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ABSTRACT

The emergence of new technologies (Internet of Things, smart cities, autonomous vehicles, health, industrial
automation, ...) requires efficient resource allocation to satisfy the demand. These new offers are compatible with
new 5G network infrastructure since it can provide low latency and reliability. However, these new needs require
high computational power to fulfill the demand, implyingmore energy consumption in particular in cloud infra-
structures andmore particularly in data centers. Therefore, it is critical to find new solutions that can satisfy these
needs still reducing the power usage of resources in cloud environments. In this thesis we propose and compare
new AI solutions (Reinforcement Learning) to orchestrate virtual resources in virtual network environments
such that performances are guaranteed and operational costs are minimised. We consider queuing systems as a
model for clouds IaaS infrastructures and bring learning methodologies to efficiently allocate the right number
of resources for the users. Our objective is to minimise a cost function considering performance costs and opera-
tional costs. We go through different types of reinforcement learning algorithms (from model-free to relational
model-based) to learn the best policy. Reinforcement learning is concerned with how a software agent ought to
take actions in an environment to maximise some cumulative reward. We first develop queuing model of a cloud
system with one physical node hosting several virtual resources. On this first part we assume the agent perfectly
knows the model (dynamics of the environment and the cost function), giving him the opportunity to perform
dynamic programming methods for optimal policy computation. Since the model is known in this part, we also
concentrate on the properties of the optimal policies, which are threshold-based and hysteresis-based rules. This
allows us to integrate the structural property of the policies into MDP algorithms. After providing a concrete
cloudmodel with exponential arrivals with real intensities and energy data for cloud provider, we compare in this
first approach efficiency and time computation ofMDP algorithms against heuristics built on top of the queuing
Markov Chain stationary distributions. In a second part we consider that the agent does not have access to the
model of the environment and concentrate our work with reinforcement learning techniques, especially model-
based reinforcement learning.We first developmodel-based reinforcement learningmethods where the agent can
re-use its experience replay to update its value function. We also consider MDP online techniques where the au-
tonomous agent approximates environment model to perform dynamic programming. This part is evaluated in
a larger network environment with two physical nodes in tandem andwe assess convergence time and accuracy of
different reinforcement learning methods, mainly model-based techniques versus the state-of-the-art model-free
methods (e.g. Q-Learning). The last part focuses onmodel-based reinforcement learning techniques with relatio-
nal structure between environment variables. As these tandem networks have structural properties due to their
infrastructure shape, we investigate factored and causal approaches built-in reinforcement learning methods to
integrate this information. We provide the autonomous agent with a relational knowledge of the environment
where it canunderstandhowvariables are related to eachother.Themain goal is to accelerate convergence by : first
having a more compact representation with factorisation where we devise a factoredMDP online algorithm that
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we evaluate and compare with model-free and model-based reinforcement learning algorithms; second integra-
ting causal and counterfactual reasoning that can tackle environments with partial observations and unobserved
confounders.

Keywords. Reinforcement learning, Markov Decision Process, Queuing systems, Factored reinforcement
learning, Causal reinforcement learning, Auto-scaling policies, Cloud
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RÉSUMÉ EN FRANÇAIS

L’émergence de nouvelles technologies nécessite une allocation efficace des ressources pour satisfaire la de-
mande. Cependant, ces nouveaux besoins nécessitent une puissance de calcul élevée impliquant une plus grande
consommation d’énergie notamment dans les infrastructures cloud et data centers. Il est donc essentiel de trou-
ver de nouvelles solutions qui peuvent satisfaire ces besoins tout en réduisant la consommation d’énergie des
ressources. Dans cette thèse, nous proposons et comparons de nouvelles solutions d’IA (apprentissage par ren-
forcement RL) pour orchestrer les ressources virtuelles dans les environnements de réseaux virtuels de manière
à garantir les performances et minimiser les coûts opérationnels. Nous considérons les systèmes de file d’attente
comme unmodèle pour les infrastructures cloud IaaS et apportons desméthodes d’apprentissage pour allouer ef-
ficacement le bon nombre de ressources. Notre objectif est de minimiser une fonction de coût en tenant compte
des coûts de performance et opérationnels.Nous utilisons différents types d’algorithmes deRL (du« sans-modèle
» aumodèle relationnel) pour apprendre la meilleure politique. L’apprentissage par renforcement s’intéresse à la
manière dont un agent doit agir dans un environnement pour maximiser une récompense cumulative. Nous dé-
veloppons d’abord un modèle de files d’attente d’un système cloud avec un nœud physique hébergeant plusieurs
ressources virtuelles. Dans cette première partie, nous supposons que l’agent connaît le modèle (dynamiques de
l’environnement et coût), ce qui lui donne la possibilité d’utiliser des méthodes de programmation dynamique
pour le calcul de la politique optimale. Puisque le modèle est connu dans cette partie, nous nous concentrons
également sur les propriétés des politiques optimales, qui sont des règles basées sur les seuils et l’hystérésis. Cela
nous permet d’intégrer la propriété structurelle des politiques dans les algorithmes MDP. Après avoir fourni un
modèle de cloud concret avec des arrivées exponentielles avec des intensités réelles et des données d’énergie pour
le fournisseur de cloud, nous comparons dans cette première approche l’efficacité et le temps de calcul des algo-
rithmes MDP par rapport aux heuristiques construites sur les distributions stationnaires de la chaîne de Markov
des files d’attente. Dans une deuxième partie, nous considérons que l’agent n’a pas accès aumodèle de l’environne-
ment et nous concentrons notre travail sur les techniques de RL. Nous évaluons d’abord des méthodes basées sur
un modèle où l’agent peut réutiliser son expérience pour mettre à jour sa fonction de valeur. Nous considérons
également des techniques de MDP en ligne où l’agent autonome approxime le modèle pour effectuer une pro-
grammation dynamique. Cette partie est évaluée dans un environnement plus large avec deux nœuds physiques
en tandem et nous évaluons le temps de convergence et la précision des différentes méthodes, principalement
les techniques basées sur un modèle par rapport aux méthodes sans modèle de l’état de l’art. La dernière partie
se concentre sur les techniques de RL basées sur des modèles avec une structure relationnelle entre les variables
d’état. Comme ces réseaux en tandemont des propriétés structurelles dues à la formede l’infrastructure, nous inté-
grons les approches factorisées et causales auxméthodes deRL pour inclure cette connaissance. Nous fournissons
à l’agent une connaissance relationnelle de l’environnement qui lui permet de comprendre comment les variables
sont reliées. L’objectif principal est d’accélérer la convergence : d’abord avec une représentation plus compacte avec
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la factorisation où nous concevons un algorithme en ligne de MDP factorisé que nous comparons avec des algo-
rithmes de RL sans modèle et basés sur un modèle ; ensuite en intégrant le raisonnement causal et contrefactuel
qui peut traiter les environnements avec des observations partielles et des facteurs de confusion non observés.

Mots-clés. Apprentissage par renforcement, Processus deDécisionsMarkoviens, Files d’attente,Apprentissage
par renforcement factorisé, Apprentissage par renforcement causal, Politiques d’auto-scaling, Cloud
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CHAPTER 1

INTRODUCTION

1.1 Motivation
The emergence of new technologies (Internet of Things IoT, smart cities, autonomous vehicles, health, indus-

trial automation, augmented reality, ...) requires a growing need for network and cloud to satisfy low latency and
reliability. These emerging technologies will increase the resource requirements by requiring high computational
power and therefore the energy consumption of the networks. This phenomenon is receiving a lot of attention
from the world’s governments regarding the need to reduce the energy consumption of the cloud. Indeed, the
theme of energy-efficient cloud computing is now a priority on the European Union (EU) political agenda. In
2018, the energy consumption of data centers in the EU was 76.8 TWh and is expected to rise to 98,52 TWh
by 2030, a 28% increase. In addition, the Information and Communication Technology (ICT) sector is a major
energy consumer, using about 4% of the world’s electricity today and expected to account for 10-20% of global
electricity consumption by 2030. Also, the global digital ecosystem is responsible for 2% to 4% of the world’s
greenhouse gas emissions, up to twice as much as air travel 1.

There is therefore anurgentneed to find intelligent resource allocationpolicies that can reduce energy consump-
tion and satisfy modern and future needs. Queuing theory is a branch of mathematics that studies how queues
form, how they work and why they don’t work. It looks at every component of waiting in line, including the
arrival process, the service process, the number of servers, the number of seats in the system, and the number
of customers - which can be people, data packets, cars, etc. Queuing theory is often used to represent, analyse
and optimise Cloud systems, by representing such infrastructures with multiple nodes (physical servers, virtual
resources, etc.) in network. Cloud infrastructures are physical nodes hosting virtual resources, connected in a net-
work. Figure 1.1 is a very small representation of such systems where User’s Equipments (UEs) send requests to be
processed by the Cloud and asking for a response. The queuingmodels allow researchers to evaluate performance
metrics such as number of requests (or customers), delays, losses, CPU utilisation rate, energy consumption, etc.

Abstracting cloud infrastructures and networks with queuing models allows us to devise and assess new in-
telligent algorithms by evaluating their performance. The main objective of this thesis is to provide and assess
algorithms based on artificial intelligence (AI) that can learn and update efficient policies continuously for re-
source allocation. These learned policies (or solutions) are rules that tell the agent what decision to make for an
observation of the cloud system. Activation and deactivation of resources (virtual or physical) is an indispensable
part of energy management and our goal is therefore to consider such activation/deactivation rules in Cloud sys-

1. Guillaume Pitron, L’enfer numérique - voyage au bout d’un like, Les Liens Qui Liberent, 2021
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Figure 1.1 – Principal type of networks considered in the thesis

tems. In a nutshell, we provide and evaluate resource allocation solutions that can dynamically turn On or Off
Cloud resources given the load (number of requests) of the system in order to optimise energy consumption and
clients performances.

We first provide a fairly comprehensive review of energy management in Cloud environments by describing
Cloud systems, the energy management and existing solutions to devise optimal policies that can reduce energy
consumption. Analysis of the different existing techniques led us to explore the Reinforcement Learning tech-
niques that canhandle scenarioswhere the learning agent does not have all the knowledge about the system,which
is often the case in practice.

Therefore, in this document, the principal framework we consider isMarkovDecision Process (MDP), which
is the underlying mathematical formalism for Reinforcement Learning (RL). This document describes the dif-
ferentRL techniques applied to queuing systems to learn autonomously new efficient resource allocation policies
in complex Cloud environments. We talk about complex Cloud systems because we will tackle large state spaces
by considering environments withmany requests andmany resources. In this context,minimising a cost function
that takes into account energy and performance for clients is a NP-hard problem. Indeed, finding a rule or an op-
timal decision for all possible states of the system is highly difficult and requires the study of efficient algorithms.

This is why this document covers a large comparison of RL techniques by considering different assumptions
that can be find in real cloud scenarios. These assumptions deal with the autonomous agent’s knowledge of the
environment. Indeed, our first part is devoted to cases where the agent has a full knowledge of the environment
and can apply classical optimisation techniques such as heuristics coupled with Markov Chain (MC) analysis or
MDP algorithms. In this context, we focus ourselves on structural properties of the policy, such as hysteresis
and threshold policies implemented by leading cloud providers such as Amazon AwS EC2 or Microsoft Azure.
Moreover we describe a real cost function integrating energy and performance data to assess the algorithms.

Next, we restrict ourselves in scenarios where the autonomous agent (or human experts) does not know per-
fectly the environment and require RL techniques to overcome this issue. We investigate different model-based
reinforcement learning methods to compare with model-free RL techniques such as Q-Learning or Deep-Q-
Network, which are widely used in practice. Our goal is to give the ability to the agent to learn a model of the
environment to performplanning and overcome convergence issues in standardmodel-freeRL. Finally, we consi-
der scenarios where the agent understands how environment variables are related and devise new structural RL
algorithms based on Factored RL (FRL) and Causal RL (CRL) frameworks. Overall, the evaluation of the RL
algorithms is done by looking at their convergence speed and their accuracy on different state space scale, which
are important metrics in real applications. Indeed, it is important for Cloud providers or clients to compute the
best policy that can reduce energy consumption while maintaining good performances but also to do the calcu-
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lation rapidly to cope with fast changing environments. Thus the comparison of RL methods is done based on
these two elements : accuracy and convergence speed.

For short, this thesis includes two major components : searching for auto-scaling solutions in cloud network
systems and building more efficient RL/AI algorithms. We have explored and searched among many techniques
that allow to go beyond the classical state-of-the-art (SoTA) RL and they are described in this document. This
research is divided in twomain axes which are located in two parts : model-based RL and structural model-based
RL.

1.2 Contributions of the thesis
The contributions of this thesis are as follows :

∗ Chapter II presents an overview of state of the art (SoTA) techniques for Cloud network modelling, Cloud
auto-scaling, Cloud energy management and optimisation with machine learning techniques.
∗ Chapter III introduces the formalismof reinforcement learning anddiscussmany state of the art techniques.
This review of the reinforcement learning literature was assisted by concrete studies in the network field,
mainly with model-free RL techniques. These studies were conducted at Nokia Bell Labs and allowed me
to work on two patents.
∗ F. SyedMuhammad, R. Damodaran, T. Tournaire, A. Feki, L. Maggi, F. Durand, U. Chowta.
AI/ML based PDCP Split in Dual/Multi Connectivity Configurations : Collective
Inference/Decision and Impact on 3gpp Interfaces, Nokia, 2021.
∗ T. Tournaire, F. SyedMuhammad, A. Feki, L. Maggi, F. Durand.Multi-Agent Reinforcement
Learning Sharing Common Neural Network Policy for PDCP Data Split, Nokia, 2021.

