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Geneviève Baudoin and Olivier Venard

December 10, 2021

Jury:

Rapporteurs : Pr. HDR Yide WANG Université de Nantes
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Examinateurs : Pr. HDR Patricia DESGREYS Télécom Paris
Pr. HDR Daniel ROVIRAS CNAM Paris
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Abstract
This Ph.D. work contributes to the digital predistortion linearization technique of power
amplifiers. Power Amplifier is one of the most critical elements of radiocommunication
systems, which exhibits static nonlinearities and nonlinear memory effects. Achieving a
good trade-off between the linearity of the power amplifier and its efficiency is becom-
ing more crucial. Digital predistortion is a powerful linearization technique that aims to
compensate for power amplifier distortions and provides linear amplification with good
efficiency. The predistortion principle consists of implementing a nonlinear function, the
so-called predistorter upstream of the power amplifier. The predistorter ideally has the
inverse characteristics of the power amplifier. This operation allows us to consider the
memory effects of the power amplifier, and in particular, the long-term memory. Several
behavioral models have been used as predistorter. Most of them are classified into two
families: global models derived from the Volterra series and models based on the seg-
mentation approach. The comparative and analysis study of these models is one of the
focuses of this dissertation, in which three aspects are used for comparison: lineariza-
tion performance, complexity, and hardware implementation properties. By focusing on
models based on the segmentation approach, this dissertation proposes an approach to
design an optimal model according to a trade-off between linearization performance and
model complexity. This model is used to linearize a dual-input Doherty power amplifier.
A global optimization algorithm combined with a control process is proposed to enhance
efficiency while maintaining a good linearity level according to a proposed adaptive cost
function.

Résumé
Le travail de thèse présenté par ce manuscrit s’intéresse à la linéarisation des amplificateurs
de puissance en utilisant la prédistorsion numérique. L’amplificateur de puissance est l’un
des modules les plus critiques des équipements de communication radio qui présente des
non-linéarités statiques ainsi que des effets de mémoire. Il devient de plus en plus crucial
de réaliser un compromis entre la linéarité et le rendement énergétique. La prédistorsion
numérique est une technique de linéarisation efficace qui compense les distorsions dues
à la non-linéarité en appliquant une déformation sur le signal d’entrée, de manière à ce
que le système global réalise une amplification linéaire. Le principe de la prédistortion
numérique consiste à mettre en œuvre une fonction non linéaire dite prédistorteur en
amont de l’amplificateur de puissance, et qui a idéalement les caractéristiques inverses de
l’amplificateur de puissance. Cette opération permet également de prendre en compte les
effets mémoire, et en particulier la mémoire à long terme. Plusieurs modèles comporte-
mentaux sont proposés pour la prédistorsion qui peuvent être classés en deux catégories :
les modèles globaux et les modèles par segmentation. L’étude comparative de ces modèles
est l’un des axes de travail traité par cette thèse, dont la comparaison repose sur trois as-
pects qui sont soulignés : les performances de linéarisation, la complexité et les propriétés
de l’implémentation matérielle. En se concentrant sur les modèles basés sur l’approche
par segmentation, un algorithme est proposé pour concevoir un modèle optimal en sat-
isfaisant un bon compromis entre les performances de linéarisation et la complexité du
modèle. Ce modèle est utilisé pour linéariser un amplificateur de puissance Doherty à
double entrée pour lequel un algorithme d’optimisation globale associé à un processus de
contrôle est proposé pour améliorer le rendement tout en conservant un bon niveau de
linéarité selon une fonction de coût adaptative.
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21ème édition des Journées Nationales Microondes (JNM), 14-17 mai 2019, Caen,
France.

2. Kantana C., Baudoin G., Venard O., ”Evaluation and Comparison of Digital Pre-
distorter Modeling for Power Amplifier”, 13ème Colloque. du GDR SoC/SiP, 13–15
Juin 2018, Paris, France.

16



Introduction

Motivation

Modern wireless communication systems have been developed over the past three decades
to provide high-speed services such as mobile communications, broadcast TV, WiFi net-
works, video conferences, etc. With their increasing demands for higher data rates and
capacity, the rapid evolution of wireless communications continuously increases the com-
plexity of radiofrequency systems. To meet the demands of future wireless communication
systems, extensive research is being conducted to develop an energy-efficient and recon-
figurable radio transmitter that can support multiple access technologies and operate at
variable frequency bands.

Constrained by limited radio frequency (RF) resources, transmitting modulations,
such as orthogonal frequency division multiplexing (OFDM), are used to achieve high
spectral efficiency. However, these non-constant envelope signals lead to modulated sig-
nals with a high peak-to-power average power ratio (PAPR), which are more sensitive
to the transmission channel’s nonlinearity and require a high degree of linearity at the
transmitter. Besides, carrier aggregation allows for a very high data rate but creates
new challenges for transmitters in terms of bandwidth, intermodulation, harmonics, and
filtering.

The power amplifier (PA) is one of the essential components of radio transmitters.
Besides its role in amplifying the signal, the PA is also the primary source of signal
distortion and the major contributor to the radio transmitter chain’s energy consumption.
To maintain the reliability of the RF system and reduce energy consumption, PA is
required to be linear and have high efficiency. Unfortunately, the design of high-efficiency
and linear PAs is not easy.

On the other hand, the development of 5G and beyond 5G wireless communication
creates new challenges to provide a wide range of frequency bands that 5G wireless com-
munication systems can handle. With the cadence of this development, high efficiency
and linearity are two crucial requirements that are not easy to fulfill simultaneously, and
achieving a good trade-off between them is becoming more crucial. For high efficiency,
PA’s operating point (OP) is usually driven towards the saturation region where high
nonlinear behavior is exhibited. Besides strong nonlinearities, PAs may have memory
effects.

The output of an ideal PA should be linear, but in reality, PA is neither perfectly linear
nor entirely instantaneous when a memory effect happens. These nonlinearities generate
distortions in the signal band and cause spectral regrowth in the adjacent channels. Un-
fortunately, a good efficiency is obtained at the price of poor linearity, especially with
modern communication waveforms with very high PAPR and large bandwidths. This sit-
uation leads to ensures a trade-off between efficiency and linearity. The nonlinear behavior
of the PA depends not only on its electronics components but also on the characteristics
of the transmitted signal.

The behavioral modeling of PA and its linearization have given many research works

17



in recent years. Digital predistortion (DPD) is one of the most efficient linearization
techniques used to linearize high PAs, pushing the OP of PA towards its high-efficiency
region. The principle of DPD consists of applying, upstream of PA, a pre-correction
on the signal so that the cascade of DPD and PA produces a linear and memoryless
amplification with good efficiency. The purpose of studying the distortions of PA is to
design an appropriate DPD function, called predistorter, that will compensate for these
distortions and be implemented in a real digital circuit (FPGA, DSP ...). The hardware
implementation, which is an important aspect of this dissertation, involves two aspects:
identification and predistortion implementation.

Many mathematical models have been proposed in the literature in order to be used to
accurately model the dynamic nonlinear systems, including linearity and different types
of memory effects. One of the contributions of this Ph.D. work is the comparison of main
DPD models in terms of linearization performance, complexity, and hardware implemen-
tation properties.

The DPD models are mainly derived from the Volterra series. However, other models
are based on the segmentation approach, such as the canonical piecewise linear (CPWL)
functions. The segmentation approach is based on splitting the input baseband signal’s
amplitude range into different regions characterized by different models. The models based
on the segmentation approach can represent strong nonlinearities and are less prone to
numerical problems as they are divided into segments in which a smaller order of nonlin-
earity is required. The design of an appropriate DPD model based on the segmentation
approach with low complexity and a viable implementation strategy is an essential topic
of this dissertation.

On the other hand, maintaining a good linearity level using the DPD with enhanced
PA efficiency becomes more complex, especially for wideband signals with high PAPR.
Advanced PA architectures have been proposed in the literature to enhance efficiency and
avoid wasting excessive power resources. Some of these architectures are used with two
RF inputs, so having more degrees of freedom offered by the separate inputs can control
the performance and improve the PA efficiency.

Objectives
The above discussion reveals significant challenges in applying existing linearization so-
lutions to improve further the system for both current LTE and future 5G wireless com-
munication systems. This thesis aims to address these questions through the following
objectives:

This dissertation mainly focuses on:

• Analysis and comparative study of the DPD models in terms of linearization per-
formances, model complexity, and numerical hardware properties.

• Search of the optimal structure of models with segmentation approach according to
a cost function representing a trade-off between modeling accuracy and model com-
plexity. Besides, an approach is proposed to divide the model segments optimally.

• Optimization of the structure of dual-input PA with DPD in which an optimization
process is proposed to enhance the efficiency while maintaining the linearity.

Main Contributions
The main contributions of this dissertation are listed as follows:
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• An analysis and comparative study of the DPD models. These models have been
categorized into two families: global models derived from the Volterra series and
models based on the segmentation approach. The models have been evaluated
according to a trade-off between:

– Linearization performances presented by the modeling accuracy measure and
the adjacent channel power ratio.

– Complexity presented by the number of DPD coefficients to be identified.
– Hardware implementation related to the identification process and predistorter

implementation.

• A new approach is proposed to optimally set the thresholds bounding the segments
of the DPD models based on the segmentation approach. The impact of the model
parameters on optimal segmentation has been investigated.

• A heuristic algorithm based on hill-climbing is proposed and confirmed to determine
the optimal structure of the DPD model based on the segmentation model with:

– A new definition of the neighborhood for the hill-climbing algorithm.
– A designed cost function is representing the trade-off between modeling accu-

racy and model complexity.

• A proposed system approach to design an optimal DPD model in terms of modeling
accuracy, model complexity, and numerical properties. This contribution is based
on:

– A proposed approach to integrate with reduced system complexity the hill-
climbing algorithm and the segmentation optimization process.

– A proposed strategy for the hardware implementation of the DPD model de-
signed by the system approach.

• A proposed auto-tuning approach to optimize the parameters of the dual-input
Doherty PA to enhance its power efficiency with maintaining a good level of linearity.
The designed DPD model is used to linearize the PA and confirms our proposed
system approach.

Context
The Ph.D. work presented in this dissertation is funded by the FUI22 APOGEES research
project (AmPlification recOnfiGurablE multimodES). The APOGEES project aims to
solve the problems related to the reconfigurability of amplification systems to meet the
different challenges generated by the new uses of the spectrum.

The APOGEES project has been labeled by Aerospace Valley, Image Réseaux, and
Elopsys. The industrial partners involved in this project (ARELIS, THALES, TELERAD)
aim to implement a reconfigurable system that deals with distortions of power amplifiers
to make the transmitter systems more flexible for different applications: drones control,
tactical communications, aeronautical communications, etc. The work carried out within
this thesis’s framework is also done in close collaboration with the other academic partners
involved in this project: Centrale Supélec, IMS Bordeaux, XLim Poitiers, and IETR
University of Nantes.

International mobility was carried out as an intern at Mitsubishi Electric Research Lab-
oratories (MERL) in Cambridge, USA, under the host Dr. Rui Ma and Dr. Mouhacine
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Benosman. The internship is titled Machine Learning for Digital Predistortion Lineariza-
tion of High-Efficiency Dual-Input Doherty Power Amplifier.

Outline
The dissertation consists of five chapters.

Chapter 1 presents general concepts and the background of PA. Figures of merit used
to assess the PA distortions are cited. PAPR reduction techniques and linearization
techniques are also introduced, which are at the heart of this dissertation.

The principle of DPD is described in Chapter 2. Different DPD models are cited and
reviewed. An analysis and comparison of DPD models is achieved according to modeling
performances, complexity, and numerical properties.

In Chapter 3, the Decomposed Vector Rotation (DVR) model is investigated. A new
approach to optimize the thresholds that determine the boundary of the segments is
proposed. The determination of the optimal structure of the DVR model is introduced
as well.

A system approach is proposed in Chapter 4 to design an optimal DVR model with
reduced complexity by combining the thresholds optimization and the DVR model’s op-
timal sizing. The performances of the designed optimal DVR model are compared with
those of the conventional DVR model. An implementation strategy of the optimal model
is presented.

Chapter 5 presents the architecture of dual-input Doherty PA, in which a proposed
optimization process is presented. The designed optimal DVR model from Chapter 4 is
used as a DPD model to linearize the dual-input Doherty PA, where the DPD is optimally
integrated into the global optimization process.

Finally, we give the conclusion and perspectives.
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Chapter 1

Generalities on Radio Frequency
Power Amplifier

1.1 Introduction
Wireless radiofrequency (RF) transmitter is a fundamental block of modern communi-
cation systems to transmit information from a given source to a receiver. Figure 1.1
illustrates a conventional architecture of an RF transmitter by highlighting the digital
and analog domains.

The information to be transmitted is first processed in digital form based on digital
circuits such as FPGA (Field-Programmable Gate Array) or by digital signal processing
(DSP). During this step, the information is encoded to be transmitted on two channels:
in-phase I and quadrature Q. The IQ data are then passed through a block, so-called
digital front-end for the RF processing, which usually contains a digital-up converter
(DUC) for the frequency transposition, a crest factor reduction (CFR) to improve the PA
efficiency, and digital predistortion (DPD) for the PA linearization. The signal is then
converted by a digital-to-analog converter (DAC). Reconstruction filters are often used
after this conversion to eliminate unwanted frequency components and limit bandwidth.

The analog part of the transmitter is responsible for transposing the signal from the
baseband to the RF domain. Several transmitter architectures are used, such as direct
conversion (Zero-IF), which transposes the signal directly to the carrier frequency, and
low-IF architecture, which transposes the signal to an intermediate frequency before being
transposed to the carrier frequency. Since the power of the RF signal must be of a sufficient
level to be transmitted through the channel, an amplification module is required to supply
the power needed for the RF signal to ensure its transmission to destination.

Figure 1.1: Block diagram of RF wireless transmitter

The RF transmitters are expected to conduct modulated signals while maintaining
three performance indicators: linearity, bandwidth, and power efficiency. The linearity is
affected by the nonlinear behavior of the transmitter caused by its distortions. Ensuring
linearity is an essential aspect to preserve the quality of the transmitted signal and to avoid
any loss of information during the transmission process. Since the bandwidth of the RF
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signal to be transmitted is wider than that of the input signal due to the generation of new
frequency components, the bandwidth is a critical aspect to be managed. Moreover, wider
bandwidths are needed to accommodate higher data. Power efficiency is an important
consideration that reflects the power level of transmitting the information. It depends on
the electronic topology of the transmitter, in particular the power amplifier, and affects the
costs of deploying and operating the communication infrastructure and the environmental
impact. An ideal transmitter must achieve a better compromise between good linearity
and high power efficiency in handling wideband signals.

Wireless transmitters consist of several stages, including modulation, DAC, frequency
up-conversion, filtering, and amplification. Different wireless transmitter architectures
have been introduced in the RF community, and one of them is shown in Figure 1.1. The
position of DAC may change in some structures.

The distortions seen in RF transmitters are usually due to hardware imperfections.
They have various origins, such as IQ imbalance, oscillator phase noise, DAC imperfec-
tions, frequency response distortions, amplitude and phase distortions, etc. The most
predominant distortions are those due to the nonlinearity presented in the RF front-end
and mainly the RF power amplifier (PA), which is identified as the primary source of non-
linear distortions. Thus, modeling and compensating for nonlinear transmitter distortions
are often turned to modeling and compensating for PA nonlinearities.

This chapter presents some generalities related to PAs. The distortions introduced
by PA and the metrics to evaluate them are discussed. Two essential aspects concerning
the PA, which are linearity and efficiency, and the techniques to improve them will be
discussed.

1.2 Waveform Features
To quantify the dynamic of modulated waveform with non-constant envelope, some cri-
teria such as peak-to-average power ratio (PAPR) and effective PAPR are used.

To statistically characterize the modulated waveform’s instantaneous power fluctua-
tions, the most used parameters are the crest factor (CF) and its quadratic value, the
PAPR, which is defined by the ratio of the peak power Ppeak and the average power Pavg
as:

PAPRdB = 10 log
(

Ppeak

Pavg

)
(1.1)

The CF is defined as square root of the PAPR:

CF =
√

PAPR (1.2)

It is important to know that the PAPR of the baseband signal and the RF signal are
not the same. However, they are linked by:

PAPRRFdB ≤ PAPRbasebanddB + 3 dB (1.3)

where it is true if the carrier frequency fc is much greater than the signal bandwidth, which
is met almost all the time. In this dissertation, we will only talk about PAPRbasebanddB

which will be denoted by PAPR.
Generally, the PAPR is used to define and represent the dynamics of the signal. How-

ever, this parameter is not sufficient to characterize the real dynamics of the signal.
Figure 1.2 presents the magnitude of IQ data in dBm of LTE signal, where the PAPR

of the LTE signal is shown.
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Figure 1.2: IQ data of LTE signal in dBm

In practice, the transmitted signal is random, and it has a PAPR value which is only
exceeded with a low α probability, typically 1% or 1‰.

This value so-called effective PAPR, denoted by PAPR0, is defined using CCDF by

p(PAPR ≥ PAPR0) = α (1.4)

1.3 Overview of Power Amplifiers Characteristics
The PA is an essential component of the transmission block of RF wireless systems. In
its conventional definition, a PA is an electronic device used to increase the power of a
signal.

The PA is usually the final stage before the antenna, which is designed to gain the
input signal and, therefore, the power required to transmit it through the radio channel
to reach the receiver. In an ideal context, the amplification operation should not clip the
desired signal. However, the PA being a nonlinear device, is a source of distortions that
impact the transmitted signal.

The design of PA is always subject to the antagonism between linearity and power
efficiency [1]. Figure 1.3 shows a common behavior of output power (blue curve) and
power efficiency (red curve) with respect to the input power, where the maximization of
efficiency is done by sacrificing linearity by pushing the operating point of the PA towards
its saturation zone.
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Figure 1.3: Trade-off between the linearity and the efficiency of PA

However, the operating point needs to be backed off from the saturation zone to avoid
nonlinear distortions. For this to happen, an approach is required to maximize power
efficiency while keeping its distortions at a reasonable level that can be compensated at
the system level using linearization techniques such as Feedforward, Feedback, or Predis-
tortion [2].

The behavior and characteristics of a PA depends on its class and topology. In the
following, we present some general characteristics of PA.

1.3.1 Gain
The gain is one of the most important characteristics of the PA, which provides a measure
of the amplification level of the transmitter system.

The power gain is the ratio between the output power and the input power of the
signal, which is given in dB by

GdB = PoutdBm − PindBm (1.5)

where PindBm and PoutdBm are the input and output power, respectively.

1.3.2 AM-AM and AM-PM Characteristics
The nonlinearities can be characterized by curves called Amplitude-to-Amplitude (AM-
AM) and Amplitude-to-Phase (AM/PM) curves, as shown in Figure 1.4 that is an example
for a Doherty PA.

The blue curve is the AM-AM characteristic, which shows the normalized magnitude of
the PA’s output signal versus the normalized magnitude of its input signal. The signals
are the complex baseband IQ signals. The orange curve is the AM-PM characteristic,
which shows the PA output signal’s phase deviation versus the normalized input signal
magnitude.
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Figure 1.4: AM-AM and AM-PM characteristics of a Doherty PA

Ideally, the PA should have constant gain G over the entire operating range, where
the output and input of PA, denoted by y(n) and x(n), respectively, are expressed by

y(n) = Gx(n) (1.6)

But in reality, the gain is not constant due to the inherent nonlinearities in the PA,
which are represented by the characteristic AM-AM [2]. On the other hand, the non-
linear effects, whatever its source (average power, bandwidth, polarization conditions,
temperature, etc.), change the phase shift between the input and output signals. This is
represented by the AM-PM characteristic.

1.3.3 1-dB Compression Point
The AM-AM and AM-PM characteristics are widely used to characterize the transfer
function of PA. It can be seen that the gain is compressed by PA when the input power
increases.

By definition, the 1 dB compression (P1dB) is the point where the gain of the PA is
compressed by 1 dB against the small-signal gain of the linear region, as shown in Figure.
1.5. The points PinC

and PoutC represent the input and output power levels for which 1
dB of gain compression is obtained, respectively.
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Figure 1.5: 1-dB compression point on AM-AM characteristic

1.3.4 Back-Off
To ensure reliable signal transmission and avoid saturation at the PA’s output, it is
necessary to keep the operating point backed off from the saturation.

This back-off can be adjusted according to the input or output power at saturation,
denoted respectively by Poutsat or Pinsat , by using two indicators: input back-off (IBO)
and output back-off (OBO), which are illustrated in Figure 1.6.

Figure 1.6: 1-dB compression point on AM-AM characteristic

The IBO is defined as the ratio between Pinsat and the mean input power Pin of the
signal and is expressed in dB by

IBOdB = Pinsat(dBm)− Pin(dBm) (1.7)

The OBO is defined as the ratio between Poutsat and the mean input power Pout of the
signal and is expressed in dB by

OBOdB = Poutsat(dBm)− Pout(dBm) (1.8)
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1.3.5 Harmonics and Intermodulation Products
The nonlinear behavior can be analyzed by exciting the PA by signals of different types:
continuous wave (CW) signal, two-tone signal and modulated signal, while monitoring
saturation power, gain, 1-dB compression point, and intermodulation distortions.

1.3.5.1 CW Signal Test

Stimulating the PA by a CW signal is a typical test that aims to evaluate the PA charac-
teristics in terms of linearity and power efficiency. As shown in Figure 1.7, the CW signal
test consists of exiting the PA with a purely sinusoidal signal

x(t) = A cos(2πf0t)

with an amplitude A at a frequency f0.

Figure 1.7: PA driven by CW signal

The behavior of the PA in the time domain shows a distortion of the signal at the
PA output, which results in the frequency domain by the generation of new frequency
components depending on the fundamental frequency f0: (2f0, 3f0, 4f0, ...), called har-
monic components. The higher the power of these harmonic components, the stronger
PA’s nonlinearity.

The CW signal test appears to be a good approach to characterize the fundamental
effects of the PA nonlinearities. However, this test remains limited for current commu-
nication systems and does not make it possible to further characterize the nonlinearity
effects for modulated signals.

1.3.5.2 Two-Tone Signal Test

The two-tone signal test is widely used method for more relevant PA characterization and
to have better description of the nonlinear behavior of the PA.

The two-tone signal is composed of two closely-spaced sinusoidal frequencies with
amplitude A, and frequencies f1 and f2:

x(t) = A cos(2πf1t) + A cos(2πf2t) = 2A cos(2πfmt) cos(2πfct)

where fm = f2−f1
2 and fc = f2+f1

2 .
By driving the PA by the two-tone signal as shown in Figure 1.8, the output contains

the frequency harmonics (2f1, 2f2, 3f1, 3f2, ...) and additional frequency components,
called intermodulation (IMD) products, generated at frequencies mf1 +nf2 where m and
n are positive or negative integer and |m|+|n| = k where k is the order of intermodulation.
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Figure 1.8: PA driven by two-tone signal

The odd-order terms of the IMD product (k = 3, 5, 7, . . . ) are the most likely to disturb
the amplified signal since they are close to the PA’s useful band. In general, the 3rd and
5th IMD products have the highest power.

In order to quantify the spectral regrowth at the output of a PA driven by a two-tone,
we use a metric called the carrier to inter-modulation distortion ratio (C/IMD), which
represents the ratio in a linear scale between the power at the fundamental frequencies f1,2
and the power generated at inter-modulation frequencies mf1 + nf2, as shown in Figure
1.9.

Figure 1.9: IMD products and harmonics of PA driven by two-tone signal

The two-tone test allows a standard evaluation of distortions by quantifying the non-
linear behavior of the PA. However, it is insufficient to represent the nonlinear behavior
when the PA is driven by a real complex modulated signal used for communication sys-
tems.

1.3.6 Power Efficiency
An efficient PA aims to deliver a certain amount of power to the load without consuming
too much power itself [3].

However, the actual DC power consumption, PDC is always more extensive than the
output power Pout. The PA can dissipate a considerable amount of energy in the form of
waste heat. Two parameters are commonly used to characterize the PA efficiency:

• Drain efficiency which is defined as the ratio between the output power Pout and the
DC power PDC :

ηDC = Pout
PDC

(1.9)
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• Power added efficiency (PAE) which takes into account the PA input power Pin,
and is defined as:

ηPAE = Pout − Pin
PDC

(1.10)

1.3.7 Memory Effect
In some instances, the PA is characterized by considering only its static characteristics.

Mainly, the PA exhibits nonlinear and dynamic dispersive phenomena called memory
effects, which means that the system’s output at any instants depends not only on the
corresponding instantaneous input but also on the inputs at other previous instants.
Therefore, the characteristics change with the frequency.

In narrowband wireless communication systems, the PA can be considered memoryless
or quasi-memoryless. Wideband wireless communication systems need to identify whether
the PA has a memory effect or not [4].

Figure 1.10 presents the AM-AM characteristic of PA excited by a two-tone signal with
a bandwidth of 1 MHz and 8 MHz. As shown in Figure 1.10b, the AM-AM characteristic
for the wideband scenario exhibits strong dispersion.

(a) Bandwidth of 1 MHz (b) Bandwidth of 8 MHz

Figure 1.10: Memory effect on AM-AM

For PA design, substantial knowledge on the origins of memory effect and the accurate
approaches to measure and quantify their impacts are required [5]. The origin of the
memory effect can be either thermal or electrical [6].

The memory effect could be categorized into two types: short-term memory effect, also
known as high-frequency (HF) memory effect, and long-term memory effect, also known
as low-frequency (LF) memory effect.

The HF memory effects are caused by short time constants phenomena and depend
on matching circuits and active components. The LF memory effects are induced by
the slow variations of the signal, i.e., the same order of magnitude as the inverse of the
envelope bandwidth. These undesirable effects are due to the components’ self-heating,
the trapping effect due to specific technologies such as GaN, value of the input and/or
output load of the transistor at the envelope frequency, automatic gain control, etc.

1.4 Figures of Merit
Stimulus signal may experience substantial distortions due to the transceiver chain’s non-
linear components, such as the PA, and other imperfections such as the IQ imbalance,
oscillator phase noise, and sampling jitter.
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As a result of the nonlinearities, in-band and out-of-band distortions are generated.
The main effects are the cloud-like shape of constellation points and the out-of-band radi-
ation. The error vector magnitude (EVM) and the adjacent channel power ratio (ACPR)
are mainly used to evaluate the distortion introduced by PA [7]. For high PA nonlinearities
with many carriers, noise power ratio (NRP) can be used to assess performance.

1.4.1 Adjacent Channel Power Ratio
The imperfections and nonlinearities of PA usually result in some adjacent channel spec-
tral regrowth.

This phenomenon can be quantified with ACPR defined as a bandwidth-limited ratio
between the power in the main channel and the power in the adjacent channel as illustrated
in Figure 1.11.

Figure 1.11: Upper and lower adjacent channels

Therefore, this property can be defined for lower (left) and upper (right) adjacent
channels, which are expressed as:

ACPRU,dB = 10 log10

∫ B/2
−B/2 P (y(t))df∫ 3B/2
B/2 P (y(t))df

ACPRL,dB = 10 log10

∫ B/2
−B/2 P (y(t))df∫−B/2
−3B/2 P (y(t))df

(1.11)

where B represents the bandwidth of the signal and P (.) is power spectral density.

1.4.2 Error Vector Magnitude
The EVM is a metric that measures the in-band distortion level of the PA driven by a
modulated signal. It is defined in the constellation domain and evaluates the deviation
between the reference constellation point and the actual constellation point obtained in
the presence of distortions.

Analytically, EVM is defined as:

EVM% =

√√√√ 1
N

∑N−1
j=0 (δI2

j + δQ2
j)

S2
avg

× 100% (1.12)
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Where δI and δQ are errors magnitude corresponding to in-phase symbol and quadrature
symbol of received data compared with an ideally reconstructed constellation respectively,
N is the number of symbols, S2

avg is the average square magnitude. The offset and the
rotation of the constellation can also be considered in the definition of EVM.

Figure 1.12 shows an example of a 64-QAM signal constellation from Doherty PA
operating at 3.1 GHz. The blue points present the constellation of the input signal. The
red points present the constellation of the output signal after demodulation. In this case,
the EVM is 10 %.

Some measurements (IQ data) from real PA were collected in this dissertation without
any demodulation information. For these waveforms, the value of EVM, denoted by
EVMapp, has approximately been estimated using NMSE in-band.

Figure 1.12: Constellation of input-output IQ data with EVM=10%

1.4.3 Noise Power Ratio
Noise power ratio (NPR) is another possible measurement to characterize nonlinear dis-
tortions. As EVM it is used to evaluate in-band distortion.

In the NPR measurement procedure, multi-carrier signals with random amplitudes and
phases (such as OFDM) will be simulated by an additive white Gaussian noise. A large
number of tones with different frequencies with the same magnitudes and random phases
with a uniform distribution can generate a Gaussian white noise [8], which is filtered and
passed through a narrowband-reject filter to produce a deep notch in the noise pedestal
center, then stimulate the PA and produce the IMD product.

The PA nonlinearity will result in the generation of a spurious signal in the notch.
The NPR will then be used to evaluate the ratio between the average power of the signal
outside the notch and the intermodulation noise in the notch. It is expressed as follows:

NRPdB = 10 log10

( 2
∫
Bnotch

P (y)df
2
∫
Bcarrier

P (y)df
Bcarrier

Bnotch

)
(1.13)

where B represents the bandwidth and P (.) is power spectral density.
The EVM and NPR are considered practical measurements for quantifying the in-

band distortion of the PA. However, NPR measurement does not require transmitted
signal demodulation, unlike EVM [9].
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1.5 PAPR Reduction Techniques
To improve the PA efficiency, an intuitive solution is to reduce the PAPR of the input
signal. PAPR reduction techniques, commonly known as Crest Factor Reduction (CFR),
find their interest in improving the PA’s efficiency.

Several PAPR reduction techniques have been proposed in the literature. As described
in [10], PAPR reduction techniques can be classified into three top categories: coding
methods, probabilistic methods, and adding signal methods.

In order to evaluate the performance of every technique, the PAPR reduction is the
most significant criterion. However, other metrics could be used to quantify the effective-
ness of the approach used to reduce PAPR.

• Average power variation: Some PAPR reduction techniques result in a decrease
or increase of the transmitted signal’s average power. In the literature, most PAPR
reduction techniques performance studies do not take into account the average power
variation of the transmitted signal [11]. This variation has a strong impact on the
quality of the transmission.

• In and out of band distortions: Some PAPR reduction techniques introduce
in-band and/or out-of-band distortions because of their nonlinear operation. EVM
and ACPR are used to evaluate these distortions.

• Downward compatibility: A PAPR reduction technique is said to be downward
compatible if it does not involve any change on the receiving side. This is the case
of tone reservation and clipping technique. The coding methods are not downward
compatible as they require post-processing on the receiver side.

• Data rate loss: For some methods, the receiver needs additional information to
recover useful transmitted data. These methods need an increase in the bandwidth
and consequently a decrease in the spectral efficiency. If the bandwidth has to be
kept constant, this information transmission involves a data rate loss. This is the
case of the selective mapping technique.

1.5.1 Coding Methods
The coding methods consist in reducing the occurrence probability of the same phase
value of signals which add up with the same phase. A simple block coding scheme was
introduced in [12], and it consists of finding out all possible codewords and then select
those codewords of the lowest PAPR. It has been shown that using this technique, the
PAPR of the signal can be reduced by 4 dB.

In [13] and [14], the authors used the Golay complementary sequences where more
than 3 dB PAPR reduction has been obtained. However, the coding methods is limited
by two constraints. The first requires a brute-force approach to find the best appropriate
code-word. The second is the complexity of storing in LUTs for encoding and decoding
in the transmitter and receiver.

In summary, the actual benefits of coding for PAPR reduction for practical multi-
carrier systems are limited, regarding the low coding rate, the intractable required search
for a good code, and the prohibitive complexity for many sub-carriers.

1.5.2 Probabilistic Methods
The idea behind the probabilistic methods is to perform several copies of the initial signal
by modifying the phase, amplitude, and/or position of sub-carriers and then select the
copy with the minimum PAPR.
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These methods cannot guarantee the PAPR below a specified level. Moreover, it
decreases the spectral efficiency, and the computational complexity increases as the num-
ber of sub-carriers increases. The probabilistic methods include selective mapping (SLM)
technique and partial transmit sequence (PTS) [15]. The block diagram of SLM technique
is shown in Figure 1.13.

Figure 1.13: Selective mapping technique

In the SLM technique, the input data sequences are multiplied by U different phase
sequences to generate alternative input symbol sequences. Each of these alternative input
data sequences are then applied to the IFFT operation, and then the one with the lowest
PAPR is selected for transmission [16].

Therefore, its performance in reducing the PAPR depends on the number and phase
factors design. The corresponding selected phase factor also needs to be transmitted to
the receiver as side information to extract the original information properly.

1.5.3 Adding Signal Methods
This category, as its name suggests, includes all techniques of PAPR reduction that can
be formulated as:

PAPR(X + Cpapr) < PAPR(X) (1.14)
where X refers to the waveform signal and Cpapr refers to the peak-reduction signal.

1.5.3.1 Clipping

Clipping is one of the simplest techniques to reduce the PAPR [17], where the amplitude
peak of a given signal x(n) is clipped according to a certain threshold Amax.

x(t) =
{
|x(t)|ejϕ(x) if |x(t)| ≤ Amax
Amaxe

jϕ(x) if |x(t)| > Amax
(1.15)

This technique generates some unwanted distortions in in-band and out-band, which
degrades the system performance, including bit error rate (BER) and spectral efficiency.

1.5.3.2 Tone reservation

Tone reservation for multi-carrier signals proposed in [18] is based on the reservation of
sub-carriers that do not carry any useful information, in order to generate the PAPR
reduction signal that lowers its peaks when added to the original multi-carrier signal.
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1.5.3.3 Active Constellation Extension

Active constellation extension introduced in [19] reduces the PAPR by appropriately ex-
tending the outer points of the signal constellations in the frequency domain. The constel-
lation modifications appropriately cancel the time domain peaks of the transmitted signal.
This is achieved without any degradation in BER performance and data rate. However,
this comes at the cost of a slight increase in the average power of the transmitted signal.

1.6 Linearization Techniques
Many linearization techniques compensate for PA’s distortion, such as Feedforward, Feed-
back, and Predistortion.

1.6.1 Back-Off
The simplest method to deal with PA nonlinearity is to operate the PA with a significant
power back-off from its saturation point to achieve linear amplification. This implies
that the maximum input power level must be capped so that the entire signal remains
within the linear region of the PA. This solution is not exactly a linearization technique.
However, it is often used because of its simplicity of realization, but at the cost of poor
energy efficiency.

1.6.2 Feedforward
The principle is to extract the error signal (distortions) at the output of PA and then
subtract it from the output signal. Therefore, an input signal splits into two paths, as
shown in Figure 1.14.

Figure 1.14: Principle of Feedforward

The first path consists of the main PA and time delay with some coupling elements.
The second one amplifies the error signal that is the difference between the output of
the first PA aligned in time and amplitude with the input signal and the time-delayed
input. A coupler subtracts the amplified error signal from the PA’s time-delayed distorted
output at the output. Thus, the distortions in the out-band are reduced.

1.6.3 Feedback
The output from the feedbacked amplifier is subtracted from the input signal with a
specific attenuation. Therefore, the PA is driven by the error signal. The advantage is the
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relative simplicity of additional circuitry needed to provide feedback. On the contrary,
the main disadvantage of feedback is caused by problems of stability and bandwidth
limitation. Feedback linearization is classified into two main groups: RF Feedback and
Cartesian Feedback. The basic layout of RF Feedback linearization can be seen in Figure
1.15.

Figure 1.15: Principle of Feedback

The performance of Feedback linearization depends on the quality of the cancellation
process linked to the gain loop. The method can only improve the linearity for narrowband
signals due to the limitation of the loop-bandwidth product guaranteeing stability.

1.6.4 Predistortion
Predistortion (PD) is an efficient technique for linearizing the PAs. It introduces a module,
called predistorter, upstream of the PA, which compensates for the PA’s nonlinearities.
The predistortion does not require an in-depth knowledge of the PA’s physic circuits,
and we only need to precisely measure the PA’s actual behaviors for the predistortion
procedure [20].

The first PD systems for wireless communications were proposed by Nagata [21] in
1989, Cavers [22] - [23] in 1990 and Wright [24] in 1992.

The implementation of PD can be done in analog or digital domain, but currently, the
most common implementation is digital, applied to the baseband signal [25] - [26].

In the analog domain, the analog PD is performed at the carrier RF frequency, at
the IF frequency, or at the baseband level after the DAC, using analog circuits, based on
diodes or transistors [27] - [28]. The implementation of analog PD has been proposed in
[29]. In [30], the authors propose an approach where the modulated signal is predistorted.
Furthermore, they also proposed an approach to make this analog predistortion adaptive.
The analog PD circuits are generally small, facilitating their integration into a power
amplification system with reduced power consumption. However, linearity is limited be-
cause the elimination of intermodulation is generally sufficient only for third-order IMD.
Moreover, the drifts due to the aging of the PD’s analog components and the PA cannot
be corrected.

When speaking of analog PD, analog processing may be less power-consuming than
its digital counterpart. However, it remains limited to reasonably simple predistortion
functions like the memory polynomial and does not offer the same processing versatility
as digital processing.

Predistortion is widely implemented in the digital domain, which offers better lin-
earization performance. The digital predistortion (DPD) process is done by hardware,
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using a programmable logic device (FPGA, ASIC, DSP). Besides, the predistortion sys-
tem can be adaptive by adding a feedback path to the system. This path takes a part of
the PA output in order to update the predistortion block. The DPD is independent of the
carrier frequency, which is a property of flexibility, and it remains helpful in a multi-mode
or multi-band context, thanks to adaptability.

In 4G and 5G wireless communication systems, very high data rates are achieved
thanks to carrier aggregation generating signals with very high bandwidths for which
DPD may be challenging to implement (it would require too expensive DAC and ADC
converters and high computation load).

On the other hand, the DPD is suitable for wideband applications. Furthermore, it is
highly flexible and could be reconfigurable. However, the variation on PA characteristics
due to the variation of component tolerances and the drift of temperature should be
considered. The adaptation is required.

The core of this dissertation focuses on the PA linearization using the digital predis-
tortion, which will be detailed in the following chapter.

1.7 Conclusion
This chapter has provided an overview of the PA and its characteristics and the distortions
that are introduced. The main metrics that evaluate these distortions have been presented.
Two main aspects concerning PAs, which are linearity and power efficiency, are discussed.
The techniques to improve each aspect are discussed, as well.

The main contributions of these dissertations are thoroughly presented in the following
chapters.
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Chapter 2

Analysis and Comparative Study of
Digital Predistortion Models

2.1 Introduction
The concern to linearize the PA dates back to the beginning of broadcasting and the
expansion of telecommunications in the last century [31]. As the transmissions shift to
communication with higher spectral efficiency waveforms such as M-QAM, the require-
ment for linearity becomes more stringent and opens the way for DPD to be developed
and implemented. Even if the main goal of DPD is to linearize the power amplifier, it
also contributes, in many cases, to improve the power efficiency, which is vital since PAs
are responsible for a significant part of the power consumption in base stations of wireless
cellular networks [32].

This chapter mainly focuses on the principle of DPD, its architectures, and the different
DPD models. The comparison of these models, which presents the first contribution of
this dissertation, is achieved in different scenarios and for different types of PA.

2.2 Principle of Digital Predistortion
As mentioned in Section 1.6.4, DPD is an efficient linearization technique of PAs. It
consists of generating signal components of inverted proportional amplitude and opposite
phase to the distortion products, in order to have a constant complex gain over the entire
operating power range of the linearized amplifier, so that the whole system operates as a
linear amplification system, as illustrated in Figure 2.1.

Figure 2.1: Principle of digital predistortion

The characteristic of the predistortion operator fPD, called predistorter, is the inverse
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of that of the PA. For example, for a memoryless PA represented by gPA, the linear
amplification system for memoryless systems can be expressed by:

gPA(fPD(u)) = Gu (2.1)

where G is the gain of the system.
The strong inverse match between the nonlinear characteristics of the predistorter and

that of the PA leads to an effective DPD to cancel the distortions of the PA. Besides, it
is required from DPD to achieve high linearization performances and low cost.

The DPD does not require a deep knowledge of the physical circuits of PA [6], but it
is necessary to precisely measure the actual behavior of PA for the DPD process [20].

On the other hand, the DPD needs to be made adaptive to maintain a linear ampli-
fication system, particularly when the input signal changes characteristics (power level,
frequency, and bandwidth) as well as the PA (variation of component tolerances and
temperature drift).

Figure 2.2 illustrates the principle of baseband adaptive DPD. The DPD requires a
reference signal for its adaption, which could come from path 1 or 2, depending on the
approach used [33]. The feedback signal should be acquired of good quality since it is
used for correction and synchronization. For this, it is advisable to use the mixers at the
lowest possible power level. The DAC and ADC converters are essential components in
the blog diagram of Figure 2.2. Their power consumption is not negligible (especially for
wideband signals) and can degrade the efficiency, especially if the PA output power is not
very high.

Figure 2.2: Baseband adaptive DPD with PA

2.3 Digital Predistorter Models
The aim of studying PA distortions is to design an appropriate predistorter that will
compensate for these distortions and ensure linear amplification of the signal to be trans-
mitted.

Several mathematical models have been proposed in the literature to model the PA
and serve as well as predistorter. Most of them are based on Volterra Series [34].

2.3.1 Volterra Series
Volterra series are widely used to represent the input-output relationship of nonlinear dy-
namical systems. They are formed by a combination of linear convolution and a nonlinear
power series so that it can be used to characterize a nonlinear dynamic system accurately
[35]. To model the RF behavioral system, the Volterra series can be expressed as:
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ỹ(t) =
+∞∑
k=1

∫ +∞

0
· · ·

∫ +∞

0
h̃k(τ1, . . , τk)

k∏
j=1

x̃(t− τj)dτj (2.2)

where x̃ and ỹ represent the RF input and RF output signal, respectively, h̃k(·) is the
real-valued k-th order Volterra kernel.

In baseband, the complex envelope of the signal can be obtained by a low-pass filter.
Hence, the relationship between the baseband input and output in discrete time is:

y(n) =
K∑
k=0

M−1∑
i1=0

...
M−1∑

i2k+1=i2k

hk(i1, ..., ik)
k+1∏
j=1

x(n− ij)
2k+1∏
j=k+2

x∗(n− ij) (2.3)

where x(n) and y(n) represent the baseband complex input and output, respectively,
hp(i1, ...ip) is called the Volterra series kernel, K is the nonlinearity order, and M is the
memory depth.

The Volterra series model is robust and can provide greater modeling performance,
but it is very complex and slowly converge. Unfortunately, the main drawback of Volterra
series is that the number of coefficients increases exponentially with the order of nonlin-
earity and the memory depth. This drawback makes the Volterra series unattractive for
real-time applications. This leads to use particular cases of the Volterra series, which
retain only a few terms of these series.

2.3.2 Pruning of Volterra Series
In [34], the authors proposed an efficient approach to pruning of the Volterra series ac-
cording the physical properties of the PA, which significantly reduces model complexity
by removing unnecessary coefficients from the general Volterra series.

