
HAL Id: tel-03699663
https://theses.hal.science/tel-03699663

Submitted on 20 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Models, algorithms and methodology for design of
microcontroller-based physical security systems

protected from cyber-physical attacks
Dmitry Levshun

To cite this version:
Dmitry Levshun. Models, algorithms and methodology for design of microcontroller-based physical
security systems protected from cyber-physical attacks. Cryptography and Security [cs.CR]. Université
Paul Sabatier - Toulouse III; ITMO University, 2021. English. �NNT : 2021TOU30252�. �tel-03699663�

https://theses.hal.science/tel-03699663
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

Cotutelle internationale: ITMO University

Présentée et soutenue par

Dmitry LEVSHUN

Le 15 décembre 2021

MODELES, ALGORITHMES ET METHODOLOGIE POUR LA
CONCEPTION DE SYSTEMES DE SECURITE PHYSIQUE BASES SUR

DES MICROCONTROLEURS PROTEGES DES ATTAQUES CYBER-
PHYSIQUES

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications

Unité de recherche :
IRIT : Institut de Recherche en Informatique de Toulouse

Thèse dirigée par
Yannick CHEVALIER et Igor KOTENKO

Jury
M. Andrei PETROVSKI, Rapporteur

M. Vladimir OLESHCHUK, Rapporteur
M. Costin BADICA, Rapporteur

M. Vasily DESNITSKY, Examinateur
M. Roland RIEKE, Examinateur

Mme Ileana OBER, Examinatrice
M. Yannick CHEVALIER, Directeur de thèse

M. Igor KOTENKO, Co-directeur de thèse

 v. 1.0.4

 MODELS, ALGORITHMS AND METHODOLOGY
 FOR DESIGN OF MICROCONTROLLER-BASED
 PHYSICAL SECURITY SYSTEMS PROTECTED

 FROM CYBER-PHYSICAL ATTACKS

 Thesis submitted by

 Dmitry Levshun

 under the guidance of

 Prof. Igor Kotenko, ITMO University, Russia
 Yannick Chevalier, University Paul Sabatier, France

 and with the consultation of

 Andrey Chechulin, SPC RAS, Russia

 in fulfilment of the requirements
 for the award of the degree of

 Doctor of Philosophy in Computer Science

 2021

 Acknowledgement

 Foremost, I would like to express my sincere gratitude to my supervisors Igor
 Kotenko and Yannick Chevalier for giving me freedom in research, for their patience,
 motivation, enthusiasm and immense knowledge. Their guidance helped me in all
 the time of research and writing of this thesis.

 Besides my supervisors, I would like to thank Andrey Chechulin for his constant help
 and support on the way in science, for making me interested in the design of secure
 microcontroller-based systems, for his insightful comments and difficult questions.

 My sincere thanks also go to Sergei Soloviev and Martin Strecker for their support
 during my stay in France as well as their assistance in the organization of joint
 supervision of my thesis.

 I want to thank my colleagues from the Laboratory of Computer Security Problems:
 Igor Saenko, Vasily Desnitsky, Elena Fedorchenko, Maxim Kolomeec and Diana
 Gaifulina for the stimulating discussions, sleepless nights we were working together
 before deadlines and all the fun we have had since my join.

 I would also like to express my gratitude to the staff of ITMO University from the
 Department of International Postgraduate and Doctoral Studies, Faculty of Secure
 Information Technologies and Department for Work with Dissertation Councils for
 their continued support during my studies.

 A similar thanks goes to the staff of University of Paul Sabatier from the Ecole
 Doctorale Mathématique Informatique Télécommunications de Toulouse and Institut
 de Recherche en Informatique de Toulouse.

 This work would have also been impossible without the support of the St. Petersburg
 Federal Research Center of the Russian Academy of Sciences, which provided
 research equipment and approved long-term missions to France.

 I also want to thank the Russian Foundation for Basic Research that supported this
 work based on the 19-37-90082 project. This support helped me to focus on the
 research presented in this work.

 Last but not least, I want to thank my family and friends that were always there for
 me and supported me even if they do not fully understand what exactly I am doing :)

 The latest versions of this document and source code of the developed application
 are available on https://github.com/levshun/PhD-mcbpss_design .

 3

https://github.com/levshun/PhD-mcbpss_design

 Contents

 Contents 4

 Introduction 6

 Chapter 1. Systematic analysis of the main issues of ensuring the information
 security of microcontroller-based systems 16

 1.1. Main issues of ensuring information security 16
 1.1.1. Definition and classification of microcontroller-based systems 18
 1.1.2. Analysis and classification of attackers 26
 1.1.3. Analysis and classification of attack actions 30
 1.1.4. Analysis and classification of methods and means of protection 34

 1.2. Place and role of the design techniques 38
 1.3. Features of the microcontroller-based physical security systems 48
 1.4. Requirements for the design methodology 50
 1.5. Research problem statement 52
 1.6. Conclusions on Chapter 1 53

 Chapter 2. Methods for the evaluation of the design methodology for
 microcontroller-based physical security systems 56

 2.1. Method for the evaluation of time consumption 56
 2.2. Method for the evaluation of resource consumption 58
 2.3. Method for the evaluation of validity 60
 2.4. Conclusions on Chapter 2 61

 Chapter 3. Extendable set-based hierarchical relational model of
 microcontroller-based physical security systems 63

 3.1. Modeling of microcontroller-based physical security systems 63
 3.2. Modeling of attackers, attack actions and security elements 71
 3.3. Connections between models 74
 3.4. Conclusions on Chapter 3 79

 Chapter 4. Set of algorithms and methodology for the design of microcontroller-based
 physical security systems 82

 4.1. Algorithm for the formation of requirements for the system 82
 4.2. Algorithm for the formation of the system component composition 89
 4.3. Algorithm for the design of the abstract model of the system 94
 4.4. Algorithm for the design of the detailed model of the system 100
 4.5. Methodology for the design of the system 106
 4.6. Conclusions on Chapter 4 113

 Chapter 5. Software implementation of the methodology for the design of
 microcontroller-based physical security systems 117

 5.1. Architecture of the software implementation 117
 5.2. Database of the software implementation 118

 5.2.1. Storage of the attacker, attack actions and security elements 118
 5.2.2. Storage of tasks, abilities and requirements 125

 4

 5.2.3. Storage of abstract elements, sub-elements and links 131
 5.2.4. Storage of detailed elements 147

 5.3. Script of the software implementation 150
 5.4. Interface of the software implementation 157
 5.5. Conclusions on Chapter 5 163

 Chapter 6. Experimental evaluation of the methodology for the design of
 microcontroller-based physical security systems 165

 6.1. Experiment description 165
 6.1.1. Description of the system 167
 6.1.2. Tasks, abilities and requirements of the system and its devices 168
 6.1.3. Component composition of devices of the system 174

 6.2. Application of the design methodology 177
 6.2.1. Abstract model of the system 177
 6.2.2. Detailed model of the system 179

 6.3. Evaluation of the design methodology 184
 6.3.1. Compliance with functional requirements 184
 6.3.2. Compliance with non-functional requirements 185

 6.3.2.1. Time consumption 185
 6.3.2.2. Resource consumption 188
 6.3.2.3. Validity 190

 6.3.3. Dependencies between design time and parameters of attackers 193
 6.4. Discussion 194
 6.5. Conclusions on Chapter 6 196

 Conclusion 199

 References 205

 Appendix A. Modeling of the perimeter monitoring system 218
 A1. Modeling of the server 222
 A2. Modeling of charging stations 227
 A3. Modeling of mobile robots 232

 Appendix B. Verification of mobile robots 241
 B1. Description of the input data 241
 B2. Description of experiments 243

 Appendix C. Extraction of vulnerabilities of devices 246
 C1. Extraction of CPE URIs 246
 C2. Extraction of CVE descriptions 247

 5

 Introduction

 Relevance of the topic of research. Microcontroller-based systems now are an
 integral part of any sphere of our vital activity, that is why the importance of ensuring
 their security is critical. The consequences of failure of such systems, including those
 associated with the activities of intruders, include both financial and reputational
 damage as well as a threat to human life and health. One of the possible attack
 vectors is the exploitation of vulnerabilities, the presence of which in
 microcontroller-based systems is due to various factors.

 Vulnerabilities that occur due to errors at the design stage are the most dangerous
 because, after the system implementation, its improvement can be a difficult task.
 Especially when the improvement implies changes in the hardware or software
 components of individual devices, manufacturers of which no longer exist. The
 prevalence of such vulnerabilities is related to the fact that usually systems are
 designed without the participation of security experts using unsecure data transfer
 protocols and untested code.

 For example, according to the SonicWall report, microcontroller-based devices
 malware attacks jumped 215.7% to 32.7 million in 2018 (up from 10.3 million in
 2017). In 2019, the attacks continued but showed a more moderate increase of 5%,
 according to their 2020 Cyber Threat Report. And according to the Palo Alto
 Networks 2020 Unit 42 Threat Report, “98% of all device traffic is unencrypted,
 exposing personal and confidential data on the network”.

 Solving this problem is an important task, that is why various design techniques have
 been developed and embedded into practice. Some of them are focused on
 software, some on hardware, and some on highly specialized areas of the
 application. The key issue of such solutions is in focusing on certain aspects of the
 security, ensuring their inapplicability for providing the security of
 microcontroller-based systems in general.

 For example, techniques for software do not take into account that the functionality
 of individual components of microcontroller-based systems is determined not only by
 software but also by hardware. Moreover, the relationship between hardware and
 software elements can be quite strong, which leads to additional restrictions that
 significantly affect the process of their design and development.

 An important drawback of the techniques for hardware and software-hardware is that
 the designed microcontroller-based device is viewed in isolation from the system. It
 means that not all security aspects would be taken into account and the security of
 the system as a whole will not be ensured. Also, there are extensions of these
 techniques that are aimed at ensuring the security of the devices and network

 6

 between them. The drawback is that such techniques provide a secure connection
 between designed and external systems only from the designed system side, which
 can lead to security issues in complex multi-level systems.

 In addition, in the area of techniques for links between devices, only solutions
 applicable within a specific platform and architecture are widely used. Such solutions
 are aimed at adapting secure Internet protocols for their application as part of the
 interaction between microcontroller-based devices. The need for such adaptations is
 associated with the limited computing power of such devices, the size of the payload
 available for transmission in the data channel, and the ability to store relatively small
 amounts of data on them.

 Commercial solutions from Google, ARM, Kaspersky, Microsoft, Siemens and Intel
 are not applicable if the microcontroller-based system already contains devices
 whose hardware cannot be changed or the design requirements contain restrictions
 that do not allow the use of devices suitable for these requirements. These solutions
 also do not take into account the optimization process of the designed system due to
 limitations like computational complexity, energy efficiency, size and price. It means
 that the resulting system may not be reasonable for a developed use case because
 of no trade-off between resources and security level.

 In addition, there are many solutions in which the security of the system is not
 considered or is not the main task. At the same time, integration of the standalone
 solutions within a single approach is a difficult task due to their incompatibility. This is
 because each design technique is based on its own model of the system, presented
 in an internal format. That is why it is difficult or even impossible to transform one
 particular model into another without losses of significant data.

 It means that a general approach for solving the issue of secure
 microcontroller-based systems design is not done yet. Therefore, the thesis research
 is aimed at developing the original model-methodological apparatus for the design of
 microcontroller-based physical security systems. Among all possible
 microcontroller-based systems, in this work, only physical security systems were
 chosen as an area of the application, because in such systems during the design
 process it is required to ensure not only the functionality of the system but also to
 ensure its security against cyber-physical attacks.

 The degree of elaboration of the topic. The design of secure
 microcontroller-based systems is the subject of the works of such scientists as
 Abdelwahed S., Achiche S., Al-Muhtadi J., Ardeshiricham A., Balasubramaniyan S.,
 Blanchet B., Bradley D., Bresolin D., Broy M., Bu L., Buonopane F., Cai S., Cai Y.,
 Chechulin A., Chen G., Cremers C., Derhab A., Desnitsky V., Dong X., Eynard B.,
 Faily S., Fukazawa Y., Geretti L., Gurjanov A., Han Z., Hannis M., Hao Q., He B.,
 Hehenberger P., Hu F., Hu W., Huang C., Huang J., Iannucci S., Kaiya H., Karpovsky

 7

 M., Kastner R., Khaitan S., King J., Kobashi T., Kotenko I., Leonard L., Li X., Lin Z.,
 Liu C., Lu J., Lu Y., Lü J., Ma R., Marxen J., McCalley J., Montemaggio A., Myers A.,
 Nechaev V., Nuzzo P., Okubo T., Patalano S., Patil Y., Penas O., Plateaux R.,
 Ramaswamy S., Saleem K., Sangiovanni-Vincentelli A., Shahzad B., Srinivasan S.,
 Subathra B., Suh G., Tomiyama T., Vain J., Vasilakos A., Villa T., Vogel-Heuser B.,
 Wang B., Wang H., Wang Y., Wang Z., Washizaki H., Xia X., Xiong N., Xu X., Yang
 W., Yoshioka N., Yu S., Zakoldaev D., Zhang D., Zhang T., Zharinov I., Zhong S.,
 Zhou X., etc. While there are commercial solutions from Google, ARM, Kaspersky,
 Microsoft, Siemens, Intel, etc.

 An analysis of works in this area, see Section 1.2 , showed that at the moment there
 is no general approach for the design of secure microcontroller-based systems, and
 the existing solutions have a limited scope and are not without drawbacks.
 Therefore, the thesis presents the research aimed at developing the original
 model-methodological apparatus for the design of microcontroller-based physical
 security systems. This apparatus will provide a possibility to combine various design
 techniques on the basis of hierarchical relational model transformation algorithms,
 while being modular and extensible, taking into account the physical layer of the
 system, working with abstract system representation and being based on a trade-off
 between the security of the solution and expended resources.

 The scientific task. Development of the model-methodological apparatus for the
 design of microcontroller-based physical security systems protected from
 cyber-physical attacks.

 The object of the study. Microcontroller-based systems, physical security systems,
 secure systems design process, model of the attacker, attack actions modeling,
 microcontroller-based devices.

 The subject of the study. Models, algorithms and methodologies for the design of
 microcontroller-based physical security systems protected from cyber-physical
 attacks.

 The goal of the study. Enhancing the protection of microcontroller-based physical
 security systems from cyber-physical attacks by increasing the number of analyzed
 parameters during their design process. These parameters are described in more
 detail in Section 1.5 , where the research problem statement is presented.

 Objectives:

 1. Analysis of the main security issues of microcontroller-based systems.
 Analysis of the place and role of the design approaches in ensuring the
 security of such systems. Analysis of the main features of
 microcontroller-based physical security systems.

 8

 2. Development of models of the elements of microcontroller-based physical
 security systems, including security ones.

 3. Development of the hierarchical model of the attacker that allows
 distinguishing between attackers based on their types of access, knowledge
 and resources.

 4. Development of the model of attack actions that allows checking the
 possibility of implementation of different classes of attacks based on the
 attacker’s parameters (subject) and system elements (object).

 5. Development of the model of microcontroller-based physical security system,
 which is an extendable set-based hierarchical relational unification of models
 of system elements, attacker and attack actions.

 6. Development of the set of algorithms for the design of the extendable
 set-based hierarchical relational model of microcontroller-based physical
 security systems.

 7. Development of the methodology for the design of microcontroller-based
 physical security systems, combining the set of algorithms and extendable
 set-based hierarchical relational model into a single automated approach with
 minimal operator involvement.

 8. Development of the software implementation of the design methodology for
 microcontroller-based physical security systems, its experimental evaluation.

 The scientific novelty. In this work, there are multiple scientifically novel results: the
 extendable set-based hierarchical relational model, the algorithm for the formation of
 requirements for the system, the algorithm for the formation of the system
 components composition, the algorithm for the design of the abstract model of the
 system, the algorithm for the design of the detailed model of the system and the
 methodology for the design of microcontroller-based physical security systems. Let's
 consider them in more detail.

 Unlike existing solutions, the extendable set-based hierarchical relational model
 represents a microcontroller-based physical security system instead of representing
 individual microcontroller-based devices. Such functionality neutralizes the
 disadvantages of analogues in terms of designing devices separately from their
 interaction with each other. Moreover, this model is modular, extensible and
 hierarchical, has a strong focus on the security of the resulting solution as well as
 considers security elements as an integral part of the designed system. The
 extension of the model is possible by the introduction of new levels of abstraction.
 The modularity of the solution provides the possibility to change its individual parts
 without the need to change the model completely. For example, the parameters of
 the attacker's model or available classes of attacks can be updated. The hierarchical
 nature of the model allows direct (from the whole system to individual elements) and
 reverse (from an individual element to the system as a whole) transitions.

 9

 The novelty of the algorithm for the formation of requirements for the system is in
 retrieving a list of microcontroller-based system devices, communications available
 to them, as well as requirements for them only on the basis of system tasks, while
 the list of attack actions that are possible for the attacker is retrieved in accordance
 with the type of access, knowledge and resources the attacker has.

 Unlike other solutions, the algorithm for the formation of the system component
 composition is retrieving abstract elements and sub-elements of the designed
 microcontroller-based system in accordance with the requirements, device base and
 already retrieved elements, while security elements are represented as abstract
 elements, sub-elements, and recommendations for the system implementation.

 The novelty of the algorithm for the design of the abstract model of the system is in
 taking into account complex dependencies between the elements of
 microcontroller-based systems, namely, their hierarchy, nesting, communications,
 conflicts and requirements. Moreover, this algorithm is not limited to specific
 platforms and architectures and because of its abstract nature reduces the number
 of parameters to be searched, thereby increasing the work speed of the solution.

 Unlike existing solutions, the algorithm for the design of the detailed model of the
 system makes it possible to form a step-by-step process of detailing the abstract
 representation of microcontroller-based physical security systems in accordance with
 the hierarchy and mutual dependencies of their elements. Moreover, this algorithm
 calculates the parameters of the system devices based on the parameters of their
 elements as well as the parameters of the system based on the parameters of its
 devices. This algorithm does not replace the abstract model of the system but
 expands and complements it.

 The novelty of the methodology for the design of microcontroller-based physical
 security systems lies in a new approach to the design, which allows combining
 various design techniques on the basis of hierarchical relational model
 transformation algorithms. Moreover, the suggested approach is modular and
 extensible, takes into account the security of the physical layer of the system, works
 with the abstract system representation and is looking for a trade-off between the
 security of the final solution and expended resources. Also, unlike existing solutions,
 the methodology has a strong focus on security. It is aimed at ensuring the protection
 of the system against attacks at the design stage, considers security components as
 an integral part of the system and checks if the system can be designed in
 accordance with given requirements and limitations.

 Theoretical and practical significance. The obtained theoretical results are very
 important for such fundamental issues as ensuring information security of
 microcontroller-based systems and are aimed at expanding and improving the
 existing model-methodological apparatus for the design of such systems. The

 10

 practical significance of the obtained results lies in the fact that the system based on
 the proposed models, algorithms and methodology can be used as a tool for
 designing secure systems based on microcontrollers, thus, avoiding errors in the
 early stages of their life cycle. Also, this tool can be used by users and system
 administrators to analyze the security status of systems and devices that are within
 their area of responsibility. And although at the moment the results obtained are
 applicable mainly for physical security systems, it is possible to extend the design
 methodology to other classes of microcontroller-based systems.

 Research methodology and methods. Methods and approaches of the system
 analysis, representation and description of knowledge, analytical, simulation,
 set-theoretical and ontological modeling, risk analysis, theory of decision-making
 support, solution of optimization problems.

 The main findings:
 1. The extendable set-based hierarchical relational model of

 microcontroller-based physical security systems protected from cyber-physical
 attacks and its elements, namely, models of hardware, software and
 software-hardware elements, interfaces, protocols and links between system
 elements at its various levels, models of attacker and attack actions.

 2. The set of algorithms for the design of extendable set-based hierarchical
 relational models of microcontroller-based physical security systems protected
 from cyber-physical attacks , namely, the algorithm for the formation of
 requirements for the system, algorithm for the formation of the system
 components composition, algorithm for the design of the abstract model of the
 system and algorithm for the design of the detailed model of the system.

 3. The methodology for the design of microcontroller-based physical security
 systems protected from cyber-physical attacks , that combines the set of
 algorithms and the extendable set-based hierarchical relational model into a
 single automated approach with minimal operator involvement.

 4. The software implementation of the methodology for the design of
 microcontroller-based physical security systems protected from cyber-physical
 attacks , that validates its correctness based on the design of a system of
 mobile robots for perimeter monitoring.

 Validity and reliability of the study. The validity and reliability of the results
 obtained are confirmed by their approbation at conferences of Russian and
 international levels, as well as victories in research competitions. The results
 obtained are accompanied by logical conclusions based on the results of the
 experimental evaluation. The models, algorithms and methodology proposed by the
 author for the design of systems based on microcontrollers are based on modern
 approaches used in the field of information security, and the methods of their
 application are correct and justified.

 11

 Implementation of research results. The research results presented in this work
 were used in the following research and development projects:

 1. "Models, techniques and methodology for design and verification of secure
 cyber-physical systems". Research grant #19-37-90082 "PhD students" of
 Russian Foundation of Basic Research, 2019-2022.

 2. "Security Aspects of Cyber-Physical Systems". Research grant #19-17-50205
 of Russian Foundation of Basic Research, 2019-2020.

 3. "Research and development of an integrated security system based on
 embedded intelligent microcontrollers". The grant from the Fund for
 Assistance to the Development of Small Forms of Enterprises in the Scientific
 and Technical Sphere (Fund for Assistance to Innovation). START-2 project.
 Contract #2485GS2/22645 dated 04/11/2018, 2018-2019.

 4. "Development of methods for vulnerability detection for human-computer
 interaction interfaces of the Smart City transport infrastructure". Research
 grant #19-29-06099 of Russian Foundation of Basic Research, 2019-2022.

 5. "Methods, Models, Methods, Algorithms, Protocols and Applications for
 ensuring Information Security of Cyber-Physical Systems". NIR-FUND
 #717075 of ITMO University, 2017-2019.

 6. "Research and development of an integrated security system based on
 embedded intelligent microcontrollers". The grant from the Fund for
 Assistance to the Development of Small Forms of Enterprises in the Scientific
 and Technical Sphere (Fund for Assistance to Innovation). START-1 project.
 Agreement #1327GS1/22645 dated 06/16/2016, 2016-2017.

 7. "Incident management and counteraction against targeted cyber-physical
 attacks in distributed large scale mission-critical systems taking into account
 cloud services and networks of the Internet of Things". Research grant
 #15-11-30029 of Russian Science Foundation, 2015-2017.

 In research grants #19-37-90082 "PhD students" and #19-17-50205 of Russian
 Foundation of Basic Research I was lead researcher, while in START-1 and
 START-2 projects of Fund for Assistance to Innovation I was the lead developer of
 microcontroller-based devices. In other projects (#19-29-06099, #717075 and
 #15-11-30029) my role was to research and develop an architecture and a prototype
 of different microcontroller-based systems that are secure by design.

 Moreover, the research results presented in this work are used by the department of
 secure communication systems of the federal state budgetary educational institution
 of higher education "St. Petersburg State University of Telecommunications named
 after prof. M.A. Bonch-Bruevich" in the educational process of the direction of
 training 10.03.01 "Information security" within the discipline "Fundamentals of
 designing secure info-communication systems" (work program No. 21.05/446-D)
 when giving lecture courses, conducting practical exercises and laboratory work.

 12

 Approbation of research results. The main results of this research were presented
 at a number of international and Russian conferences, including:

 1. XII Saint-Petersburg Interregional conference Information security of regions
 of Russia: “Algorithm for the formation of the component composition of a
 secure microcontroller-based system” [147] .

 2. 28th Euromicro International Conference on Parallel, Distributed, and
 Network-Based Processing: “SEPAD – Security Evaluation Platform for
 Autonomous Driving” [148] .

 3. XVII St. Petersburg International Conference Regional Informatics:
 “Requirements for the methodology for design and verification of secure
 cyber-physical systems” [149] .

 4. IV Interregional Scientific-Practical Conference Advanced National
 Information Systems and Technologies: “Approach to the formation of
 requirements in the design process of secure cyber-physical systems”,
 “Approach to the formation of specifications for secure cyber-physical
 systems” [150, 151] .

 5. IX International Scientific, Technical and Scientific Methodological Conference
 Actual Problems of Information Telecommunications in Science and
 Education: “An attacker model for a modern cyber-physical system” [152] .

 6. XI Saint-Petersburg Interregional conference “Information security of regions
 of Russia”: “The aspects of the verification of secure cyber-physical systems”,
 “Application of modeling for verification of cyber-physical systems security”
 [153, 154] .

 7. 10th IFIP International Conference on New Technologies, Mobility and
 Security: “Design and verification methodology for secure and distributed
 cyber-physical systems” [2] .

 8. 13th International Symposium on Intelligent Distributed Computing: “The
 Integrated Model of Secure Cyber-Physical Systems for their Design and
 Verification” [155] .

 9. The 1st IEEE International Conference on Industrial Cyber-Physical Systems:
 “A Technique for Design of Secure Data Transfer Environment: Application for
 I2C Protocol” [133] .

 10. The 3rd International Symposium on Mobile Internet Security: “Secure
 Communication in Cyber-Physical Systems” [156] .

 11. X St. Petersburg Interregional Conference Information Security of the regions
 of Russia: “The approach to the design of secure systems based on
 embedded devices” [157] .

 12. 9th IEEE International Conference on Intelligent Data Acquisition and
 Advanced Computing Systems: “Design Lifecycle for Secure Cyber-Physical
 Systems based on Embedded Devices” [158] .

 Personal contribution. The results presented in this thesis were obtained
 personally. The author independently analyzed p ro blematic issues of ensuring the
 information security of microcontroller-based systems, determined the place and role

 13

https://docs.google.com/document/d/1DAAwXy-QCnkm8BmAzg2wnfeFjTWeZWFQiSLDnGDPGeM/edit#heading=h.bot4goodw2f3

 of approaches to their design, developed models, algorithms and methodology as
 well as their software implementation to validate the correctness of scientific results
 using the example of a system of mobile robots for perimeter monitoring.

 Publications. The main results obtained during the work on the thesis are published
 in 22 articles of which 15 publications in journals peer-reviewed by Web of Science
 or Scopus, 7 publications in journals from the list of Russian Higher Attestation
 Commission. In addition, 11 certificates of state registration were received, namely 8
 computer programs and 3 databases.

 The main publications and certificates:
 1. Design of secure microcontroller-based systems: application to mobile robots

 for perimeter monitoring. Sensors. 2021. Accepted 08.12.2021. (Scopus,
 WoS, Q1) [159]

 2. Design and verification of a mobile robot based on the integrated model of
 cyber-physical systems // Simulation Modelling Practice and Theory, Vol. 105,
 2020. DOI: 10.1016/j.simpat.2020.102151. (Scopus, WoS, Q2) [104]

 3. Design Technique for Secure Embedded Devices: Application for Creation of
 Integrated Cyber-Physical Security System. Journal of Wireless Mobile
 Networks, Ubiquitous Computing, and Dependable Applications (JoWUA),
 Vol.7, No.2, June 2016. P.60-80. DOI:10.22667/JOWUA.2016.06.31.060.
 (Scopus, WoS, Q2) [60]

 4. The application of the methodology for secure cyber-physical systems design
 to improve the semi-natural model of the railway infrastructure //
 Microprocessors and Microsystems, November 2020, Р. 103482. ISSN
 0141-9331. DOI: 10.1016/j.micpro.2020.103482. (Scopus, WoS, Q3) [160]

 5. Problematic Issues of Information Security of Cyber-Physical Systems //
 Informatics and Automation. Vol. 19. No. 5. 2020. P. 1050-1088. DOI:
 10.15622/ia.2020.19.5.6. (Scopus, Q3) [161]

 6. Application for the design of secure microcontroller-based physical security
 systems. Federal Service for Intellectual Property. Certificate #2021680236.
 Registered in the Computer Program Registry 08.12.2021. [162]

 7. Database for the design of secure microcontroller-based physical security
 systems. Federal Service for Intellectual Property. Certificate #2021622496.
 Registered in the Computer Program Registry 15.11.2021. [163]

 8. Component of traffic generation for cyber-physical systems based on I2C
 protocol. Federal Service for Intellectual Property. Certificate #2018664325.
 Registered in the Computer Program Registry 14.11.2018. [164]

 9. Repository for heterogeneous data from the hardware elements of the smart
 home. Federal Service for Intellectual Property. Certificate #2017620996.
 Registered in the Database Registry 01.09.2017. [165]

 10. System for support and management of a database of the room access
 control and management system based on the contactless smart cards.

 14

 Federal Service for Intellectual Property. Certificate #2016612543. Registered
 in the Computer Program Registry 01.03.2016. [166]

 11. Database of the logging server of a secure access control system for Smart
 House model. Federal Service for Intellectual Property. Certificate
 #2016621608. Registered in the Database Registry 29.11.2016. [167]

 Structure and volume. The thesis contains an introduction, 6 chapters and a
 conclusion. The main results are presented on 217 pages. The full volume of the
 thesis is 249 pages with 113 figures, 20 tables and 3 appendices. The list of
 references contains 167 titles.

 Summary. Chapter 1 provides a systematic analysis of the main issues of ensuring
 the information security of microcontroller-based systems. The place and role of
 design techniques in ensuring such systems security are indicated. requirements for
 the methodology for the design of microcontroller-based physical security systems
 are formulated. The research problem statement is performed.

 Chapter 2 provides a description of the methods for the evaluation of the design
 methodology for microcontroller-based physical security systems. The evaluation is
 done according to the time and resource consumption as well as the validity of the
 obtained results.

 Chapter 3 presents the extendable set-based hierarchical relational model of
 microcontroller-based physical security system as well as models of its elements,
 namely, hardware, software and software-hardware elements, protocols, interfaces
 and links between elements at its various levels, attacker and attack action models.

 Chapter 4 presents the set of algorithms for the design of extendable set-based
 hierarchical relational models as well as the methodology for the design of
 microcontroller-based physical security systems.

 Chapter 5 presents software implementation of the methodology for the design of
 microcontroller-based physical security systems. Its architecture, database structure,
 main functions of the source code and interface are described.

 Chapter 6 presents an experimental evaluation of the software implementation of the
 methodology for the design of microcontroller-based physical security systems. The
 correctness of the obtained results is validated based on the design of a system of
 mobile robots for perimeter monitoring.

 15

 Chapter 1. Systematic analysis of the main issues of ensuring the
 information security of microcontroller-based systems

 This chapter provides a systematic analysis of the main issues of ensuring the
 information security of microcontroller-based systems and indicates the place and
 role of design techniques in ensuring such systems security. The main features of
 microcontroller-based physical security systems are discussed. Requirements for the
 methodology for the design of microcontroller-based physical security systems are
 formulated as well as the research problem statement is performed.

 1.1. Main issues of ensuring information security
 Microcontroller-based systems have become an integral part of our lives: from
 electricity, manufacturing and transportation, to medicine, commerce and personal
 use [1] . Thus, ensuring the security of such systems is a critical task, which has not
 yet been fully solved [2] . This is supported, for example, by the news about growing
 botnets of smart microwaves and refrigerators used to carry out DDoS attacks, as
 well as hacking of isolated networks of critical enterprises through smart sensors and
 cameras [3] . This also determines the high relevance of the chosen topic.

 Let’s consider the main issues of ensuring information security that are typical for
 microcontroller-based systems in more detail. To do this, we asked the following
 research questions:

 1. What is the object of the attack?
 2. Who is the subject of the attack?
 3. What are the intentions of the attackers?
 4. What is the way to implement the attack?
 5. What methods and means of protection can be applied?

 As an answer to the first question in Section 1.1.1 , the definition and classification of
 microcontroller-based systems are proposed. This classification allows one to
 assess the criticality of the system or its elements in accordance with the business
 processes that depend on them, the complexity in accordance with the functionality,
 and connectivity in accordance with the interfaces and data transfer protocols used.
 In addition, this classification allows one to take into account the social aspect of the
 system in accordance with the involved personnel and potential users.

 A classification of attackers is being developed to answer the second and third
 questions in Section 1.1.2 . This classification makes it possible to assess the
 capabilities of attackers in accordance with their type of access, level of knowledge
 and available resources. In addition, the proposed classification makes it possible to
 take into account possible intentions of attackers, including those related to violation

 16

 of confidentiality and integrity of information, as well as violation of the availability of
 devices and interception of control over them.

 As an answer to the fourth question in Section 1.1.3 , a classification of attack actions
 is presented. This classification makes it possible to establish the relationship
 between the attacker and attack actions in accordance with the knowledge and
 resources necessary for the attacker to implement them, as well as the purpose to
 which their use corresponds. In addition, this classification establishes the
 relationship between attack actions and components of microcontroller-based
 systems, in accordance with which they can be implemented.

 As an answer to the fifth question, a classification of methods and means of
 protection is proposed in Section 1.1.4 . This classification makes it possible to
 assess the possibility of implementing attacking actions.

 At the same time, the answers to the above questions, just like the classifications
 proposed as answers to them, are interconnected, see Figure 1 .

 Figure 1 . Relationship between problematic issues of information security

 Directed arrows show the relationship between the questions. At the same time, the
 process of building relationships is based on two main concepts of information
 security: subject and object of the attack. Then, based on information about the
 target of the attack and the attacker, one can guess the target of the attackers, as
 well as the tools and approaches they use. In addition, when the information about
 the object of attack and the attacker is expanded with data about the tools and
 approaches used by the attacker, it becomes possible to suggest effective
 countermeasures. Note that the figure shows a direct relationship between
 questions, while indirect relationships are not displayed — otherwise there would be
 an all-to-all relationship. Each of these questions, as well as the answers to them,
 will be discussed in more detail in the following sections.

 17

 1.1.1. Definition and classification of microcontroller-based systems
 The use of cyber-physical systems is becoming more and more widespread and in
 demand, since the integration of information technologies and devices for interacting
 with physical processes and objects is implemented in them. It is important to note
 that in the scientific literature there is no single definition of such systems and in a
 number of works, there are various descriptions of them. The term cyber-physical
 system was first proposed in 2006 to denote complexes consisting of natural objects,
 artificial sub-systems and controllers [4] . In addition, the popularization of this term is
 associated with the project Industry 4.0 [5] , which is based on the introduction of
 smart systems into the industry. For example, [6] provides an overview of various
 types of systems and related processes of transition from mechatronics to
 cloud-based IoT systems. As a rule, the following systems are referred to as
 cyber-physical [7] : production management systems, Internet of Things, smart home,
 robotic systems and unmanned vehicles. Microcontroller-based systems are a
 subset of cyber-physical systems.

 In [8] , a microcontroller-based system is defined as a new type of system that is the
 result of combining embedded software systems connected, on the one hand, with
 their physical environment using sensors and actuators, and on the other hand, with
 global networks such as the Internet with its data and services. According to [9] , a
 microcontroller-based system is a complex technical system that integrates sensor
 technology and computing, communication and control technologies. The hardware
 and software of the system are closely linked through the network, forming four
 processes: data collection, data analysis, decision making and execution. The work
 [10] uses the concept of cyber-physical space to denote a conditional environment in
 which physical objects and their informational entities exist in an inseparable
 connection. And in [7] , the concept of a microcontroller-based system is presented
 as a convenient concept for representing technological systems as a result of the
 integration of physical processes and the information environment.

 Summarizing, the following characteristics can be distinguished, which make it
 possible to classify the system as microcontroller-based:

 1. Integration of information technologies with the physical environment.
 2. Existence of processes for collecting, storing, analyzing and providing data.
 3. Availability of a reliable data transfer environment between system elements.
 4. System contains only microcontroller-based devices.

 This means that a microcontroller-based system can be defined as a system that
 performs the functions of collecting, storing, analyzing and providing data from
 microcontroller-based devices interacting with physical processes and objects, as
 well as their close integration with information technology within a reliable data
 transfer environment.

 18

 Information security of a microcontroller-based system means ensuring the integrity,
 confidentiality and availability of processed data, as well as infrastructure and
 associated physical processes. Information security of a microcontroller-based
 system can also be understood as the security of information and information
 resources of this system from various kinds of threats.

 Just like in the definition of microcontroller-based systems, there is not a single
 classification of it in the scientific literature. In a generalized form, the main attributes
 of the classification of such systems can be represented as follows: complexity in
 accordance with the functionality and components used; connectivity in accordance
 with the interfaces and data transfer protocols used; criticality in accordance with
 system-dependent business processes; social aspec t in accordance with the nature
 of the interaction of the system with users and operators. Understanding these
 attributes provides insight into a microcontroller-based system, helping to determine
 what an attacker is targeting and what capabilities an attacker uses when attacking
 that system. Let’s consider each of the presented attributes in more detail.

 Assessment of the complexity of a microcontroller-based system can be
 carried out in accordance with its functionality and components used. These
 parameters are most actively studied in works related to their design. In this case,
 the components of the system are usually divided into different levels, depending on
 the functionality of the elements of each layer.

 For example, the authors of [11] have proposed a service-oriented architecture for
 microcontroller-based systems, consisting of physical, network and service layers.
 The study [12] distinguishes the perception level, network level and application level.
 The task of the physical layer, or the level of perception, is to reliably read
 information from sensors. The network layer provides ubiquitous data access and
 transmission. At the service or application level functions for collecting, storing,
 processing and presenting data are performed.

 In [13, 14] , the architecture of a microcontroller-based system is proposed,
 consisting of five levels, which contain: connection level — collection of all types of
 data from sensors and system controllers; network layer — analysis of
 heterogeneous data in order to determine meaningful information; cybernetic level —
 the central information node in the architecture, realizing data analysis and control of
 the system; knowledge level — presentation of knowledge to users, visualization and
 decision making; configuration level — feedback between levels, the performance of
 central dispatching control functions.

 Also, a common representation of the architecture of microcontroller-based systems
 is the 7-layer structure of the ISO/OSI model — from the physical to the application
 layer [15, 16] . Thus, the elements of the system can be classified according to their
 functionality as well as from the place occupied in the overall architecture.

 19

 Microcontroller-based systems can also be classified depending on the processes
 involved in processing the data they use. For example, in the work [17] , was
 proposed to classify these systems by the semantic level of the data used for
 operation: connection level — data provided by sensors; conversion level — data
 from sensors, after their preliminary processing and aggregation; cybernetic level —
 data from other systems; knowledge level — processing of sensor data based on
 modeling and differential analysis to diagnose the state of the system; configuration
 layer — using incoming data for adaptation and reconfiguration.

 In addition, according to [18] , the complexity assessment can also be carried out on
 the basis of the following structural features of microcontroller-based systems: the
 number of control loops — with one control loop and multiple control loops; the
 structure of the control loops — single-level and hierarchical; quantitative
 composition of elements — fixed and variable; the qualitative composition of the
 elements — homogeneous and heterogeneous; dynamics of behaviour — adaptive
 and self-organizing. At the same time, adaptation and self-organization mean a
 reaction to external influences, the ability to predict upcoming changes in the
 external environment, conducting internal testing and improving one's own
 organization not only under the influence of external factors but also in the case of
 conditionally stable work.

 Note that in the field of artificial systems there is no clear boundary dividing simple
 and complex systems. At the same time, there are two main ways to assess the
 complexity of systems [19] . The first is related to the amount of information required
 to describe the system and determine its descriptive complexity. Such an
 assessment is possible on the basis of quantitative parameters of the system, such
 as the number of elements, connections and hierarchical levels, as well as
 non-overlapping system functions [20] . The second method makes it possible to
 estimate the complexity of cognition of the system and is associated with the amount
 of information required to reduce the system's uncertainty measure. At the same
 time, the descriptive complexity and the complexity of cognition complement each
 other — an increase in one complexity entails an increase in another. The role of the
 classification of microcontroller-based systems is to limit the ways of describing such
 systems, which provides the basis for their assessment.

 The connectivity assessment of a microcontroller-based system can be carried
 out in accordance with the interfaces and data transfer protocols used in it. This
 assessment affects one of the most important elements of any system — the
 process of organizing reliable data exchange between its components. At the same
 time, existing telecommunication technologies include both data transmission
 algorithms and tools of their implementation up to physical communication channels.

 20

 In [18] to assess the connectivity of microcontroller-based systems, it is proposed to
 use such features as geographical distribution and openness of the system. With
 regard to geographical distribution, there are as follows: centralized systems —
 systems located within the boundaries of one physical object; and distributed
 systems — systems located on several interconnected objects. The openness of the
 system determines the nature of the use of internal and external (global) networks
 and classifies the microcontroller-based system as a closed-typ e system if only the
 internal communication environment is used for its operation, and an open-type
 system if the system requires access to the global Internet.

 In [17] to assess the connectivity of microcontroller-based systems, it is proposed to
 use the technologies and communication standards. Technologies characterize the
 devices used by the system to interact with physical objects or processes, while
 standards characterize the process of interaction of system elements with each
 other, indicating the protocols and interfaces. Protocols are divided into high-level,
 low-level and inter-level, and for the classification of interfaces, it is proposed to use
 various features that characterize the communication topology, the format and mode
 of data transmission, as well as the functional purpose of the network.

 The protocols and interfaces used can be conditionally divided into wired and
 wireless. Wireless sensors and actuators play a central role in the design of modern
 microcontroller-based systems. In such complex heterogeneous systems,
 communication links must meet requirements of bandwidth, latency, and range as
 well as low power consumption. In [21] the most recent wireless standards are
 covered, such as NFC, UHF RFID, ZigBee, Z-Wave, EnOcean, Bluetooth, Wi-Fi,
 3GPP, NB-IoT, LoRa and SigFox. At the same time, the following network topologies
 are distinguished: star, tree, mesh and honeycomb.

 The most common wired interfaces for data transfer between microcontroller-based
 devices include UART, SPI, I2C, Ethernet, 1-Wire, Modbus, and CAN [22, 23] . Each
 of the listed interfaces has a number of features that affect the data transfer rate,
 power consumption, and available additional functions: for example, the functions of
 addressing and identifying connected devices. At the same time, for these interfaces,
 their hardware implementations are widespread, which led to their integration into
 most modern devices based on microcontrollers.

 Note that the global informatization of various spheres of human life contributes to
 both the development of existing specifications for network exchange protocols and
 the emergence of new protocols. At the same time, for devices of
 microcontroller-based systems, there is a tendency to use proprietary protocols —
 protocols with unregulated (at least publicly available) specifications. This situation is
 mainly related to the desire to protect the intellectual and commercial property of
 companies as well as to complicate the conditions for the analysis of network
 protocols by third-party researchers. This means that often traffic in

 21

 microcontroller-based systems can be characterized as traffic of large volume, high
 heterogeneity and undefined structure [24] .

 The criticality assessment of a microcontroller-based system can be carried out
 in accordance with the business processes that depend on it. To carry out this
 assessment, business process models are often used, as well as an analysis of
 potential threats and vulnerabilities for subsequent risk assessment and the selection
 of countermeasures. In this case, the risk is defined as the ability of a particular
 threat to use the vulnerability of one or more assets to harm the organization [25] . In
 turn, assets can represent tangible assets, information, software and hardware,
 personnel and intangible resources of value to the organization.

 By definition, a critical information infrastructure is a set of automated control
 systems for the production and technological processes of critical objects, as well as
 information and telecommunication networks that ensure their interaction [26] . Thus,
 these objects can include microcontroller-based systems operating in the spheres of
 health care, science, transport, communications, energy, finance, defence and
 industry. An analysis of the field of application of microcontroller-based systems is
 presented in [27-29] . Let’s consider them in more detail.

 In [27] the following areas of application of microcontroller-based systems are
 distinguished: public security, retail trade, transport, industry, healthcare, smart
 home, construction and energy. For each area, an end-user is identified and
 examples of devices are provided. The authors of [28] review existing solutions in
 the design of microcontroller-based systems, which allows highlighting the following
 areas of application: automotive systems and transport, medical systems, smart
 homes and buildings, social networks and gaming systems, planning systems,
 control systems, power systems, systems surveillance, industrial systems,
 aerospace systems, search systems, ecological systems, construction systems,
 robotic systems, and water distribution systems. The article [29] examines the main
 components of the modern intellectual environment, namely such concepts as smart
 home, smart health, smart city and smart factory. At the same time, these concepts
 are compared with current communication solutions in the field of
 microcontroller-based systems. This paper also provides an overview of
 communication technologies and architectures of such systems, and in the
 conclusion discusses the problems that remain open for research.

 Industrial microcontroller-based systems are characterized as a combination of
 autonomous and coordinated elements (from machines to logistics networks),
 connected to each other in accordance with a set of goals at all levels of production
 and capable of making decisions in real time [30] . At the same time, the benefits of
 implementing such systems are being explored everywhere. For example, [31]
 shows the process of introducing the principles of microcontroller-based systems into
 the industrial sector by organizing the work of enterprises in the framework of

 22

 technologies such as smart manufacturing and digital factories. The works [32, 33]
 show the advantages of interaction between humans and robotic systems in a
 hazardous environment. The article [34] describes transport microcontroller-based
 systems, their basic principles of organization and functioning. In [35] , a paradigm of
 a microcontroller-based building system is proposed, which is a finite set of
 functional components such as building objects and complexes, as well as
 computing resources integrated into the included physical processes. A number of
 works [36, 37] provide studies of medical microcontroller-based systems to improve
 the efficiency and safety of healthcare.

 Note that the criticality of a microcontroller-based system is characterized by the
 consequences of complete or partial failure of both the entire system and its
 individual elements. These consequences include both financial and reputational
 damage and a threat to human life and health. One of the ways to represent
 criticality is a vector of the following components: reliability, failure consequences,
 the ability to reduce the likelihood and severity of consequences [38] . The ranking of
 the elements of the system according to the degree of criticality depends on the
 system type, selected particular indicators as well as available expert information.

 The criticality of information processed in microcontroller-based systems, as a rule,
 is determined by the owner of the system and may depend on various parameters.
 For example, the criticality of information can be affected by its need for the correct
 functioning of the system as well as damage from its loss, modification or leakage.
 Criticality can be calculated using both qualitative and quantitative indicators [39] .

 In [40] classification of information assets in accordance with the requirements for
 confidentiality, integrity and availability is proposed. With regard to confidentiality, the
 authors highlight information that is restricted for distribution according to the
 requirements of the law and organization as well as open information. With regard to
 integrity, information is distinguished based on the damage the violation of its
 integrity can lead to — significant, moderate or insignificant damage — as well as
 information, the integrity of which is not required. With regard to accessibility, authors
 highlight information that is available at any time as well as information that is
 available with a delay of up to several hours/days/weeks.

 Based on the classification proposed in [40] , information can be divided into critical
 information — confidentiality must be ensured in accordance with the requirements
 of the law, violation of integrity can lead to significant damage, information is
 available at any time; important — confidentiality must be ensured in accordance
 with the requirements of the organization, violation of integrity can lead to moderate
 damage, information is available with a delay of up to several hours, and usual —
 confidentiality and integrity are not required.

 23

 The assessment of the social aspect of a microcontroller-based system can be
 carried out in accordance with the nature of the interaction of the system with users
 and operators. At the same time, this area of research gave rise to such a term as
 the socio-cyber-physical system. It is important to note that the efficiency of the
 functioning of a microcontroller-based system depends not only on hardware and
 software but also on the personnel and users interacting with it. This means that the
 interests of various social groups should be taken into account both at the level of
 the formation of the external appearance of the system and in the development of its
 technical specifications.

 Thus, in [41] this fact made it possible to introduce a sign of socialization of the
 elements of a microcontroller-based system, which characterizes the following types
 of interaction of the system with society: design, production, purchase/sale, storage,
 work (operator), maintenance and disposal. And in [17] the human factor feature was
 introduced, which describes the following types of interaction of
 microcontroller-based systems with the operator: autonomy — the system makes all
 the necessary decisions without any operator intervention; automation — the system
 guides the operator during tasks, making most of the decisions; tool — the operator
 manages the system and is responsible for most decisions; management — the
 system only provides data to the operator, who makes all decisions.

 Microcontroller-based systems often simulate the intellectual capabilities of a person
 in the tasks of searching, analyzing and synthesizing information about the world
 around them in order to obtain new knowledge and solve the assigned tasks. Thus,
 in [18] for such systems, the concept of intellectualization is introduced, which
 describes the system's ability to learn, gain experience and make decisions. In
 addition, this work introduces the concept of the dynamics of response to the
 external world, which is divided into the dynamics of high, medium and low levels. It
 is assumed that this feature can be used to assess the ability of
 microcontroller-based systems to work with uncertain and dynamic data, as well as
 to extract knowledge from accumulated experience. Also, in this work, the concept of
 a model of perception of the external world is introduced, which describes how
 objects of a microcontroller-based system perceive the surrounding world: without a
 model of the external world, with a given model of the external world, or with a model
 of the external world that is generated during the operation of the system.

 Based on the analysis and systematization of the current state of research, as the
 main attributes of the classification complexity, connectivity, criticality and the social
 aspect of microcontroller-based systems were chosen. Using these attributes, a
 classification was built as shown in Figure 2 .

 This classification allows one to assess the criticality of the system or its elements in
 accordance with the business processes that depend on them, the complexity in
 accordance with the functionality and connectivity in accordance with the interfaces

 24

 and data transfer protocols used. In addition, this classification allows one to take
 into account the social aspect of the system in accordance with the involved
 personnel and potential users. The sufficiency of the classification is confirmed by
 the analysis of existing scientific and practical works, in which the above attributes
 are used to determine the type of system.

 Figure 2 . Classification of microcontroller-based systems

 For example, in terms of complexity a decentralized single-level self-organizing
 system with a variable number of elements can be distinguished. In terms of
 connectivity — a geographically distributed system with access to the Internet, built
 on the basis of wireless and wired technologies using low-level and high-level
 protocols. In terms of criticality — a system used in critical infrastructure with human
 participation that processes critical information, the failure of which could result in
 financial damage. With regard to the social aspect, it is an autonomous system that
 acts as a source of data, is not capable of self-learning and accumulation of
 knowledge, and has a low dynamic of response to the outside world. Each of the
 obtained classifications allows one to restrict the way of describing the systems
 under study and provides a basis for assessing their complexity, connectivity,
 criticality and social aspect.

 25

 1.1.2. Analysis and classification of attackers
 An important step in the process of identifying threats to the security of a
 microcontroller-based system is the identification of persons whose actions can lead
 to a violation of the confidentiality, integrity or availability of the system and the
 occurrence of damage. According to the definition in GOST R 53114-2008 [42] an
 individual or logical object is considered to be an intruder if they accidentally or
 deliberately committed an action that entailed negative consequences. The
 attacker's model, or profile, characterizes the possible ways of interaction between
 the attacker and the target system, in particular, it defines the restrictions for the
 attacker. The result of the analysis of the attacker's model is an assumption about
 the types and potential of intruders who can implement security threats for a
 microcontroller-based system with given characteristics and functioning features.

 It is assumed that the classification of attackers will make it possible to assess their
 capabilities in accordance with the type of access to the system, the level of
 knowledge, possible intentions and available resources. The type of access allows
 one to distinguish between an external and internal intruder, an ordinary user and an
 administrator. The level of knowledge is a characteristic of the attacker, which
 indicates his technical skills for initiating and carrying out an attack. Also, this
 characteristic describes the intruder's awareness of the architecture of the target
 system and the existing protection measures. The intent of the attacker indicates the
 purpose of the attack on the system. This parameter is difficult to quantify and is very
 dynamic. An attacker's available resources include hardware and software resources
 that can be used to deploy a specific type of attack.

 The main regulatory documents defining the model of an attacker in the Russian
 Federation are “Basic model of threats to the security of personal data during their
 processing in personal data information systems” [43] , “Methodology for determining
 threats to information security in information systems” [44] and “Methodological
 recommendations on the development of regulatory legal acts that determine threats
 to the security of personal data, relevant when processing data in personal data
 information systems operated in the implementation of relevant activities” [45] .
 Moreover, internal intruders are divided into eight categories depending on the
 method of access and access authority: category 1 — persons who have authorized
 access to the system and ensure its normal functioning; category 2 — registered
 users of the system who have limited access to its resources from the workplace;
 category 3 — registered users of the system who provide remote access to its
 resources; category 4 — registered users of the system with the privileges of a
 security administrator for a separate segment of the system; category 5 — registered
 users with the authority of the system administrator; category 6 — registered users
 with system security administrator privileges; category 7 — developers of the system
 software and persons providing its support; category 8 — developers and persons
 providing delivery, maintenance and repair of system equipment.

 26

 The regulatory document [44] introduces the concept of an intruder's potential, which
 can be low, medium and high:

 ● low potential — the intruder has information about the vulnerabilities of
 individual elements of the microcontroller-based system, published in public
 sources, while using publicly available tools or tools created on his own;

 ● medium potential — the intruder has all the capabilities of low potential
 intruders and also has an awareness of the protective measures used in the
 system; in addition, the intruder has information about the vulnerabilities of
 individual elements of the system and uses freely available software tools to
 carry out attacks, and also has access to information about the characteristics
 and features of the functioning of the system;

 ● high potential — an intruder has all the capabilities of an intruder with a
 medium potential, and can also get unauthorized access to the
 microcontroller-based system from dedicated communication networks; in
 addition, an attacker of this type has access to the software and hardware of
 the system, is well aware of the protection measures used in it, and also has
 information about system vulnerabilities, conducts research on the attacked
 system and uses highly specialized tools.

 The normative document [45] provides generalized capabilities of intruders, with the
 main attention being paid to the capabilities of an attacker to attack system
 protection and its environment: the ability to attack a microcontroller-based system
 only outside the controlled area; the ability to attack a microcontroller-based system
 within a controlled area, but without physical access to it; the ability to attack a
 microcontroller-based system within a controlled area with physical access to it; the
 ability to attract specialists with experience in the development and analysis of
 security measures typical for microcontroller-based systems.

 It is important to note that in addition to the main regulatory documents, various
 classifications of attackers are given in a number of studies in the field of information
 security threat analysis. Let’s consider these works in more detail.

 For example, in [46] an overview of research into attacks on microcontroller-based
 systems, as well as attacker profiling is provided. This review concludes that existing
 studies can be grouped into two main categories: (1) studies that are using different
 models of attackers with different properties (for example, one model to describe the
 insider, the other to describe the state intelligence service); (2) studies that are
 defining a number of parameters such as the type of knowledge, level or potential of
 the intruders to distinguish between them within the framework of a single model.

 In addition, this paper proposes a generalized classification of attackers, including
 the following types:

 ● amateur — uses publicly available tools to attack the system and has
 standard access to hardware, software and Internet connection;

 27

 ● internal intruder — has system privileges (for example, user, supervisor,
 administrator);

 ● hacktivist — uses his abilities to manifest political activity;
 ● cyber terrorist — a politically motivated attacker who uses his abilities to

 commit crimes;
 ● cybercriminal — an attacker with extensive security knowledge and skills,

 whose goals can range from blackmail to espionage and sabotage;
 ● faction — a group of people, sometimes funded by the government, that often

 aims to attack critical infrastructure systems.

 The authors also note that the boundaries between the types of attackers in the
 above classification are rather blurred, and therefore it can be difficult to identify a
 real attacker as one specific type. With regard to the goals of the attackers, the
 authors distinguish: personal, economic, forensic, terrorist and political.

 In [47] classification of attackers on a microcontroller-based system using the
 example of a water supply management system is provided. In this case, the
 attacker is classified according to the type of access to the system and capabilities.
 The authors distinguish the following types of access to the system:

 ● type 0 — the attacker does not have direct access to the infrastructure and
 services of the system, only social engineering methods are available for use;

 ● type 1 — the attacker interacts with the infrastructure and services of the
 system indirectly, providing indirect access to them;

 ● type 2 — an attacker affects the system infrastructure or its services directly,
 while being at a certain distance from the controlled perimeter;

 ● type 3 — an attacker has physical access to the system infrastructure, but is
 not able to investigate and modify internal electronic components;

 ● type 4 — the intruder has full access to the system infrastructure and all
 internal elements and interfaces.

 At the same time, the authors distinguish the following levels of attackers'
 capabilities:

 ● level 1 — use of publicly available tools and exploitation of known system
 vulnerabilities;

 ● level 2 — the ability to identify and exploit previously unknown vulnerabilities
 and develop new tools to influence the target system;

 ● level 3 — level 2 capabilities and nearly unlimited resources to carry out
 attacks.

 Thus, the classification proposed by the authors allows us to consider attackers from
 the point of view of the type of access, resources and knowledge necessary for the
 successful implementation of attacking actions.

 28

 Based on the systematization of the current state of research on such attributes of
 the classification of attackers as the type and method of access, intentions,
 knowledge and resources, the classification was built, presented in Figure 3 .