ThePart II of the thesis dealswithmodel-based reinforcement learning domain for computing and learning
auto-scaling policies in Cloud environments :
∗ Chapter IV is about auto-scaling threshold policies in Cloud systems when the agent knows the environ-
ment model. It studies and compares two mathematical approach to find optimal threshold policies in a
Cloud environment, modelled withmulti-server queuing systems : Heuristics based on the computation of
stationary distribution of the Markov chain and Markov Decision Process. It compares many local search
heuristics and proposes many improvement techniques : Initialisation of the heuristics, Aggregation tech-
nique for fast cost computation;Meta-heuristic. Next, it studies meticulously theMarkovDecision Process
approach and designs new Dynamic Programming algorithms integrating the structure of the policy, na-
mely hysteresis and thresholds properties. Finally it proposes a real cloud scenariowhich features real energy,
financial data and requests arrivals. All techniques are compared numerically.
This chapter has led to two publications [139, 141] :
∗ Thomas Tournaire, Hind Castel-Taleb, Emmanuel Hyon. Generating optimal thresholds in a hysteresis
queue : a cloud application. In 27th IEEE International Symposium on the Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems (MASCOTS 19), 2019.
∗ Thomas Tournaire, Hind Castel-Taleb, Emmanuel Hyon. Optimal control policies for resource alloca-
tion in the Cloud : comparison between Markov decision process and heuristic approaches. In CoRR
abs/2104.14879, 2021.
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The remaining chapters treats about scenarios where the agent has some partial information about environ-
ment dynamics and need to devise reinforcement learning techniques. Moreover, the following chapters
consider a more complex Cloud environment by considering multi-tier networks modelled by queues in
tandem.
∗ Chapter V aims to learn environment model for planning and deals with model-based reinforcement lear-
ning techniques. The aim is to compare model-based and model-free techniques for learning auto-scaling
process inmulti-tier Cloud architectures. It also investigates a partially observable environment to assess the
robustness of model-based RL techniques. A precise comparison of different RL algorithms is described
and numerical results are displayed in a discrete event simulator.
The contributions of this chapter have been published in [142] :
∗ Thomas Tournaire, Jeanne Barthélémy, Hind Castel-Taleb, Emmanuel Hyon. Reinforcement Learning
withModel-Based Approaches for Dynamic Resource Allocation in a TandemQueue. In Performance En-
gineering and Stochastic Modeling. Springer International Publishing (ASMTA 21), 2021

The Part III is in the continuity of Chapter V except that it integrates a knowledge of the structure of the
environment with two approaches : Factored and Causal.
∗ Chapter VI presents benefits having structural knowledge of the environment variables with factored re-
presentation. It proposes a factored reinforcement learning algorithm and a factored representation of the
multi-tier network environment. Our algorithm is finally compared with SoTARL techniques in a simula-
ted environment and shows improvement when providing additional knowledge to the learning agent.
The contributions of this chapter would be published in [140] :
∗ Thomas Tournaire, Yue Jin, Armen Aghasaryan, Hind Castel-Taleb, Emmanuel Hyon. Factored Reinfor-
cement Learning for Auto-scaling in TandemQueues. InNetwork and Service Management in the Era of
Cloudification, Softwarization and Artificial Intelligence (NOMS 22), 2022

∗ Chapter VII goes further by considering Causal Reinforcement Learning. It proposes a unified overview of
the whole Reinforcement Learning field and introduces causal (counterfactual) reasoning in RL solutions
to improve current solutions.
The contributions of this chapter will be soon published :
∗ Thomas Tournaire, Armen Aghasaryan. Causal Reinforcement Learning for Auto-scaling in Tandem
Queues, 2022

Finally, we summarise the thesis and discuss the ongoing and future investigations in Chapter VIII.
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1.3 Structure of the thesis
To grasp the connections between the different chapters we provide how the document is structured presen-

ting the chapters and their relations in Figure 1.2.

Figure 1.2 – Thesis flow chart

6



CHAPTER 2

ENERGYMANAGEMENT IN CLOUD ENVIRONMENTS

This chapter presents literature works about Cloud computing, energy management, queuing models, and
optimisation techniques for resource allocation. It first presents what is Cloud computing, how it behaves, the
existing infrastructures and models (e.g. datacenter) and the virtualisation framework (section 2.1). Next it gives
an overview of energy management field by presenting the need, the solutions to measure and model, and dy-
namic resource allocation paradigm (section 2.2). Finally, it presents the existing auto-scaling techniques with
thresholds-based rules, queuing models and control management and reinforcement learning techniques (sec-
tion 2.3).

2.1 Cloud systems

2.1.1 Definition
Cloud Computing is a recent technology that allows access to data or infrastructure using an internet connec-

tion. This data is managed remotely by physical or virtual servers installed in a datacenter. This online storage
space would go back, according to the newspaper 1 to the 1990’s and the name Cloud would have been born in
2006 with the former CEO of Google, Eric Schmidt. Today, many companies have invested massively in Cloud
Computing. Among the main companies of the sector are Amazon (AwS), Citrix, Google, IBM, Intel, Microsoft
orOVHcloud. Users can then subscribe to different Cloud services, such as AmazonDrive, GoogleDrive,Micro-
soft OneDrive or formore professional applications withMicrosoft Sharepoint for example and any applications
to store companies data. In 2018 it was estimated that 3.6 billion people were accessing a huge range of cloud
computing services.

2.1.2 Functioning of the Cloud
In order to operate, a Cloud needs to have several essential characteristics :
∗ The implementation of the systems is entirely automated and the customer can, according to the contract
signed with the owner of the Cloud, have access thanks to the network to software or to his data when he
wishes it and from anywhere in the world.
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∗ Broadband network access : The datacenters that host these Clouds are generally connected directly to the
Internet backbone (very powerful Internet network) to have excellent connectivity. The large providers then
distribute different processing centers around the world to provide very fast access to systems for people
around the world.
∗ Resource Reservoir : Most data centers contain tens of thousands of servers and storage facilities to allow
for rapid scalability.
∗ Rapid scaling (elasticity) : Bringing a new server instance online is done in minutes, shutting down and
restarting in seconds. These management techniques allow you to take full advantage of pay-per-use billing
by adapting computing power to instantaneous traffic.
∗ The use of resources can be monitored and controlled, which makes it possible to optimize resource alloca-
tion for both the customer and the supplier.

In this thesis, we are mainly interested in the resizing of the Cloud and the measured service, i.e. the optimal
policies of stop and restart of the servers (physical or virtual) so that the owner of theCloudhas a reduced financial
cost as well as a reduction of its energy consumption.

2.1.3 Cloud architectures

2.1.3.1 Service models

There are different service models for the Cloud (depicted in Figure 2.1). Customers can use them in different
ways and for different needs.

∗ Software as a Service (SaaS) : This service model is characterized by the use of a shared application that
runs on a Cloud infrastructure. The application administrator does not manage or control the underlying
infrastructure (networks, servers, applications, storage). A well-known example of SaaS is email software.
These infrastructures provide the email service to billions of users.
∗ Platform as a Service (PaaS) : The user has the possibility of creating and deploying on a Cloud PaaS infra-
structure his own applications by using the languages and the tools of the provider. He can also manage his
data. However, he does not manage the underlying Cloud infrastructure (networks, servers, storage).
∗ Infrastructure as a Service (IaaS) : The user borrows computing and storage resources, network capacities
and other essential resources (load balancing, firewall, etc.). The customer can deploy any type of software,
including operating systems. The best known example today is AmazonWeb Services which provides com-
puting power (EC2), storage (S3, EBS) and online databases (SimpleDB).

2.1.3.2 Data centers : host of the Clouds

Data centers are infrastructures composed of a network of computers and storage spaces. This infrastructure
canbeusedby companies to organise, process, store andwarehouse large amounts of data. Cloud service providers
use these data centers to host their equipment.Moreover, many companies host their infrastructure in the Cloud
which avoids the management of the datacenter.

Clustering refers to the techniques of grouping together several independent computers called ’nodes’ to allow
global management and to go beyond the limits of one computer to :
∗ increase the availability ;
∗ facilitate the increase in load;
∗ allow a distribution of the load;
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Figure 2.1 – Different Cloud Service Models

∗ facilitate the management of resources (processor, RAM, hard disks, network bandwidth).
The creation of clusters of servers is a process which is not very expensive, which consists in setting up se-

veral computers in network which will appear as a single computer to increase the performances (power of the
processor, dimension of the storage space, quantity of RAM, etc.). This optimised use of resources allows the
distribution of processing on the different machines.

One of themain advantages is that it is no longer necessary to invest in an expensivemulti-processor server and
that one can be satisfied with smaller devices which will then be connected to each other according to this ’cluster’
principle, allowing a better adaptability according to the needs - from a performance as well as a financial point of
view. This assembly of physical servers is very practical for the infrastructure. However, we can still improve the
performance of the system by creating virtual servers.

2.1.3.3 Servers virtualisation

The virtualisation of servers [11, 64] allows to instantiate several virtual servers on a physical server. These
virtual resources run on the same physical machine, while having the same properties as if they had each one a
physical machine. The goal of this manipulation is to optimise the efficiency (computing power, scaling, costs)
of a physical server while allowing the company to save money on physical infrastructure. The two principal
virtual servers are docker containers and virtual machines (VMs). The main difference between a container and
a virtual machine is that a container provides virtualisation at the operating system level, while a VM provides
virtualisation at the hardware level (see Figure 2.2). In more detail : all containers share the host operating system
while each virtual machine runs in its own operating system. In addition, the VM requires more memory space
than a container and the startup time of a container is expressed in milliseconds whereas it takes several minutes
for a VM.Note that nowadays most companies use these technologies to reduce costs and improve performance.
Recent works [120] made performance comparison between these two virtualisation process.

This process allows a more efficient use of IT resources. Before server virtualisation, it was common to have
over-used or under-used hardware in the same data center. With virtualisation, it is possible to move workloads
between virtual machines withmigration, allowing more flexibility in the workload management. Moreover, vir-
tual servers can be easily adapted to the shifting demands of an organisation or private users. As virtual servers
utilise the existing computational power of physical machines (vCPU), they can be scaled up or down, depen-
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Figure 2.2 – Virtualisation process with VMs and containers

ding on the current needs. However, if you choose to split the power to share with other virtual servers, it can be
distributed across multiple environments and help the physical appliance runmore efficiently. This way, you can
use the same processing power to run multiple workloads at the same time, without negatively impacting their
performance. Another advantage of this technique is that virtualmachines hardly ever fail, which greatly increases
the reliability of the systems.

2.1.3.4 N-tier Software Architecture

N -tier architectures 2 are themain software application for client-server architectures. Themost famous one is
the3-tier architecture. It is a software architecturewhere the application is decomposed into three logical tiers : the
presentation layer or user interface, the application layer where data is processed and the data storage layer. This
architecture is widely used in client-server applications such as a web applications. The main benefit of three-
tier architecture is the local decomposition for each tier on their own infrastructure. Each tier treats a specific
task and can be managed independently (scaling, updates, etc.). Currently multi-tier applications are subject to
modernisation, using cloud-native technologies such as containers and can be instantiated in well-known cloud
providers such as Amazon Web Scaling [15]. Such architectures can be modeled by queuing models especially
networks of queues (see [143]).

Figure 2.3 – Three tier architecture

2. IBM Cloud Learn Hub, https ://www.ibm.com/cloud/learn/three-tier-architecture, 2020
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2.2 Energy management

2.2.1 The need for energy management
As we can see in Figure 2.4, representing the growth of data storage in the Amazon S3 cloud, cloud usage

continues to grow each year, and exponentially so. This phenomenon can be observed in all companies with
cloud services and is resulting in the construction of new data centers all over the world. This generates a massive
use of data centers associated with the different clouds on the market, which implies a strong increase in their
energy consumption (see Figure 2.4 3).

Figure 2.4 – Increase in data usage and Cloud

There is therefore an urgent need to fight against this over-consumption of energy, which is increasing year
after year. Nowadays, Cloud computing requires more electric power than those of whole countries such as India
or Germany [102], 4. There are several ways to remedy this problem : improving air conditioning (free-cooling),
improving physical servers or clustering, etc. But there also seems to be a role to play regarding the management
of resources in a Cloud, in particular the activation/deactivation policies of physical or virtual servers.

Energy consumption increase is one of the many challenges facing large-scale computing. When the resource
utilisation is too low, some of them can be turned off to save energy, without sacrificing performance. In a data
center, the power consumption can be divided into static and dynamic parts. The static parts are the base costs
of running the data center when being idle and the dynamic costs depend on the current usage. In [87], a power-
aware model was defined to estimate the dynamic part of energy cost for a virtual machine (VM) of a given size,
this model keeps the philosophy of the pay as you go model but based on energy consumption.