The memory polynomial (MP) model and the Generalized Memory Polynomial (GMP)
model are the most popular models obtained by direct pruning of the Volterra series.

The MP model proposed in [37] is obtained by reducing the Volterra series model to
its diagonal terms. The input-output relationship for the MP can be written as:

y(n) =
K∑
k=1

M∑
i=0

akix(n− i)|x(n− i)|k−1 (2.4)

where aki represent the coefficients of the model, and K and M are the nonlinearity order
and memory depth, respectively.

When only odd degrees are used, (2.4) can be rewritten :

y(n) =
K∑
k=0

M∑
i=0

a2k+1,ix(n− i)|x(n− i)|2k (2.5)

The GMP model is built by augmenting the memory polynomial model with additional
basis functions, introducing cross-terms. It is proposed in [38] to better deal with PAs
with strong nonlinearities and wideband signals. The GMP model can be written as:

y(n) =
Ka−1∑
k=0

La−1∑
l=0

aklx(n− l)|x(n− l)|k

+
Kb∑
k=1

Lb−1∑
l=0

Mb∑
m=1

bklmx(n− l)|x(n− l −m)|k

+
Kc∑
k=1

Lc−1∑
l=0

Mc∑
m=1

cklmx(n− l)|x(n− l +m)|k

(2.6)
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where Ka, Kb, Kc are the highest orders of nonlinearity. La, Lb, Lc are the highest memory
depths. Mb, Mc denote the longest lagging and leading delay tap length, respectively. akl,
bklm, cklm are the coefficients of the general memory polynomial applied on the aligned
terms, the lagging and leading cross-term.

2.3.3 Modified or Dynamic Volterra Series
To overcome the complexity of Volterra series, several models have been proposed from
modified or dynamic Volterra series. In [39], the authors limit the number of coefficients
by separating the static and dynamic parts to model the PA. In [40], the author proposed
a derived model from the dynamic Volterra series, called dynamic deviation reduction
(DDR).

The DDR model can be further simplified as [41] and [42]. The 1st-order truncated
DDR-1 is defined as:

y(n) =
K−1

2∑
k=0

M∑
i=0

b2k+1,1|x(n)|2kx(n− i)

+
K−1

2∑
k=1

M∑
i=1

b2k+1,2|x(n)|2(k−1)x2(n)x∗(n− i)

(2.7)

where b2k+1,j is the kernel of the system. A more complex DDR model can be derived by
adding some 2nd-order dynamic terms:

y(n) =
K−1

2∑
k=0

M∑
i=0

b2k+1,1|x(n)|2kx(n− i)

+
K−1

2∑
k=1

M∑
i=1

b2k+1,2|x(n)|2(k−1)x2(n)x∗(n− i)

+
K−1

2∑
k=1

M∑
i=1

b2k+1,3|x(n)|2(k−1)x(n)|x(n− i)|2

+
K−1

2∑
k=1

M∑
i=1

b2k+1,4|x(n)|2(k−1)x∗(n)x2(n− i)

(2.8)

The MP model, which contains only the diagonal terms, has limited performance
because some off-diagonal terms may be significant. Compared with the MP model, the
DDR model includes off-diagonal terms, but has fewer diagonal terms. The Modified
Dynamic Deviation Reduction-based Volterra (MDDRV) proposed in [43] and [44] can be
viewed as the combining of the MP model and the DDR. By combining (2.4) and (2.7),
the first-order MDDRV-1 model can be expressed as:

y(n) =
K−1

2∑
k=0

M∑
i=0

a2k+1,1|x(n)|2kx(n− i)

+
K−1

2∑
k=1

M∑
i=1

a2k+1,2|x(n)|2(k−1)x2(n)x∗(n− i)

+
K−1

2∑
k=1

M∑
i=1

b2k+1|x(n− i)|2kx(n− i)

(2.9)
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where a2k+1,j and b2k+1 are the model coefficients. The simplified second order MDDRV-2
model can be expressed, by combining (2.4) and (2.8), as:

y(n) =
K−1

2∑
k=0

M∑
i=0

a2k+1,1|x(n)|2kx(n− i)

+
K−1

2∑
k=1

M∑
i=1

a2k+1,2|x(n)|2(k−1)x2(n)x∗(n− i)

+
K−1

2∑
k=1

M∑
i=1

a2k+1,3|x(n)|2(k−1)x(n)|x(n− i)|2

+
K−1

2∑
k=1

M∑
i=1

a2k+1,4|x(n)|2(k−1)x∗(n)x2(n− i)

+
K−1

2∑
k=1

M∑
i=1

b2k+1|x(n− i)|2kx(n− i)

(2.10)

2.3.4 Models with Segmentation
Another approach to representing a nonlinear dynamic system is splitting the amplitude
range into different regions or segments characterized by piecewise approaches models,
such as models using B-splines approximation, vector-switched models, decomposed vector
rotation, etc.

These approaches are able to represent strong nonlinearities and may be less sensitive
to numerical problems than global polynomial models. Furthermore, these models are
based on segments of smaller orders of nonlinearity, which can be identified with short
buffers of training data.

In [45], Chua proposed the first compact representation for modeling a nonlinear func-
tion by line segments, called canonical piecewise linear (CPWL) functions. The nonlinear
basis functions of CPWL are constructed piecewise, making it much more flexible than
the Volterra models. The CPWL is expressed as:

y(n) =
M∑
i=0

aix(n− i) +
K∑
k=1

ck

∣∣∣∣∣
M∑
i=0

ak,ix(n− i)− βk
∣∣∣∣∣ (2.11)

where K is the number of segments that are bounded by the thresholds βk. M is the
memory depth and ai, ck,i and ak,i are the coefficients.

The main drawback of CPWL in (2.11) is that the model is nonlinear with respect to
its coefficients, which complicates the process of identifying the coefficients ck,i and ak,i.

Zhu proposed in [46] an extension and modified form of CPWL that it called decom-
posed vector rotation (DVR) model. It is based on the vector rotation technique to handle
complex signals and nonlinear systems with memory.

The extension from CPWL functions consists of changing the form |x(n− i)− βk| to
||x(n− i)| − βk|ejθ(n−i) through an operation of 4 steps:

• Calculate the magnitude value of the input signal x(n− i).

• Subtract away the threshold βk.

• Apply an absolute operation |.| to |x(n− i)| − βk.

• Restore the phase θ(n− i) of the signal x(n− i).
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The representation ||x(n− i)| − βk|ejθ(n−i) can be rewritten as:

||x(n− i)| − βk|ejθ(n−i) =
x(n− i)− βkejθ(n−i), if |x(n− i)| ≥ βk

[x(n− i)− βkejθ(n−i)]ej180◦
, if |x(n− i)| < βk

(2.12)

where the phase rotation on |x(n− i)− βk| is applied if |x(n− i)| is less than βk, making
of it the nonlinear process introduced into the DVR model.

Furthermore, the DVR model is linear with respect to its coefficients. The simplest
version of the model, denoted DVR-2, is defined by combining the linear term and the
basis function discussed below, which is expressed as:

y(n) =
M∑
i=0

aix(n− i) +
K∑
k=1

M∑
i=0

cki,1||x(n− i)| − βk|ejθ(n−i) (2.13)

The DVR-2 model refers to 2 terms: the linear term and the 1st-order basis.
The DVR model can be enriched by higher-order extension and variations of basis

functions (derived from DDR, for example). We will call DVR-6 model, the DVR model
that can be derived by adding some DDR terms.

y(n) =
M∑
i=0

aix(n− i)

+
K∑
k=1

M∑
i=0

cki,1||x(n− i)| − βk|ejθ(n−i)

+
K∑
k=1

M∑
i=0

cki,21||x(n− i)| − βk|ejθ(n−i).|x(n)|

+
K∑
k=1

M∑
i=1

cki,22||x(n− i)| − βk|.x(n)

+
K∑
k=1

M∑
i=1

cki,23||x(n− i)| − βk|.x(n− i)

+
K∑
k=1

M∑
i=1

cki,24||x(n)| − βk|.x(n− i)

(2.14)

An important aspect concerning the DVR model is how the thresholds βk are dis-
tributed. In this chapter, The DVR model is used with a uniform distribution of the
thresholds, e.g., βk = k/K for k = 1, 2, ..., K − 1.

In the next chapter, we will propose an original approach to determine the thresholds’
optimal values and determine the terms to be used in the DVR model.

2.4 Predistorter Identification
An essential aspect of digital predistortion is the estimation of the digital predistorter
model coefficients.

Several approaches has been proposed in the literature [47] - [48]. The two main
techniques are direct learning architecture (DLA) and indirect learning architecture (ILA).

In the DLA, the predistorter is determined in two steps. In the first step, the coeffi-
cients of the nonlinear model for the PA are extracted. In the second step, the identified
PA model is used to estimate the predistorter by minimizing a criterion based on the
difference between the observed PA output and the ideal output, which is equal to the
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original input signal multiplied by a reference gain. Several algorithms were proposed to
improve the DLA [49].

Unlike DLA, ILA consists of estimating a postdistorter that will be used as a pre-
distorter. Besides, if the model is linear in its coefficients, the ILA requires a linear
estimation, while the DLA requires a nonlinear estimation.

In [50], a system-level convergence of DLA and ILA is investigated and compared. The
MP model was used for both architectures to asses the robustness of the identification
process, where it was shown that the DLA was found to be more robust than the ILA in
the presence of noisy measurements.

2.5 Post-Distortion Identification
In this chapter, the DPD model coefficients are identified using postdistortion architecture
that is based on ILA, but without copying coefficients to the predistorter model, unlike
the ILA as is illustrated in Figure 2.3.

Figure 2.3: ILA and Post-Distortion architecture

In this architecture, only the input-output signals from PA are required to estimate the
model coefficients. The principle of Post-Distortion architecture is illustrated in Figure
2.4.

Figure 2.4: Principle of Post-Distortion architecture

The PA output signal y(n) is divided by the amplification gain G. The signals x(n) and
z(n) are used to estimate the model coefficients c using least square (LS) approach in order
to minimize the LS criterion built on the difference between x(n) and zp(n), the model
output that is computed using the estimated coefficient c and z(n). The instantaneous
error is defined as:

e(n) = x(n)− zp(n) (2.15)
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For the DPD models that are linear with respect to their coefficients, the relationship
between its input and output can be rewritten using matrix notation. For a block of N
samples:

zp = Zc (2.16)

where zp= [zp(1), . . . , zp(N)]T , c is a C × 1 vector containing the set of model coefficients,
Z is N ×C matrix of regressors containing basis functions of z. For example, in the case
of a MP model, this matrix is represented as:

Z =


Φ1,1(z(n)) . . . ΦK,1(z(n)) Φ1,2(z(n)) · · · ΦK,L(z(n))

Φ1,1(z(n− 1))
... . . . ... ΦK,L(z(n− 1))

...
...

...
Φ1,1(z(n−N + 1)) · · · ΦK,L(z(n−N + 1))

 (2.17)

where Φk,l(z(n)) = z(n− l + 1)|z(n− l + 1)|k−1.
The least square (LS) solution will be the solution for the following equation for c:

[ZHZ]c = ZHx (2.18)

or equivalently using the pseudo-inverse:

ĉ = [ZHZ]−1ZHx (2.19)

with x is the input signal, where (2.18) minimizes the LS criterion:

ĉ = min
c

(J) (2.20)

with:

J =
N∑
n=1
|e(n)|2 =

N∑
n=1
|x(n)− zp(n)|2

Many approaches can be used to solve (2.18) such as LU, LDL, QR decomposition,
etc. It should be noticed that the matrix ZHZ is generally ill-conditioned.

2.6 Comparison of DPD models
Many comparative studies have been done to compare the linearization performance of
DPD models [51] - [53]. In [53], the paper presented a comparative overview of various
nonlinear behavioral approaches for PAs. In [54], the study focused on the linearization
performance comparison of 4 DPD models: MP, GMP, Orthogonal Polynomials with
Memory (OPM), and DDR.

In [55], a comparative study has been carried out of the MP, GMP, and DVR models
for DPD to linearize the radio on fiber laser with distributed feedback. The comparison
was made in terms of NMSE, EVM, and ACPR, where the authors show through experi-
mental results The DVR model can achieve reliable performance linearization with fewer
coefficients than the MP and GMP models.

In this chapter, besides MP, GMP, and DDR, the DVR-2 and DVR-6 models are also
evaluated and compared, which underlines that the main contribution of this part of our
work is to compares two different categories of models: global models derived from the
Volterra series and models based on segmentation approach [56].
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2.6.1 Metrics of Comparison
The studied DPD models are evaluated according to metrics which are divided into two
categories. The first one is the metrics of accuracy, which assess the linearity performance.
The second one highlights the hardware implementation complexity, which refers to the
number of coefficients and numerical properties, which refers to numerical stability to
extract the model and the dynamic range of the coefficients. Another complexity feature
of a model comes from the construction of the matrix operator, Z in (2.18) and the
auto-correlation matrix ZHZ, which is controlled by the buffer length N .

2.6.1.1 Linearization Performance

As (2.18) seeks to minimize e(n), a natural measure for the modeling accuracy is the
normalized mean square error (NMSE) between the post-distortion output zp(n) and the
PA input signal x(n):

NMSEdB = 10 log10

∑N
n=1 |x(n)− zp(n)|2∑N

n=1 |x(n)|2
(2.21)

From a system point of view, the figure of merit is provided by the out-band distortions
which are evaluated using adjacent channel power ratio (ACPR) which is defined for the
right and left channel as:

ACPRR,dB = 10 log10

∫ B/2
−B/2 P (zp(t))df∫ 3B/2
B/2 P (zp(t))df

ACPRL,dB = 10 log10

∫ B/2
−B/2 P (zp(t))df∫−B/2
−3B/2 P (zp(t))df

(2.22)

where B represents the bandwidth of the signal and P (.) is power spectral density.

2.6.1.2 Implementation Properties

Predistorters are generally implemented in real digital circuits such as FPGA. Their iden-
tification can also be implemented on FPGA or some general-purpose digital processor.
For that, it is important to have figures of merit related to hardware implementation.
Two critical aspects of the implementation are concerned: the identification and the pre-
distorter implementation.

2.6.1.2.1 Identification

The complexity to solve (2.18) is related to the number of coefficients C of the DPD
models, and to the buffer length N [57]. Table 2.1 presents the parameters and number
of coefficients of the different DPD models compared in this study.
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Table 2.1: Comparison of DPD models complexity

DPD Parameters Number
Model of coefficients

MP K: nonlinearity order
K × (M + 1)

M : memory depth

GMP
Ka, Kb, Kc: nonlinearity order Ka × La
La, Lc, Lc: memory depth +Kb × Lb ×Mb

Mb,Mc: lagging and leading cross-terms order +Kc × Lc ×Mc

DDR-1 K: nonlinearity order K+1
2 +K ×M

M : memory depth

DDR-2 K: nonlinearity order K+1
2 × (M + 1)

M : memory depth +3M K−1
2

MDDRV-1 K: nonlinearity order K+1
2 + (3K−1

2 )×M
M : memory depth

MDDRV-2 K: nonlinearity order K+1
2 × (M + 1)

M : memory depth +2× (K − 1)×M

DVR-2 K: number of segments (K + 1)× (M + 1)
M : memory depth

DVR-6 K: number of segments 5×K ×M + 2×K +M + 1
M : memory depth

The computation to solve (2.18) may exhibit numerical sensitivity depending on the
condition number of ZHZ which will be used as an indicator of this sensitivity.

On the other hand, according to Table 2.1, we can classify the DPD models in terms of
complexity. The complexity of the DPD models, derived from the Volterra series, depends
on the nonlinearity order K and the memory depth M . The complexity depends on the
number of segment K, the memory depth M , and the number of the basis functions for
the DVR model.

2.6.1.2.2 Predistorter implementation

For the implementation of the predistorter, there are two aspects to consider: the
overall complexity related to the number of parameters (Table 2.1) and the number of
bits required to encode each of those parameters. This number of bits will depend both
on the dynamic range and the resolution required for the coefficients.

The hardware implementation can be carried out by two structures: direct imple-
mentation and the implementation by LUT. A comparison study of the direct form and
implementation using LUT was presented in [58].

In direct implementation, complexity refers to the number of computational operations
directly related to the number of coefficients. In implementation by LUT, complexity
refers to the number of LUT, which is only related to the memory depth. It is worth
noting that LUT implementation may not provide better implementation efficiency for
all kinds of models, such as GMP.

An example implementation of the MP model with K = 3 and M = 1 is illustrated in
Figure 2.5, where the direct method and LUT are respectively shown in Figure 2.5a and
Figure 2.5b.
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(a) Direct method
(b) LUT

Figure 2.5: Implementation of an MP model with K = 3 and M = 1

In this work, the dynamic range is considered a relative indicator of the requirement
for the number of bits required for each model. We thus make the assumption that every
model will require the same resolution, which is certainly rough. The dynamic range of
the coefficients is introduced as a comparison element, which can be calculated as:

ϵ = max[real(c), imag(c))]−min[real(c), imag(c)] (2.23)

2.6.2 Comparison of MP, GMP, DDR, MDDRV, and DVR
2.6.2.1 Testbench Description

The DPD models are evaluated using the input-output signals from real PA shown in
Figure 2.6. The PA line is made of a three-way Doherty PA designed for the base station
(BS-PA) with three LDMOS transistors BLF7G22LS-130 from Ampleon, formerly NXP,
and its associated driver. This Doherty PA can have a peak output power of 57 dBm (500
W) and has a linear gain of 16 dB. In the following, the PA in Figure 2.6 is denoted by
LDMOS-TW-500W PA.

Figure 2.6: Three-way Doherty PA

The LDMOS-TW-500W PA is excited by an LTE signal with 20 MHz bandwidth and
a PAPR of 8 dB, and the carrier frequency is 2.14 GHz with a sampling frequency of
200 Ms/s. The AM-AM and AM-PM curves obtained with LDMOS-TW-500W PA are
plotted in Figure 2.7.
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Figure 2.7: AM-AM & AM-PM curves of Doherty PA for an 20 MHz LTE signal

2.6.2.2 Parameters of DPD Models

The structure of the GMP model are optimally determined using a hill-climbing algorithm
as proposed in [59] using off-line additive criterion.

For this study, we have chosen to limit the maximum nonlinearity order and memory
depth to the same maximum values as the GMP model, i.e. K = 11 and M = 4, for MP,
DDR-1, DDR-2, MDDRV-1, and MDDRV-2. The number of coefficients is 43.

We size the DVR model to have a model with a similar trade-off between complexity
and performance compared to the other DPD models. For the DVR-2 model, the number
of coefficients is 55 with K = 10 and M = 4 and 71 for the DVR-6 model with K = 3
and M = 4.

Figures of merit of every model are summarized in Tables 2.2, where it can be seen
that the GMP model achieves the best performance regarding NMSE and ACPR even
though DVR-6, MP, and DVR-2 also achieve good performances.

Table 2.2: Comparison of linearization performances

DPD Model NMSE (dB) ACPRL (dB) ACPRR (dB)
Without DPD -10.29 -23.32 -22.46

MP -32.65 -41.23 -38.90
GMP -35.39 -43.02 -42.46

DDR-1 -29.39 -38.37 -36.26
DDR-2 -31.81 -39.81 -38.32

MDDRV-1 -29.39 -38.37 -36.26
MDDRV-2 -31.82 -39.81 -38.33

DVR-2 -32.84 -41.60 -38.95
DVR-6 -34.94 -41.88 -41.81

Figure 2.8 shows the plot of the NMSE according to the number of coefficients for each
DPD model. From this figure, it can be seen that the NMSE for all models, except GMP
and DVR-6, converges toward an asymptote around 33 dB while the NMSE for GMP and
DVR-6 is still decreasing with the number of coefficients.
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Figure 2.8: Modeling accuracy vs number of coefficients

Table 2.3 shows the number of coefficients and their dynamic range for each model,
and the condition number of the matrix ZHZ which is involved in the computation of the
identification procedure.

Table 2.3: Comparison of implementation properties

DPD Number Condition Coefficient dynamic
Model of coefficients number range

MP 55 1.12e27 2.18e11

GMP 43 5.24e23 1.75e10

DDR-1 50 7.52e22 4.59e8

DDR-2 90 3.16e24 2.53e9

MDDRV-1 70 7.54e22 4.83e8

MDDRV-2 110 3.72e24 2.53e9

DVR-2 55 5.40e7 1
DVR-6 71 2.70e9 11.65

For the LDMOS-TW-500W PA with this waveform, DVR exhibits exceptional values
for both dynamic range and condition number as there are more than ten orders of
magnitude for both dynamic range and condition number between DVR models and
GMP-MP models.

Even if the GMP model reaches the best linearization performance, the DVR-6 has
a very similar performance but with nearly twice the number of coefficients. It is the
price to pay to benefit from the outstanding properties of the DVR-6 model for digital
hardware implementation in this scenario.

In order to validate the effectiveness of this comparative study, the GMP and DVR-
6 models will be specifically highlighted and compared in the following section. The
comparison will be made in different scenarios with different bandwidths, and at different
power levels [60].
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2.6.3 Comparison of GMP and DVR
2.6.3.1 Testbench

The experiments are carried out using an LDMOS PA 50 W at 1.78 GHz center frequency.
In the following, this PA is denoted by LDMOS-50W PA. The testbench used for these
tests consists of software-defined radio (SDR) from ARELIS for generating the IQ signals
and a vector signal transceiver (VST) NI for the data acquisition at 200 Ms/s.

The tests are made with a set of LTE signals of 5, 10, and 20 MHz bandwidth and a
maximum PAPR of 12dB, at four output power levels: 34, 38, 42, and 44 dBm.

The nonlinearities and the memory effect of the LDMOS-50W PA can be seen from
the AM-AM and AM-PM curves in Figure 2.9 for 20 MHz bandwidth case at 44 dBm.

Figure 2.9: AM-AM & AM-PM curves of LDMOS PA for a 20 MHz LTE signal

2.6.3.2 Parameters of Models

The structure determination of the GMP model is done using the hill-climbing algorithm,
which is proposed in [59]. With this algorithm, we size the structure of the GMP model
using the criterion which makes a trade-off between modeling accuracy and complexity.
For the DVR-6 model, an exhaustive search is carried out by exploring all combinations
when the number of segments K ranges from 2 to 10 and the memory depth M ranges
from 0 to 10.

The thresholds βk for the set of partitions are optimally selected by a proposed ap-
proach which will be the subject of the next chapter.

Figure 2.10 shows the plot of the modeling accuracy presented by NMSE versus the
number of coefficients for 5, 10, and 20 MHz bandwidths. Theses results are achieved
using postdistortion architecture. The output power is 44 dBm.
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(a) 5 MHz bandwidth

(b) 10 MHz bandwidth

(c) 20 MHz bandwidth

Figure 2.10: NMSE vs number of coefficients at 44 dBm output power
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In Figure 2.10a, the NMSE behavior versus the number of coefficients of the two
DPD models has a similar form of convergence where they start from the same point
and converge towards an NMSE asymptote around 40 dB. However, the DVR-6 model
has faster convergence since its NMSE between 3 and 8 coefficients is better than that of
the GMP model. This is clearly seen in Figure 2.10b, where the DVR-6 model has fast
convergence to join the 40 dB asymptote, while the GMP model requires 15 coefficients.
However, the GMP model convergence is slightly better than that of the DVR-6 model
by about 0.2dB of NMSE, as shown in figure 2.10c.

To study the linearization performance and the numerical properties of the two DPD
models, we have chosen to compare the two models with the same number of coefficients.
In this case, the number of coefficients is set to 39 coefficients.

Table 2.4 summarizes the parameters of structure found by the hill-climbing algorithm
for the GMP model and the structure parameters found by the exhaustive search for the
DVR-6 model.

Table 2.4: Parameters of GMP and DVR model for each bandwidth at 44 dBm output
power

Bandwidth DVR-6 GMP
K M Ka La Kb Lb Mb Kc Lc Mc

5 MHz 3 2 1 14 5 1 1 10 2 1
10 MHz 3 2 4 2 1 6 3 13 1 1
20 MHz 3 2 1 3 2 2 3 8 1 3

The linearization performances are summarized in Table 2.5 in terms of NMSE and
ACPR.

Table 2.5: Linearization performance of GMP and DVR-6 with 39 coefficients

Bandwidth NMSE (dB) ACPRR (dB) ACPRL (dB)
DVR-6 GMP DVR-6 GMP DVR-6 GMP

5 MHz -39.66 -39.75 -42.43 -42.53 -40.81 -40.84
10 MHz -40.31 -40.76 -44.78 -44.48 -43.43 -43.57
20 MHz -38.82 -39.41 -49.38 -49.76 -48.80 -49.94

By comparing the results in Figure 2.10, the values collected in Table 2.5 confirm that
the GMP model provides slightly better accuracy than the DVR model, which can be
tolerable since the results are collected using postdistortion scenario.

Figure 2.11 shows the power spectrum of the postdistorter for the GMP and DVR-6
model with 5, 10, and 20 MHz bandwidth and 44 dBm output power. As it can be seen,
both DPD models have close linearization performances.
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(a) 5 MHz (b) 10 MHz

(c) 20 MHz

Figure 2.11: Spectra of PA input-output, GMP, and DVR-6 postdistorter at 44 dBm
output power

Table 2.6 presents the dynamic ranges of the coefficients and the condition number of
the matrix involved in the identification procedure. The results in Table 2.5 and Table
2.6 are given with the same complexity for both DPD models.

Table 2.6: Numerical properties of GMP and DVR-6 with 39 coefficients

Bandwidth log10(Condition Number) Dynamic range
DVR-6 GMP DVR-6 GMP

5 MHz 13 17 109 34887
10 MHz 14 18 327 19700
20 MHz 13 18 307 16278

From Table 2.6, it can be seen that the condition number for DVR is lower than for
GMP, even though it is still significant. The dynamic range of the coefficients is the other
figure of merit that assesses the numerical properties of the model. It can be seen that
the DVR model exhibits a better behavior for this feature than the GMP model.

On the other hand, the performance of the GMP and DVR-6 models is investigated
with the variation of output power level. For this study, we choose the signal with 20
MHz bandwidth by varying the output power at four levels: 34, 38, 42, and 44 dBm.

The parameters for the DVR-6 model are K = 4 and M = 1. The parameters of the
GMP model are obtained with the hill-climbing algorithm using the additive criterion and
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summarized in Table 2.7, for each output power level. The number of model coefficients
for each power level is 30 coefficients.

Table 2.7: GMP structure obtained by hill-climbing algorithm for each output power

GMP parameters 34 dBm 38 dBm 42 dBm 44 dBm
Ka 2 1 2 3
La 6 6 5 4
Kb 4 2 2 8
Lb 1 1 1 1
Mb 3 6 3 1
Kc 3 6 7 10
Lc 2 2 2 1
Mc 1 1 1 1

Table 2.8 shows the linearization performance and numerical properties for each power
level.

Table 2.8: Comparison for each output power level of GMP and DVR models

Output Power 34 dBm 38 dBm 42 dBm 44 dBm
GMP DVR-6 GMP DVR-6 GMP DVR-6 GMP DVR-6

NMSE (dB) −32.58 −32.34 −36.28 −35.45 −36.34 −35.36 −39.25 −37.73
ACPRL (dB) −50.41 −49.93 −50.44 −49.43 −46.77 −45.70 −48.99 −47.46
ACPRR (dB) −49.38 −49.27 −49.85 −49.11 −46.03 −45.52 −48.35 −47.86

log10(Condition Number) 9 11 11 10 13 10 17 10
Dynamic range 8 42 75 31 474 8 1.18e5 104

The three first rows of Table 2.8 allow making some comparison between both models
on linearization performances. The two last rows present the numerical properties results.
The dynamic range and condition number of the GMP model increase with the output
power. On the other hand, they remain bounded for the DVR model.

The GMP model performs better than DVR when the PA exhibits lower nonlinearities,
but the DVR model remains suitable for strong nonlinearity. On the other hand, the
DVR-6 model confirms its outstanding numerical properties for different bandwidths and
output power.

2.7 Conclusion
This chapter introduces the principle of digital predistortion. The Post-Distortion archi-
tecture has been presented and discussed. The DPD models are presented and described
according to 2 categories: global models derived from Volterra or modified Volterra series
and models based on segmentation approach. These DPD models are compared according
to different criterion, and their linearization performance versus implementation proper-
ties is presented.

The GMP model provides a good trade-off between accuracy performance and com-
plexity. The DVR model may achieve similar performances but with an increase in the
number of coefficients.

On the other hand, the DVR model has remarkable numerical properties that make it
a good choice for hardware implementation. For that purpose, the following chapter will
focus on the design and the optimization of the DVR model, determining its structure
and proposing its implementation architecture.
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Chapter 3

Optimization and Sizing of DVR
Model

3.1 Introduction
Volterra series have good performances for the modeling of nonlinear dynamic systems.
Besides, they are linear with respect to their coefficients, which simplifies their identi-
fication using the least-square method. However, their complexity is very high because
their number of coefficients increases exponentially with nonlinearity order and memory
depth. Moreover, the Volterra series have destructive numerical properties to identify
their coefficients for a high order of nonlinearity, which can be justified because the model
is built with a non-orthogonal basis.

Models derived from Volterra series such as MP, GMP, or DDR have proven their ef-
fectiveness to serve as a predistorter or PA model. However, PA’s advanced architecture
with good efficiencies, such as Doherty and envelope tracking, exhibits a nonlinear behav-
ior, which is more challenging to be linearized. On the other hand, the needs for higher
data rates require the use of efficient spectral modulation techniques such as orthogonal
frequency division multiplexing (OFDM). As a result, the modulated signals have a high
PAPR, which stimulates PA nonlinearities. Besides, 5G and MIMO systems allow a very
high data rate, which is a real challenge for DPD in bandwidth, nonlinearity, and dynamic
behavior. Considering all these facts, it becomes more challenging to design an efficient
DPD system to achieve accurate modeling with good efficiency and low computational
complexity.

This has pushed the interest of research to find a different approach for DPD. One
of these approaches is the segmentation approach, where the input space is divided into
several subspaces represented by small models. One of these models based on the seg-
mentation approach is the DVR model presented in the previous chapter as a DPD model
in the comparative study.

The study of the DVR model raises different questions such as:

• how to segment the input space optimally,

• how to determine the best model structure,

• how to determine the best model structure jointly with its optimal segmentation.

This chapter focuses on the DVR model, mainly on how to optimize its boundary
thresholds and find its optimal structure. We propose a new approach for the optimization
of thresholds in which the optimization problem is decomposed into a set of unimodal
sub-problems that allow using a unidirectional minimization [61]. The sizing of the DVR
model is based on hill-climbing (HC) algorithm to determine an optimal structure of the
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DVR model according to a cost function [62] representing a trade-off between modeling
accuracy and model complexity.

3.2 DVR Model
As mentioned in Section 2.3.4, the DVR model is based on a segmentation approach to
serve as behavioral PA modeling or a predistorter model.

According to (2.8), the nonlinear basis function is constructed by vector decomposition
and phase rotation. The absolute operation from vector rotation is used to generate
the nonlinearity. This property allows fitting many shapes of nonlinear behavior. The
structure of the model basis function

K∑
k=1

ck||x(n)| − βk|ejθ(n)

is presented in Figure 3.1.

Figure 3.1: DVR basis function structure

In [63], a modified CPWL based model is proposed for modeling wideband PA. The
proposed model has a structure similar to that of the DVR model but without decom-
posed vector rotation operation introduced in Section 2.3.4, in which the first-order basis
function

M∑
i=0

K∑
k=1

cki||x(n− i)| − βi|ejθ(n−i)

is replaced by a k-order function
M∑
i=0

K∑
k=1

cki|x(n− i)|kejθ(n−i)

In another research work, the authors of [64] proposed a low-complexity sideband
distortion suppression model based on the DVR model concept to construct the distortion
component and eliminate the unwanted transmitter leakage.

In [65], another modification has been made to the DVR model by borrowing the GMP
models concept into the structure of the DVR model for dual-band envelope tracking PA.
The authors of [65] have proposed a behavioral model by combining the GMP model in
(2.6) and the DVR model presented in (2.14).
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The authors of [66] proposed a hardware implementation strategy with low complexity
and reduced power dissipation, where it was achieved by modifying the DVR model into a
sub-decomposed representations, which significantly reduce the computational complexity
of the model extraction. The proposed model is expressed as:

y(n) =
M∑
i=0

aix(n− i)

+
K∑
k=1

M∑
i=0

cki,11F (|x(n− i)|, k)ejθ(n−i)

+
K∑
k=1

M∑
i=0

cki,21F (|x(n− i)|, k)ejθ(n−i).|x(n)|

+ . . .

(3.1)

where F (|x(n)|, k) is a constructed segment expressed by

=
{

0.5(βk − |x(n)|+ |βk − |x(n)||), for odd values of k
0.5(|x(n)| − βk + ||x(n)| − βk|), for even values of k (3.2)

In this chapter, we adopt a general presentation of the DVR model which can be
expressed by:

y(n) =
Mlin∑
i=0

aix(n− i) +
∑
Tt∈S

Tt (3.3)

where x(n) and y(n) are the input and output of the model, Mlin is the memory depth for
the linear term, ai are the complex coefficients of the linear term, and S is the set of the
terms Tt which are used in the model with S ⊂ T and T = [T1,[0,...,P ], T2, T3, T4, T5, T6, T7]
where T1,[0,...,P ] is the set T1,0, ..., T1,P whose elements are defined hereafter along with
T2, ..., T7.

T1,p =
K∑
k=1

M∑
i=0

cki,1p||x(n− i)| − βk|ejθ(n−i) · |x(n)|p

T2 =
K∑
k=1

M∑
i=i2

cki,2||x(n− i)| − βk| · x(n)

T3 =
K∑
k=1

M∑
i=i3

cki,3||x(n− i)| − βk| · x(n− i)

T4 =
K∑
k=1

M∑
i=i4

cki,4||x(n)| − βk| · x(n− i)

T5 =
K∑
k=1

M∑
i=i5

cki,5||x(n− i)| − βk| · x2(n) · x∗(n− i)

T6 =
K∑
k=1

M∑
i=i6

cki,6||x(n− i)| − βk| · x(n) · |x(n− i)|2

T7 =
K∑
k=1

M∑
i=i7

cki,7||x(n− i)| − βk| · x∗(n) · x2(n− i)

(3.4)

whereK is the number of segments, βk are the bounds of the segments, p is the nonlinearity
order, M the memory depth, and cki are the complex coefficients of the model for each
segment. The indexes i2, i3, ..., i7 are equal to 0 or 1 depending on the set of selected
Ti terms. The cardinal of T is thus P + 7. The number of coefficients, denoted by C,
depends on the parameters of the DVR model structure.
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3.3 Experimental Testbench
Experimental acquisitions from real PA have been carried out.

The testbench is represented in Figure 3.2, which includes a PC MATLAB software,
an SDR card, a Vector Signal Transceiver (VST) from National Instruments (NI), and an
LDMOS PA of 50W.

(a) Block diagram of testbench

(b) Testbench of LDMOS PA

Figure 3.2: Testbench for experimental implementation

The baseband IQ signal is fed from PC MATLAB software to the PA chain through an
SDR card. The SDR up-converts the baseband signal to the carrier frequency. The signal
at the output of the PA is then down-converted to the baseband by the VST NI, which
provides to the PC workstation the baseband signal digitized with a maximum sampling
frequency of 200 MHz.

The input and output baseband signals are then synchronized in time to be used by
the identification algorithm (2.18). Around 64000 IQ samples were used for training. A
20 MHz LTE signal with 12 dB of PAPR was used for the test, and the average output
power of the PA was 44 dBm.

The nonlinearities of the PA can be seen from the AM-AM and AM-PM characteristics
for the tested 20 MHz LTE signal in Figure 3.3a. The power spectrum of input and output
of PA is shown in Figure 3.3b.

(a) AM-AM and AM-PM curves (b) Spectra of PA input-output

Figure 3.3: The PA characteristics with 20MHz LTE signal
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The ACPR and approximate EVM of this PA are:

ACPRL1=− 29.54 dB ; ACPRR1=− 30.58 dB
EVMapp = 9.2 %

3.4 Optimization of DVR Model Thresholds

3.4.1 State of the Art
In (3.4), the thresholds βK that define the boundaries of segments can be selected using
uniform or optimized segmentation. Although many works in the literature are dedicated
to models with uniform segmentation, e.g., βk = k/K for k = 1; 2; ...;K − 1, few of them
deal with the optimal segmentation.

The first work for DPD application about optimal spacing was conducted for mem-
oryless LUT DPD [67] - [68], which is a challenge closely related to the optimization
of segmentation for a piecewise model. In [67], the author has proposed a non-uniform
systematic spacing using a companding function into table indexing, which reduces the in-
termodulation power. In [68], an iterative procedure is proposed to optimize non-uniform
LUT spacing, which is based on an IMD criterion and the input signal statistics.

The benefit of optimal segmentation compared to uniform segmentation has already
been established in [69] where the authors suggest reducing the complexity of the algo-
rithm by considering the memoryless version of the actual DVR model. The authors used
Gauss-Newton-based methods such as Levenberg-Marquardt [70] to jointly optimize the
thresholds and identify the model coefficients. Nevertheless, even with the reduced com-
plexity algorithm proposed in [69], the problem to solve is still a nonlinear least square
problem. The authors claim that the nonlinear minimization problem behaves well close
to uniform segmentation.

Generally speaking, setting the thresholds optimally for piecewise models such as the
DVR model requires global optimization, and in [71] the authors proposed an approach
based on genetic algorithm (GA) to optimize the thresholds of the CPWL model for
radio-over-fiber. The authors used the ACPR as the fitness function for GA. The GA
generations used in the GA were not mentioned in the optimization process, meaning
that the complexity is not a significant concern in this research.

3.4.2 Structure of DVR Model
In this section, we use the set TS = [T1,0 T1,1 T2 T3 T4] with P = 1, which corresponds to
the DVR−6 model presented in Chapter 2, in which it has achieved an excellent modeling
performance. Therefore, the DVR model is expressed as:
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y(n) =
Mlin∑
i=0

aix(n− i)

+
K∑
k=1

M∑
i=0

cki,10||x(n− i)| − βk|ejθ(n−i)

+
K∑
k=1

M∑
i=0

cki,11||x(n− i)| − βk|ejθ(n−i).|x(n)|

+
K∑
k=1

M∑
i=1

cki,2||x(n− i)| − βk|.x(n)

+
K∑
k=1

M∑
i=1

cki,3||x(n− i)| − βk|.x(n− i)

+
K∑
k=1

M∑
i=1

cki,4||x(n)| − βk|.x(n− i)

(3.5)

where ai and cki are the model coefficients which are identified using ILA.
In the following, we set Mlin to 2 and M to 1.

3.4.3 Motivation
The benefits of an optimized segmentation are highlighted in Figure 3.4 and Figure 3.5
which compares uniform and optimal segmentation for a different number of segments in
terms of NMSE and ACPR for a 20 MHz bandwidth LTE signal to drive the LDMOS PA.

According to Figure 3.4, the linearization performance in terms of NMSE for 8 seg-
ments using uniform segmentation could be achieved with only 3 segments using optimal
segmentation. This is confirmed in Figure 3.5 in terms of ACPR, where the optimal seg-
mentation requires only 4 segments to achieve the same linearization performance that
the uniform segmentation with 10 segments.

The NMSE and ACPR of the DVR model with optimal segmentation converge to-
wards an asymptote from 4 segments, while uniform segmentation requires more than 10
segments to reach the best linearization performance.

Thus, the optimal segmentation significantly reduces the complexity since the number
of coefficients to be estimated is reduced. For the scenario at hand, only 43 coefficients
for optimized segmentation are required to achieve the same linearization performance
with 93 coefficients for uniform segmentation. This confirms the interest in optimizing
the thresholds of the DVR model.

In the sequel, we propose an approach to optimize the thresholds βK and how the global
optimization problem could be divided into a set of unimodal sub-problems requiring only
a unidirectional minimization. This approach will be compared to the brute-force and GA
in terms of linearization performance and complexity.
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Figure 3.4: NMSE versus K with Mlin = 2 and M = 1

Figure 3.5: ACPRL1 and ACPRR1 versus K with Mlin = 2 and M = 1

3.4.4 Brute-force
Brute force is an exhaustive search over the normalized input range with a given preci-
sion. It consists of testing all the possible threshold positions over the normalized input
in which for each segmentation corresponding to thresholds allocation, the linearization
performance metrics are computed (NMSE or ACPR or both). the threshold positions
tested are located on a grid containing N positions which are uniformly spaced.
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Once brute-force is finished, it will be easy to find the threshold allocation with the
best linearization performance. Brute-force is seen as an intuitive solution to find an
optimum for an optimization problem, but it is not a realistic approach since a massive
computation is required.

Regarding the optimization of DVR model thresholds, brute-force divides the normal-
ized input range into N steps. For a given number of segments K with K − 1 thresholds:
β = [β1 β2 . . . βK−1], the search explores all possible combinations of the position of the
thresholds over the normalized input range. The brute-force returns the optimal segmen-
tation βopt with the best (minimized) NMSE among all segmentation β(q) tested in the
search space V where q ∈ V .

The brute-force returns the optimal segmentation with the best (minimized) NMSE
among all segmentation tested in the search space V with Q.

For a given combination, each threshold βi in the threshold vector β must be located
on a unique position. The number of combinations is

(
N
K−1

)
, which corresponds to NMSE

(or ACPR) computations, where the search grid is divided into N values. The algorithm
of brute-force is presented in Algorithm (1).

Algorithm 1: Algorithm of brute-force
Given K, Mlin and M for the DVR model
Divide the search grid to N steps
Set loop counter q = 1
for β1 = [ 1

N
2
N . . . N −1

N ] do
for β2 = [ 1

N
2
N . . . N −1

N ] do
if β2 ̸= β1 then

...
for βK−1 = [ 1

N
2
N . . . N −1

N ] do
if βK−1 ̸= βK−2& . . .&βK−1 ̸= β1 then

β = [β1 β2 . . . βK−1]
Evaluate NMSE(β)
q = q + 1

end
end

end
end

end
βopt = argmin

q∈V

(
NMSE(βq)

)

In our study, the results of brute-force will be taken as a reference for the comparison
subject.

3.4.5 Genetic Algorithm
GA is an efficient heuristic algorithm that is inspired by the theory of the Darwinian
principle of natural evolution.

This algorithm reflects the process of natural selection where the individuals (thresh-
olds) are selected for reproduction to produce offspring (optimal segmentation) of the
next generation using some genetic operators such as selection, crossover, and mutation.

The GA begins by creating a random initial population of individuals characterized
by a set of so-called genes. The GA then generates a sequence of new populations using
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the current population to create the children that make up the next generation. The
GA selects the parents from individuals in the current population who have better fitness
function and bring their genes to their children.

The GA uses three main techniques at each generation to produce the next generation
from the current population :

• Elite selection in which the parents are chosen for the next generation based on their
fitness function. An individual with a high fitness function can be selected more
than once as a parent, contributing its genes to more than one child.

• Crossover children are created by combining pairs of parents P in the current popula-
tion. At each coordinate of the child vector, the default crossover function randomly
selects a gene at the same coordinate from one of the two parents and assigns it to
the child.

