough.

The chapter is organized as follows. In Section 5.2 we fix the notations and
prove the reinforced projection formula stated in Theorem 5.2.1. In Section 5.3,
we discuss the notion of an active strict saddle. After recalling some results of
[Davis & Drusvyatskiy 2021], we introduce the Verdier and angle conditions. We
also discuss the genericity of the these conditions, in the class of weakly convex
functions. In Section 5.4, we state the main result of this chapter, namely, the
avoidance of active strict saddles. Section 5.5 is devoted to the proofs.

5.2 Preliminaries

Notations. Let d ě 1 be an integer. Given a set S Ă Rd, S denotes the closure
of S, and convpSq and convpSq respectively denote the convex hull and the closed
convex hull of S. The distance to S is denoted as distpx, Sq :“ inft}y ´ x} : y P Su.
If E Ă Rd is a vector space, we denote by PE the dˆd orthogonal projection matrix
onto E. We say that a function f : Rd Ñ R is weakly convex if there is ρ ą 0 such
that the function gpxq :“ fpxq ` ρ ‖x‖2 is convex. For two sequences panq, pbnq, we
write an Á bn if lim inf anbn ą 0. With this notation an „ bn means an Á bn and
bn Á an. For r ą 0, Bp0, rq denotes the open ball of radius r.

Throughout this chapter, C and C 1 will refer to positive constants that can
change from line to line and from one statement to another.
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5.2.1 Reinforced projection formula

The following theorem, which we believe to be of independent interest, is the first
main result of this chapter. It is an improvement of the projection formula of
[Bolte & Pauwels 2019] (see Lemma 2.4.10) when the definable function is locally
Lipschitz continuous.

Theorem 5.2.1 (Reinforced projection formula). Let f : Rd Ñ R be a definable,
locally Lipschitz continuous function. Let p be a positive integer. There is pXiq, a
definable Verdier Cp stratification of Rd, such that for each y P Xi and each Xj such
that Xi XXj ‰ H, there is C, δ ą 0, such that for any two points y1 P Bpy, δq XXi,
x P Bpy, δq XXj, ∥∥∥PTy1Xip∇Xjfpxqq ´∇Xifpy

1q

∥∥∥ ď C
∥∥x´ y1∥∥ , (5.2)

and, moreover, for any x P Bpy, δq XXc
i and any v P Bfpxq,∥∥∥PTy1Xipvq ´∇Xifpy

1q

∥∥∥ ď C
∥∥x´ y1∥∥ . (5.3)

Proof. In this proof C 1 ą 0 will denote some constant that can change from line to
line. Consider pSiq and pXiq as in Lemma 2.4.10. We claim that for any index j
and x P Xj , we have Tx,fpxqSj “ tph, x∇Xifpxq, hyq : h P TxXju. Indeed, consider
phx, hf q P Tx,fpxqSj and a Cp curve c : p´ε, εq s.t. 9cp0q “ phx, hf q. Consider a Cp

function F that agrees with f on Xj , then pcxptq, cf ptqq “ pcxptq, F pcxptqqq and we
have 9cxp0q “ hx and 9cf p0q “ x∇F pxq, hxy “ x∇Xjfpxq, hxy.

Consider pS1iq a Verdier stratification of Graphpfq compatible with pSiq. Then
the projection of S1i onto its first d coordinates, that we denote X 1i, is still a sub-
manifold s.t. f is Cp on X 1i. Consider py, fpyqq P S1i, S

1
j a neighboring strata and

C, δ as in Equation (2.10). Denote by L the Lipschitz constant of f on Bpy, δq and
δ1 “ δ

L`1 . Then, for every x P Bpy, δ
1q, we have:

‖py, fpyqq ´ px, fpxqq‖ ď p1` Lq ‖y ´ x‖ ď δ ,

that is to say px, fpxqq P Bppy, fpyqq, δq.
Consider y1 P X 1iXBpy, δ

1q, x P X 1jXBpy, δ
1q and hy1 P Ty1X 1i with

∥∥hy1∥∥ “ 1. We
have that phy1 , x∇X 1i

fpy1q, hy1yq P Tpy1,fpy1qqS
1
i and by the Verdier’s condition there is

hx P TxX
1
j s.t.∥∥∥∥ 1

ch

´

hy1 , x∇X 1i
fpy1q, hy1y

¯

´ phx, x∇fX 1j pxq, hxyq
∥∥∥∥ ď CpL` 1q

∥∥x´ y1∥∥ ,
where ch “

∥∥∥phy1 , x∇X 1i
fpy1q, hy1yq

∥∥∥ ď C 1. Therefore,∥∥hy1 ´ chhx∥∥ ď C 1
∥∥x´ y1∥∥ ,

and∥∥∥x∇X 1j
fpxq ´∇X 1i

fpy1q, hy1y
∥∥∥ ď ∥∥∥x∇X 1j

fpxq, hy1 ´ chhxy
∥∥∥` ∥∥∥chx∇X 1j

fpxq, hxy ´ x∇X 1i
fpy1q, hy1y

∥∥∥
ď C 1

∥∥x´ y1∥∥ ,
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which proves the first statement.
Now, one can choose C, δ such that Inequality (5.2) holds uniformly on all of

the stratas X 1j that are neighboring X
1
i. Consider a sequence xn Ñ x such that pxnq

lies in the stratas of full dimension (which implies that f is differentiable at xn)
and ∇fpxnq Ñ v, for n large enough we will have that xn P Bpy, δq and, therefore,∥∥∥PTy1Xip∇fpxnqq ´∇Xifpy

1q

∥∥∥ ď C ‖xn ´ y1‖. Hence, passing to the limit, we have

that
∥∥∥PTy1Xipvq ´∇Xifpy

1q

∥∥∥ ď C ‖y1 ´ x‖. Since any element of Bfpxq is a convex
combination of such v, the second statement is proved.

5.3 Active strict saddles

In this section, f : Rd Ñ R is supposed to be a locally Lipschitz continuous function.
We recall the definition Z :“ tx P Rd : 0 P Bfpxqu.

5.3.1 Definition and Existing Results

Let p ě 2 be an integer.

Definition 5.3.1 (Active manifold, [Lewis 2002]). Consider x˚ P Z. A set M Ă Rd
is called a Cp active manifold around x˚, if there is a neighborhood U of x˚ such
that the following holds.

i) Smoothness condition: M XU is a Cp submanifold and f is Cp on M XU .

ii) Sharpness condition:

inft‖v‖ : v P Bfpxq, x P U XM cu ą 0 .

Definition 5.3.2 (Active strict saddle). We say1 that a point x˚ P Z is an active
strict saddle (of order p) if there exists a Cp active manifold M around x˚, and a
vector w P Tx˚M , such that ∇Mfpx

˚q “ 0 and Hf,M px
˚qpwq ă 0.

We say that f satisfies the active strict saddle property (of order p), if it has a finite
number of Clarke critical points, and each of these points is either an active strict
saddle of order p or a local minimizer .

In the special case of a smooth function f , the space M “ Rd is trivially an
active manifold around any critical point x˚ of f . If x˚ is moreover a trap in the
sense provided in the introduction (i.e., the Hessian matrix of f at x˚ admits a
negative eigenvalue), then x˚ is trivially an active strict saddle. Hence, the smooth
setting can be handled as a special case.

The archetype of an active strict saddle is given by the following example.

1The definition of active strict saddles provided in [Davis & Drusvyatskiy 2021] involves the no-
tion of parabolic subderivatives. In this paper, we found convenient to use the equivalent Definition
5.3.2, which is closer in spirit to notions of differential geometry.
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Example 5.3.1. The point p0, 0q is an active strict saddle of the function f : R2 Ñ

R given by fpy, zq “ ´y2 ` |z|. Indeed,

Bfppy, zqq “

$

’

’

&

’

’

%

tp´2y, 1qu if z ą 0 ,

tp´2y,´1qu if z ă 0 ,

t´2yu ˆ r´1, 1s otherwise ,

and the set M “ Rˆt0u is a C2 active manifold. Moreover, ∇Mfppy, 0qq “ p´2y, 0q

and Hf,M p0qpp1, 0qq “ ´2, which proves the statement.

While the definition of an active strict saddle might seem peculiar at first glance,
the following proposition of Davis and Drusvyatskiy shows that a generic definable
and weakly convex function satisfies a strict saddle property. The proof is grounded
in the work of [Drusvyatskiy et al. 2016].

Proposition 5.3.1 ([Davis & Drusvyatskiy 2021, Theorem 2.9]). Assume that f is
definable and weakly convex. Define fupxq :“ fpxq´ xu, xy, for every u P Rd. Then,
for every p ě 2 and for Lebesgue-almost every u P Rd, fu has the active strict saddle
property of order p.

It is worth noting that the result of [Davis & Drusvyatskiy 2021, Theorem 2.9]
is in fact a bit stronger than Proposition 5.3.1, because it states moreover that for
almost all u, the cardinality of the set of Clarke critical points of fu is upper bounded
by a finite constant which depends only on f .

One can wonder if Proposition 5.3.1 may still hold if f is definable and locally
Lipschitz, but not weakly convex. The answer is negative, as shown by the following
example.

Example 5.3.2. Let f : R2 Ñ R be defined as fpy, zq “ ´|y| ` |z|. Then for any
u P Bp0, 1q, p0, 0q is a critical point for fu, but is neither a local minimum nor an
active strict saddle.

5.3.2 Verdier and Angle Conditions

On the top of the items i-ii) of Definition 5.3.1, we introduce the following useful
conditions.

Definition 5.3.3. Let M be a C1 active manifold around some x˚ P Z. We say that
M satisfies the Verdier condition and the angle condition, if the following conditions
hold respectively.

iii) Verdier condition. There is a neighborhood U of x˚ and C ě 0, such that
for every y PM X U and every x P U ,∥∥PTyM pvq ´∇Mfpyq

∥∥ ď C ‖x´ y‖ , @v P Bfpxq .
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iv) Angle condition. For every α ą 0, there is β ą 0 and a neighborhood U of
x˚, such that for every x P U ,

fpxq´fpPM pxqq ě α ‖x´ PM pxq‖ ùñ xv, x´PM pxqy ě β ‖x´ PM pxq‖ , @v P Bfpxq .

Definition 5.3.4. An active strict saddle x˚ is said to satisfy the Verdier and angle
conditions, if the active manifold M in Definition 5.3.2 satisfies the Verdier and
angle conditions. The function f is said to satisfy the active strict saddle property
of order p with the Verdier and angle conditions, if it satisfies the active strict saddle
property of order p and if every active strict saddle satisfies the Verdier and angle
conditions.

The Verdier condition merely states that M is one of the stratas of the Verdier
stratification of Theorem 5.2.1 The purpose of the angle condition is to relate, close
to M , the linear growth of the function f and the lower boundedness of the inner
product between the subgradients of f at x and the normal direction to M . The
latter will allow us to prove that the iterates of SGD converge to M fast enough.

Remark 20. Let M be an active manifold around x˚. As it will be clear from
the proof of Theorem 5.3.2, when f is weakly convex, M always satisfies the angle
condition. Otherwise stated, the angle condition is simply true in case of weakly
convex functions. However, as the following example shows, one is able to find
many natural examples of functions which are not weakly convex, and yet satisfy
this condition.

Example 5.3.3. The function f : R2 Ñ R given by fpy, zq “ ´y2´|z| is not weakly
convex. Its unique Clarke critical point p0, 0q is an active strict saddle, satisfying
the Verdier and the angle conditions.

Example 5.3.3 shows that the Verdier and angle conditions can be satisfied with
no need for f to be weakly convex. Nevertheless, more can be said when this
assumption holds. The following theorem strengthen the genericity result of Propo-
sition 5.3.1 by establishing that the active strict saddle property with the Verdier
and angle conditions is satisfied by a generic definable and weakly convex function.
We recall the notation fupxq “ fpxq ´ xu, xy.

Theorem 5.3.2. Assume that f : Rd Ñ R is a definable, weakly convex function.
For every p ě 2, and for Lebesgue-almost every u P Rd, fu satisfies the active strict
saddle property of order p with the Verdier and angle conditions.

Proof. Let tX1, . . . , Xku be the Cp Verdier stratification from Theorem 5.2.1. Upon
noticing that in the proof of [Drusvyatskiy et al. 2016, Corollary 4.8 and Theorem
4.16] the active manifold 2 can be chosen adapted to tX1, . . . , Xku, the existence of
an active manifold with a Verdier condition follows from [Davis & Drusvyatskiy 2021,

2The name active manifold follows the work of [Davis & Drusvyatskiy 2021], while in
[Drusvyatskiy et al. 2016] they are called identifiable manifolds.
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Theorem 2.9, Appendix A]. For the angle condition note that by weak convexity of
f there is ρ ě 0 such that:

fpPM pxqq ´ fpxq ě xv, PM pxq ´ xy ´ ρ ‖x´ PM pxq‖2
@v P Bfpxq .

Therefore, if fpxq ě fpPM pxqq ` α ‖PM pxq ´ x‖, then:

@v P Bfpxq, xv, x´ PM pxqy ě α ‖x´ PM pxq‖´ ρ ‖x´ PM pxq‖2 .

Taking U a neighborhood of x˚ close enough to zero, we see that the angle condition
is satisfied.

5.4 Avoidance of Active Strict Saddles

Let f : Rd Ñ R be a locally Lipschitz continuous function. On a probability space
pΩ,A,Pq, consider a random variable x0 and random sequences pvnq, pηnq on Rd.
Define the iterates:

xn`1 “ xn ´ γnvn ` γnηn`1 , (5.4)

where pγnq is a deterministic sequence of positive numbers. Let pFnq be a filtration
on pΩ,A,Pq.

Assumption 5.4.1.

i) The function f is path differentiable.

ii) For every n, vn P Bfpxnq.

iii) The sequences pvnq, pηnq are adapted to pFnq, and x0 is F0-measurable.

iv) There are constants c1, c2 ą 0 and α P p1{2, 1s s.t. for all n P N:

c1

nα
ď γn ď

c2

nα
.

Consider a point x˚ P Z.

Assumption 5.4.2. The point x˚ is an active strict saddle of order 4 satisfying the
Verdier and angle conditions.

Since Hf,M px
˚q is a quadratic form we can write down Rd “ E´‘E`, where E´

(respectively E`) is the vector space spanned by the eigenvectors of the associated
symmetric bilinear form that have negative (respectively nonnegative eigenvalues).
Note that by results of Section 2.3 we have that E´ Ă Tx˚M and by Assump-
tion 5.4.2 we have that dimE´ ě 1.

Assumption 5.4.3. The following holds almost surely on the event rxn Ñ x˚s.

i) Erηn`1|Fns “ 0, for all n.
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ii) lim supEr‖ηn`1‖4
|Fns ă `8.

iii) Denote η´n`1 the projection of ηn`1 onto E´. We have:

lim inf Er
∥∥η´n`1

∥∥ |Fns ą 0

The following theorem is the main result of this chapter.

Theorem 5.4.1. Let Assumptions 5.4.1–5.4.3 hold. Then Ppxn Ñ x˚q “ 0.

Combining Theorem 5.4.1 with the results of Section 5.3.2 we obtain that, under
appropriate assumptions, the SGD on a generic definable, weakly convex function
converges to a local minimizer. We state this result in the following corollary.

Corollary 5.4.2. Let Assumptions 5.4.1 and 5.4.2 hold. Assume that f has the
active strict saddle property of order 4 with the Verdier and angle conditions. More-
over, assume that almost surely the following holds.

i) Erηn`1|Fns “ 0, for all n.

ii) For every C ą 0,

lim supEr‖ηn`1‖4
|Fns1‖xn‖ďC ă `8 .

iii) For all w P Rdzt0u,

lim inf Er|xw, ηn`1y| |Fns ą 0 .

Then, almost surely, the sequence pxnq is either unbounded, or converges to a local
minimizer of f .

5.5 Proof of Theorem 5.4.1

From now on, we assume without restriction that x˚ “ 0. Thus, ∇Mfp0q “ 0, and
there exists a vector w P T0M such that Hf,M p0qpwq ă 0.

The general idea of the proof of Theorem 5.4.1 is that on the event rxn Ñ 0s,
the function PM is defined for all large n, enabling us to write xn “ yn ` zn for
these n, where yn “ PM pxnq. The iterates pynq can then be written under the form
of a standard smooth Robbins-Monro algorithm for which the trap avoidance can be
established by the technique of Brandière and Duflo [Brandière & Duflo 1996]. In
this setting, the remainders zn will be shown to be small enough so as not to alter
fundamentally the approach of [Brandière & Duflo 1996].

Let us provide more details on our proof. We first show that on rxn Ñ 0s, there
is an integer n0 such that for all all n ě n0, the norms ‖xn‖ are small, and moreover,

@v P Bfpxnq, xv, zny Á ‖zn‖ . (5.5)
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This will be the object of Proposition 5.5.3 below. The idea is to show that for these
n, it holds that fpxnq ´ fpynq Á ‖zn‖, and then, to use the angle condition (iv)) of
Definition 5.3.3.

Let us temporarily assume that n0 is deterministic, and work on n ě n0. Keeping
Inequality (5.5) aside for further use, the next step is to make a Taylor development
of yn`1 “ PM pxn`1q around xn. This leads to

PM pxn`1q “ PM pxnq ` JPM pxnqpxn`1 ´ xnq `Op‖xn`1 ´ xn‖2
q

“ PM pxnq ` JPM pynqpxn`1 ´ xnq `Op‖xn`1 ´ xn‖2
q `Op‖zn‖ ‖xn`1 ´ xn‖q,

where we used the Lipschitz continuity of the Jacobian matrix function JPM p¨q.
Using Equation (5.4), we rewrite the last display as

yn`1 “ yn´γnJPM pynqvn`γnJPM pynqηn`1`γ
2
nOp1`‖ηn`1‖2

q`γnOp‖zn‖ p1`‖ηn`1‖qq.

Now, Lemma 2.3.2 shows that JPM pynq coincides with the linear operator PTynM .
Furthermore, the Verdier condition (iii)) of Definition 5.3.3 asserts that PTynM pvnq “
∇Mfpynq `Op‖zn‖q. Altogether, we obtain the Robbins-Monro iteration

yn`1 “ yn´γn∇Mfpynq`γnPTynMηn`1`γ
2
nOp1`‖ηn`1‖2

q`γnOp‖zn‖ p1`‖ηn`1‖qq.
(5.6)

Had we not have the last term γnOp‖zn‖ p1 ` ‖ηn`1‖qq at the right hand side, the
approach of Brandière and Duflo would have been enough to obtain the noncon-
vergence of yn to zero under our assumptions on the noise. The presence of this
term requires us to weaken a bit their conditions. This will be done in Propo-
sition 5.5.1. In the case of Equation (5.6), this proposition asserts that the trap
avoidance remains true if

8
ÿ

i“n

γiE ‖zi‖ “ Opχnq

where

χn :“
`8
ÿ

i“n

γ2
i .

This is where Inequality (5.5) comes into play to establish this bound.
So far, we have assumed abusively that the moment n0 after which ‖xn‖ is small

and (5.5) is satisfied is deterministic. To deal with this issue, in Section 5.5.2, on an
arbitrary large event A, we construct a sequence pynq that is (for n large enough)
equal to pPM pxnqq on AXrxn Ñ 0s and satisfies an equation of the form (5.6) almost
surely. Proposition 5.5.1 will allow us to prove that Pprxn Ñ 0s X Aq ď Ppryn Ñ
0sq “ 0 and since the event A is arbitrary large, this will prove Theorem 5.4.1.