Performance and Energy trade-off However, managing energy is not without cost as it reduces the perfor-
mance of the system. The Service Level Agreement (SLA) is a contract signed between the owner of the cloud and
clients. It defines the performance qualities (QoS) allowed during the period of the contract, i.e. the service times
of the servers, the repair times, a guarantee of data protection, etc. It is therefore a parameter to be taken into ac-
count when cloud providers or clients want to minimise the average global cost generated by the Cloud, because

3. Jeff Barr, Introduction to AmazonWeb Services, slides
4. Le cloud, les data centers et l’énergie,Observatoire de l’industrie Electrique,2017, https ://observatoire-electricite.fr/usages-de-l-

electricite/article/le-cloud-les-data-centers-et-l-energie
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one cannot minimise the energy cost without losing performance. This is why it is necessary to balance the two
metrics and find the best compromise. The SLA is a crucial component to consider for energy management yet
it can be difficult to establish properly and several works ought to describe SLA in Cloud environments [126] 5.
Moreover, Siddesh et al. study in [128] dynamic resource allocation with risk analysis by meeting Service Level
Agreements. Last, Labidi et al. [88] propose a semantically richer ontology-based model for SLA to improve its
definition and its evaluation in cloud computing.

2.2.2 Measuring and modelling the energy
This section describes how the energy in cloud systems can be measured and modelled and also presents dy-

namic resource allocation.

2.2.2.1 Energy measurements

Being able to measure the energy consumption of cloud systems is crucial for the development of energy ef-
ficient policies. Indeed, such metrics are important to consider as inputs for scaling policy algorithms. However,
this is not done by organisations in practice since only 13.4% of them are monitoring power consumption [152].
Yu et al. argue and propose in [152] what Key Performance Indicators (KPI) should be suitable for energy mana-
gement. They define an Energy Management Protocol (EMP), which allows the recovery of information about
energy consumption, as well as remote powermanagement.Moreover, Kenga et al. [75] propose an experimental
approach for measuring power consumption in IaaS cloud systems, using Intel’s Running Average Power Limit
framework. Green Grid, an international consortium [24] also presents two metrics to compute the amount of
energy consumed by cloud systems : Power Usage Effectiveness (PUE) and Data Centre Infrastructure Efficiency
(DCiE) which are formulas based on Total Facility Power and IT Equipment Power.

PUE =
Total facility power

IT equipment power

The main consumers of energy on a server (physical or virtual) will be the CPU, the GPU, and the memory.
Estimating howmuch each consumes will give you an estimate of howmuch power your server, or your applica-
tion on a server is consuming. Kansal et al. [72] tackle the virtualisation scenario and provides a solution for VM
power metering called Joulemeter. They build power models to infer power consumption from resource utilisa-
tion ad runtime. Next they demonstrate how current instrumentation for server hardware and hypervisors can
be applied to build the power models on real platforms with very low error. The work [85] also provides a power
model considering utilisation of specific isolated resources to measure consumption of single VM. Theymeasure
the per-VM utilisation of various resources. Finally, Orgerie et al. [87] were among the first to provide measures
of the energy consumption of single VMs.

2.2.2.2 Energy models

The measurement of the energy of an entire cloud requires mathematical models or tools to represent the
cloud as finely as possible to have very good approximation of the power usage. Indeed, measuring electricity
with a wattmeter does not necessarily identify which resource is currently consuming energy, specially in virtuali-
sed environments. Several authors proposed energy models to predict and understand how input parameters (%
CPU utilisation rate, frequency, etc) influence the system and provided solutions to measure precisely the power
consumption of single virtual resources.

5. European commission, Cloud Service Level Agreement Standardisation Guidelines, 2014, https ://digital-
strategy.ec.europa.eu/en/news/cloud-service-level-agreement-standardisation-guidelines
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In data centers or cloud environments, the server power consumption can be divided into static and dynamic
parts. The static part (which does not vary with workload) represents the energy consumed by a server when it
is idle, while the dynamic cost depends on the current usage. Orgerie et al. [87] define a power-aware model to
estimate the dynamic part of energy cost for a VM of a given size, this model keeps the philosophy of the pay as
you go model but it is based on energy consumption.

In addition, Benoit et al. [25] review and derive several models under different assumptions (idle, turning
on/off costs, time, energy, etc.). Considering On/Off policies is well-known in the literature but can be highly
different if one consider that there exists execution time or energy costs to activate or deactivate resources. They
show sequence awaremodels that can be based on time or energy constraints. In each model is respectively inte-
grated the turn-off time of VM and the energy cost for switching off. Finally, Zhou et al. [155] also presents a
fine-grained energy consumption model and analyses its efficiency in energy consumption of data centers. Their
goal is to reduce energy consumption while meeting the quality of service.

With energy measurements and models, cloud providers or customers have the necessary metrics and models
to take as inputs for energy-efficient policies. The following treats about how to manage the energy and find
efficient scaling policies in cloud environments.

2.2.3 Dynamic resource allocation
Dynamic resource allocation is one of themany technical terms that have emerged in the cloud paradigm. This

technique [14] is a very efficient solution in data center owners for adapting resource provisioning to a variable
service demand, by setting up activation and deactivation of resources (physical and virtual) according to the
workload [25].

As the static part represents a high part of the overall energy consumed by the server nodes, therefore, shutting
unused physical resources that are idle leads to non-negligible energy savings. Two main approaches of physical
server resource management have been proposed to improve the energy efficiency : shutdown or switching on
servers or VMs [121], [117] which is referred as dynamic power management [25], and scaling of the CPU fre-
quency and the voltage referred as Dynamic Voltage and Frequency Scaling (DVFS) [86]. Shutdown strategies
(considered in this thesis) are often combined with consolidation algorithms that gather the load on few servers
to favour the shutdown of the others [76]. So, managing energy by switching on or switching off resources is an
intuitive and widespread manner to save energy. It is also important for virtual resources (VMs or Containers)
as the consumption of a physical computer will diminish when virtual resources (or vCPUs) are turned Off, by
reducing the physical CPU usage.

Last, as quoted in [25], coarse techniques of shutdown are,most often, not the appropriate solution to achieve
energy reduction. Indeed, shutdown policies suffer from energy and time losses when switchingOff andOn takes
longer than the idle period. As well, it may be more efficient to leave some resources On to accept incoming
requests.

Moreover, finding the policy that tailors resources to demand is a crucial point that requires accurate assess-
ment of both the energy expended and the performance of the system. Unfortunately, these two measures are
inversely proportional, which motivates researchers to evaluate them simultaneously via a unique global cost
function. Dynamic resource allocation allows you to quickly increase or decrease your capacity for CPU usage
andmemory by adding or removing unneeded virtual servers without any downtime. For the activation however
there is a difference between containers and virtual machines since the startup time of VMs can be long [101]
compared to Docker containers which have a very short start [65].

There are two primary types of scheduling in cloud computing : fixed and dynamic. Fixed scheduling is the
more traditional type, where you have to tell your IT provider upfront how much capacity you want. This type
of schedule is great for businesses that need a specific amount of resources, but it limits your ability to quickly
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grow or decrease your need. Dynamic scheduling, on the other hand, allows businesses to adjust their capacity
as needed without any downtime. This is ideal for those who may not know exactly how much capacity they’ll
need at certain points in time or those who want an easier way to scale up and down as needed (e.g., e-commerce
companies). The adjustment of capacity can be done with specific rules such as auto-scaling policies.

2.3 Auto-scaling policies
Auto-scaling is a way to automatically scale the computing resources of your application based on the load

in a cloud system. The principal idea is to scale up the resources when there is a spike or rise in web traffic and
scale down when traffic levels are low. Some of the world’s most popular websites, such as Netflix, have chosen
auto-scaling support to meet the rising and ever-changing consumer needs and demands. Amazon Web Services
(AWS) 6, Microsoft Azure 7, and Oracle Cloud 8 are some of the most popular cloud computing vendors offering
auto-scaling services. For example, AWS handles multiple services, namely AWS service and Amazon EC2 [14].
Cloud users have the option to set the instance count manually or let EC2 do it automatically. Its scaling policies
are using their in-house monitoring system Amazon CloudWatch. With AWS Auto Scaling, users can set target
utilisation levels for many resources from one intuitive interface and can design scaling plans that automate how
groups of different resources respond to changes in demand.Therefore they can optimise availability of resources,
costs, or the balance between the two. AWSAuto Scaling automatically creates all the scaling policies and sets the
targets for the users based on their preferences. Then, AWS Auto Scaling monitors the users application and
automatically adds or removes capacity to the resource groups in real time, tracking changes in demand. As a
second example, Azure provides its users a console to set auto-scale programs. They can just navigate to the auto-
scale options on their console, add new settings and rules for scaling on various server parameters.

This technology is highly relevant today as the world is committing to reduce carbon emissions and their foot-
print on the planet. The process helps conserve energy by putting the idle servers to sleep when the load is low. It
is most beneficial for applications where the load is unpredictable because it promotes better server uptime and
utilisation. This saves electricity and usage bills, asmany cloud providers charge based on server usage. In practice,
when a user sends a request, the request passes over the internet to a load balancer which communicates to the
servers whether to increase or decrease its additional units. Thus many auto-scaling policies are rules taking as in-
puts the number of requests in the system.Two families of auto-scaling solutions exist : reactive and predictive (or
scheduling). Reactive auto-scaling bases its operation on thresholds (see section 2.3.2) specified by the adminis-
trator, which activates additional servers when crossed. Thresholds can be set for key server performance metrics
such as the percentage occupied capacity. On the other hand, predictive auto-scaling plans the automatic activa-
tion of additional servers during traffic peaks based on the time of day. This type of auto-scaling uses Artificial
Intelligence (AI) to predict when traffic will be high and schedules server increases in advance.

Nevertheless, finding the best auto-scaling policies can be difficult, especially on large server clusters withmas-
sive amounts of information. The principal issue is the search for information (e.g. queuing statistics such as
arrival rates) that becomes difficult with millions of users and wide variation in the use of resources. Therefore
this prevents to calculate easily the auto-scaling rules. Reinforcement learning, mainly treated in this thesis, is ap-
plied because of this lack of information by providing solutions that can learn auto-scaling rules in environments
where we don’t know all the elements. Last, auto-scaling can be applied horizontally (add virtual or physical re-
sources) and vertically (increase RAM capacity, CPUs, etc.). This thesis will only consider horizontal scaling by
adding or removing virtual resources to a pool of machines.

6. https ://aws.amazon.com/fr/autoscaling/
7. https ://azure.microsoft.com/fr-fr/features/autoscale/
8. https ://blogs.oracle.com/developers/post/autoscaling-your-workload-on-oracle-cloud-infrastructure
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Several works gave overview about auto-scaling in the cloud [116], [130].Moreover, Lorido et al. [95] classifies
several techniques to find auto-scaling policies :

1. Queuing theory (section 2.3.1) : providing analysis of queuing models to derive when to scale up or down;
2. Threshold-based rules (section 2.3.2) : providing solutions to compute thresholds telling when to scale up

or down the number of resources ;
3. Reinforcement learning (section 2.3.3) : providing RLmethods to compute optimal scaling policies.

The authors also quote control theory and time series analysis as common methods yet we will only show the
three main techniques that are considered in this thesis.

2.3.1 Queuing models and control management
Queuing theory is a well-known tool to model cloud systems and to assess algorithms policies by their per-

formances (energy, QoS, etc.). As seen earlier in Chapter II, auto-scaling policies have often been studied with
queuing systems. This section presents in more details queuing approaches for cloud environments.

2.3.1.1 Modeling the cloud with queues

In the last decade, many works study resource allocation in the cloud and most of them approaches the pro-
blem with queuing models [49]. This allows to represent complex cloud structures (number of nodes, network,
arrivals of requests, services rates, etc.), to evaluate performances metrics and is an efficient tool for control mana-
gement. Both simple queuing models and more complex one have been widely used to analyse the performance
in cloud systems.

Gupta et al. [53] published a survey for queuing models in cloud services management. General representa-
tion is the following : Requests are generated at the input source by users who require services from the resources
(physical or virtual machines), the rate of arrival of request at the service system is determined by the arrival distri-
bution. Various rules also exist for the selection of requests from the queue known as queue discipline or order.
Last, many services disciplines exist to represent the variability of applications. So all queuing models differ from
their assumptions about the environment : arrivals distributions, services distributions, number of servers, buffer
capacity, load balancing process, etc. They allow to analyse important cloudmetrics such as expectedwaiting time,
throughput, mean queue length, etc. Many works consider Markovian (Poisson processes) assumptions for arri-
vals and services distributions : Evangelin et al. [41] considerM/M/1models to represent queuing systems with
Markovian arrivals and services and a single resource. Other works consider multi-server systems withM/M/C
systems [40, 52, 89]. Some of them [31, 107] studyM/G/Smodels withmore general services distributions, and
even more complex queues considering also general arrivals distributions such as G/G/n in [12]. Such models
can be solved to compute the required resources to process a given input workload, or the mean response time
for requests, given a selection of machines.