• Mutation children are created by randomly changing the genes of individual par-
ents, aiming to maintain diversity within the population and prevent premature
convergence.

After several generations, the GA converges to the best solution, ideally the optimal
threshold segmentation.

In the problem at hand, the population’s size has been chosen as 50 and the maximum
number of generation Q=25, but GA can stop if it has already converged towards the same
solution. NMSE is used as a fitness function.

The motivation behind the use of GA in our study is to add, along with the brute-
force, another process from different optimization approach, which will be used for the
comparison subject to validate the effectiveness of the proposed approach, which will be
discussed in the next section.

3.4.6 Proposed Approach
3.4.6.1 Principle of Unidirectional Minimization

In the proposed approach, a unidirectional minimization is achieved using the golden
section (GS) search.

The GS search is an optimization technique used to find the optimum for a strictly
unimodal function of a single variable over a search interval without using derivatives [72].

For a given unimodal function f(x), the principle of GS search consists of finding the
optimum xopt which corresponds to the minimum value of f(x), by iteratively narrowing
the range of the search interval [a b] containing that optimum until a specified accuracy
is reached.

The GS search derives its name from the fact that the points determining the search
interval are computed using the golden ratio τ , which is equal to 1+

√
5

2 and verifies τ−1 =
1
τ
. The golden ratio τ is intimately involved in the Fibonacci sequence, in which the ratios

of successive terms of the Fibonacci sequence possess an impressive proportion, e.g., 1.618,
or its inverse 0.618.

Therefore, the length of the search interval is iteratively reduced by a factor τ . At qth
iteration the search interval is noted [aq bq]. Denoting φ = 1

τ
= 0.618, two intermediate

points are used to update the range of the search interval. They are determined by:{
x1 = aq + φ2(bq − aq)
x2 = aq + φ(bq − aq)

(3.6)

The functions f(x1) and f(x2) are computed and compared as described in Algorithm
(2).
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Algorithm 2: Algorithm of GS search
q = 0 ; a0 = a ; b0 = b
Compute x1 and x2
while |bq − aq| > ϵ do

Compute f(x1) and f(x2)
if f(x1) ≤ f(x2) then

aq+1 = aq
bq+1 = x2
x2 = x1
Compute x1

end
if f(x1) > f(x2) then

aq+1 = x1
bq+1 = bq
x1 = x2
Compute x2

end
q = q + 1

end
xopt = aq+bq

2

The computation process of f(x1) and f(x2) is iteratively executed and the search
interval [a b] is narrowing until the accuracy |bq − aq| < ϵ is reached where ϵ is a specified
small value, then takes xopt = aq+bq

2 as an approximate optimum point and f(xopt) is the
approximate optimum value.

In this work, the GS search considers NMSE as the function f(x) and the range of the
normalized magnitude of the baseband input IQ as the search interval [a b].

Another advantage of the GS search is that it requires only one computation of f(x)
at each iteration, except for the first one where f(a0), f(x1), f(x2) and f(b0) have to be
evaluated.

3.4.6.2 optimization of a single threshold

Let us consider the case of 2 segments. In this case, we have only a single threshold to
determine.

Figure 3.6 presents the evolution of GS search in terms of NMSE over the intermediate
points x1(q) and x2(q) in the two first iterations and the final iteration. The blue curve
presents the NMSE of postdistortion for every position of the threshold between 0 and 1.
The red curve presents the AM-AM characteristic of the PA.

Initially, the search interval [a b] = [0 1]. At the first iteration, the search interval
[a b] is updated with the narrower interval [a1 1]. After 34 iterations, [a34 b34] fulfills the
condition |a34− b34| < ϵ that allows the GS search to stop and return βopt = a34+b34

2 as the
optimized threshold. According to Figure 3.6, the optimal threshold is located at 0.8.

Thus, the NMSE from uniform segmentation to optimal segmentation is improved by
nearly 4 dB, as shown in Figure 3.6.
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Figure 3.6: Evolution of GS search in terms of NMSE for K = 2 with ϵ=0.1

On the other hand, Figure 3.7 shows the behavior of ACPRL1 and ACPRR1 according
to the variation of the threshold position over the normalized input interval. As we can
see, the behavior of ACPRL1 and ACPRR1 are unimodal in which the optimal threshold
is located at 0.79, which is close to the optimal thresholds from Figure 3.6.

Figure 3.7: Behavior of ACPRL1 and ACPRR1 over the normalized input
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3.4.6.3 General case with K segments and K-1 thresholds

In the general case for K segments, we have K − 1 thresholds to optimize: β = β1,β2,...,
βK−1. We propose to optimize the thresholds successively one by one, starting with an
initial uniform segmentation. The optimization interval Ii of a selected βi is [βi−1 βi+1].
In a normalized interval, β0 = 0 and βK = 1 by definition.

Each βi contributes to the overall NMSE, furthermore as βi is the bound of the op-
timization interval for βi−1 and βi+1 so the optimization of βi will in turn impact the
optimal position of βi−1 and βi+1 that should be re-evaluated. That is why we propose
a heuristic to handle this situation: after having optimized the last threshold βK−1, the
algorithm is run in reverse order back to β1, then again up to βK−1 and so on until the
segmentation has converged.

Algorithm 3: Algorithm of the proposed approach
Given K, Mlin and M for the DVR model
Initialization βi, ϵ
Set loop counter q=1
while (1) do

for i = 1, 2, ..., K − 2, K − 1 do
βi(q) = argmin

βi∈[βi−1(q),βi+1(q)]
NMSE(βi)

end
q = q + 1
βK−1(q) = βK−1(q − 1)
for K − 1, K − 2, ..., 2, 1 do

βi(q) = argmin
βi∈[βi−1(q),βi+1(q)]

NMSE(βi)

end
q = q + 1
β1(q) = β1(q − 1)
Evaluate NMSE(β(q))
if NMSE(q) > NMSE(q − 1)− ϵ then

end while loop
end

end

Given the DVR model in (3.5) defined by K, M and the thresholds β1, · · · , βK−1. The
function NMSE(βi) corresponds to the different value of NMSE, obtained when varying βi
from βi−1 to βi+1. The minimum of this function is obtained with argmin

βi∈[βi−1,βi+1]
NMSE(βi).

The algorithm for the proposed approach is described in Algorithm (3) in which the
steps βK−1(q) = βK−1(q−1) and β1(q) = β1(q−1) are introduced for notation consistency.

3.4.6.4 Complexity of GS search

The complexity of the GS search is an important aspect to be considered in the thresholds
optimization process. In this work, the search complexity is assessed by three features:

• The number of NMSE computations, which are required to identify the model co-
efficients.

• The number of interval updates, which is defined by the number of times the search
interval is updated, except at the first iteration when one interval update corre-
sponds to one NMSE evaluation.
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• The number of GS iterations, which is defined by the number of times the thresholds
vector [β1, · · · , βK−1] is optimized. It is represented by the parameter q in Algorithm
(3).

3.4.6.5 Implementation Strategy of GS search

The proposed approach based on GS search is seen as an offline process to determine the
DPD model for the PA linearization.

In the case of the DVR model, we determine the model parameters, we optimize the
thresholds β, then, the DVR model is ready to be inserted as a DPD model according to
ILA, in which the model is used in 2 blocks: predistorter and postdistorter, from which
both must contain the optimized thresholds βopt.

For real-time DPD adaptation, GS search is only required to be performed at the initial
training when the global characteristics of the PA are determined. The joint architecture
of DPD adaptation, which is based on ILA and the proposed approach to optimize the
thresholds, is shown in Figure 3.8.

Figure 3.8: Joint architecture of ILA and thresholds optimization process

Moreover, this joint architecture is described in Algorithm (4).
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Algorithm 4: Algorithm of ILA and the proposed approach
Determine K, P , Mlin, and M for the DVR model
Get input x0 and output y0 of PA
Define the PA gain G
Optimize β using the proposed approach
Determine DPD iterations Q
for i = Q do

zi = yi/G Define regressor matrix Zi

Estimate coefficient
ci = [ZH

i Zi]−1ZH
i xi

zp = Zici
Compute NMSE between xi and zp
Copy ci to DVR model
Get xi and yi
Evaluate linearization performance

end

However, it is recommended to rerun the proposed approach once the input u or the
PA changes any of its characteristics, especially output power, signal bandwidth, center
frequency, etc.

3.4.7 Comparison of Linearization Performances
In the following, we set K to 4, Mlin = 2 and M = 1.

The results of the proposed approach using GS search are discussed and compared to
those of a uniform segmentation and the optimal segmentations obtained from brute-force
search and GA.

The results are summarized in Table 3.1 and discussed in terms of NMSE and ACPR.
The algorithm complexity is also discussed and evaluated by the number of computations
of the objective function.

Table 3.1: Comparison of linearization performances, optimal solutions and complexity

Uniform Brute-force GA GS searchsegmentation
Segmentation [0.25 0.5 0.75] [0.58 0.81 0.92] [0.59 0.81 0.92] [0.59 0.81 0.92]
NMSE (dB) -35.82 -38.69 -38.69 -38.69

ACPR(dB) L1 -43.93 -48.52 -48.51 -48.49
U1 -44.91 -48.83 -48.83 -48.82

NMSE comp. 1 161700 2404 341

The first column corresponds to the uniform segmentation. The next column repre-
sents brute-force search which has been performed by dividing the input range into 100
steps. The third column represents the results of GA, which has been performed with a
population size of up to 50 and a maximum number of generations up to 25. The last
column presents the results of the proposed approach.

In the scenario at hand, the proposed approach has converged towards the same op-
timal segmentation returned by brute-force search and GA, i.e., βopt = [0.59 0.81 0.92].
According to Table 3.1, only 341 objective function evaluations are performed to opti-
mize the thresholds, while GA requires 2404 evaluations and brute-force requires 161700
evaluations to find the exact optimal results.
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Compared to uniform segmentation, the NMSE of the proposed approach has been
significantly improved by nearly 3 dB. The ACPR is improved by more than 4 dB as well.
This is can be confirmed in Figure 3.4 and Figure 3.5 for K = 4.

The linearization performances of the optimal segmentation βopt are presented in Fig-
ure 3.9 and Figure 3.10 where they are compared to that of the uniform segmentation
βunif = [0.25 0.5 0.75].

Figure 3.9 presents the spectrum of input and output of PA and the spectrum of the
output of predistorter with uniform and optimized segmentation.

Figure 3.9: Spectra of PA input-output and postdistorter output with uniform and opti-
mized segmentation

Figure 3.10 presents the AM-AM curve of the PA and the AM-AM of the predistorter
with uniform and optimized segmentation, which are plotted as well.
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Figure 3.10: AM-AM of PA and postdistorter with uniform and optimized segmentation

3.4.8 Analysis and Improvement of the Proposed Approach
This section highlights the behavior of the proposed approach throughout its convergence
and how the optimization problem is decomposed into a set of unimodal sub-problems.
Furthermore, a stochastic process is proposed to select the initial segmentation that allows
accelerating the convergence of the proposed approach.

3.4.8.1 Behavior of the Proposed Approach

The initial uniform segmentation is

[β1(0) β2(0) β3(0)] = [0.25 0.5 0.75]

The optimization interval vector is

I(0) = [I1(0); I2(0); I3(0)] = [[0 0.5]; [0.25 0.75]; [0.5 1]]

Figure 3.11 presents the behavior of NMSE(βi) on each interval.
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Figure 3.11: NMSE(βi) on I(0)

It can be seen from Figure 3.12 that NMSE(β1) is not unimodal on I1(0).

Figure 3.12: Zoom of NMSE(β1) on I1(0)

After the optimization of [β1(0) β2(0) β3(0)] to

[β1(1) β2(1) β3(1)] = [0.31 0.74 0.90]

the behavior of NMSE on the updated optimization interval vector

I(1) = [I1(1); I2(1); I3(1)] = [[0 0.74]; [0.31 0.90]; [0.74 1]]

is presented in Figure 3.13, which shows that the behavior of NMSE(β1) on I1(1) becomes
unimodal.
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Figure 3.13: NMSE(βi) on I(1)

After the optimization of [β1(1) β2(1) β3(1)] to

[β1(2) β2(2) β3(2)] = [0.52 0.72 0.90]

for which the functions NMSE(βi) are shown in Figure 3.14.

Figure 3.14: NMSE(βi) on I(2)

Hence this example highlights the following interesting behavior, even if each sub-
problem is not unimodal initially, they become unimodal as each sub-problem converges
towards its optimum.
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Figure 3.15 presents the evolution of thresholds β1, β2, β3 and NMSE where the
optimization of thresholds has been performed in direct order:

[β1; β2; β3; β2; β1; β2; ...]

until the algorithm has converged.

Figure 3.15: Evolution of thresholds and NMSE versus iterations

3.4.8.2 Random Selection

In the previous section, it has been shown how the optimization problem has been decom-
posed into a set of unimodal sub-problems on each interval, starting from a non-unimodal
problem given by the uniform segmentation.

This leads to the fact that the initial segmentation choice may be desirable to start
with a segmentation that can give a unimodal criterion on each interval from the first
iteration, speeding up the algorithm’s convergence and decreasing the execution time.

For that, a stochastic selection process is proposed: N trials of random segmentation
are performed, and the best one in terms of NMSE is retained as the initial segmentation
for the proposed algorithm. To validate the effectiveness of the stochastic process, 100
experiments of threshold optimization with a random selection have been performed for
N=50.

Figure 3.16 presents the 100 tests, which are plotted in colors. Each test starts with
uniform segmentation, e.g., βinitial = [0.25 0.5 0.75], with NMSE = -35.82 dB, and perform
50 trials with random segmentation. The NMSE is evaluated at each trial, and the best
is retained as long as no better NMSE has been found.
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As shown in Figure 3.16, this stochastic process could significantly improve NMSE,
thanks to a good initial segmentation. Out of the 100 tests performed, the worst NMSE
is -37.69 dB, which is still better than NMSE from the uniform segmentation.

Figure 3.16: Behavior of NMSE during random selection for 100 times

On the other hand, the starting point of the NMSE set plotted in Figure 3.16 is NMSE
from the uniform segmentation, and the convergence point is on the NMSE interval of
[-37.69 -38.68] dB. This makes it possible to roughly conclude that the number of random
trials sufficient for the NMSE to converge to the NMSE interval [-37.69 -38.68] dB is 30
trials, allowing it to be taken a stochastic indicator to determine the number of random
tests required in the random selection.

Furthermore, Table 3.2 Highlights that the GS search requires 4 GS iterations with 341
NMSE computations starting from the uniform segmentation. In comparison, it requires
only 1 or 2 GS iterations with a total number of 135 or 219 NMSE computations (including
the 50 NMSE computations from the random trials) for the best and worst case of the
100 experiments considered.
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Table 3.2: Comparison of linearization performances, optimal solutions, and complexity
with random selection

Uniform 50 trials of random
segmentation segmentation

Best case Worst case
Segmentation [0.25 0.5 0.75] [0.61 0.82 0.93] [0.64 0.76 0.82]before starting GS
NMSE (dB) -35.82 -38.68 -37.68

Apply GS search
Optimal [0.59 0.81 0.92] [0.59 0.81 0.92] [0.59 0.81 0.92]Segmentation

NMSE (dB) -38.69 -38.69 -38.69

ACPR (dB) L1 -48.49 -48.49 -48.49
U1 -48.82 -49.82 -49.82

Complexity
GS iter. 4 1 2

Interval upd. 171 43 85
NMSE comp. 341 135(=50+85) 219(=50+169)

As the number of NMSE computations becomes a random variable using stochastic
initialization, it is necessary to look for the probability distribution function that best fits
the experimental data to determine an upper bound on the expected number of NMSE
computations.

We have investigated the probability p(N < X) that the number of NMSE computa-
tions N required for the GS search to be less than an upper bound X.

Several experiments have been carried out with different random trials as follows:

• Experiment 1: (Random selection with 10 trials + GS search) × 100 times

• Experiment 2: (Random selection with 30 trials + GS search) × 100 times

• Experiment 3: (Random selection with 50 trials + GS search) × 100 times

In this study, we present two figures of merit: the average number of NMSE compu-
tations and the confidence bound X, where some probability distributions are used to fit
the number of NMSE computations, such as gamma distribution [73], Burr distribution
[74], inverse Gaussian [75], and log-logistic distribution [76].

Figure 3.17, 3.18, and 3.19 present the probability distribution fitting to the number of
NMSE computations for the experiment 1, experiment 2, and experiment 3, respectively,
where probability density function (PDF) and cumulative distribution function (CDF)
are shown.
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(a) PDF (b) CDF

Figure 3.17: Fit probability distribution to data from experiment 1

(a) PDF (b) CDF

Figure 3.18: Fit probability distribution to data from experiment 2

(a) PDF (b) CDF

Figure 3.19: Fit probability distribution to data from experiment 3

Table 3.3 presents in the two first columns the average number of NMSE computations
for each experiment and according to each distribution and its variance. The fourth and
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fifth columns present the probability of the required number of NMSE computations below
or equal to the given value.

Table 3.3: Probability distribution fitting to number of NMSE computations

Mean Var X|p(N< X)=0.99 X|p(N< X)=0.999
Experiment 1: 10 random trials × 100

Gamma 225 1495 325 364
Burr 227 3426 451 701

Inv. Gaussian 225 1502 330 375
Log-Logistic 224 1801 352 446

Experiment 2: 30 random trials × 100
Gamma 221 1580 324 365

Burr 222 2825 427 654
Inv. Gaussian 221 1527 328 373
Log-Logistic 216 1506 333 417

Experiment 3: 50 random trials × 100
Gamma 171 2078 295 348

Burr 172 2942 362 559
Inv. Gaussian 171 2121 306 371
Log-Logistic 170 2421 330 468

As shown in Figure 3.17, 3.18, and 3.19, it turns out that a Burr distribution fits well
the number of NMSE computations with a mean of 227 and 222 and a variance of 3426 and
2825 for experiments 1 and 2, while for experiment 3, Burr distribution and log-logistic
distribution have similar behavior in fitting the number of NMSE computations.

With these parameters, the upper bound X on the number of NMSE computations
is 451 with a probability of 0.99, and 701 with a probability of 0.999 for experiment 1,
where 10 random trials are performed before GS search. For experiment 2 with 30 random
trials, the upper bound X is 427 with a probability of 0.99 and 654 with a probability of
0.999.

Regarding experiment 3, it has an upper bound X of 362 with a probability of 0.99,
and 559 with a probability of 0.999 through Burr distribution, while with log-logistic
distribution, it has an upper bound X of 330 with a probability of 0.99, and 468 with a
probability of 0.999

Therefore, we can conclude that the interval [30 50] makes a sufficiently good range
for choosing the number of random trials before applying the GS search.

Besides, using a stochastic initialization with 30 trials, the average number of NMSE
computations will be 222 and below 427 with a probability of 0.99 or 654 with a probability
of 0.999.

After the random selection process, the behavior of each NMSE(βi) on their interval
Ii(0) are likely to be unimodal before starting the GS algorithm, as we can see in Figure
3.20. Experiments have shown that some tens of random selection trials are likely to
provide a starting point that significantly improves the initial NMSE in comparison with
the uniform segmentation.
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Figure 3.20: NMSE versus variation of βi over Ii after random selection process where
each NMSE(βi) are unimodal

It is worth noting that for every 100 experiments of the stochastic initialization, the
proposed optimization approach has converged towards the same segmentation. This
illustrates its convergence behavior.

3.4.9 Sensitivity of Thresholds to Number of Segments
Nevertheless, the proposed approach to optimizing β(K) is only applied when the number
of segments K is not changing. However, in some particular processes, such as sizing
the DVR model or when the characteristics of the input signal are modified, it may be
necessary to change the number of segments K along with the optimization process’s
running.

Once K changes, the proposed approach must be executed to find the new optimal
solution starting from uniform or random segmentation since it has been shown that both
initial conditions converge towards the exact optimal solution.

Figure 3.22 compares the position of the optimal segmentation for different K from 2
to 10 with Mlin = 2 and M = 1. Note that for each K, the proposed approach to optimize
β is started from the uniform segmentation.
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Figure 3.21: Optimal segmentation versus number of segments K

As can be seen, the optimal thresholds tend to be concentrated towards the nonlinear
region of the PA. This empirical method carried out in Figure 3.21 allows to observe a
repeated behavior, where when we go from K to K + 1, the optimal position of the first
threshold β(K+1)

1opt
is located in the interval [0 β(K)

1 ], and vice versa, when going from K to
K − 1, the optimal segmentation β

(K−1)
opt = [β(K−1)

1opt
, ..., β

(K−1)
K−2opt

] is located in the interval
[β(K)

1 1].
On the other hand, it is essential to emphasize the complexity of the proposed approach

for threshold optimization, which is presented in Table 3.4 for each K. The complexity
is represented in terms of NMSE computation, interval updates, and GS iterations.

Table 3.4: Complexity of proposed approach for each K

Number of segments K 2 3 4 5 6 7 8 9 10
GS iterations 2 2 4 4 5 5 7 8 9

Interval update 21 56 171 221 346 407 642 912 1235
NMSE computations 41 111 341 441 691 813 1283 1823 2469

The complexity consistently increases with the number of segments K. The complexity
required to optimize a given β

(K)
k of K can be reduced by using the information of the

optimal segmentation β
(K−1)
opt of K − 1 or β

(K+1)
opt of K + 1.

We run the GS search to optimize β(K)
k for each K starting from 2 to 10. We propose

to define the initial segmentation of K in terms of the optimal segmentation of K − 1,
which can be defined as

β
(K)
initial = [β(K)

1 ; · · · ; β(K)
K−1] = [βr; β(K−1)

1opt
; · · · ; β(K−1)

K−2opt
]

where βr is a thresholds that could be located randomly in the interval [0 β(K−1)
1opt

]. How-
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ever, we propose to define it as

βr =
β

(K−1)
1opt

2
As this process starts from K = 2, its initials segmentation is the uniform segmenta-

tion, i.e,
β

(2)
initial = [0.5]

.
Since the GS search always converges towards the optimal solution, we will focus on

the impact of this approach on the complexity. Table 3.5 summarizes the complexity
results of this process.

Table 3.5: Complexity of GS search for increasing K from 2 to 10

Number of segments K 2 3 4 5 6 7 8 9 10
GS iterations 2 2 2 3 2 1 1 1 1

Interval update 21 57 85 162 126 72 75 90 88
NMSE computations 41 113 169 323 256 143 149 179 175

Compared to the complexity results reported in Table 3.4, where the GS search opti-
mizes each K starting from a random initial segmentation, the complexity in Table 3.5
confirms the interest of this method, where the complexity is significantly reduced.

In reverse order, we run the GS search starting from K = 10 to 2. The idea here is at
K, the initial segmentation β

(K)
initial will be defined in terms of the optimal segmentation

β
(K+1)
opt of K + 1, where we remove the first thresholds β(K+1)

1opt
from β

(K+1)
opt and we define

the rest as an β
(K)
initial of K as

β
(K)
initial = [β(K)

1 ; · · · ; β(K)
K−1] = [β(K+1)

2opt
; · · · ; β(K+1)

Kopt
]

Table 3.6 summarizes the results of complexity. As starting from K = 10 with random
segmentation, its complexity is similar to that reported in the last row in Table 3.4.

As can be seen, GS iterations and NMSE computations are drastically reduced even
though the process is started from K = 10 with significant complexity.

Table 3.6: Complexity of GS search for decreasing K from 10 to 2

Number of segments K 10 9 8 7 6 5 4 3 2
GS iterations 9 3 1 2 2 3 3 2 2

Interval update 1235 309 89 151 129 162 126 57 21
NMSE computations 2469 617 177 301 257 323 251 113 41

The application of this method to define the initial segmentation is confirmed by the
results presented on complexity. Additionally, it can be a good alternative to the random
selection process if the information of β

(K−1)
opt or β

(K+1)
opt is available.

Moreover, the interest of this method can be valuable in processes where K changes
regularly, such as the sizing process of the DVR model, which will be illustrated in the
next section.
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3.4.10 Sensitivity of Thresholds to Memory Depth
Figure 3.22 compares the optimal position of each threshold for different memory depths
M with K = 4 and Mlin = 2.

Figure 3.22 highlights an interesting behavior, showing that the optimal segmentation
is not very sensitive to memory depth M . The optimization can be performed for the
DVR model without memory to reduce the algorithm complexity, making it an important
aspect to design an optimal DVR model.

Figure 3.22: Optimal segmentation versus memory depth M

However, the impact of memory depth has also been noted in [69] without this being
illustrated by data such as in Figure 3.22.

3.4.11 Sensitivity of Thresholds to Model Terms
In order to study the sensitivity of the optimal segmentation to the model terms TS, we
propose to optimize the thresholds for the following set:

TS1 = [T10]
TS2 = [T10 T11]
TS3 = [T10 T11 T2]
TS4 = [T10 T11 T2 T3]
TS5 = [T10 T11 T2 T3 T4]

with K = 4, Mlin = 2, and M = 1.
Figure 3.23 present the optimal position of each threshold for different TSi

. Unlike
the sensitivity of thresholds to the memory depth, the model terms TS slightly impact
the optimal segmentation. This impact is seen particularly over the variation of the first
threshold β1, the optimal position of which is situated in the interval of [0.47 0.61]. The
optimal position of β2 is less sensitive than that of β1. The optimal position of β3 remains
almost stable with the model terms.
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Figure 3.23: Optimal segmentation versus model terms TS

On the other hand, Figure 3.24 shows the variation of NMSE for each model term TSi
,

for which the set of the optimal segmentation βopt(TSi
) from Figure 3.23 is applied.

Figure 3.24: Optimal segmentation vs Terms

Except for TS1 , NMSE does not vary significantly with the different optimal segmen-
tation. For TS1 , applying the optimal segmentation βopt(TS3) slightly worsens the NMSE
by around 0.8 dB, which can be considered negligible in some scenarios.

This analysis allows us to consider that the optimal segmentation is not firmly insen-
sitive to the model terms used in TS, even if their value remains strongly correlated.
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Considering that the optimal segmentation is independent of all the model terms, a
rough approximation is established to be used with caution to accelerate the convergence
of an optimization process proposed in the next section, aiming to design an optimal DVR
model.

3.4.12 Conclusion of Thresholds Optimization
In this framework, we showed that the optimal segmentation could significantly improve
the linearization performances compared to the uniform segmentation for the DVR model
at the same number of coefficients.

We have proposed a new approach for optimizing the thresholds based on the decom-
position of the global optimization problem into a set of sub-problems where the objective
function is unimodal. The GS search is used to solve each unimodal sub-problem. The
proposed approach has been compared with GA and brute force. Both algorithms con-
verge to the same optimal thresholds. However, our approach presents a much lower
complexity than the GA algorithm making it an appropriate candidate to design the
DVR model. Once the thresholds have been optimized for a given number of thresholds
K, an important aspect arises as to whether this parameter K, as well as the other pa-
rameters of the DVR model, are optimal or not. Thus, it is necessary to determine the
optimal structure of the DVR model that presents the best compromise between modeling
accuracy and complexity. This will be the topic of the following section.

3.5 Sizing of DVR Model Structure
The DVR model sizing consists in finding an optimal model structure that leads to a
promising modeling accuracy with reduced complexity.

The DVR model structure can be determined using an exhaustive search (brute force)
by exploring all possible parameters order combinations. Setting the maximum order of
K and M to Kmax and Mmax, respectively, the exhaustive search requires Kmax ·Mmax ·L
tests, where L presents the total number of possible combination of model terms, L =∑P+7
k=1

(
P+7
k

)
= 2P+7 − 1, according to (3.3) and (3.4).

Limiting the maximum number of coefficients to be tested could significantly reduce
the search space. However, the exhaustive search remains an heavy computation load,
and an optimization approach can significantly reduce that load.

3.5.1 State-of-the-Art
In the literature relating to behavioral modeling, it is reported that it is not easy to
determine a given behavioral model structure which has reduced complexity and high
linearization performance. This operation is known as model sizing, which can be carried
out using mainly two methods: Selection of basis function or applying optimization al-
gorithms to determine the model structure. According to a criterion or a cost function,
these methods return the best model structure, which refers to a trade-off between the
modeling accuracy and model complexity.

As is reported in Section 2.6.1.2, the complexity to solve (2.17) depends on the number
of coefficients related to the number of basis functions. Some pruning techniques to reduce
the number of basis functions while keeping the same modeling accuracy have been studied
in [77] and [78]. For the MP model, a pruning technique is proposed in [79], where the
total number of model kernels, which is determined by M and K, is minimized according
to the difference between the measured and predicted signal.
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Optimization algorithms can also determine the model sizing according to a good
trade-off between modeling performance and model complexity. The modeling perfor-
mance is represented mainly by a quadratic measure such as NMSE or ACPR and the
model complexity by the model’s number of coefficients. Different heuristics could be ap-
plied to determine the optimal structure of the DPD model. This optimization process is
seen as a nonlinear integer optimization problem. These algorithms could be deterministic
or stochastic with local or global search and aim to find an optimal solution in a reduced
runtime. Among these heuristics, we can cite hill-climbing (HC), simulated annealing
(SA), tabu search, evolutionary algorithms (such as GA, ant colony ...), particle swarm
optimization (PSO).

The first work in finding the optimal structure for DPD models has been conducted
for the GMP model using an integer GA [80]. In this algorithm, the fitness function is
an additive weighted combination of NMSE and the number of coefficients. Compared to
the exhaustive search, a solution close to the optimal model structure can be found much
faster.

In [57], the authors proposed an algorithm based on HC heuristic aiming to find
the optimal structure of the GMP model with a reduced number of computations. The
searching criterion used in this study controls the HC heuristic to ensure a good trade-
off between complexity and modeling accuracy of the GMP model. The HC heuristic
provides an efficient approach to minimize the proposed criterion.

In [81], a comparative study of two optimization algorithms, HC algorithm, and genetic
algorithm, has been done in terms of convergence speed and accuracy of the obtained
solution. The two algorithms were performed using the same criterion and had very
similar performances, which converge towards the global optimum quickly compared to
an exhaustive search.

3.5.2 Hill-Climbing
The HC is an optimization algorithm that belongs to the family of iterative algorithms
[82] - [83].

The principle of the HC algorithm consists of starting the search process from a given
initial solution, determining its neighbors in a defined space, and choosing the best solution
among these neighbors. This solution will be the initial solution in the next iteration, and
the HC algorithm continues this process until no better solution is found. The definition
of the neighborhood is a very important aspect of the HC algorithm.

The principle of the HC algorithm is described in Algorithm (5).
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Algorithm 5: Algorithm of hill-climbing
Choose the initial element x0(1)
Evaluate the initial cost function f(x0(1))
while (1) do

Determine the neighbors of x0(q): xi(q) ∈ V(q)
Evaluate the cost function f(xi(q))
xs(q) = argminxi(q)∈V(q)

(
f(xi(q))

)
if f(xs(q)) < f(xs(q−1)) then

q = q + 1
x0(q) = xs(q−1)

else
end while loop

end
end
Take the last solution xs(q) as the best element

In this study, The proposed approach based on the HC algorithm in [84] is extended to
the DVR model to find an optimal structure with reduced complexity and high modeling
accuracy.

According to Algorithm (5), at the first iteration, the HC algorithm starts from a given
initial element x0(1) which represents a DVR model structure, determines the neighbors
of x0(1) in the neighbor’s subspace V , and evaluates the cost function of these neighbors.
The best cost function f(xs(1)) of the solution xs(1) is compared with f(x0(1)). If f(xs(1))
is lower than f(x0(1)), the solution xs(1) becomes x0(2) at the next iteration, and the HC
repeats this search procedure. Moreover, the HC algorithm has been sufficiently described
in [85] to determine the optimal structure of the GMP model.

Figure 3.25 presents an example of the state of HC at qth iteration, which shows how
the neighbors are evaluated according to f .

Figure 3.25: Neighbors of x0(q) at qth iteration
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The neighbors are denoted by xi(q), where xi(q)ϵV(q). They are presented in Figure 3.25
by blue asterisks. The cost function f(xi(q)) associated to xi(q) is evaluated. The solution
xs(q) is the element of the neighborhood V(q) with the minimum cost function value.

There are two definitions to consider. Firstly, the cost function f that achieves a trade-
off between the model’s complexity and modeling accuracy. Secondly, the definition of
the neighborhood that is used for HC search.

3.5.3 Cost Function
The cost function is an essential aspect of the HC algorithm. It refers to a particular
criterion that leads to a trade-off between modeling accuracy and model complexity.
NMSE is used to evaluate the modeling accuracy, which is denoted by N . The model
complexity is presented by the number of coefficients of the model, denoted by C.

The cost function f is defined by combining N and C in a single criterion. In [80],
the fitness function of GA is defined as a weighted additive combination of accuracy and
model complexity.

In [84], several approaches have been proposed to define the cost function using two
different methods to combine N and C in one single criterion: additive and multiplicative
combinations.

In this work, the cost function is defined using the additive combination, which is
expressed by:

f(xi) = N(xi) + αC(xi) (3.7)
where α is a positive real value and considered as a weighting coefficient (or the NMSE
tolerance per coefficient).

In [84], the authors proposed two methods to determine the weighting coefficient using
offline computation and online computation.

3.5.4 Definition of Neighborhood
A new definition of the neighborhood is proposed for the DVR model in this work, allowing
the HC algorithm to converge to the optimal structure.

For the DVR model, there are four parameters to size: the number of segments K, the
memory depth Mlin for the linear term, the memory depth M for the set TS, and which
model terms will be selected from the set T.

In the discrete space U , the element xi that represents a DVR model structure is
characterized by 3 integers: Ki, Mlin,i, Mi and by TSi

which is a k combination of the set
T with k = {1, ..., P +7}. These parameters can have their values changed independently,
and they compose a 4-dimension discrete space of DVR model structures.

The neighbor of element xi is defined as an 4-tuple (Ki + δ1, Mlin,i + δ2, Mi + δ3,
TS,i + δ4), where δ1,2,3 ∈ [0,±1].

The process involved behind δ4 corresponds to either add to TSi
a term from its relative

complement in T, to remove a term from TSi
, or to neither remove or add a term.

Figure 3.26 presents the discrete space V of the neighbors of xi in terms of K, Mlin,
and M for a given set of model term TSi

. The blue point is the node {Ki,Mlin,i,Mi} of
xi. The red points are the model parameters K, Mlin, and M of neighbors.
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Figure 3.26: Discrete Space S of Neighbors of xi in terms of K, Mlin, and M with a given
TSi

If we have set P to 9 in (3.4) and consider that the current model has TSi
= [T1,0 T1,6 T2 T5],

then each model represented in red from Figure 3.26 can have the following TSi

TSi
=



[T1,6 T2 T5] [T1,0 T1,1 T1,6 T2 T5] [T1,0 T1,2 T1,6 T2 T5]
[T1,0 T1,3 T1,6 T2 T5] [T1,0 T1,4 T1,6 T2 T5] [T1,0 T1,5 T1,6 T2 T5]
[T1,0 T2 T5] [T1,0 T1,6 T1,7 T2 T5] [T1,0 T1,6 T1,8 T2 T5]
[T1,0 T1,6 T5] [T1,0 T1,6 T1,9 T2 T5] [T1,0 T1,6 T2 T3 T5]
[T1,0 T1,6 T2] [T1,0 T1,6 T2 T4 T5] [T1,0 T1,6 T2 T5 T6]
[T1,0 T1,6 T2 T5 T7]

so the model in blue has 17× 33 − 1 neighbors to be evaluated.

3.5.5 Complexity Reduction of Hill-Climbing Algorithm
The complexity is an essential aspect of optimization algorithms. In this study, we link
the complexity of the HC algorithm with four features:

• The total number of elements (neighbors) evaluated by the HC algorithm, which
corresponds automatically to the number of f evaluations. It includes:

– The number of neighbors evaluated per one HC iteration, which is an indicator
of the distribution of the total number of neighbors over the HC iterations.
The average number of neighbors per HC iteration will be presented as well.

• The total number of iterations required for the HC algorithm to perform, where one
HC iteration is done when the cost functions of neighbors of an initial solution are
computed, and the optimal solution is determined.

• The execution time (runtime) of the HC algorithm is also taken into account as a
relative indicator of the complexity of the HC algorithm.

• The number of model coefficients of each neighbor’s structure is introduced since it
reflects the computational complexity of the identification process. Besides, it refers
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to the model complexity, which is essential for sizing the DVR model. Two features
will be highlighted and linked to the computational complexity:

– Condition number of the regressor matrix ZHZ in (2.18).
– Dynamic range ϵ of the model coefficients defined in (2.23).

These four criteria assess the complexity of the HC algorithm and the numerical prop-
erties of the models trained during the search.

The complexity of the HC algorithm can be reduced by pruning the neighborhoods
by adding some constraints on the number of coefficients.

In the HC algorithm, and according to the proposed definition of neighborhood, each
element xi can have up to ((P + 1) + 7)× 33 − 1 neighbors.

An element x0(q) at qth iteration can have common neighbors with x0(q−1) from the
previous iteration. Therefore, common neighbors will not be re-evaluated, which partially
reduces the complexity of the HC search.

The search space U can also be limited by setting a maximum number of coefficients
Cmax of the model structure to be tested.

As well, the model parameters K, Mlin, and M can be limited by setting an interval
for each one:

2 ⩽ K ⩽ Kmax

0 ⩽ Mlin ⩽Mmax

0 ⩽ M ⩽Mmax

(3.8)

where Kmax and Mmax are the maximum number of segments and the maximum memory
depth, respectively.

The parameter K must be greater or equal to 2, which is the minimum number of
segments. In a DVR structure, at least two segments bounded by one threshold are
necessary to always remain in the concept of the segmentation approach.

In some cases, the neighbors may have a considerable variation of many coefficients.
Therefore, a variation limit dC is added to the HC algorithm to control the maximum
variation of the number of coefficients of neighbors.

With these constraints on Cmax and dc, the original neighborhood space V(q) of the
element x0(q) at qth iteration is reduced to the elements xi(q) with Ci(q) ≤ Cmax and
|Ci(q) − C0(q)| ≤ dC .

3.5.6 Stopping Condition
The sizing algorithm of the DVR model can be stopped once the cost function of a given
solution is not better than that of the previous one. However, in our case, the stop
condition of the HC algorithm is activated according to two levels. For the first level, if
a solution xs(q) has no neighbors whose number of coefficients is less than Cmax at the
following iterations. This condition immediately leads to the stop of the HC algorithm.
Otherwise, the HC algorithm checks the second level for which a positive tolerance ∆ν
is determined, making it possible to choose a solution xs(q) whose N(xs(q)) satisfies the
following conditions:

N(xs(q)) ≤ N(xs(q−1)) + ∆ν
C(xs(q−1)) < C(xs(q)) ≤ Cmax

(3.9)

where the integration of this constraint in the HC algorithm makes it possible to have a
continuity of the search up to Cmax to explore other neighbors who can have better cost
functions.
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These stopping levels are achieved to give more flexibility to the HC algorithm for
finding good solutions properly. Once the HC algorithm is finished, the optimal solution
returned is the one that has the best value of f among the solutions of each HC iteration.

3.5.7 Algorithm of DVR Model Sizing
By combining the proposed definition of neighborhood and the complexity reduction tech-
niques into the HC algorithm, the optimal structure of the DVR model can be determined
by the HC algorithm in Algorithm (6).
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Algorithm 6: Algorithm of DVR model sizing
Initialization
Get the PA input x and PA output y
Set Cmax and dC
Set ∆ν
Define cost function f = N + αC
Set the iteration counter q = 1
Set the initial element x0(1) with K0 = 2, Mlin,0 = M0 = 0 and TS0 = []
Evaluate the initial cost function f(x0(1))
xs(0) = x0(1)
Initialize q = 1
while (1) do

for Ki ± δ1 do
for Mlin,i ± δ2 do

for Mi ± δ3 do
for TSi

± δ4 do
Determine the neighbor xi(q) ∈ V(q) of x0(q) under dC and Cmax
constraints

Compute the cost function f(xi(q))
end

end
end

end
if V(q) = Ø then

end while loop
else

xs(q) = argmin
xi(q)∈V(q)

(
f(xi(q))

)
Save xs(q) in solution space S(q)
if C(xs(q−1)) < C(xs(q)) ≤ Cmax then

if N(xs(q)) ≤ N(xs(q−1)) + ∆ν then
q = q + 1
x0(q) = xs(q−1)

else
end while loop

end
else

end while loop
end

end
end
Return the optimal solution xs = argmin

xs∈S
(f(xs))
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3.5.8 Experiments and Results
3.5.8.1 Parameters of HC Algorithm

According to Algorithm (6), the evolution of the sizing process of the DVR model towards
the optimal solution is mainly controlled by:

• Cmax: the maximum number of model coefficients.

• Kmax: the maximum number of segments to be assigned to a tested DVR structure.

• Mmax: the maximum memory depth to be assigned to a tested DVR structure.

• P : the nonlinearity order of the basis functions in the DVR model.

• α: the weighting coefficient of the cost function.

• dC : variation limit constraints on the neighbor’s coefficients.

• ∆ν: the NMSE tolerance of the HC algorithm.

The HC algorithm aims to find the optimal structure of the DVR model by taking into
account three properties: the high performance of the optimal solution, the short path
search towards the optimal solution, and the reduced HC complexity given by the fewest
computations of f , which in turn depends on the number of coefficients of each evaluated
models.

Setting the HC algorithm parameters should be carefully done to achieve these prop-
erties and provide an efficient HC algorithm.

First, we set Cmax to 50 coefficients. This makes it possible to have a well-extended
behavior of the HC algorithm, of which the impact of Cmax is relatively weak in order to
be able to focus on the other HC parameters. We set ∆ν to 0.2 dB.

We set the maximum number of segments Kmax to 10 and the maximum memory depth
Mmax, including the linear term’s memory depth to 10. Kmax and Mmax considerably
controls the complexity of the HC algorithm according to the number of neighbors tested
over the search.

The parameter P presents the order of the nonlinearity of the basis function in T1,p. To
study its impact in the DVR model, we propose to set P up to 1, then to 9, to efficiently
analyze its global impact on the optimal solution and the DVR model.

The parameters α and dC influence the HC algorithm’s convergence towards the op-
timal solution. The parameter dC limits the number of neighbors of a given element,
which may potentially not choose neighbors with a better cost function value, while the
parameter α controls directly the cost function f in (3.7).

It is important to emphasize that the DVR model’s segmentation is uniform through-
out the DVR model sizing.

In this study, we use the PA’s experimental measurements presented in Section 3.3
using the same 20 MHz LTE signal.

3.5.8.2 Sizing DVR Model with P = 1

In the first step, we perform the HC algorithm to determine the optimal structure of the
DVR model by setting P in TS to 1 (P represents the nonlinearity order of the DVR basis
function).

In fact, we seek to analyze the behavior and impact of P on the DVR model through
the HC algorithm. Moreover, when the model terms TS = [T1,0 T1,1 T2 T3 T4] are selected
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by the HC algorithm, this corresponds to the DVR-6 model presented in the previous
section.

The DVR model with the optimal structure returned by the HC algorithm is indicated
by the DVR−QP model, where Q is the number of model terms presented in the optimal
structure, including the linear term.