 Figure 3 . Classification of the attacker

 This classification makes it possible to assess the capabilities of attackers in
 accordance with the type and method of access to the system, the level of
 knowledge and available resources. In addition, this classification makes it possible
 to take into account the intentions of attackers, including those related to violation of
 confidentiality and integrity of information, as well as violation of the availability of
 devices and interception of control over them.

 29

 1.1.3. Analysis and classification of attack actions
 An equally important step in the process of identifying threats to the security of a
 microcontroller-based system is the analysis of actions that can lead to a violation of
 the confidentiality, integrity or availability of the system. According to the definition in
 GOST R. ISO/IEC 27000–2012 [48] , an attack is an attempt to destroy, disclose,
 alter, block, steal, gain unauthorized access to an asset or use it unauthorizedly. At
 the same time, attacks can occur at different levels of the system, including many
 stages, be stretched out in time and affect its various elements. And although the
 variety of attacking actions is actively studied in the scientific community, at the
 moment there is no single classification of them.

 Let’s consider the existing work in more detail.

 In [49] network attack actions are classified based on resources, topology and traffic:
 ● by influence on resources — directed (denial of service, routing table

 overflow) and undirected (privilege escalation);
 ● by influence on the topology — reducing performance (substitution of the

 routing table, "funnel", "wormhole") and isolating ("black hole");
 ● by influence on traffic — eavesdropping (sniffing and traffic analysis) and

 intercepting (downgrading, spoofing).

 In [50] , when classifying attacking actions on SCADA systems, the following types of
 attack actions are distinguished:

 ● weakening the network perimeter using backdoors;
 ● exploiting vulnerabilities in the protocols used;
 ● intercepting control of individual system devices;
 ● disrupting the database;
 ● intercepting and modifying network messages;
 ● modifying the system time for stopping the work of protective equipment.

 The study also proposes to divide attack actions into attacks aimed at the following:
 ● modifying, intercepting or introducing input data from system sensors;
 ● changing the system operation process by modifying, intercepting or

 introducing data at the level of interaction between system controllers;
 ● modifying system logs;
 ● intercepting control of individual devices or stopping their work.

 In [51] authors propose to represent attack actions as the following data tuples:
 subject, object, intent, vector and consequences. In this case, the subject of an
 attack can be an intruder, natural disaster, human factor, errors of the system and
 supporting infrastructure. The object of an attack can be any element of the system,
 data transfer environment between them as well as the system as a whole.
 Intentions can be criminal, intelligence, terrorist or political. Attack vectors are

 30

 divided into interception, modification and falsification of data as well as the
 termination of its transmission. The consequences include compromising the
 confidentiality, integrity, availability, privacy and reliability of the system.

 In [52] the classification of attack actions on microcontroller-based systems is
 presented. Authors highlight attacks on sensors, computing processes, feedback,
 data transfer environment and actuators. The examples for each of the listed types
 of attack actions are as follows:

 ● attacks on sensors — disabling equipment, interrupting power supply, using
 physical processes for incorrect operation of sensors;

 ● attacks on computing processes — deletion, modification, substitution or
 forgery of data, worms, viruses, trojans;

 ● feedback attacks — data integrity violation, control interception;
 ● attacks on data transfer environment — deletion, modification, substitution or

 forgery of data, data loss, sniffing;
 ● attacks on actuators — deletion, modification, substitution or forgery of data,

 interruption of power supply, modification of hardware and software.

 In [53] , when analyzing the security of microcontroller-based systems, it is proposed
 to distinguish attack actions in accordance with the level of the system at which the
 attack occurs, the element of the system to which the attack is directed, and the
 intentions of the attacker. At the same time, for each level of the system, the authors
 presented the main security problems and possible countermeasures.

 The authors of [54] also proposed to classify attacks against microcontroller-based
 systems according to the level of the system: physical, network or application. At the
 same time, for each level, the authors distinguish the corresponding attack actions:

 ● physical level — disabling equipment, stopping equipment operation, stopping
 power supply, intercepting electromagnetic signals, denial of service,
 intercepting and modifying data, stopping data transfer, unauthorized access;

 ● network layer — distributed denial of service, tampering with the routing
 process, redirection or loss of data, buffer overflow;

 ● application layer — unauthorized access, data leakage, malicious code
 injection, control interception, virus, trojan and database injection.

 In [55] the authors propose to divide attack actions on microcontroller-based systems
 in accordance with the area of their impact: from interaction with physical devices to
 various aspects of network interaction (segmentation, topology, technologies used
 and structure). At the same time, the authors provide the following generalized
 classification of them: interception and analysis of traffic; leakage of personal data;
 disabling equipment; remote execution of malicious code; violation of the integrity of
 the source code of applications; exploitation of vulnerabilities in network protocols;
 denial of service.

 31

 In [56] it is proposed to classify attack actions on microcontroller-based systems
 according to their object, impact and performed the action. For each action, a
 method and preconditions are distinguished, and for the object and impact, the
 affected element and the influence on it.

 In [57] it is proposed to classify attack actions on microcontroller-based systems in
 accordance with the object of the attack, the impact on the system and the impact on
 the person. Let’s consider the proposed classification in more detail:

 ● object of attack — data collection, data transfer environment, control system;
 ● impact on the system — physical (incorrect operation, denial of service, slow

 data processing) and cybernetic (confidentiality, integrity, availability,
 non-appealability);

 ● impact on a person — emotional impact, influence on acquired experience,
 physical harm.

 In [58] attack actions are divided on the basis of the impact method and the security
 aspect. At the same time, according to the impact method, there are as follows:

 ● informational — unauthorized access, copying and theft of information,
 violation of information processing technology;

 ● software — exploiting bugs and vulnerabilities in software, spreading
 malware, setting bookmarks;

 ● physical — destruction of system devices, theft of media, theft of keys and
 cryptographic data protection;

 ● radio-electronic — the introduction of devices for intercepting information,
 intercepting, decrypting, substituting and destroying data in communication
 channels;

 ● organizational and legal — violation of the law, purchase of outdated
 programs and devices.

 In terms of security aspects, attack actions are divided into ones that are violating
 confidentiality, integrity and availability.

 Based on the analysis and systematization of the current state of research on such
 attributes of the classification of attack actions as subject and object, impact method,
 prerequisites and consequences, a classification was built, presented in Figure 4 .

 This classification makes it possible to establish the relationship between the
 attacker and attack actions in accordance with the knowledge and resources
 necessary for the attacker to implement them, as well as the purpose to which their
 use corresponds. In addition, this classification establishes the relationship between
 attack actions and elements of microcontroller-based systems in accordance with
 which they can be implemented.

 32

 Figure 4 . Classification of attack actions

 33

 1.1.4. Analysis and classification of methods and means of protection
 Since one of the key features of microcontroller-based systems is the close
 integration of physical processes and information technologies, the number of
 problems that must be considered when developing security mechanisms for such
 systems is much higher in comparison with other types of systems. In addition, such
 systems often have a dynamic infrastructure, heterogeneous data sources and
 stores, which also increases the complexity of the required protection. At the same
 time, most of the research in this area is aimed at solving various security problems
 at each individual level of the architecture of the system, and not for the system as a
 whole. Let’s consider the existing work in this direction in more detail.

 In [59, 12] the authors propose to determine the necessary methods and means of
 protection based on the component composition of the microcontroller-based
 system. At the same time, these works provide a classification of protection methods
 in accordance with the level of the system, the protection of which they provide. The
 authors distinguish the following levels: level of data collection — certification,
 access control, authentication, lightweight data encryption, physical security of
 devices, environmental monitoring, trust management; data transfer layer — reliable
 routing and data encryption, authentication and key agreement, network access
 control, attack detection mechanism; data analysis and processing level —
 end-to-end encryption, intrusion detection, trust management, authentication and
 authorization, data mining, forensics, personal data protection.

 Note that protection methods from [12] are referred by the authors to the information
 field of the system, in addition to which they also distinguish the control field and risk
 assessment. It is noted that these security mechanisms should be developed taking
 into account the security of the system as a whole, and not just its individual level. At
 the same time, this process includes the development of an integrated cross-layer
 security solution that is capable of working with different methods and means of
 protection, and also reliably integrates data from different sources.

 In [60, 61] the architecture of a microcontroller-based system is presented. This
 system integrates both physical and information security solutions and consists of
 the following main parts: data sources — include various physical and cyber security
 systems; data collection module — uses various hardware and software interfaces to
 connect to data sources, while the received data is subject to preprocessing and
 normalization processes; data analysis module — includes various stages of the
 security event correlation process; data presentation module — includes such
 processes as security assessment, development of countermeasures and generation
 of reports. Note that, in accordance with the architecture proposed by the authors,
 the methods and means of protection of the system can be classified in accordance
 with the problem being solved.

 34

 In [7, 62] it is proposed to consider methods and means of ensuring the security of
 microcontroller-based systems from the point of view of control theory. At the same
 time, the authors highlight the following features that must be taken into account
 when designing system protection: the presence of feedback, the presence of an
 adaptive control loop and the ability to predict the state of the system. On the basis
 of these features, the authors propose the following classification of methods and
 means of protection: static — the control function does not change over time, the
 output state of the protected object depends on the constant values of control
 actions; active — the results of experimental testing of the protected object are used
 to configure the parameters of security systems; adaptive — the parameters of
 security systems are periodically changed to maximize the effectiveness of
 protection based on the characteristics of the object during the monitoring process;
 dynamic — there is dynamic compensation for unwanted changes in the state of the
 system during operation. Note that the approach proposed by the authors makes it
 possible to formulate the task of ensuring the security of microcontroller-based
 systems as a task of automatic control in conditions of targeted cyber threats in order
 to ensure the sustainability of functioning.

 The authors of [61] propose to analyze the network interfaces and protocols used in
 a microcontroller-based system to determine the necessary means and methods for
 the protection of the data transfer environment. At the same time, special attention is
 paid to the process of interaction between the controllers of the system, wherein the
 above experiment, the security of the data bus is ensured by mutual authentication
 of devices, encryption of transmitted data and reliability — due to dynamic
 addressing and monitoring of the state of connected devices, the absence of
 uncontrolled loss of sensor events and integrity checks of transmitted data.

 Cisco's security framework [63] has four main components: authentication and
 identification, access control, network policy and security analytics. At the same time,
 the basic application of network policy is primarily concerned with ensuring that the
 traffic entering the network meets the specified rules, including the allowed range of
 IP addresses and types of traffic. Traffic packets that do not meet the specified rules
 are recognized as anomalous and should be dropped as close to the network edge
 as possible, thereby minimizing the risk of impact. As a rule, various methods are
 used to detect anomalies, the generalized classification of which can be represented
 as follows: behavioural, statistical and data mining methods [64] .

 In [65] existing vulnerability assessment methods are examined as well as their role
 in the security risk assessment process and how they are applied. There are three
 main groups of methods: quantitative, qualitative and qualitative-quantitative.
 Quantitative risk assessment methods allow assessing the risk in monetary units and
 take into account the frequency of undesirable events. Qualitative methods rank
 risks relative to each other based on asset values, vulnerabilities, threats and

 35

 defences. At the same time, in practice, a qualitative-quantitative approach is mainly
 used, within which certain ranges of quantitative values are compared.

 In [66] the authors review research on the assessment of vulnerabilities in
 microcontroller-based systems in academic and commercial fields. At the same time,
 the authors noted that the latter is characterized by a variety of approaches to
 identifying vulnerabilities, while this is not observed in the academic environment.

 In [67] methods for assessing the risks of microcontroller-based systems are
 considered in terms of the economic effect, which manifests itself even when the
 attacker's motivation is not financial. The analysis of various models and methods of
 risk assessment, as well as vulnerability assessment systems, is given.

 In [68] existing approaches to risk assessment and management are examined in
 terms of safety, security and their integration. Methods for assessing security risks in
 microcontroller-based systems include: fault tree analysis — a view that allows you
 to link various legitimate events and errors, the occurrence of which can lead to an
 undesirable event; analysis of failures and their consequences — a structured
 method of analyzing the safety of a system, which makes it possible to recognize
 situations that lead to the failure of a system or its individual elements, as well as
 their consequences; analysis of criticality and reliability — a method of analyzing the
 safety of a system, which makes it possible to assess the degree of criticality and
 reliability of system processes by studying the consequences of possible deviations;
 development in accordance with the model — a method of developing simulation
 models of real-time systems and analyzing these models to verify compliance with
 safety requirements; analysis of success trees and goals — a method of analyzing
 system security based on structural analysis of the reliability and risk of the system;
 analysis of emergency processes — a method of safety analysis based on a
 set-theoretic model and analysis of situations that leads to an accident.

 The work [69] is devoted to the study of the main approaches in the field of risk
 assessment for potentially dangerous objects. Assessment methods include
 quantitative assessment using mathematical statistics, expert risk assessment,
 simulation and their combinations. The study specifies that the assessment of the
 violation of physical security is carried out for each specific object using the following
 methods: mathematical modeling of the probability distribution of a risk event; expert
 assessment by Delphi and ranking methods; numerical integration of the risk
 function in time and space. This means that the assessment of the security of a
 microcontroller-based system can be represented as a process of analyzing
 accumulated data, expert opinion or the work of a mathematical apparatus.

 The social aspect of microcontroller-based systems and, accordingly, possible
 attacks of social engineering lead to the search for methods and means of protection
 against them. For example, in [70] the phenomena of aggression in the

 36

 socio-cyber-physical environment and their impact on the individual and group
 consciousness of users is studied. The results obtained are proposed to be used in
 the development of a unified socio-cyber-physical system for managing these
 processes. The authors note that, in a social network, combining a source with the
 means and forms of communication used makes it possible to take into account the
 social effect of the message, which can be used to predict manifestations of
 aggression, pressure and other destructive phenomena.

 In [71] the authors proposed a classification of social-engineering attacks and a
 possible approach to assessing the security index of corporate networks from the
 point of view of human behaviour. The following basic measures of protection
 against attacks of social engineering are proposed: availability of information security
 policy; briefing; monitoring compliance with information security; identity
 management policy; introduction of biometric access systems.

 Based on the analysis and systematization of the current state of research on such
 attributes of the classification of methods and means of protection as the principle of
 operation, the object of protection and the problem to be solved, the classification
 presented in Figure 5 was built.

 Figure 5 . Classification of methods and means of protection

 37

 1.2. Place and role of the design techniques
 As was shown in Section 1.1 , there are many approaches to ensure the information
 security of microcontroller-based systems. As a rule, they are associated with
 individual stages of such systems development lifecycle: analysis, planning, design,
 development, testing, deployment, maintenance and evaluation, see Figure 6 .

 Figure 6 . Microcontroller-based systems development lifecycle

 The approaches that are discussed in this section are used at the design stage of
 the microcontroller-based systems development lifecycle and are associated with
 Security by Design. Security by Design is an approach to software and hardware
 development that aims to reduce the number of possible vulnerabilities and enhance
 the system's protection against possible attacks. The main idea of the approach is in
 taking into account security features as a design criterion of products.

 The classifications provided in Section 1.1 are making it possible to assess the
 possibility of implementing attack actions in accordance with the methods and
 means of protection that are used in the microcontroller-based system. This is
 possible due to the fact that the classification of methods and means of protection by
 the object of protection coincides with the classification of attack actions by a similar
 attribute. Consequently, upon further analysis of the knowledge, resources and
 capabilities of the attacker, it is possible to conclude about the feasibility of certain
 attack actions, see Figure 7 .

 38

 Figure 7 . The process of identifying relevant attack actions and recommending
 methods and means of protection

 This means that based on the information about the component composition of a
 microcontroller-based system, it is possible to determine a list of attack actions to
 which this system is potentially susceptible. Then, based on the idea of the level of
 knowledge of the attacker and the resources available to him, this list of attacks can
 be limited in the same way as if there is information about the methods and means of
 protection used. All attack actions remaining after these transformations represent a
 real threat and must be taken into account.

 Information about attack actions to which the designed system is potentially
 susceptible is often used by design techniques to find a trade-off between the level
 of protection of the resulting solution and resources expended on it.

 The task of designing microcontroller-based systems to be secure against attacks is
 complex, that is why various design techniques have been developed and
 embedded into practice. Some of them are focused on software, some on hardware,
 and some on highly specialized areas of the application (automobiles, railway
 transport, robotics). Let’s consider them in more detail.

 In [72] it is mentioned that the main goal of the design and verification of
 microcontroller-based systems is to develop a resilient system. According to the
 authors, the system is resilient when it is designed with 3S features: stability, security

 39

 and systematicness. This is achievable through solving five main challenges:
 dependability, consistency, reliability, cyber-physical mismatch and cyber-physical
 coupling security. The authors also mentioned that such systems are about the tight
 coupling of cyber and physical objects, so their model contains the following parts: a
 model of the physical process, models of software, models of computation platforms
 and models of networks. They classify microcontroller-based systems modeling
 approaches according to the aspect of the system displayed by the model and tasks
 that can be solved. This classification is as follows:

 1. Models based on timed actors for timings and performance [73] .
 2. Event-based models for computations, communications and control [74] .
 3. SCADA model for load balance, stability and integrity of the system [75] .
 4. Ordinary differential equations and automata for non-complex systems [76] .
 5. Continuous-time models of dynamics for physical processes [77] .
 6. MDD (Model-Driven Development, [78]), MIC (Model-Integrated Computing,

 [79]) and DSM (Domain-Specific Modeling, [80]) for software elements.
 7. Multi-agent models for interaction between system elements [81] .

 In [82] an example of verifying the timing correctness and performance of the
 microcontroller-based system is presented. Authors are using the following
 verification models:

 ● functional relations between inputs and outputs of the system;
 ● timing of components;
 ● communication between components;
 ● synchronization constraints of components.

 Authors perform validation in TrueTime (Matlab/Simulink), verification in UPPAAL
 (specification of verification models, [83]) and model checking to check whether the
 microcontroller-based system implements the requirements. With help of model
 checking, authors verify stability, safety (invariance) and reachability of the system.

 In [84] a microcontroller-based systems design methodology is proposed. This
 methodology contains seven main steps – from system boundary definition to
 multi-agent and collaboration modeling:

 1. System boundary definition is related to the black box and white box analysis.
 The implementation is based on SysML (The Systems Modeling Language,
 [85]) diagrams or Dymola [86] /Modelica [87] models.

 2. Multi-view or multi-level modeling is based on the MBSE approach
 (Model-Based Systems Engineering, [88]). The implementation is based on
 SysML and OOM (Object-Oriented Modeling, [89]) for specification, analysis,
 design, verification and validation. Authors use SYSML for complex
 multi-domain system modeling in pre-design phases and for creating different
 diagrams that are related to specific points of view, including system
 behaviour. They also use Simulink [90] for causal modeling and
 Dymola/Modelica for casual modeling of physical processes in various
 physical domains.

 40

 3. Interaction modeling uses port-based modeling and is related to physical
 support, control support and multi-domain of microcontroller-based systems.
 The implementation is based on SysML and Dymola/Modelica models.

 4. Topological modeling is based on the idea that existing scales and different
 viewpoints can be represented as a collection of topological entities sets and
 subsets linked together through semantic degrees. The authors are using a
 set of directed graphs to represent the dependencies between subsystems,
 components and related parameters. This is due to the fact that graph-based
 algorithms are good for the representation of existing dependencies within the
 system structure and in evolving the system boundaries. The implementation
 is based on directed graphs (algebraic topology, [91]).

 5. Semantic interoperability is related to the definition of existing viewpoints with
 help of the ontology and design knowledge and to the decomposition of each
 design viewpoint through a graph-based topological analysis. The
 implementation is based on graph-based mapping ontologies [92] .

 6. Multi-agent modeling is related to the modeling of control and communication
 protocols (time-delayed communication, interactions, changing of topology,
 communication network nodes and links, packet losses). The implementation
 is based on topological graphs and multi-agent modeling.

 7. Collaboration modeling is related to the solving of multi-view issues and the
 issue of communication between agents with different ontologies. The
 implementation is based on OWL (Web Ontology Language, [93]).

 So, their microcontroller-based system model contains external and internal
 interactions, process control, behaviour simulation, representation of topological
 relationships and interoperability through multi-agent platforms.

 In [6] the authors mentioned two main challenges for microcontroller-based systems
 designers: nature of information and uncertainty in design. They divide the design
 process into functional and architectural. For architectural design, authors
 recommend using ADL (Architecture Description Language, [94]) which is great for
 dynamically modeling architectures. In their experiments, authors were using
 Modelica for system model representation and transferring it to the mathematical
 model for simulation. Authors are modelling microcontroller-based systems as an
 assembly of components and associated interfaces between them. They use
 continuous models for dynamics of the physical components and a discrete model
 for behaviours of the computing components. The main challenge for their approach
 is in joining these two models to determine important functional and system
 parameters and future optimization.

 In [95] an object-oriented workflow language for formalizing microcontroller-based
 systems processes within heterogeneous and dynamic environments is presented.
 Workflows (or processes) are used to model the high-level behaviour of the system
 and divided into the following levels of abstraction: process meta-meta model —
 defines semantic and syntactic elements and structures; process meta-model —

 41

 defines all elements, types, relations and their structural combinations; process
 model — defines the abstract description of the process; process instance — defines
 concrete process at execution time. Each workflow contains the following parts:
 process step, transition, data, event, logic step, process and handling entities. The
 implementation is called the component-based meta-model of the system and is
 based on EMF (Eclipse Modeling Framework, [96]).

 In [97] a tool for analyzing the system's security called Tamarin Prover is considered.
 This tool aims to automatically verify data transfer protocols in the presence of an
 active attacker. Moreover, the specification language of this verifier is primarily
 focused on the presentation of cryptographic primitives and their properties. As a
 rule, Tamarin Prover is used for verification of individual data transfer protocols in
 critical infrastructures, for which manual testing is simply not enough.

 In [98] the approach for verification of timing performance of the NAS (Network
 Automation Systems) is presented. The response time of the verification approach
 consists of three main phases:

 1. Model building is related to the specification of the component reaction times
 and measuring of their performance.

 2. Modeling is related to the proposition of the component-based models –
 network architecture and interconnections.

 3. Verification is related to the abstraction of the NAS formal models as UPPAAL
 timed automata with their timing interfaces (based on the proposition of action
 patterns and their timing wrapper).

 At the final step of the approach, the result formal model is used to verify the total
 response time of the NAS using a sub-set of timed computation tree logic (TCTL) in
 the UPPAAL model checker.

 In [99] an automatic verifier of the data transfer protocols called ProVerif is
 considered. This verifier is able to identify issues associated with the incorrect
 operation of the authentication process, the secrecy of the transmitted data and the
 equivalence of the properties of the analyzed protocols for an unlimited number of
 sessions. This verifier supports different cryptographic primitives and is able to
 automatically translate investigated protocols into an abstract representation based
 on Horn clauses [100] . This allows one to determine whether the required security
 properties are satisfied. One of the disadvantages of this approach is the difficulty
 and even the inability to verify the strong properties of authentication algorithms. This
 is due to over-approximation when managing various communication sessions.
 However, it is one of the most effective tools for verifying the unreachability of certain
 conditions that are necessary to prove the safety and reliability of the system.

 In [101] a tool for designing secure and reliable data transfer protocols called Active
 Knowledge in Security protocols (AKiSs) is considered. Inside this tool, protocol
 specification language is used. This language is parameterized by a first-order

 42

 sorted term signature and an equational theory. This allows the formalization of
 algebraic properties of cryptographic primitives. AKiSs can be used for verification of
 the trace equivalence for determinate cryptographic protocols.

 In [102] the problem of automating the security service analysis within the framework
 of additional restrictions is investigated. The authors presented a decision-making
 procedure, which answers the question of whether an effective analysis of security
 services is possible within the assigned constraints. The proposed approach
 represents a partial solution to the reconciliation problem under the data
 inaccessibility.

 Orchestration and verification of web services were explored in the Avantssar Project
 [103] . In this project, the language was employed to specify business processes,
 their communications, orchestration and security verification goals. Though there is
 an emphasis on an incremental approach in which orchestrations satisfying a goal
 are model-checked until one is found that also satisfies the security goals, it is also
 possible to compose services directly satisfying a simple security policy [102] . There
 is a significant gap before that work can be applied to microcontroller-based systems
 as it is necessary to take into account a much richer set of constraints such as timing
 constraints, functionality constraints as well as numerical constraints arising from the
 physical nature of such systems. However, the preliminary experiments showed that
 existing tools can be adapted to some degree to provide an automated composition
 of microcontroller-based systems at least for some possible constraints [104] .

 The current state of the art analysis showed that there are a lot of tools and
 approaches that can be used for the design, development and verification of different
 aspects of microcontroller-based systems. Such techniques can be aimed at
 hardware and software elements [105-108] ; links, interfaces and protocols [109-113] ;
 devices [1, 60, 114, 115] and systems [84, 116] . On the other hand, in the area of the
 Industrial Internet of Things (IIoT), many new ecosystems appeared. Let’s consider
 them in more detail.

 Google Cloud Internet of Things is an ecosystem with secure data collection,
 machine learning-based analysis, storing and visualization [117] . In addition, through
 this ecosystem, a microcontroller-based system can be connected to Google
 services and work, for example, with artificial intelligence ones. For the design and
 development of secure gateway devices, they have a special solution – Cloud IoT
 Device Software Development Kit (SDK) [118] . This SDK contains libraries for
 secure connection and management of gateway devices. Moreover, this
 development kit is able to work with different devices for various use cases, for
 example, maintenance prediction, real-time asset tracking and smart agriculture. And
 to make the secure connection of the gateway devices even easier Google made a
 special cryptography chip.

 43

 ARM Platform Security Architecture (PSA) is a methodology for the design of secure
 devices from requirements analysis to their implementation [119] . The main elements
 of the PSA are threat models, architecture specifications and open-source
 implementations. Their methodology consists of the following key phases:

 1. Analysis phase is focused on the formation of the security requirements
 based on the list of the possible threats.

 2. Architect phase is aimed at working with freely available specifications for
 different IoT devices.

 3. Implementation phase is concentrated on working with open-source
 implementations of the firmware and APIs.

 4. Certification phase is focused on checking the correctness of the software
 interaction with interfaces.

 On their site, they have specifications for different devices (for example, for asset
 tracker, smart water meter and network camera). These specifications contain threat
 models of the corresponding devices, their security analysis and the list of security
 requirements.

 Kaspersky Industrial CyberSecurity is a scope of technologies and services designed
 to secure industrial process control levels, including supervisory control and data
 acquisition servers, human-machine interface panels, engineering workstations,
 programmable logic controllers and network connections [120] . Their development
 process consists of the following stages:

 1. Building of the threat model and risk analysis process.
 2. Application of the design methodology.
 3. Installation of the Kaspersky Operating System [121] .
 4. Configuration of the monitoring of security policies.
 5. Configuration of intrusion detection systems.

 The Kaspersky OS provides a possibility to isolate sensitive components of the
 designed system. After its configuration process, all actions that have been
 recognized as insecure are prohibited by default.

 Microsoft Azure Internet of Things is another ecosystem for the secure connection of
 the gateway devices to the cloud [122] . In this solution, the security of the software
 part is based on the Microsoft Security Development Lifecycle (SDL) [123] . Their
 SDL consists of the following key phases:

 1. Provision of personal training.
 2. Definition of the security requirements.
 3. Definition of the metrics and compliance reporting.
 4. Performing threat modeling.
 5. Establishment of the design requirements.
 6. Definition and use of the cryptography standards.
 7. Management of the third-party components.
 8. Performing static and dynamic testing.
 9. Performing penetration testing.

 44

 The security of the hardware part is based on the authorization in the Azure IoT Hub
 — a managed cloud service.

 Intel Internet of Things Platform is an ecosystem that provides a secure connection
 of Intel devices to the cloud for data collection, storage and analysis [124] . This
 platform is also able to work with third-party solutions based on their trust level. The
 security of Intel devices (gateways) is based on their own design and development
 techniques, which ensure the security of hardware and software components as well
 as security policy management.

 The ecosystem from Siemens is based on MindSphere – a cloud-based, open IoT
 operating system [125] . This solution provides secure data collection, transmission
 and storage in the cloud. The Siemens solution is PaaS (Platform as a Service)
 which is hosted in secure data centres like Amazon Web Services. Connection to the
 cloud is provided via different protocols: HTTPS, MQTT, S7, OPC UA, Modbus,
 LoRaWAN, CoAP, XMPP, 6LowPan, LWM2M, AMQP. There are two ways of
 connecting the gateway devices to the MindSphere: MindConnect API and
 MindConnect devices. MindConnect API allows custom applications to collect and
 upload data to the cloud on suitable devices, while devices are plug-and-play and
 allow one to create a direct and secure connection with the cloud.

 Another possible solution for developing secure software is the solution from Cisco
 — Cisco Secure Development Lifecycle (Cisco SDL) [126] . The company's approach
 consists of six sequential phases: product security requirements, third-party security,
 secure design, secure coding, static analysis, vulnerability testing. From the point of
 view of the development of a secure microcontroller-based system, the most
 important phases are product security requirements and secure design. So, on the
 security requirement phase gap analysis is done, whose main task is to identify the
 necessary changes in the system to achieve the safe state. And in the phase of the
 secure design, the process of threat modeling is done to make assumptions for
 possible threats and ways to mitigate them. In addition, one of the interesting
 features of Cisco SDL compared to Microsoft SDL is a third-party security phase,
 aimed at identifying possible threats from third-party software, as well as ensuring
 registration and timely updates of this software.

 One possible approach for designing secure embedded devices is presented in
 papers [127, 128] . The essence of the techniques proposed in these papers is to
 identify and account for the list of possible harmful effects, to which the
 microcontroller-based device may be subject in accordance with the selected model
 of the intruder, and also by using hardware and software components, already in the
 design phase. In this approach, the protection tools are a direct part of the device,
 ensuring its security. Let’s consider the main phases in more detail:

 1. definition of functional requirements;
 2. definition of non-functional requirements;

 45

 3. identifying the set of alternatives of component composition of the device in
 accordance with the functional requirements;

 4. the choice of the optimal component composition of the device from the point
 of view of non-functional requirements;

 5. identification of the list of possible harmful impacts on the device based on the
 static testing.

 Thus, if the security level of the microcontroller-based device is sufficient, one can
 proceed to the stage of direct development. Otherwise, one should return to the first
 step and review the functional requirements. Unfortunately, a system based on the
 interaction of devices, each of which is designed in accordance with the suggested
 methodology, cannot be considered secure due to unique emergent properties
 occurring during the operation of the system.

 As an example of the approach for designing secure communication between
 microcontroller-based devices, let’s consider an approach suggested in the
 framework of the European Community research project SecFutur [129] . The key
 idea of the solution, proposed in this project, was to use a topological approach to
 build secure communication channels between devices. The task was solved by
 calculating the security index for the path between two points of the network graph
 on the basis of the numerical security values assigned to the nodes [130] . This index
 served as a basis for changing the requirements for devices. One of the
 disadvantages of the proposed approach is the fact that this approach does not take
 into account the interaction of devices with external systems. This limitation restricts
 the scope of this approach when designing secure data transfer environments.

 In addition, particular solutions, which adapt secure data transfer protocols to apply
 them for communication of microcontroller-based devices are widely available. The
 need for such adaptation is stipulated by several reasons: the limited computing
 resources of such devices, the amount of payload available for transmission in the
 data channel, and the ability to store relatively small amounts of data. Let’s consider
 some examples.

 Implementation of the VPN communication for microcontroller devices is presented
 in [131] . The developed solution is based on the adaptation of IPsec. This solution
 requires 8 kB of RAM and 64 kB of microcontroller memory, which gives the
 possibility for using IPsec in the interaction of medium-power devices.

 A review of cryptographic solutions for microcontroller-based devices is presented in
 [132] . It is shown that despite the presence of strong limitations on energy efficiency,
 computational capabilities, the amount of stored data and uncontrolled interaction in
 an unreliable data transfer environment, effective protection can be built by the
 proper selection of cryptographic algorithms, their parameters, as well as
 optimization and the use of low-power solutions.

 46

 The general issue of most solutions is that they are focused on certain aspects of
 security, which ensures their inapplicability for providing the security of
 microcontroller-based systems in general. For example, techniques for software do
 not take into account that the functionality of individual components of such systems
 is determined not only by software but also by hardware. Moreover, the relationship
 between hardware and software elements can be quite strong in
 microcontroller-based devices, which leads to additional restrictions that significantly
 affect the process of their design, development and verification.

 An important drawback of the techniques for building blocks is that the designed
 device is viewed in isolation from the system. It means that not all security aspects
 would be taken into account and the security of the system as a whole will not be
 ensured. Also, there are extensions of these techniques that are aimed at ensuring
 the security of the devices and network between them. The drawback is that such
 techniques provide a secure connection between designed systems and external
 systems only from the designed system side, which can lead to security issues
 during the design of complex multi-level systems.

 In addition, in the area of techniques for data transfer environment, only solutions
 applicable within a specific platform and architecture are widely used. Such solutions
 are aimed at adapting secure Internet protocols for their application as part of the
 interaction between microcontroller-based devices. The need for such adaptations is
 associated with the limited computing power of such devices, the size of the payload
 available for transmission in the data channel, and the ability to store relatively small
 amounts of data on them.

 According to the related work analysis, there are a number of solutions for providing
 the secure connection between IIoT gateways and the cloud of the related
 ecosystem for subsequent data analysis, its secure storage and visualization. The
 drawback of these solutions is in binding to the specific hardware, software,
 platforms and architectures. It results in the possibility to secure only individual
 devices that can be connected to the cloud, while communication between other
 devices is not taken into account and delivered to physical security. These solutions
 also do not take into account the optimization process of the designed system due to
 limitations like computational complexity, energy efficiency, size and price. It means
 that the resulting systems may not be reasonable for a developed use case because
 of no trade-off between resources and security level.

 The current state of the art analysis also showed that there are a lot of tools and
 approaches that can help to model different aspects of microcontroller-based
 systems: physical processes, software and hardware elements, platforms, network,
 timings, performance, computations, load balance, interactions, system behaviour,
 topological relationships, interoperability, system boundaries and hierarchy,
 workflows and business processes. The drawback is that most of such approaches

 47

 do not take security into account. Moreover, integration of standalone solutions
 within a single approach is a difficult task due to their incompatibility. It means that in
 most situations it is difficult or even impossible to transform one particular model into
 another without significant losses due to the lack of necessary data.

 It means that a general approach for solving the issue of secure
 microcontroller-based systems design is not done yet. Therefore, this work is aimed
 at developing an original approach for the design of microcontroller-based physical
 security systems. Among all possible microcontroller-based systems, in this work,
 only physical security systems were chosen as an area of the application, because in
 such systems during the design process it is required to ensure not only the
 functionality of the system but also to ensure its security against cyber-physical
 attacks. The main features of microcontroller-based physical security systems are
 presented in more detail in Section 1.3 .

 1.3. Features of the microcontroller-based physical security systems
 Physical security describes security measures that are designed to deny
 unauthorized access to facilities, equipment and resources and to protect personnel
 and property from damage or harm. Physical security involves the use of multiple
 layers of interdependent systems that can include an access control system, fire
 alarm system, security alarm system, closed-circuit television system, light control
 system, climate control system, automatic telephone system, etc.

 Physical security systems are generally intended to deter potential intruders, detect
 intrusions, monitor intruders and trigger appropriate incident responses. It is up to
 security designers, architects and analysts to balance security controls against risks,
 taking into account the costs of the system development along with broader issues
 such as human rights, health and safety. For example, access security measures
 that are appropriate for a prison or a military object are most likely inappropriate in
 an office, although the principles are similar.

 In this work based on the standard representation of microcontroller-based systems,
 it was decided to divide possible elements of such systems into components ,
 controllers and devices that are communicating with each other. Let’s consider them
 in more detail.

 A component is something that can be connected to a controller and either send
 signals to it or react to signals from it. Components can communicate only with
 controllers they are connected to. Components can be represented as different
 sensors, receivers, transmitters, readers, motors, batteries, etc. It is important to
 note that in this work only ready-made components are considered, without taking
 into account components of electronic circuits like resistors, capacitors, transistors,
 diodes, inductors, etc.

 48

 A controller is something that can be programmed to work with components and
 other controllers . Controllers can communicate with components and other
 controllers that are connected to them. Controllers can be represented as different
 microcontrollers and single-board computers.

 A device is something that represents a system of controllers and components that
 are communicating with each other inside it. Devices can communicate only with
 other devices . Devices can be represented as system servers, hubs, robots,
 stations, drones, terminals, etc.

 This architecture allows one to describe the designed system on the level of devices
 first and then look into their internal structure separately. Inside each device, it is
 possible to describe communications between controllers first and only after that look
 into communications between controllers and components .

 The summary of communication types can be presented as follows:
 ● controller ↔ component;
 ● controller ↔ controller;
 ● device ↔ device;
 ● system ↔ system.

 The developed architecture of microcontroller-based systems is in Figure 8 .

 Figure 8 . Architecture of microcontroller-based systems

 49

 It is important to note that the suggested architecture is focused on the synthesis of
 the system composition, while such tasks as source code generation, case formation
 or development of electronic circuits are not taken into account.

 One of the disadvantages of modern approaches to ensuring the security of
 microcontroller-based systems is the introduction of security elements after the
 development stage. This leads to the fact that the security system is an outer shell of
 the microcontroller-based system, bypassing which leaves this system defenceless
 against the intruder. The peculiarity of the approach proposed in this work is that
 instead of developing a separate security system, it is proposed to ensure that the
 system is secure against attacks during the design stage.

 1.4. Requirements for the design methodology
 To assess the results obtained in this work, an analysis of the feasibility of the
 requirements for the design process of microcontroller-based physical security
 systems was carried out. The feasibility of the requirements was validated based on
 the developed software prototype.

 The requirements can be divided into two groups: functional and non-functional.
 Functional requirements are a list of functions and define the actions that a prototype
 must perform. Non-functional requirements describe the system requirements and
 constraints imposed on the resources consumed by the prototype.

 Let's define a set of functional requirements for the design process of
 microcontroller-based physical security systems. The prototype should allow:

 1. Building an abstract representation of the designed system. It is necessary to
 take into account the variety of components and their parameters, their
 nesting, interconnections, potential conflicts and compatibility.

 2. Finding a trade-off between the resources spent and ensuring the security of
 the system . It is necessary to take into account the variety of attackers’
 parameters, as well as their relationship with the possibility of implementing
 attack actions within the framework of a specific implementation of the
 designed system.

 3. No restrictions on platforms and architectures of the devices to be designed . It
 is necessary to have a solution that is not bound to the specific hardware,
 software, platforms and architectures.

 4. The extensibility of the design process . It is necessary to have a solution that
 allows one to change and expand the parameters of the system elements,
 attacker, attack actions, methods and means of protection.

 5. Taking into account the physical layer of the designed systems. New models
 and algorithms are required to correctly represent the inner interactions of
 microcontroller-based systems and ensure their security.

 50

 The set of non-functional requirements can be divided into the following groups: time
 consumption , validity and resource consumption . Let’s consider them in more detail.

 Time consumption requirement checks the ability of the design process to form a
 result in a given time frame, which ensures the applicability of the developed
 prototype in real situations. This requirement is set in the form of a certain value, the
 excess of which is not permissible:

 ● the time required for the design process of the abstract model of the system
 should be less than 1 second;

 ● the time required for the design process of the detailed model of the system
 should be less than 4 seconds.

 For the experimental evaluation, the system of mobile robots for perimeter
 monitoring was designed, see Chapter 6 .

 Validity requirement checks the correspondence of the results of the prototype work
 to the real state of the system’s security. In this work, the number of parameters
 analyzed during the design process is selected as an indicator of validity. This
 requirement is set based on a comparison with existing solutions. Analyzed
 parameters can be divided into levels of the system , the security of which can be
 ensured; classes of attack actions against which the system can be protected.

 Resource consumption requirement characterizes the range and amount of required
 software and hardware resources, spent on the design process. This requirement is
 also set in the form of a certain value, the excess of which is not permissible:

 ● the number of resources required for the design process of the system should
 be less than 25% of the computer resources.

 For the experimental evaluation, the computer with Windows 10 x64 operating
 system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD and 32 GB
 RAM was used, see Chapter 6 .

 It is important to note that methodology works only with ready-made components
 and controllers, without taking into account elements of electronic circuits. The
 methodology is not generating the source code of the system software and firmware.
 Also, the parameters of the device case, its cooling and resistance to various
 weather conditions are not taken into account.

 It is assumed that building a methodology in accordance with these requirements will
 allow reducing the number of weak places and architectural defects, thereby
 significantly reducing the attack surface of the microcontroller-based systems. In
 turn, this will reduce the security risks that can lead to financial losses, loss of time
 as well as the safety of people, which ensures the high significance of this study.

 51

 1.5. Research problem statement
 In this work research problem statement is divided into a description of the input
 data, output data, objective function and requirements of the design methodology for
 microcontroller-based physical security systems. Let’s consider them in more detail.

 Input data of the design methodology contains the following:
 1. General tasks of the designed system are formed by the operator based on

 the wishes of the stakeholder. The number of possible tasks as well as their
 values is limited by the predefined template. For more information see
 Chapter 4 .

 2. Parameters of the attacker against which the system must be protected .
 Possible values of parameters are based on the attacker’s model, namely,
 access, knowledge and resources types. These values are limited by the
 predefined template. For more information see Chapter 3 .

 3. Work mode . The transition from the abstract to a detailed model of the system
 is based on the selection of concrete components and controllers instead of
 abstract ones. The process of selection can be done by the operator manually
 or by the methodology automatically and defined by the work mode. More
 information can be found in Chapter 5 .

 It means that input data can be represented as follows:

 , 𝐷
 𝐼

= (𝑇𝐾 , 𝑎𝑐 , 𝑘𝑛 , 𝑟𝑠 , 𝑤𝑚)

 where – general tasks (for the prototype testing purposes are limited to 3 tasks); 𝑇𝐾
 – access type (from 1 to 5); – knowledge type (from 1 to 4); – resources 𝑎𝑐 𝑘𝑛 𝑟𝑠

 type (from 1 to 3); – work mode (0 or 1). 𝑤𝑚

 Output data of the design methodology contains the methodology work log, the
 abstract model of the system, a list of components and controllers that are possible
 for selection, a detailed model of the system and the methodology output log, see
 Chapter 5 . It means that output data can be represented as follows:

 , 𝐷
 𝑂

= (𝑤𝑙 , 𝑎𝑚 , 𝑠𝑙 , 𝑑𝑚 , 𝑜𝑙)

 where – work log; – abstract model; – list of selectable elements of the 𝑤𝑙 𝑎𝑚 𝑠𝑙
 system; – detailed model; – output log. 𝑑𝑚 𝑜𝑙

 The objective function of the methodology for the design of microcontroller-based
 physical security systems is aimed at maximization of the number of parameters that
 are analyzed during the design process. It can be represented as follows:

 52

 , 𝑂
 𝐹
: 𝐿𝐸𝑉𝐸𝐿 𝑆 × 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆 | | → 𝑚𝑎𝑥

 where — levels of the system, the security of which can be ensured (4 levels 𝐿𝐸𝑉𝐸𝐿𝑆
 according to Section 1.3); — classes of attack actions against which the 𝐴𝑇𝑇𝐴𝐶𝐾𝑆
 system can be protected (4 classes according to Chapter 3).

 In compliance with the requirements for time and resource consumption as well as
 realizability of the microcontroller-based physical security system with the required
 level of security against attackers.

 Requirement for time consumption can be represented as follows:

 , 𝑃
 𝑇
(𝑇𝐼𝑀 𝐸

 𝑁
≤ 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶) ≥ 𝑃

 𝑇
 𝐴𝐶𝐶

 where — time required to design a secure system ; — probability of 𝑇𝐼𝑀 𝐸
 𝑁

 𝑁 𝑃
 𝑇

 designing a secure system in a given time frame; — acceptable time for 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶

 designing a secure system (1 sec for the abstract model and 4 secs for the detailed
 model during the design process of the system of mobile robots for perimeter
 monitoring); — acceptable probability value (0.99). 𝑃

 𝑇
 𝐴𝐶𝐶

 Requirement for resource consumption can be represented as follows:

 𝑃
 𝑅

(𝑅𝐸 𝑆
 𝑁

≤ 𝑅𝐸𝑆 𝐴𝐶𝐶) ≥ 𝑃
 𝑅
 𝐴𝐶𝐶

 where — probability that the resources spent on the design process of a 𝑃
 𝑅

 𝑅𝐸 𝑆
 𝑁

 secure system do not exceed the allowable value (0.25); — acceptable 𝑅𝐸𝑆 𝐴𝐶𝐶 𝑃
 𝑅
 𝐴𝐶𝐶

 value of probability (0.99).

 Summarizing the above, it is required to develop the design methodology for
 microcontroller-based physical security systems that are based on provides , 𝐷

 𝐼
 𝐷

 𝑂

 while , and the value of exceeds values of analogues. 𝑃
 𝑅

≥ 0 . 99 𝑃
 𝑇

≥ 0 . 99 𝑂
 𝐹

 1.6. Conclusions on Chapter 1
 The analysis and systematization of modern research in the field of information
 security of microcontroller-based systems have been carried out. It reveals the
 security of such systems from the point of view of the object of attack, the attacker,
 the method of attack as well as methods and means of protection. The definition of
 microcontroller-based systems is proposed. The classification of

 53

 microcontroller-based systems is given according to such attributes as complexity,
 connectivity, criticality and social aspect. The classification of the attackers is given
 according to such attributes like type of access, method of access, intentions,
 knowledge and resources is proposed. The classification of attack actions is given
 according to such attributes like subject, object, impact method, prerequisites and
 consequences is considered. Classification of methods and means of protection is
 given according to such attributes as the principle of work, the object of protection
 and the problem to be solved is proposed.

 Place and role of the design techniques in ensuring the information security of
 microcontroller-based systems were shown. The drawbacks of existing solutions
 were pointed out. Their key issue is in focusing on certain aspects of security,
 ensuring their inapplicability for providing the security of such systems in general.
 For example, techniques for software do not take into account that the functionality
 of microcontroller-based devices is determined not only by software. An important
 drawback of the techniques for hardware and software-hardware is that the designed
 microcontroller-based device is viewed in isolation from the system. Commercial
 solutions are not applicable if the microcontroller-based system already contains
 devices whose hardware cannot be changed or the design requirements contain
 restrictions that do not allow the use of devices suitable for these requirements.
 Commercial solutions also do not take into account the optimization process of the
 designed system due to limitations like computational complexity, energy efficiency,
 size and price. It means that the resulting system may not be reasonable for a
 developed use case because of no trade-off between resources and security level. In
 addition, there are many solutions in which the security of the system is not
 considered or is not the main task.

 It was concluded that a general approach for solving the issue of designing secure
 microcontroller-based systems is not done yet. Therefore, this work is aimed at
 developing the original approach for the design of microcontroller-based physical
 security systems. Among all possible systems, in this work, only physical security
 systems were chosen as an area of the application, because in such systems during
 the design process it is required to ensure not only the functionality of the system but
 also to ensure its security against cyber-physical attacks.

 The developed architecture of microcontroller-based physical security systems
 contains components, controllers and devices that are communicating with each
 other. A component is something that can be connected to a controller and either
 send signals to it or react to signals from it. Components can communicate only with
 controllers they are connected to. A controller is something that can be programmed
 to work with components and other controllers. Controllers can communicate with
 components and other controllers that are connected to them. A device is something
 that represents a system of controllers and components that are communicating with
 each other inside it. Devices can communicate only with other devices. The

 54

 summary of communication types is as follows: controller ↔ component, controller
 ↔ controller, device ↔ device, system ↔ system.

 The requirements for the new design methodology were formulated. They are
 divided into two groups: functional and non-functional. Functional requirements:
 building an abstract representation of the designed system; finding a trade-off
 between the resources spent and ensuring the security of the system; no restrictions
 on platforms and architectures of the devices to be designed; the extensibility of the
 design process; and taking into account the physical layer of the designed systems.
 The set of non-functional requirements is divided into time consumption, validity and
 resource consumption. The requirement for time consumption is as follows: the time
 required for the design process of the abstract model of the system should be less
 than 1 second; the time required for the design process of the detailed model of the
 system should be less than 4 seconds. The requirement for validity is as follows: the
 number of parameters analyzed during the design process is greater than that of
 analogues. Analyzed parameters were divided into levels of the system, the security
 of which can be ensured; classes of attack actions against which the system can be
 protected. Requirement for resource consumption: the number of resources required
 for the design process should be less than 25% of the computer resources.

 In this work, the research problem statement is divided into a description of the input
 data, output data, objective function and requirements of the design methodology for
 microcontroller-based physical security systems. Input data contains general tasks of
 the designed system, parameters of the attacker against which the system must be
 protected and work mode. Output data contains methodology work log, abstract
 model of the system, list of components and controllers that are possible for
 selection, detailed model of the system and methodology output log. The objective
 function of the methodology for the design of microcontroller-based physical security
 systems is aimed at maximization of the number of parameters that are analyzed
 during the design process.

 It is important to note that methodology works only with ready-made components
 and controllers, without taking into account elements of electronic circuits. The
 methodology is not generating the source code of the system software and firmware.
 Also, the parameters of the device case, its cooling and resistance to various
 weather conditions are not taken into account.

 The methods for the evaluation of the design methodology for microcontroller-based
 physical security systems according to time consumption, resource consumption and
 validity will be presented in Chapter 2 .

 55

 Chapter 2. Methods for the evaluation of the design methodology
 for microcontroller-based physical security systems

 This chapter describes methods for the evaluation of the design methodology for
 microcontroller-based physical security systems, namely, methods for the evaluation
 of time consumption, resource consumption and validity.

 2.1. Method for the evaluation of time consumption
 As was mentioned in Section 1.4 and Section 1.5 , the requirement for time
 consumption defines the ability of the approach to design a microcontroller-based
 physical security system in accordance with the input data in a given time frame.
 This requirement can be represented as follows:

 , 𝑇𝐼𝑀 𝐸
 𝑁

 ≤ 𝑚𝑖 𝑛
 𝑠 ∈ 𝑆

(𝑇𝐼𝑀𝐸
 𝑁
 𝑆)

 where — time required to design a system using the developed 𝑇𝐼𝑀 𝐸
 𝑁

 𝑁

 methodology; — set of design algorithms; — time to obtain the design 𝑆 𝑇𝐼𝑀𝐸
 𝑁
 𝑆

 result for the algorithm . It should be noted that the time required to design the 𝑠 ϵ 𝑆
 system depends on the number of its devices, their abstract and detailed elements.

 In order for the design methodology to be used in real-time when building an abstract
 model, as well as in near real-time when building a detailed model, it must design
 secure systems in a time not exceeding a certain boundary. Such a requirement for
 time consumption is set in the form:

 , 𝑃
 𝑇
(𝑇𝐼𝑀 𝐸

 𝑁
≤ 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶) ≥ 𝑃

 𝑇
 𝐴𝐶𝐶

 where — probability of designing a secure system in a given time; — 𝑃
 𝑇

 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶

 acceptable time for designing a secure system; — acceptable probability value. 𝑃
 𝑇
 𝐴𝐶𝐶

 Based on the results of related work analysis and series of experiments,
 was chosen to design an abstract model and 𝑇𝐼𝑀 𝐸

 1
 𝐴𝐶𝐶 = 1 𝑠𝑒𝑐 𝑇𝐼𝑀 𝐸

 2
 𝐴𝐶𝐶 = 4 𝑠𝑒𝑐𝑠

 was chosen to design a detailed model of the system.

 Such time frames were chosen for the design process of the microcontroller-based
 physical security system that contains 3 types of devices, while the first type of
 devices consists of not fewer than 5 elements with sub-elements, second type — not
 fewer than 10 elements with sub-elements and third type — not fewer than 15
 elements with sub-elements. It is important to note that this example should also

 56

 take into account links between devices and their elements, security
 recommendations to their implementation, requirements for links and elements as
 well as dependencies between them. For more detail, see Chapter 6 .

 It is also important to note that the time required to design the microcontroller-based
 physical security system will be measured on the computer with Windows 10 x64
 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD
 and 32 GB RAM.

 Note that the time constraints depend on the acceptable response time of all stages
 of the methodology, which is a set of execution times for all of its algorithms. During
 this time, a number of queries to the database must be executed, possible attack
 actions required methods and means of protection, related abstract elements and
 their sub-elements must be identified as well as their relations, requirements,
 compatibility and dependencies to form a selection process and detailed model of
 the microcontroller-based physical security system.

 Time consumption of the design process for an abstract model of the system is the
 sum of the time consumption of each stage of this process:

 𝑇𝐼𝑀 𝐸 𝐴𝑀 = 𝑇
 1
 𝐴𝑀 + 𝑇

 2
 𝐴𝑀 + 𝑇

 3
 𝐴𝑀

 where — time of the formation of requirements for the system and its devices; 𝑇
 1
 𝐴𝑀

 — time of formation of the component composition of the abstract model; — 𝑇
 2
 𝐴𝑀 𝑇

 3
 𝐴𝑀

 time of formation of the components hierarchy, connections between them,
 requirements for them, dependencies between them and recommendations for
 ensuring system security after implementation.

 Time consumption of the design process for a detailed model of the system is the
 sum of the time consumption of each stage of this process:

 𝑇𝐼𝑀 𝐸 𝐷𝑀 = 𝑇
 1
 𝐷𝑀 + 𝑇

 2
 𝐷𝑀 + 𝑇

 3
 𝐷𝑀

 where — time of the formation of selection steps for links between system 𝑇
 1
 𝐷𝑀

 devices and elements of the devices; — time of the selection of detailed 𝑇
 2
 𝐷𝑀

 elements of the system; — time of the calculation of device parameters as well 𝑇
 3
 𝐷𝑀

 as insertion of information about selected elements into the abstract model.

 57

 The execution time of stages is considered as a random variable, the probability of
 which obeys the normal distribution law [145] . In this case, to estimate the execution
 time, the beta distribution law is used in the interval with the distribution [𝑡

 𝑚𝑖𝑛
, 𝑡

 𝑚𝑎𝑥
]

 density [146] :

 𝑓 (𝑡) =
(𝑡 − 𝑡

 𝑚𝑖𝑛
)α− 1 (𝑡

 𝑚𝑎𝑥
 − 𝑡)β− 1

(𝑡
 𝑚𝑎𝑥

 − 𝑡
 𝑚𝑖𝑛

)α+β− 1 𝐵 (α, β)
, 𝑡

 𝑚𝑖𝑛
≤ 𝑡 ≤ 𝑡

 𝑚𝑎𝑥 ,

 , 𝑓 (𝑡) = 0 , 𝑡
 𝑚𝑎𝑥

≤ 𝑡 ≤ 𝑡
 𝑚𝑖𝑛

 where and — minimum and maximum execution time, respectively; — 𝑡
 𝑚𝑖𝑛

 𝑡
 𝑚𝑎𝑥

 𝑡

 value which determines the execution time; — Euler function; , 𝐵 (α, β) α > 0 β > 0
 — beta distribution parameters.

 The expected execution time of the process of designing abstract and detailed
 models of a secure system and their variance is calculated using a two-score
 methodology [145] :

 𝑇
 𝑖

=
 3 𝑇

 𝑖
 𝑚𝑖𝑛 + 2 𝑇

 𝑖
 𝑚𝑎𝑥

 5 . σ 2 (𝑇
 𝑖
) = 0 . 4 (𝑇

 𝑖
 𝑚𝑎𝑥 − 𝑇

 𝑖
 𝑚𝑖𝑛) 2

 The probability that the stage execution time as a whole will not exceed the
 acceptable value is calculated as follows: 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶

 𝑃
 𝑁𝐸

(𝑇𝐼𝑀𝐸 ≤ 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶) = Φ(𝑍)

 where — the value of the Laplace function at: Φ(𝑍)

 𝑍 =
 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶 −

 𝑖 = 1

 𝑛

∑ 𝑇
 𝑖

 𝑖 = 1

 𝑛

∑ σ
 𝑖
 2 (𝑇

 𝑖
)

 After that, according to the values of the Laplace function, given in a tabular form for
 the methodology for the design of microcontroller-based physical security systems,
 the probability of designing abstract and detailed models in a given time is checked
 to conclude on their compliance with given requirements.

 2.2. Method for the evaluation of resource consumption
 As was mentioned in Section 1.4 and Section 1.5 , the requirement for resource
 consumption characterizes the range and number of required software and
 hardware, the number of required information arrays, human resources and other

 58

 resources spent on the implementation of the design process of
 microcontroller-based physical security systems. Requirements for resource
 consumption are set as follows:

 𝑃
 𝑅

(𝑅𝐸 𝑆
 𝑁

≤ 𝑅𝐸𝑆 𝐴𝐶𝐶) ≥ 𝑃
 𝑅
 𝐴𝐶𝐶

 where — probability that the resources spent on the design process of a 𝑃
 𝑅

 𝑅𝐸 𝑆
 𝑁

 secure system do not exceed the allowable value (0.25); — acceptable 𝑅𝐸𝑆 𝐴𝐶𝐶 𝑃
 𝑅
 𝐴𝐶𝐶

 value of probability (0.99).