5.5.1 Preliminary: Avoidance of Traps in the Smooth Case

The following proposition is nearly a quote of Brandière and Duflo’s theorem [Brandière & Duflo 1996,
Theorem 1]. As discussed below, we alleviate some hypotheses of [Brandière & Duflo 1996].
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To state this proposition recall that, by a standard result from linear algebra,
for a matrix H P Rdˆd, there is a decomposition Rd “ Λ` ‘ Λ´ such that Λ`,Λ´

are stable by H and the eigenvalues of H|Λ´ (respectively H|Λ`) have eigenvalues
with negative (respectively nonpositive) real parts. Recall that for a smooth map
D : Rd Ñ Rd, we denote JD its jacobian and that χn :“

ř8
i“n γ

2
i .

Proposition 5.5.1. Let pΩ,A,Pq be a probability space, pFnq a filtration and pγnq a
sequence of deterministic nonnegative step sizes such that

ř

k γk “ `8 and
ř

k γ
2
k ă

`8. Let d be an integer and D : Rd Ñ Rd be such that Dp0q “ 0 and there is a
neighborhood of 0 such that on it D is continuously differentiable, with Lipschitz
continuous Jacobian. Consider the Rd–valued stochastic process pynq given by

yn`1 “ yn ´ γnDpynq ` γnη̃n`1 ` γn%n`1 ` γn%̃n`1 , (5.7)

where y0 is F0-measurable and the sequences pη̃nq, p%nq and p%̃nq are pFnq-adapted.
Assume that Λ´, the vector space associated to the eigenvectors of JDp0q that have
negative real parts, is of positive dimension. Denote η̃´n`1 the projection of η̃n`1 on
Λ´ and assume that on the event ryn Ñ 0s the following almost surely holds.

i) For all n, Erη̃n`1|Fns “ 0.

ii) lim supE
”

‖η̃n`1‖4
ˇ

ˇ

ˇ
Fns ă `8.

iii) lim inf E
“∥∥η̃´n`1

∥∥ |Fn

‰

ą 0 .

iv)
ř`8
k“0 ‖%k`1‖2

ă `8 .

v) We have that:

E

«

1rynÑ0s

`8
ÿ

i“n

γi ‖%̃i`1‖

ff

“ Opχnq.

Then Ppryn Ñ 0sq “ 0.

Proposition 5.5.1 is similar to [Brandière & Duflo 1996, Theorem 1], except for
the presence of the sequence p%̃nq. As the proof is mainly an adaptation of the
proof of [Brandière & Duflo 1996, Theorem 1], we provide a sketch of proof in the
appendix.

5.5.2 Application to Algorithm (5.4)

To apply the results of the preceding section we need, first, to find a candidate for
D, this is the purpose of the next lemma. Its proof readily follows from results of
Section 2.3.

Lemma 5.5.2. Let Assumption 5.4.2 hold and let r ą 0 be such that PM : Bp0, rq Ñ

M is well defined and is C3 and that there is a C4 function F : Bp0, rq Ñ R that
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agrees with f on M XBp0, rq. Then, the function F ˝ PM is C3 on Bp0, rq and for
y PM XBp0, rq, we have:

∇pF ˝ PM qpyq “ ∇Mfpyq .

Moreover, for w P Rd:

Hf,M p0qpwq “ wT∇2pF ˝ PM qw .

By Tietze’s extension theorem the function ∇pF ˝ PM q : Bp0, rq Ñ Rd can be
extended to a bounded continuous function D : Rd Ñ Rd that we shall use in the
remainder of the chapter.

For r ą 0 such that PM is well defined on Bp0, rq, and for C ą 0, denote

VrpCq “ tx P Bp0, rq : @v P Bfpxq, xv, x´ PM pxqy ě C ‖x´ PM pxq‖u .

The next proposition is a key element in our proof. To not interrupt our expo-
sition its proof is provided in Section 5.5.3.

Proposition 5.5.3. Let Assumptions 5.4.1–5.4.3 hold. There is β, r1 ą 0, such
that for every r ă r1, almost surely on the event rxn Ñ 0s, xn P Vrpβq for all n large
enough.

In the remainder, we fix β, r1 ą 0 as those provided by the previous proposition.
We let U be the neighborhood around zero that verify conditions of Definition 5.3.3.
In the following, we choose r ď r1 such that PM is C3 on Bp0, rq, and Bp0, rq Ă U .
The value of r, while always satisfying these requirements, will be adjusted in the
course of the proof.

Firstly, to reduce technical issues, we notice that as in [Brandière & Duflo 1996,
Section I.2] to prove Theorem 5.4.1 we can actually replace Assumption 5.4.3 by the
following, more easy to handle, assumption. The notation Enr¨s stands for Er¨|Fns.

Assumption 5.5.1. Almost surely, the sequence pηnq is such that Enrηn`1s “ 0

and there is A,B ą 0 such that for all n P N, we have:

Enr‖ηn`1‖4
s ď B

and
Enr

∥∥η´n`1

∥∥s ě A .

Given an integer N ě 0, we define the probability event

AN “ r@n ě N, xn P Vrpβqs .

Note that the sequence of events pAN q is increasing for the inclusion. Furthermore,
Proposition 5.5.3 shows that

rxn Ñ 0s Ă
8
ď

N“0

AN “ lim
NÑ8

AN .
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Thus,

P rxn Ñ 0s “ P rrxn Ñ 0s X limAN s “ lim
NÑ8

P rrxn Ñ 0s XAN s .

Consequently, given an arbitrary δ ą 0, there is an integer Npδq ě 0 such that

P
“

rxn Ñ 0s XANpδq

‰

ě P rxn Ñ 0s ´ δ. (5.8)

For an integer N ě 0, define the stopping time

τN “ inftn ě N, xn R Vrpβqu,

with infH “ 8, and recall from the definition of r that for N ď n ă τN , the
projection PM pxnq is well-defined. Define recursively the process pyNn qněN´1 as
follows: yNN´1 “ 0,

yNn “

$

’

’

&

’

’

%

PM pxnq if N ď n ă τN ,

yNn´1 ´ γn´1Dpy
N
n´1q ` γn´1JPM py

N
n´1qηn if n “ τN ,

yNn´1 ´ γn´1Dpy
N
n´1q ` γn´1ηn, otherwise,

and let
zNn “ pxn ´ y

N
n q1năτN for n ě N.

Observe that yNn and zNn are both Fn–measurable for all n ě N . To establish
Theorem 5.4.1, we shall show that for each N ě 0,

P
”

yNn ÝÝÝÑnÑ8
0
ı

“ 0. (5.9)

Indeed, on the event ANpδq, it holds that y
Npδq
n “ PM pxnq for n ě Npδq, thus,

“

rxn Ñ 0s XANpδq

‰

Ă

””

yNpδqn Ñ 0
ı

XANpδq

ı

.

Consequently, with the convergence (5.9) at hand, we get from Inequality (5.8) that
Prxn Ñ 0s ď δ. Since δ is arbitrary, we obtain that Prxn Ñ 0s “ 0.

In the remainder of this section, N ě 0 is a fixed integer.

Proposition 5.5.4. Let Assumptions 5.4.1–5.4.2 and 5.5.1 hold. Then, the se-
quence pyNn qněN satisfies the recursion:

yNn`1 “ yNn ´ γnDpy
N
n q ` γnη̃

N
n`1 ` γn%

N
n`1 ` γn%̃

N
n`1 ,

where the random sequences pη̃Nn qněN , p%Nn qněN , and p%̃Nn qněN are adapted to pFnq.
Moreover, there is C ą 0 such that for all n ě N ,

i)
∥∥%Nn`1

∥∥ ď Cγnp1` ‖ηn`1‖2
q1τNąn`1.

ii)
∥∥%̃Nn`1

∥∥ ď C
∥∥zNn ∥∥ p1` ‖ηn`1‖q.
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iii) Enη̃Nn`1 “ 0, and En
∥∥η̃Nn`1

∥∥4
ă C.

We furthermore have:

iv) The subspace E´ defined before Assumption 5.4.3 coincides with the eigenspace
of the matrix JDp0q corresponding to its negative eigenvalues.

v) On the event ryNn Ñn 0s, it holds that lim infn En
∥∥PE´ η̃Nn`1

∥∥ ą 0.

To prove this proposition, the following result will be needed.

Lemma 5.5.5. For r small enough, there is C ą 0 such that for x, x1 P Bp0, rq, we
have:

y1 ´ y “ JPM pyqpx
1 ´ xq `R1px, x

1, yq `R2px, x
1q ,

where y1, y “ PM px
1q, PM pxq, and where ‖R1px, x

1, yq‖ ď C ‖x1 ´ x‖ ‖x´ y‖, and
‖R2px, x

1q‖ ď C ‖x1 ´ x‖2.

Proof. Since PM is C2 near zero, there is ε ą 0 such that t ÞÑ PM px` tpx
1 ´ xqq is

C2 on p´ε, 1` εq. Hence, by Taylor’s theorem, we have

y1 ´ y “ JPM pxqpx
1 ´ xq `R2px

1, xq ,

with ‖R2px
1, xq‖ ď C ‖x1 ´ x‖2, where C is a bound on the second derivatives of

PM . Similarly, since PM is C2, x ÞÑ JPM pxq is Lipschitz continuous. Therefore, for
some C ą 0, ‖JPM pxq ´ JPM pyq‖ ď C ‖x´ y‖, which finishes the proof.

Proof of Proposition 5.5.4. Letting n ě N , we write

yNn`1 “ PM pxn`1q1τNąn`1`
`

yNn ´ γnDpy
N
n q

˘

1τNďn`1`γn
`

JPM py
N
n q1τN“n`1 ` 1τNďnηn`1

˘

,

accepting the small notational abuse in the expression PM pxn`1q1τNąn`1, since the
projection might not be defined when the indicator is zero. Similar abuses will also
be made in the derivations below.

Using Lemma 5.5.5 and Equation (5.4), we obtain

yNn`1 “
`

yNn ` JPM py
N
n qpxn`1 ´ xnq

˘

1τNąn`1 ` γn%
N
n`1 ` γnζ

N
n`1

`
`

yNn ´ γnDpy
N
n q

˘

1τNďn`1 ` γn
`

JPM py
N
n q1τN“n`1 ` 1τNďnηn`1

˘

“
`

yNn ´ γnJPM py
N
n qvn ` γnJPM py

N
n qηn`1

˘

1τNąn`1 ` γn%
N
n`1 ` γnζ

N
n`1

`
`

yNn ´ γnDpy
N
n q

˘

1τNďn`1 ` γn
`

JPM py
N
n q1τN“n`1 ` 1τNďnηn`1

˘

,

where %Nn`1 and ζNn`1 are Fn`1–measurable, and satisfy with the notations of Lemma 5.5.5∥∥ζNn`1

∥∥ “ γ´1
n

∥∥R1pxn, xn`1, y
N
n q

∥∥1τNąn`1 ď Cγ´1
n ‖xn`1 ´ xn‖

∥∥zNn ∥∥ ď Cp1`‖ηn`1‖q
∥∥zNn ∥∥

(in the last inequality, we used that ‖vn‖ is bounded on rτN ą ns), and∥∥%Nn`1

∥∥ “ γ´1
n ‖R2pxn, xn`1q‖1τNąn`1

ď Cγ´1
n ‖xn`1 ´ xn‖2

1τNąn`1

ď Cγnp1` ‖ηn`1‖2
q1τNąn`1.
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Using Lemma 2.3.2 in conjunction with the Verdier condition (iii)) of Definition 5.3.3,
we also have

JPM py
N
n qvn1τNąn`1 “ PT

yNn
M pvnq1τNąn`1 “ ∇Mfpy

N
n q1τNąn`1`ζ̃

N
n`1 “ DpyNn q1τNąn`1`ζ̃

N
n`1,

where ζ̃Nn`1 is Fn`1–measurable, and satisfies∥∥∥ζ̃Nn`1

∥∥∥ ď C
∥∥xn ´ yNn ∥∥1τNąn`1 ď C

∥∥zNn ∥∥ .
Gathering these expressions, we get

yNn`1 “ yNn ´ γnDpy
N
n q ` γnη̃

N
n`1 ` γn%n`1 ` γn%̃n`1,

where

η̃Nn`1 “
`

1τNąnJPM py
N
n q ` 1τNďn

˘

ηn`1, and (5.10)

%̃Nn`1 “ ζNn`1 ` ζ̃
N
n .

The assertions i)) and ii)) of the statement are obtained from what precedes.
The noise η̃Nn is obviously Fn–measurable. Moreover, Enη̃Nn`1 “ 0 since 1τNąnJPM py

N
n q`

1τNďn is Fn–measurable. The last bound in iii)) follows from Assumption 5.5.1.
Assertion iv)) follows from Lemma 5.5.2.
To establish v)), we write∥∥pη̃Nn`1q

´
∥∥ “ ∥∥PE´JPM pyNn qηn`1

∥∥1τNąn ` ‖PE´ηn`1‖1τNďn
ě ‖PE´ηn`1‖´

∥∥PE´JPM pyNn qηn`1 ´ PE´ηn`1

∥∥1τNąn.
On the event ryNn Ñn 0s, it holds that JPM py

N
n q Ñn J0. By Lemma 2.3.2, J0 is the

orthogonal projection on T0M , thus, limyNn Ñn0 PE´JPM py
N
n q “ PE´ . Consequently,

we obtain on the event ryNn Ñn 0s:

lim inf
n

En
∥∥pη̃Nn`1q

´
∥∥ ě lim inf

n
En

∥∥η´n`1

∥∥´ lim sup
n

`∥∥PE´JPM pyNn q ´ PE´∥∥ En ‖ηn`1‖
˘

ě lim inf
n

En
∥∥η´n`1

∥∥
ą 0 ,

and by Assumption 5.5.1. Proposition 5.5.4 is proven.

Proposition 5.5.6. Let Assumptions 5.4.1–5.4.2 and 5.5.1 hold true. Then, there
is C ą 0 such that

En
∥∥zNn`1

∥∥2
ď

∥∥zNn ∥∥2
´ γn

ˆ

2β

r
´ C

˙∥∥zNn ∥∥2
` Cγ2

n, and

En
∥∥zNn`1

∥∥2
ď

∥∥zNn ∥∥2
´ γn p2β ´ Crq

∥∥zNn ∥∥` Cγ2
n.
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Proof. We shall use the notation

pNn “ xn ´ y
N
n ,

which enables us to write zNn “ pNn 1năτN .
We start with the development∥∥zNn`1

∥∥2
“

∥∥pNn`1

∥∥2
1n`1ăτN

ď
∥∥pNn`1

∥∥2
1năτN “

∥∥pNn`1 ´ p
N
n ` p

N
n

∥∥2
1năτN

“
∥∥zNn ∥∥2

` 2xxn`1 ´ xn, z
N
n y ´ 2xyNn`1 ´ y

N
n , z

N
n y `

∥∥pNn`1 ´ p
N
n

∥∥2
1năτN .

(5.11)

We now deal separately with each of the three rightmost terms in the last expression.
We first show that

En|xyNn`1 ´ y
N
n , z

N
n y| ď Cγn

∥∥zNn ∥∥2
` Cγ2

n. (5.12)

By Proposition 5.5.4,

xyNn`1 ´ y
N
n , z

N
n y “ γnx´Dpy

N
n q ` η̃

N
n`1 ` %

N
n`1 ` %̃

N
n`1, z

N
n y.

We have xDpyNn q, zNn y “ x∇Mfpy
N
n q, z

N
n y “ 0 since ∇Mfpy

N
n q P TyNn M . Further-

more, we get from Equation (5.10) that

1năτN η̃
N
n`1 “ 1năτNJPM py

N
n qηn`1 “ 1năτNPTyNn M

pηn`1q

by Lemma 2.3.2, thus, xη̃Nn`1, z
N
n y “ 0. As a consequence,

|xyNn`1´y
N
n , z

N
n y| ď γnp

∥∥zNn ∥∥2
`
∥∥%Nn`1 ` %̃

N
n`1

∥∥2
q ď γn

∥∥zNn ∥∥2
`2γnp

∥∥%Nn`1

∥∥2
`
∥∥%̃Nn`1

∥∥2
q.

From Proposition 5.5.4 again, we have

En
∥∥%Nn`1

∥∥2
ď CγnEnp1` ‖ηn`1‖2

q1τNąn`1 ď CγnEnp1` ‖ηn`1‖2
q ď Cγn ,

and
En

∥∥%̃Nn`1

∥∥2
ď C

∥∥zNn ∥∥2
p1` En ‖ηn`1‖2

q ď C
∥∥zNn ∥∥2

.

Inequality (5.12) is obtained by combining these inequalities.
We next show succinctly that

En
∥∥pNn`1 ´ p

N
n

∥∥2
1năτN ď Cγ2

n. (5.13)

Indeed,∥∥pNn`1 ´ p
N
n

∥∥2
1năτN “

∥∥xn`1 ´ xn ´ py
N
n`1 ´ y

N
n q

∥∥2
1năτN

ď Cγ2
n

´

‖vn‖2
` ‖ηn`1‖2

`
∥∥DpyNn q∥∥2

`
∥∥η̃Nn`1

∥∥2
`
∥∥%Nn`1

∥∥2
`
∥∥%̃Nn`1

∥∥2
¯

1năτN ,
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and the result follows by standard calculations making use of the results of Propo-
sition 5.5.4.

We finally deal with the term xxn`1 ´ xn, z
N
n y. Since Enηn`1 “ 0, we have

Enxxn`1 ´ xn, z
N
n y “ ´γnxvn, z

N
n y. Observing that xn P Vrpβq when zNn ‰ 0, we

obtain from the very definition of the set Vrpβq that

Enxxn`1 ´ xn, z
N
n y ď ´γnβ

∥∥zNn ∥∥ .
Getting back to Inequality (5.11), and using this result in conjunction with the
inequalities (5.12) and (5.13), we obtain that

En
∥∥zNn`1

∥∥2
ď

∥∥zNn ∥∥2
` Cγn

∥∥zNn ∥∥2
´ 2γnβ

∥∥zNn ∥∥` Cγ2
n.

Since xn P Bp0, rq on the event rn ă τN s, it holds that
∥∥zNn ∥∥ ď r and thus,∥∥zNn ∥∥2

ď r
∥∥zNn ∥∥. This leads at once to the inequalities in the statement of the

proposition.

Corollary 5.5.7. Under the assumptions of the previous proposition, there is C ą 0

such that
8
ÿ

i“n

γiE
∥∥zNi ∥∥ ď Cχn

for n ě N .

The proof of this corollary makes use of a technical result which is attributed to
[Chung 1954]. Its proof can be found in, e.g., [Bravo et al. 2018]:

Lemma 5.5.8 (Lemma D.2 in [Bravo et al. 2018]). Let panq be a nonnegative se-
quence such that for all n large enough,

an`1 ď an

ˆ

1´
P

np

˙

`
Q

np`q
,

where p P p0, 1s, q ą 0, and P,Q ą 0. It is further assumed that P ą q if p “ 1.
Then, there exists C ą 0 such that

an ď
C

nq
.