3.5.8.2.1 Exhaustive Search

As mentioned before, the exhaustive search could be the spontaneous solution to
find the optimal structure of the DVR model, but this approach requires a very high
computational complexity.

However, we carried out an exhaustive search in this study to get all the possible
structures, and we take them as a reference. The conditions of this exhaustive search are
identical to that of the HC algorithm, where Kmax and Mmax were set to 10, Cmax to 50,
and P = 1 with T = [T1,0 T1,1 T2 T3 T4 T5 T6 T7].

Inspection of the results allows us to determine the DVR model’s best structure for
each number of coefficients from 1 to Cmax = 50. It is essential to accentuate that the DVR
models tested during the exhaustive search were performed using uniform segmentation.

Figure 3.27 presents the exhaustive search results, which are plotted in blue dots, in
terms of N and C.

Figure 3.27: Exhaustive search of DVR model with P = 1 in terms of C and N

The exhaustive search requires almost 19 hours, in which there are a total of 24357
structures tested. The optimal solution that the HC algorithm seeks to find is located on
the Pareto envelope of the exhaustive search.

3.5.8.2.2 HC Algorithm with α=0.1 and dC=Cmax
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We set α to 0.1, which represents the NMSE tolerance per coefficient. We set dC
to Cmax coefficients, which makes it possible not to introduce the impact of dC on the
behavior of the HC algorithm.

3.5.8.2.2.1 Optimal Solution

Figure 3.28 presents the HC algorithm results for the 20 MHz LTE signal. The results
are presented in 3D regarding the fitness (value of the cost function f), the number of
coefficients C, and NMSE N .

Figure 3.28: HC algorithm results in function of C, N , and f with α=0.1

The blue dots present the tested structures during the HC algorithm, which presents
all tested neighbors. The red dot presents the first point of the HC algorithm where its
structure is:

K = 2
β = [0.5]
Mlin = 2 ; M = 0
TS = [ ]

The green dot presents the optimal solution where its structure has the best (minimum)
f value:

K = 4
β = [0.25 0.5 0.75]
Mlin = 2 ; M = 1
TS = [T1,0 T3 T6]

with C = 27 coefficients and N = −38.02 dB.

3.5.8.2.2.2 Evolution of HC Algorithm

Figure 3.29 presents the HC algorithm’s behavior in 2D in terms of C and N , where
the exhaustive search results are plotted in the background.
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Figure 3.29: HC algorithm and exhaustive search in terms of C, N

As we can see, the HC algorithm determines the neighbors located near the Pareto
envelope. The search path of the HC algorithm almost follows the envelope.

In this search, the HC algorithm has 7 HC iterations, and there are 1101 different DVR
model structures tested in 4.3 minutes. The evolution of the HC algorithm is depicted in
Figure 3.30 for the first iteration.

Figure 3.30: Evolution of HC algorithm at first iteration

The results of the exhaustive search are plotted in the background. The red circle is
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the initial element. The blue dots present its neighbors, which are here 65. The green
circle is the best neighbor of the first iteration selected by its minimum f value among
the neighbors.

The structure of the best neighbors at first iteration is:

K = 3
β = [0.33 0.66]
Mlin = 1 ; M = 1
TS = [T6]

with C = 8 coefficients and N = −31.54 dB.
At the second iteration, the best neighbor from the first iteration is taken as the initial

solution, and the neighbors of this solution are shown in Figure 3.31.

Figure 3.31: Evolution of HC algorithm at second iteration

The purple dots present the neighbors at the second iteration. The best solution at
second iteration is highlighted as well by an orange circle, where the parameters of its
structure are:

K = 4
β = [0.25 0.50 0.75]
Mlin = 2 ; M = 1
TS = [T3 T6]

with C = 19 coefficients and N = −36.53 dB.
In the next iteration, the best solution at the second iteration will be taken as the

initial solution. The HC algorithm iteratively continues until it converges.
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At the 7th iteration, the parameters of the best solution are:

K = 5
β = [0.20 0.40 0.60 0.80]
Mlin = 2 ; M = 2
TS = [T1,0 T2 T7]

with C = 48 coefficients and N = −38.59 dB.
After the 7th iteration, 91 neighbors of this solution, plotted by purple dots in Figure

3.32, are evaluated by the HC algorithm.

Figure 3.32: Evolution of HC algorithm after seventh iteration

By investigating the stop condition of the HC algorithm, it was shown in Figure 3.33
that after the seventh HC iteration, no solution found among the 91 neighbors satisfies the
conditions of (3.9), which leads to stopping the HC algorithm and returning the optimal
DVR model.

Table 3.7 presents the number of coefficients C, NMSE N , and the cost function f of
the best solution at each HC iteration. The optimal DVR model is the solution of the
third iteration, which has the best (minimized) cost function.

Table 3.7: Number of coefficients, NMSE, and cost function of the best DVR model at
each HC iteration

HC iteration Initial 1 2 3 4 5 6 7
C 1 8 19 27 35 39 43 48
N -19.33 -31.54 -36.53 -38.02 -38.15 -38.20 -38.53 -38.59
f -19.23 -30.74 -34.63 -35.32 -34.65 -34.3 -34.23 -33.79

After the 3th iteration, an asymptotic behavior is observed around −38 dB, which can
be confirmed in Figure 3.29.
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Figure 3.33: Evolution of HC algorithm with stopping conditions

3.5.8.2.2.3 HC Complexity

Table 3.8 presents the parameters of the best structures at each HC iteration.

Table 3.8: Parameters of DVR model structure (initial and best) at each HC iteration

HC iteration 1 2 3 4 5 6 7 -

In
iti

al
so

lu
t. K 2 3 4 4 4 4 5 5

Mlin 0 1 2 2 2 2 2 2
M 0 1 1 1 1 2 1 2

TS

T6 T3 T1,0 T1,0 T1,0 T1,0 T1,0
T6 T3 T2 T2 T2 T2

T6 T3 T6 T6 T7
T6 T7

Num. of Neigh. 64 208 217 152 126 116 127 91

Be
st

so
lu

t.

K 3 4 4 4 4 5 5

H
C

st
op

sMlin 1 2 2 2 2 2 2
M 1 1 1 1 2 1 2

TS

T6 T3 T1,0 T1,0 T1,0 T1,0 T1,0
T6 T3 T2 T2 T2 T2

T6 T3 T6 T6 T7
T6 T7

Each column presents the initial solution structure, the number of the neighbors tested
by the HC algorithm, and the structure of the best solution according to its cost function
f .

After the 7th HC iteration, the HC algorithm evaluates 91 neighbors of the best struc-
ture from the 7th HC iteration, but without finding any structure with the best cost
function, which leads to stopping the algorithm.
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The memory depth of the linear term Mlin is different from that of the other terms
M , which confirms the interest of specifying two different memory depths.

It can be seen that Mlin remains stable at 2 after the second iteration. From 2th to 5th
iteration, the model terms are changed, while at the 6th iteration, TS and M are changed,
and at the 7th iteration, K, M , and TS are changed.

On the other hand, we see that the number of evaluated neighbors at every itera-
tion decreases after the third iterations. This refers to the fact that there are common
neighbors between iterations that are not re-evaluated.

Since the HC algorithm’s complexity is an important aspect, we summarize in Table
3.9 the total number of DVR models tested during the HC algorithm, where the average
number of coefficients estimated by LS is 25 coefficients with a standard deviation of 13.

Table 3.9: Number of coefficients during the HC algorithm

Total number of DVR models mean standard deviation
1101 25 13

3.5.8.2.2.4 Comparison with Exhaustive Search

By investigating the best DVR model at 27 coefficients from the exhaustive search, it
has been shown that the parameters of its structure are:

K = 4
β = [0.25 0.5 0.75]
Mlin = 2 ; M = 1
TS = [T1,0 T2 T6]

with C = 27 coefficients and N = −38.09 dB.
The HC algorithm returns a very close structure. In fact, by examining the behavior

of the HC algorithm illustrated in Figure 3.29, it was shown that the neighbors explored
by the HC algorithm do not contain any structure with the model terms TS = [T1,0 T2 T6],
which explains why the HC algorithm did not converge towards the solution given by the
exhaustive search.

Nevertheless, the HC algorithm is confirmed and validated through this scenario, where
the proposed neighborhood definition demonstrates its effectiveness in determining the
optimal DVR model.

3.5.8.2.3 Variation of dC with α = 0.1

The parameter dC controls the space of the neighbors in the HC algorithm. Reducing
dC leads to reducing the runtime of the search, but better solutions may be skipped.

The choice of dC raises three major concerns:

• From which dC , the optimal solution returned does not change.

• The impact of the dC variation on the HC complexity, especially the number of HC
iterations and neighbors per iteration.

• The impact of the dC variation on the search path of the HC algorithm.
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3.5.8.2.3.1 Impact of dC on Optimal Solution

In this study, the HC algorithm was carried out by varying dC from 3 to Cmax. Table
3.10 summarizes the parameters of the optimal structure of the DVR model for each dC .
The parameters C, N , and f are presented as well.

Table 3.10: Parameters of optimal DVR model structure for dC variation

dC 3 4 5 6 7 8 9 10 15 20 30 40 50

St
ru

ct
ur

e

K 3 4 4 4 4 4 4 4 4 4 4 4 4
Mlin 2 2 2 2 2 2 0 2 2 2 2 2 2
M 1 1 1 1 1 1 1 1 1 1 1 1 1

TS

T1,0 T1,0 T1,0 T1,0 T1,0 T1,0 T1,0 T1,0 T1,0 T1,0 T1,0 T1,0 T1,0
T1,1 T4 T3 T3 T1,1 T1,1 T3 T4 T3 T3 T3 T3 T3
T5 T6 T6 T6 T6 T6 T6 T6 T6 T6 T6 T6 T6

C 21 27 27 27 27 27 25 27 27 27 27 27 27
N -36.60 -38.06 -38.02 -38.02 -37.93 -37.93 -37.04 -38.06 -38.02 -38.02 -38.02 -38.02 -38.02
f -34.50 -35.36 -35.32 -35.32 -35.23 -35.23 -34.55 -35.36 -35.32 -35.32 -35.32 -35.32 -35.32

From Table 3.10, we can see that the HC algorithm returns the same optimal DVR
model when dC exceeds a distance of 15 coefficients. On the other hand, all the optimal
structures have the same number of coefficients (27 coefficients) except when dC = 3 and
dC = 9.

Regarding the structure parameters, from dC = 4, the optimal solutions has the same
K, Mlin, and M , unlike TS for which the structures are different for the different values
of dc.

Notwithstanding, the model term T1,0 is present in all structures, which presents the
basis function of the DVR model and corresponds to:

K∑
k=1

M∑
i=0

cki,10||x(n− i)| − βk|ejθ(n−i)

.
Therefore, selecting the best solution depends on the cost function, on its parameter

α. The parameter dC is involved as well, which controls the size of the neighborhood
space.

3.5.8.2.3.2 Impact of dC on HC complexity

The complexity of the HC algorithm for each dC is investigated. Table 3.11 presents
the total number of neighbors tested for each dC and the number of neighbors per HC
iteration. The first column presents dC . The second one presents the total number of
neighbors tested by the HC algorithm. The third column shows in detail the number of
neighbors for each HC iterations.
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Table 3.11: Number of neighbors versus HC iteration for each dC

dC
Total number HC Neighbors per each HC iteration Runtime
of neighbors iter. (min)

3 443 16 {24;35;40;47;19;36;20;47;48;18;18;18;18;18;18;18;1} 1.20
4 431 16 {40;67;44;29;32;25;32;18;18;18;18;18;18;18;18;17;1} 1.09
5 427 6 {48;81;79;75;44;48;52} 1.01
6 693 16 {56;95;88;58;91;44;26;26;26;26;26;26;24;4;28;14;35} 2.06
7 782 14 {64;145;143;107;44;49;35;44;44;41;14;14;14;14;10} 2.69
8 798 14 {64;145;147;108;49;44;44;43;47;41;14;14;14;14;10} 2.41
9 458 7 {64;152;83;65;26;48;19;1} 1.20
10 739 11 {64;159;133;105;40;40;40;40;40;40;37;1} 2.54
15 913 7 {64;187;183;136;108;102;71;62} 3.24
20 1009 7 {64;208;193;149;125;111;90;69} 3.68
30 1101 7 {64;208;217;152;126;116;127;91} 4.30
40 1101 7 {64;208;217;152;126;116;127;91} 4.35
50 1101 7 {64;208;217;152;126;116;127;91} 4.31

According to Table 3.11, the HC algorithm requires seven iterations to converge from
dC = 9, except when dC = 10 in which the HC algorithm requires 11 iterations. In
a general way, we recognize that the total number of neighbors evaluated by the HC
algorithm increases with the increases of dC and the runtime taken by the HC algorithm
under the MATLAB environment, while the HC iterations are decreasing.

The number of neighbors evaluated remains 1101 neighbors after a distance of 30
coefficients. This allows us to conclude that beyond dC = 30, the HC algorithm’s behavior,
particularly its complexity, does not change.

On the other hand, when dC = 5, the total number of neighbors is reduced, and the HC
iterations and the HC algorithm runtime. It can be explained by the fact that a distance
of 5 coefficients allows appropriately to the search to perform only 6 HC iterations in
significantly reduced runtime, in which it returns the same optimal DVR model returned
when dC = 50.

3.5.8.2.3.3 Conclusion on dC Impact

In conclusion, dC has a significant impact on the complexity of the HC algorithm,
unlike the linearization performances where the optimal solutions for each dC have an
NMSE with a tolerance of 1 dB around.

When dC = 5, the HC algorithm exhibits a good behavior in terms of complexity,
particularly the number of neighbors, the computational complexity for identifying the
coefficients, and the runtime of the search.

In the following, we set dC to 5.

3.5.8.2.4 Variation of α with dC = 5

The determination of weighting coefficients for the multi-objective optimization prob-
lems is an essential aspect of building a cost function. The cost function f controls
the evolution of the HC algorithm to determine an optimal DVR model with the best
compromise, determined by α, between the number of coefficients and modeling accuracy.

The impact of the weighting coefficient α (unit tolerance) is investigated in terms of
the optimal solution and the complexity of the HC algorithm. In this study, The HC
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algorithm is performed for each α from the vector

[0.01 ; 0.025 ; 0.05 ; 0.075 ; 0.1 ; 0.15 ; 0.2 ; 0.3 ; 0.4 ; 0.5]

3.5.8.2.4.1 Impact of α on Optimal Solution

Table 3.12 summarizes the results of the HC algorithm where the parameters of the
optimal structure, C, N and f = N + αC are presented for each α.

It is essential to remind that the more significant α, the more one seeks to limit the
number of coefficients to the detriment of NMSE.

Table 3.12: Parameters of the optimal DVR model, C, N , and f with the variation α

α 0.01 0.025 0.05 0.075 0.1 0.15 0.2 0.3 0.4 0.5

St
ru

ct
ur

e

K 7 6 4 4 4 4 3 4 3 2
Mlin 7 4 2 2 2 2 2 2 0 1
M 1 1 1 1 1 1 1 1 1 1

TS

T1,0 T1,0 T1,0 T1,0 T1,0 T1,0 T1,0 T3 T3 T3
T3 T3 T3 T3 T3 T3 T3 T6 T6 T6
T6 T6 T6 T6 T6 T6 T6

C 50 41 27 27 27 27 21 19 13 10
N -38.88 -38.70 -38.02 -38.02 -38.02 -38.02 -37.01 -36.53 -34.52 -33.04
f -38.38 -37.67 -36.67 -36.01 -35.32 -33.97 -32.81 -30.83 -29.33 -28.04

According to Table 3.12, the variation of α influences the optimal solutions of the HC
algorithm, in particular in terms of the number of segments K and memory depth of the
linear term Mlin.

The parameters K and Mlin decrease swiftly with increasing α, while M is much less
sensitive to the variation of α, which remains at 1. Regarding TS, the set [T3 T6] is present
in all best structures.

The behavior of how K and Mlin change with the variation of α leads to an essential
link between the design of the cost function f and the complexity of the optimal solution.
If α increases, K and Mlin decrease. Consequently, the number of coefficients C decreases,
which reduces the complexity.

On the other hand, on the interval, [0.05 0.15], the optimal solution is not very sensitive
to the value of α, and the HC algorithm returns the same DVR model.

3.5.8.2.4.2 Impact of α on HC Complexity

On the other hand, it is worth investigating the complexity of the HC algorithm
with the variation of α. Table 3.13 summarizes the total neighbors evaluated by the HC
algorithm and the HC iteration. The number of neighbors tested at each HC iteration
and the total number of model coefficients are shown.
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Table 3.13: Complexity of HC algorithm for each α

α
Total number HC Neighbors per HC iter. Runtime Total number
of neighbors iter. (min) of coeff.

0.01 548 15 {48;74;84;49;61;58;53; 2.20 11619
27;13;17;4;4;8;8;5}

0.025 588 17 {48;74;84;49;44;48;56; 2.44 13571
35;22;23;13;17;17;17;
17;17;6;1}

0.05 399 6 {48;74;84;49;44;48;52} 1.18 5850
0.075 399 6 {48;74;84;49;44;48;52} 1.20 5850
0.1 427 6 {48;81;79;75;44;48;52} 1.10 6119
0.15 427 6 {48;81;79;75;44;48;52} 1.15 6110
0.2 697 19 {48;81;79;75;44;67;47; 2.35 14589

21;26;26;26;26;26;26;
24;4;31;5;14;1}

0.3 697 19 {48;81;79;75;44;67;47; 2.43 14589
21;26;26;26;26;26;26;
24;4;31;5;14;1}

0.4 303 5 {48;81;79;20;35;40} 0.64 3250
0.5 303 5 {48;81;79;20;35;40} 0.65 3250

According to Table 3.13 and when α = 0.05, the HC algorithm evaluates the lowest
total number of neighbors and the total number of coefficients. Prominently, the HC
algorithm with α = 0.05 provides an optimal DVR model that exhibits a good trade-off
between the modeling performance, the model complexity, and the HC complexity.

3.5.8.2.5 HC Algorithm with α = 0.05 and dC = 5

By setting α to 0.05 and dC to 5, the search path of the HC algorithm is shown in
Figure 3.34, which almost follows the Pareto envelope of the exhaustive search and stops
at 27 coefficients, with an NMSE of -38.02 dB.
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Figure 3.34: HC algorithm with dC = 5 and α = 0.05

The structure of the optimal solution is:

K = 4
β = [0.25 0.5 0.75]
Mlin = 2 ; M = 1
TS = [T1,0 T3 T6]

where it is denoted by the optimal DVR−41 model.
In this search, there are a total of 399 elements tested in 1.18 minutes and 6 HC

iterations. These results are summarized in Table 3.13 for α=0.05. The parameters of
the best DVR model at each HC iteration are summarized in Table 3.14.
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Table 3.14: Parameters of DVR model structure (initial and best) and the number of
neighbors, at each iteration

HC Iteration 1 2 3 4 5 6 -

In
iti

al
so

lu
t.

K 2 2 2 3 4 5 4
Mlin 0 1 2 2 2 2 2
M 0 1 1 1 1 1 1

TS

- T6 T3 T3 T3 T3 T1,0
T6 T6 T6 T6 T3

T6

Num. of neighbors 49 74 84 49 44 48 52

Be
st

so
lu

t.

K 2 2 3 4 5 4

H
C

st
op

Mlin 1 2 2 2 2 2
M 1 1 1 1 1 1

TS

T6 T3 T3 T3 T3 T1,0
T6 T6 T6 T6 T3

T6

According to Table 3.14, the number of segments K has a significant impact on the
evolution of the search path, while Mlin and M remain at 2 and 1, respectively. On the
other hand, the model term T6, which corresponds to

K∑
k=1

M∑
i=0

cki,6||x(n− i)| − βk| · x(n) · |x(n− i)|2

is present in the structure of the best neighbors over the HC iterations.

3.5.8.3 Sizing DVR Model with P = 9

Once the HC algorithm has been validated for the DVR model with P = 1, we carried
out the HC algorithm to size the DVR model using the terms in (3.4) and setting P to 9.

3.5.8.3.1 Exhaustive Search

With T = [T1,[0,...,9] T2 T3 T4 T5 T6 T7], and by setting Kmax to 10, Mmax to 10, and
Cmax to 50, the exhaustive search requires 339341 tests to be performed, which could take
almost seven days to achieve, making of it too heavy to implement in this study.

3.5.8.3.2 HC Algorithm with α = 0.05 and dC = 5

As shown previously, setting α to 0.05 and dC to 5 exhibits a good trade-off between
the modeling accuracy of the optimal solution and the algorithm complexity.

We set α to 0.05 and dC to 5 coefficients.

3.5.8.3.2.1 Optimal Solution

Figure 3.35 presents the DVR model sizing with P = 9 using the HC algorithm in
terms of C and N . The blue dots present the neighbors evaluated over the search. The
red circles present the best solution at each HC iteration.
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Figure 3.35: HC algorithm and exhaustive search in terms of C, N

The optimal solution shown in Figure 3.35 corresponds to the following structure:

K = 2
β = [0.50]
Mlin = 2 ; M = 1
TS = [T1,5 T1,7 T1,8 T1,9 T2]

with C = 23 coefficients and N = −38.67 dB. In the following, this optimal structure is
presented as the DVR−69.

3.5.8.3.2.2 HC Complexity

In this search to size the DVR model with P = 9, the HC algorithm has 11 HC
iterations, and there are a total of 1067 different DVR model structures tested in 3.73
minutes.

Table 3.15 presents the parameters of the best structures at each HC iteration. Simi-
larly to Table 3.8, each column presents the structure of the initial solution, the number
of the neighbors tested by the HC algorithm, and the structure of the best solution.
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Table 3.15: Parameters of DVR model with P = 9 structure at each HC iteration

HC iteration 1 2 3 4 5 6 7 8 9 10 11 12
In

iti
al

so
lu

tio
n

K 2 2 2 2 2 2 2 2 2 2 2 2
Mlin 0 1 2 2 2 2 2 2 2 2 2 2
M 0 1 1 1 1 1 1 1 1 1 1 1

TS

T1,5 T1,5 T1,5 T1,5 T1,5 T1,5 T1,5 T1,2 T1,2 T1,2 T1,2
T1,8 T1,8 T1,8 T1,7 T1,7 T1,7 T1,5 T1,5 T1,4 T1,3

T2 T1,9 T1,8 T1,8 T1,8 T1,7 T1,6 T1,5 T1,4
T2 T1,9 T1,9 T1,9 T1,8 T1,7 T1,6 T1,5

T2 T2 T2 T1,9 T1,8 T1,7 T1,6
T6 T5 T2 T1,9 T1,8 T1,7

T6 T5 T2 T1,9 T1,8
T6 T5 T2 T1,9

T6 T5 T2
T6 T5

T6
Num. of Neigh. 96 146 156 140 112 105 84 69 58 45 31 25

Be
st

so
lu

tio
n

K 2 2 2 2 2 2 2 2 2 2 2

H
C

st
op

s

Mlin 1 2 2 2 2 2 2 2 2 2 2
M 1 1 1 1 1 1 1 1 1 1 1

TS

T1,5 T1,5 T1,5 T1,5 T1,5 T1,5 T1,5 T1,2 T1,2 T1,2 T1,2
T1,8 T1,8 T1,8 T1,7 T1,7 T1,7 T1,5 T1,5 T1,4 T1,3

T2 T1,9 T1,8 T1,8 T1,8 T1,7 T1,6 T1,5 T1,4
T2 T1,9 T1,9 T1,9 T1,8 T1,7 T1,6 T1,5

T2 T2 T2 T1,9 T1,8 T1,7 T1,6
T6 T5 T2 T1,9 T1,8 T1,7

T6 T5 T2 T1,9 T1,8
T6 T5 T2 T1,9

T6 T5 T2
T6 T5

T6

As shown in Table 3.15, the parameters K, Mlin, and M remain at 2, 2, and 1,
respectively, while the model terms change from one optimal structure to another over the
HC iterations, which means that the terms bring a significant impact on the convergence
of the HC algorithm towards the optimal solution.

Table 3.16 presents C and N of the best solution at each HC iterations. After the 5th
iteration, an asymptotic behavior is observed around -38.7 dB, which can be confirmed
in Figure 3.35.

Table 3.16: C and N of the best DVR model with P = 9 at each HC iterations

HC iteration Initial 1 2 3 4 5 6 7 8 9 10 11
C 1 6 11 15 19 23 27 31 35 39 43 47
N -19.33 -31.52 -36.55 -37.71 -38.35 -38.66 -38.75 -38.78 -38.81 -38.85 -38.9 -38.91

The total number of coefficients of all DVR models tested during the HC algorithm is
20728, with a mean of 20 coefficients and a standard deviation of 11.
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3.5.8.4 Impact of P on DVR Model Sizing

3.5.8.4.1 Motivation

In the light of the behavior of the HC algorithm for P = 1 and P = 9, in this section,
we present a comparison of both cases, and we also highlight the impact of P on the DVR
model through its sizing using the HC algorithm.

The PAs are inherently nonlinear systems, in which many baseband nonlinear dynamic
models, which can represent nonlinear systems with memory effect, can be used (MP,
GMP, ...) to ensure linear amplification.

As mentioned previously, the DVR model is based on the segmentation approach,
which aims to reduce the nonlinearities piecewise, unlike the global models derived from
the Volterra series, which consists of deploying a high nonlinearity order to compensate
for the nonlinearity effects, which leads to unsatisfactory numerical properties for identi-
fication process and complexity for hardware implementation.

In this study, we introduce the nonlinearity order p in (3.5) in the second term

T1,p =
K∑
k=1

M∑
i=0

cki,1p||x(n− i)| − βk|ejθ(n−i) · |x(n)|p

in order to enhance the DVR model ability to represent strong nonlinearities. However,
dealing with p should be carefully since it presents the same properties that the nonlin-
earity order for the global model derived from the Volterra series. In fact, this can be
confirmed in Figure 3.36 and Figure 3.37, which show the impact of p on the modeling
accuracy and numerical properties of the DVR model performance.

Figure 3.36 presents the variation of the NMSE versus p, for p from 0 to 9. In this
scenario, the NMSE is computed between the PA output and the DVR model output

y(n) =
Mlin∑
i=0

aix(n− i) +
K∑
k=1

M∑
i=0

cki,1p||x(n− i)| − βk|ejθ(n−i) · |x(n)|p

with K = 4, Mlin = 2, and M = 2, which are selected arbitrary.
For this scenario at hand, the number of coefficients C is defined as

C = Mlin + 1 +K × (M + 1)

which remains equal to 15 coefficients with the variation of p.
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Figure 3.36: Variation of p versus NMSE

As can be shown in Figure 3.36, the variation of p significantly influences the ability of
the DVR model to model accurately the behavior of the PA. In this scenario, an optimal
structure is found in terms of NMSE when the nonlinearity order p = 6, which corresponds
to

2∑
i=0

aix(n− i) +
4∑

k=1

2∑
i=0

cki,1p||x(n− i)| − βk|ejθ(n−i) · |x(n)|6

On the other hand, Figure 3.37 highlights the numerical properties of the DVR model
with the variation of p. These numerical properties are represented by the condition
number of the regressor matrix introduced in (2.18) in Figure 3.37a, and the dynamic
range ϵ of the estimated model coefficients defined in (2.23) in Figure 3.37b.

(a) Variation of condition number versus p (b) Variation of dynamic range versus p

Figure 3.37: Impact of p on numerical properties

The impact of p on the numerical properties of the DVR model is weighty through
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Figure 3.37. Figure 3.37a shows that the condition number of the regressor matrix evolves
exponentially with the increase of p, while the dynamic range of the model coefficients
evolves exponentially in Figure 3.37b.

This motivates the need to take into consideration the numerical properties of the DVR
model. By taking the optimal structure when p = 6, it is not an optimal choice if the
condition number or the dynamic range is involved in the criterion to choose this optimal
structure, driving to make a trade-off between modeling accuracy and the numerical
properties.

In the light of the results reported in Figure 3.36 and Figure 3.37, the interest of
having a high nonlinearity order in the DVR model is advantageous to represent strong
nonlinearities but must be chosen with care in order not to worsen the numerical proper-
ties.

Given that the HC complexity depends essentially on the complexity and the numer-
ical properties of the trained DVR models, we propose to focus on the impact of the
nonlinearity order on the DVR model and the HC algorithm by comparing and analyzing
the results of the HC algorithm with P = 1 and P = 9 in terms of optimal structure,
DVR model complexity, DVR model numerical properties, and HC complexity.

3.5.8.4.2 Comparison of Optimal Solution

Table 3.17 summarizes the optimal structures of the DVR−41 and DVR−69 models.

Table 3.17: Comparison of DVR−41 and DVR−69 model structures

DVR−41 DVR−69

M
od

el
st

ru
ct

ur
e

K 4 2
β [0.25 0.5 0.75] [0.5]
Mlin 2 2
M 1 1

TS

T1,0 T1,5
T3 T1,7
T6 T1,8

T1,9
T2

As shown in Table 3.17, the structure of DVR−41 has a significant number of segments
K, while the structure of the DVR−69 model is determined by the model terms. This
is justified by the limitation of the nonlinearity order p to P = 1, which leads the HC
algorithm to explore new neighbors by increasing K. In contrast, for a limitation of P = 9,
the HC algorithm explores several combinations of model terms, leading to an optimal
structure composed of 6 model terms, including the linear term.
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Replacing the parameters of the optimal structure in (3.3), the DVR−41 model is
expressed by:

yDV R−41(n) =
2∑
i=0

aix(n− i)

+
4∑

k=1

1∑
i=0

cki,10||x(n− i)| − βk|ejθ(n−i)

+
4∑

k=1

1∑
i=0

cki,3||x(n− i)| − βk| · x(n− i)

+
4∑

k=1

1∑
i=0

cki,6||x(n− i)| − βk| · x(n) · |x(n− i)|2

The DVR−69 model is expressed by:

yDV R−69(n) =
2∑
i=0

aix(n− i)

+
2∑

k=1

1∑
i=0

cki,15||x(n− i)| − βk|ejθ(n−i) · |x(n)|5

+
2∑

k=1

1∑
i=0

cki,17||x(n− i)| − βk|ejθ(n−i) · |x(n)|7

+
2∑

k=1

1∑
i=0

cki,18||x(n− i)| − βk|ejθ(n−i) · |x(n)|8

+
2∑

k=1

1∑
i=0

cki,19||x(n− i)| − βk|ejθ(n−i) · |x(n)|9

+
2∑

k=1

1∑
i=0

cki,2||x(n− i)| − βk| · x(n)

Their performances are summarized in Table 3.18 in terms of the number of coeffi-
cients, NMSE, the dynamic range of the model coefficients, and the condition number.

Table 3.18: Comparison of DVR−41 and DVR−69 in terms of modeling accuracy, com-
plexity, and numerical properties

DVR−41 DVR−69
NMSE -38.02 -38.67

Number of coeff. 27 23
Dynamic range 29 1499

Condition number 109 1013

The HC algorithm returns the DVR−41 and DVR−69 models according to the same
setting of α and dC .

Both models have almost similar modeling accuracy (NMSE) but with different com-
plexity (number of coefficients). The DVR−69 model has achieved roughly the modeling
accuracy of the DVR−41 model only with 23 coefficients, while the DVR−41 model re-
quires 27 coefficients.

In contrast, the DVR−41 model exhibits much better numerical properties compared
to the DVR−69 model. This can be seen in the dynamic range of the DVR−41 model
coefficients, which presents only 2% of the dynamic range required by the DVR−69 model
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coefficients, making it an impressive property to be taken into consideration. Further, the
condition number of the DVR−41 model is significantly reduced compared to the DVR−69
model reflecting that there is a meaningful difference in the computational complexity to
identify the coefficients of both models. Besides, the complexity also corresponds to
the realization of the basis functions, and each order of nonlinearity corresponds to an
additional multiplication.

3.5.8.4.3 Comparison of Postdistortion Results

Using the postdistortion architecture, Table 3.19 summarizes the linearization perfor-
mance of both models, which are presented in terms of NMSE, ACPR, and EVMapp. This
confirms the rough similarity of the linearization performance of both models.

Table 3.19: Comparison of DVR−41 and DVR−69 in terms of linearization performance

DVR−41 DVR−69
NMSE (dB) -38.02 -38.67

ACPRL1 (dB) -47.12 -47.91
ACPRL1 (dB) -47.59 -48.26
EVMapp (%) 0.97 0.95

Figure 3.38 shows the power spectrum of the DVR−41 and DVR−69 models, which
are compared to the PA output.

Figure 3.38: Spectra of PA input-output and postdistorter output using DVR−41 and
DVR−69 models

As can be seen, the DVR−41 and DVR−69 models significantly improve ACPR.

3.5.8.4.4 Comparison of HC Complexity

In Table 3.20, we summarize the results of the HC algorithm reported in Section
3.5.8.2.5 and Section 3.5.8.3.2.2, where the HC complexity is highlighted in terms of the
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total number of DVR models evaluated during the search, the HC iterations, the execution
time taken by the HC algorithm to perform, and the total number of coefficients by
summing the coefficients of all the neighbors tested.

Table 3.20: Comparison of HC complexity for P = 1 and P = 9

P = 1 P = 9
Total number of neighbors 399 1067

HC iterations 6 11
Execution time 1.18 min 3.73 min

Total number of coefficients 5850 20728

Once again, when P = 1, this characteristic has a substantial impact on the HC
complexity. By taking a general view of the results in Table 3.20, we can conclude that
the HC complexity increases by around 300% if we change P from 1 to 9.

The distribution of the neighbors over the HC iterations is depicted in Figure 3.39.
According to the HC iteration, the curves present the number of neighbors for P = 1 in
blue and P = 9 in red.

Figure 3.39: Neighbors per each HC iteration

The two curves behave roughly in the same way since the number of neighbors eval-
uated at the 3rd HC iteration is the highest number. This can be justified because the
HC algorithm explores many new neighbors compared to the previous HC iteration. The
number of neighbors decreases from the 3rd HC iteration, which amounts to the fact that
the HC algorithm finds common neighbors between previous HC iterations.

3.5.8.4.5 Comparison of Numerical Properties

The condition number can be a quantitative factor to represent the computational
complexity as it is involved in identifying the model coefficients. Their dynamic range is
also discussed. For this, we propose to present for each neighbor the condition number
and the dynamic range, which are sorted in ascending order and represented in Figure
3.40.
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(a) Condition number of regressor matrix (b) Dynamic range of model coefficients

Figure 3.40: Numerical properties of all neighbors evaluated during the search sorted in
ascending order

As shown in Figure 3.40, the numerical properties of the DVR models tested during
the search are reduced when P is set to 1, unlike when P = 9. In fact, this can be
interpreted by the shape of the curves. For example, in Figure 3.40a, the blue curve that
shows the results with P = 1 has nearly 220 neighbors whose condition number does not
exceed 1010. These neighbors have a reduced computational sensitivity to identify their
model coefficients.

A particular behavior is observed in the blue curve, where a discontinuous form occurs
at neighbor number 220 to the next (in a sorted way), where the condition number
suddenly moves from 1010 to 1018. This demonstrates that when P = 1, the HC algorithm
evaluates neighbors of a given element with different numerical properties, even if they
are subject to the definition we proposed for the neighborhood, which consists of adding
or removing one function to the model parameters. Unlike the blue curve, the red curve
representing the HC algorithm with P = 9 has a roughly progressive linear shape over
nearly 1000 neighbors, which causes an enormous calculation, which is highlighted in
terms of execution time in Table 3.20.

Regarding the dynamic range of the model coefficients depicted in Figure 3.40b, the
blue curve behaves as an exponential shape, which means that the majority of neighbors
tested have a reduced dynamic range between 0.5 and 316, while the red curve (P = 9)
has a progressive shape that goes up to around 106.

3.5.8.4.6 Discussion

The maximum nonlinearity order P for the DVR model significantly impacts the
HC algorithm to determine an optimal structure of the DVR model. Setting P to 1
drive the HC algorithm to determine an optimal structure with multiple segments K and
remarkable numerical properties, while the choice of P equal 9 leads the HC algorithm to
choose an optimal structure dominated by the model term T1,p with higher nonlinearity
order of p which causes wicked numerical properties. In contrast, the number of segments
K remains at two segments. On the other hand, the computational complexity behind
determining the optimal structure is exploded by 300 % when P vary from 1 to 9.
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3.5.9 Conclusion of DVR Model Sizing
In this section, the HC algorithm proposed for the GMP model has been extended to the
DVR model to find the optimal DVR model structure in a minimal number of computa-
tions.

Two important aspects are highlighted in this framework: the new definition of the
neighborhood proposed for the HC algorithm and the definition of a cost function to
achieve the best trade-off between modeling accuracy and complexity. The HC algorithm
parameters such as coefficient distance and the weighting coefficient of the cost function
are discussed.

The impact of the nonlinearity order present in the DVR model has been studied
through the model sizing using the HC algorithm.

3.6 Conclusion
In this chapter, two processes are discussed and investigated.

The design of the optimal DVR is divided into two processes: The first process in-
vestigates how to optimally set the thresholds that define the boundary of each segment
for a given structure, while the second process studies the determination of the optimal
structure of the DVR model for a uniform segmentation.

The first process to optimize the thresholds of the DVR model is done by proposing
an approach based on GS search. The proposed approach is based on decomposing the
global optimization problem into a set of sub-problems where the objective function is
unimodal. GS search is used to solve each unimodal sub-problem. The results illustrate
the effectiveness of the proposed approach and show that the optimization of the thresh-
olds significantly improves the linearization performances compared to conventional DVR
with uniform segmentation.

For the second process, we extend the HC algorithm proposed for the GMP model to
the DVR model by introducing a new neighborhood definition to determine the neighbors
of the evaluated structure. The convergence of the HC algorithm is ensured by a cost
function that exhibits the best trade-off between the linearization performance and the
model complexity. A comparison between the HC algorithm and exhaustive search is
carried out. The HC algorithm validates its efficiency by returning an optimal structure
close to the best structure resulting from the exhaustive search. Besides, the HC algorithm
was performed with minimal execution time compared to the exhaustive search. One of the
advantages of the HC algorithm is that the searching path can be controlled by configuring
some parameters such as the coefficients distance dC and the weighting coefficient of the
cost function.
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Chapter 4

A System Approach to Design and
Implement Optimal DVR Model

4.1 Introduction
In the previous chapter, the optimal structure of the DVR model is determined according
to a cost function representing the trade-off between modeling accuracy and complexity.
The sizing process of the DVR model is based on the HC algorithm, where the neighbor-
hood definition we proposed allows us to converge towards the optimal solution.

On the other hand, the thresholds that bound the segments of the DVR model are
optimized over the normalized input range. The approach to optimize the thresholds
consists of decomposing the global optimization problem into sub-problems that require
the application of GS search.

Designing an optimal DVR model involves determining its optimal structure with
optimal segmentation according to the same criteria as those used in the HC algorithm
to size the DVR model. This process presents a combination of the HC algorithm and
the proposed approach to optimize the thresholds in a particular way.

In this chapter, we propose system approaches (SysApp) to perform this joint opti-
mization to design the optimal DVR model. These SysApp are developed through different
versions, discussed, and compared to the HC algorithm regarding the optimal solution,
linearization performance, and complexity.

Once the optimal DVR model has been designed, it is essential to emphasize its nu-
merical properties for hardware implementation. Indeed, the purpose of designing a pre-
distorter is to implement it in a hardware device such as an FPGA.

In this chapter, we investigate and propose an implementation strategy by focusing
mainly on the optimal DVR model designed by our system approaches.

4.2 Design of Optimal DVR Model
The optimal DVR model design consists of determining its optimal structure with the
optimal segmentation according to the same criteria used in the HC algorithm to size the
DVR model that was discussed in Section 3.5.

4.2.1 System approaches

In this study, we propose different SysApp to design the optimal DVR model, which is
developed through different versions, and presented as follows:
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• Direct approach, which is based on integrating the proposed approach in Section 3.4
into the HC algorithm developed to size the DVR model. This approach is indicated
by D-SysApp.

• Simplified approach where the thresholds of the HC envelope are optimized. It is
indicated by S-SysApp.

• Optimal approach based on the junction of the thresholds optimization and the HC
algorithm, of which the running of the proposed approach to optimize the thresholds
is controlled by the number of segments and the model terms. It is indicated by
O-SysApp.

These approaches are discussed and compared to the HC algorithm with uniform
segmentation in terms of linearization performance of the optimal solution and imple-
mentation complexity, including computational complexity and numerical properties.

4.2.1.1 Direct Approach (D-SysApp)

The first system approach called direct approach (D-SysApp) can be seen as an intuitive
approach to design the optimal model by combining the HC algorithm described in Al-
gorithm (6) and the proposed approach based on GS search for optimizing the thresholds
β described in Algorithm (3).

Indeed, the optimization of βk is performed for each neighbor through the GS search.
The cost function f is computed according to C and N of each model with its optimized
segmentation βopt.

At first sight, this approach has the highest computational complexity. Its complexity
will be primarily evaluated by the total number of NMSE computations, including those
required for the proposed approach to optimizing β.

The principle of D-SysApp is described in Algorithm (7).
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Algorithm 7: Algorithm of D-SysApp
Choose the initial element x0(1)
Evaluate the initial cost function f(x0(1))
xs(0) = x0(1)
Initialize q = 1
while (1) do

Determine the neighbors xi(q) ∈ V(q) of x0(q)
if V(q) = Ø then

end while loop
else

Optimize β for each xi(q)
xs(q) = argmin

xi(q)∈V(q)

(
f(xi(q))

)
Save xs(q) in solution space S(q)
if C(xs(q−1)) < C(xs(q)) ≤ Cmax then

if N(xs(q)) ≤ N(xs(q)) + ∆ν then
q = q + 1
x0(q) = xs(q−1)

else
end while loop

end
else

end while loop
end

end
end
Return the optimal solution xs = argmin

xs∈S
(f(xs))

4.2.1.2 Simplified Approach (S-SysApp)

The direct approach can be simplified in complexity by optimizing the thresholds only for
specific DVR model structures.

These structures are determined according to 2 approaches:

• Senv-SysApp: The structures which are on the envelope of the HC algorithm.

• Sitr-SysApp: The structures which are determined at the end of each HC iteration.

The principle of Senv-SysApp is to apply the threshold optimization process using
GS search once the HC algorithm is finished. The complexity of Senv-SysApp is mainly
evaluated by the complexity of the HC algorithm, with the complexity of the GS search
multiplied by the number of structures found on the envelope.

On the other hand, Sitr-SysApp consists of inserting the GS search in the HC algo-
rithm, which will be activated once the HC iteration is finished and applied to the best
neighbor of this HC iteration. Similar to Sitr-SysApp, the complexity of Senv-SysApp is
primarily rated by the HC complexity, with the complexity of the GS search multiplied
by the number of HC iterations.

Since the threshold optimization of the best neighbor at a given HC iteration im-
proves its cost function, it may likely force the HC algorithm to stop earlier, mainly if no
neighbor in the next HC iteration is found with a better cost function than the previous
one. However, Sitr-SysApp remains a relatively limited approach where determining the
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solution at each HC iteration relies on comparisons between a structure with optimal
segmentation and others with uniform segmentation.

