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Abstract xi

Finite element modeling of mechanical contact problems for industrial ap-
plications

Abstract

The Airthium company uses FreeFEM software in order to study its energy storage system, and contact
mechanics is a part of these studies. Therefore the principal aim of this thesis is to develop an algorithm,
using FreeFEM and its tools, to solve mechanical contact problems between two bodies or more, for
linear elastic or finite deformation problems.

The contact problem is considered as a minimization problem of an energy, where we can take advantage
of several optimization techniques, in order to converge faster to the solution. For several reasons, the
interior point method is the optimization method chosen to solve the generated minimization problems.

An algorithm is proposed in order to solve the frictionless contact between a hyperelastic body and a
rigid foundation (obstacle). The non-penetration constraints between the body and the obstacle are
described in a simple way, where there is no need to compute the normal vectors or the projection points
on the obstacle, which simplifies the resolution of the contact problem.

The second aim of this thesis is to develop a symmetric algorithm where the user no longer needs to
specify a slave body and a master one. Thus two algorithms were developed, one based on the penalty
method, and the second one uses the interior point method. In the two cases a sequence of minimization
problems with linear (or affine) constraints, using a fixed point algorithm, is employed in order to consider
the non-penetration for finite deformation problems, where large deformations occur.

The friction is also taken into account, and the problem using Coulomb’s criterion is written into a
sequence of problems with Tresca’s criterion, in order to obtain a sequence of minimization problems.
A family of regularization for the Tresca’s criterion are proposed, in order to obtain sufficiently smooth
problems, which in some situations can have an experimental justifications.

Keywords: contact mechanics, signorini problem, friction, regularization , optimization, fixed point,
penalization , interior point method, symmetric algorithm

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France



xii Abstract

Résumé

La société Airthium utilise le logiciel FreeFEM afin d’étudier son système de stockage d’énergie, et la
mécanique du contact fait partie de ces études. L’objectif principal de cette thèse est donc de développer
un algorithme, utilisant FreeFEM et ses outils, pour résoudre des problèmes de contact mécanique entre
deux corps ou plus, pour des problèmes d’élasticité linéaire ou de grandes déformations.

Le problème de contact est considéré comme un problème de minimisation d’une énergie, où nous pouvons
tirer parti de plusieurs techniques d’optimisation, afin de converger plus rapidement vers la solution. Pour
plusieurs raisons, la méthode de points intérieurs est la méthode d’optimisation choisie pour résoudre les
problèmes de minimisation générés.

Un algorithme est proposé afin de résoudre le contact sans frottement entre un corps hyperélastique
et une fondation rigide (obstacle). Les contraintes de non-pénétration entre le corps et l’obstacle sont
décrites d’une manière simple, où il n’est pas nécessaire de calculer les vecteurs normaux ou les points
de projection sur l’obstacle, ce qui simplifie la résolution du problème de contact.

Le second objectif de cette thèse est de développer un algorithme symétrique où l’utilisateur n’a plus
besoin de spécifier un corps esclave et un corps maître. Ainsi deux algorithmes ont été développés,
l’un basé sur la méthode de pénalisation, et le second utilise la méthode de points intérieurs. Dans les
deux cas, une suite de problèmes de minimisation avec des contraintes linéaires (ou affines), utilisant
un algorithme à point fixe, est employée afin de considérer la non-pénétration pour les problèmes où de
grandes déformations se produisent.

Le frottement est également pris en compte, et le problème utilisant le critère de Coulomb est écrit
en une séquence de problèmes avec le critère de Tresca, afin d’obtenir une séquence de problèmes de
minimisation. Une famille de régularisation pour le critère de Tresca est proposée, afin d’obtenir des
problèmes suffisamment lisses, qui dans certaines situations peuvent avoir une justification expérimentale.

Mots clés : mécanique des contacts, problème de signorini, frottement, régularisation, optimisation,
point fixe, pénalisation, méthode des points intérieurs, algorithme symétrique
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Introduction (French version)

Les problèmes de contact mécanique et leurs simulations sont d’une grande importance dans l’in-
dustrie. Une des difficultés rencontrées dans ce type de problèmes est la non-linéarité résultant
de la non-pénétration des corps en contact. Une autre non-linéarité peut provenir du matériau,
en effet les matériaux élastiques linéaires ne sont pas utilisés en pratique pour modéliser les
matériaux qui peuvent être soumis à de grandes déformations, au contraire les matériaux hy-
perélastiques sont considérés pour modéliser des matériaux comme le caoutchouc. La théorie sur
les matériaux hyperélastiques est discutée dans [2, 17, 29, 83, 91]. Dans le cas du contact par
frottement, une autre non-linéarité doit être prise en compte et rend le problème encore plus
difficile.

Les solutions analytiques (le champ de déplacement ou la pression de contact) d’un problème
de contact sont difficiles ou impossibles à trouver, cependant dans des cas particuliers comme
le problème de Hertz, qui est le contact entre deux cylindres élastiques, une solution analytique
peut être trouvée même si la friction est prise en compte [66].

Le problème de contact est en général transformé en une forme faible, l’existence et l’unicité
de tels problèmes ne sont pas tout à fait faciles à prouver et dans certains cas impossibles, par
exemple dans le cas des problèmes de contact sans frottement, l’existence et l’unicité du pro-
blème de contact de Signorini (contact avec une fondation rigide) pour les problèmes élastiques
linéaires ont été prouvées dans [44], sinon dans le cas de grandes déformations et pour les maté-
riaux hyperélastiques avec des propriétés spéciales, l’existence d’une solution peut être trouvée
dans [29]. Cependant, dans le cas d’un problème de contact par friction utilisant le critère de
Coulomb, la situation est plus compliquée, par exemple, seule l’existence d’une solution pour un
petit coefficient de friction peut être trouvée dans [41]. Si la contrainte normale de contact est
remplacée par une contrainte régularisée, l’existence d’une solution pour le problème de contact
de Signorini avec frottement peut être prouvée [32] et il y a une unicité si le coefficient de friction
est suffisamment petit.

Parmi les premiers articles sur la mécanique computationnelle des contacts, on peut citer :
[24, 48, 65]. Différentes méthodes peuvent être utilisées pour résoudre un problème de contact,
comme la méthode de pénalisation, la méthode des multiplicateurs de Lagrange et la méthode
du Lagrangien augmenté. Pour plus de détails sur la mécanique du contact et les méthodes qui
peuvent être utilisées pour résoudre ce type de problèmes, on peut se référer aux monographies
[76, 69, 123] et aux références qui y figurent.

La méthode des contraintes actives est souvent utilisée en mécanique des contacts computa-

3



4 Introduction (French version)

tionnelle afin de trouver la zone de contact. Par ailleurs la méthode de points intérieurs n’a pas
été largement utilisée dans les problèmes de contact, on peut citer par exemple : [74, 112, 116].

La plupart des algorithmes de contact font intervenir le concept de maître/esclave, ce qui
empêche la pénétration du corps esclave dans le corps maître, et entraîne donc la non-symétrie
de l’algorithme. Autrement dit, les conditions de non-pénétration sont imposées au corps esclave,
et lorsque la méthode des éléments finis est utilisée, des résultats différents peuvent être observés
si le corps esclave devient le maître et le maître devient l’esclave. Par ailleurs, il existe des critères
pour choisir un corps comme esclave mais dans certaines situations, il est très difficile de décider,
d’où la nécessité d’un algorithme symétrique afin de résoudre ce problème.

L’objectif général de cette thèse, est de développer un algorithme simple utilisant FreeFEM
[55] et ses outils afin de résoudre les problèmes de contact, avec ou sans frottement, pour les
problèmes linéaires élastiques et pour les problèmes de grandes déformations, dans le but de
simuler plusieurs phénomènes de contact dans notre système de stockage d’énergie. Le deuxième
objectif de cette thèse est d’obtenir une formulation symétrique, afin de permettre à l’utilisateur
de ne plus distinguer les corps esclaves et maîtres, ce qui est très utile pour les problèmes de
contact multi-corps.

Enfin, ce manuscrit est organisé en plusieurs chapitres, dans le chapitre 1 nous présentons
une introduction générale de la théorie des problèmes de contact, et les célèbres méthodes utili-
sées pour résoudre les problèmes de contact en plus de la nécessité d’un algorithme de contact
symétrique.

Dans le chapitre 2, nous avons formulé le problème de contact de Signorini en un problème de
minimisation sous contrainte. Les contraintes de non-pénétration sont formulées sous une forme
simple qui rend la formulation du problème de contact bien adaptée à la méthode des points
intérieurs. De plus, il n’est pas nécessaire de calculer les vecteurs normaux ou les points de
projection sur l’obstacle pour décrire la non-pénétration, ce qui augmente la vitesse de résolution
du problème de contact. Cette méthode permet de simuler le contact entre un joint en caoutchouc
et une surface métallique.

Le chapitre 3 présente un algorithme pour résoudre les problèmes de contact mécanique
entre deux corps ou plus, pour les problèmes d’élasticité linéaire et de grandes déformations.
La méthode de pénalisation est utilisée afin de décrire les conditions de non-pénétration, cet
algorithme est symétrique, et les points d’intégration de chaque zone de contact sont pénalisés
pour pénétrer dans la zone de contact opposée.

Le chapitre 4 présente également un algorithme pour résoudre les problèmes de contact méca-
nique entre deux corps ou plus, pour les problèmes d’élasticité linéaire et de grandes déformations.
Cependant, les conditions de non-pénétration sont écrites sous une forme faible, qui produit des
solutions plus lisses. Cet algorithme est également symétrique et la méthode de points intérieurs
a été utilisée pour résoudre le problème de minimisation contraint généré.

Dans le chapitre 5, le contact dynamique est considéré, et dans le chapitre 6, un algorithme
pour résoudre les problèmes de contact avec frottement est présenté, où le problème est transformé
en une séquence de problèmes de contact régularisés du critère de Tresca. En effet, le problème
est transformé en une méthode de point fixe où un problème de minimisation est résolu à chaque
itération.



Introduction (english version)

Mechanical contact problems and their simulations are of great importance in the industry. One
of the difficulties encountered in these kinds of problems is the non-linearity resulting from the
non-penetration of the bodies in contact. Another non-linearity can come from the material,
indeed linear elastic materials are not used in practice to model the materials which can be
submitted to large deformations, instead hyperelastic materials are considered to model materials
like rubber. The theory on the hyperelastic materials are discussed in [2, 17, 29, 83, 91]. In the
case of frictional contact, another non-linearity must be considered and makes the problem even
more difficult.

Analytical solutions (the displacement field or the contact pressure) of a contact problem are
hard or impossible to find, however in special cases like the Hertz problem, which is the contact
between two elastic cylinders, an analytical solutions can be found even if the friction is taken
into account [66].

The contact problem is in general transformed into a weak form, the existence and the
uniqueness of such problems are not quite easy to prove and in some cases impossible, for
example in the case of frictionless contact problems (without friction), the existence and the
uniqueness of Signorini’s contact problem (contact with a rigid foundation) for linear elastic
problems were proved in [44], otherwise in the case of large deformations and for hyperelastic
materials with special properties, the existence of a solution can be found in [29]. However in the
case of frictional contact problem using Coulomb’s criterion the situation is more complicated,
for example only the existence of a solution for a small coefficient of friction can be found in
[41]. If the normal contact stress is replaced by a regularized one, the existence of a solution for
Signorini’s frictional contact problem can be found [32] and there is a uniqueness if the friction
coefficient is small enough.

From the first papers in the computational contact mechanics we can cite [24, 48, 65]. Differ-
ent methods can be used to solve a contact problem such as the penalty method, the Lagrangian
multiplier method, and the augmented Lagrangian method. For more details about contact me-
chanics and methods that can be used for solving these type of problems, one can refer to the
monographs [76, 69, 123] and the references therein.

Active-Set Strategy are often used in computational contact mechanics in order to find the
contact zone. Otherwise the interior point method was not widely used in contact problems, we
can cite for example [74, 112, 116].
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6 Introduction (english version)

Most of the contact algorithms involve the concept of master/slave, which prevents the pen-
etration of the slave body into the master one, and therefore causes the non-symmetry of the
algorithm. Otherwise speaking the non-penetration conditions are imposed on the slave body,
and when the finite element method is used, a different results can be noticed if the slave body
becomes the master and the master become the slave. Otherwise, there is some criterions to
choose a body as slave but in some situations it’s very hard to decide, hence the need for a
symmetric algorithm in order to solve this issue.

The general aim of this thesis, is to develop a simple algorithm using FreeFEM [55] and its
tools in order to solve contact problems, with or without friction, for linear elastic ones and for
large deformations problems, for the purpose of simulating several contact phenomena in our
energy storage system. The second goal of this thesis is to obtain a symmetric formulation, in
order to allow the user to no longer distinguish between slave and master bodies, which is very
useful for the self-contact and multi-body contact problems.

Finally, this manuscript is organized in several chapters, in the chapter 1 we present a gen-
eral introduction of the contact problem theory, and the famous methods used to solve contact
problems in addition to the need for a symmetric contact algorithm.

In chapter 2 we formulated the Signorini’s contact problem into a constrained minimization
one. The non-penetration constraints are formulated in a simple form which makes the contact
problem formulation well fitted with the interior point method. In addition there is no need to
compute the normal vectors or the projection points on the obstacle in order to describe the
non-penetration, which increases the resolution speed of the contact problem. Such method can
simulate the contact between a rubber gasket and a metallic surface.

The chapter 3 presents an algorithm to solve mechanical contact problems between two bodies
or more, for linear elastic and finite deformation problems. Penalty method is used in order to
describe the non-penetration conditions, this algorithm is symmetric, and the integration points
of each contact area are penalized to penetrate the opposite contact area.

The chapter 4 also presents an algorithm to solve mechanical contact problems between two
bodies or more, for linear elastic and finite deformation problems. However the non-penetration
conditions are written into a weak form, which produce smoother solutions, this algorithm is
also symmetric and the interior point method was used to solve the generated constrained min-
imization problem.

In chapter 5 the dynamic contact is considered, and in chapter 6 an algorithm to solve
frictional contact problems is presented, where the problem is transformed into a sequence of
regularized Tresca frictional contact problems. Indeed the problem is transformed into a fixed
point method where a minimization problem is solved at each iteration.
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The aim of this chapter is to present a general introduction of the finite deformation and contact
problems theories, in addition to the famous methods used to solve contact problems. In the end
we present why a symmetric contact algorithm is needed.

1.1 Nonlinear mechanics

In this part we will present some reminders on the large deformation mechanics or finite defor-
mation [18, 102, 104, 126]. The bold type in the equations corresponds either to vectors or to
matrices.

1.1.1 kinematics

In the following we will consider a deformable body which will undergo large deformations, we
have to distinguish between two configurations, the reference configuration where this body is at
its initial position and the actual configuration which corresponds to the deformed configuration
of this body. The reference or the initial configuration is known in advance, on the other hand the
current configuration which corresponds to the body deformed by the loads is to be determined.

Let Ω ⊂ R3 denotes this body (in its reference position) and ∂Ω = Γ0 ∪ Γ1, where Γ0 and
Γ1 denote respectively the partition of the boundary (Γ0 ∩ Γ1 = ∅), where a displacement and
a surface traction are applied. Assuming the static case, the application which describes the
deformation of the body is denoted φ. It maps the body from its initial configuration Ω into its
actual configuration φ(Ω), see Figure 1.1.

Figure 1.1 – Initial and actual configurations

In the following, the position vector of a particle in its initial and actual configurations are
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respectively represented by X and x = φ(X). The displacement field vector is given by

u = x−X = φ(X)−X (1.1)

In the Lagrangian description, all physical quantities are taken with respect to the reference
configuration, in other words we follow in time the particles of the studied body along their
trajectories, while in the Eulerian description the physical quantities are taken with respect to
the current configuration. In solid mechanics the Lagrangian description is often used.

The deformation gradient tensor

The deformation gradient tensor F measures the deformation of the body Ω and provides a
relationship between a set of particles dX in the reference configuration before deformation and
the set dx composed of the same particles in the current configuration after deformation. It is
defined by

F =

(
∂x

∂X

)T
=

(
∂φ(X, t)

∂X

)T
More precisely

Fij =
∂φi
∂Xj

In addition, we define
J = det (F)

Strain tensors

In order to measure and describe the deformations, we will present several strain tensors, like
the right Cauchy-Green deformation tensor which is defined by

C = FTF (1.2)

or the Green-Lagrange tensor defined by

E =
1

2

(
FTF− I

)
(1.3)

where I is the identity matrix. In the case of small deformations, the reference and actual
configuration are no longer distinguished and the derivation with respect to X or x is the same,
we define the strain tensor ε as

ε =
1

2

(
∇xu +∇xuT

)
(1.4)

In other words
εij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.5)

where x = (x1, x2, x3) and u = (u1, u2, u3).
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Stress tensors

There are three different types of tensors describing the stress in a body, let’s present these stress
tensors.

- Let ds and n denote respectively an infinitesimal surface in the body and the unitary normal
vector at this surface (see Figure 1.2) in the actual configuration, thus the Cauchy stress tensor
σ provides the force df applied on ds by the following formula

df = (σn)ds (1.6)

Figure 1.2 – Infinitesimal surface

- Let dS be the infinitesimal surface in the initial configuration, which corresponds to the
surface ds in the actual configuration and let N be the unitary normal vector at dS. Therefore,
the force df in the actual configuration can also be given by

df = (PN)dS (1.7)

where P denotes the first Piola-Kirchhoff stress tensor and can be obtained by the following

P = JσF−T (1.8)

and J = det(F).

- Finally, the force applied at dS in the initial configuration denoted by dF can be provided
by the following equation

dF = (SN)dS (1.9)

where S = F−1P denotes the Second Piola-Kirchhoff stress tensor. For more details, refer to
[102].

1.1.2 Formulations and equations

Let ρ be the actual density of the body and f the body force per unit mass applied on the body
(for example the gravity). Then the local balance of momentum in the actual configuration,
where the Cauchy stress tensor is taken into account, is described by the following equation

divx σ + ρf = 0 (1.10)
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or, by considering the components, it becomes

3∑
j=1

∂σij
∂xj

+ ρfi = 0 i = 1, 2, 3 (1.11)

The Cauchy stress tensor is symmetric (σ = σT ) by the local balance of angular momentum.
Note that in the reference configuration the local balance of momentum for the body can also
be described by

div P + ρ0f = 0 (1.12)

or, by considering the components, it becomes

3∑
j=1

∂Pij

∂Xj
+ ρ0fi = 0 i = 1, 2, 3 (1.13)

where ρ0 is the body density in the reference configuration. In addition, boundary conditions
must be imposed on the body boundary, therefore if we suppose a null displacement on Γ0 and
a surface traction t applied on Γ1, we will have the following conditions{

u = 0 on Γ0

PN = t on Γ1

(1.14)

In the following, the admissible displacements set is defined by

A =
{

v ∈
(
H1(Ω)

)3
; v = 0 on Γ0

}
(1.15)

where H1(Ω) is the Sobolev space, such that if vi ∈ H1(Ω) then vi and its derivative are in L2(Ω)
(square-integrable functions space). For more details on Sobolev spaces, refer to [6, 20].

The weak formulation in the initial configuration is the following∫
Ω

P : Gradv dV −
∫

Ω

ρ0f .v dV −
∫

Γ1

t.v dA = 0 ∀v ∈ A (1.16)

where (Gradv)ij = ∂vi
∂Xj

and A : B = Tr(ATB).

1.1.3 Hyperelastic materials

Hyperelastic materials describe a group of materials that can be subject to large deformations,
for example rubber material.

In order to describe the behavior of such materials, supposed to be isotropic, the strain energy
function Ŵ , a scalar function, can be used to show a relation between the stress tensors and the
displacement field. Thus the second Piola-Kirchhoff stress tensor can be given by the following
formula

S = 2.
∂Ŵ

∂C
(1.17)
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or more explicitly by

Sij = 2.
∂Ŵ

∂Cij
(1.18)

where the tensor C is presented by the equation (1.2) and the strain energy function Ŵ depends
on the invariants (I1, I2, I3) of the tensor C, which can be defined by


I1 = Tr(C)

I2 = 1
2 ((Tr(C))2 − Tr(C2))

I3 = det(C) = J2

(1.19)

The theory on the Hyperelastic constitutive laws can be found in [2, 17, 29].

Incompressible hyperelastic materials

In incompressible materials we have J = 1 so the third invariant I3 = 1. Several models to write
the energy density function have been developed, we will present some interesting and well used
models.

Neo-Hookean model: The Neo-Hookean model is the simplest model, indeed it depends
only on one invariant I1, it is a model based on physics. The energy density is expressed by

Ŵ (I1) = c1(I1 − 3)

where c1 is a constant that depends on the material.

For small deformations, less than 150%, the Neo-Hookean model is considered to be practical
[83].

Mooney model: The energy density of a material for a Mooney model is written in the
following form [83, 19, 2]

Ŵ (I1, I2) = c1(I1 − 3) + c2(I2 − 3)

where c1 and c2 are two constants that depend on the material. For moderate deformations, less
than 250%, this model can be used [83].

Ogden model: This model was proposed by Ogden [91], the energy density of this model
depends on the principal stretches λ1, λ2, λ3. The principal stretches are the eigenvalues square
roots of the tensor C. The energy density function is given by the following

Ŵ (λ1, λ2, λ3) =

3∑
i=1

µi
αi

(λαi1 + λαi2 + λαi3 − 3)

where {αi}i=1,2,3, {µi}i=1,2,3 are 6 constants that depend on the material with αiµi > 0 ∀ i =
1, 2, 3. The difficulty of this model lies in the determination of these 6 material constants.
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Compressible hyperelastic materials

Neo-Hookean model: An example of an energy density function for this model is the following
[29]

Ŵ (I1, I2, I3) = aI1 + cJ2 − d ln(J)

where a, c, d > 0 are constants.

Mooney-Rivlin model: An example of an energy density function for this model is the
following [29]

Ŵ (I1, I2, I3) = aI1 + bI2 + cJ2 − d ln(J)

where a, b, c, d > 0 are constants.

Saint Venant-Kirchhoff model: The Saint Venant-Kirchhoff model is also a simple model,
however it must be used in the context of small deformations. Its energy density function depends
directly on the Green-Lagrange tensor E by the following formula [17, 29]

Ŵ (E) =
λ

2
(Tr(E))

2
+ µ

(
Tr(E2)

)
where λ and µ are the Lamé coefficients of the material.

Nearly incompressible hyperelastic materials

The incompressible models like Mooney and Neo-Hookean can cause numerical problems, that
is why the nearly incompressible models are introduced. These last models will be applicable
for the incompressible materials and also can be valid for the compressible cases according to
the bulk modulus κ. The energy density function is thus modified [2, 17, 19, 62] and it will be
expressed in the following form

Ŵ = Ŵinc(I1, I2, I3) + ŴV OL

Ŵinc represents the energy density function of the incompressible model (Neo-Hookean or Mooney)
with J = 1, ŴV OL a volumetric function that depends on J . Otherwise I1, I2, I3 are the invari-
ants of the tensor C

′
= J−

2
3 C, and are equal to

I1 = J−
2
3 I1

I2 = J−
4
3 I2

I3 = 1

(1.20)

Here are some formulas [19] for the volumetric function ŴV OL

ŴV OL(J) =


κ
2 (J − 1)2

κ
2 (ln J)2

κ(J − 1− ln J)

(1.21)



14 CHAPTER 1. State of the art

When the bulk modulus κ has a high value, the nearly compressible model will represent the
incompressible one. Indeed the bulk modulus can be seen as a penalty parameter, which penalizes
the region where the incompressibility condition J = 1 is not satisfied.

Linear elastic materials

In the case of small deformations, the actual configuration is approximately equal to the initial
configuration, Ω ≈ φ(Ω). In this case the energy density function is equal to

Ŵ (ε) =
1

2
σ : ε =

1

2
Tr(σT ε) (1.22)

in addition to Hook’s law
σ = λTr(ε)I + 2µε (1.23)

where I is the identity matrix.

Equivalence to a minimization problem

The displacement field u, solution of the equation (1.16), minimizes the total potential energy E
over all of the admissible displacements. The total potential energy is defined by

E(v) =

∫
Ω

Ŵ dV −
∫

Ω

ρ0f .v dV −
∫

Γ1

t.v dA (1.24)

Therefore
u = arg min

v∈A
(E(v)) (1.25)

where A the admissible displacements set, defined by the equation (1.15). Note that the
weak formulation (1.16) presented above can be obtained from the minimization problem (1.25),
indeed it can be done by setting the Fréchet derivative of the energy E to be equal to zero, and
obtaining the Euler-Lagrange equation:

DE(u)(v) = 0 ∀ v ∈ A (1.26)



1.2. Contact Theory 15

1.2 Contact Theory

1.2.1 Signorini’s contact problem

Signorini’s contact problem is the contact between a deformable body and a rigid foundation (or
obstacle) [106]. First of all, we suppose that we are in the case of small deformations, and we
consider an elastic deformable body Ω ⊂ Rn with n = 2 or n = 3 with Lipschitz boundary, which
will make contact with a rigid foundation S.

In the following Γ1 ⊂ ∂Ω represents the part where an external pressure tf is applied on the
body Ω, Γ0 ⊂ ∂Ω represents the part where a null displacement is imposed on the body. Finally
ΓC ⊂ ∂Ω is the potential contact area, otherwise speaking if γC = φ(ΓC) is ΓC in the actual
configuration, then the actual contact area is included in γC .

A

ΓC

Γ1

Γ0

O
bstacle

Ω

n̄

gn(A)

Figure 1.3 – The body, the obstacle and the normal gap at a point A ∈ ΓC

Under the assumption of small deformations, where there is no difference between the refer-
ence and the actual configuration, Signorini’s problem is to find the displacement field u such
that the following equations and inequalities are valid.

∇.σ + f = 0 in Ω

σij(x) = Eijkl
∂uk
∂xl

in Ω (Hook’s law)
u = 0 on Γ0

σn = tf on Γ1

σT = 0 on ΓC (No friction)

(1.27)

with the following contact conditions:
(u.n̄+ gn)σn = 0 on ΓC

u.n̄+ gn > 0 on ΓC

σn 6 0 on ΓC

(1.28)
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where f is a body force applied on the body. The second equation of (1.27) is another expression of
the Hook’s law where a summation on the 2 indexes k, l is considered and Eijkl ∈ L∞(Ω) are the
components of the Hook tensor with the following symmetry conditions: Eijkl = Ejikl = Eklij
and ∃m > 0 Eijklεijεkl > mεijεij ∀ ε ∈ Rn×n where εij = εji. In addition σT represents the
tangential component of the stress vector σn, indeed σn = σnn + σT where n is the outward
unit normal vector at the body Ω. Finally gn is the normal gap between the foundation S and
the potential contact area ΓC , see Figure 1.3, and n̄ is the outward unit normal vector at the
obstacle.

Note also that we can use −n instead of n̄ in the formulation (1.28). In addition at the real
contact area we have n̄ = −n.

In order to reformulate the problem into a weak form and to prove the existence and the
uniqueness for a solution of the Signorini’s problem, some functional spaces must be defined.

By imposing a null displacement on Γ0, the admissible set is defined as follows

V = {v ∈ H1(Ω) |v = 0 a.e on Γ0} (1.29)

where H1(Ω) = H1(Ω)×H1(Ω), endowed with the broken norm:

‖u‖1 = ‖(u1, u2)‖1 =
(
‖u1‖21 + ‖u2‖21

) 1
2 (1.30)

In addition, H1(Ω) denotes the Sobolev space endowed with its own norm ‖ · ‖1, in other words
if u ∈ H1(Ω) then

‖u‖1 =

(∫
Ω

u2 dx+

∫
Ω

‖∇u‖2 dx
)1/2

(1.31)

More details about the functional spaces and the functional analysis can be found in [6, 20].

Let the symmetric continuous bilinear form a : V ×V → R and the continous linear form
f : V→ R be defined by

a(u,v) =

∫
Ω

σ(u) : ε(v) dx =

∫
Ω

Eijkluk,lvi,j dx ∀ (u,v) ∈ V ×V (1.32)

f(v) =

∫
Ω

f .v dx+

∫
Γ1

tf .v ds ∀v ∈ V (1.33)

In general the solution (the displacement field) of the contact problem involving a linear
elastic body can be written as the following variational inequality.

Find u ∈ K such that:
a(u,v − u) > f(v − u) ∀v ∈ K (1.34)

where K = {v ∈ V |v.n̄ + gn > 0 a.e on ΓC}, the set where the displacement field satisfies
the non-penetration condition for the Signorini’s problem. The applications a(·, ·) and f(·) have
the following properties.
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a(·, ·) : V ×V→ R is a continuous bilinear application, and it is elliptic.

f(·) : V→ R is a linear continuous application. f ∈ V′, the dual of V.

The subset K is a nonempty closed convex subset of V, therefore using Stampacchia’s theo-
rem, there exists a unique solution of the problem (1.34).

Otherwise, let the functional E : V→ R denotes the potential energy of the problem and let
it be defined by

E(v) =
1

2
a(v,v)− f(v) ∀v ∈ V (1.35)

The problem (1.34) is equivalent to the following minimization problem.

Find u ∈ K such that:
u = arg min

v∈K
(E(v)) (1.36)

1.2.2 Contact in finite deformation

In this section we present several results about contact problems for hyperelastic materials,
which can be found in [29]. Let Ω be the body domain in R2 or R3 in its initial configuration.
In addition, let the borders Γ0,Γ1,ΓC be disjoint relatively to ∂Ω, and Γ = ∂Ω = Γ0 ∪ Γ1 ∪ ΓC .
The length of the border ΓC is supposed to be strictly positive. Our unknown will be the actual
position φ instead of the displacement u, which is not very different because φ = X + u. Γ0 is
the border where a displacement φ0 is imposed, Γ1 is the border where a surface traction g is
applied, finally ΓC is the potential contact area, otherwise speaking if γC = φ(ΓC) is ΓC in the
actual configuration, then the actual contact area is included in γC . In addition, a body force f
is applied over the body Ω.

The obstacle or the rigid foundation is described by the open set C ⊂ R2 or R3, the strain
energy function is denoted by Ŵ , and the first Piola-Kirchhoff stress by P. We have that
P = ∂Ŵ

∂F , where F is the deformation gradient tensor.

The admissible solutions set Φ is defined by

Φ = {ψ : Ω̄→ R2; det(∇ψ) > 0 in Ω̄ ;ψ = φ0 on Γ0 with ψ(ΓC) ⊆ Cc} (1.37)

where (∇ψ)ij = (Gradψ)ij = ∂ψi
∂Xj

. The condition ψ(ΓC) ⊆ Cc (the complement of C ) describes
the non-penetration of the body into the obstacle. The actual position φ = X + u satisfies the
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following equations

−div P = f in Ω

φ = φ0 on Γ0

PN = g on Γ1

φ(ΓC) ⊆ Cc

PN = 0 if X ∈ ΓC and φ(X) ∈ C̄c (/∈ C ∪ ∂C)
(PN).n = λn if X ∈ ΓC and x = φ(X) ∈ ∂C where λn 6 0

σT = 0 on φ(ΓC) ∩ ∂C

(1.38)

where σT is the tangential stress, N and n are respectively the unit outward normal vector on
the initial and on the deformed surface of the body. Finally σ is the Cauchy stress tensor and
σn has the same direction of PN.

Moreover, let the potential energy E of the body Ω be given by

E(ψ) =

∫
Ω

Ŵ (∇ψ) dx−
∫

Ω

f .ψ dx−
∫

Γ1

g.ψ ds (1.39)

and consider the following minimization problem

Find the displacement φ ∈ Φ such that:

E(φ) 6 E(ψ) ∀ψ ∈ Φ (1.40)

If the solution φ of the minimization problem (1.40) is smooth enough, then it’s a solution of
the problem (1.38).

In the following M3 is the set of all real square matrices of order 3, Cof F is the cofactor of
the matrix F and M3

+ is the following set

M3
+ =

{
F ∈M3 ; det(F ) > 0

}
Let the matrix F and the invariants I1, I2, I3 be defined as before, we have F ∈ M3

+ and the
following equalities 

‖F‖2 = Tr(FTF) = I1

‖Cof F‖2 = Tr(Cof FTF) = I2

det(F) = I
1/2
3

(1.41)

where ‖.‖ denotes the norm in M3.

The strain energy function Ŵ of a given material can be written as a function of the variable
F as follows

Ŵ (F) = W (F,Cof F,det(F)) (1.42)

where W is a function defined by

W : M3 ×M3×]0,+∞[−→ R
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The existence of a solution in finite deformation for the frictionless contact problem is shown
in [29, 69], and in [36] for two bodies in contact. Polyconvexity, coerciveness inequality and the
behaviour properties of Ŵ and the assumption inf

v∈Φ
(E(ψ)) < +∞ are considered for the proof of

the solution existence. These properties are defined as follows

Polyconvexity: If there exist a convex function W on M3×M3×]0,+∞[ such that the equation
(1.42) is valid, the strain energy function Ŵ is said to be polyconvex.

In the next theorem we give an example of a polyconvex family of strain energy functions,
which can be found in [29].

Theorem 1.1. The strain energy function Ŵ : M3
+ −→ R defined by

Ŵ (F) = a‖F‖2 + b‖Cof F‖2 + Γ(det(F)) (1.43)

is polyconvex, where a > 0, b > 0 and finally Γ :]0,+∞[−→ R is a convex function

Proof. Indeed the function Ŵ (F) can be written as

Ŵ (F) = W (F,Cof F,det(F))

where the function W : M3 ×M3×]0,+∞[−→ R is given by

W (F1,F2, γ) = W1(F1) + W2(F2) + W3(γ)

The functions W1, W2 and W3 are defined as follows
W1(F1) = a‖F1‖2

W2(F2) = b‖F2‖2

W3(γ) = Γ(γ)

The functions W1, W2 and W3 are convex, therefore we conclude that the function W is convex
and thus the strain energy function Ŵ is polyconvex.

Several strain energy functions can be found in [29]. The strain energy function of a Saint
Venant-kirchhoff is not polyconvex, indeed it was proven in [99].

Coerciveness inequality: The strain energy function Ŵ satisfies a coerciveness inequality if
there exist constants α, β, p, q, r such that: α > 0, p > 2, q > p

p−1 , r > 1 and

Ŵ (F) > α(‖F‖p + ‖Cof F‖q + det(F)r) + β ∀F ∈M3
+ (1.44)

Behavior property: The strain energy function Ŵ is supposed to have the following behavior

lim
det(F)→0+

Ŵ (F) = +∞ (1.45)
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1.2.3 Contact between two elastic deformable bodies

In this section we briefly introduce the contact problem between two elastic bodies under the
infinitesimal deformations assumption. As Signorini’s problem, described above, the same ap-
proach can be used in order to prove the existence and the uniqueness for the displacement
solution [16, 69]. Let these bodies be denoted by Ω1 for the first and Ω2 for the second. Like pre-
viously we will use the same notations, thus let Ω = Ω1∪Ω2, ∂Ω = ∂Ω1∪∂Ω2, Γ0 = Γ1

0∪Γ2
0 ⊂ ∂Ω

where a null displacement is imposed and Γ1 = Γ1
1 ∪ Γ2

1 where a surface traction t = (t1, t2)
is imposed, the indexes 1 and 2 refer respectively for the body 1 and 2, in addition, a body
force f = (f1, f2) is applied over the body Ω. Let ΓC1 and ΓC2 be respectively the potential
contact surfaces of the first body ΓC1 ⊂ ∂Ω1 and of the second body ΓC2 ⊂ ∂Ω2, see Figure 1.4,
otherwise speaking if φ = (φ1,φ2) denotes the transformation mapping which transforms the
two bodies from their initial configurations to their actual ones, then the actual contact area is
included in φ1(ΓC1) ∩ φ2(ΓC2).

ΓC1

Γ1
1

Γ1
0

Ω1

ΓC2

Γ2
1

Γ2
0

Ω2

Figure 1.4 – The two bodies with the corresponding boundaries

We suppose that there exists a map χ : ΓC1 → ΓC2, which maps any X1 ∈ ΓC1 to χ(X1) ∈
ΓC2, the closest point to X1 on ΓC2. We call gn : ΓC1 → R the gap function which is equal to the
distance between the two bodies in the normal direction at the initial configurations, otherwise
speaking ∀X1 ∈ ΓC1 then gn(X1) = (X1−χ(X1)).n̄, where n̄ is the outward unit normal vector
on ΓC2 at χ(X1).

The equations describing the contact between two deformable bodies are like the Signorini’s
problem equations, with a slightly difference in the contact conditions. The problem is described
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as follows 

∇.σ + f = 0 in Ω

σij(x) = Eijkl
∂uk
∂xl

in Ω (Hook’s law)
u = 0 on Γ0

σn = t on Γ1

σT = 0 on ΓC1 ∪ ΓC2

(1.46)

with the following contact conditions
σn := (σ1n).n = ((σ2 ◦ χ)n̄).n̄ 6 0 on ΓC1

((u1 − u2 ◦ χ).n̄+ gn)σn = 0 on ΓC1

(u1 − u2 ◦ χ).n̄+ gn > 0 on ΓC1

(1.47)

where u1, u2 denote respectively the displacement in the bodies Ω1 and Ω2, indeed u = (u1,u2)
represents the displacement fields in the two bodies, the vector n denotes the outward unit
normal vector on ∂Ω1 and σ1 and σ2 represent the Cauchy stress tensor in the first and the
second body respectively.

We have selected the potential contact area ΓC1 of the first body in order to write the non-
penetration conditions (equation (1.47)) with respect to it, by doing so, the first body is called
the slave body and the second one is called the master one. If the finite element approach is used
then the solution depends on the choice between the slave and the master bodies. One should
note that there exist several approaches to describe the non-penetration conditions.

