Igor Saenko

Introduction

Relevance of the topic of research. Microcontroller-based systems now are an integral part of any sphere of our vital activity, that is why the importance of ensuring their security is critical. The consequences of failure of such systems, including those associated with the activities of intruders, include both financial and reputational damage as well as a threat to human life and health. One of the possible attack vectors is the exploitation of vulnerabilities, the presence of which in microcontroller-based systems is due to various factors.

Vulnerabilities that occur due to errors at the design stage are the most dangerous because, after the system implementation, its improvement can be a difficult task. Especially when the improvement implies changes in the hardware or software components of individual devices, manufacturers of which no longer exist. The prevalence of such vulnerabilities is related to the fact that usually systems are designed without the participation of security experts using unsecure data transfer protocols and untested code.

For example, according to the SonicWall report, microcontroller-based devices malware attacks jumped 215.7% to 32.7 million in 2018 (up from 10.3 million in 2017). In 2019, the attacks continued but showed a more moderate increase of 5%, according to their 2020 Cyber Threat Report. And according to the Palo Alto Networks 2020 Unit 42 Threat Report, "98% of all device traffic is unencrypted, exposing personal and confidential data on the network".

Solving this problem is an important task, that is why various design techniques have been developed and embedded into practice. Some of them are focused on software, some on hardware, and some on highly specialized areas of the application. The key issue of such solutions is in focusing on certain aspects of the security, ensuring their inapplicability for providing the security of microcontroller-based systems in general.

For example, techniques for software do not take into account that the functionality of individual components of microcontroller-based systems is determined not only by software but also by hardware. Moreover, the relationship between hardware and software elements can be quite strong, which leads to additional restrictions that significantly affect the process of their design and development.

An important drawback of the techniques for hardware and software-hardware is that the designed microcontroller-based device is viewed in isolation from the system. It means that not all security aspects would be taken into account and the security of the system as a whole will not be ensured. Also, there are extensions of these techniques that are aimed at ensuring the security of the devices and network between them. The drawback is that such techniques provide a secure connection between designed and external systems only from the designed system side, which can lead to security issues in complex multi-level systems.

In addition, in the area of techniques for links between devices, only solutions applicable within a specific platform and architecture are widely used. Such solutions are aimed at adapting secure Internet protocols for their application as part of the interaction between microcontroller-based devices. The need for such adaptations is associated with the limited computing power of such devices, the size of the payload available for transmission in the data channel, and the ability to store relatively small amounts of data on them.

Commercial solutions from Google, ARM, Kaspersky, Microsoft, Siemens and Intel are not applicable if the microcontroller-based system already contains devices whose hardware cannot be changed or the design requirements contain restrictions that do not allow the use of devices suitable for these requirements. These solutions also do not take into account the optimization process of the designed system due to limitations like computational complexity, energy efficiency, size and price. It means that the resulting system may not be reasonable for a developed use case because of no trade-off between resources and security level.

In addition, there are many solutions in which the security of the system is not considered or is not the main task. At the same time, integration of the standalone solutions within a single approach is a difficult task due to their incompatibility. This is because each design technique is based on its own model of the system, presented in an internal format. That is why it is difficult or even impossible to transform one particular model into another without losses of significant data.

It means that a general approach for solving the issue of secure microcontroller-based systems design is not done yet. Therefore, the thesis research is aimed at developing the original model-methodological apparatus for the design of microcontroller-based physical security systems. Among all possible microcontroller-based systems, in this work, only physical security systems were chosen as an area of the application, because in such systems during the design process it is required to ensure not only the functionality of the system but also to ensure its security against cyber-physical attacks.

The degree of elaboration of the topic. The design of secure microcontroller-based systems is the subject of the works of such scientists as Abdelwahed S., Achiche S., Al-Muhtadi J., Ardeshiricham A., Balasubramaniyan S., Blanchet B., Bradley D., Bresolin D., Broy M., Bu L., Buonopane F., Cai S., Cai Y., Chechulin A., Chen G., Cremers C., Derhab A., Desnitsky V., Dong X., Eynard B., Faily S., Fukazawa Y., Geretti L., Gurjanov A., Han Z., Hannis M., Hao Q., He B., Hehenberger P., Hu F., Hu W., Huang C., Huang J., Iannucci S., Kaiya H., Karpovsky M., Kastner R., Khaitan S., King J., Kobashi T., Kotenko I., Leonard L., Li X., Lin Z., Liu C., Lu J., Lu Y., Lü J., Ma R., Marxen J., McCalley J., Montemaggio A., Myers A., Nechaev V., Nuzzo P., Okubo T., Patalano S., Patil Y., Penas O., Plateaux R., Ramaswamy S., Saleem K., Sangiovanni-Vincentelli A., Shahzad B., Srinivasan S., Subathra B., Suh G., Tomiyama T., Vain J., Vasilakos A., Villa T., Vogel-Heuser B., Wang B., Wang H., Wang Y., Wang Z., Washizaki H., Xia X., Xiong N., Xu X., Yang W., Yoshioka N., Yu S., Zakoldaev D., Zhang D., Zhang T., Zharinov I., Zhong S., Zhou X., etc. While there are commercial solutions from Google, ARM, Kaspersky, Microsoft, Siemens, Intel, etc.

An analysis of works in this area, see Section 1.2 , showed that at the moment there is no general approach for the design of secure microcontroller-based systems, and the existing solutions have a limited scope and are not without drawbacks. Therefore, the thesis presents the research aimed at developing the original model-methodological apparatus for the design of microcontroller-based physical security systems. This apparatus will provide a possibility to combine various design techniques on the basis of hierarchical relational model transformation algorithms, while being modular and extensible, taking into account the physical layer of the system, working with abstract system representation and being based on a trade-off between the security of the solution and expended resources.

The scientific task. Development of the model-methodological apparatus for the design of microcontroller-based physical security systems protected from cyber-physical attacks.

The object of the study. Microcontroller-based systems, physical security systems, secure systems design process, model of the attacker, attack actions modeling, microcontroller-based devices.

The subject of the study. Models, algorithms and methodologies for the design of microcontroller-based physical security systems protected from cyber-physical attacks.

The goal of the study. Enhancing the protection of microcontroller-based physical security systems from cyber-physical attacks by increasing the number of analyzed parameters during their design process. These parameters are described in more detail in Section 1. [START_REF] Schwab | The fourth industrial revolution[END_REF] , where the research problem statement is presented.

Objectives:

1. Analysis of the main security issues of microcontroller-based systems.

Analysis of the place and role of the design approaches in ensuring the security of such systems. Analysis of the main features of microcontroller-based physical security systems.

2. Development of models of the elements of microcontroller-based physical security systems, including security ones.

3. Development of the hierarchical model of the attacker that allows distinguishing between attackers based on their types of access, knowledge and resources. [START_REF] Baheti | Cyber-physical systems // The impact of control technology[END_REF]. Development of the model of attack actions that allows checking the possibility of implementation of different classes of attacks based on the attacker's parameters (subject) and system elements (object).

5. Development of the model of microcontroller-based physical security system, which is an extendable set-based hierarchical relational unification of models of system elements, attacker and attack actions.

6. Development of the set of algorithms for the design of the extendable set-based hierarchical relational model of microcontroller-based physical security systems.

7. Development of the methodology for the design of microcontroller-based physical security systems, combining the set of algorithms and extendable set-based hierarchical relational model into a single automated approach with minimal operator involvement.

8. Development of the software implementation of the design methodology for microcontroller-based physical security systems, its experimental evaluation.

The scientific novelty. In this work, there are multiple scientifically novel results: the extendable set-based hierarchical relational model, the algorithm for the formation of requirements for the system, the algorithm for the formation of the system components composition, the algorithm for the design of the abstract model of the system, the algorithm for the design of the detailed model of the system and the methodology for the design of microcontroller-based physical security systems. Let's consider them in more detail.

Unlike existing solutions, the extendable set-based hierarchical relational model represents a microcontroller-based physical security system instead of representing individual microcontroller-based devices. Such functionality neutralizes the disadvantages of analogues in terms of designing devices separately from their interaction with each other. Moreover, this model is modular, extensible and hierarchical, has a strong focus on the security of the resulting solution as well as considers security elements as an integral part of the designed system. The extension of the model is possible by the introduction of new levels of abstraction.

The modularity of the solution provides the possibility to change its individual parts without the need to change the model completely. For example, the parameters of the attacker's model or available classes of attacks can be updated. The hierarchical nature of the model allows direct (from the whole system to individual elements) and reverse (from an individual element to the system as a whole) transitions.

The novelty of the algorithm for the formation of requirements for the system is in retrieving a list of microcontroller-based system devices, communications available to them, as well as requirements for them only on the basis of system tasks, while the list of attack actions that are possible for the attacker is retrieved in accordance with the type of access, knowledge and resources the attacker has.

Unlike other solutions, the algorithm for the formation of the system component composition is retrieving abstract elements and sub-elements of the designed microcontroller-based system in accordance with the requirements, device base and already retrieved elements, while security elements are represented as abstract elements, sub-elements, and recommendations for the system implementation.

The novelty of the algorithm for the design of the abstract model of the system is in taking into account complex dependencies between the elements of microcontroller-based systems, namely, their hierarchy, nesting, communications, conflicts and requirements. Moreover, this algorithm is not limited to specific platforms and architectures and because of its abstract nature reduces the number of parameters to be searched, thereby increasing the work speed of the solution.

Unlike existing solutions, the algorithm for the design of the detailed model of the system makes it possible to form a step-by-step process of detailing the abstract representation of microcontroller-based physical security systems in accordance with the hierarchy and mutual dependencies of their elements. Moreover, this algorithm calculates the parameters of the system devices based on the parameters of their elements as well as the parameters of the system based on the parameters of its devices. This algorithm does not replace the abstract model of the system but expands and complements it.

The novelty of the methodology for the design of microcontroller-based physical security systems lies in a new approach to the design, which allows combining various design techniques on the basis of hierarchical relational model transformation algorithms. Moreover, the suggested approach is modular and extensible, takes into account the security of the physical layer of the system, works with the abstract system representation and is looking for a trade-off between the security of the final solution and expended resources. Also, unlike existing solutions, the methodology has a strong focus on security. It is aimed at ensuring the protection of the system against attacks at the design stage, considers security components as an integral part of the system and checks if the system can be designed in accordance with given requirements and limitations.

Theoretical and practical significance. The obtained theoretical results are very important for such fundamental issues as ensuring information security of microcontroller-based systems and are aimed at expanding and improving the existing model-methodological apparatus for the design of such systems. The practical significance of the obtained results lies in the fact that the system based on the proposed models, algorithms and methodology can be used as a tool for designing secure systems based on microcontrollers, thus, avoiding errors in the early stages of their life cycle. Also, this tool can be used by users and system administrators to analyze the security status of systems and devices that are within their area of responsibility. And although at the moment the results obtained are applicable mainly for physical security systems, it is possible to extend the design methodology to other classes of microcontroller-based systems.

Research methodology and methods. Methods and approaches of the system analysis, representation and description of knowledge, analytical, simulation, set-theoretical and ontological modeling, risk analysis, theory of decision-making support, solution of optimization problems.

The main findings:

1. The extendable set-based hierarchical relational model of microcontroller-based physical security systems protected from cyber-physical attacks and its elements, namely, models of hardware, software and software-hardware elements, interfaces, protocols and links between system elements at its various levels, models of attacker and attack actions.

The set of algorithms for the design of extendable set-based hierarchical

relational models of microcontroller-based physical security systems protected from cyber-physical attacks , namely, the algorithm for the formation of requirements for the system, algorithm for the formation of the system components composition, algorithm for the design of the abstract model of the system and algorithm for the design of the detailed model of the system.

3. The methodology for the design of microcontroller-based physical security systems protected from cyber-physical attacks , that combines the set of algorithms and the extendable set-based hierarchical relational model into a single automated approach with minimal operator involvement.

4. The software implementation of the methodology for the design of microcontroller-based physical security systems protected from cyber-physical attacks , that validates its correctness based on the design of a system of mobile robots for perimeter monitoring.

Validity and reliability of the study. The validity and reliability of the results obtained are confirmed by their approbation at conferences of Russian and international levels, as well as victories in research competitions. The results obtained are accompanied by logical conclusions based on the results of the experimental evaluation. The models, algorithms and methodology proposed by the author for the design of systems based on microcontrollers are based on modern approaches used in the field of information security, and the methods of their application are correct and justified. Information Systems and Technologies: "Approach to the formation of requirements in the design process of secure cyber-physical systems", "Approach to the formation of specifications for secure cyber-physical systems" [150,151] .

of approaches to their design, developed models, algorithms and methodology as well as their software implementation to validate the correctness of scientific results using the example of a system of mobile robots for perimeter monitoring.

Publications. The main results obtained during the work on the thesis are published in 22 articles of which 15 publications in journals peer-reviewed by Web of Science or Scopus, 7 publications in journals from the list of Russian Higher Attestation Commission. In addition, 11 certificates of state registration were received, namely 8 computer programs and 3 databases.

The main publications and certificates: Structure and volume. The thesis contains an introduction, 6 chapters and a conclusion. The main results are presented on 217 pages. The full volume of the thesis is 249 pages with 113 figures, 20 tables and 3 appendices. The list of references contains 167 titles.

Summary. Chapter 1 provides a systematic analysis of the main issues of ensuring the information security of microcontroller-based systems. The place and role of design techniques in ensuring such systems security are indicated. requirements for the methodology for the design of microcontroller-based physical security systems are formulated. The research problem statement is performed.

Chapter 2 provides a description of the methods for the evaluation of the design methodology for microcontroller-based physical security systems. The evaluation is done according to the time and resource consumption as well as the validity of the obtained results.

Chapter 3 presents the extendable set-based hierarchical relational model of microcontroller-based physical security system as well as models of its elements, namely, hardware, software and software-hardware elements, protocols, interfaces and links between elements at its various levels, attacker and attack action models.

Chapter 4 presents the set of algorithms for the design of extendable set-based hierarchical relational models as well as the methodology for the design of microcontroller-based physical security systems.

Chapter 5 presents software implementation of the methodology for the design of microcontroller-based physical security systems. Its architecture, database structure, main functions of the source code and interface are described.

Chapter 6 presents an experimental evaluation of the software implementation of the methodology for the design of microcontroller-based physical security systems. The correctness of the obtained results is validated based on the design of a system of mobile robots for perimeter monitoring.

Chapter 1. Systematic analysis of the main issues of ensuring the information security of microcontroller-based systems

This chapter provides a systematic analysis of the main issues of ensuring the information security of microcontroller-based systems and indicates the place and role of design techniques in ensuring such systems security. The main features of microcontroller-based physical security systems are discussed. Requirements for the methodology for the design of microcontroller-based physical security systems are formulated as well as the research problem statement is performed.

Main issues of ensuring information security

Microcontroller-based systems have become an integral part of our lives: from electricity, manufacturing and transportation, to medicine, commerce and personal use [START_REF] Desnitsky | Combined design technique for secure embedded devices exemplified by a perimeter protection system // Trudy SPIIRAN[END_REF] . Thus, ensuring the security of such systems is a critical task, which has not yet been fully solved [START_REF] Levshun | Design and verification methodology for secure and distributed cyber-physical systems[END_REF] . This is supported, for example, by the news about growing botnets of smart microwaves and refrigerators used to carry out DDoS attacks, as well as hacking of isolated networks of critical enterprises through smart sensors and cameras [START_REF] Pressley | Securing connections in the cloud and across IoT devices // Intelligent CIOEurope[END_REF] . This also determines the high relevance of the chosen topic.

Let's consider the main issues of ensuring information security that are typical for microcontroller-based systems in more detail. To do this, we asked the following research questions:

1. What is the object of the attack? 2. Who is the subject of the attack? 3. What are the intentions of the attackers? 4. What is the way to implement the attack? 5. What methods and means of protection can be applied?

As an answer to the first question in Section 1.1.1 , the definition and classification of microcontroller-based systems are proposed. This classification allows one to assess the criticality of the system or its elements in accordance with the business processes that depend on them, the complexity in accordance with the functionality, and connectivity in accordance with the interfaces and data transfer protocols used. In addition, this classification allows one to take into account the social aspect of the system in accordance with the involved personnel and potential users.

A classification of attackers is being developed to answer the second and third questions in Section 1.1.2 . This classification makes it possible to assess the capabilities of attackers in accordance with their type of access, level of knowledge and available resources. In addition, the proposed classification makes it possible to take into account possible intentions of attackers, including those related to violation of confidentiality and integrity of information, as well as violation of the availability of devices and interception of control over them.

As an answer to the fourth question in Section 1.1.3 , a classification of attack actions is presented. This classification makes it possible to establish the relationship between the attacker and attack actions in accordance with the knowledge and resources necessary for the attacker to implement them, as well as the purpose to which their use corresponds. In addition, this classification establishes the relationship between attack actions and components of microcontroller-based systems, in accordance with which they can be implemented.

As an answer to the fifth question, a classification of methods and means of protection is proposed in Section 1.1.4 . This classification makes it possible to assess the possibility of implementing attacking actions.

At the same time, the answers to the above questions, just like the classifications proposed as answers to them, are interconnected, see Figure 1 .

Figure 1 . Relationship between problematic issues of information security

Directed arrows show the relationship between the questions. At the same time, the process of building relationships is based on two main concepts of information security: subject and object of the attack. Then, based on information about the target of the attack and the attacker, one can guess the target of the attackers, as well as the tools and approaches they use. In addition, when the information about the object of attack and the attacker is expanded with data about the tools and approaches used by the attacker, it becomes possible to suggest effective countermeasures. Note that the figure shows a direct relationship between questions, while indirect relationships are not displayed -otherwise there would be an all-to-all relationship. Each of these questions, as well as the answers to them, will be discussed in more detail in the following sections.

Definition and classification of microcontroller-based systems

The use of cyber-physical systems is becoming more and more widespread and in demand, since the integration of information technologies and devices for interacting with physical processes and objects is implemented in them. It is important to note that in the scientific literature there is no single definition of such systems and in a number of works, there are various descriptions of them. The term cyber-physical system was first proposed in 2006 to denote complexes consisting of natural objects, artificial sub-systems and controllers [START_REF] Baheti | Cyber-physical systems // The impact of control technology[END_REF] . In addition, the popularization of this term is associated with the project Industry 4.0 [START_REF] Schwab | The fourth industrial revolution[END_REF] , which is based on the introduction of smart systems into the industry. For example, [START_REF] Hehenberger | modelling, simulation and integration of cyber physical systems: Methods and applications[END_REF] provides an overview of various types of systems and related processes of transition from mechatronics to cloud-based IoT systems. As a rule, the following systems are referred to as cyber-physical [START_REF] Zegzhda | Sustainability as a criterion for information security in cyber-physical systems // Automatic control and computer sciences[END_REF] : production management systems, Internet of Things, smart home, robotic systems and unmanned vehicles. Microcontroller-based systems are a subset of cyber-physical systems.

In [START_REF] Broy | Engineering cyber-physical systems: challenges and foundations // Complex Systems Design & Management[END_REF] , a microcontroller-based system is defined as a new type of system that is the result of combining embedded software systems connected, on the one hand, with their physical environment using sensors and actuators, and on the other hand, with global networks such as the Internet with its data and services. According to [9] , a microcontroller-based system is a complex technical system that integrates sensor technology and computing, communication and control technologies. The hardware and software of the system are closely linked through the network, forming four processes: data collection, data analysis, decision making and execution. The work [START_REF] Rogozinsky | Multi-domain approach and models of cyber-physical objects in information representation systems[END_REF] uses the concept of cyber-physical space to denote a conditional environment in which physical objects and their informational entities exist in an inseparable connection. And in [START_REF] Zegzhda | Sustainability as a criterion for information security in cyber-physical systems // Automatic control and computer sciences[END_REF] , the concept of a microcontroller-based system is presented as a convenient concept for representing technological systems as a result of the integration of physical processes and the information environment.

Summarizing, the following characteristics can be distinguished, which make it possible to classify the system as microcontroller-based: 1. Integration of information technologies with the physical environment. 2. Existence of processes for collecting, storing, analyzing and providing data.

3. Availability of a reliable data transfer environment between system elements. [START_REF] Baheti | Cyber-physical systems // The impact of control technology[END_REF]. System contains only microcontroller-based devices. This means that a microcontroller-based system can be defined as a system that performs the functions of collecting, storing, analyzing and providing data from microcontroller-based devices interacting with physical processes and objects, as well as their close integration with information technology within a reliable data transfer environment.

Information security of a microcontroller-based system means ensuring the integrity, confidentiality and availability of processed data, as well as infrastructure and associated physical processes. Information security of a microcontroller-based system can also be understood as the security of information and information resources of this system from various kinds of threats.

Just like in the definition of microcontroller-based systems, there is not a single classification of it in the scientific literature. In a generalized form, the main attributes of the classification of such systems can be represented as follows: complexity in accordance with the functionality and components used; connectivity in accordance with the interfaces and data transfer protocols used; criticality in accordance with system-dependent business processes; social aspec t in accordance with the nature of the interaction of the system with users and operators. Understanding these attributes provides insight into a microcontroller-based system, helping to determine what an attacker is targeting and what capabilities an attacker uses when attacking that system. Let's consider each of the presented attributes in more detail.

Assessment of the complexity of a microcontroller-based system can be carried out in accordance with its functionality and components used. These parameters are most actively studied in works related to their design. In this case, the components of the system are usually divided into different levels, depending on the functionality of the elements of each layer.

For example, the authors of [START_REF] Xiao-Le | A service-oriented architecture framework for cyber-physical systems // Recent Advances in Computer Science and Information Engineering[END_REF] have proposed a service-oriented architecture for microcontroller-based systems, consisting of physical, network and service layers. The study [START_REF] Dong | A systematic review of studies on cyber physical system security // International Journal of Security and Its Applications[END_REF] distinguishes the perception level, network level and application level. The task of the physical layer, or the level of perception, is to reliably read information from sensors. The network layer provides ubiquitous data access and transmission. At the service or application level functions for collecting, storing, processing and presenting data are performed.

In [START_REF] Lee | A cyber-physical systems architecture for industry 4.0-based manufacturing systems // Manufacturing letters[END_REF][START_REF] Xia | A Design of Cyber-Physical System Architecture for Smart City // Recent Trends in Intelligent Computing, Communication and Devices[END_REF] , the architecture of a microcontroller-based system is proposed, consisting of five levels, which contain: connection level -collection of all types of data from sensors and system controllers; network layer -analysis of heterogeneous data in order to determine meaningful information; cybernetic levelthe central information node in the architecture, realizing data analysis and control of the system; knowledge level -presentation of knowledge to users, visualization and decision making; configuration level -feedback between levels, the performance of central dispatching control functions. Also, a common representation of the architecture of microcontroller-based systems is the 7-layer structure of the ISO/OSI model -from the physical to the application layer [START_REF] Rojas | Enabling connectivity of cyber-physical production systems: a conceptual framework[END_REF][START_REF] Alguliyev | Cyber-physical systems and their security issues // Computers in Industry[END_REF] . Thus, the elements of the system can be classified according to their functionality as well as from the place occupied in the overall architecture.

Microcontroller-based systems can also be classified depending on the processes involved in processing the data they use. For example, in the work [START_REF] Cardin | Classification of cyber-physical production systems applications: Proposition of an analysis framework // Computers in Industry[END_REF] , was proposed to classify these systems by the semantic level of the data used for operation: connection level -data provided by sensors; conversion level -data from sensors, after their preliminary processing and aggregation; cybernetic leveldata from other systems; knowledge level -processing of sensor data based on modeling and differential analysis to diagnose the state of the system; configuration layer -using incoming data for adaptation and reconfiguration.

In addition, according to [START_REF] Zegzhda | Systematization and security assessment of cyber-physical systems // Automatic control and computer sciences[END_REF] , the complexity assessment can also be carried out on the basis of the following structural features of microcontroller-based systems: the number of control loops -with one control loop and multiple control loops; the structure of the control loops -single-level and hierarchical; quantitative composition of elements -fixed and variable; the qualitative composition of the elements -homogeneous and heterogeneous; dynamics of behaviour -adaptive and self-organizing. At the same time, adaptation and self-organization mean a reaction to external influences, the ability to predict upcoming changes in the external environment, conducting internal testing and improving one's own organization not only under the influence of external factors but also in the case of conditionally stable work.

Note that in the field of artificial systems there is no clear boundary dividing simple and complex systems. At the same time, there are two main ways to assess the complexity of systems [START_REF] Romanov | Approach for complex systems analysis[END_REF] . The first is related to the amount of information required to describe the system and determine its descriptive complexity. Such an assessment is possible on the basis of quantitative parameters of the system, such as the number of elements, connections and hierarchical levels, as well as non-overlapping system functions [START_REF] Kohanovskiy | System complexity index[END_REF] . The second method makes it possible to estimate the complexity of cognition of the system and is associated with the amount of information required to reduce the system's uncertainty measure. At the same time, the descriptive complexity and the complexity of cognition complement each other -an increase in one complexity entails an increase in another. The role of the classification of microcontroller-based systems is to limit the ways of describing such systems, which provides the basis for their assessment.

The connectivity assessment of a microcontroller-based system can be carried out in accordance with the interfaces and data transfer protocols used in it. This assessment affects one of the most important elements of any system -the process of organizing reliable data exchange between its components. At the same time, existing telecommunication technologies include both data transmission algorithms and tools of their implementation up to physical communication channels.

In [START_REF] Zegzhda | Systematization and security assessment of cyber-physical systems // Automatic control and computer sciences[END_REF] to assess the connectivity of microcontroller-based systems, it is proposed to use such features as geographical distribution and openness of the system. With regard to geographical distribution, there are as follows: centralized systemssystems located within the boundaries of one physical object; and distributed systems -systems located on several interconnected objects. The openness of the system determines the nature of the use of internal and external (global) networks and classifies the microcontroller-based system as a closed-typ e system if only the internal communication environment is used for its operation, and an open-type system if the system requires access to the global Internet.

In [START_REF] Cardin | Classification of cyber-physical production systems applications: Proposition of an analysis framework // Computers in Industry[END_REF] to assess the connectivity of microcontroller-based systems, it is proposed to use the technologies and communication standards. Technologies characterize the devices used by the system to interact with physical objects or processes, while standards characterize the process of interaction of system elements with each other, indicating the protocols and interfaces. Protocols are divided into high-level, low-level and inter-level, and for the classification of interfaces, it is proposed to use various features that characterize the communication topology, the format and mode of data transmission, as well as the functional purpose of the network.

The protocols and interfaces used can be conditionally divided into wired and wireless. Wireless sensors and actuators play a central role in the design of modern microcontroller-based systems. In such complex heterogeneous systems, communication links must meet requirements of bandwidth, latency, and range as well as low power consumption. In [START_REF] Burg | Wireless communication and security issues for cyber-physical systems and the Internet-of-Things[END_REF] the most recent wireless standards are covered, such as NFC, UHF RFID, ZigBee, Z-Wave, EnOcean, Bluetooth, Wi-Fi, 3GPP, NB-IoT, LoRa and SigFox. At the same time, the following network topologies are distinguished: star, tree, mesh and honeycomb.

The most common wired interfaces for data transfer between microcontroller-based devices include UART, SPI, I2C, Ethernet, 1-Wire, Modbus, and CAN [START_REF] Mikhaylov | Evaluation of power efficiency for digital serial interfaces of microcontrollers[END_REF][START_REF] Avatefipour | Linking received packet to the transmitter through physical-fingerprinting of controller area network[END_REF] . Each of the listed interfaces has a number of features that affect the data transfer rate, power consumption, and available additional functions: for example, the functions of addressing and identifying connected devices. At the same time, for these interfaces, their hardware implementations are widespread, which led to their integration into most modern devices based on microcontrollers.

Note that the global informatization of various spheres of human life contributes to both the development of existing specifications for network exchange protocols and the emergence of new protocols. At the same time, for devices of microcontroller-based systems, there is a tendency to use proprietary protocolsprotocols with unregulated (at least publicly available) specifications. This situation is mainly related to the desire to protect the intellectual and commercial property of companies as well as to complicate the conditions for the analysis of network protocols by third-party researchers. This means that often traffic in microcontroller-based systems can be characterized as traffic of large volume, high heterogeneity and undefined structure [START_REF] Gaifulina | A Technique for Lexical Markup of Structured Binary Data for Problems of Protocols Analysis in Uncertainty Conditions. Sistemy upravleniya, svyazi i bezopasnosti -Systems of Control[END_REF] .

The criticality assessment of a microcontroller-based system can be carried out in accordance with the business processes that depend on it. To carry out this assessment, business process models are often used, as well as an analysis of potential threats and vulnerabilities for subsequent risk assessment and the selection of countermeasures. In this case, the risk is defined as the ability of a particular threat to use the vulnerability of one or more assets to harm the organization [START_REF] Doynikova | Dissertaciya na soiskanieuchenoj stepeni kandidata tekhnicheskih nauk -Dissertation for the degree of Candidate of Technical Sciences[END_REF] . In turn, assets can represent tangible assets, information, software and hardware, personnel and intangible resources of value to the organization.

By definition, a critical information infrastructure is a set of automated control systems for the production and technological processes of critical objects, as well as information and telecommunication networks that ensure their interaction [START_REF] Federal'nyj Zakon | O bezopasnosti kriticheskoj informacionnoj infrastruktury Rossijskoj Federacii" ot 26.07.2017 No 187-FZ (poslednyaya redakciya[END_REF] . Thus, these objects can include microcontroller-based systems operating in the spheres of health care, science, transport, communications, energy, finance, defence and industry. An analysis of the field of application of microcontroller-based systems is presented in [START_REF] Stallings | The internet of things: network and security architecture // Internet[END_REF][START_REF] Khaitan | Design techniques and applications of cyberphysical systems: A survey[END_REF][START_REF] Gomez | Internet of Things for enabling smart environments: A technology-centric perspective[END_REF] . Let's consider them in more detail.

In [START_REF] Stallings | The internet of things: network and security architecture // Internet[END_REF] the following areas of application of microcontroller-based systems are distinguished: public security, retail trade, transport, industry, healthcare, smart home, construction and energy. For each area, an end-user is identified and examples of devices are provided. The authors of [START_REF] Khaitan | Design techniques and applications of cyberphysical systems: A survey[END_REF] review existing solutions in the design of microcontroller-based systems, which allows highlighting the following areas of application: automotive systems and transport, medical systems, smart homes and buildings, social networks and gaming systems, planning systems, control systems, power systems, systems surveillance, industrial systems, aerospace systems, search systems, ecological systems, construction systems, robotic systems, and water distribution systems. The article [START_REF] Gomez | Internet of Things for enabling smart environments: A technology-centric perspective[END_REF] examines the main components of the modern intellectual environment, namely such concepts as smart home, smart health, smart city and smart factory. At the same time, these concepts are compared with current communication solutions in the field of microcontroller-based systems. This paper also provides an overview of communication technologies and architectures of such systems, and in the conclusion discusses the problems that remain open for research.

Industrial microcontroller-based systems are characterized as a combination of autonomous and coordinated elements (from machines to logistics networks), connected to each other in accordance with a set of goals at all levels of production and capable of making decisions in real time [START_REF] Monostori | Cyber-physical production systems: Roots, expectations and R&D challenges[END_REF] . At the same time, the benefits of implementing such systems are being explored everywhere. For example, [START_REF] Gurjanov | Design concepts for digital project and production companies of Industry 4.0 standard. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij[END_REF] shows the process of introducing the principles of microcontroller-based systems into the industrial sector by organizing the work of enterprises in the framework of technologies such as smart manufacturing and digital factories. The works [START_REF] Nikolakis | A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace[END_REF][START_REF] Liu | Remote human-robot collaboration: A cyber-physical system application for hazard manufacturing environment[END_REF] show the advantages of interaction between humans and robotic systems in a hazardous environment. The article [START_REF] Levin | Transport cyber-physical systems[END_REF] describes transport microcontroller-based systems, their basic principles of organization and functioning. In [START_REF] Volkov | Cybernetics of construction systems. Promyshlennoe i grazhdanskoe stroitel'stvo -Cyber-physical construction systems[END_REF] , a paradigm of a microcontroller-based building system is proposed, which is a finite set of functional components such as building objects and complexes, as well as computing resources integrated into the included physical processes. A number of works [START_REF] Dey | Medical cyber-physical systems: A survey[END_REF][START_REF] Shishvan | Incorporating Artificial Intelligence into Medical Cyber Physical Systems: A Survey // Connected Health in Smart Cities[END_REF] provide studies of medical microcontroller-based systems to improve the efficiency and safety of healthcare.

Note that the criticality of a microcontroller-based system is characterized by the consequences of complete or partial failure of both the entire system and its individual elements. These consequences include both financial and reputational damage and a threat to human life and health. One of the ways to represent criticality is a vector of the following components: reliability, failure consequences, the ability to reduce the likelihood and severity of consequences [START_REF] Popov | Information support for technological preparation of repair production in transport[END_REF] . The ranking of the elements of the system according to the degree of criticality depends on the system type, selected particular indicators as well as available expert information.

The criticality of information processed in microcontroller-based systems, as a rule, is determined by the owner of the system and may depend on various parameters. For example, the criticality of information can be affected by its need for the correct functioning of the system as well as damage from its loss, modification or leakage. Criticality can be calculated using both qualitative and quantitative indicators [START_REF] Fedorchenko | Automated detection of assets and calculation of their criticality for the analysis of information system security[END_REF] .

In [START_REF] Koptenkov | Information categorization is the first step to ensuring the information security of an organization[END_REF] classification of information assets in accordance with the requirements for confidentiality, integrity and availability is proposed. With regard to confidentiality, the authors highlight information that is restricted for distribution according to the requirements of the law and organization as well as open information. With regard to integrity, information is distinguished based on the damage the violation of its integrity can lead to -significant, moderate or insignificant damage -as well as information, the integrity of which is not required. With regard to accessibility, authors highlight information that is available at any time as well as information that is available with a delay of up to several hours/days/weeks.

Based on the classification proposed in [START_REF] Koptenkov | Information categorization is the first step to ensuring the information security of an organization[END_REF] , information can be divided into critical information -confidentiality must be ensured in accordance with the requirements of the law, violation of integrity can lead to significant damage, information is available at any time; important -confidentiality must be ensured in accordance with the requirements of the organization, violation of integrity can lead to moderate damage, information is available with a delay of up to several hours, and usualconfidentiality and integrity are not required.

The assessment of the social aspect of a microcontroller-based system can be carried out in accordance with the nature of the interaction of the system with users and operators. At the same time, this area of research gave rise to such a term as the socio-cyber-physical system. It is important to note that the efficiency of the functioning of a microcontroller-based system depends not only on hardware and software but also on the personnel and users interacting with it. This means that the interests of various social groups should be taken into account both at the level of the formation of the external appearance of the system and in the development of its technical specifications. Thus, in [START_REF] Mikoni | Model of the participants in the life cycle of a socio-cyber-physical system[END_REF] this fact made it possible to introduce a sign of socialization of the elements of a microcontroller-based system, which characterizes the following types of interaction of the system with society: design, production, purchase/sale, storage, work (operator), maintenance and disposal. And in [START_REF] Cardin | Classification of cyber-physical production systems applications: Proposition of an analysis framework // Computers in Industry[END_REF] the human factor feature was introduced, which describes the following types of interaction of microcontroller-based systems with the operator: autonomy -the system makes all the necessary decisions without any operator intervention; automation -the system guides the operator during tasks, making most of the decisions; tool -the operator manages the system and is responsible for most decisions; management -the system only provides data to the operator, who makes all decisions.

Microcontroller-based systems often simulate the intellectual capabilities of a person in the tasks of searching, analyzing and synthesizing information about the world around them in order to obtain new knowledge and solve the assigned tasks. Thus, in [START_REF] Zegzhda | Systematization and security assessment of cyber-physical systems // Automatic control and computer sciences[END_REF] for such systems, the concept of intellectualization is introduced, which describes the system's ability to learn, gain experience and make decisions. In addition, this work introduces the concept of the dynamics of response to the external world, which is divided into the dynamics of high, medium and low levels. It is assumed that this feature can be used to assess the ability of microcontroller-based systems to work with uncertain and dynamic data, as well as to extract knowledge from accumulated experience. Also, in this work, the concept of a model of perception of the external world is introduced, which describes how objects of a microcontroller-based system perceive the surrounding world: without a model of the external world, with a given model of the external world, or with a model of the external world that is generated during the operation of the system.

Based on the analysis and systematization of the current state of research, as the main attributes of the classification complexity, connectivity, criticality and the social aspect of microcontroller-based systems were chosen. Using these attributes, a classification was built as shown in Figure 2 . This classification allows one to assess the criticality of the system or its elements in accordance with the business processes that depend on them, the complexity in accordance with the functionality and connectivity in accordance with the interfaces and data transfer protocols used. In addition, this classification allows one to take into account the social aspect of the system in accordance with the involved personnel and potential users. The sufficiency of the classification is confirmed by the analysis of existing scientific and practical works, in which the above attributes are used to determine the type of system.

Figure 2 . Classification of microcontroller-based systems

For example, in terms of complexity a decentralized single-level self-organizing system with a variable number of elements can be distinguished. In terms of connectivity -a geographically distributed system with access to the Internet, built on the basis of wireless and wired technologies using low-level and high-level protocols. In terms of criticality -a system used in critical infrastructure with human participation that processes critical information, the failure of which could result in financial damage. With regard to the social aspect, it is an autonomous system that acts as a source of data, is not capable of self-learning and accumulation of knowledge, and has a low dynamic of response to the outside world. Each of the obtained classifications allows one to restrict the way of describing the systems under study and provides a basis for assessing their complexity, connectivity, criticality and social aspect.

Analysis and classification of attackers

An important step in the process of identifying threats to the security of a microcontroller-based system is the identification of persons whose actions can lead to a violation of the confidentiality, integrity or availability of the system and the occurrence of damage. According to the definition in GOST R 53114-2008 [START_REF] Gost R | 2008 Information security. Ensuring information security in the organization[END_REF] an individual or logical object is considered to be an intruder if they accidentally or deliberately committed an action that entailed negative consequences. The attacker's model, or profile, characterizes the possible ways of interaction between the attacker and the target system, in particular, it defines the restrictions for the attacker. The result of the analysis of the attacker's model is an assumption about the types and potential of intruders who can implement security threats for a microcontroller-based system with given characteristics and functioning features.

It is assumed that the classification of attackers will make it possible to assess their capabilities in accordance with the type of access to the system, the level of knowledge, possible intentions and available resources. The type of access allows one to distinguish between an external and internal intruder, an ordinary user and an administrator. The level of knowledge is a characteristic of the attacker, which indicates his technical skills for initiating and carrying out an attack. Also, this characteristic describes the intruder's awareness of the architecture of the target system and the existing protection measures. The intent of the attacker indicates the purpose of the attack on the system. This parameter is difficult to quantify and is very dynamic. An attacker's available resources include hardware and software resources that can be used to deploy a specific type of attack.

The main regulatory documents defining the model of an attacker in the Russian Federation are "Basic model of threats to the security of personal data during their processing in personal data information systems" [START_REF]The basic model of threats to the security of personal data during their processing in personal data information systems[END_REF] , "Methodology for determining threats to information security in information systems" [START_REF]Metodika opredeleniya ugroz bezopasnosti informacii v informacionnyh sistemah [Methodology for determining threats to information security in information systems[END_REF] and "Methodological recommendations on the development of regulatory legal acts that determine threats to the security of personal data, relevant when processing data in personal data information systems operated in the implementation of relevant activities" [START_REF]Methodological recommendations for the development of regulatory legal acts that determine threats to the security of personal data, relevant when processing personal data in information systems of personal data used in the implementation of relevant activities[END_REF] . Moreover, internal intruders are divided into eight categories depending on the method of access and access authority: category 1 -persons who have authorized access to the system and ensure its normal functioning; category 2 -registered users of the system who have limited access to its resources from the workplace; category 3 -registered users of the system who provide remote access to its resources; category 4 -registered users of the system with the privileges of a security administrator for a separate segment of the system; category 5 -registered users with the authority of the system administrator; category 6 -registered users with system security administrator privileges; category 7 -developers of the system software and persons providing its support; category 8 -developers and persons providing delivery, maintenance and repair of system equipment.

The regulatory document [START_REF]Metodika opredeleniya ugroz bezopasnosti informacii v informacionnyh sistemah [Methodology for determining threats to information security in information systems[END_REF] introduces the concept of an intruder's potential, which can be low, medium and high:

• low potential -the intruder has information about the vulnerabilities of individual elements of the microcontroller-based system, published in public sources, while using publicly available tools or tools created on his own; • medium potential -the intruder has all the capabilities of low potential intruders and also has an awareness of the protective measures used in the system; in addition, the intruder has information about the vulnerabilities of individual elements of the system and uses freely available software tools to carry out attacks, and also has access to information about the characteristics and features of the functioning of the system; • high potential -an intruder has all the capabilities of an intruder with a medium potential, and can also get unauthorized access to the microcontroller-based system from dedicated communication networks; in addition, an attacker of this type has access to the software and hardware of the system, is well aware of the protection measures used in it, and also has information about system vulnerabilities, conducts research on the attacked system and uses highly specialized tools.

The normative document [START_REF]Methodological recommendations for the development of regulatory legal acts that determine threats to the security of personal data, relevant when processing personal data in information systems of personal data used in the implementation of relevant activities[END_REF] provides generalized capabilities of intruders, with the main attention being paid to the capabilities of an attacker to attack system protection and its environment: the ability to attack a microcontroller-based system only outside the controlled area; the ability to attack a microcontroller-based system within a controlled area, but without physical access to it; the ability to attack a microcontroller-based system within a controlled area with physical access to it; the ability to attract specialists with experience in the development and analysis of security measures typical for microcontroller-based systems.