 The assessment of resource consumption can be carried out according to a number
 of particular indicators. Let’s consider each of them in more detail.

 Resource consumption when using central processing unit (CPU):

 𝑅𝐸𝑆
 𝐶𝑃𝑈

=
 𝑄

 𝐶𝑃𝑈
 𝐷𝑀

 𝑄
 𝐶𝑃𝑈
 𝐴𝐿𝐿

 where — central processing unit time spent on the design process of 𝑄
 𝐶𝑃𝑈
 𝐷𝑀

 microcontroller-based physical security systems; — total available CPU time. 𝑄
 𝐶𝑃𝑈
 𝐴𝐿𝐿

 Resource consumption when using a hard disk drive (HDD):

 𝑅𝐸𝑆
 𝐻𝐷𝐷

=
 𝑄

 𝐻𝐷𝐷
 𝐷𝑀

 𝑄
 𝐻𝐷𝐷
 𝐴𝐿𝐿

 where — HDD space used during the design process of microcontroller-based 𝑄
 𝐻𝐷𝐷
 𝐷𝑀

 physical security systems; — total available HDD space. 𝑄
 𝐻𝐷𝐷
 𝐴𝐿𝐿

 Resource consumption when using random-access memory (RAM):

 𝑅𝐸𝑆
 𝑅𝐴𝑀

=
 𝑄

 𝑅𝐴𝑀
 𝐷𝑀

 𝑄
 𝑅𝐴𝑀
 𝐴𝐿𝐿

 where — RAM amount used during the design of microcontroller-based 𝑄
 𝑅𝐴𝑀
 𝐷𝑀

 physical security systems; — total available amount of RAM. 𝑄
 𝑅𝐴𝑀
 𝐴𝐿𝐿

 59

 The resource consumption corresponds to the requirements if all of the above
 indicators meet the condition . To perform the design process, it is 𝑅𝐸𝑆 ≤ 𝑅𝐸𝑆 𝐴𝐶𝐶

 assumed that a separate computer is allocated, but part of the resources will be
 occupied by the operating system and other processes, therefore . 𝑅𝐸𝑆 𝐴𝐶𝐶 = 0 . 25

 It means that the design process for microcontroller-based physical security systems
 should take not more than 25% of the total resources. It is important to note that
 resources required to design the system of mobile robots for perimeter monitoring
 will be measured on the computer with Windows 10 x64 operating system, Intel Core
 i7-4790 CPU 3.60GHz (8 cores) CPU, 2 TB HDD and 32 GB RAM.

 Note that because the CPU of the computer used contains 8 cores, it is required to
 measure the load on each of them. The value of is calculated as average 𝑅𝐸𝑆

 𝐶𝑃𝑈

 among them. And after all indicators (, ,) are measured, their 𝑅𝐸𝑆
 𝐶𝑃𝑈

 𝑅𝐸𝑆
 𝐻𝐷𝐷

 𝑅𝐸𝑆
 𝑅𝐴𝑀

 compliance with the given requirements is concluded.

 2.3. Method for the evaluation of validity
 As was mentioned in Section 1.4 and Section 1.5 , the validity requirement checks
 the correspondence of the results of the prototype work to the real state of the
 system's security. In this work, the number of parameters analyzed during the design
 process is selected as an indicator of the validity, namely:

 ● number of levels of the system, the security of which can be ensured;
 ● number of classes of attacks against which the system can be protected.

 Requirements for these indicators are set by comparison with existing systems and
 can be represented as follows:

 , 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑁 | | ≥ 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝑠 ∈ 𝑆 | |()
 , 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝑁 | | ≥ 𝑚𝑎𝑥 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑠 ∈ 𝑆 | |()

 , 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑁

× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑁 | | > 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝑠 ∈ 𝑆
× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝑠 ∈ 𝑆 | |()

 where — denotes the number of elements in the set; — suggested in this work | | 𝑁
 design approach; — set of design approaches with which is compared; 𝑆 𝑁

 — number of levels of the system, the security of which can be ensured 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝐼 | |

 by the design approach ; — number of classes of attack actions against 𝐼 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝐼 | |

 which the system can be protected by the design approach ; 𝐼
 — number of parameters that are analyzed during the 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝐼
× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝐼 | |
 design process by the approach . 𝐼

 60

 Thus, the methodology for the design of microcontroller-based physical security
 systems developed in this work should not be inferior to analogues in terms of levels
 of the system, the security of which can be ensured, and classes of attack actions,
 against which the system can be protected, as well as surpass them in the total
 number of analyzed parameters.

 The developed methodology is compared with commercial solutions in terms of
 levels of the system, the security of which can be ensured and with scientific
 solutions in terms of classes of attack actions against which the system can be
 protected. For more information see Chapter 6 .

 A comparison of design approaches was made based on the publicly available data.
 For each parameter, the presence or absence of its consideration in the design
 process is determined. In this case, the following levels of the system are
 considered: communication between controllers and components, controllers,
 devices as well as systems. And the following classes of attack actions: on the level
 of components and their communication with controllers, on the level of controllers
 and their communication with other controllers, on the level of devices and their
 communication with other devices as well as on the level of the system and its
 communication with other systems.

 2.4. Conclusions on Chapter 2
 The goal of this work is to develop the design methodology that takes into account
 the maximum number of parameters during the design process of
 microcontroller-based physical security systems, while requirements for time and
 resource consumption are satisfied. Let's summarize the properties for the
 evaluation of the results of this work in a single Table 1 .

 Table 1 . Properties for the evaluation of the design methodology
 Description Requirements

 Time
 consumption

 Probability that the approach is able to
 design a system in accordance with the
 input data in a given time frame.

 , 𝑇𝐼𝑀 𝐸
 𝑁

 ≤ 𝑚𝑖 𝑛
 𝑠 ∈ 𝑆

(𝑇𝐼𝑀𝐸
 𝑁
 𝑆)

 𝑃
 𝑇
(𝑇𝐼𝑀 𝐸

 𝑁
≤ 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶) ≥ 𝑃

 𝑇
 𝐴𝐶𝐶

 Resource
 consumption

 Probability that the number of used
 resources (CPU, HDD, RAM) will not
 exceed the allowable value.

 𝑃
 𝑅

(𝑅𝐸 𝑆
 𝑁

≤ 𝑅𝐸𝑆 𝐴𝐶𝐶) ≥ 𝑃
 𝑅
 𝐴𝐶𝐶

 Validity

 Number of levels of the system, the
 security of which can be ensured, and
 the number of classes of attack actions
 against which the system can be
 protected.

 , 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑁 | | ≥ 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝑠 ∈ 𝑆 | |()
 , 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝑁 | | ≥ 𝑚𝑎𝑥 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑠 ∈ 𝑆 | |()

 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑁

× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑁 | | >

 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑠 ∈ 𝑆

× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑠 ∈ 𝑆 | |()

 61

 For the experimental evaluation of the developed design methodology, its software
 implementation was executed 1000 times for the system of mobile robots for
 perimeter monitoring on the computer with Windows 10 x64 operating system, Intel
 Core i7-4790 CPU 3.60GHz (8 cores) CPU, 2 TB HDD and 32 GB RAM to receive
 average values of time and resource consumption. For more information see
 Chapter 5 (implementation) and Chapter 6 (evaluation).

 One of the main findings of this work, namely the extendable set-based hierarchical
 relational model of microcontroller-based physical security systems is presented in
 the next chapter. This model describes the representation of microcontroller-based
 physical security systems that are used in the developed design approach.

 62

 Chapter 3. Extendable set-based hierarchical relational model of
 microcontroller-based physical security systems

 This chapter describes how microcontroller-based physical security systems,
 attackers, attack actions and security elements are modeled in this work. Moreover,
 this chapter describes how developed models are connected inside the extendable
 set-based hierarchical relational model.

 3.1. Modeling of microcontroller-based physical security systems
 To display various aspects of complex systems and detect the potential feasibility of
 various attack actions component-based, semi-natural, simulation and analytical
 modeling are used. Each modeling approach has its own abstraction level in the
 representation of the system, see Figure 9 .

 Figure 9 . Comparison of modeling approaches

 The component-based approach is the most detailed way to represent
 microcontroller-based physical security systems but it requires a lot of time and
 effort. Moreover, it is not possible to represent different dynamic processes with it.
 From the other side, with the help of analytical modeling it is possible to represent
 the whole system but only on a high level of abstraction. So, the performance of the
 solution strongly depends on the level of detail. That is why to represent the whole
 lifecycle of the system, heterogeneous structures of the united models are used to
 overcome this issue by using different models for different cases.

 For the design process of microcontroller-based physical security systems, the
 component-based approach is the most appropriate one if it is required to take into
 account the security of the system as early as possible. Developed in this work
 model represents such systems as an extendable set-based hierarchical relational
 structure and consists of the following parts: building blocks (hardware and software
 elements), links between system elements (protocols and interfaces), an attacker
 and attack actions. Its overview is presented in Figure 10 .

 63

 Figure 10 . Extendable set-based hierarchical relational model

 64

 Black rounded rectangles are displaying the system model with its elements, while
 black directed arrows are displaying their hierarchy and nesting: hardware element
 can be a part of another hardware element or building block, the
 microcontroller-based system may contain another system as its sub-system and so
 on. White rounded rectangles are displaying external models that are connected with
 the model of the system: attack actions impact is modeled through changes in the
 properties of the system or its elements while the number of possible attack actions
 is reduced according to the possibilities of the attacker.

 One of the possible ways to describe complex systems as a set of interacting
 building blocks is the set-theoretic approach. Let’s consider it in more detail.

 Any system can be represented as follows: 𝑚𝑏𝑠 ϵ 𝑀𝐵𝑆

 𝑚𝑏𝑠 = (𝑀𝐵𝑆 ' , 𝐵𝐵 , 𝐿
 𝑚𝑏𝑠

, 𝑎 , 𝐴𝐴 , 𝑝
 𝑚𝑏𝑠

),

 where — set of microcontroller-based sub-systems of ; — set of 𝑀𝐵𝑆 ' 𝑚𝑏𝑠 𝐵𝐵

 building blocks of ; — set of links between and of , see Figure 𝑚𝑏𝑠 𝐿
 𝑚𝑏𝑠

 𝐵𝐵 𝑀𝐵 𝑆 ' 𝑚𝑏𝑠

 11 ; — attacker against ; — set of attack actions on ; — properties 𝑎 𝑚𝑏𝑠 𝐴𝐴 𝑚𝑏𝑠 𝑝
 𝑚𝑏𝑠

 of . 𝑚𝑏𝑠

 It is important to note that each element of the system at this level is considered as
 an object with a set of properties and links without taking into account its internal
 structure. And this rule is working for sub-elements of each element as well.

 Figure 11 . Links inside microcontroller-based physical security system

 The model of the system allows one to represent the information about its
 sub-systems through and its individual blocks through . Information about 𝑀𝐵 𝑆 ' 𝐵𝐵

 the data transfer environment between sub-systems and individual 𝑚𝑏 𝑠
 𝑖
 ' ∈ 𝑀𝐵 𝑆 '

 blocks are represented through , while properties arising from their 𝑏 𝑏
 𝑗

∈ 𝐵𝐵 𝐿
 𝑚𝑏𝑠

 interaction are represented through . 𝑝
 𝑚𝑏𝑠

 65

 As an example of any microcontroller-based physical security system can be 𝑚𝑏𝑠
 used: access control system, fire alarm system, security alarm system, closed-circuit
 television system, perimeter monitoring system, etc. The situation when 𝑚𝑏𝑠
 contains subsystems related to integrated physical security systems that combine,
 for example, access control, fire and security alarms systems.

 A building block of can be represented as follows: 𝑚𝑏𝑠

 , 𝑏𝑏 = (𝐵 𝐵 ' , 𝐻𝑊 , 𝑆𝑊 , 𝐿
 𝑏𝑏

, 𝑝
 𝑏𝑏

)

 where — set of building sub-blocks of ; — set of hardware elements of 𝐵 𝐵 ' 𝑏𝑏 𝐻𝑊

 ; — set of software elements of ; — links between elements of , see 𝑏𝑏 𝑆𝑊 𝑏𝑏 𝐿
 𝑏𝑏

 𝑏𝑏

 Figure 12 ; – properties of . 𝑝
 𝑏𝑏

 𝑏𝑏

 Figure 12 . Links inside building blocks of the system

 The model of individual blocks allows one to represent the information 𝑏𝑏 ∈ 𝐵𝐵

 about its sub-blocks through , hardware through and software through . 𝐵 𝐵 ' 𝐻𝑊 𝑆𝑊
 Information about the data transfer environment between individual sub-blocks

 , hardware and software are represented through , 𝑏𝑏
 𝑖
 ' ∈ 𝐵 𝐵 ' ℎ 𝑤

 𝑗
∈ 𝐻𝑊 𝑠 𝑤

 𝑘
∈ 𝑆𝑊 𝐿

 𝑏𝑏

 while properties arising from their interaction are represented through . 𝑝
 𝑏𝑏

 As an example of a building block, any device, controller or its combination with
 components can be used. For example, it can be a Raspberry Pi single-board
 computer, micro-SD card with the pre-installed operating system, ESP8266 or Iskra
 JS microcontroller or even server, hub, robot, station, drone, etc.

 A hardware element of can be represented as follows: 𝑚𝑏𝑠

 , ℎ𝑤 = (𝐻 𝑊 ' , 𝐿
 ℎ𝑤

, 𝑝
 ℎ𝑤

)

 66

 where — set of hardware sub-elements of ; — links between 𝐻 𝑊 ' ℎ 𝑤 ' ℎ𝑤 𝐿
 ℎ𝑤

 elements of , see Figure 13 ; — properties of . ℎ𝑤 𝑝
 ℎ𝑤

 ℎ𝑤

 Figure 13 . Links inside hardware elements of the system

 The model of individual hardware elements allows one to represent the ℎ𝑤 ∈ 𝐻𝑊

 information about its sub-elements (also hardware) through . Information about 𝐻 𝑊 '

 the data transfer environment between individual sub-elements is ℎ𝑤
 𝑖
 ' ∈ 𝐻 𝑊 '

 represented through , while properties arising from their interaction are 𝐿
 ℎ𝑤

 represented through . 𝑝
 ℎ𝑤

 As an example of a hardware element any component can be used: sensors,
 receivers, transmitters, readers, motors, batteries, etc. As an example of the
 hardware element that consists of multiple hardware elements, let's consider a motor
 shield with two collector motors that can be used for two-wheel robots. When motors
 are connected to the motor shield, their rotation speed and direction are controlled
 by its signals, while the controller of the robot can be connected to the motor shield,
 to control signals of the shield through the firmware.

 A software element of can be represented as follows: 𝑚𝑏𝑠

 , 𝑠𝑤 = (𝑆 𝑊 ' , 𝐿
 𝑠𝑤

, 𝑝
 𝑠𝑤

)

 where – set of software sub-elements of ; — links between elements of , 𝑆 𝑊 ' 𝑠𝑤 𝐿
 𝑠𝑤

 𝑠𝑤

 see Figure 14 ; — properties of . 𝑝
 𝑠𝑤

 𝑠𝑤

 Figure 14 . Links inside software elements of the system

 67

 The model of individual software elements allows one to represent the 𝑠𝑤 ∈ 𝑆𝑊

 information about its sub-elements (also software) through . Information about 𝑆 𝑊 '

 the data transfer environment between individual sub-elements is 𝑠𝑤
 𝑖
 ' ∈ 𝑆 𝑊 '

 represented through , while properties arising from their interaction are 𝐿
 𝑠𝑤

 represented through . 𝑝
 𝑠𝑤

 As an example of a software element, any algorithm, library, firmware, database,
 application or configuration can be used. As an example of the software element that
 consists of multiple software elements, let's consider a firmware of the controller that
 can be used as the brain of two-wheel robots. Such a firmware often contains library
 imports for most components that are connected to the controller as well as a lot of
 algorithms for the correct functioning of the robot: navigation, communication, data
 processing and storage, etc.

 Links between elements of can be represented as follows, see Figure 15 : 𝑚𝑏𝑠

 , 𝐿 = (𝑅 , 𝐼 , 𝐸 , 𝑝
 𝐿
)

 where – set of protocols that are used in ; — set of interfaces that are used in ; 𝑅 𝐿 𝐼 𝐿
 — set of communication parties of ; — properties of . 𝐸 𝐿 𝑝

 𝐿
 𝐿

 Figure 15 . Links between elements of microcontroller-based systems

 The model of individual links allows one to represent the information about its 𝑙 ∈ 𝐿
 protocols through , interfaces through and communication parties through , while 𝑅 𝐼 𝐸
 properties arising based on their combination are represented through . 𝑝

 𝐿

 Moreover, links between elements of can be divided: 𝑚𝑏𝑠
 ● — links between devices of the system; 𝐿

 𝑚𝑏𝑠

 ● — links between controllers of devices; 𝐿
 𝑏𝑏

 ● — links between controllers and components; 𝐿
 ℎ𝑤

 ● — links between software elements. 𝐿
 𝑠𝑤

 68

 It means that the model allows one to represent low-level protocols between
 controllers and components together with connections between different algorithms
 inside the firmware of one of the controllers while being able to represent high-level
 protocols between devices, see Table 2 .

 Table 2 . Various types of links between elements

 𝑅 𝐼 𝐸

 𝐿
 𝑚𝑏𝑠

 Wi-Fi IEEE 800.11 wireless 2.4 GHz

 device
 ↔

 device

 ZigBee IEEE 802.15.4 wireless 2.4 GHz

 Bluetooth IEEE 802.15.1 wireless 2.4 GHz

 nRF24L01+ ESB wireless 2.4 GHz

 Infrared NEC wireless 38 kHz

 𝐿
 𝑏𝑏

 I2C SDA + SCL TWI

 controller
 ↔

 controller

 Serial TxRx UART

 RS-232 RS232 UART

 RS-485 RS485 UART

 𝐿
 ℎ𝑤

 pin-to-pin shared power shield
 controller

 ↔
 component

 SVG AVR I/O pin three wires

 VG AVR I/O pin two wires

 𝐿
 𝑠𝑤

 method functions compiler
 software

 ↔
 software

 database SQL queries psycopg2

 API JSON structures POST/GET

 Within the framework of the developed model, all elements are connected with each
 other through their properties. It means that to ensure the required level of security of
 the designed system, the goal of the approach is to find a reasonable combination of
 elements of the system according to the balance between their needs (functional
 requirements and non-functional limitations) and capabilities (provided functionality
 and resources). On the other hand, the influence of each successful attack action is
 represented through reduction of the system capabilities (for example, denial of
 service) or enhancing of its needs (for example, resource depletion).

 Thus, the properties can be represented as follows, see Figure 16 :

 , 𝑝 = (𝐹𝑅 , 𝑁𝐿 , 𝑃𝐹 , 𝑃𝑅)

 69

 where — set of functional requirements (functionality that satisfaction is 𝐹𝑅
 necessary for the element to work); — set of non-functional limitations (limitation 𝑁𝐿
 that satisfaction is necessary for the element to work); — set of provided 𝑃𝐹
 functionalities; — set of provided resources. 𝑃𝑅

 Figure 16 . Properties of elements of microcontroller-based systems

 The model of properties allows one to represent the information about elements 𝑝
 needs and capabilities through and accordingly. Let’s consider 𝐹𝑅 , 𝑁𝐿 𝑃𝐹 , 𝑃𝑅
 examples of each of them in more detail.

 As functional requirements of the element, any functionality necessary for it to be
 able to work can be used: power source, secure connection, protocol, interface,
 bootloader, library, operating system, compiler, driver, etc.

 As non-functional limitations of the element, any limitation necessary for it to be able
 to work can be used: space for placement, suitable environment, voltage, current,
 size, volume, flash memory, digital or analogue pins, disk space, ram, etc.

 As provided functionality of the element, any functionality that it can provide can be
 used: access control, perimeter monitoring, navigation, obstacles detection, work
 with a component, encryption, authentication, processing, etc.

 As provided resources of the element, any resource it can provide can be used: data
 storage, computing resources, environment for launching applications, possibility to
 add/remove/replace components, possibility to work with the environment, etc.

 70

 3.2. Modeling of attackers, attack actions and security elements
 The developed model of the attacker is inspired by the classification of attackers
 from Section 1.1.2 . According to this classification, attackers can be distinguished
 according to attributes such as type of access, method of access, intentions,
 knowledge and resources. In the developed model, only types of access, knowledge
 and resources are used.

 An attacker against can be represented as follows: 𝑚𝑏𝑠

 𝑎 = (𝑎𝑐 , 𝑘𝑛 , 𝑟𝑠),

 where — type of access has to ; — type of knowledge has about ; 𝑎𝑐 𝑎 𝑚𝑏𝑠 𝑘𝑛 𝑎 𝑚𝑏𝑠
 — type of resources available for to compromise . 𝑟𝑠 𝑎 𝑚𝑏𝑠

 According to the developed model, the attacker’s can be in the range between 1 𝑎𝑐
 and 5. This value describes the type of access an attacker has to the
 microcontroller-based physical security system, see Table 3 .

 Table 3 . Attacker’s types of access
 Description

 1 No access to the system

 2 Access to the system through global networks

 3 Access to the system through local networks

 4 Physical access to the system

 5 Full access to the system

 Attacker’s can be in the range between 1 and 4. This value describes the amount 𝑘𝑛
 of information available to the attacker about the system, see Table 4 .

 Table 4 . Attacker’s types of knowledge
 Description

 1 General knowledge about the system from publicly available sources

 2 Knowledge about parameters of the system

 3 Knowledge about means of protection of the system

 4 Knowledge about software and hardware of the system

 Attacker’s can be in the range between 1 and 3. This value describes the number 𝑟𝑠
 of resources available to the attacker, see Table 5 .

 71

 Table 5 . Attacker’s types of resources
 Description

 1 Widely-spread software tools and known vulnerabilities

 2 Specialized software tools and previously non-used vulnerabilities

 3 Possibility to investigate the system

 In the developed model, the structure of attacker’s access, knowledge and resources
 types is hierarchical. It means that with is able to perform any attack 𝑎

 1
 𝑎 𝑐

 𝑎
 1

= 3

 action which is possible for with if and . It also 𝑎
 2

 𝑎 𝑐
 𝑎

 2

= 2 𝑘 𝑛
 𝑎

 1

≥ 𝑘 𝑛
 𝑎

 2

 𝑟 𝑠
 𝑎

 1

≥ 𝑟 𝑠
 𝑎

 2

 means that with is able to perform any attack action which is possible for 𝑎
 3

 𝑎 𝑐
 𝑎

 3

= 3

 if and . But if there are 𝑎
 1

 𝑘 𝑛
 𝑎

 3

≥ 𝑘 𝑛
 𝑎

 1

 𝑟 𝑠
 𝑎

 3

≥ 𝑟 𝑠
 𝑎

 1

 𝑎
 4

= (𝑎 𝑐
 𝑎

 4

= 3 , 𝑘 𝑛
 𝑎

 4

= 2 , 𝑟 𝑠
 𝑎

 4

= 2)

 and then will not be able to perform all attack 𝑎
 5

= (𝑎 𝑐
 𝑎

 5

= 2 , 𝑘 𝑛
 𝑎

 5

= 3 , 𝑟 𝑠
 𝑎

 5

= 3) 𝑎
 4

 actions that are possible for and vice versa. 𝑎
 5

 The developed model of attack actions is inspired by the classification of attack
 actions from Section 1.1.3 . According to this classification, attack actions can be
 distinguished according to attributes such as subject, object, impact method,
 prerequisites and consequences. In the developed model, only subject, object and
 impact methods of attack are used.

 An attack action on can be represented as follows: 𝑚𝑏𝑠

 , 𝑎𝑎 = (𝑐𝑙 , 𝑜𝑗 , 𝑠𝑗)

 where — class of ; — object of , helps to link with the target element(s) 𝑐𝑙 𝑎𝑎 𝑜𝑗 𝑎𝑎 𝑎𝑎
 of ; — subject of , helps to link with that is capable enough for its 𝑚𝑏𝑠 𝑠𝑗 𝑎𝑎 𝑎𝑎 𝑎
 successful realization.

 In this work, instead of separate impact methods, it was decided to use classes of
 attack actions, while each class contains multiple examples of methods. Classes of
 attack actions can be represented as follows:

 , 𝑐𝑙 = { 𝑐𝑛 , 𝑐𝑟 , 𝑑𝑣 , 𝑠𝑡 }

 where – on the level of components and their communications with controllers; 𝑐𝑛 𝑎𝑎
 – on the level of controllers and their communications with other controllers; 𝑐𝑟 𝑎𝑎
 – on the level of devices and their communications with other devices; – 𝑑𝑣 𝑎𝑎 𝑠𝑡 𝑎𝑎

 on the level of the system and its communications with other systems.

 72

 Examples of attack actions on the level can be represented as follows: 𝑐𝑛

 , 𝑐𝑛 = { 𝑔𝑖𝑒 , 𝑏𝑐𝑑 , 𝑟𝑝𝑡 , 𝑟𝑚𝑡 }

 where — generation of incorrect component events; — bypassing 𝑔𝑖𝑒 𝑏𝑐𝑑
 component detection algorithms; — replacement of the component; — 𝑟𝑝𝑡 𝑟𝑚𝑡
 removement of the component.

 Examples of attack actions on the level can be represented as follows: 𝑐𝑟

 , 𝑐𝑟 = { 𝑟𝑓𝑤 , 𝑟𝑏𝑙 , 𝑚𝑢𝑝 , 𝑖𝑚𝑤 }

 where — replacement of the controller’s firmware; — reinstallation of the 𝑟𝑓𝑤 𝑟𝑏𝑙
 controller’s bootloader; — malfunction of the controller’s update system; — 𝑚𝑢𝑝 𝑖𝑚𝑤
 interception, modification or termination of wired communications.

 Examples of attack actions on the level can be represented as follows: 𝑑𝑣

 , 𝑑𝑣 = { 𝑣𝑎𝑢 , 𝑐𝑎𝑑 , 𝑖𝑒𝑐 , 𝑖𝑤𝑠 }

 where — violation of the authentication system; — cryptographic analysis of 𝑣𝑎𝑢 𝑐𝑎𝑑
 transmitted data; — increased energy consumption; — interception, 𝑖𝑒𝑐 𝑖𝑤𝑠
 modification or termination of wireless communications.

 Examples of attack actions on the level can be represented as follows: 𝑠𝑡

 , 𝑠𝑡 = { 𝑠𝑜𝑐 , 𝑝𝑤𝑟 , 𝑤𝑒𝑏 , 𝑑𝑏𝑑 }

 where — social engineering; — power failure; — disruption of web 𝑠𝑜𝑐 𝑝𝑤𝑟 𝑤𝑒𝑏
 services; — disruption of database services. 𝑑𝑏𝑑

 As individual security element, any mean or method or protection can be used:
 anomaly detection algorithm, hidden placement of sensors, events correlation
 algorithm, vandal-proof device case, hardware authentication, firmware encryption,
 bootloader encryption, removement of physical update interface, strong login
 credentials, password policy, brute-force protection, strong encryption algorithms,
 secure key distribution mechanism, behaviour-based anomaly detection, devices
 isolation/limitation, training of operators and users, etc.

 As one can see, most security elements can be modeled as software or hardware
 elements of the system and be integrated into its building blocks, while some of them
 can be transferred as recommendations to the designed system implementation.

 73

 3.3. Connections between models
 Let’s consider how classes of attack actions are connected with parameters of
 attackers, see Table 6 .

 Table 6 . Classes of attack actions and different types of attackers
 𝑎

 𝑎𝑐 𝑘𝑛 𝑟𝑠

 1 2 3 4 5 1 2 3 4 1 2 3

 𝑐𝑙

 𝑐𝑛

 𝑔𝑖𝑒 + + + + + + +

 𝑏𝑐𝑑 + + + + + + +

 𝑟𝑝𝑡 + + + + + + + +

 𝑟𝑚𝑡 + + + + + + + + +

 𝑐𝑟

 𝑟𝑓𝑤 + + + +

 𝑟𝑏𝑙 + + + +

 𝑚𝑢𝑝 + + + + + + +

 𝑖𝑚𝑤 + + + + + + + + +

 𝑑𝑣

 𝑣𝑎𝑢 + + + + + + +

 𝑐𝑎𝑑 + + + + + + +

 𝑖𝑒𝑐 + + + + + + + + +

 𝑖𝑤𝑠 + + + + + + + + +

 𝑠𝑡

 𝑠𝑜𝑐 + + + + + + + + + + + +

 𝑝𝑤𝑟 + + + + + + + + +

 𝑤𝑒𝑏 + + + + + + + + + +

 𝑑𝑏𝑑 + + + + + + + + + +

 For example, let’s consider the stakeholder that wants to be secure against 𝑚𝑏𝑠
 . The grey colouring of the table cells is representing 𝑎 = (𝑎𝑐 = 4 , 𝑘𝑛 = 2 , 𝑟𝑠 = 2)

 values of the attacker parameters. Connections between the possibility to implement
 attack actions and values of the attacker parameters are shown with “+”. According
 to the content of the table, the designed system must be secure against: , , 𝑟𝑝𝑡 𝑟𝑚𝑡

 , , , , , and . Those attack actions are shown with the help 𝑖𝑚𝑤 𝑖𝑒𝑐 𝑖𝑤𝑠 𝑠𝑜𝑐 𝑝𝑤𝑟 𝑤𝑒𝑏 𝑑𝑏𝑑
 of bold edges of cells.

 74

 As we mentioned before, the structure of attacker’s types is hierarchical. It means
 that an attacker with certain access is able to perform any attack action which is
 possible for an attacker with the same access but with lower knowledge/resources.
 Such a dependence allows one to store data only about the threshold values of the
 types that are necessary for the successful implementation of attack actions. It is
 important to note that the developed model allows the use of various models of
 attackers and attack actions. So, the number of attackers' parameters, just like the
 permissible ranges of their values, can be changed. Likewise, for attack actions —
 another classification can be used and examples can be extended. The main thing is
 to preserve the hierarchical nature of the attacker's model and the relationship
 between his or her parameters and the possibility of implementing attack actions. In
 addition, let’s consider how classes of attack actions are connected with security
 elements of microcontroller-based systems, see Table 7 .

 Table 7 . Classes of attack actions and security elements
 Security elements

 𝑐𝑙

 𝑐𝑛

 𝑔𝑖𝑒 anomaly detection algorithm, hidden placement of sensors

 𝑏𝑐𝑑 events correlation algorithm, hidden placement of sensors

 𝑟𝑝𝑡 vandal-proof device case, hardware authentication

 𝑟𝑚𝑡 vandal-proof device case

 𝑐𝑟

 𝑟𝑓𝑤 vandal-proof device case, firmware encryption

 𝑟𝑏𝑙 vandal-proof device case, bootloader encryption

 𝑚𝑢𝑝 vandal-proof device case, removement of physical update interface

 𝑖𝑚𝑤 vandal-proof device case, encryption, authentication

 𝑑𝑣

 𝑣𝑎𝑢 strong login credentials, password policy, brute-force protection

 𝑐𝑎𝑑 strong encryption algorithms, secure key distribution mechanism

 𝑖𝑒𝑐 behavior-based anomaly detection, devices isolation/limitation

 𝑖𝑤𝑠 strong encryption algorithm on access point, strong login credentials, public
 key pair-based authentication

 𝑠𝑡

 𝑠𝑜𝑐 training of operators and users, security policy

 𝑝𝑤𝑟 uninterruptible power supplies, backup power supply

 𝑤𝑒𝑏 firewall, update mechanism, backup mechanism, logging mechanism

 𝑑𝑏𝑑 input validation, strict access policy, strong login credentials, separate
 database users for different operations

 75

 As was mentioned in Section 1.2 , possible attack actions are defined by the system
 elements composition and parameters of the attacker, against which the system
 needs to be protected. It means that if possible attack actions are known, then
 necessary security elements can be extracted. After that, each security element can
 be interpreted as software (for example, anomaly detection algorithm), hardware (for
 example, vandal-proof device case) and recommendations (for example, training of
 operators and users).

 Also, let’s consider how classes of attack actions are connected with non-security
 elements of microcontroller-based systems, see Table 8 .

 Table 8 . Classes of attack actions and non-security elements
 𝑚𝑏𝑠

 𝑐𝑙

 𝑐𝑛

 𝑔𝑖𝑒 sensors and receivers that react on the environment

 𝑏𝑐𝑑 sensors that monitor environment

 𝑟𝑝𝑡 any component

 𝑟𝑚𝑡 any component

 𝑐𝑟

 𝑟𝑓𝑤 any controller with rewritable firmware

 𝑟𝑏𝑙 any controller with rewritable bootloader

 𝑚𝑢𝑝 any controller with update system

 𝑖𝑚𝑤 controller ↔ controller, controller ↔ component

 𝑑𝑣

 𝑣𝑎𝑢 device ↔ device, where authentication is used

 𝑐𝑎𝑑 device ↔ device, where encryption is used

 𝑖𝑒𝑐 devices with sleep mode/wireless interfaces

 𝑖𝑤𝑠 device ↔ device

 𝑠𝑡

 𝑠𝑜𝑐 any system with operators or/and users

 𝑝𝑤𝑟 any system that relies on power grid

 𝑤𝑒𝑏 any system with web-services

 𝑑𝑏𝑑 any system with database

 Relations between attack actions and non-security elements are defining the attack
 surface of the system. Understanding the attack surface allows its reduction in the
 early stages of the system life cycle, significantly increasing its security level.

 76

 As was mentioned before, all elements of the developed model are connected
 through properties — their needs and possibilities. And algorithms that are used for
 the design of microcontroller-based physical security systems are taking it into
 account, see Chapter 4 . But before that, it is important to note another key aspect of
 the developed model — the origin of emergent properties in the process of
 combining the elements of the system.

 Due to the fact that collaboration requires additional resources, values of properties
 of elements in some cases cannot just be summarized to find out properties of their
 combination. To make the calculations more realistic, special modifiers that reduce
 values of properties are required. Their work can be represented as follows:

 , 𝑓
 𝑝
(𝑥) = 𝑝

 𝑥
, 𝑥 = (𝑦

 1
, ..., 𝑦

 𝑛
) | 𝑛 ϵ 𝑁

 , 𝑓
 𝑝
(𝑥) =

 𝑖 = 1

 𝑛

⋃ 𝑓
 𝑝
(𝑦

 𝑖
) · 𝑒 𝑝

 𝑥
= 𝑓

 𝑝
(𝑦

 1
) · 𝑒𝑝

 𝑥

 𝑦
 1 ∪... ∪ 𝑓

 𝑝
(𝑦

 𝑛
) · 𝑒𝑝

 𝑥

 𝑦
 𝑛

 where — element of or itself, which consists of 𝑥 𝑚𝑏𝑠 𝑚𝑏𝑠 𝑦
 𝑖
 | 𝑖 ϵ 1 ... 𝑛

 sub-elements; — properties of ; — emergent properties that are 𝑝
 𝑥

 𝑥 𝑒𝑝
 𝑥

 𝑦
 𝑖 | 𝑖 ϵ 1 ... 𝑛

 related to a sub-element of . 𝑦
 𝑖

 𝑥

 In other words, are considered as properties that do not correspond to individual 𝑒𝑝
 elements. During the formation process, the influence of the combination and/or
 interaction of individual elements is considered as emergent properties. At the same
 time, an emergent property that already affected and of an individual 𝐹𝑅 𝑁𝐹𝐿
 element, when forming another element on its basis, no longer has an effect,
 because it has already been taken into account.

 Moreover, operation separately combines , , and . This is due to a ∪ 𝐹𝑅 𝑁𝐹𝐿 𝑃𝑅𝐹 𝑃𝑅𝑅
 fact that some of and maybe common for individual elements of the system 𝐹𝑅 𝑁𝐹𝐿
 while and of some of the elements may cover individual or of other 𝑃𝑅𝐹 𝑃𝑅𝑅 𝑁𝐹𝐿 𝐹𝑅
 elements. For example, related to the power supply can be covered once for all 𝑓 𝑟

 𝑖

 connected elements, while related to the memory space can have its limits. It's 𝑓 𝑟
 𝑗

 even more difficult in a case when is related to resources that are not used all 𝑓 𝑟
 𝑞

 the time, so they can be shared between the elements.

 The influence of can be classified by the area and result of the influence, see 𝑒𝑝
 Figure 17 . By the area of the influence can be divided into properties that are 𝑒𝑝
 arising on the level of components, controllers and devices. And because are 𝑒𝑝
 arising in the process of elements combining and interacting, on the level of the 𝑒𝑝
 whole system are already taken into account on the level of devices and not

 77

 considered separately. By the result of the influence can be divided into positive, 𝑒𝑝
 neutral and negative ones. Note, neutral implies their absence, but they are 𝑒𝑝
 necessary for the completeness of the classification.

 Figure 17 . The classification of the emergent properties

 Moreover, can have the area and the result of the influence at the same time, so 𝑒𝑝
 variations like “electronic component-positive”, “microcontroller-negative” and vice
 versa are possible.

 On the level of components are arising during the formation of controller ↔ 𝑒𝑝
 component communications. Such formation represents a combination of hardware
 and software elements as well as building blocks in terms of the developed model.

 For example, let’s consider the work of the controller with several MFRC522 —
 13.56 MHz RFID readers. The full reading of the tag ID takes around 43 ms while
 only one reader can work at a time and the readers themselves do not have internal
 memory. It means that an RFID tag drawn faster than 43 ms past two RFID readers
 that are connected to one controller will be read by only one of them.

 On the level of controllers are arising during the formation of controller ↔ 𝑒𝑝
 controller communications. Such a formation represents a combination of building
 blocks in terms of the developed model. For example, let’s consider the interaction of
 controllers within the I2C bus. The I2C connection can be organized on the basis of
 the TWI and Wire.h library. And because of the data bus, the speed of receiving and
 processing messages by the primary device directly depends on the number of its
 secondary devices as well as the number of events that would be generated by
 secondary devices. As experiments showed [133] , it also depends on the size of the
 messages transmitted, the presence of confirmation of receipt, authentication of
 devices and encryption of the transmitted data.

 78

 On the level of devices are arising during the formation of device ↔ device 𝑒𝑝
 communications. Such a formation represents a combination of building blocks in
 terms of the developed model. For example, let’s consider the formation of secure
 communication between a single-board computer Raspberry Pi and a remote update
 server based on OpenVPN [134] . The bandwidth of such a connection will highly
 depend on the configurations on the client and server sides as well as the number of
 connected devices.

 The positive result of the influence of entailing the fulfillment of one or more 𝑒𝑝 𝑓𝑟
 and/or . For example, let’s consider the process of the connection of controllers to 𝑛𝑓𝑙
 the Ethernet network. As a rule, it requires the soldering of the controller to provide
 the necessary current and voltage, as well as interaction via certain pins for the
 Ethernet chip and RJ45 interface. As an alternative, it is possible to use ready-made
 solutions like Ethernet Shield for Arduino microcontrollers.

 The negative result of the influence of entail either the termination of one or more 𝑒𝑝
 / or the introduction of additional ones. As an example of an additional , let’s 𝑓𝑟 𝑛𝑓𝑙 𝑓𝑟

 consider the joint work of ATmega32U4 (firmware) and Atheros 9331 (Linux)
 processors in Arduino Yun microcontroller. To call Linux commands at the
 ATmega32U4 level a special interpreter is required — the Bridge.h library. In such a
 situation, the presence of this library becomes an additional which affects the 𝑓𝑟 𝑛𝑓𝑙
 that are associated with firmware size and computational complexity of the solution.

 3.4. Conclusions on Chapter 3
 The component-based approach is the most detailed way to represent
 microcontroller-based physical security systems but it requires a lot of time and
 effort. Also, this approach is the most appropriate one if it is required to take into
 account the security of the system as early as possible. Developed in this work
 model represents such systems as an extendable set-based hierarchical relational
 structure and consists of the following parts: building blocks (hardware and software
 elements), links between system elements (protocols and interfaces), an attacker
 and attack actions.

 Within the framework of the developed model, all elements are connected with each
 other through their properties. It means that to ensure the required level of security of
 the designed system, the goal of the approach is to find a reasonable combination of
 elements of the system according to the balance between their needs (functional
 requirements and non-functional limitations) and capabilities (provided functionality
 and resources). On the other hand, the influence of each successful attack action is
 represented through reduction of the system capabilities (for example, denial of
 service) or enhancing of its needs (for example, resource depletion).

 79

 The developed model of the attacker is inspired by the classification of attackers
 from Section 1.1.2 . According to this classification, attackers can be distinguished
 according to attributes such as type of access, method of access, intentions,
 knowledge and resources. In the developed model, only types of access, knowledge
 and resources are used. Type of access can be in the range between 1 and 5, from
 no access to full access to the system. Type of knowledge can be in the range
 between 1 and 4, from general knowledge to knowledge about software and
 hardware of the system. Type of resources can be in the range between 1 and 3,
 from widely-spread software tools and known vulnerabilities to the possibility to
 investigate the system.

 The developed model of attack actions is inspired by the classification of attack
 actions from Section 1.1.3 . According to this classification, attack actions can be
 distinguished according to attributes such as subject, object, impact method,
 prerequisites and consequences. In the developed model, only subject, object and
 impact methods of attack are used. But instead of separate impact methods, it was
 decided to use classes of attack actions, while each class contains multiple
 examples of methods. Four classes of attack actions are used in the model, namely,
 on the level of components and their communications with controllers; controllers
 and their communications with other controllers; devices and their communications
 with other devices; the system and its communications with other systems.

 Note that the developed model allows the use of various models of attackers and
 attack actions. So, the number of attackers' parameters, just like the permissible
 ranges of their values, can be changed. Likewise, for attack actions — another
 classification can be used and examples can be extended. The main thing is to
 preserve the hierarchical nature of the attacker's model and the relationship between
 his or her parameters and the possibility of implementing attack actions.

 As was mentioned in Section 1.2 , possible attack actions are defined by the system
 elements composition and parameters of the attacker, against which the system
 needs to be protected. It means that if possible attack actions are known, then
 necessary security elements can be extracted. After that, each security element can
 be interpreted as a software element (for example, anomaly detection algorithm),
 hardware element (for example, vandal-proof device case) and implementation
 recommendations (for example, training of operators and users).

 Due to the fact that collaboration requires additional resources, values of properties
 of elements in some cases cannot just be summarized to find out properties of their
 combination. To make the calculations more realistic, special modifiers that reduce
 values of properties are required — emergent properties. In the developed model,
 emergent properties are classified by the area and result of the influence. By the
 area of influence, they are divided into properties that are arising on the level of

 80

 components, controllers and devices. By the result of the influence, they are divided
 into positive, neutral and negative ones.

 Unlike existing solutions, the extendable set-based hierarchical relational model
 represents a microcontroller-based physical security system instead of representing
 separate devices. Such functionality neutralizes the disadvantages of analogues in
 terms of designing devices separately from their interaction with each other.
 Moreover, this model is modular, extensible and hierarchical, has a strong focus on
 the security of the resulting solution as well as considers security elements as an
 integral part of the designed system. The extension of the model is possible by the
 introduction of the new levels of abstraction. The modularity of the solution provides
 the possibility to change its individual parts without the need to change the model
 completely, for example, the parameters of the attacker's model or available classes
 of attacks can be updated. The hierarchical nature of the model allows
 decomposition from the whole system into individual elements and composition from
 individual elements to the system as a whole.

 Two more main findings of this work, namely the set of algorithms and the
 methodology for the design of microcontroller-based physical security systems are
 presented in the next chapter. These results are describing the process of
 microcontroller-based physical security systems design that is used in this work and
 is based on described in this chapter model.

 81

 Chapter 4. Set of algorithms and methodology for the design of
 microcontroller-based physical security systems

 This chapter describes the set of algorithms and methodology for the design of
 microcontroller-based physical security systems. The set of algorithms is used within
 the framework of the developed methodology to design extendable set-based
 hierarchical relational models. This set consists of the following algorithms: the
 algorithm for the formation of the system requirements, the algorithm for the
 formation of the system components composition, the algorithms for the design of
 the abstract and detailed system models.

 4.1. Algorithm for the formation of requirements for the system
 The algorithm for the formation of requirements for microcontroller-based physical
 security systems is used to extract attack actions that are possible for the attacker
 and a list of devices of the designed system, their links, communications, bases and
 requirements in accordance with the attacker's parameters and system’s general
 tasks. This algorithm works with abstract requirements that can represent
 components of devices and their sub-components as well as links between devices,
 taking into account controllers used as the basis of the device and possible for each
 device types of communications that determine attack actions that are potentially
 dangerous for the designed devices.

 As input data , the algorithm takes the following data:
 ● attacker’s parameters: are characterizing capabilities of the attacker in

 accordance with the developed model, see Chapter 3 , and are represented by
 three parameters: access type (from 1 to 5), knowledge type (from 1 to 4) and
 resources type (from 1 to 3);

 ● system’s tasks : are characterizing main tasks of the designed system in
 accordance with the wishes of the stakeholder, they are selected from a list of
 possible values, however, this list, unlike the attacker's parameters, does not
 have a limited range of acceptable values.

 As output data , the algorithm provides the following data:
 ● attacker’s actions : the list of attack actions in accordance with the developed

 model, see Chapter 3 , that are possible for the attacker based on the provided
 parameters (input data); each attack action has id, name and description;

 ● security elements : a data structure for security elements that are required to
 prevent possible attack actions is JSON-based; each security element is
 represented by its unique identificator;

 ● devices list : the list of devices that are required to design in accordance with
 the general tasks to the system (input data), each device has a name that is
 extracted based on system requirements;

 82

 ● devices requirements : data structure for requirements for devices is
 JSON-based, while its keys are devices from the list of devices; by each
 device key the data about requirements for this device can be extracted; each
 requirement is abstract and has id and description;

 ● devices communications : data structure for devices types of communications
 is also JSON-based, while its keys are also devices from the list of devices;
 by each device key the data about possible for this device types of
 communications in accordance with the developed architecture of
 microcontroller-based systems, see Section 1.3 , can be extracted; each type
 of communications has id and name;

 ● devices links : data structure for links between devices is JSON-based, while
 its keys are devices from the list of devices; by each device key the data
 about its links with other devices can be extracted; each link has id of link type
 (wire, wireless, etc.), link description, ability id (based on which ability this link
 between devices was detected by the algorithm) and ability description.

 ● devices bases : a data structure for bases of devices is JSON-based, while its
 keys are devices from the list of devices; bases are representing individual
 controllers or their combinations that are necessary for the device to work and
 are extracted based on abilities that are required from the device.

 The work process of the algorithm is automated, the operator is required for the
 translation of wishes of the stakeholder into the attacker’s parameters and general
 tasks of the system. Its overview is presented in Figure 18 .

 The work process of the algorithm contains 6 main stages , namely, initialization of
 data structures as well as getting attack actions possible for the attacker, security
 elements to prevent attack actions, abilities of the designed system, requirements of
 the designed system and device data. The last stage is divided into 7 sub-stages ,
 namely, getting device name, tasks, abilities, requirements, base, types of
 communication and links. Let’s consider them in more detail.

 Stage 1: Initialization of data structures . This stage defines the data structures for
 storing devices and their requirements, communications, links and bases. Devices
 are stored as a list, while their requirements, communications, links and bases are
 stored as dictionaries — key-value structures.

 Stage 2: Getting attack actions possible for the attacker . At this stage, data
 about attack actions that are possible for the attacker in accordance with his or her
 parameters are extracted. Possible values of parameters are predefined by the
 attacker model, see Chapter 3 . Concrete values of parameters are provided as input
 data and selected by the operator. Each action has an id, name and description.
 Possible attack actions are defined by the model of attack actions, see Chapter 3 .
 Connections between parameters and actions are also defined in Chapter 3 .

 83

 Figure 18 . Overview of the algorithm for the formation of requirements

 84

 Stage 3: Getting security elements to prevent attack actions . This stage is
 aimed at the extraction of security elements that are required to protect the system
 against attack actions. Actions that are possible for the attacker are provided by
 Stage 2. Security elements are extracted for each action separately and then
 combined. Each security element has an id and description.

 Stage 4: Getting abilities of the designed system . At this stage, data about
 abilities that are expected from the designed system is extracted. Abilities are
 extracted in accordance with the tasks of the designed system that are provided as
 input data, see Figure 19 . Abilities can be interpreted as something that the designed
 system must be able to do to solve tasks. For example, the task “static perimeter
 monitoring” can be connected with the following abilities: “to communicate with
 mobile robots of the system”, “to provide wireless charging”, “to monitor the
 perimeter nearby”, and “to communicate with the server of the system”. Tasks are
 selected by the operator. Possible values of tasks and abilities are predefined in the
 database. Each task, as well as ability, has an id and description.

 Figure 19 . Connections between system tasks and abilities

 Stage 5: Getting requirements of the designed system . This stage is aimed at
 the extraction of data about requirements for the designed system. Requirements
 are extracted in accordance with the abilities of the designed system that are
 provided by Stage 4, see Figure 20 . Requirements can be interpreted as something
 that is required for the designed system to have abilities. For example, the ability “to
 provide wireless charging” can be connected with the requirement “device that
 represents the charging stations of the system”. Possible values of requirements are
 predefined in the database. Each requirement has an id and description.

 Figure 20 . Connections between system abilities and requirements

 85

 Stage 6 is called getting device data . At this stage, data about devices is extracted
 based on requirements of the system that are provided by Stage 5. It is done for
 each requirement separately. Let’s consider it in more detail.

 Stage 6.1: Getting device name . This stage is aimed at the extraction of data about
 the name of the device based on the provided requirement for the designed system.
 The name of the device is based on the requirement’s description. For example, the
 requirement “device that represents the charging stations of the system” is
 transformed into a “charging station”. Such a transformation is possible because of
 the description format “device that represents the [device name] of the system”.
 Extracted names of devices are stored in the devices list.

 Stage 6.2: Getting device tasks . At this stage, data about tasks that are expected
 from devices of the system is extracted. Tasks of devices are extracted in
 accordance with requirements for the system that are provided by Stage 6.1, see
 Figure 21 . Those tasks can be interpreted as functionality that the designed device
 must have to fulfil system requirements. For example, the system requirement
 “device that represents the charging stations of the system” can be connected with
 the following tasks of the device: “work cycle support”, “interaction with intruders”,
 “interaction with mobile robots”, “interaction with the server”. Possible values of tasks
 are predefined in the database. Each task has an id and description.

 Figure 21 . Connections between system requirements and devices tasks

 Stage 6.3: Getting device abilities . This stage is aimed at the extraction of data
 about the abilities of the designed devices. Abilities are extracted in accordance with
 the tasks of the devices that are provided by Stage 6.2, see Figure 22 . Abilities can
 be interpreted as something that the designed devices must be able to do to solve
 their tasks. For example, the task “interaction with intruders” can be connected with
 abilities “to detect intruders” and “to chase intruders”. Possible values of abilities of
 devices are predefined in the database. Each ability has an id and description.

 Figure 22 . Connections between devices tasks and abilities

 86

 Stage 6.4: Getting device requirements . At this stage, data about requirements for
 the designed devices is extracted. Requirements are extracted in accordance with
 the abilities of the designed devices that are provided by Stage 6.3, see Figure 23 .
 Requirements can be interpreted as something that is required for the designed
 devices to have their abilities. For example, the ability “to detect intruders” can be
 connected with the following requirements: “motion sensor”, “servo drive”, “noise
 sensor” and “detection algorithm”. Possible values of requirements are predefined in
 the database. Each requirement has an id and description.

 Figure 23 . Connections between devices abilities and requirements

 Stage 6.5: Getting device base . This stage is aimed at the extraction of data about
 bases of the designed devices. Bases are extracted in accordance with the
 requirements for devices that are provided by Stage 6.4. The base of the device can
 be interpreted as something that represents its main computing unit. In this work, the
 base can have the following values: “single-board computer”, “connected
 microcontrollers” or “microcontroller”. Such values were selected to represent
 controllers of microcontroller-based devices. Extraction of the base for each device is
 based on all its requirements, where the necessary base is selected according to the
 principle of minimum allowable computing power. Possible values of bases of
 devices are predefined in the database. Each base has an id and description.

 Stage 6.6: Getting device types of communications . At this stage, data about
 types of communications that are possible for the designed devices is extracted.
 Types of communications are extracted in accordance with the bases of devices that
 are provided by Stage 6.5. Types of communications can be interpreted as levels of
 communications that were presented in Section 1.3 during the presentation of the
 architecture of microcontroller-based systems. Possible values of types are
 predefined in the database. Each type has an id and description.

 Stage 6.7: Getting device links . This stage is aimed at the extraction of data about
 links between the designed devices. Links are extracted in accordance with the
 abilities of devices that are provided by Stage 6.3. Links between devices can be
 interpreted as links of the extendable set-based hierarchical relational model that
 were presented in Chapter 3 . Possible values of links are predefined in the
 database. Each link has an id and description.

 87

 As was mentioned, during most of the stages the algorithm relies on the content of
 the database for making decisions. The possible structure of such a database is
 presented in detail in Chapter 5 .

 This algorithm can be used to extract attack actions that are possible for the attacker
 as well as the list of devices of the designed system, their links, communications,
 bases and requirements in accordance with the attacker's parameters and system’s
 general tasks. The output data is well-structured, while the algorithm takes into
 account dependencies between stakeholders’ wishes and system tasks, system
 tasks and system abilities, system abilities and system requirements, system
 requirements and devices tasks, devices tasks and devices abilities, devices abilities
 and devices requirements, see Figure 24 .

 Figure 24 . Connections between tasks, abilities and requirements

 It is important to note that this algorithm can be useful to an expert in the design of
 secure systems, but its full potential is revealed only when interacting with other
 algorithms from this chapter within the framework of the design methodology from
 Section 4.5 . In this methodology, this algorithm is providing the input data —
 attacker’s actions, security elements, devices list, devices requirements, devices
 communications, devices links, devices bases — that is used by other algorithms,
 one of which is presented in the following section.

 88

 4.2. Algorithm for the formation of the system component composition
 The algorithm for the formation of the microcontroller-based physical security system
 component composition is used to extract abstract elements and sub-elements of the
 devices of the system, security recommendations to the system and its devices
 implementation as well as abstract links between devices with related to them
 abilities based on attack actions that are possible for the attacker, list of devices of
 the system, their bases, types of communications and links, requirements for them.
 This algorithm works with abstract elements, links and recommendations and
 represents the designed system components compositions as multiple devices, each
 of which has multiple abstract elements, while each abstract element can have
 multiple abstract sub-elements. Wherein abstract elements and sub-elements are
 representing controllers and components as well as their software, including those
 that are related to security.

 As input data , the algorithm takes the following data:
 ● devices list: the list of devices that are required to design, which is provided

 by the previous algorithm, see Section 4.1 ;
 ● devices bases : data structure for bases of devices is JSON-based, while its

 keys are devices from the list of devices; bases are provided by the previous
 algorithm, see Section 4.1 ;

 ● devices requirements : data structure for requirements for devices is
 JSON-based, while its keys are devices from the list of devices; by each
 device key the data about requirements for this device can be extracted; each
 requirement is abstract and has id and description; requirements are provided
 by the previous algorithm, see Section 4.1 ;

 ● attacker’s actions : the list of attack actions that are possible for the attacker;
 each attack action has id, name and description; attack actions are provided
 by the previous algorithm, see Section 4.1 ;

 ● devices communications : data structure for devices types of communications
 is also JSON-based, while its keys are also devices from the list of devices;
 by each device key the data about possible types of communications can be
 extracted; each type of communications has id and name; devices types of
 communications are provided by the previous algorithm, see Section 4.1 ;

 ● devices links : data structure for links between devices is JSON-based, while
 its keys are devices from the list of devices; by each device key the data
 about its links with other devices can be extracted; each link has its type and
 description as well as ability id and description; devices links are provided by
 the previous algorithm, see Section 4.1 .

 As output data , the algorithm provides the following data:
 ● abstract elements and sub-elements : abstract component composition of the

 system devices, where abstract elements are extracted based on
 requirements for the device and possible attack actions and represent

 89

 controllers, components, software and firmware, while abstract sub-elements
 are extracted based on abstract elements and represent algorithms, settings
 and requirements; data structure for abstract elements and sub-elements is
 JSON-based, while its keys are devices from the list of devices; by each key,
 the data about the respective abstract elements can be extracted, while each
 abstract element is also a key to extract data about the set of its
 sub-elements; each element and sub-element has id and description.