Otherwise, we define the admissible set V = V1 ×V2 where

Vl = {v ∈ H1(Ωl) |v = 0 a.e on Γl0} (1.48)

endowed with the broken norm

‖u‖1 = ‖(u1,u2)‖1 =
(
‖u1‖21 + ‖u2‖21

) 1
2 (1.49)

The contact problem in this case can be written as the following variational inequality

a(u,v − u) > f(v − u) ∀v ∈ K (1.50)

where K = {v ∈ V | (u1 − u2 ◦ χ).n̄+ gn > 0 a.e on ΓC1} the set of the admissible displacement
fields, where the non-penetration condition is satisfied, in addition the applications a : V×V→ R
and f : V→ R are defined as follows{

a(u,v) = a1(u,v) + a2(u,v)

f(v) = f1(v) + f2(v)
(1.51)

where for l = 1, 2 
al(u,v) =

∫
Ωl

σ(ul) : ε(vl) dv

f l(v) =

∫
Ωl

f l.vl dv +

∫
Γl1

tl.vl ds
(1.52)

Moreover, the contact problem can be written, equivalently, as the following minimization prob-
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lem
min
v∈K

1

2
a(v,v)− f(v) (1.53)

1.2.4 Friction in contact problems

The contact problems with friction were studied in many papers, for example in [41] the existence
of solutions for elastic static contact problems with a small coefficient of friction was proved in
the case of Coulomb’s friction, where a penalty method was used. In the paper [32] existence
of solutions for static Signorini’s problem with Coulomb friction was proved where the normal
component of the stress was replaced by a regularized one, in addition the uniqueness of the
solution was proved for a small friction coefficient. In the chapter 3 of [40] several studies for
elastic frictional problems were done in addition to the formulation into a variational inequality
for the Signorini’s problem with Coulomb’s friction. In the case of small friction coefficient and
of certain hypothesis on the tangential displacement, the uniqueness of the solution was proved
in [103].

In the case of Signorini’s problem, let ΓC denotes the contact surface. The Coulomb’s friction
law is added to the problem described in the previous sections, indeed the tangential component
of the stress σT is no longer equal to zero, moreover there exists a relation between the tangential
displacement uT and σT on ΓC as follows

‖σT (u)‖ 6 µ(x)|σn(u)| (1.54)

and {
If ‖σT (u)‖ < µ(x)|σn(u)| ⇒ uT = 0 onΓC

If ‖σT (u)‖ = µ(x)|σn(u)| ⇒ ∃λ > 0, uT = −λσT onΓC
(1.55)

where µ is the Coulomb’s coefficient, hence a bounded and a measurable function defined on ΓC
where there exists µ0 > 0 such that µ > µ0.

In the dynamic case the Coulomb’s friction law is the following (see also Figure 1.5)

‖σT (u)‖ 6 µ(x)|σn(u)| (1.56)

and {
If ‖σT (u)‖ < µ(x)|σn(u)| ⇒ u̇T = 0 onΓC

If ‖σT (u)‖ = µ(x)|σn(u)| ⇒ ∃λ > 0, u̇T = −λσT onΓC
(1.57)

where the notations were taken as before.
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Figure 1.5 – Coulomb’s friction law, where T = σT , vT = −u̇T and Tmax = µ|σn|

The Coulomb’s friction law says that on the contact area if the tangential stress norm ‖σT ‖
is equal to the normal stress norm multiplied by the Coulomb’s coefficient µ|σn|, then the body
slips on its support, otherwise it sticks to its support.

Generally there is no uniqueness of the solution for a frictional contact problem, for example
in [57] there is a simple example where it proposes 2 displacement fields in a triangular domain
for a frictional Signorini’s problem, the 2 displacement fields are solutions of the problem for a
large friction coefficient.

We will talk more deeply about the friction problems in the chapter 6.

1.3 Contact numerical methods

As was stated before, different methods can be used to solve a contact problem such as the
penalty method, the Lagrangian multiplier method, and the augmented Lagrangian method.

In [122], the penalty method was considered for a contact between a hyperelastic material
and a rigid obstacle. The surface of the rigid obstacle was described by a C2 function that can
be given analytically or by a cubic spline function. Mixed formulations are used for example
in [56, 64], where the unknowns are the displacement field and the contact pressure, in [60] a
stabilization method is used and the stabilization parameter is supposed to be small enough. A
linear elasticity law is used to model the material and an Active-Set Strategy was used in [64]
in order to find the contact zone. In [95], an algorithm for contact problems involving fluid-
structure interactions is presented and uses the semi-smooth Newton method. Several methods
can be found in [125] such as the Partial Dirichlet-Neumann method for the contact between a
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body and a rigid foundation. Otherwise the interior point method or the barrier method were
not widely used in contact problems, we can cite for example [71, 74, 88, 112, 116].

In Code_Aster [3] Projected Conjugate Gradient method (see [113]) and the active-set
method (see [39]) are used in the case of frictionless contact problems and the penalty method
in the case of frictional contact problems. In [73] a Dirichlet-Neumann algorithm is presented
to solve frictionless and frictional contact problems between two elastic bodies, using the mortar
method for the contact discretization. The algorithm consists to solve and decompose in each
iteration the two elastic bodies contact into a Neumann’s problem and a Signorini’s problem.

There exist many methods for the resolution of the contact problems, it can be found in the
monographs [69, 123] or in [37]. In the following we will present some of these methods.

As we saw the contact problem is equivalent to a minimization problem in the case of fric-
tionless contact, and can be equivalent to a sequence of a minimization problems in the case
of frictional contact. Expressing the contact problem in a minimization form and solve it with
optimization methods can be a robust way to solve it, indeed we can use several optimization
techniques (for example line search method) in order to converge faster to the solution which is
a minimum.

Inequality constraints occur in the contact problem, however in the following we will present
some methods in order to solve minimization problems with equality constraints, indeed they
can be useful to treat the minimization problem with inequality constraints as we will see in the
section 1.3.1, especially when the active-set method is used.

Consider the following problem with equality constraints{
min
x∈Rn

E(x) such that

ci(x) = 0 ∀ i = 1, . . . ,m
(1.58)

where E is an energy and ci are the constraints to satisfy. We have some famous methods to
solve this problem, as follows

Penalty method

The goal of the penalty method, is to transform the constrained optimization problem into an
unconstrained one, by penalizing the domain where the constraints are not satisfied.

The problem (1.58) is transformed into the following unconstrained problem

min
x∈Rn

E(x) + µ

m∑
i=1

c2i (x) (1.59)

where µ > 0 is called the penalty parameter. Let xµ be the solution of the previous problem
(1.59) for the penalty parameter µ, then when µ → ∞, xµ converges to the solution of the
problem (1.58).
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The drawback of this method is the numerical ill-conditioning when taking large value for
the parameter µ, and the small violation of the constraints when the penalty parameter is not
large enough.

Lagrange multiplier method

The Lagrange multiplier method is used also for the constrained optimization problems, by
introducing the Lagrangian function L, which is defined by

L(x, λ) = E(x) +

m∑
i=1

λici(x) (1.60)

where λ = (λ1, . . . , λm) is the Lagrange multiplier vector to be determined. Therefore the
problem (1.58) can be solved via the following saddle point problem

∇(x,λ)L(x, λ) = 0 (1.61)

or equivalently ∇E(x) +

m∑
i=1

λi∇ci(x) = 0

ci(x) = 0 ∀ i = 1, . . . ,m

(1.62)

A Newton’s method can be used to solve the problem (1.62).

Augmented Lagrangian method

The augmented Lagrangian method is an another optimization method for constrained problems,
it’s a combination between the penalty and the Lagrange multiplier method. For more details
one can refer to [82, 86, 123].

The augmented Lagrangian function LA is defined by:

LA(x, λ, µ) = E(x)−
m∑
i=1

λici(x) +
µ

2

m∑
i=1

ci(x)2 (1.63)

where λi are the Lagrange multipliers and µ is the penalty parameter.

The classical algorithm [86] to solve the minimizing problem with equality constraints is
briefly presented in the following box.
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1- Initialization: Choose a penalty parameter µ0 and a starting Lagrange multiplier
vector λ0

2- Loop on k = 0, 1, . . .
3- Compute a minimizer xk of the augmented Lagrangian function LA(x, λk, µk)
4- Update the Lagrange multiplier: λk+1

i = λki − µkci(xk) ∀ i = 1, . . . ,m
5- Update the penalty factor such that: µk+1 > µk

6- Stop the loop when convergence

The augmented Lagrangian method does not require for the penalty factor to be very large,
which avoids the ill-conditioning. There exist also methods like the perturbed Lagrange for-
mulation which introduces a new Lagrangian depending on a parameter, where we obtain the
Lagrange multiplier method if this parameter is very small.

1.3.1 Inequality constrained problems

As we saw, the contact problem can be in general written in the form of a minimization problem,
with inequality constraints. After using the finite element method, the contact problem can be
expressed as follows {

min
x∈Rn

E(x) such that

ci(x) > 0 ∀ i = 1, . . . ,m
(1.64)

where x ∈ Rn denotes the degrees of freedom due to the finite element method, E denotes the
total potential energy and ci are the m constraints which describe the non-penetration condition.

In order to deal with the inequality constraints, we will present two famous methods: the
active-set method and the interior point method.

Active-set method

The active-set method is an iterative method which briefly consists in activating some constraints
{ci, i ∈ Wk}, where Wk denotes the indices set of the active constraints at the iteration k, and
solving at the iteration k an equality-constrained problem as follows{

min
x∈Rn

E(x) such that

ci(x) = 0 ∀ i ∈Wk

(1.65)

The working set Wk+1 is updated at the iteration k + 1 if some constraints are violated, or the
corresponding Lagrange multipliers are negative. The process is repeated until convergence. For
more details about the active-set method, see [86].
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Interior-point method

The interior-point method is another method to solve inequality-constrained problems. We will
briefly describe it, indeed it is presented in more details in the following chapters. First of all,
by introducing slack variables s = (s1, . . . , sm) ∈ Rm, the interior point method transforms the
problem (1.64) into the following

min
x∈Rn

E(x) such that

ci(x)− si = 0 ∀ i = 1, . . . ,m

si > 0 ∀ i = 1, . . . ,m

(1.66)

where the inequality constraints are transformed into equality ones and they are all active. Then
the problem (1.66) is transformed into a barrier one, as follows min

(x,s)∈Rn×Rm
E(x)− µ

m∑
i=1

ln(si) such that

ci(x)− si = 0 ∀ i = 1, . . . ,m

(1.67)

where µ is the barrier parameter. The problem is solved for a sequence of barrier parameters µ,
converging to zero, which will make the solution of the problem (1.67) converges to the solution
of the problem (1.64). For more details, one can refer to [47, 86].

The selected method

The active-set method requires more iterations than the interior-point one, but at each iteration
it’s faster than the interior-point one, because all constraints are active in the latter. For large
problems, generally the interior-point method is faster than the active-set method [53, 86]. In
addition the active-set method may have a problem of cycling (the working set Wk may repeat
itself after some iterations) [86].

Otherwise, in the two methods we have a sequence of linear systems to solve, the matrix
structure or sparsity of the linear system remains the same for the interior-point method, however
it changes for the active-set method, because the active constraints change at each iteration,
therefore linear solvers can benefit from the fixed structure of the matrix in the interior-point
method.

Finally, for the reasons we have selected the interior-point method as the method to solve
our contact problem, furthermore as we want our contact problem to be symmetric (see section
1.7), which generates a linear dependent constraints, the interior-point method, as we will see in
the chapter 4, is well fitted for this kind of issue.
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1.4 Discretization methods

Discretization methods are a way to describe the non-penetration between two bodies, when a
contact occurs and when the finite element method is used.

1.4.1 Node-to-node

Consider two bodies initially in contact at a common interface, we say that we have a conforming
meshes (see Figure 1.6), if the nodes of each meshes of the first and the second body coincide
at the interface. Let nC be the number of the common nodes at the contact interface, the
non-penetration conditions in this case are given as follows

(u1
i − u2

i ).n > 0 ∀ i = 1, . . . , nC (1.68)

where u1
i and u2

i are respectively the displacement of the common node i at the interface of the
first and of the second body, and n the outward unit normal vector on the second body.

First Body

Second Body

Contact interface

Figure 1.6 – Node to node discretization

This formulation is only efficient for small displacements and only for conforming meshes,
which is not very practical in general. For this kind of formulation, one can cite [48].

1.4.2 Node-to-segment

In the case of non-conforming meshes, the node-to-segment discretization can be used [65]. The
nodes of the slave body can not penetrate the segments of the master body. Let i be a node of the
slave body, and s the closest segment of the master body to the node i, then the non-penetration
conditions in this case can be given as follows

(xi − x̄i).n > 0 ∀ i = 1, . . . , nC (1.69)
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where nC is the number of slave nodes, xi the actual position of the node i, x̄i the projection of
xi on the closest segment s (see Figure 1.7) and finally n is the outward unit normal vector at
x̄i. Based on our experience, oscillations in the results can be observed.

xi

x̄i

Salve node

Master Body

n

Figure 1.7 – Node to segment discretization

1.4.3 Quadrature-point-to-surface

In this discretization, the non-penetration conditions are done on the integration points, see [45,
46], otherwise speaking the integration points of each slave segment are forbidden to penetrate
the master body.

1.4.4 Mortar method

In the case of a non matching meshes at the contact area between two bodies, the mortar method
can be employed in order to define the contact conditions. The mortar method can be found
in [15, 5, 59] in the case of the contact between two elastic bodies or in [96, 97, 118] for finite
deformation.

Using the same notations as section 1.2.3 especially for the two applications a and f , in the
case of linear elasticity, let [u.n] = (u1 − u2).n1 be the jump between the normal displacement
of the two bodies at the contact area, where [u.n] 6 0 describes the non-penetration between
the two bodies with n1 the outward unit normal vector at the contact area ΓC of the first body.
Therefore a saddle-point formulation (or a mixed formulation) can be used in order to describe
the contact problem, as follows

Find uh ∈ Vh and λh ∈Mh, such that
a(uh,vh)−

∫
ΓC

λh[vh.n] ds = f(vh) ∀vh ∈ Vh∫
ΓC

(µh − λh)[vh.n] ds > 0 ∀µh ∈Mh

(1.70)

where Vh is the admissible displacement set, and Mh is the Lagrange multiplier space which can
be generated from a nodal basis functions, or from a dual basis functions, see [121].

If (u∗h, λ
∗
h) is a solution of the problem (1.70), then u∗h is the solution of the following varia-
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tional inequality

Find uh ∈ Vh, such that

a(uh,vh − uh)− f(vh − uh) > 0 ∀vh ∈ Kh (1.71)

where Kh =

{
vh ∈ Vh |

∫
ΓC

[vh.n]φds > 0 ∀φ ∈Mh

}
.

In an equivalent manner, u∗h is a solution of the following minimization problem

Find uh ∈ Vh, such that

uh = arg min
vh∈Kh

(
Eh :=

1

2
a(vh,vh)− f(vh)

)
(1.72)

The constraints in this formulation are done in a weak sense, thus smoother results can be
generated. In addition, when h→ 0, the Lagrange multiplier λ∗h converges to the contact normal
pressure σn.

Recently in [38] and in the case of contact between two elastic bodies, we can find the use
of a local non-penetration condition, for example in the finite element method the set of the
admissible displacement satisfying the non-penetration condition Kh is given by

Kh =

{
vh ∈ Vh such that

∫
Im

[vhN ] dΓ 6 0 ∀Im ∈ IM
}

(1.73)

where Vh is the admissible displacement, [vhN ] = vh1N + vh2N the jump between the normal
displacement of the two bodies, where there is no initial gap. Im, IM are respectively the macro-
segments and the macro-mesh, for more details see [38].

1.4.5 Smoothing techniques

Isogeometric analysis is a spatial discretization method which can be used to study computa-
tional contact mechanics, indeed this method uses splines functions such NURBS or B-splines as
function basis, therefore it provides smoothness for the geometry and for the solution. See [117]
for the application in contact mechanics.

Another smoothing method was used in [23], without going into details, for each slave node a
smoothed contact surface is created using the weighted least-squares methods. In addition two
adjustment techniques can be found in this paper, one for the penalty factor based on the gap
and the other for the limitation of the status changes number of the contact nodes at each load
step.

A famous patch test about sliding of two rectangular elastic bodies can be found in [115], it
helps to give an indication about the robustness of the method used for the contact treatment
between two bodies.
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1.4.6 Analytic contact detection

We can see in the paper [61] different methods for contact detection between rigid bodies, the
shapes of the bodies are supposed to be arbitrary in a way to corresponds to the granular material
shapes, in addition the bodies can have a superquadratic shape. Indeed the superquadratic curves
in 2D are defined by the following equation

F (x, y) = 0 (1.74)

where the function F (x, y) is defined as follows

F (x, y) =
∣∣∣x
a

∣∣∣e1 +
∣∣∣y
b

∣∣∣e2 − 1 (1.75)

The powers e1 and e2 belong to ]0,+∞[, moreover a and b correspond to the length of the
principal axes. For example if e1 = e2 = 2 we obtain an ellipse, and if e1 = e2 = 20 we obtain a
shape close to a rectangle.

Suppose that a body Ω1 is described by a superquadratic curve F (x, y) = 0, and suppose
that P = (X2, Y2) is a point belonging to the second body Ω2, then P penetrates the first body
Ω1 if F (X2, Y2) < 0, and is outside of it if F (X2, Y2) > 0. Finally if F (X2, Y2) = 0 then the
point P is on the boundary of Ω1.

1.5 Frictional contact algorithms

In [81] and in the case of linear elastic material, the Coulomb frictional contact problem is trans-
formed into a sequence of Tresca frictional contact problems. Indeed the problem is transformed
into a fixed point method where at each iteration a minimization problem over a convex set is
solved.

The bi-potential method was used for frictional dynamic problem in [42, 43], indeed the
contact forces are computed by a process of prediction and correction by a projection on the
Coulomb cone. Then the contact forces are considered as an external loading. In these papers a
first order time-stepping scheme was used for the dynamic problem.

A penalty formulation based on the integration points was considered in [46], to solve frictional
contact problems. The numerical integration in [46] was done on the non-mortar segments (or
the slave contact segments), with a fixed integration points on the non-mortar segment, and not
on the overlapping regions between mortar and non-mortar areas, so the computational effort is
reduced.

In [21, 90, 89] the elastic problems were considered, where a non-classical friction law was
used in [90, 89], the idea was to fix the normal pressure at each iteration and update it for the
next iteration.

Moreover we can cite another famous method to solve frictional contact problems, the return
mapping method.
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Return mapping method

The returning mapping method is a method used for the frictional contact problems, this method
was already been used in plasticity problems (see [34, 35]), where as the yield surface in plasticity
problems, a surface which is dependent on the normal and on the tangential stress is created (see
[52]).

Coulomb’s friction law can be reformulated using the Kuhn-Tucker constraint conditions for
friction as follows 

ζ(σT , σn) := ‖σT ‖ − µ|σn| 6 0 (1.76)

u̇T = −ξ ∂ζ

∂σT
(1.77)

ξ > 0 (1.78)
ξζ = 0 (1.79)

where µ is the Coulomb friction coefficient. If at a point of the body ζ = 0 then this point slips,
otherwise if ζ < 0 the point sticks, indeed from the equation (1.79) we have ξ = 0 and from the
equation (1.77) we obtain u̇T = 0.

Always in the Coulomb friction case we have the following equation

∂ζ

∂σT
=

σT
‖σT ‖

(1.80)

Note that from equations (1.77), (1.78) and (1.80) we can recover the equation (1.57).

Considering the dynamic case, the work of the contact forces at the time increment t+ 1 can
be expressed as

Wc(ut+1,v) =

∫
γC

σTt+1
.v + σnt+1

n.v (1.81)

where ut+1, v denote respectively the displacement field at the increment t+1 and an admissible
displacement, finally γC represent the current contact surface.

In [107] the penalty and the augmented Lagrangian methods were used. In the following we
present the penalty method in addition to the return mapping method as it was shown in [107]
(the sign change for the stresses in [107]). First for a penalty method the normal stress σn is
replaced in the equation (1.81) by

σnt+1
= −εn(−g(ut+1))+ (1.82)

where g is the gap function, εn the penalty factor and (·)+ = max(·, 0). In order to calculate
σTt+1

, first a trial stick stress is defined as follows

σtrialTt+1
= σTt − εT (uTt+1 − uTt) (1.83)

where εT is a penalty factor. Let ζtrialt+1 = ζ(σtrialTt+1
, σnt+1

) then the tangential stress σTt+1
at the
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increment t+ 1 can be given by the return mapping as follows

σTt+1
= σtrialTt+1

− εT ξst+1 (1.84)

where st+1 =
σtrialTt+1

‖σtrialTt+1
‖ and

ξ =

{
0 if ζtrialt+1 6 0
ζtrialt+1

εT
if ζtrialt+1 > 0

(1.85)

The tangential stress σTt+1
is replaced in the equation (1.81) which is used to compute the

frictional contact problem using a Newton scheme.

The tangent matrix generated from the return mapping method is non-symmetric, thus an
alternative algorithm (see [107]) was proposed.

The return mapping method and the penalty method were also presented in [124] for con-
tact problems with large deformations. The finite element formulation for the dynamic contact
problem leads to the following equation

G(U, t) = M
..

U + F (U) + FC − P = 0 WithU ∈ RN (1.86)

where U is the degree of freedom vector of the displacement field,
..

U the second derivative with
respect to time, F (U) the internal vector forces (for example in elasticity F (U) = KU where K
is the stiffness matrix), M the mass matrix, finally FC and P are the vector forces due to the
contact and the external loads.

As the problem is dynamic, a Newton method is used at each time step. We present here in
algorithm 1 a summary of the algorithm which can be found in [124].

Algorithm 1 Summary of an algorithm for frictional contact problem
Initialization at time t = 0 and setting the tolerance TOLER
while t 6 Tfinal do

while ‖G‖ > TOLER do
for all elements in the body do

for all slave nodes in the elements do
Check for contact
Compute the normal contact forces σn
Check for friction
Return mapping for the friction

end for
end for
Construct the vector G and the global tangent matrix KT

Solve KT∆U = −G
U := U + ∆U

end while
Update the quantities for the time t+ 1

end while
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The global tangent matrix KT is built from the mass matrix, the tangent stiffness matrix of
the body in addition to the contribution of the contact forces with friction. Note that the return
mapping leads to a non-symmetric tangent matrices.

1.6 Other contact methods

1.6.1 Nitsche-based method

The unilateral contact for elastic bodies using Nitsche-based method was treated in [25, 27]. In-
deed the method is based on the following contact condition which is equivalent to the Signorini’s
conditions.

σn(u) = − 1

γ
(un − γσn(u))+ on the contact area (1.87)

where γ > 0 is a strictly positive value, and x+ = max(x, 0).

1.6.2 Generalized Newton method

The generalized Newton method was used to solve contact problems in [7, 8]. Indeed a Newton
algorithm is employed in order to solve a non-smooth non-linear equation.

1.6.3 Alternative discretization methods

The contact between two parameterized beams was treated in [84], where the interaction between
the two beams is done at a point, and there is no distinction between slave and master body.

1.7 The need for a symmetric contact algorithm

In most contact algorithms the concept of slave and master body is used, indeed we impose
contact conditions to forbid the penetration of the slave body into the master one, theoretically
it does not impact the solution if we interchange the slave and the master body, but when we
discretize and use the finite element method, a difference between the solutions appears when
we swap the slave and the master body. In general the user must define at first the slave and
the master in the contact algorithm.

There is different ways to help the user in defining the slave and the master body, for example
a body can be chosen as slave if
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• The body has the finest mesh

• The body is the least stiff

• The body has a curvature

• . . .

As consequence we can see the difficulties to choose between the bodies, for example if the stiffest
body has the finest mesh. In addition we can see the same problem in the case of self contact
or in the case of a contact between more than two bodies. Hence the need for a symmetric
algorithm where there is no difference between the slave and the master, or at least to reduce
the difference between the results in the case of interchanging the roles of the bodies.

We can see some symmetric contact method for example in [12, 54, 92], or in [51, 72] where
the symmetric contact method is based on the penalty method, and the Gauss points of the finite
elements were used for the contact search instead of the nodes. In [108] a stabilized formulation
was proposed in order to take the symmetry into account, indeed the difference between the two
Lagrange multipliers of each contact area, was penalized.

In order to show the importance of the choice between the slave and the master in a non-
symmetric algorithm and the advantage of a symmetric contact algorithm, we will consider a
simple example of a contact between two elastic rectangular blocks. A first elastic rectangular
block Ω1 is set on a second one Ω2 (see Figure 1.8). The two blocks have the same properties:
a width L = 2UL (UL=length unit), a height H = 1UL, a Young’s modulus E = 200 UF

UL2

(UF=force unit), a Poisson’s ratio ν = 0. The study is done under the plane strain hypothesis
(2D). The frictionless case is always supposed, and a vertical displacement of U0 = −0.1UL and
a zero horizontal displacement are imposed on the upper face of the first block Ω1, the lower face
of the second body Ω2 is clamped.

Theoretically the value of the displacement field is equal to utheo = (0, 0.05y), where the
coordinate system is shown in the Figure 1.8.

Ω2

Ω1

−0.1UL

x

y

Figure 1.8 – The geometries and the meshes of the two rectangular bodies
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We consider linear finite elements (P1) and the meshes shown in Figure 1.8. At the first
stage, we consider the first body Ω1 as slave and the second one Ω2 as master, at the second
stage, we consider the body Ω1 as master and the second one Ω2 as slave, and finally we consider
the symmetric algorithm, where there is no difference between slave and master. For all of these
three scenarios, the corresponding displacement field uh is computed using the contact algorithm
developed in the chapter 4.

The relative error between the computed solution uh and the theoretical one is given by

error =
‖uh − utheo‖1
‖utheo‖1

× 100 (1.88)

where if u = (u1,u2) is a displacement field of the body Ω = Ω1 ∪ Ω2, with u1, u2 respectively
the displacement fields of the bodies Ω1 and Ω2 then

‖u‖1 = (‖u1‖21 + ‖u2‖21)1/2 (1.89)

with 
‖u1‖1 =

(∫
Ω1

‖u1‖2 dv +

∫
Ω1

‖∇u1‖2 dv
)1/2

‖u2‖1 =

(∫
Ω2

‖u2‖2 dv +

∫
Ω2

‖∇u2‖2 dv
)1/2 (1.90)

where ‖ · ‖ denotes the Euclidean norm.

The relative errors between the computed solutions uh and the theoretical one utheo are
shown in the table (1.1).

Scenarios Error (%)
Ω1 is the slave 2× 10−5

Ω2 is the slave 0.38
Symmetric algorithm 7× 10−6

Table 1.1 – The relative errors between the numerical solutions and the theoretical one

We note the advantage of the symmetric algorithm regarding the accuracy. Moreover, we
noticed that the symmetric algorithm requires fewer iterations to converge.
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This chapter presents a method to solve the mechanical problems undergoing finite deformations
and the contact problems without friction, between a hyperelastic body and an obstacle. In
this chapter, we restrict ourselves to the contact between a hyperelastic body (where the linear
elastic body is a particular case) and a rigid foundation (obstacle). The dynamical and frictional
cases are not treated here. The goal of this chapter is to propose a simple method that uses the
FreeFEM software [55] and its tools to solve a wide variety of contact problems.

The contact problem is formulated as a constrained minimization one, indeed the constraints
which describe the non-penetration between the body and the obstacle are simple, and there
is no need to compute the normal vectors or the projection points on the obstacle in order
to describe the non-penetration, which increases the resolution speed of the contact problem,
thus the contact formulation is well fitted with the interior point method. The IPOPT (interior

37
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point optimizer) algorithm [120], which is already interfaced with FreeFEM, is used to solve the
optimization problem and to reach the solution. The rigid foundation is supposed to be described
by a C2 function, if this is not the case then the foundation can be approximated by a spline
function which is also available in the FreeFEM language.

We also introduce two formulations of our contact problem, in the first one, the non-penetration
between the body and the obstacle is done by forbidding the nodes of the body mesh to penetrate
the obstacle, in the second one, the non-penetration is written in a weak form.

2.1 Signorini’s contact problem

Signorini’s contact problem [106] represents the contact between a deformable body and a fixed
rigid foundation. An example is shown in Figure 2.1. Let Ω ⊂ R3 denote the body in its
reference configuration, Γ0 which is a part of the boundary ∂Ω where a null displacement is
imposed, Γ1 ⊂ ∂Ω where a traction force t is imposed, and ΓC ⊂ ∂Ω the potential contact part
of the boundary ∂Ω. We also suppose that Γ0,Γ1 and ΓC are disjoint and ∂Ω = Γ0 ∪ Γ1 ∪ ΓC ,
where ΓC has a non null area.

Figure 2.1 – Signorini’s contact

Let C ∈ R3 be an open set in R3 describing the rigid foundation or the obstacle where there is
no penetration, and Cc its complement. The Signorini’s contact equations are the set of the local
balance of the momentum equation, of the boundary conditions, and of the contact conditions.
Giving a body force per unit volume f applied on the body, and using the same notations as
before, the equations in the reference configuration are

3∑
j=1

∂Pij

∂Xj
+ fi = 0 inΩ (i = 1, 2, 3)

u = 0 on Γ0

PN = t on Γ1

(2.1)
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with the following contact conditions
φ(ΓC) ⊆ Cc (Non-penetration in the foundation)
PN = 0 ifX ∈ ΓC andx = φ(X) ∈ C̄c (/∈ C ∪ ∂C)
PN = λn ifX ∈ ΓC andx = φ(X) ∈ ∂C ,whereλ 6 0

(2.2)

For the hyperelastic materials, the first Piola-Kirchhoff stress tensor can be obtained by

P =
∂Ŵ

∂F
(2.3)

where Ŵ is the strain energy function.

The contact formulation described in (2.1) and (2.2) can be formulated like in [29] as a
constrained minimization problem, i.e if u is the solution of Signorini’s contact problem (2.1)
and (2.2) then

u = arg min
v∈K

(E(v)) (2.4)

where E is the total potential energy defined by

E(v) =

∫
Ω

Ŵ dV −
∫

Ω

f .v dV −
∫

Γ1

t.v dA (2.5)

and K is the set defined by

K =
{

v ∈
(
H1(Ω)

)3
; v = 0 on Γ0 ; φv(ΓC) ⊆ Cc

}
(2.6)

where φv(X) = X + v. In most publications, the normal gap function gn : ΓC −→ R is used
to describe the non-penetration condition: φ(ΓC) ⊆ Cc. The normal gap function gn is a signed
distance function between the body Ω and the foundation (see Figure 2.2). Let x ∈ φ(ΓC) be a
point of the deformed body φ(Ω), then the normal gap function is defined as the following

gn(x) = (x− y).n(y) (2.7)

where y is the closest point of the rigid foundation to x and n(y) is the outward unit normal
vector to the rigid foundation at y. In this case, the non-penetration condition is given by

gn(x) > 0 ∀x ∈ φ(ΓC) (2.8)
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Figure 2.2 – Normal gap function

In other words, if gn(x) > 0 there is no penetration between the point x and the foundation,
if gn(x) = 0 the point x and the foundation are in contact, and finally if gn(x) < 0 the point x
penetrates the foundation.

The non-penetration condition used in this chapter, which is not based on the normal gap
function, is mentioned in the section 2.2.2.

2.2 Minimization problem resolution

2.2.1 Interior Point method

One of the pieces of open source software for optimization is IPOPT. IPOPT uses the interior
point method and can solve large scale constrained and unconstrained optimization problems,
where the constraints can be nonlinear. In other words, it solves the following problem

arg min
u∈Rn

f(u) such that

gLo 6 g(u) 6 gUp

uLo 6 u 6 uUp

(2.9)

where f : Rn → R is the function to minimize and g = (g(1), . . . , g(m)) : Rn → Rm the inequality
constraints, the two symbols Lo and Up denote respectively the lower and upper bounds, and
the inequality between vectors means the inequality between the components of the vectors.
In addition, we suppose that g(i)

Lo, u
(j)
Lo ∈ R ∪ {−∞} and finally g

(i)
Up, u

(j)
Up ∈ R ∪ {+∞} for all

i = 1, . . . ,m and j = 1, . . . , n. The functions f and g are supposed to be sufficiently smooth (for
example C2).

By introducing the slack variables s = (s(1), . . . , s(m)) ∈ Rm, which convert the inequality
constraints to equality constraints and bound constraints, the inequality constraint equations in
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(2.9) can be expressed as {
g(i)(u)− s(i) = 0

g
(i)
Lo 6 s(i) 6 g

(i)
Up ∀ i = 1, . . . ,m

(2.10)

Therefore the minimization problem (2.9) is simplified and can thus be reformulated as follows
arg min

(u,s)∈Rn×Rm
f(u) such that

g(u)− s = 0

(uLo, gLo) 6 (u, s) 6 (uUp, gUp)

(2.11)

or in a simplified way and without loss of generality, the problem can be transformed as follows
arg min
u∈Rn

f(u) such that

g(u) = 0

u > 0

(2.12)

IPOPT solves the minimization problem in multiple steps, but we will only describe the principal
ones. For more details see [119, 120]. The algorithm is briefly described in algorithm 2

Algorithm 2 IPOPT
Initial value for the barrier parameter µ.
while No global convergence do

-The objective function f is transformed into a barrier function and the problem is refor-
mulated as follows arg min

u∈Rn
f(u)− µ

n∑
i=1

ln(u(i)) such that

g(u) = 0

while No convergence do
-First-order optimality condition for the barrier problem.
-Compute the descent directions (duk , d

λ
k , d

z
k) at the iteration k.

-Line search by filter method.
end while
-Decrease the barrier parameter µ.

end while
Return u ∈ Rn.

The first-order optimality condition of the problem (2.12) is given by
∇f(u) +∇g(u)λ− z = 0

g(u) = 0

UZe− µe = 0

(2.13)

where λ ∈ Rm and z ∈ Rn correspond respectively to the constraints and bounds Lagrange
multipliers, U = diag(u) (diagonal matrix with Uii = u(i)), Z = diag(z) and finally e ∈ Rn is the
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vector e = (1, . . . , 1)T .

A Newton method is applied to the system (2.13) in order to find the descent directions
(duk , d

λ
k , d

z
k) at each iteration k. If uk, λk, zk denote respectively the values of u, λ, z at the

iteration k, then the following system is obtained Wk ∇g(uk) −I
∇g(uk)T 0 0

Zk 0 Uk

dukdλk
dzk

 = −

∇f(uk) +∇g(uk)λk − zk
g(uk)

UkZke− µe

 (2.14)

where Wk = ∇2L = ∇2f(uk) +

m∑
j=1

λ
(j)
k ∇

2g(j)(uk), (j) denotes the components of a vector and

L is the Lagrangian function.

Otherwise, the linear system (2.14) can be reduced into the following[
Wk + U−1

k Zk ∇g(uk)
∇g(uk)T 0

](
duk
dλk

)
= −

(
∇φµ(uk) +∇g(uk)λk

g(uk)

)
(2.15)

with the additional equation:

dzk = µU−1
k e− zk − U−1

k Zkd
u
k (2.16)

where φµ = f(u)− µ
n∑
i=1

ln(u(i)) is the barrier function.

As the descent directions were computed, the quantities uk+1, λk+1, zk+1 at the iteration k+1
are given by 

uk+1 = uk + αkd
u
k

λk+1 = λk + αkd
λ
k

zk+1 = zk + αzkd
z
k

(2.17)

In order to improve the convergence of the algorithm, a line search method with a filter method
is used to determine the parameters αk. Using the same notation as in [120], let θ(u) = ‖g(u)‖
be the constraint violation. At first a parameter αk is proposed and a filter F is a set of R2.
It helps to determine if αk can be accepted as a step size and to avoid cycling between two
successive iterations. Indeed when the optimization starts the filter is initialized as follows

F0 = {(θ, φ) ∈ R2 | θ > θmax} (2.18)

where θmax is a chosen value. After each iteration the filter is updated according to the situation,
to:

Fk+1 = Fk ∪ {(θ, φ) ∈ R2 | θ > (1− γθ)θ(uk) & φ > φµ(uk)− γφθ(uk)} (2.19)

or to:
Fk+1 = Fk (2.20)

where (γθ, γφ) ∈]0, 1[2 are two fixed values.

The step size αk can be accepted if (θ(uk+1(αk)), φµ(uk+1(αk)) /∈ Fk. If this is not the case,
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several actions may be possible [120].

Finally, the barrier parameter µ is decreased and the iteration starts from the last converged
solution. The solution of the above algorithm, which depends on the barrier parameter u(µ),
converges to the solution of the original problem (2.9) as µ→ 0.

2.2.2 Formulation of the problem

In this section and without loss of generality, we consider the two dimensional problem case.
Using the same notations as section 2.1, let Xr = (X,Y ) ∈ ΓC (the potential contact area of the
body in the reference configuration), x = (x, y) ∈ γC = φ(ΓC) in the actual configuration, and
u = x−Xr = (ux, uy) its corresponding displacement vector. The non-penetration condition in
our analysis will be written in the form of F (u) > 0, where F : R2 −→ R is a function of class
C2.

We suppose that the boundary of the foundation can be written in the form of a function ψ
(see Figure 2.3) of class C2, then the non-penetration condition is given by

y − ψ(x) > 0 (2.21)

Figure 2.3 – The foundation function ψ

This means that the body has to be always above the foundation in our case. By considering
the reference configuration, this condition becomes

F (u) = Y + uy − ψ(X + ux) > 0 (2.22)

If the function ψ of the foundation is not subject to a large variations, then we can apply
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Taylor’s theorem to ψ(X1 + u1) and obtain a simpler non-penetration condition, as follows

F (u) = Y − ψ(X) + uy − ψ′(X).ux > 0 (2.23)

In the finite element method, the body domain Ω can be approximated by a polygonal domain

Ωh =
nT⋃
i=1

Ti, where Ti are the triangles which constitute Ωh and h is the mesh size. Let Th be the

family of the triangles Ti and, without loss of generality, let Vh(P1) be the linear finite element
space defined on Ωh and given by

Vh(P1, Th) =

{
v(x, y) =

m∑
k=1

vkΦk(x, y) | vk ∈ R

}
(2.24)

where m denotes the number of nodes (or vertex) in the mesh and Φk is the shape function,
which in our case is linear for each triangle and is equal to 1 at the node k and zero at the other
nodes. The component vk is called a degree of freedom of the function v. We can also note that
the function v is a continuous piecewise function.