It is important to note that in addition to the main regulatory documents, various classifications of attackers are given in a number of studies in the field of information security threat analysis. Let's consider these works in more detail.

For example, in [START_REF] Rocchetto | On attacker models and profiles for cyber-physical systems[END_REF] an overview of research into attacks on microcontroller-based systems, as well as attacker profiling is provided. This review concludes that existing studies can be grouped into two main categories: (1) studies that are using different models of attackers with different properties (for example, one model to describe the insider, the other to describe the state intelligence service); [START_REF] Levshun | Design and verification methodology for secure and distributed cyber-physical systems[END_REF] studies that are defining a number of parameters such as the type of knowledge, level or potential of the intruders to distinguish between them within the framework of a single model.

In addition, this paper proposes a generalized classification of attackers, including the following types:

• amateur -uses publicly available tools to attack the system and has standard access to hardware, software and Internet connection;

• internal intruder -has system privileges (for example, user, supervisor, administrator); • hacktivist -uses his abilities to manifest political activity;

• cyber terrorist -a politically motivated attacker who uses his abilities to commit crimes; • cybercriminal -an attacker with extensive security knowledge and skills, whose goals can range from blackmail to espionage and sabotage; • faction -a group of people, sometimes funded by the government, that often aims to attack critical infrastructure systems.

The authors also note that the boundaries between the types of attackers in the above classification are rather blurred, and therefore it can be difficult to identify a real attacker as one specific type. With regard to the goals of the attackers, the authors distinguish: personal, economic, forensic, terrorist and political.

In [START_REF] Desnitsky | A Modeling and Analysis of Security Incidents in a Cyber-Physical System for Water Supply Management[END_REF] classification of attackers on a microcontroller-based system using the example of a water supply management system is provided. In this case, the attacker is classified according to the type of access to the system and capabilities. The authors distinguish the following types of access to the system:

• type 0 -the attacker does not have direct access to the infrastructure and services of the system, only social engineering methods are available for use; • type 1 -the attacker interacts with the infrastructure and services of the system indirectly, providing indirect access to them; • type 2 -an attacker affects the system infrastructure or its services directly, while being at a certain distance from the controlled perimeter; • type 3 -an attacker has physical access to the system infrastructure, but is not able to investigate and modify internal electronic components; • type 4 -the intruder has full access to the system infrastructure and all internal elements and interfaces.

At the same time, the authors distinguish the following levels of attackers' capabilities:

• level 1 -use of publicly available tools and exploitation of known system vulnerabilities; • level 2 -the ability to identify and exploit previously unknown vulnerabilities and develop new tools to influence the target system; • level 3 -level 2 capabilities and nearly unlimited resources to carry out attacks.

Thus, the classification proposed by the authors allows us to consider attackers from the point of view of the type of access, resources and knowledge necessary for the successful implementation of attacking actions.

Based on the systematization of the current state of research on such attributes of the classification of attackers as the type and method of access, intentions, knowledge and resources, the classification was built, presented in Figure 3 .

Figure 3 . Classification of the attacker

This classification makes it possible to assess the capabilities of attackers in accordance with the type and method of access to the system, the level of knowledge and available resources. In addition, this classification makes it possible to take into account the intentions of attackers, including those related to violation of confidentiality and integrity of information, as well as violation of the availability of devices and interception of control over them.

Analysis and classification of attack actions

An equally important step in the process of identifying threats to the security of a microcontroller-based system is the analysis of actions that can lead to a violation of the confidentiality, integrity or availability of the system. According to the definition in GOST R. ISO/IEC 27000-2012 [START_REF] Gost R | 2012 Information technology. Security methods and means. Information security management systems. General overview and terminology[END_REF] , an attack is an attempt to destroy, disclose, alter, block, steal, gain unauthorized access to an asset or use it unauthorizedly. At the same time, attacks can occur at different levels of the system, including many stages, be stretched out in time and affect its various elements. And although the variety of attacking actions is actively studied in the scientific community, at the moment there is no single classification of them.

Let's consider the existing work in more detail.

In [START_REF] Mayzaud | A Taxonomy of Attacks in RPL-based Internet of Things[END_REF] network attack actions are classified based on resources, topology and traffic:

• by influence on resources -directed (denial of service, routing table overflow) and undirected (privilege escalation); • by influence on the topology -reducing performance (substitution of the routing table, "funnel", "wormhole") and isolating ("black hole"); • by influence on traffic -eavesdropping (sniffing and traffic analysis) and intercepting (downgrading, spoofing).

In [START_REF] Zhu | A taxonomy of cyber attacks on SCADA systems[END_REF] , when classifying attacking actions on SCADA systems, the following types of attack actions are distinguished:

• weakening the network perimeter using backdoors;

• exploiting vulnerabilities in the protocols used;

• intercepting control of individual system devices;

• disrupting the database;

• intercepting and modifying network messages; • modifying the system time for stopping the work of protective equipment.

The study also proposes to divide attack actions into attacks aimed at the following:

• modifying, intercepting or introducing input data from system sensors; • changing the system operation process by modifying, intercepting or introducing data at the level of interaction between system controllers; • modifying system logs; • intercepting control of individual devices or stopping their work.

In [START_REF] Humayed | Cyber-physical systems security -A survey[END_REF] authors propose to represent attack actions as the following data tuples: subject, object, intent, vector and consequences. In this case, the subject of an attack can be an intruder, natural disaster, human factor, errors of the system and supporting infrastructure. The object of an attack can be any element of the system, data transfer environment between them as well as the system as a whole. Intentions can be criminal, intelligence, terrorist or political. Attack vectors are divided into interception, modification and falsification of data as well as the termination of its transmission. The consequences include compromising the confidentiality, integrity, availability, privacy and reliability of the system.

In [START_REF] Alguliyev | Cyber-physical systems and their security issues // Computers in Industry[END_REF] the classification of attack actions on microcontroller-based systems is presented. Authors highlight attacks on sensors, computing processes, feedback, data transfer environment and actuators. The examples for each of the listed types of attack actions are as follows:

• attacks on sensors -disabling equipment, interrupting power supply, using physical processes for incorrect operation of sensors; • attacks on computing processes -deletion, modification, substitution or forgery of data, worms, viruses, trojans; • feedback attacks -data integrity violation, control interception; • attacks on data transfer environment -deletion, modification, substitution or forgery of data, data loss, sniffing; • attacks on actuators -deletion, modification, substitution or forgery of data, interruption of power supply, modification of hardware and software.

In [START_REF] Ashibani | Cyber physical systems security: Analysis, challenges and solutions[END_REF] , when analyzing the security of microcontroller-based systems, it is proposed to distinguish attack actions in accordance with the level of the system at which the attack occurs, the element of the system to which the attack is directed, and the intentions of the attacker. At the same time, for each level of the system, the authors presented the main security problems and possible countermeasures.

The authors of [START_REF] Gao | Analysis of security threats and vulnerability for cyber-physical systems[END_REF] also proposed to classify attacks against microcontroller-based systems according to the level of the system: physical, network or application. At the same time, for each level, the authors distinguish the corresponding attack actions:

• physical level -disabling equipment, stopping equipment operation, stopping power supply, intercepting electromagnetic signals, denial of service, intercepting and modifying data, stopping data transfer, unauthorized access; • network layer -distributed denial of service, tampering with the routing process, redirection or loss of data, buffer overflow; • application layer -unauthorized access, data leakage, malicious code injection, control interception, virus, trojan and database injection.

In [START_REF] Makhdoom | Anatomy of threats to the internet of things[END_REF] the authors propose to divide attack actions on microcontroller-based systems in accordance with the area of their impact: from interaction with physical devices to various aspects of network interaction (segmentation, topology, technologies used and structure). At the same time, the authors provide the following generalized classification of them: interception and analysis of traffic; leakage of personal data; disabling equipment; remote execution of malicious code; violation of the integrity of the source code of applications; exploitation of vulnerabilities in network protocols; denial of service.

In [START_REF] Yampolskiy | A language for describing attacks on cyber-physical systems[END_REF] it is proposed to classify attack actions on microcontroller-based systems according to their object, impact and performed the action. For each action, a method and preconditions are distinguished, and for the object and impact, the affected element and the influence on it.

In [START_REF] Heartfield | A taxonomy of cyber-physical threats and impact in the smart home[END_REF] it is proposed to classify attack actions on microcontroller-based systems in accordance with the object of the attack, the impact on the system and the impact on the person. Let's consider the proposed classification in more detail:

• object of attack -data collection, data transfer environment, control system;

• impact on the system -physical (incorrect operation, denial of service, slow data processing) and cybernetic (confidentiality, integrity, availability, non-appealability); • impact on a person -emotional impact, influence on acquired experience, physical harm.

In [START_REF] Alekseev | Classification of threats to information security[END_REF] attack actions are divided on the basis of the impact method and the security aspect. At the same time, according to the impact method, there are as follows:

• informational -unauthorized access, copying and theft of information, violation of information processing technology; • software -exploiting bugs and vulnerabilities in software, spreading malware, setting bookmarks; • physical -destruction of system devices, theft of media, theft of keys and cryptographic data protection; • radio-electronic -the introduction of devices for intercepting information, intercepting, decrypting, substituting and destroying data in communication channels; • organizational and legal -violation of the law, purchase of outdated programs and devices.

In terms of security aspects, attack actions are divided into ones that are violating confidentiality, integrity and availability.

Based on the analysis and systematization of the current state of research on such attributes of the classification of attack actions as subject and object, impact method, prerequisites and consequences, a classification was built, presented in Figure 4 .

This classification makes it possible to establish the relationship between the attacker and attack actions in accordance with the knowledge and resources necessary for the attacker to implement them, as well as the purpose to which their use corresponds. In addition, this classification establishes the relationship between attack actions and elements of microcontroller-based systems in accordance with which they can be implemented.

. Analysis and classification of methods and means of protection

Since one of the key features of microcontroller-based systems is the close integration of physical processes and information technologies, the number of problems that must be considered when developing security mechanisms for such systems is much higher in comparison with other types of systems. In addition, such systems often have a dynamic infrastructure, heterogeneous data sources and stores, which also increases the complexity of the required protection. At the same time, most of the research in this area is aimed at solving various security problems at each individual level of the architecture of the system, and not for the system as a whole. Let's consider the existing work in this direction in more detail.

In [START_REF] Ashibani | Cyber physical systems security: Analysis, challenges and solutions[END_REF][START_REF] Dong | A systematic review of studies on cyber physical system security // International Journal of Security and Its Applications[END_REF] the authors propose to determine the necessary methods and means of protection based on the component composition of the microcontroller-based system. At the same time, these works provide a classification of protection methods in accordance with the level of the system, the protection of which they provide. The authors distinguish the following levels: level of data collection -certification, access control, authentication, lightweight data encryption, physical security of devices, environmental monitoring, trust management; data transfer layer -reliable routing and data encryption, authentication and key agreement, network access control, attack detection mechanism; data analysis and processing levelend-to-end encryption, intrusion detection, trust management, authentication and authorization, data mining, forensics, personal data protection.

Note that protection methods from [START_REF] Dong | A systematic review of studies on cyber physical system security // International Journal of Security and Its Applications[END_REF] are referred by the authors to the information field of the system, in addition to which they also distinguish the control field and risk assessment. It is noted that these security mechanisms should be developed taking into account the security of the system as a whole, and not just its individual level. At the same time, this process includes the development of an integrated cross-layer security solution that is capable of working with different methods and means of protection, and also reliably integrates data from different sources.

In [START_REF] Desnitsky | Design Technique for Secure Embedded Devices: Application for Creation of Integrated Cyber-Physical Security System[END_REF][START_REF] Kotenko | Integrated approach to provide security of cyber-physical systems based on microcontrollers[END_REF] the architecture of a microcontroller-based system is presented. This system integrates both physical and information security solutions and consists of the following main parts: data sources -include various physical and cyber security systems; data collection module -uses various hardware and software interfaces to connect to data sources, while the received data is subject to preprocessing and normalization processes; data analysis module -includes various stages of the security event correlation process; data presentation module -includes such processes as security assessment, development of countermeasures and generation of reports. Note that, in accordance with the architecture proposed by the authors, the methods and means of protection of the system can be classified in accordance with the problem being solved.

In [START_REF] Zegzhda | Sustainability as a criterion for information security in cyber-physical systems // Automatic control and computer sciences[END_REF][START_REF] Zegzhda | Advanced production technologies security in the era of digital transformation[END_REF] it is proposed to consider methods and means of ensuring the security of microcontroller-based systems from the point of view of control theory. At the same time, the authors highlight the following features that must be taken into account when designing system protection: the presence of feedback, the presence of an adaptive control loop and the ability to predict the state of the system. On the basis of these features, the authors propose the following classification of methods and means of protection: static -the control function does not change over time, the output state of the protected object depends on the constant values of control actions; active -the results of experimental testing of the protected object are used to configure the parameters of security systems; adaptive -the parameters of security systems are periodically changed to maximize the effectiveness of protection based on the characteristics of the object during the monitoring process; dynamic -there is dynamic compensation for unwanted changes in the state of the system during operation. Note that the approach proposed by the authors makes it possible to formulate the task of ensuring the security of microcontroller-based systems as a task of automatic control in conditions of targeted cyber threats in order to ensure the sustainability of functioning.

The authors of [START_REF] Kotenko | Integrated approach to provide security of cyber-physical systems based on microcontrollers[END_REF] propose to analyze the network interfaces and protocols used in a microcontroller-based system to determine the necessary means and methods for the protection of the data transfer environment. At the same time, special attention is paid to the process of interaction between the controllers of the system, wherein the above experiment, the security of the data bus is ensured by mutual authentication of devices, encryption of transmitted data and reliability -due to dynamic addressing and monitoring of the state of connected devices, the absence of uncontrolled loss of sensor events and integrity checks of transmitted data.

Cisco's security framework [START_REF] Frahim | Securing the Internet of Things: A Proposed Framework[END_REF] has four main components: authentication and identification, access control, network policy and security analytics. At the same time, the basic application of network policy is primarily concerned with ensuring that the traffic entering the network meets the specified rules, including the allowed range of IP addresses and types of traffic. Traffic packets that do not meet the specified rules are recognized as anomalous and should be dropped as close to the network edge as possible, thereby minimizing the risk of impact. As a rule, various methods are used to detect anomalies, the generalized classification of which can be represented as follows: behavioural, statistical and data mining methods [START_REF] Gaifulina | Analytical review of methods for detecting network layer anomalies in cyber-physical systems. Al'manah nauchnyh rabot molodyh uchenyh Universiteta ITMO -Almanac of scientific works of young scientists of ITMO University[END_REF] .

In [START_REF] Kotenko | Vulnerabilities assessment techniques: use for the computer systems security analysis[END_REF] existing vulnerability assessment methods are examined as well as their role in the security risk assessment process and how they are applied. There are three main groups of methods: quantitative, qualitative and qualitative-quantitative.

Quantitative risk assessment methods allow assessing the risk in monetary units and take into account the frequency of undesirable events. Qualitative methods rank risks relative to each other based on asset values, vulnerabilities, threats and defences. At the same time, in practice, a qualitative-quantitative approach is mainly used, within which certain ranges of quantitative values are compared.

In [START_REF] Desmit | An approach to cyber-physical vulnerability assessment for intelligent manufacturing systems[END_REF] the authors review research on the assessment of vulnerabilities in microcontroller-based systems in academic and commercial fields. At the same time, the authors noted that the latter is characterized by a variety of approaches to identifying vulnerabilities, while this is not observed in the academic environment.

In [START_REF] Radanliev | Future developments in cyber risk assessment for the internet of things // Computers in industry[END_REF] methods for assessing the risks of microcontroller-based systems are considered in terms of the economic effect, which manifests itself even when the attacker's motivation is not financial. The analysis of various models and methods of risk assessment, as well as vulnerability assessment systems, is given.

In [START_REF] Lyu | Safety and security risk assessment in cyber-physical systems // IET Cyber-Physical Systems: Theory & Applications[END_REF] existing approaches to risk assessment and management are examined in terms of safety, security and their integration. Methods for assessing security risks in microcontroller-based systems include: fault tree analysis -a view that allows you to link various legitimate events and errors, the occurrence of which can lead to an undesirable event; analysis of failures and their consequences -a structured method of analyzing the safety of a system, which makes it possible to recognize situations that lead to the failure of a system or its individual elements, as well as their consequences; analysis of criticality and reliability -a method of analyzing the safety of a system, which makes it possible to assess the degree of criticality and reliability of system processes by studying the consequences of possible deviations; development in accordance with the model -a method of developing simulation models of real-time systems and analyzing these models to verify compliance with safety requirements; analysis of success trees and goals -a method of analyzing system security based on structural analysis of the reliability and risk of the system; analysis of emergency processes -a method of safety analysis based on a set-theoretic model and analysis of situations that leads to an accident.

The work [START_REF] Telegina | Models and methods for safety assessment of potentially dangerous objects. Intellektual'nye sistemy v proizvodstve -Intelligent systems in production[END_REF] is devoted to the study of the main approaches in the field of risk assessment for potentially dangerous objects. Assessment methods include quantitative assessment using mathematical statistics, expert risk assessment, simulation and their combinations. The study specifies that the assessment of the violation of physical security is carried out for each specific object using the following methods: mathematical modeling of the probability distribution of a risk event; expert assessment by Delphi and ranking methods; numerical integration of the risk function in time and space. This means that the assessment of the security of a microcontroller-based system can be represented as a process of analyzing accumulated data, expert opinion or the work of a mathematical apparatus.

The social aspect of microcontroller-based systems and, accordingly, possible attacks of social engineering lead to the search for methods and means of protection against them. For example, in [START_REF] Kulagina | Modeling the practice of aggression in the socio-cyber-physical environment[END_REF] the phenomena of aggression in the socio-cyber-physical environment and their impact on the individual and group consciousness of users is studied. The results obtained are proposed to be used in the development of a unified socio-cyber-physical system for managing these processes. The authors note that, in a social network, combining a source with the means and forms of communication used makes it possible to take into account the social effect of the message, which can be used to predict manifestations of aggression, pressure and other destructive phenomena.

In [START_REF] Garate | Analysis of the security level of corporate networks in the context of social engineering attacks[END_REF] the authors proposed a classification of social-engineering attacks and a possible approach to assessing the security index of corporate networks from the point of view of human behaviour. The following basic measures of protection against attacks of social engineering are proposed: availability of information security policy; briefing; monitoring compliance with information security; identity management policy; introduction of biometric access systems.

Based on the analysis and systematization of the current state of research on such attributes of the classification of methods and means of protection as the principle of operation, the object of protection and the problem to be solved, the classification presented in Figure 5 was built.

Place and role of the design techniques

As was shown in Section 1.1 , there are many approaches to ensure the information security of microcontroller-based systems. As a rule, they are associated with individual stages of such systems development lifecycle: analysis, planning, design, development, testing, deployment, maintenance and evaluation, see Figure 6 . The approaches that are discussed in this section are used at the design stage of the microcontroller-based systems development lifecycle and are associated with Security by Design. Security by Design is an approach to software and hardware development that aims to reduce the number of possible vulnerabilities and enhance the system's protection against possible attacks. The main idea of the approach is in taking into account security features as a design criterion of products.

The classifications provided in Section 1.1 are making it possible to assess the possibility of implementing attack actions in accordance with the methods and means of protection that are used in the microcontroller-based system. This is possible due to the fact that the classification of methods and means of protection by the object of protection coincides with the classification of attack actions by a similar attribute. Consequently, upon further analysis of the knowledge, resources and capabilities of the attacker, it is possible to conclude about the feasibility of certain attack actions, see Figure 7 . This means that based on the information about the component composition of a microcontroller-based system, it is possible to determine a list of attack actions to which this system is potentially susceptible. Then, based on the idea of the level of knowledge of the attacker and the resources available to him, this list of attacks can be limited in the same way as if there is information about the methods and means of protection used. All attack actions remaining after these transformations represent a real threat and must be taken into account.

Information about attack actions to which the designed system is potentially susceptible is often used by design techniques to find a trade-off between the level of protection of the resulting solution and resources expended on it.

The task of designing microcontroller-based systems to be secure against attacks is complex, that is why various design techniques have been developed and embedded into practice. Some of them are focused on software, some on hardware, and some on highly specialized areas of the application (automobiles, railway transport, robotics). Let's consider them in more detail.

In [START_REF] Hu | Robust cyber-physical systems: Concept, models, and implementation // Future generation computer systems[END_REF] it is mentioned that the main goal of the design and verification of microcontroller-based systems is to develop a resilient system. According to the authors, the system is resilient when it is designed with 3S features: stability, security and systematicness. This is achievable through solving five main challenges: dependability, consistency, reliability, cyber-physical mismatch and cyber-physical coupling security. The authors also mentioned that such systems are about the tight coupling of cyber and physical objects, so their model contains the following parts: a model of the physical process, models of software, models of computation platforms and models of networks. They classify microcontroller-based systems modeling approaches according to the aspect of the system displayed by the model and tasks that can be solved. This classification is as follows:

1. Models based on timed actors for timings and performance [START_REF] Sirjani | Analysing Real-time Distributed Systems using Timed Actors[END_REF] .

2. Event-based models for computations, communications and control [START_REF] Dai | Discrete-event-based deterministic execution semantics with timestamps for industrial cyber-physical systems[END_REF] .

3. SCADA model for load balance, stability and integrity of the system [START_REF] Srivastava | Modeling cyber-physical vulnerability of the smart grid with incomplete information[END_REF] . 4. Ordinary differential equations and automata for non-complex systems [START_REF] Xinyu | Verification of Hybrid Chi model for cyber-physical systems using PHAVer[END_REF] . 5. Continuous-time models of dynamics for physical processes [START_REF] Nuzzo | A platform-based design methodology with contracts and related tools for the design of cyber-physical systems[END_REF] . [START_REF] Hehenberger | modelling, simulation and integration of cyber physical systems: Methods and applications[END_REF]. MDD (Model-Driven Development, [START_REF] Nitto | Model-driven development and operation of multi-cloud applications: the MODAClouds approach[END_REF]), MIC (Model-Integrated Computing, [START_REF] Iannucci | A model-integrated approach to designing self-protecting systems[END_REF]) and DSM (Domain-Specific Modeling, [START_REF] Karagiannis | Domain-specific conceptual modeling[END_REF]) for software elements. 7. Multi-agent models for interaction between system elements [START_REF] Rahman | Multi-agent approach for enhancing security of protection schemes in cyber-physical energy systems // IEEE transactions on industrial informatics[END_REF] .

In [START_REF] Balasubramaniyan | Design and verification of Cyber-Physical Systems using TrueTime, evolutionary optimization and UPPAAL // Microprocessors and microsystems[END_REF] an example of verifying the timing correctness and performance of the microcontroller-based system is presented. Authors are using the following verification models:

• functional relations between inputs and outputs of the system; • timing of components; • communication between components;

• synchronization constraints of components. Authors perform validation in TrueTime (Matlab/Simulink), verification in UPPAAL (specification of verification models, [START_REF] David | Uppaal SMC tutorial[END_REF]) and model checking to check whether the microcontroller-based system implements the requirements. With help of model checking, authors verify stability, safety (invariance) and reachability of the system.

In [START_REF] Penas | Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems // Computers in Industry[END_REF] a microcontroller-based systems design methodology is proposed. This methodology contains seven main steps -from system boundary definition to multi-agent and collaboration modeling:

1. System boundary definition is related to the black box and white box analysis. The implementation is based on SysML (The Systems Modeling Language, [START_REF] Friedenthal | A practical guide to SysML: the systems modeling language[END_REF]) diagrams or Dymola [START_REF] Elmqvist | Dymola -a structured modeling language for large continuous systems[END_REF] /Modelica [87] models. 2. Multi-view or multi-level modeling is based on the MBSE approach (Model-Based Systems Engineering, [START_REF] Wymore | Model-based systems engineering[END_REF]). The implementation is based on SysML and OOM (Object-Oriented Modeling, [START_REF] Fritzson | Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-physical approach[END_REF]) for specification, analysis, design, verification and validation. Authors use SYSML for complex multi-domain system modeling in pre-design phases and for creating different diagrams that are related to specific points of view, including system behaviour. They also use Simulink [START_REF] Chaturvedi | Modeling and simulation of systems using MATLAB and Simulink[END_REF] for causal modeling and Dymola/Modelica for casual modeling of physical processes in various physical domains.

3. Interaction modeling uses port-based modeling and is related to physical support, control support and multi-domain of microcontroller-based systems.

The implementation is based on SysML and Dymola/Modelica models. 4. Topological modeling is based on the idea that existing scales and different viewpoints can be represented as a collection of topological entities sets and subsets linked together through semantic degrees. The authors are using a set of directed graphs to represent the dependencies between subsystems, components and related parameters. This is due to the fact that graph-based algorithms are good for the representation of existing dependencies within the system structure and in evolving the system boundaries. The implementation is based on directed graphs (algebraic topology, [START_REF] Fajstrup | Directed algebraic topology and concurrency[END_REF]). 5. Semantic interoperability is related to the definition of existing viewpoints with help of the ontology and design knowledge and to the decomposition of each design viewpoint through a graph-based topological analysis. The implementation is based on graph-based mapping ontologies [START_REF] Shen | A graph-based approach for ontology population with named entities[END_REF] . 6. Multi-agent modeling is related to the modeling of control and communication protocols (time-delayed communication, interactions, changing of topology, communication network nodes and links, packet losses). The implementation is based on topological graphs and multi-agent modeling. 7. Collaboration modeling is related to the solving of multi-view issues and the issue of communication between agents with different ontologies. The implementation is based on OWL (Web Ontology Language, [START_REF] Zhu | Modeling and validation of a web ontology language based disassembly planning information model[END_REF]). So, their microcontroller-based system model contains external and internal interactions, process control, behaviour simulation, representation of topological relationships and interoperability through multi-agent platforms.

In [START_REF] Hehenberger | modelling, simulation and integration of cyber physical systems: Methods and applications[END_REF] the authors mentioned two main challenges for microcontroller-based systems designers: nature of information and uncertainty in design. They divide the design process into functional and architectural. For architectural design, authors recommend using ADL (Architecture Description Language, [START_REF] Blouin | AADL: A Language to Specify the Architecture of Cyber-Physical Systems // Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems[END_REF]) which is great for dynamically modeling architectures. In their experiments, authors were using Modelica for system model representation and transferring it to the mathematical model for simulation. Authors are modelling microcontroller-based systems as an assembly of components and associated interfaces between them. They use continuous models for dynamics of the physical components and a discrete model for behaviours of the computing components. The main challenge for their approach is in joining these two models to determine important functional and system parameters and future optimization.

In [START_REF] Seiger | Modelling complex and flexible processes for smart cyber-physical environments[END_REF] an object-oriented workflow language for formalizing microcontroller-based systems processes within heterogeneous and dynamic environments is presented. Workflows (or processes) are used to model the high-level behaviour of the system and divided into the following levels of abstraction: process meta-meta modeldefines semantic and syntactic elements and structures; process meta-model -defines all elements, types, relations and their structural combinations; process model -defines the abstract description of the process; process instance -defines concrete process at execution time. Each workflow contains the following parts: process step, transition, data, event, logic step, process and handling entities. The implementation is called the component-based meta-model of the system and is based on EMF (Eclipse Modeling Framework, [START_REF] Nassar | Generating Large EMF Models Efficiently[END_REF]).

In [START_REF] Cremers | Symbolic security analysis using the Tamarin prover[END_REF] a tool for analyzing the system's security called Tamarin Prover is considered. This tool aims to automatically verify data transfer protocols in the presence of an active attacker. Moreover, the specification language of this verifier is primarily focused on the presentation of cryptographic primitives and their properties. As a rule, Tamarin Prover is used for verification of individual data transfer protocols in critical infrastructures, for which manual testing is simply not enough.

In [START_REF] Srinivasan | Model checking response times in Networked Automation Systems using jitter bounds //Computers in Industry[END_REF] the approach for verification of timing performance of the NAS (Network Automation Systems) is presented. The response time of the verification approach consists of three main phases:

1. Model building is related to the specification of the component reaction times and measuring of their performance. 2. Modeling is related to the proposition of the component-based modelsnetwork architecture and interconnections. 3. Verification is related to the abstraction of the NAS formal models as UPPAAL timed automata with their timing interfaces (based on the proposition of action patterns and their timing wrapper). At the final step of the approach, the result formal model is used to verify the total response time of the NAS using a sub-set of timed computation tree logic (TCTL) in the UPPAAL model checker.

In [START_REF] Blanchet | Automatic verification of security protocols in the symbolic model: The verifier proverif // Foundations of security analysis and design VII[END_REF] an automatic verifier of the data transfer protocols called ProVerif is considered. This verifier is able to identify issues associated with the incorrect operation of the authentication process, the secrecy of the transmitted data and the equivalence of the properties of the analyzed protocols for an unlimited number of sessions. This verifier supports different cryptographic primitives and is able to automatically translate investigated protocols into an abstract representation based on Horn clauses [100] . This allows one to determine whether the required security properties are satisfied. One of the disadvantages of this approach is the difficulty and even the inability to verify the strong properties of authentication algorithms. This is due to over-approximation when managing various communication sessions. However, it is one of the most effective tools for verifying the unreachability of certain conditions that are necessary to prove the safety and reliability of the system.

In [101] a tool for designing secure and reliable data transfer protocols called Active Knowledge in Security protocols (AKiSs) is considered. Inside this tool, protocol specification language is used. This language is parameterized by a first-order sorted term signature and an equational theory. This allows the formalization of algebraic properties of cryptographic primitives. AKiSs can be used for verification of the trace equivalence for determinate cryptographic protocols.

In [102] the problem of automating the security service analysis within the framework of additional restrictions is investigated. The authors presented a decision-making procedure, which answers the question of whether an effective analysis of security services is possible within the assigned constraints. The proposed approach represents a partial solution to the reconciliation problem under the data inaccessibility.

Orchestration and verification of web services were explored in the Avantssar Project [103] . In this project, the language was employed to specify business processes, their communications, orchestration and security verification goals. Though there is an emphasis on an incremental approach in which orchestrations satisfying a goal are model-checked until one is found that also satisfies the security goals, it is also possible to compose services directly satisfying a simple security policy [102] . There is a significant gap before that work can be applied to microcontroller-based systems as it is necessary to take into account a much richer set of constraints such as timing constraints, functionality constraints as well as numerical constraints arising from the physical nature of such systems. However, the preliminary experiments showed that existing tools can be adapted to some degree to provide an automated composition of microcontroller-based systems at least for some possible constraints [104] .

The current state of the art analysis showed that there are a lot of tools and approaches that can be used for the design, development and verification of different aspects of microcontroller-based systems. Such techniques can be aimed at hardware and software elements [105-108] ; links, interfaces and protocols [109][110][111][112][113] ; devices [START_REF] Desnitsky | Combined design technique for secure embedded devices exemplified by a perimeter protection system // Trudy SPIIRAN[END_REF][START_REF] Desnitsky | Design Technique for Secure Embedded Devices: Application for Creation of Integrated Cyber-Physical Security System[END_REF]114,115] and systems [START_REF] Penas | Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems // Computers in Industry[END_REF]116] . On the other hand, in the area of the Industrial Internet of Things (IIoT), many new ecosystems appeared. Let's consider them in more detail.

Google Cloud Internet of Things is an ecosystem with secure data collection, machine learning-based analysis, storing and visualization [117] . In addition, through this ecosystem, a microcontroller-based system can be connected to Google services and work, for example, with artificial intelligence ones. For the design and development of secure gateway devices, they have a special solution -Cloud IoT Device Software Development Kit (SDK) [118] . This SDK contains libraries for secure connection and management of gateway devices. Moreover, this development kit is able to work with different devices for various use cases, for example, maintenance prediction, real-time asset tracking and smart agriculture. And to make the secure connection of the gateway devices even easier Google made a special cryptography chip. ARM Platform Security Architecture (PSA) is a methodology for the design of secure devices from requirements analysis to their implementation [119] . The main elements of the PSA are threat models, architecture specifications and open-source implementations. Their methodology consists of the following key phases:

1. Analysis phase is focused on the formation of the security requirements based on the list of the possible threats. 2. Architect phase is aimed at working with freely available specifications for different IoT devices. 3. Implementation phase is concentrated on working with open-source implementations of the firmware and APIs. 4. Certification phase is focused on checking the correctness of the software interaction with interfaces. On their site, they have specifications for different devices (for example, for asset tracker, smart water meter and network camera). These specifications contain threat models of the corresponding devices, their security analysis and the list of security requirements.

Kaspersky Industrial CyberSecurity is a scope of technologies and services designed to secure industrial process control levels, including supervisory control and data acquisition servers, human-machine interface panels, engineering workstations, programmable logic controllers and network connections [120] . Their development process consists of the following stages:

1. Building of the threat model and risk analysis process. . The company's approach consists of six sequential phases: product security requirements, third-party security, secure design, secure coding, static analysis, vulnerability testing. From the point of view of the development of a secure microcontroller-based system, the most important phases are product security requirements and secure design. So, on the security requirement phase gap analysis is done, whose main task is to identify the necessary changes in the system to achieve the safe state. And in the phase of the secure design, the process of threat modeling is done to make assumptions for possible threats and ways to mitigate them. In addition, one of the interesting features of Cisco SDL compared to Microsoft SDL is a third-party security phase, aimed at identifying possible threats from third-party software, as well as ensuring registration and timely updates of this software.

One possible approach for designing secure embedded devices is presented in papers [127,128] . The essence of the techniques proposed in these papers is to identify and account for the list of possible harmful effects, to which the microcontroller-based device may be subject in accordance with the selected model of the intruder, and also by using hardware and software components, already in the design phase. In this approach, the protection tools are a direct part of the device, ensuring its security. Let's consider the main phases in more detail: 1. definition of functional requirements; 2. definition of non-functional requirements;

3. identifying the set of alternatives of component composition of the device in accordance with the functional requirements; 4. the choice of the optimal component composition of the device from the point of view of non-functional requirements; 5. identification of the list of possible harmful impacts on the device based on the static testing. Thus, if the security level of the microcontroller-based device is sufficient, one can proceed to the stage of direct development. Otherwise, one should return to the first step and review the functional requirements. Unfortunately, a system based on the interaction of devices, each of which is designed in accordance with the suggested methodology, cannot be considered secure due to unique emergent properties occurring during the operation of the system.

As an example of the approach for designing secure communication between microcontroller-based devices, let's consider an approach suggested in the framework of the European Community research project SecFutur [129] . The key idea of the solution, proposed in this project, was to use a topological approach to build secure communication channels between devices. The task was solved by calculating the security index for the path between two points of the network graph on the basis of the numerical security values assigned to the nodes [130] . This index served as a basis for changing the requirements for devices. One of the disadvantages of the proposed approach is the fact that this approach does not take into account the interaction of devices with external systems. This limitation restricts the scope of this approach when designing secure data transfer environments.

In addition, particular solutions, which adapt secure data transfer protocols to apply them for communication of microcontroller-based devices are widely available. The need for such adaptation is stipulated by several reasons: the limited computing resources of such devices, the amount of payload available for transmission in the data channel, and the ability to store relatively small amounts of data. Let's consider some examples.

Implementation of the VPN communication for microcontroller devices is presented in [131] . The developed solution is based on the adaptation of IPsec. This solution requires 8 kB of RAM and 64 kB of microcontroller memory, which gives the possibility for using IPsec in the interaction of medium-power devices.

A review of cryptographic solutions for microcontroller-based devices is presented in [132] . It is shown that despite the presence of strong limitations on energy efficiency, computational capabilities, the amount of stored data and uncontrolled interaction in an unreliable data transfer environment, effective protection can be built by the proper selection of cryptographic algorithms, their parameters, as well as optimization and the use of low-power solutions.

The general issue of most solutions is that they are focused on certain aspects of security, which ensures their inapplicability for providing the security of microcontroller-based systems in general. For example, techniques for software do not take into account that the functionality of individual components of such systems is determined not only by software but also by hardware. Moreover, the relationship between hardware and software elements can be quite strong in microcontroller-based devices, which leads to additional restrictions that significantly affect the process of their design, development and verification.

An important drawback of the techniques for building blocks is that the designed device is viewed in isolation from the system. It means that not all security aspects would be taken into account and the security of the system as a whole will not be ensured. Also, there are extensions of these techniques that are aimed at ensuring the security of the devices and network between them. The drawback is that such techniques provide a secure connection between designed systems and external systems only from the designed system side, which can lead to security issues during the design of complex multi-level systems.

In addition, in the area of techniques for data transfer environment, only solutions applicable within a specific platform and architecture are widely used. Such solutions are aimed at adapting secure Internet protocols for their application as part of the interaction between microcontroller-based devices. The need for such adaptations is associated with the limited computing power of such devices, the size of the payload available for transmission in the data channel, and the ability to store relatively small amounts of data on them.

According to the related work analysis, there are a number of solutions for providing the secure connection between IIoT gateways and the cloud of the related ecosystem for subsequent data analysis, its secure storage and visualization. The drawback of these solutions is in binding to the specific hardware, software, platforms and architectures. It results in the possibility to secure only individual devices that can be connected to the cloud, while communication between other devices is not taken into account and delivered to physical security. These solutions also do not take into account the optimization process of the designed system due to limitations like computational complexity, energy efficiency, size and price. It means that the resulting systems may not be reasonable for a developed use case because of no trade-off between resources and security level.

The current state of the art analysis also showed that there are a lot of tools and approaches that can help to model different aspects of microcontroller-based systems: physical processes, software and hardware elements, platforms, network, timings, performance, computations, load balance, interactions, system behaviour, topological relationships, interoperability, system boundaries and hierarchy, workflows and business processes. The drawback is that most of such approaches do not take security into account. Moreover, integration of standalone solutions within a single approach is a difficult task due to their incompatibility. It means that in most situations it is difficult or even impossible to transform one particular model into another without significant losses due to the lack of necessary data.

It means that a general approach for solving the issue of secure microcontroller-based systems design is not done yet. Therefore, this work is aimed at developing an original approach for the design of microcontroller-based physical security systems. Among all possible microcontroller-based systems, in this work, only physical security systems were chosen as an area of the application, because in such systems during the design process it is required to ensure not only the functionality of the system but also to ensure its security against cyber-physical attacks. The main features of microcontroller-based physical security systems are presented in more detail in Section 1.3 .

Features of the microcontroller-based physical security systems

Physical security describes security measures that are designed to deny unauthorized access to facilities, equipment and resources and to protect personnel and property from damage or harm. Physical security involves the use of multiple layers of interdependent systems that can include an access control system, fire alarm system, security alarm system, closed-circuit television system, light control system, climate control system, automatic telephone system, etc. Physical security systems are generally intended to deter potential intruders, detect intrusions, monitor intruders and trigger appropriate incident responses. It is up to security designers, architects and analysts to balance security controls against risks, taking into account the costs of the system development along with broader issues such as human rights, health and safety. For example, access security measures that are appropriate for a prison or a military object are most likely inappropriate in an office, although the principles are similar.

In this work based on the standard representation of microcontroller-based systems, it was decided to divide possible elements of such systems into components , controllers and devices that are communicating with each other. Let's consider them in more detail.

A component is something that can be connected to a controller and either send signals to it or react to signals from it. Components can communicate only with controllers they are connected to. Components can be represented as different sensors, receivers, transmitters, readers, motors, batteries, etc. It is important to note that in this work only ready-made components are considered, without taking into account components of electronic circuits like resistors, capacitors, transistors, diodes, inductors, etc.

A controller is something that can be programmed to work with components and other controllers . Controllers can communicate with components and other controllers that are connected to them. Controllers can be represented as different microcontrollers and single-board computers.

A device is something that represents a system of controllers and components that are communicating with each other inside it. Devices can communicate only with other devices . Devices can be represented as system servers, hubs, robots, stations, drones, terminals, etc. This architecture allows one to describe the designed system on the level of devices first and then look into their internal structure separately. Inside each device, it is possible to describe communications between controllers first and only after that look into communications between controllers and components .

The summary of communication types can be presented as follows:

• controller ↔ component;

• controller ↔ controller;

• device ↔ device;

• system ↔ system.

The developed architecture of microcontroller-based systems is in Figure 8 . It is important to note that the suggested architecture is focused on the synthesis of the system composition, while such tasks as source code generation, case formation or development of electronic circuits are not taken into account.

One of the disadvantages of modern approaches to ensuring the security of microcontroller-based systems is the introduction of security elements after the development stage. This leads to the fact that the security system is an outer shell of the microcontroller-based system, bypassing which leaves this system defenceless against the intruder. The peculiarity of the approach proposed in this work is that instead of developing a separate security system, it is proposed to ensure that the system is secure against attacks during the design stage.

Requirements for the design methodology

To assess the results obtained in this work, an analysis of the feasibility of the requirements for the design process of microcontroller-based physical security systems was carried out. The feasibility of the requirements was validated based on the developed software prototype.

The requirements can be divided into two groups: functional and non-functional. Functional requirements are a list of functions and define the actions that a prototype must perform. Non-functional requirements describe the system requirements and constraints imposed on the resources consumed by the prototype.

Let's define a set of functional requirements for the design process of microcontroller-based physical security systems. The prototype should allow: 1. Building an abstract representation of the designed system. It is necessary to take into account the variety of components and their parameters, their nesting, interconnections, potential conflicts and compatibility. 2. Finding a trade-off between the resources spent and ensuring the security of the system . It is necessary to take into account the variety of attackers' parameters, as well as their relationship with the possibility of implementing attack actions within the framework of a specific implementation of the designed system.

No restrictions on platforms and architectures of the devices to be designed . It

is necessary to have a solution that is not bound to the specific hardware, software, platforms and architectures. 4. The extensibility of the design process . It is necessary to have a solution that allows one to change and expand the parameters of the system elements, attacker, attack actions, methods and means of protection. 5. Taking into account the physical layer of the designed systems. New models and algorithms are required to correctly represent the inner interactions of microcontroller-based systems and ensure their security.