The algorithm of Senv-SysApp is described in Algorithm (8).

Algorithm 8: Algorithm of Senv-SysApp
Choose the initial element x0(1)
Evaluate the initial cost function f(x0(1))
xs(0) = x0(1)
Initialize q = 1
while (1) do

Determine the neighbors xi(q) ∈ V(q) of x0(q)
if V(q) = Ø then

end while loop
else

xs(q) = argmin
xi(q)∈V(q)

(
f(xi(q))

)
Save xs(q) in solution space S(q)
if C(xs(q−1)) < C(xs(q)) ≤ Cmax then

if N(xs(q)) ≤ N(xs(q)) + ∆ν then
q = q + 1
x0(q) = xs(q−1)

else
end while loop

end
else

end while loop
end

end
end
for xs ∈ S(q) do

Optimize β of xs
Update f(xs(i)) with βopt in S(q)

end
Return the optimal solution xs = argmin

xs∈S
(f(xs))
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The algorithm of Sitr-SysApp is described in Algorithm (9).

Algorithm 9: Algorithm of Sitr-SysApp
Choose the initial element x0(1)
Evaluate the initial cost function f(x0(1))
xs(0) = x0(1)
Initialize q = 1
while (1) do

Determine the neighbors xi(q) ∈ V(q) of x0(q)
if V(q) = Ø then

end while loop
else

xs(q) = argminxi(q)∈V(q)

(
f(xi(q))

)
Optimize β of xs(q)
Update f(xs(i)) with βopt in S(q)
if C(xs(q−1)) < C(xs(q)) ≤ Cmax then

if N(xs(q)) ≤ N(xs(q)) + ∆ν then
q = q + 1
x0(q) = xs(q−1)

else
end while loop

end
else

end while loop
end

end
end
Return the optimal solution xs = argmin

xs∈S
(f(xs))

4.2.1.3 Joint Optimal Approach (O-SysApp)

The motivation behind the joint optimal approach, indicated by O-SysApp, is to execute
the HC algorithm to size the DVR model on a set of neighbors with optimal segmentation,
i.e., the optimal segmentation of the trained DVR models is available and stored in LUT.

The size of the LUT depends on the number of times the optimization process on the
thresholds β has been executed. The optimal thresholds are stored in the LUT along with
the search for the optimal solution by the HC algorithm, which makes it a joint approach.
Although the perfect case is where the optimal segmentation of all structures is available
and stored, it cannot be performed because it requires an exhaustive search, which leads
to D-SysApp.

As seen in Section 3.4.9, Section 3.4.10, and Section 3.4.11, the parameters K, M , and
TS have different impacts on the thresholds optimization process. The property of each
parameter impact could be used to built O-SysApp through two versions:

• Ored-SysApp: we consider that the optimal segmentation is not sensitive to param-
eters M and TS. The thresholds β are optimized only when the number of segments
K changes over the HC search. The optimal segmentation corresponding to each K
is saved in LUT.

• Ogen-SysApp: we consider that the optimal segmentation is not sensitive to the
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parameter M . The thresholds β are optimized when the number of segments K or
model terms TS change through the HC algorithm.

The principle of Ored-SysApp is to optimize the thresholds of a given model structure
only when K changes. The optimal segmentation of each K is stored in LUT. The size
of LUT depends on the maximum number of segments explored by the HC algorithm.

An optimal segmentation β
(K)
opt for a given K covers all structures that have the same

K, regardless of the other parameters (M , TS).
On the other hand, the threshold optimization process is based on the methods pro-

posed in Section 3.4.9 in order to speed up the convergence of the GS search.
The algorithm of Ored-SysApp is described in Algorithm (10).
Ogen-SysApp is an upgraded version of Ored-SysApp, where the algorithm is similar,

except, when the model terms change, the thresholds optimization process is called. The
Ogen-SysApp is more general than Ored-SysApp since the model terms TS are considered
as a sensitive parameter in addition to K. The parameter M remains insensitive as
indicated in Section 3.4.10.

The algorithm of Ogen-SysApp is described in Algorithm (11).
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Algorithm 10: Algorithm of Ored-SysApp
Choose the initial element x0(1)
Optimize β of x0(1)

Store β
(K0)
opt in LUT

Evaluate the initial cost function f(x0(1))
xs(0) = x0(1)
Initialize q = 1
while (1) do

Determine the neighbors xi(q) ∈ V(q) of x0(q)
if V(q) = Ø then

end while loop
else

if β
(Ki)
opt /∈ LUT then

if β
(Ki−1)
opt ∈ LUT then

βinit = [
β

(Ki−1)
1opt

2 ; β(Ki−1)
1opt

; · · · ; β(Ki−1)
Ki−2opt

]
else if β

(Ki+1)
opt ∈ LUT then

βinit = [β(Ki+1)
2opt

; · · · ; β(Ki+1)
Kiopt

]
else

βinit = [ 1
Ki
, ..., Ki−1

Ki
]

end
Optimize β

(Ki)
opt of xi(q) with initial segmentation βinit

Store β
(Ki)
opt in LUT

else
Get β

(Ki)
opt from LUT

end
Update xi(q) with β

(Ki,TSi
)

opt

xs(q) = argminxi(q)∈V(q)

(
f(xi(q))

)
Save xs(q) in solution space S(q)
if C(xs(q−1)) < C(xs(q)) ≤ Cmax then

if N(xs(q)) ≤ N(xs(q)) + ∆ν then
q = q + 1
x0(q) = xs(q−1)

else
end while loop

end
else

end while loop
end

end
end
Return the optimal solution xs = argmin

xs∈S
(f(xs))
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Algorithm 11: Algorithm of Ogen-SysApp
Choose the initial element x0(1)
Optimize β of x0(1)

Store β
(K0,TS0 )
opt in LUT

Evaluate the initial cost function f(x0(1))
xs(0) = x0(1)
Initialize q = 1
while (1) do

Determine the neighbors xi(q) ∈ V(q) of x0(q)
if V(q) = Ø then

end while loop
else

if β
(Ki,TSi

)
opt /∈ LUT then

if β
(Ki−1)
opt ∈ LUT then

βint = [
β

(Ki−1)
1opt

2 ; β(Ki−1)
1opt

; · · · ; β(Ki−1)
Ki−2opt

]
else if β

(Ki+1)
opt ∈ LUT then

βinit = [β(Ki+1)
2opt

; · · · ; β(Ki+1)
Kiopt

]
else

βinit = [ 1
Ki
, ..., Ki−1

Ki
]

end
Optimize β

(Ki,TSi
)

opt of xi(q) with initial segmentation βinit

Store β
(Ki,TSi

)
opt in LUT

else
Get β

(Ki,TSi
)

opt from LUT
end
Update xi(q) with β

(Ki,TSi
)

opt

xs(q) = argminxi(q)∈V(q)

(
f(xi(q))

)
Save xs(q) in solution space S(q)
if C(xs(q−1)) < C(xs(q)) ≤ Cmax then

if N(xs(q)) ≤ N(xs(q)) + ∆ν then
q = q + 1
x0(q) = xs(q−1)

else
end while loop

end
else

end while loop
end

end
end
Return the optimal solution xs = argmin

xs∈S
(f(xs))
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4.2.2 Experimental Results

The effectiveness of the proposed approaches is validated using the same experimental
conditions as those reported in Section 3.3.

The HC algorithm part of the system approaches is performed with Cmax = 50,
α = 0.05, and dC = 5 coefficients. The nonlinearity order P is set to P = 1. The
different system approaches have the same stop condition as the HC algorithm with uni-
form segmentation.

4.2.2.1 Search Behavioral

In this section, we present the convergence behavior of each system approach where the
HC algorithm results with uniform segmentation are plotted in the background.

We remind that the optimal structure returned by the HC algorithm with uniform
segmentation, with Cmax = 50, α = 0.05, dC = 5, and P = 1 is:

K = 4
β = [0.25 0.5 0.75]
Mlin = 2 ; M = 1
TS = [T1,0 T3 T6]

with C = 27 coefficients and N = −38.02 dB.

4.2.2.1.1 D-SysApp

Figure 4.1 presents the results of the direct approach (D-SysApp), where the neighbors
and the envelope are plotted in blue.

Figure 4.1: Behavior search of D-SysApp
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The structure of the optimal solution returned by D-SysApp is:

K = 4
βopt = [0.59 0.82 0.93]
Mlin = 2 ; M = 1
TS = [T2 T6]

with C = 19 coefficients and N = −38.6 dB.
Compared to the optimal solution of the HC algorithm, the number of segments and

the memory depth are similar in both architectures. The model terms TS are different.
On the other hand, the position of the optimal thresholds is almost similar to what has
been shown in Section 3.4 when K = 4.

4.2.2.1.2 S-SysApp

4.2.2.1.2.1 Senv-SysApp

Figure 4.2 presents the results of Senv-SysApp, which consists of applying the GS
search on the envelope of the HC algorithm.

Figure 4.2: Behavior search of Senv-SysApp

As it can be seen from Figure 4.2, the thresholds optimization of the HC envelope
significantly improves NMSE.

The structure of the optimal solution returned by Senv-SysApp is:

K = 4
βopt = [0.55 0.78 0.92]
Mlin = 2 ; M = 1
TS = [T1,0 T3 T6]
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with C = 27 coefficients and N = −38.85 dB.
In this approach, the optimal solution is chosen based on the cost function, i.e., the

solution with the best f is the optimal solution.

4.2.2.1.2.2 Sitr-SysApp

Figure 4.3 presents the results of Sitr-SysApp, which consists of optimizing the struc-
ture of the best neighbor at each HC iteration.

Figure 4.3: Behavior search of Sitr-SysApp

As shown in figure 4.3, Sitr-SysApp is stopped at the third HC iteration, which is
justified by the fact that the GS search optimizes best neighbor thresholds, which sig-
nificantly improves NMSE, hence the cost function. This impacts the HC algorithm, for
which the probability of finding neighbors with better cost functions in the successive
iterations remains low, causing the algorithm to stop.

The structure of the optimal solution returned by Sitr-SysApp is:

K = 3
βopt = [0.26 0.88]
Mlin = 2 ; M = 1
TS = [T3 T6]

with C = 15 coefficients and N = −38.01 dB.

4.2.2.1.3 O-SysApp

4.2.2.1.3.1 Ored-SysApp
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Figure 4.4 presents the results of Ored-SysApp described in Algorithm (10), where the
structure of the optimal solution returned is:

K = 4
βopt = [0.66 0.83 0.93]
Mlin = 2 ; M = 1
TS = [T1,0 T1,1 T4 T5]

with C = 35 coefficients and N = −38.80 dB.

Figure 4.4: Behavior search of Ored-SysApp

Table 4.1 presents the LUT created by Ored-SysApp, where the optimal segmentation
is saved according to the variation of K. In this scenario, the maximum number of
segments K explored by Ored-SysApp is 7 segments.

Table 4.1: Optimal segmentation saved through Ored-SysApp

K Optimal segmentation βopt

2 [0.84]
3 [0.59 0.87]
4 [0.65 0.83 0.93]
5 [0.36 0.66 0.82 0.93]
6 [0.04 0.24 0.55 0.83 0.95]
7 [0.11 0.27 0.51 0.65 0.83 0.95]

4.2.2.1.3.2 Ogen-SysApp

As described in Algorithm (11), the results of Ogen-SysApp to design an optimal DVR
model are depicted in Figure 4.5.
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Figure 4.5: Behavior search of Ogen-SysApp

The structure of the optimal solution returned by Ogen-SysApp is:

K = 5
βopt = [0.11 0.67 0.84 0.94]
Mlin = 2 ; M = 1
TS = [T3 T6]

with C = 23 coefficients and N = −38.93 dB.
During Ogen-SysApp, the thresholds optimization process is performed 106 times,

where the optimal segmentation is saved in 2D according to K and TS.

4.2.2.2 Comparison of Search Behavioral

Figure 4.6 compares the search path of the envelope of each system approach, where the
envelope of the HC algorithm with uniform segmentation is plotted in red. As can be seen,
Ored-SysApp is sub-optimal from 10 to 30 coefficients, while Senv-SysApp, Sitr-SysApp,
and Ogen-SysApp achieves nearly the same performance as D-SysApp from 15 coefficients.
And as expected, the direct approach (D-SysApp) achieves the best performance.
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Figure 4.6: Behavior search comparison of different SysApp

4.2.2.3 Optimal Solution

Table 4.2 summarizes the optimal solutions returned by the different system approaches
to design the DVR model.

Table 4.2: Comparison of optimal solutions of system approaches

HC algorithm D-SysApp Senv-SysApp Sitr-SysApp Ored-SysApp Ogen-SysApp

M
od

el
st

ru
ct

ur
e

K 4 4 4 3 4 5
β [0.25 0.5 0.75] [0.59 0.82 0.93] [0.55 0.78 0.92] [0.26 0.88] [0.66 0.83 0.93] [0.11 0.67 0.84 0.94]
Mlin 2 2 2 2 2 2
M 1 1 1 1 1 1

TS

T1,0 T2 T1,0 T3 T1,0 T3
T3 T6 T3 T6 T1,1 T6
T6 T6 T4

T5
C 27 19 27 15 35 23
N -38.02 -38.6 -38.85 -38.01 -38.80 -38.93
f -36.32 -37.65 -37.5 -37.26 -37.05 -37.78

As can be shown, the optimal solutions have the same model structure in terms of
memory depths (Mlin and M), while the number of segments K and model terms TS are
different from an optimal solution to another.

In contrast, the optimal segmentation when the optimal solutions share the number
of segments is roughly located on the same region, regardless of the model terms.

On the other hand, the optimal solutions have the same linearization performance but
with different complexity. By computing the cost function with α = 0.05, the best optimal
solution is the one returned by Ogen-SysApp followed by D-SysApp, which is plausible
since it is based on the full integration of the GS search within the HC algorithm. However,
it is important to emphasize the complexity of each system approach to conclude on their
effectiveness.
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4.2.2.4 Complexity

The complexity of the proposed system approaches to design the DVR model is assessed
in the same way as the complexity reduction of the HC algorithm described in Section
3.5.5.

Table 4.3 presents the complexity of the system approach, which is evaluated by the
total number of models evaluated over the system approach, the HC iterations, the total
number of NMSE computations including those of the threshold optimization process,
the execution time (runtime), and the total number of model coefficients identified along
with the system approach.

Table 4.3: Complexity comparison of system approaches

D-SysApp Senv-SysApp Sitr-SysApp Ored-SysApp Ogen-SysApp
Evaluated DVR model 892 399 256 750 506

HC iterations 21 6 3 17 16
NMSE computations 51979 910 356 1100 3866

Runtime (min) 294 2.1 0.6 4.9 8.54
Model coefficients 74511 5952 2575 19185 28537

According to Table 4.3, we can see that the behavior of each approach impacts the
complexity of its convergence towards the optimal solution.

The runtime of D-SysApp is very important with a high number of NMSE compu-
tations, so it cannot be a realistic candidate to design the DVR model, especially for
real-time DPD adaptation. Senv-SysApp and Sitr-SysApp remain candidates in terms of
the runtime and number of NMSE computations. Ored-SysApp and Ogen-SysApp exhibit
superior complexity behavior compared to Sens-SysApp and Sitr-SysApp.

4.2.3 Discussion and Conclusion
According to the results in Table 4.2 and Table 4.3, and since D-SysApp is excluded from
our choice due to its computational complexity, we can conclude that Ogen-SysApp is an
excellent candidate to design the DVR model since it presents a good trade-off between
linearization performance and computational complexity.

On the other hand, Sitr-SysApp exhibits a similar linearization performance compared
to Ogen-SysApp at reduced complexity (15 model coefficients) and with the same model
terms, which cannot be removed from our choice. However, the stop criterion of Sitr-
SysApp can be subject to improvement to make it more superimposed with Ogen-SysApp
in terms of the search path. Another viewpoint that can be deepened and elaborated
is to develop a system approach by combining Ored-SysApp and Sitr-SysApp. When
Ored-SysApp allows having a particular slope of the searching behavior, we switch to
Sitr-SysApp to refine the search path.

4.3 Hardware Implementation Strategy of Optimal
DVR Model

The design of an appropriate predistorter based on a software environment such as MAT-
LAB is suitable for laboratory usage but not for real-time DPD applications. Besides,
software solutions provide difficulty in implementing the adaptive algorithm. Therefore,
to meet the industrial requirements, the DPD system should be implemented in hard-
ware such as FPGA, which has many advantages in digital signal processing, including
high-speed processing, flexible implementation, and high reliability.
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Two critical points to be considered during the translation from software to hardware
are: accuracy and speed. Parallel operation mechanisms can improve these points.

In the hardware implementation of DPD, there are mainly two processes:

• The application of DPD on the input signal needs to be sampled at a sufficient
sampling rate to meet the growing demand for wideband signals in the current
telecommunication systems and to be able to accommodate the widening of the
signal bandwidth by the highest nonlinearity order of the DPD.

• The identification and update of the DPD coefficients, which can be done using
block per block or sample per sample approaches.

As is mentioned in Chapter II, there are two structures to implement the DPD model
in hardware: the LUT method and the direct structure with multipliers and adders. The
LUT method stores the precomputed value of the gain functions, which are indexed by the
input magnitude. On the other hand, the direct structure with multipliers and adders,
the so-called direct multiple and add method, usually takes advantage of the pipeline
architecture of the FPGA to increase the throughput in which more logic resources are
involved compared to the LUT method.

In this section, we propose a hardware strategy to implement the optimal DVR model
designed by the joint approach.

4.3.1 State-of-the-Art
According to the literature related to this research line, many works have been reported
to implement the DPD models on hardware.

In [88], the authors describe the platform for the software-hardware architecture of
DPD implementation for 3G transceivers, where the authors used a curve-fitting function
to generates a smooth version of the AM-AM and AM-PM curves. In [58], the authors
proposed hardware implementation of DPD, which is based on a nonlinear auto-regressive
moving average structure, and mapped into a set of scalable LUTs.

Another work dedicated to implementing models based on the Volterra series is re-
ported in [89], where an FPGA design is proposed and considers the memory depth. In
[90], the authors proposed a hardware methodology with high-level synthesis for FPGA
devices to implement the arithmetic representations of the models based on the Volterra
series. A combination between FPGA and ARM processors is proposed in [92] to im-
plement the MP model, where the authors used the ARM processor for its advantage in
floating-point computations. In [93], the authors proposed a scalable LUT architecture
to implement the GMP model using high-level synthesis.

Regarding the DVR model, few research works have been reported in the literature
devoted to hardware implementation. In [66], the authors proposed a hardware structure
by dividing the DVR model into a sub-composed format to reduce the implementation
complexity. However, the parameters of the DVR model have been set arbitrarily without
raising any concerns about the model complexity reduction. In [94], a model derived from
the DVR model is proposed, where the hardware implementation has been emphasized.

4.3.2 Direct Multiply and Add Method
The direct method is based on the use of multipliers and adders to implement predistor-
tion. For polynomials such as

y = a0 + a1x+ a2x
2 + · · ·+ anx

n
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the complexity of the direct method to evaluate the polynomial expression can be reduced
by using the Horner’s rule by formulating y as

a0 + x(a1 + x(· · ·+ x(an−2 + x(an−1 + anx))))

The Horner’s rule allows to evaluate a polynomial of degree n with only n multiplica-
tions and additions and it can be implemented with modular architectures using pipeline.

By extending this concept to the polynomial with memory (MP model, for example),
the function y consists of several stages of a + b|x(n − i)| in which n pipelined stages
are required in the circuit. This block only deals with multiplication and summation
algorithms, and it is simple to implement in FPGA.

However, the complexity of implementation depends on the structure of the model (in
the case of the MP model, memory depth, and nonlinear order) since the multipliers are
one of the most complex and expensive components in FPGA. In addition, it is necessary
to take into account the dynamics of the model coefficients and the computation noise
introduced by each elementary operation.

For the optimal DVR model designed by Ogen-SysApp and according to (3.3), it can
be expressed by:

y(n) =
2∑
i=0

aix(n− i)

+
5∑

k=1

1∑
i=0

cki,3||x(n− i)| − βk| · x(n− i)

+
5∑

k=1

1∑
i=0

cki,6||x(n− i)| − βk| · x(n) · |x(n− i)|2

which gives
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y(n) = a0 · x(n) + a1 · x(n− 1) + a2 · x(n− 2)
+ c10,3 · ||x(n)| − 0.11| · x(n)
+ c20,3 · ||x(n)| − 0.67| · x(n)
+ c30,3 · ||x(n)| − 0.84| · x(n)
+ c40,3 · ||x(n)| − 0.94| · x(n)
+ c50,3 · ||x(n)| − 1| · x(n)
+ c11,3 · ||x(n− 1)| − 0.11| · x(n− 1)
+ c21,3 · ||x(n− 1)| − 0.67| · x(n− 1)
+ c31,3 · ||x(n− 1)| − 0.84| · x(n− 1)
+ c41,3 · ||x(n− 1)| − 0.94| · x(n− 1)
+ c51,3 · ||x(n− 1)| − 1| · x(n− 1)
+ c10,6 · ||x(n)| − 0.11| · x(n) · |x(n)|2

+ c20,6 · ||x(n)| − 0.67| · x(n) · |x(n)|2

+ c30,6 · ||x(n)| − 0.84| · x(n) · |x(n)|2

+ c40,6 · ||x(n)| − 0.94| · x(n) · |x(n)|2

+ c50,6 · ||x(n)| − 1| · x(n) · |x(n)|2

+ c11,6 · ||x(n− 1)| − 0.11| · x(n) · |x(n− 1)|2

+ c21,6 · ||x(n− 1)| − 0.67| · x(n) · |x(n− 1)|2

+ c31,6 · ||x(n− 1)| − 0.84| · x(n) · |x(n− 1)|2

+ c41,6 · ||x(n− 1)| − 0.94| · x(n) · |x(n− 1)|2

+ c51,6 · ||x(n− 1)| − 1| · x(n) · |x(n− 1)|2

where 27 adders and 33 multipliers are required to achieve this hardware implementation.
Implementing the optimal DVR model by direct method is explicitly illustrated in Figure
4.7, where the number of multipliers and adders used has not been optimized.

4.3.3 LUT Method
LUT method is an efficient solution to implement the gain function of predistorter in
FPGA. Figure 4.8 depicts the basic cell of the LUT method, where the magnitude of the
signal is used as an index.

The corresponding value of the gain function is precomputed and retrieved in the
memory with the address associated with the quantified magnitude of the input sample.

Conventionally, for the polynomial models, the LUT is built only for each polynomial
term [86] [58]. This method is more flexible since once the DPD coefficients are identified,
the contents of LUT are updated without changing their size. However, more memory is
needed to implement LUTs, and additional multipliers and adders are needed to combine
all of the polynomial terms into the final result.

On the other hand, all terms with the same memory depth M can be calculated and
saved in one LUT, allowing only M + 1 LUTs. This technique considerably reduces the
number of multipliers and adders.

Figure 4.9 presents an example architecture of this LUT method to compute the
polynomial function

M∑
i=0

K∑
k=0

ak,ix(n− i)|x(n− i)|k
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Figure 4.7: Implementation of optimal DVR model by direct method

which can be presented as

M∑
i=0

x(n− i)(
K∑
k=0

ak,i|x(n− i)|k) =
M∑
i=0

x(n− i)Gi
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Figure 4.8: Basic cell of LUT method for polynomial

where the values stored in the LUT gains for x(n− i) are

Gi =
K∑
k=0

ak,i|x(n− i)|k

and the number of LUT is controlled by the memory depth M .

Figure 4.9: Architecture of LUT method to calculate polynomial

The LUT entries can be made with two methods of spacing: uniform and non-uniform
[87] [67]. The non-uniform spacing based on the companding function has been proven
to provide the best modeling accuracy. However, the probability density function of the
input signal is required, which is generally of high computational complexity. Therefore,
uniform spacing is often chosen to space the LUT due to its relatively low complexity and
sufficiently good results compared to non-uniform spacing.

For the DVR model, the value stored in LUT corresponds to the function G(|x(n− i)|)
such as

G(|x(n− i)|) =
K∑
k=1

cki||x(n− i)| − βk|

It should be noted that the precomputation is performed when updating the DPD coef-
ficients.

For the optimal DVR model returned by Ogen-SysApp, its implementation using LUT
is depicted in Figure 4.10.
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Figure 4.10: Implementation of optimal DVR model by LUT

It is seen that the number of adders and multipliers is reduced compared to the direct
implementation, where 7 multipliers, 7 adders, and 2 LUTs are needed to achieve this
implementation. Once the DPD coefficients are estimated, the two LUTs are updated
with the precomputed values of their respective functions

5∑
k=1

ck0||x(n)| − βk|

and
5∑

k=1
ck1||x(n− 1)| − βk|

The accuracy of the function

K∑
k=1

cki||x(n− i)| − βk|

depends on the number of bits of the LUT data, while the size of LUT depends on the
number of bits used in the quantization of the signal and the interpolation used for the
LUT values.

The complexity of the LUT implementation can be evaluated by the number of LUT
(e.g., memory depth M of the DVR model), the quantization bits, and the number of bits
required for each memory slot which indicates the resolution of the value stored in LUT.

Having 2 LUTs in Figure 4.10 refers to the fact that the optimal structure of the DVR
model has M = 1, which is optimized by the joint approach we proposed to design the
DVR model.

The length of the LUT, denoted by L, is defined by the number of bits NQ used in
the quantization of the signal by

L = 2NQ (4.1)
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In order to find the optimal L, we propose to evaluate the linearization performance
of the optimal DVR model designed by the joint approach using the LUT implementation
structure by varying NQ from 2 to 20 bits.

Figure 4.11 presents the behavior of linearization performance in terms of NMSE of
the DVR model according to the variation of NQ from 2 bits to 20 bits. The NMSE from
the direct approach (NMSE = −38.93dB) is presented as well.

Figure 4.11: NMSE according to variation of NQ

According to Figure 4.11, we see that the linearization performance by the LUT im-
plementation converges to that by the direct implementation and that from NQ = 12 bits
that corresponds to L = 4096 rows, the linearization performances are identical.

4.4 Conclusion
In this chapter, we proposed a system approach combining the HC algorithm and GS
search to design the optimal DVR model. The system approach is developed through dif-
ferent versions, where the concept is to determine the optimal structure of the DVR model
with its optimal segmentation. These system approaches are discussed and compared in
terms of the optimal solution and computational complexity.

LUT-based hardware implementation for optimal DVR model is proposed and opti-
mally sized according to the linearization performances compared to the direct imple-
mentation, making it a solid strategy to implement the DVR model on hardware such as
FPGA. On the other hand, it is essential to emphasize that some model parameters, such
as the memory depth M , which impact the complexity of implementation (number of
LUTs), could replace the number of coefficients in the cost function design since the num-
ber of coefficients has no impact on the implementation complexity by LUT. Nevertheless,
the number of coefficients has an impact on the identification process.

The study of the optimal DVR model design is shown to be robust in this Chapter
and will be applied as a DPD model to linearize a dual-input Doherty PA in the next
chapter.
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Chapter 5

Linearization and Efficiency
Enhancement of Dual-Input Doherty
Power Amplifier

5.1 Introduction
The introduction of non-constant amplitude modulated signal makes the enhancement of
PA efficiency with maintaining an adequate level of linearity more challenging. Starting
from wideband code division multiple access (W-CDMA) in 3G, the PAPR of signals
increases with the use of OFDM in 4G LTE and 5G. Besides, the requirements for higher
transmission rates should be satisfied. Wider signal bandwidths are needed to accommo-
date higher data rates.

For modulated signals with high PAPR, PA should operate at large power back-off,
which decreases PA efficiency. Advanced architectures of PA based on dynamic load
or supply modulation have been proposed in the literature to avoid wasting excessive
power resources. Some of the most popular solutions are Doherty PA [95], envelope
elimination and restoration [96], envelope tracking [97], and outphasing PA [98]. These
highly efficient topologies require linearization techniques such as DPD to ensure the
specified level of linearity according to the communication standards. Introducing DPD
to the amplification system becomes more necessary to meet the linearity requirement,
especially with increased signal bandwidth.

The amplification architectures based on active load modulation, one of the most com-
mon PA efficiency enhancement techniques, rely on the nonlinear interaction between the
main and auxiliary transistors for modulated signals with a significant dynamic. Although
these architectures can be designed with a single RF input to be used in the transmitter,
several studies have been reported in the literature to highlight the benefits in maintaining
separate inputs [99] [100] [101], and the advantages of dual-input Doherty PA compared to
single-input has been studied in [102]. Therefore, additional degrees of freedom, so-called
free parameters offered by the separate inputs, can be used to control the performance or
to enhance the PA efficiency [103].

Focusing on dual-input PA architecture, searching for optimal free parameters guar-
anteeing high performance requires experimental cross-validation or exhaustive search.
These processes are usually costly and computationally significant, especially when the
search space is enormous and not limited.

Setting these free parameters to their optimal values within a defined interval can be
viewed as a global optimization problem. Several techniques have been proposed in the
literature to find the optimal set of free parameters among large tunable ranges considered
as search intervals [104]. Typically, the global optimization techniques could be catego-
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rized into three classes: the deterministic methods (Bayesian search algorithm, branch
and bound algorithms, interval methods, etc.), the stochastic methods (simultaneous per-
turbation, simulated annealing, swarm algorithms, etc.), and the heuristic methods (GA,
ant colony, tabu search, particle swarm optimization, etc.).

In this chapter, we propose a new architecture to enhance the power efficiency of the
dual-input Doherty PA while meeting the linearity requirement. The proposed architec-
ture is based on an auto-tuning approach consisting of optimizing the free parameters by
a proposed hybrid optimization algorithm according to an adaptive cost function. This
cost function adaptively indicates the trade-off between power efficiency and linearity.
The free parameters to be optimized in the auto-tuning approach cover PA biasing, base-
band calibration process such as the power level, and PAPR reduction. Besides, a DPD
linearization is jointly optimized and integrated into our approach to meet the linearity
requirements.

The remainder of this chapter is organized as follows.
Section II presents the system-level aspects, including the dual-input Doherty PA and

the experimental testbench.
Section III presents the free parameters to be optimized.
In Section IV, we describe the proposed auto-tuning approach-based architecture to

optimize the performance of the dual-input Doherty PA with the DPD linearization tech-
nique.

Section V presents the experimental results of the proposed approach.
Finally, the conclusion is given in Section VI.

5.2 System-Level Aspects

5.2.1 Dual-Input Doherty Power Amplifier
The PA, which is based on active load modulation (Doherty, outphasing) with separate
RF inputs, can be viewed, by generalization, as the block diagram depicted in Figure 5.1.

Figure 5.1: Block diagram of dual-input PA

The dual-input PA has two RF inputs, a drain bias VDC , and two gate-source voltages
VGS,1 and VGS,2 to control the transistor’s terminal independently. A typical example
of PA with independent VGS is Doherty, where the main (carrier) amplifier is biased in
class B and the auxiliary amplifier (typically named peaking amplifier) in class C. The
instantaneous amplitude and phase of each input in baseband, as well as the VGS gate
bias voltages, can be controlled and adjusted separately, which allows having a significant
degree of freedom for these parameters to improve the performance of the PA, in particular
its efficiency.
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At a given operating back-off (BO), the main amplifier reaches its maximum output
voltage and becomes maximally efficient. From this power level, the auxiliary amplifier
turns on and injects current into the common node, increasing the output power and
modulating the load seen by the main amplifier.

In this chapter, the dual-input Doherty PA presented in [105] is used as the device
under test (DUT). In [105], the authors have presented a 3.0 - 3.6 GHz wideband GaN
Doherty PA with a frequency dependency compensating circuit. The architecture of the
dual-input Doherty PA is presented in Figure 5.2.

Figure 5.2: Architecture of Doherty PA with frequency dependency compensating circuit

Figure 5.3 shows the photo of the assembled dual-input Doherty PA. The dual-input
Doherty PA contains two GaN HEMTs inside one package. The matching networks and
the output hybrid couplers are based on micro-strip networks with SMD capacitors and
resistors. The circuit is mounted on an aluminum fixture, and SMA coaxial launchers
are used for the RF ports. The input and output circuits are fabricated with RO4350B
substrates.

Figure 5.3: Photo of dual-input Doherty PA

In Figure 5.3, the upper path leads to a transistor operating as the main amplifier,
and the lower one leads to a transistor operating as a peaking amplifier.
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This dual-input Doherty PA can produce a peak output power of 40 dBm (10 W) and
has a linear gain of 15 dB. The measurements reported in [105] have been performed under
a modulated signal with 20 MHz channel LTE signal and showed, over 3.0 − 3.6 GHz
frequency range with an efficiency exceeding 40%. The linearizability of this PA has
been studied as well, where the ACPR has been improved by 10 - 15 dB using DPD
linearization.

Nevertheless, the two RF inputs of Doherty PA in [105] were connected to the same
RF input, and no optimization process has been reported for this DUT.

5.2.2 Testbench
The effectiveness of the proposed auto-tuning approach-based architecture is validated
through experiments that have been carried out using a testbench.

The block diagram and the photo of the testbench are shown in Figure 5.4 and Figure
5.5, respectively.

Figure 5.4: Block diagram of testbench of dual-input Doherty PA

Figure 5.5: Photo of testbench of dual-input Doherty PA

The dual-input Doherty PA is controlled and evaluated using a MATLAB-based lin-
earization and efficiency enhancement technique. It runs on Windows PC. The baseband
IQ data are generated and split into two different IQ data inputs sent to the DUT through
the AD9371 dual-channel RF transceiver, which is connected to Xilinx FPGA ZC700
through FMC connectors.

A reference clock source is injected into the AD9371 board using the MXG X-Series
N5182A vector signal generator at 30.72 MHz with 5 dBm of power. The transceiver
AD9371 up-converts the baseband signals to the carrier frequency fc at 3 GHz using a
245.76 MHz sampling frequency. Two low-pass filters are used for each path (main and
peaking) to remove unwanted frequencies.
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Each RF signal stimulates the dual-input Doherty PA through a coupler ZUDC30-183
and driver AMP1132. The drivers are used to control DUT’s input power level, while the
two couplers are used to measure the RF input powers: the peaking power Pp and main
power Pm. Two couplers are installed in cascade at the output of the DUT. The first
coupler is used to attenuate the RF output signal for the observation path. A Keysight
N9010A MXA spectrum analyzer is used to characterize the signal’s spectrum at the
output of DUT through the second coupler. The RF instruments and DC supplies used
in this testbench are connected to the PC workstation by LAN over Ethernet.

During the testbench setup, a calibration process of the RF instruments has been
carried out to ensure that the displayed measurements are traceable and reliable.

For the observation path, The RF output signal is down-converted to the baseband
by AD9371, which provides the baseband signal to the PC workstation. Around 100000
IQ samples were recorded for the baseband process with a sampling rate of 245.76 MSPS.

After the reception of the IQ data through the observation Rx path, several synchro-
nization processes are applied using Matlab to prepare the baseband input-output signals
from the PA for the processing. This acquisition process is organized as follows:

• Synchronization: The input-output baseband signals are normalized and synchro-
nized in the time domain using a cross-correlation operation.

• fc correction: This process removes the frequency offset between the transmitter
and the receiver.

• Fractional time-shift: This method is proposed in [106], which is based on a B-
spline filter that produces a time-shift ∆ ∈ [0, 1], which is an arbitrary fraction of
the sampling period.

• IQ imbalance correction: Due to the distortion of the down-converter at the receiver
side, which introduces an image interference, that may have an error floor limiting
the demodulation performance. Moreover, the IQ imbalance introduced by the local
oscillator may be assumed constant over the signal bandwidth and can be charac-
terized by the phase mismatch that can occur between the I and Q components,
which becomes not precisely 90 degrees, and an amplitude mismatch due to the dif-
ference in gain of the I and Q branch mixers. In this work, a circularity-based blind
compensation algorithm proposed in [107] is used as an IQ imbalance compensator.

NMSE between the baseband input and output of DUT, before and after the applica-
tion of this process, is used as an indicator to assess the effectiveness of these acquisition
processes. Once NMSE has improved significantly, the baseband input-output signals are
then ready to be trained for the identification algorithm.

5.3 Free-Parameters
To meet the objectives of optimizing the dual-input Doherty PA, which consists of im-
proving efficiency while maintaining a better linearity level, we propose an architecture
described in Figure 5.6.

In this work, the DPD is used to linearize the DUT by compensating for the nonlin-
earities of dual-input Doherty PA. Additionally, CFR is used to reduce the PAPR of the
transmitted signal so that dual-input Doherty PA can operate with less BO. Both CFR
and DPD are implemented in baseband.

On the other hand, the dual-input Doherty PA requires two separate input signals
from the PC workstation. Therefore, the baseband signal to be sent to the PA should
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be divided into two input signals, which are different in amplitude and phase, using a
splitting function, so-called digital splitter, designed in baseband.

Each block has parameters to be set or controlled, which requires a design of a control
engine based on an optimization approach that optimally determines these parameters
to ensure an operating point of DUT exhibiting a better trade-off between efficiency and
linearity.

Figure 5.6: Block diagram of the proposed architecture

In this architecture, the DPD block will not be controlled by this control engine since
the DPD technique requires linear regression techniques such as the LS method to identify
the model coefficients.

The baseband notation of the input and output block is defined as follows. The input
signal is denoted by v(n), which is the CFR input. The input of DPD is denoted by u(n),
which is the CFR output. x(n) is the output of DPD, which presents the input of the
digital splitter. The splitter outputs are denoted by xm(n) and xp(n), which are DUT’s
inputs. y(n) is the baseband output of DUT after the acquisition process.

5.3.1 Free-Parameter of CFR
In this work, the CFR technique used to reduce the PAPR is based on peak cancellation
[108] [109].

The peak cancellation is carried out through two operations: clipping and filtering.
Its principle is illustrated in Figure 5.7.

Figure 5.7: Block diagram of peak cancellation technique

A clipped signal vn(n) is first created by clipping the input v(n) when it exceeds a
specified threshold µ. This clipped signal is subtracted from the original input v(n) to
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generate a peak signal vp(n), with

vp(n) =
{
v(n)− v(n) µ

|v(n)| if |v(n)| > µ

0 if |v(n)| ≤ µ
(5.1)

The peak signal vp(n) is then filtered using a noise shaping filter and the final signal
u(n) is therefore calculated by subtracting a time-aligned weighted version of vf (n) from
v(n).

In this block, a clipping threshold µ is considered as a free-parameter of CFR.

5.3.2 Free-Parameters of Digital Splitter
The motivation behind using two separate RF inputs is to eliminate analog input splitters,
such as the Wilkinson divider, and to allow independent power control to the main and
peaking amplifier.

As mentioned before, the baseband signal x(n), which is a complex signal represented
by an amplitude X and a phase θ, i.e. x = Xejθ, is divided into two complex signals xm
and xp defined as:

xm = αmXe
j(θ) = αmx

xp = αpXe
j(θ−ϕ) = αpe

−jϕx
(5.2)

The three parameters αm, αp, and ϕ in (5.2) have to be carefully tuned to ensure the
high efficiency of the PA.

We suggest using only two parameters to design the digital splitter: the power ratio
between the amplitude of the two inputs, denoted by α, instead of αm and αp, and the
phase shift ϕ between their phases.

The relationship between α and (αm,αp) is defined as follows. The power of xm and
xp are defined as:

Pm = α2
mPin

Pp = α2
pPin

(5.3)

with

Pin = Pm + Pp (5.4)

where Pin is the input powers of the baseband signals x.
It gives

α2
m + α2

p = 1 (5.5)

So, if we define α as:

α2
m = α (5.6)

We have

α2
p = 1− α2

m = 1− α (5.7)

Hence, the baseband parameters αm and αp can be expressed in terms of α by:

αm =
√
α ; αp =

√
1− α (5.8)
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The phase shift ϕ between the main and peaking branches is critical. It affects the PA
efficiency, the amplification gain, and the linearity. It can also independently be controlled
at different frequencies fc.

We propose to assign the original phase θ of x to xm and add a phase shift ϕ to the
peaking signal.

θm = θ

θp = θ − ϕ
(5.9)

From (5.8) and (5.9), the baseband input signals xm and xp can be expressed as:

xm =
√
αx

xp =
√

1− αe−jϕx
(5.10)

The architecture of the digital splitter is described in Figure 5.8. The design of a
digital splitter consists of optimizing the power ratio α and phase shift ϕ, which are taken
as free parameters in the optimization engine.

Figure 5.8: Block diagram of digital splitter

5.3.3 Free-Parameters of Transceiver
In the calibration process, it has been shown that two essential operations are needed to
be established from the baseband: fixing the DAC resolution, which is integrated into the
RF transceiver, and setting the gain attenuation, which controls the power level of the
transmitted signal.

For DAC resolution, it is recommended to scale the IQ data to 215 in the baseband to
ensure high accuracy of data to be transmitted to minimize loss of information. The gain
attenuation directly controls the power level of the signal in the Tx branch based on an
internal step attenuator with a step of 0.05 dB.

The block diagram of the transceiver is depicted in Figure 5.9.

Figure 5.9: Block diagram of transceiver
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In the transceiver block, we use two parameters Am and Ap defined in the baseband
to control the attenuation in the branch Tx1 occupied by the main amplifier and in Tx2
occupied by the peaking amplifier.

We have approximately estimated the relationship between Am (and Ap) and the
average power of the main (and peaking) RF signal as:

Pm,dBm(Am) = Am + aPAPR(xm) + b
√
α + c

Pp,dBm(Ap) = Ap + aPAPR(xp) + b
√

1− α + c
(5.11)

where a, b, and c are parameters defined empirically from some preliminary tests and
stored in LUT and indexed in terms of the center frequency fc, and the signal bandwidth.
Indeed, the process behind estimating a, b, and c consists of performing many tests with
waveforms of different bandwidths, at different frequencies, and for different power levels.
These test results provide a datasets of a, b, and c that will be used subsequently according
to the parameters of the scenario at hands.

If Am and Ap have the same baseband numerical value, and xm = xp with α = 0.5,
the power Pm,dBm and Pp,dBm are assumed to be the same. However, in practice, we have
observed that by assigning the same numerical value to Am and Ap, the measured powers
Pm,dBm and Pp,dBm through the power sensors are different. This difference between
Pm,dBm and Pp,dBm can be adjusted and compensated in baseband by using a parameter
denoted by ψ with

Pm,dBm(Am) = Pp,dBm(Ap + ψ) (5.12)
Finding ψ that satisfies (5.12) can be done in the calibration process. However, we

propose to take ψ as a free parameter controlled from baseband, which could be viewed
as a hardware parameter since it can adjust the input power distribution over the main
and peaking amplifiers.

5.3.4 Free-Parameters of DUT
The main and peaking input of dual-input Doherty PA controls the main and peaking
amplifier, biased with VGS,m and VGS,p, respectively.

These biased voltages are controlled from baseband and defined within a range of DC
voltage. The DC power supply used to manage the gate bias voltages is connected to the
PC workstation through an Ethernet connection that enables real-time voltage monitoring
from the baseband.

Therefore, VGS,m and VGS,p are taken as a free-parameters.
Since the output impedance matching network is not changing, and since we configure

the input side of dual-input Doherty PA, not the output side, it is not necessary to change
the drain bias VDC while handling the dual-input Doherty PA.