Proof of Corollary 5.5.7. Let C ą 0 be the constant provided in the statement of
Proposition 5.5.6. Choose r ą 0 small enough so that 2βr´1´C ą 0. Replacing γn
in this statement with the bounds on this step size provided by Assumption 5.4.1–
(iv)), we get from the first inequality in Proposition 5.5.6

E
∥∥zNn`1

∥∥2
ď

ˆ

1´
c1

nα

ˆ

2β

r
´ C

˙˙

E
∥∥zNn ∥∥2

`
c2C

n2α
.

We apply the previous lemma with an “ E
∥∥zNn ∥∥2, after adjusting r ą 0 when

needed in order that all the conditions in the statement of this lemma are satisfied.
We get that there exists a constant C 1 ą 0 such that

E
∥∥zNn ∥∥2

ď
C 1

nα
.
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Let k ą 0 be an integer. Telescoping the second inequality stated by Proposi-
tion 5.5.6 from n` k back to n, we get

E
∥∥zNn`k∥∥2

ď E
∥∥zNn ∥∥2

´ p2β ´ Crq
n`k´1
ÿ

i“n

γiE
∥∥zNi ∥∥` C n`k´1

ÿ

i“n

γ2
i ,

which implies that

p2β ´ Crq
n`k´1
ÿ

i“n

γiE
∥∥zNi ∥∥ ď E

∥∥zNn ∥∥2
` C

n`k´1
ÿ

i“n

γ2
i ď

C 1

nα
` C

n`k´1
ÿ

i“n

γ2
i .

Making k Ñ8, we obtain that

p2β ´ Crq
8
ÿ

i“n

γiE
∥∥zNi ∥∥ ď C 1

nα
` Cχn.

To complete the proof, it remains to notice that since γn „ n´α with α P p1{2, 1s,
it holds that χn „ n1´2α Á n´α.

Theorem 5.4.1: end of the proof. We now have all the elements to establish
the identity (5.9), proving Theorem 5.4.1. For this, notice that,for every N ě 0,
by Proposition 5.5.4, yNn satisfies an equation of the form Equation (5.7). The as-
sumption of Proposition 5.5.1 on the sequence pη̃nq are satisfied by Proposition 5.5.4
and the assumptions on the sequences p%nq, p%̃nq follow from Assumption 5.5.1 and
Corollary 5.5.7.

Hence, applying Proposition 5.5.1, we obtain that PpryNn Ñ 0sq “ 0, for all
N ě 0. As previously explained, the latter implies that Pprxn Ñ 0sq “ 0.

To complete the proof of Theorem 5.4.1 it remains to prove Proposition 5.5.3,
which is the purpose of the next section.

5.5.3 Proof of Proposition 5.5.3

The standard way to analyze the convergence of the SGD to the set of Clarke critical
points is by studying its continuous counterpart - the subgradient flow:

9xptq P ´Bfpxptqq . (5.14)

We say that an absolutely continuous curve x : R` Ñ R is a solution of the differ-
ential inclusion (DI) (5.14) starting at x P Rd if xp0q “ x and if for almost every
t P R`, the inclusion (5.14) is verified. We denote S´Bf pxq the set of these solutions.

The idea of the proof of Proposition 5.5.3 goes as follows. For each initial point
x P Bp0, r0q with r0 ą 0 small enough, either all the trajectories of (5.14) issued from
x leave Bp0, r0q in a fixed time horizon, or fpxq´fpPM pxqq ě α ‖x´ PM pxq‖. This
will be the content of the next lemma. Next, we use the well-known fact that the
interpolated process constructed from our iterates pxnq is a so-called Asymptotic
Pseudo Trajectory (APT) of the DI (5.14), as formalized in [Benaïm et al. 2005]
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(see also, e.g., [Duchi & Ruan 2018, Schechtman 2021a]). The consequence is that
on the event rxn Ñ 0s, necessarily fpxnq ´ fpPM pxnqq ě α ‖xn ´ PM pxnq‖ after a
certain finite moment. To complete the proof, it remains to make use of the angle
condition (iv)) of Definition 5.3.3.

Lemma 5.5.9. Let f : Rd Ñ R a locally Lipschitz continuous, path differentiable
function. Let M be a C2 active manifold for f such that 0 P M , fp0q “ 0, and
∇Mfp0q “ 0. Then, there is α, T ą 0 and r0 ą 0 s.t. for every x P S´BF pxq, with
x P Bp0, r0q, either xpr0, T sq Ć Bp0, r0q or fpxq ´ fpPM pxqq ě α ‖x´ PM pxq‖.

Proof. Let r ą 0 be such that Bp0, rq Ă U , where U is the neighborhood from Defi-
nition 5.3.1. Since f is C2 onMXBp0, rq and∇Mfp0q “ 0, there is some constant C
s.t. we have supxPBp0,rq ‖∇MfpPM pxqq‖ ď C ‖PM pxq‖. Denote L the Lipschitz con-
stant of f on Bp0, rq and let cm be such that inft‖v‖ : v P Bfpxq, x P Bp0, rqXM cu ě

cm. Fix r0 ď minp c
2
m

2LC , rq and consider x P Bp0, r0q and x P S´BF pxq. Denote
t1 “ inftt : xptq PM or xptq R Bp0, r0qu. Since f is path differentiable, we have:

inf
x1PBp0,r0q

fpx1q ď fpxptqq “ fpxq´

ż t

0
‖ 9xpuq‖ du ď fpxq´c2

mt1 ď sup
x1PBp0,r0q

fpx1q´c2
mt1 .

Hence, if we choose T s.t. c2
mT ą 2 supx1PBp0,r0q |fpx

1q|, we have t1 ď T and either
xpt1q R Bp0, rq or xpt1q P M . Assume that xpt1q P M and denote yptq “ PM pxptqq

and zptq “ xptq ´ yptq. Notice that for almost every t ě 0, we have ‖ 9yptq‖ “∥∥∥PTyptq 9xptq
∥∥∥ ď L. Moreover, by path-differentiability of f we have:

|fpypt1qq ´ fpyp0qq| ď

ż t1

0
|x∇Mfpypuqq, 9ypuqy| du

ď

ż t1

0
‖∇Mfpypuqq‖ ‖ 9ypuq‖ du

ď C

ż t1

0
‖ypuq‖ ‖ 9ypuq‖du

ď LCr0t1 ď
1

2
c2
mt1 .

Where the first inequality comes from the fact that f is path differentiable and that
for all u P r0, T s, 9ypuq P TypuqM . Denote α “ c2m

4L and assume by contradiction that
fpxq ´ fpPM pxqq ď α ‖x´ PM pxq‖. We have:

0 “ fpxpt1qq ´ fpypt1qq ď fpxq ´ c2
mt1 ´ fpypt1qq

ď fpxq ´ fpyp0qq `
c2
m

2
t1 ´ c

2
mt1

ď α ‖x´ PM pxq‖´
c2
m

2
t1 .

Which implies that ‖x´ PM pxq‖ ě c2m
2α t1 ě 2Lt1. On the other hand, we have that

‖zptq‖ “ distpxptq,Mq. Since the distance function is 1-Lipschitz, we have for almost
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every t ě 0:
ˇ

ˇ

ˇ

ˇ

d

dt
‖zptq‖

ˇ

ˇ

ˇ

ˇ

ď ‖ 9xptq‖ ď L .

Therefore,
0 “ ‖zpt1q‖ ě ‖zp0q‖´ Lt1 “ ‖x´ PM pxq‖´ Lt1 ,

which implies that ‖x´ PM pxq‖ ď Lt1, a contradiction.

Let X : R` Ñ Rd be the linearly interpolated process defined as:

Xptq “ xn `
t´

řn
i“0 γi

γn`1
pxn`1 ´ xnq, if t P rτn, τn`1q ,

where τn “
řn
i“0 γi.

It is well known that under our assumptions, on the event rxn Ñ 0s, X is
an APT for the DI (5.14), as shown in [Benaïm et al. 2005, Duchi & Ruan 2018,
Schechtman 2021a]. Namely, for every T ą 0,

sup
hPr0,T s

inf
xPS´Bf pXptqq

‖Xpt` hq ´ xphq‖ ÝÝÝÝÑ
tÑ`8

0 .

Consider α, T and r0 from Lemma 5.5.9. On the event rxn Ñ 0s let xn P S´BF pxnq

be such that
sup

hPr0,T s
‖Xpτn ` hq ´ xnphq‖ ÝÝÝÝÑ

nÑ`8
0 .

Consider r1 ď r0 such that Bp0, r1q Ă U , where U is the neighborhood associated
to α by the angle condition. If for n large enough, xnpr0, T sq remains in Bp0, r1q,
then by Lemma 5.5.9 we have:

fpxnq ě α ‖xn ´ PM pxnq‖` fpPM pxnqq ,

which, by the angle condition, implies that there is β ą 0

xvn, xn ´ PM pxnqy ě β ‖xn ´ PM pxnq‖ . (5.15)

Otherwise, on the event rxn Ñ 0s, there is hn P r0, T s such that after an extraction
Xpτn`hnq Ñ x, with x R Bp0, r1q. Since the limit points of X are the accumulation
points of the sequence pxnq, this contradicts the fact that xn Ñ 0.

5.6 Sketch of proof of Proposition 5.5.1

We recall that Enr¨s denotes Er¨|Fns. Denote d´ the dimension of Λ´. Using the
center-stable manifold theorem, the authors of [Brandière & Duflo 1996, Page 407–
409] construct a sequence pwnq3 in Rd´ such that

wn “ wn ` γnHnwn ` γnprn`1 ` r
1
n`1 ` en`1q ,

where the sequences pwnq, prnq, pr1nq, penq are adapted to pFnq and we have the
inclusion ryn Ñ 0s Ă rwn Ñ 0s. Moreover, on the event ryn Ñ 0s, the following
almost surely holds.

3U`n in their notations.
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i) There is H an invertible matrix such that all of the real parts of its eigenvalues
are positive and

Hn Ñ H .

ii) The sequence penq is such that Enren`1s “ 0 and

0 ă lim inf Enr‖en`1‖2
s ď lim supEnr‖en`1‖2

s ă `8 .

iii) The sequence prnq is such that
ř`8
i“0 ‖ri`1‖2

ă `8.

iv) The sequence pr1nq is such that Er1Γ
ř`8
i“n γi

∥∥r1i`1

∥∥s “ Opχnq.

The only difference with [Brandière & Duflo 1996] is in the presence of pr1n`1q and
the point (iv)).

Using this representation, the avoidance of traps result follows from the following
proposition. The only difference with [Brandière & Duflo 1996, Proposition 4] is,
once again, in the presence of the sequence pr1nq.

Proposition 5.6.1 ([Brandière & Duflo 1996, Proposition 4]). Let d be an integer,
pΩ,A,Pq be a probability space, pFnq a filtration on it and pwnq be a sequence in Rd
verifying:

wn`1 “ wn ` γnHn ` γnprn`1 ` r
1
n`1 ` en`1q , (5.16)

where the sequences pwnq, pHnq, prnq, pr
1
nqpenq are adapted to pFnq and pγnq is a

sequence of positive stepsizes s.t.
ř`8
i“0 γi “ `8 and

ř`8
i“0 γ

2
i ă `8. Assume that

on an event Γ P A we have the following.

i) The sequence pγnq is such that
ř`8
i“0 γi “ `8 and

ř`8
i“0 γ

2
i ă `8.

ii) The sequence penq is such that Enren`1s “ 0 and

0 ă lim inf Enr‖en`1‖s ď lim supEnr‖en`1‖2
s1{2 ă `8 .

iii) The sequence prnq is such that
ř`8
i“0 ‖ri`1‖2

ă `8.

iv) The sequence pr1nq is such that E
“

1Γ
ř`8
i“n γi

∥∥r1i`1

∥∥‰ “ Opχnq.

Let H P Rdˆd be a matrix such that all of the real parts of its eigenvalues are positive.
Then, denoting Υ “ ΓX rwn Ñ 0s X rHn Ñ Hs, we have P pΥq “ 0.

Proof. In this proof C will denote some absolute constant that can change from line
to line. The proof closely follows the one of [Brandière & Duflo 1996, Proposition
4]. As in [Brandière & Duflo 1996] it is sufficient to prove the proposition in the case
where there A,B,K ą 0 such that almost surely Enren`1s “ 0, A ď Enr‖en`1‖s ď
Enr‖en`1‖2

s1{2 ď B and
ř`8
i“0 ‖ri`1‖2

ď K.
We can rewrite Equation (5.16) as:

wn`1 “ wn ` γnHwn ` γn∆nwn ` γnpen`1 ` rn`1 ` r
1
n`1q ,
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where ∆n “ Hn ´ H. Let Q be a positive definite symmetric matrix such that
QH`HTQ “ 2I, where I P Rdˆd is the identity matrix. Denote Un “ pwTnQwnq1{2.
Following the same calculations as in [Brandière & Duflo 1996], we obtain that:

pUn`1 ´ Unq ě
1

Un
wTn`1Qwn

ě
γn
Un

´

‖wn‖2
` wTnQ∆nwn ` w

T
nQpen`1 ` rn`1 ` r

1
n`1q

¯

ě γn ‖wn‖

˜

1

λ
1{2
max

´
‖Q∆n‖
λ

1{2
min

¸

`
γnw

T
nQpen`1 ` rn`1 ` r

1
n`1q

Un
,

where λmax, λmin are respectively the maximal and the minimal eigenvalue of Q.
The event Υ is included in a union of events Υp defined as:

Υp “ ΥX

«

@n ě p,
1

λ
1{2
max

´
‖Q∆n‖
λ

1{2
min

ě
1

2λ
1{2
max

ff

X

„

sup
něp

‖wn‖ ď 1



X

«

`8
ÿ

i“p

γi
∥∥r1i`1

∥∥ ă 1

ff

.

Therefore, on Υp, there is C ą 0 such that for M ě n ě p, we have:

M
ÿ

i“n

γi ‖wi‖ ď CUM`1 ` C

∥∥∥∥∥ M
ÿ

i“n

γi
wTi Qpei`1 ` ri`1 ` r

1
i`1q

Ui

∥∥∥∥∥ .
Hence,
ˇ

ˇ

ˇ

ˇ

ˇ

M
ÿ

i“n

γi ‖wi‖

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď C ‖UM`1‖2
` C

∥∥∥∥∥ M
ÿ

i“n

γi
wTi Qei`1

Ui

∥∥∥∥∥
2

` C

˜

`8
ÿ

i“n

γ2
i

¸˜

`8
ÿ

i“n

‖ri`1‖2

¸

` C

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ˇˇˇ
ˇ

ˇ

2

ď C ‖UM`1‖2
` C sup

Měp

∥∥∥∥∥ M
ÿ

i“n

γi
wTi Qei`1

Ui

∥∥∥∥∥
2

` Cχn ` C

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ˇˇˇ
ˇ

ˇ

2

,

where we used the fact that ‖wTnQ‖
Un

is bounded. On Υp we have that Er‖UM`1‖2
s Ñ

0. The sequence p
řM
i“n γi

wTi Qei`1

Ui
qMěn is a square summable martingale difference

sequence. Therefore, by Doob’s maximal inequality:

E

»

–1Γ sup
MPN

ˇ

ˇ

ˇ

ˇ

ˇ

M
ÿ

i“n

γi
wTi Qei`1

Ui

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl ď CE

«

`8
ÿ

i“n

γ2
i ‖ei`1‖2

ff

ď Cχn .

Finally, on Υp we have
ř`8
i“n γi

∥∥r1i`1

∥∥ ă 1. Therefore, by assumptions:

E

»

–1Υp

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ˇˇˇ
ˇ

ˇ

2
fi

fl ď E

«

1Υ

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ff ď Cχn

Hence, there is C ą 0 such that:

E

»

–1Υp

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

i“n

γi ‖wi‖

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl ď Cχn . (5.17)
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On the other hand, following the calculations of [Brandière & Duflo 1996], on Υp

we have:

´ wp “
`8
ÿ

i“p

`

R1
i ` γipei`1 ` ri`1 ` r

1
i`1q

˘

, (5.18)

where we denote Rn “ ∆nwn and for n ě p:

R1
n “ γnRn ´ pB

´1
n´1 ´B

´1
n qSn ,

Sn “
`8
ÿ

i“n

γipRi ` ei`1 ` ri`1 ` r
1
i`1q ,

Bn “
n
ź

i“p

p1` γiHq .

The idea of the remaining part of the proof is to apply [Brandière & Duflo 1996,
Theorem A] to obtain that the left hand side of Equation 5.18 can be Fp-measurable
only with probability 0. The latter will imply PpΥpq “ 0 and since Υ “

Ť

pPN Υp,
the proof will be finished. As in the proof [Brandière & Duflo 1996], one of the
assumptions of [Brandière & Duflo 1996, Theorem A], to obtain the remaining part
it suffices to have:

E

«

1Υp

`8
ÿ

i“n

∥∥R1
i ` γir

1
i`1

∥∥ff “ op
?
χnq , (5.19)

where the difference with the proof of [Brandière & Duflo 1996, Proposition 4] is in
the presence of the term r1i`1. To prove Equation (5.19) we write down:

E

«

1Υp

`8
ÿ

i“n

∥∥R1
i ` γir

1
i`1

∥∥ff ď CE

«

1Υp sup
iěn

‖∆i‖
`8
ÿ

i“n

γi ‖wi‖

ff

` CE

«

1Υp

`8
ÿ

i“n

∥∥B´1
i´1 ´B

´1
i

∥∥ ‖Si‖
ff

` E

«

1Υp

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ff

By Inequality (5.17) we have:

E

«

1Υp sup
iěn

‖∆i‖
`8
ÿ

i“n

γi ‖wi‖

ff

ď CEr1Υp sup
iěn

‖∆i‖2
s1{2E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

`8
ÿ

i“n

γi ‖wi‖

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

1{2

ď CEr1Υp sup
iěn

‖∆i‖2
s1{2
?
χn

ď opχnq .

(5.20)

As noticed in [Brandière & Duflo 1996] we have
ř`8
i“1

∥∥B´1
i´1 ´B

´1
i

∥∥ ă `8. There-
fore,

E
“

1Υp ‖Si‖
‰

`8
ÿ

i“n

∥∥B´1
i´1 ´B

´1
i

∥∥ ď C
?
χn

`8
ÿ

i“n

∥∥B´1
i´1 ´B

´1
i

∥∥ “ op
?
χnq , (5.21)
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and by assumptions

E

«

1Υp

`8
ÿ

i“n

γi
∥∥r1i`1

∥∥ff ď Cχn “ op
?
χnq . (5.22)

Combining (5.20), (5.21) and (5.22) we obtain Equation (5.19). Hence, we can
apply [Brandière & Duflo 1996, Theorem A] to obtain that PpΥpq “ 0. Since Υ “
Ť

pPN Υp, the proof is finished.





Chapter 6

Stochastic subgradient descent on
a generic definable function

converges to a minimizer

6.1 Introduction

Design and analysis of optimization algorithms are usually relying on some kind of
optimality conditions. Canonical examples of such conditions are the second order
sufficiency in nonlinear programming [Nocedal & Wright 2006] and strict comple-
mentarity in semidefinite programming [Alizadeh et al. 1995]. While a specific op-
timization problem might not verify such conditions, a standard way to justify their
ubiquity is that they are in some mathematical sense generic. Formally, given a
class of optimization problems pQuq that is parametrized by a set of vectors u P Rd,
we say that a condition is generic within this class if it is satisfied for the prob-
lem Qu, for almost every u P Rd. Analysis of such a kind dates back at least to
the works of Simon and Saigal [Simon & Saigal 1973] and Spingarn and Rockafellar
[Spingarn & Rockafellar 1979]. In the latter pQuq are the linear perturbations of
some specific nonlinear programming problem Q and it is showed that for almost
every u P Rd, the second order sufficiency conditions are indeed necessary in Qu.