The set of non-functional requirements can be divided into the following groups: time consumption , validity and resource consumption . Let's consider them in more detail.

Time consumption requirement checks the ability of the design process to form a result in a given time frame, which ensures the applicability of the developed prototype in real situations. This requirement is set in the form of a certain value, the excess of which is not permissible:

• the time required for the design process of the abstract model of the system should be less than 1 second; • the time required for the design process of the detailed model of the system should be less than 4 seconds.

For the experimental evaluation, the system of mobile robots for perimeter monitoring was designed, see Chapter 6 .

Validity requirement checks the correspondence of the results of the prototype work to the real state of the system's security. In this work, the number of parameters analyzed during the design process is selected as an indicator of validity. This requirement is set based on a comparison with existing solutions. Analyzed parameters can be divided into levels of the system , the security of which can be ensured; classes of attack actions against which the system can be protected.

Resource consumption requirement characterizes the range and amount of required software and hardware resources, spent on the design process. This requirement is also set in the form of a certain value, the excess of which is not permissible:

• the number of resources required for the design process of the system should be less than 25% of the computer resources.

For the experimental evaluation, the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD and 32 GB RAM was used, see Chapter 6 .

It is important to note that methodology works only with ready-made components and controllers, without taking into account elements of electronic circuits. The methodology is not generating the source code of the system software and firmware. Also, the parameters of the device case, its cooling and resistance to various weather conditions are not taken into account.

It is assumed that building a methodology in accordance with these requirements will allow reducing the number of weak places and architectural defects, thereby significantly reducing the attack surface of the microcontroller-based systems. In turn, this will reduce the security risks that can lead to financial losses, loss of time as well as the safety of people, which ensures the high significance of this study.

Research problem statement

In this work research problem statement is divided into a description of the input data, output data, objective function and requirements of the design methodology for microcontroller-based physical security systems. Let's consider them in more detail.

Input data of the design methodology contains the following: 1. General tasks of the designed system are formed by the operator based on the wishes of the stakeholder. The number of possible tasks as well as their values is limited by the predefined template. For more information see Chapter 4 . 2. Parameters of the attacker against which the system must be protected .

Possible values of parameters are based on the attacker's model, namely, access, knowledge and resources types. These values are limited by the predefined template. For more information see Chapter 3 . 3. Work mode . The transition from the abstract to a detailed model of the system is based on the selection of concrete components and controllers instead of abstract ones. The process of selection can be done by the operator manually or by the methodology automatically and defined by the work mode. More information can be found in Chapter 5 .

It means that input data can be represented as follows:

, 𝐷 𝐼 = (𝑇𝐾 , 𝑎𝑐 , 𝑘𝑛 , 𝑟𝑠 , 𝑤𝑚)

where -general tasks (for the prototype testing purposes are limited to 3 tasks); 𝑇𝐾 -access type (from 1 to 5); -knowledge type (from 1 to 4); -resources 𝑎𝑐 𝑘𝑛 𝑟𝑠 type (from 1 to 3); -work mode (0 or 1). 𝑤𝑚 Output data of the design methodology contains the methodology work log, the abstract model of the system, a list of components and controllers that are possible for selection, a detailed model of the system and the methodology output log, see Chapter 5 . It means that output data can be represented as follows:

, 𝐷 𝑂 = (𝑤𝑙 , 𝑎𝑚 , 𝑠𝑙 , 𝑑𝑚 , 𝑜𝑙)
where -work log; -abstract model; -list of selectable elements of the 𝑤𝑙 𝑎𝑚 𝑠𝑙 system; -detailed model; -output log.

𝑑𝑚 𝑜𝑙

The objective function of the methodology for the design of microcontroller-based physical security systems is aimed at maximization of the number of parameters that are analyzed during the design process. It can be represented as follows:

,

𝑂 𝐹 : 𝐿𝐸𝑉𝐸𝐿 𝑆 × 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 | | → 𝑚𝑎𝑥
where -levels of the system, the security of which can be ensured (4 levels 𝐿𝐸𝑉𝐸𝐿𝑆 according to Section 1.3); -classes of attack actions against which the 𝐴𝑇𝑇𝐴𝐶𝐾𝑆 system can be protected (4 classes according to Chapter 3).

In compliance with the requirements for time and resource consumption as well as realizability of the microcontroller-based physical security system with the required level of security against attackers.

Requirement for time consumption

Conclusions on Chapter 1

The analysis and systematization of modern research in the field of information security of microcontroller-based systems have been carried out. It reveals the security of such systems from the point of view of the object of attack, the attacker, the method of attack as well as methods and means of protection. The definition of microcontroller-based systems is proposed. The classification of microcontroller-based systems is given according to such attributes as complexity, connectivity, criticality and social aspect. The classification of the attackers is given according to such attributes like type of access, method of access, intentions, knowledge and resources is proposed. The classification of attack actions is given according to such attributes like subject, object, impact method, prerequisites and consequences is considered. Classification of methods and means of protection is given according to such attributes as the principle of work, the object of protection and the problem to be solved is proposed.

Place and role of the design techniques in ensuring the information security of microcontroller-based systems were shown. The drawbacks of existing solutions were pointed out. Their key issue is in focusing on certain aspects of security, ensuring their inapplicability for providing the security of such systems in general.

For example, techniques for software do not take into account that the functionality of microcontroller-based devices is determined not only by software. An important drawback of the techniques for hardware and software-hardware is that the designed microcontroller-based device is viewed in isolation from the system. Commercial solutions are not applicable if the microcontroller-based system already contains devices whose hardware cannot be changed or the design requirements contain restrictions that do not allow the use of devices suitable for these requirements. Commercial solutions also do not take into account the optimization process of the designed system due to limitations like computational complexity, energy efficiency, size and price. It means that the resulting system may not be reasonable for a developed use case because of no trade-off between resources and security level. In addition, there are many solutions in which the security of the system is not considered or is not the main task.

It was concluded that a general approach for solving the issue of designing secure microcontroller-based systems is not done yet. Therefore, this work is aimed at developing the original approach for the design of microcontroller-based physical security systems. Among all possible systems, in this work, only physical security systems were chosen as an area of the application, because in such systems during the design process it is required to ensure not only the functionality of the system but also to ensure its security against cyber-physical attacks. The requirements for the new design methodology were formulated. They are divided into two groups: functional and non-functional. Functional requirements: building an abstract representation of the designed system; finding a trade-off between the resources spent and ensuring the security of the system; no restrictions on platforms and architectures of the devices to be designed; the extensibility of the design process; and taking into account the physical layer of the designed systems.

The set of non-functional requirements is divided into time consumption, validity and resource consumption. The requirement for time consumption is as follows: the time required for the design process of the abstract model of the system should be less than 1 second; the time required for the design process of the detailed model of the system should be less than 4 seconds. The requirement for validity is as follows: the number of parameters analyzed during the design process is greater than that of analogues. Analyzed parameters were divided into levels of the system, the security of which can be ensured; classes of attack actions against which the system can be protected. Requirement for resource consumption: the number of resources required for the design process should be less than 25% of the computer resources.

In this work, the research problem statement is divided into a description of the input data, output data, objective function and requirements of the design methodology for microcontroller-based physical security systems. Input data contains general tasks of the designed system, parameters of the attacker against which the system must be protected and work mode. Output data contains methodology work log, abstract model of the system, list of components and controllers that are possible for selection, detailed model of the system and methodology output log. The objective function of the methodology for the design of microcontroller-based physical security systems is aimed at maximization of the number of parameters that are analyzed during the design process.

It is important to note that methodology works only with ready-made components and controllers, without taking into account elements of electronic circuits. The methodology is not generating the source code of the system software and firmware. Also, the parameters of the device case, its cooling and resistance to various weather conditions are not taken into account.

The methods for the evaluation of the design methodology for microcontroller-based physical security systems according to time consumption, resource consumption and validity will be presented in Chapter 2 .

Chapter 2. Methods for the evaluation of the design methodology for microcontroller-based physical security systems

This chapter describes methods for the evaluation of the design methodology for microcontroller-based physical security systems, namely, methods for the evaluation of time consumption, resource consumption and validity.

Method for the evaluation of time consumption

As was mentioned in Section 1.4 and Section 1.5 , the requirement for time consumption defines the ability of the approach to design a microcontroller-based physical security system in accordance with the input data in a given time frame. This requirement can be represented as follows:

, 𝑇𝐼𝑀 𝐸 𝑁 ≤ 𝑚𝑖 𝑛 𝑠 ∈ 𝑆 (𝑇𝐼𝑀𝐸 𝑁 𝑆)
where -time required to design a system using the developed 𝑇𝐼𝑀 𝐸 𝑁 𝑁 methodology;

-set of design algorithms; -time to obtain the design 𝑆 𝑇𝐼𝑀𝐸 𝑁 𝑆 result for the algorithm . It should be noted that the time required to design the 𝑠 ϵ 𝑆 system depends on the number of its devices, their abstract and detailed elements.

In order for the design methodology to be used in real-time when building an abstract model, as well as in near real-time when building a detailed model, it must design secure systems in a time not exceeding a certain boundary. Such a requirement for time consumption is set in the form: Such time frames were chosen for the design process of the microcontroller-based physical security system that contains 3 types of devices, while the first type of devices consists of not fewer than 5 elements with sub-elements, second type -not fewer than 10 elements with sub-elements and third type -not fewer than 15 elements with sub-elements. It is important to note that this example should also take into account links between devices and their elements, security recommendations to their implementation, requirements for links and elements as well as dependencies between them. For more detail, see Chapter 6 .

It is also important to note that the time required to design the microcontroller-based physical security system will be measured on the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD and 32 GB RAM.

Note that the time constraints depend on the acceptable response time of all stages of the methodology, which is a set of execution times for all of its algorithms. During this time, a number of queries to the database must be executed, possible attack actions required methods and means of protection, related abstract elements and their sub-elements must be identified as well as their relations, requirements, compatibility and dependencies to form a selection process and detailed model of the microcontroller-based physical security system.

Time consumption of the design process for an abstract model of the system is the sum of the time consumption of each stage of this process:

𝑇𝐼𝑀 𝐸 𝐴𝑀 = 𝑇 1 𝐴𝑀 + 𝑇 2 𝐴𝑀 + 𝑇 3 𝐴𝑀
where -time of the formation of requirements for the system and its devices; 𝑇 The expected execution time of the process of designing abstract and detailed models of a secure system and their variance is calculated using a two-score methodology [145] :

𝑓 (𝑡) = (𝑡 -𝑡 𝑚𝑖𝑛) α-1 (𝑡 𝑚𝑎𝑥 -𝑡) β-1 (𝑡 𝑚𝑎𝑥 -𝑡 𝑚𝑖𝑛) α+β-1 𝐵 (α, β) , 𝑡 𝑚𝑖𝑛 ≤ 𝑡 ≤ 𝑡
𝑇 𝑖 = 3 𝑇 𝑖 𝑚𝑖𝑛 + 2 𝑇 𝑖 𝑚𝑎𝑥 5 . σ 2 (𝑇 𝑖) = 0 . 4 (𝑇 𝑖 𝑚𝑎𝑥 -𝑇 𝑖 𝑚𝑖𝑛) 2
The probability that the stage execution time as a whole will not exceed the acceptable value is calculated as follows:

𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶 𝑃 𝑁𝐸 (𝑇𝐼𝑀𝐸 ≤ 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶) = Φ(𝑍)
where -the value of the Laplace function at:

Φ(𝑍) 𝑍 = 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶 - 𝑖 = 1 𝑛 ∑ 𝑇 𝑖 𝑖 = 1 𝑛 ∑ σ 𝑖 2 (𝑇 𝑖)
After that, according to the values of the Laplace function, given in a tabular form for the methodology for the design of microcontroller-based physical security systems, the probability of designing abstract and detailed models in a given time is checked to conclude on their compliance with given requirements.

Method for the evaluation of resource consumption

As was mentioned in Section 1.4 and Section 1.5 , the requirement for resource consumption characterizes the range and number of required software and hardware, the number of required information arrays, human resources and other resources spent on the implementation of the design process of microcontroller-based physical security systems. Requirements for resource consumption are set as follows: The assessment of resource consumption can be carried out according to a number of particular indicators. Let's consider each of them in more detail.

Resource consumption when using central processing unit (CPU): The resource consumption corresponds to the requirements if all of the above indicators meet the condition . To perform the design process, it is 𝑅𝐸𝑆 ≤ 𝑅𝐸𝑆 𝐴𝐶𝐶 assumed that a separate computer is allocated, but part of the resources will be occupied by the operating system and other processes, therefore . 𝑅𝐸𝑆 𝐴𝐶𝐶 = 0 . 25

It means that the design process for microcontroller-based physical security systems should take not more than 25% of the total resources. It is important to note that resources required to design the system of mobile robots for perimeter monitoring will be measured on the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) CPU, 2 TB HDD and 32 GB RAM.

Note that because the CPU of the computer used contains 8 cores, it is required to measure the load on each of them. The value of is calculated as average 𝑅𝐸𝑆 𝐶𝑃𝑈 among them. And after all indicators (, ,) are measured, their 𝑅𝐸𝑆 𝐶𝑃𝑈 𝑅𝐸𝑆 𝐻𝐷𝐷 𝑅𝐸𝑆 𝑅𝐴𝑀 compliance with the given requirements is concluded.

Method for the evaluation of validity

As was mentioned in Section 1.4 and Section 1.5 , the validity requirement checks the correspondence of the results of the prototype work to the real state of the system's security. In this work, the number of parameters analyzed during the design process is selected as an indicator of the validity, namely:

• number of levels of the system, the security of which can be ensured;

• number of classes of attacks against which the system can be protected.

Requirements for these indicators are set by comparison with existing systems and can be represented as follows: design process by the approach . 𝐼 Thus, the methodology for the design of microcontroller-based physical security systems developed in this work should not be inferior to analogues in terms of levels of the system, the security of which can be ensured, and classes of attack actions, against which the system can be protected, as well as surpass them in the total number of analyzed parameters.

, 𝐿𝐸𝑉𝐸𝐿 𝑆 𝑁 | | ≥ 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆 𝑠 ∈ 𝑆 | | () , 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 𝑁 | | ≥ 𝑚𝑎𝑥 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 𝑠 ∈ 𝑆 | | () , 𝐿𝐸𝑉𝐸𝐿 𝑆 𝑁 × 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 𝑁 | | > 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆 𝑠 ∈ 𝑆 × 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 𝑠 ∈ 𝑆 | | ()
The developed methodology is compared with commercial solutions in terms of levels of the system, the security of which can be ensured and with scientific solutions in terms of classes of attack actions against which the system can be protected. For more information see Chapter 6 .

A comparison of design approaches was made based on the publicly available data.

For each parameter, the presence or absence of its consideration in the design process is determined. In this case, the following levels of the system are considered: communication between controllers and components, controllers, devices as well as systems. And the following classes of attack actions: on the level of components and their communication with controllers, on the level of controllers and their communication with other controllers, on the level of devices and their communication with other devices as well as on the level of the system and its communication with other systems.

Conclusions on Chapter 2

The goal of this work is to develop the design methodology that takes into account the maximum number of parameters during the design process of microcontroller-based physical security systems, while requirements for time and resource consumption are satisfied. Let's summarize the properties for the evaluation of the results of this work in a single Table 1 .

Table 1 . Properties for the evaluation of the design methodology Description Requirements

Time consumption

Probability that the approach is able to design a system in accordance with the input data in a given time frame.

, 𝑇𝐼𝑀 𝐸 𝑁 ≤ 𝑚𝑖 𝑛 𝑠 ∈ 𝑆 (𝑇𝐼𝑀𝐸 𝑁 𝑆) 𝑃 𝑇 (𝑇𝐼𝑀 𝐸 𝑁 ≤ 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶) ≥ 𝑃 𝑇 𝐴𝐶𝐶

Resource consumption

Probability that the number of used resources (CPU, HDD, RAM) will not exceed the allowable value.

𝑃 𝑅 (𝑅𝐸 𝑆 𝑁 ≤ 𝑅𝐸𝑆 𝐴𝐶𝐶) ≥ 𝑃 𝑅 𝐴𝐶𝐶

Validity

Number of levels of the system, the security of which can be ensured, and the number of classes of attack actions against which the system can be protected.

, 𝐿𝐸𝑉𝐸𝐿 𝑆 𝑁 | | ≥ 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆 𝑠 ∈ 𝑆 | | () , 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 𝑁 | | ≥ 𝑚𝑎𝑥 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 𝑠 ∈ 𝑆 | | () 𝐿𝐸𝑉𝐸𝐿 𝑆 𝑁 × 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 𝑁 | | > 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆 𝑠 ∈ 𝑆 × 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 𝑠 ∈ 𝑆 | | ()
For the experimental evaluation of the developed design methodology, its software implementation was executed 1000 times for the system of mobile robots for perimeter monitoring on the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) CPU, 2 TB HDD and 32 GB RAM to receive average values of time and resource consumption. For more information see Chapter 5 (implementation) and Chapter 6 (evaluation).

One of the main findings of this work, namely the extendable set-based hierarchical relational model of microcontroller-based physical security systems is presented in the next chapter. This model describes the representation of microcontroller-based physical security systems that are used in the developed design approach.

Chapter 3. Extendable set-based hierarchical relational model of microcontroller-based physical security systems

This chapter describes how microcontroller-based physical security systems, attackers, attack actions and security elements are modeled in this work. Moreover, this chapter describes how developed models are connected inside the extendable set-based hierarchical relational model.

Modeling of microcontroller-based physical security systems

To display various aspects of complex systems and detect the potential feasibility of various attack actions component-based, semi-natural, simulation and analytical modeling are used. Each modeling approach has its own abstraction level in the representation of the system, see Figure 9 .

Figure 9 . Comparison of modeling approaches

The component-based approach is the most detailed way to represent microcontroller-based physical security systems but it requires a lot of time and effort. Moreover, it is not possible to represent different dynamic processes with it.

From the other side, with the help of analytical modeling it is possible to represent the whole system but only on a high level of abstraction. So, the performance of the solution strongly depends on the level of detail. That is why to represent the whole lifecycle of the system, heterogeneous structures of the united models are used to overcome this issue by using different models for different cases.

For the design process of microcontroller-based physical security systems, the component-based approach is the most appropriate one if it is required to take into account the security of the system as early as possible. Developed in this work model represents such systems as an extendable set-based hierarchical relational structure and consists of the following parts: building blocks (hardware and software elements), links between system elements (protocols and interfaces), an attacker and attack actions. Its overview is presented in Figure 10 . Black rounded rectangles are displaying the system model with its elements, while black directed arrows are displaying their hierarchy and nesting: hardware element can be a part of another hardware element or building block, the microcontroller-based system may contain another system as its sub-system and so on. White rounded rectangles are displaying external models that are connected with the model of the system: attack actions impact is modeled through changes in the properties of the system or its elements while the number of possible attack actions is reduced according to the possibilities of the attacker.

One of the possible ways to describe complex systems as a set of interacting building blocks is the set-theoretic approach. Let's consider it in more detail.

Any system can be represented as follows: It is important to note that each element of the system at this level is considered as an object with a set of properties and links without taking into account its internal structure. And this rule is working for sub-elements of each element as well. As an example of any microcontroller-based physical security system can be 𝑚𝑏𝑠 used: access control system, fire alarm system, security alarm system, closed-circuit television system, perimeter monitoring system, etc. The situation when 𝑚𝑏𝑠 contains subsystems related to integrated physical security systems that combine, for example, access control, fire and security alarms systems.

𝑚𝑏𝑠 ϵ 𝑀𝐵𝑆 𝑚𝑏𝑠 = (𝑀𝐵𝑆 ' ,
A building block of can be represented as follows: 𝑚𝑏𝑠 As an example of a building block, any device, controller or its combination with components can be used. For example, it can be a Raspberry Pi single-board computer, micro-SD card with the pre-installed operating system, ESP8266 or Iskra JS microcontroller or even server, hub, robot, station, drone, etc. As an example of a hardware element any component can be used: sensors, receivers, transmitters, readers, motors, batteries, etc. As an example of the hardware element that consists of multiple hardware elements, let's consider a motor shield with two collector motors that can be used for two-wheel robots. When motors are connected to the motor shield, their rotation speed and direction are controlled by its signals, while the controller of the robot can be connected to the motor shield, to control signals of the shield through the firmware.

A software element of can be represented as follows: 𝑚𝑏𝑠 . 𝑝

𝑠𝑤

As an example of a software element, any algorithm, library, firmware, database, application or configuration can be used. As an example of the software element that consists of multiple software elements, let's consider a firmware of the controller that can be used as the brain of two-wheel robots. Such a firmware often contains library imports for most components that are connected to the controller as well as a lot of algorithms for the correct functioning of the robot: navigation, communication, data processing and storage, etc.

Links between elements of can be represented as follows, see It means that the model allows one to represent low-level protocols between controllers and components together with connections between different algorithms inside the firmware of one of the controllers while being able to represent high-level protocols between devices, see Table 2 Within the framework of the developed model, all elements are connected with each other through their properties. It means that to ensure the required level of security of the designed system, the goal of the approach is to find a reasonable combination of elements of the system according to the balance between their needs (functional requirements and non-functional limitations) and capabilities (provided functionality and resources). On the other hand, the influence of each successful attack action is represented through reduction of the system capabilities (for example, denial of service) or enhancing of its needs (for example, resource depletion).

Thus, the properties can be represented as follows, see Figure 16 :

, 𝑝 = (𝐹𝑅 , 𝑁𝐿 , 𝑃𝐹 , 𝑃𝑅)
where -set of functional requirements (functionality that satisfaction is 𝐹𝑅 necessary for the element to work); -set of non-functional limitations (limitation 𝑁𝐿 that satisfaction is necessary for the element to work); -set of provided 𝑃𝐹 functionalities;

-set of provided resources. 𝑃𝑅 As functional requirements of the element, any functionality necessary for it to be able to work can be used: power source, secure connection, protocol, interface, bootloader, library, operating system, compiler, driver, etc.

As non-functional limitations of the element, any limitation necessary for it to be able to work can be used: space for placement, suitable environment, voltage, current, size, volume, flash memory, digital or analogue pins, disk space, ram, etc.

As provided functionality of the element, any functionality that it can provide can be used: access control, perimeter monitoring, navigation, obstacles detection, work with a component, encryption, authentication, processing, etc.

As provided resources of the element, any resource it can provide can be used: data storage, computing resources, environment for launching applications, possibility to add/remove/replace components, possibility to work with the environment, etc.

Modeling of attackers, attack actions and security elements

The developed model of the attacker is inspired by the classification of attackers from Section 1.1.2 . According to this classification, attackers can be distinguished according to attributes such as type of access, method of access, intentions, knowledge and resources. In the developed model, only types of access, knowledge and resources are used. According to the developed model, the attacker's can be in the range between 1 𝑎𝑐 and 5. This value describes the type of access an attacker has to the microcontroller-based physical security system, see Table 3 . Attacker's can be in the range between 1 and 4. This value describes the amount 𝑘𝑛 of information available to the attacker about the system, see Table 4 .

Table 3 . Attacker's types of access

Table 4 . Attacker's types of knowledge

Description 1 General knowledge about the system from publicly available sources 2 Knowledge about parameters of the system 3 Knowledge about means of protection of the system 4 Knowledge about software and hardware of the system Attacker's can be in the range between 1 and 3. This value describes the number 𝑟𝑠 of resources available to the attacker, see Table 5 . -disruption of database services. 𝑑𝑏𝑑 As individual security element, any mean or method or protection can be used: anomaly detection algorithm, hidden placement of sensors, events correlation algorithm, vandal-proof device case, hardware authentication, firmware encryption, bootloader encryption, removement of physical update interface, strong login credentials, password policy, brute-force protection, strong encryption algorithms, secure key distribution mechanism, behaviour-based anomaly detection, devices isolation/limitation, training of operators and users, etc.

As one can see, most security elements can be modeled as software or hardware elements of the system and be integrated into its building blocks, while some of them can be transferred as recommendations to the designed system implementation.

Connections between models

Let's consider how classes of attack actions are connected with parameters of attackers, see Table 6 As we mentioned before, the structure of attacker's types is hierarchical. It means that an attacker with certain access is able to perform any attack action which is possible for an attacker with the same access but with lower knowledge/resources. Such a dependence allows one to store data only about the threshold values of the types that are necessary for the successful implementation of attack actions. It is important to note that the developed model allows the use of various models of attackers and attack actions. So, the number of attackers' parameters, just like the permissible ranges of their values, can be changed. Likewise, for attack actionsanother classification can be used and examples can be extended. The main thing is to preserve the hierarchical nature of the attacker's model and the relationship between his or her parameters and the possibility of implementing attack actions. In addition, let's consider how classes of attack actions are connected with security elements of microcontroller-based systems, see Table 7 . As was mentioned in Section 1.2 , possible attack actions are defined by the system elements composition and parameters of the attacker, against which the system needs to be protected. It means that if possible attack actions are known, then necessary security elements can be extracted. After that, each security element can be interpreted as software (for example, anomaly detection algorithm), hardware (for example, vandal-proof device case) and recommendations (for example, training of operators and users).

Also, let's consider how classes of attack actions are connected with non-security elements of microcontroller-based systems, see Table 8 . Relations between attack actions and non-security elements are defining the attack surface of the system. Understanding the attack surface allows its reduction in the early stages of the system life cycle, significantly increasing its security level.

As was mentioned before, all elements of the developed model are connected through properties -their needs and possibilities. And algorithms that are used for the design of microcontroller-based physical security systems are taking it into account, see Chapter 4 . But before that, it is important to note another key aspect of the developed model -the origin of emergent properties in the process of combining the elements of the system.

Due to the fact that collaboration requires additional resources, values of properties of elements in some cases cannot just be summarized to find out properties of their combination. can have the area and the result of the influence at the same time, so 𝑒𝑝 variations like "electronic component-positive", "microcontroller-negative" and vice versa are possible.

On the level of components

are arising during the formation of controller ↔ 𝑒𝑝 component communications. Such formation represents a combination of hardware and software elements as well as building blocks in terms of the developed model.

For example, let's consider the work of the controller with several MFRC522 -13.56 MHz RFID readers. The full reading of the tag ID takes around 43 ms while only one reader can work at a time and the readers themselves do not have internal memory. It means that an RFID tag drawn faster than 43 ms past two RFID readers that are connected to one controller will be read by only one of them.

On the level of controllers

are arising during the formation of controller ↔ 𝑒𝑝 controller communications. Such a formation represents a combination of building blocks in terms of the developed model. For example, let's consider the interaction of controllers within the I2C bus. The I2C connection can be organized on the basis of the TWI and Wire.h library. And because of the data bus, the speed of receiving and processing messages by the primary device directly depends on the number of its secondary devices as well as the number of events that would be generated by secondary devices. As experiments showed [133] , it also depends on the size of the messages transmitted, the presence of confirmation of receipt, authentication of devices and encryption of the transmitted data.

On the level of devices are arising during the formation of device ↔ device 𝑒𝑝 communications. Such a formation represents a combination of building blocks in terms of the developed model. For example, let's consider the formation of secure communication between a single-board computer Raspberry Pi and a remote update server based on OpenVPN [134] . The bandwidth of such a connection will highly depend on the configurations on the client and server sides as well as the number of connected devices.

The positive result of the influence of entailing the fulfillment of one or more 𝑒𝑝 𝑓𝑟 and/or . For example, let's consider the process of the connection of controllers to 𝑛𝑓𝑙 the Ethernet network. As a rule, it requires the soldering of the controller to provide the necessary current and voltage, as well as interaction via certain pins for the Ethernet chip and RJ45 interface. As an alternative, it is possible to use ready-made solutions like Ethernet Shield for Arduino microcontrollers.

The negative result of the influence of entail either the termination of one or more 𝑒𝑝 / or the introduction of additional ones. As an example of an additional , let's 𝑓𝑟 𝑛𝑓𝑙 𝑓𝑟 consider the joint work of ATmega32U4 (firmware) and Atheros 9331 (Linux) processors in Arduino Yun microcontroller. To call Linux commands at the ATmega32U4 level a special interpreter is required -the Bridge.h library. In such a situation, the presence of this library becomes an additional which affects the 𝑓𝑟 𝑛𝑓𝑙 that are associated with firmware size and computational complexity of the solution.

Conclusions on Chapter 3

The component-based approach is the most detailed way to represent microcontroller-based physical security systems but it requires a lot of time and effort. Also, this approach is the most appropriate one if it is required to take into account the security of the system as early as possible. Developed in this work model represents such systems as an extendable set-based hierarchical relational structure and consists of the following parts: building blocks (hardware and software elements), links between system elements (protocols and interfaces), an attacker and attack actions.

Within the framework of the developed model, all elements are connected with each other through their properties. It means that to ensure the required level of security of the designed system, the goal of the approach is to find a reasonable combination of elements of the system according to the balance between their needs (functional requirements and non-functional limitations) and capabilities (provided functionality and resources). On the other hand, the influence of each successful attack action is represented through reduction of the system capabilities (for example, denial of service) or enhancing of its needs (for example, resource depletion).

The developed model of the attacker is inspired by the classification of attackers from Section 1.1.2 . According to this classification, attackers can be distinguished according to attributes such as type of access, method of access, intentions, knowledge and resources. In the developed model, only types of access, knowledge and resources are used. Type of access can be in the range between 1 and 5, from no access to full access to the system. Type of knowledge can be in the range between 1 and 4, from general knowledge to knowledge about software and hardware of the system. Type of resources can be in the range between 1 and 3, from widely-spread software tools and known vulnerabilities to the possibility to investigate the system.

The developed model of attack actions is inspired by the classification of attack actions from Section 1.1.3 . According to this classification, attack actions can be distinguished according to attributes such as subject, object, impact method, prerequisites and consequences. In the developed model, only subject, object and impact methods of attack are used. But instead of separate impact methods, it was decided to use classes of attack actions, while each class contains multiple examples of methods. Four classes of attack actions are used in the model, namely, on the level of components and their communications with controllers; controllers and their communications with other controllers; devices and their communications with other devices; the system and its communications with other systems.

Note that the developed model allows the use of various models of attackers and attack actions. So, the number of attackers' parameters, just like the permissible ranges of their values, can be changed. Likewise, for attack actions -another classification can be used and examples can be extended. The main thing is to preserve the hierarchical nature of the attacker's model and the relationship between his or her parameters and the possibility of implementing attack actions.

As was mentioned in Section 1.2 , possible attack actions are defined by the system elements composition and parameters of the attacker, against which the system needs to be protected. It means that if possible attack actions are known, then necessary security elements can be extracted. After that, each security element can be interpreted as a software element (for example, anomaly detection algorithm), hardware element (for example, vandal-proof device case) and implementation recommendations (for example, training of operators and users).

Due to the fact that collaboration requires additional resources, values of properties of elements in some cases cannot just be summarized to find out properties of their combination. To make the calculations more realistic, special modifiers that reduce values of properties are required -emergent properties. In the developed model, emergent properties are classified by the area and result of the influence. By the area of influence, they are divided into properties that are arising on the level of components, controllers and devices. By the result of the influence, they are divided into positive, neutral and negative ones.

Unlike existing solutions, the extendable set-based hierarchical relational model represents a microcontroller-based physical security system instead of representing separate devices. Such functionality neutralizes the disadvantages of analogues in terms of designing devices separately from their interaction with each other. Moreover, this model is modular, extensible and hierarchical, has a strong focus on the security of the resulting solution as well as considers security elements as an integral part of the designed system. The extension of the model is possible by the introduction of the new levels of abstraction. The modularity of the solution provides the possibility to change its individual parts without the need to change the model completely, for example, the parameters of the attacker's model or available classes of attacks can be updated. The hierarchical nature of the model allows decomposition from the whole system into individual elements and composition from individual elements to the system as a whole.

Two more main findings of this work, namely the set of algorithms and the methodology for the design of microcontroller-based physical security systems are presented in the next chapter. These results are describing the process of microcontroller-based physical security systems design that is used in this work and is based on described in this chapter model.

Chapter 4. Set of algorithms and methodology for the design of microcontroller-based physical security systems

This chapter describes the set of algorithms and methodology for the design of microcontroller-based physical security systems. The set of algorithms is used within the framework of the developed methodology to design extendable set-based hierarchical relational models. This set consists of the following algorithms: the algorithm for the formation of the system requirements, the algorithm for the formation of the system components composition, the algorithms for the design of the abstract and detailed system models.

Algorithm for the formation of requirements for the system

The algorithm for the formation of requirements for microcontroller-based physical security systems is used to extract attack actions that are possible for the attacker and a list of devices of the designed system, their links, communications, bases and requirements in accordance with the attacker's parameters and system's general tasks. This algorithm works with abstract requirements that can represent components of devices and their sub-components as well as links between devices, taking into account controllers used as the basis of the device and possible for each device types of communications that determine attack actions that are potentially dangerous for the designed devices.

As input data , the algorithm takes the following data:

• attacker's parameters: are characterizing capabilities of the attacker in accordance with the developed model, see Chapter 3 , and are represented by three parameters: access type (from 1 to 5), knowledge type (from 1 to 4) and resources type (from 1 to 3); • system's tasks : are characterizing main tasks of the designed system in accordance with the wishes of the stakeholder, they are selected from a list of possible values, however, this list, unlike the attacker's parameters, does not have a limited range of acceptable values.

As output data , the algorithm provides the following data: • attacker's actions : the list of attack actions in accordance with the developed model, see Chapter 3 , that are possible for the attacker based on the provided parameters (input data); each attack action has id, name and description; • security elements : a data structure for security elements that are required to prevent possible attack actions is JSON-based; each security element is represented by its unique identificator; • devices list : the list of devices that are required to design in accordance with the general tasks to the system (input data), each device has a name that is extracted based on system requirements;

• devices requirements : data structure for requirements for devices is JSON-based, while its keys are devices from the list of devices; by each device key the data about requirements for this device can be extracted; each requirement is abstract and has id and description; • devices communications : data structure for devices types of communications is also JSON-based, while its keys are also devices from the list of devices; by each device key the data about possible for this device types of communications in accordance with the developed architecture of microcontroller-based systems, see Section 1.3 , can be extracted; each type of communications has id and name; • devices links : data structure for links between devices is JSON-based, while its keys are devices from the list of devices; by each device key the data about its links with other devices can be extracted; each link has id of link type (wire, wireless, etc.), link description, ability id (based on which ability this link between devices was detected by the algorithm) and ability description. • devices bases : a data structure for bases of devices is JSON-based, while its keys are devices from the list of devices; bases are representing individual controllers or their combinations that are necessary for the device to work and are extracted based on abilities that are required from the device.

The work process of the algorithm is automated, the operator is required for the translation of wishes of the stakeholder into the attacker's parameters and general tasks of the system. Its overview is presented in Figure 18 .

The work process of the algorithm contains 6 main stages , namely, initialization of data structures as well as getting attack actions possible for the attacker, security elements to prevent attack actions, abilities of the designed system, requirements of the designed system and device data. The last stage is divided into 7 sub-stages , namely, getting device name, tasks, abilities, requirements, base, types of communication and links. Let's consider them in more detail.

Stage 1: Initialization of data structures . This stage defines the data structures for storing devices and their requirements, communications, links and bases. Devices are stored as a list, while their requirements, communications, links and bases are stored as dictionaries -key-value structures. Stage 4: Getting abilities of the designed system . At this stage, data about abilities that are expected from the designed system is extracted. Abilities are extracted in accordance with the tasks of the designed system that are provided as input data, see Figure 19 . Abilities can be interpreted as something that the designed system must be able to do to solve tasks. For example, the task "static perimeter monitoring" can be connected with the following abilities: "to communicate with mobile robots of the system", "to provide wireless charging", "to monitor the perimeter nearby", and "to communicate with the server of the system". Tasks are selected by the operator. Possible values of tasks and abilities are predefined in the database. Each task, as well as ability, has an id and description.

Figure 19 . Connections between system tasks and abilities

Stage 5: Getting requirements of the designed system . This stage is aimed at the extraction of data about requirements for the designed system. Requirements are extracted in accordance with the abilities of the designed system that are provided by Stage 4, see Figure 20 . Requirements can be interpreted as something that is required for the designed system to have abilities. For example, the ability "to provide wireless charging" can be connected with the requirement "device that represents the charging stations of the system". Possible values of requirements are predefined in the database. Each requirement has an id and description. The name of the device is based on the requirement's description. For example, the requirement "device that represents the charging stations of the system" is transformed into a "charging station". Such a transformation is possible because of the description format "device that represents the [device name] of the system".

Extracted names of devices are stored in the devices list.

Stage 6.2: Getting device tasks . At this stage, data about tasks that are expected from devices of the system is extracted. Tasks of devices are extracted in accordance with requirements for the system that are provided by Stage 6.1, see Figure 21 . Those tasks can be interpreted as functionality that the designed device must have to fulfil system requirements. For example, the system requirement "device that represents the charging stations of the system" can be connected with the following tasks of the device: "work cycle support", "interaction with intruders", "interaction with mobile robots", "interaction with the server". Possible values of tasks are predefined in the database. Each task has an id and description. Abilities can be interpreted as something that the designed devices must be able to do to solve their tasks. For example, the task "interaction with intruders" can be connected with abilities "to detect intruders" and "to chase intruders". Possible values of abilities of devices are predefined in the database. Each ability has an id and description. Requirements can be interpreted as something that is required for the designed devices to have their abilities. For example, the ability "to detect intruders" can be connected with the following requirements: "motion sensor", "servo drive", "noise sensor" and "detection algorithm". Possible values of requirements are predefined in the database. Each requirement has an id and description. As was mentioned, during most of the stages the algorithm relies on the content of the database for making decisions. The possible structure of such a database is presented in detail in Chapter 5 .

This algorithm can be used to extract attack actions that are possible for the attacker as well as the list of devices of the designed system, their links, communications, bases and requirements in accordance with the attacker's parameters and system's general tasks. The output data is well-structured, while the algorithm takes into account dependencies between stakeholders' wishes and system tasks, system tasks and system abilities, system abilities and system requirements, system requirements and devices tasks, devices tasks and devices abilities, devices abilities and devices requirements, see Figure 24 .

Figure 24 . Connections between tasks, abilities and requirements

It is important to note that this algorithm can be useful to an expert in the design of secure systems, but its full potential is revealed only when interacting with other algorithms from this chapter within the framework of the design methodology from Section 4.5 . In this methodology, this algorithm is providing the input dataattacker's actions, security elements, devices list, devices requirements, devices communications, devices links, devices bases -that is used by other algorithms, one of which is presented in the following section.

Algorithm for the formation of the system component composition

The algorithm for the formation of the microcontroller-based physical security system component composition is used to extract abstract elements and sub-elements of the devices of the system, security recommendations to the system and its devices implementation as well as abstract links between devices with related to them abilities based on attack actions that are possible for the attacker, list of devices of the system, their bases, types of communications and links, requirements for them. This algorithm works with abstract elements, links and recommendations and represents the designed system components compositions as multiple devices, each of which has multiple abstract elements, while each abstract element can have multiple abstract sub-elements. Wherein abstract elements and sub-elements are representing controllers and components as well as their software, including those that are related to security.

As input data , the algorithm takes the following data:

• devices list: the list of devices that are required to design, which is provided by the previous algorithm, see Section 4.1 ; • devices bases : data structure for bases of devices is JSON-based, while its keys are devices from the list of devices; bases are provided by the previous algorithm, see Section 4.1 ; • devices requirements : data structure for requirements for devices is JSON-based, while its keys are devices from the list of devices; by each device key the data about requirements for this device can be extracted; each requirement is abstract and has id and description; requirements are provided by the previous algorithm, see Section 4.1 ; • attacker's actions : the list of attack actions that are possible for the attacker;

each attack action has id, name and description; attack actions are provided by the previous algorithm, see Section 4.1 ; • devices communications : data structure for devices types of communications is also JSON-based, while its keys are also devices from the list of devices; by each device key the data about possible types of communications can be extracted; each type of communications has id and name; devices types of communications are provided by the previous algorithm, see Section 4.1 ; • devices links : data structure for links between devices is JSON-based, while its keys are devices from the list of devices; by each device key the data about its links with other devices can be extracted; each link has its type and description as well as ability id and description; devices links are provided by the previous algorithm, see Section 4.1 .

As output data , the algorithm provides the following data:

• abstract elements and sub-elements : abstract component composition of the system devices, where abstract elements are extracted based on requirements for the device and possible attack actions and represent controllers, components, software and firmware, while abstract sub-elements are extracted based on abstract elements and represent algorithms, settings and requirements; data structure for abstract elements and sub-elements is JSON-based, while its keys are devices from the list of devices; by each key, the data about the respective abstract elements can be extracted, while each abstract element is also a key to extract data about the set of its sub-elements; each element and sub-element has id and description. • security recommendations : abstract security recommendations to the system implementation as a whole as well as for each of its devices separately that are extracted based on security elements and can't be interpreted as abstract elements or sub-elements; data structure for recommendations is also JSON-based, while it has keys for the system and all its devices; by each key, the data about the respective recommendations can be extracted; • abstract links and abilities : abstract types of communications that are possible between devices of the system with corresponding devices abilities that are related to their interaction; data structure for links is JSON-based, while its keys are devices from the list of devices; by each key, the data about the respective links can be extracted.

The work process of the algorithm is automatic, the operator is not required. Its overview is presented in Figure 25 .

The work process of the algorithm contains 2 main stages , namely, initialization of data structures as well as getting the component composition of devices. The last stage is divided into 5 sub-stages , namely, getting abstract elements with their sub-elements, possible attack actions, additional abstract elements with their sub-elements, security recommendations to implementation as well as links between devices. Let's consider them in more detail.