 ● security recommendations : abstract security recommendations to the system
 implementation as a whole as well as for each of its devices separately that
 are extracted based on security elements and can’t be interpreted as abstract
 elements or sub-elements; data structure for recommendations is also
 JSON-based, while it has keys for the system and all its devices; by each key,
 the data about the respective recommendations can be extracted;

 ● abstract links and abilities : abstract types of communications that are possible
 between devices of the system with corresponding devices abilities that are
 related to their interaction; data structure for links is JSON-based, while its
 keys are devices from the list of devices; by each key, the data about the
 respective links can be extracted.

 The work process of the algorithm is automatic, the operator is not required. Its
 overview is presented in Figure 25 .

 The work process of the algorithm contains 2 main stages , namely, initialization of
 data structures as well as getting the component composition of devices. The last
 stage is divided into 5 sub-stages , namely, getting abstract elements with their
 sub-elements, possible attack actions, additional abstract elements with their
 sub-elements, security recommendations to implementation as well as links between
 devices. Let’s consider them in more detail.

 Stage 1: Initialization of data structures . This stage defines the data structures for
 storing abstract elements and sub-elements of devices, security recommendations to
 the implementation of the system and its devices as well as abstract links between
 devices and abilities that are defining those links. All this data is stored as
 dictionaries — key-value structures.

 Stage 2 is called getting the component composition of devices . At this stage,
 based on the provided input — data devices list — component composition of each
 device of the system is extracted. Let’s consider it in more detail.

 Stage 2.1: Getting abstract elements with their sub-elements . This stage is
 aimed at the extraction of data about abstract elements of devices of the system as
 well as their sub-elements based on provided requirements for devices and their
 bases. Elements are extracted recursively based on:

 ● provided device base;

 90

 ● provided requirements for the device;
 ● already extracted elements.

 Possible values of elements and their sub-elements are predefined in the database.
 Each element as well as sub-element has an id and description.

 Figure 25 . Overview of the algorithm for the formation of components composition

 91

 Stage 2.2: Getting possible attack actions . At this stage, data about attack actions
 that are possible for the designed devices in accordance with their types of
 communications and component composition are extracted. Types of
 communications that are possible for the device are provided as input data. After
 attack actions that are possible based on component composition and
 communications of the device are extracted, they are compared with attack actions
 that are possible in accordance with the parameters of the attacker. The intersection
 of these two sets of actions allows one to get the set of actions that are possible on
 the designed device. Each attack action has an id, name and description. Possible
 values of actions are defined by the model of attack actions, see Chapter 3 .
 Connections between elements and actions are also defined in Chapter 3 .

 Stage 2.3: Getting additional abstract elements with their sub-elements . This
 stage is aimed at the extraction of data about additional elements and sub-elements
 of the device based on the provided attack actions. Additional elements are related
 to means and methods of protection that are necessary to prevent attack actions.
 Firstly, the list of required security elements is extracted. Connections between
 security elements and attack actions are defined in Chapter 3 . After that, abstract
 elements and sub-elements that are representing security elements are extracted. In
 the end, additional elements of the device are combined with its other elements that
 were extracted on Stage 2.1. Once again, possible values of elements and their
 sub-elements are predefined in the database. Each element as well as sub-element
 has an id and description.

 Stage 2.4: Getting security recommendations to implementation . At this stage,
 data about security recommendations to the implementation of the system and its
 devices in accordance with security elements of devices is extracted. Firstly, data
 about recommendations to each device implementation is extracted. After that, data
 about recommendations to the system implementation is extracted. The
 recommendation can be interpreted as a security requirement that can’t be satisfied
 on the component composition level, that is why it can be satisfied only after
 implementation. For example, a recommendation to the system can be formulated as
 follows: “to educate operators and users of the system about social engineering
 attacks”. Connections between security elements and recommendations are stored
 in the database. Each recommendation has an id and description.

 Stage 2.5: Getting links . This stage is aimed at extraction of data about links
 between devices of the system based on the provided input data — devices links.
 This stage is related to the transformation of the input data into another data
 structure called abstract links and abilities. The new data structure is JSON-based,
 while keys are devices from the list of devices and values are links between devices
 of the system. Each link has link id, link type, ability id and ability description.
 Possible values of ids, types and descriptions are predefined in the database.

 92

 Once again, as was mentioned, during most of the stages the algorithm relies on the
 content of the database for making decisions. The possible structure of such a
 database is presented in detail in Chapter 5 .

 This algorithm can be used to extract abstract elements and sub-elements of the
 designed system devices, security recommendations to the implementation of the
 system and its devices as well abstract links between devices in accordance with
 attack actions that are possible for the attacker, list of devices of the system, their
 bases, requirements, communications and links. The output data is well-structured,
 while the algorithm takes into account the iterative retrieval process of abstract
 elements of devices together with their sub-elements. In the beginning, abstract
 elements and sub-elements are retrieved in accordance with basis of devices, then
 on the basis of their requirements, after that in accordance with already extracted
 elements and sub-elements as well as required methods and means of protection.

 It is important to note that this algorithm can be useful to an expert in the design of
 secure systems, but its full potential is revealed only when interacting with other
 algorithms from this chapter within the framework of the design methodology from
 Section 4.5 . In this methodology, this algorithm is providing the input data — abstract
 elements and sub-elements, security recommendations, abstract links and abilities
 — that is used by the algorithm presented in the following section.

 93

 4.3. Algorithm for the design of the abstract model of the system
 The algorithm for the design of abstract models of microcontroller-based physical
 security systems is used to construct an abstract representation of a secure system
 based on its devices list, their abilities, elements and sub-elements as well as
 security recommendations. This algorithm represents the system as an abstract
 hierarchical model that takes into account connections between system devices,
 their elemental composition, dependencies between device elements and
 requirements for them.

 As input data , the algorithm takes the following data:
 ● security recommendations: abstract security recommendations to the system

 implementation as a whole as well as for each of its devices separately that
 are extracted based on security elements and can’t be interpreted as abstract
 elements or sub-elements; recommendations are provided by the previous
 algorithm, see Section 4.2 ;

 ● abstract elements and sub-elements: abstract component composition of the
 system devices, where abstract elements are extracted based on
 requirements for the device and possible attack actions and represent
 controllers, components, software and firmware, while abstract sub-elements
 are extracted based on abstract elements and represent algorithms, settings
 and requirements; abstract elements and sub-elements are provided by the
 previous algorithm, see Section 4.2 ;

 ● abstract links and abilities: abstract types of communications that are possible
 between devices of the system with corresponding devices abilities that are
 related to their interaction; abstract links and abilities are provided by the
 previous algorithm, see Section 4.2 ;

 ● security elements: abstract methods and means of protection that are
 required to make the designed system secure against attackers with certain
 parameters, interpretable as security recommendations, abstract elements
 and sub-elements; security elements are provided by the previous algorithm,
 see Section 4.1 .

 As output data , the algorithm provides the abstract system model that contains
 abstract system representation. The structure of the abstract model of the system is
 JSON-based and contains the following fields:

 ● devices : data about each device of the system, including its unique key, id,
 name, components and recommendations;

 ● recommendations : data about recommendations to the implementation of the
 system to ensure its security against attackers with certain parameters,
 including unique key, id and name (description);

 ● links : data about links between devices of the system, including its unique
 key, id, type, parties, dependencies and requirements.

 94

 Each element from the “components” field has its unique key and id as well as data
 about its own components (sub-elements), links, requirements and dependencies.

 The work process of the algorithm is automatic, the operator is not required. Its
 overview is presented in Figure 26 .

 Figure 26 . Overview of the algorithm for the design of abstract models

 95

 The work process of the algorithm contains 7 main stages , namely, abstract model
 initialization as well as generation of system recommendations, devices, links
 requirements, dependencies and hierarchy. Let’s consider them in more detail.

 Stage 1: Initialization of the abstract model . This stage defines the data structure
 for storing the abstract model of the system. At the end of the stage, the abstract
 model consists of fields for data about devices, links between them and security
 recommendations for the implementation of the system.

 Stage 2: Generation of the system security recommendations . At this stage, the
 abstract model of the system is filled with data on the recommendations for the
 implementation of the system related to ensuring its security. Each of the
 recommendations has a unique key by which its id and text description are available.

 Stage 3: Generation of the system devices . This stage is aimed at filling the
 abstract model of the system with data about its devices. For each device, data is
 generated about its unique identifier, name and components composition. Data on
 recommendations related to ensuring the security of devices after their
 implementation is also generated.

 The main part of this stage is the generation of the device components composition.
 This part contains the initialization of abstract components of each device as well as
 the generation of their requirements based on each component sub-elements
 (including security ones). For example, depending on the component of the device, it
 is assumed how much flash memory of the firmware needs to work correctly.

 After this stage is done, each device of the abstract system model is filled with a
 number of elements in their “components” field. Each element represents an abstract
 component of the microcontroller-based system — operating system, firmware,
 sensor, receiver, transmitter, database, microcontroller, etc. Each element in the
 abstract model has its own key that is unique only inside each device. By using this
 key, the data about its unique identifier, name, components, links and requirements
 can be extracted. It is important to note that data about each element’s components
 and links during this stage is empty and would be filled only during stage 7.

 Stage 4: Generation of links between devices . At this stage, the abstract model is
 filled with data on links between devices of the system. Firstly, the algorithm detects
 all links that are possible between each pair of devices according to their abilities.
 And if the link is detected, its generation starts. In the abstract model, each link has
 its own unique key, by which data about its unique identifier, type, parties,
 dependencies and requirements can be extracted. For example, the “dependencies”
 field is filled with data about abstract elements, the selection of a specific
 implementation of which directly depends on the selection of the interface and
 protocol of this link between devices. As an output of this stage, unique keys of links

 96

 with unique identifiers of elements the selection of which depends on the selection of
 a specific interface and protocol of the link are provided.

 Stage 5: Generation of requirements for links . This stage is aimed at filling the
 abstract model with data about requirements for links between devices of the
 system. This field was empty after stage 4 and now is filled with data generated
 based on the information about security elements that are required to design a
 secure system. Generated during this stage requirements define if a link is wired or
 wireless, transfers data, signal or charge, requires encryption and/or authentication
 and so on.

 Stage 6: Generation of dependencies between elements . At this stage, the
 abstract model is filled with data on requirements for elements of devices as well as
 with data about dependencies between them. For example, for each microcontroller
 data about dependencies between their selection and the subsequent selection of
 sensors that will be connected to them would be generated. It is done to ensure the
 compatibility of the elements of the device after the transmission from the abstract
 model to the implementation of the system. Also, for each controller that is related to
 control of other components like sensors, receivers and transmitters, the number of
 required digital and analogue pins is calculated.

 Stage 7: Generation of the hierarchy of elements . This stage is aimed at the
 reconstruction of the “components” field of each device of the system. The algorithm
 generates hierarchical elements composition instead of their enumeration. The
 transmission to the hierarchical structure is based on a graph representation of the
 components of each device of the system and recursive conversions. Firstly, graph
 nodes are generated based on unique identifiers and keys of elements. After that,
 the elements of each device are checked pair by pair in terms of the possibility to
 connect one element to another. For example, a sensor can be connected to a
 controller if they are compatible, while compatibility can be checked according to
 their parameters. And if two elements can be connected to each other then the edge
 between nodes that are representing them is generated.

 After the graph structure for each device is generated, the process of hierarchy
 building starts. Firstly, the root node of the graph is obtained based on topological
 sorting. After that, the child node of the lowest level of the graph is obtained together
 with its parent node. It is required for the algorithm to encapsulate the data about the
 obtained child element into the “components” field of its parent element as well as for
 the generation of a link between them. After it is done, the data about the
 encapsulated child is deleted from the abstract model (this data is in the
 “components” field of its parent now) and the node corresponding to this child is
 deleted from the graph representation of the device. This process continues until no
 other graph node can be deleted.

 97

 It is important to note that during stages 3, 4, 6 and 7 the algorithm relies on the
 database for making decisions:

 ● stage 3: to decide if the abstract element of the device is a component;
 ● stage 4: to decide if devices are linked based on their abilities; to decide what

 abstract elements selection will depend on the selection of interface and
 protocol of the abstract link between devices;

 ● stage 6: to decide if one abstract element selection will depend on the
 selection of another abstract element; to decide how many digital or analogue
 pins are required to connect the abstract element to the controller;

 ● stage 7: to decide if one abstract element is compatible with another; to
 decide what link will be between two abstract elements.

 The possible structure of such a database is presented in detail in Chapter 5 .

 The abstract system model is a mapping of the extendable set-based hierarchical
 relational model of microcontroller-based physical security systems from Chapter 3 .
 The mapping on the level of the system is straightforward, see Figure 27 .

 Figure 27 . The mapping on the level of the system

 The mapping on the level of the links between devices is presented in Figure 28 .

 Figure 28 . The mapping on the level of the links between devices

 98

 Interfaces and protocols are not mapped in the abstract model, because for such an
 operation it is required to select a concrete implementation of the link. It is done
 during the design of the detailed model and described in more detail in Section 4.4 .
 The mapping on the level of the hardware and software is presented in Figure 29 .

 Figure 29 . The mapping on the level of hardware and software elements

 This algorithm can be used to generate an abstract system representation based on
 information about its devices, their elements and sub-elements. The output data is
 well-structured, while the algorithm takes into account the hierarchy of elements and
 dependencies between them as well as generates requirements for them.

 It is important to note that this algorithm can be useful to an expert in the design of
 secure systems, but its full potential is revealed only when interacting with other
 algorithms from this chapter within the framework of the design methodology from
 Section 4.5 . In this methodology, other algorithms are providing input data, while the
 abstract model — output of this algorithm — is detailed by replacing abstract
 elements with their concrete implementations (taking into account requirements,
 mutual dependencies and possible conflicts indicated in the abstract model) based
 on the algorithm, presented in the following section.

 99

 4.4. Algorithm for the design of the detailed model of the system
 The algorithm for the design of detailed models of microcontroller-based physical
 security systems is used to construct a detailed representation of a secure system
 based on its abstract representation. Detailed model of the system preserves and
 expands the structure of the abstract model of the system and takes into account
 compatibility, requirements, dependencies and hierarchy of system elements. The
 process of transition from the abstract system model to a detailed one is a
 step-by-step process. Each step represents the process of selection of the concrete
 implementation of one of the system elements, while the sequence of steps is
 formed in accordance with the hierarchy and dependencies between those elements.
 Moreover, after each step, the number of options for further steps is limited in
 accordance with compatibility.

 As input data , the algorithm takes the abstract system model . The structure of the
 abstract model of the system is JSON-based and contains the following fields:

 ● devices : data about each device of the system, including its unique key, id,
 name, components and recommendations;

 ● recommendations : data about recommendations to the implementation of the
 system to ensure its security against attackers with certain parameters,
 including unique key, id and name (description);

 ● links : data about links between devices of the system, including its unique
 key, id, type, parties, dependencies and requirements.

 Each element from the “components” field has its unique key and id as well as data
 about its own components (sub-elements), links, requirements and dependencies.
 The abstract system model is provided by the previous algorithm, see Section 4.3 .

 As output data , the algorithm provides a detailed system model . The structure of the
 detailed model of the system is also JSON-based. Moreover, it has the same
 structure as the abstract model of the system but with some additions:

 ● each element from the components field that was selected is extended with
 the selected field: data about selected elements, including id, name and
 parameters of its implementation; parameters of the element differ for different
 components and controllers;

 ● each device of the system is extended with the parameters field: data about
 parameters of the designed device, including price, energy consumption,
 voltage, current, length, width, height, free memory and battery life; device
 parameters are based on parameters of its elements; parameters are mostly
 the same for all devices, however, the units for free memory are different for
 single-board computers and microcontrollers;

 ● each link between devices of the system is extended with the selected field:
 data about the selected links between devices, including id, name, interface,
 protocol and parameters; parameters are the same for each link and can be

 100

 divided into boolean and numerical ones; boolean parameters are defining if
 the selected link is wireless, directed, transfers data, charge or signal,
 requires access point, has encryption or authentication; numerical parameters
 are defining the range and speed of the link.

 The work process of the algorithm is automated, involvement of the operator is
 possible at the stage of selection of the concrete implementations of elements
 among suitable options provided by the algorithm. Alternatively, the algorithm can
 select concrete implementations on its own. Its overview is presented in Figure 30 .

 Figure 30 . Overview of the algorithm for the design of detailed models

 101

 The work process of the algorithm contains 6 main stages , namely, initialization of
 data structures, generation of selection steps based on links between devices,
 generation of selection steps based on components of devices, saving data of
 selected options, detailing of the abstract system model and calculation of the
 parameters of the devices. Let’s consider them in more detail.

 Stage 1: Initialization of data structures . This stage defines the data structures for
 storing the selection steps and selected options. There is no need to define the data
 structure for the detailed model of the system because it is stored in the same data
 structure that was used for the abstract model of the system.

 The data structure for selection steps is JSON-based and contains unique keys for
 each step of selection. Using this key, data about the selected element can be
 extracted. Each selected element has a key, type, id, name, label, hierarchy,
 dependencies and requirements. There is also an additional field “selected” to store
 data about the selected options as well as the field “same for” that prevents the
 selection of one element multiple times.

 The data structure for selected options is JSON-based and contains keys table and
 database id. By the table key, it is possible to extract data about the database table,
 where data on the selected option is stored, while database id is the identification of
 the concrete data tuple in the database table.

 Stage 2: Generation of selection steps based on links between devices . At this
 stage, the sequence of selection steps is filled with data about the selection of links
 between devices of the system. The sequence of selection steps is a very important
 part of the algorithm because of dependencies between components of devices as
 well as the possibility of their conflicts in terms of compatibility. That is why the
 generation of selection steps starts with the selection of links between devices. Each
 link, after its selection, is limiting options for controllers and components that are
 related to communications between devices for compatibility.

 Stage 3: Generation of selection steps based on components of devices . This
 stage is aimed at filling the sequence of selection steps with data about components
 of devices. This process is more complicated because of the hierarchical nature of
 device components compositions in the abstract model. In addition, it is important to
 take into account that components of one device can depend on the selection of
 components of another device. That is why firstly devices are selected in some order
 too, while data about each device component composition is extracted recursively.
 Moreover, the sequence of extracted components is also based on their hierarchy.
 Each element, after its selection, is limiting options for its dependable elements. For
 example, the selection of the controller is limiting options for components that are
 connected to it for compatibility.

 102

 Stage 4: Saving data of selected options . At this stage, the process of selection of
 concrete implementations begins. Each selection step means the choice of one
 option among suggestions. This process can be manually done by the operator or
 automatically by the algorithm. After the option is selected, the choice is saved, so it
 would be taken into account during the selection of other elements that have
 dependencies with the selected one. For example, if the link responsible for
 communication between devices of the system is representing a Wi-Fi connection,
 the options for controllers are limited to those ones that support Wi-Fi or can be
 extended to support it. The list of options is based on the content of the database,
 while it can be limited according to the requirements of the abstract representation of
 the selected element. For example, requirements for the controller can limit its
 options to those that have at least the necessary amount of flash memory and pins.
 So, during this stage, all options that are representing the abstract element are
 limited in accordance with compatibility, requirements and dependencies.

 Stage 5: Detailing of the abstract system model . This stage is aimed at filling the
 abstract system model with the data of selected implementations of its elements and
 represents the process of detailing. As we mentioned, each selected element is
 extended with the selected field. This extension is based on the content of the
 database, while selected options data structure provides data on the table where
 content is stored as well as the id of its tuple. For example, an element with the
 name “single-board computer” can have a selected field with the following
 key-values: Raspberry Pi 4 Model B 2GB, Broadcom BCM2711 1.5 GHz, Cortex A72
 4-core 64-bit, 2GB RAM, 5V, 3A, 85x56x17 mm, 69 euro, 540 mA. The situation for
 each selected link is the same. For example, the link related to Wi-Fi connection
 between devices can have selected fields with the following key-values: Wi-Fi IEEE
 800.11 2.4GHz WPA2-PSK, 40 meters range, 20 Mbit/s.

 Stage 6: Calculation of the parameters of the device . At this stage, the
 parameters of the devices of the designed system are calculated. As was mentioned
 in the output data description, those calculations are based on the parameters of the
 elements of devices and are mostly the same for all devices. For example, the
 parameters of the device that is representing a server of the system can be as
 follows: 106 euro, 540 mAh, 5V, 3A, 85x153.5x44.5 mm, 29400 MB of free memory,
 37 hours of battery life. Note that parameters of the system as a whole are not
 calculated, because the necessary amount of its devices is not known by the
 algorithm and depends on the concrete implementation of the designed system.

 It is important to note that the algorithm relies on the content of the database when
 extracting options that can be selected as well as when checking parameters of the
 selected links and elements. It means that the correctness of its work strongly
 depends on the content of the database. The possible structure of such a database
 is presented in detail in Chapter 5 .

 103

 The detailed system model is a mapping of the extendable set-based hierarchical
 relational model of microcontroller-based physical security systems from Chapter 3 .
 Moreover, the detailed system model is an extension of the abstract system model.
 That is why in this section only differences between detailed and abstract models are
 shown, while mapping is shown in the previous one.

 As we mentioned during the output data description, the differences are on the level
 devices, their elements and links between them. Changings in the mapping on the
 level of links are presented in Figure 31 , while on the level of devices — in Figure 32
 and elements — in Figure 33 .

 Figure 31 . Changings in the mapping on the level of the links between devices

 Figure 32 . Changings in the mapping on the level of devices

 104

 Note that links between building blocks that are representing devices are taken into
 account in the separate part of the detailed system model.

 Figure 33 . Changings in the mapping on the level of elements

 This algorithm can be used to generate the detailed system representation based on
 the abstract one. The output data is well-structured, while the algorithm takes into
 account compatibility, requirements, dependencies and hierarchy of elements.

 It is important to note that this algorithm can be useful to an expert in the design of
 secure systems, but its full potential is revealed only when interacting with other
 algorithms from this chapter within the framework of the design methodology from
 Section 4.5 . In this methodology, this algorithm is using the input data — abstract
 system model — that is provided based on work of other algorithms and details it
 with the selection of concrete implementations of components and controllers.
 Moreover, the algorithm calculates the parameters of the system devices.

 105

 4.5. Methodology for the design of the system
 The methodology for the design of microcontroller-based physical security systems
 consists of two main cycles. The main goal of the first cycle is to design the abstract
 system model based on provided requirements, while the second one is about the
 design of the detailed system model based on the selection of components. The key
 idea of the methodology is in providing reasonable secure solutions. Such solutions
 are called alternatives and built according to functional requirements and
 non-functional limitations. These requirements and limitations are obtained through
 the transformation of the stakeholder's wishes inside of the requirements and
 limitations formation technique. The developed methodology considers components
 that are improving the security level as an integral part of the system. Moreover, the
 suggested solution works with non-security parameters of the system according to
 the black box principle: the methodology needs to know how many resources the
 system requires to perform its functions, so it would be able to calculate the number
 of resources available for components that are improving the system security level.

 Each cycle of the methodology consists of the testing process and seven stages that
 are associated with the developed extendable set-based hierarchical relational
 model from Chapter 3 . The testing process occurs after each stage as many times
 as necessary to build the model of the system.

 The objective of the testing process is in checking constructed models in terms of
 their correctness and compatibility. In terms of the input data, the first cycle works
 with requirements and limitations, while providing abstract models of system
 elements and the abstract model of the system as an output. In its turn, the second
 cycle works with models that were designed by the first cycle and adds to the
 abstract model data about selected devices and their parameters as an output. It is
 also possible that the first cycle in addition to requirements and limitations will take
 the model of the system as input data if the goal is to improve its security according
 to the new wishes of the stakeholder.

 The idea of the design of the abstract system model cycle is to find out an abstract
 composition of the system to fulfil all formed requirements and limitations. In its turn,
 the fulfilment of all formed requirements and limitations would mean that the
 designed system has all the necessary abilities to be able to solve all general tasks.
 And if the designed system is able to solve all general tasks, then this is exactly the
 system that the stakeholder wanted, assuming that the decisions are made correctly.
 That is why each design stage begins from the analysis of the provided input.

 To simplify the understanding of the abstract system model design cycle, the input
 and output data for each stage were summarized in Table 9 , while its overview is
 presented in Figure 34 .

 106

 Figure 34 . Overview of the abstract system model design cycle

 Understanding the dependencies between tasks, abilities, requirements, limitations
 and different abstract elements of their fulfilment helps the methodology to build the
 system design process step-by-step. In addition, it allows one to reduce the number
 of returns to one of the previous steps for reviewing the decisions made.

 107

 The issue is that most of such dependencies are not linear. For example, different
 hardware elements can be used to fulfil several requirements at the same time, while
 software elements may have their own requirements. It means that there are a
 number of possible interconnections as well as conflicts between system elements
 that should be taken into account.

 Table 9 . Input and output data of the abstract system model design cycle
 design technique input output

 1 hardware element requirements and limitations, hardware
 sub-elements models (null is possible) model of hardware element

 2 software element requirements and limitations, software
 sub-elements models (null is possible) model of software element

 3 protocol requirements and limitations model of protocol

 4 interface requirements and limitations model of interface

 5 building block

 requirements and limitations, hardware
 sub-elements models (null is possible),
 software sub-elements models (null is
 possible), building sub-blocks models
 (null is possible)

 model of building block

 6 link requirements and limitations, model of
 protocol, model of interface model of link

 7 system
 requirements and limitations, building
 blocks, links models, sub-systems
 models (null is possible)

 model of system

 As soon as the methodology constructed the scenario of building an abstract model
 of the microcontroller-based physical security system according to its elements
 hierarchy and nesting, each design technique starts to work. And while the first four
 of them are working only with requirements and limitations, the following ones are
 taking models from the previous stages as an input too. And because the suggested
 solution has a strong focus on security, the list of possible harmful effects on the
 system and its elements is also analyzed during each stage.

 It is important to note that the methodology works with models of attacker and attack
 actions to take security into account, see Chapter 3 . The presence of such models
 allows the methodology to transform stakeholder’s wishes for security into the
 requirement like "system should be secure against the attacker with certain
 parameters", while the list of possible attack actions for such an attacker could be
 obtained from the attack surface that is also a part of the database. And according to
 the requirements, the methodology has a possibility to reduce the number of attack
 actions that are taken into account during the system security design process.

 108

 The testing process for abstract models of the system and its elements occurs after
 each use of one of the corresponding design techniques to check the correctness
 and compatibility of the designed model. It is important to note that according to the
 result of the analysis, it might be concluded that the designed element does not fit on
 the system level — some of the requirements or limitations are violated. It might
 happen because of elements incompatibility (platforms, architectures, interfaces,
 voltage etc.) or due to the lack of computing power of other system devices. In such
 a situation, the methodology would suggest partial changes in the requirements and
 limitations or on refusal from some of them. Reconsideration of the requirements and
 limitations means the need for a redesign process that can affect not only the current
 design phase but also previous ones. This process occurs as many times as
 necessary to build the abstract model of the microcontroller-based physical security
 system or to confirm the inability to do so.

 If the abstract model of the microcontroller-based physical security system is
 constructed, the output of the first cycle is taken as input by the detailed system
 model design cycle. To simplify its understanding, the input and output data for each
 stage were summarized in Table 10 , while its overview is presented in Figure 35 .

 The idea of the detailed system model design cycle is to fill the abstract model of the
 system with concrete implementations of components and controllers, their firmware
 and software. The selection process is based on functional requirements and
 non-functional limitations as well as dependencies between system elements that
 were formed during the abstract system model design cycle. Moreover, each
 selected component forms additional restrictions on the choice of the subsequent.
 The fundamental difference between this cycle and the previous one is that the
 components have specific parameters — price, energy efficiency, size, computing
 power, number of pins, flash memory, etc.

 Each stage of the detailed model design cycle begins with the analysis of the
 provided abstract model. Dependencies between system elements, their
 requirements, compatibility, hierarchy and nesting were taken into account during the
 abstract system model design cycle and therefore are an internal part of the model.
 With the availability of such information and data about possible options of elements
 from the database, the methodology is able to build the system components
 selection process step-by-step. An important difference of this process is the choice
 of elements from those defining the system as a whole (for example, data transfer
 environment between devices of the system) to the elements that are implementing
 the separate functionality of the devices (for example, motion sensor).

 Note that depending on the chosen option, some selection stages might be skipped
 based on the number of available alternatives of the component. Moreover, in most
 situations, the methodology would use already existing implementations of
 controllers and components instead of construction of the new integrated circuits.

 109

 Figure 35 . Overview of the detailed system model design cycle

 On the other hand, there is still a possibility when the extension of the functionality of
 the already available solutions would be required. Such a situation would most likely
 happen on the level of device-to-device communication. This is due to the fact that
 protocols used in such communication are generally determined only by the
 interface, packet size and address range [133] . Therefore, it becomes necessary to
 implement additional functionality on top of these protocols including, for example,
 dynamic addressing, packet size extension, secure sessions, encryption of the
 transmitted data as well as mutual authentication between devices. And if the
 database does not contain elements that satisfy such functionality, the methodology
 translates them into requirements for the implementation stage of the system.

 110

 Table 10 . Input and output data of the detailed system model design cycle
 selection process input output

 1 link link model, already selected elements
 of the system (null is possible)

 selected link with
 parameters

 2 protocol
 protocol model, already selected
 elements of the system (null is
 possible)

 selected protocol with
 parameters

 3 interface
 interface model, already selected
 elements of the system (null is
 possible)

 selected interface with
 parameters

 4 building block
 building block model, already selected
 elements of the system (null is
 possible)

 selected building block with
 parameters

 5 software element
 software element model, already
 selected elements of the system (null is
 possible)

 selected software element
 with parameters

 6 hardware element
 hardware element model, already
 selected elements of the system (null is
 possible)

 selected hardware element
 with parameters

 7 system
 system model, already selected
 elements of the system (null is
 possible)

 system model with
 parameters

 The testing process for selected components of the detailed model occurs after each
 use of one of the corresponding selection techniques to check its correctness and
 compatibility. This process checks the properties of the system that are only
 apparent when concrete components, controllers, interfaces and protocols are
 selected. It is achievable through the monitoring of the already selected components
 to find out, for example, incompatibility or lack of memory size, computing power,
 battery capacity, etc.

 It is important to note that according to the result of the analysis, it might be
 concluded that the selected components are not working as intended — some of the
 requirements or limitations are violated. It might happen due to the lack of
 information about changes in the element properties during its operation under
 specific conditions. In such a situation, the methodology will have to rebuild the
 system model until it is done.

 The work process of the methodology is mostly automated, involvement of the
 operator is required during the transformation of wishes of stakeholders into
 requirements and limitations and optional at the stage of selection of the concrete
 implementations of elements among suitable ones during the process of detailing the
 abstract system model. Alternatively, the methodology can select implementations
 on its own.

 111

 Another way to represent the workflow of the methodology is to showcase its
 connection with algorithms, described in previous sections of this chapter:

 1. formation of requirements for the system, see Section 4.1 ;
 2. formation of the system component composition, see Section 4.2 ;
 3. design of the abstract model of the system, see Section 4.3 ;
 4. design of the detailed model of the system, see Section 4.4 .

 The first three algorithms are representing the abstract system model design cycle,
 while the last one — the detailed system model design cycle, see Figure 36 .

 Figure 36 . Connections between the methodology and developed algorithms

 112

 The main idea of the developed methodology is to provide an automated tool for the
 design of microcontroller-based physical security systems that are protected against
 attackers. This methodology allows one to reduce the number of weak places and
 architectural defects, thereby significantly reducing the attack surface of the
 microcontroller-based physical security systems. In turn, this will reduce the security
 risks that can lead to financial losses, loss of time as well as the safety of people.

 It is important to note that the methodology is not aimed to replace security experts.
 In most situations, an expert in the security of microcontroller-based systems knows
 about existing best and highly specialized solutions and is able to form alternatives
 at a very high level, while the quality of the solution provided by the methodology
 directly depends on the correctness and completeness of the database. But it can be
 useful for an expert to automate routine tasks and provide alternative solutions.

 4.6. Conclusions on Chapter 4
 The algorithm for the formation of requirements for microcontroller-based physical
 security systems is used to extract attack actions that are possible for the attacker
 and a list of devices of the designed system, their links, communications, bases and
 requirements in accordance with the attacker's parameters and system’s general
 tasks. This algorithm works with abstract requirements that can represent
 components of devices and their sub-components as well as links between devices,
 taking into account controllers used as the basis of the device and possible for each
 device types of communications that determine attack actions that are potentially
 dangerous for the designed devices. The output data is well-structured and
 JSON-based. The work process of the algorithm is automatic, the operator is
 required for the translation of wishes of the stakeholder into the attacker’s
 parameters and general tasks of the system. The work process of the algorithm
 contains 6 main stages, namely, initialization of data structures as well as getting
 attack actions possible for the attacker, security elements to prevent attack actions,
 abilities of the designed system, requirements of the designed system and device
 data. The last stage is divided into 7 sub-stages, namely, getting device name, tasks,
 abilities, requirements, base, types of communication and links.

 The novelty of the algorithm for the formation of requirements for the system is in
 retrieving a list of microcontroller-based system devices, communications available
 to them, as well as requirements for them only based on system tasks, while the list
 of attack actions that are possible for the attacker is retrieved in accordance with the
 type of access, knowledge and resources the attacker has.

 The algorithm for the formation of the microcontroller-based physical security system
 component composition is used to extract abstract elements and sub-elements of the
 devices of the system, security recommendations to the system and its devices
 implementation as well as abstract links between devices with related to them

 113

 abilities based on attack actions that are possible for the attacker, list of devices of
 the system, their bases, types of communications and links, requirements for them.
 This algorithm works with abstract elements, links and recommendations and
 represents the designed system components compositions as multiple devices, each
 of which has multiple abstract elements, while each abstract element can have
 multiple abstract sub-elements. Wherein abstract elements and sub-elements are
 representing controllers and components as well as their software, including those
 that are related to security. The output data is well-structured and JSON-based. The
 work process of the algorithm is automated, the operator is not required. The work
 process of the algorithm contains 2 main stages, namely, initialization of data
 structures as well as getting the component composition of devices. The last stage is
 divided into 5 sub-stages, namely, getting abstract elements with their sub-elements,
 possible attack actions, additional abstract elements with their sub-elements,
 security recommendations to implementation as well as links between devices.

 Unlike other solutions, the algorithm for the formation of the system component
 composition is retrieving abstract elements and sub-elements of the designed
 microcontroller-based system in accordance with the requirements, device base and
 already retrieved elements, while security elements are represented as abstract
 elements, sub-elements, and recommendations for the system implementation.

 The algorithm for the design of abstract models of microcontroller-based physical
 security systems is used to construct an abstract representation of a secure system
 based on its devices list, their abilities, elements and sub-elements as well as
 security recommendations. This algorithm represents the system as an abstract
 hierarchical model that takes into account connections between system devices,
 their elemental composition, dependencies between device elements and
 requirements for them. As output data, the algorithm provides the abstract system
 model that contains abstract system representation. The structure of the abstract
 model of the system is JSON-based and contains the following fields: devices,
 recommendations and links, while each element of the device from the “components”
 field has its own components (sub-elements), links, requirements and dependencies.
 The work process of the algorithm is automatic, the operator is not required. It
 contains 7 main stages, namely, abstract model initialization as well as generation of
 system recommendations, devices, links requirements, dependencies and hierarchy.

 The novelty of the algorithm for the design of the abstract model of the system is in
 taking into account complex dependencies between the elements of
 microcontroller-based systems, namely, their hierarchy, nesting, communications,
 conflicts and requirements. Moreover, this algorithm is not limited to specific
 platforms and architectures and because of its abstract nature reduces the number
 of parameters to be searched, thereby increasing the work speed of the solution.

 114

 The algorithm for the design of detailed models of microcontroller-based physical
 security systems is used to construct a detailed representation of a secure system
 based on its abstract representation. Detailed model of the system preserves and
 expands the structure of the abstract model of the system and takes into account
 compatibility, requirements, dependencies and hierarchy of system elements. The
 process of transition from the abstract system model to a detailed one is a
 step-by-step process. Each step represents the process of selection of the concrete
 implementation of one of the system elements, while the sequence of steps is
 formed in accordance with the hierarchy and dependencies between those elements.
 Moreover, after each step, the number of options for further steps is limited in
 accordance with compatibility. As output data, the algorithm provides a detailed
 system model. The structure of the detailed model of the system is also
 JSON-based. Moreover, it has the same structure as the abstract model of the
 system but with some additions: each element from the components field that was
 selected is extended with the selected field; each device of the system is extended
 with the parameters field; each link between devices of the system is extended with
 the selected field. The work process of the algorithm is mostly automated,
 involvement of the operator is possible at the stage of selection of the concrete
 implementations of elements among suitable options provided by the algorithm.
 Alternatively, the algorithm can select concrete implementations on its own. The
 work process of the algorithm contains 6 main stages, namely, initialization of data
 structures, generation of selection steps based on links between devices, generation
 of selection steps based on components of devices, saving data of selected options,
 detailing of the abstract system model and calculation of the device's parameters.

 Unlike existing solutions, the algorithm for the design of the detailed model of the
 system makes it possible to form a step-by-step process of detailing the abstract
 representation of microcontroller-based physical security systems in accordance with
 the hierarchy and mutual dependencies of their elements. Moreover, this algorithm
 calculates the parameters of the system devices based on the parameters of their
 elements as well as the parameters of the system based on the parameters of its
 devices. This algorithm does not replace the abstract model of the system but
 expands and complements it.

 The methodology for the design of microcontroller-based physical security systems
 consists of two main cycles. The main goal of the first cycle is to design the abstract
 system model based on provided requirements, while the second one is about the
 design of the detailed system model based on the selection of components. Each
 cycle of the methodology consists of the testing process and seven stages that are
 associated with the developed extendable set-based hierarchical relational model
 from Chapter 3 . The testing process occurs after each stage as many times as
 necessary to build the model of the system. The objective of the testing process is in
 checking constructed models in terms of their correctness and compatibility. In terms
 of the input data, the first cycle works with requirements and limitations, while

 115

 providing abstract models of system elements and the abstract model of the system
 as an output. In its turn, the second cycle works with models that were designed by
 the first cycle and adds to the abstract model data about selected devices and their
 parameters as an output.

 Another way to represent the workflow of the methodology is to showcase its
 connection with algorithms, described in this chapter, namely, formation of
 requirements for the system, formation of the system components composition,
 design of the abstract model of the system and design of the detailed model of the
 system. The first three algorithms are representing the abstract system model design
 cycle, while the last one is representing the detailed system model design cycle.

 The novelty of the methodology for the design of microcontroller-based physical
 security systems lies in a new approach to the design, which allows combining
 various design techniques on the basis of hierarchical relational model
 transformation algorithms. Moreover, the suggested approach is modular and
 extensible, takes into account the security of the physical layer of the system, works
 with the abstract system representation and is looking for a trade-off between the
 security of the final solution and expended resources. Also, unlike existing solutions,
 the methodology has a strong focus on security. It is aimed at ensuring the protection
 of the system against attacks at the design stage, considers security components as
 an integral part of the system and checks if the system can be designed in
 accordance with given requirements and limitations.

 One of the main findings of this work, namely software implementation of the
 methodology for the design of microcontroller-based physical security systems is
 presented in the next chapter. This software is used to validate the correctness of the
 developed methodology.

 116

 Chapter 5. Software implementation of the methodology for the
 design of microcontroller-based physical security systems

 This chapter describes the software implementation of the methodology for the
 design of microcontroller-based physical security systems. The description contains
 information about the architecture, database, script and interface of the application.
 The application was developed to validate the correctness of the methodology.

 5.1. Architecture of the software implementation
 Software implementation of the methodology is an application that consists of Python
 script [135] , PostgreSQL database [136] and Tkinter [138] interface. The overview of
 the software implementation architecture is presented in Figure 37 .

 Figure 37 . The architecture of the software implementation

 PostgreSQL database is required to store data about the extendable set-based
 hierarchical relational model of microcontroller-based physical security systems from
 Chapter 3 , as well as data for algorithms and methodology from Chapter 4 . This data
 helps to provide data to the operator as well as helps algorithms and methodology to
 make decisions about elements compatibility, dependencies, hierarchy and nesting.
 For more detail, see Section 5.2 .

 Python script represents the implementation of the algorithms and methodology from
 Chapter 4 . Each algorithm is implemented as a number of functions, while all
 functions are connected with each other in a single methodology. The connection
 between the Python script and the PostgreSQL database is provided by the library.
 For more detail, see Section 5.3 .

 Tkinter interface is required to receive input data from the operator, namely,
 parameters of the attacker and tasks of the designed system, as well as to provide
 the output data to the operator. For more detail, see Section 5.4 .

 117

 5.2. Database of the software implementation
 The developed database contains more than 90 tables, while the database
 initialization contains more than 2300 lines of PL/pgSQL queries [144] .

 The developed database has too many tables to be shown at once, that is why it was
 decided to divide its description into the following parts:

 1. Storage of the attacker, attack actions and security elements, see Chapter 3 .
 2. Storage of tasks, abilities and requirements, see Chapter 4 .
 3. Storage of abstract elements, sub-elements and links, see Chapter 4 .
 4. Storage of detailed elements, see Chapter 4 .

 Let’s consider each part of the database in more detail.

 5.2.1. Storage of the attacker, attack actions and security elements
 The structure of the database for this part contains 11 tables, see Figure 38 .

 Figure 38 . Database structure: attacker, attack actions and security elements

 118

 Parameters of the attacker are stored in access_types , knowledge_types and
 resources_types tables of the database. Each table represents corresponding
 parameters with the help of unique identification and description. The content of
 each table is based on the attacker model provided in Chapter 3 , see Figure 39 .

 Table: access_types

 Table: knowledge_types

 Table: resources_types

 Figure 39 . Content of the database: access, knowledge and resources types

 Attack actions are stored in the attack_actions table of the database. This table
 represents attack actions with the help of unique identification, name and
 description. The content of the table is based on the attack actions model provided in
 Chapter 3 , see Figure 40 .

 Figure 40 . Content of the database: attack actions

 119

 The connections between parameters of the attacker and the possibility to implement
 attack actions are stored in the attacker_and_actions table of the database. The
 content of the table is unique combinations of ids from access_types ,
 knowledge_types , resources_types and attack_actions , see Figure 41 .

 Figure 41 . Content of the database: attackers and actions

 Based on such a table, it is possible to extract attack actions that are possible for the
 attacker in accordance with his or her parameters (for example, access type — 3,
 knowledge type — 3, resources type — 3), with the help of the following sequence:

 SELECT attack_actions.*
 FROM attack_actions, attackers_and_actions
 WHERE
 attackers_and_actions. action_id = attack_actions. id
 AND attackers_and_actions. access_id <= 3
 AND attackers_and_actions. knowledge_id <= 3
 AND attackers_and_actions. resources_id <= 3
 ORDER BY attack_actions. id ;

 The output of such an SQL sequence is presented in Figure 42 .

 Figure 42 . SQL sequence: attack actions that are possible for the attacker

 120

 The possibility of the implementation of attack actions depends not only on the
 parameters of the attacker but also on communications, available for the designed
 devices, their abstract elements and sub-elements as well security elements. Let’s
 consider each dependence in more detail.

 The communication levels that are possible for the designed devices are stored in
 the communication_levels table of the database. This table represents levels of
 communication with the help of unique identification and description. The content of
 the table is based on the architecture of microcontroller-based physical security
 systems provided in Section 1.3 , see Figure 43 .

 Figure 43 . Content of the database: communication levels

 The connections between levels of communication and the possibility to implement
 attack actions are stored in the communication_and_actions table of the database.
 The content of the table is unique combinations of identification from the following
 tables: communication_levels and attack_actions , see Figure 44 .

 Figure 44 . Content of the database: communication levels and actions

 Based on such a table, it is possible to extract attack actions that are possible in
 accordance with levels of communication that are available for the designed device
 (for example, component to controller — 1, controller to component — 2 and
 controller to controller — 3), with the help of the following SQL sequence:

 SELECT attack_actions.*
 FROM attack_actions
 WHERE id = ANY (
 SELECT DISTINCT action_id
 FROM communication_and_actions
 WHERE type_id IN (1 , 2 , 3)
) ORDER BY attack_actions. id ;

 121

 The output of such an SQL sequence is equal to (8, imw, "interception,

 modification or termination of wired communications") .

 In this work, it was decided to not connect abstract elements and sub-elements to
 attack actions directly, because the number of possible elements is huge, while the
 number of their types is limited in accordance with the microcontroller-based physical
 security systems attack surface. Possible types of elements are stored in the
 elements_types table of the database. This table represents types of elements with
 the help of unique identification and description, see Figure 45 .

 Figure 45 . Content of the database: types of elements

 The connections between types of elements and the possibility to implement attack
 actions are stored in the elements_and_actions table of the database. The content of
 the table is unique combinations of identification from the following tables:
 elements_types and attack_actions , see Figure 46 .

 Figure 46 . Content of the database: types of elements and actions

 122

 Based on such a table, it is possible to extract attack actions that are possible in
 accordance with abstract elements and sub-elements of the designed device based
 on their types (for example, environment sensors — 1, monitoring sensors — 2,
 microcontroller with rewritable firmware — 5 and device with the wireless interface —
 8), with the help of the following SQL sequence:

 SELECT attack_actions.*
 FROM attack_actions
 WHERE id = ANY (
 SELECT DISTINCT action_id
 FROM elements_and_actions
 WHERE type_id IN (1 , 2 , 5 , 8)
) ORDER BY attack_actions. id ;

 The output of such an SQL sequence is presented in Figure 47 .

 Figure 47 . SQL sequence: attack actions that are possible based on elements

 Security elements are stored in the security_elements table of the database. This
 table represents security elements with the help of unique identification and
 description. The content of the table is based on the security elements model
 provided in Chapter 3 , see Figure 48 .

 Figure 48 . Content of the database: security elements

 The connections between security elements and the possibility to implement attack
 actions are stored in the security_and_actions table of the database. The content of
 the table is unique combinations of identification from the following tables:
 security_elements and attack_actions , see Figure 49 .

 123

 Figure 49 . Content of the database: security elements and actions

 Based on such a table, it is possible to extract security elements that are required to
 integrate into the designed devices to prevent attack actions that are possible in
 accordance with it elements and levels of communication as well as parameters of
 the attacker (for example, generation of incorrect component events — 1,
 replacement of the firmware — 5, malfunction of the update system — 7, increased
 energy consumption — 11 and interception, modification or termination of wireless
 communications — 12), with the help of the following SQL sequence:

 SELECT security_elements.*
 FROM security_elements
 WHERE id = ANY (
 SELECT element_id
 FROM security_and_actions
 WHERE action_id IN (1 , 5 , 7 , 11 , 12)
) ORDER BY security_elements. id ;

 The output of such an SQL sequence is presented in Figure 50 .

 Figure 50 . SQL sequence: security elements to prevent attack actions

 124

 5.2.2. Storage of tasks, abilities and requirements
 The structure of the database for this part also contains 11 tables, see Figure 51 .

 Figure 51 . Database structure: tasks, abilities and requirements

 Tasks, abilities and requirements are divided into the system and devices ones. Such
 a division is based on data structures, presented in Section 4.1 . According to the
 algorithm for the formation of requirements for the system, tasks of the system are
 linked with abilities of the system, abilities of the system — with requirements of the
 system, requirements for the system — with tasks of devices, tasks of devices —
 with abilities of devices and abilities devices with requirements for devices. Let’s
 consider database tables representing those tasks, abilities and requirements as well
 as connections between them in more detail.

 Tasks of the designed system are stored in the system_tasks table of the database.
 This table represents tasks of the system with the help of unique identification and
 description, see Figure 52 .

 Figure 52 . Content of the database: tasks of the system

 125

 Abilities of the designed system are stored in the system_abilities table of the
 database. This table represents the abilities of the system with the help of unique
 identification and description, see Figure 53 .

 Figure 53 . Content of the database: abilities of the system

 Connections between tasks and abilities of the system are stored in the
 system_tasks_and_abilities table of the database. The content of the table is unique
 combinations of identification from the following tables: system_tasks and
 system_abilities , see Figure 54 .

 Figure 54 . Content of the database: tasks and abilities of the system

 Based on such a table, it is possible to extract abilities that the designed system
 should have in accordance with tasks that the designed system should perform (for
 example, static perimeter monitoring — 2, mobile perimeter monitoring — 3), with
 the help of the following SQL sequence:

 SELECT system_abilities.*
 FROM system_abilities
 WHERE id = ANY(
 SELECT DISTINCT ability_id
 FROM system_tasks_and_abilities
 WHERE task_id IN(2 , 3)
) ORDER BY id ;

 The output of such an SQL sequence is presented in Figure 55 .

 Figure 55 . SQL sequence: abilities of the system

 126

 The requirements for the designed system are stored in the system_requirements
 table of the database. This table represents the requirements of the system with the
 help of unique identification and description, see Figure 56 .

 Figure 56 . Content of the database: requirements for the system

 Connections between the system abilities and requirements are stored in the
 system_abilities_and_requirements table of the database. The content of the table is
 a unique combination of identification from the following tables: system_abilities and
 system_requirements , see Figure 57 .

 Figure 57 . Content of the database: system abilities and requirements

 Based on such a table, it is possible to extract requirements for the designed system
 in accordance with abilities that the designed system should have (for example, to
 navigate through the perimeter — 12, to detect and chase intruders — 13), with the
 help of the following SQL sequence:

 SELECT system_requirements.*
 FROM system_requirements
 WHERE id = ANY(
 SELECT DISTINCT requirement_id
 FROM system_abilities_and_requirements
 WHERE ability_id IN(12 , 13)
) ORDER BY id ;

 The output of such an SQL sequence is the following requirement: (3, “device
 that represents the mobile robots of the system”) .

 Tasks of designed devices are stored in the device_tasks table of the database. This
 table represents tasks of devices with the help of unique identification and
 description, see Figure 58 .

 127

 Figure 58 . Content of the database: tasks of devices

 Connections between requirements for the system and tasks of devices are stored in
 the system_requirements_and_tasks table of the database. The content of the table
 is a unique combination of identification from the following tables:
 system_requirements and device_tasks , see Figure 59 .

 Figure 59 . Content of the database: system requirements and devices tasks

 Based on such a table, it is possible to extract tasks of devices in accordance with
 requirements for the designed system (for example, device that represents the
 mobile robots of the system — 3), with the help of the following SQL sequence:

 SELECT device_tasks.*
 FROM device_tasks
 WHERE id = ANY(
 SELECT DISTINCT task_id
 FROM system_requirements_and_tasks
 WHERE requirement_id IN(3)
) ORDER BY id ;

 The output of such an SQL sequence is presented in Figure 60 .

 Figure 60 . SQL sequence: tasks of devices

 128

 Abilities of designed devices are stored in the device_abilities table of the database.
 This table represents the abilities of devices with the help of unique identification and
 description, see Figure 61 .

 Figure 61 . Content of the database: abilities of devices

 Connections between tasks and abilities devices are stored in the
 device_tasks_and_abilities table of the database. The content of the table is unique
 combinations of identification from the following tables: device_tasks , device_abilities
 and system_requirements , see Figure 62 .

 Figure 62 . Content of the database: tasks and abilities of devices

 Based on such a table, it is possible to extract abilities of devices in accordance with
 tasks of devices and requirements for the system (for example, requirements: device
 that represents the charging stations — 3; tasks: work cycle support — 1, interaction
 with intruders — 5), with the help of the following SQL sequence:

 SELECT device_abilities.*
 FROM device_abilities
 WHERE id = ANY(
 SELECT DISTINCT ability_id
 FROM device_tasks_and_abilities
 WHERE requirement_id IN(2)
 AND task_id IN(1 , 5)
) ORDER BY id ;

 The output of such an SQL sequence is presented in Figure 63 .

 Figure 63 . SQL sequence: abilities of devices

 129

 Requirements for devices are stored in the device_requirements table of the
 database. This table represents requirements for devices with the help of a unique
 identification and description, see Figure 64 .

 Figure 64 . Content of the database: requirements for devices

 Connections between devices abilities and requirements are stored in the
 device_abilities_and_requirements table of the database. The content of the table is
 a unique combination of identification from the following tables: device_abilities and
 device_requirements , see Figure 65 .

 Figure 65 . Content of the database: devices abilities and requirements

 Based on such a table, it is possible to extract requirements for devices in
 accordance with their abilities (for example, to update firmware — 7, to detect
 intruders — 12), with the help of the following SQL sequence:

 130

 SELECT device_requirements.*
 FROM device_requirements
 WHERE id = ANY(
 SELECT DISTINCT requirement_id
 FROM device_abilities_and_requirements
 WHERE ability_id IN(7 , 12)
) ORDER BY id ;

 The output of such an SQL sequence is presented in Figure 66 .

 Figure 66 . SQL sequence: abilities of devices

 5.2.3. Storage of abstract elements, sub-elements and links
 The structure of the database for this part contains 25 tables. For ease of
 understanding, it was decided to divide this part into sub-parts: abstract (3.1)
 elements, (3.2) sub-elements, (3.3) links and (3.4) recommendations.

 The abstract elements sub-part of the database contains 11 tables, see Figure 67 .

 Figure 67 . Database structure: abstract elements

 131

 It is important to note that the third part of the database structure is related to the
 storage of data that is required for the design of the abstract model of the system.
 This data is used by the algorithms, presented in Sections 4.2 and 4.3 .

 Abstract elements of the designed system are stored in the abstract_elements table
 of the database. This table represents elements with the help of unique identification
 and name, see Figure 68 .

 Figure 68 . Content of the database: abstract elements of the system

 The extraction of abstract elements of devices of the designed system is possible in
 accordance with security elements (security_elements and elements_types tables
 from part 1), requirements for devices (device_requirements table from part 2),
 bases of devices (device_base table from this part of the database) and already
 extracted elements. Let’s consider each extraction possibility in more detail.

 Connections between abstract and security elements are stored in the
 abstract_elements_and_security table of the database. The content of the table is a
 unique combination of identification from the following tables: abstract_elements and
 security_elements , see Figure 69 .

 Figure 69 . Content of the database: abstract and security elements

 Based on such a table, it is possible to extract abstract elements that are
 representing corresponding security elements (for example, uninterruptible power
 supply — 19), with the help of the following SQL sequence:

 SELECT abstract_elements.*
 FROM abstract_elements
 WHERE id = ANY(
 SELECT element_1
 FROM abstract_elements_and_security
 WHERE element_2 IN(19)
) ORDER BY id ;

 132

 The output of such an SQL sequence is as follows: (5, “battery”) .

 Connections between abstract elements and requirements for designed devices are
 stored in the abstract_elements_and_requirements table of the database. The
 content of the table is a unique combination of identification from the following tables:
 abstract_elements and device_requirements , see Figure 70 .

 Figure 70 . Content of the database: abstract elements and requirements

 Based on such a table, it is possible to extract abstract elements that are required to
 satisfy requirements for designed devices (for example, access point configuration
 mechanism — 7), with the help of the following SQL sequence:

 SELECT abstract_elements.*
 FROM abstract_elements
 WHERE id = ANY(
 SELECT element_id
 FROM abstract_elements_and_requirements
 WHERE requirement_id IN(7)
) ORDER BY id ;

 The output of such an SQL sequence is as follows: (25, “wireless access point”).

 Bases of the designed devices are stored in the device_base table of the database.
 This table represents bases with the help of a unique id and name, see Figure 71 .

 Figure 71 . Content of the database: bases of devices

 Connections between requirements for devices of the designed system and their
 bases are stored in the device_requirements_and_base table of the database. The
 content of the table is a unique combination of identification from the following tables:
 device_requirements and device_base , see Figure 72 .

 133

 Figure 72 . Content of the database: requirements for devices and their bases

 Based on such a table, it is possible to extract the base of the devices in accordance
 with its requirements (for example, firmware update mechanism — 14, servo drive —
 22, server communication algorithm — 34), with the help of the following sequence:

 SELECT device_base.*
 FROM device_base
 WHERE device_base. id = (
 SELECT MIN (base_id)
 FROM device_requirements_and_base
 WHERE requirement_id IN(14 , 22 , 34)
) ORDER BY id;

 The output of such an SQL sequence is as follows: (3, “microcontroller”).

 Connections between abstract elements and bases of devices are stored in the
 abstract_elements_and_base table of the database. The content of the table is a
 unique combination of identification from the following tables: abstract_elements and
 device_base , see Figure 73 .

 Figure 73 . Content of the database: requirements for devices and their bases

 134

 Based on such a table, it is possible to extract abstract elements of devices that are
 representing its base (for example, microcontroller — 3), with the help of the
 following SQL sequence:

 SELECT abstract_elements.*
 FROM abstract_elements
 WHERE id = ANY(
 SELECT element_id
 FROM abstract_elements_and_base
 WHERE base_id = 3
) ORDER BY id ;

 The output of such an SQL sequence is as follows: (17, “microcontroller for
 electronic components”), (19, “ firmware for electronic components”).