In the present chapter, in the spirit of [Spingarn & Rockafellar 1979], given a
locally Lipschitz continuous function f : Rd Ñ R that is not necessarily smooth nor
convex, we analyze the following class of problems:

min
xPRd

fupxq , (Qu)

where for u, x P Rd, we denote fupxq :“ fpxq ´ xu, xy. In this case, the first order
necessary condition for x to be a solution to (Qu) is that 0 P Bfupxq, where Bfupxq
is the set of Clarke subgradients of fu at x. Hence, we are interested in the generic
properties of the following class of sets:

tx P Rd : 0 P Bfupxqu , (Zu)

where for each u P Rd, Zu (respectively Z) denotes the set of Clarke critical points
of fu (respectively f).

We are specifically interested in the question of genericity from the perspective
of the simplest first order algorithm - the stochastic subgradient descent (SGD):

xn`1 P xn ´ γnBfpxnq ` γnηn`1 , (6.1)
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where pγnq is a sequence of positive stepsizes and pηnq is some perturbation sequence
which presence is typically due to a partial knowledge of Bf by the designer. It
is known (see [Davis & Drusvyatskiy 2021, Majewski et al. 2018]) that, under mild
conditions on the sequence pηnq and the function f , the iterates of the SGD converge
to Z. While the set Z contains local minima it also contains all kinds of spurious
points (e.g. local maxima and saddle points) convergence to which might be highly
undesirable. We are thus interested in describing a generic set of conditions that
ensures the convergence of the SGD to a local minimum.

The first important remark that we should make here is that, in the pursuit of
this path, we must distinguish between the conditions that characterize a generic
Clarke critical point, which are inherent to the class of problems that we analyze,
and the conditions on the perturbation sequence pηnq, which depend on the practical
situation and, to some degree, can be imposed by the designer.

This observation is consistent with the existing analysis of Equation (6.1) in
the smooth setting. In this case, for almost every u P Rd (henceforth generic
vector u P Rd), every critical point of fu is either a local minimum or a saddle
point (i.e. the Hessian of fu at this point has at least one negative eigenvalue).
The nonconvergence of the SGD to a saddle point (and hence its convergence to a
local minimum on a generic smooth function) was established in [Pemantle 1990,
Brandière & Duflo 1996] under an assumption that, more or less, requires the lower
boundedness of the (conditional) covariance of pηnq. When this type of assumption
is not satisfied, as it happens for e.g. the deterministic gradient descent (ηn ” 0),
it can indeed be guaranteed by the designer by adding a small perturbation, with
lower bounded covariance, at every step.

Following this discussion, the present chapter consists of two, largely indepen-
dent, parts.

• The first part is devoted to the analysis of the generic properties of Clarke
critical points. Our main result, Theorem 6.2.5, proposes a classification of
the types of points that might appear in (Zu) for a non Lebesgue-null set of
vectors u P Rd. An emphasis is put on the conditions that allow the analysis
of the SGD in a neighborhood of a generic critical point.

• The second part of this chapter is devoted to the analysis of the SGD in a
neighborhood of a generic trap, i.e. a Clarke critical point that might appear
in (Zu) for a non Lebesgue-null set of vectors u P Rd without being a local
minimum. Specifically, we will present a set of conditions on the sequence pηnq
that ensure that the iterates of the SGD will avoid a generic trap.

6.1.1 Generic critical points

In our analysis of genericity we restrict ourselves to the case where f , the function
of interest, is definable in an o-minimal structure (henceforth definable). Formally
defined in Section 2.4, the class of such functions encompasses the vast majority of
functions encountered in optimization. It includes every semialgebraic function, the
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exponential, the logarithm as well as any of their compositions. While a definable
function might be nonsmooth the nonsmoothness here appears in a very structured
manner. For instance, a domain of a definable function can be partitioned into a
set of manifolds called stratas such that on each of these stratas the function is
differentiable. Starting from the seminal work of [Bolte et al. 2007], this implicit
smooth structure has allowed a thorough analysis of optimization algorithms in a
definable setting (see e.g. [Attouch et al. 2011, Bolte et al. 2009, Davis et al. 2020,
Bolte et al. 2020a]).

Analysis of the generic properties of (Zu) when f is definable goes back to the
work of [Bolte et al. 2011, Drusvyatskiy et al. 2016] and more recently to [Davis & Drusvyatskiy 2021,
Bianchi et al. 2021b]. The central notion in all of these works is the notion of an
active manifold. Informally, M is an active manifold for a Clarke critical point
x˚ PM if f varies smoothly on M and sharply outside of it. The importance of this
notion lies in the fact, proved in [Drusvyatskiy et al. 2016]1, that if f is definable,
then for a generic vector u P Rd, the number of Clarke critical points of fu is finite
and every one of them lies on an active manifold. Recently, following the ideas
of [Drusvyatskiy et al. 2016, Drusvyatskiy & Lewis 2014], Davis and Drusvyatskiy
[Davis & Drusvyatskiy 2021] have introduced the notion of an active strict saddle:
a Clarke critical point x˚ of a function f , lying on an active manifold M , such that
fM , the restriction of f toM , admits a second order negative curvature at x˚. They
have shown that if f is weakly convex, then for a generic vector u P Rd, every point
in (Zu) is either a local minimum or an active strict saddle. Hence, in the weakly
convex case the following two examples are typical.
Local minimum. In order to be a local minimum a critical point lying on an active
manifold M must be a local minimum of fM . As an example consider f1 : R2 Ñ R
be defined as f1py, zq “ y2 ` |z|. Then x˚ “ p0, 0q is a Clarke critical point of f1

and M1 “ Rˆ t0u is the corresponding active manifold.
Active strict saddle. Consider f2 : R2 Ñ R defined as f2py, zq “ ´y

2` |z|. Then
x˚ “ p0, 0q is a Clarke critical point of f2 and M2 “ R ˆ t0u is the corresponding
active manifold. Observe that in this case x˚ is not a local minimum of f2 due to
the fact that it is not a local minimum of f2|M .

The reason behind such a simple classification lies in the fact that, from a min-
imization perspective, the behavior of a weakly convex function in a neighborhood
of an active manifold M is dictated by its behavior on M . Examples presented in
Section 6.2 show that such a result does not hold true as soon as the weak convexity
assumption fails. Indeed, in full generality, it is clear that if a critical point x˚ of
a function f lies on an active manifold M , then the local shape of f (and hence
the type of x˚) depends both on the behavior of fM and on the directions of the
subgradients of f outside of M . Therefore, to obtain a proper classification in this
general case, both of these informations must be taken into account.

This discussion motivates the introduction of a third type of a generic Clarke
critical point: a sharply repulsive critical point. Its formal definition is given in

1Although this result is explicitly stated only for the limiting subgradient.
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Section 6.2 but informally it is a Clarke critical point x˚ of a function f , lying on
an active manifold M , such that x˚ is a local minimum of fM , but there is a region
close toM such that the subgradients of f point towardsM . The following example
is typical.
Sharply repulsive critical point. Consider f3 : R2 Ñ R defined as f3py, zq “

y2 ´ |z|. Then x˚ “ p0, 0q is a Clarke critical point of f3 and M3 “ R ˆ t0u is the
corresponding active manifold. In this example x˚ is indeed a local minimum of
f3|M3

but every subgradient outside of M3 is directed towards the active manifold.
Our first result, Theorem 6.2.5, shows that for a definable, locally Lipschitz

continuous function f and for a generic vector u P Rd, every critical point of fu is
either a local minimum, an active strict saddle or a sharply repulsive critical point.
Furthermore, we establish that the corresponding active manifolds are satisfying the
Verdier and the angle conditions, introduced in [Bianchi et al. 2021b]. Importance
of these conditions in the analysis of the SGD are discussed in the next section.

6.1.2 The role of the Verdier and the angle conditions

Analyzing the iterates of the SGD in a neighborhood of an active manifold M , it
might be helpful to decompose Bf into components that are respectively tangent
and normal to M . This technique of proof, developed in [Bianchi et al. 2021b], is
natural when we think about the SGD applied to the previously presented functions
f1, f2, f3. In this case we can decompose the iterates pxnq into a sum of two sequence
pynq, pznq and notice that the sequence pynq (respectively pznq) represents the iterates
of the SGD applied to the function y ÞÑ ˘y2 (respectively z ÞÑ ˘|z|), where the
respective signs should be obvious from the considered examples. Observe that in
all of these cases pynq are the SGD iterates of a smooth function, while pznq are
either converging or diverging from 0 in a very fast manner.

To formalize this type of behavior authors of [Bianchi et al. 2021b] have intro-
duced two additional assumptions on the active manifold M . The first one, the
Verdier condition, states that for x close to M :

@v P Bfpxq, vM « ∇MfpPM pxqq `Opdistpx,Mqq ,

where PM pxq is the projection of x onto M , ∇Mf is the “Riemannian gradient" of
fM and vM is the projection of v along the tangent space of M (see Section 6.2
for a precise statement). A consequence of this condition is that, writing down
pynq “ pPM pxnqq, we obtain:

yn`1 « yn ´ γn∇Mfpynq ` γnη
M
n`1 ` γnOpdistpxn,Mqq `Opγ

2
nq , (6.2)

where ηMn`1 is the projection of ηn`1 on the tangent space ofM at yn. That is to say,
up to a residual error term, pynq follows an SGD dynamic on the (smooth) function
fM .

To motivate the angle condition a following observation was made in [Bianchi et al. 2021b].
Let x˚ be a Clarke critical point of f lying on an active manifold M . Then, on the
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event rxn Ñ x˚s, for n large enough we have:

fpxnq ´ fpPM pxnqq Á ‖xn ´ PM pxnq‖ . (6.3)

The angle condition then states that close to M we have:

fpxq´fpPM pxqq Á ‖x´ PM pxq‖ ùñ xv, x´PM pxqy Á ‖x´ PM pxq‖ , @v P Bfpxq .

(6.4)
Combining (6.3) with (6.4), we obtain that for n large enough the angle between
the set Bfpxnq and the normal direction to M is lower bounded. The latter allows
to control the residual term in Equation (6.2).

Both of these conditions provide a way to analyze the SGD in a neighborhood
of an active manifold by decomposing the iterates pxnq into a sum of two sequences:
pynq “ pPM pxnqq and pznq “ pxn ´ ynq. The angle condition ensures the fact that
distpxn,Mq “ ‖zn‖ Ñ 0 (and hence xn Ñ M) fast enough. Combining this fact
with the Verdier condition, this implies that pynq, up to a residual term, follows an
SGD dynamic on the smooth function fM .

In Chapter 5 this technique of proof was used to show that, under assumptions
on pηnq similar to [Brandière & Duflo 1996], the SGD avoid active strict saddles
with probability one. In this chapter we illustrate the interest of the angle condition
in the analysis of the SGD in a neighborhood of a sharply repulsive critical point.

6.1.3 Avoidance of generic traps

The final part of this chapter is devoted to the analysis of the SGD in a neighborhood
of a generic trap. Since the question of the nonconvergence to an active strict
saddle was tackled in [Bianchi et al. 2021b] we focus in this part on the question of
nonconvergence of the SGD to x˚ PM a sharply repulsive critical point.

Our first result, which requires only very mild, moment assumptions on the
sequence pηnq, is that on the event rxn Ñ x˚s, where x˚ is a sharply repulsive
critical point, we have that, for n large enough,

fpxnq ě fpx˚q ,

While the proof of this statement readily follows from Chapter 5 such a result is
interesting. Indeed, it implies that while the iterates pxnq may in theory converge
to x˚ this happens only if the SGD fails to explore the repulsive region near x˚.
In some sense, the algorithm perceive the function f as if x˚ was indeed its local
minimum.

In a second time, we show that a density-like assumption on pηnq forces the SGD
to visit the repulsive region near M and will imply the nonconvergence of the SGD
to a sharply repulsive critical point.

The final Section 6.3.3 shows that while such a density-like assumption on pηnq
might not hold, in a standard stochastic approximation model, a way to ensure it
is to add a small perturbation (e.g. a nondegenerate Gaussian) at each iteration of
(6.1). This fact, combined with the results of [Bianchi et al. 2021b] on the avoidance
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of active strict saddles, provides a practical way to avoid generic traps of a definable
function, and, therefore, ensure the convergence of the SGD to a local minimum.

6.1.4 Previous avoidance of traps results and contributions

We finish the introduction by a discussion on diverse avoidance of traps results pre-
viously stated in the literature. In the smooth setting avoidance of saddle points by
the SGD (and more generally by a Robbins-Monroe algorithm) was first addressed
by Brandière and Duflo [Brandière & Duflo 1996] and Pemantle [Pemantle 1990].
Under a condition that, more or less, requires a lower boundedness of the covariance
of pηnq they have established that the iterates of the SGD avoid saddle points with
probability one. Later on, these results were extended in many ways, we mention
here the nonconvergence to periodic hyperbolic sets by [Benaïm 1999], the nonau-
tonomous setting [Barakat et al. 2021] and many others [Mertikopoulos et al. 2020b,
Gadat & Gavra 2020]. From another perspective, the authors of [Lee et al. 2016]
have established the nonconvergence to a saddle point of the deterministic gradient
descent under a random initialization. Davis and Drusvyatskiy, in [Davis & Drusvyatskiy 2021],
have presented a first nonconvergence result in the nonsmooth setting. They have in-
troduced the concept of an active strict saddle and similarly to [Lee et al. 2016] have
established that proximal methods avoid active strict saddle under a random ini-
tialization. As mentioned earlier, in our previous work [Bianchi et al. 2021b], under
the same conditions on the perturbation sequence as in [Brandière & Duflo 1996],
we have established the nonconvergence of the SGD to an active strict saddle lying
on an active manifold that satisfies a Verdier and an angle conditions.

Finally, shortly after the publication [Bianchi et al. 2021b] and just before the
submission of [Schechtman 2021b], on which is based the current chapter, a con-
current work [Davis et al. 2021] has appeared. The latter, sharing a lot of similar-
ities with [Bianchi et al. 2021b], analyzes the SGD (and its proximal versions) in
a neighborhood of an active manifold. An avoidance of active strict saddles result
was obtained as well as (local) rates of convergence and asymptotic normality of
the iterates was established. These results support our claim of the importance of
the Verdier and the angle conditions. A major difference with this chapter is that
their proximal aiming condition assume (close to the active manifold) the left hand
side of formula (6.4). Such an assumption rules out functions with downward cusps
such as py, zq ÞÑ ˘y2 ´ |z|, which are treated in [Bianchi et al. 2021b] and in the
present chapter. As a consequence, the question of genericity in [Davis et al. 2021]
is addressed only for the class of Clarke regular functions in which sharply repul-
sive critical points do not exist. In particular, we believe that convergence rates of
a similar kind could be obtained upon replacing the proximal aiming condition of
[Davis et al. 2021] by ours angle condition.

Paper organization. Section 6.2 deals with the generic properties of Clarke
critical points. In Section 6.3 we state an avoidance of traps result and discuss the
convergence of the SGD to minimizers. Section 6.4 is devoted to proofs.

Notations. For x P Rd and r ą 0, we denote Bpx, rq the open ball centered
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of radius r centered at x. Given a set S Ă Rd, S will denote its closure and Sc

its complementary. The distance to S will be denoted as distp¨, Sq. We say that
V Ă S is open in S if there is an open set U Ă Rd such that U X S “ V . We say
that H : Rd Ñ Rd is a set-valued mapping if for each x P Rd, Hpxq Ă Rd, we denote
GraphpHq “ tpx, yq : x P dompHq, y P Hpxqu its graph. We say that a property holds
locally around x if this property holds on U an open neighborhood of x. We say
that a function f : Rd Ñ R is weakly convex if there is ρ ą 0 such that fp¨q ` ρ ‖¨‖2

is convex.
Given n random variables X1, . . . , Xn on some probability space, we denote

σpX1, . . . , Xnq the sigma algebra generated by them. The set of borelians of Rd
will de denoted as BpRdq. Given some probability space on which we have pFnq

a filtration and X a random variable, we will denote EnrXs “ ErX|Fns. Given a
matrix B P Rmˆn, we will denote BT its transpose.

6.2 Generic critical points

Theorem 6.2.5 of this section classifies generic critical points of a locally Lipschitz
continuous, definable function. A reader who is more interested in our avoidance of
traps result can take Definitions 6.2.1–6.2.4 as granted and jump to Section 6.3. We
recall that for a function f : Rd Ñ R and u, x P Rd, we denote fupxq “ fpxq´ xu, xy

and that, given a manifold M , we denote fM the restriction of f to M .
To motivate our presentation consider first the case where f : Rd Ñ R is C2.

Applying Sard’s theorem to the function x ÞÑ ∇fpxq, we obtain that the set

tu P Rd : Dx P Rd,∇fpxq “ u and the Hessian of f at x is degenerate u

is Lebesgue-null. Hence, for almost every u P Rd, the critical points of fupxq “
fpxq ´ xu, xy are nondegenerate. This result can be extended to functions defined
on a submanifold.

Proposition 6.2.1 ([Victor 1974, Chapter 7, §7]). Consider M Ă Rd a C2 sub-
manifold of dimension greater than 0. Let f : M Ñ R be C2. Then for almost every
u P Rd, the critical points of fu|M are nondegenerate.

Remark 21. A function f : M Ñ Rd such that every of its critical points is nonde-
generate is called a Morse function. Proposition 6.2.1 shows that Morse functions
always exist. This result can be strengthened to the fact that the set of Morse func-
tions is open and dense in the Whitney C2 topology (cf. e.g. [Audin et al. 2014]).
In that sense almost every smooth function on M is Morse.

6.2.1 Active manifolds

The central notion of this work is the notion of an active manifold. It was introduced
by Lewis in [Lewis 2002] and was thoroughly studied in [Drusvyatskiy & Lewis 2014,
Drusvyatskiy & Lewis 2012].
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Definition 6.2.1 (Active manifold). Consider f : Rd Ñ R a locally Lipschitz con-
tinuous function and x˚ such that 0 P Bfpx˚q. For p ě 1, we say that M is a Cp

active manifold around x˚ if there is a neighborhood U of x˚ such that the following
holds.

i) Smoothness. M X U is a Cp submanifold and f is Cp on M X U .

ii) Sharpness.
inft‖v‖ : v P Bfpxq, x P U XM cu ą 0 .

Note that in the preceding definition M can be the whole space Rd. As a
consequence any Cp function f : Rd Ñ R admits Rd as an active manifold on any
of its critical point.

The following conditions on an active manifold were introduced in [Bianchi et al. 2021b].
We recall that PM denotes the projection onto M and that by Lemma 2.3.2 it is
well defined in the neighborhood of M .

Definition 6.2.2 (Verdier and angle conditions). Let f : Rd Ñ R be a locally
Lipschitz continuous function. Let M be a C2 active manifold around a critical
point x˚. We say that M satisfies a Verdier and an angle conditions if the following
holds.

• Verdier condition. There is U a neighborhood of x˚ and C ě 0 such that
for y PM X U and x P U , we have:

@v P Bfpxq,
∥∥PTyM pvq ´∇Mfpyq

∥∥ ď C ‖x´ y‖ ,

where PTyM is the orthogonal projection onto TyM .