In our analysis, we are interested to find the displacement field u = (ux, uy) for the Signorini’s
contact problem. First, we consider that ux , uy ∈ Vh, if {Ux,1 . . . Ux,m} and {Uy,1 . . . Uy,m}
respectively denote the degrees of freedom of ux and uy, then the degrees of freedom of u are
given by

U =



U0

U1

...
U2i

U2i+1

...
U2(m−1)

U2(m−1)+1


=



Ux,1
Uy,1
...

Ux,i
Uy,i
...

Ux,m
Uy,m


(2.25)

The degrees of freedom vector U of the displacement field describe the nodes displacement of the
mesh. The coordinates vector X of all mesh nodes in the reference configuration will be given
by

X = (X0, X1, . . . , X2(m−1), X2m−1)T

Let nC be the contact nodes number belonging to the contact boundary ΓC , and suppose that
the first 2nC components of the vector U correspond to the degrees of freedom of the nC contact
nodes. Our contact problem can be formulated then as followsarg min

U∈Rn
E(U) such that

ci(U) := X2i+1 + U2i+1 − ψ(X2i + U2i) > 0 ∀ i = 0, . . . , nC − 1
(2.26)

where n = 2m and E(U) the total potential energy of the body. More precisely the constraint
ci > 0 represents the non-penetration condition with the rigid foundation or the obstacle, for the
node i belonging to the boundary ΓC .

Let the vector c be defined by c = (c0, . . . , cnC−1)T . As the interior point method is used,
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the Jacobian matrix of c and the Hessian matrix of each ci are needed (see equation (2.15)). The
Jacobian matrix Jac(c)nC×n, which is full row rank, can be given simply by

Jac(c) =

A0 . . . 0 0
...

. . .
...

...
0 . . . A(nC−1) 0

 (2.27)

where only the matricesAi are non zero, and Ai =
[
−ψ′(X2i + U2i) 1

]
∀ i = 0, . . . , nC−1,

ψ′ denotes the derivative of ψ. The Hessian matrix of each ci: Hess(ci)n×n is equal to

Hess(ci) =



0
. . .

h2i2i

. . .
0

 (2.28)

where only h2i2i is not equal to zero, indeed h2i2i = −ψ′′(X2i + U2i), where ψ′′ is the second
derivative of ψ.

Using the energy, its Jacobian matrix and its Hessian matrix, in addition to the constraints
and the Jacobian and the Hessian of the constraints, the constrained minimization problem can
be solved by the interior point method. In our case we used the IPOPT software.

In this formulation the non-penetration constraints are very simple and well fitted for the
interior point method. In addition there is no need to compute the normal vectors and the
projection points on the obstacle, which they depend on the solution of the problem, in order to
define the non-penetration constraints. Therefore there is no need to use a fixed point algorithm
or an active-set strategy.

Finally if the obstacle (rigid foundation) is defined by a mesh, then we can use for example a
cubic spline in order to describe the potential contact area of the obstacle, if it can be described
by a graph of a function, in other words to compute the function ψ.

2.2.3 Weak contact formulation

Instead of using the non-penetration condition for each node of the contact area ΓC (problem
2.26), we can write the non-penetration conditions in a weak form and the constrained mini-
mization problem becomes as follows

arg min
U∈Rn

E(U) such that∫
ΓC

F (u)Φi > 0 ∀ i = 0, . . . , nC − 1
(2.29)

where F (u) is given by the equation (2.22) and Φi are the shape functions of the space Vh at the
contact nodes of the contact surface ΓC . We can see in this formulation that the non-penetration
is done in an average sens, which makes the contact more softer, and gives smoother results.
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However it’s obvious that it takes more computational time due to the integrals calculation.
Thus in the next section, we restrict our study with the first formulation. Note that the previous
advantages remain for this formulation.

2.3 Numerical validations

In this section, we present several common numerical examples in order to validate our method.
First, we will present two tests in 2D and 3D on the compression of a hyperelastic cube with two
specific types of materials. In these tests, the contact is not taken into account, indeed the goal
is to validate our algorithm in solving problems with a hyperelastic material behavior. Next,
we present 3 contact tests, where one of them is Hertz contact problem with explicit analytic
solution.

In FreeFEM, necessary quantities such as the energy and the constraints (Jacobian, Hessian)
are computed. Then, IPOPT is used to solve our constrained minimization problem through
the FreeFEM interface. To see how we can use IPOPT with FreeFEM, one can refer to [13, 55].
The advantage of this method is that only the contact problem needs to be formulated and then
IPOPT will act like a black box to solve the optimization problem.

2.3.1 Compression of a hyperelastic cube

Here we handle the test presented in [4] using linear finite elements [93]. A unit cube of dimension
equal to 1m (meter) is considered (see Figure 2.4). The cube can move along the direction X1

and its two faces, which are perpendicular to the direction X3, are fixed along this last direction.
Finally, the lower face of this cube is fixed along the direction X2 (see Figure 2.4). A pressure
of f = 0.876Pa is applied to the upper face of the cube.

Two nearly incompressible hyperelastic material models [80] are considered for the cube: Neo-
Hookean and Mooney. These models also describe the incompressibility of the two materials.
The goal is to compute the displacement field (specifically the vertical displacement) and to
compare it with the theoretical one. The strain energy functions of these two models are given
as follows

Ŵ = C10(J−
2
3 I1 − 3) + C01(J−

4
3 I2 − 3) +

K

2
(J − 1)2 (2.30)

where I1, I2, J the invariants defined in the equation (1.19), K = 6(C01+C10)
3(1−2ν) [80] and ν is the

Poisson’s ratio. The function K
2 (J − 1)2 helps to satisfy the incompressibility constraint (J = 1)

by penalizing it. The coefficients C01, C10, and ν are presented in the table 2.5
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Figure 2.4 – The cube with the applied pres-
sure

Figure 2.5 – Material coefficients

Mooney Neo-Hookean

C10 0.709 1.2345
C01 2.3456 0.
ν 0.499 0.499

The linear finite elements P1 [55] were used for this study and the mesh contains 200 elements
in the two dimensional case (plane strain situation because the cube is fixed along X3). In order
to avoid the rigid movement of the structure and using the fact that the problem is symmetric,
only half of the structure is modeled as can be seen in Figure 2.6 for the two dimensional case.

Using IPOPT in order to minimize the total potential energy of the cube and generate the
displacement field, the maximum vertical displacement of the upper face is given in the table
2.1.

Table 2.1 – Vertical displacement w with FreeFEM in 2D

FreeFEM in 2D Mooney Neo-Hookean

w 0.034072 0.078331

The theoretical maximum vertical displacement of the upper face [4] is given in the table 2.2.

Table 2.2 – Theoretical vertical displacement w

Theoretical Mooney Neo-Hookean

w 0.0340091 0.078180

The errors with respect to the theoretical values for our method and Code_Aster [4] are
presented in table 2.7, where similar results are seen.
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Figure 2.6 – The 2D symmetrical model of
the cube

Figure 2.7 – Errors in 2D with respect
to the theoretical values

FreeFEM Code_Aster

Mooney 0.19% 0.20%
Neo-Hookean 0.19% 0.20%

In Figure 2.8a, the deformed shape and the vertical displacement of the Neo-Hookean material
case are shown. To see the FreeFEM script of the example presented above, please visit https:
//modules.freefem.org/modules/nonlinear-elasticity/.

(a) 2D case (b) 3D case

Figure 2.8 – Vertical displacement field (Neo-Hookean)

On the other hand, the exact same results were generated by considering the three dimensional
case for the two types of materials. In addition, note that we obtained the same results for
the displacement field by supposing that the cube is in contact on its lower face with a rigid

https://modules.freefem.org/modules/nonlinear-elasticity/
https://modules.freefem.org/modules/nonlinear-elasticity/
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foundation, see Figure 2.8b for the three dimensional case.

2.3.2 Hertz contact problem

A classical contact problem is the contact between two deformable cylinders where their axis are
parallel and a theoretical solution exists for this type of problem (see [66]). In the following, the
plane strain situation is considered and it corresponds to the two dimensional case (2D). In other
words, the height of the cylinders is large. Finally, the frictionless contact is assumed.

The zone of contact between the cylinders is a strip of width 2a. The quantity of interest
is the normal pressure at the contact zone. Let a force of magnitude P be applied on the first
cylinder and let this force be normal to its axis in order to compress the two bodies and let
them enter into contact. Therefore, by assuming the hypothesis of small deformations and linear
elasticity, we can obtain analytically the half length of the contact zone a in addition to the
profile of the normal pressure at the contact zone (see [66]).

Let R1 and R2 denote the radius of the cylinders, E1 and E2 the Young’s modulus and ν1

and ν2 the Poisson’s ratio of the first and second cylinder. Then, the half contact length a is
given by

a =

√
4PR

πE∗
(2.31)

where R and E∗ are computed as follows

{
1
R = 1

R1
+ 1

R2

1
E∗ =

1−ν2
1

E1
+

1−ν2
2

E2

(2.32)

Let x denotes the abscissa along the contact zone, thus the normal pressure profile p is given
as follows

p(x) = pmax

√
1− x2

a2
(2.33)

where pmax = 2P
πa , the maximum pressure, is located at the origin of the contact zone.

The second cylinder can be considered as a rigid foundation by taking a large value of its
Young’s modulus E2 → +∞. Thus we obtain E∗ → E1

1−ν2
1
and the same equations presented

above can be used.

In the same manner, the second cylinder can be replaced by a plane by taking R2 → +∞,
therefore R→ R1.

Next, we present the numerical results of one contact example involving a deformable cylin-
der against a rigid foundation. The foundation is a plane for this example. Due to the two
dimensional case and the symmetry of the problem, only a quarter of a disc, which represents
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the cylinder, will be modeled. In this example, f denotes the pressure applied on the top face
of the quarter disc. R1, E1 and ν1 denote respectively the radius, Young’s modulus, and the
Poisson’s ratio of the quarter disc. Note that the total force applied is equal to P = 2fR1.

Contact with a rigid plane foundation using the formulation (2.26)

The contact between the quarter disc and the rigid plane is shown below (Figure 2.9a). In
order to compare our results to the theoretical ones, we suppose the following values: a radius
R1 = 1m, a Young’s modulus E1 = 2.1 × 109 Pa, a Poisson’s ratio ν1 = 0.3 and finally a top
face pressure of f = 2.75× 106 Pa.

In this case, the half contact length a is equal to

a =

√
8fR2

1(1− ν2
1)

πE1
(2.34)

The maximum pressure and the pressure profile at the contact zone are equal to

pmax =
4fR1

πa
(2.35) p(x) = pmax

√
1− x2

a2
(2.36)

The linear finite elements P1 were used for the simulation and the mesh was refined at the
contact zone until satisfactory results are obtained. In Figure 2.9b, we can see the deformation
of the quarter disc in addition to the distribution of the Von Mises stress and we also remark
that the maximum Von Mises stress is not at the border where the contact occurs.

(a) The geometry (b) Deformation and Von mises stress.

Figure 2.9 – Contact with a rigid plane foundation
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The pressure at the contact zone p(x) computed with our algorithm is plotted with the
theoretical one in the Figure 2.10.
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Figure 2.10 – Pressure at the contact zone

2.3.3 Press-fit problem

The following example, which can be found in [123], is considered in order to show that our
algorithm can handle large deformations. A rectangular rubber material of length 45 cm and
width 40 cm is pressed in a channel (see Figure 2.11), due to its high Young modulus with
respect to the body, this channel is considered as an obstacle and is described by a cubic spline
function, which interpolates the mesh nodes of the obstacle. The channel has a total length
of 190 cm, its first horizontal part has a length of 80 cm and its second horizontal part has a
length of 90 cm with an opening of 29.8 cm. In the first stage a vertical displacement of 1mm is
imposed on the body in order to penetrate it in the channel, in the second stage a total horizontal
displacement of 130 cm is imposed on the left side of the body, this total displacement is done by
70 time steps. Neo-Hookean material is considered for the body, with the following properties
E = 1000Mpa, νh = 0.47. The deformation states of the rectangular body at the steps 0, 40, 70
are depicted in the following figures (Figure 2.11).
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Figure 2.11 – The deformation states at the steps 0, 40, 70

2.3.4 Clamped body contact

In this test, an iron square Ω of length equal to 1m is considered. The square is clamped on its
side Γ0 and is initially in contact with a rigid plane on its side ΓC (see Figure 2.12a). The body
is subjected to its own weight, where ρ = 7800 kg.m−3 and g = 9.81m.s−2. The properties of
the elastic body are the Young’s modulus E = 2.1 × 1011 Pa and the Poisson’s ration ν = 0.3.
This test was treated in [56]. A uniform mesh was taken with 51 nodes at each side and the
finite element used is the P2 element.

The deformed configuration of the body is shown in the Figure 2.12b with an amplification
factor.
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(a) The geometry (b) The body deformation (amplification factor = 2.105).

Figure 2.12 – The square iron problem

In Figure 2.13, the contact pressure on the left side ΓC is plotted in comparison with the
values found in [56].
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Figure 2.13 – Contact pressure at the side ΓC of the body
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In this chapter, an algorithm to solve frictionless contact problems is presented. A fixed point
method is therefore used in order to transform the contact problem into a sequence of a minimiza-
tion problems with linear (or affine) constraints especially in the case of large deformations. Two
penalty functionals were employed to take care of the constraints, indeed each penalty functional
penalizes the integration points to penetrate into the opposite body, which make the formulation
and the algorithm symmetric. As the interior point is used to solve the minimization problem
(we impose some bounds on the displacement field), the penalty functionals are chosen to be
smooth enough. Some theoretical aspects are also addressed in this chapter.

55
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3.1 Signorini’s problem for linear elasticity

In order to simplify, we begin to consider Signorini’s problem which is the contact between a
body and a rigid foundation. In this section we treat only the linear elastic materials. Let
Ω denotes the body and Γ = ∂Ω its boundary. Γ0 ⊂ Γ denotes the boundary part where a
displacement is imposed with meas(Γ0) > 0, Γ1 ⊂ Γ is the boundary part where a traction
vector is applied, finally ΓC ⊂ Γ denotes the potential contact area. The boundary parts Γ0, Γ1,
ΓC form a partition of the body boundary Γ.

By imposing a null displacement on Γ0, the admissible set is defined as follows

V = {v ∈ H1(Ω) |v = 0 a.e on Γ0} (3.1)

where H1(Ω) = H1(Ω)×H1(Ω), endowed with the broken norm:

‖u‖1 = ‖(u1, u2)‖1 =
(
‖u1‖21 + ‖u2‖21

) 1
2 (3.2)

The solution (the displacement field) of the contact problem involving a linear elastic body, can
be written as the following minimization problem

min
v∈K

1

2
a(v,v)− f(v) (3.3)

where K = {v ∈ V |v.n+gN > 0 a.e on ΓC} = {v ∈ V | ḡN −v.n 6 0 a.e on ΓC}, the set where
the displacement field satisfies the non-penetration condition for the Signorini’s problem, gN
denotes the initial normal gap and ḡN = −gN , finally n is the normal vector at the foundation.
The applications a(·, ·) and f(·) (see equations (1.32) and (1.33)) have the following properties.

a(·, ·) : V ×V→ R is a continuous bilinear application, and it is elliptic.

f(·) : V→ R is a linear continuous application. Otherwise speaking f ∈ V′, the dual of V.

In order to present some theory results we need to recall the following definitions.

Definition 3.1. Let E be a Banach space, the functional F : E → R is said to be weakly
sequentially lower semicontinuous in u ∈ E, if for each sequence un such that un converges
weakly to u in E: un ⇀ u, we have

F (u) 6 lim inf
n→+∞

F (un) (3.4)

Definition 3.2. The functional F : E → R is said to be coercive iff

lim
‖v‖→+∞

F (v) = +∞ (3.5)

Theorem 3.1. The elastic energy E(v) = 1
2a(v,v)− f(v) is strictly convex.

Proof. Let θ ∈ [0, 1] and u, u ∈ V, after some calculations we obtain

E((1− θ)u + θv)− (1− θ)E(u)− θE(v) = −1

2
θ(1− θ)a(u− v,u− v) (3.6)
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⇒ E((1− θ)u + θv) = (1− θ)E(u) + θE(v)− 1

2
θ(1− θ)a(u− v,u− v) (3.7)

Because the application a is elliptic then a(u− v,u− v) >M‖u− v‖2 with M > 0, therefore

E((1− θ)u + θv) 6 (1− θ)E(u) + θE(v) (3.8)

If u 6= v and 0 < θ < 1 then − 1
2θ(1− θ)a(u− v,u− v) < 0, thus

E((1− θ)u + θv) < (1− θ)E(u) + θE(v) (3.9)

Hence the strict convexity.

There exists a unique solution u of the problem (3.3), indeed we can write the problem in
the form of a variational inequality and use Stampacchia’s theorem. Otherwise we can prove
the existence and the uniqueness as follows: the set K is closed and convex, the energy E is
continuous and convex then E is weakly sequentially lower semicontinuous, as E is coercive then
there exists a solution to the problem (3.3), this solution is unique because E is strictly convex.

Boundary space

The open domain Ω ⊂ Rd is supposed to be a bounded set, with a Lipschitz-continuous (respec-
tively C1) boundary ∂Ω. Otherwise speaking and without going into details, there exist a finite
number (let’s say R) of local coordinate systems (xr1, . . . , x

r
d), 1 6 r 6 R and R corresponding

Lipschitz-continuous (respectively C1) functions φr : Rd−1 → R, and two constants α > 0, β > 0
such that (see also Figure 3.1).

∂Ω =

R⋃
i=1

{(x′r, xrd) |xrd = φr(x
′
r) ; ‖x′r‖ < α} where x′r = (xr1, . . . , x

r
d−1) (3.10)

{(x′r, xrd) |φr(x′r) < xrd < φr(x
′
r) + β ; ‖x′r‖ 6 α} ⊂ Ω ∀ 1 6 r 6 R (3.11)

{(x′r, xrd) |φr(x′r)− β < xrd < φr(x
′
r) ; ‖x′r‖ 6 α} ⊂

(
Ω̄
)c ∀ 1 6 r 6 R (3.12)

Figure 3.1 – Ω and one of its local coordinate systems
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where ‖ · ‖ denotes the Euclidean norm in Rd−1. For more details see for example (chapter 1
of [29]).

Each function φr can define locally a surface measure, therefore to define the integral over
∂Ω, a covering of the boundary is done with the sets

Ur = {(x′r, xrd) |φr(x′r)− β < xrd < φr(x
′
r) + β ; ‖x′r‖ < α} (3.13)

and a partition of the unity of this covering is needed.

The partition of the unity of the covering {Ur | 1 6 r 6 R} corresponds to the functions
θr : Rd → [0, 1] with 1 6 r 6 R such that{

supp(θr) ⊂ Ur ∀ 1 6 r 6 R∑R
i=1 θr(x) = 1 ∀x ∈ ∂Ω

(3.14)

Finally the integral over ∂Ω of a function v is defined as follows∫
∂Ω

v ds :=

R∑
r=1

∫
‖x′r‖<α

v(x′r, φr(x
′
r)).θr(x

′
r, φr(x

′
r)).
√

1 + ‖∇φr‖2 dx′r (3.15)

The space Lp(∂Ω) is equipped with the norm

‖v‖Lp =

(∫
∂Ω

|v|p ds
) 1
p

(3.16)

If ΓC ⊂ ∂Ω then ∫
ΓC

v ds =

∫
∂Ω

v.1ΓC ds (3.17)

Penalty method

Taking a penalty factor µ > 0, we consider the following penalized problem

min
v∈V

1

2
a(v,v)− f(v) + µP (v) (3.18)

We note that it’s an unconstrained minimization problem. The penalty functional P (v) is defined
by

P (v) =

∫
ΓC

η(ḡN − v.n) ds (3.19)

In the following the function η(·) ∈ P, where P = {f ∈ C2(R)} is the set of functions f with
the following properties

1. f ∈ C2(R)

2. f(x) = 0 ∀x 6 0 and f(x) > 0 ∀x > 0
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3. f is a convex function

4. There exist five constants C1, C2, C3, C4, C5 > 0 such that the function f and its derivative
f ′ satisfy {

|f(x)| 6 C1x
2 + C2|x|+ C3

|f ′(x)| 6 C4|x|+ C5

(3.20)

An example of functions that belong to the set P is presented next.

Example 3.1

1. Let the function f : R→ R be defined as follows

f(x) =


0 if x < 0

x3 if 0 6 x < 1

3x2 − 3x+ 1 if 1 6 x

(3.21)

The function f is C2, convex because f ′′ > 0. Finally f(x) 6 3x2 + 3|x| + 1 and
f ′(x) 6 6|x|+ 3, thus f ∈ P.

2. Let 0 < ν < 1, the function fν : R→ R is defined as follows

fν(x) =


0 if x < 0
1
6νx

3 if 0 6 x < ν
1
2x

2 − ν
2x+ ν2

6 if ν 6 x

(3.22)

The function fν is C2, convex because f ′′ν > 0. Finally fν(x) 6 1
νx

2 + ν
2 |x|+

ν2

6 and
f ′ν(x) 6 1

ν |x| +
ν
2 , thus fν ∈ P. We introduce this function in order to use it for

the approximation of the function max(0, x)2 (which is only C1), where theoretical
results for the penalty formulation are available.

We suppose in the following that ḡN ∈ L∞(ΓC), n ∈ L∞(ΓC) and η ∈ P. Thus by the fourth
property of the set P (Equation(3.20)), the functional P defined in (3.19) is well defined.

The functional P is convex, because the trace is linear and η is convex, indeed let u, v ∈ V
and θ ∈ [0, 1] then

P (θu + (1− θ)v) =

∫
ΓC

η(ḡN − (θu + (1− θ)v).n) ds

=

∫
ΓC

η(θ(ḡN − u.n) + (1− θ)(ḡN − v.n)) ds

6 θ

∫
ΓC

η(ḡN − u.n) ds+ (1− θ)
∫

ΓC

η(ḡN − v.n) ds

= θP (u) + (1− θ)P (v)
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Let Eµ(v) = 1
2a(v,v)− f(v) +µP (v), then the functional Eµ is strictly convex, and as P > 0

then Eµ is coercive. In order to prove the existence and uniqueness of the problem (3.18), it
remains to prove that the functional Eµ is weakly sequentially lower semicontinuous.

Theorem 3.2. Given η ∈ P, then the functional P is continuous

Proof. From the trace theorem we have

‖v‖L2(Γ) 6 C‖v‖1 (3.23)

Let un be a sequence such that un −→
n→+∞

u in V, as

‖un − u‖L2(Γ) 6 C‖un − u‖1 (3.24)

Then un −→
n→+∞

u in L2(Γ). We have

∫
Γ

‖un − u‖2 ds =

R∑
r=1

∫
Cr

‖un − u‖2.θr.J dxr (3.25)

The notations have been lightened by taking J =
√

1 + ‖∇φr‖2, Cr = {‖xr‖ < α} and a
convention: f(xr) = fr(xr, φ(xr)) for an arbitrary function f . As un −→

n→+∞
u in L2(Γ) then

from the equation (3.25) we obtain that:√
θrun −→

√
θru in L2(Cr) ∀ 1 6 r 6 R (3.26)

Let wn = ḡN − un.n and w = ḡN − u.n then√
θrwn1ΓC −→

√
θrw1ΓC in L2(Cr) ∀ 1 6 r 6 R (3.27)

For any subsequence σ, and thanks to the reciprocal of the dominated convergence theorem,
there exist a subsequence σ ◦ τ and gr ∈ L2(Cr) such that√

θrwσ◦τ(n)1ΓC −→
√
θrw1ΓC a.e ∀ 1 6 r 6 R (3.28)√

θr|wσ◦τ(n)|1ΓC 6 gr a.e ∀ 1 6 r 6 R (3.29)

From equation (3.28) we have

θrwσ◦τ(n)1ΓC −→ θrw1ΓC a.e ∀ 1 6 r 6 R (3.30)

As
∑R
r=1 θr = 1 then

wσ◦τ(n)1ΓC −→ w1ΓC a.e (3.31)

As η is continuous then
η(wσ◦τ(n))1ΓC −→ η(w)1ΓC a.e (3.32)

From equation (3.29):
θrw

2
σ◦τ(n)1ΓC 6 g2

r a.e ∀ 1 6 r 6 R (3.33)
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The function η ∈ P (see equation (3.20)), thus from equation (3.33) and (3.29) we deduce that

θrη(wσ◦τ(n))1ΓC 6 θr(C1w
2
σ◦τ(n) + C2|wσ◦τ(n)|+ C3)1ΓC (3.34)

6 C1g
2
r + C2gr

√
θr + C3θr (∈ L1(Cr)) a.e ∀ 1 6 r 6 R (3.35)

Using the equations (3.32) and (3.35) and the dominated convergence theorem we obtain:∫
Cr

η(wσ◦τ(n)).θr.1ΓC .J dxr −→
∫
Cr

η(w).θr.1ΓC .J dxr ∀ 1 6 r 6 R (3.36)

By summing over r we obtain finally

P (uσ◦τ(n)) −→ P (u) (3.37)

Since it’s true for any subsequence σ, therefore P is continuous.

Theorem 3.3. Given η ∈ P, then the functional P is Gâteaux differentiable, and it’s Gâteaux
derivative is equal to

DP (u).v = −
∫

ΓC

η′(ḡN − uN ).vN ds (3.38)

where uN = u.n and vN = v.n.

Proof. First we have to prove that for a fixed u

P (u + tv)− P (u)

t
−→
t→0
−
∫

ΓC

η′(ḡN − uN ).vN ds (3.39)

Let ζ(v) = η(ḡN − v.n), then

ζ(u + tv)− ζ(u) = η(ḡN − uN − tvN )− η(ḡN − uN ) (3.40)

=

∫ 1

0

η′(ḡN − uN − ltvN )(−tvN ) dl (3.41)

Thus for t 6= 0
ζ(u + tv)− ζ(u)

t
=

∫ 1

0

η′(ḡN − uN − ltvN )(−vN ) dl (3.42)

We shall use the same abbreviated notations of the theorem 3.2 proof.∫
Cr

∣∣∣∣ζ(u + tv)− ζ(u)

t
+ η′(ḡN − uN ).vN

∣∣∣∣ .θr.1ΓC .J dxr 6∫
Cr

∫ 1

0

| − η′(ḡN − uN − ltvN ) + η′(ḡN − uN )||vN |.θr.1ΓC .J dl dxr (3.43)

Otherwise η′ is continuous then

| − η′(ḡN − uN − ltvN ) + η′(ḡN − uN )||vN |.θr.1ΓC .J −→
t→0

0 (3.44)

We suppose that |t| 6 1. We have l 6 1 and η′(x) 6 C4|x| + C5 because η ∈ P (see equation
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(3.20)), thus

| − η′(ḡN − uN − ltvN ) + η′(ḡN − uN )||vN |.θr.1ΓC .J 6 f (a function ∈ L1(Cr)) (3.45)

Therefore using Fubini’s theorem and the dominated convergence theorem for the Fubini’s mea-
sure, we obtain ∀ 1 6 r 6 R∫

Cr

ζ(u + tv)− ζ(u)

t
.θr.1ΓC .J dxr −→

t→0
−
∫
Cr

η′(ḡN − uN ).vN .θr.1ΓC .J dxr (3.46)

Therefore by summing over r

P (u + tv)− P (u)

t
−→
t→0
−
∫

ΓC

η′(ḡN − uN ).vN ds (3.47)

In addition∣∣∣∣∫
ΓC

η′(ḡN − uN ).vN ds

∣∣∣∣ =

∣∣∣∣∫
Γ

η′(ḡN − uN ).vN .1ΓC ds

∣∣∣∣
6
∫

Γ

|η′(ḡN − uN )|.|vN |.1ΓC ds

6 ‖η′(ḡN − uN ).1ΓC‖L2(Γ)‖vN .1ΓC‖L2(Γ) (Cauchy-Schwarz)
6 C‖η′(ḡN − uN ).1ΓC‖L2(Γ)‖v‖L2(Γ)

6 C‖η′(ḡN − uN ).1ΓC‖L2(Γ)‖v‖1 (Trace theorem)

Therefore the functional
∫

ΓC
η′(ḡN − uN ).vN ds is continuous, and it’s already linear.

Corollary 3.1. The problem (3.18) has a unique solution.

Proof. The functional Eµ = 1
2a(v,v)− f(v) + µP (v) is strictly convex, and as P > 0 then Eµ is

coercive. The functional Eµ is continuous from the theorem 3.2 and is convex then it’s weakly
sequentially lower semicontinuous, or we can use the theorem 3.3 to say that it is Gâteaux
differentiable, and because it is convex then it’s weakly sequentially lower semicontinuous.

Theorem 3.4. Using the same assumptions as above, let the penalty factor µ tends to +∞, and
uµ the solution of the problem (3.18), then there exist a subsequence of uµ that converges weakly
to the solution u of the problem (3.3).

Proof. let F (v) = 1
2a(v,v)− f(v), because uµ minimizes Eµ(v) then

F (uµ) + µP (uµ) 6 F (v) + µP (v) ∀v ∈ V (3.48)

Let v ∈ K, then P (v) = 0 and

F (uµ) + µP (uµ) 6 F (v) ∀v ∈ K (3.49)

Because P (uµ) > 0 then
F (uµ) 6 F (v) ∀v ∈ K (3.50)
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Fixing a v ∈ V and using the expression (3.50) and the fact that F is coercive, then ∃C > 0
such that

‖uµ‖1 6 C (3.51)

Since V is reflexive then ∃ a subsequence of uµ (also denoted uµ) and u ∈ V such that uµ
converges weakly to u: uµ ⇀ u. The functional F is weakly sequentially lower semicontinuous
(see above) then

F (u) 6 lim inf
µ→+∞

F (uµ) (3.52)

Because P > 0 then
F (u) 6 lim inf

µ→+∞
F (uµ) 6 lim inf

µ→+∞
Eµ(uµ) (3.53)

Using the expression (3.49) we obtain

F (u) 6 lim inf
µ→+∞

Eµ(uµ) 6 F (v) ∀v ∈ K (3.54)

Thus it remains to prove that u ∈ K. Let a v∗ ∈ K be fixed then

F (uµ) + µP (uµ) 6 F (v∗) (3.55)

⇒ P (uµ) 6
1

µ
(F (v∗)− F (uµ)) (3.56)

⇒ 0 6 P (uµ) 6
1

µ
(|F (v∗)|+ |F (uµ)|) (3.57)

Otherwise we have ‖uµ‖1 6 C and F (u) = 1
2a(u,u)− f(u)

|F (uµ)| 6M1‖uµ‖21 +m1‖uµ‖1 6 D (3.58)

The expression (3.58) follows from the bilinearity and the linearity of a(·, ·) and f(·) respectively.
We conclude that ∃C > 0

0 6 P (uµ) 6 C
1

µ
(3.59)

Then
lim inf
µ→+∞

P (uµ) = 0 (3.60)

The functional P is weakly sequentially lower semicontinuous then

P (u) 6 lim inf
µ→+∞

P (uµ) = 0 (3.61)

Thus P (u) = 0 and η(ḡN −u.n) = 0 a.e. From the second property of the function η we conclude
that ḡN − u.n 6 0 a.e and thus u ∈ K

Finally
u ∈ K and F (u) 6 F (v) ∀v ∈ K (3.62)

We can prove that the sequence uµ converges strongly to u by the following theorem.

Theorem 3.5. Using the same notations as in the theorem 3.4, the sequence uµ converges
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strongly to u:
uµ →

µ→+∞
u (3.63)

Proof. Taking v = u in the expression (3.49)

1

2
a(uµ,uµ)− f(uµ) + µP (uµ) 6

1

2
a(u,u)− f(u) (3.64)

1

2
a(uµ,uµ) + µP (uµ) 6

1

2
a(u,u)− f(u) + f(uµ) (3.65)

Because P (uµ) > 0
a(uµ,uµ) 6 a(u,u) + 2(f(uµ)− f(u)) (3.66)

As uµ ⇀ u weakly and f ∈ V′ then f(uµ) →
µ→+∞

f(u). Therefore

lim inf
µ→+∞

a(uµ,uµ) 6 a(u,u) (3.67)

and
lim sup
µ→+∞

a(uµ,uµ) 6 a(u,u) (3.68)

The application a(·, ·) is weakly sequentially lower semicontinuous then

a(u,u) 6 lim inf
µ→+∞

a(uµ,uµ) (3.69)

we conclude from (3.67), (3.68) and (3.69) thatlim inf
µ→+∞

a(uµ,uµ) = a(u,u)

lim sup
µ→+∞

a(uµ,uµ) = a(u,u)
(3.70)

We deduce from (3.70) that
lim

µ→+∞
a(uµ,uµ) = a(u,u) (3.71)

Besides
a(u− uµ,u− uµ) = a(u,u)− 2a(u,uµ) + a(uµ,uµ) (3.72)

uµ ⇀ u weakly, then a(u,uµ) →
µ→+∞

a(u,u). From (3.71) and (3.72) we obtain

a(u− uµ,u− uµ) →
µ→+∞

0

Finally because the application a is elliptic

‖u− uµ‖21 6
1

M
a(u− uµ,u− uµ) →

µ→+∞
0 (3.73)

Thus uµ converges strongly to u.
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Error analysis

The penalty problem is often employed with the following penalty functional

P+(v) =
1

2

∫
ΓC

((ḡN − v.n)+)2 ds (3.74)

where x+ = max(x, 0). Otherwise speaking in our formulation the function η(x) is replaced by
the function 1

2 max(x, 0)2, which is only of class C1.

As the errors estimates were studied using the penalty functional (equation (3.74)) as in [22,
26, 70], then we will choose a penalty function η ∈ P such that, it approximates the function
1
2 max(x, 0)2, and therefore we will obtain an error between the solutions of the two penalty
methods.

Let ηµ ∈ P be the function already defined in equation (3.22)

ην(x) =


0 if x < 0
1
6νx

3 if 0 6 x < ν
1
2x

2 − ν
2x+ ν2

6 if ν 6 x

(3.75)

It’s derivative is given by

η′ν(x) =


0 if x < 0
1
2νx

2 if 0 6 x < ν

x− ν
2 if ν 6 x

(3.76)

The function (·)+ can be written as

x+ =


0 if x < 0

x if 0 6 x < ν

x if ν 6 x

(3.77)

Then

x+ − η′ν(x) = 0.1R− + (x− 1

2ν
x2)1{06x<ν} +

ν

2
1{x>ν} (3.78)

= (x− 1

2ν
x2)1{06x<ν} +

ν

2
1{x>ν} (3.79)

Therefore

|x+ − η′ν(x)| 6 (ν +
1

2ν
ν2) +

ν

2
= 2ν (3.80)

let uµ, u∗µ be the solutions of the problem (3.18), with the penalty functions η(x) = ην(x),
η(x) = 1

2 (x+)2 respectively. By applying the Gâteaux derivative, uµ, u∗µ verify the two following
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differential equations

a(uµ,v)− µ
∫

ΓC

η′ν(wµ,N ).vN ds = f(v) ∀v ∈ V (3.81)

a(u∗µ,v)− µ
∫

ΓC

(w∗µ,N )+.vN ds = f(v) ∀v ∈ V (3.82)

where wµ,N = ḡN − uµ.n, w∗µ,N = ḡN − u∗µ.n and vN = v.n. Therefore

a(uµ − u∗µ,v)− µ
∫

ΓC

(η′ν(wµ,N )− (w∗µ,N )+).vN ds = 0 ∀v ∈ V (3.83)

By taking v = uµ − u∗µ, we obtain

a(uµ − u∗µ,uµ − u∗µ)− µ
∫

ΓC

(η′ν(wµ,N )− (w∗µ,N )+).(uµN − u∗µN ) ds = 0 (3.84)

Thus

a(uµ − u∗µ,uµ − u∗µ) = µ

∫
ΓC

(η′ν(wµ,N )− (w∗µ,N )+).(uµN − u∗µN ) ds

= µ

∫
ΓC

(η′ν(wµ,N )− (w∗µ,N )+).(uµN − ḡN + ḡN − u∗µN ) ds

= −µ
∫

ΓC

(η′ν(wµ,N )− (w∗µ,N )+).(wµ,N − w∗µ,N ) ds

= −µ
∫

ΓC

(η′ν(wµ,N )− (wµ,N )+ + (wµ,N )+ − (w∗µ,N )+).(wµ,N − w∗µ,N ) ds

= −µ
∫

ΓC

(η′ν(wµ,N )− (wµ,N )+).(wµ,N − w∗µ,N ) ds

− µ
∫

ΓC

((wµ,N )+ − (w∗µ,N )+).(wµ,N − w∗µ,N ) ds (3.85)

Otherwise if a ∈ R then a = a− + a+, where a− = min(a, 0), and

(a+ − b+)(a− b) = (a+ − b+)(a− + a+ − b− − b+)

= (a+ − b+)((a+ − b+) + (a− − b−)))

= (a+ − b+)2 + a+a− − a+b− − b+a− + b+b−

= (a+ − b+)2 − a+b− − b+a−

> (a+ − b+)2 > 0 (3.86)

We used the fact that a+a− = b+b− = 0, −a+b− > 0 and −b+a− > 0. Therefore from the
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equation (3.85) we deduce that

a(uµ − u∗µ,uµ − u∗µ) 6 −µ
∫

ΓC

(η′ν(wµ,N )− (wµ,N )+).(wµ,N − w∗µ,N ) ds

= µ

∫
ΓC

(η′ν(wµ,N )− (wµ,N )+).(uµ.n− u∗µ.n) ds

6 µ

∫
ΓC

|(η′ν(wµ,N )− (wµ,N )+)|.|(uµ.n− u∗µ.n)| ds (3.87)

Using the inequality (3.80), the inequality (3.87) becomes

a(uµ − u∗µ,uµ − u∗µ) 6 2µν

∫
ΓC

|(uµ − u∗µ).n| ds

6 2µνC‖uµ − u∗µ‖L2(Γ)

6 2µνC‖uµ − u∗µ‖1 (Trace theorem) (3.88)

The application a(·, ·) is elliptic thus

‖uµ − u∗µ‖21 6
1

M
a(uµ − u∗µ,uµ − u∗µ) 6

2

M
µνC‖uµ − u∗µ‖1 (3.89)

Therefore
‖uµ − u∗µ‖1 6

2

M
µνC (3.90)

Taking ν = 1
µk

with k > 2, we obtain the following error between the two penalty methods

‖uµ − u∗µ‖1 6
C

µk−1
(3.91)

3.2 Finite deformations

In finite deformation, the existence of a solution for hyperelastic materials can be found in [29],
and for the Signorini’s problem in [29]. In this section we follow the same proof, in order to
show the existence of a solution for our penalty method when the hyperelastic materials are
used, and when the contact conditions are linearized. Indeed in our algorithm the nonlinearity of
the contact in finite deformation is treated as a successive linear constraints, using a fixed point
algorithm. The problem can be summarized as follows

min
v∈V

∫
Ω

Ŵ dx− f(v) + µP (v) (3.92)

where Ŵ is the strain energy function, f the work of the loads, and P the penalty functional as
above and has the same properties. The proof of such problems is due to John Ball [14]. Let
Ep(v) =

∫
Ω
Ŵ dx − f(v) denotes the potential energy and E = Ep + µP . In order to prove the

existence of our penalty method, we can proceed for example as in [69] (chapter 12), they used
the fact that Ŵ is polyconvex so Ep is weakly sequentially lower semicontinuous, in addition they
wrote an equivalent minimization problem on a product space and they proved the coercivity.
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In our problem we add the penalty functional which is positive, therefore the coercivity is not
affected, also P is weakly sequentially lower semicontinuous therefore Ep + P is always weakly
sequentially lower semicontinuous, hence the existence of a solution minimizing the problem
(3.92).