 Connections between abstract elements and their types are stored in the
 abstract_elements_and_types table of the database. The content of the table is a
 unique combination of identification from the following tables: abstract_elements and
 elements_types , see Figure 74 .

 Figure 74 . Content of the database: abstract elements and their types

 Based on such a table, it is possible to extract types of abstract elements of the
 designed device to check the attack actions that are possible based on them (for
 example, collector motor – 6, distance sensor – 7, wireless signal transmitter – 14),
 with the help of the following SQL sequence:

 SELECT elements_types.*
 FROM elements_types
 WHERE id = ANY(
 SELECT type_id
 FROM abstract_elements_and_types
 WHERE element_id IN(6 , 7 , 14)
);

 135

 The output of such an SQL sequence is as follows: (1, “environment sensor”), (4,
 “electronic component”).

 Connections between abstract elements are stored in the database in the
 abstract_elements_and_elements table. The content of the table is a unique
 combination of identification from the abstract_elements table, see Figure 75 .

 Figure 75 . Content of the database: abstract elements with itself

 The content of this table states, for example, that if we already have an element (16,
 “one-board computer”) then it is required to add another one (21, “micro-SD”) to
 the abstract system composition.

 The possibilities to combine abstract elements together are stored in the database in
 the abstract_elements_combination table. The content of the table is also a unique
 combination of identification from the abstract_elements table, see Figure 76 .

 Figure 76 . Content of the database: abstract elements combination

 The content of this table states, for example, that an element (21, “micro-SD”) can
 be combined with an element (16, “one-board computer”) and be its
 sub-component during the construction of devices components composition.

 Dependencies between abstract elements are stored in the database in the
 abstract_elements_and_dependencies table. The content of the table is a unique
 combination of identification from the abstract_elements table, see Figure 77 .

 The content of this table states, for example, that available for the selected options of
 the element (23, “troyka shield”) are depending on the selection of the element
 (17, “microcontroller for electronic components”), see Section 4.4 .

 136

 Figure 77 . Content of the database: abstract elements dependencies

 Connections between abstract elements of devices of the designed system and the
 number of digital and analogue pins, required for their connection to controllers are
 stored in the abstract_elements_and_pins table of the database, see Figure 78 .

 Figure 78 . Content of the database: abstract elements and pins

 The content of this table states, for example, that an element (22, “motor shield”)
 requires 4 pins of the controller to be connected. This requirement in combination
 with requirements of other elements is used to form the requirement for a minimal
 number of pins of the controllers used in the designed device.

 The abstract sub-elements part of the database contains 5 tables, see Figure 79 .

 Abstract sub-elements of the designed system are stored in the
 abstract_subelements table of the database. This table represents sub-elements
 with the help of unique identification and name.

 The extraction of abstract sub-elements of devices of the designed system is
 possible in accordance with security elements (security_elements table from part 1),
 requirements for devices (device_requirements table from part 2), bases of devices
 (device_base table from part 3.1) and abstract elements (abstract_elements table
 from part 3.1). Let’s consider them in more detail.

 137

 Figure 79 . Database structure: abstract sub-elements

 The content of the abstract_subelements table is presented in Figure 80 .

 Figure 80 . Content of the database: abstract sub-elements

 138

 Connections between abstract elements and sub-elements of devices are stored in
 the abstract_elements_and_subelements table of the database. The content of the
 table is a unique combination of identification from the following tables:
 device_requirements , abstract_elements and abstract_subelement , see Figure 81 .

 Figure 81 . Content of the database: abstract elements and sub-elements

 Based on such a table, it is possible to extract sub-elements of abstract elements in
 accordance with requirements for designed devices (for example, element: firmware
 update mechanism — 14, charge monitoring algorithm — 17, movement algorithm
 — 19), with the help of the following SQL sequence:

 SELECT abstract_subelements.*
 FROM abstract_subelements
 WHERE id = ANY(
 SELECT subelement_id
 FROM abstract_elements_and_subelements
 WHERE element_id = 19
 AND requirement_id IN (14 , 17 , 19)
) ORDER BY id ;

 The output of such an SQL sequence is as follows: (11, “firmware update
 mechanism”), (12, “charge monitoring”) and (13, “movement algorithm”).

 Connections between abstract sub-elements of devices and their bases are stored in
 the abstract_subelements_and_base table of the database. The content of the table
 is a unique combination of identification from the following tables: abstract_elements ,
 abstract_subelement and device_bases , see Figure 82 .

 Figure 82 . Content of the database: bases of devices and abstract sub-elements

 139

 Based on such a table, it is possible to extract sub-elements of devices in
 accordance with abstract elements and bases (for example, element: firmware for
 electronic components — 19, base: connected microcontrollers — 2), with the help
 of the following SQL sequence:

 SELECT abstract_subelements.*
 FROM abstract_subelements
 WHERE id = ANY(
 SELECT subelement_id
 FROM abstract_subelements_and_base
 WHERE element_id = 19
 AND base_id = 2
) ORDER BY id ;

 The output of such an SQL sequence is as follows: (23, “controllers
 communication algorithm”) and (24, “components interaction algorithm”).

 Connections between abstract sub-elements of devices and security elements are
 stored in the abstract_subelements_and_security table of the database. The content
 of the table is a unique combination of identification from the following tables:
 abstract_elements , abstract_subelements and security_elements , see Figure 83 .

 Figure 83 . Content of the database: security elements and abstract sub-elements

 Based on such a table, it is possible to extract sub-elements of devices in
 accordance with abstract and security elements (for example, abstract element:
 firmware for electronic components — 19, security element: anomaly detection
 algorithm – 1, events correlation algorithm – 3, data encryption – 9), with the help of
 the following SQL sequence:

 SELECT abstract_subelements.*
 FROM abstract_subelements
 WHERE id = ANY(
 SELECT subelement_id
 FROM abstract_subelements_and_security
 WHERE element_id = 19
 AND security_id IN (1 , 3 , 9)
) ORDER BY id ;

 140

 The output of such an SQL sequence is as follows: (25, “sensors anomaly
 detection algorithm”), (27, “events correlation algorithm”) and (33,
 “communication data encryption and decryption algorithm”).

 Connections between abstract sub-elements of devices and the amount of flash
 memory required for their work on controllers are stored in the
 abstract_subelements_and_flash_memory table of the database, see Figure 84 .

 Figure 84 . Content of the database: abstract sub-elements and flash-memory

 The content of this table states, for example, that an element (33, “communication
 data encryption and decryption algorithm”) requires 100 KB of the flash memory
 of the controller. This requirement in combination with requirements of other
 sub-elements is used to form the requirement for a minimal amount of flash memory
 of the controllers used in the designed device.

 The abstract links sub-part of the database contains 5 tables, see Figure 85 .

 Figure 85 . Database structure: abstract links

 141

 The extraction of abstract links between elements is possible in accordance with
 abstract elements (abstract_elements table from part 3.1) and abilities of devices
 (device_abilities table from part 2). Let’s consider them in more detail.

 Abstract links between elements of the designed system are stored in the
 abstract_links table of the database. The content of the table is based on the model
 of links between system elements, presented in Chapter 3 . This table represents
 links with the help of unique identification and name, see Figure 86 .

 Figure 86 . Content of the database: abstract links

 Connections between abstract links between elements and abilities of devices are
 stored in the abstract_links_and_abilities table of the database. The content of the
 table is a unique combination of identification from the following tables:
 abstract_links and abstract_abilities , see Figure 87 .

 Figure 87 . Content of the database: abstract links and device abilities

 Based on such a table, it is possible to extract links between devices of the system in
 accordance with their abilities (for example, to park near charging stations — 14),
 with the help of the following SQL sequence:

 SELECT abstract_links.*
 FROM abstract_links
 WHERE id = ANY(
 SELECT link_id
 FROM abstract_links_and_abilities
 WHERE ability_id IN (14)
) ORDER BY id ;

 The output of such an SQL sequence is as follows: (10, “wireless”).

 142

 The possibility to decide if devices are linked together or not is based on their
 abilities and stored in the devices_are_linked table of the database. The content of
 the table is unique combinations of ids from abstract_abilities table, see Figure 88 .

 Figure 88 . Content of the database: devices are linked or not

 Based on such a table, it is possible to decide if devices of the designed system are
 linked or not in accordance with their abilities (for example, device 1: to park near
 charging stations — 14, device 2: to help mobile robots to park near — 17), with the
 help of the following SQL sequence:

 SELECT id
 FROM devices_are_linked
 WHERE ability_1 = 14
 AND ability_2 = 17 ;

 If the output of such an SQL sequence is not empty then there is a link.

 Dependencies between abstract elements and links are stored in the database in the
 links_and_dependencies table. The content of the table is a unique combination of
 identification from the device_abilities and abstract_elements tables, see Figure 89 .

 Figure 89 . Content of the database: abstract links and dependencies

 Based on such a table, it is possible to extract abstract elements, the selection of
 which is depending on the selection of abstract links between devices, while such
 links can be represented based on the abilities of devices (for example, device 1: to
 park near charging stations — 14, device 2: to help mobile robots to park near —
 17). The extraction is possible with the help of the following SQL sequence:

 143

 SELECT abstract_elements.*
 FROM abstract_elements
 WHERE id = ANY(
 SELECT element_id
 FROM links_and_dependencies
 WHERE ability_1 = 14
 AND ability_2 = 17
) ORDER BY id ;

 The output of such an SQL sequence is as follows: (12, “wireless signal
 receiver”), (14, “wireless signal transmitter”).

 Abstract links between abstract elements that occur in the process of their
 combination are stored in the abstract_links_and_elements table of the database.
 The content of the table is a unique combination of identification from
 abstract_elements and abstract_links tables, see Figure 90 .

 Figure 90 . Content of the database: abstract links between abstract elements

 Based on such a table, it is possible to extract abstract links between abstract
 elements based on those elements (for example, element 1: single-board computer
 — 16, element 2: micro-SD — 21), with the help of the following SQL sequence:

 SELECT abstract_links.*
 FROM abstract_links
 WHERE id = (
 SELECT link_id
 FROM abstract_links_and_elements
 WHERE element_1 = 16
 AND element_2 = 21
);

 The output of such an SQL sequence is as follows: (12, “slot”). It means that it is
 required to slot a micro-SD card into a single-board computer to link them.

 144

 The recommendations sub-part of the database contains 4 tables, see Figure 91 .

 Figure 91 . Database structure: recommendations

 Security recommendations are divided into recommendations to the implementation
 of the system and to the implementation of its devices. In this work,
 recommendations are representing security elements that cannot be integrated into
 the system as an abstract element or sub-element, see Section 4.2 .

 Recommendations to the implementation of the designed system are stored in the
 system_recommendations table of the database. This table represents
 recommendations with the help of unique identification and name, see Figure 92 .

 Figure 92 . Content of the database: recommendations to the system

 Recommendations to the implementation of designed devices are stored in the
 device_recommendations table of the database. This table also represents
 recommendations with the help of unique identification and name, see Figure 93 .

 Figure 93 . Content of the database: recommendations to devices

 Connections between recommendations to the implementation of the system and
 security elements are stored in the system_recommendations_and_security table of
 the database. The content of the table is a unique combination of ids from the
 following tables: system_recommendations and security_elements , see Figure 94 .

 145

 Figure 94 . Content of the database: system recommendations and security

 Based on such a table, it is possible to extract recommendations to the system
 implementations in accordance with its security elements (for example, password
 policy — 12), with the help of the following SQL sequence:

 SELECT system_recommendations.*
 FROM system_recommendations
 WHERE id = ANY (
 SELECT recommendation_id
 FROM system_recommendations_and_security
 WHERE security_id IN(12)
) ORDER BY id ;

 The output of such an SQL sequence is as follows: (1, “to develop and use
 strong password policy for all login credentials of the system”).

 Connections between recommendations to the implementation of devices and
 security elements are stored in the device_recommendations_and_security table of
 the database. The content of the table is a unique combination of ids from the
 following tables: device_recommendations and security_elements , see Figure 95 .

 Figure 95 . Content of the database: devices recommendations and security

 Based on such a table, it is possible to extract recommendations to devices
 implementations in accordance with their security elements (for example, hidden
 placement of sensors — 2), with the help of the following SQL sequence:

 SELECT device_recommendations.*
 FROM device_recommendations
 WHERE id = ANY (
 SELECT recommendation_id
 FROM device_recommendations_and_security
 WHERE security_id IN(2)
) ORDER BY id ;

 The output of such an SQL sequence is as follows: (1, “to hide monitoring
 sensors of this device”).

 146

 5.2.4. Storage of detailed elements
 The structure of the database for this part contains more than 50 tables. Moreover, in
 contrast to other parts, the number of tables in this part can only be increased by
 adding new components and controllers. This is due to the fact that this part of the
 database is related to concrete implementations that are represented as possible
 options for abstract elements during the detailing process of the abstract system
 model, see Section 4.4 .

 To represent the main idea of this part, it was decided, firstly, to show the sub-part of
 this part that is related to the connections between abstract elements and their
 concrete implementations and, secondly, to show an example of the database
 structure for one of the implementations.

 The connections between abstract and detailed elements sub-part contains only
 2 tables and is connected with abstract_elements table from part 2, see Figure 96 .

 Figure 96 . Database structure: abstract and detailed elements

 Selectable elements are stored in the selectable_elements table of the database.
 Selectable for the abstract element means that it can be selected by the design
 methodology, see Section 4.5 , because the database is filled with data about its
 concrete implementations. The table represents selectable elements with the help of
 unique identification of the abstract element, see Figure 97 .

 Figure 97 . Content of the database: abstract elements that are selectable

 147

 The content of this table states, for example, that an element (13, “wireless charge
 transmitter”) is selectable, while an element (3, “application with graphical
 user interface”) is not. It means that it would be necessary to develop such an
 application after the design of the system.

 Database tables that are storing data about implementations of abstract elements
 are stored in the selectable_elements_and_db_tables table of the database. This
 structure helps the design methodology to navigate through the selection process
 during the detailing of the abstract system model, see Section 4.4 . The table
 represents database tables with the help of unique identification, identification of the
 abstract element and name of the database table, see Figure 98 .

 Figure 98 . Content of the database: tables for implementations

 The content of this table states, for example, the possible implementations of the
 abstract element (13, “wireless charge transmitter”) are stored in the
 wireless_charge_transmitters table of the database.

 As an example of the database structure for one of the implementations , it was
 decided to show tables related to the abstract element (5, “battery”). This structure
 contains 13 tables, see Figure 99 .

 According to this structure, the selected implementation of the abstract element (5,
 “battery”) is connected with implementations of links between devices
 (batteries_and_links_between_devices table), microcontrollers for electronic
 components (batteries_and_microcontrollers_for_electronic_components table),
 motor shields (batteries_and_motor_shields table), one-board computers
 (batteries_and_oneboard_computers table), wireless charge receivers
 (wireless_charge_receivers_and_batteries table) and wireless charge transmitters
 (wireless_charge_transmitters_and_batteries table). All these connection tables are
 storing data about compatibility between implementations of abstract elements. In
 turn, tables for implementations are storing data about their parameters, providing a
 possibility to check their correspondence to the provided requirements.

 148

 Figure 99 . Database structure: detailed element example

 The abstract element (5, “battery”) can have implementations with the following
 parameters: capacity in mAh, output current in A, length x width x height in mm,
 weight in g and price in rubles, see Figure 100 .

 Figure 100 . Content of the database: battery implementations

 149

 5.3. Script of the software implementation
 The developed script contains more than 3000 lines of code (including comments)
 and works with such imports as psycopg2 [137] , tkinter [138] , pygubu [139] ,
 networkx [140] , json [141] , functools [142] and time [143] .

 The role of the script is to implement algorithms from Chapter 4 , combine them
 together into the design methodology from Section 4.5 and to provide connections
 between the database from Section 5.2 and the interface from Section 5.4 .

 The script connects itself with the developed interface with the help of the pygubu
 library. Firstly, builder is created:

 self .builder = builder = pygubu.Builder()

 After that, the interface is loaded from the file:

 builder.add_from_file("interface/design_GUI.ui")

 This allows the script to get access to objects of the interface and control them:
 default state, selected values and callback functions of objects as well as links
 between them can be defined. For example, it is possible to create the main
 windows of the interface and run it:

 # 3: Create the window
 self.window = builder.get_object("frame1")

 def run(self):
 self .window.mainloop()

 app = DesignApp()
 app.run()

 The script connects itself with the developed database with the help of the psycopg2
 library and its extension sql. Connection can be defined as follows:

 # Connection to the database
 conn = psycopg2.connect(
 dbname = 'database_name' ,
 user = 'user_name' ,
 password = 'user_password' ,
 host = 'host_ip' ,
 port = 'host_port'
)
 # To open a cursor to perform database operations
 cur = conn.cursor()

 where instead of database_name , user_name , user_password , host_ip and
 host_port the corresponding data is required.

 150

 This allows the script to extract data from tables of the database. For example, the
 execution of the SQL query from the script can be done as follows:

 cur.execute(
 " SELECT attack_actions.id, attack_actions.name, attack_actions.description "
 " FROM attackers_and_actions, attack_actions "
 " WHERE attackers_and_actions.action_id = attack_actions.id "
 " AND attackers_and_actions.access_id <= %s "
 " AND attackers_and_actions.knowledge_id <= %s "
 " AND attackers_and_actions.resources_id <= %s " ,
 (access_type, knowledge_type, resources_type)
)
 attacker_actions = cur.fetchall()

 And with help of the sql extension of psycopg2:

 cur.execute(
 sql.SQL(
 " SELECT option_id FROM {} "
 " WHERE requirement_id = %s "
 " AND option_id = ANY(%s) "
).format(sql.Identifier(temp_table_name + '_and_compatibility')),
 (temp_id, list(temp_options),)
)

 The main difference is the possibility to provide a database table name as a variable
 option. Such a possibility is actively used in the process of detailing the abstract
 system model.

 The algorithm for the formation of requirements for microcontroller-based
 physical security systems, see Section 4.1 , is implemented as the following function:

 log_str, attacker_actions, devices_list, \
 devices_requirements, devices_communications, \
 devices_links, devices_bases = \
 self .requirements_formation(
 log_str, system_security_elements_set
)

 where attacker_actions , devices_list , devices_links , devices_requirements ,
 devices_communications and devices_bases are the output data of the algorithm
 described in Section 4.1 , while log_str is used to collect the work log of the algorithm
 and output it to the operator through the interface.

 This algorithm consists of 6 stages, while the last stage consists of 7 sub-stages.
 Let’s consider the implementation of each stage in more detail.

 First stage is about initialization of data structures:

 devices_list, devices_requirements, devices_communications, \
 devices_links, devices_bases = requirements_formation_initialization()

 151

 Second stage is about getting attack actions possible for the attacker:

 access_type, knowledge_type, resources_type, \
 task_1, task_2, task_3 = \
 self .input_data_get()

 log_str, attacker_actions = \
 attacker_actions_get(log_str, access_type, knowledge_type, resources_type)

 Third stage is about getting security elements to prevent attack actions:

 log_str, system_security_elements_set = \
 system_security_elements_get(
 log_str, attacker_actions, system_security_elements_set
)

 Fourth stage is about getting abilities of the designed system:

 log_str, system_abilities = \
 system_abilities_get(log_str, task_1, task_2, task_3)

 Fifth stage is about getting requirements of the designed system:

 log_str, system_requirements = \
 system_requirements_get(log_str, system_abilities)

 Sixth stage is about getting data of devices of the system:

 # 6.1. Adding device to the list
 devices_list.append(dev_str)

 # 6.2. Getting tasks required from the device to be designed
 log_str, device_tasks = \
 device_tasks_get(log_str, req_str, requirement[0])

 # 6.3. Getting abilities that are connected with device tasks
 log_str, device_abilities = \
 device_abilities_get(log_str, requirement[0])

 # 6.4. Getting requirements that are connected with device abilities
 log_str, device_requirements = \
 device_requirements_get(log_str, device_abilities)

 # 6.5. Getting device base in accordance with device requirements
 log_str, device_base = \
 device_base_get(log_str, device_requirements)

 # 6.6. Getting types of communications that are possible for device
 log_str, communications = \
 types_of_communication_get(log_str, device_base[0][0])

 # 6.7. Getting links that are possible for device
 links = \
 device_links_get(device_abilities)

 152

 The algorithm for the formation of components compositions for
 microcontroller-based physical security systems, see Section 4.2 , is implemented as
 the following function:

 log_str, system_recommendations, abstract_system_arr, abstract_links_arr = \
 self .secure_system_components_get(
 log_str, devices_list,
 devices_bases, devices_requirements, devices_links,
 devices_communications, attacker_actions,
 abstract_system_arr, abstract_links_arr,
 system_recommendations
)

 where system_recommendations , abstract_system_arr and abstract_links_arr are
 the output data of the algorithm described in Section 4.2 , while log_str is used to
 collect the work log of the algorithm and output it to the operator.

 This algorithm consists of 2 stages, while the last stage consists of 5 sub-stages.
 Let’s consider the implementation of each stage in more detail.

 First stage is about initialization of data structures:

 log_str, system_recommendations, abstract_system_arr, abstract_links_arr = \
 self .secure_system_components_get(
 log_str, devices_list,
 devices_bases, devices_requirements, devices_links,
 devices_communications, attacker_actions,
 abstract_system_arr, abstract_links_arr,
 system_recommendations
)

 Second stage is about getting component composition of devices:

 # 2.1. Getting abstract elements of device with their sub-elements
 log_str, abstract_device_arr = \
 abstract_elements_with_subelements_get(
 log_str, devices_bases[device][0][0], devices_requirements[device]
)

 # 2.2. Getting attack actions that are possible for device
 log_str, possible_actions_list = \
 possible_actions_get(
 log_str, devices_communications[device],
 abstract_device_arr, attacker_actions
)

 # 2.3. Getting additional abstract elements and sub-elements based on security ones
 log_str, abstract_device_arr, security_elements = \
 abstract_elements_and_subelements_additional_get(
 log_str, possible_actions_list, abstract_device_arr
)

 # 2.4.1 Getting recommendations for device implementation based on security elements
 log_str, device_recommendations_set = \
 device_recommendations_get(log_str, security_elements)

 153

 # 2.4.2 Getting recommendations for system implementation based on security elements
 system_recommendations = \
 system_recommendations_get(security_elements, system_recommendations)

 # 2.5. Saving data about device
 abstract_system_arr[device] = abstract_device_arr
 abstract_links_arr[device] = devices_links[device]
 system_recommendations[device] = device_recommendations_set

 The algorithm for the design of abstract models of microcontroller-based physical
 security systems, see Section 4.3 , is implemented as the following function:

 global abstract_system_composition

 self .design_abstract_model(
 system_recommendations,
 abstract_system_arr,
 abstract_links_arr,
 system_security_elements_set
)

 where abstract_system_composition is the output data of the algorithm described in
 Section 4.3 , while the output of the algorithm is provided directly to the interface in
 JSON format:

 composition_json = json.dumps(
 abstract_system_composition,
 indent = 2 ,
 separators =("," , ": ")
)
 log_array["abstract"] = composition_json

 This algorithm consists of 7 stages, let’s consider them in more detail.

 First stage is about initialization of the abstract model:

 global abstract_system_composition

 abstract_system_composition["devices"] = {}
 abstract_system_composition["recommendations"] = {}
 abstract_system_composition["links"] = {}

 Second stage is about generation of the system security recommendations:

 abstract_model_system_recommendations(
 system_recommendations

)

 Third stage is about generation of the system devices:

 device_keys, devices_elements_keys = \
 abstract_model_devices(system_recommendations, abstract_system_arr)

 154

 Fourth stage is about generation of links between devices:

 links_dep_elements = \
 abstract_model_links(

 device_keys, devices_elements_keys, abstract_links_arr
)

 Fifth stage is about generation of requirements for links:

 abstract_model_links_requirements(
 links_dep_elements, system_security_elements_set

)

 Sixth stage is about generation of dependencies between elements:

 abstract_model_devices_dependencies_and_requirements()

 Seventh stage is about generation of the hierarchy of elements:

 abstract_model_devices_hierarchy()

 The algorithm for the design of detailed models of microcontroller-based physical
 security systems, see Section 4.4 , is implemented as the following functions:

 global abstract_system_composition

 # Formation of the selection dictionary:
 # step-by-step representation of the selection process
 detailed_model_selection_steps()

 # Starting select process step-by-step
 self .select_button_callback(scrollable_frame, "")

 button = ttk.Button(
 scrollable_frame,
 text = "Confirm" ,
 command =lambda s_frame=scrollable_frame:
 self .select_button_callback(scrollable_frame, prev_label),
 default = "normal"

)
 button.pack(pady = 5)

 # Generation of the alternative of the system model
 # based on the results of selection process
 self .alternative_generation()

 where abstract_system_composition is the input and output data of the algorithm
 described in Section 4.4 (it becomes output data after the detailing process), while
 the output of the algorithm is provided directly to the interface in JSON format:

 composition_json = json.dumps(
 abstract_system_composition,
 indent = 2 ,
 separators =("," , ": ")
)
 log_array["detailed"] = composition_json

 155

 This algorithm consists of 6 stages, let’s consider them in more detail.

 First stage is about initialization of the data structures:

 global select_step
 global develop_dict

 scrollable_frame = \
 self .selection_initialization()

 Second stage is about generation of selection steps based on devices links:

 global select_dict
 global select_step

 # First steps are always related to links between devices
 selection_steps_based_on_links()

 Third stage is about generation of selection steps based on devices components:

 global select_dict
 global select_step

 # After links, steps are related to system devices, one by one
 selection_steps_based_on_devices()

 Fourth stage is about saving data of selected options:

 select_dict[select_key]["selected"]["table"] = temp_table_name
 select_dict[step_key]["selected"]["db_id"] = temp_id

 Fifth stage is about detailing of the abstract system model:

 # Extraction of data about selected links and elements step-by-step
 temp_selected_elements = \

 abstract_model_detailing()

 Sixth stage is about calculation of the parameters of devices:

 # Calculation of parameters of devices based on parameters of their components
 for device_key in temp_selected_elements:

 output_str = \
 device_parameters_calculation(

 output_str, device_key, temp_selected_elements
)

 Thus, all algorithms from Chapter 4 are implemented in the script, while their
 combination is representing the base of the design methodology from Section 4.5 .
 Note that the content of the script is described on a very high level to provide a
 general idea and connect it with descriptions of algorithms. For more detail, please,
 download its source code together with the dump of the database using the following
 link: https://github.com/levshun/PhD-mcbpss_design .

 156

https://github.com/levshun/PhD-mcbpss_design

 5.4. Interface of the software implementation
 The interface is an important part of the software implementation because it provides
 a possibility for the operator to work with the design methodology from Chapter 4 . As
 was mentioned, the work process of the methodology is mostly automated, while the
 involvement of the operator is required during the transformation of wishes of
 stakeholders into requirements and limitations and optional at the stage of selection
 of the concrete implementations of elements among suitable ones during the
 process of detailing the abstract system model. Alternatively, the methodology can
 select implementations on its own. So, using the developed interface, the operator
 can set the parameters of the attacker, against which the system is required to be
 protected, as well as tasks of the system.

 The interface of the application after launch is shown in Figure 101 .

 Figure 101 . Interface of the application: state after launching

 The interface of the application consists of 6 main parts :
 1. Input of the parameters of the attacker against which the designed

 microcontroller-based physical security system needs to be protected.
 2. Input of the tasks that need to be solved by the designed

 microcontroller-based physical security system.
 3. Frame to display the process of selection of components of the designed

 microcontroller-based physical security system.

 157

 4. Frame to display the log of the work of the design methodology for
 microcontroller-based physical security systems.

 5. Frame to display the results of work of the design methodology for
 microcontroller-based physical security systems.

 6. Control buttons of the application.

 Let’s consider each part of the interface in more detail.

 Part 1. The input of the parameters of the attacker is based on the model of the
 attacker presented in Chapter 3 and consists of 3 parameters: access type,
 knowledge type and resources type, see Figure 102 . Each parameter selection is
 based on ttk.Combobox and represented as drop-down lists.

 Figure 102 . Interface of the application: input of parameters of the attacker

 Part 2. The input of the tasks for the designed system is based on the selection of
 general tasks of the system, which were presented in Chapter 4 . For this demo, the
 number of possible tasks is limited to 3, see Figure 103 . Each task selection is based
 on ttk.Combobox and represented as drop-down lists.

 Figure 103 . Interface of the application: input of tasks the system

 Part 3. The frame of the components selection process displays options of
 communication protocols and interfaces, single-board computers, controllers and
 components to the operator, see Figure 104 . The choice made by the operator
 determines the detailed model of the designed system, see Chapter 4 . It is important
 to note that the selection process is displayed step-by-step without the possibility of
 changing previously made decisions. Moreover, since each choice made affects the
 number of options available in subsequent steps, if there is only one option for
 selection, the choice is made automatically.

 158

 Figure 104 . Interface of the application: frame of the components selection process

 The interface for each selection step is represented as a drop-down list with options
 and based on the combination of ttk.Combobox , ttk.Button and ttk.Label . The
 selection process begins with the choice of communications between devices of the
 designed system and after that continues with components of each device, namely
 server, stations and robots, are selected, see Chapter 4 .

 Part 4. Frame for the design methodology work process log displays separate logs
 for the designed system, its devices, abstract and detailed models, see Figure 105 .
 Display of log is based on tk.Text and tk.Scrollbar objects that are linked together.

 159

 Figure 105 . Interface of the application: frame for the methodology work process log

 160

 System log contains information about attack actions that are possible for the
 selected attacker, security elements that should be used to prevent them, system
 abilities that were formed based on provided tasks, requirements that were formed
 based on these abilities and recommendations for the system implementation. For
 more detail, see Chapter 4 .

 Server , Stations and Robots logs contain information about tasks that were formed
 for each device, abilities that were formed based on these tasks, requirements that
 were formed based on these abilities, base of this device, its abstract elements,
 sub-elements and types of communication, attack actions that are possible based on
 types of communication, abstract elements and attacker parameters, security
 elements to prevent attack actions, additional elements of the device, additional
 sub-elements of the device, generated set of device components and
 recommendations for the server implementation. For more detail, see Chapter 4 .

 Abstract log contains the abstract system model in JSON format, see Figure 106 :
 ● system contains devices, recommendations and links;
 ● each device contains id, name, components and recommendations;
 ● each recommendation (system/device) contains id and name;
 ● components of each device contain elements, each of which has its own id,

 name, components, links, requirements, dependencies and parent tag;
 ● each element link contains id, type and parties;
 ● each element requirement contains id and name;
 ● each element dependency contains keys of elements that depend on them;
 ● element parent tag contains the key of the element that contains this element

 as its sub-element.

 Figure 106 . Abstract system model in JSON format

 The abstract model of the system is a mapping of the extendable set-based
 hierarchical relational model from Chapter 3 . For more detail, see Chapter 4 .

 161

 Detailed log contains the detailed system model in JSON format, see Figure 107 .
 The detailed model of the system is an extended version of the abstract model. For
 more detail, see Chapter 4 .

 Figure 107 . Detailed system model in JSON format

 Part 5. Frame for the results of the design methodology displays for each device the
 list of its components that were selected with their parameters as well as the list of
 components that are required to be developed or configured with required algorithms
 or settings, see Figure 108 . In addition, the parameters of each device as well as
 security recommendations for their implementation are displayed.

 Figure 108 . Interface of the application: for the results of the design methodology

 162

 Display of the results is based on tk.Text and tk.Scrollbar that are linked together.

 Part 6. Control buttons of the application are represented as Design and Select
 buttons (ttk.Button) and automatic checkbutton (tk.Checkbutton), see Figure 109 .

 Figure 109 . Interface of the application: control buttons

 Design button starts the design process for the abstract model of the
 microcontroller-based physical security system. Select button starts the selection
 process for the elements of the system to design its detailed model. Automatic
 checkbutton switches from manual selection process (by the operator) to automated
 (by the methodology).

 5.5. Conclusions on Chapter 5
 The architecture of the software implementation of the methodology consists of the
 Python script, PostgreSQL database and Tkinter interface. PostgreSQL database is
 required to store data about the extendable set-based hierarchical relational model
 of microcontroller-based physical security systems from Chapter 3, as well as data
 for algorithms and methodology from Chapter 4. Python script represents the
 implementation of the algorithms and methodology from Chapter 4. Each algorithm is
 implemented as a number of functions, while all functions are connected with each
 other in a single methodology. Tkinter interface is required to receive input data from
 the operator, namely, parameters of the attacker and tasks of the designed system,
 as well as to provide the output data to him or her.

 The developed database contains more than 100 tables, while the database
 initialization contains more than 2300 lines of PL/pgSQL queries. The structure of the
 database is huge, that is why it was decided to divide its description into the
 following parts of storage: (1) attacker, attack actions and security elements; (2)
 tasks, abilities and requirements; (3) abstract elements, sub-elements and links; and
 (4) detailed elements. The structure of the first part contains 11 tables, while the
 structure of the second — 11, third — 27 and fourth — more than 50. Moreover, it
 was decided to divide the third one into abstract sub-parts, namely, (3.1) elements,
 (3.2) sub-elements, (3.3) links and (3.4) recommendations. The description of the
 database contains information about connections between its parts, structure of its
 tables, connections between tables and examples of their content as well as
 examples of SQL queries to extract data from the database.

 163

 The developed script contains more than 3000 lines of code and works with such
 imports as psycopg2, tkinter, pygubu, networkx, json, functools and time. The role of
 the script is to implement algorithms from Chapter 4 , combine them together into the
 design methodology from Section 4.5 and provide connections between the
 database from Section 5.2 and the interface from Section 5.4 . The script connects
 itself with the developed interface with the help of the pygubu library. This allows the
 script to get access to objects of the interface and control them: default state,
 selected values, callback functions and links between them can be defined. The
 script connects itself with the developed database with the help of the psycopg2
 library and its extension sql. This allows the script to extract data from tables of the
 database. The description of the script contains the information about the
 implementation of each algorithm from Chapter 4 with all their stages.

 The interface is an important part of the software implementation because it provides
 a possibility for the operator to work with the design methodology from Chapter 4 . As
 was mentioned, the work process of the methodology is mostly automated, while the
 involvement of the operator is required during the transformation of wishes of
 stakeholders into requirements and limitations and optional at the stage of selection
 of the concrete implementations of elements among suitable ones during the
 process of detailing the abstract system model. Alternatively, the methodology can
 select implementations on its own.

 The interface of the application consists of 6 main parts: (1) input of the parameters
 of the attacker against which the designed system needs to be protected; (2) input of
 the tasks that need to be solved by the designed system; (3) frame to display the
 selection process of the designed system components; (4) frame to display the work
 log of the design methodology; (5) frame to display the results of the design
 methodology and (6) control buttons of the application.

 The source code of the script, the dump of the database as well as the file of the
 graphical user interface are available for download using the following link:
 https://github.com/levshun/PhD-mcbpss_design .

 The experimental evaluation of the software implementation of the methodology for
 the design of microcontroller-based physical security systems is presented in the
 next chapter. It is evaluated in accordance with requirements from Section 1.4 and
 the problem statement from Section 1.5 based on methods from Chapter 2 .

 164

https://github.com/levshun/PhD-mcbpss_design

 Chapter 6. Experimental evaluation of the methodology for the
 design of microcontroller-based physical security systems

 This chapter describes the evaluation of the methodology for the design of
 microcontroller-based physical security systems. It contains the description of the
 experiment of its application to the use case of mobile robots for the perimeter
 monitoring as well as results of the evaluation of its software implementation.

 6.1. Experiment description
 As was mentioned in Chapter 5 , software implementation of the design methodology
 is an application that consists of the Python script, PostgreSQL database and Tkinter
 interface. For the experiment, it was decided to run this application on the computer
 with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores)
 processor, 2 TB HDD and 32 GB RAM.

 In accordance with Sections 1.4 and 1.5 , it is required to evaluate the software
 implementation based on functional and non-functional requirements as well as
 compare it with commercial and scientific solutions.

 Functional requirements are representing the list of functions that are defining the
 actions that the software implementation must perform:

 1. Building an abstract representation of the designed system.
 2. Finding a trade-off between the resources spent and security.
 3. No restrictions on platforms and architectures of the devices to be designed.
 4. The extensibility of the design process.
 5. Taking into account the physical layer of designed systems.

 Non-functional requirements are describing the system requirements and constraints
 imposed on the resources consumed by the software implementation:

 1. Time required for the design process of the abstract model of the system
 should be less than 1 second.

 2. Time required for the design process of the detailed model of the system
 should be less than 4 seconds.

 3. Number of resources required for the design process of the system should be
 less than 25% of the computer resources.

 4. Number of levels of the system, the security of which can be ensured, should
 be maximized.

 5. Number of classes of attack actions against which the system can be
 protected should be maximized.

 The first and second non-functional requirements are representing the time
 consumption and are checked in accordance with the method from Section 2.1 .

 165

 Such requirements for time consumption were chosen for the design process of the
 microcontroller-based physical security system that contains 3 types of devices,
 while each type of device consists of not fewer than 5 elements with sub-elements,
 second type — not fewer than 10 elements with sub-elements and third type — not
 fewer than 15 elements with sub-elements. It is important to note that the designed
 system should also take into account links between devices and their elements,
 security recommendations to their implementation, requirements for links and
 elements as well as dependencies between them.

 In addition, it was decided to investigate dependencies between the design time and
 parameters of the attacker, against which the system is required to be protected.

 The third non-functional requirement is representing the resource consumption
 requirement and is checked in accordance with the method from Section 2.2 .

 The fourth and fifth non-functional requirements are representing the validity
 requirement and are checked in accordance with the method from Section 2.3 .

 Comparison with commercial solutions is required in terms of levels of the system,
 the security of which can be ensured:

 1. Controllers, components and their communications.
 2. Controllers and their communications inside devices.
 3. Devices and their communications with each other.
 4. Systems and their communications with each other.

 Comparison with scientific solutions is required in terms of classes of attack actions,
 against which the system can be protected:

 1. Components and their communications with controllers.
 2. Controllers and their communications with other controllers.
 3. Devices and their communications with other devices.
 4. System and its communications with other systems.

 Summarizing the above, the plan of the experiment is as follows:
 1. Description of the system to be designed.
 2. Manual fulfilment of the database with data about the system.
 3. Analysis of the compliance of the application with functional requirements.
 4. Analysis of time consumption of the application.
 5. Analysis of resource consumption of the application.
 6. Analysis of the validity of the application.
 7. Comparison of the application with scientific solutions.
 8. Comparison of the application with commercial solutions.
 9. Investigation of the dependencies between the design time and attacker.

 166

 6.1.1. Description of the system
 For the experiment, it was decided to design a microcontroller-based physical
 security system that provides perimeter monitoring based on mobile robots, see
 Figure 110 . This system contains a server as well as multiple mobile robots and
 charging stations with different controllers and components. Robots (mobile objects)
 and stations (static objects) are monitoring the perimeter via different sensors based
 on the server instructions. And if the battery of one of the robots is low, it moves to
 the nearest free charging station. The information about the perimeter map, locations
 of robots and stations as well as the charge state of robots and occupancy of
 stations is stored on the server.

 Figure 110 . Architecture of the perimeter monitoring system

 Such a system was chosen due to the presence of several types of devices, multiple
 communications between them, as well as the need to use many different elements
 for each device in the system (server consists of 8 elements with sub-elements,
 station — 12 and robot — 17, which means that such a system is appropriate in
 accordance with the provided requirements). Moreover, there are links between
 devices of the system and elements of devices, requirements for links and elements
 as well as dependencies between them. Also, during the design of such a system, it
 is necessary to ensure not only its functionality (perimeter monitoring) but also to
 ensure that the system is secure against attacks on it.

 167

 6.1.2. Tasks, abilities and requirements of the system and its devices
 As was mentioned in Section 4.1 , extraction of requirements for the designed system
 starts from its tasks that are formulated by the operator in accordance with the
 wishes of the stakeholder. Tasks of the microcontroller-based physical security
 system, described in Section 6.1.1 , can be represented as follows:

 ● centralized system management;
 ● static perimeter monitoring;
 ● mobile perimeter monitoring;
 ● appropriate level of security.

 Note that an appropriate level of security is set according to parameters of the
 attacker model presented in Section 3.2 — access, knowledge and resources types.
 Links between these tasks and abilities as well as requirements are considered in
 more detail in Table 11 .

 Table 11 . Tasks, abilities and requirements of the designed system
 Task Ability Requirement Dependency

 centralized
 system

 management

 to store and process
 system data

 device that represents the
 server of the system

 to run executable
 applications

 to download and install
 software updates

 to create wireless
 access points

 to communicate with
 mobile robots

 to communicate with
 charging stations

 to provide a user
 interface for operators
 of the system

 static
 perimeter
 monitoring

 to provide wireless
 charging

 devices that represent
 charging stations of the
 system

 to provide static
 perimeter monitoring ,
 the task of centralized
 system management
 should already be
 satisfied

 to monitor the
 perimeter nearby

 to communicate with
 mobile robots

 to communicate with
 the server of the
 system

 168

 Task Ability Requirement Dependency

 mobile
 perimeter
 monitoring

 to be charged
 wirelessly

 devices that represent
 mobile robots of the system

 to provide mobile
 perimeter monitoring ,
 the tasks of centralized
 system management
 and static perimeter
 monitoring should
 already be satisfied

 to navigate through the
 perimeter

 to detect and chase
 intruders

 to communicate with
 charging stations

 to communicate with
 the server of the
 system

 appropriate level
 of security

 to be secure against
 attackers with , 𝑎𝑐 = 4

 , 𝑘𝑛 = 2 𝑟𝑠 = 2

 security requirements
 should be taken into
 account during the
 formation of all devices of
 the system

 It is required to store tasks of the system in the system_tasks table of the database,
 abilities — system_abilities , requirements — system_requirements , while
 connections between them in such tables as system_tasks_and_abilities and
 system_abilities_and_requirements . For more detail, see Section 5.2.2 .

 As noted in Table 11 , requirements can be divided into requirements for the server,
 mobile robots and charging stations of the system as well as security requirements.
 Note that security requirements should be taken into account not only on the
 system-level but also during the design of all its devices.

 Let’s consider the requirements for the server of the system in more detail.

 Once again it is required to analyze tasks for such a device, connect them with
 abilities and requirements, see Table 12 . Tasks of the server can be divided:

 ● work cycle support;
 ● interaction with the operator;
 ● interaction with other devices;
 ● appropriate level of security.

 Note that on the level of devices it becomes possible to connect requirements with
 controllers and different components as well as parts of the software and firmware.

 In addition, requirements for the designed system must be connected with the
 corresponding tasks of its devices. It is required to store those connections in the
 system_requirements_and_tasks table of the database, see Section 5.2.2 .

 169

 Table 12 . Tasks, abilities and requirements related to the server
 Task Ability Requirement Dependency

 work cycle
 support

 to store data
 32-bit operating system

 sql database

 to update software

 wire network interface

 software update server

 software update mechanism

 to run applications 32-bit operating system

 to create wireless
 access points

 32-bit operating system

 wireless network interface

 access points configuration
 mechanism

 interaction with
 operators

 to provide graphical
 user interface

 application with GUI
 to provide interaction
 with operators , the task
 of work cycle support
 should already be
 satisfied

 app-db connection

 data processing algorithm

 data presentation algorithm

 interaction with
 other devices

 to communicate with
 other devices

 wireless network interface to provide interaction
 with other devices , the
 task of work cycle
 support should already
 be satisfied

 devices communication
 algorithm

 appropriate level
 of security

 to be secure against
 attackers with , 𝑎𝑐 = 4

 , 𝑘𝑛 = 2 𝑟𝑠 = 2

 security should be taken into
 account during the formation
 of all elements of the device

 It is required to store tasks of the device in the device_tasks table of the database,
 abilities — device_abilities , requirements — device_requirements , while connections
 between them in device_tasks_and_abilities and device_abilities_and_requirements .
 For more detail, see Section 5.2.2 .

 The following device, whose requirements must be considered in more detail, is one
 of the charging stations of the system . Its tasks can be divided:

 ● work cycle support;
 ● interaction with intruders;
 ● interaction with mobile robots;
 ● interaction with the server;
 ● appropriate level of security.

 170

 Links between tasks, abilities and requirements of one of the charging stations are
 considered in more detail in Table 13 .

 Table 13 . Tasks, abilities and requirements related to the charging stations
 Task Ability Requirement Dependency

 work cycle
 support

 to update firmware

 wireless network interface

 bootloader

 firmware update mechanism

 to charge parked
 devices wireless charge transmitter

 interaction
 with intruders to detect intruders

 motion sensor
 to provide interaction
 with intruders , the task
 of work cycle support
 should already be
 satisfied

 noise sensor

 servo drive

 intruder detection algorithm

 interaction
 with

 parking devices

 to help mobile devices
 to park near

 wireless signal transmitter to provide interaction
 with parking devices ,
 the task of work cycle
 support should already
 be satisfied

 parking direction algorithm

 interaction with
 the server

 to communicate with
 the server

 wireless network interface to provide interaction
 with the server , the
 task of work cycle
 support should already
 be satisfied

 server communication
 algorithm

 appropriate
 level of security

 to be secure against
 attackers with , 𝑎𝑐 = 4

 , 𝑘𝑛 = 2 𝑟𝑠 = 2

 security should be taken into
 account during the formation
 of all elements of the device

 Once again, it is required to store this data in the database: tasks — device_tasks ,
 abilities — device_abilities , requirements — device_requirements , while connections
 between them in device_tasks_and_abilities and device_abilities_and_requirements .
 For more detail, see Section 5.2.2 .

 The last device, which requirements are required to be considered in more detail, is
 one of the mobile robots of the system . Its tasks can be divided:

 ● work cycle support;
 ● perimeter monitoring;
 ● interaction with intruders;
 ● interaction with charging stations;
 ● interaction with the server;
 ● appropriate level of security.

 171

 Links between tasks, abilities and requirements of one of the mobile robots are
 considered in more detail in Table 14 .

 Table 14 . Tasks, abilities and requirements related to the mobile robots
 Task Ability Requirement Dependency

 work cycle
 support

 to update firmware

 wireless network interface

 bootloader

 firmware update mechanism

 to be charged in a
 wireless way

 wireless charge receiver
 battery should provide
 power supply for 8
 hours

 battery

 charge monitoring algorithm

 perimeter
 monitoring

 to move
 collector motor to move , the work cycle

 support task should
 already be satisfied movement algorithm

 to avoid obstacles

 distance sensor

 to avoid obstacles ,
 each robot should
 already have an ability
 to move

 touch sensor

 servo drive

 obstacles detection algorithm

 obstacles avoidance algorithm

 to navigate

 encoder
 to navigate , each robot
 should already have
 and ability to avoid
 obstacles

 map construction algorithm

 path construction algorithm

 interaction with
 intruders

 to detect intruders

 motion sensor
 to detect an intruder ,
 the perimeter
 monitoring task should
 already be satisfied

 noise sensor

 servo drive

 intruders detection algorithm

 to chase intruders

 distance sensor to chase intruders ,
 each mobile robot
 should already have an
 ability to detect
 intruders

 intruders chase algorithm

 interaction
 with charging

 stations

 to park near
 charging stations

 wireless signal receiver to park near charging
 stations , the perimeter
 monitoring task should
 already be satisfied parking algorithm

 172

 Task Ability Requirement Dependency

 interaction with
 the server

 to communicate
 with the server

 wireless network interface to communicate with
 the server , the work
 cycle support task
 should already be
 satisfied

 server communication
 algorithm

 appropriate
 level of security

 to be secure against
 attackers with

 , , 𝑎𝑐 = 4 𝑘𝑛 = 2
 𝑟𝑠 = 2

 security requirements should
 be taken into account during
 the formation of all elements of
 the server

 Once again, it is required to store this data in the database: tasks — device_tasks ,
 abilities — device_abilities , requirements — device_requirements , while connections
 between them in device_tasks_and_abilities and device_abilities_and_requirements .
 For more detail, see Section 5.2.2 .

 It is important to note that devices of the designed system have requirements that
 introduce dependencies between their elements after selection:

 ● wireless network interface requirements must be satisfied for the server,
 charging stations and mobile robots in such a way that they can communicate
 with each other (selected implementations must be compatible);

 ● wireless charge transmitters of charging stations must be compatible with
 wireless charge receivers of mobile robots;

 ● wireless signal transmitters of charging stations must be compatible with
 wireless signal receivers of mobile robots.

 Also, dependencies between tasks and abilities can be hierarchical, for example,
 such dependencies for one of the mobile robots are presented in Figure 111 .

 Figure 111 . The hierarchy of tasks and abilities of one of the mobile robots

 173

 6.1.3. Component composition of devices of the system
 As was mentioned in Section 6.1.2 , the microcontroller-based physical security
 system from Section 6.1.1 contains three types of devices — the server, mobile
 robots and charging stations, while each type has its own requirements. This section
 is describing how the database of the software implementation, the structure of
 which was presented in Section 5.2 , can be filled, so the algorithms from Sections
 4.1 and 4.2 will be able to prepare data for the abstract system representation.

 It is important to note that in this section it is assumed that the database is filled with
 data about attackers, attack actions and security elements as well as connections
 between them in accordance with Chapter 3 , while the structure of the database for
 them was presented in Section 5.2.1 .

 In Section 5.2.3 it was stated that in this work there are three types of bases that are
 possible for microcontroller-based devices, namely, such a device can be based on a
 single-board computer , connected microcontrollers or microcontroller . Moreover, the
 possibilities of bases are hierarchical: any single-board computer can do anything
 that is possible for connected microcontrollers while having additional possibilities,
 any connected microcontrollers > any microcontroller and so on. Possible bases of
 devices must be stored in the device_base table of the database, while the hierarchy
 of bases is represented by their ids in this table: more possibilities → lower id.

 The process of understanding which base is required for the designed devices is
 based on checking its requirements. It means that each requirement for any device
 from Section 6.1.2 that are stored in device_requirements must be connected with
 an appropriate base from device_base , while appropriate means base with minimal
 possibilities that can be used to satisfy the requirement. For example, the
 requirement “32-bit operating system” requires the “single-board computer” base to
 be satisfied, while “wireless signal transmitter” can be satisfied by “microcontroller”.
 Such connections must be stored in device_requirements_and_base .

 In accordance with the architecture of microcontroller-based physical security
 systems that is used in this work, devices of such systems can communicate only on
 four levels: controller ↔ component , controller ↔ controller , device ↔ device and
 system ↔ system (note: might not be all of them). Communication levels are stored
 in communication_levels , while their availability for designed devices is defined in
 accordance with their bases. For example, “microcontroller” base can communicate
 only on “controller ↔ component” level, while “connected microcontrollers” —
 “controller ↔ component”, “controller ↔ controller” and “device ↔ device”. It is
 required to store such connections in base_and_communication .

 Possible abstract links between devices of the designed system must be stored in
 the abstract_links table of the database. For the system provided in Section 6.1.1 , it

 174

 is enough to store “wireless” here. After that, stored links must be connected with the
 abilities of devices from device_abilities to define which abilities are required to have
 one of the “wireless” links between devices. Such connections must be stored in
 abstract_links_and_abilities . For example, “wireless” link robots ↔ stations can be
 extracted in accordance with the ability of stations “to help mobile robots to park
 near” and “to park near charging stations” ability of mobile robots.

 It is also required to connect requirements for devices with abstract elements and
 sub-elements that can be used to satisfy them. It is important to note that not all
 requirements can be represented as abstract elements. For example, the
 requirement “32-bit operating system” can be linked with the abstract element “32-bit
 operating system”, while the requirement “wire network interface” can only be used
 as one of the requirements for the implementation of the controller of the designed
 device. Moreover, the requirement “charge monitoring algorithm” can be linked only
 with the abstract sub-element “charge monitoring algorithm”. Abstract elements must
 be stored in abstract_elements , sub-elements — abstract_subelements .

 After that, based on the algorithm from Section 4.2, it is required to connect abstract
 elements with bases of designed devices, requirements for them, sub-elements,
 each other and security elements. Let’s consider each connection in more detail.

 Connections between abstract elements and bases are stored in the
 abstract_elements_and_base table of the database. For example, base “connected
 microcontrollers” can be connected with “microcontroller for electronic components”
 and “microcontroller for wireless communication” abstract elements.

 Connections between abstract elements and requirements for designed devices are
 stored in abstract_elements_and_requirements . For example, the requirement
 “distance sensor” can be connected with the “distance sensor” abstract element.
 Note that it is not obligatory for the requirement to have the same name as the
 corresponding abstract element. For example, this requirement can be rewritten as
 “to have a sensor that is able to measure the distance to the nearest obstacle”.
 Developed algorithms are not working with text values of requirements and are
 interested only in their identification in the database.

 There are also inner connections between abstract elements. Such connections are
 required because not all abstract elements that are necessary for the designed
 device can be extracted in accordance with bases and requirements. Some of them
 can be extracted only based on other abstract elements. For example, the abstract
 element “single-board computer” is connected with the “micro-SD” abstract element.
 Such connections must be stored in abstract_elements_and_elements .

 Abstract sub-elements can be extracted in accordance with device requirements, but
 they are also dependent on abstract elements because they represent their parts.

 175

 For example, the requirement “obstacles detection algorithm” states that the abstract
 element “firmware for electronic components” must have such abstract sub-elements
 as “obstacles detection algorithm” and “obstacles avoidance algorithm”. Such
 connections must be stored in abstract_elements_and_subelements .

 In addition, abstract sub-elements can be extracted in accordance with device bases
 and abstract elements they are dependent on. For example, the “microcontroller”
 base adds the “electronic components interaction algorithm” abstract sub-element to
 the “firmware for electronic components” abstract element.

 Connections between abstract and security elements are stored in
 abstract_elements_and_security . For example, the security element “backup power
 supply” can be connected with the abstract element “battery”.

 Connections between abstract sub-elements and security elements are stored in
 abstract_subelements_and_security . Once again, sub-elements are representing
 parts of elements, that is why such connections are also depending on them. For
 example, the security element “data encryption” adds the abstract sub-element
 “communication data encryption and decryption algorithm” to the abstract elements
 “firmware for electronic components”.

 Note that not all security elements can be interpreted as abstract elements and
 sub-elements. That is why in this work some of them are interpreted as
 recommendations to the implementation. Such recommendations are divided into
 one related to the designed system and the other one related to its devices.

 Connections between recommendations to the implementation of devices and
 security elements are stored in the device_recommendations_and_security table of
 the database. For example, the security element “hidden placement of sensors” can
 be connected with the requirement “to hide monitoring sensors of this device”.

 Connections between recommendations to the implementation of the system and
 security elements are stored in the system_recommendations_and_security table of
 the database. For example, the security element “training of operators and users”
 can be connected with the requirement “to educate operators and users of the
 system about social engineering attacks”.

 To not describe each insert to the developed database, its dump that was used for
 the design of the microcontroller-based physical security system, namely, perimeter
 monitoring system based on mobile robots, is available for download using the
 following link: https://github.com/levshun/PhD-mcbpss_design .

 176

https://github.com/levshun/PhD-mcbpss_design

 6.2. Application of the design methodology
 The application of the design methodology presented in Section 4.5 to the system
 presented in Section 6.1.1 can be divided into the design of its abstract and detailed
 models. Wherein the detailed model is an extension of the abstract one as well as
 the abstract model is a representation of the extendable set-based hierarchical
 relational model presented in Chapter 3 . Let’s consider the fulfilment of the database
 for the design of each model in more detail.

 6.2.1. Abstract model of the system
 The algorithm for the design of abstract models of microcontroller-based physical
 security systems is presented in Section 4.3 . This algorithm represents the system
 as an abstract hierarchical model that takes into account connections between
 system devices, their elemental composition, dependencies between device
 elements and requirements for them. Let’s consider database tables that must be
 filled for the correct work of the algorithm in more detail.

 As was mentioned in Section 5.2.1 , in this work abstract elements are divided into
 several types that are stored in elements_types . Connections between abstract
 elements and their types are stored in abstract_elements_and_types . For example,
 such abstract elements as “distance sensor” and “touch sensor” can be connected
 with the type “environment sensors”, while “motion sensor” and “noise sensor” —
 “monitoring sensors”. This table can also be used to calculate the number of abstract
 elements of a certain type.

 During the formation of requirements to controllers of microcontroller-based devices,
 it is important to assume the number of digital and analogue pins that are required to
 connect all necessary abstract elements as well as the amount of flash memory that
 is required to run the firmware with all necessary abstract sub-elements.

 Connections between abstract elements and the number of pins that are required for
 their connection to controllers are stored in abstract_elements_and_pins . For
 example, the abstract element “motor shield” requires 4 pins of a controller, while
 “motion sensor” requires only 1. Based on the designed device component
 composition and the content of abstract_elements_and_pins it becomes possible to
 form requirements for controllers of devices that are defining the minimal number of
 pins that they must have.