• Angle condition. For every α ą 0, there is β ą 0 and Uα a neighborhood of
x˚ such that for all x P Uα, we have:

fpxq´fpPM pxqq ě α ‖x´ PM pxq‖ ùñ xv, x´PM pxqy ě β ‖x´ PM pxq‖ , @v P Bfpxq .

(6.5)

In practice an active manifold is an element of the stratification presented in
Theorem 5.2.1. Hence, the Verdier condition is just a transcription of Inequal-
ity (5.3) in this setting. The importance of the angle condition can be grasped from
the following observation made in [Bianchi et al. 2021b].

Proposition 6.2.2 ([Bianchi et al. 2021b, Lemma 7]). Let f : Rd Ñ R be path-
differentiable and assume that there is x˚ P Rd a Clarke critical point lying on a
C2 active manifold M . There is r, T, α ą 0 such that for any x P Bpx˚, rq and
x P S´Bf pxq, either xpr0, T sq Ć Bpx˚, rq or

fpxq ě fpPM pxqq ` α ‖x´ PM pxq‖ .
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The preceding lemma shows that the set

tx P Bp0, rq : fpxq ă fpPM pxqq ` α ‖x´ PM pxq‖u , (6.6)

where α, r are the one of Proposition 6.2.2, can be viewed as a repulsive region for
the subgradient flow. The angle condition ensures the fact that as soon as we are
not in this repulsive region the negative subgradients of f are directed towards M .
This information will help us to show that the iterates of the SGD converge to M
fast enough.

6.2.2 Generic traps

This work focuses on the two following types of Clarke critical points.

Definition 6.2.3 (Active strict saddle [Davis & Drusvyatskiy 2021]). Let f : Rd Ñ
R be a locally Lipschitz continuous function. We say that a point x˚ P Rd is an
active strict saddle if there is M a C2 active manifold around x˚, of dimension
greater than 0, and x˚ is a saddle point for the function fM .

Definition 6.2.4 (Sharply repulsive critical point). Let f : Rd Ñ R be a locally
Lipschitz continuous function. We say that a Clarke critical point x˚ is sharply
repulsive if it lies on an active manifold M such that x˚ is a local minimum of fM
and 0 P Bfpx˚qzBLfpx

˚q.

The reason behind the chosen denomination of Definition 6.2.4 comes from the
following proposition. It shows that the active manifold of a sharply repulsive critical
point is always neighbored by a large repulsive region of the form (6.6).

Proposition 6.2.3. Let f : Rd Ñ R be a continuous function and x˚ P Rd such that
0 P Bfpx˚qzBLfpx

˚q. There is C ą 0 such that for all ε ą 0, there is x P Bpx˚, εq
such that:

fpxq ď fpx˚q ´ C ‖x˚ ´ x‖ .

If, moreover, x˚ is a sharply repulsive critical point, lying on a C2 active manifold
M , then there is ε ą 0 such that for all y P Bpx˚, εq XM and for all εy ą 0, there
is x P Bpy, εyq such that we have:

fpxq ă fpPM pxqq .

If f is weakly convex, then BLf “ Bf . Hence, such a function does not have
sharply repulsive critical points. As the following proposition shows, in this case, the
notion of an active strict saddle is generic. In its initial version this proposition fol-
lows from the work [Drusvyatskiy et al. 2016] and was proved in [Davis & Drusvyatskiy 2021].
Statements concerning the Verdier and the angle conditions were proved in [Bianchi et al. 2021b].

Proposition 6.2.4 ([Davis & Drusvyatskiy 2021, Theorem 2.9] and [Bianchi et al. 2021b,
Theorem 2]). Let f : Rd Ñ R be definable and weakly convex. There is N P N such
that for almost every u P Rd, the set (Zu) is of cardinality less than N . Moreover,
every such a point lies on an active manifold satisfying the Verdier and the angle
conditions and is either a local minimum or an active strict saddle.
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The reason behind such a simple classification in Proposition 6.2.4 comes from
the fact that under weak convexity a local minimum of fM is also a local minimum
of the unrestricted function f . As the following example shows this is no longer true
without the weak convexity assumption.

Example 6.2.1. Consider f4 : R2 Ñ R defined as f4py, zq “ ´|y| ` |z|. For
u P Bp0, 1q, the point p0, 0q is a sharply repulsive critical point lying on the active
manifold M4 “ tp0, 0qu.

We are now ready to state the main result of this section which is a generalization
of Proposition 6.2.4 to the non weakly convex case.

Theorem 6.2.5. Let f : Rd Ñ R be a locally Lipschitz continuous, definable func-
tion and p ě 2. There is N P N such that for almost every u P Rd the set (Zu) is
of cardinality less than N and every point x˚u P Zu lies on a Cp active manifold M
such that the following holds.

i) The manifold M satisfies the Verdier and the angle conditions.

ii) If the dimension of M is greater than 0, then x˚u is a nondegenerate critical
point for the function fu : M Ñ R.

iii) The point x˚u is either a local minimum, an active strict saddle or a sharply
repulsive critical point of fu.

6.3 Avoidance of generic traps

6.3.1 Escaping a sharply repulsive critical point

Let f : Rd Ñ R be a locally Lipschitz continuous function. Let G : Rd Ñ Rd be
a measurable function such that for all x P Rd, Gpxq P Bfpxq, such a “measurable
selection" always exists (cf. [Rockafellar & Wets 1998]).

On a probability space pΩ,A,Pq, consider a random variable x0 P Rd and a
random sequence pηnq P pRdqN. Define the iterates:

xn`1 “ xn ´ γnGpxnq ` γnηn`1 “ xn ´ γnvn ` γnηn`1 , (6.7)

where vn :“ Gpxnq and pγnq is a deterministic sequence of positive numbers. Let
pFnq be a filtration on pΩ,A,Pq.

Assumption 6.3.1.

i) The function f is path-differentiable.

ii) The sequence pηnq is adapted to pFnq and x0 is F0-measurable.

iii) The sequence pγnq is such that
ř`8
i“0 γi “ `8,

ř`8
i“0 γ

2
i ă `8 and there is

c1, c2 ą 0 such that:

c1 ď
γ2
n

γ2
n`1

ď 1` c2γn .
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Assumption 6.3.1 is a standard assumption in the field of stochastic approxima-
tion. We notice that the point (iii)) is satisfied by the sequences of the form γn “

1
nε

for ε P p1{2, 1s.
Recall that Enr¨s denotes Er¨|Fns.

Assumption 6.3.2. The sequence pηnq is such that Enrηn`1s “ 0 and for every
C ą 0, there is KpCq ą 0 such that we have:

sup
nPN

Enr‖ηn`1‖2
s1‖xn‖ďC ď KpCq .

Assumption 6.3.3. The point x˚ is a sharply repulsive critical point of f such that
the corresponding active manifold M is C2.

Our first result concerning the behavior of the SGD in the neighborhood of a
sharply repulsive critical point is the following proposition. Its proof is provided in
Section 6.4.2.

Proposition 6.3.1. Let Assumptions 6.3.1–6.3.2 hold. Assume that a point x˚ P Z
is lying on a C2 active manifold. There is α ą 0 such that, almost surely on the
event rxn Ñ x˚s, there is n0 P N such that for n ě n0, we have:

fpxnq ě α ‖xn ´ PM pxnq‖` fpPM pxnqq .

As a consequence, under Assumptions 6.3.1–6.3.3, for n large enough,

fpxnq ě fpx˚q .

A consequence of the preceding theorem is the fact that while the iterates of the
SGD may in theory converge to a sharply repulsive critical point, this happens only
if the sequence pxnq fails to explore the repulsive region of the form (6.6) neighboring
the active manifold. Without additional assumptions on the perturbation sequence
pηnq, the following example shows that such behavior is easy to construct. Recall
that f4 : R2 Ñ R is defined as f4py, zq “ ´|y| ` |z|.

Example 6.3.1. Consider z P R and let x0 “ py0, z0q “ p0, zq. For n P N, define
ηn “ 0 and vn “ p0, zn|zn|q1‖zn‖ą0. Then the sequence pxnq defined by Equation (6.7)
represents the iterates of the SGD applied to f4 and xn Ñ p0, 0q.

The next two assumptions will force the SGD to explore the repulsive region
around x˚.

Assumption 6.3.4. For every C ą 0, there is a continuous, positive function
hC : Rd Ñ R such that for every n P N and any measurable function ψ : Rd Ñ Rd,
if ‖xn‖ ď C, then:

@δ ą 0, Ppηn`1 P Bpψpxnq, δq|Fnq ě

ż

1Bpψpxnq,δqpyqhCpyq dy .
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Assumption 6.3.5. The active manifold from Assumption 6.3.3 satisfies an angle
condition.

Assumption 6.3.4 describes a density-like behavior of the conditional law of
pηn`1q. Indeed, it is satisfied if the conditional laws of pηn`1q are identically dis-
tributed according to some law that has a density relatively to Lebesgue which is
positive at every point. As we show in Section 6.3.3 to enforce this assumption it is
sufficient to add a “nondegenerate" perturbation at each step.

On the other hand, as the following proposition shows, Assumption 6.3.5 allows
to control the speed of convergence of pxnq towards a sharply repulsive critical point.

Proposition 6.3.2. Let Assumptions 6.3.1–6.3.3 and 6.3.5 hold. There is κ ą 0

such that on rxn Ñ x˚s the event

rdistpxn,Mq ď κγns

occurs infinitely often.

Finally, with this result in hand we have that a sharply repulsive critical point
is avoided by the SGD with probability one.

Theorem 6.3.3. Let Assumptions 6.3.1–6.3.5 hold. Then, Pprxn Ñ x˚sq “ 0.

The proof of Theorem 6.3.3 is slightly technical but conceptually it can be de-
scribed as follows. By Proposition 6.3.2 the iterates are infinitely often located at
a distance less than κγn from the active manifold. Since x˚ is a sharply repul-
sive critical point, M is neighbored by a repulsive region (6.6). Assumption 6.3.4
then forces the algorithm to recur in this repulsive region, which in turn contradicts
Proposition 6.3.1.

6.3.2 Convergence to minimizers

From the results of Section 6.2 we have that every Clarke critical point of a generic
definable function that is not a minimizer is either a sharply repulsive critical point or
an active strict saddle. Hence, to obtain the convergence of the SGD to minimizers
we need to investigate the question of the avoidance of active strict saddles. As
previously mentioned, this question was tackled in [Bianchi et al. 2021b].

Proposition 6.3.4 ([Bianchi et al. 2021b, Theorem 3]). Let f : Rd Ñ R be locally
Lipschitz continuous. Consider the iterates (6.7) under Assumptions 6.3.1(i))–(ii)).
Assume that x˚ is an active strict saddle lying on a C4 active manifold that satisfies
the Verdier and the angles conditions. Furthermore, assume that the following holds.

i) There is c3, c4 ą 0 and ε P p1{2, 1s such that for all n P N,

c3

nε
ď γn ď

c4

nε
.

ii) The sequence pηn`1q is such that Enrηn`1s “ 0.
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iii) For all w P Rdzt0u, we have almost surely:

lim inf
nPN

Enr|xηn`1, wy|s ą 0 ,

and on the event rxn Ñ x˚s:

sup
nPN

Enr‖ηn`1‖4
s ă `8 ,

Then Pprxn Ñ x˚sq “ 0.

Notice that the assumption on pγnq of the preceding proposition implies As-
sumption 6.3.1-(iii)). Therefore, combining Proposition 6.3.4 with Theorem 6.3.3,
we obtain that on a generic definable, locally Lipschitz continuous function the SGD
converges to a local minimum. We state this result in the following corollary.

Corollary 6.3.5. Let f : Rd Ñ R be locally Lipschitz continuous. Assume that every
of its Clarke critical points is isolated and is either a local minimum, an active strict
saddle or a sharply repulsive critical point with the corresponding active manifolds
being C4-smooth and satisfying the Verdier and the angle conditions. Consider the
iterates (6.7) under Assumptions 6.3.1(i))–(ii)) and 6.3.4. Moreover, assume that
the following almost surely holds.

i) For all n P N, Enrηn`1s “ 0.

ii) For every C ą 0, there is KpCq ą 0 such that:

sup
nPN

Enr‖ηn`1‖4
s1‖xn‖ďC ă KpCq .

iii) There is c3, c4 ą 0 and ε P p1{2, 1s such that for all n P N,
c3

nε
ď γn ď

c4

nε
.

Then, almost surely, the sequence pxnq is either unbounded or converges to a local
minimum of f .

Proof. Let x˚ be one of the Clarke critical points of f . The only thing that we have
to show is that under Assumption 6.3.4 we have that for all w P Rdzt0u, almost
surely,

lim inf
nPN

Enr|xw, ηn`1y|s ą 0 .

Consider w P Rd and define δ “ ‖w‖
2 . Notice that for x P Bpw, δq we have |xw, xy| ě

‖w‖2
´ |xx´ w,wy| ě ‖w‖2

2 . Therefore,

Enr|xw, ηn`1y|s ě Enr|xw, ηn`1y|1ηn`1PBpw,δqs ě
‖w‖2

2
P pηn`1 P B pw, δq |Fnq

ě
‖w‖2

2

ż

xPBpw,δq
hw,δpxqdx ,

and the right hand side of this inequality is positive by Assumption 6.3.4.
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We finish this section by a discussion on differences in the proofs of Proposi-
tion 6.3.4 and Theorem 6.3.3.

The idea of the proof of Proposition 6.3.4 can be described as follows.

• Using the angle condition, show that the iterates of the SGD converge to M
fast enough.

• Using the Verdier condition, show that the sequence pPM pxnqq of the projected
SGD iterates follows a gradient descent on a smooth function fM .

• Since x˚ is an active strict saddle, it is a saddle point of the function fM and,
with some minor adaptations, the nonconvergence follows from the works of
[Brandière & Duflo 1996, Pemantle 1990] on avoidance of saddle points when
the objective is smooth.

In [Bianchi et al. 2021b] the technique used to prove the first point is similar to
the one used for the proof of Proposition 6.3.2. However, afterwards, the reasons for
the nonconvergence to an active strict saddle are different. Indeed, in Theorem 6.3.3
the SGD avoids a sharply repulsive critical point due to the fact that the iterates
pxnq visits infinitely often a repulsive region of the form (6.6). Such repulsive region
does not necessarily exist in the case of an active strict saddle (think of the function
f2 from the introduction). Hence, the proof of Proposition 6.3.4 heavily relies on
the Verdier condition which is not necessary in our case.

Nevertheless, we notice that if one wants to describe the speed of convergence
to x˚ lying on an active manifold M such that x˚ is a local minimum of fM (e.g. a
sharply repulsive critical point or a local minimum of f), then both of the Verdier
and the angle conditions are useful since, as in [Bianchi et al. 2021b], it can be
established that the iterates will converge promptly to M and the Verdier condition
allows to show that, up to a manageable error term, the sequence pPM pxnqq is simply
an SGD sequence applied to a smooth function fM . It should be possible in that
case to obtain rates of convergence in the spirit of [Mertikopoulos et al. 2020b]. We
defer such considerations to future work.

6.3.3 Validity of Assumption 6.3.4

In this section we present a model that satisfies Assumptions 6.3.1–6.3.2 and show
how to alter it to obtain Assumption 6.3.4. This will provide us with a practical
way to ensure the convergence of the SGD to a minimizer.

We start by a motivational example.

Example 6.3.2. In machine learning we are usually interested to optimize f : Rd Ñ
R written as an average of N functions:

fpxq “
1

N

N
ÿ

i“1

fipxq .
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Here, N is the number of data points and fi is the loss function related to the i-
th data point. In this case a version of the SGD is obtained by choosing, at each
iteration n P N, an index i P t1, . . . , Nu in an uniform manner and updating:

xn`1 “ xn ´ γngipxnq , (6.8)

where gi : Rd Ñ R are such that 1
N

řN
i“1 gipxq P Bfpxq. If for all i P t1, . . . , Nu are

smooth, concave or weakly convex 2, then we can choose gipxq P Bfipxq. In this case
Equation (6.8) can be viewed as Equation (6.7) by putting vn “ 1

n

řN
i“1 gipxnq and

ηn`1 “ gipxnq ´ vn.

In the stochastic approximation litterature (see e.g. [Borkar 2008, Kushner & Yin 2003])
this and more general settings are modelized by a probability space pΞ,T , µq and a
measurable function g : RdˆΞ Ñ Rd such that for each x P Rd, the function gpx, ¨q
is µ-integrable and we have the following:

Gpxq :“

ż

Ξ
gpx, sqµpdsq P Bfpxq .

Starting from x0 P Rd, at each iteration n P N the practitioner samples ξn „ µ

in an independent way and update the iterates according to the following rule:

xn`1 “ xn ´ γngpxn, ξn`1q .

We obtain Equation (6.7) by putting vn “ Gpxnq, ηn`1 “ Gpxnq ´ gpxn, ξn`1q and
Fn “ σpx0, ξ1, . . . , ξnq.

In the context of this model consider a sequence pη1
nq of i.i.d Rd-valued random

variables, with η1 „ ν s.t. the following holds.

1. For each n P N, η1
n is independent from Fn.

2. The law ν is zero-mean with finite variance.

3. The law ν has a continuous density relatively to the Lebesgue measure on Rd.
Moreover, denoting this density h1 : Rd Ñ R, we have that for each point
x P Rd, h1pxq ą 0.

An example of a law that verifies the last two points is e.g. a nondegenerate gaussian.
Starting from a F0-measurable point x̃0 P Rd, consider the following algorithm:

x̃n`1 “ x̃n ´ γngpx̃n, ξn`1q ` γnη
1
n`1 “ x̃n ´ γnṽn ` γnη̃n`1 , (6.9)

where ṽn “ Gpx̃nq P Bfpx̃nq and η̃n`1 “ ṽn ´ gpx̃n, ξn`1q ` η
1
n`1.

Proposition 6.3.6. Assume that for every C ą 0, there is KpCq ą 0 such that:

sup
‖x‖ďC

ż

‖Gpx, sq ´ gpx, sq‖2 µpdsq ď KpCq .

Then the sequence pη̃n`1q satisfies Assumptions 6.3.2 and 6.3.4 relatively to the
filtration ĂFn “ Fn b σpη

1
1, . . . , η

1
nq.

2Or more generally Clarke regular. For an existence of such an oracle we invite the reader to
consult [Bianchi et al. 2021a].
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The preceding proposition provides a practical way to ensure the convergence of
the SGD to a minimizer. As the following corollary states, if the objective function
is generic, then it suffices to add a small random perturbation at every iteration of
the algorithm.

Corollary 6.3.7. Let f : Rd Ñ R be satisfying the assumptions of Corollary 6.3.5.
Consider the iterates of Equation (6.9) and assume that the following holds.

i) For every C ą 0, there is KpCq ą 0 such that:

sup
‖x‖ďC

ż

‖Gpxq ´ gpx, sq‖4 µpdsq ă KpCq .

ii) The law ν has a finite fourth order moment.

iii) There is c3, c4 ą 0 and ε P p1{2, 1s such that for all n P N:

c3

nε
ď γn ď

c4

nε
.

Then the sequence px̃nq is either unbounded or converges to a local minimum of f .