Stage 1: Initialization of data structures . This stage defines the data structures for storing abstract elements and sub-elements of devices, security recommendations to the implementation of the system and its devices as well as abstract links between devices and abilities that are defining those links. All this data is stored as dictionaries -key-value structures.

Stage 2 is called getting the component composition of devices . At this stage, based on the provided input -data devices list -component composition of each device of the system is extracted. Let's consider it in more detail.

Stage 2.1: Getting abstract elements with their sub-elements . This stage is aimed at the extraction of data about abstract elements of devices of the system as well as their sub-elements based on provided requirements for devices and their bases. Elements are extracted recursively based on:

• provided device base;

• provided requirements for the device;

• already extracted elements.

Possible values of elements and their sub-elements are predefined in the database. Each element as well as sub-element has an id and description. Firstly, the list of required security elements is extracted. Connections between security elements and attack actions are defined in Chapter 3 . After that, abstract elements and sub-elements that are representing security elements are extracted. In the end, additional elements of the device are combined with its other elements that were extracted on Stage 2.1. Once again, possible values of elements and their sub-elements are predefined in the database. Each element as well as sub-element has an id and description.

Stage 2.4: Getting security recommendations to implementation . At this stage, data about security recommendations to the implementation of the system and its devices in accordance with security elements of devices is extracted. Firstly, data about recommendations to each device implementation is extracted. After that, data about recommendations to the system implementation is extracted. The recommendation can be interpreted as a security requirement that can't be satisfied on the component composition level, that is why it can be satisfied only after implementation. For example, a recommendation to the system can be formulated as follows: "to educate operators and users of the system about social engineering attacks". Connections between security elements and recommendations are stored in the database. Each recommendation has an id and description.

Stage 2.5: Getting links . This stage is aimed at extraction of data about links between devices of the system based on the provided input data -devices links. This stage is related to the transformation of the input data into another data structure called abstract links and abilities. The new data structure is JSON-based, while keys are devices from the list of devices and values are links between devices of the system. Each link has link id, link type, ability id and ability description. Possible values of ids, types and descriptions are predefined in the database.

Once again, as was mentioned, during most of the stages the algorithm relies on the content of the database for making decisions. The possible structure of such a database is presented in detail in Chapter 5 .

This algorithm can be used to extract abstract elements and sub-elements of the designed system devices, security recommendations to the implementation of the system and its devices as well abstract links between devices in accordance with attack actions that are possible for the attacker, list of devices of the system, their bases, requirements, communications and links. The output data is well-structured, while the algorithm takes into account the iterative retrieval process of abstract elements of devices together with their sub-elements. In the beginning, abstract elements and sub-elements are retrieved in accordance with basis of devices, then on the basis of their requirements, after that in accordance with already extracted elements and sub-elements as well as required methods and means of protection.

It is important to note that this algorithm can be useful to an expert in the design of secure systems, but its full potential is revealed only when interacting with other algorithms from this chapter within the framework of the design methodology from Section 4.5 . In this methodology, this algorithm is providing the input data -abstract elements and sub-elements, security recommendations, abstract links and abilities -that is used by the algorithm presented in the following section.

Algorithm for the design of the abstract model of the system

The algorithm for the design of abstract models of microcontroller-based physical security systems is used to construct an abstract representation of a secure system based on its devices list, their abilities, elements and sub-elements as well as security recommendations. This algorithm represents the system as an abstract hierarchical model that takes into account connections between system devices, their elemental composition, dependencies between device elements and requirements for them.

As input data , the algorithm takes the following data:

• security recommendations: abstract security recommendations to the system implementation as a whole as well as for each of its devices separately that are extracted based on security elements and can't be interpreted as abstract elements or sub-elements; recommendations are provided by the previous algorithm, see Section 4.2 ; • abstract elements and sub-elements: abstract component composition of the system devices, where abstract elements are extracted based on requirements for the device and possible attack actions and represent controllers, components, software and firmware, while abstract sub-elements are extracted based on abstract elements and represent algorithms, settings and requirements; abstract elements and sub-elements are provided by the previous algorithm, see Section 4.2 ; • abstract links and abilities: abstract types of communications that are possible between devices of the system with corresponding devices abilities that are related to their interaction; abstract links and abilities are provided by the previous algorithm, see Section 4.2 ; • security elements: abstract methods and means of protection that are required to make the designed system secure against attackers with certain parameters, interpretable as security recommendations, abstract elements and sub-elements; security elements are provided by the previous algorithm, see Section 4.1 .

As output data , the algorithm provides the abstract system model that contains abstract system representation. The structure of the abstract model of the system is JSON-based and contains the following fields:

• devices : data about each device of the system, including its unique key, id, name, components and recommendations; • recommendations : data about recommendations to the implementation of the system to ensure its security against attackers with certain parameters, including unique key, id and name (description); • links : data about links between devices of the system, including its unique key, id, type, parties, dependencies and requirements.

Each element from the "components" field has its unique key and id as well as data about its own components (sub-elements), links, requirements and dependencies.

The work process of the algorithm is automatic, the operator is not required. Its overview is presented in Figure 26 .

Figure 26 . Overview of the algorithm for the design of abstract models

The work process of the algorithm contains 7 main stages , namely, abstract model initialization as well as generation of system recommendations, devices, links requirements, dependencies and hierarchy. Let's consider them in more detail.

Stage 1: Initialization of the abstract model . This stage defines the data structure for storing the abstract model of the system. At the end of the stage, the abstract model consists of fields for data about devices, links between them and security recommendations for the implementation of the system.

Stage 2: Generation of the system security recommendations . At this stage, the abstract model of the system is filled with data on the recommendations for the implementation of the system related to ensuring its security. Each of the recommendations has a unique key by which its id and text description are available.

Stage 3: Generation of the system devices . This stage is aimed at filling the abstract model of the system with data about its devices. For each device, data is generated about its unique identifier, name and components composition. Data on recommendations related to ensuring the security of devices after their implementation is also generated.

The main part of this stage is the generation of the device components composition. This part contains the initialization of abstract components of each device as well as the generation of their requirements based on each component sub-elements (including security ones). For example, depending on the component of the device, it is assumed how much flash memory of the firmware needs to work correctly.

After this stage is done, each device of the abstract system model is filled with a number of elements in their "components" field. Each element represents an abstract component of the microcontroller-based system -operating system, firmware, sensor, receiver, transmitter, database, microcontroller, etc. Each element in the abstract model has its own key that is unique only inside each device. By using this key, the data about its unique identifier, name, components, links and requirements can be extracted. It is important to note that data about each element's components and links during this stage is empty and would be filled only during stage 7.

Stage 4: Generation of links between devices . At this stage, the abstract model is filled with data on links between devices of the system. Firstly, the algorithm detects all links that are possible between each pair of devices according to their abilities. And if the link is detected, its generation starts. In the abstract model, each link has its own unique key, by which data about its unique identifier, type, parties, dependencies and requirements can be extracted. For example, the "dependencies" field is filled with data about abstract elements, the selection of a specific implementation of which directly depends on the selection of the interface and protocol of this link between devices. As an output of this stage, unique keys of links with unique identifiers of elements the selection of which depends on the selection of a specific interface and protocol of the link are provided.

Stage 5: Generation of requirements for links . This stage is aimed at filling the abstract model with data about requirements for links between devices of the system. This field was empty after stage 4 and now is filled with data generated based on the information about security elements that are required to design a secure system. Generated during this stage requirements define if a link is wired or wireless, transfers data, signal or charge, requires encryption and/or authentication and so on.

Stage 6: Generation of dependencies between elements . At this stage, the abstract model is filled with data on requirements for elements of devices as well as with data about dependencies between them. For example, for each microcontroller data about dependencies between their selection and the subsequent selection of sensors that will be connected to them would be generated. It is done to ensure the compatibility of the elements of the device after the transmission from the abstract model to the implementation of the system. Also, for each controller that is related to control of other components like sensors, receivers and transmitters, the number of required digital and analogue pins is calculated.

Stage 7: Generation of the hierarchy of elements . This stage is aimed at the reconstruction of the "components" field of each device of the system. The algorithm generates hierarchical elements composition instead of their enumeration. The transmission to the hierarchical structure is based on a graph representation of the components of each device of the system and recursive conversions. Firstly, graph nodes are generated based on unique identifiers and keys of elements. After that, the elements of each device are checked pair by pair in terms of the possibility to connect one element to another. For example, a sensor can be connected to a controller if they are compatible, while compatibility can be checked according to their parameters. And if two elements can be connected to each other then the edge between nodes that are representing them is generated.

After the graph structure for each device is generated, the process of hierarchy building starts. Firstly, the root node of the graph is obtained based on topological sorting. After that, the child node of the lowest level of the graph is obtained together with its parent node. It is required for the algorithm to encapsulate the data about the obtained child element into the "components" field of its parent element as well as for the generation of a link between them. After it is done, the data about the encapsulated child is deleted from the abstract model (this data is in the "components" field of its parent now) and the node corresponding to this child is deleted from the graph representation of the device. This process continues until no other graph node can be deleted.

It is important to note that during stages 3, 4, 6 and 7 the algorithm relies on the database for making decisions:

• stage 3: to decide if the abstract element of the device is a component;

• stage 4: to decide if devices are linked based on their abilities; to decide what abstract elements selection will depend on the selection of interface and protocol of the abstract link between devices; • stage 6: to decide if one abstract element selection will depend on the selection of another abstract element; to decide how many digital or analogue pins are required to connect the abstract element to the controller; • stage 7: to decide if one abstract element is compatible with another; to decide what link will be between two abstract elements.

The possible structure of such a database is presented in detail in Chapter 5 .

The abstract system model is a mapping of the extendable set-based hierarchical relational model of microcontroller-based physical security systems from Chapter 3 .

The mapping on the level of the system is straightforward, see Figure 27 .

Figure 27 . The mapping on the level of the system

The mapping on the level of the links between devices is presented in Figure 28 . The mapping on the level of the hardware and software is presented in Figure 29 .

Figure 29 . The mapping on the level of hardware and software elements

This algorithm can be used to generate an abstract system representation based on information about its devices, their elements and sub-elements. The output data is well-structured, while the algorithm takes into account the hierarchy of elements and dependencies between them as well as generates requirements for them.

It is important to note that this algorithm can be useful to an expert in the design of secure systems, but its full potential is revealed only when interacting with other algorithms from this chapter within the framework of the design methodology from Section 4.5 . In this methodology, other algorithms are providing input data, while the abstract model -output of this algorithm -is detailed by replacing abstract elements with their concrete implementations (taking into account requirements, mutual dependencies and possible conflicts indicated in the abstract model) based on the algorithm, presented in the following section.

Algorithm for the design of the detailed model of the system

The algorithm for the design of detailed models of microcontroller-based physical security systems is used to construct a detailed representation of a secure system based on its abstract representation. Detailed model of the system preserves and expands the structure of the abstract model of the system and takes into account compatibility, requirements, dependencies and hierarchy of system elements. The process of transition from the abstract system model to a detailed one is a step-by-step process. Each step represents the process of selection of the concrete implementation of one of the system elements, while the sequence of steps is formed in accordance with the hierarchy and dependencies between those elements. Moreover, after each step, the number of options for further steps is limited in accordance with compatibility.

As input data , the algorithm takes the abstract system model . The structure of the abstract model of the system is JSON-based and contains the following fields:

• devices : data about each device of the system, including its unique key, id, name, components and recommendations; • recommendations : data about recommendations to the implementation of the system to ensure its security against attackers with certain parameters, including unique key, id and name (description); • links : data about links between devices of the system, including its unique key, id, type, parties, dependencies and requirements.

Each element from the "components" field has its unique key and id as well as data about its own components (sub-elements), links, requirements and dependencies.

The abstract system model is provided by the previous algorithm, see Section 4.3 .

As output data , the algorithm provides a detailed system model . The structure of the detailed model of the system is also JSON-based. Moreover, it has the same structure as the abstract model of the system but with some additions:

• each element from the components field that was selected is extended with the selected field: data about selected elements, including id, name and parameters of its implementation; parameters of the element differ for different components and controllers; • each device of the system is extended with the parameters field: data about parameters of the designed device, including price, energy consumption, voltage, current, length, width, height, free memory and battery life; device parameters are based on parameters of its elements; parameters are mostly the same for all devices, however, the units for free memory are different for single-board computers and microcontrollers; • each link between devices of the system is extended with the selected field: data about the selected links between devices, including id, name, interface, protocol and parameters; parameters are the same for each link and can be divided into boolean and numerical ones; boolean parameters are defining if the selected link is wireless, directed, transfers data, charge or signal, requires access point, has encryption or authentication; numerical parameters are defining the range and speed of the link.

The work process of the algorithm is automated, involvement of the operator is possible at the stage of selection of the concrete implementations of elements among suitable options provided by the algorithm. Alternatively, the algorithm can select concrete implementations on its own. Its overview is presented in Figure 30 .

Figure 30 . Overview of the algorithm for the design of detailed models

The work process of the algorithm contains 6 main stages , namely, initialization of data structures, generation of selection steps based on links between devices, generation of selection steps based on components of devices, saving data of selected options, detailing of the abstract system model and calculation of the parameters of the devices. Let's consider them in more detail.

Stage 1: Initialization of data structures . This stage defines the data structures for storing the selection steps and selected options. There is no need to define the data structure for the detailed model of the system because it is stored in the same data structure that was used for the abstract model of the system.

The data structure for selection steps is JSON-based and contains unique keys for each step of selection. Using this key, data about the selected element can be extracted. Each selected element has a key, type, id, name, label, hierarchy, dependencies and requirements. There is also an additional field "selected" to store data about the selected options as well as the field "same for" that prevents the selection of one element multiple times.

The data structure for selected options is JSON-based and contains keys table and database id. By the table key, it is possible to extract data about the database table, where data on the selected option is stored, while database id is the identification of the concrete data tuple in the database table.

Stage 2: Generation of selection steps based on links between devices . At this stage, the sequence of selection steps is filled with data about the selection of links between devices of the system. The sequence of selection steps is a very important part of the algorithm because of dependencies between components of devices as well as the possibility of their conflicts in terms of compatibility. That is why the generation of selection steps starts with the selection of links between devices. Each link, after its selection, is limiting options for controllers and components that are related to communications between devices for compatibility.

Stage 3: Generation of selection steps based on components of devices . This stage is aimed at filling the sequence of selection steps with data about components of devices. This process is more complicated because of the hierarchical nature of device components compositions in the abstract model. In addition, it is important to take into account that components of one device can depend on the selection of components of another device. That is why firstly devices are selected in some order too, while data about each device component composition is extracted recursively. Moreover, the sequence of extracted components is also based on their hierarchy. Each element, after its selection, is limiting options for its dependable elements. For example, the selection of the controller is limiting options for components that are connected to it for compatibility.

Stage 4: Saving data of selected options . At this stage, the process of selection of concrete implementations begins. Each selection step means the choice of one option among suggestions. This process can be manually done by the operator or automatically by the algorithm. After the option is selected, the choice is saved, so it would be taken into account during the selection of other elements that have dependencies with the selected one. For example, if the link responsible for communication between devices of the system is representing a Wi-Fi connection, the options for controllers are limited to those ones that support Wi-Fi or can be extended to support it. The list of options is based on the content of the database, while it can be limited according to the requirements of the abstract representation of the selected element. For example, requirements for the controller can limit its options to those that have at least the necessary amount of flash memory and pins. So, during this stage, all options that are representing the abstract element are limited in accordance with compatibility, requirements and dependencies.

Stage 5: Detailing of the abstract system model . This stage is aimed at filling the abstract system model with the data of selected implementations of its elements and represents the process of detailing. As we mentioned, each selected element is extended with the selected field. This extension is based on the content of the database, while selected options data structure provides data on the table where content is stored as well as the id of its tuple. For example, an element with the name "single-board computer" can have a selected field with the following key-values: Raspberry Pi 4 Model B 2GB, Broadcom BCM2711 1.5 GHz, Cortex A72 4-core 64-bit, 2GB RAM, 5V, 3A, 85x56x17 mm, 69 euro, 540 mA. The situation for each selected link is the same. For example, the link related to Wi-Fi connection between devices can have selected fields with the following key-values: Wi-Fi IEEE 800.11 2.4GHz WPA2-PSK, 40 meters range, 20 Mbit/s.

Stage 6: Calculation of the parameters of the device . At this stage, the parameters of the devices of the designed system are calculated. As was mentioned in the output data description, those calculations are based on the parameters of the elements of devices and are mostly the same for all devices. For example, the parameters of the device that is representing a server of the system can be as follows: 106 euro, 540 mAh, 5V, 3A, 85x153.5x44.5 mm, 29400 MB of free memory, 37 hours of battery life. Note that parameters of the system as a whole are not calculated, because the necessary amount of its devices is not known by the algorithm and depends on the concrete implementation of the designed system.

It is important to note that the algorithm relies on the content of the database when extracting options that can be selected as well as when checking parameters of the selected links and elements. It means that the correctness of its work strongly depends on the content of the database. The possible structure of such a database is presented in detail in Chapter 5 .

The detailed system model is a mapping of the extendable set-based hierarchical relational model of microcontroller-based physical security systems from Chapter 3 . Moreover, the detailed system model is an extension of the abstract system model. That is why in this section only differences between detailed and abstract models are shown, while mapping is shown in the previous one.

As we mentioned during the output data description, the differences are on the level devices, their elements and links between them. Changings in the mapping on the level of links are presented in Figure 31 , while on the level of devices -in Figure 32 and elements -in Figure 33 . Note that links between building blocks that are representing devices are taken into account in the separate part of the detailed system model.

Figure 33 . Changings in the mapping on the level of elements

This algorithm can be used to generate the detailed system representation based on the abstract one. The output data is well-structured, while the algorithm takes into account compatibility, requirements, dependencies and hierarchy of elements.

It is important to note that this algorithm can be useful to an expert in the design of secure systems, but its full potential is revealed only when interacting with other algorithms from this chapter within the framework of the design methodology from Section 4.5 . In this methodology, this algorithm is using the input data -abstract system model -that is provided based on work of other algorithms and details it with the selection of concrete implementations of components and controllers. Moreover, the algorithm calculates the parameters of the system devices.

Methodology for the design of the system

The methodology for the design of microcontroller-based physical security systems consists of two main cycles. The main goal of the first cycle is to design the abstract system model based on provided requirements, while the second one is about the design of the detailed system model based on the selection of components. The key idea of the methodology is in providing reasonable secure solutions. Such solutions are called alternatives and built according to functional requirements and non-functional limitations. These requirements and limitations are obtained through the transformation of the stakeholder's wishes inside of the requirements and limitations formation technique. The developed methodology considers components that are improving the security level as an integral part of the system. Moreover, the suggested solution works with non-security parameters of the system according to the black box principle: the methodology needs to know how many resources the system requires to perform its functions, so it would be able to calculate the number of resources available for components that are improving the system security level.

Each cycle of the methodology consists of the testing process and seven stages that are associated with the developed extendable set-based hierarchical relational model from Chapter 3 . The testing process occurs after each stage as many times as necessary to build the model of the system.

The objective of the testing process is in checking constructed models in terms of their correctness and compatibility. In terms of the input data, the first cycle works with requirements and limitations, while providing abstract models of system elements and the abstract model of the system as an output. In its turn, the second cycle works with models that were designed by the first cycle and adds to the abstract model data about selected devices and their parameters as an output. It is also possible that the first cycle in addition to requirements and limitations will take the model of the system as input data if the goal is to improve its security according to the new wishes of the stakeholder.

The idea of the design of the abstract system model cycle is to find out an abstract composition of the system to fulfil all formed requirements and limitations. In its turn, the fulfilment of all formed requirements and limitations would mean that the designed system has all the necessary abilities to be able to solve all general tasks. And if the designed system is able to solve all general tasks, then this is exactly the system that the stakeholder wanted, assuming that the decisions are made correctly. That is why each design stage begins from the analysis of the provided input.

To simplify the understanding of the abstract system model design cycle, the input and output data for each stage were summarized in Table 9 , while its overview is presented in Figure 34 . Understanding the dependencies between tasks, abilities, requirements, limitations and different abstract elements of their fulfilment helps the methodology to build the system design process step-by-step. In addition, it allows one to reduce the number of returns to one of the previous steps for reviewing the decisions made.

The issue is that most of such dependencies are not linear. For example, different hardware elements can be used to fulfil several requirements at the same time, while software elements may have their own requirements. It means that there are a number of possible interconnections as well as conflicts between system elements that should be taken into account. As soon as the methodology constructed the scenario of building an abstract model of the microcontroller-based physical security system according to its elements hierarchy and nesting, each design technique starts to work. And while the first four of them are working only with requirements and limitations, the following ones are taking models from the previous stages as an input too. And because the suggested solution has a strong focus on security, the list of possible harmful effects on the system and its elements is also analyzed during each stage.

It is important to note that the methodology works with models of attacker and attack actions to take security into account, see Chapter 3 . The presence of such models allows the methodology to transform stakeholder's wishes for security into the requirement like "system should be secure against the attacker with certain parameters", while the list of possible attack actions for such an attacker could be obtained from the attack surface that is also a part of the database. And according to the requirements, the methodology has a possibility to reduce the number of attack actions that are taken into account during the system security design process.

The testing process for abstract models of the system and its elements occurs after each use of one of the corresponding design techniques to check the correctness and compatibility of the designed model. It is important to note that according to the result of the analysis, it might be concluded that the designed element does not fit on the system level -some of the requirements or limitations are violated. It might happen because of elements incompatibility (platforms, architectures, interfaces, voltage etc.) or due to the lack of computing power of other system devices. In such a situation, the methodology would suggest partial changes in the requirements and limitations or on refusal from some of them. Reconsideration of the requirements and limitations means the need for a redesign process that can affect not only the current design phase but also previous ones. This process occurs as many times as necessary to build the abstract model of the microcontroller-based physical security system or to confirm the inability to do so.

If the abstract model of the microcontroller-based physical security system is constructed, the output of the first cycle is taken as input by the detailed system model design cycle. To simplify its understanding, the input and output data for each stage were summarized in Table 10 , while its overview is presented in Figure 35 .

The idea of the detailed system model design cycle is to fill the abstract model of the system with concrete implementations of components and controllers, their firmware and software. The selection process is based on functional requirements and non-functional limitations as well as dependencies between system elements that were formed during the abstract system model design cycle. Moreover, each selected component forms additional restrictions on the choice of the subsequent. The fundamental difference between this cycle and the previous one is that the components have specific parameters -price, energy efficiency, size, computing power, number of pins, flash memory, etc.

Each stage of the detailed model design cycle begins with the analysis of the provided abstract model. Dependencies between system elements, their requirements, compatibility, hierarchy and nesting were taken into account during the abstract system model design cycle and therefore are an internal part of the model.

With the availability of such information and data about possible options of elements from the database, the methodology is able to build the system components selection process step-by-step. An important difference of this process is the choice of elements from those defining the system as a whole (for example, data transfer environment between devices of the system) to the elements that are implementing the separate functionality of the devices (for example, motion sensor).

Note that depending on the chosen option, some selection stages might be skipped based on the number of available alternatives of the component. Moreover, in most situations, the methodology would use already existing implementations of controllers and components instead of construction of the new integrated circuits. On the other hand, there is still a possibility when the extension of the functionality of the already available solutions would be required. Such a situation would most likely happen on the level of device-to-device communication. This is due to the fact that protocols used in such communication are generally determined only by the interface, packet size and address range [133] . Therefore, it becomes necessary to implement additional functionality on top of these protocols including, for example, dynamic addressing, packet size extension, secure sessions, encryption of the transmitted data as well as mutual authentication between devices. And if the database does not contain elements that satisfy such functionality, the methodology translates them into requirements for the implementation stage of the system. The testing process for selected components of the detailed model occurs after each use of one of the corresponding selection techniques to check its correctness and compatibility. This process checks the properties of the system that are only apparent when concrete components, controllers, interfaces and protocols are selected. It is achievable through the monitoring of the already selected components to find out, for example, incompatibility or lack of memory size, computing power, battery capacity, etc.

It is important to note that according to the result of the analysis, it might be concluded that the selected components are not working as intended -some of the requirements or limitations are violated. It might happen due to the lack of information about changes in the element properties during its operation under specific conditions. In such a situation, the methodology will have to rebuild the system model until it is done.

The work process of the methodology is mostly automated, involvement of the operator is required during the transformation of wishes of stakeholders into requirements and limitations and optional at the stage of selection of the concrete implementations of elements among suitable ones during the process of detailing the abstract system model. Alternatively, the methodology can select implementations on its own. The main idea of the developed methodology is to provide an automated tool for the design of microcontroller-based physical security systems that are protected against attackers. This methodology allows one to reduce the number of weak places and architectural defects, thereby significantly reducing the attack surface of the microcontroller-based physical security systems. In turn, this will reduce the security risks that can lead to financial losses, loss of time as well as the safety of people.

It is important to note that the methodology is not aimed to replace security experts. In most situations, an expert in the security of microcontroller-based systems knows about existing best and highly specialized solutions and is able to form alternatives at a very high level, while the quality of the solution provided by the methodology directly depends on the correctness and completeness of the database. But it can be useful for an expert to automate routine tasks and provide alternative solutions.

Conclusions on Chapter 4

The algorithm for the formation of requirements for microcontroller-based physical security systems is used to extract attack actions that are possible for the attacker and a list of devices of the designed system, their links, communications, bases and requirements in accordance with the attacker's parameters and system's general tasks. This algorithm works with abstract requirements that can represent components of devices and their sub-components as well as links between devices, taking into account controllers used as the basis of the device and possible for each device types of communications that determine attack actions that are potentially dangerous for the designed devices. The output data is well-structured and JSON-based. The work process of the algorithm is automatic, the operator is required for the translation of wishes of the stakeholder into the attacker's parameters and general tasks of the system. The work process of the algorithm contains 6 main stages, namely, initialization of data structures as well as getting attack actions possible for the attacker, security elements to prevent attack actions, abilities of the designed system, requirements of the designed system and device data. The last stage is divided into 7 sub-stages, namely, getting device name, tasks, abilities, requirements, base, types of communication and links.

The novelty of the algorithm for the formation of requirements for the system is in retrieving a list of microcontroller-based system devices, communications available to them, as well as requirements for them only based on system tasks, while the list of attack actions that are possible for the attacker is retrieved in accordance with the type of access, knowledge and resources the attacker has.

The algorithm for the formation of the microcontroller-based physical security system component composition is used to extract abstract elements and sub-elements of the devices of the system, security recommendations to the system and its devices implementation as well as abstract links between devices with related to them abilities based on attack actions that are possible for the attacker, list of devices of the system, their bases, types of communications and links, requirements for them. This algorithm works with abstract elements, links and recommendations and represents the designed system components compositions as multiple devices, each of which has multiple abstract elements, while each abstract element can have multiple abstract sub-elements. Wherein abstract elements and sub-elements are representing controllers and components as well as their software, including those that are related to security. The output data is well-structured and JSON-based. The work process of the algorithm is automated, the operator is not required. The work process of the algorithm contains 2 main stages, namely, initialization of data structures as well as getting the component composition of devices. The last stage is divided into 5 sub-stages, namely, getting abstract elements with their sub-elements, possible attack actions, additional abstract elements with their sub-elements, security recommendations to implementation as well as links between devices.

Unlike other solutions, the algorithm for the formation of the system component composition is retrieving abstract elements and sub-elements of the designed microcontroller-based system in accordance with the requirements, device base and already retrieved elements, while security elements are represented as abstract elements, sub-elements, and recommendations for the system implementation.

The algorithm for the design of abstract models of microcontroller-based physical security systems is used to construct an abstract representation of a secure system based on its devices list, their abilities, elements and sub-elements as well as security recommendations. This algorithm represents the system as an abstract hierarchical model that takes into account connections between system devices, their elemental composition, dependencies between device elements and requirements for them. As output data, the algorithm provides the abstract system model that contains abstract system representation. The structure of the abstract model of the system is JSON-based and contains the following fields: devices, recommendations and links, while each element of the device from the "components" field has its own components (sub-elements), links, requirements and dependencies. The work process of the algorithm is automatic, the operator is not required. It contains 7 main stages, namely, abstract model initialization as well as generation of system recommendations, devices, links requirements, dependencies and hierarchy.

The novelty of the algorithm for the design of the abstract model of the system is in taking into account complex dependencies between the elements of microcontroller-based systems, namely, their hierarchy, nesting, communications, conflicts and requirements. Moreover, this algorithm is not limited to specific platforms and architectures and because of its abstract nature reduces the number of parameters to be searched, thereby increasing the work speed of the solution.

The algorithm for the design of detailed models of microcontroller-based physical security systems is used to construct a detailed representation of a secure system based on its abstract representation. Detailed model of the system preserves and expands the structure of the abstract model of the system and takes into account compatibility, requirements, dependencies and hierarchy of system elements. The process of transition from the abstract system model to a detailed one is a step-by-step process. Each step represents the process of selection of the concrete implementation of one of the system elements, while the sequence of steps is formed in accordance with the hierarchy and dependencies between those elements. Moreover, after each step, the number of options for further steps is limited in accordance with compatibility. As output data, the algorithm provides a detailed system model. The structure of the detailed model of the system is also JSON-based. Moreover, it has the same structure as the abstract model of the system but with some additions: each element from the components field that was selected is extended with the selected field; each device of the system is extended with the parameters field; each link between devices of the system is extended with the selected field. The work process of the algorithm is mostly automated, involvement of the operator is possible at the stage of selection of the concrete implementations of elements among suitable options provided by the algorithm. Alternatively, the algorithm can select concrete implementations on its own. The work process of the algorithm contains 6 main stages, namely, initialization of data structures, generation of selection steps based on links between devices, generation of selection steps based on components of devices, saving data of selected options, detailing of the abstract system model and calculation of the device's parameters.

Unlike existing solutions, the algorithm for the design of the detailed model of the system makes it possible to form a step-by-step process of detailing the abstract representation of microcontroller-based physical security systems in accordance with the hierarchy and mutual dependencies of their elements. Moreover, this algorithm calculates the parameters of the system devices based on the parameters of their elements as well as the parameters of the system based on the parameters of its devices. This algorithm does not replace the abstract model of the system but expands and complements it.

The methodology for the design of microcontroller-based physical security systems consists of two main cycles. The main goal of the first cycle is to design the abstract system model based on provided requirements, while the second one is about the design of the detailed system model based on the selection of components. Each cycle of the methodology consists of the testing process and seven stages that are associated with the developed extendable set-based hierarchical relational model from Chapter 3 . The testing process occurs after each stage as many times as necessary to build the model of the system. The objective of the testing process is in checking constructed models in terms of their correctness and compatibility. In terms of the input data, the first cycle works with requirements and limitations, while providing abstract models of system elements and the abstract model of the system as an output. In its turn, the second cycle works with models that were designed by the first cycle and adds to the abstract model data about selected devices and their parameters as an output.

Another way to represent the workflow of the methodology is to showcase its connection with algorithms, described in this chapter, namely, formation of requirements for the system, formation of the system components composition, design of the abstract model of the system and design of the detailed model of the system. The first three algorithms are representing the abstract system model design cycle, while the last one is representing the detailed system model design cycle.

The novelty of the methodology for the design of microcontroller-based physical security systems lies in a new approach to the design, which allows combining various design techniques on the basis of hierarchical relational model transformation algorithms. Moreover, the suggested approach is modular and extensible, takes into account the security of the physical layer of the system, works with the abstract system representation and is looking for a trade-off between the security of the final solution and expended resources. Also, unlike existing solutions, the methodology has a strong focus on security. It is aimed at ensuring the protection of the system against attacks at the design stage, considers security components as an integral part of the system and checks if the system can be designed in accordance with given requirements and limitations.

One of the main findings of this work, namely software implementation of the methodology for the design of microcontroller-based physical security systems is presented in the next chapter. This software is used to validate the correctness of the developed methodology.

Chapter 5. Software implementation of the methodology for the design of microcontroller-based physical security systems

This chapter describes the software implementation of the methodology for the design of microcontroller-based physical security systems. The description contains information about the architecture, database, script and interface of the application. The application was developed to validate the correctness of the methodology. PostgreSQL database is required to store data about the extendable set-based hierarchical relational model of microcontroller-based physical security systems from Chapter 3 , as well as data for algorithms and methodology from Chapter 4 . This data helps to provide data to the operator as well as helps algorithms and methodology to make decisions about elements compatibility, dependencies, hierarchy and nesting. For more detail, see Section 5.2 .

Architecture of the software implementation

Python script represents the implementation of the algorithms and methodology from Chapter 4 . Each algorithm is implemented as a number of functions, while all functions are connected with each other in a single methodology. The connection between the Python script and the PostgreSQL database is provided by the library. For more detail, see Section 5.3 .

Tkinter interface is required to receive input data from the operator, namely, parameters of the attacker and tasks of the designed system, as well as to provide the output data to the operator. For more detail, see Section 5.4 .

Database of the software implementation

The developed database contains more than 90 tables, while the database initialization contains more than 2300 lines of PL/pgSQL queries [144] .

The developed database has too many tables to be shown at once, that is why it was decided to divide its description into the following parts:

1. Storage of the attacker, attack actions and security elements, see Chapter 3 . Let's consider each part of the database in more detail.

Storage of the attacker, attack actions and security elements

The structure of the database for this part contains 11 tables, see Figure 38 . The connections between parameters of the attacker and the possibility to implement attack actions are stored in the attacker_and_actions table of the database. The content of the table is unique combinations of ids from access_types , knowledge_types , resources_types and attack_actions , see Figure 41 . The output of such an SQL sequence is presented in Figure 42 . The possibility of the implementation of attack actions depends not only on the parameters of the attacker but also on communications, available for the designed devices, their abstract elements and sub-elements as well security elements. Let's consider each dependence in more detail. The communication levels that are possible for the designed devices are stored in the communication_levels table of the database. This table represents levels of communication with the help of unique identification and description. The content of the table is based on the architecture of microcontroller-based physical security systems provided in Section 1.3 , see Figure 43 . The connections between levels of communication and the possibility to implement attack actions are stored in the communication_and_actions table of the database. The content of the table is unique combinations of identification from the following tables: communication_levels and attack_actions , see Figure 44 . The output of such an SQL sequence is equal to (8, imw, "interception, modification or termination of wired communications") .

In this work, it was decided to not connect abstract elements and sub-elements to attack actions directly, because the number of possible elements is huge, while the number of their types is limited in accordance with the microcontroller-based physical security systems attack surface. Possible types of elements are stored in the elements_types table of the database. This table represents types of elements with the help of unique identification and description, see Figure 45 . The output of such an SQL sequence is presented in Figure 47 . The connections between security elements and the possibility to implement attack actions are stored in the security_and_actions table of the database. The content of the table is unique combinations of identification from the following tables: security_elements and attack_actions , see Figure 49 . The output of such an SQL sequence is presented in Figure 50 .

Figure 50 . SQL sequence: security elements to prevent attack actions

Storage of tasks, abilities and requirements

The structure of the database for this part also contains 11 tables, see Figure 51 . Tasks, abilities and requirements are divided into the system and devices ones. Such a division is based on data structures, presented in Section 4.1 . According to the algorithm for the formation of requirements for the system, tasks of the system are linked with abilities of the system, abilities of the system -with requirements of the system, requirements for the system -with tasks of devices, tasks of deviceswith abilities of devices and abilities devices with requirements for devices. Let's consider database tables representing those tasks, abilities and requirements as well as connections between them in more detail.

Tasks of the designed system are stored in the system_tasks table of the database. This table represents tasks of the system with the help of unique identification and description, see Figure 52 .

Figure 52 . Content of the database: tasks of the system Abilities of the designed system are stored in the system_abilities table of the database. This table represents the abilities of the system with the help of unique identification and description, see Figure 53 .

Figure 53 . Content of the database: abilities of the system Connections between tasks and abilities of the system are stored in the system_tasks_and_abilities table of the database. The content of the table is unique combinations of identification from the following tables: system_tasks and system_abilities , see Figure 54 . Based on such a table, it is possible to extract abilities that the designed system should have in accordance with tasks that the designed system should perform (for example, static perimeter monitoring -2, mobile perimeter monitoring -3), with the help of the following SQL sequence:

SELECT system_abilities.* FROM system_abilities WHERE id = ANY(SELECT DISTINCT ability_id FROM system_tasks_and_abilities WHERE task_id IN(2 , 3)) ORDER BY id ;

The output of such an SQL sequence is presented in Figure 55 . The requirements for the designed system are stored in the system_requirements table of the database. This table represents the requirements of the system with the help of unique identification and description, see Figure 56 .

Figure 56 . Content of the database: requirements for the system Connections between the system abilities and requirements are stored in the system_abilities_and_requirements table of the database. The content of the table is a unique combination of identification from the following tables: system_abilities and system_requirements , see Figure 57 . Based on such a table, it is possible to extract requirements for the designed system in accordance with abilities that the designed system should have (for example, to navigate through the perimeter -12, to detect and chase intruders -13), with the help of the following SQL sequence:

SELECT system_requirements.* FROM system_requirements WHERE id = ANY(SELECT DISTINCT requirement_id FROM system_abilities_and_requirements WHERE ability_id IN(12 , 13)) ORDER BY id ;

The output of such an SQL sequence is the following requirement: (3, "device that represents the mobile robots of the system") .

Tasks of designed devices are stored in the device_tasks table of the database. This table represents tasks of devices with the help of unique identification and description, see Figure 58 . Connections between requirements for the system and tasks of devices are stored in the system_requirements_and_tasks table of the database. The content of the table is a unique combination of identification from the following tables: system_requirements and device_tasks , see Figure 59 .

Figure 59 . Content of the database: system requirements and devices tasks

Based on such a table, it is possible to extract tasks of devices in accordance with requirements for the designed system (for example, device that represents the mobile robots of the system -3), with the help of the following SQL sequence:

SELECT device_tasks.* FROM device_tasks WHERE id = ANY(SELECT DISTINCT task_id FROM system_requirements_and_tasks WHERE requirement_id IN(3)) ORDER BY id ;

The output of such an SQL sequence is presented in Figure 60 . Based on such a table, it is possible to extract abilities of devices in accordance with tasks of devices and requirements for the system (for example, requirements: device that represents the charging stations -3; tasks: work cycle support -1, interaction with intruders -5), with the help of the following SQL sequence:

SELECT device_abilities.* FROM device_abilities WHERE id = ANY(SELECT DISTINCT ability_id FROM device_tasks_and_abilities WHERE requirement_id IN(2) AND task_id IN(1 , 5)) ORDER BY id ;

The output of such an SQL sequence is presented in Figure 63 .

Figure 63 . SQL sequence: abilities of devices Requirements for devices are stored in the device_requirements table of the database. This table represents requirements for devices with the help of a unique identification and description, see Figure 64 . The output of such an SQL sequence is presented in Figure 66 .

Figure 66 . SQL sequence: abilities of devices

Storage of abstract elements, sub-elements and links

The structure of the database for this part contains 25 tables. For ease of understanding, it was decided to divide this part into sub-parts: abstract (3. It is important to note that the third part of the database structure is related to the storage of data that is required for the design of the abstract model of the system. This data is used by the algorithms, presented in Sections 4.2 and 4.3 .

Abstract elements of the designed system are stored in the abstract_elements table of the database. This table represents elements with the help of unique identification and name, see Figure 68 . The extraction of abstract elements of devices of the designed system is possible in accordance with security elements (security_elements and elements_types tables from part 1), requirements for devices (device_requirements table from part 2), bases of devices (device_base table from this part of the database) and already extracted elements. Let's consider each extraction possibility in more detail.

Connections between abstract and security elements are stored in the abstract_elements_and_security table of the database. The content of the table is a unique combination of identification from the following tables: abstract_elements and security_elements , see Figure 69 . The output of such an SQL sequence is as follows: (5, "battery") .

Connections between abstract elements and requirements for designed devices are stored in the abstract_elements_and_requirements table of the database. The content of the table is a unique combination of identification from the following tables: abstract_elements and device_requirements , see Figure 70 . Based on such a table, it is possible to extract abstract elements that are required to satisfy requirements for designed devices (for example, access point configuration mechanism -7), with the help of the following SQL sequence:

SELECT abstract_elements.* FROM abstract_elements WHERE id = ANY(SELECT element_id FROM abstract_elements_and_requirements WHERE requirement_id IN(7)) ORDER BY id ;

The output of such an SQL sequence is as follows: (25, "wireless access point").

Bases of the designed devices are stored in the device_base table of the database. This table represents bases with the help of a unique id and name, see Figure 71 . Connections between requirements for devices of the designed system and their bases are stored in the device_requirements_and_base table of the database. The content of the table is a unique combination of identification from the following tables: device_requirements and device_base , see Figure 72 . The output of such an SQL sequence is as follows: (3, "microcontroller").

Connections between abstract elements and bases of devices are stored in the abstract_elements_and_base table of the database. The content of the table is a unique combination of identification from the following tables: abstract_elements and device_base , see Figure 73 . The output of such an SQL sequence is as follows: (17, "microcontroller for electronic components"), (19, " firmware for electronic components").

Connections between abstract elements and their types are stored in the abstract_elements_and_types table of the database. The content of the table is a unique combination of identification from the following tables: abstract_elements and elements_types , see Figure 74 . The output of such an SQL sequence is as follows: (1, "environment sensor"), (4, "electronic component").

Connections between abstract elements are stored in the database in the abstract_elements_and_elements table. The content of the table is a unique combination of identification from the abstract_elements table, see Figure 75 . The content of this table states, for example, that if we already have an element (16, "one-board computer") then it is required to add another one (21, "micro-SD") to the abstract system composition.

The possibilities to combine abstract elements together are stored in the database in the abstract_elements_combination table. The content of the table is also a unique combination of identification from the abstract_elements table, see Figure 76 . The content of this table states, for example, that an element (21, "micro-SD") can be combined with an element (16, "one-board computer") and be its sub-component during the construction of devices components composition.