 Connections between abstract sub-elements and the amount of flash memory that is
 required for them are stored in abstract_subelements_and_flash_memory . For
 example, the “communication data encryption and decryption algorithm” required
 100 KB of flash memory, while the “obstacles detection algorithm” required only 20
 KB. Based on algorithms of the firmware of controllers of designed devices and the
 content of abstract_subelements_and_flash_memory it becomes possible to form

 177

 requirements for controllers that define the minimal amount of flash memory that
 they must have.

 It is important to take into account dependencies between abstract elements and
 links during the design of the abstract system model. Such dependencies are taken
 into account during the selection of the implementations of elements and links during
 the abstract model detailing process. In this work, dependencies are divided into two
 types: abstract elements that are depending on abstract links and abstract elements
 that are depending on other abstract elements. Let’s consider each type in detail.

 Dependencies between abstract links and abstract elements are stored in the
 links_and_dependencies table of the database. For example, the link that is based
 on such abilities as “to be charged in a wireless way” and “to charge parked devices”
 can be connected with the following abstract elements: “wireless charge receiver”,
 “wireless charge transmitter” and “battery”. It means that after the implementation of
 the wireless charging link between devices is selected, the number of options for the
 selection of mentioned abstract elements is limited for compatibility.

 Dependencies between abstract elements are stored in the following table of the
 database: abstract_elements_and_dependencies . For example, the following
 abstract elements are depending on the “microcontroller for electronic components”
 abstract element: “battery”, “motor shield” and “troyka shield”. It means that after the
 implementation of the controller that is used to work with components of the device is
 selected, the number of options for the selection of mentioned abstract elements is
 also limited for compatibility.

 In this work, links are taken into account not only on the level of communications
 between devices of the designed system but also on the level of communications
 between elements of devices. The information about the link between two elements
 after their combination must be stored in abstract_links_and_elements . For example,
 the combination of the following abstract elements can be connected with the
 abstract link “VG”: “microcontroller for electronic components” and “battery”. In the
 mentioned abstract link, “V” means voltage, while “G” means ground. Such a link
 represents a two-wire connection, where two elements are sharing the power supply.
 For more information about possible values of abstract links, see Section 3.1 .

 The information about the possibility to combine one abstract element with another
 must be stored in abstract_elements_combination . For example, the abstract
 element “32-bit operating system” can be connected with the following elements: “sql
 database”, “application with a graphical user interface” and “wireless access point”. It
 means that each of mentioned abstract elements can be a part of “32-bit operating
 system”: “sql database” and “application with a graphical user interface” can be
 installed and executed with its help, while “wireless access point” can be configured
 based on the operating system functionality.

 178

 6.2.2. Detailed model of the system
 The algorithm for the design of detailed models of microcontroller-based physical
 security systems is presented in Section 4.4 . The detailed model preserves and
 expands the structure of the abstract one and takes into account compatibility,
 requirements, dependencies and hierarchy of system elements. Let’s consider
 database tables that must be filled for the correct work of the algorithms in detail.

 The process of transition from abstract to detailed models is a step-by-step process.
 Each step represents the selection of implementations of one of the abstract
 elements, while the sequence of steps is formed in accordance with their hierarchy
 and dependencies. Moreover, after each step, the number of options for further steps
 is limited in accordance with compatibility. Let’s consider database tables that must
 be filled for the correct work of the algorithm in more detail.

 Implementations of links between devices of the designed system must be stored in
 the links_between_devices table of the database. This table describes if the
 implementation of the link is wireless, directed; transfers data, charge or signals;
 involves the creation of access points; provides encryption, authentication. Moreover,
 it describes its speed and range. All this information is used to check if the
 implementation satisfies requirements that were formed during the design of the
 abstract system model. For example, Wi-Fi communication:

 {
 "name" : "Wi-Fi" ,
 "interface" : "IEEE 800.11" ,
 "protocol" : "wireless 2.4 GHz" ,
 "wireless" : "true" ,
 "directed" : "false" ,
 "data" : "true" ,
 "charge" : "false" ,
 "signal" : "false" ,
 "access_point" : "true" ,
 "encryption" : "true" ,
 "authentication" : "true" ,
 "range" : 40 ,
 "speed" : 20
 }

 It means that Wi-Fi communication is wireless and transfers data on 2.4 GHz
 frequency using IEEE 800.11 protocol. Moreover, it provides a possibility to create
 access points, has encryption and authentication (for example, WPA2-PSK). Its
 range is near 40 meters, while the speed is around 20 Mbps (such a value is taken
 because microcontroller-based devices are not as powerful as modern routers). This
 description also states that Wi-Fi communication is not directed and can't be used for
 charging as well as for low-level communications like signal transferring.

 The process of detailing the mobile robots of the system is presented in Figure 112 .

 179

 Figure 112 . Detailing of one of the mobile robots of the designed system

 180

 It means that each abstract element of each device of the system must be detailed
 based on the selection of its implementation that satisfies given requirements, while
 the number of elements to be detailed differs from device-to-device. It means that
 the algorithm requires an abstract way to work with any number of abstract elements
 and extract necessary knowledge about their implementations from the database.

 Such work of the algorithm is possible because of the following table of the
 database: selectable_elements_and_db_tables . This table connects abstract
 elements with names of database tables, where their implementations are stored.
 For example, implementations of the abstract element “32-bit operating system” are
 stored in the operating_systems_32bit table, while “microcontroller for electronic
 components” — microcontrollers_for_electronic_components . It means that the
 algorithm can provide the database id of the abstract element to find out in which
 table its implementations are stored.

 After all possible implementations of the abstract elements are known for the
 algorithm, it is required to check them in terms of requirements, compatibility and
 dependencies. Let’s consider what tables of the database are used for this.

 Requirements are checked based on the content of the database table, extracted
 from selectable_elements_and_db_tables . Each requirement from the abstract
 system model has the same name as the column of the checked table. For example,
 implementations of the abstract elements “microcontroller for electronic components”
 are stored in microcontrollers_for_electronic_components . As a rule, there are
 requirements to the number of its pins and the amount of its flash memory:

 " pins " : 16 ,
 " flash_kb " : 540

 In turn, the table microcontrollers_for_electronic_components has corresponding
 columns with the same names:

 flash_kb INTEGER NOT NULL ,
 pins INTEGER NOT NULL ,

 It means that such requirements can be checked with an SQL query, where the
 name of the requirement is used as a column name, while the value of the
 requirements is used as a minimum value that satisfies the requirement.

 Compatibility is also checked in accordance with the requirements that were formed
 during the design of the abstract system model. But those requirements were formed
 in accordance with abstract sub-elements. The information about which
 implementation from the corresponding database table is compatible with provided
 abstract sub-elements are stored in database tables, whose naming is following the
 rule: db_table_name + “_and_compatibility” .

 181

 For example, it is required to select the implementation of the “microcontroller for
 wireless communication” abstract element. Its implementations are stored in
 mcs_for_ws_communication (based on selectable_elements_and_db_tables). It
 means that information about implementations compatibility with abstract
 sub-elements must be stored in mcs_for_ws_communication_and_compatibility .
 Moreover, the structure of such tables must be as follows:

 CREATE TABLE mcs_for_ws_communication_and_compatibility(
 id SERIAL PRIMARY KEY ,
 option_id INTEGER REFERENCES mcs_for_ws_communication(id),
 requirement_id INTEGER REFERENCES abstract_subelements(id),
 UNIQUE (option_id , requirement_id)
);

 Otherwise, the algorithm will not be able to check the compatibility requirements.
 And to continue the example about the “microcontroller for wireless communication”,
 in most cases, it must be compatible with the requirement to have the “bootloader”
 abstract sub-element, so its firmware can be updated.

 Dependencies between abstract elements and links must be stored in database
 tables that are named based on the following rule:

 option_1_table_name + “_and_” + option_2_table_name

 For example, let’s consider dependencies of the “wireless signal receiver” abstract
 element, implementations of which are stored in wireless_signal_receivers . Selection
 of this element depends on the selection of implementations of the following abstract
 elements and links: the wireless link between charging stations and mobile robots for
 their communication during parking and the “troyka shield”, to which this receiver is
 required to be connected. Possible implementations of the mentioned link are stored
 in links_between_devices , while ones for the “troyka shield” — troyka_shields .

 It means that dependencies between “wireless signal receiver” and abstract links
 must be stored in wireless_signal_receivers_and_links_between_devices , while with
 “troyka shield” in wireless_signal_receivers_and_troyka_shields . The structure of
 such tables of the database must be as follows:

 CREATE TABLE wireless_signal_receivers_and_troyka_shields(
 id SERIAL PRIMARY KEY ,
 option_1 INTEGER REFERENCES wireless_signal_receivers(id),
 option_2 INTEGER REFERENCES troyka_shields(id),
 UNIQUE (option_1 , option_2)
);

 Otherwise, the algorithm will not be able to take into account dependencies between
 implementations during their selection.

 182

 Once again, to not describe each insert to the developed database, its dump that
 was used for the design of the microcontroller-based physical security system,
 namely, perimeter monitoring system based on mobile robots, is available for
 download using the following link: https://github.com/levshun/PhD-mcbpss_design .

 At this point, all tables of the database that are required for the correct work of the
 methodology for the design of microcontroller-based physical security systems,
 presented in Section 4.5 , are manually filled with data that is required for the system,
 presented in Section 6.1.1 . It means that the software implementation, presented in
 Chapter 5 , can be executed as many times as necessary to check its compliance
 with the requirements, analyzed in Section 6.1 .

 It is important to note that while the fulfilment of the database with data for the design
 of one microcontroller-based physical security system requires a lot of time and
 effort, this effort can be used to design not only one system. It is assumed that the
 database would be filled in such a way that different microcontroller-based systems
 will partially share tasks, abilities, requirements, abstract elements, links and
 sub-elements as well as their implementations with each other, so the fulfilment of
 the database will take less time and effort after each system.

 Moreover, while in this work many tables of the database that are responsible for the
 compatibility of elements of designed devices were filled manually, this process can
 be automated. Such automation means the process of checking parameters of
 elements that were checked for decision making (for example, voltage, current,
 interface, number of wires, etc.) during manual fulfilment.

 In addition, based on the content of different online shops that are selling controllers
 and components for the implementation of microcontroller-based devices, it is
 possible to fill the database with information about such implementations
 automatically with the help of the parsing script. It would require multiple parsers,
 most likely one for each online shop, while each parser will require to be updated
 from time to time because online shops are not static.

 Finally, the process of fulfilment of the database presented in Section 5.2 can be
 shared between multiple enthusiasts and researchers. The formation of such a
 community would require the development of the web interface, which will guide
 contributors through the main steps of filling the database with data to design the
 selected microcontroller-based physical security systems. It would also require
 multiple algorithms for the checking of the correctness of the provided data.

 Thus, provided instructions on the fulfilment of the developed database should be
 considered as a general approach, which can be improved with help of the
 user-friendly interface as well as automated at many points, while the task of
 fulfilment can be shared among the community of enthusiasts.

 183

https://github.com/levshun/PhD-mcbpss_design

 6.3. Evaluation of the design methodology
 To evaluate the methodology for the design of microcontroller-based physical
 security systems, presented in Chapter 4 , it is required to analyze the compliance of
 its software implementation, presented in Chapter 5 , with functional and
 non-functional requirements as well as to compare the obtained results with scientific
 and commercial solutions. In addition, it is planned to investigate the dependencies
 between the design time of the system, presented in Section 6.1.1 , and parameters
 of the attacker, presented in Section 3.2 .

 6.3.1. Compliance with functional requirements
 Functional requirements are representing the list of functions that are defining the
 actions that the software implementation must perform. In Section 1.4 the following
 functional requirements were formulated:

 ● building an abstract representation of designed systems;
 ● finding a trade-off between the resources spent and security;
 ● no restrictions on platforms and architectures of devices to be designed;
 ● extensibility of the design process;
 ● taking into account the physical layer of designed systems.

 Let’s consider compliance with each requirement in more detail.

 Building an abstract representation of designed systems. The abstract
 representation of the designed system is provided by the abstract model. This model
 is constructed by the algorithm, presented in Section 4.3 . This algorithm represents
 the system as an abstract hierarchical model that takes into account connections
 between system devices, their elemental composition, dependencies between
 device elements and requirements for them.

 Finding a trade-off between the resources spent and security . The security of the
 designed system is based on the integration of security elements into its devices
 components composition. The number of security elements that are required to be
 integrated depends on the number of classes of attack actions that are possible on
 the designed device in accordance with its components composition, communication
 levels and parameters of the attacker against which the system is required to be
 protected, see Section 3.3 . It means that the exact same microcontroller-based
 physical security system can be designed with different amounts of security
 elements if the parameters of the attacker would differ.

 No restrictions on platforms and architectures of devices to be designed . The
 software implementation firstly works with abstract elements, sub-elements and links
 and only after that replaces them with their implementations, see Section 4.5 . It
 means that .

 184

 The extensibility of the design process . The structure of the database, presented in
 Section 5.2 , contains tables, the content of which affects how microcontroller-based
 physical systems are designed by the software implementation. So, the first way to
 extend the developed design approach is to fill those tables with more data:
 additional examples of attack actions, security elements, tasks, abilities,
 requirements, elements, sub-elements, etc. Moreover, it is possible to use other
 models of the attacker and attack actions, if necessary: a different number of
 parameters of the attacker as well as permissible ranges of their values, other
 classes of attack actions with different examples, etc. In addition, more parameters
 of elements can be taken into account as well as the list of calculated parameters for
 designed devices can be extended. Finally, additional algorithms can be integrated
 into the developed solution: design of software, formal verification, solution of
 optimization problems, design on the level of electronic components, etc.

 Taking into account the physical layer of the designed systems. The software
 implementation designs microcontroller-based physical security systems in
 accordance with the extendable set-based hierarchical relational model, presented in
 Chapter 3 . This model represents such systems as building blocks that are
 communicating with each other, while each block can have hardware and software
 elements. Moreover, communications between hardware and software elements are
 also taken into account as well as attack actions on them.

 Thus, the software implementation meets all functional requirements.

 6.3.2. Compliance with non-functional requirements
 Non-functional requirements describes requirements and constraints imposed on the
 resources consumed by the software implementation. In Section 1.4 , the set of
 non-functional requirements was divided into time consumption, resource
 consumption and validity. Let’s consider them in more detail.

 6.3.2.1. Time consumption
 The method for the evaluation of time consumption is presented in Section 2.1 , while
 this requirement is represented as follows:

 , 𝑃
 𝑇
(𝑇𝐼𝑀 𝐸

 𝑁
≤ 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶) ≥ 𝑃

 𝑇
 𝐴𝐶𝐶

 where — time required to design a secure system ; — probability of 𝑇𝐼𝑀 𝐸
 𝑁

 𝑁 𝑃
 𝑇

 designing a secure system in a given time frame; — acceptable time for 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶

 designing a secure system (1 sec for the abstract system model and 4 secs for the
 detailed model during the design process of the system of mobile robots for
 perimeter monitoring); — acceptable probability value (0.99). 𝑃

 𝑇
 𝐴𝐶𝐶

 185

 According to this method, time consumption is divided into time for designing the
 abstract and detailed models of the system, presented in Section 6.1.1 .

 Time consumption of the design process for the abstract system model is
 represented as the sum of the time consumption of each stage of this process:

 𝑇𝐼𝑀 𝐸 𝐴𝑀 = 𝑇
 1
 𝐴𝑀 + 𝑇

 2
 𝐴𝑀 + 𝑇

 3
 𝐴𝑀

 where — time of the formation of requirements for the system and its devices; 𝑇
 1
 𝐴𝑀

 — time of formation of the component composition of the abstract model; — 𝑇
 2
 𝐴𝑀 𝑇

 3
 𝐴𝑀

 time of formation of the components hierarchy, connections between them,
 requirements for them, dependencies between them and recommendations for
 ensuring system security after implementation.

 Time consumption of the design process for a detailed model of the system is the
 sum of the time consumption of each stage of this process:

 𝑇𝐼𝑀 𝐸 𝐷𝑀 = 𝑇
 1
 𝐷𝑀 + 𝑇

 2
 𝐷𝑀 + 𝑇

 3
 𝐷𝑀

 where — time of the formation of selection steps for links between system 𝑇
 1
 𝐷𝑀

 devices and elements of the devices; — time of the selection of detailed 𝑇
 2
 𝐷𝑀

 elements of the system; — time of the calculation of device parameters as well 𝑇
 3
 𝐷𝑀

 as insertion of information about selected elements into the abstract model.

 To obtain the average time consumption for each stage, the software implementation
 was executed 1000 times on the computer with Windows 10 x64 operating system,
 Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD and 32 GB RAM.
 Time consumption was measured with the help of the time Python library. Based on
 such an experiment, the main time indicators of design stages for abstract and
 detailed models were obtained, see Tables 15 and 16 , respectively.

 Table 15 . Time indicators for the design of the abstract system model

 Stage , ms 𝑇
 𝑖
 𝑚𝑖𝑛 , ms 𝑇

 𝑖
 𝑚𝑎𝑥

 𝑇
 𝑖

=
 3 𝑇

 𝑖
 𝑚𝑖𝑛 + 2 𝑇

 𝑖
 𝑚𝑎𝑥

 5
σ 2 (𝑇

 𝑖
) = 0 . 4 (𝑇

 𝑖
 𝑚𝑎𝑥 − 𝑇

 𝑖
 𝑚𝑖𝑛) 2

 1 3.99 6.98 5.19 3.58

 2 11.95 14.72 13.06 3.07

 3 51.86 59.48 54.91 23.23

 Total for the stage, ms 73.16 29.88

 186

 Then the value of the Laplace function , see Section 2.1 , for Φ(𝑍)

 for the design process of the abstract model of 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶 = 1000 𝑚𝑠
 microcontroller-based physical security systems:

Φ
 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶 −

 𝑖 = 1

 𝑛

∑ 𝑇
 𝑖

 𝑖 = 1

 𝑛

∑ σ
 𝑖
 2 (𝑇

 𝑖
)

⎛
⎜

⎝

⎞
⎟

⎠

= 1000 − 73 . 16
 29 . 88 () ≃ 169 . 56

 Table 16 . Time indicators for the design of the detailed system model

 Stage , ms 𝑇
 𝑖
 𝑚𝑖𝑛 , ms 𝑇

 𝑖
 𝑚𝑎𝑥

 𝑇
 𝑖

=
 3 𝑇

 𝑖
 𝑚𝑖𝑛 + 2 𝑇

 𝑖
 𝑚𝑎𝑥

 5
σ 2 (𝑇

 𝑖
) = 0 . 4 (𝑇

 𝑖
 𝑚𝑎𝑥 − 𝑇

 𝑖
 𝑚𝑖𝑛) 2

 1 1.99 3.05 2.41 0.45

 2 209.03 214.50 211.22 11.97

 3 5.92 10.97 7.94 10.20

 Total for the stage, ms 221.57 22.62

 And for the design process of the detailed model of microcontroller-based physical
 security systems, the Laplace function for : Φ(𝑍) 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶 = 4000 𝑚𝑠

Φ
 𝑇𝐼𝑀 𝐸 𝐴𝐶𝐶 −

 𝑖 = 1

 𝑛

∑ 𝑇
 𝑖

 𝑖 = 1

 𝑛

∑ σ
 𝑖
 2 (𝑇

 𝑖
)

⎛
⎜

⎝

⎞
⎟

⎠

= 4000 − 221 . 57
 22 . 62 () ≃ 794 . 45

 Thus, according to the calculated values of the Laplace function, the probability of
 designing the abstract system model in a given time:

 𝑃
 𝑁𝐸

(𝑇𝐼𝑀 𝐸 𝐴𝑀 ≤ 𝑇𝐼𝑀 𝐸
 1

 𝐴𝐶𝐶) = 0 . 9999

 And the probability of designing the detailed model of the system in a given time:

 , 𝑃
 𝑁𝐸

(𝑇𝐼𝑀 𝐸 𝐷𝑀 ≤ 𝑇𝐼𝑀 𝐸
 2

 𝐴𝐶𝐶) = 0 . 9999

 which means that the non-functional requirement for time consumption is satisfied.

 187

 6.3.2.2. Resource consumption
 The method for the evaluation of resource consumption is presented in Section 2.2 ,
 while this requirement is represented as follows:

 𝑃
 𝑅

(𝑅𝐸 𝑆
 𝑁

≤ 𝑅𝐸𝑆 𝐴𝐶𝐶) ≥ 𝑃
 𝑅
 𝐴𝐶𝐶

 where — probability that the resources spent on the design process of 𝑃
 𝑅

 𝑅𝐸 𝑆
 𝑁

 microcontroller-based physical security system does not exceed the allowable value
 (0.25); — the acceptable value of probability (0.99). 𝑅𝐸𝑆 𝐴𝐶𝐶 𝑃

 𝑅
 𝐴𝐶𝐶

 According to this method, resource consumption is divided into particular indicators,
 namely, CPU, HDD and RAM. To obtain the average resource consumption for each
 indicator, the software implementation was executed 1000 times on the computer
 with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores,
 16 threads) processor, 2 TB HDD and 32 GB RAM.

 Resource consumption of each indicator was measured with the help of psutil
 Python library. Let’s consider the results of such an experiment in more detail.

 Resource consumption when using central processing unit (CPU):

 𝑅𝐸𝑆
 𝐶𝑃𝑈

=
 𝑄

 𝐶𝑃𝑈
 𝐷𝑀

 𝑄
 𝐶𝑃𝑈
 𝐴𝐿𝐿

 where — central processing unit time spent on the design process of 𝑄
 𝐶𝑃𝑈
 𝐷𝑀

 microcontroller-based physical security systems; — total available CPU time. 𝑄
 𝐶𝑃𝑈
 𝐴𝐿𝐿

 During the design process of the microcontroller-based physical security system,
 each CPU core was loaded as follows:

 ● Core 1: thread 1 — 0.6%, thread 2 — 0.7%.
 ● Core 2: thread 3 — 6.7%, thread 4 — 0.0%.
 ● Core 3: thread 5 — 2.4%, thread 6 — 0.5%.
 ● Core 4: thread 7 — 1.1%, thread 8 — 0.0%.
 ● Core 5: thread 9 — 0.0%, thread 10 — 0.0%.
 ● Core 6: thread 11 — 0.3%, thread 12 — 0.2%.
 ● Core 7: thread 13 — 0.0%, thread 14 — 0.5%.
 ● Core 8: thread 15 — 1.2%, thread 16 — 0.0%.

 Thus, the indicator , which means that: 𝑅
 𝐶𝑃𝑈

= 0 . 0089

 , 𝑃
 𝑅𝐸𝑆

(𝑅𝐸𝑆
 𝐶𝑃𝑈

≤ 𝑅 𝐴𝐶𝐶) = 1

 and therefore requirement is fulfilled. 𝑃
 𝑅𝐸𝑆

(𝑅𝐸𝑆
 𝐶𝑃𝑈

≤ 𝑅 𝐴𝐶𝐶) ≥ 𝑃
 𝑅𝐸𝑆
 𝐴𝐶𝐶

 188

 Resource consumption when using a hard disk drive (HDD):

 𝑅𝐸𝑆
 𝐻𝐷𝐷

=
 𝑄

 𝐻𝐷𝐷
 𝐷𝑀

 𝑄
 𝐻𝐷𝐷
 𝐴𝐿𝐿

 where — HDD space used during the design process of microcontroller-based 𝑄
 𝐻𝐷𝐷
 𝐷𝑀

 physical security systems; — total available HDD space. 𝑄
 𝐻𝐷𝐷
 𝐴𝐿𝐿

 The size of the software implementation of the design methodology for
 microcontroller-based physical security systems consists of the following sizes:

 ● application: 27.1 MB;
 ● database: 15.0 MB.

 Thus, the software implementation size is 42.1 MB and the hard drive utilization rate
 is , which means that: 𝑅

 𝐻𝐷𝐷
= 0 . 000021

 , 𝑃
 𝑅𝐸𝑆

(𝑅𝐸𝑆
 𝐻𝐷𝐷

≤ 𝑅 𝐴𝐶𝐶) = 1

 and therefore requirement is fulfilled. 𝑃
 𝑅𝐸𝑆

(𝑅𝐸𝑆
 𝐻𝐷𝐷

≤ 𝑅 𝐴𝐶𝐶) ≥ 𝑃
 𝑅𝐸𝑆
 𝐴𝐶𝐶

 Resource consumption when using random-access memory (RAM):

 𝑅𝐸𝑆
 𝑅𝐴𝑀

=
 𝑄

 𝑅𝐴𝑀
 𝐷𝑀

 𝑄
 𝑅𝐴𝑀
 𝐴𝐿𝐿

 where — RAM amount used during the design of microcontroller-based 𝑄
 𝑅𝐴𝑀
 𝐷𝑀

 physical security systems; — total available amount of RAM. 𝑄
 𝑅𝐴𝑀
 𝐴𝐿𝐿

 During the design process the additional 100290560 bytes of RAM was used, which
 means that and: 𝑅

 𝑅𝐴𝑀
= 0 . 0029

 , 𝑃
 𝑅𝐸𝑆

(𝑅𝐸𝑆
 𝑅𝐴𝑀

≤ 𝑅 𝐴𝐶𝐶) = 1

 and therefore requirement is fulfilled. 𝑃
 𝑅𝐸𝑆

(𝑅𝐸𝑆
 𝑅𝐴𝑀

≤ 𝑅 𝐴𝐶𝐶) ≥ 𝑃
 𝑅𝐸𝑆
 𝐴𝐶𝐶

 The obtained values of the corresponding indicators showed that each requirement
 is fulfilled. It means that the non-functional requirement for 𝑃

 𝑅𝐸𝑆
(𝑟 ≤ 𝑅 𝐴𝐶𝐶) ≥ 𝑃

 𝑅𝐸𝑆
 𝐴𝐶𝐶

 resource consumption is satisfied.

 189

 6.3.2.3. Validity
 The method for the evaluation of validity is presented in Section 2.3 , while the
 number of parameters analyzed during the design process is selected as an
 indicator of the validity, namely number of levels of the system, the security of which
 can be ensured; classes of attacks against which the system can be protected.

 Levels of the system are divided:
 ● — controllers, components and their communications; 𝑐𝑛 ↔ 𝑐𝑟
 ● — controllers and their communications inside devices; 𝑐𝑟 ↔ 𝑐𝑟
 ● — devices and their communications with each other; 𝑑𝑣 ↔ 𝑑𝑣
 ● — system and its communications with other systems. 𝑠𝑡 ↔ 𝑠𝑡

 Classes of attack actions are divided:
 ● — components and their communications with controllers; 𝑐𝑛
 ● — controllers and their communications with other controllers; 𝑐𝑟
 ● — devices and their communications with other devices; 𝑑𝑣
 ● — system and its communications with other systems. 𝑠𝑡

 Requirements for these indicators are set by comparison with existing systems and
 represented as follows:

 , 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑁 | | ≥ 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝑠 ∈ 𝑆 | |()
 , 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝑁 | | ≥ 𝑚𝑎𝑥 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑠 ∈ 𝑆 | |()

 , 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑁

× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑁 | | > 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝑠 ∈ 𝑆
× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝑠 ∈ 𝑆 | |()

 where — suggested in this work design approach; — set of design approaches 𝑁 𝑆
 with which is compared; — number of levels of the system, the security 𝑁 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝐼 | |
 of which can be ensured by the design approach ; — number of classes 𝐼 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝐼 | |
 of attack actions against which the system can be protected by the design approach
 ; — number of parameters that are analyzed during the 𝐼 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝐼
× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝐼 | |
 design process by the approach . 𝐼

 The software implementation of the methodology for the design of
 microcontroller-based physical security systems was compared with commercial and
 scientific solutions.

 It is important to note that the comparison was made based on the publicly available
 data, where the presence or absence of the consideration of the security of different
 levels of the system during the design process was determined.

 190

 The comparison with commercial solutions is based on levels of systems, the
 security of which can be ensured, see Table 17 .

 Table 17 . The comparison with commercial solutions
 [117] [119] [120] [122] [124] [125] developed

 level
 of the

 system

 ↔ 𝑐𝑛 𝑐𝑟 – – – – – – +

 ↔ 𝑐𝑟 𝑐𝑟 – – – – – – +

 ↔ 𝑑𝑣 𝑑𝑣 – – – – – – +

 ↔ 𝑠𝑡 𝑠𝑡 + + + + + + +

 The comparison showed that the developed design methodology takes into account
 security of all four levels of microcontroller-based systems, while commercial
 solutions are focused only on one of them — they are aiming to secure individual
 devices that can be connected to the cloud. It means that the indicator

 of the validity requirement is satisfied. 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑁 | | ≥ 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝑠 ∈ 𝑆 | |()

 Another drawback of commercial solutions is that they are bound to the specific
 hardware, software, platforms and architectures. It means that if the designed
 system already contains devices whose hardware cannot be changed or there are
 restrictions that do not allow the use of suitable devices, then these solutions are not
 applicable. In addition, these solutions do not take into account the optimization of
 the system design process due to such limitations as parameters of the attacker,
 computational complexity, energy efficiency and price. It means that the resulting
 systems may not be reasonable for a developed use case because of no trade-off
 between resources and the provided security level.

 The comparison with scientific solutions is based on classes of attack actions against
 which the system can be protected, see Table 18 .

 Table 18 . The comparison with scientific solutions
 [72] [84] [115] [116] [128] [129] developed

 classes
 of attack
 actions

 𝑐𝑛 – – + – + – +

 𝑐𝑟 * * + + + + +

 𝑑𝑣 * * – – – + +

 𝑠𝑡 – – – – – – +

 Once again, it is important to note that the comparison was made based on the
 publicly available data, where the presence or absence of the consideration of
 protection against different classes of attack actions was determined. In addition,

 191

 note that “*” for [72] and [84] means that the models and approaches used by the
 authors can be improved for taking the corresponding classes of attack actions into
 account during the design process, while such functionality was not presented.

 The comparison showed that the developed design methodology provides protection
 against all four classes of attack actions on microcontroller-based systems, while
 scientific solutions are considering two of them at most. It means that the indicator

 of the validity requirement is also satisfied. 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑁 | | ≥ 𝑚𝑎𝑥 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝑠 ∈ 𝑆 | |()

 The drawback of existing scientific solutions is that they are focused on certain
 aspects of security, which ensures their inapplicability for providing the security of
 designed systems in general. For example, some approaches do not take into
 account that the functionality of system components is determined not only by
 software but also by hardware. Other approaches are considering designed devices
 in isolation from the system they will work in. It means that not all security aspects
 are taken into account and the security of the system as a whole will not be ensured.
 Also, some techniques are aimed at ensuring the security of communications
 between devices. The drawback is that such techniques provide a secure connection
 between designed systems and external systems only from the designed side, which
 can lead to security issues during the design of complex multi-level systems.

 The last indicator of the validity requirement to be checked is the number of
 parameters that are taken into account during the design process of
 microcontroller-based physical security systems. And according to the object
 function, see Section 1.5 , it is required to not only surpass other solutions in the
 number of analyzed parameters but also to maximize them.

 Results of analysis of commercial and scientific solutions in accordance with the
 number of levels of the system, the security of which can be ensured, and the
 number of classes of attacks against which the system can be protected are
 presented in Table 19 .

 Table 19 . The comparison with all solutions

 Solutions
 Levels of the system Classes of attack actions

 ↔ 𝑐𝑛 𝑐𝑟 ↔ 𝑐𝑟 𝑐𝑟 ↔ 𝑑𝑣 𝑑𝑣 ↔ 𝑠𝑡 𝑠𝑡 𝑐𝑛 𝑐𝑟 𝑑𝑣 𝑠𝑡

 [72] – – – – – * * –

 [84] – – – – – * * –

 [115] + + – – + + – –

 [116] + + – – – + – –

 [117] – – – + – – + +

 192

 Solutions
 Levels of the system Classes of attack actions

 ↔ 𝑐𝑛 𝑐𝑟 ↔ 𝑐𝑟 𝑐𝑟 ↔ 𝑑𝑣 𝑑𝑣 ↔ 𝑠𝑡 𝑠𝑡 𝑐𝑛 𝑐𝑟 𝑑𝑣 𝑠𝑡

 [119] – – – + – – + +

 [120] – – – + – – + +

 [122] – – – + – – – +

 [124] – – – + – – + +

 [125] – – – + – – – +

 [128] + + – – + + – –

 [129] – – + – – + + –

 developed + + + + + + + +

 The comparison showed that the developed design methodology provides protection
 against all analyzed classes of attack actions as well as takes into account security
 of all analyzed levels of microcontroller-based physical security systems, while other
 solutions are not considering that many parameters. Once again, note that “*” for [72]
 and [84] means that provided models and approaches can be improved for taking
 the corresponding classes of attack actions into account. It means that the last
 indicator is 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝑁
× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝑁 | | > 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑠 ∈ 𝑆

× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑠 ∈ 𝑆 | |()

 satisfied, thus, the non-functional requirement for validity is satisfied as well.

 6.3.3. Dependencies between design time and parameters of attackers
 The model of the attacker, presented in Section 3.2 , characterizes his or her
 capabilities in accordance with three parameters: — type of access, — type of 𝑎𝑐 𝑘𝑛
 knowledge, — type of resources, where: 𝑟𝑠

 ● can be in the range between 1 and 5 and describes the type of access the 𝑎𝑐
 attacker has to the system (for example, physical access to system devices);

 ● — 1 and 4 and describes the amount of information available about the 𝑘𝑛
 system (for example, system hardware and software are known);

 ● — 1 and 3 and describes the number of resources available to the attacker 𝑟𝑠
 (for example, the attacker can use specialized software tools).

 To obtain the average time for each combination of values of parameters, the
 software implementation was executed 10 times for each combination on the
 computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60GHz
 (8 cores) processor, 2 TB HDD and 32 GB RAM. Time consumption was measured
 with the help of the time Python library.

 193

 The relationship between these parameters and — system design time is shown 𝑑𝑡
 in Figure 113 . The scale on the left from 0 to 5 reflects changes in values of the
 attacker’s parameters — , and are shown as area charts, while the scale on 𝑎𝑐 𝑘𝑛 𝑟𝑠
 the right from 0 to 0.12 reflects the design time — is shown as a black line. 𝑑𝑡

 Figure 113 . Dependencies between design time and parameters of attackers

 The minimum design time was 0.2941 seconds, while the maximum — 0.3408.

 According to the related work analysis, presented in Chapter 1 , there is no data
 available about the average time of design of microcontroller-based physical security
 systems by commercial or scientific solutions with which the developed one was
 compared in the previous section. Moreover, even if this data would be available, it is
 difficult to compare design approaches when different systems with different
 amounts of devices that contain different amounts of elements are designed.

 6.4. Discussion
 Experimental evaluation of the software implementation of the methodology for the
 design of microcontroller-based physical security systems showed that the
 developed approach has advantages in comparison with analogues. In this work, a
 new approach to the design is presented, which allows combining various design
 techniques on the basis of hierarchical relational model transformation algorithms.
 This approach is modular and extensible, takes into account the security of the
 physical layer of microcontroller-based systems, works with the abstract system
 representation and is looking for a trade-off between the security of the final solution

 194

 and resources expended on it. Moreover, the methodology has a strong focus on
 security and aims at ensuring the protection of designed systems against various
 attack actions at the early stages of their lifecycle, considers security components as
 an integral part of the system and checks if the system can be designed in
 accordance with given requirements and limitations.

 The results obtained in this work are very important for solving fundamental issues in
 the field of ensuring information security of microcontroller-based systems and are
 aimed at expanding and improving the existing model-methodological apparatus
 associated with the design of such systems. The practical significance of the results
 lies in the fact that the system based on the proposed models, algorithms and
 methodology can be used as a tool for designing secure systems, thus, avoiding
 errors in the early stages of their life cycle.

 The following can be identified as potential consumers of the results of this work:
 scientific community, commercial companies, educational organizations as well as
 users and administrators of systems microcontroller-based systems, especially
 physical security ones. Let's consider each potential customer in more detail.

 The scientific community may be interested in expanding and improving the
 developed model-methodological apparatus as well as forming a community of
 enthusiasts to fill and maintain the database of the obtained solution.

 Commercial companies may be interested in introducing the developed
 model-methodological apparatus into the lifecycle of microcontroller-based systems
 they develop to improve their security.

 Educational organizations may be interested in conducting lectures and practical
 classes to share the experience gained in this work in the design of
 microcontroller-based physical security systems.

 Users and administrators can use the results obtained in this work to gain an
 understanding of the security status of microcontroller-based devices and systems
 that are within their area of responsibility.

 It is important to note that the results of this work can be brought to practical use in
 the form of a software product. The use of such a product will help to reduce the
 number of weak places and architectural defects in microcontroller-based systems,
 thereby significantly reducing their attack surface. In turn, this will reduce the security
 risks that can lead to financial losses, loss of time as well as the safety of people,
 which ensures the relevance and high significance of this work.

 195

 This work presents not only the developed model-methodological apparatus for the
 design of microcontroller-based physical security systems with its software
 implementation but also a framework that can be improved in various ways.

 For example, it can be improved with the use of genetic algorithms during the
 automated selection of implementations of different components and controllers
 among options that are satisfying given requirements. Based on priorities of
 parameters like price, energy consumption and computation efficiency it would be
 possible to solve the optimization task to find reasonable component compositions.

 In addition, the verification process can become an integral part of the solution. It can
 provide the formal check of the possibility to design microcontroller-based physical
 security systems in accordance with the given requirements. Moreover, it can
 provide the formal check of the security level of the designed system in accordance
 with the model of the attacker.

 Finally, the use of a component-based approach to modeling microcontroller-based
 physical security systems can be extended with semi-natural, simulation and
 analytical modeling. The advantage of the integration of these approaches is in the
 possibility to represent various aspects of such systems, including dynamic ones.

 6.5. Conclusions on Chapter 6
 Experimental evaluation of the methodology for the design of microcontroller-based
 physical security systems is done with help of its software implementation, which
 consists of the Python script, PostgreSQL database and Tkinter interface.

 The developed application was executed on the computer with Windows 10 x64
 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD
 and 32 GB RAM.

 For the experiment, it was decided to design a microcontroller-based physical
 security system that provides perimeter monitoring based on mobile robots. Such a
 system was chosen due to the presence of several types of devices, multiple
 communications between them, as well as the need to use many different elements
 for each device in the system (server consists of 8 elements with sub-elements,
 station — 12 and robot — 17, which means that such a system is appropriate in
 accordance with the provided requirements).

 The process of modeling this system in terms of the extendable set-based
 hierarchical relational model, see Chapter 3 , is presented in Appendix A .

 Based on links between tasks, abilities and requirements of this system, it was
 concluded that such a system consists of the following types of devices: the server,

 196

 charging stations and mobile robots. In turn, devices are having their own tasks that
 are linked with their abilities and requirements, while data about all of them must be
 stored in corresponding tables of the database.

 The process of manual fulfilment of all tables of the developed database that are
 required for the correct work of the software implementation was described. And
 after this process is done, the software implementation can be executed as many
 times as necessary to check its compliance with the requirements.

 It is important to note that while the fulfilment of the database with data about one
 system requires a lot of time and effort, this effort can be used to design other
 systems as well. The database can be filled in such a way that different systems will
 partially share tasks, abilities, requirements, abstract elements, links and
 sub-elements as well as their implementations with each other, so the fulfilment of
 the database will take less time and effort for every next system.

 Moreover, while in this work many tables of the database that are responsible for the
 compatibility of elements of designed devices were filled manually, this process can
 be automated. For example, based on the content of different online shops that are
 selling controllers and components for the implementation of microcontroller-based
 devices, it is possible to fill the database with information about such
 implementations automatically with the help of the parsing script.

 The software implementation satisfied all functional requirements and was analyzed
 in terms of compliance with non-functional ones, see Table 20 .

 Table 20 . Results of analysis of the software implementation
 Result Conclusion

 time
 consumption

 , 𝑃
 𝑁𝐸

(𝑇𝐼𝑀 𝐸 𝐴𝑀 ≤ 𝑇𝐼𝑀 𝐸
 1

 𝐴𝐶𝐶) = 0 . 9999

 𝑃
 𝑁𝐸

(𝑇𝐼𝑀 𝐸 𝐷𝑀 ≤ 𝑇𝐼𝑀 𝐸
 2

 𝐴𝐶𝐶) = 0 . 9999
 ✔

 resource
 consumption

 , 𝑃
 𝑅𝐸𝑆

(𝑅𝐸𝑆
 𝐶𝑃𝑈

≤ 𝑅 𝐴𝐶𝐶) = 1

 , 𝑃
 𝑅𝐸𝑆

(𝑅𝐸𝑆
 𝐻𝐷𝐷

≤ 𝑅 𝐴𝐶𝐶) = 1

 𝑃
 𝑅𝐸𝑆

(𝑅𝐸𝑆
 𝑅𝐴𝑀

≤ 𝑅 𝐴𝐶𝐶) = 1

 ✔

 validity

 , 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑁 | | ≥ 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝑠 ∈ 𝑆 | |()
 , 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝑁 | | ≥ 𝑚𝑎𝑥 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑠 ∈ 𝑆 | |()

 𝐿𝐸𝑉𝐸𝐿 𝑆
 𝑁

× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆
 𝑁 | | > 𝑚𝑎𝑥 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝑠 ∈ 𝑆
× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝑠 ∈ 𝑆 | |()
 ✔

 objective
 function

 𝑂
 𝐹
: 𝐿𝐸𝑉𝐸𝐿 𝑆

 𝑁
× 𝐴𝑇𝑇𝐴𝐶𝐾 𝑆

 𝑁 | | → 𝑚𝑎𝑥 ✔

 197

 It means that the goal of this work is reached, namely, the development of the design
 methodology for microcontroller-based physical security systems that builds an
 abstract representation of designed systems, finds a trade-off between the resources
 spent and ensured level of security, has no restrictions on platforms and
 architectures of the devices to be designed, is extensible and takes into account the
 physical layer of designed systems, while being in compliance with the requirements
 for time and resource consumption and taking into account more security parameters
 of designed systems than analogs.

 In addition, the dependencies between the design time of the system and
 parameters of the attacker (types of access — from 1 to 5, knowledge — from 1 to 4
 and resources — from 1 to 3) were investigated. Those parameters are defining
 attack actions that are possible for the attacker, which means that the number of
 security elements integrated into the designed system differs from one combination
 of parameters to another. During the experiments, the minimum design time was
 0.2941 seconds, while the maximum — 0.3408.

 It is important to note that the developed solution is not aimed to replace experts in
 the security of microcontroller-based systems. It is understandable that in most
 situations, experts are aware of existing best practices and highly specialized
 solutions and are able to design such systems at a very high level, while the quality
 of the solution provided by the implementation of the methodology directly depends
 on the correctness and completeness of its database. But even for an expert, it can
 be useful in terms of automatization of routine tasks as well as offering options that
 are different from those familiar to him or her.

 Moreover, this work presents not only the developed model-methodological
 apparatus for the design of microcontroller-based physical security systems but also
 a framework that can be improved in various ways: use of genetic algorithms during
 the automated selection of implementations, formal check of the possibility to design
 microcontroller-based, etc.

 For example, we already achieved some results in the process of verification of
 microcontroller-based devices, see Appendix B .

 In addition, we achieved some results in the connection of implementations of
 components, controllers, their software and firmware with vulnerabilities, described in
 CVE (Common Vulnerabilities and Exposures) format, see Appendix C .

 The dump of the database that was used for the design of the microcontroller-based
 physical perimeter monitoring system based on mobile robots, is available for
 download using the following link: https://github.com/levshun/PhD-mcbpss_design .

 198

https://github.com/levshun/PhD-mcbpss_design

 Conclusion

 The goal of this work is to develop the design methodology for microcontroller-based
 physical security systems that builds an abstract representation of designed systems
 finds a trade-off between the resources spent and ensured a level of security, has no
 restrictions on platforms and architectures of the devices to be designed, is
 extensible and takes into account the physical layer of designed systems while being
 in compliance with the requirements for time and resource consumption and taking
 into account more security parameters of designed systems than analogues.

 The process of achieving this goal is described in 6 chapters:
 1. Systematic analysis of the main issues of ensuring the information security of

 microcontroller-based systems.
 2. Methods for the evaluation of the design methodology for

 microcontroller-based physical security systems.
 3. The extendable set-based hierarchical relational model of

 microcontroller-based physical security systems.
 4. Algorithms and methodology for the design of microcontroller-based physical

 security systems.
 5. Software implementation of the methodology for the design of

 microcontroller-based physical security systems.
 6. Experimental evaluation of the methodology for the design of

 microcontroller-based physical security systems.

 Let’s consider the main results of each chapter in more detail.

 In Chapter 1 the analysis and systematization of modern research in the field of
 information security of microcontroller-based systems have been carried out. Place
 and role of design techniques in ensuring the information security of such systems
 were shown. The drawbacks of existing solutions were pointed out. It was concluded
 that a general approach for solving the issue of designing secure systems is not
 done yet. Among all possible systems, in this work, only physical security systems
 were chosen as an area of the application because in such systems it is required to
 ensure not only the functionality of the system but also to ensure its security against
 cyber-physical attacks during the design process. The developed architecture of
 microcontroller-based physical security systems contains components, controllers
 and devices that are communicating with each other, their software and firmware.
 The functional and non-functional requirements for the new design methodology
 were formulated. The objective function of the developed design methodology is
 aimed at maximization of the number of security parameters that are analyzed during
 the design process of microcontroller-based systems.

 199

 Chapter 2 presents methods for the evaluation of the design methodology for
 microcontroller-based physical security systems. Methods are divided into the
 evaluation of time and resource consumption as well as validity. Time consumption is
 defined as the probability that the approach is able to design a system in accordance
 with the input data in a given time frame. Resource consumption — the probability
 that the number of resources (CPU, HDD, RAM) used during the design process will
 not exceed the allowable value. And validity — number of levels of the system, the
 security of which can be ensured, and number of classes of attack actions against
 which the system can be protected, are maximized.

 In Chapter 3 one of the main findings of this work is presented, namely, the
 extendable set-based hierarchical relational model of microcontroller-based physical
 security systems. For this model, a component-based approach was chosen as the
 most detailed way of representation. Moreover, this approach is the most appropriate
 one if it is required to take into account the security of the system as early as
 possible. Developed in this work model represents microcontroller-based physical
 security systems as building blocks (hardware and software elements) that are
 communicating with each other through links (protocols and interfaces), while the
 security is taken into account in accordance with models of the attacker and attack
 actions. Within the framework of the developed model, all elements are connected
 with each other through their properties. The developed model of the attacker is
 distinguishing attackers according to their types of access, knowledge and
 resources, while the developed model of attack actions distinguishes attacks based
 on their subject, object and impact method. In addition, instead of separate impact
 methods, it was decided to use classes of attack actions, while each class contains
 multiple examples of methods.

 Chapter 4 presents the following two main findings of this work, namely, the set of
 algorithms and the methodology for the design of microcontroller-based physical
 security systems. Let’s consider each algorithm and methodology in more detail.

 The algorithm for the formation of requirements for microcontroller-based physical
 security systems is used to extract attack actions that are possible for the attacker as
 well as the list of devices of the designed system, their links, communications, bases
 and requirements in accordance with general tasks of the system. The output data of
 the algorithm is well-structured and JSON-based. The work process of the algorithm
 is automatic, the operator is required for the transformation of wishes of the
 stakeholder into general tasks of the system and parameters of the attacker.

 The algorithm for the formation of microcontroller-based physical security systems
 component compositions is used to extract abstract elements and sub-elements of
 devices of the system, security recommendations to the system and its devices
 implementations as well as abstract links between devices with related to them
 abilities based on attack actions that are possible for the attacker, list of devices of

 200

 the system, their bases, types of communications and links, requirements for them.
 This algorithm works with abstract elements, links and recommendations and
 represents the component compositions as multiple devices, each of which has
 multiple abstract elements, while each abstract element can have multiple abstract
 sub-elements. The work process of the algorithm is automated, the operator is not
 required. Its output data is also well-structured and JSON-based.

 The algorithm for the design of abstract models of microcontroller-based physical
 security systems is used to construct an abstract representation of the designed
 system based on its devices list, their abilities, elements and sub-elements as well
 as security recommendations. This algorithm represents the system as an abstract
 hierarchical model that takes into account connections between system devices,
 their elemental composition, dependencies between device elements and
 requirements for them. As output data, the algorithm provides the abstract system
 model that contains abstract system representation. The structure of the abstract
 system model is JSON-based and contains the following fields: devices,
 recommendations and links, while each element of the device from the “components”
 field has its own components (sub-elements), links, requirements and dependencies.
 The work process of the algorithm is automatic, the operator is not required.

 The algorithm for the design of detailed models of microcontroller-based physical
 security systems is used to construct a detailed representation of the designed
 system based on its abstract representation. Detailed model of the system preserves
 and expands the structure of the abstract model of the system and takes into
 account compatibility, requirements, dependencies and hierarchy of its elements.
 The process of transition from the abstract system model to the detailed one is a
 step-by-step process. Each step represents the selection of the concrete
 implementation of one of the system elements, while the sequence of steps is
 formed in accordance with the hierarchy and dependencies between those elements.
 As output data, the algorithm provides a detailed system model. Its structure is also
 JSON-based. Moreover, it has the same structure as the abstract system model but
 with some additions: each element from the components field that was selected is
 extended with the selected field; each device of the system is extended with the
 parameters field; each link between devices of the system is extended with the
 selected field. The work process of the algorithm is mostly automated, involvement
 of the operator is possible at the stage of selection of the concrete implementations
 of elements among suitable options provided by the algorithm. Alternatively, the
 algorithm can select concrete implementations on its own.

 The methodology for the design of microcontroller-based physical security systems
 consists of two main cycles. The main goal of the first cycle is to design the abstract
 system model based on provided requirements, while the second one is about the
 design of the detailed system model based on the selection of components. Each
 cycle of the methodology consists of the testing process and seven stages that are

 201

 associated with the extendable set-based hierarchical relational. The testing process
 occurs after each stage as many times as necessary to build the model of the
 system. The objective of the testing process is in checking constructed models in
 terms of their correctness and compatibility. In terms of the input data, the first cycle
 works with requirements and limitations, while providing abstract models of system
 elements and the abstract model of the system as an output. In its turn, the second
 cycle works with models that were designed by the first cycle and adds to the
 abstract model data about selected devices and their parameters as an output.
 Another way to represent the workflow of the methodology is to showcase its
 connection with the presented algorithms: the first three algorithms are representing
 the abstract system model design cycle, while the last one is representing the
 detailed system model design cycle.

 In Chapter 5 one of the main findings of this work, namely, the software
 implementation of the methodology for the design of microcontroller-based physical
 security systems is presented. Its architecture consists of the Python script,
 PostgreSQL database and Tkinter interface. PostgreSQL database is required to
 store data about the presented extendable set-based hierarchical relational model,
 as well as data for algorithms and methodology. Python script represents the
 implementation of the algorithms and methodology: each algorithm is implemented
 as a number of functions, while all functions are connected with each other in a
 single methodology. Tkinter interface is required to receive input data from the
 operator, namely, parameters of the attacker and tasks of the designed system, as
 well as to provide the output data to him or her.

 Chapter 6 presents the experimental evaluation of the methodology for the design of
 microcontroller-based physical security systems. It is done with the help of the
 presented software implementation of the methodology. For the experiment, it was
 decided to design a system that provides perimeter monitoring based on mobile
 robots. Such a system was chosen due to the presence of several types of devices,
 multiple communications between them, as well as the need to use many different
 elements for each device in the system (server consists of 8 elements with
 sub-elements, station — 12 and robot — 17, which means that it satisfies the
 provided requirements). The process of modeling this system in terms of the
 extendable set-based hierarchical relational model is presented in Appendix A .

 The process of manual fulfilment of all tables of the developed database that are
 required for the correct work of the software implementation was described. It is
 important to note that while the fulfilment of the database with data about one system
 requires a lot of time and effort, this effort can be used to design other systems as
 well. The database can be filled in such a way that different systems will partially
 share tasks, abilities, requirements, abstract elements, links and sub-elements as
 well as their implementations with each other, so the fulfilment of the database will
 take less time and effort for every next system.

 202

 Moreover, while in this work many tables of the database that are responsible for the
 compatibility of elements of designed devices were filled manually, this process can
 be automated. For example, based on the content of different online shops that are
 selling controllers and components for the implementation of microcontroller-based
 devices, it is possible to fill the database with information about such
 implementations automatically with the help of the parsing script. Such a functionality
 represents one of the future work directions of this work. For example, it is possible
 to use artificial intelligence methods for this task.

 In addition, with the help of the user-friendly interface, the task of the fulfilment of the
 database can be shared among the community of enthusiasts. Such a functionality
 represents one of the future work directions of this work. For example, it is possible
 to use the Django web framework to provide such an interface.

 It might also be interesting to investigate other technologies for the storage of the
 extendable set-based hierarchical relational model of microcontroller-based physical
 security systems. For example, object-oriented models like UML (Unified Modeling
 Language) with its extensions for the Internet of Things or ontologies like OWL (W3C
 Web Ontology Language).

 The software implementation was executed on the computer with Windows 10 x64
 operating system, Intel Core i7-4790 CPU 3.60GHz (8 cores) processor, 2 TB HDD
 and 32 GB RAM. Experiments showed that it satisfies all functional and
 non-functional requirements, provided during the research problem statement.

 It means that the goal of this work is reached, namely, the development of the design
 methodology for microcontroller-based physical security systems that builds an
 abstract representation of designed systems, finds a trade-off between the resources
 spent and ensured a level of security, has no restrictions on platforms and
 architectures of the devices to be designed, is extensible and takes into account the
 physical layer of designed systems while being in compliance with the requirements
 for time and resource consumption and taking into account more security parameters
 of the designed system than commercial and scientific analogues.

 In addition, the dependencies between the design time of the system and the
 parameters of the attacker were investigated. Those parameters are defining attack
 actions that are possible for the attacker, which means that the number of security
 elements integrated into the designed system differs from one combination of
 parameters to another. During the experiments, the minimum design time was
 0.2941 seconds, while the maximum — 0.3408.

 It is important to note that the developed solution is not aimed to replace experts in
 the security of microcontroller-based systems. It is understandable that in most
 situations, experts are aware of existing best practices and highly specialized

 203

 solutions and are able to design such systems at a very high level, while the quality
 of the solution provided by the implementation of the methodology directly depends
 on the correctness and completeness of its database. But even for an expert, it can
 be useful in terms of automatization of routine tasks as well as offering options that
 are different from those familiar to him or her.

 Moreover, this work presents not only the developed model-methodological
 apparatus for the design of microcontroller-based physical security systems but also
 a framework that can be improved in various ways: use of genetic algorithms during
 the automated selection of implementations, formal check of the possibility to design
 microcontroller-based systems, etc. For example, we already achieved some results
 in the process of verification of microcontroller-based devices, see Appendix B .

 In Section 4.5 it was mentioned that the developed methodology might find out that
 selected components are not working as intended — some of the requirements or
 limitations are violated. And in such a situation, the methodology will try to rebuild the
 system model until it is done or conclude that it is not possible — the number of
 attempts is limited. This functionality currently is not developed in the software
 implementation, see Chapter 5 , and represents one of the future work directions.

 It is also possible to connect implementations of components and controllers as well
 as their software and firmware with vulnerabilities, described in the CVE (Common
 Vulnerabilities and Exposures) format. Such a connection is possible based on CPE
 (Common Platform Enumeration) descriptions, more precisely, on their URIs
 (Uniform Resource Identifier). So, if the information about the vendor, product and
 version of the hardware, application or operating system is available, with some
 probability of false positives, it is possible to extract the corresponding CPE URIs.
 The combination of CPE URIs of the device represents its configuration. Such
 configuration can be checked in terms of being vulnerable and connected to CVEs.
 The results achieved in this direction are presented in Appendix C .

 204

 References
 1. Desnitsky V., Chechulin A., Kotenko I., Levshun D. and Kolomeec M.

 Combined design technique for secure embedded devices exemplified by a
 perimeter protection system // Trudy SPIIRAN. 2016. Vol. 48. P. 5-31. [in Russian]

 2. Levshun D., Chechulin A., Kotenko I. and Chevalier Y. Design and
 verification methodology for secure and distributed cyber-physical systems // 2019
 10th IFIP International Conference on New Technologies, Mobility and Security
 (NTMS). IEEE, 2019. P. 1-5.

 3. Pressley A. Securing connections in the cloud and across IoT devices //
 Intelligent CIOEurope, 2020.

 4. Baheti R., Gill H. Cyber-physical systems // The impact of control
 technology. 2011. Vol. 12. No. 1. P. 161-166.

 5. Schwab K. The fourth industrial revolution. Currency, 2017.
 6. Hehenberger P., Vogel-Heuser B., Bradley D., Eynard B., Tomiyama T.

 and Achiche S. Design, modelling, simulation and integration of cyber physical
 systems: Methods and applications // Computers in Industry. 2016. Vol. 82. P.
 273-289.