6.4 Proofs

We recall that most of the results on o-minimality that are used in this proof are
gathered in Section 2.4. In particular, we will use the notion of first-order formula
and Proposition 2.4.1 without further mentioning.

The proof of Theorem 6.2.5 is based on the following result of Drusvyatskiy, Ioffe
and Lewis [Drusvyatskiy et al. 2016].

Proposition 6.4.1 ([Drusvyatskiy et al. 2016, Theorem 4.7 and Corollary 4.8]).
Consider p ě 2 and f : Rd Ñ R a locally Lipschitz continuous, definable function.
There is N ą 0 such that for almost every u, the function fu has at most N Clarke
critical points. Moreover, denoting x˚u such a point, the following holds.

i) There is M a Cp active manifold around x˚u (for the function fu).

ii) There is W,V neighborhoods of respectively u and x˚u such that the mapping

w ÞÑ V X pBfwq
´1p0q

is single valued, Cp smooth on W and maps W onto M .

iii) If 0 P BLfupx
˚
uq and x˚u is a local minimum of the function fu|M : M Ñ R,

then x˚u is a local minimum of the unrestricted function fu.
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In [Drusvyatskiy et al. 2016] the preceding proposition was stated for the lim-
iting subgradient BLfu (i.e. in Definition 6.2.1 the Clarke subgradient Bf was
replaced by BLf and the critical point x˚u was defined as 0 P BLfupx

˚q). How-
ever, the only property that was used for the proof of these points was the fact
that dim GraphpBLfpxqq “ d (here dimension is understood in the sense of Defini-
tion 2.4.4). Since by [Drusvyatskiy & Lewis 2010b, Theorem 3.5] dim GraphpBfpxqq “

d, Proposition 6.4.1 remains true with our definition.
Let tX1, . . . , Xku be the Cp stratification from Theorem 5.2.1. The existence

of an active manifold with a Verdier condition follows from Proposition 6.4.1 upon
noticing that in the proof of [Drusvyatskiy et al. 2016, Corollary 4.8] the active
manifold can be chosen compatible with tX1, . . . , Xku. To deal with the angle
condition and the nondegeneracy of critical points we consider separately the case
where dimM “ 0 and dimM ą 0.
First case: dimM “ 0. In this case the angle condition follows from the following
result of [Bolte et al. 2009].

Lemma 6.4.2 ([Bolte et al. 2009, Theorem 1 and Proposition 1]). Consider f :

Rd Ñ R a locally Lipschitz continuous and definable function. For px, dq P Rd ˆ
Rd, denote f 1px; dq “ limtÑ0

fpx`tdq´fpxq
t (notice that this limit always exists by

Lemma 2.4.2 and the local Lipschitz continuity of f). We have:

|fpx` dq ´ fpxq ´ f 1px` d; dq| “ oxp‖d‖q , (6.10)

where oxp‖d‖q means that oxp‖d‖q
‖d‖ ÑdÑ0 0.

Without loss of generality, assume that the critical point x˚u is equal to zero and
fup0q “ 0. We have that M “ t0u and by Equation (6.10):

|fupx
˚
u ` xq ´ fupx

˚
uq ´ f

1px˚ ` x;xq| “ |fupxq ´ f
1
upx;xq| “ op‖x‖q .

For α ą 0, we have:

fupxq ě α ‖x‖ ùñ f 1upx;xq ě α ‖x‖` op‖x‖q .

Therefore, for x close enough to zero:

f 1upx;xq ě
α

2
‖x‖ .

Notice that if fu is differentiable at x, then f 1upx;xq “ x∇fupxq, xy. Hence, the angle
condition is proved on a point of differentiability.

For the general case, consider v P Bfupxq. By Proposition 2.1.1 there is k P
N, a sequence pxn1 , . . . , xnkq Ñ px, . . . , xq and a sequence pλ1, . . . , λkq such that
řk
i“1 λi “ 1, for each pi, nq P r1, . . . , ks ˆ N, fu is differentiable at xni and v “

limnÑ`8
řk
i“1 λi∇fupxni q. Since at xni we have f 1upxni ;xni q “ x∇fpxni q, xni y, we ob-
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tain:

xv, xy “ lim
nÑ`8

k
ÿ

i“1

λix∇fupxni q, xy

“ lim
nÑ`8

k
ÿ

i“1

λix∇fupxni q, xni y ` lim
nÑ`8

k
ÿ

i“1

λix∇fupxni q, x´ xni y

ě
α

2
lim

nÑ`8

k
ÿ

i“1

λi ‖xni ‖` lim
nÑ`8

k
ÿ

i“1

λix∇fupxni q, x´ xni y

ě
α

2
‖x‖ ,

where the last inequality is obtain by the triangular inequality, the fact that xni Ñ x

and that ∇fpxni q is bounded.
Second case: dimM “ k ą 0. Let u,W, x˚u be as in Proposition 6.4.1. In the
following, without loss of generality, we will assume that u “ 0 and W is bounded.
We start by outlining the proof.

• Using Proposition 6.2.1 and the Verdier condition, we show that for almost
every w PW the critical point of fw|M are nondegenerate.

• In Lemmas 6.4.3 and 6.4.4 we show that that the dimension of y P M such
that the angle condition is verified in the neighborhood of y is equal to k.

• The preceding point along with Lemma 6.4.5 and the second point of Proposi-
tion 6.4.1 shows that for almost every perturbation w PW , the angle condition
is verified in a neighborhood of x˚w.

Since Rd is covered by a countable union of such neighborhoodsW these three points
will prove Theorem 6.2.5.

To prove the first point of the outline notice that by the Verdier condition the
map from Proposition 6.4.1 is actually equal to:

w ÞÑ x˚w PM s.t. ∇Mfwpx
˚
wq “ 0 .

Therefore, by Proposition 6.2.1 we have that for almost every w P W the critical
point x˚w is nondegenerate for the function fw|M .

To prove the second point denote Pα,βpxq the first-order formula:

@w PW,

fwpxq ě α ‖x´ PM pxq‖` fwpPM pxqq ùñ xvw, x´ PM pxqy ě β ‖x´ PM pxq‖ , @vw P Bfwpxq ,

where, implicitly, in this formula we consider only such x for which PM pxq is well
defined. The first-order formula “not Pα,βpxq" can be written as:

Dw PW, Dvw P Bfwpxq such that:

fwpxq ě α ‖x´ PM pxq‖` fwpPM pxqq and xvw, x´ PM pxqy ă β ‖x´ PM pxq‖ .
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Or equivalently:

Dw PW, Dv P Bfpxq such that:

fpxq ´ fpPM pxqq ě α ‖x´ PM pxq‖` xw, x´ PM pxqy
xv ´ w, x´ PM pxqy ă β ‖x´ PM pxq‖ .

Fix α ą 0 and let Aα be the following definable set:

Aα “ ty PM : @ε ą 0, Dx P Bpy, εq, “not P2α,αpxq"u . (6.11)

The following lemma shows that for a fixed α, for almost every y P M , there is a
neighborhood around y such that the formula P2α,α holds.

Lemma 6.4.3. We have that dimAα ă dimM “ k.

Proof. Assume the contrary, by construction Aα lies in the boundary of the following
definable set.

Qα :“ tx RM : “ not P2α,αpxq”u .

Applying Lemma 2.4.9, we obtain a k-dimensional definable set A1, δ ą 0 and a
definable C1 map ρ : A1ˆp0, δq Ñ Qα such that PM pρpy, tqq “ y and ‖ρpy, tq ´ y‖ “
t. By the definition of Qα this means that for all py, tq P A1 ˆ p0, δq there is v P
Bfpρpy, tqq and w PW such that

xv ´ w, ρpy, tq ´ yy ă αt ă 2αt ď fpρpy, tqq ´ fpyq ´ xw, ρpy, tq ´ yy .

Fix y P A1 and denote ρyp¨q “ ρpy, ¨q. There are two definable selections vptq P

Bfpρyptqq and wptq PW such that

xvptq ´ wptq, ρyptq ´ yy ă αt ă 2αt ď fpρyptqq ´ fpyq ´ xwptq, ρyptq ´ yy . (6.12)

Since f is path-differentiable, we have:

fpρpy, tqq ´ fpyq “

ż t

0
xvpuq, 9ρypuqydu .

For t1 small enough, we have that the expression under the integral is continuous on
p0, t1q. Therefore, by the mean value theorem, for every t P p0, t1q, there is ut P p0, tq
such that

fpρyptqq ´ fpyq “ txvputq, 9ρypu
tqy .

Denote vy “ limtÑ0 vptq and wy “ limtÑ0 wptq (these limits exists by the mono-
tonicity lemma and the fact that f is locally Lipschitz continuous). By Lemma 2.4.3
applied to each coordinate of ρyptq ´ y we have the existence of Ry P Rd such that
Ry “ limtÑ0

ρyptq´y
t “ limtÑ0 9ρyptq. Hence, from Inequality (6.12) we obtain:

xvy ´ wy, Ryy ď α ă 2α ď xvy ´ wy, Ryy ,

which is a contradiction.
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Denote L ĂM the set:

L “
č

αą0

ď

βą0

ty PM : Dε ą 0 s.t. @x P Bpy, εq, Pα,βpxqu . (6.13)

The second point of the outline comes from the following lemma.

Lemma 6.4.4. The following holds.

i) The set L is definable.

ii) We have that
č

αPQ,αą0

pAαqc XM Ă L . (6.14)

iii) We have that dimpLc XMq ă k.

Proof. The first statement comes from the fact that the set L can be written as a
first-order formula. The second statement is immediate from definitions. Finally,
the last statement comes from the fact that we have:

Lc XM Ă
ď

αPQ
Aα .

By Remark 6 the “definable dimension" of a set coincides with its Hausdorff dimen-
sion and by Lemma 6.4.3 we have dimAα ă k. Hence, LcXM is included in a count-
able union of sets of Hausdorff dimension less than k. Therefore, dimLc XM ă k.

Define S :“ tpy, wq : y P Lc XM,w P Bfpyq XW u and Sw :“ tw P W : Dy P

Lc XM, py, wq P Su

Lemma 6.4.5. We have that dimSw ă d.

Proof. For y P Lc XM define the set Sy :“ tw : w P Bfpyqu. By Theorem 5.2.1
we have that Sy Ă ∇Mfpyq `NyM and therefore dimSy ď dimNyM “ d´ k. By
Lemma 6.4.4 we have that dimLc XM ă k. Therefore, applying Proposition 2.4.8,
we obtain that

dimS “ dimLc XM ` sup
yPLcXM

dimSy ă k ` d´ k “ d .

Since Sw is the image of S by the projection on the last d coordinates, applying
Proposition 2.4.8, we obtain dimSw ď dimS ă d.

Therefore, for almost every w P W , the set ty P M : w P Bfpyqu “ tx˚w P M :

∇Mfwpx
˚
wq “ 0u lies in L. By the definition of L for each y P L and every α ą 0,

there is β, ε ą 0 such that for all x P Bpy, εq and w PW ,

fwpxq´fwpPM pxqq ě α ‖x´ PM pxq‖ ùñ xvw, x´PM pxqy ě β ‖x´ PM pxq‖ , @vw P Bfwpxq ,

which finishes the proof.
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6.4.1 Proof of Proposition 6.2.3

The first statement immediately follows from the definition of the limiting subgra-
dient.

To prove the second statement, without loss of generality, assume that x˚ “ 0.
By contradiction assume that for all ε ą 0 there is yε P Bp0, εq XM and εyε ą 0

such that for all x P Bpyε, εyεq we have:

fpxq ě fpPM pxqq .

By Lemma 2.3.3 we have:

fpxq ě fpyεq ` fpPM pxqq ´ fpyεq

ě fpyεq ` x∇Mfpyεq, PM pxq ´ yεy `Op‖PM pxq ´ yε‖2
q

ě fpyεq ` x∇Mfpyεq, x´ yεy ` x∇Mfpyεq, PM pxq ´ xy `Op‖PM pxq ´ yε‖2
q

Since f is C2 on M , we have:

x∇Mfpyεq, PM pxq ´ xy ě x∇MfpPM pxqq, PM pxq ´ xy ´ ‖∇MfpPM pxqq ´∇Mfpyεq‖ ‖PM pxq ´ x‖
ě x∇MfpPM pxqq, PM pxq ´ xy `Op‖x´ yε‖q ‖PM pxq ´ x‖ .

Notice that ∇MfpPM pxqq P TPM pxq and that by Lemma 2.3.2 for x close enough to
M , we have PM pxq´x P NPM pxqM . Therefore, x∇MfpPM pxqq, PM pxq´xy “ 0 and
we obtain:

fpxq ě fpyεq ` x∇Mfpyεq, x´ yεy ` ‖x´ PM pxq‖Op‖yε ´ PM pxq‖q `Op‖PM pxq ´ yε‖2
q .

Since PM is Lipschitz continuous, we have Op‖PM pxq ´ yε‖q “ Op‖x´ yε‖q. Hence,
∇Mfpyεq P BLfpyεq. Since ∇Mfpyεq ÑyεÑ0 0, this implies that 0 P BLfp0q, a
contradiction.

6.4.2 Proof of Proposition 6.3.1

Consider the linearly interpolated process X : R` Ñ Rd defined as:

Xptq “ xn `
t´

řn
i“0 γn

γn`1
pxn`1q ´ xn, if t P

«

n
ÿ

i“0

γi,
n`1
ÿ

i“0

γi

¸

.

By Assumption 6.3.2 and [Schechtman 2021a, Lemma 1] the sequence p
řn
i“0 γiηi`1q

converges on the event rxn Ñ x˚s. Hence, from the work of Benaïm, Hofbauer and
Sorin [Benaïm et al. 2005, Proposition 1.3], on the event rxn Ñ x˚s, X is a so-called
asymptotic pseudo trajectory of the subgradient flow (5.14). That is to say, for every
T ě 0, by [Benaïm et al. 2005, Proposition 4.1] we have that:

sup
hPr0,T s

inf
xPS´Bf pXptqq

‖Xpt` hq ´ xphq‖ ÝÝÑ
tÑ0

0 .
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Assume that the statement of the theorem is not true. Choose T, r, α as in Propo-
sition 6.2.2 and a sequence pxnkq that converges to x

˚ but fpxnkq ă fpPM pxnkqq `

α ‖xnk ´ PM pxnkq‖. Denote tnk “
řnk
i“0 γi and xnk a solution in S´Bf pxnkq such

that
inf

hPr0,T s
‖xnkphq ´ Xptnk ` hq‖Ñ 0 .

By Proposition 6.2.2 for nk large enough, we have that xnkpr0, T sq Ć Bpx˚, rq.
Therefore, we can extract a sequence tn1k ě tnk such that

∥∥∥Xptn1kq ´ x˚∥∥∥ ě r
2 . Since

on the event rxn Ñ x˚s the limit set of X is equal to x˚, this is a contradiction.

6.4.3 Proof of Proposition 6.3.2

In this proof C will denote some absolute constant that can change from line to line
and from one statement to another. Without loss of generality assume that x˚ “ 0

and fpx˚q “ 0.
To prove this proposition the following result will be needed.

Lemma 6.4.6 ([Bianchi et al. 2021b, Lemma 5]). Let Assumption 6.3.3 hold. There
is C, r ą 0 such that the conclusions of Lemma 2.3.2, with p “ 2, are verified on
Bp0, r1q and, moreover, for any x1, x2 P Bp0, rq, we have:∥∥y2 ´ y1 ´ PTy1 px2 ´ x1q

∥∥ ď C ‖x1 ´ x2‖2
` C ‖x1 ´ x2‖ ‖x1 ´ y1‖ ,

where y1, y2 “ PM px1q, PM px2q.

Let α ą 0 be the one of Proposition 6.3.1 and let Uα, β be as in Definition 6.2.2.
Consider r1 as in the preceding lemma and let r ą 0 be such that Bp0, rq Ă Uα and
r ď r1. The value of r, while always satisfying this requirement, will be adjusted in
the course of the proof. Denote

zn “ pxn ´ PM pxnqq1‖xn‖ďr .

Notice that if ‖xn‖ ď r, then ‖zn‖ “ distpxn,Mq and zn P NPM pxnqM .
Consider κ ą 0 and for k P N, denote

τkpκ, r, αq “ tinf n ě k : distpxn,Mq ď κγn or ‖xn‖ ě r or fpxnq ă fpPM pxnqq`α ‖xn ´ PM pxnq‖u .

By a slight abuse of notations we will denote τk “ τkpκ, r, αq and zτkn “ zn^τk .
The aim of this proof is to show that for any k P N, Ppτk “ `8q “ 0. Since on

the event rxn Ñ 0s, for n large enough, we have ‖xn‖ ď r and fpxnq ă fpPM pxnqq`

α ‖xn ´ PM pxnq‖ this will implies that distpxn,Mq ď κγn happens infinitely often.
To establish this result we study the difference between

∥∥zτkn`1

∥∥2 and ‖zτkn ‖2.
Using the angle condition, we show that for τk ą n, it will decrease at least at a
rate γn ‖zτkn ‖. Since for r small enough, ‖zτkn ‖ is much larger than ‖zτkn ‖2 this will
help us to conclude.
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We have:∥∥zτkn`1

∥∥2
“ ‖zτkn ‖2

`

´

2xzn`1 ´ zn, zny ` ‖zn`1 ´ zn‖2
¯

1τkąn

“ ‖zτkn ‖2
`

´

2xxn`1 ´ xn, zny ´ 2xPM pxn`1q ´ PM pxnq, zny ` ‖zn`1 ´ zn‖2
¯

1τkąn .

(6.15)

The following lemma bound the last two quantities.

Lemma 6.4.7. There is d1, d2 ą 0 s.t. if r was chosen small enough, then:

2Enr|xPM pxn`1q ´ PM pxnq, zny|s1τkąn ď d1pγn ‖zn‖2
` γ2

nq1τkąn ,

and
Enr‖zn`1 ´ zn‖2

s1τkąn ď d2γ
2
n .

Proof. To prove the first inequality apply Lemma 6.4.6. On the event rτk ą ns,
noticing that zn is orthogonal to TPM pxnqM , we obtain:

|xPM pxn`1q ´ PM pxnq, zny| ď C ‖xn`1 ´ xn‖2 ‖zn‖` C ‖xn`1 ´ xn‖ ‖zn‖2 .

Hence,

Enr|xPM pxn`1q ´ PM pxnq, zny|s1τkąn ď
´

CEn
”

‖xn`1 ´ xn‖2 ‖zn‖` ‖xn`1 ´ xn‖ ‖zn‖2
ı¯

1τkąn

ď C
´

γn ‖zn‖2
` γ2

n ‖zn‖
¯

1τkąn

ď Cpγn ‖zn‖2
` γ2

nq1τkąn

The second inequality is obtained by writing down:∥∥zτkn`1 ´ z
τk
n

∥∥2
1τkąn ď C ‖xn`1 ´ xn‖2

1τkąn ` C ‖PM pxn`1q ´ PM pxnq‖2
1τkąn .

Taking the conditional expectation, we obtain the desired result using Lemma 6.4.6,
Equation (4.1) and Assumption 6.3.2.

Using the preceding lemma and the angle condition, taking the conditional ex-
pectation on Inequality (6.15), we obtain:

Enr
∥∥zτkn`1

∥∥2
s ď ‖zτkn ‖2

`

´

d1γn ‖zn‖2
´ 2γnxvn, zny ` pd1 ` d2qγ

2
n

¯

1τkąn

ď ‖zτkn ‖2
`

´

d1γn ‖zn‖2
´ 2γnβ1 ‖zn‖` pd1 ` d2qγ

2
n

¯

1τkąn

Denote θn “ zn
γn

and θτkn “ θn^τk .