Let φ = X + u denotes the actual position of a material point in the body. We can follow
also the proof that can be found in [29]. The proof is long so we will show the steps of the
proof where there is a change, and we will use the same notations. First a infimizing sequence
φk is considered, otherwise speaking, φk ∈ Φ (the admissible set without the non-penetration
constraints) and

lim
k→+∞

E(φk) = inf
ψ∈Φ
E(ψ) (3.93)

The product space W1,p(Ω) × Lq(Ω) × Lr(Ω) is reflexive, therefore by the coercivity and the
assumption that inf

ψ∈Φ
E(ψ) < +∞, the sequence (φl,Cof∇φl,det∇φl) is bounded in the re-

flexive space, thus there exists a subsequence (φl,Cof∇φl,det∇φl) that converges weakly in
W1,p(Ω)× Lq(Ω)× Lr(Ω) then

φl ⇀ φ in W1,p(Ω)

Cof∇φl ⇀ Cof∇φ in Lq(Ω)

det∇φl ⇀ det∇φ in Lr(Ω)

(3.94)

As in [29] we can show that φ ∈ Φ. It remains to prove that∫
Ω

Ŵ (X,∇φ(X)) dx+ µP (φ) 6 lim inf
l→+∞

∫
Ω

Ŵ (X,∇φl(X)) dx+ µP (φl) (3.95)

In the same manner as in [29], the following inequality can be shown∫
Ω

Ŵ (X,∇φ(X)) dx 6 lim inf
l→+∞

∫
Ω

Ŵ (X,∇φl(X)) dx (3.96)

Otherwise we know that φl ⇀ φ, and that P is weakly sequentially lower semicontinuous,
therefore

µP (φ) 6 lim inf
l→+∞

µP (φl) (3.97)

Using the property of the lim inf and the equations (3.96) and (3.97), we obtain∫
Ω

Ŵ (X,∇φ(X)) dx+ µP (φ) 6 lim inf
l→+∞

∫
Ω

Ŵ (X,∇φl(X)) dx+ lim inf
l→+∞

µP (φl)

6 lim inf
l→+∞

(∫
Ω

Ŵ (X,∇φl(X)) dx+ µP (φl)

)
(3.98)

The functional f is continuous and linear, and φl ⇀ φ, therefore

lim
l→+∞

f(φl) = f(φ) (3.99)

and from equations (3.98) and (3.99)

E(φ) 6 lim inf
l→+∞

E(φl) (3.100)
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Since φl is a infimizing sequence thus

lim inf
l→+∞

E(φl) = lim
l→+∞

E(φl) = inf
ψ∈Φ
E(ψ) (3.101)

We conclude from the equations (3.100) and (3.101)φ ∈ Φ

E(φ) 6 inf
ψ∈Φ
E(ψ)

(3.102)

Thus φ ∈ Φ

E(φ) = inf
ψ∈Φ
E(ψ)

(3.103)

Hence the existence of a solution.

3.3 Contact between two bodies in linear elasticity

In the following, we consider two elastic bodies Ωl ⊂ R2 or R3 with l = 1, 2 initially in contact
at the border ΓC (see Figure 3.2), the contact area after loading is supposed to be included in
ΓC . Let Γl0 be the border of the body Ωl where a null displacement is imposed, and Γl1 where
a surface traction tl is imposed. Let Ω = Ω1 ∪ Ω2 and n := n2 = −n1, where n1 and n2 are
respectively the outward unit normal vector on ∂Ω1 and on ∂Ω2. The body force applied on Ωl

is noted by f l.

Figure 3.2 – The two bodies in contact

The displacement field u is defined by u = (u1,u2) where ul corresponds to the displacement
field of the body Ωl, moreover the admissible set is V = V1 ×V2 where

Vl = {v ∈ H1(Ωl) |v = 0 a.e on Γl0} (3.104)

endowed with the broken norm:

‖u‖1 = ‖(u1,u2)‖1 =
(
‖u1‖21 + ‖u2‖21

) 1
2 (3.105)
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The non-penetration condition between the two bodies is the following

[u.n] = (u2 − u1).n 6 0 on ΓC (3.106)

The contact problem in this case can be written as the following minimization problem

min
v∈K

1

2
a(v,v)− f(v) (3.107)

where K = {v ∈ V | [v.n] 6 0 a.e on ΓC}, and the applications a : V ×V → R and f : V → R
are defined as follows {

a(u,v) = a1(u,v) + a2(u,v)

f(v) = f1(v) + f2(v)
(3.108)

where for l = 1, 2 
al(u,v) =

∫
Ωl
σ(ul) : ε(vl) dv

f l(v) =

∫
Ωl

f l.vl dv +

∫
Γl1

tl.vl ds
(3.109)

Taking a penalty factor µ > 0, the penalized problem becomes

min
v∈V

1

2
a(v,v)− f(v) + µP (v) (3.110)

where the penalty functional P (v), in this case, is defined by

P (v) =

∫
ΓC

η([u.n]) ds (3.111)

As above, the functional P is convex and positive, and all theoretical results can be done in the
same way as before.

3.4 Symmetric contact formulation

Using the finite element approach, for l = 1 or 2, let Ωlh be the mesh of the body Ωl, which
is composed from the triangles family {T li | i = 1, . . . , nlT }. In addition, consider the following
spaces

Vl
h =

{
v = (v1, v2) ∈ C0(Ωlh)× C0(Ωlh) | v|T li ∈ Pr × Pr, ∀i = 1, . . . , nlT and v = 0 on Γl0

}
(3.112)

where C0(Ωlh) denotes the set of the continuous functions on Ωlh, and Pr denotes the linear finite
elements for r = 1 and the quadratic ones for r = 2.

Consider the space Vh defined as follows

Vh = V1
h ×V2

h (3.113)
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Let uh = (u1
h,u

2
h) ∈ Vh, the displacement vector field on the mesh Ωlh, is given by

ulh =
∑
i

(
U l,xi
U l,yi

)
ŵli (3.114)

where ŵli are the shape functions on the mesh Ωlh, and
(
U l,xi U l,yi

)T
are the degrees of free-

dom of ulh, otherwise speaking U l,xi and U l,yi represent respectively the horizontal and vertical
displacement of the node i in the mesh. For the sake of clarity we omit the subscript h for all
vectors.

Let ΓC1 and ΓC2 be respectively the potential contact area of the slave and master body.

Given x = X + u the actual position of a material point of Ω1
h ∪ Ω2

h, the symmetric non-
penetration condition is given as follows{

(x− x̄2).n > 0 on ΓC1

(x− x̄1).n > 0 on ΓC2

(3.115)

or {
(x̄2 − x).n 6 0 on ΓC1

(x̄1 − x).n 6 0 on ΓC2

(3.116)

where x̄l the projection of x on the body φ(Ωl) for l = 1, 2, with φ the deformation mapping,
and n the outward unit normal vector at x̄l. Otherwise speaking, this condition means that all
points of the first body are forbidden to penetrate the second one and vice versa.

Given a penalty factor µ > 0, the symmetric contact formulation using the penalty method
becomes

min
v∈Vh

Ep(v) + µP 1(v) + µP 2(v) (3.117)

where Ep denotes the total potential energy, and the functionals P 1 and P 2 are defined by
P 1(v) =

∫
ΓC1

η((x̄2 − x).n) ds

P 2(v) =

∫
ΓC2

η((x̄1 − x).n) ds
(3.118)

We obtain an unconstrained minimization problem. As the integral is involved in the penalty
method, which numerically involves the integration points, therefore this formulation ensures the
non-penetration of the integration points of each contact side into the opposite body.

3.5 Numerical integration

The two-dimensional case is considered for the sake of simplicity. Consider a parent element
T = [0, 1] and a mapping γ : T → R2, which transforms T into a segment AB in R2 (see Figure
3.3).
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0 T 1

γ

A

B

Figure 3.3 – The mapping γ applied on the parent element

Let N̂1, N̂2 be the two linear shape functions on T , given by{
N̂1(t) = 1− t
N̂2(t) = t

(3.119)

We considered the linear case (P1 finite elements) also for the sake of simplicity.

If X ∈ AB, and XA = (XA, YA), XB = (XB , YB) are respectively the point A and B of the
segment AB, then

γ(t) = X(t) = N̂1(t)XA + N̂2(t)XB (3.120)

or
X(t) = (1− t)XA + tXB (3.121)

In this case, the integral of a function f : AB → R becomes∫
AB

f(X) ds =

∫
AB

f(γ) ds =

∫
T

f(γ(t))‖γ′(t)‖ ds (3.122)

In the linear case, ‖γ′(t)‖ is equal to the length of AB, indeed

‖γ′(t)‖ = ‖XB −XA‖ = ‖AB‖ (3.123)

Let {tip | ip = 0, . . . , nip} be the set of integration points on T , with the corresponding set of
weights {wip | ip = 0, . . . , nip}, where nip is the integration points number. In this case the
numerical integration of a function F : T → R over T is given, by the following∫

T

F (t) dt =

nip∑
ip=1

F (tip).wip (3.124)

The integration of the penalty terms ( equations (3.118)) are done on the reference configura-
tions. In the following, we will discuss two cases, the first one is the linear elasticity where the
non-penetration constraints are linear, and the second one is the finite deformation problems
where large deformations can occur. We will study the penalty functional P 1, indeed P 2 is
straightforward.
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Let {si | i = 1, . . . , nS} be the segments composing ΓC1, therefore

P 1(v) =

∫
ΓC1

η((x̄2 − x).n) ds =

∫
ΓC1

η((x̄− x).n) ds =

nS∑
i=1

∫
si

η((x̄− x).n) ds (3.125)

Let’s take a random segment si and suppose that A and B are its segment ends. We note UA

and UB the degrees of freedom of the displacement field u at the nodes A and B, in addition
XA and XB denote respectively the coordinates in the initial configuration, of the nodes A and
B. Let NA and NB denote the shapes functions at A and B, then using the parent element T
we can write the following

NA(X) = N̂1(γ−1(X))

NB(X) = N̂2(γ−1(X))

X = XA.N̂1(γ−1(X)) + XB .N̂2(γ−1(X))

u = UA.N̂1(γ−1(X)) + UB .N̂2(γ−1(X))

(3.126)

Thus the actual position field x is given on AB by

x = (XA + UA).N̂1(γ−1(X)) + (XB + UB).N̂2(γ−1(X)) (3.127)

Note that UA and UB belongs to the unknowns of our problem. Using the equation (3.122) and
the quadrature formula (3.124), the integral over si or AB in equation (3.125) can be given by∫

sik

η((x̄− x).n) ds =

∫
AB

η((x̄− x).n) ds

=

nip∑
ip=1

η((x̄ip − xip).nip).‖γ′(t)‖.wip

=

nip∑
ip=1

η((x̄ip − xip).nip).‖AB‖.wip (3.128)

where xip is the actual position of the integration point ip, given by

xip = (XA + UA).N̂1(tip) + (XB + UB).N̂2(tip) (3.129)

It remains to compute the projection point x̄ip of xip on the second body, and the normal vector
nip at x̄ip. In order to compute x̄ip, a fixed point algorithm is employed in the case of large
displacements, otherwise speaking the previous displacement un−1 is used in order to find the
closest second body segment to xn−1

ip . Indeed we do the following actions

1. For xn−1
ip we look for the closest node of the second body contact area, let’s say node j, we

use simply the distance, but we will use in the future a quadtree

2. The set {rjk | k = 1, . . . n∗2}, n∗2 = 1 or 2, is the set of segments connected to the node j

3. We look for the point Pk in each segment rjk, which is the closest to xn−1
ip (see section 3.7)

4. The closest point P̄ to xn−1
ip within {Pk | k = 1, . . . n∗2}, is chosen
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Let CD be the segment which contains P̄ and λ̄ ∈ [0, 1] such that

P̄ = (1− λ̄)xn−1
C + λ̄xn−1

D (3.130)

with {
xn−1
C = XC + Un−1

C

xn−1
D = XD + Un−1

D

(3.131)

The principle of the fixed point algorithm is to use at the actual iteration n, the segment CD
as the closest segment to xip, and λ̄ as the position of x̄ip in CD, otherwise speaking the fixed
point is on the parameter λ̄. Therefore the actual projection point x̄ip will be given by

x̄ip = (1− λ̄)xC + λ̄xD (3.132)

with {
xC = XC + UC

xD = XD + UD

(3.133)

Finally the integral over si or AB in equation (3.128) can be given by∫
sik

η((x̄− x).n) ds =

nip∑
ip=1

η((x̄ip − xip).nip).‖AB‖.wip (3.134)

where xip is the actual position of the integration point ip, and x̄ip its projection. More precisely
xip = (XA + UA).N̂1(tip) + (XB + UB).N̂2(tip)

x̄ip = (XC + UC).N̂1(λ̄) + (XD + UD).N̂2(λ̄)

nip = nC .N̂1(λ̄) + nD.N̂2(λ̄)

(3.135)

Note that UA and UB belong to the degrees of freedom of the first body and UC and UD belong
to the degrees of freedom of the second body, and these 4 quantities are a part of our unknowns.
Moreover nC or nD are computed as follows

nC =

n∗C∑
i=1

ni∥∥∥∥∥∥
n∗C∑
i=1

ni

∥∥∥∥∥∥
(3.136)

where n∗C is the number of segments connected to C and ni is the outward unit normal vector at
the segment i connected to C, from the previous iteration n − 1. Another definition of nC can
be given as a weighted average, especially when there is a big difference between the length of
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the connected segments to C, indeed

nC =

n∗C∑
i=1

lini∥∥∥∥∥∥
n∗C∑
i=1

lini

∥∥∥∥∥∥
(3.137)

where li is the length, at the previous iteration n− 1, of the segment i connected to C.

Remark 3.1

If two integration points belong to the same segment of the first body, then their projection
points can belong to a different segments of the second body, see Figure 3.4.

xip

x̄ip

First Body

Second Body

Figure 3.4 – The projection of the first body integration points on the second body

Finally, we can say that this method belongs to the quadrature-point-to-surface (QPTS)
discretization scheme.

3.6 Symmetric contact algorithm using penalty method

The contact area is not known in advance, thus there is a difficulty to impose contact conditions
between the two bodies. More precisely the projection points x̄1 or x̄2 , which can be seen in the
equations (3.116) and (3.118), are the projection of an unknown point x = X + u on unknown
area, therefore there is no way to write explicitly the projection points in term of our degree of
freedoms.

As was pointed out in the section 3.5, a fixed point method is used in order to transform the
contact problem into a sequence of a minimization ones, with linear constraints, where we apply
our penalty method, especially for the finite deformation problems, indeed for the linear elastic
problems, the constraints are linear by definition. Such idea can be found in [50, 49, 75], where
the geometric non-linearity of the contact is transformed into a sequence of a geometric linear
one. More precisely for each iteration of the fixed point algorithm, the previous displacement is
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used in order to search for each integration point of the slave contact area, the closest segment
(in 2D) or the closest triangle (in 3D) of the master body, and its projection point position on
this closest segment or triangle. Therefore, at each iteration the projection points are linear with
respect to the degrees of freedom of the problem (see section 3.5, equation (3.135)), especially for
the finite deformation problems. The convergence is reached when two geometrical configurations
are nearly the same, it will be more detailed in the following.

Let U be the degrees of freedom of the problem, otherwise speaking the displacement vector
of all nodes. The symmetric algorithm to solve the contact problem is briefly described in the
algorithm 3.

Algorithm 3 Symmetric algorithm using penalty method

Initialization of the displacement U0 and setting the tolerance εtol = 10−6

while error > εtol do
1. Using the displacement vector Un−1 of the previous iteration n− 1:

Compute the projection points’ parameters {λ̄i | i = 1, . . . , nS} of all slave integration
points

Compute the normal at the projection points {ni | i = 1, . . . , nS} (Using smoothing
techniques)

2. For each integration point, its projection point x̄i depends linearly on the actual dis-
placement

3. Reverse the role of the master and the slave body
4. Form the penalty functional

Eµ := Ep(v) + µP 1(v) + µP 2(v)
5. Minimize Eµ to obtain the actual displacement Un

6. error =
‖Un −Un−1‖∞
‖Un−1‖∞

end while

3.7 Projection of the integration points

As was mentioned before, we need to compute the projection of each integration points on the
second body, therefore for the sake of simplicity let’s use the notion of slave/master body and
the linear finite elements in 2D, indeed at the end the algorithm does not use this notion because
it’s symmetric.

Let xs = Xs + Us be the actual position of an integration point belonging to the contact
border of the slave body (see Fig(3.5)), and [xm,j ,xm,j+1] the segment of the master contact
border, which is the closest to xs.
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Figure 3.5 – The projection of a slave integration point xs on the master body

Let x̄ be the projection of xs on the segment of the master contact border [xm,j ,xm,j+1] (see
Fig(3.5)), which is supposed to be a parametric curve xm(η) and x̄ = xm(η∗). In the case of
linear finite elements

x̄ = N1(η∗)xm,j +N2(η∗)xm,j+1 (3.138)

where N1(η) = 1− η and N2(η) = η are the linear shape functions on [0, 1]. In order to compute
the parameter η∗, a constrained minimization problem can be solved, as follows{

min
η
d(η) s.t

0 6 η 6 1
(3.139)

where d(η) = ‖xs − x̄‖2 = ‖xs −N1(η)xm,j −N2(η)xm,j+1‖2 the distance from the integration
point xs to the master segment [xm,j ,xm,j+1].

Consider nS integration points in the slave contact area {xsi | i = 1, . . . , nS}, thus in order to
compute for each slave point its projection on the master area, we consider for each slave point
xsi the problem (3.139), or as follows {

min
ηi

di(ηi) s.t

0 6 ηi 6 1
(3.140)

where di is the distance from the integration point xsi to the closest master segment.

Moreover, instead of solving a constrained minimization problem for each slave integration
points (problem 3.140), we can solve one constrained minimization problem as follows min

(η0,...,ηnS )
(d1(η1) + . . .+ dnS (ηnS )) s.t

0 6 ηi 6 1 ∀i = 1, . . . , nS
(3.141)

Besides, we will present a definition and a theorem, which can be found in [86], and which are
useful in the following.

Definition 3.3. Suppose we have the following problem, a minimization of an objective function
f subjected to an equality constraints {ci = 0 , i ∈ E} and to an inequality constraints {ci >
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0 , i ∈ I} 
min
x∈Rn

f(x) s.t

ci(x) = 0 i ∈ E
ci(x) > 0 i ∈ I

(3.142)

Then for a feasible point x, the active set A(x) is defined by

A(x) = E ∪ {i ∈ I s.t ci(x) = 0} (3.143)

Given a point x, we say that the LICQ (linear independence constraint qualification) con-
dition is satisfied, if the set of the active constraint gradients {∇ci(x) , i ∈ A(x)} is linearly
independent.

Theorem 3.6 (First-Order Necessary Conditions [86]). Suppose that x∗ is a solution of the
problem (3.142), the objective function f and the constraints ci are continuously differentiable
and the LICQ condition is satisfied at x∗. Then there exist a Lagrange multiplier vector λ∗ of
components λi where i ∈ E ∪ I such that the following properties are satisfied at (x∗, λ∗)

∇xL(x∗, λ∗) = 0 (3.144)
ci(x

∗) = 0 ∀i ∈ E (3.145)
ci(x

∗) > 0 ∀i ∈ I (3.146)
λ∗i > 0 ∀i ∈ I (3.147)
λ∗i ci(x

∗) = 0 ∀i ∈ E ∪ I (3.148)

where L(x, λ) = f(x)−
∑
i∈E∪I

λici(x). Note that these conditions (3.144 – 3.148) are also called

Karush-Kuhn-Tucker (KKT) conditions.

Back to the problem (3.141), we have only an inequality constraints, which can be reformu-
lated as 

η1 > 0

1− η1 > 0
...
ηnS > 0

1− ηnS > 0

(3.149)

Given a feasible point η and i ∈ A(η), only one of the conditions c(η) = ηi > 0 and c(η) =
1− ηi > 0 is active and not both at the same time, in addition ∇c = ei (canonical basis vector)
or ∇c = −ei, therefore the LICQ condition is satisfied at η. Suppose that (η∗, λ∗) satisfies the
KKT conditions (3.144 – 3.148), the objective function

∑
di in the problem (3.141) is strictly

convex in the case of linear finite elements, therefore using the second-order sufficient conditions,
η∗ is the unique solution of the problem (3.141).
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3.8 Smoothing techniques

In order to have a smooth normal vector field, several smoothing techniques were developed, here
we present a smoothing technique using the Bézier curve, which can be found in [123].

3.8.1 Bézier curve

Given a sequence of control points {P0, . . . ,PN} ⊂ R2, the Bézier curve is a parametric curve
which passes in the first point P0 and in the last point PN but not necessary in the other points.
In particular the Bézier curve is contained in the convex hull of the control points. The Bézier
curve is defined as follows (

x(t)
y(t)

)
=

N∑
k=0

BNk (t)Pk ∀ t ∈ [0, 1] (3.150)

where BNk are the Bernstein polynomials defined by

BNk (t) = CkN t
k(1− t)N−k (3.151)

with CkN the binomial coefficient.

Example 3.2: Cubic Bézier curve

Given 4 control points {P0,P1,P2,P3} the cubic Bézier curve is defined as follows(
x(t)
y(t)

)
= (1− t)3P0 + 3t(1− t)2P1 + 3(1− t)t2P2 + t3P3 ∀ t ∈ [0, 1] (3.152)

In this part we present the discretization of the master contact surface by the Bézier curve
(see [123]), it will be a smooth curve which passes in all the nodes of the master contact surface
(curve in 2D). Given a segment [x1,x2] of the master contact area, and the following control
points {x1,x

+
1 ,x

−
2 ,x2}, the segment is approximated by the following Bézier curve

x = B2
0x1 +B2

1x+
1 +B2

2x−2 +B2
3x2 (3.153)

Figure 3.6 – The Bézier curve
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We consider also the master node x0 before x1 and the node x3 after x2 (see Fig (3.6)). Let
t1 = α

2 (x2 − x0) the tangent vector at x1 and t2 = α
2 (x3 − x1) the tangent vector at x2, then in

order to have a global C1 curve, the tangent at each node must be continuous. In other words{
dx
dt (0) = t1

dx
dt (1) = t2

⇒

{
−3x1 + 3x+

1 = t1 = α
2 (x2 − x0)

−3x−2 + 3x2 = t2 = α
2 (x3 − x1)

(3.154)

Therefore we obtain {
x+

1 = x1 + α
6 (x2 − x0)

x−2 = x2 − α
6 (x3 − x1)

(3.155)

replacing x+
1 and x−2 in the equation (3.153) we obtain

x = B′0x0 +B′1x1 +B′2x2 +B′3x3 (3.156)

where 
B′0 = −α6B

2
1

B′1 = B2
0 +B2

1 + α
6B

2
2

B′2 = B2
2 +B2

3 + α
6B

2
1

B′3 = −α6B
2
2

(3.157)

According to [123] a good choice for α, is α = 1
3 .

Finally the Bézier curves were tested in our contact algorithm. A slight improvement was
noted in the accuracy of the result, but the computational time was increased. Thus we preferred
to continue with the previous formulation where the normal vector field is continuous on the
contact surface.

3.9 Numerical validations

3.9.1 Compression of two elastic blocks with imposed displacement

A first elastic rectangular block is posed on a second one (see Figure 3.7a). The two blocks have
the same properties: a width L = 2UL, a height H = 1UL, a Young’s modulus E = 200 UF

UL2 , a
Poisson’s ratio ν = 0. The study is done under the plane strain hypothesis (2D). The frictionless
case is always supposed, and a vertical displacement of U0 = −0.1UL and a zero horizontal
displacement are imposed on the upper face of the first block, the lower face of the second body
is clamped. This test was treated in [109].

Theoretically the value of the strain is equal to ε = U0

2H = −0.1
2 = −0.05, thus the value of the

contact pressure is equal to ptheo = E.ε = −10 UF
UL2 .
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(a) The geometry of the two blocks (b) The mesh and the deformed shape (initial configura-
tion in lighter color) for µ = 109

Figure 3.7 – The geometry and the deformed shape of the two blocks

The error between the theoritical contact pressure and the computed one is given as follows

err(%) =
‖ptheo − σy‖L2(ΓC)

‖ptheo‖L2(ΓC)
× 100 (3.158)

where ΓC is the contact area.

Using P1 finite elements, the variation of the error (err) w.r.t the penalty factor µ is shown
in the Figure 3.8.

10 11 12 13 14

1

2

3

4

·10−2

log10(µ) (
UF
UL2 )

err(%)

Figure 3.8 – The variation of the error (err) w.r.t the penalty factor µ



82 CHAPTER 3. Penalty method

3.9.2 Contact between two cylinders

In order to show that the symmetric algorithm using penalty method can handle the contact
between two curved bodies, a contact between two cylinders is considered. This example can
be found in [108]. Two concentric cylinders with the same thickness of t = 5UL are initially in
contact, the inner radius of the inner cylinder is equal to Rin = 10UL and the outer radius of the
outer cylinder is equal to Rout = 20UL. A radial pressure of p = 1 UF

UL2 is applied on the outer
cylinder. Due to the symmetry of the problem, only one quarter of the problem is considered, as
is depicted in the Figure 3.9, the plane strain hypothesis is also considered. The two cylinders are
made from a similar elastic material, Young’s modulus E = 100 UF

UL2 and Poisson’s ratio ν = 0.

p

Figure 3.9 – The geometry of the problem

We are interested in the value of the radial stress in the two cylinders, which can be seen in
the Figure 3.10 for the linear finite elements (P1) and for a penalty factor of µ = 109.
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Figure 3.10 – The mesh and the radial stress

We notice the non-conforming meshes in the Figure 3.10, in addition we notice that the radial
stress on the inner border is nearly zero, because this border is free, and is nearly equal to 1, the
applied pressure, on the outer border. We obtain similar results as in [108].
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In this chapter, an algorithm to solve frictionless contact problems using FreeFEM and IPOPT
software is presented. The non-penetration conditions are expressed in a weak form, and the
contact problem is written in the form of a sequence of minimization problems with linear
constraints especially in the case of large deformations, and each minimization problem is solved
using the interior point method. The advantage of this algorithm is its simplicity, in addition the
algorithm is symmetric. Moreover we will see how we can take advantage of the interior point
method, in order to impose a symmetric non-penetration conditions without having numerical
difficulties.

4.1 Weak non-penetration condition for the contact

First of all, for any measure λ we consider a measurable set ΓC and a function f such that
f ∈ L2(ΓC). We define also the set L2

+(ΓC) as:

L2
+(ΓC) =

{
ζ ∈ L2(ΓC) | ζ > 0 a.e on ΓC

}
(4.1)

We have the following theorem

Theorem 4.1. Using the above notations we have the following property, if

(f, ζ)L2 =

∫
ΓC

f.ζ dλ > 0 ∀ ζ ∈ L2
+(ΓC) (4.2)

Then
f ∈ L2

+(ΓC) (4.3)

Proof. Suppose that λ({f < 0}) > 0, we have∫
ΓC

f.1{f<0} dλ 6 0 (4.4)

and by hypothesis, we obtain ∫
ΓC

f.1{f<0} dλ = 0 (4.5)

Therefore
f.1{f<0} = 0 a.e on ΓC (4.6)

which is false because f.1{f<0} = f < 0 on {f < 0} and λ({f < 0}) > 0.

As before, The displacement field u is defined by u = (u1,u2) where ul corresponds to the
displacement field of the body Ωl, with the admissible set V = V1 ×V2, where

Vl = {v ∈ H1(Ωl) |v = 0 a.e on Γl0} (4.7)
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endowed with the broken norm:

‖u‖1 = ‖(u1,u2)‖1 =
(
‖u1‖21 + ‖u2‖21

) 1
2 (4.8)

Let ΓC1 be the potential contact area of the slave body, the non-penetration condition as was
presented for the contact is the following

g(X) := (x− x̄).n = (x1 − x̄).n > 0 ∀X ∈ ΓC1 (4.9)

where as before, xl = Xl+ul the actual position and x̄ its projection on the second body, finally
n denotes the outward unit normal vector at x̄.

The new non-penetration formulation is described by

(g, ζ)L2(ΓC1) :=

∫
ΓC1

g.ζ dλ > 0 ∀ ζ ∈ L2
+(ΓC1) (4.10)

The formulations (4.9) and (4.10) are equivalent.

4.1.1 Mesh discretization

Using the finite element approach, for l = 1 or 2, let Ωlh be the mesh of the body Ωl, which
is composed from the triangles family {T li | i = 1, . . . , nlT }. In addition, consider the following
spaces

Vl
h =

{
v = (v1, v2) ∈ C0(Ωlh)× C0(Ωlh) | v|T li ∈ Pr × Pr, ∀i = 1, . . . , nlT and v = 0 on Γl0

}
(4.11)

where C0(Ωlh) denotes the set of the continuous functions on Ωlh, and Pr denotes the linear finite
elements for r = 1 and the quadratic ones for r = 2.

Consider the space Vh defined as follows

Vh = V1
h ×V2

h (4.12)

Let uh = (u1
h,u

2
h) ∈ Vh, the displacement vector field on the mesh Ωlh, is given by

ulh =
∑
i

(
U l,xi
U l,yi

)
ŵli (4.13)

where ŵli are the shape functions on the mesh Ωlh, and
(
U l,xi U l,yi

)T
are the degrees of freedom of

ulh, in other words U l,xi and U l,yi represent respectively the horizontal and vertical displacements
of the node i in the mesh. For the sake of clarity we omit the subscript h for all vectors.

In addition, we consider the space Z+
h

Z+
h =

{
ζ ∈ C0(ΓC1) | ζ|Ti∩ΓC1

∈ P1, ∀i = 1, . . . , n1
T and ζ > 0

}
(4.14)

which is the trace space on ΓC1 of the set of the positive continuous functions which are linear
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on each triangle. The minimization problem in this case becomes

Find u ∈ Vh such that 
u = arg min

Vh

(Ep)

(g, ζ)L2 =

∫
ΓC1

g.ζ dλ > 0 ∀ ζ ∈ Z+
h

(4.15)

where Ep is the total potential energy. If ζ is a test function ζ ∈ Z+
h then

ζ =

nC1∑
i=1

aiφi (4.16)

where nC1 is the nodes number on ΓC1, ai ∈ R and φi are the trace of the shape functions
defined at the nodes of ΓC1. The coefficients ai are positives, indeed if pi is a node of ΓC1 then
ζ(pi) = ai.1 = ai > 0. Thus ζ ∈ Z+

h iff

ζ =

nC1∑
i=1

aiφi where ai > 0 (4.17)

As we have P1 finite elements for the trace space, φi > 0 and φi ∈ Z+
h , therefore we have the

following equivalence

(g, ζ)L2 =

∫
ΓC1

g.ζ dλ > 0 ∀ ζ ∈ Z+
h ⇐⇒ (g, φi)L2 =

∫
ΓC1

g.φi dλ > 0 ∀ i = 1, . . . , nC1

(4.18)

4.1.2 Non-penetration condition

We recall in the following the non-penetration condition

g = (x− x̄).n > 0 (4.19)

The weak non-penetration condition becomes∫
ΓC1

g.φi dλ > 0 ∀ i = 1, . . . , nC1 (4.20)

Note that the integration is done on the potential contact border in the initial configuration. In
conclusion the minimization problem becomes

u = arg min
Vh

(Ep)∫
ΓC1

g.φi dλ > 0 ∀ i = 1, . . . , nC1

(4.21)



4.2. Numerical Integration 89

where Ep is the total potential energy defined by:
Ep(v) = 1

2a(v,v)− f(v) for linear elastic problems

Ep(v) =

∫
Ω1
h∪Ω2

h

Ŵ (v)dv − f(v) for large deformations and hyperelastic problems (4.22)

with Ŵ the strain energy function.

In the case of linear elasticity, we can prove the existence and the uniqueness by Stampacchia’s
theorem. This weak formulation can be seen as the mortar method, treating the contact problems
in [15, 59, 97],

In mortar method the shape functions at the element connected to the ends of the contact
area ΓC have a degree less than the others, indeed the goal is to avoid the over constraints when
there exist already a constraints at these ends. Assuming that there is no additional constraints
at these ends, the shape functions will be here the classical ones φi.

In the case of quadratic finite elements, the shape functions φi are taken as the linear ones,
at the two ends of the segment, otherwise non physical oscillations are observed at the contact
area probably because the quadratic shape functions are not positive.

Let u = (u1,u2) be the solution of the contact problem, suppose that u1 ∈ H2(Ω1)2 and
u2 ∈ H2(Ω2)2, in addition let uh be the solution of the finite element one, using linear finite
elements, where the shape functions φi in (4.21), connected to the ends of the contact area ΓC
have a degree less than the others, then the error between the two solutions can be found in [59]
as follows

‖u− uh‖1 6 C(u)
(
h

1
4
1 + h2

)
(4.23)

where ‖.‖1 is the broken norm, C(u) depends only on u1 and u2, and finally h1 and h2 are
respectively the mesh size of the first and the second body.

4.2 Numerical Integration

A several notions from the section 3.5 of the chapter 3 are recalled here. In this section the
two-dimensional case is considered for the sake of simplicity. First consider a parent element
T = [0, 1] and a mapping γ : T → R2, which transforms T into a segment AB in R2 (see Figure
4.1).
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0 T 1

γ

A

B

Figure 4.1 – The mapping γ applied on the parent element

Let N̂1, N̂2 be the two linear shape functions on T , given by{
N̂1(t) = 1− t
N̂2(t) = t

(4.24)

We considered the linear case also for the sake of simplicity.

If X ∈ AB, and XA = (XA, YA), XB = (XB , YB) are respectively the points A and B of the
segment AB, then

γ(t) = X(t) = N̂1(t)XA + N̂2(t)XB (4.25)

or
X(t) = (1− t)XA + tXB (4.26)

In this case, the integral of a function f : AB → R becomes∫
AB

f(X) ds =

∫
AB

f(γ) ds =

∫
T

f(γ(t))‖γ′(t)‖ ds (4.27)

In the linear case, ‖γ′(t)‖ is equal to the length of AB, indeed

‖γ′(t)‖ = ‖XB −XA‖ = ‖AB‖ (4.28)

Let {tip | ip = 0, . . . , nip} be the set of integration points on T , with the corresponding set of
weights {wip | ip = 0, . . . , nip}, where nip is the integration points number. In this case the
numerical integration of a function F : T → R over T is given, by the following∫

T

F (t) dt =

nip∑
ip=1

F (tip).wip (4.29)

4.2.1 Numerical integration of the weak constraints

Consider the node i on ΓC1, as before φi is the trace of the shape function defined at the node
i. We want to evaluate the following integral∫

ΓC1

g.φi ds =

∫
ΓC1

(x− x̄).n.φi ds (4.30)
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Let n∗ be the number of segments (triangles in 3D) connected to node i, and {sik | k = 1, . . . , n∗}
the connected segments. As φi is null outside the connected segments, then∫

ΓC1

g.φi ds =

n∗∑
k=1

∫
sik

(x− x̄).n.φi ds (4.31)

For example in 2D n∗ = 1 or 2.