Dependencies between abstract elements are stored in the database in the abstract_elements_and_dependencies table. The content of the table is a unique combination of identification from the abstract_elements table, see Figure 77 .

The content of this table states, for example, that available for the selected options of the element (23, "troyka shield") are depending on the selection of the element (17, "microcontroller for electronic components"), see Section 4.4 . The content of this table states, for example, that an element (22, "motor shield") requires 4 pins of the controller to be connected. This requirement in combination with requirements of other elements is used to form the requirement for a minimal number of pins of the controllers used in the designed device.

The abstract sub-elements part of the database contains 5 tables, see Figure 79 .

Abstract sub-elements of the designed system are stored in the abstract_subelements table of the database. This table represents sub-elements with the help of unique identification and name.

The extraction of abstract sub-elements of devices of the designed system is possible in accordance with security elements (security_elements table from part 1), requirements for devices (device_requirements table from part 2), bases of devices (device_base table from part 3.1) and abstract elements (abstract_elements table from part 3.1). Let's consider them in more detail. The output of such an SQL sequence is as follows: (11, "firmware update mechanism"), (12, "charge monitoring") and (13, "movement algorithm").

Connections between abstract sub-elements of devices and their bases are stored in the abstract_subelements_and_base table of the database. The content of the table is a unique combination of identification from the following tables: abstract_elements , abstract_subelement and device_bases , see Figure 82 . The output of such an SQL sequence is as follows: (23, "controllers communication algorithm") and (24, "components interaction algorithm").

Connections between abstract sub-elements of devices and security elements are stored in the abstract_subelements_and_security table of the database. The content of the table is a unique combination of identification from the following tables: abstract_elements , abstract_subelements and security_elements , see Figure 83 . The output of such an SQL sequence is as follows: (25, "sensors anomaly detection algorithm"), (27, "events correlation algorithm") and (33, "communication data encryption and decryption algorithm").

Connections between abstract sub-elements of devices and the amount of flash memory required for their work on controllers are stored in the abstract_subelements_and_flash_memory table of the database, see Figure 84 . The content of this table states, for example, that an element (33, "communication data encryption and decryption algorithm") requires 100 KB of the flash memory of the controller. This requirement in combination with requirements of other sub-elements is used to form the requirement for a minimal amount of flash memory of the controllers used in the designed device.

The abstract links sub-part of the database contains 5 tables, see Figure 85 . The extraction of abstract links between elements is possible in accordance with abstract elements (abstract_elements table from part 3.1) and abilities of devices (device_abilities table from part 2). Let's consider them in more detail.

Abstract links between elements of the designed system are stored in the abstract_links table of the database. The content of the table is based on the model of links between system elements, presented in Chapter 3 . This table represents links with the help of unique identification and name, see Figure 86 . Based on such a table, it is possible to extract links between devices of the system in accordance with their abilities (for example, to park near charging stations -14), with the help of the following SQL sequence:

SELECT abstract_links.* FROM abstract_links WHERE id = ANY(SELECT link_id FROM abstract_links_and_abilities WHERE ability_id IN (14)) ORDER BY id ;

The output of such an SQL sequence is as follows: (10, "wireless").

The possibility to decide if devices are linked together or not is based on their abilities and stored in the devices_are_linked table of the database. The content of the table is unique combinations of ids from abstract_abilities table, see Figure 88 . Based on such a table, it is possible to decide if devices of the designed system are linked or not in accordance with their abilities (for example, device 1: to park near charging stations -14, device 2: to help mobile robots to park near -17), with the help of the following SQL sequence:

SELECT id FROM devices_are_linked WHERE ability_1 = 14 AND ability_2 = 17 ;

If the output of such an SQL sequence is not empty then there is a link.

Dependencies between abstract elements and links are stored in the database in the links_and_dependencies table. The content of the table is a unique combination of identification from the device_abilities and abstract_elements tables, see Figure 89 . The output of such an SQL sequence is as follows: (12, "wireless signal receiver"), (14, "wireless signal transmitter").

Abstract links between abstract elements that occur in the process of their combination are stored in the abstract_links_and_elements table of the database. The content of the table is a unique combination of identification from abstract_elements and abstract_links tables, see Figure 90 . The output of such an SQL sequence is as follows: (12, "slot"). It means that it is required to slot a micro-SD card into a single-board computer to link them. Based on such a table, it is possible to extract recommendations to the system implementations in accordance with its security elements (for example, password policy -12), with the help of the following SQL sequence:

SELECT system_recommendations.* FROM system_recommendations WHERE id = ANY (SELECT recommendation_id FROM system_recommendations_and_security WHERE security_id IN(12)) ORDER BY id ;

The output of such an SQL sequence is as follows: (1, "to develop and use strong password policy for all login credentials of the system").

Connections between recommendations to the implementation of devices and security elements are stored in the device_recommendations_and_security table of the database. The content of the table is a unique combination of ids from the following tables: device_recommendations and security_elements , see Figure 95 . Based on such a table, it is possible to extract recommendations to devices implementations in accordance with their security elements (for example, hidden placement of sensors -2), with the help of the following SQL sequence:

SELECT device_recommendations.* FROM device_recommendations WHERE id = ANY (SELECT recommendation_id FROM device_recommendations_and_security WHERE security_id IN(2)) ORDER BY id ;

The output of such an SQL sequence is as follows: (1, "to hide monitoring sensors of this device").

Storage of detailed elements

The structure of the database for this part contains more than 50 tables. Moreover, in contrast to other parts, the number of tables in this part can only be increased by adding new components and controllers. This is due to the fact that this part of the database is related to concrete implementations that are represented as possible options for abstract elements during the detailing process of the abstract system model, see Section 4.4 .

To represent the main idea of this part, it was decided, firstly, to show the sub-part of this part that is related to the connections between abstract elements and their concrete implementations and, secondly, to show an example of the database structure for one of the implementations.

The connections between abstract and detailed elements sub-part contains only 2 tables and is connected with abstract_elements table from part 2, see Figure 96 . Selectable elements are stored in the selectable_elements table of the database. Selectable for the abstract element means that it can be selected by the design methodology, see Section 4.5 , because the database is filled with data about its concrete implementations. The table represents selectable elements with the help of unique identification of the abstract element, see Figure 97 . The content of this table states, for example, that an element (13, "wireless charge transmitter") is selectable, while an element (3, "application with graphical user interface") is not. It means that it would be necessary to develop such an application after the design of the system.

Database tables that are storing data about implementations of abstract elements are stored in the selectable_elements_and_db_tables table of the database. This structure helps the design methodology to navigate through the selection process during the detailing of the abstract system model, see Section 4.4 . The table represents database tables with the help of unique identification, identification of the abstract element and name of the database table, see Figure 98 . The content of this table states, for example, the possible implementations of the abstract element (13, "wireless charge transmitter") are stored in the wireless_charge_transmitters table of the database.

As an example of the database structure for one of the implementations , it was decided to show tables related to the abstract element (5, "battery"). This structure contains 13 tables, see Figure 99 .

According to this structure, the selected implementation of the abstract element (). All these connection tables are storing data about compatibility between implementations of abstract elements. In turn, tables for implementations are storing data about their parameters, providing a possibility to check their correspondence to the provided requirements. The role of the script is to implement algorithms from Chapter 4 , combine them together into the design methodology from Section 4.5 and to provide connections between the database from Section 5.2 and the interface from Section 5.4 .

The script connects itself with the developed interface with the help of the pygubu library. Firstly, builder is created:

self .builder = builder = pygubu.Builder() After that, the interface is loaded from the file:

builder.add_from_file("interface/design_GUI.ui")

This allows the script to get access to objects of the interface and control them: default state, selected values and callback functions of objects as well as links between them can be defined. For example, it is possible to create the main windows of the interface and run it: The script connects itself with the developed database with the help of the psycopg2 library and its extension sql. Connection can be defined as follows: where instead of database_name , user_name , user_password , host_ip and host_port the corresponding data is required.

#
This allows the script to extract data from tables of the database. For example, the execution of the SQL query from the script can be done as follows: The main difference is the possibility to provide a database table name as a variable option. Such a possibility is actively used in the process of detailing the abstract system model. where attacker_actions , devices_list , devices_links , devices_requirements , devices_communications and devices_bases are the output data of the algorithm described in Section 4.1 , while log_str is used to collect the work log of the algorithm and output it to the operator through the interface.

The algorithm for the formation of requirements

This algorithm consists of 6 stages, while the last stage consists of 7 sub-stages. Let's consider the implementation of each stage in more detail.

First stage is about initialization of data structures: Fourth stage is about getting abilities of the designed system:

log_str, system_abilities = \ system_abilities_get(log_str, task_1, task_2, task_3)

Fifth stage is about getting requirements of the designed system:

log_str, system_requirements = \ system_requirements_get(log_str, system_abilities)

Sixth stage is about getting data of devices of the system: where system_recommendations , abstract_system_arr and abstract_links_arr are the output data of the algorithm described in Section 4.2 , while log_str is used to collect the work log of the algorithm and output it to the operator.

This algorithm consists of 2 stages, while the last stage consists of 5 sub-stages. Let's consider the implementation of each stage in more detail.

First stage is about initialization of data structures: where abstract_system_composition is the output data of the algorithm described in Section 4.3 , while the output of the algorithm is provided directly to the interface in JSON format: This algorithm consists of 7 stages, let's consider them in more detail.

First stage is about initialization of the abstract model:

global abstract_system_composition abstract_system_composition["devices"] = {} abstract_system_composition["recommendations"] = {} abstract_system_composition["links"] = {}

Second stage is about generation of the system security recommendations:

abstract_model_system_recommendations(system_recommendations)

Third stage is about generation of the system devices:

device_keys, devices_elements_keys = \ abstract_model_devices(system_recommendations, abstract_system_arr)

Fourth stage is about generation of links between devices:

links_dep_elements = \ abstract_model_links(device_keys, devices_elements_keys, abstract_links_arr)

Fifth stage is about generation of requirements for links:

abstract_model_links_requirements(links_dep_elements, system_security_elements_set)

Sixth stage is about generation of dependencies between elements:

abstract_model_devices_dependencies_and_requirements()

Seventh stage is about generation of the hierarchy of elements:

abstract_model_devices_hierarchy()

The algorithm for the design of detailed models of microcontroller-based physical security systems, see Section 4.4 , is implemented as the following functions:

Generation of the alternative of the system model # based on the results of selection process self .alternative_generation()

where abstract_system_composition is the input and output data of the algorithm described in Section 4.4 (it becomes output data after the detailing process), while the output of the algorithm is provided directly to the interface in JSON format: This algorithm consists of 6 stages, let's consider them in more detail.

First stage is about initialization of the data structures:

global select_step global develop_dict scrollable_frame = \ self .selection_initialization()
Second stage is about generation of selection steps based on devices links:

global select_dict global select_step

First steps are always related to links between devices selection_steps_based_on_links()

Third stage is about generation of selection steps based on devices components:

global select_dict global select_step

After links, steps are related to system devices, one by one selection_steps_based_on_devices()

Fourth stage is about saving data of selected options:

select_dict[select_key]["selected"]["table"] = temp_table_name select_dict[step_key]["selected"]["db_id"] = temp_id

Fifth stage is about detailing of the abstract system model:

Extraction of data about selected links and elements step-by-step temp_selected_elements = \ abstract_model_detailing()

Sixth stage is about calculation of the parameters of devices:

Calculation of parameters of devices based on parameters of their components for device_key in temp_selected_elements: output_str = \ device_parameters_calculation(output_str, device_key, temp_selected_elements)

Thus, all algorithms from Chapter 4 are implemented in the script, while their combination is representing the base of the design methodology from Section 4.5 . Note that the content of the script is described on a very high level to provide a general idea and connect it with descriptions of algorithms. For more detail, please, download its source code together with the dump of the database using the following link: https://github.com/levshun/PhD-mcbpss_design .

Interface of the software implementation

The interface is an important part of the software implementation because it provides a possibility for the operator to work with the design methodology from Chapter 4 . As was mentioned, the work process of the methodology is mostly automated, while the involvement of the operator is required during the transformation of wishes of stakeholders into requirements and limitations and optional at the stage of selection of the concrete implementations of elements among suitable ones during the process of detailing the abstract system model. Alternatively, the methodology can select implementations on its own. So, using the developed interface, the operator can set the parameters of the attacker, against which the system is required to be protected, as well as tasks of the system.

The interface of the application after launch is shown in Figure 101 . The interface of the application consists of 6 main parts :

1. Input of the parameters of the attacker against which the designed microcontroller-based physical security system needs to be protected. 2. Input of the tasks that need to be solved by the designed microcontroller-based physical security system. 3. Frame to display the process of selection of components of the designed microcontroller-based physical security system. The interface for each selection step is represented as a drop-down list with options and based on the combination of ttk.Combobox , ttk.Button and ttk.Label . The selection process begins with the choice of communications between devices of the designed system and after that continues with components of each device, namely server, stations and robots, are selected, see Chapter 4 .

Part 4.

Frame for the design methodology work process log displays separate logs for the designed system, its devices, abstract and detailed models, see Figure 105 . Display of log is based on tk.Text and tk.Scrollbar objects that are linked together. System log contains information about attack actions that are possible for the selected attacker, security elements that should be used to prevent them, system abilities that were formed based on provided tasks, requirements that were formed based on these abilities and recommendations for the system implementation. For more detail, see Chapter 4 .

Server , Stations and Robots logs contain information about tasks that were formed for each device, abilities that were formed based on these tasks, requirements that were formed based on these abilities, base of this device, its abstract elements, sub-elements and types of communication, attack actions that are possible based on types of communication, abstract elements and attacker parameters, security elements to prevent attack actions, additional elements of the device, additional sub-elements of the device, generated set of device components and recommendations for the server implementation. For more detail, see Chapter 4 .

Abstract log contains the abstract system model in JSON format, see Figure 106 : • system contains devices, recommendations and links;

• each device contains id, name, components and recommendations;

• each recommendation (system/device) contains id and name;

• components of each device contain elements, each of which has its own id, name, components, links, requirements, dependencies and parent tag; • each element link contains id, type and parties; • each element requirement contains id and name; • each element dependency contains keys of elements that depend on them; • element parent tag contains the key of the element that contains this element as its sub-element. Frame for the results of the design methodology displays for each device the list of its components that were selected with their parameters as well as the list of components that are required to be developed or configured with required algorithms or settings, see Figure 108 . In addition, the parameters of each device as well as security recommendations for their implementation are displayed. Design button starts the design process for the abstract model of the microcontroller-based physical security system. Select button starts the selection process for the elements of the system to design its detailed model. Automatic checkbutton switches from manual selection process (by the operator) to automated (by the methodology).

Conclusions on Chapter 5

The architecture of the software implementation of the methodology consists of the Python script, PostgreSQL database and Tkinter interface. PostgreSQL database is required to store data about the extendable set-based hierarchical relational model of microcontroller-based physical security systems from Chapter 3, as well as data for algorithms and methodology from Chapter 4. Python script represents the implementation of the algorithms and methodology from Chapter 4. Each algorithm is implemented as a number of functions, while all functions are connected with each other in a single methodology. Tkinter interface is required to receive input data from the operator, namely, parameters of the attacker and tasks of the designed system, as well as to provide the output data to him or her.

The developed database contains more than 100 tables, while the database initialization contains more than 2300 lines of PL/pgSQL queries. The structure of the database is huge, that is why it was decided to divide its description into the following parts of storage: (1) attacker, attack actions and security elements; (2) tasks, abilities and requirements; (3) abstract elements, sub-elements and links; and (4) detailed elements. The structure of the first part contains 11 tables, while the structure of the second -11, third -27 and fourth -more than 50. Moreover, it was decided to divide the third one into abstract sub-parts, namely, (3.1) elements, (3.2) sub-elements, (3.3) links and (3.4) recommendations. The description of the database contains information about connections between its parts, structure of its tables, connections between tables and examples of their content as well as examples of SQL queries to extract data from the database.

The developed script contains more than 3000 lines of code and works with such imports as psycopg2, tkinter, pygubu, networkx, json, functools and time. The role of the script is to implement algorithms from Chapter 4 , combine them together into the design methodology from Section 4.5 and provide connections between the database from Section 5.2 and the interface from Section 5.4 . The script connects itself with the developed interface with the help of the pygubu library. This allows the script to get access to objects of the interface and control them: default state, selected values, callback functions and links between them can be defined. The script connects itself with the developed database with the help of the psycopg2 library and its extension sql. This allows the script to extract data from tables of the database. The description of the script contains the information about the implementation of each algorithm from Chapter 4 with all their stages.

The interface is an important part of the software implementation because it provides a possibility for the operator to work with the design methodology from Chapter 4 . As was mentioned, the work process of the methodology is mostly automated, while the involvement of the operator is required during the transformation of wishes of stakeholders into requirements and limitations and optional at the stage of selection of the concrete implementations of elements among suitable ones during the process of detailing the abstract system model. Alternatively, the methodology can select implementations on its own.

The interface of the application consists of 6 main parts: (1) input of the parameters of the attacker against which the designed system needs to be protected; (2) input of the tasks that need to be solved by the designed system; (3) frame to display the selection process of the designed system components; (4) frame to display the work log of the design methodology; (5) frame to display the results of the design methodology and (6) control buttons of the application.

The source code of the script, the dump of the database as well as the file of the graphical user interface are available for download using the following link: https://github.com/levshun/PhD-mcbpss_design .

The experimental evaluation of the software implementation of the methodology for the design of microcontroller-based physical security systems is presented in the next chapter. It is evaluated in accordance with requirements from Section 1.4 and the problem statement from Section 1.5 based on methods from Chapter 2 .

Chapter 6. Experimental evaluation of the methodology for the design of microcontroller-based physical security systems

This chapter describes the evaluation of the methodology for the design of microcontroller-based physical security systems. It contains the description of the experiment of its application to the use case of mobile robots for the perimeter monitoring as well as results of the evaluation of its software implementation.

Experiment description

As was mentioned in Chapter 5 , software implementation of the design methodology is an application that consists of the Python script, PostgreSQL database and Tkinter interface. For the experiment, it was decided to run this application on the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD and 32 GB RAM.

In accordance with Sections 1.4 and 1.5 , it is required to evaluate the software implementation based on functional and non-functional requirements as well as compare it with commercial and scientific solutions.

Functional requirements are representing the list of functions that are defining the actions that the software implementation must perform: 1. Building an abstract representation of the designed system. 2. Finding a trade-off between the resources spent and security.

3. No restrictions on platforms and architectures of the devices to be designed. 4. The extensibility of the design process. 5. Taking into account the physical layer of designed systems.

Non-functional requirements are describing the system requirements and constraints imposed on the resources consumed by the software implementation: 1. Time required for the design process of the abstract model of the system should be less than 1 second. 2. Time required for the design process of the detailed model of the system should be less than 4 seconds. 3. Number of resources required for the design process of the system should be less than 25% of the computer resources. 4. Number of levels of the system, the security of which can be ensured, should be maximized. 5. Number of classes of attack actions against which the system can be protected should be maximized.

The first and second non-functional requirements are representing the time consumption and are checked in accordance with the method from Section 2.1 .

Description of the system

For the experiment, it was decided to design a microcontroller-based physical security system that provides perimeter monitoring based on mobile robots, see Figure 110 . This system contains a server as well as multiple mobile robots and charging stations with different controllers and components. Robots (mobile objects) and stations (static objects) are monitoring the perimeter via different sensors based on the server instructions. And if the battery of one of the robots is low, it moves to the nearest free charging station. The information about the perimeter map, locations of robots and stations as well as the charge state of robots and occupancy of stations is stored on the server.

Figure 110 . Architecture of the perimeter monitoring system Such a system was chosen due to the presence of several types of devices, multiple communications between them, as well as the need to use many different elements for each device in the system (server consists of 8 elements with sub-elements, station -12 and robot -17, which means that such a system is appropriate in accordance with the provided requirements). Moreover, there are links between devices of the system and elements of devices, requirements for links and elements as well as dependencies between them. Also, during the design of such a system, it is necessary to ensure not only its functionality (perimeter monitoring) but also to ensure that the system is secure against attacks on it.

Tasks, abilities and requirements of the system and its devices

As was mentioned in Section 4.1 , extraction of requirements for the designed system starts from its tasks that are formulated by the operator in accordance with the wishes of the stakeholder. Tasks of the microcontroller-based physical security system, described in Section 6.1.1 , can be represented as follows:

• centralized system management; • static perimeter monitoring; • mobile perimeter monitoring;

• appropriate level of security.

Note that an appropriate level of security is set according to parameters of the attacker model presented in Section 3.2 -access, knowledge and resources types. Links between these tasks and abilities as well as requirements are considered in more detail in Table 11 . It is required to store tasks of the system in the system_tasks table of the database, abilities -system_abilities , requirements -system_requirements , while connections between them in such tables as system_tasks_and_abilities and system_abilities_and_requirements . For more detail, see Section 5.2.2 .

As noted in Table 11 , requirements can be divided into requirements for the server, mobile robots and charging stations of the system as well as security requirements. Note that security requirements should be taken into account not only on the system-level but also during the design of all its devices. Let's consider the requirements for the server of the system in more detail.

Once again it is required to analyze tasks for such a device, connect them with abilities and requirements, see Table 12 . Tasks of the server can be divided:

• work cycle support;

• interaction with the operator;

• interaction with other devices;

• appropriate level of security.

Note that on the level of devices it becomes possible to connect requirements with controllers and different components as well as parts of the software and firmware.

In addition, requirements for the designed system must be connected with the corresponding tasks of its devices. It is required to store those connections in the system_requirements_and_tasks table of the database, see Section 5.2.2 . security should be taken into account during the formation of all elements of the device It is required to store tasks of the device in the device_tasks table of the database, abilities -device_abilities , requirements -device_requirements , while connections between them in device_tasks_and_abilities and device_abilities_and_requirements . For more detail, see Section 5.2.2 .

The following device, whose requirements must be considered in more detail, is one of the charging stations of the system . Its tasks can be divided:

• work cycle support;

• interaction with intruders;

• interaction with mobile robots;

• interaction with the server;

• appropriate level of security.

Links between tasks, abilities and requirements of one of the charging stations are considered in more detail in Table 13 . security should be taken into account during the formation of all elements of the device Once again, it is required to store this data in the database: tasks -device_tasks , abilities -device_abilities , requirements -device_requirements , while connections between them in device_tasks_and_abilities and device_abilities_and_requirements . For more detail, see Section 5.2.2 .

The last device, which requirements are required to be considered in more detail, is one of the mobile robots of the system . Its tasks can be divided:

• work cycle support;

• perimeter monitoring;

• interaction with intruders;

• interaction with charging stations;

• interaction with the server;

• appropriate level of security.

Links between tasks, abilities and requirements of one of the mobile robots are considered in more detail in Table 14 . Once again, it is required to store this data in the database: tasks -device_tasks , abilities -device_abilities , requirements -device_requirements , while connections between them in device_tasks_and_abilities and device_abilities_and_requirements . For more detail, see Section 5.2.2 .

It is important to note that devices of the designed system have requirements that introduce dependencies between their elements after selection:

• wireless network interface requirements must be satisfied for the server, charging stations and mobile robots in such a way that they can communicate with each other (selected implementations must be compatible); • wireless charge transmitters of charging stations must be compatible with wireless charge receivers of mobile robots; • wireless signal transmitters of charging stations must be compatible with wireless signal receivers of mobile robots.

Also, dependencies between tasks and abilities can be hierarchical, for example, such dependencies for one of the mobile robots are presented in Figure 111 .

Figure 111 . The hierarchy of tasks and abilities of one of the mobile robots

Component composition of devices of the system

As was mentioned in Section 6.1.2 , the microcontroller-based physical security system from Section 6.1.1 contains three types of devices -the server, mobile robots and charging stations, while each type has its own requirements. This section is describing how the database of the software implementation, the structure of which was presented in Section 5.2 , can be filled, so the algorithms from Sections 4.1 and 4.2 will be able to prepare data for the abstract system representation.

It is important to note that in this section it is assumed that the database is filled with data about attackers, attack actions and security elements as well as connections between them in accordance with Chapter 3 , while the structure of the database for them was presented in Section 5.2.1 .

In Section 5.2.3 it was stated that in this work there are three types of bases that are possible for microcontroller-based devices, namely, such a device can be based on a single-board computer , connected microcontrollers or microcontroller . Moreover, the possibilities of bases are hierarchical: any single-board computer can do anything that is possible for connected microcontrollers while having additional possibilities, any connected microcontrollers > any microcontroller and so on. Possible bases of devices must be stored in the device_base table of the database, while the hierarchy of bases is represented by their ids in this table: more possibilities → lower id.

The process of understanding which base is required for the designed devices is based on checking its requirements. It means that each requirement for any device from Section 6.1.2 that are stored in device_requirements must be connected with an appropriate base from device_base , while appropriate means base with minimal possibilities that can be used to satisfy the requirement. For example, the requirement "32-bit operating system" requires the "single-board computer" base to be satisfied, while "wireless signal transmitter" can be satisfied by "microcontroller". Such connections must be stored in device_requirements_and_base .

In accordance with the architecture of microcontroller-based physical security systems that is used in this work, devices of such systems can communicate only on four levels: controller ↔ component , controller ↔ controller , device ↔ device and system ↔ system (note: might not be all of them). Communication levels are stored in communication_levels , while their availability for designed devices is defined in accordance with their bases. For example, "microcontroller" base can communicate only on "controller ↔ component" level, while "connected microcontrollers" -"controller ↔ component", "controller ↔ controller" and "device ↔ device". It is required to store such connections in base_and_communication .

Possible abstract links between devices of the designed system must be stored in the abstract_links table of the database. For the system provided in Section 6.1.1 , it is enough to store "wireless" here. After that, stored links must be connected with the abilities of devices from device_abilities to define which abilities are required to have one of the "wireless" links between devices. Such connections must be stored in abstract_links_and_abilities . For example, "wireless" link robots ↔ stations can be extracted in accordance with the ability of stations "to help mobile robots to park near" and "to park near charging stations" ability of mobile robots.

It is also required to connect requirements for devices with abstract elements and sub-elements that can be used to satisfy them. It is important to note that not all requirements can be represented as abstract elements. For example, the requirement "32-bit operating system" can be linked with the abstract element "32-bit operating system", while the requirement "wire network interface" can only be used as one of the requirements for the implementation of the controller of the designed device. Moreover, the requirement "charge monitoring algorithm" can be linked only with the abstract sub-element "charge monitoring algorithm". Abstract elements must be stored in abstract_elements , sub-elements -abstract_subelements .

After that, based on the algorithm from Section 4.2, it is required to connect abstract elements with bases of designed devices, requirements for them, sub-elements, each other and security elements. Let's consider each connection in more detail.

Connections between abstract elements and bases are stored in the abstract_elements_and_base table of the database. For example, base "connected microcontrollers" can be connected with "microcontroller for electronic components" and "microcontroller for wireless communication" abstract elements.

Connections between abstract elements and requirements for designed devices are stored in abstract_elements_and_requirements . For example, the requirement "distance sensor" can be connected with the "distance sensor" abstract element. Note that it is not obligatory for the requirement to have the same name as the corresponding abstract element. For example, this requirement can be rewritten as "to have a sensor that is able to measure the distance to the nearest obstacle". Developed algorithms are not working with text values of requirements and are interested only in their identification in the database.

There are also inner connections between abstract elements. Such connections are required because not all abstract elements that are necessary for the designed device can be extracted in accordance with bases and requirements. Some of them can be extracted only based on other abstract elements. For example, the abstract element "single-board computer" is connected with the "micro-SD" abstract element. Such connections must be stored in abstract_elements_and_elements .

Abstract sub-elements can be extracted in accordance with device requirements, but they are also dependent on abstract elements because they represent their parts.

For example, the requirement "obstacles detection algorithm" states that the abstract element "firmware for electronic components" must have such abstract sub-elements as "obstacles detection algorithm" and "obstacles avoidance algorithm". Such connections must be stored in abstract_elements_and_subelements .

In addition, abstract sub-elements can be extracted in accordance with device bases and abstract elements they are dependent on. For example, the "microcontroller" base adds the "electronic components interaction algorithm" abstract sub-element to the "firmware for electronic components" abstract element.

Connections between abstract and security elements are stored in abstract_elements_and_security . For example, the security element "backup power supply" can be connected with the abstract element "battery".

Connections between abstract sub-elements and security elements are stored in abstract_subelements_and_security . Once again, sub-elements are representing parts of elements, that is why such connections are also depending on them. For example, the security element "data encryption" adds the abstract sub-element "communication data encryption and decryption algorithm" to the abstract elements "firmware for electronic components".

Note that not all security elements can be interpreted as abstract elements and sub-elements. That is why in this work some of them are interpreted as recommendations to the implementation. Such recommendations are divided into one related to the designed system and the other one related to its devices.

Connections between recommendations to the implementation of devices and security elements are stored in the device_recommendations_and_security table of the database. For example, the security element "hidden placement of sensors" can be connected with the requirement "to hide monitoring sensors of this device".

Connections between recommendations to the implementation of the system and security elements are stored in the system_recommendations_and_security table of the database. For example, the security element "training of operators and users" can be connected with the requirement "to educate operators and users of the system about social engineering attacks".

To not describe each insert to the developed database, its dump that was used for the design of the microcontroller-based physical security system, namely, perimeter monitoring system based on mobile robots, is available for download using the following link: https://github.com/levshun/PhD-mcbpss_design .

Application of the design methodology

The application of the design methodology presented in Section 4.5 to the system presented in Section 6.1.1 can be divided into the design of its abstract and detailed models. Wherein the detailed model is an extension of the abstract one as well as the abstract model is a representation of the extendable set-based hierarchical relational model presented in Chapter 3 . Let's consider the fulfilment of the database for the design of each model in more detail.

Abstract model of the system

The algorithm for the design of abstract models of microcontroller-based physical security systems is presented in Section 4.3 . This algorithm represents the system as an abstract hierarchical model that takes into account connections between system devices, their elemental composition, dependencies between device elements and requirements for them. Let's consider database tables that must be filled for the correct work of the algorithm in more detail.

As was mentioned in Section 5.2.1 , in this work abstract elements are divided into several types that are stored in elements_types . Connections between abstract elements and their types are stored in abstract_elements_and_types . For example, such abstract elements as "distance sensor" and "touch sensor" can be connected with the type "environment sensors", while "motion sensor" and "noise sensor" -"monitoring sensors". This table can also be used to calculate the number of abstract elements of a certain type.

During the formation of requirements to controllers of microcontroller-based devices, it is important to assume the number of digital and analogue pins that are required to connect all necessary abstract elements as well as the amount of flash memory that is required to run the firmware with all necessary abstract sub-elements.

Connections between abstract elements and the number of pins that are required for their connection to controllers are stored in abstract_elements_and_pins . For example, the abstract element "motor shield" requires 4 pins of a controller, while "motion sensor" requires only 1. Based on the designed device component composition and the content of abstract_elements_and_pins it becomes possible to form requirements for controllers of devices that are defining the minimal number of pins that they must have.

Connections between abstract sub-elements and the amount of flash memory that is required for them are stored in abstract_subelements_and_flash_memory . For example, the "communication data encryption and decryption algorithm" required 100 KB of flash memory, while the "obstacles detection algorithm" required only 20 KB. Based on algorithms of the firmware of controllers of designed devices and the content of abstract_subelements_and_flash_memory it becomes possible to form requirements for controllers that define the minimal amount of flash memory that they must have.

It is important to take into account dependencies between abstract elements and links during the design of the abstract system model. Such dependencies are taken into account during the selection of the implementations of elements and links during the abstract model detailing process. In this work, dependencies are divided into two types: abstract elements that are depending on abstract links and abstract elements that are depending on other abstract elements. Let's consider each type in detail.

Dependencies between abstract links and abstract elements are stored in the links_and_dependencies table of the database. For example, the link that is based on such abilities as "to be charged in a wireless way" and "to charge parked devices" can be connected with the following abstract elements: "wireless charge receiver", "wireless charge transmitter" and "battery". It means that after the implementation of the wireless charging link between devices is selected, the number of options for the selection of mentioned abstract elements is limited for compatibility.

Dependencies between abstract elements are stored in the following table of the database: abstract_elements_and_dependencies . For example, the following abstract elements are depending on the "microcontroller for electronic components" abstract element: "battery", "motor shield" and "troyka shield". It means that after the implementation of the controller that is used to work with components of the device is selected, the number of options for the selection of mentioned abstract elements is also limited for compatibility.

In this work, links are taken into account not only on the level of communications between devices of the designed system but also on the level of communications between elements of devices. The information about the link between two elements after their combination must be stored in abstract_links_and_elements . For example, the combination of the following abstract elements can be connected with the abstract link "VG": "microcontroller for electronic components" and "battery". In the mentioned abstract link, "V" means voltage, while "G" means ground. Such a link represents a two-wire connection, where two elements are sharing the power supply.

For more information about possible values of abstract links, see Section 3.1 .

The information about the possibility to combine one abstract element with another must be stored in abstract_elements_combination . For example, the abstract element "32-bit operating system" can be connected with the following elements: "sql database", "application with a graphical user interface" and "wireless access point". It means that each of mentioned abstract elements can be a part of "32-bit operating system": "sql database" and "application with a graphical user interface" can be installed and executed with its help, while "wireless access point" can be configured based on the operating system functionality. It means that each abstract element of each device of the system must be detailed based on the selection of its implementation that satisfies given requirements, while the number of elements to be detailed differs from device-to-device. It means that the algorithm requires an abstract way to work with any number of abstract elements and extract necessary knowledge about their implementations from the database.

Such work of the algorithm is possible because of the following table of the database: selectable_elements_and_db_tables . This table connects abstract elements with names of database tables, where their implementations are stored. For example, implementations of the abstract element "32-bit operating system" are stored in the operating_systems_32bit table, while "microcontroller for electronic components" -microcontrollers_for_electronic_components . It means that the algorithm can provide the database id of the abstract element to find out in which table its implementations are stored.

After all possible implementations of the abstract elements are known for the algorithm, it is required to check them in terms of requirements, compatibility and dependencies. Let's consider what tables of the database are used for this.

Requirements are checked based on the content of the database table, extracted from selectable_elements_and_db_tables . Each requirement from the abstract system model has the same name as the column of the checked table. For example, implementations of the abstract elements "microcontroller for electronic components" are stored in microcontrollers_for_electronic_components . As a rule, there are requirements to the number of its pins and the amount of its flash memory:

" pins " : 16 , " flash_kb " : 540

In turn, the table microcontrollers_for_electronic_components has corresponding columns with the same names:

flash_kb INTEGER NOT NULL , pins INTEGER NOT NULL ,
It means that such requirements can be checked with an SQL query, where the name of the requirement is used as a column name, while the value of the requirements is used as a minimum value that satisfies the requirement.

Compatibility is also checked in accordance with the requirements that were formed during the design of the abstract system model. But those requirements were formed in accordance with abstract sub-elements. The information about which implementation from the corresponding database table is compatible with provided abstract sub-elements are stored in database tables, whose naming is following the rule: db_table_name + "_and_compatibility" .

For example, it is required to select the implementation of the "microcontroller for wireless communication" abstract element. Its implementations are stored in mcs_for_ws_communication (based on selectable_elements_and_db_tables). It means that information about implementations compatibility with abstract sub-elements must be stored in mcs_for_ws_communication_and_compatibility . Moreover, the structure of such tables must be as follows: Otherwise, the algorithm will not be able to check the compatibility requirements. And to continue the example about the "microcontroller for wireless communication", in most cases, it must be compatible with the requirement to have the "bootloader" abstract sub-element, so its firmware can be updated.

CREATE
Dependencies between abstract elements and links must be stored in database tables that are named based on the following rule: option_1_table_name + "_and_" + option_2_table_name For example, let's consider dependencies of the "wireless signal receiver" abstract element, implementations of which are stored in wireless_signal_receivers . Selection of this element depends on the selection of implementations of the following abstract elements and links: the wireless link between charging stations and mobile robots for their communication during parking and the "troyka shield", to which this receiver is required to be connected. Possible implementations of the mentioned link are stored in links_between_devices , while ones for the "troyka shield" -troyka_shields .

It means that dependencies between "wireless signal receiver" and abstract links must be stored in wireless_signal_receivers_and_links_between_devices , while with "troyka shield" in wireless_signal_receivers_and_troyka_shields . The structure of such tables of the database must be as follows: Otherwise, the algorithm will not be able to take into account dependencies between implementations during their selection.

Once again, to not describe each insert to the developed database, its dump that was used for the design of the microcontroller-based physical security system, namely, perimeter monitoring system based on mobile robots, is available for download using the following link: https://github.com/levshun/PhD-mcbpss_design .

At this point, all tables of the database that are required for the correct work of the methodology for the design of microcontroller-based physical security systems, presented in Section 4.5 , are manually filled with data that is required for the system, presented in Section 6.1.1 . It means that the software implementation, presented in Chapter 5 , can be executed as many times as necessary to check its compliance with the requirements, analyzed in Section 6.1 .

It is important to note that while the fulfilment of the database with data for the design of one microcontroller-based physical security system requires a lot of time and effort, this effort can be used to design not only one system. It is assumed that the database would be filled in such a way that different microcontroller-based systems will partially share tasks, abilities, requirements, abstract elements, links and sub-elements as well as their implementations with each other, so the fulfilment of the database will take less time and effort after each system. Moreover, while in this work many tables of the database that are responsible for the compatibility of elements of designed devices were filled manually, this process can be automated. Such automation means the process of checking parameters of elements that were checked for decision making (for example, voltage, current, interface, number of wires, etc.) during manual fulfilment.

In addition, based on the content of different online shops that are selling controllers and components for the implementation of microcontroller-based devices, it is possible to fill the database with information about such implementations automatically with the help of the parsing script. It would require multiple parsers, most likely one for each online shop, while each parser will require to be updated from time to time because online shops are not static.

Finally, the process of fulfilment of the database presented in Section 5.2 can be shared between multiple enthusiasts and researchers. The formation of such a community would require the development of the web interface, which will guide contributors through the main steps of filling the database with data to design the selected microcontroller-based physical security systems. It would also require multiple algorithms for the checking of the correctness of the provided data.

Thus, provided instructions on the fulfilment of the developed database should be considered as a general approach, which can be improved with help of the user-friendly interface as well as automated at many points, while the task of fulfilment can be shared among the community of enthusiasts.

Evaluation of the design methodology

To evaluate the methodology for the design of microcontroller-based physical security systems, presented in Chapter 4 , it is required to analyze the compliance of its software implementation, presented in Chapter 5 , with functional and non-functional requirements as well as to compare the obtained results with scientific and commercial solutions. In addition, it is planned to investigate the dependencies between the design time of the system, presented in Section 6.1.1 , and parameters of the attacker, presented in Section 3.2 .

Compliance with functional requirements

Functional requirements are representing the list of functions that are defining the actions that the software implementation must perform. In Section 1.4 the following functional requirements were formulated:

• building an abstract representation of designed systems;

• finding a trade-off between the resources spent and security;

• no restrictions on platforms and architectures of devices to be designed;

• extensibility of the design process;

• taking into account the physical layer of designed systems.

Let's consider compliance with each requirement in more detail.

Building an abstract representation of designed systems. The abstract representation of the designed system is provided by the abstract model. This model is constructed by the algorithm, presented in Section 4.3 . This algorithm represents the system as an abstract hierarchical model that takes into account connections between system devices, their elemental composition, dependencies between device elements and requirements for them.

Finding a trade-off between the resources spent and security . The security of the designed system is based on the integration of security elements into its devices components composition. The number of security elements that are required to be integrated depends on the number of classes of attack actions that are possible on the designed device in accordance with its components composition, communication levels and parameters of the attacker against which the system is required to be protected, see Section 3.3 . It means that the exact same microcontroller-based physical security system can be designed with different amounts of security elements if the parameters of the attacker would differ.

No restrictions on platforms and architectures of devices to be designed . The software implementation firstly works with abstract elements, sub-elements and links and only after that replaces them with their implementations, see Section 4.5 . It means that .

The extensibility of the design process . The structure of the database, presented in Section 5.2 , contains tables, the content of which affects how microcontroller-based physical systems are designed by the software implementation. So, the first way to extend the developed design approach is to fill those tables with more data: additional examples of attack actions, security elements, tasks, abilities, requirements, elements, sub-elements, etc. Moreover, it is possible to use other models of the attacker and attack actions, if necessary: a different number of parameters of the attacker as well as permissible ranges of their values, other classes of attack actions with different examples, etc. In addition, more parameters of elements can be taken into account as well as the list of calculated parameters for designed devices can be extended. Finally, additional algorithms can be integrated into the developed solution: design of software, formal verification, solution of optimization problems, design on the level of electronic components, etc.

Taking into account the physical layer of the designed systems. The software implementation designs microcontroller-based physical security systems in accordance with the extendable set-based hierarchical relational model, presented in Chapter 3 . This model represents such systems as building blocks that are communicating with each other, while each block can have hardware and software elements. Moreover, communications between hardware and software elements are also taken into account as well as attack actions on them.

Thus, the software implementation meets all functional requirements.

Compliance with non-functional requirements

Non-functional requirements describes requirements and constraints imposed on the resources consumed by the software implementation. In Section 1.4 , the set of non-functional requirements was divided into time consumption, resource consumption and validity. Let's consider them in more detail.