The free parameters of the proposed architecture to be controlled are summarized in
Table 5.1.

Table 5.1: Free-parameters of the proposed architecture

Bloc Free-parameter Symbol Unit
CFR Threshold of PAPR reduction µ dB

Digital splitter Power ratio α %
Phase shift ϕ Degree

Transceiver Attenuation difference ψ dB

DUT Main bias voltage VGS,m Volt
Peaking bias voltage VGS,p Volt
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5.4 Linearization and Efficiency Enhancement of Dual-
Input Doherty Power Amplifier

Finding the optimal configuration of each block in Table 5.1 can be seen as an optimization
problem to be solved.

The brute-force search can help find the optimal free parameters by exploring all
possible combinations in the searching space. However, the brute-force search is not a
practical solution to be implemented in real-time applications. Consequently, an auto-
tuning approach based on an optimization algorithm is proposed to meet this need.

5.4.1 State-of-the-Art
In the literature, the design and study of dual-input Doherty PA with enhanced efficiency
have been reported in many research works. Few of them deal with the joint optimization
of PA parameters and their linearization technique.

The first work has been reported in [110], in which the authors have confirmed the
interest of using a combination of splitting the input signal and vector-switched digital
predistorter, in which the linearity is improved while maintaining high efficiency. The
splitter’s design has been achieved by performing several combinations of α and ϕ in a
simulation environment, which does not accurately present the behavior of dual-input
Doherty PA.

In [111], the authors presented a hardware implementation of a real-time DPD and
digital splitter for multi-input PA. The static splitter was achieved by a nonlinear static
LUT function, where the signals xm and xp at the output of the splitter are expressed as:{

xm(n) = x(n)× LUT1(|x(n)|)
xp(n) = x(n)× LUT2(|x(n)|) (5.13)

where LUT1 and LUT2 are nonlinear complex function, which are created by performing
an exhaustive search. However, the voltages VGS,m and VGS,p of the Doherty PA used in
measurement tests are biased identically, which raises concerns about its efficiency.

The first work related to the online learning-based optimization of dual-input Do-
herty PA is proposed in [112]. The authors proposed an adaptive technique based on
a simultaneously perturbed stochastic approximation (SPSA) algorithm to tune the free
parameters α, ϕ, VGS,m and VGS,p. This algorithm has been performed according to a cost
function J defined as:

J(Θ) = ω ×G(Θ) + (1− ω)× PAE(Θ) (5.14)

where Θ = [α ϕ VGS,m VGS,p] is the vector of free parameters to be optimized, ω is a
weighting coefficient, and G is the gain of PA. In [112], the authors showed a significant
improvement in G and PAE. However, the linearity requirement has not been met since
SPSA has focused only on efficiency enhancement.

In [113], a machine learning-based optimization is proposed to optimize the free-
parameters used in [112]. Practically, [113] is an extension of the work reported in [112]
where the cost function is updated from its previous version, which includes, in addition
to PAE and gain, the output power Pout and ACPR as metric referring to the linearity.

The optimization process used in [113] consists of two phases:

• Phase I: A simulated annealing-based global optimization algorithm runs until the
cost function achieves its optimal value or stops after a given number of iterations.

• Phase II: The aim is to fine-tune the optimized free parameters using an approach
of learning-based control based on the extremum-seeking algorithm [114].
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This auto-tuning process was validated in terms of the free-parameters convergence
towards optimal values, which corresponds to a maximization of the cost function ac-
cording to its design. It is important to emphasize that no DPD or CFR process was
introduced in [113].

On the other hand, an adaptive signal separation is proposed in [115]. The splitting
function is constructed using a dictionary (LUT) derived from the static measured results
of the dual-input Doherty PA. The results in [115] once again confirmed the interest in
optimizing the separation of the input signals to be transmitted to the dual-input Doherty
PA, which can improve efficiency.

In another work reported in [116], the authors only focused on optimizing the phase
shift between the two RF inputs using an exhaustive search for dual-input load modulated
balanced PA. The phase shift is determined according to NMSE and ACPR by sweeping
the phase over a determined interval [0° 350°] with a resolution of 10°, which makes it a
simple solution to be implemented but with difficulty in knowing whether the phase shift
is optimal or not, since the PA performances are very sensitive to the phase shift between
its inputs. Besides, sweeping the phase over a large interval can be critical, especially at
intervals where there will be no output power, leading to heat dissipation in the device,
which can damage it.

5.4.2 Proposed Auto-Tuning Approach
5.4.2.1 General Optimization Algorithms

In this work, the proposed auto-tuning approach to optimize the free-parameters is based
on an efficient hybrid heuristic search control (HHSC) based on two types of model-
free optimization methods: simulated annealing (SA) as a global optimization search and
extremum-seeking control (ESC) as an adaptive control to fine-tune the optimized results.

In this study, the choice of SA and ESC is in line with the state-of-the-art elaborated
on the dual-input Doherty PA manufactured by MERL and mounted on their testbench.
The first work related to this axis of research is reported in [112] and [113], against which
the main contribution of our study introduces DPD linearization and CFR technique by
including the clipping threshold µ in the optimization process as a free-parameter.

The vector of free parameters to be optimized is denoted by Θ. The cost function
corresponding to Θ is denoted by J(Θ) or J for simplicity.

5.4.2.1.1 Simulated Annealing

One of the best-known heuristic search methods for addressing the complex black-box
global optimization problems is the SA algorithm proposed in [117].

Physical annealing in the metallurgy domain inspires the principle of the SA algorithm.
Physical annealing is the process of heating a material until it reaches an annealing tem-
perature. Then it will be cooled down slowly to increase the size of its crystals and reduce
their defects. When the material is hot, the molecular structure is weaker and is more
likely to change. When the material cools down, the molecular structure is more rigid
and is less responsive to change.

Following the analogy with metallurgy, the slow cooling in simulated annealing de-
pends on the slight decrease in the probability of accepting a worse solution as the solution
space is explored. The algorithm should perform an extensive search to find the global
optimum solution, so accepting worse solutions is fundamental.

SA algorithm is an almost straightforward stochastic search based on the Metropolis
Monte Carlo method [118], the concept of which is to accepts not only the solutions that
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improve J , but also some solutions that worsen it with a probability p known as the
Metropolis criterion and defined as:

p(∆E) = e
− ∆E

kboltT (5.15)

where ∆E is the change in cost function, kbolt is Boltzmann’s constant, and T is the
control parameter analogous to the temperature of the annealing process.

During the search, the temperature is gradually decreased until reaching zero value in
the perfect case.

SA algorithm is massively used in real-life applications to solve a global optimization
problem, mainly when the problem model is not explicitly given and cannot be evaluated
by computer simulation. Furthermore, the definition of the neighborhood is an essential
aspect of the SA algorithm, particularly when a large neighborhood of SA leads to a
greater probability of arriving at a global optimum.

In case of a global optimization problem, the standard procedure of SA is given by
the following steps:

• Generate initial solution by choosing a random vector Θ0 composed of the free-
parameters to be optimized, and evaluate J(Θ0).

• Initialize the temperature T . If T is too high, the computation time is important.
If T is too low, there is a risk of not sufficiently exploring the parameter space and
remaining in a local minimum.

• Select a new solution in the neighborhood space Ψ of the current solution Θi where
a solution Θ′

i is accepted as a new solution depending on T . J(Θi) and J(Θ′
i) are

evaluated and compared. If J(Θ′
i) is better (maximized or minimized depends on

the design of J) than J(Θi), then Θ′
i is selected as a best solution at the current

iteration. Otherwise, Θ′
i can also be accepted depending on the new probability in

(5.15). The cost function J will be defined in the next section.

• Decrease the temperature T by a temperature reduction rate C throughout the
process search by T = C × T .

• Repeat the process while T > Tf .

The free-parameters optimized using SA are denoted by Θopt,SA. The cost function
corresponding to Θopt,SA is denoted by Jopt,SA.

The algorithm of SA is described in Algorithm (12).
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Algorithm 12: Algorithm of SA
Initialization: T0, Tf , C, kbolt, iter = 0
Define number of SA iterations SAmax
Random initial solution Θ0
Θ = Θ0
Θopt,SA = Θ
Evaluate J(Θ)
T = T0
while T > Tf do

while iter < SAmax do
iter = iter + 1
Select a random neighbor Θ′ ∈ Ψ(Θ)
∆E = J(Θ′)− J(Θ)
if ∆E > 0 then

Θ = Θ′

if J(Θ′) is better than J(Θopt,SA) then
Θopt,SA = Θ′

Jopt,SA = J(Θ′)
end

else
Generate uniformly distributed random r ∈ [0 1]
if r < e

−∆E
kboltT then

Θ = Θ′

end
end

end
T = C × T
iter = 0

end
Return Θopt,SA

5.4.2.1.2 Extremum-Seeking Control

Once SA algorithm has reached Jopt,SA, the optimization procedure switches to ESC
to fine-tune Θopt,SA.

Generally, the adaptive control process is used to regulate linear and nonlinear systems
[119]. However, in some applications, a control process may be used to optimize an
objective function of unknown parameters or keep its cost function at its extremum, as
is shown in [113]. ESC can solve optimization problems and optimize free parameters
according to an unknown or uncertain cost function.

ESC is an online model-free optimization method that relies on feedback from output
measurements. It is used to determine and track the optimal operating point of a given
system when no model information is available.

The idea of ESC dates back to the first decades of the previous century [120] [121].
Various ESC techniques and applications have been developed and reported in the litera-
ture in the mid-twentieth century. The stability of ESC was rigorously confirmed in [122]
where the authors proved the local stability of a near-optimal solution for a broad set
of dynamical systems. The behavior of ESC is practically oriented by the local gradient
of the equilibrium system. A feedback loop is then applied to drive the system to an
operating point where the gradient is zero.
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One of the most popular ESC methods is the perturbation-based ESC, which is pro-
posed in [123]. This method efficiently probes the system using a sinusoidal perturbation
(or a dither signal) to obtain a gradient estimate.

The concept of perturbation-based ESC is fundamentally depicted by the block dia-
gram in Figure 5.10, where it consists of a target system, the output of which is the cost
function J , a perturbation signal asin(ωt), a gain K, and an integrator.

Figure 5.10: ESC scheme

According to Figure 5.10, the system is perturbed by a dither signal asin(ωt), which
results in an output of the cost function J(Θ). This output is then multiplied by the
dither signal and denoted by ξ. After multiplying ξ by a gain K and passed through
an integrator 1

s
, the resulting signal Θ̂ estimates the gradient of the cost function with

respect to Θ.
The loop of ESC can be written as the following dynamical system

ξ = J(Θ)× a sin(ωt)
dΘ̂
dt

= K × ξ

Θ = Θ̂ + a sin(ωt)

(5.16)

The integrator’s role is to optimally adjust the operating point towards the optimum
according to the gradient information of the output. The choice of the gain K may
influence the whole control system. Besides, it decides the controller bandwidth, which
indicates the speed of the controller. The bandwidth of the controller should generally be
less than that of the gradient estimator. Otherwise, the controller cannot get the updated
gradient information, which makes the system unstable.

In our approach, the perturbation-based ESC is used as an off-line process, which
is placed downstream of SA to fine-tune Θopt,SA, The input of ESC is Θopt,SA. The
optimized configuration by ESC is denoted by Θopt,HHSC. The cost function corresponding
to Θopt,HHSC is denoted by Jopt,HHSC.

In this study, the values of the ESC parameters ω, K, and a are initialized by the
study reported in [113].

5.4.2.1.3 Algorithm of HHSC

HHSC is the core of the proposed auto-tuning approach to optimize the free parameters
of the dual-input Doherty PA. The principle of HHSC consists of combining SA and ESC
in cascade, as illustrated in Figure 5.11.

The interest in using two algorithms of different types reinforces the convergence of
the auto-tuning approach towards the optimal solution.

Starting from an initial solution Θ0, SA optimizes the free parameters according to
a designed cost function J . The optimized solution Θopt,SA returned by SA will be the
initial solution for the ESC process.

The algorithm of HHSC is described in Algorithm (13).
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Figure 5.11: Block diagram of HHSC

Algorithm 13: Algorithm of HHSC
Initialization: T0, Tf , iter = 0, K, a, ω
Run Algorithm of SA described in (12)
Θ0,ESC = Θopt,SA
Θ = Θ0,ESC
Jold = Jopt,SA
while 1 do

ξ = J(Θ)× a sin(ωt)
Θ̂ = K ×

∫
ξ

Θ = Θ̂ + a sin(ωt)
Evaluate J(Θ)
if J(Θ) > Jold then

Jold = J(Θ)
else

Θopt,HHSC = Θ
Jopt,HHSC = J(Θopt,HHSC)
end while loop

end
end
Return Θopt,HHSC

5.4.3 Principle of the Proposed Auto-Tuning Approach
The principle of the auto-tuning approach proposed in this work to optimize and linearize
the dual-input Doherty PA is summarized in the flowchart in Figure 5.12.

The process of the proposed approach is mainly composed of five sub-processes:

• Design of the cost function to control the convergence of HHSC.

• Joint optimization of CFR, digital splitter, transceiver, and DUT by HHSC using
the cost function designed.

• DPD linearization based on ILA.

• Update the cost function designed in the first sub-process.

• Optimal pruning of free parameters in HHSC.

Each sub-process of the flowchart in Figure 5.12 will be detailed in the following
sections.
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Figure 5.12: Flowchart of the proposed auto-tuning approach
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5.4.3.1 Design of Cost Function

The cost function is an important aspect that defines the optimality criterion.
In this study, the cost function will be designed to ensure a good trade-off between

linearity and efficiency. The linearity requirement is represented in terms of two figures of
merit (FOMs): EVM and ACPR, while the efficiency and output power level requirement
are represented by the power added efficiency PAE and the output power Pout.

Note that in this study, Pout represents the peak power of the signal at the output of
DUT y(n), which is given by:

Pout = Pavg + PAPR(y) (5.17)

where Pavg is the average power of the signal, given by the power sensor from testbench.
These FOMs are accordingly weighted to their importance in the cost function. Ad-

ditionally, some FOM thresholds can also be defined to penalize further not meeting the
targeted specifications.

The optimization problem is a multi-objective optimization (MOO) since more than
one objective function are optimized simultaneously.

The MOO applications have been reported in the literature for many fields such as
engineering, economics, finance, etc. The various types of MOO problems are tracked
by several methods as well [124]. The MOO consists of finding the optimal solution of
more than one desired target. Making decisions in MOO is a significant problem that
practically leads to a proper trade-off on some contradictory issues.

The MOO problem can be written as follows:

min or max f1(x), f2(x), . . . , fn(x)
subject to x ∈ U

(5.18)

where x is the optimal solution, n is the number of objective functions, U is variable space
which embodies all different solution and fn(x) is the nth objective function.

Generally, solving the problems of MOO can be classified into two methods: the Pareto
method and the scalarization method.

The Pareto method is based on separating the optimal solution of each objective
function during the optimization process. Dominance is an essential concept of the Pareto
method based on differentiating the dominated and non-dominated solutions. For the
MOO problem, a solution is reached when one objective function cannot increase without
impacting the others. This condition is called Pareto optimality or Pareto efficiency.

The scalarization method allows converting MOO problem into single-objective opti-
mization (SOO) problem such that optimal solutions to SOO problem are Pareto optimal
solutions to MOO problem [125]. In [126], the scalarization method incorporates multi-
objective functions into scalar fitness function as in the following equation:

F (x) = w1f1(x) + w2f2(x) + · · ·+ wnfn(x) (5.19)

where w1, w2, . . . , wn are the parameters of the scalarization called weighting coefficients
of the cost function F .

A weighting coefficient wi is the weight of its objective function fi, which refers to
the relative importance of that objective function to the cost function F . This method
is known as the weighted sum method. This method’s challenge is to correctly set each
objective function’s weight to obtain the Pareto optimal solution in the desired region in
the objective space U .
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Another famous method proposed in [127] is called the ϵ-constraint method, which is
based on keeping just one of the objectives and restricting the others within user-specific
values. It can be defined as:

min or max fj(x)
subject to x ∈ U

fi(x) ≤ ϵi for i ∈ {1, . . . , k} and i ̸= j

(5.20)

In this work, we propose to design the cost function J for HHSC based on the weighted
sum method but with constraints. It is defined as:

J = w1JEVM + w2JACPR + w3JPAE + w4JPout (5.21)

with 

JEVM = w1,1

∣∣∣∣∣ EVMt

EVMC

∣∣∣∣∣+ w1,2

∣∣∣∣∣ EVMt

EVMDD

∣∣∣∣∣+ w1,3

∣∣∣∣∣ EVMt

EVMCDD

∣∣∣∣∣
JACPR =

∣∣∣∣∣ ACPR
ACPRt

∣∣∣∣∣
JPAE =

∣∣∣∣∣ PAE
PAEt

∣∣∣∣∣
JPout =

∣∣∣∣∣ Pout

Pout,t

∣∣∣∣∣

(5.22)

where EVMt, ACPRt, PAEt, and Pout,t are EVM target, ACPR target, output power
target, and efficiency target, respectively, that the user attempts to reach.

Since CFR as a nonlinear process deteriorates EVM dramatically, we propose to use
in JEVM , EVM of CFR denoted by EVMC, EVM of DPD and DUT denoted by EVMDD,
and EVM of the whole system including CFR, DPD, and DUT denoted by EVMCDD.

There is a way to present the three EVMs in one feature, denoted by EVMms by using
the mean square of EVMCDD, EVMC, and EVMDD, which can be defined as:

EVMms =
√

EVM2
C + EVM2

DD + EVM2
CDD

3 (5.23)

However, in this work, EVMCDD, EVMC, and EVMDD will be presented separately.
The constraints of the cost function designed in (5.21) are defined as:

w1 = w1,1 + w1,2 + w1,3∑4
i=1 wi = 1

max JEVM = max JACPR = max JPAE = max JPout = 1
(5.24)

The computation of ACPR is defined in terms of ACPRL1 and ACPRU1 as:

ACPR = 10 log10

10ACPRL1
10 + 10ACPRU1

10

2

 (5.25)

In (5.21), each objective function corresponding to each FOM is normalized by its
target value, which is defined as a user specification.

The cost function design is carried out such that HHSC attempts to maximize J to
1, indicating that the user’s specifications are met. When J=1, all FOMs have reached
their targets, which presents the perfect case, i.e.,

J = w1 + w2 + w3 + w4 = 1

In this way, we give the cost function a logical interpretation since the different FOMs
do not have the same meaning or same unit.
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5.4.3.2 Joint Optimization of CFR and DUT

In the second block of our approach, we propose to optimize CFR, digital splitter,
transceiver, and DUT jointly with HHSC by using the cost function J designed in the
previous section. In the following, we use the acronym DUT to refer to the digital splitter,
the transceiver, and DUT together. The DPD is not integrated at this level.

The free-parameters to be optimized are defined as:

Θ = [µ α ϕ ψ VGS,m VGS,p] (5.26)

Their searching spaces are summarized in Table 5.2.

Table 5.2: Free-parameters and their searching range

Block Free-parameter Symbol Searching range Unit
CFR Threshold of PAPR reduction µ [0 µmax] dB

Digital splitter Power ratio α [0 1] -
Phase shift ϕ [ϕmin ϕmax] Degree

Transceiver Attenuation difference ψ [ψmin ψmax] dBm

DUT Main bias voltage VGS,m [VGS,min VGS,max] Volt
Peaking bias voltage VGS,p [VGS,min VGS,max] Volt

The boundaries Θmin and Θmax are defined as well. The interval [Θmin Θmax] presents
the searching range of each free parameter.

Some preliminary tests, or information about the system, especially DUT from pre-
vious works, are necessary to determine the optimization interval range and avoid some
critical searching range, especially for the phase.

HHSC is then ready to optimize the vector Θ starting from a given initial solution
Θ0 = [µ0 α0 ϕ0 ψ0 VGS,m0 VGS,p0 ], which is arbitrarily defined.

The optimized configuration is Θopt,HHSC with its corresponding cost function Jopt,HHSC.

5.4.3.3 DPD Linearization

When HHSC optimizes the free-parameters, it will be decided whether to include DPD
in the optimization process or not. If not included, the cost function will be re-designed
only based on the efficiency requirement as long as the low linearity specifications can
be targeted, assuming that a subsequent application of DPD will meet the system re-
quirements. For the wideband signal scenarios, the linearity specifications will be more
challenging to meet. Therefore, it is preferred to include DPD in the auto-tuning ap-
proach.

In this study, the DVR model in (3.3) has been chosen to serve as a DPD model as
it demonstrates its ability to linearize strong nonlinear behavior with memory. The DVR
model has been sized to find its optimal structure using the HC algorithm presented in
Chapter 3 but with uniform segmentation.

The ILA is used to identify the DPD coefficients, which are iteratively estimated by
finding the LS solution that minimizes the LS criterion, presented in (2.18). The DPD
coefficients to be extracted are not taken as a free-parameters for this study. One of
the most impressive properties of using DPD adaptively is that DPD models are linear
with respect to their coefficients, allowing the use of a linear regression technique such as
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LS. However, the integration of the estimation process of the DPD coefficients into the
optimization process involves nonlinear estimation techniques, which will considerably
increase the complexity of the search.

On the other hand, one of the critical issues that arise when using DPD is the nor-
malization gain selection. In [128], a normalization gain G is proposed to eases the DPD
identification, which is defined as:

G = max(|y(n)|)
max(|x(n)|) (5.27)

where G is chosen as the quotient between the maximum envelope values of the PA input
x(n) and output y(n).

In this work, we use the definition of G in (5.27) in ILA since this solution can simplify
the DPD implementation because the original input and the predistorted signal can be
normalized by the same scaling factor, which facilitates the power control. Figure 5.13
shows the integration of DPD using ILA to linearize the dual-input Doherty PA.

Figure 5.13: Integration of DPD using ILA to the entire system

5.4.3.4 Update of weighting Coefficient

The DPD may apply a back-off to the operating point of dual-input Doherty PA,
which dramatically reduces the efficiency requirement. Therefore, the cost function J with
DPD, which is denoted by JHHSC+DPD, with updated FOMs and the same initial weighting
coefficients will probably have deteriorated, and some free-parameters in Θopt,HHSC will
no longer be optimal.

To maximize the cost function again, we propose to rely on the design of the cost
function J by adapting its weighting coefficients w = [w1 w2 w3 w4] according to the
change effected by the DPD.

An intuitive approach can be used by attributing an equal weight to each FOM ac-
cording to the following equation:

wi = 1
n

(5.28)

156



where i = 1, 2, . . . , n and n is the number of objective functions that present FOMs.
In our context, the cost function is designed by combining efficiency and linearity,

as is shown in (5.21). On the other hand, DPD with an efficient optimal DPD model
can significantly improve linearity, which leads to reducing the weight of linearity FOMs
in (5.21). Hence, we propose to design an adaptive cost function, in which the weight
coefficients w are adaptive according to the improvement of linearity and efficiency over
each block from the flowchart in 5.12. The weighting coefficients w are updated with
respect to how much DPD improves linearity FOMs, e.g., EVM and ACPR, compared to
before applying it.

Starting from initial weighting coefficients w, we apply HHSC to optimize the free-
parameters Θ with Jopt,HHSC, then DPD to linearize the DUT under the optimized free-
parameters.

It is required to re-compute the cost function JHHSC+DPD once the DPD is performed,
and compare it to Jopt,HHSC. if JHHSC+DPD < Jopt,HHSC, we propose to update the weighting
coefficients w1,2, w1,3, w2, w3, and w4. w1,1 is not concerned since it depends on the CFR
operation.

In this process, we are only focusing on w1,2, w1,3, and w2 that refers to linearity
FOMs improved by DPD. We calculate the ratio ni of the difference before and after
DPD improvement for each linearity FOM. The ratio ni is expressed as:

n1 =
∣∣∣∣∣EVMHHSC,DD − EVMHHSC+DPD,DD

EVMt

∣∣∣∣∣
n2 =

∣∣∣∣∣EVMHHSC,CDD − EVMHHSC+DPD,CDD

EVMt

∣∣∣∣∣
n3 =

∣∣∣∣∣ACPRHHSC − ACPRHHSC+DPD

ACPRt

∣∣∣∣∣
(5.29)

Next, we update the weighting coefficients of FOM linearity as:

w1,2 = w1,2 × (1− 10
n1

)

w1,3 = w1,3 × (1− 10
n2

)

w1 = w1,1 + w1,2 + w1,3

w2 = w2 × (1− n3)

(5.30)

Once w1,2, w1,3, and w2 are updated, we propose to assign an equal weight between
w3 and w4 according to:

w3 + w4 = 1− w1,1 − w1,2 − w1,3 − w2

w4 = w3
(5.31)

The algorithm for updating the weighting coefficients w is described in Algorithm (14).
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Algorithm 14: The update of weighting coefficient w
Initialize weighting coefficients w = [w1,1 w1,2 w1,3 w2 w3 w4]
Apply HHSC
Get Jopt,HHSC
Measure EVMC, EVMCD, EVMCDD, ACPRL1, and ACPRU1 before DPD
Compute ACPR=f(ACPRL1,ACPRU1) as in (5.25)
EVMHHSC,DD=EVMDD
EVMHHSC,CDD=EVMCDD
ACPRHHSC=ACPR
Apply DPD using ILA
Measure EVMC, EVMCD, EVMCDD, ACPRL1, and ACPRU1 with DPD
Compute ACPR=f(ACPRL1,ACPRU1)
EVMHHSC+DPD,DD=EVMDD
EVMHHSC+DPD,CDD=EVMCDD
ACPRHHSC+DPD=ACPR
Compute JHHSC+DPD
if JHHSC+DPD < Jopt,HHSC then

n1 =
∣∣∣∣∣EVMHHSC,DD−EVMHHSC+DPD,DD

EVMt

∣∣∣∣∣
n2 =

∣∣∣∣∣EVMHHSC,CDD−EVMHHSC+DPD,CDD
EVMt

∣∣∣∣∣
n3 =

∣∣∣∣∣ACPRHHSC−ACPRHHSC+DPD
ACPRt

∣∣∣∣∣
w1,2 = w1,2 × (1− 10

n1
)

w1,3 = w1,3 × (1− 10
n2

)
w1 = w1,1 + w1,2 + w1,3
w2 = w2 × (1− n3)
w3 = 1−w1−w2

2
w4 = w3

else
Finish

end

5.4.3.5 Optimal Pruning of free-parameters in HHSC

Once w is updated to the DPD contribution, the cost function’s design J is changed.
According to the flowchart in 5.12, we run the HHSC again, but only on reduced free

parameters in Θ. The HHSC will only be performed on one free parameter that is the
most sensitive one in Θ and has the most significant impact on the behavior of J . The
pruning process is an off-line procedure, as shown in the flowchart, which aims to reduce
the complexity of the HHSC when the weighting coefficients are updated.

Pruning the free parameters in HHSC is optimally achieved using the HC algorithm.
The motivation behind using the HC algorithm is that it is not a black-box optimization
process. The neighborhood property in the HC algorithm makes it possible to follow the
algorithm’s evolution at each iteration.

Here, the cost function is used for the joint optimization of CFR and DUT in the
second block from the flowchart.
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The HC algorithm starts from a given initial element Θ1(0),HC at the first iteration and
continually moves in the direction of the element with the best cost function value among
its neighbors.

In the following, we denote Θq(i),HC by Θq(i) , and Jq(i),HC by Jq(i) .
At the qth iteration, the search procedure starts from Θq(0) and test its neighbors

Θq(1) ,Θq(2) , . . . ,Θq(M) , where M is the number of neighbors of Θq(0) .
In this study, the neighborhood definition is inspired by the proposed one for the DVR

model in Chapter 3. The vector Θ consists of 6 free-parameters: [µ α ϕ ψ VGS,m VGS,p].
As these free-parameters can have their values changed independently, they compose a
6-dimension space. The neighbor of element Θ is defined as an 6-tuple

{µ×(1+δµ) ; α×(1+δα) ; ϕ×(1+δϕ) ; ψ×(1+δψ) ; VGS,m×(1+δVGS,m
) ; VGS,p×(1+δVGS,p

)}

where δΘ(i) ∈ [−1, 1]× Θ(i)
10 with i = 1, .., 6.

The main property of this neighborhood definition is to apply the operation of δΘ(i)
to each free parameter Θ(i) individually.

According to this definition, the element Θq(0) = [µ α ϕ ψ VGS,m VGS,p] at the qth

iteration has 12 neighbors, which are:

Θq(1) = [µ× (1 + µ
10) α ϕ ψ VGS,m VGS,p]

Θq(2) = [µ× (1− µ
10) α ϕ ψ VGS,m VGS,p]

Θq(3) = [µ α× (1 + α
10) ϕ ψ VGS,m VGS,p]

Θq(4) = [µ α× (1− α
10) ϕ ψ VGS,m VGS,p]

Θq(5) = [µ α ϕ× (1 + ϕ
10) ψ VGS,m VGS,p]

Θq(6) = [µ α ϕ× (1− ϕ
10) ψ VGS,m VGS,p]

Θq(7) = [µ α ϕ ψ × (1 + ψ
10) VGS,m VGS,p]

Θq(8) = [µ α ϕ ψ × (1− ψ
10) VGS,m VGS,p]

Θq(9) = [µ α ϕ ψ VGS,m × (1 + VGS,m

10 ) VGS,p]
Θq(10) = [µ α ϕ ψ VGS,m × (1− VGS,m

10 ) VGS,p]
Θq(11) = [µ α ϕ ψ VGS,m VGS,p × (1 + VGS,p

10 )]
Θq(12) = [µ α ϕ ψ VGS,m VGS,p × (1− VGS,p

10 )]

The element Θq(i) with the maximized cost function Jq(i) is the solution denoted by
Θq(s) . With the neighborhood definition, the best solution Θq(s) can be compared with
the initial solution Θq(0) since only one free-parameter is changed. An efficient way to do
the comparison is to subtract Θq(s) from Θq(0) , which make it easy to locate the position
of the nonzero element in the vector V = Θq(s) −Θq(s) . The index of the nonzero element,
denoted by idx, will then be stored in LUT, and the HC algorithm moves to the next
iteration as long as Jq(s) is better than Jq−1(s) . Otherwise, the HC algorithm stops.

The size of LUT is 6 × 2, where 6 refers to the number of free parameters in Θ (6
inputs). The cell corresponding to each free parameter, noted by pos, is incremented when
the HC algorithm finds idx. Once the HC algorithm is finished, the free parameter to be
used in HHSC, noted by Θ′, is determined by the maximum incremented variable in the
second column of LUT. If many free parameters have the same number of occurrences in
LUT, the algorithm will take them as Θ′.
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The optimal pruning of free parameters in HHSC is described in Algorithm 15.

Algorithm 15: Optimal pruning of free-parameters in HHSC
Define cost function J
Choose the initial element Θ0 = Θopt,HHSC
Set q = 1
Θq(0),HC = Θ0,HC
Jq(0) = J0,HC

while (1) do
Define number of neighbors M of Θq(0)

for i←M do
Determine the neighbor Θq(i)

Evaluate Jq(i)

end
Θq(s) = argminΘq(i)

(
Jq(i)

)
if Jq−1(s) < Jq(s) then

V = Θq(s) −Θq(0)

Find index idx of nonzero element in V
LUT(q) = idx
q = q + 1
Θq(0) = Θq−1(s)

else
end while loop

end
end
pos = Most frequent values in LUT
Θ′ = Θ(max(pos))
Apply HHSC to optimize J(Θ′) using J with updated w

The cost function that corresponds to the optimized free-parameter Θ′
opt, denoted by

Jopt,upd, will be compared to JHHSC+DPD.
If Jopt,upd is better than JHHSC+DPD, HHSC has improved FOMs compared to those

from the previous optimal configuration, and a DPD is required to linearize the DUT.
Otherwise, the user must manually check whether the linearity-efficiency specifications
are met or not.

5.5 Experimental Results

5.5.1 General Consideration
The proposed auto-tuning approach for dual-input Doherty PA is tested using a 64-QAM
modulated 20 MHz bandwidth LTE signal with a roll-off factor of 0.6 at fc=3 GHz with
7.5 dB of PAPR.

Following the flowchart in Figure 5.12, we define the search range of the free parameters
in Table 5.1 by setting the upper and lower bounds for each free parameter. The search
range is determined empirically according to some preliminary tests:

• Threshold of PAPR reduction µ: The CFR applies a nonlinear process by clipping
the input signal v(n) according to a clipping threshold µ, which causes an EVMC
degradation. Figure 5.14 shows the behavior of EVMC and PAPR of the output
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u(n) of the CFR block according to the variation of µ. PAPR of v(n) decreases
with respect to µ. The EVM of v(n) degrades exponentially with increasing µ. As
we target an EVMt around 3%, we define the search interval [0 µmax] = [0 1.2], for
which when µ = 1.2, the degradation of the EVM by CFR is almost 3%.

Figure 5.14: Behavior of EVMC and PAPR of v(n) versus µ

• Power ratio α: Since α presents the power distribution between the main and peak-
ing branches, we set its search range to [0 1].

• Phase shift ϕ: The search range [-180° 180°] is the standard interval to be set.
However, based on some preliminary tests, it was shown that there is some critical
search range to be avoided. Therefore, [-10° 200°] is taken as a search range for the
free parameter ϕ.

• Attenuation difference ψ: As ψ is categorized as a hardware free-parameter that
refers to the physical power difference between the main and peaking amplifier, we
set its search range to [ψmin ψmax] = [−2 2] dB.

• Bias voltage VGS: We set the bias voltage search range for both VGSm and VGS,p
to [VGS,min VGS,max] = [−4 − 1] V in order to provide a flexible variation between
deep-class C condition that should enhance efficiency and a near-class B bias where
linearity should be improved. The drain bias VDC is 28 V.

Before starting the auto-tuning approach, we propose to investigate the behavior of
the free parameters over their search range. For this, we propose sweeping each of ϕ and
α, which are taken as an example, over their search range, separately, while keeping the
other free parameters on arbitrary values. This evaluation has been performed according
to the linearity and efficiency FOMs used in the cost function in (5.21).

5.5.1.1 Sweeping ϕ

In this test, the phase shift ϕ is swept over its determined search range [-10° 200°] with
a resolution of 2°, while keeping the other free-parameters to µ = 0, α = 0.2, ψ = 0.1,
VGS,m = −1.5V , VGS,p = −2.5V .
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Figure 5.15 presents the FOMs according to the variation of ϕ. As can be seen, FOMs
exhibit important sensitivity to the variation of ϕ. All of them tend to have unimodal
behavior, in which there is an optimal ϕ associated with each extremum of FOM. For
the EVM extremum (here EVMDD=EVMCDD since µ = 0), the optimal phase is located
nearly to 80°, while for the other FOMs extremum (PAE, Pout, and ACPR), the optimal
ϕ is located near to 140°. Here, ACPR is computed in terms of ACPRU1 and ACPRL1 as
is described in (5.25).

This example again proves the benefit of optimizing the free parameters since the effi-
ciency and linearity could be worsened or improved, depending on how the free parameters
are configured.

Figure 5.15: Evolution of FOMs when sweeping ϕ

5.5.1.2 Sweeping α

Sweeping α over its determined search range [0 1] has been performed with a resolution of
0.1, while keeping the other free-parameters to µ = 0, ϕ = 110, ψ = 0.1, VGS,m = −1.5V ,
VGS,p = −2.5V .

Figure 5.16 presents the FOMs versus the variation of α. As can be seen, the linearity
FOMs exhibit a unimodal behavior where the EVM and ACPR extrema are associated
with an optimal α, located near 0.25, which presents 44% of the input power to the main
amplifier versus 56% to the peaking amplifier.

On the other hand, we can see that PAE and Pout are decreasing with α. This could
be interpreted so that the more input power is distributed at the peaking amplifier, the
more the efficiency FOMs deteriorates.
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However, this example reveals the effect of tuning α, but it is not an optimization
process since the other free parameters were set to an arbitrary configuration and were
not involved in this optimization process.

Figure 5.16: Evaluation of FOMs when sweeping α

5.5.2 Cost function

At this point, it is necessary to determine the initial weighting coefficients w and the
target FOMs.

We initialize the weighting coefficients w = [w1 w2 w3 w4] by:


w1,1 = 0.1

3 ; w1,2 = 0.1
3 ; w1,3 = 0.1

3
w2 = 0.1
w3 = 0.4
w4 = 0.4

We attribute more weights to the efficiency since DPD will be included in this test
to linearize the DUT. This refers to the fact that the linearity requirements are more
relaxed, as it is easier to meet with DPD, unlike efficiency.
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Regarding target FOMs, they are defined as:
EVMt = 3%
ACPRt = −50 dB
PAEt = 60%
Pout,t = 40 dBm

5.5.3 Joint Optimization of CFR and DUT

The initial solution for HHSC is defined as:

Θ0 = [µ0 α0 ϕ0 ψ0 VGS,m0 VGS,p0 ] = [0 0.5 40◦ 0 − 1.5 − 2.5]

In this step, HHSC is performed according to Algorithm (13). For the SA algorithm,
we set T0 = 1, Tf = 0.01, C = 0.96, kbolt = 1, and SAmax = 60.

The convergence of J is shown in Figure 5.17.

Figure 5.17: Evolution of cost function J over HHSC iterations

In HHSC, we set empirically 100 iterations for SA to converge, while ESC requires 20
iterations. As SA is defined as a stochastic optimization method, we can see from Figure
5.17 that the stochastic behavior has been exhibited in the first 60 iterations where J
evolves randomly.

After 61 iterations, the SA algorithm returns the optimal solution. After 120 iterations
in total, HHSC returns the optimal configuration Θopt,HHSC summarized in Table 5.3.
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Table 5.3: Optimal free-parameters

µ α ϕ ψ VGS,m VGS,p J

Θ0 0 0.5 40◦ 0 -1.5 -2.5 0.57
Θopt,SA 0.62 0.14 164◦ 1.54 -1.37 -1.95 0.65

Θopt,HHSC 0.65 0.15 164◦ 1.53 -1.39 -1.95 0.66

The cost function Jopt,HHSC = 0.66.
The evolution of free parameters over HHSC is illustrated in Figure 5.18, in which the

free parameters have similar behavior to J according to the HHSC iterations.

Figure 5.18: Evolution of free-parameters over HHSC iterations

The FOMs corresponding to Jopt,HHSC are shown in Table 5.4.

Table 5.4: FOMs according to the optimal free-parameters Θopt,HHSC with Pin=11.36 dBm

EVMC [%] EVMDD [%] EVMCDD [%] ACPRU1 [dB] ACPRL1 [dB] PAE [%] Pout [dBm] Jopt,HHSC
1.48 2.34 2.72 -42.32 -42.39 16.21 32.92 0.66

It should be noted that HHSC shown in Figure 5.18 was performed on the linear
region of the dual-input Doherty PA. Indeed, since SA generates random solutions, it was
decided to reduce the operating point of DUT while HHSC is running in order to set up
a security measure of the DUT.

Once the free parameters are optimized, we raise the back-off by increasing the input
power from 11.36 dBm to 21.16 dBm so that the system performs nearly at Pout,t. The
FOMs after increasing the input power are summarized in Table 5.5
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Table 5.5: FOMs according to the optimal free-parameters Θopt,HHSC with Pin=21.16 dBm

EVMC [%] EVMDD [%] EVMCDD [%] ACPRU1 [dB] ACPRL1 [dB] PAE [%] Pout [dBm] Jopt,HHSC
1.48 7.26 8 -27.44 -27.15 46.58 35.63 0.81

According to the results from Table 5.18, the efficiency FOMs are enhanced by sac-
rificing the linearity FOMs. This confirms the choice of the initial weighting coefficients
where w3 and w4 have more influence than w1 and w2.

By assigning the free-parameters to their optimal configuration Θopt,HHSC in Table
5.3, the DUT, including the digital splitter and transceiver, can eventually be seen as a
single-input single-output system where the input is x(n) and the output is denoted y(n).

The AM-AM and AM-PM characteristics of the dual-input Doherty PA are shown
in Figure 5.19a, where we can see a saturation at high power, which leads to strong
nonlinearities. Besides, the memory effects are exhibited as well. The spectra of the
input-output signals of the dual-input Doherty PA is illustrated in Figure 5.19b

(a) AM-AM and AM-PM curves (b) Spectra of input-output signals

Figure 5.19: Dual-input Doherty PA characteristics with 20MHz LTE signal

The AM-AM characteristic of the RF input-output signal is shown in Figure 5.20,
where PAPR of x and y(n) are depicted.
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Figure 5.20: AM-AM characteristic using RF input-output signals

5.5.4 DPD Linearization
The DPD is carried out in two steps:

• Determination of the optimal DVR model.

• Convergence of linearity FOMs using ILA.

5.5.4.1 Determination of Optimal DVR Model

According to the HC algorithm presented in Chapter 3, the structure of the DVR model
is optimally sized.

In this study, the cost function, denoted by Y , is defined as a search criterion to ensure
a good trade-off between three features: modeling accuracy presented by NMSE, denoted
by N , model complexity presented by the number of coefficients C, and computational
complexity, which is given by the condition number of the regressor matrix ZHZ in (2.18),
denoted by Cond.

The cost function is used to control the convergence of the HC algorithm to return
an optimal DVR model with a considerable ability to be implemented in hardware. We
define the cost function as:

Y = 0.5N + 0.25C + 0.25 log10(Cond) (5.32)

As discussed in the previous chapter, the hardware implementation relies on the nu-
merical properties of the DPD model, which in this case, is presented by C and Cond.
The design of the cost function in (5.32) may deteriorate C, and N since the objective
function of Cond is sized in such a way to override the influence of C and N slightly.

However, since we aim to implement DPD on FPGA, which is a Zynq in our case, the
deterioration of N can be overcome by the DPD convergence towards the solution that
presents a better trade-off between linearization performance, complexity, and numerical
properties.
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Figure 5.21 illustrates the HC algorithm’s evolution in terms of C, Cond, and N , where
there are a total of 1659 DVR model structures tested through 9 HC iterations. The blue
dots present the neighbors tested by the HC algorithm. The red dots indicate the search
path taken by the HC algorithm. The green diamond highlights the best solution.

Figure 5.21: Evolution of the HC algorithm in 3D in terms of N , C and Cond for sizing
the DVR model

The parameters of the optimal DVR model structure are:

K = 4
β = [0.25 0.5 0.75]
Mlin = 1 ; M = 3
TS = [T1,0 T1,2 T1,4]

with C = 50 coefficients, 10Cond = 108, and N = −29.45 dB.
Replacing the parameters of the optimal structure in (3.3), the optimal DVR model

used in DPD is expressed by:

x(n) =
1∑
i=0

aiu(n− i)

+
4∑

k=1

3∑
i=0

cki,1||u(n− i)| − βk|ejθ(n−i)

+
4∑

k=1

3∑
i=0

cki,2||u(n− i)| − βk|ejθ(n−i) · |u(n)|

+
4∑

k=1

3∑
i=0

cki,3||u(n− i)| − βk|ejθ(n−i) · |u(n)|4

5.5.4.2 DPD using ILA

ILA needs multiple iterations to converge. In this study, we set the number of DPD
iterations to 10.
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As NMSE being considered as a strong indicator of the ILA convergence, Figure 5.22
presents the evolution of the NMSE according to the DPD iterations. As can be seen, the
convergence of NMSE is rapid, in which NMSE is improved significantly from the first
DPD iteration.