Let’s take a segment sik connected to the node i. Suppose that A and B are the segment
ends of sik, and B corresponds to the node i. We note UA and UB the degrees of freedom of
the displacement field u at the nodes A and B, in addition XA and XB denote respectively the
coordinates in the initial configuration, of the nodes A and B. Let NA and NB (φi = NB) denote
the shape functions at A and B, then using the parent element T we can write the following

NA(X) = N̂1(γ−1(X))

NB(X) = N̂2(γ−1(X))

φi(X) = N̂2(γ−1(X))

X = XA.N̂1(γ−1(X)) + XB .N̂2(γ−1(X))

u = UA.N̂1(γ−1(X)) + UB .N̂2(γ−1(X))

(4.32)

Thus the actual position field x is given on AB by

x = (XA + UA).N̂1(γ−1(X)) + (XB + UB).N̂2(γ−1(X)) (4.33)

Note that UA and UB belongs to the unknowns of our problem. Using the equation (4.27) and
the quadrature formula (4.29), the integral over sik or AB in equation (4.31) can be given by∫

sik

(x− x̄).n.φi ds =

∫
AB

(x− x̄).n.φi ds

=

nip∑
ip=1

(xip − x̄ip).nip.N̂2(tip).‖γ′(t)‖.wip

=

nip∑
ip=1

(xip − x̄ip).nip.N̂2(tip).‖AB‖.wip (4.34)

where xip is the actual position of the integration point ip, given by

xip = (XA + UA).N̂1(tip) + (XB + UB).N̂2(tip) (4.35)

It remains to compute the projection point x̄ip of xip on the second body, and the normal vector
nip at x̄ip. In order to compute x̄ip, a fixed point algorithm is employed in the case of large
displacements, otherwise speaking the previous displacement un−1 is used in order to find the
closest second body segment to xn−1

ip . Indeed we do the following actions

1. For xn−1
ip we look for the closest node of the second body contact area, let’s say node j, we

use simply the distance, but we will use in the future a quadtree

2. The set {rjk | k = 1, . . . n∗2}, n∗2 = 1 or 2, is the set of segments connected to the node j



92 CHAPTER 4. Weak contact formulation and a simple symmetric algorithm

3. We look for the point Pk in each segment rjk, which is the closest to xn−1
ip

4. The closest point P̄ to xn−1
ip within {Pk | k = 1, . . . n∗2}, is chosen

Let CD be the segment which contains P̄ and λ̄ ∈ [0, 1] such that

P̄ = (1− λ̄)xn−1
C + λ̄xn−1

D (4.36)

with {
xn−1
C = XC + Un−1

C

xn−1
D = XD + Un−1

D

(4.37)

The principle of the fixed point algorithm is to use at the actual iteration n, the segment CD
as the closest segment to xip, and λ̄ as the position of x̄ip in CD, otherwise speaking the fixed
point is on the parameter λ̄. Therefore the actual projection point x̄ip will be given by

x̄ip = (1− λ̄)xC + λ̄xD (4.38)

with {
xC = XC + UC

xD = XD + UD

(4.39)

Finally the integral over sik or AB in equation (4.31) can be given by

∫
sik

(x− x̄).n.φi ds =

nip∑
ip=1

(xip − x̄ip).nip.N̂2(tip).‖AB‖.wip (4.40)

where xip is the actual position of the integration point ip, and x̄ip its projection. More precisely
xip = (XA + UA).N̂1(tip) + (XB + UB).N̂2(tip)

x̄ip = (XC + UC).N̂1(λ̄) + (XD + UD).N̂2(λ̄)

nip = nC .N̂1(λ̄) + nD.N̂2(λ̄)

(4.41)

Note that UA and UB belong to the degrees of freedom of the first body and UC and UD belong
to the degrees of freedom of the second body, and these 4 quantities are a part of our unknowns.
Moreover nC or nD are computed as follows

nC =

n∗C∑
i=1

ni∥∥∥∥∥∥
n∗C∑
i=1

ni

∥∥∥∥∥∥
(4.42)

where n∗C is the number of segments connected to C and ni is the unit normal vector at the
segment i connected to C, from the previous iteration n − 1. Another definition of nC can be
given as a weighted average, especially when there is a big difference between the length of the
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connected segments to C, indeed

nC =

n∗C∑
i=1

lini∥∥∥∥∥∥
n∗C∑
i=1

lini

∥∥∥∥∥∥
(4.43)

where li is the length, at the previous iteration n− 1, of the segment i connected to C.

Remark 4.1

If two integration points belong to the same segment of the first body, then their projection
points can belong to a different segments of the second body, see Figure 4.2.

xip

x̄ip

First Body

Second Body

Figure 4.2 – The projection of the first body integration points on the second body

In the case of quadratic finite elements (P2) where the shape functions are quadratic, the
same procedure is employed. However the mapping γ is affine, indeed isoparametric elements
are not employed, and the boundary of the mesh is polygonal. In addition the shape function φi
in the constraints integrals is considered to be linear.

4.3 Contact problems with interior point method

Interior point method is a method to solve constrained minimization problems, one can see
[47, 86] for more details about this method. Interior point method was used to solve contact
problems, we can cite for example [88] where a primal algorithm was used, with the inverse and
the logarithmic barrier functional, in the case of the Signorini’s frictionless problem for linear
elastic body, in [112] the primal and primal-dual algorithms were considered for the Signorini’s
frictionless problem, also in the case of linear elastic body. In [116] a primal and dual algorithms
were developed to treat the frictionless contact in the case of finite deformation, and it was
shown in their formulations that the primal algorithm is more robust than the primal-dual one.
In the case of frictional contact problems, a interior point method and a B-differentiable Newton
method have been suggested and compared in [28].
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In the paper [74], for linear elastic and for Signorini’s frictional problems, the problem was
written in term of an optimization one, on the Lagrange multipliers (the normal and the tan-
gential contact pressure), otherwise speaking in a dual form. An interior point algorithm was
developed, in addition a preconditioner was used in order to solve the generated linear system
with iterative methods, the conjugate gradient method.

4.3.1 Symmetric formulation

One simple way to create a symmetric formulation, is to take into account an additional non-
penetration constraints by considering the second body as slave and the first one as master, thus
the additional contact conditions is defined this time on the contact area ΓC2 of the second body.
In other words the problem becomes

u = arg min
v∈Vh

(Ep(v))

c1 :=

∫
ΓC1

((x− x̄2).n).φ
(1)
i ds > 0 ∀ i = 1, . . . , nC1

c2 :=

∫
ΓC2

((x− x̄1).n).φ
(2)
i ds > 0 ∀ i = 1, . . . , nC2

(4.44)

where x̄l is the projection of x on the body φ(Ωl) for l = 1, 2, with φ the deformation mapping.

For linear elastic problems, the constraints in the problem (4.44) are linear, indeed the de-
formations are supposed to be small. Otherwise for the finite deformation problems and more
specifically for hyperelastic materials, it is not the case, but we can transform the problem (4.44)
into a sequence of minimization problems with linear constraints, using a fixed point algorithm.
The gradient of the constraints in the problem (4.44) may be linear dependent, and thus gener-
ating numerical difficulties. We will see next how to avoid these difficulties.

In the case of using the interior point method, we will see in the next section that the inequality
constraints are transformed using the slack variables, and thus generating a constraints Jacobian
matrix with full row rank. Also we will show that the matrix K responsible of the search
directions computation is non-singular, therefore numerically the linear dependency between the
constraints are not going to be an issue.

4.3.2 Numerical optimization by the interior point method

After the finite element discretization, the contact problem is transformed into a constrained
optimization one, for this purpose the interior point method is used in order to solve it. Let
x ∈ Rn denotes the degrees of freedom vector of the displacement field u (using the finite
element method), then the problem can be formulated numerically as the following

min
x∈Rn

E(x) = E1(x) + E2(x) such that

c1(x) > 0

c2(x) > 0

(4.45)
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where E1, E2 are respectively the total potential energy of the first and second body, c1 is the
constraints vector when taking the first body as slave and c2 is the constraints vector when taking
the second body as slave. In some cases the constraints are linearly dependent especially when
the symmetric case is considered. In addition when some methods are used, the Jacobian matrix
of the constraints does not have anymore full row rank and therefore numerical difficulties can
be generated.

Let c : Rn → Rm the linear constraints vector, c = (cT1 , c
T
2 )T , with m = nC1 +nC2, where nC1

and nC2 are respectively the components number of c1 and c2. The contact problem becomes{
min
x∈Rn

E(x) such that

c(x) > 0
(4.46)

Note that the inequality between two vectors is the inequality between each component of these
two vectors. Introducing the slack variables s, the problem (4.46) is equivalent to

min
(x,s)∈Rn×Rm

E(x) such that

c(x)− s = 0

s > 0

(4.47)

The constraints are linear, therefore the constraints are qualified for the KKT (Karush-Kuhn-
Tucker) system, the first-order necessary conditions or the KKT conditions for the problem (4.47)
are the following 

∇xE(x) +∇xc(x)λ = 0

−λ− z = 0

c(x)− s = 0

SZe = 0

s, z > 0

(4.48)

where λ and z are respectively the Lagrange multipliers of the equality constraints and the
bound constraints, S and Z are two diagonal matrices where Sii = si and Zii = zi, finally
eT = (1, . . . , 1), a unit vector. Applying a homotopy method to the problem (4.48) (see [120])
with the homotopy (also called barrier) parameter µ.We obtain the following equations

∇xE(x) +∇xc(x)λ = 0

−λ− z = 0

c(x)− s = 0

SZe− µe = 0

(4.49)

with s, z > 0 and µ converging to zero. Note if µ = 0 then the problem (4.49) becomes the KKT
system (4.48) of the original problem.

Otherwise, the problem (4.49) is equivalent to the following barrier problem min
(x,s)∈Rn×Rm

Eµ(x) = E(x)− µ
m∑
i=1

ln(si) such that

c(x)− s = 0

(4.50)



96 CHAPTER 4. Weak contact formulation and a simple symmetric algorithm

For each barrier parameter µ, a descent method is applied in order to compute a solution of
the primal-dual system (4.49), indeed at the iteration k + 1

xk+1 = xk + αkd
x
k

sk+1 = sk + αkd
s
k

λk+1 = λk + αkd
λ
k

zk+1 = zk + αzkd
z
k

(4.51)

where αk, αzk are the step sizes allowed to be different [120], and dxk, d
s
k, d

λ
k , d

z
k are respectively the

descent direction of x, s, λ, z. Besides sk+1 > 0, zk+1 > 0 by using the fraction-to-the-boundary
rule [120] to choose, αk, αzk. In the following, a Newton’s method is applied in order to compute
the descent directions. By considering that our constraints are linear, we obtain the following
linear system

∇xxE(xk) 0 ∇xc(xk) 0
0 0 −I −I

∇xc(xk)T −I 0 0
0 Zk 0 Sk



dxk
dsk
dλk
dzk

 = −


∇xE(xk) +∇xc(xk)λk

−λk − zk
c(xk)− sk
SkZke− µe

 (4.52)

This linear system (4.52) can be reduced into∇xxE(xk) 0 ∇xc(xk)
0 S−1

k Zk −I
∇xc(xk)T −I 0

dxkdsk
dλk

 = −

∇xE(xk) +∇xc(xk)λk
−µS−1

k e− λk
c(xk)− sk

 (4.53)

with the additional equation dzk = µS−1
k e− zk − S−1

k Zkd
s
k.

The software IPOPT [120] uses this method in addition to a linear search with a filter method
in order to determine the parameters αk. Note that in [85], there are different strategies in order
to update the barrier parameter µ.

In [86] we can find an interesting theorem which gives sufficient conditions in order to make
the matrix in (4.53) non-singular. This theorem is recalled below with the same notations.

Theorem 4.2. Let Am×n be a full row rank matrix with m < n, Zn×(n−m) a full rank matrix
where its columns are a basis for the null space of A (AZ = 0). If Gn×n is a matrix such that
ZTGZ is positive definite then the KKT matrix defined below

K =

[
G AT

A 0

]
(4.54)

is non-singular.

Proof. In order to prove that the KKT matrix is non-singular we have to show that the zero
vector is the only solution of the following equation[

G AT

A 0

] [
x
y

]
= 0 (4.55)
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where x ∈ Rn and y ∈ Rm. Otherwise

[
x y

]T [G AT

A 0

] [
x
y

]
= xTGx+ xTAT y + yTAx

= xTGx+ (Ax)T y + yTAx

= xTGx (4.56)

because Ax = 0 from the equation (4.55), thus xTGx = 0. since Ax = 0 therefore x belongs to
the null space of A and can be expressed as x = Zv with v ∈ Rn−m. We obtain then

xTGx = vTZTGZv

= 0 (4.57)

The matrix ZTGZ is positive definite, then from equation (4.57) we deduce that v = 0 and then
x = 0. From equation (4.55) we have AT y = 0, as AT has full column rank then y = 0. Therefore
the equation (4.55) has only one solution which is zero.

In [120] the steps αk and αzk are chosen in such a way that the iterates sk+1 and zk+1 are
positive (see equation (4.58)).{

αzk = max{α ∈]0, 1] | zk + αdzk > (1− τj)zk}
αmaxk = max{α ∈]0, 1] | sk + αdsk > (1− τj)sk}

(4.58)

where 0 < τj < 1, s0 > 0 and z0 > 0.

The matrix multiplied by the descent directions vector in the equation (4.53) has the form of

K =

[
G AT

A 0

]
(4.59)

where G =

[
∇xxE(xk) 0

0 S−1
k Zk

]
, A =

[
∇xc(xk)T −I

]
.

Theorem 4.3. Suppose that the matrix ∇xxE(xk) is positive definite (for example a linear elastic
material), suppose that sk > 0 and zk > 0, then for a fixed µ the matrix K is non singular.

Proof. First of all, the matrix A is full row rank (rank= m), and the matrix S−1
k Zk is a diagonal

matrix with strictly positive coefficients.

Let X =

[
U
V

]
, with U ∈ Rn and V ∈ Rm. We have

XTGX = UT∇xxE(xk)U + V T (S−1
k Zk)V > 0 (4.60)

Suppose that XTGX = 0, thus form the equation (4.60) and from the positive definiteness of
∇xxE(xk) and S−1

k Zk we obtain U = 0, and V = 0. Then G is positive definite, and we can use
the theorem 4.2 to conclude.
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Furthermore, we should also point out that if the matrix K presents some numerical diffi-
culties, like the top-left of the matrix K is not positive definite on the null space of A, then the
matrix is modified as in [120].

Direct solvers are used to solve the linear system (4.53), one can cite MUMPS (MUltifrontal
Massively Parallel sparse direct Solver) [9] or PARDISO [105]. Moreover the software IPOPT
offers different choices of direct solvers, that can be used to solve the linear system. In [114] a
comparison between different direct solvers within IPOPT is done, it showed also that PARDISO
solver performs very well for difficult problems.

By choosing the iterates to minimize the objective function (or the energy), the iterates is
encouraged to converge to a minimum point and not just any KKT points.

4.3.3 Behavior of the barrier solutions

In this part we will prove that the Lagrange multipliers which are solutions of the KKT system
(4.49) are bounded for all barrier parameters µ, in addition we will show that the slack variables
also solutions of the KKT system (4.49), will not converge dramatically to zero, and are greater
than a constant multiplied by µ.

Consider two vectors x,y in Rn, we say that x 6 y if xi 6 yi ∀ i 6 n, and x < y if xi < yi
∀ i 6 n. In the proof we will need a theorem of the alternative, due to Gordan [94], which states
the following theorem.

Theorem 4.4. Consider a matrix An×m. Exactly one of the following propositions has a solu-
tion:
1-There exists x ∈ Rm such that Ax > 0
2-There exists y ∈ Rn such that yTA = 0 , y > 0 , y 6= 0

In addition, we consider the following assumptions

Assumption 4.1.

• The constraints vector c : Rn → Rm is linear

• There exists x̄ ∈ Rn such that c(x̄) > 0

For each barrier parameter µ, let x∗µ, s∗µ, z∗µ, λ∗µ be the solution of the following KKT system
(Problem (4.49)) 

∇E(x) +∇c(x)λ = 0

z = −λ
c(x)− s = 0

SZe = µe

s > 0 , z > 0

(4.61)

Assume that ∀µ > 0, x∗µ ∈ K, where K ⊂ Rn a bounded and a closed set. We want to prove next
that the corresponding Lagrange multipliers λ∗µ and z∗µ are bounded. We will be inspired by a
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proof which can be found in [11], first suppose that λ∗µ is not bounded, therefore there exists a
subsequence also denoted λ∗µ such that ‖λ∗µ‖ −→

µ→0
+∞.

We know from (4.61) that λ∗µ 6 0, let then the vector dµ be defined by dµ =
λ∗µ

eT .λ∗µ
> 0 where

eT = (1, . . . , 1), besides dµ 6 1 then bounded, therefore there exists a subsequence of dµ also
denote dµ such that

dµ −→
µ→0

d∗ with d∗ > 0 (4.62)

In addition we have eT .d∗ = 1 and thus d∗ 6= 0.

By assumption x∗µ is bounded, therefore there exists a subsequence also denoted x∗µ such that
x∗µ −→

µ→0
x∗. From the first equation of the system (4.61) we obtain

∇c(x∗µ)λ∗µ = −∇E(x∗µ)

(× 1

eT .λ∗µ
)⇒ ∇c(x∗µ)dµ = − 1

eT .λ∗µ
∇E(x∗µ) (4.63)

Since ∇E is continuous, ∇E(x∗µ) is bounded. Thus if µ → 0, we deduce from the equation
(4.63) that

∇c(x∗)d∗ = 0 (4.64)

Because the constraints vector c is continuous we have

s∗µ = c(x∗µ) −→
µ→0

s∗ with s∗ > 0 (4.65)

From the fourth equation of the system (4.61) we have z∗µ = −λ∗µ and

S∗µZ
∗
µe = µe (4.66)

Therefore we have
s∗µ,i.λ

∗
µ,i = −µ ∀i = 1, . . . ,m (4.67)

Multiplying by 1
eT .λ∗µ

, the equation (4.67) becomes

s∗µ,i.dµ,i = − µ

eT .λ∗µ
∀i = 1, . . . ,m (4.68)

Thus by taking µ→ 0 we obtain

s∗i .d
∗
i = 0 ∀i = 1, . . . ,m (4.69)

Let I = {i | s∗i = 0}, this set is not empty because if it’s not the case, then using the fact that
d∗ 6= 0 we will have a contradiction with the equation (4.69). If we take a vector v ∈ Rm, vI
denotes the vector with the components vi where i ∈ I. We have cI(x∗) = 0 and from equation
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(4.69) if i /∈ I, d∗i = 0. Thus
eTI .d

∗
I = eT .d∗ = 1 and d∗I > 0 (4.70)

We conclude that
d∗I 6= 0 and d∗I > 0 (4.71)

Otherwise from the equation (4.64)

∇c(x∗)d∗ = ∇cI(x∗)d∗I = 0 (4.72)

In conclusion we obtain 
(d∗I)

T (∇cI(x∗))T = 0

d∗I > 0

d∗I 6= 0

(4.73)

By the theorem of the alternative, we deduce that there is no vector p such that

(∇cI(x∗))T p > 0 (4.74)

We will prove next that we have a contradiction.

Otherwise, let c(i)I a component of cI , we know that c(i)I is linear, thus

c
(i)
I (x̄)− c(i)I (x∗) = (∇c(i)I (x∗))T .(x̄− x∗) (4.75)

We have c(i)I (x∗) = 0, and by the assumption 4.1 c(i)I (x̄) > 0. Therefore

(∇c(i)I (x∗))T .(x̄− x∗) > 0 (4.76)

Besides

(∇cI(x∗))T .(x̄− x∗) =


...

(∇c(i)I (x∗))T

...

 .(x̄− x∗) =


...

(∇c(i)I (x∗))T .(x̄− x∗)
...

 > 0 (4.77)

which contradicts the theorem of the alternative, and thus λ∗µ is bounded: ‖λ∗µ‖ 6 M where M
does not depend on µ.

Moreover, we have from the system (4.61), ‖z∗µ‖ 6M and

|s∗µ,i| =
µ

|λ∗µ,i|
>

µ

M
∀i = 1, . . . ,m (4.78)

As conclusion there exists a constant M∗ > 0 such that

‖s∗µ‖ >M∗µ ∀µ > 0 (4.79)
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4.3.4 Global convergence

In order to solve the minimization problem with linear constraints (4.47), we will solve a sequence
of barrier problems (4.49) with a decreasing barrier parameter µ, converging to zero. Let εtol > 0
be a given error tolerance, and K > 0 a given positive constant. For each barrier parameter µ,
let the error function Eµ be defined as

Eµ := max {‖∇E +∇c.λ‖, ‖λ+ z‖, ‖c− s‖, ‖SZe− µe‖} (4.80)

The algorithm to solve the minimization problem with linear constraints (4.47) is described
briefly in the following algorithm 4.

Algorithm 4 Interior point algorithm to solve the minimization problem with linear constraints
while E0 > εtol do

Update the barrier parameter µ (in order to converge towards zero)
while Eµ > K.µ do

Solve the barrier problem (4.49)
end while

end while

In the algorithm 4 and for each barrier parameter µ, let (xµ, sµ, λµ, zµ) be an approximate
solution of each barrier problem, where the error Eµ is supposed to satisfy

Eµ(xµ, sµ, λµ, zµ) 6 K.µ (4.81)

We want to prove the existence of a limit point of the sequence (xµ, sµ, λµ, zµ) when µ converges
to zero, and this limit point is the solution of the first-order necessary conditions (4.48) of
the original problem which is the minimization problem (4.47), equivalent to the minimization
problem (4.46). In order to prove it, we will show that the sequence (xµ, sµ, λµ, zµ) is bounded.

First xµ is assumed to be bounded and thus belongs to a compact set Ω. From the inequality
(4.81) we have

‖c(xµ)− sµ‖ 6 K.µ (4.82)

The application c is continuous on the compact Ω, thus from the inequality (4.82) we deduce
that sµ is bounded.

In the algorithm sµ and zµ are chosen to be positive, thanks to the fraction-to-boundary rule.
From the inequality (4.81) we obtain

λµ 6 Kµ− zµ (4.83)

Next we will also be inspired by the proof which can be found in [11], by proving that the
Lagrange multiplier λµ is bounded. Suppose that it is not the case and ‖λµ‖ → +∞. As was
mentioned, zµ > 0, we notice from the inequality (4.83) that if a component of λµ is positive
then it is of the order of Kµ and converges to zero. Therefore ∃N > 0 such that ∀n > N
⇒ eT .λµn 6 0, moreover dn :=

λµn
eT .λµn

is bounded. We deduce that there exists a subsequence
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of dn also denoted dn such that
dn −→

n→∞
d∗ with d∗ > 0 (4.84)

Otherwise eT .d∗ = 1, thus d∗ > 0 and d∗ 6= 0.

From the error definition (4.80) and from the inequation (4.81) we have∥∥∥∥∇E(xµn)

eT .λµn
+∇c(xµn).

λµn
eT .λµn

∥∥∥∥ =
1

|eT .λµn |
‖∇E(xµn) +∇c(xµn).λµn‖ 6

Kµn
|eT .λµn |

(4.85)

Thus if n→∞ then
‖∇c(x∗).d∗‖ = 0⇒ ∇c(x∗).d∗ = 0 (4.86)

Doing the same thing∥∥∥∥ zµn
eT .λµn

+
λµn

eT .λµn

∥∥∥∥ =
1

|eT .λµn |
‖zµn + λµn‖ 6

Kµn
|eT .λµn |

(4.87)

As dn =
λµn

eT .λµn
→ d∗ then zµn

eT .λµn
→ −d∗.

We have also from the error definition, that for each component i

|s(i)
µn .z

(i)
µn − µ| 6 K.µ (4.88)

If we multiply the equation (4.88) by 1
|eT .λµn |

and taking n→∞ we obtain

s∗i .d
∗
i = 0 ∀i = 1, . . . ,m (4.89)

Let I = {i | s∗i = 0}, this set is not empty because if it is not the case, then using the fact that
d∗ 6= 0 we will have a contradiction with the equation (4.89). If we take a vector v ∈ Rm, vI
denotes the vector with the components vi where i ∈ I. We have cI(x∗) = s∗I = 0 and from
equation (4.89) if i /∈ I, d∗i = 0. Thus

eTI .d
∗
I = eT .d∗ = 1 and d∗I > 0 (4.90)

We conclude that
d∗I 6= 0 and d∗I > 0 (4.91)

Otherwise from the equation (4.86)

∇c(x∗)d∗ = ∇cI(x∗)d∗I = 0 (4.92)

In conclusion we obtain 
(d∗I)

T (∇cI(x∗))T = 0

d∗I > 0

d∗I 6= 0

(4.93)

By the theorem of the alternative, we deduce that there is no vector p such that

(∇cI(x∗))T p > 0 (4.94)

We will prove next that we have a contradiction.
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Otherwise, let c(i)I a component of cI , we know that c(i)I is linear, thus

c
(i)
I (x̄)− c(i)I (x∗) = (∇c(i)I (x∗))T .(x̄− x∗) (4.95)

We have c(i)I (x∗) = 0, and by the assumption 4.1 c(i)I (x̄) > 0. Therefore

(∇c(i)I (x∗))T .(x̄− x∗) > 0 (4.96)

besides

(∇cI(x∗))T .(x̄− x∗) =


...

(∇c(i)I (x∗))T

...

 .(x̄− x∗) =


...

(∇c(i)I (x∗))T .(x̄− x∗)
...

 > 0 (4.97)

which contradicts the theorem of the alternative, and thus λµ is bounded. This fact implies that
the Lagrange multiplier zµ is also bounded.

In conclusion yµ := (xµ, sµ, λµ, zµ) is bounded, and thus belongs to a compact set. Then there
exists a subsequence of yµ converging to y∗ = (x∗, s∗, λ∗, z∗). Finally using the error definition
and the inequality (4.81), (x∗, s∗, λ∗, z∗) satisfies the original KKT system (4.48)

∇E(x∗) +∇c(x∗)λ∗ = 0

z∗ = −λ∗

c(x∗)− s∗ = 0

S∗Z∗e = 0

s∗ > 0 , z∗ > 0

(4.98)

4.4 Alternative formulations

Another symmetric formulations were developed in order to solve the contact problems, more
precisely the minimization of the energy with linear constraints.

4.4.1 First alternative formulation

Instead of using the minimization problem (4.47), we will penalize the slack variables to be
negative, and we obtain the following problem

min
(u,s)∈Rn×Rm

E(u) +

m∑
i=1

µ.ζ(si) such that

c(u)− s = 0

s > −ε

(4.99)
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where µ the penalty factor (µ → ∞ in this case), ε > 0 and, ζ : R → R+ a C2 and a convex
function with the following property: ζ(x) > 0 ∀x < 0 and ζ(x) = 0 ∀x > 0. An example of a
penalty function ζ

ζ(x) =


0 if x > 0

−x3 if − 1 6 x < 0

3x2 + 3x+ 1 if x 6 −1

(4.100)

In this formulation we ensure that the inequality in the problem (4.99) will not be activated.

4.4.2 Mixed symmetric methods

We can use a penalty function in order to take into account the symmetric constraints, which
describes the non-penetration of the master body into the slave one. The problem can be
reformulated as follows 

min
U

(
E(U) + µ

∫
ΓC2

η ((x− x̄1).n) ds

)
∫

ΓC1

g.φi dλ > 0 ∀ i = 1, . . . , nC1

(4.101)

where µ is the penalty factor and η is the penalty function, note that the same notations as the
chapter 3 are used. Since the penalty method is used to ensure the symmetrical constraints, the
contact method here is not purely symmetric, however it improves the results.

4.5 Symmetric contact algorithm

A fixed point method is used in order to transform the contact problem into a sequence of a
minimization ones, with linear constraints, especially for the finite deformation problems, indeed
for the linear elastic problems, the constraints are linear by definition. Such idea can be found in
[50, 49, 75], where the geometric non-linearity of the contact is transformed into a sequence of a
geometric linear one. More precisely for each iteration of the fixed point algorithm, the previous
displacement is used in order to search for each integration point of the slave contact area, the
closest segment (in 2D) or the closest triangle (in 3D) of the master body, and its projection
point position on this closest segment or triangle. The integration points have been employed,
because the constraints are written in term of integrals. See section 4.2 for more details.

Let U be the degrees of freedom vector of the problem, otherwise speaking the displacement
vector of all nodes. Finally the algorithm to solve the contact problems is briefly described in
the algorithm 5.
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Algorithm 5 Symmetric algorithm using the fixed point method

Initialization of the displacement U0 and setting the tolerance εtol = 10−6

while error > εtol do
1. Using the displacement vector Un−1 of the previous iteration n− 1:

Compute the projection points’ parameters {λ̄i | i = 1, . . . , nS} of all slave integration
points
Compute the normal vectors at the projection points {ni | i = 1, . . . , nS}

2. For each integration point, its projection point x̄i depends linearly on the actual
displacement

3. Reverse the role of the master and the slave body
4. Form the Energy E and the symmetric linear constraints
5. Use the interior point method in order to solve the minimization problem with linear

constraints, and to obtain the actual displacement Un

6. error=
‖Un −Un−1‖∞
‖Un−1‖∞

end while

Note that the resolution of the linear system generated by the interior point method is solved
using direct methods, for example the solver MUMPS (MUltifrontal Massively Parallel sparse
direct Solver).

4.6 Rigid body motions

In some cases, where the boundary conditions are not sufficient, rigid body motions can appear
(translations or rotations) for the bodies in contact. In order to remove the rigid body motions
we will slightly modify our contact problem formulation (see problem 4.44).

Suppose we are in 3D case, and we want to remove the rigid body motions, the translations
in the directions of the canonical vectors e1 and e2, therefore our contact problem formulation
becomes as follows 

u = arg min
v∈Vh

(
Ep(v) +

1

2

∫
Ω1
h∪Ω2

h

(kv2
1 + kv2

2) dx

)
c1 :=

∫
ΓC1

((x− x̄2).n).φ
(1)
i ds > 0 ∀ i = 1, . . . , nC1

c2 :=

∫
ΓC2

((x− x̄1).n).φ
(2)
i ds > 0 ∀ i = 1, . . . , nC2

(4.102)

where v1, v2 are respectively the first and the second component of the vector v, and k is a
coefficient small enough. The modified problem (4.102) is equivalent to apply springs with small
stiffness on the structure.



106 CHAPTER 4. Weak contact formulation and a simple symmetric algorithm

4.7 Numerical validations

4.7.1 Compression of two elastic blocks with imposed displacement

This test is similar to the one in chapter 3. A first elastic rectangular block is posed on a second
one (see Figure 4.3a). The two blocks have the same properties: a width L = 2UL, a height
H = 1UL, a Young’s modulus E = 200 UF

UL2 , a Poisson’s ratio ν = 0. The study is done under the
plan strain hypothesis (2D). The frictionless case is always supposed, and a vertical displacement
of U0 = −0.1UL and a zero horizontal displacement are imposed on the upper face of the first
block, the lower face of the second body is clamped. This test was treated in [109].

Theoretically the value of the strain is equal to ε = U0

2H = −0.1
2 = −0.05, thus the value of the

stress on the contact area is equal to ptheo = E.ε = −10 UF
UL2 .

(a) The geometry of the two blocks (b) The mesh and the deformed shape (initial configura-
tion in lighter color)

Figure 4.3 – The geometry and the deformed shape of the two blocks

The distribution of the pressure on the contact area is shown in the Figure 4.4.
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Figure 4.4 – Pressure at the contact area

4.7.2 Hertz contact with two elastic bodies

This example studies the contact between an elastic cylinder (E1 = 210 UF
UL2 , ν1 = 0.3) and an

elastic block (E2 = 70 UF
UL2 , ν2 = 0.3), the cylinder is posed on the block and a force of P = 35UF

is applied on the top of the cylinder, the block is clamped at its base (Ux = Uy = 0) (see Figure
4.5a). This test was treated for example in [1, 98, 110]. The study is done under the plane strain
hypothesis, therefore the cylinder is modeled by a disc of radius R1 = 100UL and the block by
a square of dimension L = 200UL. Due to the symmetry of the problem only the half of the
problem is modeled.
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(a) The geometry of the two elastic bod-
ies

(b) The mesh and the deformed shape at the con-
tact area

Figure 4.5 – The geometry and the deformed shape of the contact between the elastic cylinder
and the elastic block

Using the quadratic finite elements (P2), the deformed shape at the contact area can be seen
in the Figure 4.5b. Finally the ratio of the pressure at the contact area p(x), computed with our
contact method, to the maximum contact pressure p0, in addition to the theoretical ratio, are
plotted in the Figure 4.6.
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Figure 4.6 – Pressure at the contact area
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4.7.3 Contact between two cylinders

In order to show that the algorithm or the formulation can handle the contact between two curved
bodies, a contact between two cylinders is considered. This example can be found in [108]. Two
concentric cylinders with the same thickness of t = 5UL are initially in contact, the inner radius
of the inner cylinder is equal to Rin = 10UL and the outer radius of the outer cylinder is equal
to Rout = 20UL. A radial pressure of p = 1 UF

UL2 is applied on the outer cylinder. Due to the
symmetry of the problem, only one quarter of the problem is considered, as is depicted in the
Figure 4.7, the plane strain hypothesis is also considered. The two cylinders are made from a
similar elastic material, Young’s modulus E = 100 UF

UL2 and Poisson’s ratio ν = 0.

p

Figure 4.7 – The geometry of the problem

We are interested in the value of the radial stress in the two cylinders, which can be seen in
the Figure 4.8 for the linear finite elements (P1) and for the quadratic finite elements (P2).
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Figure 4.8 – The mesh and the radial stress for P1 elements (on the left), and for P2 elements
(on the right)

We notice the non-conforming meshes in the Figure 4.8, in addition we notice that the radial
stress at the inner border is nearly zero, because this border is free, and is nearly equal to 1, the
applied pressure, on the outer border. We obtain similar results as in [108] and as in chapter 3.

4.7.4 Disc-in-disc

The following example, which can be found in [123], is considered in order to show that our
algorithm can handle large deformations. In this example the contact is between a hollow disc
and an inner disc, as shown in the Figure 4.9, it is a quasi-static study where the inertia is not
taken into account. The symmetric formulation was used to consider the contact, and linear
finite elements were used. The outer and the inner radius of the hollow disc are respectively
rho = 2. UL, rhi = 0.7UL, the radius of the inner disc is rin = 0.6UL. Neo-Hookean material is
considered for the two discs, with the following properties Eh = 1000. UFUL2 , νh = 0 for the hollow
disc, and Ei = 2000. UFUL2 , νi = 0.3 for the inner disc, note that UF , UL denote respectively the
force and the length unit. We impose a vertical downward displacement at all nodes of the inner
disc, the outside of the hollow disc is fixed. The maximal displacement imposed is 1.125UL and
is done by 100 load increments. The deformation states of the two discs at the steps 0, 50, 100
are depicted in the following figure (Figure 4.9).
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Figure 4.9 – The deformation states at the steps 0, 50, 100

4.7.5 Multi-body contact between three beams

In this example we consider the bending of three cantilever beams as shown in the Figure 4.10,
the goal of this example is to show that the contact algorithm can work in three-dimensional
space and can handle multi-body contact problems. The symmetric formulation was used to
consider the contact, and linear finite elements were used. The dimension of the three beams
are the same, indeed the length of each beam is 200. UL and each cross section is a square of
dimension 25. UL. The three beams have the same elastic material properties E = 2.105 UF

UL2 ,
ν = 0 . We apply a downward vertical surface load of f = 100 UF

UL2 at the upper surface of the
top beam. We can see in the Figure 4.10 the deformations and the sliding between the beams.

Figure 4.10 – The sliding between beams. The initial configuration (on the left), the deformations
and the sliding (on the right)
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In this chapter we will show how to make some modifications on the previous contact formulation
(chapter 3 or chapter 4), in order to solve the dynamic contact problem. In the balance equation
an inertia term is added, and the constraints remain the same, however the persistency condition
can be sometimes considered as an additional contact condition for dynamic contact problems,
indeed it ensures the conservation of the energy when the friction is not taken into account [77].
The persistency condition is stated as follows

σn.ġn = 0 on the contact area (5.1)

where σn and gn are respectively the normal contact pressure and the material time derivative
of the normal gap. This condition means that the contact pressure σn is equal to zero when a
separation or a coming into contact begins.

In [68] two formulations are presented for the dynamic contact problems in the case of elastic
materials, which are energy conserving, the first formulation uses contact conditions based on
the velocity (the persistency condition), the second one consists in rewriting the mass matrix of
the problem in order to have no inertia for the contact nodes.

113
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5.1 Formulation of the dynamic contact problem as a min-
imization one

In the dynamic problems, the inertia term must be added, which depends on the mass and on
the acceleration of the involved bodies. As the inertia term depends on the acceleration and
thus on the second derivative of the displacement, we will use some time integration schemes, for
instance Euler implicit (5.2) and Newmark (5.3) scheme. Note that other schemes can be easily
used, and the principle goal of this chapter is to show how to create an optimization problem
given a time integration scheme.

Using the same notations as before, let ρ1, ρ2 be respectively the initial density of the first
body Ω1 and of the second body Ω2. Given a time step ∆t, the Euler implicit scheme can be
stated as follows {

vt+1 = ut+1−ut
∆t

at+1 = vt+1−vt
∆t

(5.2)

where u, v and a are respectively the displacement, the velocity and the acceleration of a material
point in Ω1 ∪Ω2, moreover the subscripts t and t+ 1 denote respectively the previous and actual
time.

A special case of the Newmark scheme can be stated as follows{
vt+1 = 2

∆t (ut+1 − ut)− vt

at+1 = 2
∆t2 (ut+1 − ut)− 2

∆tvt
(5.3)

In order to be more general, we suppose in the following that the two bodies Ω1 and Ω2

are two hyperelastic materials with strain energy functions Ŵ1 and Ŵ2, in addition we suppose
that traction forces t1 and t2 are applied on their parts of boundaries Γ1

1 and Γ2
1, and two body

forces f1 and f2 are applied respectively on Ω1 and on Ω2. We will use the same notations as
the previous chapters, for example Kt+1 describes the non-penetration between the two bodies
at the time t+ 1 and Ω = Ω1 ∪ Ω2.

5.1.1 The minimization problem using Euler implicit scheme

Using the Euler implicit scheme (5.2) the dynamic contact problem can be formulated as follows

Find ut+1 ∈ Kt+1 such that
ut+1 = arg min

w∈Kt+1

(E(w)) (5.4)

where the energy E : V→ R is defined by
E(w) =

1

2

∫
Ω

ρ0(v − vt)
2 dx+ Ep(w) s.t

v =
1

∆t
(w − ut)

(5.5)
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where vt is the previous velocity, ρ0 = ρ11Ω1 +ρ21Ω2 and Ep the total potential energy given by

Ep(w) =

∫
Ω1

Ŵ1 dx+

∫
Ω2

Ŵ2 dx−
∫

Ω1

f1.w dx−
∫

Ω2

f2.w dx−
∫

Γ1
1

t1.w ds−
∫

Γ2
1

t2.w ds (5.6)

In the following theorem we will justify the use of this optimization problem.