Time consumption

The method for the evaluation of time consumption is presented in Section 2.1 , while this requirement is represented as follows:

, 𝑃 -acceptable time for 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶 designing a secure system (1 sec for the abstract system model and 4 secs for the detailed model during the design process of the system of mobile robots for perimeter monitoring); -acceptable probability value (0.99). 𝑃 𝑇 𝐴𝐶𝐶 According to this method, time consumption is divided into time for designing the abstract and detailed models of the system, presented in Section 6.1.1 . Time consumption of the design process for the abstract system model is represented as the sum of the time consumption of each stage of this process:

𝑇𝐼𝑀 𝐸 𝐴𝑀 = 𝑇 1 𝐴𝑀 + 𝑇 2 𝐴𝑀 + 𝑇 3 𝐴𝑀
where -time of the formation of requirements for the system and its devices; 𝑇 To obtain the average time consumption for each stage, the software implementation was executed 1000 times on the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD and 32 GB RAM. Time consumption was measured with the help of the time Python library. Based on such an experiment, the main time indicators of design stages for abstract and detailed models were obtained, see Tables 15 and16 , respectively. which means that the non-functional requirement for time consumption is satisfied.

Resource consumption

The method for the evaluation of resource consumption is presented in Section 2.2 , while this requirement is represented as follows: During the design process of the microcontroller-based physical security system, each CPU core was loaded as follows:

• Core 1: thread 1 -0.6%, thread 2 -0.7%.

• Core 2: thread 3 -6.7%, thread 4 -0.0%.

Validity

The method for the evaluation of validity is presented in Section 2.3 , while the number of parameters analyzed during the design process is selected as an indicator of the validity, namely number of levels of the system, the security of which can be ensured; classes of attacks against which the system can be protected. Levels of the system are divided:

• -controllers, components and their communications; 𝑐𝑛 ↔ 𝑐𝑟 The software implementation of the methodology for the design of microcontroller-based physical security systems was compared with commercial and scientific solutions.

It is important to note that the comparison was made based on the publicly available data, where the presence or absence of the consideration of the security of different levels of the system during the design process was determined.

The comparison with commercial solutions is based on levels of systems, the security of which can be ensured, see Table 17 . Another drawback of commercial solutions is that they are bound to the specific hardware, software, platforms and architectures. It means that if the designed system already contains devices whose hardware cannot be changed or there are restrictions that do not allow the use of suitable devices, then these solutions are not applicable. In addition, these solutions do not take into account the optimization of the system design process due to such limitations as parameters of the attacker, computational complexity, energy efficiency and price. It means that the resulting systems may not be reasonable for a developed use case because of no trade-off between resources and the provided security level.

The comparison with scientific solutions is based on classes of attack actions against which the system can be protected, see Table 18 . Once again, it is important to note that the comparison was made based on the publicly available data, where the presence or absence of the consideration of protection against different classes of attack actions was determined. In addition, note that "*" for [START_REF] Hu | Robust cyber-physical systems: Concept, models, and implementation // Future generation computer systems[END_REF] and [START_REF] Penas | Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems // Computers in Industry[END_REF] means that the models and approaches used by the authors can be improved for taking the corresponding classes of attack actions into account during the design process, while such functionality was not presented.

The comparison showed that the developed design methodology provides protection against all four classes of attack actions on microcontroller-based systems, while scientific solutions are considering two of them at most. It means that the indicator of the validity requirement is also satisfied.

𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 𝑁 | | ≥ 𝑚𝑎𝑥 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 𝑠 ∈ 𝑆 | | ()
The drawback of existing scientific solutions is that they are focused on certain aspects of security, which ensures their inapplicability for providing the security of designed systems in general. For example, some approaches do not take into account that the functionality of system components is determined not only by software but also by hardware. Other approaches are considering designed devices in isolation from the system they will work in. It means that not all security aspects are taken into account and the security of the system as a whole will not be ensured. Also, some techniques are aimed at ensuring the security of communications between devices. The drawback is that such techniques provide a secure connection between designed systems and external systems only from the designed side, which can lead to security issues during the design of complex multi-level systems.

The last indicator of the validity requirement to be checked is the number of parameters that are taken into account during the design process of microcontroller-based physical security systems. And according to the object function, see Section 1.5 , it is required to not only surpass other solutions in the number of analyzed parameters but also to maximize them.

Results of analysis of commercial and scientific solutions in accordance with the number of levels of the system, the security of which can be ensured, and the number of classes of attacks against which the system can be protected are presented in Table 19 . The relationship between these parameters and -system design time is shown 𝑑𝑡 in Figure 113 . The scale on the left from 0 to 5 reflects changes in values of the attacker's parameters -, and are shown as area charts, while the scale on 𝑎𝑐 𝑘𝑛 𝑟𝑠 the right from 0 to 0.12 reflects the design time -is shown as a black line. 𝑑𝑡

Figure 113 . Dependencies between design time and parameters of attackers

The minimum design time was 0.2941 seconds, while the maximum -0.3408.

According to the related work analysis, presented in Chapter 1 , there is no data available about the average time of design of microcontroller-based physical security systems by commercial or scientific solutions with which the developed one was compared in the previous section. Moreover, even if this data would be available, it is difficult to compare design approaches when different systems with different amounts of devices that contain different amounts of elements are designed.

Discussion

Experimental evaluation of the software implementation of the methodology for the design of microcontroller-based physical security systems showed that the developed approach has advantages in comparison with analogues. In this work, a new approach to the design is presented, which allows combining various design techniques on the basis of hierarchical relational model transformation algorithms. This approach is modular and extensible, takes into account the security of the physical layer of microcontroller-based systems, works with the abstract system representation and is looking for a trade-off between the security of the final solution and resources expended on it. Moreover, the methodology has a strong focus on security and aims at ensuring the protection of designed systems against various attack actions at the early stages of their lifecycle, considers security components as an integral part of the system and checks if the system can be designed in accordance with given requirements and limitations.

The results obtained in this work are very important for solving fundamental issues in the field of ensuring information security of microcontroller-based systems and are aimed at expanding and improving the existing model-methodological apparatus associated with the design of such systems. The practical significance of the results lies in the fact that the system based on the proposed models, algorithms and methodology can be used as a tool for designing secure systems, thus, avoiding errors in the early stages of their life cycle.

The following can be identified as potential consumers of the results of this work: scientific community, commercial companies, educational organizations as well as users and administrators of systems microcontroller-based systems, especially physical security ones. Let's consider each potential customer in more detail.

The scientific community may be interested in expanding and improving the developed model-methodological apparatus as well as forming a community of enthusiasts to fill and maintain the database of the obtained solution.

Commercial companies may be interested in introducing the developed model-methodological apparatus into the lifecycle of microcontroller-based systems they develop to improve their security.

Educational organizations may be interested in conducting lectures and practical classes to share the experience gained in this work in the design of microcontroller-based physical security systems.

Users and administrators can use the results obtained in this work to gain an understanding of the security status of microcontroller-based devices and systems that are within their area of responsibility.

It is important to note that the results of this work can be brought to practical use in the form of a software product. The use of such a product will help to reduce the number of weak places and architectural defects in microcontroller-based systems, thereby significantly reducing their attack surface. In turn, this will reduce the security risks that can lead to financial losses, loss of time as well as the safety of people, which ensures the relevance and high significance of this work.

This work presents not only the developed model-methodological apparatus for the design of microcontroller-based physical security systems with its software implementation but also a framework that can be improved in various ways.

For example, it can be improved with the use of genetic algorithms during the automated selection of implementations of different components and controllers among options that are satisfying given requirements. Based on priorities of parameters like price, energy consumption and computation efficiency it would be possible to solve the optimization task to find reasonable component compositions.

In addition, the verification process can become an integral part of the solution. It can provide the formal check of the possibility to design microcontroller-based physical security systems in accordance with the given requirements. Moreover, it can provide the formal check of the security level of the designed system in accordance with the model of the attacker.

Finally, the use of a component-based approach to modeling microcontroller-based physical security systems can be extended with semi-natural, simulation and analytical modeling. The advantage of the integration of these approaches is in the possibility to represent various aspects of such systems, including dynamic ones.

Conclusions on Chapter 6

Experimental evaluation of the methodology for the design of microcontroller-based physical security systems is done with help of its software implementation, which consists of the Python script, PostgreSQL database and Tkinter interface.

The developed application was executed on the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD and 32 GB RAM.

For the experiment, it was decided to design a microcontroller-based physical security system that provides perimeter monitoring based on mobile robots. Such a system was chosen due to the presence of several types of devices, multiple communications between them, as well as the need to use many different elements for each device in the system (server consists of 8 elements with sub-elements, station -12 and robot -17, which means that such a system is appropriate in accordance with the provided requirements).

The process of modeling this system in terms of the extendable set-based hierarchical relational model, see Chapter 3 , is presented in Appendix A .

Based on links between tasks, abilities and requirements of this system, it was concluded that such a system consists of the following types of devices: the server, charging stations and mobile robots. In turn, devices are having their own tasks that are linked with their abilities and requirements, while data about all of them must be stored in corresponding tables of the database.

The process of manual fulfilment of all tables of the developed database that are required for the correct work of the software implementation was described. And after this process is done, the software implementation can be executed as many times as necessary to check its compliance with the requirements.

It is important to note that while the fulfilment of the database with data about one system requires a lot of time and effort, this effort can be used to design other systems as well. The database can be filled in such a way that different systems will partially share tasks, abilities, requirements, abstract elements, links and sub-elements as well as their implementations with each other, so the fulfilment of the database will take less time and effort for every next system.

Moreover, while in this work many tables of the database that are responsible for the compatibility of elements of designed devices were filled manually, this process can be automated. For example, based on the content of different online shops that are selling controllers and components for the implementation of microcontroller-based devices, it is possible to fill the database with information about such implementations automatically with the help of the parsing script.

The software implementation satisfied all functional requirements and was analyzed in terms of compliance with non-functional ones, see Table 20 . It means that the goal of this work is reached, namely, the development of the design methodology for microcontroller-based physical security systems that builds an abstract representation of designed systems, finds a trade-off between the resources spent and ensured level of security, has no restrictions on platforms and architectures of the devices to be designed, is extensible and takes into account the physical layer of designed systems, while being in compliance with the requirements for time and resource consumption and taking into account more security parameters of designed systems than analogs.

In addition, the dependencies between the design time of the system and parameters of the attacker (types of access -from 1 to 5, knowledge -from 1 to 4 and resources -from 1 to 3) were investigated. Those parameters are defining attack actions that are possible for the attacker, which means that the number of security elements integrated into the designed system differs from one combination of parameters to another. During the experiments, the minimum design time was 0.2941 seconds, while the maximum -0.3408.

It is important to note that the developed solution is not aimed to replace experts in the security of microcontroller-based systems. It is understandable that in most situations, experts are aware of existing best practices and highly specialized solutions and are able to design such systems at a very high level, while the quality of the solution provided by the implementation of the methodology directly depends on the correctness and completeness of its database. But even for an expert, it can be useful in terms of automatization of routine tasks as well as offering options that are different from those familiar to him or her.

Moreover, this work presents not only the developed model-methodological apparatus for the design of microcontroller-based physical security systems but also a framework that can be improved in various ways: use of genetic algorithms during the automated selection of implementations, formal check of the possibility to design microcontroller-based, etc.

For example, we already achieved some results in the process of verification of microcontroller-based devices, see Appendix B .

In addition, we achieved some results in the connection of implementations of components, controllers, their software and firmware with vulnerabilities, described in CVE (Common Vulnerabilities and Exposures) format, see Appendix C .

The dump of the database that was used for the design of the microcontroller-based physical perimeter monitoring system based on mobile robots, is available for download using the following link: https://github.com/levshun/PhD-mcbpss_design .

Conclusion

The goal of this work is to develop the design methodology for microcontroller-based physical security systems that builds an abstract representation of designed systems finds a trade-off between the resources spent and ensured a level of security, has no restrictions on platforms and architectures of the devices to be designed, is extensible and takes into account the physical layer of designed systems while being in compliance with the requirements for time and resource consumption and taking into account more security parameters of designed systems than analogues.

The process of achieving this goal is described in 6 chapters:

1. Systematic analysis of the main issues of ensuring the information security of microcontroller-based systems. 2. Methods for the evaluation of the design methodology for microcontroller-based physical security systems. Let's consider the main results of each chapter in more detail.

In Chapter 1 the analysis and systematization of modern research in the field of information security of microcontroller-based systems have been carried out. Place and role of design techniques in ensuring the information security of such systems were shown. The drawbacks of existing solutions were pointed out. It was concluded that a general approach for solving the issue of designing secure systems is not done yet. Among all possible systems, in this work, only physical security systems were chosen as an area of the application because in such systems it is required to ensure not only the functionality of the system but also to ensure its security against cyber-physical attacks during the design process. The developed architecture of microcontroller-based physical security systems contains components, controllers and devices that are communicating with each other, their software and firmware. The functional and non-functional requirements for the new design methodology were formulated. The objective function of the developed design methodology is aimed at maximization of the number of security parameters that are analyzed during the design process of microcontroller-based systems.

Chapter 2 presents methods for the evaluation of the design methodology for microcontroller-based physical security systems. Methods are divided into the evaluation of time and resource consumption as well as validity. Time consumption is defined as the probability that the approach is able to design a system in accordance with the input data in a given time frame. Resource consumption -the probability that the number of resources (CPU, HDD, RAM) used during the design process will not exceed the allowable value. And validity -number of levels of the system, the security of which can be ensured, and number of classes of attack actions against which the system can be protected, are maximized.

In Chapter 3 one of the main findings of this work is presented, namely, the extendable set-based hierarchical relational model of microcontroller-based physical security systems. For this model, a component-based approach was chosen as the most detailed way of representation. Moreover, this approach is the most appropriate one if it is required to take into account the security of the system as early as possible. Developed in this work model represents microcontroller-based physical security systems as building blocks (hardware and software elements) that are communicating with each other through links (protocols and interfaces), while the security is taken into account in accordance with models of the attacker and attack actions. Within the framework of the developed model, all elements are connected with each other through their properties. The developed model of the attacker is distinguishing attackers according to their types of access, knowledge and resources, while the developed model of attack actions distinguishes attacks based on their subject, object and impact method. In addition, instead of separate impact methods, it was decided to use classes of attack actions, while each class contains multiple examples of methods.

Chapter 4 presents the following two main findings of this work, namely, the set of algorithms and the methodology for the design of microcontroller-based physical security systems. Let's consider each algorithm and methodology in more detail.

The algorithm for the formation of requirements for microcontroller-based physical security systems is used to extract attack actions that are possible for the attacker as well as the list of devices of the designed system, their links, communications, bases and requirements in accordance with general tasks of the system. The output data of the algorithm is well-structured and JSON-based. The work process of the algorithm is automatic, the operator is required for the transformation of wishes of the stakeholder into general tasks of the system and parameters of the attacker.

The algorithm for the formation of microcontroller-based physical security systems component compositions is used to extract abstract elements and sub-elements of devices of the system, security recommendations to the system and its devices implementations as well as abstract links between devices with related to them abilities based on attack actions that are possible for the attacker, list of devices of the system, their bases, types of communications and links, requirements for them. This algorithm works with abstract elements, links and recommendations and represents the component compositions as multiple devices, each of which has multiple abstract elements, while each abstract element can have multiple abstract sub-elements. The work process of the algorithm is automated, the operator is not required. Its output data is also well-structured and JSON-based.

The algorithm for the design of abstract models of microcontroller-based physical security systems is used to construct an abstract representation of the designed system based on its devices list, their abilities, elements and sub-elements as well as security recommendations. This algorithm represents the system as an abstract hierarchical model that takes into account connections between system devices, their elemental composition, dependencies between device elements and requirements for them. As output data, the algorithm provides the abstract system model that contains abstract system representation. The structure of the abstract system model is JSON-based and contains the following fields: devices, recommendations and links, while each element of the device from the "components" field has its own components (sub-elements), links, requirements and dependencies. The work process of the algorithm is automatic, the operator is not required.

The algorithm for the design of detailed models of microcontroller-based physical security systems is used to construct a detailed representation of the designed system based on its abstract representation. Detailed model of the system preserves and expands the structure of the abstract model of the system and takes into account compatibility, requirements, dependencies and hierarchy of its elements. The process of transition from the abstract system model to the detailed one is a step-by-step process. Each step represents the selection of the concrete implementation of one of the system elements, while the sequence of steps is formed in accordance with the hierarchy and dependencies between those elements. As output data, the algorithm provides a detailed system model. Its structure is also JSON-based. Moreover, it has the same structure as the abstract system model but with some additions: each element from the components field that was selected is extended with the selected field; each device of the system is extended with the parameters field; each link between devices of the system is extended with the selected field. The work process of the algorithm is mostly automated, involvement of the operator is possible at the stage of selection of the concrete implementations of elements among suitable options provided by the algorithm. Alternatively, the algorithm can select concrete implementations on its own.

The methodology for the design of microcontroller-based physical security systems consists of two main cycles. The main goal of the first cycle is to design the abstract system model based on provided requirements, while the second one is about the design of the detailed system model based on the selection of components. Each cycle of the methodology consists of the testing process and seven stages that are associated with the extendable set-based hierarchical relational. The testing process occurs after each stage as many times as necessary to build the model of the system. The objective of the testing process is in checking constructed models in terms of their correctness and compatibility. In terms of the input data, the first cycle works with requirements and limitations, while providing abstract models of system elements and the abstract model of the system as an output. In its turn, the second cycle works with models that were designed by the first cycle and adds to the abstract model data about selected devices and their parameters as an output.

Another way to represent the workflow of the methodology is to showcase its connection with the presented algorithms: the first three algorithms are representing the abstract system model design cycle, while the last one is representing the detailed system model design cycle.

In Chapter 5 one of the main findings of this work, namely, the software implementation of the methodology for the design of microcontroller-based physical security systems is presented. Its architecture consists of the Python script, PostgreSQL database and Tkinter interface. PostgreSQL database is required to store data about the presented extendable set-based hierarchical relational model, as well as data for algorithms and methodology. Python script represents the implementation of the algorithms and methodology: each algorithm is implemented as a number of functions, while all functions are connected with each other in a single methodology. Tkinter interface is required to receive input data from the operator, namely, parameters of the attacker and tasks of the designed system, as well as to provide the output data to him or her.

Chapter 6 presents the experimental evaluation of the methodology for the design of microcontroller-based physical security systems. It is done with the help of the presented software implementation of the methodology. For the experiment, it was decided to design a system that provides perimeter monitoring based on mobile robots. Such a system was chosen due to the presence of several types of devices, multiple communications between them, as well as the need to use many different elements for each device in the system (server consists of 8 elements with sub-elements, station -12 and robot -17, which means that it satisfies the provided requirements). The process of modeling this system in terms of the extendable set-based hierarchical relational model is presented in Appendix A .

The process of manual fulfilment of all tables of the developed database that are required for the correct work of the software implementation was described. It is important to note that while the fulfilment of the database with data about one system requires a lot of time and effort, this effort can be used to design other systems as well. The database can be filled in such a way that different systems will partially share tasks, abilities, requirements, abstract elements, links and sub-elements as well as their implementations with each other, so the fulfilment of the database will take less time and effort for every next system.

Moreover, while in this work many tables of the database that are responsible for the compatibility of elements of designed devices were filled manually, this process can be automated. For example, based on the content of different online shops that are selling controllers and components for the implementation of microcontroller-based devices, it is possible to fill the database with information about such implementations automatically with the help of the parsing script. Such a functionality represents one of the future work directions of this work. For example, it is possible to use artificial intelligence methods for this task.

In addition, with the help of the user-friendly interface, the task of the fulfilment of the database can be shared among the community of enthusiasts. Such a functionality represents one of the future work directions of this work. For example, it is possible to use the Django web framework to provide such an interface.

It might also be interesting to investigate other technologies for the storage of the extendable set-based hierarchical relational model of microcontroller-based physical security systems. For example, object-oriented models like UML (Unified Modeling Language) with its extensions for the Internet of Things or ontologies like OWL (W3C Web Ontology Language).

The software implementation was executed on the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD and 32 GB RAM. Experiments showed that it satisfies all functional and non-functional requirements, provided during the research problem statement.

It means that the goal of this work is reached, namely, the development of the design methodology for microcontroller-based physical security systems that builds an abstract representation of designed systems, finds a trade-off between the resources spent and ensured a level of security, has no restrictions on platforms and architectures of the devices to be designed, is extensible and takes into account the physical layer of designed systems while being in compliance with the requirements for time and resource consumption and taking into account more security parameters of the designed system than commercial and scientific analogues.

In addition, the dependencies between the design time of the system and the parameters of the attacker were investigated. Those parameters are defining attack actions that are possible for the attacker, which means that the number of security elements integrated into the designed system differs from one combination of parameters to another. During the experiments, the minimum design time was 0.2941 seconds, while the maximum -0.3408.

It is important to note that the developed solution is not aimed to replace experts in the security of microcontroller-based systems. It is understandable that in most situations, experts are aware of existing best practices and highly specialized solutions and are able to design such systems at a very high level, while the quality of the solution provided by the implementation of the methodology directly depends on the correctness and completeness of its database. But even for an expert, it can be useful in terms of automatization of routine tasks as well as offering options that are different from those familiar to him or her.

Moreover, this work presents not only the developed model-methodological apparatus for the design of microcontroller-based physical security systems but also a framework that can be improved in various ways: use of genetic algorithms during the automated selection of implementations, formal check of the possibility to design microcontroller-based systems, etc. For example, we already achieved some results in the process of verification of microcontroller-based devices, see Appendix B .

In Section 4.5 it was mentioned that the developed methodology might find out that selected components are not working as intended -some of the requirements or limitations are violated. And in such a situation, the methodology will try to rebuild the system model until it is done or conclude that it is not possible -the number of attempts is limited. This functionality currently is not developed in the software implementation, see Chapter 5 , and represents one of the future work directions.

It is also possible to connect implementations of components and controllers as well as their software and firmware with vulnerabilities, described in the CVE (Common Vulnerabilities and Exposures) format. Such a connection is possible based on CPE (Common Platform Enumeration) descriptions, more precisely, on their URIs (Uniform Resource Identifier). So, if the information about the vendor, product and version of the hardware, application or operating system is available, with some probability of false positives, it is possible to extract the corresponding CPE URIs. The combination of CPE URIs of the device represents its configuration. Such configuration can be checked in terms of being vulnerable and connected to CVEs. The results achieved in this direction are presented in Appendix C . Based on the requirements, the algorithm can form the device that represents the server of the system step-by-step. For such a device it is required to have:

• one-board computer with in-build Wi-Fi and Ethernet interfaces that supports high-level operating systems with graphical user interface, has not less than 1 GB RAM and supports disk space extension based on micro-SD cards;

• micro-SD card with not less than 16 GB disk space that is supported by the selected one-board computer; • 32-bit operating system image that can be installed on micro-SD that is supported by the selected one-board computer; • database that supports SQL queries which structure is sufficient enough to store system data and events; • application with graphical user interface and connection to the selected database that presents processed data to the operator of the system and communicates with other devices of the system; • battery that can power up the selected one-board computer as well as be connected to the home power grid.

But this is without taking into account security requirements. So let us consider them in more detail. The ability to be secure against attackers with , , 𝑎𝑐 = 4 𝑘𝑛 = 2 𝑟𝑠 = 2 can be interpreted as to be secure against:

-replacement of the electronic 𝑟𝑝𝑡 component;

- To prevent on the level of the server in addition to a vandal-proof device case, 𝑝𝑤𝑟 the selected power bank capacity should be big enough to provide power supply to the selected one-board computer in the absence of power supply from the home power grid for 4 hours.

To prevent and on the level of the server no additional security elements is 𝑖𝑚𝑤 𝑤𝑒𝑏 required because there is no wired communications in the device as well as no web services.

To prevent and on the level of the server additional software elements are 𝑖𝑒𝑐 𝑖𝑤𝑠 required: an algorithm for behaviour-based anomaly detection and a secure configuration of the wireless access point (strong encryption, strong login credentials, public key pair-based authentication).

To prevent on the level of the server it is required to add the following software 𝑑𝑏𝑑 elements to the device: an algorithm for the validation of the input data (an additional requirement for the selected application), configuration with strict database access policy (an additional requirement for the selected database), configuration with strong login credentials (an additional requirement for the selected database), configuration with separate database users for different operations (an additional requirement for the selected database).

To prevent on the level of the server it is required to train operators and users of 𝑠𝑜𝑐 the system. This requirement cannot be translated into software or hardware elements of the device, so would be transferred to the stakeholder as an additional recommendation during the system implementation.

Thus, the step-by-step formation of the server of the system:

1. Combination of a micro-SD card and an operating system image with the help of additional software tools (for example Imager can be used with Raspberry Pi one board computers to install Raspbian). 2. Combination of the micro-SD card with the installed operating system and a single-board computer with the help of a micro-SD slot. 3. Combination of the single-board computer with micro-SD card and a power bank with the help of the USB connection, while the power bank is connected to the home power grid. At this step, the algorithm formed a working single-board computer that will require additional configuration. 4. Secure configuration of the wireless access point on the powered-up single-board computer . Such a configuration requires the configuration based on at least WPA2-PSK to cover requirements related to the encryption algorithm, login credentials and authentication. 5. Combination of the single-board computer with a wireless access point and a database server (for example, with help of sudo apt update/install in Linux-based systems). Secure configuration of the database server: only localhost connections, strong login credentials. Creation of the database to store system data and events and its secure configuration: separate users for different operations, strict access policy, strong login credentials. 6. Combination of the single-board computer with database and an executable application with a graphical user interface based on the installation of required libraries, drivers and compilers (not only to work in the environment of the selected operating system but also to work with the selected database). Extension of the application functionality with the validation of received data before it is written into the selected database. Extension of the application functionality with an algorithm for behaviour-based anomaly detection that is trained to detect resource depletion attacks. 7. Secure configuration of the Ethernet connection to the remote update server on the single-board computer with the application . This update server is required to provide software updates for the server as well as firmware updates for mobile robots and charging stations. 8. Combination of the single-board computer that represents the server of the designed system and a vandal-proof device case to provide additional security from physical attacks.

At this point, the server of the system is formed based on the abstract hardware and software elements as well as building blocks. To make it more concrete, suitable real-world examples should be used.

For example, as the selected single-board computer it is possible to use Raspberry Pi 3, 3 B+, 4 and 4 B. And if the Raspberry Pi platform is selected, as an operating system it is possible to install Raspbian, Ubuntu MATE, Pidora, Linutop, SARPi and other systems, while the application can be written in Python, Java, C++ and so on.

As for the database server, MySQL or PostgreSQL are the most popular ones.

One of the possible alternatives of the server is presented in Table A.5 . It is required to configure this server and to create and configure the database to be able to store system data and events in a secure way. The size of the database will depend on the number of events that are produced by the system, but the initial size is 150 MB application Python 3.9.2 compiler for 32-bit Linux operating systems with Tkinter (graphical user interface) and psycopg2 (database connection) packages, 100 MB. It is required to develop the application to provide a user interface for the operator of the system as well as to communicate with other devices of the system taking the security requirements into account (input data validation for the database and etc.), 100 MB power bank RAVPower 20000mAh (near 12 hours of one-board computer work at moderate load), high-speed charging, output 5V/3A, 9V/3A, 12V/3A 14.5V/2A, 15V/3A, 20V/3A, 3 hours recharging time

The role of such components is in providing data about the concrete parameters: computing power, disk space, resources consumption, energy consumption, network bandwidth as well as possible incompatibilities between them. These parameters are required for the correct formation of alternatives of the server. Moreover, they are necessary for the ranking of alternatives based on their price, energy efficiency, size and other non-functional characteristics. These calculations will be discussed in more detail in Chapter 3, where the design methodology is presented.

A2. Modeling of charging stations

Each charging station is based on a combination of Iskra JS and ESP8266 microcontrollers with a Qi wireless charger. Iskra JS is used to interact with electronic components -sensors and transmitters. This interaction is based on the firmware of the microcontroller and an additional hardware element -Troyka Shield. Troyka Shield does not reserve any pins of the microcontroller. Instead, it provides voltage and ground to each analogue and digital pin of the microcontroller simplifying the connection of electronic components. ESP8266 is connected to TxRx pins of Iskra JS and enhances charging station functionality with the possibility of remote firmware update on both microcontrollers as well as the possibility to connect it to Wi-Fi access points. To provide a power supply, Iskra JS and Qi wireless charger are connected to the home power supply. Iskra JS and Troyka Shield are connected in such a way that they have a shared power supply. Qi transmitter is used to provide a possibility of wireless recharge of mobile robots.

Thus, in terms of the developed model, contains the following sub-blocks: 𝑏 𝑏 2 𝑖

•

-ESP8266 microcontroller with default drivers and libraries for the 𝑏𝑏 represents the functionality that satisfaction is necessary for to be able to 𝐹𝑅 𝑏 𝑏 Based on the requirements, the algorithm can form the device that represents one of the charging stations step-by-step. For such a device it is required to have:

• microcontroller with a bootloader and programmable firmware that can work with sensors, servo drives, transmitters and shields as well as other microcontrollers, has output voltage 3.3 V on pins and not less than 256 KB of flash memory; • troyka shield to provide voltage and ground to each analog and digital pin of the microcontroller simplifying the connection of electronic components that are compatible with the selected microcontroller; • two infrared transmitters for the communication with infrared receivers of mobile robots during their parking process; • motion sensor with adjustable sensitivity, viewing angle not less than 110 degrees and observing distance not less than 7 m; • noise sensor with adjustable microphone sensitivity to detect abnormally loud sounds for the detection of intruders; • servo drive to rotate noise and motion sensors for the better detection of intruders with rotation range not less than 180 degrees; • microcontroller with a bootloader and programmable firmware with in-build physical Wi-Fi interface and possibility to connect to wireless access points that can have wired data connection with the selected microcontroller; • Qi transmitter that can be connected to the home power grid; • firmware of the first microcontroller that contains algorithms for work with all connected electronic components and microcontrollers as well as algorithms that determine the work process of the charging station; • firmware of the second microcontroller that determines his work with another microcontroller as well as his communication with the server of the system.

But this is without taking into account security requirements. To prevent , and 𝑟𝑝𝑡 𝑟𝑚𝑡 on the level of each charging station a vandal-proof device case (hardware 𝑝𝑤𝑟 element) should be used. To prevent , in addition to the vandal-proof device 𝑖𝑚𝑤 case, light-weight encryption and authentication algorithms (software elements) for the communication between microcontrollers should be used. To prevent , all 𝑖𝑒𝑐 necessary data for the behaviour-based anomaly detection algorithms should be transferred to the designed server of the system. That will provide a possibility to isolate the mobile robot that is under attack. To prevent each mobile robot should 𝑖𝑤𝑠 be connected to the Wi-Fi access point that is created by the server of the system. To prevent and on the level of charging stations no additional security 𝑤𝑒𝑏 𝑑𝑏𝑑 elements are required because there are no batteries, web services or databases.

Thus, the step-by-step formation of each of the charging stations:

1. Combination of the microcontroller and troyka shield based on the pin-to-pin connection (they should be compatible). At this point, the algorithm formed a microcontroller-based platform with a shared power supply to which other components of the charging station can be easily connected. 2. Combination of the microcontroller with troyka shield and microcontroller with in-build Wi-Fi interface based on the Serial connection (voltage, ground, Tx, Rx). Such a connection will reserve 4 digital pins for the communication between microcontrollers. 3. Combination of the connected microcontrollers and two infrared transmitters based on the three-wire connection (voltage, ground, signal). Such a connection will reserve 2 digital pins (one for each transmitter). 4. Combination of the microcontrollers with transmitter and motion sensor based on the three-wire connection (voltage, ground, signal). Such a connection will reserve 1 digital pin. 5. Combination of the microcontrollers with motion sensor and noise sensor based on the three-wire connection (voltage, ground, signal). Such a connection will reserve 1 digital pin. 6. Combination of the microcontrollers with noise sensor and servo drive based on the three-wire connection (voltage, ground, signal). Such a connection will reserve 1 digital pin. 7. Combination of the microcontrollers with the motion sensor and Qi transmitter through shared power supply from the home power grid. At this point, the algorithm formed a prototype of the device that represents charging stations of the system. 8. Combination of the charging station prototype and firmware of the first microcontroller based on its programming interface. 9. Combination of the charging station prototype and firmware of the second microcontroller based on its programming interface. 10. Combination of the charging station prototype and vandal-proof device case to provide additional security from physical attacks. As was mentioned before, the firmware of the first microcontroller represents a combination of algorithms for work with all connected electronic components and microcontrollers as well as algorithms that determine the work process of the charging station. In addition, according to security requirements, such firmware must be extended with lightweight encryption and authentication algorithms.

Firmware of the second microcontroller represents a combination of algorithms for work with the first microcontroller as well as for communication with the server of the system. Work with the first microcontrollers should be through the selected lightweight encryption and authentication algorithms, while the communication with the server must be through its Wi-Fi access point.

The idea behind using two infrared transmitters for directing mobile robots to the charging space is pretty simple. Each charging station with help of these transmitters emits two infrared signals in a V shape. The infrared receiver on each of the mobile robots can receive those signals. Each side of the V is provided by a different transmitter, that is why the mobile robot is able to distinguish them. Thus, when the mobile robot can receive a signal only from one of the transmitters it can be interpreted as the "left" or the "right" side of the charging station, so movement can be adjusted. And once signals from both transmitters can be received -the direction to the charging station is known.

One of the possible alternatives to the charging station is presented in Table A

•

-communication with the server of the system. 𝑝 𝑓 4. Combination of the motor shield with power bank and microcontroller based on the pin-to-pin connection (selected shield and microcontroller should be compatible). Such a connection will reserve 4 digital pins. 5. Combination of the microcontroller with a motor shield and troyka shield based on the pin-to-pin connection (selected shield and microcontroller should be compatible). At this point, the algorithm formed a microcontroller-based platform with a shared power supply to which other components of the mobile robot can be easily connected. 6. Combination of the microcontroller with troyka shield and microcontroller with in-build Wi-Fi interface based on the Serial connection (voltage, ground, Tx, Rx). Such a connection will reserve 4 digital pins for the communication between microcontrollers. 7. Combination of the connected microcontrollers and wireless receiver based on the three-wire connection (voltage, ground, signal). Selected at this point, the receiver will determine the choice of transmitters for charging stations. Such a connection will reserve 1 digital pin. 8. Combination of the microcontrollers with the receiver and touch sensor based on the three-wire connection (voltage, ground, signal). Such a connection will reserve 1 digital pin. 9. Combination of the microcontrollers with the touch sensor and distance sensor based on the three-wire connection (voltage, ground, signal). Such a connection will reserve 1 digital pin. 10. Combination of the microcontrollers with the distance sensor and noise sensor based on the three-wire connection (voltage, ground, signal). Such a connection will reserve 1 digital pin. 11. Combination of the microcontrollers with the noise sensor and motion sensor based on the three-wire connection (voltage, ground, signal). Such a connection will reserve 1 digital pin. 12. Combination of the microcontrollers with motion sensor and servo drive based on the three-wire connection (voltage, ground, signal). Such a connection will reserve 1 digital pin. 13. Combination of the microcontrollers with servo drive and two encoders based on the three-wire connection (voltage, ground, signal). Such a connection will reserve 2 analogue pins. At this point, the algorithm formed a prototype of the device that represents the mobile robots of the system. 14. Combination of the mobile robot prototype and firmware of the first microcontroller based on its programming interface. 15. Combination of the mobile robot prototype and firmware of the second microcontroller based on its programming interface. 16. Combination of the mobile robot prototype and vandal-proof device case to provide additional security from physical attacks.

One of the possible alternatives of the mobile robot is presented in Table A.7 . For example, the touch sensor can be used for the development of the obstacle detection element -a bumper. The bumper can be used to prevent the collision of a mobile robot with an obstacle: if the touch sensor state is pressed then stop to move.

A sound sensor can be used to control a mobile robot using sound signals: if the noise level is more than some threshold then start to move. A light sensor can be used to detect a line and to move along it: if the brightness of the object is more than some threshold then rotates to the left, else -to the right. Moreover, the light sensor can be used to prevent the mobile robot from falling off the table and to count the number of wheel revolutions. Distance sensor can be used to control the distance between the mobile robot and the detected obstacle: if the distance is less than some threshold then rotates to the left. In more complicated scenarios, the actions of the mobile robot are dependent on the state of several sensors at once: the mobile robot needs to detect an obstacle, come closer to it and stop at a certain distance to check the colour of the object near the obstacle and to take it or not.

Note that any mobile that is designed on the basis of the LEGO Mindstorms constructor is a combination of a controller, motors, sensors and a large number of LEGO parts that make it possible to build its case with all moving elements. At the same time, the programming of the controller can be carried out both in a special graphical environment and by writing the source code. Moreover, the presence of the wireless interface in the controller allows one to build not only individual robots but also organize their interaction with other robots as well as the human operator.

B2. Description of experiments

For the experiments, it was decided to verify the possibility of designing a mobile robot with only one ability -the ability to move. In its turn, the ability to move is granted to robots that have a battery, wheels and a motor. The goal was to check existing tools for verification and try to adapt them for automated design, namely, the SPASS theorem prover, the Maude system and daTac. They were used to investigate different possibilities of reaching a mobile robot based on available building blocks.

For each of these tools appropriate specifications were developed. Their full descriptions are available on https://github.com/levshun/PhD-mcbpss_design . Let's consider each tool and developed model in more detail.

Firstly, the problem was encoded for the SPASS -an automated theorem prover for first-order logic with equality. The result was obtained in clause number 525:

Given clause: 525[0:Res:517.0,12.0] || has(battery,plug(plug(plug(chassis0,battery0), motor0),wheel0)) has(motor,plug(plug(plug(chassis0,battery0),motor0),wheel0)) has(wheel,plug(plug(plug(chassis0,battery0),motor0),wheel0))* -> . SPASS V 3.9 SPASS beiseite: Proof found.

The experiment showed that SPASS does not support associativity-commutativity unification, so it was decided to develop a small hack with plugable as a list constructor. But there are side effects:

• deduction process is faster than usual;

• system will diverge anyway by paramodulation into the plug formula;

• developed model will be incomplete if the system can have male/female slots.

After SPASS, the Maude system was used. Maude is a high-performance reflective language and system supporting both equational and rewriting logic specification for a wide range of applications. The result was obtained almost immediately: The initial state was represented as a multiset of resources, while each resource has one or more interfaces using which it can be attached to another resource. Also, each resource provides some properties, such as having a battery or wheels. The goal is that the set of options contains one that has a conjunction of properties. Since the main focus was on the physical part of the composition, there is only one composition rule for components that consists in attaching to components together. This operation consumes the existing components and creates a new one. The search functionality of the Maude system was also used to let it explore all the possible combinations that may lead to the construction of the mobile robot with the correct set of properties.

The aim of the daTac system is to do automated deduction in first-order logic with equality. Its speciality is to apply deductions modulo some equational properties of operators, such as commutativity or associativity-commutativity. The result was obtained pretty fast: daTac -x o -i cps_composition -o cps_composition Clause 3: => composition(system(slot(male,wheel,id(wheel,x1)).empty,has(wheel) .empty,x1).system(slot(male,motor,id(motor,x2)).empty,has(motor).empty,x2) .system(slot(male,battery,id(battery,x3)).empty,has(battery).empty,x3) .system(slot(female,wheel,id(chassis,x4)).slot(female,motor,id(chassis,x4)) .slot(female,battery,id(chassis,x4)).empty,empty,x4).empty,needs(wheel) .needs(motor).needs(battery).empty,empty,empty)

Clause 21: => composition(system(slot(male,wheel,id(wheel,s(x1))).empty, has(wheel).empty,x1).empty.system(slot(female,wheel,id(chassis,x2))

It means that the mapping of descriptions to CPE URIs requires an approach that:

• generates multiple options of CPE URI fields for each component of the device in accordance with its description; • checks the probability of each option to be represented as one of CPE URIs taken into account possibility of typos and other issues mentioned; • selects the most reasonable option among possible.

Note that such an approach is impossible without false positives -device was linked to the wrong CPE URI, and false negatives -device was not linked to the correct CPE. The output of such an approach contains the list of CPE URIs that are representing the configuration of the analyzed device. This configuration can be checked in terms of being vulnerable. For more information, see the next section.

C2. Extraction of CVE descriptions

In NVD (National Vulnerability Database) CVE descriptions of vulnerabilities are connected with configurations of devices that are vulnerable to them. Each configuration is represented as an expression with OR and AND operators, that are connecting CPE URIs together in hierarchical structures. For example, the vulnerability CVE-2020-11241 has the following configuration: The process of such configurations checking is based on the replacement of the following data structures: {"cpe23Uri": "cpe:2.3:o:intel:ax200_firmware:*:*:*:*:*:*:*:*", "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"} with "1" and "0" based on the presence of CPE URIs in the configuration of the device. After that each "OR" or "AND" expression is checked individually starting from inner ones. Expressions are also replaced with "0" and "1", until there is nothing to replace. And if the result is "1" -device is vulnerable, "0" -not vulnerable.

Figure 4 .

 4 Figure 4 . Classification of attack actions

Figure 5 .

 5 Figure 5 . Classification of methods and means of protection

Figure 6 .

 6 Figure 6 . Microcontroller-based systems development lifecycle

Figure 7 .

 7 Figure 7 . The process of identifying relevant attack actions and recommending methods and means of protection

Figure 8 .

 8 Figure 8 . Architecture of microcontroller-based systems

1 𝐴𝐶𝐶

 1 designing a secure system in a given time; -𝑃 𝑇 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶 acceptable time for designing a secure system; -acceptable probability value. 𝑃 𝑇 𝐴𝐶𝐶 Based on the results of related work analysis and series of experiments, was chosen to design an abstract model and 𝑇𝐼𝑀 𝐸 was chosen to design a detailed model of the system.