2.3.1.2 Multi-tier queuing representations

Multi-tier applications can be studied using one or more queues per tier. For example, Bacigalupo et al [19]
considered a queuing network of three tiers, solving each tier to compute the mean response time. In addition,
Liu et al. [93] study queuing modelling for 3-tier cloud architectures. Queuing networks can also be used to
model elastic applications, representing virtual resources as separate queues. For example, Urgaonkar et al. [144]
use a network of G/G/1 queues per machine. They use histograms to predict the peak workload and uses this
information and the model to calculate number of servers per application tier.
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In this document, all chapters after and including Chapter V deal with multi-tier cloud infrastructures repre-
sented with multi-servers queues in tandem. These systems are little studied in the literature and our work is a
real contribution to consider auto-scaling policies in such infrastructures.

2.3.1.3 Server farms queuing representations

In order to represent the problems with activations and deactivations of virtual machines, server farmmodels
have also been proposed [10, 45]. A server farm is a group of computers serving various computing and storage
needs from a single location. Such infrastructures have been modelled in the last years with queuing systems.
Usually, these server farmmodels are modeled with multi-server queueing systems [16, 17]. For example, Mitrani
et al. [103] uses fluid approximation to compute the activation thresholds in a server farm. Although server farms
with multi-server queues allow a fairly fine representation of the dynamicity induced by virtualisation, these mo-
dels do not address issues related neither to the internal network nor to the VM placement in it. All VMs are
instead considered as parallel resources. This makes these models suitable for studying simple nodes of several
servers in the cloud.

2.3.2 Threshold-based and hysteresis-based policies
If queuing models allow us to easily compute performance metrics, the decision making for switching on or

switching off the VM requires an additional step which remains a key point. The computation of the optimal ac-
tions has led to a large field of researches andmethods.Dynamic control and especiallyMarkovDecisionProcesses
appear to be the most direct method and more recently Reinforcement Learning (see 2.3.3).

2.3.2.1 Threshold policies

Threshold and Hysteresis rules define when to activate or deactivate resources given the load in the system.
When a threshold is crossed fromabove it requires to activate resources to satisfy the demand (and SLA) andwhen
it is crossed from below it decides to deactivate resources to save energy. To quote just a few works that proposed
threshold-based auto-scaling policies we refer to the survey [95]which presentsmany of them.As amatter of fact,
[82], [32], [48] study such rules, but differ with chosen metrics, monitoring, workloads data. Moreover, reactive
auto-scaling techniques have been applied by Chieu et al. in [33]. Notice also that AwS auto-scaling policies are
actually thresholdpolicies 9 that theusers candefineunder their desired conditions andmetrics.Thepolicy defines
the action to take when the associated CloudWatch alarm is in an ALARM state, in other words, when a certain
Key Performance Indicator (KPI) threshold has been crossed by several metrics.

However, it is a major issue to understand if these threshold rules are relevant in practice.

2.3.2.2 Hysteresis policies

On the other hand, threshold policies can imply frequent oscillations if activation and deactivation thresholds
are very closed (or equal in some cases) requiring the system to activate and deactivate very often resources. The
hysteresis is the difference between the two thresholds on a "forward" and "reverse" phase and hysteresis policies,
which are derived from threshold policies were built to avoid this frequent oscillation. These policies are clearly
defined and studied in Chapter IV.

In hysteresis policies for queuing systems [18, 111], servers are powered up when the number of jobs in the
system is sufficiently high and are powered downwhen that number is sufficiently low.More precisely, activations
and deactivations of servers are ruled by sequences of different forward and reverse thresholds. The concept of

9. https ://aws.amazon.com/fr/blogs/mt/create-amazon-ec2-auto-scaling-policy-memory-utilization-metric-windows/
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hysteresis can also be applied to the control of service rates. They allow not to activate and deactivate the servers
too frequently when the load is varying. This makes it possible to correctly adapt variable resources according
to demand by means of thresholds [78, 98]. Therefore, multi-server queueing systems working with thresholds-
based policies and verifying hysteresis properties have been suggested to efficiently manage the number of active
VMs [127, 141]. More recently, Dutreilh et al. [39] stated that thresholds need to be carefully tuned to avoid
frequent oscillations in the system, thus considering hysteresis properties.

The other advantage that makes hysteresis policies so appealing is their ease of implementation. This is why,
they are a key component of the auto-scaling systems for thewidespread cloud architecturesKubernetes for docker
components, andAzure orAmazonWeb Services [14] for virtualmachines.Henceforth, there is a great interest of
studying the computation of hysteresis policy since threshold values can be plugged into auto-scaling systems that
are implemented in the major cloud architectures. Researches on hysteresis policies are twofold : first exploration
of the conditions that insure the optimality of hysteresis policy. The second axis studies the computation of the
threshold values.

2.3.2.3 Optimality of threshold and hysteresis rules

It exists in the literature several works studying the structure of the optimal policy in queuing systems [62, 81],
network and finally Cloud. Federgruen et al. [42] show optimality of threshold policies in single-server queuing
systems with server vacations. Yang et al. [150] also study structural properties of the optimal resource allocation
policy for single-queue systems. The optimal number of servers follows a step function following a bang-bang
control policy. Yang et al. provide conditions under which the bang-bang control policy takes place. In optimal
control problems, it often happens that a control is bounded by a lower and an upper bound. If the optimal
control goes from one extreme to the other (i.e., it is strictly never between the two bounds), it is called a bang-
bang control policy. Also in [94] is shown that under some assumptions the optimal policy in a tandem queue
system is a bang-bang control policy with monotonicity properties.

For hysteresis rules, it appeared very early in the work of Bell for aM/M/2 queuing model [137], that the
optimal policy in suchmodels has a special formand is calledhysteresis. In addition, Szarkowicz et al. [134] showed
the optimality of hysteresis policies in aM/M/S queuing model with a control of the vacations of the servers.
For models with control of the service rates, the proofs were made inHipp [58] in the 80s and in Serfozo [78] for
M/M/1 queues in the 90s.

2.3.2.4 Computation of threshold and hysteresis rules

Now, creating the rules requires an effort from the clients (or cloud providers), who need to select the suitable
performancemetrics andneed to define carefully thresholds.Moreover it is stated in [95] that it is difficult to select
the corresponding thresholds in real systems. Indeed, the calculation of effective threshold values first encounter
the same difficulties as single threshold policies (base-stock policies).

For hysteresis models, the calculation of optimal thresholds received few attention in the past and two ma-
jor trends appeared. The computation of the optimal policy can be done by means of adapted usual dynamic
programming algorithms in which the structured policies properties are plugged. A similar treatment has been
addressed for routing in [110]. The alternate way is similar to the single threshold research for base-stock policies
which is very common in inventory management. A local search in the works [84, 118] is used to explore the op-
timal thresholds. The computation of expected measures associated with a set of thresholds is complex [28]. It
requires the computation of the stationary distribution either by standard numerical methods see e.g. [149] or
after a Markovian analysis with simpler and faster computations (e.g. [146] uses iterative methods to compute
the stationary distribution). As cloud systems are modelled by multi-dimensional systems, defined on very large
state spaces, then the stationary distribution computation is difficult. Fortunately, the computation of the per-
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formancemeasures of hysteresis multi-server systems has been already studied in the literature. Different efficient
resolutionmethods have been developed. Among themost significant works, we quote the work of Ibe and Keil-
son [63] refined in Lui and Golubchik [98]. Both solve the model by partitioning the state space in disjoint sets
to aggregate theMarkov chain. Exhaustive comparisons of the resolutionmethods are made in [71] : closed-form
solution of the stationary distribution, partition of the state space, and matrix geometric methods applied on
QBD (Quasi birth and death) processes are studied.

In [6], Song et al. claims that, for single threshold models, the second approach dealing with stationary distri-
bution computations are generally more effective thanMarkov Decision Process approaches. Such a comparison
has not been performed yet for hysteresis especially since few works implement aMDP algorithmwith a structu-
red policy. Chapter IV proposes and compares twomathematical approaches to compute optimal thresholds and
hysteresis policies under specific assumptions (also see [139]).

2.3.3 Reinforcement Learning for cloud resource allocation
Numerous works have been devoted to compute optimal policy inmulti-server queuemodels withMDP (see

[139] and references therein). However, Markov Decision Process framework requires a perfect knowledge of
the model (queuing statistics such as arrival or service distributions etc.). Unhappily, these values are not always
known in practice and Reinforcement Learning techniques should be applied to dynamic resource allocation to
overcome this lack of information. Without any a priori knowledge, RL methods can determine the best sca-
ling decision to take in each state, given the input workload. This section first displays MDP approaches where
knowledge of the environment is given to the agent, then auto-scaling RL solutions [46] where environments
information are unknown (statistics, users, etc.).

2.3.3.1 Markov Decision Process approaches

Markov Decision Process has been widely used to model resource management problems including auto-
scaling problems. Different algorithms exist to find the optimal management policy, when the underlying transi-
tionprobabilities are known [139]. Since the seminalwork ofMcGill in 1969 (with anoptimal controlmodel) and
that of Lippman (with a Markov decision process model) numerous works have been devoted to similar multi-
server queue models using Markov decision processes (see [137] and references therein for the oldest, and more
recently [151] and [90] to quote just a few). Moreover, [91] is a recent survey aboutMDP approaches for queues
and networks. It reviews all MDP applications for control in queuing and networking systems. For example,
Okamura et al. [112] study MDP approaches for dynamic power management problems in order to save power
consumption. They consider an optimal power-aware design in a cloud system represented by a cluster. Unfor-
tunately, not all of them received rigorous treatment and the study of unichain or multichain property is often
ignored.

Now, these works require full knowledge of the environment which is not obvious in real cloud systems. To
overcome this issue and deal with missing information about environments, reinforcement learning methods
have been applied.

2.3.3.2 Reinforcement learning approaches

Again, two surveys [46, 95] address reinforcement learning for auto-scaling policies in cloud environments.
Many works for RL application on cloud resource allocation problems are discussed and different taxonomies
about the resolution techniques, the criteria to optimise as well as the type of problem are presented. As men-
tioned earlier, RL techniques can learn the optimal auto-scaling policy without requiring the knowledge of the
statistics of the system : either it learns from experience in a model-free fashion or the agent aims to learn this
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knowledge in a model-based fashion. Following [46], we decompose this paragraph in two parts : model-free RL
applications and model-based applications.

Model-free techniques : Most of the RL techniques applied to resource allocation in the cloud aremodel-free
and the vastmajority of themare standardQ-learning andDeepQ-learning techniques. For example, amodel-free
reinforcement learning technique withQ-Learning for autonomic resource allocation in the cloud was proposed
byDutreilh et al. in [38]. In thiswork an agent has to control the number of resources andoptimise a cost function
that takes into account virtualmachines costs andSLA.They focus on a single physical nodehosting several virtual
resources and consider the (w;u; p) state definition, where p stands for performance in terms of average response
time to requests,w for workload and u the number of virtual servers. An other example is the work fromTesauro
et al. [138]. They propose model-free RL using (w;ut−1;ut) state representation, where w is the total number
of user requests observed per time period; ut and ut−1 are the number of activated VMs in the current time step,
and the previous time step, respectively. This representationwill be used along the thesis (i.e. considering number
of requests and VMs at each time step).

For our problem, Jin et al. [68] propose Q-learning to derive auto-scaling policies in the cloud to minimise
delays and number of activated resources and consider again a single physical node. To quotemore, the following
works focus mainly onQ-learning algorithm on a single physical node but have different optimisation criteria or
state space : the work [61] considers the response time and the average resource utilization and [148] proposes
an approach based on inhomogeneous VM.More recently and inmodern networks, works have been presenting
RL solutions [77] for 5G network slicing and [80, 124] for slicing with Deep RL, to quote just a few.

However, many works raise performance issues with model-free RL techniques. Indeed, the problem of poor
performances in the early steps has been addressed in a number ofways. The principal problem is the lack of initial
information and the randomness of the exploration policy. For this reason,Dutreilh et al. [39] proposed a custom
heuristic to guide the state space exploration. They also propose an initial approximation of the Q-function that
updates the value for all states at each iteration, and also speeds up the convergence to the optimal policy. Other
works have also attempted to reduce this training time. It is addressedwith an exploration policy that visits several
states at each step [119] or using parallel learning agents [22]. In the latter, learning agents do not need to visit
every state and action since they can learn the value of non-visited states from neighboring agents.

Overall, many works show that while model-free RL techniques hold great promise for learning adaptive
control policies, it still suffers from slow convergence and detrimental randomexploration. So this appeal to study
new paradigm of RL techniques to overcome these issues.

Model-based techniques : Although researchers have attempted to improvemodel-free techniques, very fewof
them have tried to apply model-based RL approaches. In this context, model-based reinforcement learning tech-
niques [106] can decrease exploration steps by learning amodel of the environment, allowing the agent to update
faster theQ-Value by a supplementary planning phase. Nevertheless, [46]mentions only twoworks that are clas-
sified as usingmodel-based techniques forCloud auto-scaling scenarios and these twoworks ought to estimate the
transition probabilities and thereafter solve the problem with MDP algorithms. Hence, due to the requirement
of having a complete model of the environment in model-based methods, [21] estimates the probability distri-
bution of the transition between states by counting occurrences of visits in state-action pairs (s, a) and (s, a, s′)
and the planning of the policy is done in an offlinemode, by comparingMDP resolution algorithmswithGenetic
Algorithm. However, as quoted in [106], the model based framework is larger than the simple models presented
in [46]. This, coupledwith the very few amount of works in literature aboutmodel-based reinforcement learning
for cloud applications call for further research in this topic and for comparison of model-free algorithms.