 7. Zegzhda D. Sustainability as a criterion for information security in
 cyber-physical systems // Automatic control and computer sciences. 2016. Vol. 50.
 No. 8. P. 813-819.

 8. Broy M. Engineering cyber-physical systems: challenges and
 foundations // Complex Systems Design & Management. Springer, Berlin,
 Heidelberg, 2013. P. 1-13.

 9. Li Y., Li X., Wang L. and Li Y. Limestone-gypsum wet flue gas
 desulfurization based on Cyber-Physical System // 2019 Chinese Control And
 Decision Conference (CCDC). IEEE, 2019. P. 473-477.

 10. Rogozinsky G. Multi-domain approach and models of cyber-physical
 objects in information representation systems // Proceedings of Telecommunication
 Universities. 2017. Vol. 3. No. 4. P. 88-93.

 11. Xiao-Le W., Hong-Bin H., Su D. and Li-Na C. A service-oriented
 architecture framework for cyber-physical systems // Recent Advances in Computer
 Science and Information Engineering. Springer, Berlin, Heidelberg, 2012. P. 671-676.

 12. Dong P., Han Y., Guo X. and Xie F. A systematic review of studies on
 cyber physical system security // International Journal of Security and Its
 Applications. 2015. Vol. 9. No. 1. P. 155-164.

 13. Lee J., Bagheri B., Kao H. A cyber-physical systems architecture for
 industry 4.0-based manufacturing systems // Manufacturing letters. 2015. Vol. 3. P.
 18-23.

 14. Xia X., Liu C., Wang H. and Han Z. A Design of Cyber-Physical System
 Architecture for Smart City // Recent Trends in Intelligent Computing, Communication
 and Devices. Springer, Singapore, 2020. P. 967-973.

 205

 15. Rojas R., Rauch E., Vidoni R. and Matt D. Enabling connectivity of
 cyber-physical production systems: a conceptual framework // Procedia
 Manufacturing. 2017. Vol. 11. P. 822-829.

 16. Alguliyev R., Imamverdiyev Y., Sukhostat L. Cyber-physical systems and
 their security issues // Computers in Industry. 2018. Vol. 100. P. 212-223.

 17. Cardin O. Classification of cyber-physical production systems
 applications: Proposition of an analysis framework // Computers in Industry. 2019.
 Vol. 104. P. 11-21.

 18. Zegzhda D., Poltavtseva M., Lavrova D. Systematization and security
 assessment of cyber-physical systems // Automatic control and computer sciences.
 2017. Vol. 51. No. 8. P. 835-843.

 19. Romanov V.N. Approach for complex systems analysis. SPb: SZTU.
 2011. 287 p. [in Russian]

 20. Kohanovskiy V., Sergeyeva M., Komakhidze M. System complexity
 index. Vestnik Donskogo gosudarstvennogo tekhnicheskogo universiteta –
 Advanced Engineering Research. 2012. Vol. 4(65). P. 22–26. [in Russian]

 21. Burg A., Chattopadhyay A., Lam K. Wireless communication and
 security issues for cyber–physical systems and the Internet-of-Things // Proceedings
 of the IEEE. 2017. Vol. 106. No. 1. P. 38-60.

 22. Mikhaylov K., Tervonen J. Evaluation of power efficiency for digital serial
 interfaces of microcontrollers // 2012 5th International Conference on New
 Technologies, Mobility and Security (NTMS). IEEE, 2012. P. 1-5.

 23. Avatefipour O., Hafeez A., Tayyab M. and Malik H. Linking received
 packet to the transmitter through physical-fingerprinting of controller area network //
 2017 IEEE Workshop on Information Forensics and Security (WIFS). IEEE, 2017. P.
 1-6.

 24. Gaifulina D., Kotenko I., Fedorchenko A. A Technique for Lexical Markup
 of Structured Binary Data for Problems of Protocols Analysis in Uncertainty
 Conditions. Sistemy upravleniya, svyazi i bezopasnosti — Systems of Control,
 Communication and Security. 2019. Vol. 4. P. 280–299. [in Russian]

 25. Doynikova E. [Security assessment and selection of protective
 measures in computer networks based on attack graphs and service dependencies].
 Dissertaciya na soiskanieuchenoj stepeni kandidata tekhnicheskih nauk –
 Dissertation for the degree of Candidate of Technical Sciences. 2017. 207 p. [in
 Russian]

 26. Federal’nyj zakon “O bezopasnosti kriticheskoj informacionnoj
 infrastruktury Rossijskoj Federacii” ot 26.07.2017 No 187-FZ (poslednyaya
 redakciya) – Federal Law “On the Security of the Critical Information Infrastructure of
 the Russian Federation” dated July 26, 2017 No. 187-FZ (last edition). Consultant
 Plus. [in Russian]

 27. Stallings W. The internet of things: network and security architecture //
 Internet Protoc. J. 2015. Vol. 18. No. 4. P. 2-24.

 206

 28. Khaitan S. and McCalley J. Design techniques and applications of
 cyberphysical systems: A survey // IEEE Systems Journal. 2014. Vol. 9. No. 2. P.
 350-365.

 29. Gomez C., Chessa S., Fleury A., Roussos G. and Preuveneers D.
 Internet of Things for enabling smart environments: A technology-centric perspective
 // Journal of Ambient Intelligence and Smart Environments. 2019. Vol. 11. No. 1. P.
 23-43.

 30. Monostori L. Cyber-physical production systems: Roots, expectations
 and R&D challenges // Procedia Cirp. 2014. Vol. 17. P. 9-13.

 31. Gurjanov A., Zakoldaev D., Zharinov I., Nechaev V. Design concepts for
 digital project and production companies of Industry 4.0 standard.
 Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki —
 Scientific and Technical Journal of Information Technologies, Mechanics and Optics.
 2018. Issue 18. Vol. 3. P. 421-427. [in Russian]

 32. Nikolakis N., Maratos V., Makris S. A cyber physical system (CPS)
 approach for safe human-robot collaboration in a shared workplace // Robotics and
 Computer-Integrated Manufacturing. 2019. Vol. 56. P. 233-243.

 33. Liu H., Wang L. Remote human–robot collaboration: A cyber–physical
 system application for hazard manufacturing environment // Journal of manufacturing
 systems. 2020. Vol. 54. P. 24-34.

 34. Levin B., Rosenberg I., Tsvetkov V. Transport cyber-physical systems.
 Nauka i tekhnologii zheleznyh dorog — Science and technology of railways. 2017.
 Issue 3. Vol. 3. P. 3. [in Russian]

 35. Volkov A. Cybernetics of construction systems. Promyshlennoe i
 grazhdanskoe stroitel’stvo — Cyber-physical construction systems. 2017. Vol. 9. P.
 4–7. [in Russian]

 36. Dey N., Ashour A., Shi F., Fong S. and Tavares J. Medical
 cyber-physical systems: A survey // Journal of medical systems. 2018. Vol. 42. No. 4.
 P. 1-13.

 37. Shishvan O., Zois D., Soyata T. Incorporating Artificial Intelligence into
 Medical Cyber Physical Systems: A Survey // Connected Health in Smart Cities.
 Springer, Cham, 2020. P. 153-178.

 38. Popov D.S. [Information support for technological preparation of repair
 production in transport]. Vestnik Sibirskogo gosudarstvennogo universiteta putej
 soobshcheniya — Journal of the Siberian State Transport University. 2007. Vol. 17.
 P. 163–168. [in Russian].

 39. Fedorchenko A., Doynikova E., Kotenko I. Automated detection of
 assets and calculation of their criticality for the analysis of information system
 security. Trudy SPIIRAN — SPIIRAS Proceedings. 2019. Issue 18(5). P. 1182–1211.
 [in Russian]

 40. Koptenkov M. Information categorization is the first step to ensuring the
 information security of an organization. Bezopasnost Informatsionnykh Tekhnologiy
 — IT Security. 2011. Issue 18. Vol. 4. P. 117–119. [in Russian]

 207

 41. Mikoni S. Model of the participants in the life cycle of a
 socio-cyber-physical system. Tekhnologicheskaya perspektiva v ramkah
 evrazijskogo prostranstva: novye rynki i tochki ekonomicheskogo rosta –
 Technological perspective within the Eurasian space: newmarkets and points of
 economic growth. 2019. pp. 341–347. [in Russian]

 42. GOST R. 53114-2008 Information security. Ensuring information security
 in the organization. Basic terms and definitions. 2008. [in Russian]

 43. The basic model of threats to the security of personal data during their
 processing in personal data information systems. Federal Service for Technical and
 Export Control(FSTEC of Russia), February 15, 2008. [in Russian]

 44. Metodika opredeleniya ugroz bezopasnosti informacii v informacionnyh
 sistemah [Methodology for determining threats to information security in information
 systems]. Federal’naya sluzhba po tekhnicheskomu i eksportnomu kontrolyu
 (FSTEK Rossii), proekt, 2015. [in Russian]

 45. Methodological recommendations for the development of regulatory
 legal acts that determine threats to the security of personal data, relevant when
 processing personal data in information systems of personal data used in the
 implementation of relevant activities.Federal Security Service (FSB of Russia),
 March 31, 2015, No. 149/7/2/6-432. [in Russian]

 46. Rocchetto M., Tippenhauer N. On attacker models and profiles for
 cyber-physical systems // European Symposium on Research in Computer Security.
 Springer, Cham, 2016. P. 427-449.

 47. Desnitsky V. A Modeling and Analysis of Security Incidents in a
 Cyber-Physical System for Water Supply Management. Informacionnye tekhnologii i
 telekommunikacii – Telecom IT. 2017. Vol. 5. No. 3. pp. 93–102. [in Russian]

 48. GOST R. ISO/IEC 27000–2012 Information technology. Security
 methods and means. Information security management systems. General overview
 and terminology. Moscow: FGUP STANDARTINFORM. 2014. [in Russian]

 49. Mayzaud A., Badonnel R., Chrisment I. A Taxonomy of Attacks in
 RPL-based Internet of Things // International Journal of Network Security. 2016. Vol.
 18. No. 3. P. 459-473.

 50. Zhu B., Joseph A., Sastry S. A taxonomy of cyber attacks on SCADA
 systems // 2011 International conference on internet of things and 4th international
 conference on cyber, physical and social computing. IEEE, 2011. P. 380-388.

 51. Humayed A., Lin J., Li F. and Luo B. Cyber-physical systems security —
 A survey // IEEE Internet of Things Journal. 2017. Vol. 4. No. 6. P. 1802-1831.

 52. Alguliyev R., Imamverdiyev Y., Sukhostat L. Cyber-physical systems and
 their security issues // Computers in Industry. 2018. Vol. 100. P. 212-223.

 53. Ashibani Y., Mahmoud Q. Cyber physical systems security: Analysis,
 challenges and solutions // Computers & Security. 2017. Vol. 68. P. 81-97.

 54. Gao Y., Peng Y., Xie F., Zhao W., Wang D., Han X., Lu T. and Li Z.
 Analysis of security threats and vulnerability for cyber-physical systems //
 Proceedings of 2013 3rd International Conference on Computer Science and
 Network Technology. IEEE, 2013. P. 50-55.

 208

 55. Makhdoom I., Abolhasan M., Lipman J., Liu R. and Ni W. Anatomy of
 threats to the internet of things // IEEE communications surveys & tutorials. 2018.
 Vol. 21. No. 2. P. 1636-1675.

 56. Yampolskiy M., Horváth P., Koutsoukos X., Xue Y. and Sztipanovits J. A
 language for describing attacks on cyber-physical systems // International Journal of
 Critical Infrastructure Protection. 2015. Vol. 8. P. 40-52.

 57. Heartfield R., Loukas G., Budimir S., Bezemskij A., Fontaine J.,
 Filippoupolitis A. and Roesch E. A taxonomy of cyber-physical threats and impact in
 the smart home // Computers & Security. 2018. Vol. 78. P. 398-428.

 58. Alekseev D., Ivanenko K., Ubirailo V. Classification of threats to
 information security. Simvol nauki — Science symbol. 2016. Vol. 9-1. P. 18–20. [in
 Russian]

 59. Ashibani Y., Mahmoud Q. Cyber physical systems security: Analysis,
 challenges and solutions // Computers & Security. 2017. Vol. 68. P. 81-97.

 60. Desnitsky V., Levshun D., Chechulin A. and Kotenko I. Design
 Technique for Secure Embedded Devices: Application for Creation of Integrated
 Cyber-Physical Security System // J. Wirel. Mob. Networks Ubiquitous Comput.
 Dependable Appl. 2016. Vol. 7. No. 2. P. 60-80.

 61. Kotenko I., Levshun D., Chechulin A., Ushakov I. and Krasov A.
 Integrated approach to provide security of cyber-physical systems based on
 microcontrollers. Voprosy Kiberbezopasnosti. 2018. Vol. 3(27). P. 29-38. [in Russian]

 62. Zegzhda D., Vasilev U., Poltavtseva M., Kefele I., Borovkov A. Advanced
 production technologies security in the era of digital transformation. Voprosy
 Kiberbezopasnosti. 2018. Vol. 2(26). P. 2–14. [in Russian]

 63. Frahim J. Securing the Internet of Things: A Proposed Framework.
 Cisco White Paper,March 2015.

 64. Gaifulina D.A. Analytical review of methods for detecting network layer
 anomalies in cyber-physical systems. Al’manah nauchnyh rabot molodyh uchenyh
 Universiteta ITMO — Almanac of scientific works of young scientists of ITMO
 University. 2018. Issue 1. P. 4–5. [in Russian].

 65. Kotenko I., Doynikova E. Vulnerabilities assessment techniques: use for
 the computer systems security analysis. Zashchita informacii. Insajd — Information
 Security. Inside. 2011. Vol. 4. P. 74–81. [in Russian]

 66. Desmit Z., Elhabashy A., Wells L., Camelio J. An approach to
 cyber-physical vulnerability assessment for intelligent manufacturing systems.
 Journal of Manufacturing Systems. 2017. Vol. 43. P. 339–351.

 67. Radanliev P., De Roure D., Nicolescu R., Huth M., Montalvo M.,
 Cannady S. and Bumap P. Future developments in cyber risk assessment for the
 internet of things // Computers in industry. 2018. Vol. 102. P. 14-22.

 68. Lyu X., Ding Y., Yang S. Safety and security risk assessment in
 cyber-physical systems // IET Cyber-Physical Systems: Theory & Applications. 2019.
 Vol. 4. No. 3. P. 221-232.

 69. Telegina M., Yannikov I., Kudelkin V., Ushakov I. Models and methods
 for safety assessment of potentially dangerous objects. Intellektual’nye sistemy v

 209

 proizvodstve — Intelligent systems in production. 2017. Issue 15. Vol. 1. P. 118–121.
 [in Russian]

 70. Kulagina I., Iskhakova A., Galin R. Modeling the practice of aggression
 in the socio-cyber-physical environment. Vestnik Tomskogo gosudarstvennogo
 universiteta. Filosofiya. Sotsiologiya. Politologiya — Tomsk State University Journal
 of Philosophy, Sociology and Political Science. 2019. Vol. 52. P. 147–161. [in
 Russian]

 71. Garate V. Analysis of the security level of corporate networks in the
 context of social engineering attacks. Izvestiya SPbGETU «LETI» – Izvestiya ETU
 LETI. 2017. Issue 3. P. 12–15. [in Russian]

 72. Hu F., Lu Y., Vasilakos A., Hao Q., Ma R., Patil Y., Zhang T., Lu J., Li X.
 and Xiong N. Robust cyber–physical systems: Concept, models, and implementation
 // Future generation computer systems. 2016. Vol. 56. P. 449-475.

 73. Sirjani M. Analysing Real-time Distributed Systems using Timed Actors //
 23rd IEEE/ACM International Symposium on Distributed Simulation and Real Time
 Applications (DS-RT). IEEE, 2019. P. 1-1.

 74. Dai W., Pang C., Vyatkin V., Christensen J. and Guan X.
 Discrete-event-based deterministic execution semantics with timestamps for
 industrial cyber-physical systems // IEEE Transactions on Systems, Man, and
 Cybernetics: Systems. 2017. Vol. 50. No. 3. P. 851-862.

 75. Srivastava A., Morris T., Ernster T., Vellaithurai C., Pan S. and Adhikari
 U. Modeling cyber-physical vulnerability of the smart grid with incomplete information
 // IEEE Transactions on Smart Grid. 2013. Vol. 4. No. 1. P. 235-244.

 76. Xinyu C., Huiqun Y., Xin X. Verification of Hybrid Chi model for
 cyber-physical systems using PHAVer // 2013 Seventh International Conference on
 Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE, 2013. P.
 122-128.

 77. Nuzzo P., Sangiovanni-Vincentelli A., Bresolin D., Geretti L. and Villa T.
 A platform-based design methodology with contracts and related tools for the design
 of cyber-physical systems // Proceedings of the IEEE. 2015. Vol. 103. No. 11. P.
 2104-2132.

 78. Di Nitto E., Matthews P., Petcu D. and Solberg A. Model-driven
 development and operation of multi-cloud applications: the MODAClouds approach.
 Springer Nature, 2017.

 79. Iannucci S., Abdelwahed S., Montemaggio A., Hannis M., Leonard L.,
 King J. and Hamilton J. A model-integrated approach to designing self-protecting
 systems // IEEE Transactions on Software Engineering. 2018. Vol. 46. No. 12. P.
 1380-1392.

 80. Karagiannis D., Mayr H., Mylopoulos J. Domain-specific conceptual
 modeling. Springer International Publishing, 2016.

 81. Rahman M., Mahmud M. and Pota H. Multi-agent approach for
 enhancing security of protection schemes in cyber-physical energy systems // IEEE
 transactions on industrial informatics. 2016. Vol. 13. No. 2. P. 436-447.

 210

 82. Balasubramaniyan S., Srinivasan S., Buonopane F., Subathra B., Vain J.
 and Ramaswamy S. Design and verification of Cyber-Physical Systems using
 TrueTime, evolutionary optimization and UPPAAL // Microprocessors and
 microsystems. 2016. Vol. 42. P. 37-48.

 83. David A., Larsen K., Legay A., Mikučionis M. and Poulsen D. Uppaal
 SMC tutorial // International Journal on Software Tools for Technology Transfer.
 2015. Vol. 17. No. 4. P. 397-415.

 84. Penas O., Plateaux R., Patalano S. and Hammadi M. Multi-scale
 approach from mechatronic to Cyber-Physical Systems for the design of
 manufacturing systems // Computers in Industry. 2017. Vol. 86. P. 52-69.

 85. Friedenthal S., Moore A., Steiner R. A practical guide to SysML: the
 systems modeling language. Morgan Kaufmann, 2014.

 86. H. Elmqvist. Dymola — a structured modeling language for large
 continuous systems. Department of Automatic Control, Lund Institute of Technology
 (LTH), 2018.

 87. Elmqvist H., Otter M. Innovations for future Modelica // Proceedings of
 12th International Modelica Conference. Linköping University Electronic Press, 2017.

 88. Wymore A. W. Model-based systems engineering. CRC press, 2018.
 Vol. 3.

 89. Fritzson P. Principles of object-oriented modeling and simulation with
 Modelica 3.3: a cyber-physical approach. John Wiley & Sons, 2014.

 90. Chaturvedi D. Modeling and simulation of systems using MATLAB and
 Simulink. CRC press, 2017.

 91. Fajstrup L., Goubault E., Haucourt E., Mimram S. and Raussen M.
 Directed algebraic topology and concurrency. Berlin : Springer, 2016. Vol. 138.

 92. Shen W., Wang J., Luo P. and Wang M. A graph-based approach for
 ontology population with named entities // Proceedings of the 21st ACM international
 conference on Information and knowledge management. 2012. P. 345-354.

 93. Zhu B., Roy U. Modeling and validation of a web ontology language
 based disassembly planning information model // Journal of Computing and
 Information Science in Engineering. 2018. Vol. 18. No. 2.

 94. Blouin D., Borde E. AADL: A Language to Specify the Architecture of
 Cyber-Physical Systems // Foundations of Multi-Paradigm Modelling for
 Cyber-Physical Systems. Springer, Cham, 2020. P. 209-258.

 95. Seiger R., Keller C., Niebling F. and Schlegel T. Modelling complex and
 flexible processes for smart cyber-physical environments // Journal of Computational
 Science. 2015. Vol. 10. P. 137-148.

 96. Nassar N., Kosiol J., Kehrer T. and Taentzer G. Generating Large EMF
 Models Efficiently // International Conference on Fundamental Approaches to
 Software Engineering. Springer, Cham, 2020. P. 224-244.

 97. Cremers C. Symbolic security analysis using the Tamarin prover // 2017
 Formal Methods in Computer Aided Design (FMCAD). IEEE, 2017. P. 5-5.

 211

 98. Srinivasan S., Buonopane F., Vain J. and Ramaswamy S. Model
 checking response times in Networked Automation Systems using jitter bounds
 //Computers in Industry. 2015. Vol. 74. P. 186-200.

 99. Blanchet B. Automatic verification of security protocols in the symbolic
 model: The verifier proverif // Foundations of security analysis and design VII.
 Springer, Cham, 2013. P. 54-87.

 100. Chothia T., Smyth B., Staite C. Automatically checking commitment
 protocols in proverif without false attacks // International Conference on Principles of
 Security and Trust. Springer, Berlin, Heidelberg, 2015. P. 137-155.

 101. Chadha R., Cheval V., Ciobâcă Ş. and Kremer S. Automated verification
 of equivalence properties of cryptographic protocols // ACM Transactions on
 Computational Logic (TOCL). 2016. Vol. 17. No. 4. P. 1-32.

 102. Avanesov T., Chevalier Y., Rusinowitch M. and Turuani M. Intruder
 deductibility constraints with negation. Decidability and application to secured service
 compositions // Journal of Symbolic Computation. 2017. Vol. 80. P. 4-26.

 103. [Armando A., Arsac W., Avanesov T., Barletta M., Calvi A., Cappai A.,
 Carbone R., Chevalier Y., Compagna L., Cuéllar J., Erzse G., Frau S., Minea M.,
 Mödersheim S., Oheimb D., Pellegrino G., Ponta S., Rocchetto M., Rusinowitch M.,
 Dashti M., Turuani M., Viganò L. The AVANTSSAR platform for the automated
 validation of trust and security of service-oriented architectures //International
 Conference on Tools and Algorithms for the Construction and Analysis of Systems.
 Springer, Berlin, Heidelberg, 2012. P. 267-282.

 104. Levshun D., Chevalier Y., Kotenko I. and Chechulin A. Design and
 verification of a mobile robot based on the integrated model of cyber-Physical
 systems // Simulation Modelling Practice and Theory. 2020. Vol. 105. P. 102151.

 105. Faily S. Further Applications of CAIRIS for Usable and Secure Software
 Design // Designing Usable and Secure Software with IRIS and CAIRIS. Springer,
 Cham, 2018. P. 239-254.

 106. Kobashi T., Washizaki H., Yoshioka N., Kaiya H., Okubo T. and
 Fukazawa Y. Designing secure software by testing application of security patterns //
 Exploring Security in Software Architecture and Design. IGI Global, 2019. P.
 136-169.

 107. Ardeshiricham A., Hu W., Marxen J. and Kastner R. Register transfer
 level information flow tracking for provably secure hardware design // Design,
 Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017. P.
 1691-1696.

 108. Zhang D., Wang Y., Suh G. and Myers A. A hardware design language
 for timing-sensitive information-flow security // Acm Sigplan Notices. 2015. Vol. 50.
 No. 4. P. 503-516.

 109. Xu X., He B., Yang W., Zhou X. and Cai Y. Secure transmission design
 for cognitive radio networks with poisson distributed eavesdroppers // IEEE
 Transactions on Information Forensics and Security. 2015. Vol. 11. No. 2. P. 373-387.

 212

 110. Wang B., Zhong S., Dong X. On the novel chaotic secure
 communication scheme design // Communications in Nonlinear Science and
 Numerical Simulation. 2016. Vol. 39. P. 108-117.

 111. Takahashi S., Ikeda T., Shinagawa Y., Kunii T. and Ueda M. Algorithms
 for extracting correct critical points and constructing topological graphs from discrete
 geographical elevation data // Computer Graphics Forum. Edinburgh, UK: Blackwell
 Science Ltd, 1995. Vol. 14. No. 3. P. 181-192.

 112. Saleem K., Derhab A., Al-Muhtadi J. and Shahzad B. Human-oriented
 design of secure Machine-to-Machine communication system for e-Healthcare
 society // Computers in Human Behavior. 2015. Vol. 51. P. 977-985.

 113. Huang J. and Huang C. Design and verification of secure mutual
 authentication protocols for mobile multihop relay WiMAX networks against rogue
 base/relay stations // Journal of Electrical and Computer Engineering. 2016.

 114. Wang Z., Karpovsky M., Bu L. Design of reliable and secure devices
 realizing Shamir's secret sharing // IEEE Transactions on Computers. 2015. Vol. 65.
 No. 8. P. 2443-2455.

 115. Scott-Hayward S. Design and deployment of secure, robust, and
 resilient SDN Controllers // Proceedings of the 2015 1st IEEE conference on network
 Softwarization (NetSoft). IEEE, 2015. P. 1-5.

 116. Lin Z., Yu S., Lü J., Cai S. and Chen G. Design and ARM-embedded
 implementation of a chaotic map-based real-time secure video communication
 system // IEEE Transactions on circuits and systems for video technology. 2014. Vol.
 25. No. 7. P. 1203-1216.

 117. Official website of Google Internet of Things Cloud solution. URL:
 https://cloud.google.com/solutions/iot/. Online: accessed 16.06.2021.

 118. Official website of Google Internet of Things DeviceSDK solution. URL:
 https://bit.ly/2K6rbGQ. Online: accessed 16.06.2021.

 119. Official website of ARM Platform Security Architecture solution. URL:
 https://www.arm.com/why-arm/architecture/platform-security-architecture. Online:
 accessed 16.06.2021.

 120. Official website of Kaspersky Industrial Cyber-Security solution. URL:
 https://ics.kaspersky.com/. Online: accessed 16.06.2021.

 121. Official website of Kaspersky Operation System. URL:
 https://os.kaspersky.com/. Online: accessed 16.06.2021.

 122. Official website of Microsoft Azure Internet of Things solution. URL:
 https://azure.microsoft.com/en-us/overview/iot/ . Online: accessed 16.06.2021.

 123. Official website of Microsoft Security Development Lifecycle with
 examples and documentation. URL:
 https://www.microsoft.com/enus/securityengineering/sdl/. Online: accessed
 16.06.2021.

 124. Official website of Intel Internet of Things Platform. URL:
 https://www.intel.com/content/www/us/en/internet-of-things/iot-platform.html. Online:
 accessed 16.06.2021.

 213

https://azure.microsoft.com/en-us/overview/iot/

 125. Official website of MindSphere — cloud-based, open IoT operating
 system from Siemens. URL: https://new.siemens.com/global/en/
 products/software/mindsphere.html . Online: accessed 16.06.2021.

 126. Official website of Cisco Secure Development Lifecycle. URL:
 https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-se
 cure-development-lifecycle.pdf . Online: accessed 16.06.2021.

 127. Desnitsky V., Chechulin A., Kotenko I., Levshun D. and Kolomeec M.
 Application of a technique for secure embedded device design based on combining
 security components for creation of a perimeter protection system // 24th Euromicro
 International Conference on Parallel, Distributed, and Network-Based Processing
 (PDP). IEEE, 2016. P. 609-616.

 128. Desnitsky V., Kotenko I., Chechulin A. Configuration-based approach to
 embedded device security // International Conference on Mathematical Methods,
 Models, and Architectures for Computer Network Security. Springer, Berlin,
 Heidelberg, 2012. P. 270-285.

 129. Official website of SecFutur project — Design of Secure and
 energy-efficient embedded systems for Future internet applications. URL:
 https://cordis.europa.eu/project/id/256668. Online: accessed 16.06.2021.

 130. Chechulin A., Kotenko I., Desnitsky V. An approach for network
 information flow analysis for systems of embedded components // International
 Conference on Mathematical Methods, Models, and Architectures for Computer
 Network Security. Springer, Berlin, Heidelberg, 2012. P. 146-155.

 131. Riedmüller S., Brecht U., Sikora A. IPsec for Embedded Systems // ITCS
 2005. 2005. P. 8.

 132. Chelli K. Security issues in wireless sensor networks: Attacks and
 countermeasures // Proceedings of the world congress on engineering. 2015. Vol. 1.
 No. 20. P. 876-3423.

 133. Levshun D., Chechulin A., Kotenko I. A technique for design of secure
 data transfer environment: Application for I2C protocol // 2018 IEEE Industrial
 Cyber-Physical Systems (ICPS). IEEE, 2018. P. 789-794.

 134. Feilner M. OpenVPN: Building and integrating virtual private networks.
 Packt Publishing Ltd, 2006.

 135. Official website of the Python Programming Language. URL:
 https://www.python.org/ . Online: accessed 16.06.2021.

 136. Official website of PostgreSQL — the powerful, open-source
 object-relational database system. URL: https://www.postgresql.org/ . Online:
 accessed 16.06.2021.

 137. Official website of psycopg — PostgreSQL database adapter for the
 Python programming language. URL: https://pypi.org/project/psycopg2/ . Online:
 accessed 16.06.2021.

 138. Official website of the tkinter package — the standard Python interface
 to the Tk GUI toolkit. URL: https://docs.python.org/3/library/tkinter.html . Online:
 accessed 16.06.2021.

 214

https://new.siemens.com/global/en/products/software/mindsphere.html
https://new.siemens.com/global/en/products/software/mindsphere.html
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-development-lifecycle.pdf
https://www.cisco.com/c/dam/en_us/about/doing_business/trust-center/docs/cisco-secure-development-lifecycle.pdf
https://www.python.org/
https://www.postgresql.org/
https://pypi.org/project/psycopg2/
https://docs.python.org/3/library/tkinter.html

 139. Official website of the pygubu tool — a RAD tool to enable quick & easy
 development of user interfaces for the python tkinter module.. URL:
 https://pypi.org/project/pygubu/ . Online: accessed 16.06.2021.

 140. Official website of networkx — a Python package for the creation,
 manipulation, and study of the structure, dynamics, and functions of complex
 networks. URL: https://networkx.org/ . Online: accessed 16.06.2021.

 141. Official website of the json package that represents Python dictionaries
 in JSON format. URL: https://docs.python.org/3/library/json.html . Online: accessed
 16.06.2021.

 142. Official website of the functools module of Python that allows the use
 and extension of callable objects without completely rewriting them. URL:
 https://docs.python.org/3/library/functools.html . Online: accessed 16.06.2021.

 143. Official website of the time module of Python that provides various
 time-related functions. URL: https://docs.python.org/3/library/time.html . Online:
 accessed 16.06.2021.

 144. Official website of PL/pgSQL — SQL Procedural Language for
 PostgreSQL databases. URL: postgresql.org/docs/13/plpgsql-statements.html .
 Online: accessed 16.06.2021.

 145. Balzarotti D., Monga M., Sicari S. Assessing the risk of using vulnerable
 components // Quality of protection: security measurements and metrics, Advances
 in Information Security 23. Springer, New York, 2006. P.65-77.

 146. Runeev A., Kotenko I. Fundamentals of control theory in military
 systems: a tutorial. Part 2. 2000. 158 p.

 147. Dmitry Levshun. Algorithm for the formation of the component
 composition of a secure microcontroller-based system // Proceedings of the XII
 Saint-Petersburg Interregional conference Information security of regions of Russia
 (IBRR-2021). St. Petersburg, Russia, 2021. P. 88-90. [in Russian]

 148. Daniel Zelle, Roland Rieke, Christian Plappert, Christoph Kraub, Dmitry
 Levshun, Andrey Chechulin. SEPAD – Security Evaluation Platform for Autonomous
 Driving // Proceedings of the 28th Euromicro International Conference on Parallel,
 Distributed, and Network-Based Processing (PDP-2020). Vesteos, Sweden, March
 11-13, 2020. P. 413-420. DOI: 10.1109/PDP50117.2020.00070.

 149. Dmitry Levshun. Requirements for the methodology for design and
 verification of secure cyber-physical systems // Proceeding of the XVII St. Petersburg
 International Conference Regional Informatics (RI-2020). St. Petersburg, Russia,
 2020. P. 144-146. [in Russian]

 150. Dmitry Levshun. Approach to the formation of requirements in the design
 process of secure cyber-physical systems // Proceedings of the IV Interregional
 Scientific-Practical Conference Advanced National Information Systems and
 Technologies (ANIST-2020). Sevastopol, Russia, 2020. P. 239-240. [in Russian]

 151. Dmitry Levshun. Approach to the formation of specifications for secure
 cyber-physical systems // Proceedings of the IV Interregional Scientific-Practical
 Conference Advanced National Information Systems and Technologies
 (ANIST-2020). Sevastopol, Russia, 2020. P. 239-240. [in Russian]

 215

https://pypi.org/project/pygubu/
https://networkx.org/
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/time.html
https://www.postgresql.org/docs/13/plpgsql-statements.html

 152. Dmitry Levshun. An attacker model for a modern cyber-physical system
 // Proceedings of the IX International Scientific, Technical and Scientific
 Methodological Conference Actual Problems of Information Telecommunications in
 Science and Education. St. Petersburg, Russia, 2020. P. 679-682. [in Russian]

 153. Dmitry Levshun, Andrey Chechulin. The aspects of the verification of
 secure cyber-physical systems // Proceedings of the XI Saint-Petersburg
 Interregional conference “Information security of regions of Russia” (IBRR-2019). St.
 Petersburg, Russia, 2019. P. 133-134. [in Russian]

 154. Dmitry Levshun. Application of modeling for verification of cyber-physical
 systems security // Proceedings of the XI Saint-Petersburg Interregional conference
 “Information security of regions of Russia” (IBRR-2019). St. Petersburg, Russia,
 2019. P. 131-132. [in Russian]

 155. Dmitry Levshun, Igor Kotenko, Andrey Chechulin. The Integrated Model
 of Secure Cyber-Physical Systems for their Design and Verification // Proceedings of
 the 13th International Symposium on Intelligent Distributed Computing (IDC 2019).
 St. Petersburg, Russia, 2019. Studies in Computational Intelligence. Vol. 868. 2020.
 P.333-343. DOI: 10.1007/978-3-030-32258-8_39.

 156. Dmitry Levshun, Yannick Chevalier, Igor Kotenko, Andrey Chechulin.
 Secure Communication in Cyber-Physical Systems // Proceedings of the the 3rd
 International Symposium on Mobile Internet Security (MobiSec 2018). Cebu,
 Philippines, 2018. 9 p. URL: isyou.info/conf/mobisec18/mobisec18-book-ver1.pdf.

 157. Dmitry Levshun. The approach to design of secure systems based on
 embedded devices // Proceedings of the X St. Petersburg Interregional Conference
 "Information Security of the regions of Russia" (IBRR-2017). St. Petersburg, Russia,
 2017. Issue 4. P. 414-416. [in Russian]

 158. Dmitry Levshun, Andrey Chechulin, Igor Kotenko. Design Lifecycle for
 Secure Cyber-Physical Systems based on Embedded Devices // Proceedings of the
 9th IEEE International Conference on Intelligent Data Acquisition and Advanced
 Computing Systems: Technology and Applications (IDAACS-2017). Bucharest,
 Romania, 2017. P. 277-282. DOI: 10.1109/IDAACS.2017.8095090.

 159. Dmitry Levshun, Andrey Chechulin, Igor Kotenko. Design of secure
 microcontroller-based systems: application to mobile robots for perimeter monitoring
 // Sensors. 2021. Accepted 08.12.2021.

 160. Dmitry Levshun, Igor Kotenko, Andrey Chechulin. The application of the
 methodology for secure cyber–physical systems design to improve the semi-natural
 model of the railway infrastructure // Microprocessors and Microsystems. Vol. 87.
 2021. P. 103482. DOI: 10.1016/j.micpro.2020.103482.

 161. Dmitry Levshun, Diana Gaifulina, Andrey Chechulin and Igor Kotenko.
 Problematic Issues of Information Security of Cyber-Physical Systems // Informatics
 and Automation. Vol. 19. No. 5. 2020. P. 1050-1088. ISSN 2078-9181 (2078-9599).
 DOI: 10.15622/ia.2020.19.5.6. [in Russian]

 162. Dmitry Levshun, Igor Kotenko. Application for the design of secure
 microcontroller-based physical security systems. Federal Service for Intellectual

 216

 Property. Certificate #2021680236. Registered in the Computer Program Registry
 08.12.2021.

 163. Dmitry Levshun. Database for the design of secure
 microcontroller-based physical security systems. Federal Service for Intellectual
 Property. Certificate #2021622496. Registered in the Computer Program Registry
 15.11.2021.

 164. Dmitry Levshun. Component of traffic generation for cyber-physical
 systems based on I2C protocol. Federal Service for Intellectual Property. Certificate
 #2018664325. Registered in the Computer Program Registry 14.11.2018. URL:

 165. Dmitry Levshun, Igor Kotenko, Andrey Chechulin. Repository for
 heterogeneous data from the hardware elements of the smart home. Federal Service
 for Intellectual Property. Certificate #2017620996. Registered in the Database
 Registry 01.09.2017.

 166. Dmitry Levshun, Andrey Chechulin, Igor Kotenko. System for support
 and management of database of the room access control and management system
 based on the contactless smart cards. Federal Service for Intellectual Property.
 Certificate #2016612543. Registered in the Computer Program Registry 01.03.2016.

 167. Dmitry Levshun, Andrey Chechulin. Database of the logging server of a
 secure access control system for Smart House model. Federal Service for
 Intellectual Property. Certificate #2016621608. Registered in the Database Registry
 29.11.2016.

 217

 Appendix A. Modeling of the perimeter monitoring system

 This appendix describes the process of modeling microcontroller-based devices of
 the physical security system, described in Section 6.1.1 , namely, the server, charging
 stations and mobile robots, in accordance with the extendable set-based hierarchical
 relational model, presented in Chapter 3 .

 In terms of the extendable set-based hierarchical relational model, it means that 𝑚𝑏𝑠
 from Section 6.1.1 does not contain any sub-systems and has the following three
 types of building blocks: a server, a set of mobile robots and a set of charging
 stations. It means that of can be represented as follows: 𝐵𝐵 𝑚𝑏𝑠

 𝐵𝐵 = (𝑏 𝑏
 1
, 𝐵 𝐵

 2
, 𝐵 𝐵

 3
),

 where — the server of ; — set of mobile robots of 𝑏 𝑏
 1

 𝑚𝑏𝑠 𝐵 𝐵
 2

 𝑏 𝑏
 2 𝑖

 ϵ 𝐵 𝐵
 2
 | 𝑖 ϵ 1 ... 𝑛

 ; — set of charging stations of . 𝑚𝑏𝑠 𝐵 𝐵
 3

 𝑏 𝑏
 3 𝑖

 ϵ 𝐵 𝐵
 3
 | 𝑖 ϵ 1 ... 𝑚 𝑚𝑏𝑠

 Mobile robots and charging stations are communicating with the server via Wi-Fi
 connection, where the server is the host of the access point. Additionally, stations
 are communicating with robots via Infrared (IR) connection during their parking for
 charging, while the charging process is wireless and done via Qi communication. It
 means that can be represented as follows: 𝐿

 𝑚𝑏𝑠

 𝐿
 𝑚𝑏𝑠

= (𝐿
 𝑚𝑏 𝑠

 1

, 𝐿
 𝑚𝑏 𝑠

 2

, 𝐿
 𝑚𝑏𝑠

 3

),

 where — Wi-Fi communication between (server) and (mobile robots) as 𝐿
 𝑚𝑏 𝑠

 1

 𝑏 𝑏
 1

 𝐵 𝐵
 2

 well as between and (charging stations) of ; — IR communication 𝑏 𝑏
 1

 𝐵 𝐵
 3

 𝑚𝑏𝑠 𝐿
 𝑚𝑏 𝑠

 2

 between and ; — Qi communication between and . 𝐵 𝐵
 2

 𝐵 𝐵
 3

 𝐿
 𝑚𝑏𝑠

 3

 𝐵 𝐵
 2

 𝐵 𝐵
 3

 As was mentioned in Chapter 3 , properties of the are represented as follows: 𝑚𝑏𝑠

 , 𝑝 = (𝐹𝑅 , 𝑁𝐿 , 𝑃𝐹 , 𝑃𝑅)

 where – a set of functional requirements; – a set of non-functional limitations; 𝐹𝑅 𝑁𝐿
 – a set of provided functionalities; – a set of provided resources. 𝑃𝐹 𝑃𝑅

 Let’s consider them in more detail.

 represents needs of — functionality that satisfaction is necessary for it to be 𝐹𝑅 𝑚𝑏𝑠
 able to work, see Table A.1 .

 218

 Table A.1 . Functional requirements of the designed system
 Description

 𝐹𝑅

 𝑓 𝑟
 1 power source for charging stations

 𝑓 𝑟
 2 power source for the server

 𝑓 𝑟
 3 secure connection of server to update system

 represents needs of — limitations which satisfaction is necessary for it to be 𝑁𝐿 𝑚𝑏𝑠
 able to work, see Table A.2 .

 Table A.2 . Non-functional limitations of the designed system
 Description

 𝑁𝐿

 𝑛 𝑙
 1 space for charging stations placement

 𝑛 𝑙
 2 space for server placement

 𝑛 𝑙
 3 space for mobile robots’ movement

 𝑛 𝑙
 4

 the environment does not contain elements that can lead to incorrect
 operation of device sensors

 𝑛 𝑙
 5

 the environment does not contain elements that can lead to incorrect
 operation of wireless communications

 represents capabilities of — functionality that it can provide, see Table A.3 . 𝑃𝐹 𝑚𝑏𝑠

 Table A.3 . Provided functionality of the designed system
 description

 𝑃𝐹

 𝑝 𝑓
 1 to monitor the perimeter

 𝑝 𝑓
 2 to add new mobile robots

 𝑝 𝑓
 3 to add new charging stations

 𝑝 𝑓
 4 to monitor locations of mobile robots and charging stations

 𝑝 𝑓
 5 to monitor occupancy of charging stations

 𝑝 𝑓
 6 to monitor the charge state of mobile robots

 𝑝 𝑓
 7 to update software and firmware of system devices

 𝑝 𝑓
 8 to be secure against attackers with 𝑎𝑐 = 4 , 𝑘𝑛 = 2 , 𝑟𝑠 = 2

 219

 represents capabilities of — resources that it can provide, see Table A.4 . 𝑃𝑅 𝑚𝑏𝑠

 Table A.4 . Provided resources of the designed system
 description

 𝑃𝑅
 𝑝 𝑟

 1 to store system data in relational database

 𝑝 𝑟
 2 to run executable applications compatible with Linux operating systems

 Note that Influence of can be modeled through cancelling or reducing of some of 𝐴𝐴
 and as well as through enhancing or introducing of and . For example, 𝑃𝐹 𝑃𝑅 𝐹𝑅 𝑁𝐿

 based on the system must be secure against — interception, modification or 𝑝 𝑓
 8

 𝑖𝑤𝑠
 termination of wireless communications. To prevent such a class of attack actions,
 the following security elements must be part of the designed system: strong
 encryption mechanism on the access point, strong login credentials and public key
 pair-based authentication.

 Thus, of mobile robots for perimeter monitoring can be represented as follows: 𝑚𝑏𝑠

 , 𝑚𝑏𝑠 = (𝐵𝐵 , 𝐿
 𝑚𝑏𝑠

, 𝑎 , 𝐴𝐴 , 𝑝
 𝑚𝑏𝑠

)

 , 𝐵𝐵 = (𝑏 𝑏
 1
, 𝐵 𝐵

 2
, 𝐵 𝐵

 3
)

 𝐿
 𝑚𝑏𝑠

= (𝐿
 1
, 𝐿

 2
, 𝐿

 3
),

 , 𝑎 = (𝑎𝑐 , 𝑘𝑛 , 𝑟𝑠) | 𝑎𝑐 = 4 , 𝑘𝑛 = 2 , 𝑟𝑠 = 2
 , 𝐴𝐴 = {(𝑐 𝑙

 1
, 𝑜 𝑗

 1
, 𝑠 𝑗

 1
), ..., (𝑐 𝑙

 𝑛
, 𝑜 𝑗

 𝑛
, 𝑠 𝑗

 𝑛
)} | 𝑛 ∈ 𝑁

 𝑝
 𝑚𝑏𝑠

 = (𝐹 𝑅 , 𝑁 𝐿 , 𝑃 𝐹 , 𝑃 𝑅)

 where — the server; — set of mobile robots ; — set 𝑏 𝑏
 1

 𝐵 𝐵
 2

 𝑏 𝑏
 2 𝑖

 ϵ 𝐵 𝐵
 2
 | 𝑖 ϵ 1 ... 𝑛 𝐵 𝐵

 3

 of charging stations ; — Wi-Fi communication between and 𝑏 𝑏
 3 𝑖

 ϵ 𝐵 𝐵
 3
 | 𝑖 ϵ 1 ... 𝑚 𝐿

 1
 𝑏 𝑏

 1

 as well as between and ; — IR communication between and 𝐵 𝐵
 2

 𝑏 𝑏
 1

 𝐵 𝐵
 3

 𝐿
 2

 𝐵 𝐵
 2

 𝐵 𝐵
 3

 ; — Qi communication between and of ; — type of access has 𝐿
 3

 𝐵 𝐵
 2

 𝐵 𝐵
 3

 𝑚𝑏𝑠 𝑎𝑐 𝑎

 to ; — type of knowledge has about ; — type of resources available 𝑚𝑏𝑠 𝑘𝑛 𝑎 𝑚𝑏𝑠 𝑟𝑠
 to to compromise ; — i -th class of attack; — i -th object of attack, helps to 𝑎 𝑚𝑏𝑠 𝑐 𝑙

 𝑖
 𝑜 𝑗

 𝑖

 link with the target element(s); — i -th subject of attack, helps to link with 𝑎 𝑎
 𝑖

 𝑠 𝑗
 𝑖

 𝑎 𝑎
 𝑖

 𝑎

 that is capable enough for its successful realization; — set of functional 𝐹 𝑅

 requirements of ; — set of non-functional limitations of ; — set of 𝑚𝑏𝑠 𝑁 𝐿 𝑚𝑏𝑠 𝑃𝐹

 provided functionalities of ; — set of provided resources of . 𝑚𝑏𝑠 𝑃𝑅 𝑚𝑏𝑠

 220

 It means that — Wi-Fi communications between the server of the designed 𝐿
 𝑚𝑏𝑠

 1

 system and mobile robots/charging stations — can be represented as follows:

 , 𝐿
 𝑚𝑏 𝑠

 1

= (𝐼𝐸𝐸𝐸 800 . 11 , 𝑤𝑖𝑟𝑒𝑙𝑒𝑠𝑠 2 . 4 𝐺𝐻𝑧 , { 𝑏 𝑏
 1
 ↔ 𝐵 𝐵

 2
, 𝑏 𝑏

 1
 ↔ 𝐵 𝐵

 3
}, 𝑝

 𝐿
 𝑚𝑏 𝑠

 1

)

 where — the server of ; — set of mobile robots of ; — set of 𝑏 𝑏
 1

 𝑚𝑏𝑠 𝐵 𝐵
 2

 𝑚𝑏𝑠 𝐵 𝐵
 3

 charging stations of ; — properties of . 𝑚𝑏𝑠 𝑝
 𝐿

 𝑚𝑏 𝑠
 1

 𝐿
 𝑚𝑏 𝑠

 1

 Let us consider properties of in more detail. 𝐿
 𝑚𝑏𝑠

 1

 represents the functionality that satisfaction is necessary for to be able to 𝐹𝑅 𝐿
 𝑚𝑏 𝑠

 1

 work. It contains:
 ● — physical connection to Wi-Fi module with correct voltage; 𝑓 𝑟

 1

 ● — software library for work with Wi-Fi modules. 𝑓 𝑟
 2

 represents the limitations which satisfaction is necessary for to be able to 𝑁𝐿 𝐿
 𝑐𝑝 𝑠

 1

 work. It contains:
 ● — all communication parties are supporting the same Wi-Fi standards; 𝑛 𝑙

 1

 ● — the environment does not contain elements that can lead to incorrect 𝑛 𝑙
 2

 operation of 2.4 GHz wireless communications.

 represents the functionality that can provide. It contains: 𝑃𝐹 𝐿
 𝑚𝑏𝑠

 1

 ● — wireless communication between devices and the access point; 𝑝 𝑓
 1

 ● — connected devices are sharing throughput; 𝑝 𝑓
 2

 ● — WPA2-PSK security. 𝑝 𝑓
 3

 represents the resources that can provide. It contains: 𝑃𝑅 𝐿
 𝑚𝑏 𝑠

 1

 ● — to create access points; 𝑝 𝑟
 1

 ● — to connect devices to access points. 𝑝 𝑟
 2

 Note that properties of are connected with properties of the designed 𝐿
 𝑚𝑏 𝑠

 1

 microcontroller-based system. Other links between elements of the can be 𝑚𝑏𝑠
 represented in the same way. Thus, all elements of the developed extendable
 set-based hierarchical relational model were presented in this chapter.

 221

 A1. Modeling of the server
 The server of the designed system is based on a Raspberry Pi single-board
 computer with Raspbian OS. This operation system should be installed on a
 micro-SD card with not less than 16 GB of space. It could be done via Imager — a
 special software tool. After that, it is required to slot this micro-SD card into the
 single-board computer, so it would be able to identify the operating system and use
 micro-SD card memory space as its own. When it is done, it becomes possible to
 install PostgreSQL database server, Python compiler as well as different drivers and
 libraries that are necessary for the server to perform its functionality. Moreover, it
 becomes possible to configure the server's operating system, database access,
 software update policy and Wi-Fi access point. To provide a power supply, the server
 is connected to a power bank which in its turn should be connected to the home
 power supply.

 Thus, in terms of the developed model, contains: 𝑏 𝑏
 1

 ● sub-block : Raspberry Pi single-board computer (represents building block 𝑏𝑏
 1
 '

 that combines hardware and software elements) in which another building
 block is slotted — a micro-SD card (hardware element) with pre-installed
 Raspbian OS (software element);

 ● hardware element : power bank that provides power supply to and ℎ 𝑤
 1

 𝑏𝑏
 1
 '

 connected to the home power grid;
 ● software element : application with graphical user interface and database 𝑠 𝑤

 1

 that grants a possibility to monitor events of the system, state and location of
 mobile robots and charging stations;

 ● software element : configured Wi-Fi access point with strong login 𝑠 𝑤
 2

 credentials and encryption;
 ● software element : configured update system for keeping software 𝑠 𝑤

 3
 𝑏 𝑏

 1

 up-to-date with the connection to the remote server.

 As was mentioned before, the sub-block is representing a combination of two 𝑏𝑏
 1
 '

 other building blocks that are connected through putting an SD card into a special
 slot on the single board computer as well as due to correct formatting of the SD card
 and the work of the drivers. On the basis of it becomes possible to install and 𝑏𝑏

 1
 '

 configure additional software elements. Moreover, represents an application that 𝑠 𝑤
 1

 contains a combination of three other software elements – database, script,
 graphical user interface – that were connected via special drivers and libraries during
 the compilation process. It means that can be represented as follows: 𝐿

 𝑏 𝑏
 1

 𝐿
 𝑏 𝑏

 1

= (𝐿
 1
, 𝐿

 2
, 𝐿

 3
),

 222

 where – the USB to micro-USB connection between and of ; – 𝐿
 1
 𝑏𝑏

 1
 ' ℎ 𝑤

 1
 𝑏 𝑏

 1
 𝐿

 2

 libraries and drivers that provide interaction between and ; – the 𝑏𝑏
 1
 ' 𝑠 𝑤

 1
− 𝑠 𝑤

 3
 𝐿

 3

 Internet connection between and remote update server. 𝑠 𝑤
 3

 As for properties of – the server of the system – it is important to note that they 𝑏 𝑏
 1

 are connected with the properties of and partially represent them. 𝑚𝑏𝑠

 represents the needs of – functionality that satisfaction is necessary for the 𝐹𝑅 𝑏 𝑏
 1

 server of the system to be able to work. It contains:
 ● – power source; 𝑓 𝑟

 1

 ● – secure connection between the update system and remote server. 𝑓 𝑟
 2

 represents the needs of – limitations which satisfaction is necessary for the 𝑁𝐿 𝑏 𝑏
 1

 server of the system to be able to work. It contains:
 ● – space for the device; 𝑛 𝑙

 1

 ● – the environment does not contain elements that can lead to incorrect 𝑛 𝑙
 2

 operation of wireless communications.

 represents the capabilities of – functionality that the server of the system can 𝑃𝐹 𝑏 𝑏
 1

 provide. It contains:
 ● – to add new mobile robots; 𝑝 𝑓

 1

 ● – to add new charging stations; 𝑝 𝑓
 2

 ● – to update software, drivers and libraries; 𝑝 𝑓
 3

 ● – to communicate with mobile robots and charging stations; 𝑝 𝑓
 4

 ● – to be secure against attackers with , , . 𝑝 𝑓
 5

 𝑎𝑐 = 4 𝑘𝑛 = 2 𝑟𝑠 = 2

 represents the capabilities of – resources that the server of the system can 𝑃𝑅 𝑏 𝑏
 1

 provide. It contains:
 ● – to store system data in a relational database; 𝑝 𝑟

 1

 ● – to run executable applications compatible with Linux operating systems. 𝑝 𝑟
 2

 Based on the requirements, the algorithm can form the device that represents the
 server of the system step-by-step. For such a device it is required to have:

 ● one-board computer with in-build Wi-Fi and Ethernet interfaces that supports
 high-level operating systems with graphical user interface, has not less than 1
 GB RAM and supports disk space extension based on micro-SD cards;

 223

 ● micro-SD card with not less than 16 GB disk space that is supported by the
 selected one-board computer;

 ● 32-bit operating system image that can be installed on micro-SD that is
 supported by the selected one-board computer;

 ● database that supports SQL queries which structure is sufficient enough to
 store system data and events;

 ● application with graphical user interface and connection to the selected
 database that presents processed data to the operator of the system and
 communicates with other devices of the system;

 ● battery that can power up the selected one-board computer as well as be
 connected to the home power grid.

 But this is without taking into account security requirements. So let us consider them
 in more detail. The ability to be secure against attackers with , , 𝑎𝑐 = 4 𝑘𝑛 = 2 𝑟𝑠 = 2
 can be interpreted as to be secure against: — replacement of the electronic 𝑟𝑝𝑡
 component; — removement of the electronic component; — interception, 𝑟𝑚𝑡 𝑖𝑚𝑤
 modification or termination of wired communications; — increased energy 𝑖𝑒𝑐
 consumption; — interception, modification or termination of wireless 𝑖𝑤𝑠
 communications; — social engineering; — power failure; — disruption 𝑠𝑜𝑐 𝑝𝑤𝑟 𝑤𝑒𝑏
 of web services; — database disruption. 𝑑𝑏𝑑

 To prevent and on the level of the server a vandal-proof device case 𝑟𝑝𝑡 𝑟𝑚𝑡
 (hardware element) should be used for the server of the system.

 To prevent on the level of the server in addition to a vandal-proof device case, 𝑝𝑤𝑟
 the selected power bank capacity should be big enough to provide power supply to
 the selected one-board computer in the absence of power supply from the home
 power grid for 4 hours.

 To prevent and on the level of the server no additional security elements is 𝑖𝑚𝑤 𝑤𝑒𝑏
 required because there is no wired communications in the device as well as no web
 services.

 To prevent and on the level of the server additional software elements are 𝑖𝑒𝑐 𝑖𝑤𝑠
 required: an algorithm for behaviour-based anomaly detection and a secure
 configuration of the wireless access point (strong encryption, strong login
 credentials, public key pair-based authentication).

 To prevent on the level of the server it is required to add the following software 𝑑𝑏𝑑
 elements to the device: an algorithm for the validation of the input data (an additional
 requirement for the selected application), configuration with strict database access
 policy (an additional requirement for the selected database), configuration with
 strong login credentials (an additional requirement for the selected database),

 224

 configuration with separate database users for different operations (an additional
 requirement for the selected database).

 To prevent on the level of the server it is required to train operators and users of 𝑠𝑜𝑐
 the system. This requirement cannot be translated into software or hardware
 elements of the device, so would be transferred to the stakeholder as an additional
 recommendation during the system implementation.