1 𝐴𝑀- 1 𝐷𝑀 2 𝐷𝑀 3 𝐷𝑀

 1123 time of formation of the component composition of the abstract model; of the components hierarchy, connections between them, requirements for them, dependencies between them and recommendations for ensuring system security after implementation. Time consumption of the design process for a detailed model of the system is the sum of the time consumption of each stage of this process: the formation of selection steps for links between system 𝑇 devices and elements of the devices; -time of the selection of detailed 𝑇 elements of the system; -time of the calculation of device parameters as well 𝑇 as insertion of information about selected elements into the abstract model.The execution time of stages is considered as a random variable, the probability of which obeys the normal distribution law[145] . In this case, to estimate the execution time, the beta distribution law is used in the interval with

 unit time spent on the design process of 𝑄 𝐶𝑃𝑈 𝐷𝑀 microcontroller-based physical security systems; -total available CPU time. 𝑄 𝐶𝑃𝑈 𝐴𝐿𝐿 Resource consumption when using a hard disk drive (HDD): used during the design process of microcontroller-based 𝑄 𝐻𝐷𝐷 𝐷𝑀 physical security systems; -total available HDD space. 𝑄 𝐻𝐷𝐷 𝐴𝐿𝐿 Resource consumption when using random-access memory (RAM): used during the design of microcontroller-based 𝑄 𝑅𝐴𝑀 𝐷𝑀 physical security systems; -total available amount of RAM. 𝑄 𝑅𝐴𝑀 𝐴𝐿𝐿

Figure 10 .

 10 Figure 10 . Extendable set-based hierarchical relational model

Figure 11 .

 11 Figure 11 . Links inside microcontroller-based physical security system

Figure 12 .

 12 Figure 12 ; -properties of . 𝑝 𝑏𝑏

Figure 13 .

 13 Figure 13 . Links inside hardware elements of the system

Figure 14 .

 14 Figure 14 . Links inside software elements of the system

Figure 15 .

 15 Figure 15 . Links between elements of microcontroller-based systems

Figure 16 .

 16 Figure 16 . Properties of elements of microcontroller-based systems

Description 1

 1 No access to the system 2 Access to the system through global networks 3 Access to the system through local networks 4 Physical access to the system 5 Full access to the system

 considered separately. By the result of the influence can be divided into positive, 𝑒𝑝 neutral and negative ones. Note, neutral implies their absence, but they are 𝑒𝑝 necessary for the completeness of the classification.

Figure 17 .

 17 Figure 17 . The classification of the emergent properties

Stage 2 :

 2 Getting attack actions possible for the attacker . At this stage, data about attack actions that are possible for the attacker in accordance with his or her parameters are extracted. Possible values of parameters are predefined by the attacker model, see Chapter 3 . Concrete values of parameters are provided as input data and selected by the operator. Each action has an id, name and description. Possible attack actions are defined by the model of attack actions, see Chapter 3 . Connections between parameters and actions are also defined in Chapter 3 .

Figure 18 .

 18 Figure 18 . Overview of the algorithm for the formation of requirements

Figure 20 .Stage 6 . 1 :

 2061 Figure 20 . Connections between system abilities and requirements

Figure 21 . 6 . 3 :

 2163 Figure 21 . Connections between system requirements and devices tasks

Figure 22 . 6 . 4 :

 2264 Figure 22 . Connections between devices tasks and abilities

Figure 23 . 6 . 5 :Stage 6 . 6 :Stage 6 . 7 :

 23656667 Figure 23 . Connections between devices abilities and requirements

Figure 25 . 2 . 2 :Stage 2 . 3 :

 252223 Figure 25 . Overview of the algorithm for the formation of components composition

Figure 28 .

 28 Figure 28 . The mapping on the level of the links between devices

Figure 31 .Figure 32 .

 3132 Figure 31 . Changings in the mapping on the level of the links between devices

Figure 34 .

 34 Figure 34 . Overview of the abstract system model design cycle

Figure 35 .

 35 Figure 35 . Overview of the detailed system model design cycle

 Software implementation of the methodology is an application that consists of Python script [135] , PostgreSQL database [136] and Tkinter [138] interface. The overview of the software implementation architecture is presented in Figure 37 .

Figure 37 .

 37 Figure 37 . The architecture of the software implementation

2 .

 2 Storage of tasks, abilities and requirements, see Chapter 4 . 3. Storage of abstract elements, sub-elements and links, see Chapter 4 . 4. Storage of detailed elements, see Chapter 4 .

Figure 38 .

 38 Figure 38 . Database structure: attacker, attack actions and security elements

Figure 40 .

 40 Figure 40 . Content of the database: attack actions

Figure 41 .

 41 Figure 41 . Content of the database: attackers and actionsBased on such a table, it is possible to extract attack actions that are possible for the attacker in accordance with his or her parameters (for example, access type -3, knowledge type -3, resources type -3), with the help of the following sequence:

Figure 42 .

 42 Figure 42 . SQL sequence: attack actions that are possible for the attacker

Figure 43 .

 43 Figure 43 . Content of the database: communication levels

Figure 44 .

 44 Figure 44 . Content of the database: communication levels and actions

Figure 45 .

 45 Figure 45 . Content of the database: types of elementsThe connections between types of elements and the possibility to implement attack actions are stored in the elements_and_actions table of the database. The content of the table is unique combinations of identification from the following tables: elements_types and attack_actions , see Figure46.

Figure 47 .

 47 Figure 47 . SQL sequence: attack actions that are possible based on elements Security elements are stored in the security_elements table of the database. This table represents security elements with the help of unique identification and description. The content of the table is based on the security elements model provided in Chapter 3 , see Figure 48 .

Figure 48 .

 48 Figure 48 . Content of the database: security elements

Figure 49 .

 49 Figure 49 . Content of the database: security elements and actionsBased on such a table, it is possible to extract security elements that are required to integrate into the designed devices to prevent attack actions that are possible in accordance with it elements and levels of communication as well as parameters of the attacker (for example, generation of incorrect component events -1, replacement of the firmware -5, malfunction of the update system -7, increased energy consumption -11 and interception, modification or termination of wireless communications -12), with the help of the following SQL sequence:

Figure 51 .

 51 Figure 51 . Database structure: tasks, abilities and requirements

Figure 54 .

 54 Figure 54 . Content of the database: tasks and abilities of the system

Figure 55 .

 55 Figure 55 . SQL sequence: abilities of the system

Figure 57 .

 57 Figure 57 . Content of the database: system abilities and requirements

Figure 58 .

 58 Figure 58 . Content of the database: tasks of devices

Figure 60 .

 60 Figure 60 . SQL sequence: tasks of devices

Figure 62 .

 62 Figure 62 . Content of the database: tasks and abilities of devices

Figure 64 .

 64 Figure 64 . Content of the database: requirements for devicesConnections between devices abilities and requirements are stored in the device_abilities_and_requirements table of the database. The content of the table is a unique combination of identification from the following tables: device_abilities and device_requirements , see Figure65.

Figure 65 .

 65 Figure 65 . Content of the database: devices abilities and requirementsBased on such a table, it is possible to extract requirements for devices in accordance with their abilities (for example, to update firmware -7, to detect intruders -12), with the help of the following SQL sequence:

 1) elements, (3.2) sub-elements, (3.3) links and (3.4) recommendations. The abstract elements sub-part of the database contains 11 tables, see Figure 67.

Figure 67 .

 67 Figure 67 . Database structure: abstract elements

Figure 68 .

 68 Figure 68 . Content of the database: abstract elements of the system

Figure 69 .

 69 Figure 69 . Content of the database: abstract and security elementsBased on such a table, it is possible to extract abstract elements that are representing corresponding security elements (for example, uninterruptible power supply -19), with the help of the following SQL sequence:

Figure 70 .

 70 Figure 70 . Content of the database: abstract elements and requirements

Figure 71 .

 71 Figure 71 . Content of the database: bases of devices

Figure 72 .

 72 Figure 72 . Content of the database: requirements for devices and their basesBased on such a table, it is possible to extract the base of the devices in accordance with its requirements (for example, firmware update mechanism -14, servo drive -22, server communication algorithm -34), with the help of the following sequence:

Figure 73 .

 73 Figure 73 . Content of the database: requirements for devices and their bases

Figure 74 .

 74 Figure 74 . Content of the database: abstract elements and their typesBased on such a table, it is possible to extract types of abstract elements of the designed device to check the attack actions that are possible based on them (for example, collector motor -6, distance sensor -7, wireless signal transmitter -14), with the help of the following SQL sequence:

Figure 75 .

 75 Figure 75 . Content of the database: abstract elements with itself

Figure 76 .

 76 Figure 76 . Content of the database: abstract elements combination

Figure 77 .

 77 Figure 77 . Content of the database: abstract elements dependenciesConnections between abstract elements of devices of the designed system and the number of digital and analogue pins, required for their connection to controllers are stored in the abstract_elements_and_pins table of the database, see Figure78.

Figure 78 .

 78 Figure 78 . Content of the database: abstract elements and pins

Figure 79 .

 79 Figure 79 . Database structure: abstract sub-elements

Figure 80 .

 80 Figure 80 . Content of the database: abstract sub-elements

Figure 81 .

 81 Figure 81 . Content of the database: abstract elements and sub-elementsBased on such a table, it is possible to extract sub-elements of abstract elements in accordance with requirements for designed devices (for example, element: firmware update mechanism -14, charge monitoring algorithm -17, movement algorithm -19), with the help of the following SQL sequence:

Figure 82 .

 82 Figure 82 . Content of the database: bases of devices and abstract sub-elements

Figure 83 .

 83 Figure 83 . Content of the database: security elements and abstract sub-elementsBased on such a table, it is possible to extract sub-elements of devices in accordance with abstract and security elements (for example, abstract element: firmware for electronic components -19, security element: anomaly detection algorithm -1, events correlation algorithm -3, data encryption -9), with the help of the following SQL sequence:

Figure 84 .

 84 Figure 84 . Content of the database: abstract sub-elements and flash-memory

Figure 85 .

 85 Figure 85 . Database structure: abstract links

Figure 86 .

 86 Figure 86 . Content of the database: abstract links

Figure 87 .

 87 Figure 87 . Content of the database: abstract links and device abilities

Figure 88 .

 88 Figure 88 . Content of the database: devices are linked or not

Figure 89 .

 89 Figure 89 . Content of the database: abstract links and dependencies

Figure 90 .

 90 Figure 90 . Content of the database: abstract links between abstract elements

Figure 94 .

 94 Figure 94 . Content of the database: system recommendations and security

Figure 95 .

 95 Figure 95 . Content of the database: devices recommendations and security

Figure 96 .

 96 Figure 96 . Database structure: abstract and detailed elements

Figure 97 .

 97 Figure 97 . Content of the database: abstract elements that are selectable

Figure 98 .

 98 Figure 98 . Content of the database: tables for implementations

Figure 99 .

 99 Figure 99 . Database structure: detailed element example

Figure 100 .

 100 Figure 100 . Content of the database: battery implementations

3 :

 3 Create the window self.window = builder.get_object(

Figure 101 .

 101 Figure 101 . Interface of the application: state after launching

4 . 5 . 6 .Part 1 .

 4561 Frame to display the log of the work of the design methodology for microcontroller-based physical security systems. Frame to display the results of work of the design methodology for microcontroller-based physical security systems. Control buttons of the application. Let's consider each part of the interface in more detail. The input of the parameters of the attacker is based on the model of the attacker presented in Chapter 3 and consists of 3 parameters: access type, knowledge type and resources type, see Figure 102 . Each parameter selection is based on ttk.Combobox and represented as drop-down lists.

Figure 102 . 2 .

 1022 Figure 102 . Interface of the application: input of parameters of the attacker

Figure 103 . 3 .

 1033 Figure 103 . Interface of the application: input of tasks the system

Figure 104 .

 104 Figure 104 . Interface of the application: frame of the components selection process

Figure 105 .

 105 Figure 105 . Interface of the application: frame for the methodology work process log

Figure 106 .

 106 Figure 106 . Abstract system model in JSON format

Figure 107 .

 107 Figure 107 . Detailed system model in JSON format

Figure 108 .Part 6 .

 1086 Figure 108 . Interface of the application: for the results of the design methodology

Figure 109 .

 109 Figure 109 . Interface of the application: control buttons

Figure 112 .

 112 Figure 112 . Detailing of one of the mobile robots of the designed system

 system in a given time frame;

1 𝐴𝑀- 1 𝐷𝑀 2 𝐷𝑀 3 𝐷𝑀

 1123 time of formation of the component composition of the abstract model; of the components hierarchy, connections between them, requirements for them, dependencies between them and recommendations for ensuring system security after implementation. Time consumption of the design process for a detailed model of the system is the sum of the time consumption of each stage of this process: the formation of selection steps for links between system 𝑇 devices and elements of the devices; -time of the selection of detailed 𝑇 elements of the system; -time of the calculation of device parameters as well 𝑇 as insertion of information about selected elements into the abstract model.

 And for the design process of the detailed model of microcontroller-based physical security systems, the Laplace function for : to the calculated values of the Laplace function, the probability of designing the abstract system model in a given time:And the probability of designing the detailed model of the system in a given time:

 physical security system does not exceed the allowable value (0.25); -the acceptable value of probability (0.99). 𝑅𝐸𝑆 𝐴𝐶𝐶 𝑃 𝑅 𝐴𝐶𝐶 According to this method, resource consumption is divided into particular indicators, namely, CPU, HDD and RAM. To obtain the average resource consumption for each indicator, the software implementation was executed 1000 times on the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores, 16 threads) processor, 2 TB HDD and 32 GB RAM. Resource consumption of each indicator was measured with the help of psutil Python library. Let's consider the results of such an experiment in more detail. Resource consumption when using central processing unit (CPU): unit time spent on the design process of 𝑄 𝐶𝑃𝑈 𝐷𝑀 microcontroller-based physical security systems; -total available CPU time. 𝑄 𝐶𝑃𝑈 𝐴𝐿𝐿

 physical security systems.[START_REF] Baheti | Cyber-physical systems // The impact of control technology[END_REF]. Algorithms and methodology for the design of microcontroller-based physical security systems. 5. Software implementation of the methodology for the design of microcontroller-based physical security systems. 6. Experimental evaluation of the methodology for the design of microcontroller-based physical security systems.

1 ' 2 ' 1 ' 2 𝑏𝑏 2 ' 2 - 2 ' 𝑏𝑏 1 '

 12122221 possibility to communicate with the server via Wi-Fi;• -Iskra JS microcontroller with default drivers and libraries for the 𝑏𝑏 possibility to interact with electronic components via firmware, as well as with via AT-commands. 𝑏𝑏 And the following hardware elements:• -Troyka Shield to simplify the connection of other hardware elements ℎ that represents a combination of different algorithms to 𝑠 𝑤 ensure microcontroller's interaction with transmitters and sensors ℎ 𝑤 2 -ℎ 𝑤 as well as combination of their output for successful intruder ℎ TxRx connection between and with shared ground and voltage wires (four 𝑏𝑏 digital pins of Iskra JS are reserved for communication between controllers); -𝐿 3 three wire SVG (signal, voltage, ground) connection through between

 3 or 5V on pins wireless receiver infrared receiver in form of troyka module (can be easily connected to Troyka Shield), 38 kHz, 25.4×25.4 mm, 20 mAh, 1 digital pin touch sensor clock button in form of troyka module (can be easily connected to Troyka Shield), 25.4×25.4 mm, 5 mAh, 1 digital pin distance sensor ultrasonic distance sensor HC-SR04, 2-400 cm scanning distance, 15 degrees effective viewing angle, 15 mAh, 1 digital pin noise sensor noise sensor in form of troyka module (can be easily connected to Troyka Shield), 25.4×25.4 mm, 10 mAh, 1 digital pin motion sensor infrared motion sensor in form of troyka module (can be easily connected to Troyka Shield), 25.4×25.4 mm, 7 m detection distance, 110 degrees viewing angle, 10 mAh, 1 digital pin servo drive Feetech FS90 micro servo drive, 180 degrees rotation range, torque 1.3 kg×cm, 650 degrees×sec rotation speed, 150 mAh, 1 digital pin encoders for wheels line sensor based on TCRT5000, 10 mAh, 1 analog pin microcontroller with in-build Wi-Fi interface ESP8266 in from of troyka module (can be easily connected to Troyka Shield), UART connection to Iskra JS, 512 KB flash memory, Wi-Fi b/g/n 2.4 GHz, 250 mAh, 4 digital pins power bank Power Bank v2 2000 mAh, 5V, 600 mA, 55×53×20 mm, micro-USB, two-wire (ground + voltage) connection Qi receiver 5V 0.6A 3W Qi Wireless Charging Coil Receiver, micro-USB firmware for the first microcontrollerIt is required to develop the firmware to ensure microcontroller's work with electronic components as well as combination of their output for successful in-door navigation and interaction with charging stations, the server and intruders. Moreover, lightweight encryption and authentication algorithms are required for communication, 520 KB firmware for the second microcontroller It is required to develop the firmware to ensure microcontrollers joint work as well as communication with the server of the system. For communications between microcontrollers lightweight encryption and authentication, algorithms are required. Connection with the server must be through its Wi-Fi access point (WPA2-PSK), 330 KB Interaction with motors during their programming is presented in Figure B.1 .

Figure B. 1 .

 1 Figure B.1 . An overview of the LEGO motor model

Figure B. 2 .

 2 Figure B.2 . An overview of the LEGO sensors model

 search in CPS : init =>* S | system(Id1, P + has(wheel) + has(motor) + has(battery)) . Solution 1 (state 0) states: 1 rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second) S --> none Id1 --> plug(wheel, plug(motor, plug(battery, chassis))) P --> done No more solutions. states: 1 rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)

 : [], "vulnerable": true, "versionEndExcluding": "21.70"}, {"cpe23Uri": "cpe:2.3:o:intel:ac_3168_firmware:*:*:*:*:*:*:*:*", "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"}, {"cpe23Uri": "cpe:2.3:o:intel:ac_7265_firmware:*:*:*:*:*:*:*:*", "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"}, {"cpe23Uri": "cpe:2.3:o:intel:ac_8260_firmware:*:*:*:*:*:*:*:

 Implementation of research results. The research results presented in this work were used in the following research and development projects: 1. "Models, techniques and methodology for design and verification of secure cyber-physical systems". Research grant #19-37-90082 "PhD students" of Russian Foundation of Basic Research, 2019-2022. 2. "Security Aspects of Cyber-Physical Systems". Research grant #19-17-50205 of Russian Foundation of Basic Research, 2019-2020. 3. "Research and development of an integrated security system based on embedded intelligent microcontrollers". The grant from the Fund for Assistance to the Development of Small Forms of Enterprises in the Scientific and Technical Sphere (Fund for Assistance to Innovation). START-2 project. Contract #2485GS2/22645 dated 04/11/2018, 2018-2019. 4. "Development of methods for vulnerability detection for human-computer interaction interfaces of the Smart City transport infrastructure". Research grant #19-29-06099 of Russian Foundation of Basic Research, 2019-2022. 5. "Methods, Models, Methods, Algorithms, Protocols and Applications for ensuring Information Security of Cyber-Physical Systems". NIR-FUND #717075 of ITMO University, 2017-2019. 6. "Research and development of an integrated security system based on embedded intelligent microcontrollers". The grant from the Fund for Assistance to the Development of Small Forms of Enterprises in the Scientific and Technical Sphere (Fund for Assistance to Innovation). START-1 project. In other projects (#19-29-06099, #717075 and #15-11-30029) my role was to research and develop an architecture and a prototype of different microcontroller-based systems that are secure by design.Moreover, the research results presented in this work are used by the department of secure communication systems of the federal state budgetary educational institution of higher education "St. Petersburg State University of Telecommunications named after prof. M.A. Bonch-Bruevich" in the educational process of the direction of training 10.03.01 "Information security" within the discipline "Fundamentals of The main results of this research were presented at a number of international and Russian conferences, including:1. XII Saint-Petersburg Interregional conference Information security of regions of Russia: "Algorithm for the formation of the component composition of a secure microcontroller-based system" [147] .

	2. 28th Euromicro International Conference on Parallel, Distributed, and
	Network-Based Processing: "SEPAD -Security Evaluation Platform for
	Autonomous Driving" [148] .
	3. XVII St. Petersburg International Conference Regional Informatics:
	"Requirements for the methodology for design and verification of secure
	cyber-physical systems" [149] .
	4. IV Interregional Scientific-Practical Conference Advanced National
	Agreement #1327GS1/22645 dated 06/16/2016, 2016-2017.
	7. "Incident management and counteraction against targeted cyber-physical
	attacks in distributed large scale mission-critical systems taking into account
	cloud services and networks of the Internet of Things". Research grant
	#15-11-30029 of Russian Science Foundation, 2015-2017.

In research grants #19-37-90082 "PhD students" and #19-17-50205 of Russian Foundation of Basic Research I was lead researcher, while in START-1 and START-2 projects of Fund for Assistance to Innovation I was the lead developer of microcontroller-based devices. designing secure info-communication systems" (work program No. 21.05/446-D) when giving lecture courses, conducting practical exercises and laboratory work. Approbation of research results.

 1. Design of secure microcontroller-based systems: application to mobile robots for perimeter monitoring. Sensors. 2021. Accepted 08.12.2021. (Scopus, WoS, Q1) [159] 2. Design and verification of a mobile robot based on the integrated model of cyber-physical systems // Simulation Modelling Practice and Theory, Vol. 105, 2020. DOI: 10.1016/j.simpat.2020.102151. (Scopus, WoS, Q2) [104] 3. Design Technique for Secure Embedded Devices: Application for Creation of Application for the design of secure microcontroller-based physical security systems. Federal Service for Intellectual Property. Certificate #2021680236. Registered in the Computer Program Registry 08.12.2021. [162] 7. Database for the design of secure microcontroller-based physical security systems. Federal Service for Intellectual Property. Certificate #2021622496. Registered in the Computer Program Registry 15.11.2021. [163] 8. Component of traffic generation for cyber-physical systems based on I2C protocol. Federal Service for Intellectual Property. Certificate #2018664325. Registered in the Computer Program Registry 14.11.2018. [164] 9. Repository for heterogeneous data from the hardware elements of the smart home. Federal Service for Intellectual Property. Certificate #2017620996. Registered in the Database Registry 01.09.2017. [165] 10. System for support and management of a database of the room access control and management system based on the contactless smart cards. Federal Service for Intellectual Property. Certificate #2016612543. Registered in the Computer Program Registry 01.03.2016. [166] 11. Database of the logging server of a secure access control system for Smart House model. Federal Service for Intellectual Property. Certificate #2016621608. Registered in the Database Registry 29.11.2016. [167]

Integrated Cyber-Physical Security System. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA), Vol.7, No.2, June 2016. P.60-80. DOI:10.22667/JOWUA.2016.06.31.060. (Scopus, WoS, Q2) [60] 4. The application of the methodology for secure cyber-physical systems design to improve the semi-natural model of the railway infrastructure // Microprocessors and Microsystems, November 2020, Р. 103482. ISSN 0141-9331. DOI: 10.1016/j.micpro.2020.103482. (Scopus, WoS, Q3) [160] 5. Problematic Issues of Information Security of Cyber-Physical Systems // Informatics and Automation. Vol. 19. No. 5. 2020. P. 1050-1088. DOI: 10.15622/ia.2020.19.5.6. (Scopus, Q3) [161] 6.

 can be represented as follows:

								𝑃	𝑇	(𝑇𝐼𝑀 𝐸	𝑁 ≤ 𝑇𝐼𝑀 𝐸	𝐴𝐶𝐶) ≥ 𝑃	𝑇 𝐴𝐶𝐶	,
	where	𝑇𝐼𝑀 𝐸	𝑁	-time required to design a secure system ; 𝑁 𝑃	𝑇	-probability of
	designing a secure system in a given time frame;	𝑇𝐼𝑀 𝐸	-acceptable time for
									𝑃	𝑅 (𝑅𝐸 𝑆 𝑁 ≤ 𝑅𝐸𝑆 𝐴𝐶𝐶) ≥ 𝑃	𝑅 𝐴𝐶𝐶
	where	𝑃	𝑅	-probability that the resources	𝑅𝐸 𝑆 𝑁	spent on the design process of a
	secure system do not exceed the allowable value	𝑅𝐸𝑆 𝐴𝐶𝐶	(0.25);	𝑃	𝑅 𝐴𝐶𝐶	-acceptable
	value of probability (0.99).
	Summarizing the above, it is required to develop the design methodology for
	microcontroller-based physical security systems that are based on	𝐷 𝐼	provides	𝐷 𝑂	,
	while	𝑃	, 𝑅 ≥ 0 . 99 𝑃	𝑇 ≥ 0 . 99	and the value of	𝑂	𝐹	exceeds values of analogues.

𝐴𝐶𝐶 designing a secure system (1 sec for the abstract model and 4 secs for the detailed model during the design process of the system of mobile robots for perimeter monitoring); -acceptable probability value (0.99). 𝑃 𝑇 𝐴𝐶𝐶 Requirement for resource consumption can be represented as follows:

Table 2 .

 2 . Various types of links between elements

	𝑅	𝐼	𝐸

Table 5 .

 5 Attacker's types of resourcesThe developed model of attack actions is inspired by the classification of attack actions from Section 1.1.3 . According to this classification, attack actions can be distinguished according to attributes such as subject, object, impact method, prerequisites and consequences. In the developed model, only subject, object and impact methods of attack are used.

																					Description
									1 Widely-spread software tools and known vulnerabilities
									2 Specialized software tools and previously non-used vulnerabilities
									3 Possibility to investigate the system
	In the developed model, the structure of attacker's access, knowledge and resources
	types is hierarchical. It means that	𝑎	1	with	𝑎 𝑐 𝑎	1	= 3	is able to perform any attack
	action which is possible for	𝑎	2	with	𝑎 𝑐 𝑎	2	if = 2 𝑘 𝑛 𝑎	1	≥ 𝑘 𝑛 𝑎 2	and	𝑟 𝑠 𝑎	1	≥ 𝑟 𝑠 𝑎	. It also 2
	means that	𝑎	3		with	𝑎 𝑐 𝑎 3	= 3	is able to perform any attack action which is possible for
	𝑎	1	if	𝑘 𝑛 𝑎	3	≥ 𝑘 𝑛 𝑎	1	and	𝑟 𝑠 𝑎 3	≥ 𝑟 𝑠 𝑎	1	. But if there are	𝑎	4 = (𝑎 𝑐 𝑎	4	= 3 , 𝑘 𝑛 𝑎	4	= 2 , 𝑟 𝑠 𝑎	4	= 2)
	and	𝑎	5 = (𝑎 𝑐 𝑎	5	= 2 , 𝑘 𝑛 𝑎	5	= 3 , 𝑟 𝑠 𝑎	5	= 3)	then	𝑎	4	will not be able to perform all attack
	actions that are possible for	𝑎	5	and vice versa.
	An attack action on	𝑚𝑏𝑠	can be represented as follows:
																					𝑎𝑎 = (𝑐𝑙 , 𝑜𝑗 , 𝑠𝑗)	,
	where -class of ; 𝑐𝑙 𝑎𝑎 𝑜𝑗	-object of , helps to link 𝑎𝑎	𝑎𝑎	with the target element(s)
	of	; 𝑚𝑏𝑠 𝑠𝑗	-subject of	𝑎𝑎	, helps to link	𝑎𝑎	with that is capable enough for its 𝑎
	successful realization.				
	In this work, instead of separate impact methods, it was decided to use classes of
	attack actions, while each class contains multiple examples of methods. Classes of
	attack actions can be represented as follows:
																					, 𝑐𝑙 = { 𝑐𝑛 , 𝑐𝑟 , 𝑑𝑣 , 𝑠𝑡 }
	where	-𝑐𝑛 𝑎𝑎	on the level of components and their communications with controllers;
	-𝑐𝑟 𝑎𝑎	on the level of controllers and their communications with other controllers;
	-𝑑𝑣 𝑎𝑎		on the level of devices and their communications with other devices; -𝑠𝑡 𝑎𝑎
	on the level of the system and its communications with other systems.

Table 6 .

 6 . Classes of attack actions and different types of attackers

						𝑎						
			𝑎𝑐				𝑘𝑛				𝑟𝑠	
	1	2	3	4	5	1	2	3	4	1	2	3

Table 7 .

 7 Classes of attack actions and security elements

	Security elements

𝑑𝑏𝑑 input validation, strict access policy, strong login credentials, separate database users for different operations

Table 8 .

 8 Classes of attack actions and non-security elements

	𝑖𝑒𝑐	devices with sleep mode/wireless interfaces
	𝑖𝑤𝑠 device ↔ device
	𝑠𝑜𝑐	any system with operators or/and users
	𝑝𝑤𝑟 any system that relies on power grid
	𝑠𝑡	
	𝑤𝑒𝑏 any system with web-services
	𝑑𝑏𝑑 any system with database

𝑚𝑏𝑠 𝑐𝑙 𝑐𝑛 𝑔𝑖𝑒 sensors and receivers that react on the environment 𝑏𝑐𝑑 sensors that monitor environment 𝑟𝑝𝑡 any component 𝑟𝑚𝑡 any component 𝑐𝑟 𝑟𝑓𝑤 any controller with rewritable firmware 𝑟𝑏𝑙 any controller with rewritable bootloader 𝑚𝑢𝑝 any controller with update system 𝑖𝑚𝑤 controller ↔ controller, controller ↔ component 𝑑𝑣 𝑣𝑎𝑢 device ↔ device, where authentication is used 𝑐𝑎𝑑 device ↔ device, where encryption is used

 To make the calculations more realistic, special modifiers that reduce values of properties are required. Their work can be represented as follows:

												𝑓	𝑝 (𝑥) = 𝑝	𝑥	, 𝑥 = (𝑦	1	, ..., 𝑦	𝑛) | 𝑛 ϵ 𝑁	,
				𝑓	𝑝 (𝑥) =	𝑖 = 1 𝑛 ⋃ 𝑓	𝑝 (𝑦	𝑖) • 𝑒 𝑝	𝑥 = 𝑓	𝑝 (𝑦	1) • 𝑒𝑝	𝑥 𝑦 1 ∪... ∪ 𝑓	𝑝 (𝑦	𝑛) • 𝑒𝑝	𝑥 𝑦	, 𝑛
	where	𝑥	-element of	𝑚𝑏𝑠	or	𝑚𝑏𝑠	itself, which consists of	𝑦	𝑖 | 𝑖 ϵ 1 ... 𝑛
	sub-elements;	𝑝	𝑥	-properties of ; 𝑥 𝑒𝑝	𝑥 𝑦	𝑖 | 𝑖 ϵ 1 ... 𝑛	-emergent properties that are
	related to a sub-element of . 𝑦 𝑖 𝑥
	In other words,	𝑒𝑝	are considered as properties that do not correspond to individual
	elements. During the formation process, the influence of the combination and/or
	interaction of individual elements is considered as emergent properties. At the same
	time, an emergent property that already affected	𝐹𝑅	and	𝑁𝐹𝐿	of an individual
	element, when forming another element on its basis, no longer has an effect,
	because it has already been taken into account.
	Moreover, operation separately combines ∪	, 𝐹𝑅 𝑁𝐹𝐿 𝑃𝑅𝐹 ,	and	. This is due to a 𝑃𝑅𝑅
	fact that some of	𝐹𝑅	and	𝑁𝐹𝐿	maybe common for individual elements of the system
	while	𝑃𝑅𝐹	and		𝑃𝑅𝑅	of some of the elements may cover individual	or 𝑁𝐹𝐿 𝐹𝑅	of other
	elements. For example,	𝑓 𝑟	𝑖	related to the power supply can be covered once for all
	connected elements, while	𝑓 𝑟	𝑗	related to the memory space can have its limits. It's
	even more difficult in a case when	𝑓 𝑟	𝑞	is related to resources that are not used all
	the time, so they can be shared between the elements.
	The influence of	𝑒𝑝	can be classified by the area and result of the influence, see
	Figure 17 . By the area of the influence	𝑒𝑝	can be divided into properties that are
	arising on the level of components, controllers and devices. And because	𝑒𝑝	are
	arising in the process of elements combining and interacting,	𝑒𝑝	on the level of the
	whole system are already taken into account on the level of devices and not

Table 9 .

 9 Input and output data of the abstract system model design cycle

		design technique	input	output
	1	hardware element	requirements and limitations, hardware sub-elements models (null is possible)	model of hardware element
	2	software element	requirements and limitations, software sub-elements models (null is possible)	model of software element
	3	protocol	requirements and limitations	model of protocol
	4	interface	requirements and limitations	model of interface
			requirements and limitations, hardware	
			sub-elements models (null is possible),	
	5	building block	software sub-elements models (null is	model of building block
			possible), building sub-blocks models	
			(null is possible)	
	6	link	requirements and limitations, model of protocol, model of interface	model of link
			requirements and limitations, building	
	7	system	blocks, links models, sub-systems	model of system
			models (null is possible)	

Table 10 .

 10 Input and output data of the detailed system model design cycle

		selection process	input	output	
	1	link	link model, already selected elements of the system (null is possible)	selected parameters	link	with
	2	protocol	protocol model, already selected elements of the system (null is possible)	selected parameters	protocol	with
	3	interface	interface model, already selected elements of the system (null is possible)	selected parameters	interface	with
	4	building block	building block model, already selected elements of the system (null is possible)	selected building block with parameters
	5	software element	software element model, already selected elements of the system (null is possible)	selected software element with parameters
	6	hardware element	hardware element model, already selected elements of the system (null is possible)	selected hardware element with parameters
	7	system	system model, already selected elements of the system (null is possible)	system parameters	model	with

Table : access_types Table: knowledge_types Table: resources_types Figure

 :

39 . Content of the database: access, knowledge and resources types Attack actions are stored in the attack_actions table of the database. This table represents attack actions with the help of unique identification, name and description. The content of the table is based on the attack actions model provided in Chapter 3 , see Figure 40 .

 Based on such a table, it is possible to extract attack actions that are possible in accordance with abstract elements and sub-elements of the designed device based on their types (for example, environment sensors -1, monitoring sensors -2, microcontroller with rewritable firmware -5 and device with the wireless interface -8), with the help of the following SQL sequence:

table of the database. The content of the table is unique combinations of identification from the following tables: elements_types and attack_actions , see Figure 46 .

Figure 46 . Content of the database: types of elements and actions SELECT attack_actions.* FROM attack_actions WHERE id = ANY (SELECT DISTINCT action_id FROM elements_and_actions WHERE type_id IN (1 , 2 , 5 , 8)) ORDER BY attack_actions. id ;

 Abilities of designed devices are stored in the device_abilities table of the database. This table represents the abilities of devices with the help of unique identification and description, see Figure61.

Figure 61 . Content of the database: abilities of devices

Connections between tasks and abilities devices are stored in the device_tasks_and_abilities table of the database. The content of the table is unique combinations of identification from the following tables: device_tasks , device_abilities and system_requirements , see Figure

62

.

 Based on such a table, it is possible to extract abstract elements of devices that are representing its base (for example, microcontroller -3), with the help of the following SQL sequence:

	SELECT abstract_elements.*
	FROM abstract_elements
	WHERE id = ANY(
	SELECT element_id
	FROM abstract_elements_and_base
	WHERE base_id = 3
) ORDER BY id ;

 table, it is possible to extract sub-elements of abstract elements in accordance with requirements for designed devices (for example, element: firmware update mechanism -14, charge monitoring algorithm -17, movement algorithm -19), with the help of the following SQL sequence:

	SELECT abstract_subelements.*
	FROM abstract_subelements
	WHERE id = ANY(
	SELECT subelement_id
	FROM abstract_elements_and_subelements
	WHERE element_id = 19
	AND requirement_id IN (14 , 17 , 19)
) ORDER BY id ;

 table, it is possible to extract sub-elements of devices in accordance with abstract elements and bases (for example, element: firmware for electronic components -19, base: connected microcontrollers -2), with the help of the following SQL sequence:

	SELECT abstract_subelements.*
	FROM abstract_subelements
	WHERE id = ANY(
	SELECT subelement_id
	FROM abstract_subelements_and_base
	WHERE element_id = 19
	AND base_id = 2
) ORDER BY id ;

attacker_actions, devices_list, \ devices_requirements, devices_communications, \ devices_links, devices_bases = \ self .requirements_formation(log_str, system_security_elements_set)

for microcontroller-based physical security systems, see Section 4.1 , is implemented as the following function: log_str,

 Second stage is about getting attack actions possible for the attacker:

	access_type, knowledge_type, resources_type, \
	task_1, task_2, task_3 = \
	self .input_data_get()
	log_str, attacker_actions = \
	attacker_actions_get(log_str, access_type, knowledge_type, resources_type)
	Third stage is about getting security elements to prevent attack actions:
	log_str, system_security_elements_set = \
	system_security_elements_get(
	log_str, attacker_actions, system_security_elements_set
)

devices_list, devices_requirements, devices_communications, \ devices_links, devices_bases = requirements_formation_initialization()

Adding device to the list devices_list.append(dev_str) # 6.2. Getting tasks required from the device to be designed log_str, device_tasks = \ device_tasks_get(log_str, req_str, requirement[0]) # 6.3. Getting abilities that are connected with device tasks log_str, device_abilities = \ device_abilities_get(log_str, requirement[0]) # 6.4. Getting requirements that are connected with device abilities log_str, device_requirements = \ device_requirements_get(log_str, device_abilities) # 6.5. Getting device base in accordance with device requirements log_str, device_base = \ device_base_get(log_str, device_requirements) # 6.6. Getting types of communications that are possible for device log_str, communications = \ types_of_communication_get(log_str, device_base[0][0]) # 6.7. Getting links that are possible for device links = \ device_links_get(device_abilities) The algorithm for the formation of components compositions for

 microcontroller-based physical security systems, see Section 4.2 , is implemented as the following function:

	log_str, system_recommendations, abstract_system_arr, abstract_links_arr = \
	self .secure_system_components_get(
	log_str, devices_list,
	devices_bases, devices_requirements, devices_links,
	devices_communications, attacker_actions,
	abstract_system_arr, abstract_links_arr,
	system_recommendations
)

6.1.

1. Getting abstract elements of device with their sub-elements log_str, abstract_device_arr = \ abstract_elements_with_subelements_get(log_str, devices_bases[device][0][0], devices_requirements[device]) # 2.2. Getting attack actions that are possible for device log_str

	log_str, system_recommendations, abstract_system_arr, abstract_links_arr = \
	self .secure_system_components_get(
	log_str, devices_list,
	devices_bases, devices_requirements, devices_links,
	devices_communications, attacker_actions,
	abstract_system_arr, abstract_links_arr,
	system_recommendations
)
	Second stage is about getting component composition of devices:
	, possible_actions_list = \
	possible_actions_get(
	log_str, devices_communications[device],
	abstract_device_arr, attacker_actions
)
	# 2.3. Getting additional abstract elements and sub-elements based on security ones
	log_str, abstract_device_arr, security_elements = \
	abstract_elements_and_subelements_additional_get(
	log_str, possible_actions_list, abstract_device_arr
)
	# 2.

2.

4.1 Getting recommendations for device implementation based on security elements log_str, device_recommendations_set = \ device_recommendations_get(log_str, security_elements) # 2.4.2 Getting recommendations for system implementation based on security elements system_recommendations = \ system_recommendations_get(security_elements, system_recommendations) # 2.5. Saving data about device abstract_system_arr[device] = abstract_device_arr abstract_links_arr[device] = devices_links[device] system_recommendations[device] = device_recommendations_set The algorithm for the design of abstract models of

 microcontroller-based physical security systems, see Section 4.3 , is implemented as the following function:

	global abstract_system_composition
	self .design_abstract_model(
	system_recommendations,
	abstract_system_arr,
	abstract_links_arr,
	system_security_elements_set
)

Table 11 .

 11 Tasks, abilities and requirements of the designed system

	Task		Ability		Requirement	Dependency
		to store and process	
		system data			
		to	run	executable	
		applications			
		to download and install	
		software updates	
	centralized system management	to access points create	wireless	device that represents the server of the system
		to communicate with	
		mobile robots		
		to communicate with	
		charging stations	
		to provide a user	
		interface for operators	
		of the system		
		to provide wireless	
		charging			
		to	monitor	the		to	provide	static
	static perimeter monitoring	perimeter nearby to communicate with mobile robots	devices charging stations of the that represent system	perimeter monitoring , the task of centralized system management should already be
							satisfied
		to communicate with	
		the server of the	
		system			

Table 12 .

 12 Tasks, abilities and requirements related to the server

	Task	Ability	Requirement	Dependency
			32-bit operating system	
		to store data		
			sql database	
			wire network interface	
		to update software	software update server	
	work cycle		software update mechanism	
	support			
		to run applications	32-bit operating system	
			32-bit operating system	
		to create wireless	wireless network interface	
		access points		
			access points configuration	
			mechanism	
			application with GUI	
				to provide interaction
	interaction with operators	to provide graphical user interface	app-db connection data processing algorithm	with operators , the task of work cycle support should already be
				satisfied
			data presentation algorithm	
	interaction with other devices	to communicate with other devices	wireless network interface devices communication algorithm	to provide interaction with other devices , the task of work cycle support should already be satisfied
	appropriate level of security	to be secure against attackers with , 𝑎𝑐 = 4 , 𝑘𝑛 = 2 𝑟𝑠 = 2		

Table 13 .

 13 Tasks, abilities and requirements related to the charging stations

	Task	Ability	Requirement	Dependency
			wireless network interface	
		to update firmware	bootloader	
	work cycle support		firmware update mechanism	
		to charge parked devices	wireless charge transmitter	
			motion sensor	
				to provide interaction
	interaction with intruders	to detect intruders	noise sensor servo drive	with intruders , the task of work cycle support should already be
				satisfied
			intruder detection algorithm	
	interaction with parking devices	to help mobile devices to park near	wireless signal transmitter parking direction algorithm	to provide interaction with parking devices , the task of work cycle support should already be satisfied
			wireless network interface	to provide interaction
	interaction with the server	to communicate with the server	server communication algorithm	with the server , the task of work cycle support should already be satisfied
	appropriate level of security	to be secure against attackers with , 𝑎𝑐 = 4 , 𝑘𝑛 = 2 𝑟𝑠 = 2		

Table 14 .