Therefore, there is a great interest to study model-based techniques and compared them with state of the art
model-free RL methods. This is the main application in Chapter V. On the other hand, it could be extremely
valuable to devise methods that limit the dimensionality while offering more guarantees of accuracy and greater
explainability. This is the goal of the last two chapters which improves model-based RLmethods by considering
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state variables dependencies as a knowledge for the agent. Hence, Chapter VI deals with factored representation
and Chapter VII deals with causal representation.
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CHAPTER 3

REINFORCEMENT LEARNINGANDNETWORKING
APPLICATIONS

This chapter introduces formalism for reinforcement learning which will be the main framework throughout
themanuscript. It covers themathematical formalismofMarkovDecisionProcess thenpresent a global taxonomy
of RL techniques frommodel-free to model-based. It also introduces the factored and causal approaches. Last, it
presents an industrial applicationwith state of the artmodel-free applied to combinatorial optimisationproblem :
Deep-Q-Network.

Reinforcement learning [8] is concerned with how a software agent ought to take actions in an environment
to maximise some cumulative reward. The autonomous agent must discover which decisions will produce the
greatest long-term benefit by trial-and-error search. Markov Decision Process [5] is the theoretical model behind
this framework. It allows to describe the interactions between the agent and its environment in terms of states,
actions, and rewards (see Figure 3.1). The basic idea is to represent aspects of a real problem faced by a learning
agent that interacts over time with its environment to achieve a goal.

Figure 3.1 – RL interaction between an agent and the environment (Figure from [46])
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3.1 Markov Decision Process

3.1.1 Elements
Markov Decision Process, named after Andrei Andreyevich Markov (1856-1922), is an extension of Markov

chains with supplementary elements : actions and rewards. A MDP is a mathematical model for the random
evolution of a memoryless system. The classical model of a MDP is defined as a 5-tuple (S;A;P ;R; γ) where :
∗ S represents the environment state space : it canbe seen as a stochastic process that evolves over time{St}t∈N
depending on the system’s randomness and the agent’s actions. We denote by a lowercase s the value of the
state.
∗ A represents the action space : it is the set of possible actions the agent can chose in a given state s ∈ S and
that will influence environment state. We denote by a lowercase a the value of the action.
∗ P : S × S → [0, 1] withPa(s, s′) = P(st+1 = s′|st = s; at = a) represents the probability that action
a in state s at time twill lead to state s′ at time t+ 1 : it describes the system’s randomness ;
∗ R : S ×A → RwithR(s, a) represents the immediate reward received after taking action a in state s : it
describes the goodness of agent’s decision a in state s. We denote by capitalR the reward function and by a
lowercase r the reward value.
∗ γ ∈ [0, 1] is the discount factor : it represents howmuch the agent care about the future.
Such systems respect the Markov property, i.e. that a given future state depends only on the present state

and having information about the past does not bring supplementary knowledge. In probabilistic words, the
stochastic process {St}t∈N satisfy the Markov property if :

p(St = st|St−1 = st−1, . . . ,S0 = s0, at−1 = a) = p(St = st|St−1 = st−1, at−1 = a)

Now, to evaluate its performance in the environment, there are three fundamental elements that the learning
agent carries : the policy q, the state-value function V or action-value function Q, and optionally, the model of
the environment.

∗ The policy q : S → A
∗ The state-value function Vq : S → R or the action-value functionQq : S ×A → R.
∗ An environment model {P ,R}.
To summarise : The state space S represents the intrinsic state of the environment. Yet it happens that the

agent can only observe a part of the state and we will refer to the observation space, denotedO whereO ⊆ S .
The action spaceA is the set of available decisions for the agent. The rewardR is a numerical signal that tells the
agent if its decision is good or not and the agent’s goal is tomaximise the total amount of received reward. For this
aim, the agent needs to determine the best policy q. The policy q is a function defining what decision a the agent
should take in a given state s. In general, the agent attempts to maximise the return G that is defined as a specific
function of the reward sequence. The return is defined as the sum of the discounted rewards :

G = Eat∼q[
T∑
t=0

γtR(st, at)]

where T is a final time step. The reward signal is the primary basis for altering the policy q. If an action selected by
the policy is followed by low reward, then the policy may be changed to select some other action in that situation
in the future. In general, reward signalsmaybe stochastic functions of the state of the environment and the actions
taken, yet we consider in this thesis only deterministic rewards.
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Whereas the reward signal indicates what is good in an immediate sense, a value functionV ∈ V specifies what
is good in the long run. Roughly speaking, the value of a state is the total amount of reward an agent can expect
to accumulate over the future, starting from that state. The state-value function Vq is the expected cumulative
reward over the future, when agent follows a specific policy q. It represents an approximation of the true return
G. Thus the autonomous agent aims tomaximise this value function and its best policy q will be to reach states in
which the value function is the highest. The action-value functionQq represents the same metric but integrates
the effect of the first chosen action a. It represents for the agent the goodness of taking action action a in state s
and how good it is to be in this state. We have :

Vq(s) = Eq

( T∑
t=0

γtR(st, q(st)) | s0 = s
)
.

We also define the action-value function (also calledQ-function) :

Qq(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|(s, a))V q(s′) .

and provide relations between V,Q and q :

Vq(s) = argmaxaQq(s, a) and q∗ = argmaxqVq

3.1.2 Markov Decision Process resolution
In theMarkovDecision Process framework [5], we have a full information about transition and reward func-

tions. This allows the software agent to do planning and iteratively update its policy or value function as it could
imagine the consequences of its actions. Before presenting theMDP algorithms, we provide detailed characteris-
tics about MDPs [2].

3.1.2.1 Criteria, policies and optimality

Policies types
Formally, policies are rules that tell the agent what action it should take given an observation of the environ-

ment. This observation can be the history of observations [2] ht = (s0, a0, s1, a1 . . . , st) in which the system is
History-Dependent or it can be the last observation of the system st in which the system isMarkovian. Next, we
specify that the policy q can be deterministic or stochastic. In the first case, the policy is defined by q : S → A,
telling the agentwhat actiona it should actwhen it observes state s. The stochastic casewhere the policy is defined
by q : S ×A → [0, 1] indicates the probability for the agent to play an action a in state s. Moreover, we define
stationary policies of the form :∀t, qt = q, i.e. the policy does not evolve over time.We characterise four families
of policies :

∗ HS for stochastic history-dependent policies ;
∗ HD for deterministic history-dependent policies ;
∗ MA for stochastic Markovian policies ;
∗ MD for deterministic Markovian policies ;

Performance criteria and optimalityWhen a software agent solves aMDP, it can consider several criteria
depending on the optimisation problem.We define 4 different types of performance criteria with their associated
value function. ∀s ∈ S and for a determined policy q :
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∗ Finite Horizon Criteria with : V N
q (s) = Eq[

N−1∑
t=0

Rt | s = s0]

∗ Discounted Criteria : Vq(s) = Eq[
∞∑
t=0

γtRt | s = s0]

∗ Total Criteria : Vq(s) = Eq[
∞∑
t=0

Rt | s = s0] with γ = 1

∗ Average Criteria : ρq(s) = limn→∞E
q[

1

n

n−1∑
t=0

Rt | s = s0]

In the MDP setting, the optimal policy q∗ and its associated optimal value V ∗ or ρ∗, refers to the policy that
has the best value for all state, i.e. : q∗ is optimal if ∀s ∈ S , V ∗(s) ≥ V (s) , ∀V ∈ V whereV is the set of value
functions and q∗(s) = argmaxa∈AV (s) 1. Now it has been proven that optimal policies inMDPs areMarkovian
policies [2], i.e. that it exists a q∗ that belongs to MA. And depending on the chosen criteria, the optimal policy
can be stochastic or deterministic. In this thesis, we consider only two criteria : discounted criteria and average
criteria.

Optimality and Bellman Equations SolvingMDP implies to separate the expected sum of rewards which
means tomaximise orminimise the instantaneous reward generated by the selected action a in present state s plus
the future rewards from future possible states s′. We define for general cases the Bellman dynamic programming
operator T : V −→ V s.t.

T V (s) = maxa∈A

{
R(s, a) + γ.

∑
s′∈S

p(s′|s, a).V (s′)

}

In matricial form :
TqV = Rq + γPqV

We can derive from these equations the Bellman equation used it MDP resolution algorithms.

V (s) = maxaR(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′) (3.1)

3.1.2.2 Dynamic Programming Algorithms

The term dynamic programming (DP) refers to the decomposition principle of the Bellman equation, which
from this equation gives a collection of algorithms that can be used to compute optimal policies given a perfect
model of the environment as a MDP. We refer to state of the art DP algorithms as : Value Iteration (VI), Policy
Iteration (PI). These methods are also called planning methods since they allow the agent to plan by evaluating
value function and policy with the modelM from the recursive Bellman equation 3.1. We first present the two
algorithms for the discounted criteria.

Value Iteration VI is obtained simply by turning the Bellman optimality equation 3.1 into an update rule. It
learns an optimal value function V ∗ by solving iteratively the Bellman equation and derives from it the optimal
policy q∗. It iteratively updates the value function by solving for all states s ∈ S the equation 3.1. Intuitively, the
agent updates its value function at time step t + 1 by integrating the immediate rewardR(s, a) plus the value
function of potential next states s′ aggregated by the probability to reach s′ under state s and action a. After
convergence, it derives the policy by taking the best action in each state s, thus maximising the value function V .

1. in a Max optimisation problem
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Algorithm 1:Value Iteration - Discounted criteria
Input: V 0, q0, ζ accuracy
Output: q∗, V ∗

Data:M = {P ,R} is known
1 repeat
2 for s ∈ S do
3 V k+1(s) = maxaR(s, a) + γ

∑
s′∈S
P(s′|s, a)V k(s′) // Bellman equations

4 until ||V k+1 − V k|| ≤ ζ
/* Policy derivation */

5 for s ∈ S do
6 q∗(s) = argmaxaR(s, a) + γ

∑
s′∈S
P(s′|s, a)V k(s′)

Policy Iteration The Policy Iteration algorithm focuses on the policy q. It is decomposed into two steps :
Policy Evaluation (PE)where the algorithm evaluates the policy by calculating the value functionV under current
policy q and Policy Improvement (PI) by taking the best actions that maximises the value function V .

Algorithm 2: Policy Iteration - Discounted criteria
Input: V 0, q0

Output: q∗

Data:M = {P ,R} is known
1 repeat

/* Policy Evaluation */
2 for s ∈ S do
3 V k+1(s) = R(s, qk(s)) + γ

∑
s′∈S
P(s′|s, qk(s))V k(s′)

/* Policy Improvement */
4 for s ∈ S do
5 qk+1(s) = argmaxaR(s, a) + γ

∑
s′∈S
P(s′|s, a)V k(s′)

6 until qk(s) = qk+1(s)

Relative Value Iteration Finally we present the Relative Value Iteration (RVI) algorithm that solves the ave-
rage criteria in pseudo-code 3. The method does not deal with the usual value function V , but works with the
relative value function U that is computed by :

∀s ∈ S, Uq(s) = Eq[
∞∑
t=0

Rt − ρq | s = s0]
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where ρq is the average gain under policy q. More details are provided for the study of average criteria in Chapter
IV.

Algorithm 3:Relative Value Iteration - Average criteria
Input: U0 = 0, q0, ζ accuracy
Output: q∗, U∗, ρ∗

Data:M = {P ,R} is known
1 repeat
2 Choose s0 ∈ S
3 ρk+1 = maxaR(s0, a) +

∑
s′∈S

p(s′|s0, a)Uk(s′) // Average gain calculation

4 for s ∈ S do
5 Uk+1(s) = maxa [R(s, a) + γ

∑
s′∈S

p(s′|s, a)Uk(s′)]− ρk+1 // Average Bellman equations

6 until ||Uk+1 − Uk|| < ζ
/* Policy derivation */

7 for s ∈ S do
8 q∗(s) = argmaxa [R(s, a) + γ

∑
s′∈S

p(s′|s, a)Uk(s′)]

3.2 Reinforcement learning

Let us define the environmentmodelM = {P ,R}. It is an object thatmimics the dynamics behaviour of the
environment. Given a state s and an action a, it predicts the next state s′ with transition distribution P(s, a, .)
and returns the rewardR(s, a). If the modelM is perfectly known, one can solve the problem by learning an
optimal policy with classical MDP solutions (see section 3.1.2). On the contrary, ifM is unknown, the problem
can be solvedwith reinforcement learning techniques that will be explain in this section. UnlikeMarkovDecision
Process resolutionwithdynamic programming, theRLagent have to learn the optimal policy or value functionby
interactingwith the environment in trial-and-errormode. In otherwords, theRL agent cannot performplanning
computations and needs to collect data from environment interactions to update its policy or value function.
The field of reinforcement learning can be decomposed into several branches that are displayed in section 3.2.2
which provides the different classes of algorithms. We first provide the main intuition of reinforcement learning
algorithms, i.e. how the software agent can learn with collected experiences.