Lemma 6.4.8. There is d3, d4 ą 0 s.t. if r ą 0 was chosen small enough, we have:

Enr
∥∥θτkn`1

∥∥2
s ď ‖θτkn ‖2

` pd3 ´ d4 ‖θn‖q1τkąn .
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Proof.

Enr
∥∥θτkn`1

∥∥2
s ď ‖θτkn ‖2

`

ˆ

´ ‖θn‖2
`

γ2
n

γ2
n`1

pp1` d1γnq ‖θn‖2
´ 2β1 ‖θn‖` Cpd1 ` d2qq

˙

1τkąn .

Using Assumption 6.3.1, we obtain:

γ2
n

γ2
n`1

p1` d1γnq ď 1` pc2 ` d1qγn ` c2d1γ
2
n .

Hence,

Enr
∥∥θτkn`1

∥∥2
s1τkąn ď ‖θτkn ‖2

`

´

pc2 ` d1qγn ‖θn‖2
` c2d1γ

2
n ‖θn‖

2
´ 2c1β1 ‖θn‖` d1 ` d2

¯

1τkąn

ď ‖θτkn ‖2
`
`

pc2 ` d1qγn ‖θn‖` c2d1γ
2
n ‖θn‖´ 2c1β1

˘

‖θn‖1τkąn
` Cpd1 ` d2q1τkąn .

Note that γn ‖θn‖1τkąn “ ‖zn‖1τkąn ď r. Hence,

Enr
∥∥θτkn`1

∥∥2
1τkąn ď ‖θτkn ‖2

` ppc2 ` d1qr ` c2d1γnr ´ 2c1β1q ‖θn‖1τkąn ` Cpd1 ` d2q1τkąn .

If r was chosen such that pc2 ` d1qr ` c2d1γnr ´ 2c1β1 ă 0, then we have:

Enr
∥∥θτkn`1

∥∥2
ď ‖θτn‖

2
` pd1 ` d2 ´ 2c1β1 ‖θn‖q1τkąn ,

which is the desired result.

Consider d3, d4 from Lemma 6.4.8. If κ was chosen greater than 2d3
d4

, then from
the preceding lemma we obtain:

Enr
∥∥θτkn`1

∥∥2
s ď ‖θτkn ‖2

` pd3 ´ d4 ‖θτkn ‖q1τkąn
ď ‖θτkn ‖2

´ d31τkąn

.

Hence, for all n ě k:

0 ď Er‖θτkn ‖2
s ` pn` 1´ kqPpτk “ `8q ,

which implies that Ppτk “ `8q “ 0.
Hence, for any k P N, τk is almost surely finite. Noticing that by Proposi-

tion 6.3.1, on the event rxn Ñ 0s, the events r‖xn‖ ą rs and rfpxnq ă fpPM pxnqq `

α ‖xn ´ PM pxnq‖s happen only a finite number of times, this implies the statement
of Proposition 6.3.2.
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6.4.4 Proof of Theorem 6.3.3

The proof will be done in three steps.

1. Lemma 6.4.9 shows that there is a constant C such that if distpxn,Mq is of
order of γn, then there is x1n such that distpx1n,Mq is also of order γn and every
point Bpx1n, Cγnq is in the repulsive region of the form (6.6).

2. Using Assumption 6.3.4, Lemma 6.4.10 then shows that in such a case the
probability of xn`1 visiting a repulsive region is lower bounded.

3. The preceding point along with Proposition 6.3.2 and Lemma 6.4.11 then
shows that the iterates pxnq visit a repulsive region infinitely often. The latter
is impossible by Proposition 6.3.1.

Without loss of generality, assume that x˚ “ 0. In this section U will be a bounded
neighborhood of zero such that the following holds on U .

i) There is cm ą 0 s.t. inft‖Bfpxq‖ : x P U XM cu ě cm.

ii) The function PM is C1 on U .

iii) The functions f, PM , f ˝ PM are Lipschitz on U , with Lipschitz constants
L,Lπ, LM .

Lemma 6.4.9. Let Assumption 6.3.3 hold. There is r1 ą 0 s.t. Bp0, r1q Ă U , and
for all y P Bp0, r1qXM , for all δ s.t. ‖y‖`δ ă r1, there is x such that the following
holds.

i) ‖x´ y‖ “ δ.

ii) fpxq ď fpPM pxqq ´
c2mδ
4L .

Moreover, for every such x, denoting δ1 “ c2mδ
8LpL`LM q

, for every x1 P Bpx, δ1q, we
have:

fpx1q ă fpPM px
1qq .

Proof. Consider r from Proposition 6.2.2 and let r1 ď
r
2 be such that Bp0, r1q Ă U

and LπL sup‖y‖ďr1 ‖∇Mfpyq‖ ă c2m
2 . Consider y, δ as in the lemma. By Proposi-

tion 6.2.3 there is x0 P Bpy,
δ
2q s.t. fpx0q ă fpPM px0qq. Let x : R` Ñ Rd be in

S´Bf px0q and define tr1 :“ inftt ě 0 : ‖xptq‖ ě r1u. By Proposition 6.2.2 we have
that tr1 ă `8. For t ď tr1 , we have:

fpxptqq ď fpxp0qq ´ c2
mt .

Denoting yptq “ PM pxptqq, for t ď tr1 , by path-differentiability of f we have:

fpyptqq “ fpyp0qq ´

ż t

0
x∇Mfpyptqq, 9yptqydt .



168 Chapter 6. SGD escapes generic traps

Since ‖ 9yptq‖ ď LπL, for t ď tr1 , we have:

fpyp0qq ď fpyptqq ` LLπt sup
‖y‖ďr1

‖∇Mfpyq‖ ď fpyptqq `
c2
m

2
t .

Therefore, for t ď tr1 ,

fpxptqq ď fpxp0qq ´ c2
mt ď fpyp0qq ´ c2

mt ď fpyptqq ´
c2
m

2
t . (6.16)

This implies that yptr1q “ PM pxptr1qq ‰ xptr1q and, therefore, ‖xptr1q‖ “ r1. Hence,

‖x0 ´ y‖ ď
δ

2
ă δ ă r1 ´ ‖y‖ “ ‖xptrq‖´ ‖y‖ ď ‖xptrq ´ y‖ .

Since x is continuous, this implies that there is tδ P p0, trq s.t. ‖xptδq ´ y‖ “ δ.
Denote x “ xptδq and notice that ‖xptδq ´ x0‖ ď Ltδ. Hence,

δ “ ‖xptδq ´ y‖ ď ‖x0 ´ y‖` ‖xptδq ´ x0‖ ď
δ

2
` Ltδ .

Therefore, tδ ě δ
2L and by Inequality (6.16) we have:

fpxq ď fpPM pxqq ´ tδ
c2
m

2

ď fpPM pxqq ´
c2
mδ

4L
,

which proves the first statement.
Finally, for x1 P Bpx, δ1q, we have:

fpx1q ď fpxq ` L
∥∥x´ x1∥∥

ď fpPM pxqq ´
c2
mδ

4L
` Lδ1

ď fpPM px
1qq ` pL` LM qδ

1 ´
c2
mδ

4L
.

With our choice of δ1 the last inequality implies that fpx1q ă fpPM px
1qq.

Lemma 6.4.10. Let Assumptions 6.3.1–6.3.4 hold. Consider κ from Proposi-
tion 6.3.2 and r1 from Lemma 6.4.9. For n large enough, there is %κ,r1 ą 0 such
that:

P prfpxn`1q ă fpPM pxn`1qqs|Fnq1distpxn,Mqďκγn1‖PM pxn´γnvnq‖ď 1
2
r1
1‖xn‖ďr1 ě %κ,r1 .

Proof. The set-valued mapping Ψn : Rd Ñ Rd, defined as:

Ψnpxq “

"

x : ‖x´ PM pxn ´ γnvnq‖ “ γn, fpxq ď fpPM pxqq ´
c2
m

4L
γn

*

,
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is closed valued and, by Lemma 6.4.9, for n large enough, it is nonempty on
r‖PM pxn ´ γnvnq‖ ď 1

2r1s. Hence, by [Rockafellar & Wets 1998, Corollary 14.6],
we can choose x1n in a measurable way such that x1n P Ψpxnq. Define ψn : Rd Ñ R
as ψnpxq “

x1n´x
γn

` vn and δ1 “ c2m
4pL`LM qL

. By Lemma 6.4.9 we have that for all
x1 P Bpx1n, γnδ

1q:
fpx1q ă fpPM px

1qq .

Denote Su the set tx : fpxq ă fpPM pxqqu. On the event rdistpxn,Mq ď γnκs X

r‖PM pxn ´ γnvnq‖ ď r1
2 s X r‖xn‖ ď r1s, using Assumption 6.3.4, we have:

Ppxn`1 P S
u|Fnq ě Ppxn ´ γnvn ` γnηn`1 P Bpx

1
n, γnδ

1q|Fnq

ě Ppγnηn`1 P Bpx
1
n ´ xn ` γnvn, γnδ

1q|Fnq

ě Ppηn`1 P Bpψnpxnq, δ
1q|Fnq

ě

ż

uPRd
1Bpψnpxnq,δ1qpuqhr1puqdu

(6.17)

Denote L1 “ L` 1` LπL` κ. We have:

‖ψnpxnq‖ ď ‖vn‖`
‖x1n ´ PM pxn ´ γnvnq‖` ‖PM pxn ´ γnvnq ´ PM pxnq‖` ‖xn ´ PM pxnq‖

γn

ď L` 1` LπL` κ “ L1 .

Therefore, by Assumption 6.3.4, on the event rdistpxn,Mq ď γnκsXr‖PM pxn ´ γnvnq‖ ď
r1
2 s X r‖xn‖ ď r1s we have:

Ppxn`1 P S
u|Fnq ě inf

‖x‖ďL1`δ1
hr1pxq

ż

Rd
1Bp0,δ1qpuqdu .

Since hr1 is positive and continuous, the infimum in the last inequality is positive,
which finishes the proof.

To finish the proof of Theorem 6.3.3 we will use the following lemma.

Lemma 6.4.11 ([Borkar 2008, Chapter 4, Lemma 14]). Consider pΩ,A,Pq a proba-
bility space and pFnq a filtration. Let pFnq, pHnq be two sequences of events adapted
to pFnq and assume that there is a constant C ą 0 such that:

PpFn`1|Fnq1Hn ě C .

Then

PprFn occurs infinitely oftensc X rHn occurs infinitely often sq “ 0 .

By Proposition 6.3.2 we know that on the event rxn Ñ 0s the event rdistpxn,Mq ď

γnκs X r‖PM pxn ´ γnvnq‖ ď 1
2r1s will happen infinitely often. Therefore, by Lem-

mas 6.4.11 and 6.4.10 the event rfpxnq ă fpPM pxnqqs happens infinitely often. By
Proposition 6.3.1 this can happen only with probability zero. Hence, Pprxn Ñ 0sq “

0.
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6.4.5 Proof of Proposition 6.3.6

The validity of Assumption 6.3.2 is immediate. To prove Assumption 6.3.4 denote
Q : Rd ˆBpRdq Ñ R` the Markov kernel of ηn`1. For every px,Aq P Rd ˆBpRdq, it
is defined as:

Qpx,Aq “ Ppηn`1 P A|x̃n “ xq “

ż

1ApGpxq ´ gpx, sqqµpdsq .

The Markov kernel of η̃n`1, denoted Q̃, is then defined for every px,Aq P RdˆBpRdq,
as:

Q̃px,Aq “ Ppη̃n`1 P A|x̃n “ xq “

ż

zPRd

ż

yPRd
1Apy ` zqQpx, dyqhpzq dz

“

ż

uPRd
1Apuq

ż

yPRd
h1pu´ yqQpx,dyqdu .

Fix C ą 0, notice that if ‖x̃n‖ ď C, then by Markov’s inequality we have for
a ě

?
2C,

ż

‖y‖ďa
Qpx̃n, dyq “ Pp‖ηn`1‖ ď a|ĂFnq ě 1´

KpCq

a2
ě

1

2
.

Therefore, for a measurable function ψ : Rd Ñ Rd and C, δ ą 0, if ‖xn‖ ď C, then:

Ppη̃n`1 P Bpψpx̃nq, δq|ĂFnq ě
1

2

ż

Rd
1Bpψpxnq,δqpuq inf

‖y‖ď
?

2C
h1pu´ yq du .

A simple exercise shows that the function u ÞÑ inf‖y‖ď
?

2C h
1pu ´ yq is continuous

and positive. Hence, Assumption 6.3.4 is verified.
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Equation





Chapter 7

Stochastic proximal subgradient
descent oscillates in the vicinity of

its accumulation set

7.1 Introduction

Let d be a positive integer, let X be a nonempty, closed and convex set and let
f, g : Rd Ñ R be two locally Lipschitz functions. In this chapter, we study the
behavior of the stochastic proximal subgradient descent (SPGD):

xn`1 P proxγng,X pxn ´ γnvn ` γnηn`1q , (7.1)

where proxγng,X is the proximal operator for the function g on X (see Equation (7.7)
for a definition), pγnq is a sequence of stepsizes, pηnq is a noise sequence and for each
n P N, vn is in the set Bfpxnq of Clarke’s subgradients of f at xn.

Let NX pxq be the normal cone of X at x. It is known (see [Davis et al. 2020,
Majewski et al. 2018]) that, under mild conditions on f , g and pηnq, every limit
point of pxnq is included in the set Z :“ tx : 0 P Bfpxq`Bgpxq`NX pxqu. The proof
leans on the seminal paper of Benaïm, Hofbauer and Sorin [Benaïm et al. 2005] (see
also [Benaïm 1999]), which analyzes Equation (7.1) as an Euler-like discretization
of the differential inclusion (DI):

9xptq P ´Bfpxptqq ´ Bgpxptqq ´NX pxptqq . (7.2)

While the sequence pxnq is known to converge to Z, recent work [Rios-Zertuche 2020]
shows that in principle, it might not converge to a unique point. In [Rios-Zertuche 2020,
Section 2] Ríos-Zertuche considers the deterministic subgradient descent (that is to
say g “ 0, X “ Rd, ηn “ 0) and constructs f , which verifies main assumptions
of nonsmooth optimization (such as Whitney stratifiability or Kurdyka-Łojasiewicz
inequality) but the limit set of pxnq is equal to Z “ tx : ‖x‖ “ 1u. This encourages
a more precise study of Equation (7.1).

In [Bolte et al. 2020b] the authors, using the theory of closed measures, show
that in the case of the deterministic subgradient descent the convergence to Z arises
in a structured manner. First, they prove that if x, y are two distinct accumulation
points of pxnq, then the time that the iterates spend to get from a neighborhood
of x to a neighborhood of y goes to infinity. Second, in a first approximation their



174 Chapter 7. Oscillations of the SPGD

results imply that if x is an accumulation point of pxnq, then
řn
i“1 γivi1xiPBpx,δq
řn
i“1 γi1xiPBpx,δq

ÝÝÝÝÑ
nÑ`8

0 ,

(see [Bolte et al. 2020b, Theorem 7] or Section 7.3 for a precise statement). Intu-
itively speaking, this means that even if xn ´ x0 “

řn
i“0 γivi does not converge, on

average, the drift coming from the subgradients compensate itself and vanishes at in-
finity. This behavior captures an oscillation phenomenon of the iterates around the
critical set. Results of this type show a strong stability property of the deterministic
subgradient descent.

In practical settings, when the function f is either unknown or computation of
its gradient is expensive, the deterministic gradient descent is often replaced by its
stochastic version, in many cases, this may lead to a faster convergence (see e.g.
[Bottou et al. 2018]). Proximal methods, on the other hand, along with the regu-
larizer function g, are widely used to regularize the initial problem of minimizing f .
Depending on the choice of g, we can, for instance, preserve the boundedness of the
iterates [Duchi & Ruan 2018] or promote the sparsity of solutions [Tibshirani 1996].
It is therefore interesting to establish stability results of the type [Bolte et al. 2020b]
for the SPGD.

In this chapter we investigate further the questions of oscillations of the SPGD.
Our contributions are threefold. First, we show that the time spent by the SPGD to
move from one accumulation point to another goes to infinity. Second, we establish
an oscillation-type behavior of the drift. These two results extend [Bolte et al. 2020b,
Theorem 7.] to a stochastic and a proximal setting. Finally, our technique of proof
doesn’t rely on the theory of closed measures used in [Bolte et al. 2020b] but is build
upon the classical work of Benaïm, Hofbauer and Sorin [Benaïm et al. 2005]. We
feel that this approach gives a simpler proof and allows us to treat the deterministic,
the stochastic and the proximal cases in a unified manner.

Chapter organization. In Section 7.2, we recall some known facts about the
DI (7.2) and its Lyapounov function. Our main results are given in Section 7.3.
Section 7.4 is devoted to proofs.

7.2 Preliminaries

7.2.1 Notations

For S Ă Rd, we denote clS its closure and convS its closed convex hull. For a
function F : Rd Ñ R, we denote ∇F its gradient. Constants will usually be denoted
as C,C1, C2 . . . , they can change from line to line. For a sequence pxnq, we denote
acctxnu its set of accumulation points. The space of continuous functions from R`
to Rd will be denoted as CpR`,Rdq, we endow this set with dC the metric of uniform
convergence on compact intervals (see Section 2.2.1). Given a convex set X Ă Rd,
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the normal cone of X is a set valued map NX : Rd Ñ Rd, defined as:

NX pxq “ tv : xv, y ´ xy ď 0,@y P X u . (7.3)

For each x P X , NX pxq is a closed convex subset of Rd.

7.2.2 A Lyapounov function for the differential inclusion

We recall that a locally Lipschitz function f : Rd Ñ R is path differentiable if for
any a.c. curve x : r0, 1s Ñ Rd, for almost every t P r0, 1s:

pf ˝ xq1ptq “ xv, 9xptqy @v P Bfpxptqq. (7.4)

By [Bolte & Pauwels 2019, Proposition 2], every convex, concave, semialgebraic or
definable function is path differentiable. Moreover, if another function g : Rd Ñ R
is path differentiable, then f ` g is also path differentiable [Bolte & Pauwels 2019,
Corollary 4]. From a similar point of view, if X is a convex set, then for any a.c.
curve x : r0, 1s Ñ Rd, for almost every t P r0, 1s:

xv, 9xptqy “ 0 @v P NX pxptqq . (7.5)

Consider now f, g : Rd Ñ R path differentiable, X Ă Rd a convex set and x a solution
to the DI (7.2). Using Equation (7.4) and (7.5) and the fact that Bpf`gq Ă Bf`Bg,
we obtain

pf ` gqpxptqq ´ pf ` gqpxp0qq “ ´

ż t

0
‖ 9xpuq‖2 du . (7.6)

This implies that pf ` gqpxptqq ă pf ` gqpxp0qq if xp0q R Z. In other words, f ` g is
a strict Lyapounov function for the DI (7.2).

7.3 Main results

Consider pΩ,Ξ,Pq a probability space and pηnq a sequence of random variables with
values in Rd. Define proxγg,X : Rd Ñ Rd, the proximal operator for g on X with a
step γ:

proxγg,X pxq “ arg min
yPX

tgpyq `
1

2γ
‖y ´ x‖2

u . (7.7)

We study Equation (7.1) under the following assumptions.