 14 Tasks, abilities and requirements related to the mobile robots

	Task	Ability	Requirement	Dependency
			wireless network interface	
		to update firmware	bootloader	
	work cycle		firmware update mechanism	
	support		wireless charge receiver	
		to be charged in a wireless way	battery	battery should provide hours power supply for 8
			charge monitoring algorithm	
			collector motor	to move , the work cycle
		to move		support task should
			movement algorithm	already be satisfied
			distance sensor	
			touch sensor	to avoid obstacles ,
		to avoid obstacles	servo drive	each already have an ability robot should
	perimeter monitoring		obstacles detection algorithm	to move
			obstacles avoidance algorithm	
			encoder	
				to navigate , each robot
		to navigate	map construction algorithm	should already have and ability to avoid
				obstacles
			path construction algorithm	
			motion sensor	
		to detect intruders	noise sensor servo drive	to detect an intruder , the perimeter monitoring task should already be satisfied
	interaction with intruders		intruders detection algorithm	
			distance sensor	to chase intruders , each mobile robot
		to chase intruders		should already have an
			intruders chase algorithm	ability to detect intruders
	interaction with charging stations	to charging stations park near	wireless signal receiver parking algorithm	to park near charging stations , the perimeter monitoring task should already be satisfied

TABLE mcs_for_ws_communication_and_compatibility

 mcs_for_ws_communication_and_compatibility

	(
	id SERIAL PRIMARY KEY ,
	option_id INTEGER REFERENCES mcs_for_ws_communication(id),
	requirement_id INTEGER REFERENCES abstract_subelements(id),
	UNIQUE (option_id , requirement_id)
);

Table 15 .

 15 Time indicators for the design of the abstract system model

	Stage	𝑇	, ms 𝑚𝑖𝑛 𝑖	𝑇	𝑖 𝑚𝑎𝑥	, ms	𝑇	𝑖 =	3 𝑇	𝑖 𝑚𝑖𝑛 + 2 𝑇 5	𝑖 𝑚𝑎𝑥	σ 2 (𝑇	𝑖) = 0 . 4 (𝑇	𝑖 𝑚𝑎𝑥 -𝑇	𝑖 𝑚𝑖𝑛)	2
	1		3.99		6.98			5.19				3.58			
	2		11.95		14.72			13.06				3.07			
	3		51.86		59.48			54.91				23.23		
		Total for the stage, ms				73.16				29.88		

Table 16 .

 16 Time indicators for the design of the detailed system model

	Stage	𝑇	, ms 𝑚𝑖𝑛 𝑖	𝑇	𝑖 𝑚𝑎𝑥	, ms	𝑇	𝑖 =	3 𝑇	𝑖 𝑚𝑖𝑛 + 2 𝑇 5	𝑖 𝑚𝑎𝑥	σ 2 (𝑇	𝑖) = 0 . 4 (𝑇	𝑖 𝑚𝑎𝑥 -𝑇	𝑖 𝑚𝑖𝑛)	2
	1		1.99		3.05			2.41				0.45			
	2	209.03		214.50			211.22				11.97		
	3		5.92		10.97			7.94				10.20		
		Total for the stage, ms				221.57				22.62		

Table 17 .

 17 The comparison with commercial solutions

					[117]	[119]	[120]	[122]	[124]	[125]	developed
		𝑐𝑛	↔	𝑐𝑟	-		-	-	-	-	-	+
	level	𝑐𝑟	↔	𝑐𝑟	-		-	-	-	-	-	+
	of the										
	system	𝑑𝑣	↔	𝑑𝑣	-		-	-	-	-	-	+
		𝑠𝑡	↔	𝑠𝑡	+		+	+	+	+	+	+
	The comparison showed that the developed design methodology takes into account
	security of all four levels of microcontroller-based systems, while commercial
	solutions are focused only on one of them -they are aiming to secure individual
	devices that can be connected to the cloud. It means that the indicator
	𝐿𝐸𝑉𝐸𝐿 𝑆 𝑁 | | ≥ 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆 𝑠 ∈ 𝑆 | | ()	of the validity requirement is satisfied.

Table 18 .

 18 The comparison with scientific solutions

			[72]	[84]	[115]	[116]	[128]	[129]	developed
		𝑐𝑛	-	-	+	-	+	-	+
	classes	𝑐𝑟	*	*	+	+	+	+	+
	of attack								
	actions	𝑑𝑣	*	*	-	-	-	+	+
		𝑠𝑡	-	-	-	-	-	-	+

Table 19 .

 19 The comparison with all solutions

			Levels of the system			Classes of attack actions	
	Solutions								
		↔ 𝑐𝑛 𝑐𝑟	↔ 𝑐𝑟 𝑐𝑟	↔ 𝑑𝑣 𝑑𝑣	↔ 𝑠𝑡 𝑠𝑡	𝑐𝑛	𝑐𝑟	𝑑𝑣	𝑠𝑡
	[72]	-	-	-	-	-	*	*	-
	[84]	-	-	-	-	-	*	*	-
	[115]	+	+	-	-	+	+	-	-
	[116]	+	+	-	-	-	+	-	-
	[117]	-	-	-	+	-	-	+	+

Table 20 .

 20 Results of analysis of the software implementation

	Result	Conclusion

Table A .

 A 1 . Functional requirements of the designed system

	represents capabilities of It means that 𝑃𝑅 -Wi-Fi communications between the server of the designed -resources that it can provide, see Table A.4 . 𝑚𝑏𝑠 𝐿 𝑚𝑏𝑠 1 where -the USB to micro-USB connection between and of ; -𝐿 1 𝑏𝑏 1 ' ℎ 𝑤 1 𝑏 𝑏 1 𝐿 2
	Description Table A.4 . Provided resources of the designed system system and mobile robots/charging stations -can be represented as follows: 𝐹𝑅 libraries and drivers that provide interaction between and ; -the 𝑏𝑏 1 ' 𝑠 𝑤 1 -𝑠 𝑤 3 𝐿 3 𝑓 𝑟 1 power source for charging stations 𝑓 𝑟 2 power source for the server 𝑓 𝑟 3 secure connection of server to update system description 𝑃𝑅 𝑝 𝑟 , 𝐿 𝑚𝑏 𝑠 1 = (𝐼𝐸𝐸𝐸 800 . 11 , 𝑤𝑖𝑟𝑒𝑙𝑒𝑠𝑠 2 . 4 𝐺𝐻𝑧 , { 𝑏 𝑏 1 ↔ 𝐵 𝐵 2 , 𝑏 𝑏 1 ↔ 𝐵 𝐵 3 }, 𝑝) Internet connection between and remote update server. 𝑠 𝑤 3 𝐿 𝑚𝑏 𝑠 1 to store system data in relational database 1 𝑝 𝑟 2 to run executable applications compatible with Linux operating systems where -the server of ; -set of mobile robots of ; -set of 𝑏 𝑏 1 𝑚𝑏𝑠 𝐵 𝐵 2 As for properties of -the server of the system -it is important to note that they 𝑏 𝑏 1 𝑚𝑏𝑠 𝐵 𝐵 3 are connected with the properties of and partially represent them. 𝑚𝑏𝑠
	represents needs of Note that Influence of 𝑁𝐿 𝐴𝐴 𝑚𝑏𝑠 can be modeled through cancelling or reducing of some of -limitations which satisfaction is necessary for it to be charging stations of ; -properties of . 𝑚𝑏𝑠 𝑝 𝐿 𝑚𝑏 𝑠 𝐿 𝑚𝑏 𝑠 1 1 represents the needs of -functionality that satisfaction is necessary for the 𝐹𝑅 𝑏 𝑏 1 able to work, see Table A.2 . Table A.2 . Non-functional limitations of the designed system Description and as well as through enhancing or introducing of and . For example, 𝑃𝐹 𝑃𝑅 𝐹𝑅 𝑁𝐿 based on the system must be secure against -interception, modification or 𝑝 𝑓 8 𝑖𝑤𝑠 Let us consider properties of in more detail. 𝐿 server of the system to be able to work. It contains: 𝑚𝑏𝑠 1 • -power source; 𝑓 𝑟 1 termination of wireless communications. To prevent such a class of attack actions, the following security elements must be part of the designed system: strong represents the functionality that satisfaction is necessary for to be able to 𝐹𝑅 𝐿 1 𝑚𝑏 𝑠 • -secure connection between the update system and remote server. 𝑓 𝑟 2
	𝑁𝐿 encryption mechanism on the access point, strong login credentials and public key 𝑛 𝑙 1 space for charging stations placement 𝑛 𝑙 2 space for server placement 𝑛 𝑙 3 pair-based authentication. Thus, of mobile robots for perimeter monitoring can be represented as follows: 𝑚𝑏𝑠 work. It contains: • -physical connection to Wi-Fi module with correct voltage; represents the needs of -limitations which satisfaction is necessary for the 𝑁𝐿 𝑏 𝑏 1 𝑓 𝑟 1 • server of the system to be able to work. It contains: -software library for work with Wi-Fi modules. 𝑓 𝑟 2 • -space for the device; 𝑛 𝑙 1 space for mobile robots' movement 𝑛 𝑙 4 the environment does not contain elements that can lead to incorrect , 𝑚𝑏𝑠 = (𝐵𝐵 , 𝐿 𝑚𝑏𝑠 , 𝑎 , 𝐴𝐴 , 𝑝 𝑚𝑏𝑠) represents the limitations which satisfaction is necessary for to be able to 𝑁𝐿 • -the environment does not contain elements that can lead to incorrect 𝑛 𝑙 2 𝐿 𝑐𝑝 𝑠 1 operation of wireless communications. operation of device sensors 𝑛 𝑙 5 the environment does not contain elements that can lead to incorrect operation of wireless communications represents capabilities of -functionality that it can provide, see Table A.3 . 𝑃𝐹 𝑚𝑏𝑠 Table A.3 . Provided functionality of the designed system description 𝑃𝐹 𝑝 𝑓 1 to monitor the perimeter 𝑝 𝑓 2 to add new mobile robots 𝑝 𝑓 3 to add new charging stations 𝑝 𝑓 4 to monitor locations of mobile robots and charging stations 𝑝 𝑓 5 to monitor occupancy of charging stations , 𝐵𝐵 = (𝑏 𝑏 1 , 𝐵 𝐵 2 , 𝐵 𝐵) work. It contains: 3 𝐿 𝑚𝑏𝑠 = (𝐿 1 , 𝐿 2 , 𝐿), • -all communication parties are supporting the same Wi-Fi standards; 𝑛 𝑙 1 represents the capabilities of -functionality that the server of the system can 𝑃𝐹 𝑏 𝑏 1 3 , 𝑎 = (𝑎𝑐 , 𝑘𝑛 , 𝑟𝑠) | 𝑎𝑐 = 4 , 𝑘𝑛 = 2 , 𝑟𝑠 = 2 , 𝐴𝐴 = {(𝑐 𝑙 1 , 𝑜 𝑗 1 , 𝑠 𝑗 1), ..., (𝑐 𝑙 𝑛 , 𝑜 𝑗 𝑛 , 𝑠 𝑗)} | 𝑛 ∈ 𝑁 • -the environment does not contain elements that can lead to incorrect provide. It contains: 𝑛 𝑙 2 operation of 2.4 GHz wireless communications. • -to add new mobile robots; 𝑝 𝑓 1 𝑛 𝑝 𝑚𝑏𝑠 = (𝐹 𝑅 , 𝑁 𝐿 , 𝑃 𝐹 , 𝑃 𝑅) where -the server; -set of mobile robots ; -set 𝑏 𝑏 1 𝐵 𝐵 2 𝑏 𝑏 2 𝑖 ϵ 𝐵 𝐵 2 | 𝑖 ϵ 1 ... 𝑛 𝐵 𝐵 3 of charging stations ; -Wi-Fi communication between and 𝑏 𝑏 3 𝑖 ϵ 𝐵 𝐵 3 | 𝑖 ϵ 1 ... 𝑚 𝐿 1 𝑏 𝑏 1 as well as between and ; -IR communication between and 𝐵 𝐵 2 𝑏 𝑏 1 𝐵 𝐵 3 𝐿 2 𝐵 𝐵 2 𝐵 𝐵 represents the functionality that can provide. It contains: 𝑃𝐹 • -to add new charging stations; 𝑝 𝑓 2 𝐿 𝑚𝑏𝑠 1 • -wireless communication between devices and the access point; • -to update software, drivers and libraries; 𝑝 𝑓 3 𝑝 𝑓 1 • -connected devices are sharing throughput; • -to communicate with mobile robots and charging stations; 𝑝 𝑓 4 𝑝 𝑓 2 • -WPA2-PSK security. • -to be secure against attackers with , , . 𝑝 𝑓 𝑎𝑐 = 4 𝑘𝑛 = 2 𝑟𝑠 = 2 5 𝑝 𝑓 3 3 ; -Qi communication between and of ; -type of access has 𝐿 3 𝐵 𝐵 2 𝐵 𝐵 3 𝑚𝑏𝑠 𝑎𝑐 𝑎 to ; -type of knowledge has about ; -type of resources available 𝑚𝑏𝑠 𝑘𝑛 𝑎 represents the resources that can provide. It contains: 𝑃𝑅 represents the capabilities of -resources that the server of the system can 𝑃𝑅 𝑏 𝑏 1 𝐿 𝑚𝑏 𝑠 1 provide. It contains: 𝑚𝑏𝑠 𝑟𝑠 to to compromise ; -i -th class of attack; -i -th object of attack, helps to 𝑎 𝑚𝑏𝑠 𝑐 𝑙 𝑖 𝑜 𝑗 • -to create access points; 𝑝 𝑟 1 • -to store system data in a relational database; 𝑝 𝑟 1 𝑖 link with the target element(s); -i -th subject of attack, helps to link with 𝑎 𝑎 𝑖 𝑠 𝑗 𝑖 𝑎 𝑎 𝑖 𝑎 • -to connect devices to access points. 𝑝 𝑟 2 • -to run executable applications compatible with Linux operating systems. 𝑝 𝑟 2
	that is capable enough for its successful realization;	𝐹 𝑅	-set of functional
	𝑝 𝑓 6 requirements of 𝑚𝑏𝑠 𝑁 𝐿 to monitor the charge state of mobile robots ; -set of non-functional limitations of Note that properties of are connected with properties of the designed ; -set of 𝑚𝑏𝑠 𝑃𝐹 𝐿 𝑚𝑏 𝑠 1
	𝑝 𝑓 provided functionalities of microcontroller-based system. Other links between elements of the ; -set of provided resources of . 𝑚𝑏𝑠 𝑃𝑅 𝑚𝑏𝑠 represented in the same way. Thus, all elements of the developed extendable can be 𝑚𝑏𝑠
	set-based hierarchical relational model were presented in this chapter.

7

to update software and firmware of system devices 𝑝 𝑓 8 to be secure against attackers with 𝑎𝑐 = 4 , 𝑘𝑛 = 2 , 𝑟𝑠 = 2

Table A .

 A 5 . Component composition of the server Model B with Broadcom BCM2711, ARM Cortex A72 1.5 GHz, 2 GB SDRAM, Ethernet, Wi-Fi, USD, HDMI, up to 1280 mAh micro-SD card Samsung Pro Endurance 32 GB Class 10 operating system Raspberry Pi OS with desktop and recommended software, 2863 MB. Configuration of the secure Wi-Fi access point (based on WPA2 PSK for the strong encryption algorithm and login credentials as well as public-key pair-based authentication). Configuration of the connection with the remote update server database PostgreSQL 10.16 database server for 32-bit Linux operating systems.

	Abstract component	Selected physical component
	single-board computer	Raspberry Pi 4

 .6 . Table A.6 . Component composition of the charging station Iskra JS with 3.3 and 5V output pins, 1024 KB flash memory, 192 KB SRAM, 14 digital and 6 analog pins and Tx Rx support on P0-P1, 69×53×19 mm size, 300 mAh energy consumption troyka shield Troyka Shield with 69×53×19 size that is compatible with Iskra JS and provides 3.3 or 5V on pins It is required to develop the firmware to ensure microcontroller's work with electronic components as well as combination of their output for successful interaction with mobile robots, intruders and the server. Moreover, light-weight encryption and authentication algorithms are required for communication, 120 KB firmware for the second microcontroller It is required to develop the firmware to ensure microcontrollers joint work as well as communication with the server. For communications between microcontrollers lightweight encryption and authentication, algorithms are required. Connection with the server must be through its Wi-Fi access point (WPA2-PSK), 100 KB As an example of the hardware element that contains hardware sub-elements, let's consider -combination of Motor Shield and two collector motors of one element that works with other elements based on rules of 𝑠 𝑤 31 the device behavior (for example, in-door navigation, detection and chase of an attacker, data transferring to the server); -links between software elements of 𝐿

	voltage, ground) connection through sensors , servo drive , where digital pins of Iskra JS are used; between and receiver , digital ℎ 𝑤 1 𝑏𝑏 2 ' ℎ 𝑤 4 -ℎ 𝑤 5 -ℎ 𝑤 8 ℎ 𝑤 11 ℎ 𝑤 , 𝑠 𝑤 2 = ((𝑠 𝑤 21 ,..., 𝑠 𝑤 31), 𝐿 𝑠 𝑤 2 , 𝑝) 𝑠 𝑤 2 2 ∈ 𝑏 𝑏 2 𝑖 𝐿 3 three wire SVG connection through between and encoders , ℎ 𝑤 1 𝑏𝑏 2 ' ℎ 𝑤 of the mobile robots -in more detail: where -software element for control of collector motors via Motor Shield 𝑠 𝑤 21 9 -ℎ 𝑤 10 where analogue pins of Iskra JS are used. , ℎ 𝑤 2 = ((ℎ 𝑤 21 , ℎ 𝑤 22 , ℎ 𝑤 23), 𝐿 ℎ 𝑤 2 , 𝑝) (speed, rotation direction); -software element for processing of data from 𝑠 𝑤 22 ℎ 𝑤 2 infrared receivers of charging stations; -software element for processing of 𝑠 𝑤 23
	Properties of with the properties of -one of the mobile robots of the system -are also connected 𝑏 𝑏 2 𝑖 where -Motor Shield of ; -first collector motor of ; -ℎ 𝑤 21 ℎ 𝑤 2 ℎ 𝑤 22 ℎ 𝑤 2 ℎ 𝑤 data from noise sensor; -software element for processing of data from motion 𝑠 𝑤 24 23 and partially represent them. 𝑚𝑏𝑠 represents the functionality that satisfaction is necessary for to be able to 𝐹𝑅 𝑏 𝑏 2 𝑖 work. It contains: second collector motor of ; -VG connections between and ℎ 𝑤 2 𝐿 ℎ 𝑤 ℎ 𝑤 sensor; -software element for processing of data from motion sensor; -𝑠 𝑤 25 𝑠 𝑤 26 21 2 ; -properties of . ℎ 𝑤 22 -ℎ 𝑤 23 𝑝 ℎ 𝑤 2 software element for processing of data from distance sensor; -software 𝑠 𝑤 27 ℎ 𝑤 2 element for control of the servo drive; -software element for processing of 𝑠 𝑤 28
	Abstract component microcontroller for work with electronic components wireless transmitters • -secure communication with the server of the system; Selected physical device infrared transmitter (troyka module), 38 kHz for compatibility with 𝑓 𝑟 1 • -availability of wireless charging stations with IR transmitters. 𝑓 𝑟 2 represents the limitations which satisfaction is necessary for to be able to 𝑁𝐿 𝑏 𝑏 2 𝑖 work. It contains: • -space for mobile robots' movement; Let's consider properties of in more detail. represents the functionality ℎ 𝑤 2 ∈ 𝑏 𝑏 𝐹𝑅 data from encoders; -software element for communication with EPS8266 𝑠 𝑤 29 2 𝑖 that satisfaction is necessary for to be able to work. It contains: ℎ 𝑤 microcontroller; -software element for monitoring of charge state of a power 𝑠 𝑤 30 2 • -power source; 𝑓 𝑟 1 • -physical connection to the microcontroller with correct voltage. 𝑓 𝑟 2 bank; -a software 𝑠 𝑤 2 𝑛 𝑙 1 • -environment does not contain elements that can lead to incorrect is representing the limitations which satisfaction is necessary for : 𝑁𝐿 ℎ 𝑤 2 based on compilation of the source code; -properties of . 𝑠 𝑤 2 𝑝 𝑠 𝑤 2 𝑠 𝑤 2 𝑛 𝑙 2 • -microcontroller shape must be suitable for Motor Shield installation; 𝑛 𝑙 1 operation of device sensors; • -environment does not contain elements that can lead to incorrect 𝑛 𝑙 • -motors must be DC with a voltage of 5 to 24 V; 𝑛 𝑙 2 Let us consider properties of in more detail. represents the 𝑠 𝑤 2 ∈ 𝑏 𝑏 𝐹𝑅 2 𝑖 3 operation of wireless communications. • -input voltage of the power supply in the range from 7 to 12 V; 𝑛 𝑙 3 functionality that satisfaction is necessary for to be able to work. It contains: 𝑠 𝑤 2 receivers of mobile robots, 25.4×25.4 mm, 20 mAh, 1 digital pin motion sensor infrared motion sensor (troyka module), 25.4×25.4 mm, 7 m detection distance, 110 degrees viewing angle, 10 mAh, 1 digital pin noise sensor noise sensor (troyka module), 25.4×25.4 mm, 10 mAh, 1 digital pin servo drive represents the functionality that can provide. It contains: 𝑃𝐹 • -power supply provides a stable voltage during sudden load surges. 𝑛 𝑙 4 • -microcontroller with bootloader; 𝑓 𝑟 1 𝑏 𝑏 2 𝑖 • -to detect and avoid obstacles; 𝑝 𝑓 is representing the functionality that can provide. It contains: 𝑃𝐹 𝑏 𝑏 • -microcontroller with flash memory. 𝑓 𝑟 2 3 𝑖 1 • -to detect and chase intruders; 𝑝 𝑓 2 • -to control two collector motors (direction and speed of rotation). 𝑝 𝑓 1 represents the limitations which satisfaction is necessary for : 𝑁𝐿 𝑠 𝑤 2 Feetech FS90 micro servo drive, 180 degrees rotation range, torque 1.3 kg×cm, 650 degrees×sec rotation speed, 150 mAh, 1 digital pin microcontroller with in-build Wi-Fi interface ESP8266 (troyka module), UART connection to Iskra JS, 512 KB flash memory, Wi-Fi b/g/n 2.4 GHz, 250 mAh, 4 digital pins Qi transmitter 5V 0.6A 3W Qi Wireless Charging Coil, micro-USB firmware for the first microcontroller • -to connect to Wi-Fi access points; 𝑝 𝑓 3 • -to monitor own position inside controlled perimeter; is representing the resources that can provide. It contains: 𝑃𝑅 ℎ 𝑤 • -flash memory space is not less than 256 KB; 𝑛 𝑙 1 2 𝑝 𝑓 4 • -to monitor the charge state of the power bank; • -to add, remove or replace hardware elements. 𝑝 𝑟 • -RAM size is not less than 64 KB. 𝑛 𝑙 2 1 𝑝 𝑓 5 • -to recharge wirelessly on charging stations; 𝑝 𝑓 6 • -to receive and install firmware updates remotely; 𝑝 𝑓 7 • -to be secure against attackers with , , . 𝑝 𝑓 𝑎𝑐 = 4 𝑘𝑛 = 2 𝑟𝑠 = 2 Note that properties of -combination of Motor Shield and two collector ℎ 𝑤 represents the functionality that can provide. It contains: 𝑃𝐹 𝑠 𝑤 2 2 ∈ 𝑏 𝑏 2 𝑖 motors -are connected with the properties of -one of the mobile 𝑏 𝑏 • -in-door navigation of mobile robots; 𝑝 𝑓 1 2 𝑖 ∈ 𝐵 𝐵 2 robots of the designed system -and partially represent them. While properties of • -monitoring of charge state of the mobile robot; 𝑝 𝑓 2 8 are connected with the properties of the designed . 𝑏 𝑏 2 𝑖 ∈ 𝐵 𝐵 2 𝑚𝑏𝑠 • -detection of charging stations and parking; 𝑝 𝑓 3
	𝑃𝑅	is representing the resources that • -detection and chase of intruders; can provide. It contains: 𝑏 𝑏 2 𝑖 𝑝 𝑓 4
	• As an example of the software element that contains software sub-elements, let's -to add additional software elements to microcontrollers firmware; 𝑝 𝑟
	consider	𝑠 𝑤	2 ∈ 𝑏 𝑏	2 𝑖	-firmware of Iskra JS microcontroller of one of the mobile
	robots -in more detail:

1

•

-to add, remove or replace hardware elements of mobile robots. 𝑝 𝑟 2

Table A .

 A 7 . Component composition of the mobile robotIskra JS with 3.3 and 5V output pins, 1024 KB flash memory, 192 KB SRAM, 14 digital and 6 analog pins and Tx Rx support on P0-P1, 69×53×19 mm size, 300 mAh energy consumption

	Abstract component	Selected physical component
	microcontroller for work	
	with electronic components	
	collector motors	12mm motor, 5V, 300 rpm, 3 mm shaft diameter, 10 mm shaft length, 36×12×10 mm size, 50 mAh energy consumption
	motor shield	two channeled Motor Shield based on L298P that supports connection of two collector motors, 2A, 5-12V, 4 digital pins
	troyka shield	Troyka Shield with 69×53×19 size that is compatible with Iskra JS and provides 3.

My sincere thanks also go to Sergei Soloviev and Martin Strecker for their support during my stay in France as well as their assistance in the organization of joint supervision of my thesis. , Vasily Desnitsky, Elena Fedorchenko, Maxim Kolomeec and Diana Gaifulina for the stimulating discussions, sleepless nights we were working together before deadlines and all the fun we have had since my join. I would also like to express my gratitude to the staff of ITMO University from the Department of International Postgraduate and Doctoral Studies, Faculty of Secure Information Technologies and Department for Work with Dissertation Councils for their continued support during my studies. A similar thanks goes to the staff of University of Paul Sabatier from the Ecole Doctorale This work would have also been impossible without the support of the St. Petersburg Federal Research Center of the Russian Academy of Sciences, which provided research equipment and approved long-term missions to France. I also want to thank the Russian Foundation for Basic Research that supported this work based on the 19-37-90082 project. This support helped me to focus on the research presented in this work. Last but not least, I want to thank my family and

Another way to represent the workflow of the methodology is to showcase its connection with algorithms, described in previous sections of this chapter:

1. formation of requirements for the system, see Section 4.1 ; 2. formation of the system component composition, see Section 4.2 ; 3. design of the abstract model of the system, see Section 4.3 ; 4. design of the detailed model of the system, see Section 4.4 .

The first three algorithms are representing the abstract system model design cycle, while the last one -the detailed system model design cycle, see Figure 36 .

Figure 36 . Connections between the methodology and developed algorithms

The recommendations sub-part of the database contains 4 tables, see Figure 91 . Security recommendations are divided into recommendations to the implementation of the system and to the implementation of its devices. In this work, recommendations are representing security elements that cannot be integrated into the system as an abstract element or sub-element, see Section 4.2 .

Recommendations to the implementation of the designed system are stored in the system_recommendations table of the database. This table represents recommendations with the help of unique identification and name, see Figure 92 .

Figure 92 . Content of the database: recommendations to the system Recommendations to the implementation of designed devices are stored in the device_recommendations table of the database. This table also represents recommendations with the help of unique identification and name, see Figure 93 . Connections between recommendations to the implementation of the system and security elements are stored in the system_recommendations_and_security table of the database. The content of the table is a unique combination of ids from the following tables: system_recommendations and security_elements , see Figure 94 .

Such requirements for time consumption were chosen for the design process of the microcontroller-based physical security system that contains 3 types of devices, while each type of device consists of not fewer than 5 elements with sub-elements, second type -not fewer than 10 elements with sub-elements and third type -not fewer than 15 elements with sub-elements. It is important to note that the designed system should also take into account links between devices and their elements, security recommendations to their implementation, requirements for links and elements as well as dependencies between them.

In addition, it was decided to investigate dependencies between the design time and parameters of the attacker, against which the system is required to be protected.

The third non-functional requirement is representing the resource consumption requirement and is checked in accordance with the method from Section 2.2 .

The fourth and fifth non-functional requirements are representing the validity requirement and are checked in accordance with the method from Section 2.3 .

Comparison with commercial solutions is required in terms of levels of the system, the security of which can be ensured: 1. Controllers, components and their communications.

2. Controllers and their communications inside devices.

3. Devices and their communications with each other. 4. Systems and their communications with each other.

Comparison with scientific solutions is required in terms of classes of attack actions, against which the system can be protected:

1. Components and their communications with controllers.

2. Controllers and their communications with other controllers.

3. Devices and their communications with other devices. 4. System and its communications with other systems.

Summarizing the above, the plan of the experiment is as follows:

1. Description of the system to be designed. 2. Manual fulfilment of the database with data about the system. 3. Analysis of the compliance of the application with functional requirements. 4. Analysis of time consumption of the application. 5. Analysis of resource consumption of the application. 6. Analysis of the validity of the application. 7. Comparison of the application with scientific solutions. 8. Comparison of the application with commercial solutions. 9. Investigation of the dependencies between the design time and attacker.

Detailed model of the system

The algorithm for the design of detailed models of microcontroller-based physical security systems is presented in Section 4.4 . The detailed model preserves and expands the structure of the abstract one and takes into account compatibility, requirements, dependencies and hierarchy of system elements. Let's consider database tables that must be filled for the correct work of the algorithms in detail.

The process of transition from abstract to detailed models is a step-by-step process. Each step represents the selection of implementations of one of the abstract elements, while the sequence of steps is formed in accordance with their hierarchy and dependencies. Moreover, after each step, the number of options for further steps is limited in accordance with compatibility. Let's consider database tables that must be filled for the correct work of the algorithm in more detail.

Implementations of links between devices of the designed system must be stored in the links_between_devices table of the database. This table describes if the implementation of the link is wireless, directed; transfers data, charge or signals; involves the creation of access points; provides encryption, authentication. Moreover, it describes its speed and range. All this information is used to check if the implementation satisfies requirements that were formed during the design of the abstract system model. For example, Wi-Fi communication:

{ "name" : "Wi-Fi" , "interface" : "IEEE 800.11" , "protocol" : "wireless 2.4 GHz" , "wireless" : "true" , "directed" : "false" , "data" : "true" , "charge" : "false" , "signal" : "false" , "access_point" : "true" , "encryption" : "true" , "authentication" : "true" , "range" : 40 , "speed" : 20 }

It means that Wi-Fi communication is wireless and transfers data on 2.4 GHz frequency using IEEE 800.11 protocol. Moreover, it provides a possibility to create access points, has encryption and authentication (for example, WPA2-PSK). Its range is near 40 meters, while the speed is around 20 Mbps (such a value is taken because microcontroller-based devices are not as powerful as modern routers). This description also states that Wi-Fi communication is not directed and can't be used for charging as well as for low-level communications like signal transferring.

The process of detailing the mobile robots of the system is presented in Figure 112 . The comparison showed that the developed design methodology provides protection against all analyzed classes of attack actions as well as takes into account security of all analyzed levels of microcontroller-based physical security systems, while other solutions are not considering that many parameters. Once again, note that "*" for [START_REF] Hu | Robust cyber-physical systems: Concept, models, and implementation // Future generation computer systems[END_REF] and [START_REF] Penas | Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems // Computers in Industry[END_REF] means that provided models and approaches can be improved for taking the corresponding classes of attack actions into account. It means that the last indicator is

satisfied, thus, the non-functional requirement for validity is satisfied as well.

Dependencies between design time and parameters of attackers

The model of the attacker, presented in Section 3.2 , characterizes his or her capabilities in accordance with three parameters: -type of access, -type of 𝑎𝑐 𝑘𝑛 knowledge, -type of resources, where: 𝑟𝑠 • can be in the range between 1 and 5 and describes the type of access the 𝑎𝑐 attacker has to the system (for example, physical access to system devices); • -1 and 4 and describes the amount of information available about the 𝑘𝑛 system (for example, system hardware and software are known); • -1 and 3 and describes the number of resources available to the attacker 𝑟𝑠 (for example, the attacker can use specialized software tools).

To obtain the average time for each combination of values of parameters, the software implementation was executed 10 times for each combination on the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD and 32 GB RAM. Time consumption was measured with the help of the time Python library.

Appendix A. Modeling of the perimeter monitoring system

This appendix describes the process of modeling microcontroller-based devices of the physical security system, described in Section 6.1.1 , namely, the server, charging stations and mobile robots, in accordance with the extendable set-based hierarchical relational model, presented in Chapter 3 .

In terms of the extendable set-based hierarchical relational model, it means that 𝑚𝑏𝑠 from Section 6.1.1 does not contain any sub-systems and has the following three types of building blocks: a server, a set of mobile robots and a set of charging stations. It means that of can be represented as follows:

A1. Modeling of the server

The server of the designed system is based on a Raspberry Pi single-board computer with Raspbian OS. This operation system should be installed on a micro-SD card with not less than 16 GB of space. It could be done via Imager -a special software tool. After that, it is required to slot this micro-SD card into the single-board computer, so it would be able to identify the operating system and use micro-SD card memory space as its own. When it is done, it becomes possible to install PostgreSQL database server, Python compiler as well as different drivers and libraries that are necessary for the server to perform its functionality. Moreover, it becomes possible to configure the server's operating system, database access, software update policy and Wi-Fi access point. To provide a power supply, the server is connected to a power bank which in its turn should be connected to the home power supply.

Thus, in terms of the developed model, contains: 𝑏 𝑏 other building blocks that are connected through putting an SD card into a special slot on the single board computer as well as due to correct formatting of the SD card and the work of the drivers. On the basis of it becomes possible to install and 𝑏𝑏

A3. Modeling of mobile robots

Each mobile robot is based on a combination of Iskra JS and ESP8266 microcontrollers. Iskra JS is used to interact with electronic components -sensors, receivers, servos and motors. This interaction is based on the firmware of the microcontroller and additional hardware elements: Motor Shield and Troyka Shield.

Motor Shield provides a possibility to increase the output voltage of the microcontroller with the help of H-bridges which is necessary for correct control of the speed of connected motors. Note that only two motors can be connected to Motor Shield, while 4 digital pins of Iskra JS are reserved for motor control (two pins for each motor to be able to change its movement direction between clockwise and counterclockwise). Troyka Shield does not reserve any pins of the microcontroller. Instead, it provides voltage and ground to each analogue and digital pin of the microcontroller simplifying the connection of electronic components. ESP8266 is connected to Tx Rx pins of Iskra JS and enhances mobile robot functionality with the possibility of remote firmware update on both microcontrollers as well as the possibility to connect it to Wi-Fi access points. To provide a power supply, Motor Shield is connected to a power bank which in turn is connected to Qi wireless charge receiver. Note that Iskra JS, ESP8266, Motor Shield and Troyka Shield are connected in such a way that they have a shared power supply from the power bank. Qi receiver is used to provide a possibility of wireless recharge of mobile robots.

Thus, in terms of the developed model, contains the following sub-blocks: 𝑏 𝑏

𝑚𝑏𝑠

Based on the requirements, the algorithm can form the device that represents one of the mobile robots step-by-step. For such a device it is required to have:

• microcontroller with a bootloader and programmable firmware that can work with sensors, collector motors, servo drives, transmitters, receivers and shields as well as other microcontrollers, has output voltage 3.3 V on pins and not less than 256 KB of flash memory; • two collector motors to rotate wheels of the robot with not less than 300 rpm and size equal to 12 mm; • motor shield to increase the output voltage of the selected microcontroller with help of H-bridges that is able to control not less than two motors and compatible with the selected microcontroller; • troyka shield to provide voltage and ground to each analog and digital pin of the microcontroller simplifying the connection of electronic components that are compatible with the selected microcontroller; • wireless receiver for the communication with two directed wireless transmitters of charging stations during parking that is compatible with the selected microcontroller (the choice here determines the choice for each charging station); • touch sensor for the detection of obstacles that can be used as bumper and compatible with the selected microcontroller; • distance sensor for the detection of obstacles with distance range not less than 400 cm and effective viewing angle not less than 15 degrees that is compatible with the selected microcontroller; • noise sensor with adjustable microphone sensitivity to detect abnormally loud sounds for the detection of intruders; • motion sensor with adjustable sensitivity, viewing angle not less than 110 degrees and observing distance not less than 7 m; • servo drive to rotate distance, noise and motion sensors for the better detection of obstacles and intruders due to viewing angle limits with rotation range not less than 180 degrees;

• encoders for wheels that are connected to each of the selected collector motors to measure the distance traveled by the designed robot; • microcontroller with a bootloader and programmable firmware with in-build physical Wi-Fi interface and possibility to connect to wireless access points that can have wired data connection with the selected microcontroller; • power bank that can power up the combination of selected microcontrollers, shields, sensors, motors, servos and receivers and has a capacity to provide power supply to the designed robot for not less than 2 hours; • Qi receiver that can be connected to the selected power bank (the choice here determines the choice for each charging station); • firmware of the first microcontroller that contains algorithms for work with all connected electronic components and microcontrollers as well as algorithms that determine the work process of the mobile robot; • firmware of the second microcontroller that determines his work with another microcontroller as well as his communication with the server of the system.

But this is without taking into account security requirements.

To prevent and on the level of each mobile robot a vandal-proof device case 𝑟𝑝𝑡 𝑟𝑚𝑡 (hardware element) should be used.

To prevent

, in addition to the vandal-proof device case, light-weight encryption 𝑖𝑚𝑤 and authentication algorithms (software elements) for the communication between microcontrollers should be used.

To prevent , all necessary data for the behaviour-based anomaly detection 𝑖𝑒𝑐 algorithms should be transferred to the designed server of the system. That will provide a possibility to isolate the mobile robot that is under attack.

To prevent each mobile robot should being connected to the Wi-Fi access point 𝑖𝑤𝑠 that is created by the server of the system.

To prevent

, and on the level of each mobile robot, no additional 𝑝𝑤𝑟 𝑤𝑒𝑏 𝑑𝑏𝑑 security elements are required because there are no web services or databases.

Thus, the step-by-step formation of each of the mobile robots:

1. Combination of motor shield and two collector motors with the help of the two-wire connection (voltage and ground). 2. Combination of the power bank and Qi wireless charge receiver based on the micro-USB connection. 3. Combination of the motor shield with motors and power bank with the receiver based on a two-wire connection (voltage and ground).

Appendix B. Verification of mobile robots

This appendix describes our experience in verification of the two-wheel mobile robot that is based on the LEGO 9797 Mindstorms NXT controller. It contains input data description, as well as our experience in work with the SPASS theorem prover, the Maude system and the daTac system.

B1. Description of the input data

Main elements of the LEGO 9797 Mindstorms NXT controller as well as its communication protocols and interfaces can be represented as follows:

• battery : six AA/LR6 batteries or one special rechargeable lithium-ion battery;

• LCD : graphical user interface and the possibility to output visual information;

• speaker : possibility to play different sounds;

• ports A, B, C : possibility to connect motors;

• ports 1, 2, 3 or 4 : possibility to connect sensors;

• USB : possibility to connect the controller to the computer (wire connection), update its firmware, send scripts and receive commands from the computer; • Bluetooth : possibility to connect the controller to the computer or other device (wireless connection), update its firmware, send scripts and receive commands from the computer or other device.

Motors are connected to the controller via ports A, B and C using an RJ12 cable on a 1 to 1 basis, so the controller can simultaneously work with no more than three motors. These motors are servos for which one rotation is equal to 360 degrees, while there is a possibility to program them to rotate on a certain number of degrees. The operation of each motor is programmed through the port to which it is connected, while it is possible to set operation scenarios for a single one or several. For example, it is possible to rotate a robot with a simple algorithm that works only with its chassis: to rotate to the left, it is required to stop the motor of the left part of the chassis while the motor of the right part should continue to work.

Sensors can be connected to ports 1, 2, 3 and 4 in a similar way, so the controller can simultaneously work with no more than four sensors. Work with sensors is based on the reaction to their events. Let's consider them in more detail:

• touch sensor : works on the principle of a clock button, allows one to track the transition from the pressed state to the original one and vice versa; • sound sensor : works on the principle of a microphone, allows one to measure the noise level nearby the robot; • light sensor : allows one to evaluate the brightness of the object, based on which it is possible to distinguish colours; • distance sensor (ultrasonic) : allows one to measure the distance from the robot to the obstacle in the range from 0 to 255 centimetres.

The rules encoding the composition problem in daTac are similar to those employed with Maude but for the fact that problems have to be encoded in first-order logic and that the composition strategy tries to simplify a composition problem denoted with the composition 4-ary predicate symbol. The first argument is the multiset of different kinds of components. The second one lists slots available for aggregating new components. The third component lists functional requirements on the goal of the design process -a mobile robot. Finally, the last component is employed for bookkeeping to trace which and how components were added.

The motivation for considering daTac in addition to Maude is that in spite of its almost deprecated status, it is the theorem prover that handles natively AC-unification, and, thus, searches all possible combinations of components without an additional encoding. Being a theorem prover, it is not committed to a forward search of all combinations from the initial state (Clause 3), that is why it was possible to implement a lazy search strategy based on an ordered strategy.

Appendix C. Extraction of vulnerabilities of devices

This appendix describes our experience in the connection of descriptions of devices with CPE URIs in accordance with their hardware, software and firmware. In addition, this appendix shows how the obtained list of CPE URIs that represents the configuration of the device can be checked for being vulnerable and connected with CVE descriptions.

C1. Extraction of CPE URIs