Figure 5.22: Evolution of NMSE according to DPD iterations

The NMSE is computed between x(n) and zp(n). At the first DPD iteration, the
coefficients of the DPD model are initialized by c = [1, 0, . . . , 0, 0], which make it a
transparent block, by which x(n) = u(n), and zp(n) = z(n).

DPD has significantly improved the linearity FOMs (EVM and ACPR). Figure 5.23
shows the improvement of EVMDD and EVMCDD according to the DPD iterations. EVMC
is presented as well.

169



Figure 5.23: EVM of CFR, DPD+DUT, and CFR+DPD+DUT versus DPD iterations

We can see that EVMCDD (EVMDD as well) is improved from value 8% to 2.97%. This
can be confirmed in Figure 5.24, where the red dots present the IQ constellation of y(n),
and the blue dots are the reference IQ constellation of v(n).

(a) IQ constellation without DPD - EVM=8% (b) IQ constellation with DPD - EVM=2.97%

Figure 5.24: IQ constellation to compute EVMCDD without and with DPD

Regarding ACPR, Figure 5.25 presents the improvement of ACPRL1 and ACPRU1
according to the DPD iterations. Starting from -27.25 dB before DPD, ACPR has signif-
icantly been improved by over 20 dB.
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Figure 5.25: ACPRL1 and ACPRU1 versus DPD iterations

The ACPR improvement can be confirmed in Figure 5.26, where the output signal of
dual-input Doherty PA without DPD is shown in the red plot and with DPD in the green
plot.

Figure 5.26: Spectra of the output signal of DUT without and with DPD

Figure 5.27 presents AM-AM and AM-PM characteristics of DUT without and with
DPD, where Figure 5.27a shows that DPD makes AM-AM linear, while the phase differ-
ence in Figure 5.27b is reduced to within almost 3 degrees.
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(a) AM-AM without and with DPD (b) AM-PM without and with DPD

Figure 5.27: Characteristics of dual-input Doherty PA without and with DPD

Since the DVR model is optimally sized to ensure a good trade-off between performance
linearization, model complexity, and numerical stability of the identification process. The
numerical properties of the optimal DVR model at the final DPD iteration are:

C = 50
Cond = 108

ϵ = 4
where ϵ is the dynamic range of the model coefficients defined in 2.23.

The impressive numerical properties of the DVR model used as a predistorter in this
study can be confirmed in Figure 5.28, where the real and imaginary parts of the model
coefficients are depicted.

Figure 5.28: Real and imaginary parts of the model coefficients

Linearity FOMs are greatly improved by DPD, which closely meets the targeted lin-
earity FOMs under the optimal configuration Θopt,HHSC.

However, DPD applies a BO to the dual-input Doherty PA, which may deteriorate
the efficiency. At the final DPD iteration, the efficiency FOMs are:PAE = 30.75%

Pout = 34.09 dBm
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that does not meet the target FOMs (Pout,t and PAEt) imposed in the user specifications.
Table 5.6 summarizes the FOMs without and with DPD. The cost function is computed

using FOMs without and with DPD.

Table 5.6: FOMs according to the optimal free-parameters

EVMC [%] EVMDD [%] EVMCDD [%] ACPRU1 [dB] ACPRL1 [dB] PAE [%] Pout [dBm] Jopt,HHSC
w/o DPD 1.48 7.26 8 -27.44 -27.15 46.58 35.63 0.81
w DPD 1.48 2.22 2.97 -48.71 -47.86 30.75 34.09 0.78

From Table 5.6, the cost function is decreased after the DPD application. As DPD
partially modifies the system conditions, the configuration Θopt,HHSC may not always be
the optimal solution, which stimulus the motivation to update the weighting coefficients
and re-launch a new HHSC.

5.5.5 Update Weighting Coefficients

Following the flowchart in Figure 5.12, the weighting coefficients w should be updated to
take into account the linearity improvement by DPD to the DUT in which the efficiency
is influenced.

According to Algorithm (14), the weighting coefficients w are updated as follows:


w1,1 = 0.05 ; w1,2 = 0.01 ; w1,3 = 0.01
w2 = 0.05
w3 = 0.44
w4 = 0.44

Being the weighting coefficients w reflect each FOM’s impact in the value of the cost
function J , Figure 5.29 presents the weighting contribution of each FOM, of which Figure
5.29a illustrates the contribution with the initial weighting coefficients, and Figure 5.29b
illustrates the contribution after updating w.

(a) With initial w (b) With updated w

Figure 5.29: Impact distribution of FOMs in the design of J
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5.5.6 HHSC Optimal Pruning
5.5.6.1 HC Algorithm

Optimal pruning of free parameters in HHSC is performed with the presence of the DPD
block where the predistorter is filled by the model coefficients identified at the final DPD
iteration and presented in Figure 5.28.

Starting from the initial solution Θ0,HC = [0.65 0.15 164◦ 1.53 − 1.39 − 1.95], the
evolution of the HC algorithm to prune the free-parameters for HHSC is illustrated in
Figure 5.30. The red dots present the solution at the HC iteration. The blue dots present
the neighbors.

Figure 5.30: Optimal pruning of free-parameters based on HC algorithm

In order to investigate the behavior of the HC algorithm, Figure 5.31 presents which
free-parameter has been stored in the dictionary through the HC iterations.

Figure 5.31: Selected Free-parameter over HC iterations

174



As can be seen, the free parameter ϕ has often been repeated, which means that the
optimization behavior of HHSC is seen as most sensitive to ϕ.

On the other hand, the free-parameter µ has been stored three times, where the
configuration [µ × (1 ± µ

10) α ϕ ψ VGS,m VGS,p] has the best cost function J at the 6th,
13th, and 17th HC iteration.

After the 21th HC iteration, no configuration was found with a better J , which triggers
the HC algorithm to stop.

5.5.6.2 HHSC with Pruned Free-Parameters

As discussed before, the goal of the HC algorithm here is to prune optimally the free
parameters of HHSC, which aims to find the most sensitive free parameter to CFR and
DUT with DPD.

Hence, Θ′ = [ϕ] is the most sensitive free parameter, which will be used in HHSC
according to the cost function J designed with the updated weighting coefficients w.

Starting from the initial solution Θ′
0 = [164◦], which presents the optimal ϕ from

the previous HHSC, Figure 5.32 present the evolution of the cost function J and the
free-parameter ϕ according to the HHSC iterations.

Figure 5.32: Evolution of cost function J and Θ′ over HHSC iterations

According to Figure 5.32, the free-parameter ϕ has been re-optimized, where its
optimal value becomes Θ′

opt = 175.9◦ that corresponds to the optimal cost function
Jopt,upd = 0.81. By comparing Jopt,upd and JHHSC+DPD, the DPD coefficients are required
to be updated using ILA since the optimal configuration of DUT is changed.

Table 5.7 summarizes the results, where FOMs are presented before and after applying
DPD. At this level, the application of DPD consists only of updating the existing DPD
coefficients in the predistorter since the optimal pruning of free parameters HHSC was
performed with DPD.

With the new optimal configuration, DPD has improved the linearity FOMs. On the
other hand, the efficiency FOMs are improved. This can be confirmed in Table 5.7, where
the PAE is improved by almost 5.5%. By comparing the cost function, it can be seen
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Table 5.7: FOMs according to the optimal free-parameters after the optimal pruning of
free-parameters in HHSC

EVMC [%] EVMDD [%] EVMCDD [%] ACPRU1 [dB] ACPRL1 [dB] PAE [%] Pout [dBm] JHHSC+DPD
Optimal

1.48 2.22 2.97 -48.71 -47.86 30.75 34.09 0.81pruning
of HHSC
Update

1.48 2.04 2.46 -49.21 -50.10 36.11 39.11 0.85DPD
coeff.

that JHHSC+DPD = 0.85 becomes better than Jopt,HHSC = 0.82, which leads to finishing the
auto-tuning approach.

Figure 5.33 illustrates the final architecture of the dual-input Doherty PA with CFR
and DPD. The final optimal configuration is also highlighted. The AM-AM and AM-PM
characteristics of the whole system (CFR+DPD+DUT) are shown in Figure 5.33, along
with the spectra of the input-output signals and the IQ constellation of u(n) plotted in
blue and y(n) plotted in red.

Figure 5.33: Final optimal configuration with DPD

5.6 Conclusion
In this chapter, we proposed an auto-tuning approach to exploit at best dual-input Do-
herty PA to maximize power efficiency while being compliant with the linearity specifica-
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tions.
The proposed auto-tuning approach relies on conducting a global optimization com-

bined with a control process to find the optimal configuration of a set of the crucial circuit
and system-level parameters that are appropriately merged with the DPD linearization
and the CFR technique.

This proposed approach has been performed according to an adaptive designed cost
function, representing the trade-off between efficiency and linearity.

In order to sharpen the optimal configuration, we propose a new approach based on the
HC algorithm to prune the free parameters optimally when DPD linearization is applied.

The proposed approach has been validated through experimental results, in which we
use a 20 MHz LTE signal scenario.

The proposed approach to optimizing the dual-input Doherty PA has been well val-
idated by presenting a good trade-off between linearity, computational complexity, and
efficiency. Besides, the DPD model used, which is optimally sized, has very good numer-
ical properties, making it a perfect candidate for its implementation on hardware such as
FPGA.
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Conclusion and Perspectives

Contributions
In this dissertation, we have focused on digital predistortion, which is a linearization
technique of power amplifiers to eliminate the distortions due to the nonlinearities and
memory effects. This dissertation mainly focuses on three aspects, which have made our
contribution: study and comparison of DPD models, design of an optimal DPD model with
its implementation strategy, and optimization and linearization of dual-input Doherty PA
with efficiency enhancement.

1. A comparative study is made between DPD models, which are categorized in this
study into two families: global models derived from the Volterra series and mod-
els with segmentation. The analysis comparison has been made according to three
aspects: modeling accuracy presented by NMSE and ACPR, model complexity pre-
sented by the number of model coefficients, and numerical properties presented by
the dynamic range of coefficients and the condition number of regressor matrix for
the identification process of predistorter. The validation of this study has been
performed using measurements from two different PAs (LDMOS 50 W PA and Do-
herty three-way 500 W PA) using different scenarios in terms of signal bandwidth
and output power.

2. For models with segmentation, particularly the DVR model, two major studies were
developed: optimizing the thresholds and determining the optimal structure. For the
thresholds optimization, a new approach is proposed to set the thresholds optimally
using an iterative approach based on the decomposition of the global optimization
problem into a set of unimodal sub-problems so that a unidirectional minimization,
such as the golden section search, can be used to optimize the positions of thresh-
olds. For the DVR model sizing, the hill-climbing algorithm is proposed to search for
the optimal model structure. The convergence of hill-climbing is confirmed in terms
of modeling accuracy of the optimal solution, algorithm complexity, and execution
time. Two major contributions were highlighted: search criterion representing a
trade-off between modeling accuracy and model complexity. A neighborhood defi-
nition proposed to control the algorithm toward the optimal solution.

3. A new proposed approach to design an optimal DVR model is based on the com-
bination of threshold optimization and model sizing. The proposed approach is
achieved through three different algorithm versions. The first algorithm version re-
lies only on optimizing the thresholds in model structures located on the envelope of
model sizing. In contrast, the second version consists in integrating the thresholds
optimization process into the model sizing but assuming that the memory depth
and model terms are not sensitive to the optimal thresholds. So, the thresholds
are optimized only if the number of segments of a model structure changes. The
third version is an update of the second version, in which the terms of the model
are viewed as a sensitive parameter leading to optimizing the thresholds when the
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number of segments and the model terms are changed. On the other hand, in this
framework, we have investigated the impact of nonlinearities order in the DVR
model by which we highlight the interest of using models with segmentation with
reduced orders of nonlinearities, unlike model from Volterra series, such as GMP,
where the nonlinearities order is highly required to achieve the same performances.

4. An auto-tuning approach is proposed to find the optimal configuration of a set of
essential circuits and system-level parameters of dual-input Doherty PA. This ap-
proach is achieved by combining two optimization methods: simulated annealing as
a global optimization algorithm and extremum-seeking as an adaptive control. The
proposed approach’s convergence is constrained by a proposed adaptive cost func-
tion designed to purposely represent a trade-off between linearity and efficiency.
CFR technique and DPD linearization are integrated optimally to the proposed
architecture of dual-input Doherty PA to meet the user specifications by enhanc-
ing efficiency while maintaining a conforming linearity level. An optimal pruning
search based on the hill-climbing algorithm is proposed to reinforce and control the
approach’s convergence toward the specified user targets.

Perspectives
To extend this dissertation, some works could be developed:

1. Regarding the comparison study of DPD models, the DVR model is the only model
with segmentation used in this study. It will be interesting to investigate other mod-
els, such as B-spline models and vector switched models, in the analysis comparison.

2. Generally, the PA characteristics and system performance depend on many factors
such as the average power, the probability density function of the signal, the signal
bandwidth, the circuit temperature, etc. The approach to design the optimal DVR
model needs to be redesigned to fit the PA characteristics if changed, leading to an
optimal reconfigurable DVR model. For that, it will be necessary to add the PA
characteristics features (average power for example) into the design process of the
DVR model. Besides, the runtime of the design algorithm should be decreased so
that the real-time implementation can be viable.

3. Apply a stochastic approach based on simulated annealing algorithm to design the
DVR model.

4. Implement the optimal DVR model on digital hardware, e.g., FPGA.

5. Reduce the complexity of the proposed auto-tuning approach to optimize the dual-
input Doherty PA by combining CFR, DPD, and digital splitter into one block, in
which a nonlinear LS method, such as Newton-Raphson algorithm, will be involved
to estimate the DPD coefficients, as well as the optimal configuration.

6. Since the optimization of dual-input Doherty PA is conducted under specified condi-
tions, especially in terms of center frequency, output power level, signal bandwidth,
it will be exciting to perform the auto-tuning approach according to a vast data
set of center frequencies, output power levels, and signal bandwidths, in order to
apply some machine-learning models to fit this data and find an optimal global
configuration.

Further research works are currently in progress for submission, which are listed along
with the abstract:
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• Chouaib Kantana, Olivier Venard and Genevieve Baudoin, “A System Approach to
Design an Optimal Digital Predistortion for Power Amplifier Linearization”.

− Abstract: The segmentation approach has proven to be an efficient approach to
replace the Volterra series for behavioral modeling of power amplifier (PA) or serve
as a digital predistortion (DPD) model. The Decomposed Vector Rotation (DVR) is
one of the most common model based on the segmentation approach that represents
nonlinear dynamical systems with memory effects. Crucial, the study of the DVR
model involves two principal aspects: the optimization of the thresholds that bound
the segments and the determination of the optimal model structure, i.e., determining
the optimal number of segments, the optimal memory depth, and the optimal set of
model terms. In this paper, we propose an efficient system approach to design an
optimal DVR model by jointly optimizing the model structure and threshold segmen-
tation. Convergence towards the optimal model is ensured by a cost function that
provides the best trade-off between modeling accuracy and model complexity. Exper-
imental results on different amplifiers confirmed the system approach’s effectiveness
in designing an optimal DVR model with good linearization performance, reduced
number of coefficients, and remarkable numerical properties, making it friendly to
hardware implementation, for which an implementation strategy is investigated.

• Chouaib Kantana, Rui Ma, Mouhacine Benosman, Olivier Venard and Genevieve
Baudoin, “On the Low-Complex Optimal model of Digital Predistortion: A Stochas-
tic Approach”.

− Abstract: This paper investigates the application of a stochastic approach based
on simulated annealing (SA) algorithm to design an optimal decomposed vector ro-
tation (DVR) model for digital predistortion (DPD). The design of DVR is based on
the optimization of thresholds β that bounds the segments and the model sizing that
find the optimal model structure. The combination of threshold optimization and
model sizing is viewed as a nonlinear regression problem requiring nonlinear estima-
tion techniques. The SA algorithm is converged to the optimal solution according
to a cost function that presents a trade-off between linearization performance and
model complexity. This study reveals that the SA algorithm can be used as a nonlin-
ear estimation technique. Experimental results using measurements from dual-input
Doherty power amplifier (DIDPA) are provided, demonstrating the efficiency of SA
in designing the optimal DVR model. A comparison is made between the results
obtained by the hill-climbing heuristic to size the model and the golden search (GS)
technique to optimize β.

• Chouaib Kantana, Rui Ma, Mouhacine Benosmane, “A System Approach for the
Linearization and Efficiency Enhancement of Dual-Input Doherty Power Amplifier”.

− Abstract: In this paper, we propose an efficient system approach to improve
the power efficiency of dual-input Doherty power amplifier (DIDPA) by maintain-
ing a reliable level of linearity following the communication standards. The system
approach handles DIDPA according to a specific workflow. Firstly, an auto-tuning
process based on a hybrid heuristic search control (HHSC) is applied to optimally
define DIDPA configuration by optimizing its free-parameters, including peak-to-
average power (PAPR) reduction threshold. The HHSC is driven by a cost function
designed to moderate the inherent trade-off between linearity and power efficiency.
The digital predistortion (DPD) is then integrated to linearize DIDPA using an opti-
mal reduced-complexity model based on the segmentation approach. The cost function
coefficients are updated optimally based on the linearity improvement by DPD. An
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optimal pruning process of the free-parameters, based on hill-climbing (HC) heuris-
tics, is proposed to reduce the HHSC complexity in order to refine the optimal DIDPA
configuration with the updated cost function. The system approach has been approved
by experimental results using an LTE 20−MHz signal with a PAPR of 8−dB PAPR.
In the first step where HHSC is applied, DIDPA exhibited a drain efficiency of 61%.
DPD linearization improved linearity using a low-complex model with only 30 coef-
ficients, which exhibited an error vector magnitude (EVM) of 2.5% and an adjacent
channel power ratio (ACPR) of -50−dB at an averaged output power of 34−dBm.
By updating the cost function coefficients and pruning the free-parameters, DIDPA
exhibited an EVM of 3%, an ACPR of -50−dB, and a drain efficiency of 47% at an
average output power of 39−dBm.
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Résumé détaillé de la thèse en
français

Approche système d’optimisation d’un prédistorteur
numérique avec une complexité réduite pour la
linéarisation des amplificateurs de puissance RF

Au cours des dernières décennies, les systèmes de communication sans fil ont connu une
évolution spectaculaire dans la manière de fournir des services de transmissions à des
débits de plus en plus élevés pour des applications telles que la communication mobile, les
réseaux Wi-Fi, la diffusion multimédia, etc. Ces progrès ont conduit à une prolifération
de nouveaux services radio. Or, les exigences croissantes des utilisateurs en termes de
service, de qualité, et de connectivité mettent massivement à l’épreuve les ressources
énergétiques et fréquentielles. Dans les systèmes de radiofréquence (en anglais : Radio
Frequency - RF), l’amplificateur de puissance (en anglais : Power Amplifier - PA) est un
élément crucial de la châıne dont le rôle est d’amplifier le signal transmis afin d’élever
le niveau de puissance de la transmission. Le PA demeure l’un des composants les plus
importants en termes de coût, d’autonomie, et de rendement énergétique. Le rendement
énergétique maximal du PA est atteint lorsque le point de fonctionnement est proche de la
zone de saturation, malheureusement dans cette zone, les non-linéarités de l’amplificateur
distordent le signal transmis. Ces distorsions peuvent devenir particulièrement fortes pour
les signaux à large bande.

Sur le plan spectral, des formats de transmission tels que l’accès multiple par répartition
en code (en anglais : Code Division Multiple Access - CDMA) et le multiplexage par
répartition orthogonale de la fréquence (en anglais : Orthogonal Frequency-Division Mul-
tiplexing - OFDM) sont de plus en plus utilisés pour acheminer des flux d’informations
élevés sur un espace fréquentiel minimal, dont l’objectif est de surmonter la limitation
spectrale des ressources et de faire preuve d’une efficacité spectrale élevée. Ces formats
de transmission génèrent une enveloppe de signal transmis non-constante, ce qui implique
un rapport puissance crête sur la puissance moyenne (en anglais : Peak-to-Average Power
Ratio - PAPR) élevé. Par conséquent, ces signaux présentent une sensibilité aux non-
linéarités du canal de transmission, et en particulier à celle du PA.

L’étude de PA repose enfin sur l’assurance d’un véritable compromis entre linéarité
et efficacité énergétique. L’efficacité énergétique représente une caractéristique fonda-
mentale quantifiée principalement par deux définitions : le rendement de drain ηDC et
le rendement en puissance ajoutée ηPAE (en anglais : Power Added Efficiency - PAE).
Le rendement ηDC est défini par le rapport entre la puissance de sortie et la puissance
continue consommée. Le rendement ηPAE est le rapport entre la puissance RF fournie
en sortie du PA diminuée de la puissance RF à son entrée et la puissance consommée
sur l’alimentation. Le rendement énergétique est un paramètre crucial qui dépend entre

182



autres du choix du point de polarisation des transistors. Le PA doit être optimisé lors de
la phase de conception afin de maximiser son rendement énergétique.

Le comportement non-linéaire du PA est généralement analysé en l’excitant par des
signaux de natures diverses (signal mono-porteuse, signal à deux tons, signal modulé),
et déterminant le gain, la puissance de saturation, le point de compression à 1 dB et les
distorsions d’intermodulation. Dans le cas où le PA serait excité par un signal modulé, la
non-linéarité est généralement quantifiée par 2 paramètres :

• ACPR (en anglais : Adjacent Channel Power Ratio) pour quantifier les remontées
spectrales dans les bandes fréquentielles adjacentes au canal principal. Il est défini
par le rapport des puissances entre celle du canal principal et celle dans les canaux
adjacents, sous la forme suivante :

ACPR(dB) = 10 log10

( 2
∫
BWc

P (f)df∫
BWg

P (f)df +
∫
BWd

P (f)df
)

où P (f) est la densité spectrale de la puissance du signal en sortie du PA.

• EVM (en anglais : Error Vector Magnitude) pour mesurer l’écart de position entre
celles des symboles reçus et les positions idéales attendues. La mesure EVM est
effectuée sur les données I/Q en bande de base, ce qui nécessite une démodulation
du signal RF amplifié. Il est défini par :

EVM(%) = 100

√√√√∑N
k=0 |sk,ideal − sk,reel|2∑N

k=0 |sk,ideal|2

Dans les standards de communication, l’EVM et l’ACPR sont donnés de manière complémentaire.
L’ACPR évalue l’effet de la non-linéarité de l’amplificateur sur les bandes adjacentes, tan-
dis que l’EVM quantifie les distorsions dans la bande utile.

Sous certaines conditions initiales, le PA est considéré comme un système à fonc-
tionnement statique, ce qui signifie que la sortie de PA à l’instant t ne dépend que de
l’entrée au même instant. En réalité, le PA présente souvent des phénomènes dispersifs
non-linéaires et dynamiques appelés effets de mémoire. Cela signifie que la sortie du PA à
tout instant dépend non seulement de l’entrée instantanée correspondante, mais aussi des
entrées à d’autres instants précédents, ce qui impacte ses caractéristiques fréquentielles.

La caractérisation du PA dans la figure 1 montre clairement le compromis entre
linéarité et rendement énergétique. Afin de répondre aux spécifications de linéarité im-
posées par les normes de communication (3GPP par exemple), la puissance moyenne du
signal d’entrée doit être abaissée en appliquant un recul (en anglais : back-off) supérieur
au PAPR du signal à amplifier, tel que montré dans la figure 1. Grâce au recul, le PA
fonctionne dans sa zone linéaire. Mais dans cette zone le rendement est généralement
très faible. Afin d’ajuster le point de fonctionnement qui répond au compromis linéarité-
rendement, le back-off doit être ajusté de manière optimale. Les techniques de linéarisation
et d’amélioration du rendement ont pour but de faire fonctionner le PA près de sa zone
de saturation où le PAE est maximum, tout en assurant d’excellentes performances de
linéarité.
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Figure 1 : Compromis linéarité-rendement

Une des techniques pour améliorer le rendement énergétique consiste à réduire le PAPR
du signal transmis, nous parlons de réduction du facteur de crête (en anglais : Crest Factor
Reduction - CFR). Un exemple typique de CFR est la méthode d’écrêtage, qui consiste
à écrêter l’amplitude du signal émis selon un seuil d’écrêtage, ce qui permet de réduire
la dynamique d’amplitude, et donc le PAPR. Par contre, l’écrêtage d’amplitude de signal
par le CFR dégrade le signal de façon non-linéaire. L’enjeu majeur des techniques de CFR
est de réduire le PAPR en dégradant le signal le moins possible tout en préservant le débit
de transmission le débit de transmission, et sans ajouter de traitement supplémentaire à
la partie réception.

Quant à la linéarité, des techniques ont été développées dans le but de faire fonctionner
le PA dans sa zone non-linéaire et de l’associer à un dispositif de compensation des non-
linéarités sans sacrifier sa puissance de sortie. Plusieurs techniques de linéarisation ont été
proposées telles que les techniques de contre-réaction ou de feedforward et la technique
de la prédistorsion analogique ou numérique (en anglais : Digital Predistortion - DPD)
qui est actuellement la plus répandue et constitue un axe de recherche fondamental de
cette thèse. Le principe du DPD consiste à introduire en amont du PA un module appelé
prédistorteur qui applique une déformation (distorsion) au signal d’entrée pour que le
système issu de la cascade DPD + PA soit une amplification linéaire. Ce principe est
illustré dans la figure 2.

Figure 2 : Principe de la DPD

La DPD est généralement réalisée à l’aide de modèles dynamiques non-linéaires sim-
ilaires aux modèles comportementaux de PA implémentés en bande de base, dont la
caractéristique est l’inverse de celle de PA. Les paramètres de la DPD sont identifiés à
partir du signal original à transmettre et des signaux d’entrée et de sortie du PA et selon
l’architecture d’identification de la DPD. Deux approches architecturales sont principale-
ment utilisées : l’architecture d’apprentissage indirect (en anglais : Indirect Learning
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Architecture - ILA), et l’architecture d’apprentissage direct (en anglais : Direct Learning
Architecture - DLA). Pour compenser les non-linéarités du PA et les effets mémoire, il est
nécessaire d’utiliser un modèle non-linéaire et à mémoire.

A travers la littérature, nous distinguons les modèles non-linéaires et à mémoire en
deux catégories : les modèles dérivés de la série de Volterra et les modèles basés sur les
réseaux de neurones. D’autre part, les modèles de la DPD reposent généralement sur
deux approches. L’approche globale qui consiste à utiliser des modèles avec un ordre de
non-linéarité élevé et une profondeur de mémoire pour modéliser le comportement non-
linéaire du système. L’approche de segmentation qui consiste à diviser le signal d’entrée
en différentes régions ou segments et à appliquer un modèle d’ordre de non-linéarité très
faible sur chaque segment. La comparaison des modèles issus des deux approches constitue
le premier objectif de cette thèse qui consiste à analyser les performances de chaque
modèle selon des critères résultant du compromis entre les performances de linéarisation,
la complexité et les propriétés numériques pour l’implémentation matérielle.

Le deuxième objectif de cette thèse est de concevoir un modèle optimal de DPD basé
sur l’approche de segmentation. Dans cette étape, une analyse détaillée du modèle a
été réalisée, afin d’étudier ses caractéristiques de linéarisation. Deux aspects sont traités
en relation avec l’étude de modèles basés sur l’approche segmentation : l’optimisation
des seuils qui séparent les segments et le dimensionnement optimal de sa structure. Le
premier aspect consiste à positionner de manière optimale les seuils qui séparent les seg-
ments. L’avantage d’optimiser la segmentation permet d’améliorer les performances de
linéarisation, contrairement à une segmentation uniforme où les seuils sont répartis uni-
formément sur la dynamique du signal d’entrée. Le deuxième aspect concerne le dimen-
sionnement du modèle où un algorithme heuristique de type hill-climbing (HC) a été
utilisé pour déterminer la structure optimale en fonction du nombre de segments, de la
profondeur mémoire et des fonctions utilisées dans le modèle. Ces deux aspects ont été
combinés dans une étude où une approche système a été proposée pour concevoir un
modèle optimal global.

Le modèle optimal est par la suite utilisé pour linéariser un PA d’une architecture
avancée de type Doherty à double entrée (en anglais : Dual-Input Doherty Power Amplifier
- DIDPA), ce qui constitue notre troisième objectif de la thèse. Le DIDPA a d’abord
été optimisé par une proposition d’approche reconfigurable dont le principe consiste à
optimiser les paramètres du système selon une fonction de coût adaptative. Le CFR et
la DPD sont insérés en amont du DIDPA afin de maximiser ses performances tout en
conservant une linéarité respectant les standards de communication.

Cette thèse s’inscrivait dans le cadre du projet FUI22 APOGEES (AmPlification re-
cOnfiGurablE multimodes). L’objectif du projet APOGEES était de résoudre l’ensemble
des problèmes de reconfigurabilité des systèmes d’amplification pour répondre aux nom-
breux défis générés par les usages inédits du spectre et les évolutions de la société pour
le trafic aérien, les communications tactiques et l’utilisation opportuniste du spectre pour
la télévision. Le projet était porté par Arelis et labellisé par les pôles Aerospace Valley
(pôle principal), Images & Réseaux et Elopsys. Les partenaires impliqués dans ce projet
étaient : Centrale Supelec Rennes, ESIEE - Paris, Telerad, Thales Communications &
Sécurité, Université Bordeaux IMS, Université Nantes IETR, Université Poitiers XLIM.
Au cours de cette thèse, j’ai obtenu l’opportunité d’effectuer un séjour scientifique en tant
que chercheur visiteur à MERL (Mitsubishi Electric Research Laboratories) à Cambridge
aux États-Unis. Cette mobilité internationale a été encadrée par le Dr Rui MA, chercheur
senior au MERL. Le sujet est intitulé : ”Prédistorsion numérique par l’apprentissage au-
tomatique pour linéariser le PA Doherty à double entrée”.
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Analyse et étude comparative des modèles de DPD
La fonction de prédistorsion est souvent représentée par des modèles mathématiques sim-
ilaires aux modèles comportementaux des amplificateurs de puissance. La plupart de ces
modèles sont dérivés de la série de Volterra. A temps continu, la relation générale entre
un signal d’entrée x(t) et la sortie y(t) est donnée par :

y(t) =
+∞∑
k=1

∫ +∞

0
· · ·

∫ +∞

0
hk(τ1, . . , τk)

k∏
j=1

x(t− τj)dτj

où k représente l’ordre de la non-linéarité et hk(τ1, . . , τk) représente le noyau de la série de
Volterra à l’ordre k. A temps discret, la représentation de la série de Volterra doublement
tronquée entre un signal d’entrée x(n) et une sortie y(n) est donnée par :

y(n) =
K∑
k=1

M∑
i1=0

...
M∑
ik=0

hk(i1, ..., ik)
k∏
j=1

x(n− ij)

où K représente l’ordre de non-linéarité et M est la profondeur mémoire. La série de
Volterra est largement connue pour sa robustesse dans la modélisation de systèmes dy-
namiques non-linéaires. Son inconvénient est le fait que les coefficients de la série aug-
mentent de façon exponentielle avec ses paramètres. Cet inconvénient rend l’utilisation
de la série de Volterra trop limitée pour les applications de DPD en temps réel. Ceci
motive à mettre en place des modèles basés sur la série de Volterra, mais ne retenant
que quelques termes de la série. Ces modèles sont communément appelés modèles réduits
ou dérivés de la série de Volterra. Les plus connus sont les polynômes à mémoire (en
anglais : Memory Polynomial - MP), les polynômes à mémoire généralisés (en anglais
: Generalized Memory Polynomial - GMP), les modèles dérivés de la série de Volterra
dynamique, comme le DDR (en anglais : Dynamic Deviation Reduction), MDDRV (en
anglais : Modified Dynamic Deviation Reduction-based Volterra - MDDRV).

La modélisation peut être effectuée globalement par un modèle unique ou bien par
morceau en s’appuyant sur une segmentation de l’amplitude en différentes régions ou
segments. Les modèles basés sur l’approche segmentale sont capables de représenter
de fortes non-linéarités et moins sensibles aux problèmes numériques contrairement aux
modèles globaux. En effet, les segments peuvent être modélisés par des modèles d’ordre
de non-linéarité plus faible que pour le modèle global. Chua dans las années 70 a proposé
un modèle par morceau appelé CPWL (en anglais : Canonical PieceWise Linear - CPWL)
représentant les segments par un filtre linéaire et une valeur absolue. La relation générale
d’un modèle CPWL entre une entrée x(n) et une sortie y(n) en bande de base est donnée
par :

y(n) =
M∑
i=0

aix(n− i) +
K∑
k=1

ck,i

∣∣∣∣∣
M∑
i=0

ak,ix(n− i)− βk
∣∣∣∣∣

où K est le nombre de segments, βK est le vecteur des seuils qui délimitent les segments
et M est la profondeur mémoire. Le modèle CPWL S’applique à des signaux réels. Afin
que le modèle CPWL soit utilisé pour des signaux complexes comme un prédistorteur
dont les coefficients sont linéaires avec le modèle, une modification et une simplification
ont été apportées par Anding Zhu, aboutissant à un modèle dérivé d’une forme simplifiée
du CPWL, appelé DVR (en anglais : Decomposed Vector Rotation).

Notre étude comparative consiste à analyser et comparer les modèles DPD qui appar-
tiennent à deux familles différentes : l’approche globale avec un modèle dérivé des séries
de Volterra et l’approche par segmentation. Ces modèles sont présentés dans le tableau
1. Le nombre de coefficients en fonction des paramètres (tels que profondeur mémoire,
ordre de non-linéarité) est également donné.
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Les modèles du tableau 1 sont évalués selon des critères qui se répartissent en deux
catégories. La première catégorie comprend des paramètres pour évaluer les performances
de linéarisation. En plus de l’ACPR et de l’EVM, le NMSE est également utilisé comme
paramètre pour refléter la convergence de l’architecture DPD dans laquelle les coefficients
de chaque modèle sont identifiés. Le NMSE entre une entrée x(n) et la sortie y(n) est
donné par :

NMSE(dB) = 10 log10

∑N
n=1 |x(n)− zp(n)|2∑N

n=1 |x(n)|2

La deuxième catégorie de comparaison met en évidence la complexité de l’implémentation
matérielle du modèle DPD. Il est présenté par le nombre de coefficients du modèle et les
propriétés numériques qui se réfèrent à la stabilité numérique d’identification des coeffi-
cients ainsi qu’à la dynamique des coefficients.

Les modèles de DPD sont évalués sur un PA de type Doherty avec une puissance de
sortie crête de 57 dBm (500 W) et un gain linéaire de 16 dB. Ce PA est excité par un
signal LTE de 20 MHz et un PAPR de 8 dB à une fréquence centrale de 2.14 GHz, et par
une fréquence d’échantillonnage de 200 Ms/s.

Les paramètres du modèle GMP sont déterminés de manière optimale par l’algorithme
HC [84]. Pour les autres modèles de l’approche globale, nous avons choisi de limiter l’ordre
maximum de non-linéarité et la profondeur mémoire au même maximum que les valeurs
du modèle GMP, soit : K = 11 et M = 4. Concernant les modèles de segmentation,
nous fixons le nombre de segments K à 10 et M = 4 pour le modèle DVR-2, et K = 3 et
M = 4 pour le modèle DVR-6.

Le tableau 2 présente une comparaison générale des modèles du tableau 1 en fonction
des performances de linéarisation, obtenues par une architecture postdistorsion.

Tableau 2 : Comparaison des performances de linéarisation

Modèles de DPD NMSE (dB) ACPRL (dB) ACPRR (dB)
Sans DPD -10.29 -23.32 -22.46

MP -32.65 -41.23 -38.90
GMP -35.39 -43.02 -42.46

DDR-1 -29.39 -38.37 -36.26
DDR-2 -31.81 -39.81 -38.32

MDDRV-1 -29.39 -38.37 -36.26
MDDRV-2 -31.82 -39.81 -38.33

DVR-2 -32.84 -41.60 -38.95
DVR-6 -34.94 -41.88 -41.81

Le tableau 3 présente le nombre de coefficients de chaque modèle de DPD utilisés pour
les résultats de linéarisation du tableau 2, leur dynamique et le conditionnement de la
matrice qui intervient dans le calcul de la procédure d’identification.
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Tableau 3 : Comparaison des propriétés numériques

Modèles Nombre Conditionnement dynamique
DPD de coefficients des coefficients
MP 55 1.12e27 2.18e11

GMP 43 5.24e23 1.75e10

DDR-1 50 7.52e22 4.59e8

DDR-2 90 3.16e24 2.53e9

MDDRV-1 70 7.54e22 4.83e8

MDDRV-2 110 3.72e24 2.53e9

DVR-2 55 5.40e7 1
DVR-6 71 2.70e9 11.65

Selon les tableaux 2 et 3, le modèle GMP atteint les meilleures performances de
linéarisation à 43 coefficients. Le modèle DVR-6 avec 3 segments obtient des perfor-
mances similaires, mais avec presque le double du nombre de coefficients. Cependant,
le modèle DVR-6 présente des propriétés numériques impressionnantes qui en font un
candidat très intéressant pour l’implémentation matérielle.

Afin de valider l’efficacité de cette étude comparative, les modèles GMP et DVR-6
seront spécifiquement comparés dans différents scénarios en utilisant un PA de technologie
LDMOS 50 W avec une fréquence centrale de 1.78 GHz et une fréquence d’échantillonnage
de 200 Ms/s.

Les tests sont effectués avec des signaux LTE avec une largeur de bande de 5, 10 et
20 MHz et un PAPR maximum de 12 dB, et à 4 niveaux de puissance de sortie : 34, 38,
42 et 44 dBm. Le tableau 4 présente les performances de linéarisation des modèles GMP
et DVR-6 pour le même nombre de coefficients (39 coefficients).

Tableau 4 : Performances de linéarisation des modèles GMP et DVR-6

Largeur de bande NMSE (dB) ACPRL (dB) ACPRR (dB)
DVR-6 GMP DVR-6 GMP DVR-6 GMP

5 MHz -39.66 -39.75 -42.43 -42.53 -40.81 -40.84
10 MHz -40.31 -40.76 -44.78 -44.48 -43.43 -43.57
20 MHz -38.82 -39.41 -49.38 -49.76 -48.80 -49.94

Le tableau 5 présente les propriétés numériques utilisées par les deux modèles pour
obtenir les résultats du tableau 4. Les propriétés numériques sont présentées par la dy-
namique des coefficients et le conditionnement de la matrice impliquée dans la procédure
d’identification.

Tableau 5 : Propriétés numériques des modèles GMP et DVR-6

Bandwidth log10(Conditionnement) Dynamique des coefficients
DVR-6 GMP DVR-6 GMP

5 MHz 13 17 109 34887
10 MHz 14 18 327 19700
20 MHz 13 18 307 16278

En comparant les performances des deux modèles pour chaque largeur de bande, les
résultats du tableau 4 confirment que le modèle GMP offre une capacité de modélisation
légèrement meilleure que le modèle DVR-6 pour les largeurs de 5 et 20 MHz.

Pour 10 MHz, le modèle DVR-6 a de meilleures performances de NMSE, mais moins
bonnes en termes d’ACPR. Selon le tableau 5, le conditionnement de la matrice d’identification
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du DVR-6 est plus petit que celui du GMP. La dynamique des coefficients du modèle DVR-
6 est bien inférieure à celle du GMP. Par conséquent, le modèle DVR-6 présente un bon
compromis entre les performances de linéarisation et les propriétés numériques, ce qui en
fait un bon candidat pour une implémentation matérielle de la DPD.

Le tableau 6 montre les performances de linéarisation et les propriétés numériques
pour chaque niveau de puissance pour une largeur de bande de 20 MHz.

Tableau 6 : Comparaison des modèles GMP et DVR-6 pour chaque puissance de sortie

Puissance de sortie 34 dBm 38 dBm 42 dBm 44 dBm
GMP DVR-6 GMP DVR-6 GMP DVR-6 GMP DVR-6

NMSE (dB) −32.58 −32.34 −36.28 −35.45 −36.34 −35.36 −39.25 −37.73
ACPRL (dB) −50.41 −49.93 −50.44 −49.43 −46.77 −45.70 −48.99 −47.46
ACPRR (dB) −49.38 −49.27 −49.85 −49.11 −46.03 −45.52 −48.35 −47.86

Conditionnement 9.38e9 5.15e11 7.91e11 8.63e10 2.54e13 1.94e10 5.86e17 8.47e10

Dynamique des coeff. 8 42 75 31 474 8 1.18e5 104

Le modèle GMP fonctionne mieux que le DVR-6 lorsque le PA opère dans des zones de
non-linéarités faibles. D’autre part, le modèle DVR-6 confirme ses propriétés numériques
pour différentes largeurs de bande et différents niveaux de puissances de sortie.

En conclusion de cette étude comparative, le modèle GMP offre un bon compromis
entre les performances de précision et la complexité. Le modèle DVR peut atteindre des
performances similaires, mais avec une augmentation du nombre de coefficients. Cepen-
dant, le modèle DVR possède des propriétés numériques impressionnantes qui en font un
bon choix pour l’implémentation matérielle. Pour cela, la contribution suivante de cette
thèse se concentrera autour de la conception et de l’optimisation du modèle DVR, en
déterminant sa structure et en proposant une architecture d’implémentation.

Optimisation du modèle DVR
Les modèles dérivés de la série de Volterra tels que MP, GMP ou DDR ont prouvé leur ef-
ficacité comme modèle de prédistorsion. Cependant, pour un ordre élevé de non-linéarité,
la matrice de régression intervenant dans l’identification des coefficients est très mal condi-
tionnée ce qui peut générer des instabilités numériques si nous n’utilisons pas de méthodes
de régularisation et la dynamique des coefficients peut être élevée.

L’évolution des architectures de PA avec une efficacité énergétique élevée, telle que
Doherty et suiveur d’enveloppe (en anglais : Envolope Traking - ET), conduit à des PA
souvent peu linéaires. En outre, les besoins de débits de données plus élevés conduisent à
utiliser des signaux modulés avec un PAPR élevé, ce qui stimule les non-linéarités de PA.
De plus, les systèmes 5G et MIMO permettent un débit de données excessivement élevé,
ce qui est un véritable défi pour la DPD en termes de largeur de bande, de non-linéarités
et de comportements dynamiques. Compte tenu de tous ces faits, il devient plus difficile
de concevoir un système de DPD efficace pour obtenir une caractéristique inverse précise
avec une bonne efficacité et une faible complexité d’identification. Cela conduit à la
recherche d’une approche alternative pour la DPD. L’une de ces approches est l’approche
de segmentation, où le signal d’entrée est divisé en plusieurs segments séparés par des
seuils. L’un de ces modèles basés sur l’approche de segmentation est le modèle DVR qui
a fait le sujet de l’étude comparative. L’étude du modèle DVR repose généralement sur
deux aspects : la manière de positionner les seuils et la détermination de la structure
optimale.