Theorem 5.1. Let ut+1 be a solution (sufficiently regular) of the problem (5.4), then ut+1

satisfies the balance equation
div P + f = ρ0at+1 (5.7)

where P is the first Piola-Kirchhoff stress tensor, with P = P1 for the first body and P = P2 for
the second body. Moreover f = f1 the body force on the first body and f = f2 the body force on
the second body.

Proof. Let Em be defined by

Em(w) =
1

2

∫
Ω

ρ0(v − vt)
2 dx (5.8)

where v =
1

∆t
(w − ut)

Let X ∈ Ω1, and B1(X, r) ⊂ Ω1 the ball of center X and of radius r > 0.

Let ut+1 ∈ Kt+1 be a solution of the problem (5.4), consider θ a sufficiently smooth function
with support in B1(X, r). There exists ε0 = ε(θ) > 0 such that uεt+1 = ut+1 +εθ ∈ Kt+1 ∀ |ε| 6
ε0.

We have
E(uεt+1)− E(ut+1) > 0 (5.9)

In addition

E(uεt+1)− E(ut+1) = E(ut+1 + εθ)− E(ut+1)

= Em(ut+1 + εθ)− Em(ut+1) + Ep(ut+1 + εθ)− Ep(ut+1)

= Em(ut+1 + εθ)− Em(ut+1) +

∫
Ω1

(
Ŵ1(ut+1 + εθ)− Ŵ1(ut+1)

)
dx

− ε
∫

Ω1

f1.θ dx

(5.10)

Otherwise we have

Ŵ1(ut+1 + εθ)− Ŵ1(ut+1) = ε
∂Ŵ1

∂F
: ∇θ + o(ε)

= εP1 : ∇θ + o(ε)

(5.11)
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Using the Green formula and the fact that θ vanishes in the neighborhood of ∂Ω1, we obtain :∫
Ω1

(
Ŵ1(ut+1 + εθ)− Ŵ1(ut+1)

)
dx = ε

∫
Ω1

P1 : ∇θ dx+ o(ε)

= −ε
∫

Ω1

div(P1).θ dx+ o(ε)

(5.12)

Thus

E(uεt+1)− E(ut+1) =ε

{
Em(ut+1 + εθ)− Em(ut+1)

ε

}
+ ε

{∫
Ω1

(−div(P1)− f1) .θ dx+
o(ε)

ε

}
> 0

(5.13)

Moreover, using the Euler implicit scheme (5.2)

lim
ε→0−

Em(ut+1 + εθ)− Em(ut+1)

ε
= lim
ε→0+

Em(ut+1 + εθ)− Em(ut+1)

ε

=

∫
Ω

ρ0
1

∆t
(vt+1 − vt).θ dx

=

∫
Ω

ρ0at+1.θ dx

(5.14)

Thus taking ε > 0 and taking the limit ε→ 0+ in equation (5.13), we obtain∫
Ω1

(ρ0at+1 − div(P1)− f1) .θ dx > 0 (5.15)

Taking ε < 0 and taking the limit ε→ 0− in equation (5.13), we obtain∫
Ω1

(ρ0at+1 − div(P1)− f1) .θ dx 6 0 (5.16)

Therefore: ∫
Ω1

(ρ0at+1 − div(P1)− f1) .θ dx = 0 (5.17)

The support of θ is in B1(X, r) ⊂ Ω1, thus we obtain:∫
B1(X,r)

(ρ0at+1 − div(P1)− f1) .θ dx = 0 (5.18)

We deduce that ρ0at+1 = div(P1)+f1 in B1(X, r), and then it’s true in Ω1. The same procedure
can be used for Ω2.

Note that we were interested in retrieving the balance equation, where the inertia term occurs,
indeed the other contact conditions (for example the negativity of the contact pressure) can be
obtained like it is done in the Appendix A.
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5.1.2 The problem using a special case of the Newmark scheme

Using the Newmark scheme (5.3) the dynamic contact problem can be formulated as follows

Find ut+1 ∈ Kt+1 such that
ut+1 = arg min

w∈Kt+1

(E(w)) (5.19)

where the energy E : V→ R is defined byE(w) =
1

∆t2

∫
Ω

ρ0(w − ût)
2 dx+ Ep(w) s.t

ût = ut + ∆tvt

(5.20)

with Ep already defined in (5.6).

As before, the following theorem will justify the use of this optimization problem.

Theorem 5.2. Let ut+1 be a solution (sufficiently regular) of the problem (5.19), then ut+1

satisfies the balance equation
div P + f = ρ0at+1 (5.21)

Proof. The same proof of the theorem 5.1 can be used again, the only difference is in the definition
of Em, in this case

Em(w) =
1

∆t2

∫
Ω

ρ0(w − ût)
2 dx (5.22)

with
ût = ut + ∆tvt (5.23)

Finally, using the Newmark scheme (5.3)

lim
ε→0−

Em(ut+1 + εθ)− Em(ut+1)

ε
= lim
ε→0+

Em(ut+1 + εθ)− Em(ut+1)

ε

=

∫
Ω

ρ0
2

∆t2
(ut+1 − ût).θ dx

=

∫
Ω

ρ0(
2

∆t2
(ut+1 − ut)−

2

∆t
vt).θ dx

=

∫
Ω

ρ0at+1.θ dx

(5.24)

5.2 Numerical examples

In this section we will present two simple examples using the Euler implicit scheme, in order to
show that the total energy, which is the sum of the kinematic and internal energies don’t blow
up. Assuming no forces are applied on the different bodies Ω1 and Ω2, the total energy can be
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given by
Etot = Ekin + Ep (5.25)

where Ep the internal energy defined before, and Ekin the kinematic energy of the two bodies
given as follows

Ekin(w) =

∫
Ω

ρ0 v2 dx (5.26)

with v the material velocity.

5.2.1 Impact between a ball and a block

A ball of density ρ = 100 UM
UL3 and of radius R = 30UL, is launched with an initial velocity

v0 = −0.1 UL
UT in order to hit a rectangular foundation, initially 0.1UL away. Neo-Hookean

material is considered for the ball, with the following properties E = 2100. UFUL2 , ν = 0.3. The
total time of the study is about T = 60UT , and a time step ∆T = 0.05UT (time unit) is
considered. The goal of this example is to study the behavior of the total energy Etot, and to
see if any oscillations occur in the total reaction force on the ball.

The deformation shape of the ball at the time t = 22UT is shown in the Figure 5.1.

Figure 5.1 – The deformation shape at the time t = 22UT

The variation of the total, potential and kinematic energy are depicted in the Figure 5.2.
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Figure 5.2 – The total, potential and kinematic energy

Moreover the total vertical reaction force on the ball is depicted in the Figure 5.3.
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Figure 5.3 – The total vertical reaction force on the ball

We note that there is a little energy dissipation (which begins to vanish when the time step
becomes smaller), and no oscillations for the vertical force is noticed.

5.2.2 Impact between two balls and a foundation

Two balls with the same radius R1 = R2 = 30UL and with different densities, are launched with
the same velocity v0 = −1.4 UL

UT on a rigid foundation, see Figure 5.4. This example imitates
the experience of taking a tennis ball on a basket ball and dropping the whole on the floor,
which makes the tennis ball fly so high. The two balls are made from the same elastic material
E = 2.1× 105 UF

UL2 , ν = 0.29. The ball on the top has a density of ρ2 = 5 UM
UL3 and the other one

has a density of ρ1 = 20 UM
UL3 . The total time of the study is about T = 8UT , and a time step

∆T = 0.001UT is considered. The goal of this example is to study the behavior of the total
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energy Etot, and to compare the balls velocities with the theoretical ones, generated from the
classical mechanics theory.

The deformation shapes of the whole at the times t = 0UT , t = 2.64UT , t = 4.16UT and
t = 8UT are shown in the Figure 5.4.

Figure 5.4 – The deformation shapes at the times t = 0, 2.64, 4.16, 8UT (from left to right)

The variation of the total, potential and kinematic energy are depicted in the Figure 5.5.
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Figure 5.5 – The total, potential and kinematic energy

We note that there is a little energy dissipation (which begins to vanish when the time step
becomes smaller).
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Otherwise according to the classical mechanics, and supposing an elastic collision, the massive
ball will hit the foundation and rebounds with a velocity v1i = 1.4 UL

UT . At the same time, the
less massive ball falls with a velocity v2i = −1.4 UL

UT and hits the massive ball, thus the velocities
of the two balls after the collision v1f and v2f are given by{

m1v1i +m2v2i = m1v1f +m2v2f (conservation of momentum)
1
2m1v

2
1i + 1

2m2v
2
2i = 1

2m1v
2
1f + 1

2m2v
2
2f (conservation of the kinetic energy)

(5.27)

where m1 and m2 are the respective masses. Therefore{
v1f = m1−m2

m1+m2
v1i + 2m2

m1+m2
v2i

v2f = m2−m1

m1+m2
v2i + 2m1

m1+m2
v1i

(5.28)

In our case, we obtain v1f = 0.28 UL
UT and v2f = 3.08 UL

UT . Otherwise, the velocities values from
our simulation are computed as the average of all nodes vertical velocities. In the Figure 5.6 we
can see the variations of the velocities with respect to time.
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Figure 5.6 – The vertical velocities, v1 for the massive ball and v2 for the less massive one

Thus in our simulation, we obtained v1f = 0.31 UL
UT and v2f = 2.8 UL

UT , which are reasonable
with the theoretical ones, generated from the classical mechanics.



122 CHAPTER 5. The dynamic contact



Chapter 6
Frictional contact problems with the
interior point method

Outline of the current chapter

6.1 Linear elasticity 124
6.1.1 Tresca criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1.2 Variational formulation for Tresca criterion . . . . . . . . . . . . . . 125
6.1.3 Minimization formulation for the Tresca criterion . . . . . . . . . . . 126
6.1.4 Coulomb’s criterion as a fixed point problem . . . . . . . . . . . . . . 127
6.1.5 The quasi-static problem for Coulomb’s criterion . . . . . . . . . . . 127

6.2 Regularization of the Tresca frictional problem 128
6.2.1 Frictional criterion generated from the regularized problem . . . . . 130
6.2.2 Minimization formulation for the regularized problem . . . . . . . . . 134
6.2.3 Error between Tresca’s solution and regularized Tresca’s solution . . 134
6.2.4 Coulomb’s criterion as a fixed point problem for the regularized prob-

lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2.5 Quasi-static problem for the regularized one . . . . . . . . . . . . . . 136

6.3 Finite deformation 137
6.4 Fixed point algorithm convergence for the frictional regularized

discretized problem 143
6.4.1 Case of two bodies in contact . . . . . . . . . . . . . . . . . . . . . . 149
6.4.2 Error between Tresca’s discretized solution and regularized Tresca’s

discretized solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5 The Algorithm 151
6.6 Numerical validations 154

6.6.1 Validation of the regularized friction law . . . . . . . . . . . . . . . . 154
6.6.2 Elastic bloc pressed against a rigid foundation . . . . . . . . . . . . . 155

123



124 CHAPTER 6. Frictional contact problems with the interior point method
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6.6.5 Frictional Hertz contact . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.6.6 Shallow ironing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

The aim of this chapter is to present an algorithm to solve frictional contact problems by con-
sidering the Coulomb’s criterion. As it is known, the frictional contact problem using Coulomb’s
criterion has no minimization principle behind. However in order to take advantage of the al-
gorithms already developed in the previous chapters and which are based on a minimization
methods, the frictional contact problem in this chapter is written as an optimization one, more
specifically as a sequence of Tresca contact problems until convergence.

Each Tresca contact problem is equivalent to a minimization one, unfortunately the energy to
minimize becomes not smooth enough, therefore we introduce a family of regularization functions
in order to regularize the non-smooth part. In addition, in some cases, regularization can be
justified because tangential slip always occurs, even for a small tangential stress [33, 87]. We can
also cite [67], where a micro-displacement is produced between a hard steel ball and the flat end
of a hard steel roller in contact, when the tangential force applied on the ball is less than the
value necessary to produce slip.

6.1 Linear elasticity

We consider here two elastic bodies Ωl ⊂ R2 or R3 with l = 1, 2 initially in contact at the border
ΓC (see Figure 6.1), the contact area after loading is supposed to be included in ΓC . Let Γl0 be
the border of the body Ωl where a null displacement is imposed, and Γl1 where a surface traction
tl is imposed, in addition Ω = Ω1 ∪Ω2. We call n := n1, n2 respectively the outward unit vector
on ∂Ω1 and on ∂Ω2. Finally, the body force f l is applied on Ωl.

Figure 6.1 – The two bodies in contact
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The frictional contact problem using Coulomb’s criterion is given as follows
∇.σl + f l = 0 in Ωl

σl = Clεl in Ωl (Hook’s law)
ul = 0 on Γl0
σlnl = tl on Γl1

(6.1)

with the following contact conditions
[u.n] = u1.n1 + u2.n2 = (u1 − u2).n 6 0 on ΓC

σn = (σ1n1).n1 = (σ2n2).n2 6 0 on ΓC

σn.[u.n] = 0 on ΓC

(6.2)

Here the normal vector n is considered to be equal to n1, in addition at the contact area we have
n1 = −n2. Given a friction coefficient µ, the static Coulomb criterion on ΓC states

σ1
T = −σ2

T

|σ1
T | 6 µ|σn|

if |σ1
T | < µ|σn| ⇒ u1

T − u2
T = 0

if |σ1
T | = µ|σn| ⇒ ∃λ > 0 s.t u1

T − u2
T = −λσ1

T

(6.3)

where the subscript T means the tangential part, otherwise speaking, for a vector vl, vlT =
vl − (vl.nl)nl, and the tangential stress σlT is given by σlT = σlnl − ((σlnl).nl)nl. Moreover
the symbol | · | for a vector means its module.

6.1.1 Tresca criterion

Let τ ∈ L2(ΓC) > 0, be the sliding limit of the Tresca criterion, the governing equations are the
same, except the system (6.3), which becomes

σ1
T = −σ2

T

|σ1
T | 6 τ

if |σ1
T | < τ ⇒ u1

T − u2
T = 0

if |σ1
T | = τ ⇒ ∃λ > 0 s.t u1

T − u2
T = −λσ1

T

(6.4)

where µ|σn| was replaced by the sliding limit τ .

6.1.2 Variational formulation for Tresca criterion

The displacement field u is defined by u = (u1,u2). We define the admissible set as V = V1×V2

where
Vl = {v ∈ H1(Ωl) |v = 0 a.e on Γl0} (6.5)
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endowed with the broken norm:

‖u‖1 = ‖(u1,u2)‖1 =
(
‖u1‖21 + ‖u2‖21

) 1
2 (6.6)

Let the applications a : V ×V→ R and f : V→ R be defined by{
a(u,v) = a1(u,v) + a2(u,v)

f(v) = f1(v) + f2(v)
(6.7)

where for l = 1, 2 
al(u,v) =

∫
Ωl
σ(ul) : ε(vl) dv

f l(v) =

∫
Ωl

f l.vl dv +

∫
Γl1

tl.vl ds
(6.8)

We also consider the application jτ : V→ R+ defined by

jτ (v) =

∫
ΓC

τ |v1
T − v2

T | ds (6.9)

The convex and closed set K describes the non-penetration between the two bodies, and is defined
by

K = {v ∈ V | [v.n] 6 0 a.e on ΓC} (6.10)

where [v.n] = (u1 − u2).n = (u1 − u2).n1 . The variational formulation of the frictional contact
problem using Tresca’s criterion can be proven to be equal to

Find u ∈ K such that

a(u,v − u) + jτ (v)− jτ (u) > f(v − u) ∀v ∈ K (6.11)

6.1.3 Minimization formulation for the Tresca criterion

Before giving the minimization formulation, let’s recall a theorem which can be found in [69].

Theorem 6.1. Let K be a nonempty, closed and convex, subset of the normed linear space V,
and consider a function F : K ⊂ V → R of the form F = F1 + Φ where F1 and Φ are convex
and lower semicontinuous and F1 is Gâteaux differentiable on K. Then u is a minimizer of F
on K if and only if,

< DF1(u),v − u > +Φ(v)− Φ(u) > 0 ∀v ∈ K (6.12)

Let Ep denotes the total potential energy of the two bodies, Ep can be given by

Ep(v) :=
1

2
a(v,v)− f(v) (6.13)

Consider the energy functional Jτ given by

Jτ (v) := Ep(v) + jτ (v) (6.14)
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Then by applying the theorem 6.1 above, by taking F = Jτ , F1 = Ep and Φ = jτ , the frictional
problem (6.11) is equivalent to the following minimization problem

Find u ∈ K such that
Jτ (u) 6 Jτ (v) ∀v ∈ K (6.15)

6.1.4 Coulomb’s criterion as a fixed point problem

The idea to study the Tresca criterion, is that the Coulomb criterion can be equivalent to the
fixed point of the following application (see [79, 101])

T (τ) = −µσN (uτ ) (6.16)

where σN the normal stress and uτ the solution of the Tresca problem with the sliding limit
τ > 0, otherwise speaking, solution of the following problem

Find uτ ∈ K such that

a(uτ ,v − uτ ) + jτ (v)− jτ (uτ ) > f(v − uτ ) ∀v ∈ K (6.17)

or equivalently

Find uτ ∈ K such that
Jτ (uτ ) 6 Jτ (v) ∀v ∈ K (6.18)

Otherwise speaking, if τ∗ is the fixed point of the application T , τ∗ = −µσN (uτ∗), then uτ∗ is
the solution of the frictional problem using Coulomb’s criterion.

6.1.5 The quasi-static problem for Coulomb’s criterion

In reality the friction depends on the history of the loading, indeed the Coulomb criterion depends
on the velocity rather than the displacement, and therefore the friction depends on the state of
the previous time step. However the static criterion is very useful to treat the quasi-static case,
because as we will see the quasi-static criterion can be written as a sequence of a static criterion
when the velocity is discretized.

The quasi-static criterion is given by the following
|σ1
T | 6 µ|σn|

if |σ1
T | < µ|σn| ⇒ u̇1

T − u̇2
T = 0

if |σ1
T | = µ|σn| ⇒ ∃λ > 0 s.t u̇1

T − u̇2
T = −λσ1

T

(6.19)

where u̇ denotes the velocity.
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For a time step ∆t the velocities u̇1
T and u̇2

T are discretized as follows
u̇1
T =

u1
T,i+1 − u1

T,i

∆t

u̇2
T =

u2
T,i+1 − u2

T,i

∆t

(6.20)

where i+1 and i denotes respectively the actual and the previous state. Therefore the quasi-static
criterion becomes

|σ1
T | 6 µ|σn|

if |σ1
T | < µ|σn| ⇒ (u1

T,i+1 − u1
T,i)− (u2

T,i+1 − u2
T,i) = 0

if |σ1
T | = µ|σn| ⇒ ∃λ > 0 s.t (u1

T,i+1 − u1
T,i)− (u2

T,i+1 − u2
T,i) = −λσ1

T

(6.21)

6.2 Regularization of the Tresca frictional problem

Recall that the frictional problem using Tresca’s criterion is given by

Find u ∈ K such that

a(u,v − u) + jτ (v)− jτ (u) > f(v − u) ∀v ∈ K (6.22)

The application jτ is not differentiable because of its module term. For this reason and for
an algorithmic point of view, in order to obtain a smooth problem, the module vector | · | is
approximated by an application ηα.

We suppose that the regularization function ηα approximating the module of a vector, belongs
to the set Ξα, defined below.

Definition 6.1. Define Ξα, for α > 0, the set of functions such that

ηα ∈ Ξα ⇐⇒



ηα ∈ C2(Rd)
ηα is convex
ηα(v) = ηα(−v) ∀v ∈ Rd

ηα(v) > 0 ∀v ∈ Rd

|ηα(v)− |v|| 6 α ∀v ∈ Rd

|ηα(v1)− ηα(v2)| 6 | |v1| − |v2| | ∀v1,v2 ∈ Rd

(6.23)

Let’s give an example of a regularization function belonging to Ξα.

Lemma 6.1. For α > 0, the function η̄α : Rd → [0,∞[ defined by

η̄α(v) =
√
|v|2 + α2 ∀v ∈ Rd (6.24)

belongs to Ξα.
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Proof. First η̄α is convex, it remains to prove that{
|η̄α(v)− |v|| 6 α ∀v ∈ Rd

|η̄α(v1)− η̄α(v2)| 6 | |v1| − |v2| | ∀v1,v2 ∈ Rd
(6.25)

In order to prove the first equation of (6.25), we consider the function f : R → R defined by
f(x) =

√
x2 + α2 −

√
x2, we have f(x) > 0 and we just need to prove that f(x) 6 α. Indeed f

is symmetric and then if x > 0, its derivative f ′ is negative and then f(x) 6 f(0) = α, and the
first equation of (6.25) is proved.

Second, consider the function F : [0,+∞[×[0,+∞[→ R such that

F (x, y) = (
√
x+ α2 −

√
y + α2)2 − (

√
x−√y)2 (6.26)

We want to show that F (x, y) 6 0, indeed it’s enough to study it on the domain D = {(x, y) ∈
R2 |x > 0 , x 6 y}. After some calculations

F (x, y) = 2α2 + 2(
√
x
√
y −

√
x+ α2

√
y + α2) (6.27)

If y = 0 then F (0, 0) = 0, thus we can set y > 0 and consider the function fy(x) = 2α2 +

2(
√
x
√
y −
√
x+ α2

√
y + α2) for y fixed, defined on the closed interval [0, y]. The derivative of

fy is given by

f ′y(x) =

√
y
√
x
−
√
y + α2

√
x+ α2

(6.28)

We have fy(0) = 2α2 − 2
√
α2
√
y + α2 < 0 and fy(y) = 0. Suppose that ∃z ∈]0, y[ such that

fy(z) > 0. As fy is continuous on the compact set [0, y], therefore there exists z∗ such that fy(z∗)
is the maximum of fy on [0, y], we have z∗ ∈]0, y[ because fy(z∗) > fy(z) > 0. Thus f ′y(z∗) = 0
and from the equation (6.28) we conclude that

y

z∗
=

y + α2

z∗ + α2
(6.29)

which implies that z∗ = y and we obtain a contradiction. Therefore fy 6 0, and finally F (x, y) 6
0 on [0,+∞[×[0,+∞[.

We can deduce that F (|v1|2, |v2|2) 6 0, thus(√
|v1|2 + α2 −

√
|v2|2 + α2

)2

6
(√
|v1|2 −

√
|v2|2

)2

(6.30)

and therefore we obtain the second equation of (6.25).

In the following we take a regularization function ηα such that ηα ∈ Ξα. Our regularized
frictional problem becomes

Find u ∈ K such that

a(u,v − u) + jα,τ (v)− jα,τ (u) > f(v − u) ∀v ∈ K (6.31)
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where the application jα,τ is given by

jα,τ (v) =

∫
ΓC

τ.ηα(v1
T − v2

T ) ds (6.32)

Note that the regularization of frictional problems was considered in many papers like [21, 78,
87].

6.2.1 Frictional criterion generated from the regularized problem

In most papers and for Signorini’s contact problem, one can cite [40, 69], the variational inequality
(6.11) is proved to be equivalent to the contact problem equations (6.1), (6.2), with Tresca’s
frictional criterion (6.4). Otherwise, regularizing the frictional criterion can be found in [101],
and in [87] where a nonlocal friction is used (the normal stress is replaced by a weighed average
of the normal stress in the friction criterion) and where we can find a physical interpretation
for the regularization, as the elastic and elastoplastic deformation of the junctions (a region in
the contact area where an adhesion take place). Here we prove formally, in the case of contact
between two bodies, that if the variational inequality (6.31) is satisfied then the equations of the
contact problem (6.1), (6.2) are satisfied with a special regularized frictional criterion.

In order to obtain the frictional criterion generated by the regularized problem, we present
the following theorem

Theorem 6.2. Let u ∈ K be sufficiently regular (H2), and satisfying the following variational
inequality

a(u,v − u) + jα,τ (v)− jα,τ (u) > f(v − u) ∀v ∈ K (6.33)

Then u satisfies the following equations for l = 1, 2
∇.σl + f l = 0 in Ωl

σl = Clεl in Ωl (Hook’s law)
ul = 0 on Γl0
σlnl = tl on Γl1

(6.34)

with the following contact conditions:
[u.n] = u1.n1 + u2.n2 = (u1 − u2).n 6 0 on ΓC

σn := (σ1n1).n1 = (σ2n2).n2 6 0 on ΓC

σn[u.n] = 0 on ΓC

(6.35)

with the following regularized frictional criterion on ΓC
σ1
T = −σ2

T

σ1
T = −τ.∇ηα(u1

T − u2
T )

= −τ (u1
T−u2

T )√
|u1
T−u2

T |2+α2
if ηα(v) =

√
|v|2 + α2

(6.36)

where ∇ηα(·) : Rd → Rd the gradient of ηα and ∇ηα(u1
T − u2

T ) is supposed to be in the same
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tangent space of σ1
T (true if ηα(v) =

√
|v|2 + α2).

Proof. We recall the Green formula which will be useful in the sequel. For l = 1 or 2∫
Ωl
σl(ul) : ε(vl) dv = −

∫
Ωl
∇.σl(ul).vl dv +

∫
∂Ωl

σl(ul)nl.vl ds (6.37)

Therefore

a(u,v − u) =
∑
l=1,2

(
−
∫

Ωl
∇.σl(ul).(vl − ul) dv +

∫
∂Ωl

σl(ul)nl.(vl − ul) ds

)
(6.38)

First consider an application φ ∈ D2(Ω1) (C2(Ω1) with a compact support in Ω1), we will take
the test function v = (v1,v2) such that v1 = u1 ± φ and v2 = u2. Then using the variational
inequality (6.33), the Green formula (6.38) and the fact that φ is equal to zero on the borders,
one obtains

−
∫

Ω1

∇.σ1(u1).φ dv −
∫

Ω1

f1.φ dv > 0 (6.39)

and ∫
Ω1

∇.σ1(u1).φ dv +

∫
Ω1

f1.φ dv > 0 (6.40)

Thus ∫
Ω1

(∇.σ1(u1) + f1).φ dv = 0 (6.41)

Otherwise speaking
∇.σ1(u1) + f1 = 0 a.e on Ω1 (6.42)

In the same manner if we take v such that v1 = u1 and v2 = u2 ± φ, we obtain

∇.σ2(u2) + f2 = 0 a.e on Ω2 (6.43)

Consider the test function v = (v1,v2) such that v1 = u1 ± φ and v2 = u2, then using the two
equilibrium equations (6.42) and (6.43) the variational inequality becomes∫

∂Ω1

σ1(u1)n1.(±φ) ds−
∫

Γ1
1

t1.(±φ) ds+

∫
ΓC

τ.(ηα(v1
T − u2

T )− ηα(u1
T − u2

T )) ds > 0 (6.44)

In the inequality (6.44) we can take φ ∈ H1/2(∂Ω1) with supp(φ) ⊂ Γ1
1, and we will obtain then

−
∫

Γ1
1

(σ1(u1)n1 − t1).φ ds > 0 (6.45)

and ∫
Γ1
1

(σ1(u1)n1 − t1).φ ds > 0 (6.46)

Otherwise speaking ∫
Γ1
1

(σ1(u1)n1 − t1).φ ds = 0 (6.47)
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Therefore
σ1(u1)n1 = t1 a.e on Γ1

1 (6.48)

In the same manner if we take v = (v1,v2) such that v1 = u1 and v2 = u2 ± φ we obtain

σ2(u2)n2 = t2 a.e on Γ2
1 (6.49)

Because u ∈ K, then by definition [u.n] 6 0 on ΓC and ul = 0 on Γl0. So it remains to verify
the last two equations of (6.35) and the two equations of (6.36).

Using the equations (6.42), (6.43), (6.48), (6.49) and the Green formula, the variational
inequality (6.33) becomes∑
l=1,2

∫
ΓC

σl(ul)nl.(vl − ul) ds+

∫
ΓC

τ.(ηα(v1
T − v2

T )− ηα(u1
T − u2

T )) ds > 0 ∀v ∈ K (6.50)

Taking v = (v1,v2) such that v1 = φ.n1 +u1 and v2 = −φ.n2 +u2, we have the fact that v ∈ K
because [v.n] = v1.n1 +v2.n2 = u1.n1 +u2.n2 = [u.n] 6 0. Thus if we inject v in the inequality
(6.50) one obtains ∫

ΓC

(σ1(u1)n1).n1φds−
∫

ΓC

(σ2(u2)n2).n2φds > 0 (6.51)

or ∫
ΓC

(
(σ1(u1)n1).n1 − (σ2(u2)n2).n2

)
φds > 0 (6.52)

In addition if we consider −φ instead of φ, we can obtain thus∫
ΓC

(
(σ1(u1)n1).n1 − (σ2(u2)n2).n2

)
φds 6 0 (6.53)

Therefore ∫
ΓC

(
(σ1(u1)n1).n1 − (σ2(u2)n2).n2

)
φds = 0 (6.54)

We can deduce that σn := (σ1n1).n1 = (σ2n2).n2 a.e on ΓC which is the second equation of
(6.35).

Now we take v = (v1,v2) such that v1 = λ.φ.n1 + u1
T and v2 = u2

T , where λ > 0 and
φ ∈ H1/2(∂Ω1) 6 0 with supp(φ) ⊂ ΓC . Clearly v ∈ K because [v.n] = v1.n1 + v2.n2 =
λ.φ 6 0. Injecting v in the inequality (6.50) and using the fact that u1 = (u1.n1)n1 + u1

T and
u2 = (u2.n2)n2 + u2

T , one obtains∫
ΓC

(σ1(u1)n1).λ.φn1 ds−
∫

ΓC

(σ1(u1)n1).(u1.n1)n1 ds−
∫

ΓC

(σ2(u2)n2).(u2.n2)n2 ds > 0

(6.55)
Then ∫

ΓC

σn.λ.φ ds−
∫

ΓC

σn.(u
1.n1) ds−

∫
ΓC

σn.(u
2.n2) ds > 0 (6.56)
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which is equivalent to

λ

∫
ΓC

σn.φ ds−
∫

ΓC

σn.[u.n] ds > 0 (6.57)

If λ→ 0 then ∫
ΓC

σn.[u.n] ds 6 0 (6.58)

If we divide the inequality (6.57) by λ and taking λ→ +∞ then∫
ΓC

σn.φ ds > 0 (6.59)

From the inequality (6.59) and from the fact that φ 6 0 we deduce that σn 6 0. By definition
[u.n] 6 0, thus σn.[u.n] > 0, therefore from the inequality (6.58) we deduce that σn.[u.n] = 0.
Therefore the equations of (6.35) are verified and it remains to prove the two equations of (6.36).

Let φ = φnn1 + φT ∈ H1/2(∂Ω1) with supp(φ) ⊂ ΓC . Take v = (v1,v2) such that v1 =
u1 ± εφT and v2 = u2, where ε ∈ [0, 1]. Clearly v ∈ K, thus injecting v in (6.50) one obtains∫

ΓC

σ1(u1)n1.(±εφT ) ds+

∫
ΓC

τ.(ηα(u1
T − u2

T ± εφT )− ηα(u1
T − u2

T )) ds > 0 (6.60)

thus and after dividing by ε∫
ΓC

σ1
T .(±φT ) ds+

∫
ΓC

τ.
ηα(u1

T − u2
T ± εφT )− ηα(u1

T − u2
T )

ε
ds > 0 (6.61)

Thanks to the differentiability of ηα, we obtain the following inequality when ε→ 0∫
ΓC

σ1
T .(±φT ) ds+

∫
ΓC

τ.∇ηα(u1
T − u2

T ).(±φT ) ds > 0 (6.62)

We deduce that ∫
ΓC

σ1
T .φT ds+

∫
ΓC

τ.∇ηα(u1
T − u2

T ).φT ds = 0 (6.63)

Otherwise σ1
T .φT = σ1

T .φ and ∇ηα(u1
T − u2

T ).φT = ∇ηα(u1
T − u2

T ).φ, (indeed ∇ηα(u1
T − u2

T ) is
supposed to be in the same tangent space, it’s true if ηα(v) =

√
|v|2 + α2), thus∫

ΓC

(σ1
T + τ.∇ηα(u1

T − u2
T )).φ ds = 0 (6.64)

We conclude that

σ1
T = −τ.∇ηα(u1

T − u2
T ) = −τ u1

T − u2
T√

‖u1
T − u2

T ‖2 + α2
a.e on ΓC (6.65)

In the same manner, we take v = (v1,v2) such that v1 = u1 and v2 = u2±εφT , where ε ∈ [0, 1],
and we inject v in (6.50). We obtain∫

ΓC

σ2(u2)n2.(±εφT ) ds+

∫
ΓC

τ.(ηα(u1
T − u2

T ∓ εφT )− ηα(u1
T − u2

T )) ds > 0 (6.66)
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As before we conclude that

σ2
T = τ.∇ηα(u1

T − u2
T ) = −σ1

T a.e on ΓC (6.67)

6.2.2 Minimization formulation for the regularized problem

The variational inequality of the problem is recalled below.

Find u ∈ K such that

a(u,v − u) + jα,τ (v)− jα,τ (u) > f(v − u) ∀v ∈ K (6.68)

As before, let Ep denotes the total potential energy of the two bodies

Ep(v) :=
1

2
a(v,v)− f(v) (6.69)

Consider the energy functional Jα,τ given by

Jα,τ (v) := Ep(v) + jα,τ (v) (6.70)

where as before, the functional is given by

jα,τ (v) =

∫
ΓC

τ.ηα(v1
T − v2

T ) ds (6.71)

The functional jα,τ is lower semicontinuous, and because ηα is convex then jα,τ is convex. There-
fore by applying the theorem 6.1 above, by taking F = Jα,τ , F1 = Ep and Φ = jα,τ , the frictional
problem (6.68) is equivalent to the following minimization problem

Find u ∈ K such that
Jα,τ (u) 6 Jα,τ (v) ∀v ∈ K (6.72)

Otherwise the energy functional Jα,τ is convex, Gâteaux differentiable (or continuous) because
ηα is differentiable (or continuous), and coercive because Ep is coercive and the functional jα,τ is
positive. We conclude that there exits a solution of the minimization problem (6.72), in addition
this minimizer is unique because Jα,τ is strictly convex.

6.2.3 Error between Tresca’s solution and regularized Tresca’s solution

Theorem 6.3. Let u ∈ K be the Tresca solution, in other words solution of

a(u,v − u) + jτ (v)− jτ (u) > f(v − u) ∀v ∈ K (6.73)
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and let uα ∈ K be the regularized Tresca solution, otherwise speaking solution of

a(uα,v − uα) + jα,τ (v)− jα,τ (uα) > f(v − uα) ∀v ∈ K (6.74)

then there exists a constant C > 0 such that

‖uα − u‖1 6 C
√
α (6.75)

Proof. Replacing v by uα in the equation (6.73), and v by u in the equation (6.74), one obtains{
a(u,uα − u) + jτ (uα)− jτ (u) > f(uα − u)

a(uα,u− uα) + jα,τ (u)− jα,τ (uα) > f(u− uα)
(6.76)

or {
a(u,uα − u) + jτ (uα)− jτ (u) > f(uα − u)

a(−uα,uα − u) + jα,τ (u)− jα,τ (uα) > f(u− uα)
(6.77)

Adding these two equations, we obtain

a(u− uα,uα − u) + jτ (uα)− jα,τ (uα) + jα,τ (u)− jτ (u) > 0 (6.78)

Thus

a(uα − u,uα − u) 6 jτ (uα)− jα,τ (uα) + jα,τ (u)− jτ (u)

6
∫

ΓC

τ.|ηα(u1
α,T − u2

α,T )− |u1
α,T − u2

α,T || ds

+

∫
ΓC

τ.|ηα(u1
T − u2

T )− |u1
T − u2

T || ds

6 2‖τ‖L2(ΓC).
√

meas(ΓC).α (ηα ∈ Ξα) (6.79)

Because a is elliptic then
‖uα − u‖1 6 C

√
α (6.80)

Note that the differentiability of ηα is not needed.

Corollary 6.1. If ηα(v) =
√
|v|2 + α2 then

‖uα − u‖1 6 Cα1/2 (6.81)

6.2.4 Coulomb’s criterion as a fixed point problem for the regularized
problem

Given a regularized parameter α > 0, consider the following application

T (τ) = −µσ1
N (uτ ) (6.82)

where σ1
N is the normal stress and uτ the solution of the Tresca problem with the sliding limit

τ > 0 ∈ L2(ΓC), otherwise speaking, solution of the following problem
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Find uτ ∈ K such that

a(uτ ,v − uτ ) + jα,τ (v)− jα,τ (uτ ) > f(v − uτ ) ∀v ∈ K (6.83)

or equivalently

Find uτ ∈ K such that
Jα,τ (uτ ) 6 Jα,τ (v) ∀v ∈ K (6.84)

Let τ∗ = T (τ∗) = −µσ1
N (uτ∗) be the fixed point of the application T and let u = uτ∗ , the

corresponding displacement which is supposed to be sufficiently regular, therefore according to
the theorem 6.2, the equations (6.34) and (6.35) are verified and the regularized Coulomb’s
criterion becomes 

σ1
T = −σ2

T

σ1
T = µσ1

N (u).∇ηα(u1
T − u2

T )

= µσ1
N (u)

(u1
T−u2

T )√
|u1
T−u2

T |2+α2
if ηα(v) =

√
|v|2 + α2

(6.85)

In the section 6.4 we prove for the discretized case, the existence and the uniqueness of a fixed
point for the application T (where σ1

N ∈ H−1/2(ΓC), the dual of H1/2(ΓC)), in addition to the
convergence of the fixed point algorithm to solve the frictional contact problem.

Remark 6.1

As the non-smooth character of Coulomb’s law is lost, when using regularization, then a
phenomena like squeal is hard to be modeled [100].