3.2.1 Main idea of Reinforcement Learning
The first idea borrowed from reinforcement learning techniques is theMonte Carlomethods,where the goal is

to perform experiences to estimates values. The goal in the RL paradigmwould be to estimate the value function
V q of a fixed policy qwith simulated trajectories and updating the value at the end of each trajectory. In a nutshell,
the agent observes environment states s and decide to perform an action a given by its policy q(s). From this
interaction, the agent collects a reward r and observes the new environment state s′. In a simulation, it would
collect a history of samples (s, a, r, s′) that it could use to learn the optimal value function or policy.

In a Monte Carlo simulation for RL, the agent will simulate trajectories k from each state s for a fixed period
T following policy q and will look at the cumulative sum of reward (or Return) obtained from that trajectory
Rk(s). Then, it can approximate the value function V as :
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∀s ∈ S , Vk+1(s) =
R1(s) +R2(s) + . . .+Rk+1(s)

k + 1
(3.2)

The essence of this method has led to a more modern approach called Temporal Di�erence (TD)-learning,
which is the principalmethodology forQ-Learning algorithm. If one had to identify one idea as central and novel
to reinforcement learning, it would undoubtedly be TD-learning. This method is a combination ofMonte Carlo
ideas and DP ideas. Like Monte Carlo methods, TD methods can learn directly from raw experience without a
model of the environment’s dynamics. Like DP, TD methods update estimates based in part on other learned
estimates, without waiting for a final outcome. In other words, TD-learning methods are bootstrapping. We can
start from theMonte Carlo method equation to understand the TD-learning process and rewrite 3.2 :

∀s ∈ S , Vk+1(s) = Vk(s) +
1

k + 1
[Rk+1(s)− Vk(s)]

Which leads us to :

∀s ∈ S , Vk+1(s) = Vk(s) + α[Rk+1(s)− Vk(s)] (3.3)

where α is the learning rate.
As said, TD-learning uses the incremental characteristics of dynamic programming and the trial characteristic

of Monte Carlo. We focus on discounted criteria with γ and present TD(0) or one-step TD which considers
only one time step. We depict next the reasoning that leads to the TD(0) update equation. If the value functions
estimates were exact, i.e. that it estimates perfectly the returnG, we would have the following :

V (st) = rt + γrt+1 + γ2rt+2 + . . .

V (st+1) = rt+1 + γrt+2 + γ2rt+3 + . . .

So
V (st+1) = rt + γV (st+1)

This leads to the one-step update equation for the value function, also called theWidrow-Ho� Equation :

V (st) = V (st) + α[rt + γV (st+1)− V (st)]︸ ︷︷ ︸
TD-error

(3.4)

Like in Dynamic Programming, the value V (st) is updated with the value of the successor V (st+1) and with
the new reward received rt from the environment (see pseudo-code 4).Obviously,TDmethods have an advantage
over DP methods in that they do not require a model of the environment, of its reward function and next-state
probability distributions. The next most obvious advantage of TD methods over Monte Carlo methods is that
they are naturally implemented in an on-line, fully incremental fashion and they do not need to wait until the
end of an episode. Moreover, the convergence of TD-learning methods have been proven, i.e. that for any policy
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q, TD(0) converges to Vq.

Algorithm 4:TD(0)-Learning - Discounted criteria
Input: V 0, q, α learning rate, γ discounted rate
Output: Vq
Data:M = {P ,R} unknown
/* Several simulation episodes */

1 for episodes do
2 Initialise s = s0

/* Several steps until end of episode */
3 for iterations do
4 Select action a = q(s) and collect r and s′
5 V (s) = V (s) + α[r + γV (s′)− V (s)]
6 s← s′

This computational logic is present in most of the RL algorithms, that is the approximation of the return or
cumulative sumof rewards which can be seen as a target for the value function or policy to update, in a supervised
learning mode.

3.2.2 Taxonomy of RL algorithms
Now, to structure reinforcement learning techniques,we provide in this section an overviewofRL algorithms.

Our goal here is to highlight themost foundational design choices inRL algorithms about what to learn and how
to learn it.

3.2.2.1 Model-free versus Model-based

One of themost important branching points in aRL algorithm is the question of whether the agent has access
to (or learns) the modelM of the environment. Algorithms which use a model are calledmodel-based, and those
that don’t are calledmodel-free. Model-free techniques aim to update the policy or value function directly from
experience without involving a model of the world, whereas the second one, on the contrary, works with the
model of the world. In model-based methods, the model can be given which bring us back to MDP resolution,
or it can be learned by the agent from experiences. The agent is building an approximated model M̃ = {P̃ , R̃}
to perform planning, i.e. update value function or policy.

Themain advantage of having amodel is that it allows the agent to plan by thinking ahead, seeing what would
happen for a set of possible choices, and explicitly deciding between its options. Agents can then integrate the
results of the planning into a learned policy. A particularly famous example of this approach is AlphaZero [129].
While model-free methods renounce to the potential gains of sampling efficiency associated with using a model,
they are easier to implement and tune. In the literature, model-free methods are more popular and have been
more widely developed and tested than model-based methods for industrial applications.

3.2.2.2 Value-based versus Policy-based

Another critical branching point in a RL algorithm is the question of what to learn. The list of usual tools
includes :

∗ policies, either stochastic or deterministic
∗ action-value functions (Q-functions)
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∗ value functions (V-functions)

Learning the policy refers to policy-based RL algorithms while learning action-value or value functions refers
to value-based RL algorithms. This distinction takes up the difference between VI and PI in DP algorithms.

This two orthogonal distinctions are represented in Figure 3.2.

Figure 3.2 – Two principal differences between reinforcement learning methods

3.2.3 Model-free reinforcement learning
Sincemodel-free techniques does notworkwith amodel of the environment, they only learn from experiences

collected with environment interactions. As developed in section 3.2.1, the goal is to derive the value function or
policy from collected data.

3.2.3.1 Value-based (Q-learning)

This section focuses on the learning of the action-value function Q. The concept is borrowed from TD-
learning, extended on theQ-value function. The idea is that if the agent can correctly approximateQ(s, a) for all
state-action couples (s, a), it can easily derived the best action to take in a state s by computing :

a∗ = argmaxaQ(s, a)

Tabular Q-Learning We first consider tabularmethodswhere theQ-value function is implemented as a table
with actions and states as entries.We display theQ-learning [147] algorithmupdate equation (extended from3.4)
withQ(s, a) instead of V :

Q(s, a)← Q(s, a) + α [r(s, a) + γmax′aQ(s′, a′)−Q(s, a)] (3.5)

The action selection process in the simulations is an epsilon-greedy policy which allows the agent to exploit
and explore over time. It usually starts with a high value of epsilon and decrease it over episodes. The process
draws a random probability between 0 and 1 and compares it with the value of epsilon ε. If it is below, the agent
explores by taking a random decision, if it is above the agent exploit by following its policy, i.e. the best action a
that maximisesQ(s, a). This is one well-known technique to deal with the exploration-exploitation paradigm in
model-free reinforcement learning.
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We finally provide the pseudo-code in Algorithm 5.

Algorithm 5:Q-Learning
Input:Q0, q0

Output: q∗, Q∗

Data:Dynamics unknown
/* Loop until end of episodes or criterion */

1 for e ∈ {1, . . . , Ne} do
2 Select state s ∈ S // Initial state
3 Take action a ∈ Awith epsilon-greedy policy. // Action selection
4 Observe s′ and rewardR(s, a) and collect tuple< s, a, r, s′ > // Collecting tuples data
5 Q(s, a)← Q(s, a) + α [r(s, a) + γmax′aQ(s′, a′)−Q(s, a)] // Update Q

Now, we have seen that the Q-learning method has a tabular representation of the Q-function and is efficient
on small action and state spaces.This algorithmcanbe slow converging sinceweneed further update of allQ(s, a)
values to converge to the optimal solution.Moreover, at each time step the method only updatesQ(s, a) for one
couple (s, a). The rise of dimensionality and number of state-actions pairsmakes it irrelevant and approximation
for the Q-function is needed. This is why Deepmind’s team [105] developed an algorithmwhere the Q-function
was approximated by a neural network [1] :Deep-Q-Network orDQN.

Deep-Q-Network The idea is similar to Q-learning instead it updates the weight of the Q neural network
with an experience replay bufferD that saves all the agent’s interactions (s, a, r, s′) with the environment. The
first gain is that one learning iteration will update the weights of Q and thus will update all Q(s, a). Now the
action-value function is a neural network parameterised by weights θ : Qθ(s, a) = Q(s, a|θ). The objective
function to optimise is a loss function computing the TD-error. Basically, the idea is to update the weights of
the neural network in a supervised learning mode, by minimising the TD-error over a batch of samples. In other
words, for an experience tuple (s, a, r, s′), the algorithm builds the mean squared error loss function :

L(s, a) = [y(s, a)−Q(s, a|θ)]2

where y(s, a) = r + γ max aQθ(s
′, a).

More usually, it computes the loss function over a batch of experiments taken from the memory buffer :

L = E(s,a,r,s′)∈D[y(s, a)−Q(s, a|θ)]2

The update of the neural network weights is made withGradient Descent techniques such as Stochastic Gra-
dient Descent or ADAM optimiser, which are often use in practice. For the neural network architecture, two
structures exist. In the first one, the Q-network has in the first layer for inputs the state’s variables of the system
and for the last layer the outputsQ(s, a), i.e.Qθ : S → R|A|. The second architecture takes as inputs the state
and the action a and outputs the unique value ofQθ(s, a), i.e. Qθ : S × A → R. The choice of the architec-
ture depends usually on the cardinality ofA. To avoid correlations between samples for the weights updates, the
process randomly select batch of experiments from the buffer replay D to have i.i.d samples. Finally, to reduce
oscillations while learning, the algorithm freezes the target Q-neural network for some learning iterations : Q̂.
Algorithm 6 displays the pseudo-code for the DQN.

When we refer to value-based reinforcement learning, one often refers to Q-Learning and DQN techniques.
Yet, it exists in the literaturemany improvements [57] (initialisation,multi-agentdistributed, exploration-exploitation
trade-off, double DQN, RainbowDQN, etc.) of this technique.
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Algorithm 6:Deep-Q-Network

Input:Qθ action-value function, Q̂θ̂ target value function with θ̂ = θ,D replay memory,Ne number of
episodes

Output: q∗, Q∗

Data:Dynamics unknown
/* Loop until end of episodes or criterion */

1 for e ∈ {1, . . . , Ne} do
2 Initialise s0

3 for t ∈ {1, . . . , T} do
4 Select at = argmaxaQθ(s

t, a) if exploitation else select randomly at with exploration
5 Collect st+1, rt and store the whole transition (st, at, rt, st+1) inD

/* Learning */
6 Sample randomly batch of experiences (s, a, r, s′) fromD
7 Set y = r if terminal sample (t = T ) else
8 Set y = r + γmaxaQ̂θ̂(s, a)

9 Update θ with gradient descent techniques on L =
∑

samples

(
y − Q̂θ̂(s, a)

)2

10 Sometimes update the target network θ̂ = θ

3.2.3.2 Policy-based RL

Methods in this family represent a policy explicitly as qθ(a|s), i.e. most of the time the policy is stochastic in
policy-based (or policy-gradient) methods and we will denote them interchangeably by q(a|s, θ) or qθ(a|s). The
policy indicates the probability to select action a in state s when the policy is parameterised by weights θ. One
optimises the parameters θ either directly by gradient ascent on the performance objective L(qθ), or indirectly,
by maximising local approximations of L(qθ). Note that the objective function L(qθ) varies depending on the
policy-based algorithms. This optimisation is almost always performed on-policy, which means that each update
only uses data collected while acting according to the most recent version of the policy. Policy optimisation can
also involve learning an approximator Vφ(s) (φ being the weights for the value function approximation) for the
on-policy value function V q(s), which gets used in figuring out how to update the policy.

We provide in algorithm 7 the main behavior of policy-based algorithms, by providing the pseudo-code of
REINFORCE, a Monte-Carlo policy-based algorithm. This algorithm generate sequences of data by following
its policy q. With collected rewards, it calculates the return and uses it to update the weights of the policy with
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ascent gradient computations.

Algorithm 7:REINFORCE : a policy-based algorithm
Input: qθ(a|s), θ ∈ Rd, α learning rate, γ discount rate
Output: q∗

Data:M unknown
/* Repeat until end of episodes or criterion */

1 for e ∈ {1, . . . , Ne} do
2 Generate a sequence s0, a0, r1, s1, . . . , sT−1, aT−1, rT following qθe(.|.)
3 for t ∈ {1, ..., T − 1} do
4 G ← return at step t
5 θ ← θ + αγtG∇θe ln qθe(at|st)

However, in this thesis, we only consider value-based methods. Therefore we just recall well-known policy-
gradient algorithms without providing details. The main differences between policy-based or policy-gradient
methods is how they update the weights, the loss function they consider but also the architecture of the ob-
jects to optimise (value function, policy). For example, some of them, actor-critic methods such as A2C and
A3C [104] update both the policy (actor) and the value function (critic) in a asynchronous manner. Moreover,
in Policy Proximal Optimisation [123], known as PPO, one uses an approximation of the advantage function
A(s, a) = Q(s, a)− V (s) and a clip function to update the weights of the policy. The algorithm considers the
following surrogate objective function to learn the new policy weights θ′ :

L = min
(qθ′(a|s)
qθ(a|s)

Aqθ(s, a), clip(
qθ′(a|s)
qθ(a|s)

, 1− ε, 1 + ε)Aqθ(s, a)
)

that imposes a clip interval on the probability ratio term. The clip function ensures the policy at step t+ 1 to
be not so far from policy at time t, avoiding high changes in the policy q.