Comme indiqué précédemment, le modèle DVR proposé initialement par Anding Zhu
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est défini par relation entrée-sortie :

y(n) =
Mlin∑
i=0

aix(n− i) +
∑
Tt∈S

Tt

où x(n) et y(n) représentent l’entrée et la sortie, respectivement, Mlin est la profondeur de
mémoire du terme linéaire, ai est le vecteur des coefficients et S est l’ensemble de termes
Tt utilisées dans le modèle DVR avec S ⊂ T = [T1,[0,...,P ], T2, T3, T4, T5, T6, T7].

T1,p =
K∑
k=1

M∑
i=0

cki,1p||x(n− i)| − βk|ejθ(n−i) · |x(n)|p

T2 =
K∑
k=1

M∑
i=i2

cki,2||x(n− i)| − βk| · x(n)

T3 =
K∑
k=1

M∑
i=i3

cki,3||x(n− i)| − βk| · x(n− i)

T4 =
K∑
k=1

M∑
i=i4

cki,4||x(n)| − βk| · x(n− i)

T5 =
K∑
k=1

M∑
i=i5

cki,5||x(n− i)| − βk| · x2(n) · x∗(n− i)

T6 =
K∑
k=1

M∑
i=i6

cki,6||x(n− i)| − βk| · x(n) · |x(n− i)|2

T7 =
K∑
k=1

M∑
i=i7

cki,7||x(n− i)| − βk| · x∗(n) · x2(n− i)

où K est le nombre de segments, M est la profondeur de mémoire, β est le vecteur des
seuils séparant les segments et cki est le vecteur des coefficients du modèle DVR. Le
cardinal de T est P + 7. Les indices i2, i3, ..., i7 sont égaux à 0 ou 1 selon l’activation du
terme Ti.

L’étude du modèle DVR est validée par des acquisitions expérimentales des signaux
entrée-sortie sur un PA de type LDMOS 50 W, stimulé par un signal LTE de largeur de
bande de 20 MHz avec un PAPR de 12 dB à une puissance de sortie de 44 dBm. 64000
échantillons de donnée I/Q sont utilisés pour l’algorithme d’identification de DPD.

Le vecteur des seuils βK dans la représentation du modèle DVR définit le position-
nement des segments. Les seuils peuvent être sélectionnés d’une façon uniforme βk = k/K
pour k = 1; 2; ..;K − 1 ou optimale. Dans la littérature, beaucoup de travaux considèrent
des modèles à segmentation uniforme, peu d’entre eux traitent l’optimisation de la seg-
mentation. Le premier travail sur l’espacement optimal a été mené pour la DPD en
LUT (en anglais : LookUp Table) sans mémoire [67]. Dans [68], une procédure itérative
est proposée pour optimiser l’espacement non-uniforme de la LUT. Pour les modèles
de segmentation, l’avantage d’une segmentation optimale par rapport à une segmenta-
tion uniforme a été établi dans [69] où les auteurs suggèrent de réduire la complexité de
l’algorithme en considérant la version sans mémoire du modèle DVR. Les auteurs ont
utilisé des méthodes basées sur Gauss-Newton telles que Levenberg-Marquardt [70] pour
optimiser conjointement les seuils et identifier les coefficients du modèle. Dans [71], les
auteurs ont utilisé une approche d’optimisation globale basée sur l’algorithme génétique
(en anglais : Genetic Algorithm - GA) pour optimiser les seuils du modèle CPWL pour la
radio sur fibre (en anglais : Radio-over-Fiber - ROF). L’ACPR est utilisé comme facteur
de mérite pour le GA.
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Dans cette étude d’optimisation du modèle DVR, une nouvelle approche a été proposée
pour optimiser les seuils β. Le principe de cette approche consiste à décomposer le
problème d’optimisation global en sous-problèmes de minimisation unidirectionnelle basée
sur la section dorée (en anglais : Golden Section - GS). Pour une fonction unimodale
donnée f(x), le principe de GS consiste à trouver l’optimum xopt qui correspond à la valeur
minimale de f(x), en rétrécissant itérativement l’intervalle de recherche [a b] contenant
cet optimum jusqu’à ce qu’une précision spécifiée soit atteinte. La mise à jour de cet
intervalle se fait itérativement selon un facteur appelé le nombre d’or τ = 1+

√
5

2 qui vérifie
τ − 1 = 1

τ
.

Le principe de l’approche proposée est basé sur la recherche GS. Pour un nombre de
segments K donné, le nombre de seuils βK est K − 1 : β = β1, β2, ..., βK−1. L’approche
proposée a été validée sur le modèle DVR avec TS = [T1,0 T1,1 T2 T3 T4], Mlin = 2, et
M = 1. La figure 3 présente les avantages de la segmentation optimisée en comparant avec
la segmentation uniforme en termes de performance de linéarisation (NMSE et ACPR)
pour différents nombres de segments K.

(a) NMSE en fonction de K (b) ACPR en fonction de K

Figure 3 : Comparaison de la segmentation uniforme et la segmentation optimisée en
fonction des performances de linearisation

D’après la figure 3.a, les performances de linéarisation en termes de NMSE pour 8
segments utilisant une segmentation uniforme pourraient être atteintes avec seulement 3
segments pour une segmentation optimale. Ceci est confirmé dans la figure 3.b en ter-
mes d’ACPR, où la segmentation optimale ne nécessite que 4 segments pour obtenir les
mêmes performances de linéarisation que la segmentation uniforme avec 10 segments. Le
NMSE et l’ACPR du modèle DVR avec une segmentation optimale convergent vers une
asymptote à partir de 4 segments, tandis qu’une segmentation uniforme nécessite plus de
10 segments pour obtenir les meilleures performances de linéarisation. Ainsi, la segmen-
tation optimale réduit considérablement la complexité puisque le nombre de coefficients
à estimer est réduit. Pour le scénario considéré, seuls 43 coefficients sont nécessaires avec
la segmentation optimisée pour obtenir les mêmes performances de linéarisation qu’une
segmentation uniforme avec 93 coefficients. Ceci confirme l’intérêt d’optimiser les seuils
du modèle DVR.

L’approche proposée est comparée avec le GA et une recherche exhaustive de type
force brute. Les résultats de l’approche proposée sont évalués avec K à 4, Mlin = 2 et
M = 1 et comparés avec la segmentation uniforme et la segmentation optimale obtenue
par force brute et le GA. Les résultats sont résumés dans le tableau 7 et discutés en termes
de NMSE et ACPR. La complexité est également discutée et évaluée par le nombre de
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calculs de NMSE.

Tableau 7 : Comparaison des performances de linéarisation, des solutions optimales et de
la complexité

Segmentation Force brute GA Approche proposéeuniforme
Segmentation [0.25 0.5 0.75] [0.58 0.81 0.92] [0.59 0.81 0.92] [0.59 0.81 0.92]
NMSE (dB) -35.82 -38.69 -38.69 -38.69

ACPR(dB) L1 -43.93 -48.52 -48.51 -48.49
U1 -44.91 -48.83 -48.83 -48.82

Nombre de calculs de NMSE 1 161700 2404 341

Dans ce scénario, l’approche proposée a convergé vers la même segmentation optimale
que la force brute et la recherche GA, c’est-à-dire βopt = [0.59 0.81 0.92]. Selon le tableau
7, seules 341 évaluations de fonctions objectif sont effectuées pour optimiser les seuils,
tandis que GA nécessite 2404 évaluations et la force brute nécessite 161700 évaluations
pour trouver les mêmes résultats optimaux. Quant à la segmentation uniforme, le NMSE
de l’approche proposée a été considérablement amélioré de près de 4 dB. L’ACPR est
également amélioré de près de 5 dB. Ceci est confirmé dans la figure 3 pour K = 4.

Dans ce cadre, nous avons montré que la segmentation optimale améliore les perfor-
mances de linéarisation par rapport à la segmentation uniforme pour le modèle DVR avec
le même nombre de coefficients. Nous avons proposé une approche de détermination des
seuils optimaux avec une complexité réduite par rapport à l’approche GA et à l’approche
force brute. La détermination des seuils optimaux a été effectué pour un nombre segments
K fixé à priori. Une autre question porte sur la détermination de la valeur optimale de
K et des autres paramètres de structure du modèle DVR. Cette question fait l’objet de
la section suivante.

Dimensionnement du modèle DVR
Le dimensionnement du modèle DVR consiste à trouver une structure de modèle optimal
qui conduit au meilleur compromis entre précision de modélisation et complexité réduite.
La structure du modèle DVR est définie par le nombre de segments K, la profondeur de
mémoire du terme linéaire Mlin, la profondeur de la mémoire M , l’ordre maximum de
la non-linéarité P , et le nombre de termes Tt. La structure du modèle DVR peut être
déterminée à l’aide de recherches exhaustives en explorant toutes les combinaisons de
valeurs de paramètres possibles. En fixant l’ordre maximum de K et M à Kmax et Mmax,
respectivement, la recherche exhaustive nécessiteKmax·Mmax·L tests, où L = ∑P+7

k=1

(
P+7
k

)
=

2P+7−1 présente le nombre total de combinaisons possibles de termes du modèle. Limiter
le nombre maximum de coefficients à tester pourrait réduire considérablement l’espace de
recherche. Cependant, cette approche de la recherche exhaustive reste très lourde en
calcul.

Dans la littérature, un des premiers travaux dédié au dimensionnement de la struc-
ture optimale pour les modèles de DPD a été fait pour le modèle GMP en utilisant un
algorithme de type GA [54]. Dans cet algorithme, la fonction de coût représente une com-
binaison linéaire du NMSE et du nombre de coefficients. Dans [57], les auteurs ont proposé
un algorithme heuristique HC pour trouver la structure optimale du modèle GMP avec
une complexité de calcul réduite. Dans [81], une étude comparative de deux algorithmes
d’optimisation, l’algorithme HC et le GA, a été réalisée en termes de vitesse de conver-
gence et de performance de linéarisation de la solution obtenue. Les deux algorithmes
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ont été comparés sur le même critère de recherche et obtiennent des performances très
proches avec une complexité de calcul très inférieure à une recherche exhaustive.

Dans cette étude, l’approche proposée dans [84] est étendue pour le modèle DVR pour
trouver une structure optimale avec une complexité réduite et de meilleures performances
de linéarisation. Le HC est un algorithme d’optimisation heuristique qui part d’une
solution initiale et essaie par la suite de trouver une meilleure solution en comparant la
solution actuelle avec ses voisines. S’il existe une meilleure solution parmi les voisins, elle
est considérée comme la nouvelle solution. La procédure de recherche est répétée jusqu’à
ce qu’aucune meilleure solution ne puisse être trouvée. La définition du voisinage est un
processus nécessaire pour pouvoir mettre en oeuvre l’algorithme HC.

La fonction de coût est un aspect essentiel de l’algorithme HC qui conduit à un com-
promis entre les performances de linéarisation et la complexité du modèle. Le NMSE,
notée par N , est utilisé pour évaluer les performances de linéarisation. La complexité du
modèle est représentée par le nombre de coefficients, noté par C. La fonction de coût,
notée par f , est définie en combinant N et C en un seul critère par une combinaison
additive

f = N + α.C

où α est un paramètre positif appelé le coefficient de pondération.
Une nouvelle définition du voisinage est proposée pour le modèle DVR. Pour le modèle

DVR, il y a quatre paramètres à dimensionner : le nombre de segments K, la profondeur
de mémoire Mlin pour le terme linéaire, la profondeur de mémoire M pour l’ensemble TS,
et les termes qui seront choisis dans l’ensemble T.

Dans un espace discret U , l’élément xi qui représente une structure de modèle DVR est
caractérisé par 3 entiers : Ki, Mlin,i, Mi et par TSi

qui est une k combinaison de l’ensemble
T avec k = {1, ..., P+7}. Comme ces paramètres peuvent être modifiés indépendamment,
ils composent un espace discret à 4 dimensions. Le voisin de l’élément xi est défini comme
un nœud (Ki+ δ1, Mlin,i+ δ2, Mi+ δ3, TU,i+ δ4), où δ1,2,3 ∈ [0,±1]. Le processus impliqué
derrière δ4 correspond soit à ajouter à TSi

un terme de son complément relatif dans T,
soit à retirer un terme de TSi

, soit à laisser inchangé TSi
.

La complexité de l’algorithme HC est caractérisé par quatre facteurs :

• Le nombre total d’éléments (voisins) évalués par l’algorithme HC, qui correspond
automatiquement au nombre d’évaluations f .

• Le nombre total d’itérations nécessaires pour exécuter l’algorithme HC, où une
itération HC est effectuée lorsque les fonctions de coût des voisins d’une solution
initiale sont calculées et la solution optimale est déterminée.

• Le temps d’exécution de l’algorithme HC est également pris en compte comme
indicateur relatif de la complexité de l’algorithme HC.

• Le nombre de coefficients du modèle de la structure de chaque voisin est intro-
duit, car il reflète la complexité calculatoire du processus d’identification. Cela fait
également référence à la complexité du modèle, qui est un aspect critique pour le
dimensionnement du modèle DVR.

Ces critères sont des indicateurs pour évaluer la complexité de l’algorithme HC et les
propriétés numériques des modèles évalués au cours de l’algorithme HC. La complexité de
l’algorithme HC peut être réduite en élaguant les voisinages en ajoutant des contraintes
sur le nombre de coefficients.

L’algorithme HC a été validé par des mesures expérimentales de PA avec un signal LTE
de largeur de bande de 20 MHz. La figure 5 présente les résultats de l’algorithme HC. Les
résultats de la recherche exhaustive obtenus en explorant toutes les structures possibles
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sont tracées en point bleu en fonction deN et C. Les points en violet représentent les struc-
tures évaluées par l’algorithme HC. Les points rouges représentent les meilleures structures
trouvées à chaque itération. Le nombre maximum de coefficients que l’algorithme HC ne
doit pas dépasser est fixé à 50 coefficients.

Figure 5 : Algorithme HC avec α = 0.05

Dans ce scénario, l’algorithme HC évalue 399 éléments (structures) en 1.18 minute
et sur 6 itérations, tandis que la recherche exhaustive a évalué 24357 éléments en 19
heures. Les paramètres de la structure optimale sont : K = 4, Mlin = 2, M = 1, et
TS = [T1,0 T3 T6].

Le modèle DVR optimal à 27 coefficients avec un NMSE de -38.06 dB. L’algorithme
HC a été mis en œuvre ici avec une segmentation uniforme, e.g., β = [0.25 0.5 0.75]. En
remplaçant ces paramètres dans la relation générale du modèle DVR, le modèle optimal
s’exprime par :

y(n) =
2∑
i=0

aix(n− i)

+
4∑

k=1

1∑
i=0

cki,10||x(n− i)| − βk|ejθ(n−i)

+
4∑

k=1

1∑
i=0

cki,3||x(n− i)| − βk| · x(n− i)

+
4∑

k=1

1∑
i=0

cki,6||x(n− i)| − βk| · x(n) · |x(n− i)|2

Dans la figure 5, les résultats sont obtenus avec un ordre maximal de non-linéarité
P configuré à 1. La présence de ce terme dans le modèle DVR est importante afin de
représenter de fortes non-linéarités. Pourtant, l’ordre de non-linéarité dans le modèle
DVR impacte ses performances, notamment en terme des propriétés numériques.

Le dimensionnement du modèle DVR est une des contributions majeures de cette thèse
où l’algorithme HC proposé pour le modèle GMP a été étendu au modèle DVR pour
trouver la structure optimale du modèle DVR avec un temps d’exécution réduit. Deux
aspects essentiels sont mis en évidence dans ce cadre : la nouvelle définition du voisinage
que nous proposons pour l’algorithme HC au modèle DVR et l’utilisation d’une fonction
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de coût qui permet d’obtenir le meilleur compromis entre précision de modélisation et
complexité.

Approche système pour la conception d’un modèle
DVR optimal
La conception d’un modèle DVR optimal consiste à déterminer sa structure optimale
avec une segmentation optimale selon les mêmes critères que ceux utilisés précédemment.
Fondamentalement, ce processus présente une combinaison de l’algorithme HC et de
l’approche proposée pour optimiser les seuils. Dans cette étude, nous proposons des
approches système (SysApp) pour effectuer cette optimisation conjointe afin de con-
cevoir le modèle DVR optimal. Ces SysApps sont développées, discutées et comparées à
l’algorithme HC en terme de solutions optimales, de performances de linéarisation et de
complexité.

Les SysApp pour concevoir le modèle DVR optimal sont développées à travers les
différentes versions suivantes :

• Approche directe qui peut se voir comme l’approche la plus intuitive pour concevoir
le modèle DVR optimal. Cette approche est basée sur la combinaison de l’approche
proposée basée sur GS pour optimiser les seuils β et l’algorithme HC pour dimen-
sionner le modèle DVR. En effet, l’optimisation de βk est effectuée pour chaque
élément (structure) évalué par l’algorithme HC. La fonction de coût f est calculée
en fonction de C et N de chaque modèle en tenant compte de sa segmentation
optimisée βopt. Cette approche est indiquée par D-SysApp (en anglais : Direct
System Approach). À première vue, D-SysApp requiert une complexité de calcul
importante puisqu’elle sera principalement évaluée par le nombre total de calculs de
NMSE nécessaire par l’algorithme HC et la recherche GS.

• D-SysApp peut être simplifiée en terme de complexité en optimisant les seuils
uniquement pour des structures de modèle DVR spécifiques. Ces structures sont
déterminées selon 2 approches :

– Les structures qui se trouvent sur l’enveloppe de l’algorithme HC. Cette ap-
proche est indiquée par Senv-SysApp (en anglais : Simplified approach on En-
velope results). Son principe consiste à appliquer le processus d’optimisation
des seuils par le GS une fois que l’algorithme HC est terminé. La complexité de
Senv-SysApp est principalement évaluée par la complexité de l’algorithme HC,
avec la complexité de la recherche GS multipliée par le nombre de structures
trouvées sur l’enveloppe.

– Les structures qui sont les meilleures structures (solutions) à la fin de chaque
iteration de l’algorithme HC. Cette approche est indiquée par Sitr-SysApp
(en anglais : Simplified approach on Iteration results). Sitr-SysApp con-
siste à insérer la recherche GS dans l’algorithme HC, qui sera activé une fois
l’itération HC terminée et appliquée au meilleur voisin de cette itération HC.
Cela permet de réduire la complexité qui sera principalement évaluée par celle
de l’algorithme de HC.

• La motivation derrière l’approche conjointe optimale, indiquée par O-SysApp (en
anglais : Optimal System Approach), est d’effectuer l’algorithme HC pour dimen-
sionner le modèle DVR sur un ensemble de voisins avec une segmentation optimale,
c’est-à-dire que la segmentation optimale des modèles évalués par le HC doit être
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disponible et stockée dans une LUT. La taille de la LUT dépend du nombre de fois
que le processus d’optimisation de β a été exécuté. Le processus impliqué derrière la
LUT pour stocker les seuils optimaux est effectué en conjonction avec l’algorithme
HC, ce qui en fait une approche conjointe. Bien que le cas parfait soit celui où
la segmentation optimale de toutes les structures est disponible et stockée, cela ne
peut pas être fait puisqu’il nécessite une recherche exhaustive, ce qui conduit à
D-SysApp. O-SysApp est développé à travers deux versions :

– Une première version d’approche système appelée Ored-SysApp (en anglais :
Optimal approach on Reduced parameters) qui considère que la segmentation
optimale n’est pas sensible à la variation des paramètres M et TS. Autrement
dit, les seuils β ne sont optimisés que lorsque le nombre de segments K change
lors de l’algorithme HC. La segmentation optimale correspondant à chaque
K est enregistrée dans la LUT. La segmentation optimale pour chaque K est
stockée dans la LUT. La taille de la LUT dépend du nombre maximum de
segments explorés par l’algorithme HC. Une segmentation β

(K)
opt optimale pour

un K donné couvre toutes les structures qui ont le même K, quels que soient
les autres paramètres (M , TS).

– Une deuxième version appelée Ogen-SysApp (en anglais : Optimal approach
on Generalized parameters) dans laquelle les seuils β sont optimisés lorsque le
nombre de segments K ou les termes du modèle TS changent par l’algorithme
HC. Ogen-SysApp représente une version améliorée d’Ored-SysApp, où l’algorithme
est similaire, sauf que lorsque les termes du modèle changent, le processus
d’optimisation des seuils est appelé.

L’efficacité des SysApp proposées est validée en utilisant les mêmes conditions expérimentales
que celles rapportées pour le dimensionnement et l’optimisation des seuils.

La figure 6 compare le comportement de chaque SysApp avec l’algorithme HC avec
une segmentation uniforme, où Ored-SysApp est nettement sous-optimal de 10 à 30 co-
efficients, tandis que Senv-SysApp, Sitr-SysApp et Ogen-SysApp sont presque optimaux
à partir de 15 coefficients. En revanche, l’approche directe (D-SysApp) est optimale à
partir de 10 coefficients. Les résultats de la figure 6 sont obtenus avec α = 0.05.

Figure 6 : Comparaison du comportement de différentes SysApps
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Le tableau 8 résume les solutions optimales obtenues par les différentes SysApp pour
concevoir le modèle DVR.

Tableau 8 : Comparaison des solutions optimales des SysAPp

Algorithme HC D-SysApp Senv-SysApp Sitr-SysApp Ored-SysApp Ogen-SysApp

St
ru

ct
ur

e
de

m
od

èl
e K 4 4 4 3 4 5

βopt [0.55 0.78 0.92] [0.59 0.82 0.93] [0.55 0.78 0.92] [0.26 0.88] [0.66 0.83 0.93] [0.11 0.67 0.84 0.94]
Mlin 2 2 2 2 2 2
M 1 1 1 1 1 1

TS

T1,0 T2 T1,0 T3 T1,0 T3
T3 T6 T3 T6 T1,1 T6
T6 T6 T4

T5
C 27 19 27 15 35 23
N -38.02 -38.6 -38.85 -38.01 -38.80 -38.93
f -36.32 -37.65 -37.5 -37.26 -37.05 -37.78

Selon le tableau 8, les solutions optimales ont la même structure de modèle en termes
de profondeurs de mémoires (Mlin etM), tandis que le nombre de segmentsK et les termes
du modèle TS sont différents d’une solution à l’autre. Par ailleurs, les solutions optimales
disposent du même niveau de performance de linéarisation, mais avec une complexité
différente. En calculant la fonction de coût avec α = 0.05, la meilleure solution optimale
est celle renvoyée par Ogen-SysApp suivi par D-SysApp, ce qui est tout à fait raisonnable
puisqu’elle est basée sur une intégration totale de la recherche GS au sein de l’algorithme
HC .

La complexité des SysApp proposée pour concevoir le modèle DVR est évaluée de
la même manière que la réduction de la complexité de l’algorithme HC décrite dans la
section 3.5.5. Le tableau 9 présente la complexité de chaque SysApp, qui est évaluée par
le nombre total de modèles évalués, les itérations HC, le nombre total de calculs de NMSE
incluant ceux du processus d’optimisation des seuils, le temps d’exécution et la somme
des nombres de coefficients de tous les modèles identifiés

Tableau 9 : Comparaison de la complexité des approches système

D-SysApp Senv-SysApp Sitr-SysApp Ored-SysApp Ogen-SysApp
Modèles DVR évalués 892 399 256 750 506

Itérations de HC 21 6 3 17 16
Nombre de calculs de NMSE 51979 910 356 1100 3866

Temps d’exécution (min) 294 2.1 0.6 4.9 8.54
Nombre de coefficients 74511 5952 2575 19185 28537

Selon le tableau 9, le comportement de chaque SysApp impacte la complexité de sa
convergence vers la solution optimale. Le temps d’exécution de D-SysApp est immense
avec un nombre élevé de calculs NMSE, par conséquent, il ne peut pas être un candidat
réaliste de SysApp pour concevoir le modèle DVR. Senv-SysApp et Sitr-SysApp restent
des candidats acceptables en termes de temps d’exécution et de nombre de calculs de
NMSE. Ored-SysApp et Ogen-SysApp ont une complexité plus grande que Sens-SysApp
et Sitr-SysApp.

D’après les résultats du tableau 8 et 9, et puisque D-SysApp est exclu de notre choix
pour sa complexité de calcul, nous pouvons conclure que Ogen-SysApp représente un
excellent candidat pour concevoir le modèle DVR, car il présente un bon compromis entre
les performances de linéarisation et la complexité de calcul. Il faut aussi noter que Sitr-
SysApp présente des performances de linéarisation similaires à Ogen-SysApp avec une
complexité réduite (15 coefficients de modèle) et avec les mêmes termes de modèle.
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Stratégie d’implémentation matérielle du modèle DVR
Optimal
Une stratégie d’implémentation matérielle sur un FPGA est discutée et investiguée dans
cette partie, où les propriétés numériques du modèle DVR optimal sont soulignées. Selon
la littérature sur cet axe de recherche, de nombreux travaux ont été rapportés pour
implémenter les modèles de DPD. Dans [89], un design FPGA est proposé pour implémenter
un modèle de DPD avec mémoire. Les auteurs ont proposé dans [90] une méthodologie
avec une synthèse de haut niveau pour les dispositifs FPGA afin d’implémenter des
modèles basés sur la série de Volterra. Une combinaison de processeurs FPGA et ARM
est proposée dans [92] pour implémenter le modèle MP, où les auteurs ont utilisé le pro-
cesseur ARM pour son avantage dans les calculs en virgule flottante. Concernant le
modèle DVR, peu de travaux de recherche ont été rapportés dans la littérature consacrée
à l’implémentation matérielle. Dans [66], les auteurs ont proposé une structure matérielle
en décomposant le modèle DVR en un format sous-composé pour réduire la complexité de
mise en œuvre. Cependant, les paramètres du modèle DVR ont été fixés arbitrairement
sans évoquer aucune préoccupation quant à la réduction de la complexité du modèle.
Dans [94], un modèle dérivé du modèle DVR est proposé, où l’implémentation matérielle
a été soulignée.

Il y a deux points critiques à considérer lors de la conversion de logiciel en matériel : la
précision et la vitesse. Dans la mise en œuvre matérielle de DPD, il existe principalement
deux processus :

• L’application de DPD au signal d’entrée qui doit être échantillonnée à une fréquence
d’échantillonnage suffisante pour répondre à la demande croissante de signaux à
large bande dans les systèmes de télécommunication actuels tels que la 5G.

• Identifier et mettre à jour les coefficients de DPD, ce qui peut être fait en utilisant
des approches bloc par bloc ou échantillon par échantillon.

Généralement, il existe deux structures pour implémenter le modèle de DPD : la
méthode par LUT et la structure directe avec multiplieurs et additionneurs. La méthode
par LUT stocke la valeur pré-calculée de la fonction de DPD, qui est indexée par le
module du signal d’entrée quantifié. D’autre part, la structure directe avec multiplieurs
et additionneurs, appelée méthode directe, nécessite des ressources logiques de FPGA
pour effectuer l’implémentation d’une fonction de DPD. L’objectif de cette étude est de
proposer une stratégie matérielle pour implémenter le modèle DVR optimal conçu par
l’approche conjointe.

Dans cette étude, nous adoptons le modèle DVR optimal retourné par Ogen-SysApp
qui s’exprime selon le tableau 8 par :

y(n) =
2∑
i=0

aix(n− i)

+
5∑

k=1

1∑
i=0

cki,3||x(n− i)| − βk| · x(n− i)

+
5∑

k=1

1∑
i=0

cki,6||x(n− i)| − βk| · x(n) · |x(n− i)|2

Selon la méthode directe, l’implémentation de ce modèle optimal nécessite 42 addi-
tionneurs et 33 multiplieurs.

Une implémentation par LUT peut être réalisée en utilisant uniquement 7 addi-
tionneurs, 7 multiplieurs, et 2 LUT de 4096 cases et de 12 bits. La figure 7 présente
l’implantation du modèle DVR optimal par LUT.
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Figure 7 : Implementation du modele DVR optimal par LUT

Optimisation et linéarisation de l’amplificateur de puis-
sance Doherty à double-entrée

Avec l’introduction des signaux modulés avec une amplitude non-constante et un PAPR
élevé dans le contexte 4G LTE et 5G, il devient de plus en plus délicat d’améliorer le rende-
ment de PA tout en conservant un niveau de linéarité adéquat. Pour cela, des architectures
de PA avancées basées sur une charge dynamique ou une modulation d’alimentation ont
été proposées dans la littérature pour éviter de gaspiller des ressources énergétiques exces-
sives, telle que l’architecture Doherty, suiveur d’enveloppe (en anglais : Envelope Tracking
- ET), Outphasing. Bien que ces architectures soient conçues majoritairement avec une
seule entrée RF, plusieurs études ont été menées dans la littérature pour souligner les
avantages de garder des entrées séparées [99].

Le principe de la séparation des entrées RF permet d’obtenir des degrés de liberté
supplémentaires, dont des paramètres appelés paramètres libres, sont offerts par les entrées
séparées, et peuvent être réglés pour améliorer les performances de PA [103]. la recherche
des paramètres libres optimaux peut être considérée comme un problème d’optimisation
globale. Nous nous sommes intéressés à l’architecture de Doherty, notamment, le PA
Doherty à double-entrée (en anglais : Dual-Input Doherty PA - DIDPA), son architecture
est illustrée dans la figure 8.

Le DIDPA se caractérise par deux entrées RF, une alimentation de drain VDC et deux
tensions VGS pour polariser les amplificateurs principal et de crête indépendamment.
L’amplitude et la phase instantanées de chaque signal d’entrée, ainsi que les tensions VGS,
peuvent être contrôlées et ajustées séparément en bande de base, permettant d’améliorer
les performances du DIDPA, en particulier son rendement énergétique.

Le DIDPA est intégré dans un système comprenant en plus de la DPD comme tech-
nique de linéarisation et le CFR pour réduire le PAPR. Les paramètres libres couvrent
les paramètres du DIDPA telles que les tensions de polarisation du DIDPA, le diviseur de
puissance entre les 2 entrées RF, et d’autres paramètres du système tel que le facteur de
la réduction de PAPR.
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Figure 8 : Block diagram of dual-input PA

La conception et l’étude du DIDPA ont été rapportées dans de nombreux articles.
Peu d’entre eux traitent l’optimisation des paramètres libres, la réduction du PAPR et sa
linéarisation dans une approche conjointe. Le premier travail connexe est proposé dans
[112], où les auteurs ont utilisé un algorithme d’approximation stochastique perturbée (en
anglais : Simultaneous Perturbation Stochastic Approximation - SPSA) pour optimiser
les paramètres libres de DIDPA. Dans [113], les auteurs ont proposé une optimisation
basée sur un recuit simulé (en anglais : Simulated Annealing - SA) pour optimiser le
DIDPA avec une fonction de coût formée à partir des valeurs du PAE, le gain du DIDPA,
la puissance de sortie Pout et l’ACPR comme métrique faisant référence à la linéarité.

Dans cet axe de recherche, nous avons proposé une nouvelle approche de réglage au-
tomatique pour améliorer l’efficacité énergétique du DIDPA tout en répondant à l’exigence
de linéarité. Cette approche consiste à optimiser les paramètres libres par un contrôle de
recherche heuristique hybride (en anglais : Hybrid Heuristic Search Control - HHSC)
selon une architecture présentée dans la figure 9.

Figure 9 : Bloc diagrame de l’architetcure proposée

Cette architecture est composée de 4 blocs :

• CFR est utilisé pour réduire le PAPR du signal v(n).

• DPD linéarise le DIDPA pour compenser les distorsions.

• Diviseur de puissance est conçu de manière optimale pour diviser le signal x(n) en
deux signaux différents xm(n) et xp(n)

• DUT (en anglais : Device Under Test) présente l’étage puissance de l’architecture
y compris le DIDPA avec son bloc d’alimentation.

Chaque bloc a des paramètres libres à définir ou à contrôler par l’algorithme d’optimisation
HHSC :

• Le principe du CFR pour réduire le PAPR se base sur la technique d’annulation
de pics (en anglais : Peak Cancellation - PC), et se réalise à l’aide d’opérations
d’écrêtage brutal et de filtrage.
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Le signal d’entrée v(n) est écrêté selon un seuil µ. Un signal de pics vp(n) est
construit en soustrayant le signal clippé du signal original :

vp(n) =
{
v(n)×

(
1− µ

|v(n)|

)
si |v(n)| ≥ µ

0 si |v(n)| < µ

Ce signal de pics est filtré avant d’être soustrait du signal original. Nous utilisons
le seuil d’écrêtage µ comme paramètre libre du bloc CFR.

• La motivation derrière l’utilisation de deux entrées RF séparées est d’éliminer les
séparateurs d’entrée analogiques, tels que le diviseur de Wilkinson, et de permettre
un contrôle de puissance indépendant vers l’amplificateur principal et de crête de
Doherty. Le diviseur de puissance divise le signal d’entrée x = Xejθ en deux signaux
complexes xm et xp définis comme :

xm = αmx ; xp = αpe
−jϕx

où ϕ représente la différence de phase entre les deux signaux et α représente le
rapport de puissance avec la condition

αm =
√
α ; αp =

√
1− α

Dans cette étude, α et ϕ sont considérés comme des paramètres libres.

• Les tensions de polarisation de l’amplificateur principal et crête de DIDPA sont
données respectivement par VGS,m et VGS,p, et considérées comme des paramètres
libres à optimiser par HHSC.

• Dans cette architecture, les coefficients de la DPD sont identifiés par l’architecture
ILA à l’aide un processus de régression linéaire telle que la méthode des moindres
carrés (en anglais : Least Square - LS). Par conséquent, la DPD ne sera pas contrôlée
par HHSC.

Le principe de HHSC est basé sur la combinaison de l’algorithme SA comme recherche
d’optimisation globale et de l’approche de commande extrémale (en anglais : Extremum
Seeking Control - ESC) comme contrôle adaptatif pour affiner les résultats optimisés. Le
vecteur des paramètres libres à optimiser est défini par : Θ = [µ;α;ϕ;VGS,m;VGS,p]. Le
HHSC converge vers la solution optimale, notée par Θopt, selon une fonction de coût J
définie par :

J(Θ) =
∑
i

wi

∣∣∣∣∣ FOMi

FOMt,i

∣∣∣∣∣ i = {1, 2, 3, 4}

où wi est le poids correspondant à FOMi (figure de mérite), et FOMt,i est la valeur cible
(target) de la figure de mérite que l’utilisateur essaie d’atteindre. Dans cette fonction de
coût, les FOMs utilisés sont {EVM;ACPR;PAE;Pout}. La conception de J pour assurer
un bon compromis entre linéarité et efficacité est faite pour que le HHSC maximise J à 1
selon les contraintes suivantes :

4∑
i=1

wi = 1 and max
∣∣∣∣∣ FOMi

FOMt,i

∣∣∣∣∣ = 1 (5.33)

où [w1;w2;w3;w4] sont initialisés par [0.1; 0.1; 0.4; 0.4].
Les cibles de FOMs sont définies selon les spécifications de l’utilisateur. Dans cette

étude, Les cibles de FOMs sont : EVMt = 3%, ACPR t = -50 dB, PAE t = 100 % et P
out,t = 40 dBm.
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Tableau 10 : Intervalle d’optimisation des paramètres libres

Paramètre Intervalle Unité
CFR µ [0 2] dB

Diviseur de puissance α [0 1] −
ϕ [-180 20] Degré

DUT VGS,m [-4 -1] Volt
VGS,p [-4 -1] Volt

Le tableau 10 présente l’intervalle d’optimisation de chaque paramètre libre par le
HHSC.

Le DIDPA est excité par un signal LTE 64-QAM 20 MHz avec un PAPR de 8.2 dB.
Le HHSC est appliqué pour optimiser les paramètres libres dans le tableau 10. La figure
10 présente la convergence de HHSC où le comportement de l’évolution de J en fonction
des itérations de HHSC est illustrée. Le HHSC commence par une solution initiale Θ0 =
[0dB 0.5 −90◦ −1.5V −2.5V] et converge vers Θopt = [1.1dB 0.7 −135◦ −1.33V −2.87V].

Figure 10 : Evolution de J par HHSC

Les FOMs correspondant à Θopt sont présentes dans le tableau 11. Le HHSC améliore
les FOM d’efficacité en sacrifiant les FOM de linéarité. Ceci est dû au choix des coefficients
de poids initiaux où w3 et w4 ont plus de poids que w1 et w2.

Tableau 11 : FOMs correspondant à la solution optimale Θopt.

EVM ACPR PAE DE Pout

10.63% -27dB 59.29% 62% 36 dBm

La DPD est utilisée pour linéariser le DIDPA avec la configuration optimale Θopt. Le
modèle DPD est basé sur le modèle DVR et dimensionné de manière optimale en utilisant
l’algorithme HC. Le nombre de coefficients dans le modèle DVR est 30 coefficients. La
figure 11 présente l’amélioration d’ACPR par le modèle DVR à la sortie de DIDPA.
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Figure 11 : Spectre de signal de sortie de DIDPA sans et avec DPD

La constellation des données I/Q avant et après l’application de la DPD est illustrée
dans la figure 12 où l’EVM est amélioré de 10% à 2,5 %.

(a) (b)

Figure 12 : Constellation des donnees I/Q : (a) Sans DPD; (b): Avec DPD

Conclusion et perspectives
Dans cette thèse, nous nous sommes concentrés sur l’étude de la prédistorsion numérique
pour linéariser les amplificateurs de puissance, et en particulier les modèles de segmenta-
tion. Cette thèse s’articule principalement sur trois aspects : l’étude et l’analyse compar-
ative des modèles de la DPD, la conception d’un modèle optimal basé sur l’approche seg-
mentale avec une stratégie d’implémentation matérielle, et l’optimisation et la linéarisation
d’amplificateur de puissance Doherty à double-entrée avec un rendement énergétique
élevé.

1. Une étude comparative est faite entre les modèles de la DPD, qui sont classés selon
deux approches : l’approche globale et l’approche de segmentation. La comparaison
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et l’analyse a été réalisée selon trois critères : les performances de la linéarisation
(NMSE et ACPR), la complexité du modèle présentée par les coefficients du modèle
et les propriétés numériques présentées par la dynamique des coefficients et le con-
ditionnement de la matrice d’identification.

2. Pour les modèles basés sur l’approche segmentale, notamment le modèle DVR, deux
études principales ont été développées : l’optimisation des seuils et la détermination
de la structure optimale. Une nouvelle approche de l’optimisation des seuils est pro-
posée en utilisant une approche itérative basée sur la décomposition du problème
d’optimisation globale en un ensemble de sous-problèmes uni-modaux nécessitant
une minimisation unidirectionnelle, comme la section dorée. Concernant la détermination
de la structure optimale, l’étude de dimensionnement du modèle GMP par l’algorithme
de hill-climbing a été étendu pour le modèle DVR avec deux aspects : le critère de
recherche et la définition de voisinage.

3. Une approche système a été proposée pour concevoir un modèle DVR optimal qui
est basée sur la combinaison de l’optimisation des seuils et du dimensionnement de la
structure selon trois versions. La première version consiste à combiner le processus
d’optimisation des seuils et le dimensionnement de la structure dans une recherche
exhaustive globale. La seconde version consiste à intégrer le processus d’optimisation
des seuils dans le dimensionnement du modèle mais avec une restriction : les seuils
ne sont optimisés que si le nombre de segments d’une structure de modèle change.
La troisième version est une mise à jour de la deuxième version, dans laquelle les
termes du modèle sont considérés comme un paramètre conduisant à optimiser les
seuils lorsque le nombre de segments et les termes du modèle sont modifiés.

4. Une approche d’auto-réglage a été proposée pour trouver la configuration opti-
male d’un amplificateur de puissance Doherty à double-entrée. Cette approche est
obtenue en combinant deux méthodes d’optimisation : le recuit simulé comme étant
un algorithme d’optimisation global et l’approche de commande extrémale comme
étant un contrôle adaptatif. La convergence de l’approche proposée est guidé par une
fonction de coût adaptative conçue pour conduire à un compromis entre linéarité et
efficacité. La technique CFR et la linéarisation DPD sont intégrées de manière opti-
male dans l’architecture proposée afin de répondre aux spécifications de l’utilisateur
en améliorant le rendement tout en maintenant un niveau satisfaisant de linéarité.
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non-linéarités de l’amplificateur de puissance et effets de mémoire et prédistorsion.
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Abstract
This Ph.D. work contributes to the digital predistortion linearization technique of power
amplifiers. Power Amplifier is one of the most critical elements of radiocommunication
systems, which exhibits static nonlinearities and nonlinear memory effects. Achieving a
good trade-off between the linearity of the power amplifier and its efficiency is becom-
ing more crucial. Digital predistortion is a powerful linearization technique that aims to
compensate for power amplifier distortions and provides linear amplification with good
efficiency. The predistortion principle consists of implementing a nonlinear function, the
so-called predistorter upstream of the power amplifier. The predistorter ideally has the
inverse characteristics of the power amplifier. This operation allows us to consider the
memory effects of the power amplifier, and in particular, the long-term memory. Several
behavioral models have been used as predistorter. Most of them are classified into two
families: global models derived from the Volterra series and models based on the seg-
mentation approach. The comparative and analysis study of these models is one of the
focuses of this dissertation, in which three aspects are used for comparison: lineariza-
tion performance, complexity, and hardware implementation properties. By focusing on
models based on the segmentation approach, this dissertation proposes an approach to
design an optimal model according to a trade-off between linearization performance and
model complexity. This model is used to linearize a dual-input Doherty power amplifier.
A global optimization algorithm combined with a control process is proposed to enhance
efficiency while maintaining a good linearity level according to a proposed adaptive cost
function.

Résumé
Le travail de thèse présenté par ce manuscrit s’intéresse à la linéarisation des amplificateurs
de puissance en utilisant la prédistorsion numérique. L’amplificateur de puissance est l’un
des modules les plus critiques des équipements de communication radio qui présente des
non-linéarités statiques ainsi que des effets de mémoire. Il devient de plus en plus crucial
de réaliser un compromis entre la linéarité et le rendement énergétique. La prédistorsion
numérique est une technique de linéarisation efficace qui compense les distorsions dues
à la non-linéarité en appliquant une déformation sur le signal d’entrée, de manière à ce
que le système global réalise une amplification linéaire. Le principe de la prédistortion
numérique consiste à mettre en œuvre une fonction non linéaire dite prédistorteur en
amont de l’amplificateur de puissance, et qui a idéalement les caractéristiques inverses de
l’amplificateur de puissance. Cette opération permet également de prendre en compte les
effets mémoire, et en particulier la mémoire à long terme. Plusieurs modèles comporte-
mentaux sont proposés pour la prédistorsion qui peuvent être classés en deux catégories :
les modèles globaux et les modèles par segmentation. L’étude comparative de ces modèles
est l’un des axes de travail traité par cette thèse, dont la comparaison repose sur trois as-
pects qui sont soulignés : les performances de linéarisation, la complexité et les propriétés
de l’implémentation matérielle. En se concentrant sur les modèles basés sur l’approche
par segmentation, un algorithme est proposé pour concevoir un modèle optimal en sat-
isfaisant un bon compromis entre les performances de linéarisation et la complexité du
modèle. Ce modèle est utilisé pour linéariser un amplificateur de puissance Doherty à
double entrée pour lequel un algorithme d’optimisation globale associé à un processus de
contrôle est proposé pour améliorer le rendement tout en conservant un bon niveau de
linéarité selon une fonction de coût adaptative.
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