6.2.5 Quasi-static problem for the regularized one

Given the displacement solution ui = (u1
i ,u

2
i ) of the previous step, then for each sliding limit

τ > 0 ∈ L2(ΓC) of the fixed point algorithm, the following problem is considered

Find uτ,i+1 ∈ K such that

a(uτ,i+1,v − uτ,i+1) + jα,τ (v − ui)− jα,τ (uτ,i+1 − ui) > f(v − uτ,i+1) ∀v ∈ K (6.86)

or equivalently

Find uτ,i+1 ∈ K such that

Jα,τ (uτ,i+1) 6 Jα,τ (v) ∀v ∈ K (6.87)

where jα,τ (v) is replaced by jα,τ (v − ui) which is given by

jα,τ (v − ui) =

∫
ΓC

τ.ηα((v1
T − u1

T,i)− (v2
T − u2

T,i)) ds (6.88)

As u1
T,i and u2

T,i are given, then using the same proof of the theorem 6.2, the two problems
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(6.86) and (6.87) will generate the same equations (6.34) and (6.35) of the theorem 6.2, except
the friction criterion (6.36) which will be slightly changed to

σ1
T = −σ2

T

σ1
T = −τ.∇ηα((u1

T,τ,i+1 − u1
T,i)− (u2

T,τ,i+1 − u2
T,i))

= −τ
(u1
T,τ,i+1 − u1

T,i)− (u2
T,τ,i+1 − u2

T,i)√
|(u1

T,τ,i+1 − u1
T,i)− (u2

T,τ,i+1 − u2
T,i)|2 + α2

if ηα(v) =
√
|v|2 + α2

(6.89)

Let ui+1 be the displacement corresponding to the fixed point of the application T already
defined, the regularized Coulomb’s criterion for the quasi-static problem becomes

σ1
T = −σ2

T

σ1
T = µσ1

N (ui+1).∇ηα((u1
T,i+1 − u1

T,i)− (u2
T,i+1 − u2

T,i))

= µσ1
N (ui+1)

(u1
T,i+1 − u1

T,i)− (u2
T,i+1 − u2

T,i)√
|(u1

T,i+1 − u1
T,i)− (u2

T,i+1 − u2
T,i)|2 + α2

if ηα(v) =
√
|v|2 + α2

(6.90)

6.3 Finite deformation

We consider here the Signorini’s problem for simplicity, indeed the contact between more than
one body can be treated in the same manner. As before a fixed point algorithm is used in order to
write the frictional contact problem as a sequence of Tresca contact problems until convergence,
here the regularization of the Tresca frictional problem is considered. In the following, and for
the sake of convenience, our unknown will be the actual position φ instead of the displacement
u, which is not very different because φ = X + u.

In the following theorem, Ω is the body domain in R3 (also works for R2). In addition, let
the borders Γ0,Γ1,ΓC be disjoint relatively to ∂Ω, and Γ = ∂Ω = Γ0 ∪ Γ1 ∪ ΓC . The area of the
border ΓC is supposed to be strictly positive.

Γ0 is the border where a displacement is imposed, Γ1 is the border where a surface traction is
applied, finally ΓC is the potential contact area, otherwise speaking if φ(ΓC) is ΓC in the actual
configuration, then the actual contact area is included in φ(ΓC).

The body force f is applied over the body Ω, the surface traction g is applied over Γ1, and
finally φ0 is the imposed position on Γ0.

The obstacle is described by the open set C ⊂ R3, the strain energy function is denoted by
Ŵ , and the first Piola-Kirchhoff stress by P. We have that P = ∂Ŵ

∂F , where F is the deformation
gradient tensor.

The admissible solutions set Φ is defined by:

Φ = {ψ : Ω̄→ R3; det(∇ψ) > 0 in Ω̄;ψ = φ0 on Γ0 with ψ(ΓC) ⊆ Cc} (6.91)



138 CHAPTER 6. Frictional contact problems with the interior point method

The condition ψ(ΓC) ⊆ Cc (the complement of C) describes the non-penetration of the first
body into the obstacle.

The potential energy of the body is given by

Ep(ψ) =

∫
Ω

Ŵ (∇ψ) dx−
∫

Ω

f .ψ dx−
∫

Γ1

g.ψ dS (6.92)

We define the mapping T : Φ → Φ, which for a given ζ ∈ Φ, T (ζ) is the solution of the
following constrained minimization problem

min
ψ∈Φ

(
Ep(ψ) +

∫
ζ(ΓC)∩∂C

τηα(vT ) ds

)
(6.93)

where v(x) = ψ(ζ−1(x)) − ζ−1(x), ∀x ∈ ζ(ΓC) ∩ ∂C. Moreover τ(x) = τ0(ζ−1(x)) where
τ0 ∈ L2(ΓC) > 0 is the sliding limit of the Tresca criterion and ηα : R3 → R+ a regularization
function belonging to Ξα, defined before ( for example ηα(x, y, z) =

√
x2 + y2 + z2 + α2 with

α > 0). Finally vT is the tangential part of v, and can be given by vT = v − vnn with vn its
normal component and n the normal vector at ζ(ΓC) ∩ ∂C.

In the following theorem, some elements of the proof, where the friction is not taken into
account, are taken from [29].

Theorem 6.4. Let φ ∈ Φ be the fixed point of the application T defined above, otherwise speaking
φ = T (φ), which means also that φ is solution of

min
ψ∈Φ
E(ψ) (6.94)

where
E(ψ) = Ep(ψ) +

∫
φ(ΓC)∩∂C

τ.ηα(vT ) ds (6.95)

If φ is smooth enough, then φ satisfies formally the following properties, corresponding to the
frictional contact between a body and an obstacle, with a regularized Tresca criterion.



−div P = f in Ω

φ = φ0 on Γ0

PN = g on Γ1

φ(ΓC) ⊆ Cc

PN = 0 if X ∈ ΓC and φ(X) ∈ Cc (/∈ C ∪ ∂C)
(PN).n = λn if X ∈ ΓC and x = φ(X) ∈ ∂C where λn 6 0

σT = −τ∇ηα(uT ) = −τ uT√
|uT |2+α2

on γC = φ(ΓC) ∩ ∂C (if ηα(v) =
√
|v|2 + α2)

(6.96)

where σT ,uT are respectively the tangential stress and displacement, N and n are respectively
the unit outer normal vector on the initial and on the deformed surface of the body. σ is the
Cauchy stress tensor and σn has the same direction of PN. Finally ∇ηα(uT ) is supposed to
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belong to the tangent plane (it is true if ηα(v) =
√
|v|2 + α2).

Proof. The function φ is a solution of the minimization problem (6.94), therefore

E(φ) 6 E(ψ) ∀ψ ∈ Φ (6.97)

In the following we need the Green formula, which for a smooth enough tensor T states∫
Ω

T : ∇θ dx = −
∫

Ω

div(T).θ dx+

∫
Γ

TN.θ dS ∀θ (6.98)

Consider θ a sufficient smooth function that vanishes in a neighborhood of Γ0∪ΓC . There exists
ε0 = ε(θ) > 0 such that φε = φ+ εθ ∈ Φ ∀ |ε| 6 ε0.

E(φε)− E(φ) > 0 (6.99)

E(φε)− E(φ) = E(φ+ εθ)− E(φ)

=

∫
Ω

(
Ŵ (∇φ+ ε∇θ)− Ŵ (∇φ)

)
dx− ε

(∫
Ω

f .θ dx+

∫
Γ1

g.θ dS

)
(6.100)

Otherwise we have:

Ŵ (∇φ+ ε∇θ)− Ŵ (∇φ) = ε
∂Ŵ

∂F
: ∇θ + o(ε)

= εP : ∇θ + o(ε)

(6.101)

Using the Green formula in equation (6.98) and the fact that θ vanishes in a neighborhood of
Γ0 ∪ ΓC , we obtain :∫

Ω

(
Ŵ (∇φ+ ε∇θ)− Ŵ (∇φ)

)
dx = ε

∫
Ω

P : ∇θ dx+ o(ε)

= −ε
∫

Ω

div(P).θ dx+ ε

∫
Γ1

PN.θ dS + o(ε)

(6.102)

Thus

E(φε)− E(φ) =− ε
∫

Ω

div(P).θ dx+ ε

∫
Γ1

PN.θ dS

− ε
(∫

Ω

f .θ dx+

∫
Γ1

g.θ dS

)
+ o(ε)

=ε

{∫
Ω

(−div(P)− f) .θ dx+

∫
Γ1

(PN− g) .θ dS +
o(ε)

ε

}
> 0

(6.103)

Taking ε > 0 and taking the limit ε→ 0+ we have:

∫
Ω

(−div(P)− f) .θ dx+

∫
Γ1

(PN− g) .θ dS > 0 (6.104)
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Let X ∈ Ω and B(X, r) ⊂ Ω the open ball of center X with a small radius r > 0 (see Figure
6.2). Consider θ a sufficient smooth function with support in B(X, r), thus we deduce that
−div(P) = f in B(X, r), and then it’s true in Ω.

Figure 6.2 – The initial and actual configurations

The equation (6.104) can always be used, thus using the fact that − div(P) = f in Ω, we
obtain: ∫

Γ1

(PN− g) .θ dS > 0 (6.105)

We deduce that PN = g on Γ1.

Let X ∈ ΓC such that φ(X) ∈ Cc (see Figure 6.3), consider any smooth function θ : Ω̄→ R3

with a support in B(X, r) ∩ Ω̄ where r > 0 and small, there exists a ε2(θ) > 0 such that
φε = φ+ εθ ∈ Φ ∀ |ε| 6 ε2. As before, E(φε)− E(φ) > 0 , thus using Green’s formula and the
equations of equilibrium we obtain:

ε

{∫
ΓC

PN.θ dS +
o(ε)

ε

}
> 0 (6.106)

Figure 6.3 – The case where the stress is zero for the point X

We deduce that PN = 0 for X ∈ ΓC such that φ(X) ∈ Cc.

Let γC = φ(ΓC) ∩ ∂C. We will prove next that the coefficient λn in the equation (6.96) is
negative. We consider Y ∈ ΓC such that y = φ(Y) ∈ γC (see Figure 6.4). Consider any positive
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smooth function θ : Ω̄→ R+ with support in B(Y, r), then ∃ ε4(θ) > 0 such that:

φε = φ− εθn ∈ Φ ∀ 0 6 ε 6 ε4 (6.107)

Thus by the same procedure we obtain:

ε

{∫
ΓC

−PN.nθ dS +
o(ε)

ε
+
j(uε)− j(u)

ε

}
> 0 (6.108)

where uε, u are respectively the displacement fields of φε and φ, j is defined by

j(v) =

∫
γC

τ.ηα(vT ) ds (6.109)

As the normal direction is considered then j(uε)− j(u) = 0. If ε→ 0+ then we have:∫
ΓC

PN.nθ dS 6 0 (6.110)

Thus λn = PN.n 6 0 at X ∈ ΓC where φ(X) ∈ γC .

We still have the last equations of the problem (6.96) to demonstrate. We also consider
Y ∈ ΓC such that y = φ(Y) ∈ γC , supposing that the boundaries of φ(Ω), C are smooth
enough, then we can assume that φ(ΓC) and ∂C have the same tangent space at the point
y = φ(Y). Let V (Y) be a neighborhood of y and t1, t2,n a 3 smooth fields, such that t1, t2

span the tangent space at V ∩ γC and ‖t1‖ = ‖t2‖ = 1 , n is the outer normal vector on the
body. Consider the ball B(Y, r) such that B(Y, r) ∩ Γ ⊂ ΓC and φ(B(Y, r)) ⊂ V (see Figure
6.4), therefore given two smooth functions θ1, θ2 : Ω̄ → R with support in B(Y, r), there exist
ε3(θ1, θ2) > 0 and two functions λε1, λε2 : Ω̄→ R with support in B(Y, r) such that:

For β = 1, 2 {
φε = φ+ ε(θβtβ + λεβn) ∈ Φ ∀ |ε| 6 ε3

|λεβ | = o(ε)
(6.111)

Figure 6.4 – The point y = φ(Y) and its neighborhood

Taking E(φε)− E(φ) > 0 and repeating the same procedure as before, we obtain:

ε

{∫
ΓC

PN.θβtβ dS +
1

ε
(j(uε)− j(u)) + o(ε) +

o(ε)

ε

}
> 0 (6.112)

Now the stress tensor P is transformed into the Cauchy one σ, which acts on the actual configu-
ration. We can use also the fact that PNdS = σnds, where dS and ds are respectively the area
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measures in the initial and actual configuration. Therefore

ε

{∫
γC

σn.θβtβ ds+

∫
γC

τ.
1

ε
(ηα(uT + εθβtβ + εo(ε))− ηα(uT )) ds+ o(ε) +

o(ε)

ε

}
> 0 (6.113)

Using Taylor’s theorem we obtain∫
γC

σn.θβtβ ds+

∫
γC

τ.∇ηα(uT ).(θβtβ) ds+ o(ε) +
o(ε)

ε
> 0 (6.114)

By taking ε→ 0 we obtain that∫
γC

σn.θβtβ ds+

∫
γC

τ.∇ηα(uT ).(θβtβ) ds > 0 (6.115)

which is equivalent to ∫
γC

σT .θβtβ ds+

∫
γC

τ.∇ηα(uT ).(θβtβ) ds > 0 (6.116)

and thus we have ∫
γC

σT .θβtβ ds+

∫
γC

τ.∇ηα(uT ).(θβtβ) ds = 0 (6.117)

We conclude as before that for β = 1, 2 we have

σT .tβ = −τ∇ηα(uT ).tβ (6.118)

= −τ uT√
|uT |2 + α2

.tβ if ηα(v) =
√
|v|2 + α2 (6.119)

∇ηα(uT ) is supposed to belong to the tangent plane (it’s true if ηα(v) =
√
|v|2 + α2). Therefore

for any tangential vector t we have

(σT + τ∇ηα(uT )).t = 0 (6.120)

We deduce then that σT = −τ∇ηα(uT ) = −τ uT√
|uT |2+α2

.

Remark 6.2

From an algorithmic point of view, we remark that the problem (6.96) can be solved as
a fixed point algorithm. Thus at each step k

φk+1 = T (φk) (6.121)
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Remark 6.3

The quasi-static study, as in the linear case, is very similar to the static one, when we
discretize the velocity. Indeed we replace vT by vT − uT,i in the equation (6.95), where
ui denotes the solution of the previous state. In addition uT is replaced by uT − uT,i in
the equation (6.96).

6.4 Fixed point algorithm convergence for the frictional reg-
ularized discretized problem

In the paper [81], the discretized frictional Signorini’s problem, using P1 finite elements was
written in term of a fixed point algorithm, and it was proven that there exit a solution for this
latter and this algorithm converges for small friction coefficient. In [58], a mixed finite element
method was considered, and the friction coefficient threshold for the uniqueness of the solution,
depends on the mesh size and on the regularization parameter α. However we will follow the
most part of the proof of [81] with several modifications, in order to treat our regularized problem
also for the Signorini’s case. Like [81], the friction coefficient threshold for the uniqueness of the
solution depends only on the mesh size.

First consider the following finite element spaces for the body Ωh ⊂ Rd, where d = 2, 3

Xh =
{
v ∈ C0(Ω̄h) | v|Ti ∈ P1, ∀Ti triangle of Ωh

}
Vh =

{
v = (v1, v2) ∈ (Xh)d | v = 0 on Γ0

}
Kh = {v ∈ Vh | vn = v.n 6 0 on ΓC}
X̂h = the trace space of Xh on ΓC

V̂h = the trace space of Vh on ΓC

where as before ΓC denotes the contact potential area, Vh the admissible set and Kh the set
describing the non-penetration between the body and the obstacle with n the outward unit
normal vector on ΓC .

Let {ŵi ∈ X̂h | i = 1, . . . , nC} be a basis of X̂h, otherwise speaking each vector of this basis
is the non-zero trace of a vector of the basis of Xh on ΓC . The linear application R : V̂h → Vh

is defined such that, it associates to v̂ ∈ V̂h, a unique vector v = Rv̂ ∈ Vh such that this latter
is equal to zero at all nodes outside ΓC .

Let Πh denotes the restriction to ΓC of the interpolation operator associated with Xh, Πh

has the following property (see [81])

|Πh(|vh|)|L2(ΓC) 6 c(h)|vh|L2(ΓC) ∀vh ∈ V̂h (6.122)

where c(h) a constant depending on h. In addition Πh has the following useful properties
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Lemma 6.2. Let φ, φ1, φ2 ∈ L2(ΓC), we have
Πh(φ) > 0 if φ > 0

Πh(φ1) 6 Πh(φ2) if φ1 6 φ2

|Πh(φ)| 6 Πh(|φ|)
(6.123)

Proof. First of all Πh(φ) is given by

Πh(φ) =
∑
i

φiŵi (6.124)

The shape functions ŵi > 0 because we use P1 finite elements, thus if φ > 0, then Πh(φ) > 0. In
addition if φ1 6 φ2, then Πh(φ2−φ1) > 0 and we obtain the second equation of (6.123). Finally

|Πh(φ)| 6
∑
i

|φi|ŵi = Πh(|φ|) (6.125)

According to [81], one can defines two applications{
< σ(v), v̂ > = a(v, Rv̂)− f(Rv̂) ∀v ∈ Vh and ∀ v̂ ∈ V̂h

< σn(v), ŵ > =< σ(v), ŵn > ∀v ∈ Vh and ∀ ŵ ∈ X̂h

(6.126)

The first one describes the stress vector on ΓC and the second one describes the normal stress
on ΓC corresponding to a displacement test vector v.

Remark 6.4

If v is sufficiently regular (let’s say v ∈ H2), then the Green formula can be used as in
theorem 6.2, to obtain

< σn(v), ŵ >=

∫
ΓC

σn(v)ŵ ds (6.127)

In the following, the regularization function ηα approximating the module of a vector, belongs
to the set Ξα, defined before.

Our regularized frictional problem, approximating Coulomb’s criterion is given by

Find uh ∈ Kh such that

a(uh,v − uh)− < µσn(uh),Πh(ηα(vT )− ηα(uhT )) >> f(v − uh) ∀v ∈ Kh (6.128)

where µ is the friction coefficient.

Let H denotes the set of all positive linear applications on X̂h, otherwise speaking, the set of
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applications τ such that
< τ, ŵ >> 0 ∀ ŵ ∈ X̂h > 0 (6.129)

For τ ∈ H, the application T is defined by

< T (τ), ŵ >= − < µσn(uhτ ), ŵ > (6.130)

where uhτ is the solution of the frictional regularized problem seen before with the sliding limit
τ , otherwise speaking uhτ is the solution of the following problem

Find uhτ ∈ Kh such that

a(uhτ ,v − uhτ )+ < τ,Πh(ηα(vT )− ηα(uhτ,T )) >> f(v − uhτ ) ∀v ∈ Kh (6.131)

Remark 6.5

The problem (6.131) has a unique solution, indeed consider the following energy

E(v) :=
1

2
a(v,v)− f(v)+ < τ,Πh(ηα(vT )) > (6.132)

The functional v →< τ,Πh(ηα(vT )) > is positive, convex and continuous, therefore the
problem (6.131) is equivalent to the minimization of E over the closed and convex set
Kh, which assure the existence and the uniqueness of the solution. We can prove the
continuity by proving that the mapping: v → Πh(ηα(vT )) is continuous, and because τ
is a linear mapping on a finite dimensional vector space then it is continuous. Noting | · |1
the H1 norm, let’s take a sequence vi → u, then we have the following inequality (see
after in the equation (6.146) for more details)

|Πh(ηα(viT ))−Πh(ηα(uT )) |H1/2(ΓC) = |Πh(ηα(viT )−ηα(uT )) |H1/2(ΓC) 6 c.|vi−u |L2(ΓC)

(6.133)
By the trace theorem

|Πh(ηα(viT ))−Πh(ηα(uT )) |H1/2(ΓC) 6 C.|vi − u |1 (6.134)

and therefore
Πh(ηα(viT ))→ Πh(ηα(uT )) (6.135)

If T (τ) ∈ H , ∀ τ ∈ H, then we can deduce that the frictional problem (6.128) is equivalent
to

Find a fixed point of the application T

T (τ) = τ (6.136)

So we want to prove that T (τ) ∈ H. Let ŵ > 0 ∈ X̂h, using the definition 6.126 one obtains

< σn(uhτ ), ŵ >= a(uhτ , R(ŵn))− f(R(ŵn)) ∀ ŵ ∈ X̂h (6.137)
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where R is a linear application previously defined. As ŵ > 0 then v = uhτ −R(ŵn) ∈ Kh, so we
can inject it in the variational inequality (6.131) to obtain

< σn(uhτ ), ŵ >= a(uhτ , R(ŵn))− f(R(ŵn)) 6 0 (6.138)

Therefore < T (τ), ŵ >> 0 and T (τ) ∈ H.

In the following we will present some results in order to prove that the application T has a
fixed point, which implies the existence of a solution of the problem (6.128). In addition it will
be shown that for a small friction coefficient µ, the application T is a contraction which implies
a unique fixed point of T , and the uniqueness of the solution can be proven. Finally the fixed
point algorithm can be easily given in order to solve the problem (6.128) as a sequence of the
problem (6.131).

Lemma 6.3.
|T (τ1)− T (τ2)|∗ 6 µC(h) |τ1 − τ2|∗ ∀ τ1, τ2 ∈ H (6.139)

where C(h) a constant which depends on the mesh size, and the dual norm | · |∗ is defined as
follows

|τ |∗ = sup
φ∈X̂h

| < τ, φ > |
|φ|H1/2(ΓC)

(6.140)

Proof. Let τ1, τ2 ∈ H, and u1, u2 respectively the solutions of the equation (6.131) for τ = τ1
and τ = τ2. Taking v = u2 in the equation (6.131) for τ = τ1 and v = u1 in the equation (6.131)
for τ = τ2, one obtains{

a(u1,u2 − u1)+ < τ1,Πh(ηα(u2T )− ηα(u1T )) >> f(u2 − u1)

a(u2,u1 − u2)+ < τ2,Πh(ηα(u1T )− ηα(u2T )) >> f(u1 − u2)
(6.141)

equivalently{
a(u1,u2 − u1)+ < τ1,Πh(ηα(u2T )− ηα(u1T )) >> f(u2 − u1)

a(−u2,u2 − u1)+ < τ2,Πh(ηα(u1T )− ηα(u2T )) >> f(u1 − u2)
(6.142)

Adding these two equations, one obtains

a(u1 − u2,u2 − u1)+ < τ1 − τ2,Πh(ηα(u2T )− ηα(u1T )) >> 0 (6.143)

Thus
a(u2 − u1,u2 − u1) 6< τ1 − τ2,Πh(ηα(u2T )− ηα(u1T )) > (6.144)

Hence

a(u2 − u1,u2 − u1) 6 |τ1 − τ2|∗ |Πh(ηα(u2T )− ηα(u1T ))|H1/2(ΓC)

6 C|τ1 − τ2|∗ |Πh(ηα(u2T )− ηα(u1T ))|L2(ΓC) (6.145)

The last inequality is due to the equivalence between the norms | · |L2 and | · |H1/2 on a finite
dimensional space.
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Using the fact ηα ∈ Ξα (see the definition 6.1) and the properties of Πh, one obtains

a(u2 − u1,u2 − u1) 6 C|τ1 − τ2|∗ |Πh(ηα(u2T )− ηα(u1T ))|L2(ΓC)

6 C|τ1 − τ2|∗ |Πh(|ηα(u2T )− ηα(u1T )|)|L2(ΓC)

6 C|τ1 − τ2|∗ |Πh(| |u2T | − |u1T | |) |L2(ΓC)

6 C|τ1 − τ2|∗ |Πh(|u2T − u1T |) |L2(ΓC)

6 C|τ1 − τ2|∗ |Πh(|u2 − u1|) |L2(ΓC)

6 c.|τ1 − τ2|∗ |u2 − u1 |L2(ΓC) (6.146)

Using the fact that a is elliptic, the above equation becomes

|u2 − u1|21 6 C1|τ1 − τ2|∗ |u2 − u1 |L2(ΓC) (6.147)

Considering the trace theorem, we obtain

|u2 − u1|21 6 C2|τ1 − τ2|∗ |u2 − u1|1 (6.148)

Finally
|u2 − u1|1 6 C2|τ2 − τ1|∗ (6.149)

Besides, from the definition 6.130, for ŵ ∈ X̂h

< T (τ2)− T (τ1), ŵ >= µ < σn(u1)− σn(u2), ŵ > (6.150)

Otherwise, using the definition 6.126 one obtains{
< σn(u1), ŵ >= a(u1, R(ŵn))− f(R(ŵn)) ∀ ŵ ∈ X̂h

< σn(u2), ŵ >= a(u2, R(ŵn))− f(R(ŵn)) ∀ ŵ ∈ X̂h

(6.151)

where R is a linear application previously defined. Hence

< T (τ2)− T (τ1), ŵ >= µ.a(u1 − u2, R(ŵn)) (6.152)

Therefore

| < T (τ2)− T (τ1), ŵ > | 6 µ.|u1 − u2|1|R(ŵn)|1 (continuity of a)
6 µ.C2|τ2 − τ1|∗|R(ŵn)|1 (equation (6.149))
6 µ.C3|τ2 − τ1|∗|ŵn|L2 (continuity of R)
= µ.C3|τ2 − τ1|∗|ŵ|L2

6 µ.C4|τ2 − τ1|∗|ŵ|H1/2 (6.153)

We conclude that
|T (τ2)− T (τ1)|∗ 6 µC4 |τ2 − τ1|∗ ∀ τ1, τ2 ∈ H (6.154)

The existence and the uniqueness of the solution of the regularized frictional problem (6.128)
depend on the existence and the uniqueness of the fixed point of the application T . We have the
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following theorem

Theorem 6.5. If µ < 1
C(h) , the application T has a unique fixed point, and the following fixed

point algorithm converges to the fixed point

τn+1 = T (τn) (6.155)

In addition if un+1 is the solution of the problem (6.131) for τ = τn+1 then

un+1 −→
n→∞

u∗ (6.156)

where u∗ is the unique solution of (6.128).

Proof. From the lemma 6.3, T is a contraction mapping, then using the Banach fixed-point
theorem, T admits a unique fixed point τ∗ and τn+1 converges to τ∗.

Moreover from the equation (6.149) we have

|un+1 − u∗|1 6 C2|τn+1 − τ∗|∗ (6.157)

Because τn+1 −→
n→∞

τ∗ then un+1 −→
n→∞

u∗.

Next we want to prove only the existence of a solution for the problem (6.128) without any
restriction on the friction coefficient. First let’s introduce the following lemma

Lemma 6.4. There exists a constant C > 0 such that

|T (τ)|∗ 6 C ∀ τ ∈ H (6.158)

Proof. Let u be a solution of the problem (6.131) for the sliding limit τ ∈ H, therefore taking
v = 0 ∈ Kh in the inequality (6.131) one obtains

a(u,−u)+ < τ,Πh(ηα(0)− ηα(uT )) >> f(−u) (6.159)

Hence
a(u,u) 6< τ,Πh(ηα(0)− ηα(uT )) > +f(u) (6.160)

Because τ ∈ H and ηα ∈ Ξα ( see the definition 6.1), we have < τ,Πh(ηα(0) − ηα(uT )) >6 0,
and thus

a(u,u) 6 f(u) (6.161)

Using the fact that a is elliptic and f is continuous, we deduce the existence of a constant C2 > 0
such that

|u|1 6 C2 (6.162)
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Besides

|T (τ)|∗ = sup
φ∈X̂h

| < T (τ), φ > |
|φ|H1/2(ΓC)

= µ sup
φ∈X̂h

|a(u, R(φn))− f(R(φn))|
|φ|H1/2(ΓC)

(equation (6.151))

(6.163)

From the continuity of a and f we have

|a(u, R(φn))− f(R(φn))| 6 C3|u|1|R(φn)|1 + C4|R(φn)|1
6 C5|u|1|φ|H1/2 + C6|φ|H1/2 (like equation (6.153))
= (C5|u|1 + C6)|φ|H1/2

6 C7|φ|H1/2(ΓC) (equation (6.162)) (6.164)

Therefore
|T (τ)|∗ 6 µC7 (6.165)

Finally we have the following theorem

Theorem 6.6. There exists a fixed point for the application T .

Proof. We are in a finite dimensional space, thus if we take M = H ∩ B̄(0, C) as the intersection
of H with the closed ball B̄(0, C), M is compact and convex of the dual of X̂h. From the
lemma 6.4 we deduce that T (M) ⊆M and we know that T is continuous, therefore by applying
Brouwer’s fixed-point theorem we conclude that T admits a fixed point.

Note that all the above constants do not depend on the regularization parameter α.

6.4.1 Case of two bodies in contact

All previous results can be generalized for the case of contact between two bodies Ω1
h and Ω2

h.
Some modifications must be done, for example X̂h is the trace space of Xh which in this case
becomes

Xh =
{
v ∈ C0(Ω1

h) | v|Ti ∈ P1, ∀Ti triangle of Ω1
h

}
(6.166)

which means that all linear applications (for example σn, τ , T (τ)) applied on X̂h depends on the
first body Ω1

h. Moreover a = a1 + a2 and f = f1 + f2. In equations (6.126, 6.151, 6.152, 6.163,
6.164) a = a1 and f = f1.

In order to extend the above results to the contact between two bodies, the equation (6.146)
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is revisited, noting ul the displacement for the body Ωlh then

a(u2 − u1,u2 − u1) 6 c|τ1 − τ2|∗ | (u1
2 − u1

1)− (u2
2 − u2

1) |L2(ΓC)

6 c|τ1 − τ2|∗ (|u1
2 − u1

1 |L2(ΓC) + |u2
2 − u2

1 |L2(ΓC)) (6.167)

Let | · |1,l denotes the H1 norm when the vector belongs to Ωlh, and simply | · |1 for the H1 broken
norm on Ωh = Ω1

h∪Ω2
h. Applying the trace theorem on Ω1

h and Ω2
h, the equation (6.167) becomes

a(u2 − u1,u2 − u1) 6 C|τ1 − τ2|∗ (|u2
2 − u2

1 |1,2 + |u1
2 − u1

1 |1,1) (6.168)

Using the following identity, for x1, x2 ∈ R

|x1|+ |x2| 6
√

2(x2
1 + x2

2)1/2 (6.169)

equation (6.168) becomes

a(u2 − u1,u2 − u1) 6 C|τ1 − τ2|∗ (|u2
2 − u2

1 |21,2 + |u1
2 − u1

1 |21,1)1/2

= C|τ1 − τ2|∗ |u2 − u1|1 (6.170)

and the equation (6.148) is recovered. Finally the fact that | · |1,l 6 | · |1 in equations (6.153,
6.164) finish the proof.

6.4.2 Error between Tresca’s discretized solution and regularized Tresca’s
discretized solution

For the sake of clarity we consider only the Signorini case. We have the following theorem

Theorem 6.7. Let u ∈ Kh be the Tresca solution, in other words, solution of

a(u,v − u)+ < τ,Πh(|vT | − |uT |) >> f(v − u) ∀v ∈ Kh (6.171)

and let uα ∈ Kh be the regularized Tresca solution, otherwise speaking, solution of

a(uα,v − uα)+ < τ,Πh(ηα(vT )− ηα(uα,T )) >> f(v − uα) ∀v ∈ Kh (6.172)

then there exists a constant C > 0 such that

|uα − u|1 6 C
√
α (6.173)

Proof. Replacing v by uα in the equation (6.171), and v by u in the equation (6.172), one obtains{
a(u,uα − u)+ < τ,Πh(|uα,T | − |uT |) >> f(uα − u)

a(uα,u− uα)+ < τ,Πh(ηα(uT )− ηα(uα,T )) >> f(u− uα)
(6.174)

or {
a(u,uα − u)+ < τ,Πh(|uα,T | − |uT |) >> f(uα − u)

a(−uα,uα − u)+ < τ,Πh(ηα(uT )− ηα(uα,T )) >> f(u− uα)
(6.175)
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Adding these two equations, we obtain

a(u− uα,uα − u)+ < τ,Πh(|uα,T | − ηα(uα,T ) + ηα(uT )− |uT |) >> 0 (6.176)

Thus

a(uα − u,uα − u) 6 |τ |∗ |Πh(|uα,T | − ηα(uα,T ) + ηα(uT )− |uT |)|H1/2(ΓC)

6 C|τ |∗ |Πh(|uα,T | − ηα(uα,T ) + ηα(uT )− |uT |)|L2(ΓC)

6 C|τ |∗ |Πh(||uα,T | − ηα(uα,T )|) + Πh(|ηα(uT )− |uT ||)|L2(ΓC)

6 2C|τ |∗|Πh(1)|L2(ΓC).α (ηα ∈ Ξα) (6.177)

Because a is elliptic then
|uα − u|1 6 C1

√
α (6.178)

Corollary 6.2. If ηα(v) =
√
|v|2 + α2 then

|uα − u|1 6 Cα1/2 (6.179)

6.5 The Algorithm

Using the finite element approach, for l = 1 or 2, let Ωlh be the mesh of the body Ωl, which
is composed from the triangles family {T li | i = 1, . . . , nlT }. In addition, consider the following
spaces

Vl
h =

{
v = (v1, v2) ∈ C0(Ωlh)× C0(Ωlh) | v|T li ∈ Pr × Pr, ∀i = 1, . . . , nlT and v = 0 on Γl0

}
(6.180)

where C0(Ωlh) denotes the set of the continuous functions on Ωlh, and Pr denotes the linear finite
elements for r = 1 and the quadratic ones for r = 2.

Consider the space Vh defined as follows

Vh = V1
h ×V2

h (6.181)

Let uh = (u1
h,u

2
h) ∈ Vh, the displacement vector field ulh on the mesh Ωlh is given by

ulh =
∑
i

(
Uxi
Uyi

)
ŵli (6.182)

where ŵli are the shape functions on the mesh Ωlh, and
(
Uxi Uyi

)T are the degrees of freedom of
ulh, otherwise speaking U

x
i and Uyi represent respectively the horizontal and vertical displacement

of the node i in the mesh. In the following U ∈ Rn denotes the vector of all degrees of freedom
of uh, otherwise stated

U =
(
. . . Uxi Uyi . . .

)T (6.183)

We will present the algorithm to solve frictional contact problem in general case, otherwise
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speaking in the case of large deformations. For the sake of simplicity and in order to be more
clear, the algorithm will be split into several algorithms.

The idea behind the algorithm is first to loop on the sliding limits τ until convergence, more
precisely at each iteration k, the regularized frictional problem for a given sliding limit τk is
solved, which corresponds to a minimization problem, then we retrieve the normal pressure σn,k
on the contact area, and the next sliding limit τk+1 is computed via τk+1 = −µσn,k. This process
continues until the relative error between two successive sliding limits is small enough.

In the sequel, [[τ ]] denotes an array containing the value of τ at the integration points of the
contact area.

The algorithm solving the frictional problem is shown in algorithm 6.

Algorithm 6 Regularized frictional algorithm using the fixed point method

Set the error tolerance εtol = 10−6

Compute σn,0 the normal stress pressure at the contact area for the frictionless problem
Compute τ0 = −µσn,0, the first sliding limit
while error > εtol do

1. For a given sliding limit τk, solve Tresca’s regularized problem, given in the algorithm 7
2. Retrieve the displacement field uh
3. Compute the normal pressure σn,k(uh) on the contact surface
4. Compute the new sliding limit τk+1 = −µσn,k
5. error=

‖[[τk+1]]− [[τk]]‖∞
‖[[τk]]‖∞

end while

The resolution of the contact problem without friction, is to solve the following constrained
minimization problem 

uh = arg min
v∈Vh

(Ep(v)) s.t∫
ΓC1

((x− x̄2)n).φ
(1)
i dS > 0 ∀ i = 1, . . . , nC1∫

ΓC2

((x− x̄1)n).φ
(2)
i dS > 0 ∀ i = 1, . . . , nC2

(6.184)

where x = X + v the actual position of a material point, with X the initial position of this same
point. ΓCl is the initial potential contact area of the body Ωlh . x̄l is the projection point of x
on the body Ωlh, where l = 1, 2 and n is the outward unit normal vector at x̄l. Note that the
two constraints in the problem (6.184) describe the non-penetration in a weak sense, and it is a
symmetric formulation, in other words the user does not need to specify anymore a slave and a
master body, see [63] for details. φ(l)

i are the shape functions on the nCl nodes of the contact
area ΓCl.
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In addition Ep is the total potential energy defined by
Ep(v) = 1

2a(v,v)− f(v) for linear elastic problems

Ep(v) =

∫
Ω1
h∪Ω2

h

Ŵ (v)dv − f(v) for large deformations and hyperelastic problems (6.185)

where Ŵ is the strain energy function.

Moreover, in the case of large deformations, we can remark that the projection points x̄l
l = 1, 2 in the non-penetration constraints (6.184) depend on the actual solution of the problem.
Thus we will use a fixed point algorithm to deal with this issue. Indeed in the fixed point
algorithm iteration, we will use the displacement of the previous iteration, and based on this
displacement we will compute for each point x its closest segment or triangle in the body Ωlh
and its projection parameter, and therefore the projection point x̄l now depends linearly on the
actual displacements. Otherwise speaking we obtain a sequence of minimization problems with
linear constraints.

The resolution of the Tresca regularized problem, presented in the algorithm 7, will use the
theorem 6.4 and therefore as we saw, we can use a fixed point algorithm. We used the same fixed
point algorithm treating the constraints. Therefore in the fixed point algorithm iteration, let’s
say n+ 1, we minimize the following energy En+1 submitted to the linear constraints.

En+1(v) = Ep(v) +

∫
γnC

τk.ηα(v1
T − v̄2

T ) ds (6.186)

where τk is the sliding limit at the iteration k of the algorithm 6. v1 is the admissible displacement
field of the first body and v̄2 is the admissible displacement field of the second body applied on
the projection points of the first body on the second one. Finally γnC is the actual contact area
based on the displacements of the previous iteration n.