Assumption 7.3.1.

i) The set X is a closed convex subset of Rd.

ii) The functions f, g : Rd Ñ R are locally Lipschitz continuous.

iii) There is a filtration pFnqnPN, such that pηnq is a martingale difference sequence
adapted to it, and xn is Fn measurable for every n P N.

iv) The sequence of stepsizes pγnq is nonnegative and such that
ř`8
i“0 γi “ `8.
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Note that if g is nonconvex, proxγg,X pxq is a set in Rd. Assumption 7.3.1-(iii))
then implicitly states that xn`1 is chosen in a measurable manner, such a choice
is always possible (see e.g. [Davis et al. 2020]). By [Rockafellar & Wets 1998, 10.2
and 10.10], we can rewrite Equation (7.1) as:

xn`1 “ xn ´ γnpvn ` v
g
n ` v

X
n q ` γnηn`1 , (7.8)

where vgn P Bgpxn`1q and vXn P NX pxn`1q.

Assumption 7.3.2.

i) Almost surely, supn ‖xn‖ ă `8.

ii) There is q ě 2 such that

`8
ÿ

i“0

γ
1`q{2
i ă `8 , (7.9)

and, for any compact set K Ă Rd,

sup
nPN

Er‖ηn`1‖q 1xnPK|Fns ă `8 . (7.10)

Assumptions of this type are standard in the field of stochastic approximation.
Assumption 7.3.2-(i)) prevent the algorithm to diverge. Note that it is superfluous
if X is compact. Otherwise it can be obtained by a proper choice of the regularizer
g (see [Duchi & Ruan 2018]).

Let τn “
řn
i“1 γi be the discrete time of the algorithm. Define the linearly

interpolated process X P CpR`,Rdq by:

Xptq “ xn `
t´ τn
γn`1

xn`1 for τn ď t ă τn`1 .

Following [Benaïm et al. 2005] we will show that X is an APT of the DI (7.2). The
next two assumptions ensure us that f ` g will be a Lyapounov function for the
DI (7.2).

Assumption 7.3.3. The functions f and g are path differentiable.

Assumption 7.3.4. The set of Clarke critical values tfpxq ` gpxq : x P Zu has an
empty interior.

Assumption 7.3.4 is a classical Sard-type condition. It ensures the fact that if
x is a solution to the DI (7.2), with xp0q P Z, then x is constant. As established
in [Bolte et al. 2007], it is satisfied as soon as f, g and X are definable.

The next two propositions are not new and can be found in one way or another in
e.g. [Davis et al. 2020, Bolte & Pauwels 2019, Majewski et al. 2018, Bolte et al. 2020b].
Nevertheless, since our set of assumptions is slightly different and their proof is a
simple application of Section 2.2.2, for completeness, we include it in Section 7.4.1.
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Proposition 7.3.1. Let Assumptions 7.3.1 and 7.3.2 hold, then the family pXpt `
¨qqtě0 is relatively compact. Moreover, if a sequence tn Ñ `8 and x P CpR`,Rdq is
such that dCpXptn ` ¨q, xq Ñ 0, then x is a solution to the DI (7.2).

Proposition 7.3.2. Under Assumptions 7.3.1–7.3.4, the set acctxnu is included in
Z and f ` g is constant on acctxnu.

The next theorem tells us that even if acctxnu is not a single point, the time
that it takes to pxnq to go from one accumulation point to another goes to infinity.
This is an extension of [Bolte et al. 2020b, Theorem 6.i), Theorem 7.i)], to the best
of our knowledge this result is new in a stochastic and proximal setting.

Theorem 7.3.3. Let Assumptions 7.3.1–7.3.4 hold. Let x, y be two distinct points
in acctxnu. Consider two sequences ni, nj, with ni ď nj, such that xni Ñ x and
xnj Ñ y. Then τnj ´ τni Ñ `8.

Under Assumptions 7.3.1–7.3.3, the same result is true if pf`gqpxq ď pf`gqpyq.

As it is shown in [Rios-Zertuche 2020], it is possible that acctxnu is not reduced
to a unique point. Nevertheless, Theorem 7.3.3 implies that the "nonconvergence"
happens in a very slow manner. Asymptotically, the time spent by the algorithm to
move from one accumulation point to another goes to infinity.

We now investigate the question of oscillations. Given U, V two open sets, such
that clU Ă V , we will call I “ rn1, n2s a maximal interval related to U, V if the set
Xn2
n1

:“ txn1 , xn1`1, . . . , xn2u is such that Xn2
n1
Ă V , Xn2

n1
XU ‰ H and either xn1´1

or xn2`1 is not in V . The next two results are an extension of [Bolte et al. 2020b,
Theorem 7] to a stochastic setting.

Theorem 7.3.4 (Long intervals). Let Assumptions 7.3.1-7.3.4 hold. Consider x P
acctxnu and U, V two neighborhoods of x such that clU Ă V . For i P N, denote
Ii “ rn1i, n2is a sequence of distinct maximal intervals related to U, V . Then, either
one of Ii is unbounded or τn2i ´ τn1i Ñ `8.

Theorem 7.3.5 (Oscillation compensation). Let Assumptions 7.3.1-7.3.4 hold, and
fix U , V and Ii as in Theorem 7.3.4. Denote A “

Ť

Ii, then
řn
i“1 γipvi ` v

g
i ` v

X
i q1Apxiq

řn
i“1 γi1Apxiq

ÝÝÝÝÑ
nÑ`8

0 . (7.11)

Theorem 7.3.5 gives an intuitive explanation of why Theorem 7.3.3 holds. In-
deed, while the drift coming from one iteration vi ` vgi ` vXi might not go to zero
(as it happens for such a simple example as fpxq “ ‖x‖, g “ 0 and X “ Rd), on
average, it compensates itself. Theorem 7.3.3 and 7.3.5 suggest that the algorithm
oscillates around its accumulation set, while the center of these oscillations moves
in acctxnu with a vanishing speed.

Let us finish with a remark on the Equation (7.11). At first sight, maximal in-
tervals in Theorem 7.3.5 and Theorem 7.3.4 may seem artificial. A more satisfactory
result would be

řn
i“1 γipvi ` v

g
i ` v

X
i q1U pxiq

řn
i“1 γi1U pxiq

ÝÝÝÝÑ
nÑ`8

0 , (7.12)
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where U is an open neighborhood of an accumulation point x. Looking at the proof
of Theorem 7.3.5, to obtain Equation (7.12), we could think of defining maximal
intervals as Ii “ rn1i, n2is such that txn1i , . . . , xn2iu Ă U and xn1i´1, xn2i`1 R U .
Unfortunately, for this type of intervals we dont have an equivalent of Theorem 7.3.4,
i.e. it may very well be that the quantity τn2i ´ τn1i is bounded. Actually, it is not
very hard to show, that for the function from [Rios-Zertuche 2020, Section 2], there
are x, U such that Equation (7.12) is false.

Nevertheless, as explained in [Bolte et al. 2020b], Equation (7.11) is a good ap-
proximation of Equation (7.12). Indeed, apply Theorem 7.3.5 with U and V “ U δ,
where U δ “ ty P Rd : Dz P U, ‖z ´ y‖ ă δu, then, as an approximation, we have

lim
δÑ0

lim
nÑ`8

řn
i“1 γi`1pvi ` v

g
i ` v

X
i q1Apxiq

řn
i“1 γi`11Apxiq

« lim
nÑ`8

řn
i“1 γi`1pvi ` v

g
i ` v

X
i q1U pxiq

řn
i“1 γi`11U pxiq

.

7.4 Proofs

In the following we will denote xn`1{2 “ xn ´ γnvn ` γnηn`1 and

NpT, nq “ inftj ě n s.t. τj ´ τn ě T u . (7.13)

7.4.1 Proof of Proposition 7.3.1 and 7.3.2

To put ourselves in the context of Section 2.2.2 we need to alter the map ´Bf´Bg´
NX in a way that it verifies assumptions of Propositions 2.2.2 and 2.2.3. While this
section is slightly technical, conceptually, we just find a set-valued map G verifying
assumptions of Proposition 2.2.3 and s.t. xn`1 P Gpxnq. This is done using the
Lipschitz continuity of f, g and the boundedness of pxnq. A convinced reader may
want to skip to Section 7.4.2.
We start with two technical lemmas.

Lemma 7.4.1. Under Assumptions 7.3.1 and 7.3.2, almost surely, for every T ą 0,
we have:

lim
nÑ`8

sup
nďjďNpT,nq

∥∥∥∥∥
j
ÿ

i“n

γiηi`1

∥∥∥∥∥ “ 0 . (7.14)

As a consequence, the sequence p
∥∥xn`1{2

∥∥q is almost surely bounded.

Proof. Indeed, since almost surely sup ‖xn‖ ă `8, for each δ ą 0, there is C ą 0

s.t. if we denote A “ t@n P N ‖xn‖ ď Cu, then PpAq ą 1 ´ δ. Define η̃n`1 “

ηn`11‖xn‖ďC , then Erη̃n`1|Fns “ 0 and supnPN Er‖η̃n`1‖qs ă `8. Hence, by

[Benaïm 1999, Proposition 4.2], we have supnďjďNpT,nq

∥∥∥řj
i“n γiη̃i`1

∥∥∥ ÝÝÝÝÑ
nÑ`8

0.

Since δ is arbitrary, Equation (7.14) follows.

Lemma 7.4.2. Let Assumptions 7.3.1 and 7.3.2 hold. Let A P Ξ be a probability
one set on which pxnq and pxn`1{2q are bounded, and let C be a random variable s.t.
‖xn‖ ă C and C is finite valued on A. Then for each ω P A, there are two globally
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Lipschitz functions g̃, f̃ : Rd Ñ R and a bounded set-valued map rNX : Rd Ñ Rd s.t.
in Equation (7.8) we have vnpwq P Bf̃pxnpwqq, v

g
npwq P Bg̃pxn`1pwqq and vXn pwq P

rNX pxn`1pwqq.
Moreover, if x is a solution to the DI:

9xptq P ´Bf̃pxptqq ´ Bg̃pxptqq ´ rNX pxptqq , (7.15)

and that x remains in Bp0, Cq X X , then x is a solution to the DI (7.2).
Finally, denoting rZ “ tx : 0 P Bf̃pxq ` Bg̃pxq ` rNX pxqu, we have the equality
rZ XBp0, Cq “ Z XBp0, Cq.

Proof. Let ΠC`1 : Rd Ñ Rd be the projection on Bp0, C ` 1q. Define f̃pxq “
fpΠC`1pxqq, g̃pxq “ gpΠC`1pxqq. By construction, we have that vn P Bf̃pxnq and
vgn P Bgpxn`1q and that vn, v

g
n are bounded by Lf̃ , Lg̃ the Lipschitz constants of f̃

and g̃. Hence, since xn`1{2 is bounded, there is C2 s.t. supt
∥∥vXn ∥∥ : n P Nu ă C2.

Defining rNX pxq “ tv : ‖v‖ ď maxpC2, Lf , Lgq, v P ΠX pxqu, where ΠX is a projection
on X , proves the first claim. The two other statements immediately follow from our
construction.

We say that an a.c. curve x : R` Ñ Rd is a perturbed solution to the DI (7.15) if
there is ρ : R` Ñ R` and a locally integrable function b : R` Ñ Rd s.t. for almost
every t ě 0, we have:

9xptq ´ ρptq P ´Bf̃bptqpxptqq ´ Bg̃bptqpxptqq ´ rN bptq
X pxptqq ,

where Hδpxq “ tv P Hpyq : ‖y ´ x‖ ď δu, limtÑ`8 bptq “ 0 and for every T ą 0, we
have:

lim
tÑ0

sup
0ďhďT

∥∥∥∥ż t`h
t

ρpuq

∥∥∥∥du “ 0 .

If x is a bounded perturbed solution to (7.15), then by [Benaïm et al. 2005, Theorem
4.2] it is also an APT of (7.15). Thus, to prove Proposition 7.3.1 it remains to show
that X is a perturbed solution to the DI (7.15).

For t P rτpnq, τpn ` 1qq, we define ρptq “ ηn`1 and bptq “ ‖xn`1 ´ xn‖. The
condition on ρ immediately follows from Lemma 7.4.1. The condition on b follows
from the following lemma.

Lemma 7.4.3. Under Assumptions 7.3.1 and 7.3.2, almost surely, we have that
‖xn`1 ´ xn‖ ÝÝÝÝÑ

nÑ`8
0.

Proof. By Lemma 7.4.1, we have that
∥∥xn`1{2 ´ xn

∥∥ ÝÝÝÝÑ
nÑ`8

0. Moreover, we have:

gpxn`1q `
1

2γn

∥∥xn`1 ´ xn`1{2

∥∥2
ď gpxnq `

1

2γn

∥∥xn ´ xn`1{2

∥∥2
.

Therefore,
1

2γn
‖xn`1 ´ xn‖2

ď gpxn`1q ´ gpxnq ´
1

γn
xxn`1 ´ xn, xn ´ xn`1{2y

ď ‖xn`1 ´ xn‖

˜

Lg `

∥∥xn ´ xn`1{2

∥∥
γn

¸

,
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and
‖xn`1 ´ xn‖ ď γnLg `

∥∥xn ´ xn`1{2

∥∥ ,
which finishes the proof.

To finish the proof of Proposition 7.3.1 consider tn Ñ `8 and x s.t. dCpXptn `
¨q, xq Ñ 0. Then, by [Benaïm et al. 2005, Theorem 4.2], x is a solution to the
DI (7.15), moreover, it remains in Bp0, CqXX , therefore, it is also a solution to the
DI (7.2).

For the proof of Proposition 7.3.2, notice that f̃ ` g̃ is path differentiable (as
a composition of path differentiable functions). Then, in the same way as in Sec-
tion 7.2.2, we have that f̃ ` g̃ is a strict Lyapounov function for the DI (7.15) and
for the set Z̃. Since acctxnu “ LX Ă clBp0, Cq, by Proposition 2.2.3 we have that
LX Ă rZ X clBp0, Cq Ă Z, and that f ` g is constant on acctxnu.

Remark 22. Strictly speaking, following [Benaïm et al. 2005], a perturbed solution
to the DI is of the form 9xptq ´ ρptq P Hbptqpxptqq, where H “ ´Bf̃ ´ Bg̃ ´ ÑX .
Nevertheless, the proof of [Benaïm et al. 2005, Theorem 4.2] goes through with our
definition.

7.4.2 Proof of Theorem 7.3.3

Lemma 7.4.4. Let Assumptions 7.3.1– 7.3.3 hold, let τn be a positive sequence,
with τn Ñ `8, and x s.t. Xpτn ` ¨q Ñ x, then

pf ` gqpxphqq ď pf ` gqpxp0qq, @h P R` . (7.16)

Moreover, if for some h ě 0, pf ` gqpxphqq “ pf ` gqpxp0qq, then xph1q “ xp0q for
every h1 P r0, hs. If additionally Assumption 7.3.4 holds, then:

xphq “ xp0q, @h P R` . (7.17)

Proof. By Proposition 7.3.1, x is a solution to the DI (7.2), and the first result fol-
lows by Equation (7.6).
Under Assumption 7.3.4, we have that xpR`q Ă acctxnu Ă Z, hence, by Proposi-
tion 7.3.2, we have that pf ` gq ˝ x is constant. Using Assumption 7.3.3, we have for
all h P R`,

0 “ pf ` gqpxphqq ´ pf ` gqpxp0qq “ ´

ż h

0
‖ 9xpuq‖2 du . (7.18)

This implies that
şh
0 ‖ 9xpuq‖2 du “ 0. Hence, 9xphq “ 0 for almost every h P r0, T s and

we obtain Equation (7.17).

Suppose that there is T ą 0 such that τnj´τni ď T . The sequence Xpτpnjq`¨q is
relatively compact, and after extraction it converges to x a solution to (7.2). Extract
once again to have τnj ´ τni Ñ h. Then

Xpτpnjqq ´ Xpτpniqq Ñ xphq ´ xp0q “ y ´ x ,

and we obtain a contradiction with Lemma 7.4.4.
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7.4.3 Proof of Theorem 7.3.4

The next lemma is the key ingredient for the proofs of Theorem 7.3.4 and Theo-
rem 7.3.5.

Lemma 7.4.5. Under Assumptions 7.3.1–7.3.4, we have

sup
nďjďNpT,nq

∥∥∥∥∥
j
ÿ

i“n

γipvi ` v
g
i ` v

X
i q

∥∥∥∥∥ ÝÝÝÝÑnÑ`8
0 .

Proof. Suppose that we have ε ą 0 and two sequences nk and nk ď jk ď NpT, nkq,
such that for nk large enough:∥∥∥∥∥

jk
ÿ

i“nk

γipvi ` v
g
i ` v

X
i q

∥∥∥∥∥ ą ε .

This implies: ∥∥∥∥∥xjk ´ xnk `
jk
ÿ

i“nk

γiηi`1

∥∥∥∥∥ ą ε .

Extract a sequence such that Xpτnk`¨q converges to x and τjk´τnk Ñ h, with h ď T .
Then xjk Ñ xpT 1q and xnk Ñ xp0q, but ‖xpT 1q ´ xp0q‖ ě ε which is impossible by
Lemma (7.4.4).

Suppose that no Ii is unbounded, then we can choose ni P Ii “ rn1i, n2is such
that xni P U . Since xn2i`1 is in V c, after extraction xni Ñ y1 and xn2i`1 Ñ y2, with
y2 ‰ y1, moreover:

τn2i`1 ´ τni ´ γn2i`1 ď τn2i ´ τn1i . (7.19)

By Theorem 7.3.3, the first term of this inequality tends to infinity.

7.4.4 Proof of Theorem 7.3.5

Take Ii as in Theorem 7.3.4, and AN “
Ť

iďN Ii. Define

uN “
aN
bN

“

ř`8
i“0 γipvi ` v

g
i ` v

X
i q1AN pxiq

ř`8
i“0 γi1AN pxiq

.

Then,

uN`1 “
an `

ř`8
i“0 γipvi ` v

g
i ` v

X
i q1IN`1

pxiq

bN `
ř`8
i“0 γi1IN`1

pxiq
. (7.20)

Fix ε ą 0, by Lemma 7.4.5, there is n0 such that, for nk ě n0 and jk ď NpT, nkq,∥∥∥řjk
i“nk

γipvi ` v
g
i ` v

X
i q

∥∥∥ ď ε. Decompose Ii “ rn1i, n2is “
Ť

1ďkďKi
raki, aki`1s,

with a1i “ n1i and aki`1 “ mintNpT, akiq, n2iu. We obtain:

uN`1 “
aN `

ř

kďKN

řakN`1

i“akN
γipvi ` v

g
i ` v

X
i q

bN `
ř

kďKN

řakN`1

i“akN
γi

ď
aN ` pKN qε

bN ` pKN ´ 1qT
.
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By Theorem 7.3.4, we have that KN Ñ `8 and, therefore, for N large enough:

uN`1 ď
aN ` 2pKN ´ 1qε

bN ` pKN ´ 1qT
.

Hence, by induction:

uN`j ď
aN ` 2ε

řN`j´1
k“N pKi ´ 1q

bN ` T
řN`j´1
k“N pKN ´ 1q

.

Therefore, limuN ď
2ε
T . Since ε is arbitrary, this finishes the proof.
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