 Thus, the step-by-step formation of the server of the system:
 1. Combination of a micro-SD card and an operating system image with the help

 of additional software tools (for example Imager can be used with Raspberry
 Pi one board computers to install Raspbian).

 2. Combination of the micro-SD card with the installed operating system and a
 single-board computer with the help of a micro-SD slot.

 3. Combination of the single-board computer with micro-SD card and a power
 bank with the help of the USB connection, while the power bank is connected
 to the home power grid. At this step, the algorithm formed a working
 single-board computer that will require additional configuration.

 4. Secure configuration of the wireless access point on the powered-up
 single-board computer . Such a configuration requires the configuration based
 on at least WPA2-PSK to cover requirements related to the encryption
 algorithm, login credentials and authentication.

 5. Combination of the single-board computer with a wireless access point and a
 database server (for example, with help of sudo apt update/install in
 Linux-based systems). Secure configuration of the database server: only
 localhost connections, strong login credentials. Creation of the database to
 store system data and events and its secure configuration: separate users for
 different operations, strict access policy, strong login credentials.

 6. Combination of the single-board computer with database and an executable
 application with a graphical user interface based on the installation of required
 libraries, drivers and compilers (not only to work in the environment of the
 selected operating system but also to work with the selected database).
 Extension of the application functionality with the validation of received data
 before it is written into the selected database. Extension of the application
 functionality with an algorithm for behaviour-based anomaly detection that is
 trained to detect resource depletion attacks.

 7. Secure configuration of the Ethernet connection to the remote update server
 on the single-board computer with the application . This update server is
 required to provide software updates for the server as well as firmware
 updates for mobile robots and charging stations.

 8. Combination of the single-board computer that represents the server of the
 designed system and a vandal-proof device case to provide additional
 security from physical attacks.

 225

 At this point, the server of the system is formed based on the abstract hardware and
 software elements as well as building blocks. To make it more concrete, suitable
 real-world examples should be used.

 For example, as the selected single-board computer it is possible to use Raspberry
 Pi 3, 3 B+, 4 and 4 B. And if the Raspberry Pi platform is selected, as an operating
 system it is possible to install Raspbian, Ubuntu MATE, Pidora, Linutop, SARPi and
 other systems, while the application can be written in Python, Java, C++ and so on.
 As for the database server, MySQL or PostgreSQL are the most popular ones.

 One of the possible alternatives of the server is presented in Table A.5 .

 Table A.5 . Component composition of the server
 Abstract component Selected physical component

 single-board computer Raspberry Pi 4 Model B with Broadcom BCM2711, ARM Cortex A72
 1.5 GHz, 2 GB SDRAM, Ethernet, Wi-Fi, USD, HDMI, up to 1280 mAh

 micro-SD card Samsung Pro Endurance 32 GB Class 10

 operating system

 Raspberry Pi OS with desktop and recommended software, 2863 MB.
 Configuration of the secure Wi-Fi access point (based on WPA2 PSK
 for the strong encryption algorithm and login credentials as well as
 public-key pair-based authentication). Configuration of the connection
 with the remote update server

 database

 PostgreSQL 10.16 database server for 32-bit Linux operating systems.
 It is required to configure this server and to create and configure the
 database to be able to store system data and events in a secure way.
 The size of the database will depend on the number of events that are
 produced by the system, but the initial size is 150 MB

 application

 Python 3.9.2 compiler for 32-bit Linux operating systems with Tkinter
 (graphical user interface) and psycopg2 (database connection)
 packages, 100 MB. It is required to develop the application to provide a
 user interface for the operator of the system as well as to communicate
 with other devices of the system taking the security requirements into
 account (input data validation for the database and etc.), 100 MB

 power bank
 RAVPower 20000mAh (near 12 hours of one-board computer work at
 moderate load), high-speed charging, output 5V/3A, 9V/3A, 12V/3A
 14.5V/2A, 15V/3A, 20V/3A, 3 hours recharging time

 The role of such components is in providing data about the concrete parameters:
 computing power, disk space, resources consumption, energy consumption, network
 bandwidth as well as possible incompatibilities between them. These parameters are
 required for the correct formation of alternatives of the server. Moreover, they are
 necessary for the ranking of alternatives based on their price, energy efficiency, size
 and other non-functional characteristics. These calculations will be discussed in
 more detail in Chapter 3, where the design methodology is presented.

 226

 A2. Modeling of charging stations
 Each charging station is based on a combination of Iskra JS and ESP8266
 microcontrollers with a Qi wireless charger. Iskra JS is used to interact with
 electronic components — sensors and transmitters. This interaction is based on the
 firmware of the microcontroller and an additional hardware element — Troyka Shield.
 Troyka Shield does not reserve any pins of the microcontroller. Instead, it provides
 voltage and ground to each analogue and digital pin of the microcontroller simplifying
 the connection of electronic components. ESP8266 is connected to TxRx pins of
 Iskra JS and enhances charging station functionality with the possibility of remote
 firmware update on both microcontrollers as well as the possibility to connect it to
 Wi-Fi access points. To provide a power supply, Iskra JS and Qi wireless charger are
 connected to the home power supply. Iskra JS and Troyka Shield are connected in
 such a way that they have a shared power supply. Qi transmitter is used to provide a
 possibility of wireless recharge of mobile robots.

 Thus, in terms of the developed model, contains the following sub-blocks: 𝑏 𝑏
 2 𝑖

 ● — ESP8266 microcontroller with default drivers and libraries for the 𝑏𝑏
 1
 '

 possibility to communicate with the server via Wi-Fi;
 ● — Iskra JS microcontroller with default drivers and libraries for the 𝑏𝑏

 2
 '

 possibility to interact with electronic components via firmware, as well as with
 via AT-commands. 𝑏𝑏

 1
 '

 And the following hardware elements:
 ● — Troyka Shield to simplify the connection of other hardware elements ℎ 𝑤

 1

 and building blocks to ; 𝑏𝑏
 2
 '

 ● , — two infrared transmitters for the communication with mobile ℎ 𝑤
 2

 ℎ 𝑤
 3

 robots during their parking;
 ● — noise sensor for the detection of intruders; ℎ 𝑤

 4

 ● — motion sensor for the detection of intruders. ℎ 𝑤
 5

 As well as the following software elements:
 ● — firmware of that represents a combination of different algorithms to 𝑠 𝑤

 1
 𝑏𝑏

 1
 '

 ensure the possibility of communication between and as well as 𝑏𝑏
 1
 ' 𝑏𝑏

 2
 ' 𝑏 𝑏

 2 𝑖

 and the server of the system;
 ● — firmware of that represents a combination of different algorithms to 𝑠 𝑤

 2
 𝑏𝑏

 2
 '

 ensure microcontroller’s interaction with transmitters and sensors ℎ 𝑤
 2

− ℎ 𝑤
 3

 227

 as well as combination of their output for successful intruder ℎ 𝑤
 4

− ℎ 𝑤
 5

 detection and self-availability monitoring; moreover, provides a 𝑠 𝑤
 2

 𝑏𝑏
 2
 '

 possibility to communicate with mobile robots during their parking via
 and with via AT-commands. ℎ 𝑤

 2
− ℎ 𝑤

 3
 𝑏𝑏

 1
 '

 Thus, links between elements of can be represented as follows: 𝑏 𝑏
 3 𝑖

 , 𝐿
 𝑏 𝑏

 2 𝑖

= (𝐿
 1
, 𝐿

 2
, 𝐿

 3
)

 where — pin-to-pin connection between and with shared power supply; 𝐿
 1

 𝑏𝑏
 2
 ' ℎ 𝑤

 1
 𝐿

 2

 — TxRx connection between and with shared ground and voltage wires (four 𝑏𝑏
 2
 ' 𝑏𝑏

 1
 '

 digital pins of Iskra JS are reserved for communication between controllers); — 𝐿
 3

 three wire SVG (signal, voltage, ground) connection through between and ℎ 𝑤
 1

 𝑏𝑏
 2
 '

 transmitters as well as digital sensors , where digital pins of ℎ 𝑤
 2

− ℎ 𝑤
 3

 ℎ 𝑤
 4

− ℎ 𝑤
 5

 Iskra JS are used.

 represents the functionality that satisfaction is necessary for to be able to 𝐹𝑅 𝑏 𝑏
 3 𝑖

 work. It contains:
 ● — power source; 𝑓 𝑟

 1

 ● — secure communication with the server of the system; 𝑓 𝑟
 2

 ● — mobile robots with IR receivers. 𝑓 𝑟
 3

 represents the limitations which satisfaction is necessary for to be able to 𝑁𝐿 𝑏 𝑏
 3 𝑖

 work. It contains:
 ● — space for the placement of the device; 𝑛 𝑙

 1

 ● — the environment does not contain elements that can lead to incorrect 𝑛 𝑙
 2

 operation of sensors of the device;
 ● — the environment does not contain elements that can lead to incorrect 𝑛 𝑙

 3
 operation of wireless communications.

 represents the functionality that can provide. It contains: 𝑃𝐹 𝑏 𝑏
 3 𝑖

 ● — to detect intruders; 𝑝 𝑓
 1

 ● — to connect to Wi-Fi access points; 𝑝 𝑓
 2

 ● — to monitor own availability and location; 𝑝 𝑓
 3

 ● — to recharge wirelessly mobile robots; 𝑝 𝑓
 4

 228

 ● — to receive and install firmware updates remotely; 𝑝 𝑓
 5

 ● — to be secure against attackers with , , . 𝑝 𝑓
 6

 𝑎𝑐 = 4 𝑘𝑛 = 2 𝑟𝑠 = 2

 represents the resources that can provide. It contains: 𝑃𝑅 𝑏 𝑏
 3 𝑖

 ● — to add additional software elements to microcontrollers firmware; 𝑝 𝑟
 1

 ● — to add, remove or replace hardware elements of charging stations. 𝑝 𝑟
 2

 Based on the requirements, the algorithm can form the device that represents one of
 the charging stations step-by-step. For such a device it is required to have:

 ● microcontroller with a bootloader and programmable firmware that can work
 with sensors, servo drives, transmitters and shields as well as other
 microcontrollers, has output voltage 3.3 V on pins and not less than 256 KB of
 flash memory;

 ● troyka shield to provide voltage and ground to each analog and digital pin of
 the microcontroller simplifying the connection of electronic components that
 are compatible with the selected microcontroller;

 ● two infrared transmitters for the communication with infrared receivers of
 mobile robots during their parking process;

 ● motion sensor with adjustable sensitivity, viewing angle not less than 110
 degrees and observing distance not less than 7 m;

 ● noise sensor with adjustable microphone sensitivity to detect abnormally loud
 sounds for the detection of intruders;

 ● servo drive to rotate noise and motion sensors for the better detection of
 intruders with rotation range not less than 180 degrees;

 ● microcontroller with a bootloader and programmable firmware with in-build
 physical Wi-Fi interface and possibility to connect to wireless access points
 that can have wired data connection with the selected microcontroller;

 ● Qi transmitter that can be connected to the home power grid;
 ● firmware of the first microcontroller that contains algorithms for work with all

 connected electronic components and microcontrollers as well as algorithms
 that determine the work process of the charging station;

 ● firmware of the second microcontroller that determines his work with another
 microcontroller as well as his communication with the server of the system.

 But this is without taking into account security requirements. To prevent , and 𝑟𝑝𝑡 𝑟𝑚𝑡
 on the level of each charging station a vandal-proof device case (hardware 𝑝𝑤𝑟

 element) should be used. To prevent , in addition to the vandal-proof device 𝑖𝑚𝑤
 case, light-weight encryption and authentication algorithms (software elements) for
 the communication between microcontrollers should be used. To prevent , all 𝑖𝑒𝑐
 necessary data for the behaviour-based anomaly detection algorithms should be
 transferred to the designed server of the system. That will provide a possibility to
 isolate the mobile robot that is under attack. To prevent each mobile robot should 𝑖𝑤𝑠

 229

 be connected to the Wi-Fi access point that is created by the server of the system.
 To prevent and on the level of charging stations no additional security 𝑤𝑒𝑏 𝑑𝑏𝑑
 elements are required because there are no batteries, web services or databases.

 Thus, the step-by-step formation of each of the charging stations:
 1. Combination of the microcontroller and troyka shield based on the pin-to-pin

 connection (they should be compatible). At this point, the algorithm formed a
 microcontroller-based platform with a shared power supply to which other
 components of the charging station can be easily connected.

 2. Combination of the microcontroller with troyka shield and microcontroller with
 in-build Wi-Fi interface based on the Serial connection (voltage, ground, Tx,
 Rx). Such a connection will reserve 4 digital pins for the communication
 between microcontrollers.

 3. Combination of the connected microcontrollers and two infrared transmitters
 based on the three-wire connection (voltage, ground, signal). Such a
 connection will reserve 2 digital pins (one for each transmitter).

 4. Combination of the microcontrollers with transmitter and motion sensor based
 on the three-wire connection (voltage, ground, signal). Such a connection will
 reserve 1 digital pin.

 5. Combination of the microcontrollers with motion sensor and noise sensor
 based on the three-wire connection (voltage, ground, signal). Such a
 connection will reserve 1 digital pin.

 6. Combination of the microcontrollers with noise sensor and servo drive based
 on the three-wire connection (voltage, ground, signal). Such a connection will
 reserve 1 digital pin.

 7. Combination of the microcontrollers with the motion sensor and Qi transmitter
 through shared power supply from the home power grid. At this point, the
 algorithm formed a prototype of the device that represents charging stations
 of the system.

 8. Combination of the charging station prototype and firmware of the first
 microcontroller based on its programming interface.

 9. Combination of the charging station prototype and firmware of the second
 microcontroller based on its programming interface.

 10. Combination of the charging station prototype and vandal-proof device case
 to provide additional security from physical attacks.

 As was mentioned before, the firmware of the first microcontroller represents a
 combination of algorithms for work with all connected electronic components and
 microcontrollers as well as algorithms that determine the work process of the
 charging station. In addition, according to security requirements, such firmware must
 be extended with lightweight encryption and authentication algorithms.

 Firmware of the second microcontroller represents a combination of algorithms for
 work with the first microcontroller as well as for communication with the server of the
 system. Work with the first microcontrollers should be through the selected

 230

 lightweight encryption and authentication algorithms, while the communication with
 the server must be through its Wi-Fi access point.

 The idea behind using two infrared transmitters for directing mobile robots to the
 charging space is pretty simple. Each charging station with help of these transmitters
 emits two infrared signals in a V shape. The infrared receiver on each of the mobile
 robots can receive those signals. Each side of the V is provided by a different
 transmitter, that is why the mobile robot is able to distinguish them. Thus, when the
 mobile robot can receive a signal only from one of the transmitters it can be
 interpreted as the “left” or the “right” side of the charging station, so movement can
 be adjusted. And once signals from both transmitters can be received – the direction
 to the charging station is known.

 One of the possible alternatives to the charging station is presented in Table A.6 .

 Table A.6 . Component composition of the charging station
 Abstract component Selected physical device

 microcontroller for work
 with electronic components

 Iskra JS with 3.3 and 5V output pins, 1024 KB flash memory, 192 KB
 SRAM, 14 digital and 6 analog pins and Tx Rx support on P0-P1,
 69×53×19 mm size, 300 mAh energy consumption

 troyka shield Troyka Shield with 69×53×19 size that is compatible with Iskra JS
 and provides 3.3 or 5V on pins

 wireless transmitters infrared transmitter (troyka module), 38 kHz for compatibility with
 receivers of mobile robots, 25.4×25.4 mm, 20 mAh, 1 digital pin

 motion sensor infrared motion sensor (troyka module), 25.4×25.4 mm, 7 m
 detection distance, 110 degrees viewing angle, 10 mAh, 1 digital pin

 noise sensor noise sensor (troyka module), 25.4×25.4 mm, 10 mAh, 1 digital pin

 servo drive Feetech FS90 micro servo drive, 180 degrees rotation range, torque
 1.3 kg×cm, 650 degrees×sec rotation speed, 150 mAh, 1 digital pin

 microcontroller with in-build
 Wi-Fi interface

 ESP8266 (troyka module), UART connection to Iskra JS, 512 KB
 flash memory, Wi-Fi b/g/n 2.4 GHz, 250 mAh, 4 digital pins

 Qi transmitter 5V 0.6A 3W Qi Wireless Charging Coil, micro-USB

 firmware for the first
 microcontroller

 It is required to develop the firmware to ensure microcontroller’s work
 with electronic components as well as combination of their output for
 successful interaction with mobile robots, intruders and the server.
 Moreover, light-weight encryption and authentication algorithms are
 required for communication, 120 KB

 firmware for the second
 microcontroller

 It is required to develop the firmware to ensure microcontrollers joint
 work as well as communication with the server. For communications
 between microcontrollers lightweight encryption and authentication,
 algorithms are required. Connection with the server must be through
 its Wi-Fi access point (WPA2-PSK), 100 KB

 231

 A3. Modeling of mobile robots
 Each mobile robot is based on a combination of Iskra JS and ESP8266
 microcontrollers. Iskra JS is used to interact with electronic components — sensors,
 receivers, servos and motors. This interaction is based on the firmware of the
 microcontroller and additional hardware elements: Motor Shield and Troyka Shield.
 Motor Shield provides a possibility to increase the output voltage of the
 microcontroller with the help of H-bridges which is necessary for correct control of
 the speed of connected motors. Note that only two motors can be connected to
 Motor Shield, while 4 digital pins of Iskra JS are reserved for motor control (two pins
 for each motor to be able to change its movement direction between clockwise and
 counterclockwise). Troyka Shield does not reserve any pins of the microcontroller.
 Instead, it provides voltage and ground to each analogue and digital pin of the
 microcontroller simplifying the connection of electronic components. ESP8266 is
 connected to Tx Rx pins of Iskra JS and enhances mobile robot functionality with the
 possibility of remote firmware update on both microcontrollers as well as the
 possibility to connect it to Wi-Fi access points. To provide a power supply, Motor
 Shield is connected to a power bank which in turn is connected to Qi wireless charge
 receiver. Note that Iskra JS, ESP8266, Motor Shield and Troyka Shield are
 connected in such a way that they have a shared power supply from the power bank.
 Qi receiver is used to provide a possibility of wireless recharge of mobile robots.

 Thus, in terms of the developed model, contains the following sub-blocks: 𝑏 𝑏
 2 𝑖

 ● — ESP8266 microcontroller with default drivers and libraries for the 𝑏𝑏
 1
 '

 possibility to communicate with the server via Wi-Fi;
 ● — Iskra JS microcontroller with default drivers and libraries for the 𝑏𝑏

 2
 '

 possibility to interact with electronic components via firmware, as well as with
 via AT-commands. 𝑏𝑏

 1
 '

 And the following hardware elements:
 ● — Troyka Shield to simplify the connection of other hardware elements ℎ 𝑤

 1

 and building blocks to ; 𝑏𝑏
 2
 '

 ● — combination of Motor Shield (hardware element) and two collector ℎ 𝑤
 2

 motors (hardware elements) for the possibility to increase the output voltage
 of on them, so designed mobile robot can move; 𝑏𝑏

 2
 '

 ● — combination of the power bank (hardware element) and Qi receiver ℎ 𝑤
 3

 (hardware element) that are connected with each other via micro-USB, while
 is connected to via two wires (ground and voltage). ℎ 𝑤

 3
 ℎ 𝑤

 2

 232

 ● — infrared receiver for the communication with charging stations for ℎ 𝑤
 4

 better parking;
 ● — touch sensor for the detection of obstacles; ℎ 𝑤

 5

 ● — noise sensor for the detection of intruders; ℎ 𝑤
 6

 ● — motion sensor for the detection of intruders; ℎ 𝑤
 7

 ● — distance sensor for the detection of obstacles; ℎ 𝑤
 8

 ● , — encoders for wheels that are connected to each of the collector ℎ 𝑤
 9

 ℎ 𝑤
 10

 motors of to measure the distance travelled by ; 𝑏𝑏
 3
 ' 𝑏 𝑏

 2 𝑖

 ● — servo drive for rotation of sensors for better detection of ℎ 𝑤
 11

 ℎ 𝑤
 6

− ℎ 𝑤
 8

 obstacles and intruders.

 As well as the following software elements:
 ● — firmware of that represents a combination of different algorithms to 𝑠 𝑤

 1
 𝑏𝑏

 1
 '

 ensure the possibility of communication between and as well as 𝑏𝑏
 1
 ' 𝑏𝑏

 2
 ' 𝑏 𝑏

 2 𝑖

 and the server of the system;
 ● — firmware of that represents a combination of different algorithms to 𝑠 𝑤

 2
 𝑏𝑏

 2
 '

 ensure its interaction with collector motors , receiver , sensors ℎ 𝑤
 2

 ℎ 𝑤
 4

 and servo drive as well as a combination of their output for ℎ 𝑤
 5

− ℎ 𝑤
 10

 ℎ 𝑤
 11

 successful in-door navigation and intruder chase and detection; moreover, 𝑠 𝑤
 2

 provides a possibility to monitor the charge of , to communicate with 𝑏𝑏
 2
 ' ℎ 𝑤

 3

 charging stations for parking via and to communicate with via ℎ 𝑤
 4

 𝑏𝑏
 1
 '

 AT-commands.

 Thus, links between elements of can be represented as follows: 𝑏 𝑏
 2 𝑖

 , 𝐿
 𝑏 𝑏

 2 𝑖

= (𝐿
 1
, 𝐿

 2
, 𝐿

 3
, 𝐿

 4
, 𝐿

 5
, 𝐿

 6
)

 where — pin-to-pin connection between and with shared power supply; 𝐿
 1

 𝑏𝑏
 2
 ' ℎ 𝑤

 1
 𝐿

 2

 — pin-to-pin connection between and with shared power supply (four digital 𝑏𝑏
 2
 ' ℎ 𝑤

 2

 pins of Iskra JS are reserved for control of two collector motors); — two-wire VG 𝐿
 3

 (voltage, ground) connection between and ; — TxRx connection between ℎ 𝑤
 2

 ℎ 𝑤
 3

 𝐿
 4

 and with the shared ground and voltage wires (four digital pins of Iskra JS 𝑏𝑏
 1
 ' 𝑏𝑏

 2
 '

 are reserved for communication between controllers); — three wire SVG (signal, 𝐿
 5

 233

 voltage, ground) connection through between and receiver , digital ℎ 𝑤
 1

 𝑏𝑏
 2
 ' ℎ 𝑤

 4

 sensors , servo drive , where digital pins of Iskra JS are used; — ℎ 𝑤
 5

− ℎ 𝑤
 8

 ℎ 𝑤
 11

 𝐿
 3

 three wire SVG connection through between and encoders , ℎ 𝑤
 1

 𝑏𝑏
 2
 ' ℎ 𝑤

 9
− ℎ 𝑤

 10

 where analogue pins of Iskra JS are used.

 Properties of — one of the mobile robots of the system — are also connected 𝑏 𝑏
 2 𝑖

 with the properties of and partially represent them. 𝑚𝑏𝑠

 represents the functionality that satisfaction is necessary for to be able to 𝐹𝑅 𝑏 𝑏
 2 𝑖

 work. It contains:
 ● – secure communication with the server of the system; 𝑓 𝑟

 1

 ● – availability of wireless charging stations with IR transmitters. 𝑓 𝑟
 2

 represents the limitations which satisfaction is necessary for to be able to 𝑁𝐿 𝑏 𝑏
 2 𝑖

 work. It contains:
 ● — space for mobile robots’ movement; 𝑛 𝑙

 1

 ● — environment does not contain elements that can lead to incorrect 𝑛 𝑙
 2

 operation of device sensors;
 ● — environment does not contain elements that can lead to incorrect 𝑛 𝑙

 3
 operation of wireless communications.

 represents the functionality that can provide. It contains: 𝑃𝐹 𝑏 𝑏
 2 𝑖

 ● – to detect and avoid obstacles; 𝑝 𝑓
 1

 ● – to detect and chase intruders; 𝑝 𝑓
 2

 ● – to connect to Wi-Fi access points; 𝑝 𝑓
 3

 ● – to monitor own position inside controlled perimeter; 𝑝 𝑓
 4

 ● – to monitor the charge state of the power bank; 𝑝 𝑓
 5

 ● – to recharge wirelessly on charging stations; 𝑝 𝑓
 6

 ● – to receive and install firmware updates remotely; 𝑝 𝑓
 7

 ● – to be secure against attackers with , , . 𝑝 𝑓
 8

 𝑎𝑐 = 4 𝑘𝑛 = 2 𝑟𝑠 = 2

 is representing the resources that can provide. It contains: 𝑃𝑅 𝑏 𝑏
 2 𝑖

 ● – to add additional software elements to microcontrollers firmware; 𝑝 𝑟
 1

 ● – to add, remove or replace hardware elements of mobile robots. 𝑝 𝑟
 2

 234

 As an example of the hardware element that contains hardware sub-elements, let’s
 consider — combination of Motor Shield and two collector motors of one ℎ 𝑤

 2
∈ 𝑏 𝑏

 2 𝑖

 of the mobile robots — in more detail:

 , ℎ 𝑤
 2

= ((ℎ 𝑤
 21

, ℎ 𝑤
 22

, ℎ 𝑤
 23

), 𝐿
 ℎ 𝑤

 2

, 𝑝
 ℎ 𝑤

 2

)

 where — Motor Shield of ; — first collector motor of ; — ℎ 𝑤
 21

 ℎ 𝑤
 2

 ℎ 𝑤
 22

 ℎ 𝑤
 2

 ℎ 𝑤
 23

 second collector motor of ; — VG connections between and ℎ 𝑤
 2

 𝐿
 ℎ 𝑤

 2

 ℎ 𝑤
 21

 ; — properties of . ℎ 𝑤
 22

− ℎ 𝑤
 23

 𝑝
 ℎ 𝑤

 2

 ℎ 𝑤
 2

 Let’s consider properties of in more detail. represents the functionality ℎ 𝑤
 2

∈ 𝑏 𝑏
 2 𝑖

 𝐹𝑅

 that satisfaction is necessary for to be able to work. It contains: ℎ 𝑤
 2

 ● — power source; 𝑓 𝑟
 1

 ● — physical connection to the microcontroller with correct voltage. 𝑓 𝑟
 2

 is representing the limitations which satisfaction is necessary for : 𝑁𝐿 ℎ 𝑤
 2

 ● — microcontroller shape must be suitable for Motor Shield installation; 𝑛 𝑙
 1

 ● — motors must be DC with a voltage of 5 to 24 V; 𝑛 𝑙
 2

 ● — input voltage of the power supply in the range from 7 to 12 V; 𝑛 𝑙
 3

 ● — power supply provides a stable voltage during sudden load surges. 𝑛 𝑙
 4

 is representing the functionality that can provide. It contains: 𝑃𝐹 𝑏 𝑏
 3 𝑖

 ● — to control two collector motors (direction and speed of rotation). 𝑝 𝑓
 1

 is representing the resources that can provide. It contains: 𝑃𝑅 ℎ 𝑤
 2

 ● — to add, remove or replace hardware elements. 𝑝 𝑟
 1

 Note that properties of — combination of Motor Shield and two collector ℎ 𝑤
 2

∈ 𝑏 𝑏
 2 𝑖

 motors — are connected with the properties of — one of the mobile 𝑏 𝑏
 2 𝑖

∈ 𝐵 𝐵
 2

 robots of the designed system — and partially represent them. While properties of
 are connected with the properties of the designed . 𝑏 𝑏

 2 𝑖
∈ 𝐵 𝐵

 2
 𝑚𝑏𝑠

 As an example of the software element that contains software sub-elements, let’s
 consider — firmware of Iskra JS microcontroller of one of the mobile 𝑠 𝑤

 2
∈ 𝑏 𝑏

 2 𝑖

 robots — in more detail:

 235

 , 𝑠 𝑤
 2

= ((𝑠 𝑤
 21

,..., 𝑠 𝑤
 31

), 𝐿
 𝑠 𝑤

 2

, 𝑝
 𝑠 𝑤

 2

)

 where — software element for control of collector motors via Motor Shield 𝑠 𝑤
 21

 (speed, rotation direction); — software element for processing of data from 𝑠 𝑤
 22

 infrared receivers of charging stations; — software element for processing of 𝑠 𝑤
 23

 data from noise sensor; — software element for processing of data from motion 𝑠 𝑤
 24

 sensor; — software element for processing of data from motion sensor; — 𝑠 𝑤
 25

 𝑠 𝑤
 26

 software element for processing of data from distance sensor; — software 𝑠 𝑤
 27

 element for control of the servo drive; — software element for processing of 𝑠 𝑤
 28

 data from encoders; — software element for communication with EPS8266 𝑠 𝑤
 29

 microcontroller; — software element for monitoring of charge state of a power 𝑠 𝑤
 30

 bank; — a software element that works with other elements based on rules of 𝑠 𝑤
 31

 the device behavior (for example, in-door navigation, detection and chase of an
 attacker, data transferring to the server); — links between software elements of 𝐿

 𝑠 𝑤
 2

 based on compilation of the source code; — properties of . 𝑠 𝑤
 2

 𝑝
 𝑠 𝑤

 2

 𝑠 𝑤
 2

 Let us consider properties of in more detail. represents the 𝑠 𝑤
 2

∈ 𝑏 𝑏
 2 𝑖

 𝐹𝑅

 functionality that satisfaction is necessary for to be able to work. It contains: 𝑠 𝑤
 2

 ● – microcontroller with bootloader; 𝑓 𝑟
 1

 ● – microcontroller with flash memory. 𝑓 𝑟
 2

 represents the limitations which satisfaction is necessary for : 𝑁𝐿 𝑠 𝑤
 2

 ● — flash memory space is not less than 256 KB; 𝑛 𝑙
 1

 ● — RAM size is not less than 64 KB. 𝑛 𝑙
 2

 represents the functionality that can provide. It contains: 𝑃𝐹 𝑠 𝑤
 2

 ● — in-door navigation of mobile robots; 𝑝 𝑓
 1

 ● — monitoring of charge state of the mobile robot; 𝑝 𝑓
 2

 ● — detection of charging stations and parking; 𝑝 𝑓
 3

 ● — detection and chase of intruders; 𝑝 𝑓
 4

 ● — communication with the server of the system. 𝑝 𝑓
 5

 236

 represents the resources that can provide. It contains: 𝑃𝑅 𝑠 𝑤
 2

 ● — to add, remove or replace software elements; 𝑝 𝑟
 1

 ● — to change mobile robots behaviour; 𝑝 𝑟
 2

 ● — to update microcontrollers firmware. 𝑝 𝑟
 3

 Note that properties of — firmware of Iskra JS microcontroller of one of 𝑠 𝑤
 2

∈ 𝑏 𝑏
 2 𝑖

 the mobile robots — are connected with properties of — one of the 𝑏 𝑏
 2 𝑖

∈ 𝐵 𝐵
 2

 mobile robots of the designed system — and partially represent them. While
 properties of are connected with the properties of the designed . 𝑏 𝑏

 2 𝑖
∈ 𝐵 𝐵

 2
 𝑚𝑏𝑠

 Based on the requirements, the algorithm can form the device that represents one of
 the mobile robots step-by-step. For such a device it is required to have:

 ● microcontroller with a bootloader and programmable firmware that can work
 with sensors, collector motors, servo drives, transmitters, receivers and
 shields as well as other microcontrollers, has output voltage 3.3 V on pins and
 not less than 256 KB of flash memory;

 ● two collector motors to rotate wheels of the robot with not less than 300 rpm
 and size equal to 12 mm;

 ● motor shield to increase the output voltage of the selected microcontroller with
 help of H-bridges that is able to control not less than two motors and
 compatible with the selected microcontroller;

 ● troyka shield to provide voltage and ground to each analog and digital pin of
 the microcontroller simplifying the connection of electronic components that
 are compatible with the selected microcontroller;

 ● wireless receiver for the communication with two directed wireless
 transmitters of charging stations during parking that is compatible with the
 selected microcontroller (the choice here determines the choice for each
 charging station);

 ● touch sensor for the detection of obstacles that can be used as bumper and
 compatible with the selected microcontroller;

 ● distance sensor for the detection of obstacles with distance range not less
 than 400 cm and effective viewing angle not less than 15 degrees that is
 compatible with the selected microcontroller;

 ● noise sensor with adjustable microphone sensitivity to detect abnormally loud
 sounds for the detection of intruders;

 ● motion sensor with adjustable sensitivity, viewing angle not less than 110
 degrees and observing distance not less than 7 m;

 ● servo drive to rotate distance, noise and motion sensors for the better
 detection of obstacles and intruders due to viewing angle limits with rotation
 range not less than 180 degrees;

 237

 ● encoders for wheels that are connected to each of the selected collector
 motors to measure the distance traveled by the designed robot;

 ● microcontroller with a bootloader and programmable firmware with in-build
 physical Wi-Fi interface and possibility to connect to wireless access points
 that can have wired data connection with the selected microcontroller;

 ● power bank that can power up the combination of selected microcontrollers,
 shields, sensors, motors, servos and receivers and has a capacity to provide
 power supply to the designed robot for not less than 2 hours;

 ● Qi receiver that can be connected to the selected power bank (the choice
 here determines the choice for each charging station);

 ● firmware of the first microcontroller that contains algorithms for work with all
 connected electronic components and microcontrollers as well as algorithms
 that determine the work process of the mobile robot;

 ● firmware of the second microcontroller that determines his work with another
 microcontroller as well as his communication with the server of the system.

 But this is without taking into account security requirements.

 To prevent and on the level of each mobile robot a vandal-proof device case 𝑟𝑝𝑡 𝑟𝑚𝑡
 (hardware element) should be used.

 To prevent , in addition to the vandal-proof device case, light-weight encryption 𝑖𝑚𝑤
 and authentication algorithms (software elements) for the communication between
 microcontrollers should be used.

 To prevent , all necessary data for the behaviour-based anomaly detection 𝑖𝑒𝑐
 algorithms should be transferred to the designed server of the system. That will
 provide a possibility to isolate the mobile robot that is under attack.

 To prevent each mobile robot should being connected to the Wi-Fi access point 𝑖𝑤𝑠
 that is created by the server of the system.

 To prevent , and on the level of each mobile robot, no additional 𝑝𝑤𝑟 𝑤𝑒𝑏 𝑑𝑏𝑑
 security elements are required because there are no web services or databases.

 Thus, the step-by-step formation of each of the mobile robots:
 1. Combination of motor shield and two collector motors with the help of the

 two-wire connection (voltage and ground).
 2. Combination of the power bank and Qi wireless charge receiver based on the

 micro-USB connection.
 3. Combination of the motor shield with motors and power bank with the receiver

 based on a two-wire connection (voltage and ground).

 238

 4. Combination of the motor shield with power bank and microcontroller based
 on the pin-to-pin connection (selected shield and microcontroller should be
 compatible). Such a connection will reserve 4 digital pins.

 5. Combination of the microcontroller with a motor shield and troyka shield
 based on the pin-to-pin connection (selected shield and microcontroller should
 be compatible). At this point, the algorithm formed a microcontroller-based
 platform with a shared power supply to which other components of the mobile
 robot can be easily connected.

 6. Combination of the microcontroller with troyka shield and microcontroller with
 in-build Wi-Fi interface based on the Serial connection (voltage, ground, Tx,
 Rx). Such a connection will reserve 4 digital pins for the communication
 between microcontrollers.

 7. Combination of the connected microcontrollers and wireless receiver based
 on the three-wire connection (voltage, ground, signal). Selected at this point,
 the receiver will determine the choice of transmitters for charging stations.
 Such a connection will reserve 1 digital pin.

 8. Combination of the microcontrollers with the receiver and touch sensor based
 on the three-wire connection (voltage, ground, signal). Such a connection will
 reserve 1 digital pin.

 9. Combination of the microcontrollers with the touch sensor and distance
 sensor based on the three-wire connection (voltage, ground, signal). Such a
 connection will reserve 1 digital pin.

 10. Combination of the microcontrollers with the distance sensor and noise
 sensor based on the three-wire connection (voltage, ground, signal). Such a
 connection will reserve 1 digital pin.

 11. Combination of the microcontrollers with the noise sensor and motion sensor
 based on the three-wire connection (voltage, ground, signal). Such a
 connection will reserve 1 digital pin.

 12. Combination of the microcontrollers with motion sensor and servo drive based
 on the three-wire connection (voltage, ground, signal). Such a connection will
 reserve 1 digital pin.

 13. Combination of the microcontrollers with servo drive and two encoders based
 on the three-wire connection (voltage, ground, signal). Such a connection will
 reserve 2 analogue pins. At this point, the algorithm formed a prototype of the
 device that represents the mobile robots of the system.

 14. Combination of the mobile robot prototype and firmware of the first
 microcontroller based on its programming interface.

 15. Combination of the mobile robot prototype and firmware of the second
 microcontroller based on its programming interface.

 16. Combination of the mobile robot prototype and vandal-proof device case to
 provide additional security from physical attacks.

 One of the possible alternatives of the mobile robot is presented in Table A.7 .

 239

 Table A.7 . Component composition of the mobile robot
 Abstract component Selected physical component

 microcontroller for work
 with electronic components

 Iskra JS with 3.3 and 5V output pins, 1024 KB flash memory, 192 KB
 SRAM, 14 digital and 6 analog pins and Tx Rx support on P0-P1,
 69×53×19 mm size, 300 mAh energy consumption

 collector motors 12mm motor, 5V, 300 rpm, 3 mm shaft diameter, 10 mm shaft length,
 36×12×10 mm size, 50 mAh energy consumption

 motor shield two channeled Motor Shield based on L298P that supports
 connection of two collector motors, 2A, 5-12V, 4 digital pins

 troyka shield Troyka Shield with 69×53×19 size that is compatible with Iskra JS
 and provides 3.3 or 5V on pins

 wireless receiver infrared receiver in form of troyka module (can be easily connected
 to Troyka Shield), 38 kHz, 25.4×25.4 mm, 20 mAh, 1 digital pin

 touch sensor clock button in form of troyka module (can be easily connected to
 Troyka Shield), 25.4×25.4 mm, 5 mAh, 1 digital pin

 distance sensor ultrasonic distance sensor HC-SR04, 2-400 cm scanning distance,
 15 degrees effective viewing angle, 15 mAh, 1 digital pin

 noise sensor noise sensor in form of troyka module (can be easily connected to
 Troyka Shield), 25.4×25.4 mm, 10 mAh, 1 digital pin

 motion sensor
 infrared motion sensor in form of troyka module (can be easily
 connected to Troyka Shield), 25.4×25.4 mm, 7 m detection distance,
 110 degrees viewing angle, 10 mAh, 1 digital pin

 servo drive Feetech FS90 micro servo drive, 180 degrees rotation range, torque
 1.3 kg×cm, 650 degrees×sec rotation speed, 150 mAh, 1 digital pin

 encoders for wheels line sensor based on TCRT5000, 10 mAh, 1 analog pin

 microcontroller with in-build
 Wi-Fi interface

 ESP8266 in from of troyka module (can be easily connected to
 Troyka Shield), UART connection to Iskra JS, 512 KB flash memory,
 Wi-Fi b/g/n 2.4 GHz, 250 mAh, 4 digital pins

 power bank Power Bank v2 2000 mAh, 5V, 600 mA, 55×53×20 mm, micro-USB,
 two-wire (ground + voltage) connection

 Qi receiver 5V 0.6A 3W Qi Wireless Charging Coil Receiver, micro-USB

 firmware for the first
 microcontroller

 It is required to develop the firmware to ensure microcontroller’s work
 with electronic components as well as combination of their output for
 successful in-door navigation and interaction with charging stations,
 the server and intruders. Moreover, lightweight encryption and
 authentication algorithms are required for communication, 520 KB

 firmware for the second
 microcontroller

 It is required to develop the firmware to ensure microcontrollers joint
 work as well as communication with the server of the system. For
 communications between microcontrollers lightweight encryption and
 authentication, algorithms are required. Connection with the server
 must be through its Wi-Fi access point (WPA2-PSK), 330 KB

 240

 Appendix B. Verification of mobile robots

 This appendix describes our experience in verification of the two-wheel mobile robot
 that is based on the LEGO 9797 Mindstorms NXT controller. It contains input data
 description, as well as our experience in work with the SPASS theorem prover, the
 Maude system and the daTac system.

 B1. Description of the input data
 Main elements of the LEGO 9797 Mindstorms NXT controller as well as its
 communication protocols and interfaces can be represented as follows:

 ● battery : six AA/LR6 batteries or one special rechargeable lithium-ion battery;
 ● LCD : graphical user interface and the possibility to output visual information;
 ● speaker : possibility to play different sounds;
 ● ports A, B, C : possibility to connect motors;
 ● ports 1, 2, 3 or 4 : possibility to connect sensors;
 ● USB : possibility to connect the controller to the computer (wire connection),

 update its firmware, send scripts and receive commands from the computer;
 ● Bluetooth : possibility to connect the controller to the computer or other device

 (wireless connection), update its firmware, send scripts and receive
 commands from the computer or other device.

 Motors are connected to the controller via ports A, B and C using an RJ12 cable on a
 1 to 1 basis, so the controller can simultaneously work with no more than three
 motors. These motors are servos for which one rotation is equal to 360 degrees,
 while there is a possibility to program them to rotate on a certain number of degrees.
 The operation of each motor is programmed through the port to which it is
 connected, while it is possible to set operation scenarios for a single one or several.
 For example, it is possible to rotate a robot with a simple algorithm that works only
 with its chassis: to rotate to the left, it is required to stop the motor of the left part of
 the chassis while the motor of the right part should continue to work.

 Sensors can be connected to ports 1, 2, 3 and 4 in a similar way, so the controller
 can simultaneously work with no more than four sensors. Work with sensors is
 based on the reaction to their events. Let’s consider them in more detail:

 ● touch sensor : works on the principle of a clock button, allows one to track the
 transition from the pressed state to the original one and vice versa;

 ● sound sensor : works on the principle of a microphone, allows one to measure
 the noise level nearby the robot;

 ● light sensor : allows one to evaluate the brightness of the object, based on
 which it is possible to distinguish colours;

 ● distance sensor (ultrasonic) : allows one to measure the distance from the
 robot to the obstacle in the range from 0 to 255 centimetres.

 241

 Interaction with motors during their programming is presented in Figure B.1 .

 Figure B.1 . An overview of the LEGO motor model

 Interaction with sensors during their programming is presented in Figure B.2 .

 Figure B.2 . An overview of the LEGO sensors model

 242

 For example, the touch sensor can be used for the development of the obstacle
 detection element — a bumper. The bumper can be used to prevent the collision of a
 mobile robot with an obstacle: if the touch sensor state is pressed then stop to move.
 A sound sensor can be used to control a mobile robot using sound signals: if the
 noise level is more than some threshold then start to move. A light sensor can be
 used to detect a line and to move along it: if the brightness of the object is more than
 some threshold then rotates to the left, else — to the right. Moreover, the light sensor
 can be used to prevent the mobile robot from falling off the table and to count the
 number of wheel revolutions. Distance sensor can be used to control the distance
 between the mobile robot and the detected obstacle: if the distance is less than
 some threshold then rotates to the left. In more complicated scenarios, the actions of
 the mobile robot are dependent on the state of several sensors at once: the mobile
 robot needs to detect an obstacle, come closer to it and stop at a certain distance to
 check the colour of the object near the obstacle and to take it or not.

 Note that any mobile that is designed on the basis of the LEGO Mindstorms
 constructor is a combination of a controller, motors, sensors and a large number of
 LEGO parts that make it possible to build its case with all moving elements. At the
 same time, the programming of the controller can be carried out both in a special
 graphical environment and by writing the source code. Moreover, the presence of the
 wireless interface in the controller allows one to build not only individual robots but
 also organize their interaction with other robots as well as the human operator.

 B2. Description of experiments
 For the experiments, it was decided to verify the possibility of designing a mobile
 robot with only one ability — the ability to move. In its turn, the ability to move is
 granted to robots that have a battery, wheels and a motor. The goal was to check
 existing tools for verification and try to adapt them for automated design, namely, the
 SPASS theorem prover, the Maude system and daTac. They were used to
 investigate different possibilities of reaching a mobile robot based on available
 building blocks.

 For each of these tools appropriate specifications were developed. Their full
 descriptions are available on https://github.com/levshun/PhD-mcbpss_design . Let’s
 consider each tool and developed model in more detail.

 Firstly, the problem was encoded for the SPASS — an automated theorem prover for
 first-order logic with equality. The result was obtained in clause number 525:

 Given clause: 525[0:Res:517.0,12.0] ||
 has(battery,plug(plug(plug(chassis0,battery0), motor0),wheel0))
 has(motor,plug(plug(plug(chassis0,battery0),motor0),wheel0))
 has(wheel,plug(plug(plug(chassis0,battery0),motor0),wheel0))* -> .
 SPASS V 3.9
 SPASS beiseite: Proof found.

 243

https://github.com/levshun/PhD-mcbpss_design

 The experiment showed that SPASS does not support associativity-commutativity
 unification, so it was decided to develop a small hack with plugable as a list
 constructor. But there are side effects:

 ● deduction process is faster than usual;
 ● system will diverge anyway by paramodulation into the plug formula;
 ● developed model will be incomplete if the system can have male/female slots.

 After SPASS, the Maude system was used. Maude is a high-performance reflective
 language and system supporting both equational and rewriting logic specification for
 a wide range of applications. The result was obtained almost immediately:

 search in CPS :
 init =>* S | system(Id1, P + has(wheel) + has(motor) + has(battery)) .
 Solution 1 (state 0)
 states: 1 rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)
 S --> none
 Id1 --> plug(wheel, plug(motor, plug(battery, chassis)))
 P --> done

 No more solutions.
 states: 1 rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)

 The initial state was represented as a multiset of resources, while each resource has
 one or more interfaces using which it can be attached to another resource. Also,
 each resource provides some properties, such as having a battery or wheels. The
 goal is that the set of options contains one that has a conjunction of properties. Since
 the main focus was on the physical part of the composition, there is only one
 composition rule for components that consists in attaching to components together.
 This operation consumes the existing components and creates a new one. The
 search functionality of the Maude system was also used to let it explore all the
 possible combinations that may lead to the construction of the mobile robot with the
 correct set of properties.

 The aim of the daTac system is to do automated deduction in first-order logic with
 equality. Its speciality is to apply deductions modulo some equational properties of
 operators, such as commutativity or associativity-commutativity. The result was
 obtained pretty fast:

 daTac -x o -i cps_composition -o cps_composition

 Clause 3: => composition(system(slot(male,wheel,id(wheel,x1)).empty,has(wheel)
 .empty,x1).system(slot(male,motor,id(motor,x2)).empty,has(motor).empty,x2)
 .system(slot(male,battery,id(battery,x3)).empty,has(battery).empty,x3)
 .system(slot(female,wheel,id(chassis,x4)).slot(female,motor,id(chassis,x4))
 .slot(female,battery,id(chassis,x4)).empty,empty,x4).empty,needs(wheel)
 .needs(motor).needs(battery).empty,empty,empty)

 Clause 21: => composition(system(slot(male,wheel,id(wheel,s(x1))).empty,
 has(wheel).empty,x1).empty.system(slot(female,wheel,id(chassis,x2))

 244

 .slot(female,motor,id(chassis,s(x2))).slot(female,battery,id(chassis,s(x2)))
 .empty,empty,x2).system(slot(male,motor,id(motor,x3)).empty,has(motor).empty,x3)
 .system(slot(male,battery,id(battery,x4)).empty,has(battery).empty,x4),
 empty.needs(battery).has(battery).empty,empty.empty,empty.plug(id(wheel,s(x1))
 ,wheel,id(chassis,s(x2))).plug(id(motor,s(x3)),motor,id(chassis,s(x2)))
 .plug(id(battery,s(x4)),battery,id(chassis,s(x2))))

 Simplification from 2 into 21

 Clause 21: => composition(system(slot(male,wheel,id(wheel,s(x1))).empty,
 has(wheel).empty,x1).empty.system(slot(female,wheel,id(chassis,x2))
 .slot(female,motor,id(chassis,s(x2))).slot(female,battery,id(chassis,s(x2)))
 .empty,empty,x2).system(slot(male,motor,id(motor,x3)).empty,has(motor).empty,x3)
 .system(slot(male,battery,id(battery,x4)).empty,has(battery).empty,x4),
 empty.needs(battery).has(battery),empty,empty.plug(id(wheel,s(x1)),wheel,
 id(chassis,s(x2))).plug(id(motor,s(x3)),motor,id(chassis,s(x2)))
 .plug(id(battery,s(x4)),battery,id(chassis,s(x2))))

 Simplification from 1 into 21

 Clause 21: => composition(system(slot(male,wheel,id(wheel,s(x1))).empty,
 has(wheel).empty,x1).empty.system(slot(female,wheel,id(chassis,x2))
 .slot(female,motor,id(chassis,s(x2))).slot(female,battery,id(chassis,s(x2)))
 .empty,empty,x2).system(slot(male,motor,id(motor,x3)).empty,has(motor).empty,x3)
 .system(slot(male,battery,id(battery,x4)).empty,has(battery).empty,x4),
 empty.empty,empty,empty.plug(id(wheel,s(x1)),wheel,id(chassis,s(x2)))
 .plug(id(motor,s(x3)),motor,id(chassis,s(x2))).plug(id(battery,s(x4)),
 battery,id(chassis,s(x2))))

 Clausal Simplification in 21 thanks to 8
 Simplification from 2 into 21
 Clause 21: []

 ...
 Total User Time: 0.005485 s cptTimbnbe: 50

 The rules encoding the composition problem in daTac are similar to those employed
 with Maude but for the fact that problems have to be encoded in first-order logic and
 that the composition strategy tries to simplify a composition problem denoted with
 the composition 4-ary predicate symbol. The first argument is the multiset of
 different kinds of components. The second one lists slots available for aggregating
 new components. The third component lists functional requirements on the goal of
 the design process — a mobile robot. Finally, the last component is employed for
 bookkeeping to trace which and how components were added.

 The motivation for considering daTac in addition to Maude is that in spite of its
 almost deprecated status, it is the theorem prover that handles natively
 AC-unification, and, thus, searches all possible combinations of components without
 an additional encoding. Being a theorem prover, it is not committed to a forward
 search of all combinations from the initial state (Clause 3), that is why it was possible
 to implement a lazy search strategy based on an ordered strategy.

 245

 Appendix C. Extraction of vulnerabilities of devices

 This appendix describes our experience in the connection of descriptions of devices
 with CPE URIs in accordance with their hardware, software and firmware. In
 addition, this appendix shows how the obtained list of CPE URIs that represents the
 configuration of the device can be checked for being vulnerable and connected with
 CVE descriptions.

 C1. Extraction of CPE URIs
 CPE URI of version 2.3 contains the following fields: part , vendor , product , version ,
 update , edition , language , sw_edition , target_sw , target_hw and other . For example:

 [part="o",vendor="microsoft",product="windows_vista",version="6\.0",
 update="sp1",edition=NA,language=NA,sw_edition="home_premium",
 target_sw=NA,target_hw="x64",other=NA]

 cpe:2.3:o:microsoft:windows_vista:6.0:sp1:-:-:home_premium:-:x64:-

 It means that based on the description of the device hardware, software and
 firmware it is possible to extract the corresponding CPE URIs. Let’s consider the
 main issues of such a process in more detail.

 Issues of CPE URIs:
 ● can contain typos;
 ● can become deprecated;
 ● can contain information about the vendor in the product field;
 ● open databases of CVE and CPE are not synchronized (corrections in one of

 the databases might not be implemented in another, some CPEs might not be
 connected with CVEs and some CVEs might not be connected with CPEs);

 ● two different CPE URIs might be equal to each other;
 ● version , update , edition and sw_edition fields can be equal to “-”, which can

 be interpreted as any version, update or edition;
 ● version , update , edition , language , sw_edition , target_sw , target_hw and

 other fields can be equal to “*”, which can be interpreted as empty field;
 ● version field can contain special symbol “*” to interpret the range of versions,

 for example, 8.1* contains 8.123.

 Issues of device descriptions:
 ● output format is most likely not equal to CPE URI;
 ● content of the output is most likely not equal to the content of CPE URI fields;
 ● can contain typos;
 ● output format can change.

 246

 It means that the mapping of descriptions to CPE URIs requires an approach that:
 ● generates multiple options of CPE URI fields for each component of the

 device in accordance with its description;
 ● checks the probability of each option to be represented as one of CPE URIs

 taken into account possibility of typos and other issues mentioned;
 ● selects the most reasonable option among possible.

 Note that such an approach is impossible without false positives — device was
 linked to the wrong CPE URI, and false negatives — device was not linked to the
 correct CPE. The output of such an approach contains the list of CPE URIs that are
 representing the configuration of the analyzed device. This configuration can be
 checked in terms of being vulnerable. For more information, see the next section.

 C2. Extraction of CVE descriptions
 In NVD (National Vulnerability Database) CVE descriptions of vulnerabilities are
 connected with configurations of devices that are vulnerable to them. Each
 configuration is represented as an expression with OR and AND operators, that are
 connecting CPE URIs together in hierarchical structures. For example, the
 vulnerability CVE-2020-11241 has the following configuration:

 AND(OR({"cpe23Uri": "cpe:2.3:o:qualcomm:ipq8076_firmware:-:*:*:*:*:*:*:*", "cpe_name":
 [], "vulnerable": true}),OR({"cpe23Uri": "cpe:2.3:h:qualcomm:ipq8076:-:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": false}))

 It can be interpreted as follows:
 ● Qualcomm ipq8076 firmware is vulnerable to CVE-2020-11241 if it is installed

 on Qualcomm ipq8076 hardware.

 Note that configurations can be much bigger than that, for example CVE-2020-0554
 is connected with the following one:

 AND(
 OR(

 {"cpe23Uri": "cpe:2.3:o:intel:ac_3165_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_3168_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_7265_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_8260_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_8265_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_9260_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_9461_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_9462_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"},

 247

 {"cpe23Uri": "cpe:2.3:o:intel:ac_9560_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"},
 {"cpe23Uri": "cpe:2.3:o:intel:ax200_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"},
 {"cpe23Uri": "cpe:2.3:o:intel:ax201_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.40"}

),
 OR(

 {"cpe23Uri": "cpe:2.3:o:microsoft:windows_7:-:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": false},
 {"cpe23Uri": "cpe:2.3:o:microsoft:windows_8.1:-:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": false}

)
)

 AND(
 OR(

 {"cpe23Uri": "cpe:2.3:o:intel:ac_3165_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_3168_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_7265_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_8260_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_8265_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_9260_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_9461_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_9462_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"},
 {"cpe23Uri": "cpe:2.3:o:intel:ac_9560_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"},
 {"cpe23Uri": "cpe:2.3:o:intel:ax200_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"},
 {"cpe23Uri": "cpe:2.3:o:intel:ax201_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"}

),
 OR(

 {"cpe23Uri": "cpe:2.3:o:microsoft:windows_10:-:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": false}

)
)

 The process of such configurations checking is based on the replacement of the
 following data structures:

 {"cpe23Uri": "cpe:2.3:o:intel:ax200_firmware:*:*:*:*:*:*:*:*",
 "cpe_name": [], "vulnerable": true, "versionEndExcluding": "21.70"}

 with “1” and “0” based on the presence of CPE URIs in the configuration of the
 device. After that each “OR” or “AND” expression is checked individually starting
 from inner ones. Expressions are also replaced with “0” and “1”, until there is nothing
 to replace. And if the result is “1” — device is vulnerable, “0” — not vulnerable.

 248

 An example of the Python implementation of such a functionality:

 def check_configuration(uris, config):
 config = config \
 .replace('true' , '"True"') \
 .replace('false' , '"False"')

 value = ''

 while '(' in config:
 while '{' in config:
 result = re.search(r" \{(.*?)\} " , config)
 sub_str = config[result.start():result.end()]

 cpe_dict = \
 ast.literal_eval(sub_str)

 if cpe_dict['cpe23Uri'] in uris:
 config = config.replace(sub_str, '1')
 else :
 config = config.replace(sub_str, '0')

 result = re.search(r' \(([^()]+)\) ' , config)
 expression = config[result.start()- 2 :result.end()]
 if expression[: 2] == 'ND' :
 expression = 'A' + expression

 value = check_expression(expression)
 config = config.replace(expression, value)

 value = bool (int (value))

 return value

 This implementation checks expressions with the help of the following function:

 def check_expression(expression):

 operator = expression.split('(')[0]

 values_str = expression \
 .replace(operator, '') \
 .replace('(' , '').replace(')' , '')

 values_arr = values_str.split(',')

 value = bool (int (values_arr[0]))

 if len (values_arr) > 1 :
 for index in range (1 , len (values_arr)):
 if operator == 'OR' :
 value = value or bool (int (values_arr[index]))
 if operator == 'AND' :
 value = value and bool (int (values_arr[index]))

 value = str (int (value))

 return value

 249