Algorithm 7 Symmetric algorithm using the fixed point method for Tresca’s regularized problem

Initialization of the displacement U0 and setting the tolerance εtol = 10−6

while error > εtol do
1. Using the displacement vector Un of the previous iteration n:

- Compute the projection points’ parameters {η∗i | i = 1, . . . , nS} of all slave
integration points

- Compute the normal at the projection points {ni | i = 1, . . . , nS}
(Using smoothing techniques)

- Compute the contact area γnC (by computing the distance between the two bodies)
2. For each integration point, its projection point x̄i depends linearly on the actual

displacement
3. Reverse the role of the master and the slave bodies
4. Form the Energy En+1 (Equation (6.186)) and the symmetric linear constraints
5. Use the interior point method in order to solve the minimization problem with linear

constraints, and to obtain the actual displacement Un+1

6. error=
‖Un+1 −Un‖∞
‖Un‖∞

end while
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6.6 Numerical validations

6.6.1 Validation of the regularized friction law

In this first example we will try to validate the regularized friction law given in the equation
(6.85). Indeed we will take an elastic rectangular body of dimensions (40UL× 20UL) laid on a
rigid rectangle body (see Figure 6.5 ). The elastic body has the following material properties, a
Young’s modulus E = 103 UF

UL2 and a poisson’s ratio ν = 0, note that UF , UL denote respectively
the force and the length unit. A vertical force of −30UFUL is uniformly distributed along its top
area.

Ω

Rigid body

Figure 6.5 – Problem geometry

At the first stage we impose a sliding conditions on its left boundary, and we apply a sequence
of an uniformly distributed horizontal force on its right boundary pointing to the right, with the
following values 2, 5, 10, 20, 30 UF

UL . In the second stage the sliding conditions are imposed on its
right boundary and we apply a sequence of an uniformly distributed horizontal force on its left
boundary pointing to the left, with the following values −2,−5,−10,−20,−30 UF

UL2 (symmetrical
loads). Considering the midpoint of the contact area, the goal of this example is to plot the ratio
of the tangential and normal stresses σT

σn
against the tangential displacement uT , and to compare

it with the theoretical one seen in the equation (6.85).

In all next examples the regularization function will be ηα(v) =
√
|v|2 + α2 for v ∈ R2 or

R3. Taking α = 10−2, then according to the equation (6.85) we have

σT
σn

= µ
uT√

u2
T + α2

(6.187)

We consider a friction coefficient µ = 0.1, and linear finite elements. The normal stress at
the contact area is equal to σn = σyy and the tangential stress on the contact area is equal
to σT = −σxy, moreover the tangential displacement is equal to uT = ux. In the Figure 6.6,
the ratio σT

σn
against the tangential displacement uT is plotted for the different loads mentioned

above, and is compared with the theoretical one given by the equation (6.187).
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0.1
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theoritical

Figure 6.6 – σT
σn

vs uT

We can see the consistency between the simulation and the theoretical results, and how
regularization can approach Coulomb’s law. We saw similar results for quadratic finite elements,
three dimensional case and for hyperelastic materials.

6.6.2 Elastic bloc pressed against a rigid foundation

In this example an elastic body (Young’s modulus E = 1000 UF
UL2 , Poisson’s ratio ν = 0.3) is

pressed against a rigid foundation and then pulled by a tangential force. The geometry and the
loads are presented in the Figure 6.7 (length units in UL). The lower area is composed from a
contact area of length 3.6UL, where the friction is active (see Figure 6.7), and from two other
parts where a sliding condition is imposed. This example was handled in [89, 124].
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Ω2

3.6
4.0

60UFUL

200UFUL

Figure 6.7 – The geometry and the loads

The regularization parameter was taken to be α = 10−3 and quadratic finite elements (P2)
were used (in order to test these finite elements). The frictional coefficient is equal to µ = 0.5,
note that there is no boundary conditions in the horizontal direction in order to avoid the body
from sliding to infinity, thus the equilibrium is reached because of the frictional forces. Moreover
if µ = 0.1 then as in [89], the body slide to infinity (60× 2 > 0.1× (200× 3.6)).

The mesh and the deformed shape of the elastic body are presented in the following Figure
6.8.

Figure 6.8 – The deformed shape of the elastic body

The normal and tangential contact stresses are depicted in the Figure 6.9, and are close to
the ones in [89].
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Figure 6.9 – The stresses on the frictional contact area

6.6.3 Contact of a square plate against an obstacle

Always in the same spirit, we consider an elastic square plate (Young’s modulus E = 1.3×105 UF
UL2 ,

Poisson’s ratio ν = 0.2) in the plane strain configuration (2D). This plate is subjected to an
uniformly distributed forces on its top and left area. The geometry and the loads are depicted
in the Figure 6.10 (units in UL). This example was studied in [111], and the goal is to compute
the tangential displacement for a given points on the lower area of the plate.

Ω

40

150UFUL

50UFUL

x

y

Figure 6.10 – The geometry and the loads

Finally, the body right area is fixed in the horizontal direction, and the friction coefficient is
not small and is equal to µ = 1. We consider then the following points on the elastic body initial
configuration, presented in the following table (6.1).
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Points x y
A 0. 0.
B 1.25 0.
C 5. 0.
D 7.5 0.
E 11.25 0.

Table 6.1 – Initial positions (UL) of the points

Linear finite elements (P1) were used, and a regularization parameter α = 10−3 was consid-
ered. The mesh is shown in the Figure 6.11.

Figure 6.11 – The mesh of the elastic body

The computed tangential displacement for each point and the error with respect to the
reference value, computed as an average of different software results, are presented in the following
table (6.2).

Points ux ux (reference [111]) error
A 0.0279 0.0286 2.4 %
B 0.0265 0.0272 2.6 %
C 0.0224 0.0228 1.8 %
D 0.0194 0.0198 2.0 %
E 0.0151 0.0150 0.7 %

Table 6.2 – Tangential displacement ux (UL) of the points

In [111], the errors with respect to the reference values are about 5%.

6.6.4 Sliding on an inclined interface

A two elastic bodies Ω1 and Ω2 with a common inclined interface in the initial configuration are
considered (see Figure 6.12) (units in UL). A vertical displacement is imposed on the top area of
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the first body Ω1, as shown in the Figure 6.12. In addition, a boundary conditions are imposed
in order to avoid the rigid motions when slip occurs at the interface, indeed as we can see in
the Figure 6.12, the top right point of the first body Ω1 is imposed to slide vertically, the lower
right point of the second body Ω2 is fixed, and the other parts of the lower area of Ω2 can slide
horizontally.

Ω2

Ω1

100

1
00

x
y

1UL

Figure 6.12 – The geometry of the two bodies and the imposed displacement

The equation of the interface is given by the equation y = 0.2 ∗ x + 45.86 with respect to
the orthonormal frame shown in Figure 6.12. The two bodies have the same elastic material
properties (Young’s modulus E = 104 UF

UL2 , Poisson’s ration ν = 0.3), finally the plane strain
condition is assumed (2D). A vertical displacement of 1UL was imposed in one loading step, on
the top area of the first body. This example is a modified version of the one studied in [10].

The goal is to test if there will be no slip between the two bodies when the frictional coefficient
µ is equal to the slope of the interface, 0.2, as expected.

Linear finite elements (P1) were used, and a regularization parameter α = 10−3 was consid-
ered. Taking three frictional coefficients µ = 0, 0.10, 0.2 , the deformed shape of the three cases
are depicted in the Figure 6.13.

Figure 6.13 – The deformation states (amplification factor =5) for µ = 0, 0.1, 0.2
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The horizontal displacement for the three frictional coefficients can be found in the Figure
6.14.

Figure 6.14 – The horizontal displacement field ux for µ = 0, 0.1, 0.2

We can notice that when µ = 0.2, the two bodies are stick together, and act like one body.
Note that we studied this one body without considering the contact and it gives the same results
as if µ = 0.2. Moreover a quasi-static study leads to the same results as before.

Now, we consider the three-dimensional case, which is not equivalent to the two-dimensional
case, indeed the plain strain condition is not satisfied. The geometry is shown in the Figure 6.15
and the boundary conditions are detailed below, finally all the remaining properties are as the
two-dimensional case.

Ω2

Ω1

100

10
0

100

x
y

z

Figure 6.15 – The geometry of the two bodies

The area {z = −100} can slide in the same plane, the area {y = 0} is fixed in the (y) direction,
the line {x = 100} ∩ {y = 0} is fixed, and the line {x = 100} ∩ {y = 100} can slide in the (y, z)
plane. A downward displacement of −1UL is imposed on the top area {y = 100}.

The displacement fields ux and uz are depicted in the Figure 6.16 in addition to the mesh,
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we notice that for the frictional coefficient µ = 0.2, the two bodies stick together and behave like
one body. Moreover, this one body was studied without contact conditions and it provided the
same displacement fields.

Figure 6.16 – The displacement fields ux and uz for µ = 0.2

6.6.5 Frictional Hertz contact

We consider a contact between a half elastic cylinder Ω1 (E1 = 200 UF
UL2 , ν1 = 0.3) and an elastic

half-space Ω2 (E2 = 200 UF
UL2 , ν2 = 0.3), the geometry and the dimensions are shown in the Figure

6.17 (units in UL). The Frictional coefficient is taken relatively big, µ = 0.8, and the lower area
of Ω2 is fixed. First, we impose a downward vertical displacement of 4.55UL in 3 steps on the
top of the half cylinder, then a total horizontal load of q = 0.05 UF

UL is applied in 7 steps, again
on the top of the half cylinder. Obviously it’s a quasi-static study.

Ω2

Ω1

800

2800

14
00

x
y

Figure 6.17 – The geometry of the frictional Hertz problem
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The imposed vertical displacement gives an equivalent maximal normal pressure of p0 =
2.93 UF

UL . Thus the equivalent vertical force is equal to

P =
πRp2

0

E∗
(6.188)

where R is the cylinder radius, and E∗ the effective Young modulus given by

E∗ =
E1E2

E1(1− ν2
2) + E2(1− ν2

1)
(6.189)

According to [66] and with the small deformations hypothesis, there exist two slip zones {c 6
|x| 6 a} and one stick zone {|x| 6 c}, wherea =

√
4PR
πE∗

c = a
√

1− Q
µP

(6.190)

with Q = 2Rq and a the half contact width, moreover the normal and tangential stresses are
given by the following.

The normal pressure at the contact zone:

pn =
p0

a

√
a2 − x2 (6.191)

The tangential pressure at the contact zone:{
pt = µp0a (

√
a2 − x2 −

√
c2 − x2) if |x| 6 c

pt = µp0a
√
a2 − x2 if c 6 |x| 6 a

(6.192)

The mesh of the two bodies is shown in the Figure 6.18.
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Figure 6.18 – The two bodies mesh

Using the quadratic finite elements (P2), and a regularization parameter α = 10−3, the
computed normal and tangential stresses, in addition to the theoretical ones, are depicted in the
Figure 6.19.

−40 −20 20 40

1

2

3.1

x (UL)

stresses ( UFUL2 ) pn
pt

pn (simulation)
pt (simulation)

Figure 6.19 – The stresses on the contact area
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6.6.6 Shallow ironing

This example was studied by many papers, we can cite for example [46, 123, 125]. A small
indenter Ω1 is pressed into a less stiffer rectangular body Ω2 at the first stage , and pulled
horizontally to the right at the second stage. The geometries of the two bodies are shown in the
Figure 6.20 (units in UL), in addition the bottom of the rectangular body is fixed. Neo-Hookean
material is assumed for the two bodies (see [123]), with (E1 = 68.96× 102 UF

UL2 , ν = 0.32) for the
small indenter and (E2 = 6.896× 102 UF

UL2 , ν = 0.32) for the rectangular body, which is 10 times
softer than the indenter.

Ω2

Ω1

r
=

0.
75

1.2

0.9

120

40

Figure 6.20 – The geometry of the shallow ironing problem

At the first stage a downward vertical displacement of 8UL is applied in 8 time steps on the
top of the indenter, in the second stage a horizontal displacement of 100UL is applied on the
top of the indenter to the right in 500 time steps. This is a quasi-static study with a friction
coefficient µ = 0.3.

Using the quadratic finite elements (P2), and a regularization parameter α = 10−2, the mesh
of the two bodies and the deformation shapes at some time steps are shown in the Figure 6.21.
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Figure 6.21 – The deformation shapes at t = 8, 254, 508

The vertical and horizontal reactions on the indenter, are depicted in the Figure 6.22.
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Figure 6.22 – The vertical and horizontal reaction Fv, Fh on the indenter

There was no agreement on the results between the papers which studied this test. However,
in order to show that our results are reasonable, we computed the ratio between the horizontal
and the vertical reaction, when the indenter slide on the second body. We obtained a ratio
approximately equal to 0.32, which is very close to the friction coefficient µ = 0.3.



Chapter 7
Conclusion and future works

We developed a simple algorithm to solve Signorini’s contact problems, indeed the non-penetration
constraints were formulated in a simple form which makes the contact problem formulation well
fitted with the interior point method, and there is no need to compute the normal vectors and the
projection points on the obstacle, which depend on the solution of the problem, in order to define
the non-penetration constraints. Therefore there is no need to use a fixed point algorithm or an
active-set strategy, which make the algorithm more simpler and more faster. The drawbacks of
this formulation is its restriction for Signorini’s problem.

Otherwise all algorithms developed in this manuscript, including the algorithm which solves
the frictional contact problem, are based on a minimization methods, which can be a robust way
to solve the problem, because we can use optimization techniques such like the line search method
in order to converge faster to the solution. In addition, the interior point method was chosen
because the matrix structure or sparsity of the generated linear systems remains the same, and
the linear dependency of the constraints, when symmetric constraints occur, will not become an
issue as in the case of the active-set method.

We developed two symmetric contact algorithms, the first one is based on the penalty method,
and the second one is based on the weak formulation of the constraints and on the use of
the interior point method to solve the generated minimization problem. In the case of finite
deformation, a fixed point method was used in order to transform the contact problem into
a sequence of geometric linear ones. Otherwise, the frictional contact problem is transformed
as a sequence of Tresca’s problems which are based on a minimization principle, in addition a
regularization was used to eliminate the non-smooth character of the friction behavior.

Even if the penalty method is employed, we used the interior point method to solve the mini-
mization problem because in the penalty formulation we impose some bounds on the displacement
field. Finally we prefer to use the algorithm developed in the chapter 4, where the constraints
are in a weak form, indeed we noticed that the penalty method requires more backtracking line
search steps especially in the first iterations.

167
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In the future, we would like to make our algorithms work in parallel, in order to run large
simulations, and to be coupled with another multiphysics simulations, such like heat transfer or
fluid-structure interaction.
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Contact method using indicator functions
defined on triangles

Outline of the current chapter
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A.2 Non-penetration condition 177
A.3 Contact problem formulation using indicator functions 178

The frictionless contact problem can be written in the form of a constrained minimization. The
solution of the potential energy minimization under the non-penetration constraint is the solution
of the contact problem, as it is shown in [29] in the case of the Signorini’s contact. We follow the
proof given in [29, 31, 30] to prove the same results in the case of contact between two bodies.

In the following theorem, Ω1 and Ω2 are two domains in R3, which represents respectively
the first and the second body. Let Ω = Ω1 ∪ Ω2, the border Γ1

0,Γ
1
1,ΓC1 be disjoint relatively of

∂Ω1, and Γ2
0,Γ

2
1,ΓC2 be disjoint relatively of ∂Ω2. In addition Γ1 = ∂Ω1 = Γ1

0 ∪ Γ1
1 ∪ ΓC1 and

Γ2 = ∂Ω2 = Γ2
0 ∪ Γ2

1 ∪ ΓC2. The area of each border ΓC1 and ΓC2 is supposed to be strictly
positive.

Γ1
0,Γ

2
0 are the borders where a displacement is imposed, Γ1

1,Γ
2
1 are the borders where a surface

traction is applied, finally ΓC1,ΓC2 are the potential contact areas in the initial configurations.
If a function ψ is defined on Ω, then ψ1 = ψ|Ω1

and ψ2 = ψ|Ω2
represent respectively the

restriction of this function on Ω1 and Ω2.

The body forces f1 and f2 are applied respectively over the bodies Ω1 and Ω2, the surface
traction g1, g2 are applied over Γ1

1 and Γ2
1, finally φ

1
0 and φ2

0 are the imposed positions on Γ1
0

and Γ2
0.

169
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The strain energy function is denoted by Ŵ , and the first Piola-Kirchhoff stress by P. We
have that P = ∂Ŵ

∂F , where F is the deformation gradient tensor.

Theorem A.1. Using the same notations as above, the admissible solutions set Φ is defined by:

Φ = {ψ : Ω̄→ R3; det(∇ψ) > 0 in Ω̄;ψ1 = φ1
0 on Γ1

0;ψ2 = φ2
0 on Γ2

0

with ψ1(ΓC1) ⊂ ψ2(Ω2)c}
(A.1)

The condition ψ1(ΓC1) ⊂ ψ2(Ω2)c describes the non-penetration of the first body with the
second body. Let E = E1 + E2 denotes the potential energy of the two bodies, and E1, E2 denote
respectively the potential energy of the first body Ω1 and of the second body Ω2.

E1(ψ1) =

∫
Ω1

Ŵ (∇ψ1) dx−
∫

Ω1

f1.ψ1 dx−
∫

Γ1
1

g1.ψ1 ds (A.2)

E2(ψ2) =

∫
Ω2

Ŵ (∇ψ2) dx−
∫

Ω2

f2.ψ2 dx−
∫

Γ2
1

g2.ψ2 ds (A.3)

E(ψ) = E1(ψ1) + E2(ψ2) (A.4)

If φ = (φ1,φ2) ∈ Φ is smooth enough and solution of the following constrained minimization
problem

E(φ) = min
ψ∈Φ
E(ψ) (A.5)

then φ = (φ1,φ2) satisfies formally the following properties, corresponding to the contact between
the two bodies.

−div P1 = f1 in Ω1

−div P2 = f2 in Ω2

φ = φ1
0 on Γ1

0

φ = φ2
0 on Γ2

0

P1N1 = g1 on Γ1
1

P2N2 = g2 on Γ2
1

φ1(ΓC1) ⊂ φ2(Ω2)c

P1N1 = 0 if X1 ∈ ΓC1 and φ1(X1) /∈ φ1(∂Ω1) ∩ φ2(∂Ω2)

P2N2 = 0 if X2 ∈ ΓC2 and φ2(X2) /∈ φ1(∂Ω1) ∩ φ2(∂Ω2)

P1N1 = λn1 if X1 ∈ ΓC1 and x1 = φ1(X1) ∈ φ1(∂Ω1) ∩ φ2(∂Ω2) where λ 6 0

P2N2 = λn2 if X2 ∈ ΓC2 and x2 = φ2(X2) ∈ φ1(∂Ω1) ∩ φ2(∂Ω2) where λ 6 0

σ1n1.n1 = σ2n2.n2 on φ1(∂Ω1) ∩ φ2(∂Ω2)

(A.6)

Where N and n are respectively the outward unit normal vectors on the initial and on the
deformed surfaces of the body. σ is the Cauchy stress tensor and σn has the same direction of
PN.



Outline of the current chapter 171

Proof. The function φ is a solution of the minimization problem (A.5), therefore

E(φ) 6 E(ψ) ∀ψ ∈ Φ (A.7)

In the following we need the Green formula, which for a smooth enough tensor T states∫
Ω1

T : ∇θ dx = −
∫

Ω1

div(T).θ dx+

∫
Γ1

TN1.θ ds ∀θ (A.8)

Let X ∈ Ω1 and B1(X, r) ⊂ Ω1 the open ball of center X with a small r > 0 (see Figure A.1).
Consider θ a sufficient smooth function with support in B1(X, r). There exists ε0 = ε(θ) > 0

Figure A.1 – The initial and actual configurations

such that φε = φ+ εθ ∈ Φ ∀ |ε| 6 ε0.

E(φε)− E(φ) > 0 (A.9)

E(φε)− E(φ) = E(φ+ εθ)− E(φ)

= E1(φ+ εθ) + E2(φ)− E1(φ)− E2(φ)

= E1(φ+ εθ)− E1(φ)

=

∫
Ω1

(
Ŵ (∇φ1 + ε∇θ)− Ŵ (∇φ1)

)
dx− ε

(∫
Ω1

f1.θ dx+

∫
Γ1
1

g1.θ ds

) (A.10)

Otherwise we have

Ŵ (∇φ1 + ε∇θ)− Ŵ (∇φ1) = ε
∂Ŵ

∂F
: ∇θ + o(ε)

= εP1 : ∇θ + o(ε)

(A.11)

Using the Green formula in equation (A.8) and the fact that θ vanishes in a neighborhood of
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Γ1
0 ∪ ΓC1, we obtain :∫

Ω1

(
Ŵ (∇φ1 + ε∇θ)− Ŵ (∇φ1)

)
dx = ε

∫
Ω1

P1 : ∇θ dx+ o(ε)

= −ε
∫

Ω1

div(P1).θ dx+ ε

∫
Γ1
1

P1N1.θ ds+ o(ε)

(A.12)

Thus

E(φε)− E(φ) =− ε
∫

Ω1

div(P1).θ dx+ ε

∫
Γ1
1

P1N1.θ ds

− ε

(∫
Ω1

f1.θ dx+

∫
Γ1
1

g1.θ ds

)
+ o(ε)

=ε

{∫
Ω1

(−div(P1)− f1) .θ dx+

∫
Γ1
1

(P1N1 − g1) .θ ds+
o(ε)

ε

}
> 0

(A.13)

Taking ε > 0 and taking the limit ε→ 0+ we have:∫
Ω1

(−div(P1)− f1) .θ dx+

∫
Γ1
1

(P1N1 − g1) .θ ds > 0 (A.14)

Taking ε < 0 and taking the limit ε→ 0− we have:∫
Ω1

(−div(P1)− f1) .θ dx+

∫
Γ1
1

(P1N1 − g1) .θ ds 6 0 (A.15)

Therefore ∫
Ω1

(−div(P1)− f1) .θ dx+

∫
Γ1
1

(P1N1 − g1) .θ ds = 0 (A.16)

The support of θ is in B1(X, r) ⊂ Ω1, thus we obtain:∫
B1(X,r)

(−div(P1)− f1) .θ dx = 0 (A.17)

We deduce that −div(P1) = f1 in B1(X, r), and then it’s true in Ω1

Let’s proceed in the same manner for the second body by considering X ∈ Ω2 and B2(X, r) ⊂
Ω2. For any sufficiently smooth function θ with a support in B2(X, r) and θ = 0 on Ω̄1, there
exists ε0 = ε(θ) > 0 such that φε = φ+ εθ ∈ Φ ∀ |ε| 6 ε0. We obtain then −div(P2) = f2 in
Ω2.

Let X ∈ Γ1
1 where the surface traction are applied, consider any smooth function θ : Ω̄1 → R3

with a support in B(X, r) ∩ Ω̄1 where r > 0 and small, there exists a ε1(θ) > 0 such that
φε = φ+ εθ ∈ Φ ∀ |ε| 6 ε1. The equation (A.16) can always be used, thus using the fact that
−div(P1) = f1 in Ω1, we obtain: ∫

Γ1
1

(P1N1 − g1) .θ ds = 0 (A.18)
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We deduce that P1N1 = g1 on Γ1
1. Doing the same work for the second body we obtain

P2N2 = g2 on Γ2
1.

Let X ∈ ΓC1 such that φ1(X) /∈ φ1(∂Ω1) ∩ φ2(∂Ω2) (see Figure A.2), consider any smooth
function θ : Ω̄1 → R3 with a support in B(X, r) ∩ Ω̄1 where r > 0 and small, there exists a
ε2(θ) > 0 such that φε = φ + εθ ∈ Φ ∀ |ε| 6 ε2. As before, E(φε) − E(φ) > 0 , thus using
Green’s formula and the equations of equilibrium we obtain:

ε

{∫
ΓC1

P1N1.θ ds+
o(ε)

ε

}
> 0 (A.19)

Figure A.2 – The case where the stress is zero for the point X

We deduce that P1N1 = 0 for X ∈ ΓC1 such that φ1(X) /∈ φ1(∂Ω1) ∩ φ2(∂Ω2). We can do
the same work for the second body.

We still have the last equations of the problem (A.6) to demonstrate. We consider Y ∈ ΓC1

such that y = φ1(Y) ∈ φ2(∂Ω2), supposing that the boundaries of φ1(Ω1) and φ2(Ω2) are
smooth enough, then we can assume that φ1(ΓC1) and φ2(ΓC2) have the same tangent space
at the point y = φ1(Y). Let V (Y) be a neighborhood of y and t1, t2,n1 a 3 smooth fields,
such that t1, t2 are linearly independent and span the tangent space at V ∩φ1(ΓC1) and ‖t1‖ =
‖t2‖ = 1 , n1 is the outer unit normal vector at φ1(ΓC1). Consider the ball B(Y, r) such
that B(Y, r) ∩ Γ1 ⊂ ΓC1 and φ1(B(Y, r)) ⊂ V (see Figure A.3), therefore given two smooth
θ1, θ2 : Ω̄1 → R with support in B(Y, r) and vanish on Ω2, there exist ε3(θ1, θ2) > 0 and two
functions λε1, λε2 : Ω̄1 → R with support in B(Y, r) and vanish on Ω2 such that{

φεα = φ+ ε(θαtα + λεαn1) ∈ Φ ∀ |ε| 6 ε3

|λεα| = o(ε)
(A.20)

where α = 1, 2.

Figure A.3 – The point y = φ1(Y) and its neighborhood

Taking E(φεα)− E(φ) = E1(φεα)− E1(φ) > 0 and repeating the same procedure as before, we
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obtain:
ε

{∫
ΓC1

P1N1.θαtα ds+ o(ε) +
o(ε)

ε

}
> 0 (A.21)

We conclude as before that P1N1.tα = 0 for α = 1, 2, so P1N1 is normal to the tangent plane
and has the same direction of n1 ⇒ ∃λ1 ∈ R such that P1N1 = λ1n1 at X1 ∈ ΓC1 where
φ1(X1) ∈ φ2(∂Ω2). The same work can be done for the second body P2N2 = λ2n2 but in this
case n2 = −n1.

We will prove that the coefficients λ1, λ2 are negative. Consider any positive smooth function
θ : Ω̄1 → R+ with support in B(Y, r) and vanishes on Ω2, then ∃ ε4(θ) > 0 such that

φε = φ− εθn1 ∈ Φ ∀ 0 6 ε 6 ε4 (A.22)

Thus by the same procedure we obtain

ε

{∫
ΓC1

−P1N1.n1θ ds+
o(ε)

ε

}
> 0 (A.23)

Then with ε→ 0+ we have: ∫
ΓC1

P1N1.n1θ ds 6 0 (A.24)

Thus λ1 = P1N1.n1 6 0 at X1 ∈ ΓC1 where φ1(X1) ∈ φ2(∂Ω2). Same work can be done for the
second body Ω2 to obtain λ2 6 0.

Finally let γ = φ1(ΓC1) ∩ φ2(ΓC2) where the contact is done and x ∈ γ. We consider the
ball B(x, r) and we call γ∗ = B(x, r) ∩ γ, and Γ∗1 = φ−1

1 (γ∗) ⊂ ΓC1 , Γ∗2 = φ−1
2 (γ∗) ⊂ ΓC2.

Given a smooth function θ with a support in B(x, r), there exists a small ε5(θ) > 0 such that:

φε = φ+ ε.(θ ◦ φ).n1 ∈ Φ ∀ |ε| 6 ε5 (A.25)

with n2 = −n1 on γ∗. We have E(φε) − E(φ) > 0 then E1(φε) − E1(φ) + E2(φε) − E2(φ) > 0.
The equilibrium equations and the Green’s formula lead to:

ε

{∫
Γ∗1

P1N1.n1.(θ ◦ φ1) ds+

∫
Γ∗2

P2N2.n1.(θ ◦ φ2) ds+
o(ε)

ε

}
> 0 (A.26)

Therefore we obtain ∫
Γ∗1

P1N1.n1.(θ ◦ φ1) ds−
∫

Γ∗2

P2N2.n2.(θ ◦ φ2) ds = 0 (A.27)

Otherwise we have a relation between the Cauchy σ and the first Piola-Kirchhoff P stress tensor:
P = JσF−T and nds′ = JF−TNds, where F is the deformation gradient tensor and J its
determinant, otherwise speaking σnds′ = PNds. Therefore the equation (A.27) becomes∫

γ∗
σ1n1.n1θ ds

′ −
∫
γ∗
σ2n2.n2θ ds

′ = 0 (A.28)
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⇒
∫
γ∗

(σ1n1.n1 − σ2n2.n2) θ ds′ = 0 (A.29)

Therefore σ1n1.n1 = σ2n2.n2.

In contact analysis we have the non-penetration condition to respect, between a body and
a foundation or between two bodies. In the following, we create a function which tells if the
penetration occurs or not. As the second body in its actual configuration φ2(Ω2) is composed
of triangles, the non-penetration condition imposes that each material point in φ1(Ω1) (more
precisely at the contact border of φ1(Ω1)) can not belong to each triangle of φ2(Ω2).

A.1 Indicator function of a triangle

Let T ⊂ R2 be a triangle, in this part we create the indicator function of a triangle FT :

R2 −→ R+ which is a function strictly positive at the interior of the triangle
◦
T and equal to

zero otherwise. This function will be smooth enough (C2) in order to use it in our optimization
process.

The idea begins first by considering a C2 function which is equal to zero at ] − ∞, 0] and
strictly positive at ]0,+∞[, an example of such functions is shown below

f(x) =

{
0 if x 6 0

x3 if x > 0
(A.30)

Without loss of generality we consider the triangle T0 defined by the following points: (0, 0) ,
(1, 0) and (0, 1). Let the functions F1, F2, F3 : R2 −→ R+ be defined as follows

F1(x, y) =

{
0 if x 6 0

x3 if x > 0
(A.31)

F2(x, y) =

{
0 if y 6 0

y3 if y > 0
(A.32)

And

F3(x, y) =

{
−(y + x− 1)3 if y + x− 1 < 0

0 if y + x− 1 > 0
(A.33)

The functions F1, F2 and F3 are C2(R2).

Finally we consider the function Fp : R2 −→ R+ defined by

Fp(x, y) = F1(x, y).F2(x, y).F3(x, y) (A.34)

Therefore the function Fp is C2(R2) and is shown in the Figure A.4.
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Figure A.4 – The Fp function

If (X,Y ) is a point in R2 then Fp satisfies the following properties{
Fp(X,Y ) > 0 if (X,Y ) ∈

◦
T0

Fp(X,Y ) = 0 otherwise
(A.35)

We call the function Fp, the indicator function of the triangle T0.

More generally, consider the triangle T defined by the following points (xA, yA), (xB , yB),
(xC , yC), then the application πT which transforms T into T0 is defined below by

πT (x, y) = A.

(
x− xA
y − yA

)
(A.36)

where the matrix A is defined by

A =
1

∆

[
yC − yA −(xC − xA)
−(yB − yA) xB − xA

]
(A.37)

with ∆ = (xB − xA)(yC − yA)− (xC − xA)(yB − yA).
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Therefore the indicator function of the triangle T is the function:

FT (x, y) = Fp(πT (x, y)) ∀ (x, y) ∈ R2 (A.38)

Same as the function Fp, if (X,Y ) is a point in R2 then FT satisfies the following properties{
FT (X,Y ) > 0 if (X,Y ) ∈

◦
T

FT (X,Y ) = 0 otherwise
(A.39)

A.2 Non-penetration condition

The goal here is to try to create a function which is strictly positive at the domain of the second
body and equal to zero otherwise, so it can be used in a penalty method for example to avoid the
penetration between the bodies. In the finite element configuration the second body in its actual
configuration φ2(Ω2) or the obstacle is composed of the triangles family {Tj | j = 1, . . . , nT },
where nT is the triangles number. In addition, each triangle is composed from three points
(xi, yi) = (Xi + Uxi , Yi + Uyi ) with i = 1, 2, 3, where (Xi, Yi) and (Uxi , U

y
i ) are respectively the

initial position and the actual displacement of the node i.

The indicator function Fφ2(Ω2) of φ2(Ω2) is the sum of the indicator functions of each triangle
Tj , and is equal to

Fφ2(Ω2)(x, y) =

nT∑
j=1

FTj (x, y) (A.40)

The function Fφ2(Ω2) has the following properties, for (X,Y ) ∈ R2

Fφ2(Ω2)(X,Y ) > 0 if (X,Y ) ∈
nT⋃
j=1

◦
T j

Fφ2(Ω2)(X,Y ) = 0 otherwise
(A.41)

The non-penetration condition between the bodies Ω1 and Ω2 (the edges of Ω2 were not taken
into account) can be stated as follows

Fφ2(Ω2)(x) = 0 ∀x ∈ φ1(ΓC1) (A.42)

where ΓC1 is the potential contact area of the first body Ω1 and x = X + u the actual displace-
ment, with X the initial position.

Because Fφ2(Ω2) > 0 then, a non-penetration condition equivalent to (A.42) can be given by∫
ΓC1

Fφ2(Ω2)(X + u) ds = 0 (A.43)
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A.3 Contact problem formulation using indicator functions

We consider the following contact problemmin(Ep(U)) subjected to∫
ΓC1

Fφ2(Ω2)(X + u) ds = 0
(A.44)

where Ep is the total potential energy. One can use the penalty method, and the contact problem
becomes

min

(
Ep(U) + µ

∫
ΓC1

Fφ2(Ω2)(X + u) ds

)
(A.45)

where µ is the penalty factor. In order to make the problem symmetric, one can define in the
same manner an indicator function on φ1(Ω1), in order to obtain

min

(
Ep(U) + µ

∫
ΓC1

Fφ2(Ω2)(X + u) ds+ µ

∫
ΓC2

Fφ1(Ω1)(X + u) ds

)
(A.46)

The formulation presented above gives an equality constraints for the non-penetration between
the bodies, in addition there is no need to an active-set strategy or a fixed point method in order
to treat the contact. On the other hand the drawback is that, it is a time consuming and it works
only for P1 finite elements. The formulation can be generalized to the three dimensional case
by considering a tetrahedron instead of a triangle, only Fp changes to become a multiplication
of 4 functions instead of 3. Otherwise the indicator function Fφ2(Ω2) can be defined on a part
of φ2(Ω2) instead of the whole φ2(Ω2). Finally this method can be interesting to solve contact
problems between polygonal bodies.
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Finite element modeling of mechanical contact problems for industrial ap-
plications

Abstract

The Airthium company uses FreeFEM software in order to study its energy storage system, and contact
mechanics is a part of these studies. Therefore the principal aim of this thesis is to develop an algorithm,
using FreeFEM and its tools, to solve mechanical contact problems between two bodies or more, for
linear elastic or finite deformation problems.

The contact problem is considered as a minimization problem of an energy, where we can take advantage
of several optimization techniques, in order to converge faster to the solution. For several reasons, the
interior point method is the optimization method chosen to solve the generated minimization problems.

An algorithm is proposed in order to solve the frictionless contact between a hyperelastic body and a
rigid foundation (obstacle). The non-penetration constraints between the body and the obstacle are
described in a simple way, where there is no need to compute the normal vectors or the projection points
on the obstacle, which simplifies the resolution of the contact problem.

The second aim of this thesis is to develop a symmetric algorithm where the user no longer needs to
specify a slave body and a master one. Thus two algorithms were developed, one based on the penalty
method, and the second one uses the interior point method. In the two cases a sequence of minimization
problems with linear (or affine) constraints, using a fixed point algorithm, is employed in order to consider
the non-penetration for finite deformation problems, where large deformations occur.

The friction is also taken into account, and the problem using Coulomb’s criterion is written into a
sequence of problems with Tresca’s criterion, in order to obtain a sequence of minimization problems.
A family of regularization for the Tresca’s criterion are proposed, in order to obtain sufficiently smooth
problems, which in some situations can have an experimental justifications.

Keywords: contact mechanics, signorini problem, friction, regularization , optimization, fixed point,
penalization , interior point method, symmetric algorithm

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France



Résumé

La société Airthium utilise le logiciel FreeFEM afin d’étudier son système de stockage d’énergie, et la
mécanique du contact fait partie de ces études. L’objectif principal de cette thèse est donc de développer
un algorithme, utilisant FreeFEM et ses outils, pour résoudre des problèmes de contact mécanique entre
deux corps ou plus, pour des problèmes d’élasticité linéaire ou de grandes déformations.

Le problème de contact est considéré comme un problème de minimisation d’une énergie, où nous pouvons
tirer parti de plusieurs techniques d’optimisation, afin de converger plus rapidement vers la solution. Pour
plusieurs raisons, la méthode de points intérieurs est la méthode d’optimisation choisie pour résoudre les
problèmes de minimisation générés.

Un algorithme est proposé afin de résoudre le contact sans frottement entre un corps hyperélastique
et une fondation rigide (obstacle). Les contraintes de non-pénétration entre le corps et l’obstacle sont
décrites d’une manière simple, où il n’est pas nécessaire de calculer les vecteurs normaux ou les points
de projection sur l’obstacle, ce qui simplifie la résolution du problème de contact.

Le second objectif de cette thèse est de développer un algorithme symétrique où l’utilisateur n’a plus
besoin de spécifier un corps esclave et un corps maître. Ainsi deux algorithmes ont été développés,
l’un basé sur la méthode de pénalisation, et le second utilise la méthode de points intérieurs. Dans les
deux cas, une suite de problèmes de minimisation avec des contraintes linéaires (ou affines), utilisant
un algorithme à point fixe, est employée afin de considérer la non-pénétration pour les problèmes où de
grandes déformations se produisent.

Le frottement est également pris en compte, et le problème utilisant le critère de Coulomb est écrit
en une séquence de problèmes avec le critère de Tresca, afin d’obtenir une séquence de problèmes de
minimisation. Une famille de régularisation pour le critère de Tresca est proposée, afin d’obtenir des
problèmes suffisamment lisses, qui dans certaines situations peuvent avoir une justification expérimentale.

Mots clés : mécanique des contacts, problème de signorini, frottement, régularisation, optimisation,
point fixe, pénalisation, méthode des points intérieurs, algorithme symétrique
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