The advantage function is a measure of the extra gain that could be obtained when selecting the action a in
state s (A(s, a) = Q(s, a)− V (s)). The autonomous agent updates the weights of its policy in the direction to
maximise this advantage estimate (PPO) or the return (REINFORCE).

Policy or Value-based methods ? The primary strength of policy optimisation methods is that they di-
rectly optimise the object you want, namely the policy. This tends to make them more stable and reliable. On
the contrary, Q-learning methods only indirectly optimise the agent’s performance, by training Qθ to satisfy a
self-consistent equation. There are many failure modes for this type of learning, so it tends to be less stable. Yet,
Q-learningmethods gain the advantage of beingmore sample efficient when they dowork, because they can reuse
data more effectively than policy optimisation techniques.

Moreover, policy optimisation and Q-learning are not incompatible (and under some cases, they turn out
to be equivalent), and there is a range of algorithms that fall between the two extremes. Algorithms that live on
this range are able to carefully arbitrate between the strengths andweaknesses of each side. Examples includeDeep
Determinisitc Policy Gradient [92] (DDPG), an algorithm that simultaneously learns a continuous deterministic
policy and a Q-function by using each objects to improve the other and Soft Actor Critic [55] (SAC), a variant
which uses stochastic policies, entropy regularisation, and a few other tricks to stabilise learning.

3.2.4 Model-based reinforcement learning
Model-based reinforcement learning (MBRL) techniques ought to work with a model of the environment to

perform planning. Two principal frameworks exits : either the agent is provided the model or it has to learn it

32



from experience. We provide in this chapter familiarities about this class of RL methods and how it works : first
how the agent can learn the world model and second how it can use the model for planning. The details about
model-based algorithms (learning, planning, architectures) will be provided in Chapter V.

3.2.4.1 Learning the model

The usual scenario in reinforcement learning applications is that a ground-truth model of the environment
is not available to the agent. If an agent wants to use a model to operate planning techniques, it has to learn the
model purely from experience, which creates several challenges. The biggest challenge is that bias in themodel can
be exploited by the agent, resulting in an agentwhichperformswellwith respect to the learnedmodel, but behaves
sub-optimally (or super terribly) in the real environment. Learning the environment model is fundamentally
hard, as it can take lots of time to have a good approximation and can even fail. Since several years, some researchers
have tempted to propose solutions for model learning in RL environments. Recall that the environment model
M should be an object that can predict the next state s′ and the reward r when the agent takes action a in state
s. We denote by M̃ the approximated model that the agent learns from collected data. In some scenarios, the
agent has to learn the dynamics of the environment P since the reward is hand-crafted by human knowledge or
engineers and thus provided to the software agent. However, there are cases where the agent must also learn the
reward. Chapter V and Chapter VI assume that the reward function is given to the agent and only the transition
probabilities have to be approximated therefore we present works with this assumption.

What model to learn ? The first point asks what model the agent should learn. With environment interac-
tions, the agent collects batch of one-step transition data (st, at, rt+1, st+1). There exist three principal types of
dynamics function [106] :
∗ Forward model that predicts the new state st+1 at time t + 1 when the agent selected action a in state st at
time t : (st, at)→ st+1 ;
∗ Backward model that predicts the pair state-action (st, a) that led to the new state st+1 : (st, at)← st+1 ;
∗ Inverse model that predictswhich action the agent should take tomove fromstatest to statest+1 : (st, st+1)←
at

Model-based RL has mostly focused on forward models, and these will also be the main focus of our discussion,
and investigated solutions in the thesis.

How to learn the model ? Now to estimate these forward models the agent has several mathematical tools
that are nicely covered in the survey [106] and that will be detailed in Section 5.1 of Chapter V :
∗ Non-parametricmethods that directly store and use the data to represent the model :

— Replay bu�ers [43, 133] : Replay buffers techniques are dealingwith deterministic modelswhere the col-
lected tuple (s, a, r, s′) is kept inmemory (the replay buffer) for planning and updating value function
or policy. Basically, it acts as a predictor for couple (s, a)→ (r, s′) ;

— Approximate methods :Wemay also apply non-parametric and approximationmethodswhenwewant
to be able to generalise information to similar states. In this context, we approximate the transition
model (s, a) → (r, s′) with approximated methods. For example, this can be done with neural net-
works, linear approximation or Gaussian processes [145] that have became a popular non-parametric
approach.

∗ Parametricmethods, discussed in [56] :
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— Exact tabular methods : For a discreteMDP (or a discretised version of a continuousMDPChapter V),
a tabular method maintains a separate entry for every possible transition. For example, in a stochastic
MDP (in which we need to learn a probability distribution), Sutton proposed a tabular maximum li-
kelihood model [133] to estimate the probability of each possible transition (s, a) → s′ by counting
occurrences of visits in these couples (more details in Chapter V). Being able to learn this exact model
of the world allows first a safe planning and exploration thus the agent can train from simulated ex-
periences. Moreover these methods are sample efficient in the sense that they require less interactions
with the environment to converge. However, they do not scale to high-dimensional problems, as the
size of the required table scales exponentially in the dimensionality of S (see Chapter V and Chapter
VI).

— Approximate methods : The dynamic model function P can also be approximated by P̃ , which will
scale down thememory requirements and bemore feasible in large scale systems. Usually, the dynamics
approximatorwill be parametric functions such as : Linear regression [8],Dynamic BayesianNetworks
[26], Neural Networks [108], etc.

As we have seen, there are a variety of challenges and issues in model learning. In the next paragraph, we will
discuss how this learned (or given) model may actually be used to act and learn in the environment.

3.2.4.2 Exploiting the model - Planning

The second branch of model-based RLmethods is about scenarios where the agent is given the environment
model or has learned the model. The main difference here is that in the former case the agent can directly do
planning based on the accuratemodel of theworldwhile in the latter case the agent needs to learn themodel from
interactions with the environment and then do some planning. This family of reinforcement learning algorithms
will be treated in Chapter IV, where it is assumed that the agent have a full knowledge of the environment model
M and in Chapter V, Chapter VI.

Model is given The very first case is about when the agent is provided beforehand the true model of the
environmentM, including dynamics and reward functions. The very first techniques are the DP algorithms to
solve MDPs, described in section 3.1.2. Also more recent work such as AlphaZero [129] proposes model-based
RL withMonte Carlo Tree Search (MCTS) to master the game of Go.

Model is learned - Integration of Learning and Planning The scenariowhere the agent has learned themodel,
or as we focus in this document the dynamics model P , differs from the case where the true model is provided.
Indeed, the software agent have to use its updated model carefully, depending on its confidence in the learning.
This raises several issues that are presented here but which will be detailed in the Background Section A.1 of
Chapter V.

∗ Which first state to select for the planning : It exists several options to consider :

— A straightforward approach is to randomly select states throughout state space. This is the case of DP
methods which selects all possible states in a sweep. The major drawback of this approach is that it
does not scale to high dimensional problems, since the total number of states grows exponentially in
the dimensionality of the state space ;

— We can also ensure that the agent only plans at reachable states by selecting previously visited states as
starting points. This is the case for Dyna architectures [133] (see Chapter V) ;
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— Selecting visited states can also be improved with a prioritisation of the states. For example, to obtain
an ordering over the reachable states, identifying their relevancy for a next planning update might be
suitable. A good example is Prioritised Replay [122] (see Chapter V) which identifies state-action pairs
that likely need to be update, e.g. pairs with the highest TD-error ;

— Last, the agent can do planning directly from the current state it observes in the environment. This
puts much emphasis at finding a better solution or more information in the region where we the agent
currently operates.

∗ Trade-o� between time for collecting data and planning time : The challenge here is to define in the algorithms
when the agent must do planning.

— Planning at each environment step : As an example, original Dyna architectures proposed by Sutton
[133]makes up to a hundred planning steps after every real iteration in the environment, i.e. after each
tuple (s, a, r, s′) ;

— Planning after collecting several data :Theprincipal example is PILCO[36]which collects data in entire
episodes, and plans an entire solution after a set of new real transitions has been collected. This is also
known as Batch reinforcement learning where the agent plans after collecting a batch of experiments.

∗ How long should the planning phase last : The planning phase ismade of several iterations to browse the state
and action spaces for updating value functions or policies. One plan can be seen as an ’imagined’ simulation
that the agent can roll from the learned model. Two principal points emerge : how large the agent should
browse the state space (or start a new planned simulation), known as breadth and how deep the plan should
be, known as depth. We detail below the two points and summarises it in Figure 3.3.

— Breadth of the plan to decide how large the agent browse the state space : Original model-based RL
methods usually consider a breadth of size 1 to sample single transitions from the model and applying
model-free updates, e.g. Dyna architectures. Very recent works integrate this reasoning in modern
model-free techniques : e.g. withDDPG [70]. An othermore flexible example is AlphaZero [129]with
MCTSmethod that deals with adaptive breadth sizes depending on the tree arms. Last techniques are
DP algorithms such as VI and PI [5] that consider a breadth of full state space size, updating the value
function and the policy for all state s ∈ S for a depth of one, with recursive equation from time t
to time t + 1. This is also the case forMDP online techniques [74], [27] where the agent ought to
approximate reward and transition matrices with a tabular maximum likelihood model [133]. With
the learned model, it can do planning by solving the underlying MDP. These two algorithms will be
presented in Chapter V since they will be treated and influenced our work.

— Depth of the plan to decide how deep the agent plans. Original Dyna algorithms [133] considered a
depth of size 1 (and breadth of size 1), i.e. the agent supplementary updates the couple (s, a) with the
collected data (s, a, r, s′). In the context ofDyna, [60] shows that plans longer than depth 1 give better
learning performance. Finally, PILCO [36] proposes to plan until it terminates (final state, ending
condition).

Also note that the learning process can be done Online and Offline :
∗ Online planning : planning is done just before executing an action in a given state s, i.e. that planning derives
the policy q(s) for the given state s for example by evaluating V (s) only for this state ;
∗ Offline planning : solves the problem offline for all possible states (e.g. Value Iteration), therefore deriving
the whole policy q(s) ∀s ∈ S.
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Figure 3.3 – Breadth and Depth for a planning iteration (Figure from [106]) - The red dot line excludes the
exhaustive search unfeasible in MDP environments

Data augmentation models Finally, one other technique that can be considered as model-based-model-free
RL is a setting where a world model given to the agent can be utilised to generate supplementary data, referred
asData augmentation. These techniques are a mixed between model-based and model-free because the learning
process remains in a model-free fashion. The environment model is only used to augment the data for learning
process. For example, Feinberg et al. [44] proposedModel Based Value Expansion (MBVE), a method that en-
ables the use of learned dynamics models into model-free RL techniques to improve value function estimation.
Moreover, this technique is used in Causal Reinforcement Learning (CRL) described in section 3.2.5.2, where
the agent can generate data with the causal model of the world.

3.2.5 Reinforcement learning with structural knowledge
More recent frameworks ought to integrate relational knowledge into RLmethods to improve performances.

This representation is placed above the other two distinctions : model-free versus model-based, policy-based ver-
sus value-based, i.e. that this supplementary relational knowledge can fit in all RLmethods. In general, it is related
tomodel-based techniques however structural knowledge can be a benefit formodel-free techniques. This section
introduces the idea of factored and causal MDP frameworks that are studied in Chapter VI and Chapter VII.

3.2.5.1 Factored framework

Markov decision processes (MDPs) have proven to be popular models for decision-theoretic planning, but
standard dynamic programming algorithms for solvingMDPs rely on explicit, state-based specifications and com-
putations. In other terms, usual MDP solutions represent the environment state s as a single object therefore the
complexity of such approaches is often exponential in the state space size.

36



Toalleviate the combinatorial problems associatedwith suchmethods,Boutilier [26]proposedFactoredMDP
(FMDP), a new representational and computational technique for MDPs that exploit certain types of problem
structure. This framework is a feature-based representation ofMDP framework. Formally, the environment state
can be characterised by a finite set of random variables s = s1, . . . , sN . With this new representation, researchers
can integrate the local dependencies between the state variables si and can provide this knowledge to the learning
agent.With this local dependencies understanding, FMDPuses Dynamic BayesianNetworks (DBNs), with deci-
sion trees or decision diagrams to represent the local conditional probability distributions and a factored reward
function in a more compact form. It also allows a more compact and decomposed representation of policies and
value functions.

In his work [26], Boutilier also provided first factored versions of standard dynamic programming algorithms
that directly manipulate decision tree or decision diagram representations of policies and value functions. The
main benefit of factored approaches is therefore amore compact representation of themodel including dynamics
P and rewardRwhich reduces the number of computation in algorithms by considering local components. The-
refore, FMDP solutions require smaller memory implementation for large-scale systems and yield faster conver-
gence.

The factored framework for MDP and RL have gained attention in the last decades [83], [100], [35], [73] or
[135], where authors studied different solutions, to represent, learn and plan with factored representation of the
MDP. While decision tree or decision diagrams are the main representation for factored MDP framework, these
solutions only deal with binary value variables which limits the scope of possible applications. On the other hand,
few works such as Factored Value Iteration [135] ought to integrate the factored knowledge and local conditional
probabilities in DP algorithms in order to treat multivariate environment variables.

This framework is at the heart of Chapter VI where detailed formalism will be given and state of the art me-
thods will be described in the respective chapter.

3.2.5.2 Causal framework

More recently, researchers have tried to merge Causality with Reinforcement Learning. While factored
framework consider associational relations between environment variables for more compact representation, the
causal field ought to go further by considering causal relations, starting from theReichenbach’s principle, depicted
in Figure 3.4 and explaining that association is different than causation.
Definition 1 (Reichenbach’s principle [114]). If two randomvariablesX andY are statistically dependent (X 6⊥⊥
Y ), then there exists a third variableZ that causally influences both. (As a special case, Zmay coincide with either
X or Y ). Furthermore, this variable Z screensX and Y from each other in the sense that given Z , they become
independent,X ⊥⊥ Y |Z .

Figure 3.4 – Reichenbach’s principle

This principle is the center of the causality field that study the causal relation between random variables. The
formalism of causality owes much to Judea Pearl [3] who has built a complete mathematical formalism in the
early 2000s that will be described in Chapter VII. Basically, it formulates a Structural Causal Model (SCM) as a
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mathematical tool to illustrate how environment variables are causally related to each others. The SCM object,
defined in Chapter VII, can represent all the 3 layers that Pearl uses to describe the whole causality field :
∗ Observational : The observational layer treats the systemunder unique observations, i.e. as the environment
behaves on its own. We refer to observational data ;
∗ Interventional : The interventional layer treats the system under interventions from an agent that can mo-
dify some environment variables. We refer to interventional data ;
∗ Counterfactual : The counterfactual layer is about the imaginary world that an agent thinks about to eva-
luate counterfactuals. In other worlds, it aims to respond the following question :Whatwould be the conse-
quences of an other action a′ in state s, knowing that I have done action a in the state s.

Very recently, Pearl stated thatReinforcement Learningwas indeed the interventional layer defined by himself
years ago, i.e. that the RL paradigm ought so solve dynamic optimisation problems by collecting interventional
data in a system. This has lead to a new emerging field, Causal Reinforcement Learning (CRL), which has been
built to integrate the both frameworks (see Figure 3.5) : first by helping the causality field where reinforcement
learning can help to discover causal relations with environment interactions and interventional data (where the
agent intervene and modify directly the value of state variables). Secondly, causal knowledge can help reinforce-
ment learning by providing to the RL agent a deeper understanding on how environment variables are related,
andmore interestingly the counterfactual process forRL agents. The latter is studied inChapterVII. The benefits
that causal knowledge can bring to the reinforcement learning are several and detailed in the respective chapter.
One can refer to the work of Gershman [47] that reviewed the diverse roles that causal knowledge can play in
model-based and model-free RL.

Figure 3.5 – Causal Reinforcement Learning : How can each field help the other (Figure from [96])

More formalism and state of the art algorithms will be described in the Chapter VII.Moreover, this respective
chapter takes up all the reinforcement learning distinctions seen in this chapter and proposes a unified vision of
all approaches presented in this chapter.

3.2.6 Summary of RL algorithms
We display in Figure 3.6 the global decomposition of RL algorithms with the two principal orthogonal diver-

gence we presented : model-free versus model-based, policy-based versus value-based. Last, the figure decompose
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Figure 3.6 – Taxonomy of reinforcement learning methods and their application in the thesis

the model-based class into two sub-families : the first one aims to learn the model by interaction with the envi-
ronment and use it for planning while the second class assumes that themodel is given to the agent (e.g. seeMDP
methods). We provide the application and study of class of RL algorithms in the respective chapters.

3.2.7 Comparison criteria in reinforcement learning
The last major component in the reinforcement learning field is how researchers can compare efficiently algo-

rithms [34, 106]. In order to identify benefits of designedRL algorithms, researchers need to discuss performance
criteria, and establish terminology about the two types of exploration in model-based RL. Usually, there are two
main evaluation criteria for RL techniques :
∗ Cumulative or average reward expressing the quality of the solution.
∗ Time complexity expressing the amount of time needed to arrive at the solution (calculations complexity,
number of trials in real or simulated environment, sample efficiency)

Researchers usually report learning curves,which showoptimality (cumulative or average return) on the y-axis
and one of the above time complexity measures on the x-axis over the learning process. Solutions can also been
evaluated offline after the learning process in the same manner by looking at the obtained return following the
policy. As we will see, (structural) model-based RLmay actually be used to improve both measures. More details
about comparison between RL algorithms will be given in Chapter V and will be used in the following chapters.

3.3 Model-free or model-based RL?
This section discusses the use of model-free or model-based methods in practice. We first briefly cover two

industrial networking applications that were performed during my Cifre thesis where we applied model-free RL
techniques and finally discuss about which RL class to use in practice by giving pros and cons.
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3.3.1 Industrial networking applications

3.3.1.1 Grid of Beams

Wireless network coverage is defined as the extent of the area towhich thewireless signals are transmitted. The
coverage is beam-based in 5G networks, not cell based. There is no cell-level reference channel from where the
coverage of the cell could be measured. Instead, each cell has one or multiple Synchronisation Signal Block Beam
(SSB) beams. In legacy systems, SSB beams are static, or semi-static, always pointing to the same direction. They
form a grid of beams covering the whole cell area. The UE (user equipment) searches for andmeasure the beams,
maintaining a set of candidate beams. The candidate set of beams may contain beams from multiple cells. The
metrics measured are RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality),
RSSI (Received Signal Strength Indicator) for each beam, that tells how good the received signal is for the UEs.
Therefore there is a need to optimise the set of candidate beams that will maximise the coverage for the UEs. We
performed a feasibility study of Deep RL techniques (DQN) in this networking problem that can be seen as a
combinatorial optimisation problem. The main finding was that the DQN was outperformed by other classical
optimisation techniques such as submodular optimisation and local search algorithms. The major issue of the
DQN was its convergence time. One of the conclusions of this work is that if we have knowledge of the model
(dynamics, reward function) then we must use it for offline planning and optimisation algorithms.

3.3.1.2 PDCPData Split

We also applied Deep RL techniques to an other networking use-case : PDCP (Packet Data Convergence Pro-
tocol) Data Split in Dual Connectivity (DC) scenario. The PDCP layer handles transfer of user data, header com-
pression, sequence numbering, duplication detection, packet duplication, etc. For the sake of describing the DC
solution, we consider an LTE scenario and adopt the LTE terminology.WithDC, aUE is simultaneously connec-
ted to two different base stations : amaster eNB (MeNB) and a secondary eNB (SeNB). TheMeNB and the SeNB
are connected via a non-ideal backhaul and operate on different carrier frequencies.

We were interested in optimising how to split the Packet Data Units (PDUs) sent by the UEs in the network,
i.e. in which path the PDU should be forwarded to optimise latency and avoid overall congestion. In this context,
we do not have a perfect modelling of the environment (dynamics and reward which is difficult tomeasure in real
time). Moreover, the action space for a learning agent is relatively simple since it only has very few choices (where
to send incoming PDUs). For this scenario, Deep RL methods were able to improve existing SoTA techniques
implemented in practice, demonstrating real gain of applying model-free RL techniques.

3.3.2 Thesis position and overview of model-free versus model-based techniques
First of all, let us remind pros and cons for both model-free and model-based RLmethods.

— Model-free :
— Pros : Computationally less complex and needs no accurate representation of the environment in order

to be effective.
— Cons : Actual experiences need to be gathered in order for training, which makes exploration more

dangerous. Cannot carry an explicit plan of how environmental dynamics affects the system, especially
in response to an action previously taken.

— Model-based :
— Pros : Safe to plan exploration and can train from simulated experiences. Moreover they are sample

efficient in the sense that they require less interactions with the environment to converge.
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— Cons : The learning agent is only as good as the model learnt. Sometimes this becomes a bottleneck,
as the model becomes surprisingly tricky to learn. Finally, model-based methods are computationally
more complex than model-free methods.

In general, most of the reinforcement learning applications appear to bemodel-free techniques whether in the
literature or in industrial applications, mainly because of its ease of implementation and consideration.However,
convergence problems are often mentioned when applying model-free techniques and this is simply because the
autonomous agent should explore infinitely many times all the state-action pairs to obtain a good evaluation of
the value function and the policy. Nevertheless, we have seen in practice but also for general use-cases that if we
have some information about the environment model, researchers should investigate this knowledge to build
or assess optimisation methods. The goal of this thesis is to evaluate and propose model-based reinforcement
learning techniques to accelerate the convergence and provide the agent with supplementary knowledge, in a
Cloud resource allocation use-case. It is believed that providing the model to the autonomous agent seems to
be a major benefit that should be integrated in its knowledge and that researches on model-based RL industrial
applications should be investigated. Chapter IV treats the scenario where the agent is given the modelM, and
can be also solutions to employ after the learning of the environmentmodel. Chapter V treats the scenario where
M, specially the dynamics P is unknown but the agent tries to approximate the dynamics model to perform
planning. Chapter VI andChapter VII aremodel-based reinforcement learning proposal with factored and causal
knowledgeof the environment.The latter can also treat complex environmentswith confounders andunobserved
variables which can be a huge issue in model-free techniques that will learn biased policy or value functions.
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PART II

MODEL-BASEDAPPROACHES FOR CLOUD
RESOURCE ALLOCATION
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CHAPTER 4

MARKOVDECISION PROCESS ORHEURISTICS : HOWTO
COMPUTE AUTO-SCALINGHYSTERESIS POLICIES INQUEUING

SYSTEMSWITHKNOWNMODEL

The contributions of this chapter have been published in [139, 141] respectively :
∗ Thomas Tournaire, Hind Castel-Taleb, Emmanuel Hyon. Generating optimal thresholds in a hysteresis
queue : a cloud application. In 27th IEEE International Symposium on the Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems (MASCOTS 19), 2019.
∗ Thomas Tournaire, Hind Castel-Taleb, Emmanuel Hyon. Optimal control policies for resource alloca-
tion in the Cloud : comparison between Markov decision process and heuristic approaches. In CoRR
abs/2104.14879 (2021), 2021.

4.1 Introduction
This chapter considers that the agent is provided the truemodel of the environmentM therefore its scope falls

into the classGiven the model of Figure 3.6.We consider a cost-aware approach and propose a global expected cost
considering different costs : associated with the performance requirements defined in a Service Level Agreement
(SLA) and associated with energy consumption. We want to compute the optimal policy of activation and deac-
tivation of the servers according to the queue occupation. In this chapter we studymodels in which the structure
of the policy is of hysteresis form. However, assuming the policy has an hysteresis form is not sufficient to fully
characterise the optimal policy. We have to determine the concrete values of thresholds. For this aim, there exist
two modelling approaches which correspond to two major streams in the literature. The first one expresses the
problem into a model of deterministic optimisation problem. This is done by using the average value of the costs
computed by stationary distribution of a CTMC (Continuous TimeMarkov Chains). Such an approach is often
used in the field of inventory management for base stock policies [146] or reliable servers [149]. The second one
expresses the problem under aMDP (MarkovDecision Process) model with structured polices and computes the
optimal one. But, although they are the most widely used for threshold computation, the efficiency of these two
approaches are not assessed very carefully for the computation of single thresholds by level [6]. Especially, this had
never been done for hysteresis policies. Fewworks focused on the optimality of hysteresis policy for cloudmodels
[151] but, up to our knowledge, none on the threshold computation. Determining which is the best promising
approach and which is the best model to choose in a practical use is thus an important point which is addressed
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here.
We also validate our approach with a real model. The approach is difficult since, up to our knowledge, it does

not exist, in the literature, an unified model including both energy, quality of service, and real traffic parameters.
We propose to build a global cost taking into account both real energy consumption, real financial costs of virtual
machines and Service Level Agreement (SLA) simultaneously from separate works, andwe give real environment
values to ourmodels.We think that themodel presented is sufficiently generic to represent a large class of problems
and is enough to give a relevant meaning to all parameters.With our algorithms and this model cloud owners can
generate meaningful optimised costs in real cases.

The contributions of this chapter are the following :
∗ Multi-server queuingmodel for a cloud IaaS infrastructurewith a single physical node hosting several virtual
resources ;
∗ Re-formalism and building a correspondence between literature hysteresis definitions ;
∗ Comparison of many local search heuristics and meta-heuristic based on the computation of the stationary
distribution of the Markov chain to find optimal hysteresis rules and proposition of an aggregation tech-
nique on the Markov chain to accelerate the computation of the mean cost ;
∗ Theoretical and numerical comparison with Markov decision process algorithms where we provide a theo-
retical study of the multichain properties of the Markov decision process which shows that some usual al-
gorithms solving MDP models can fail. We nevertheless provide an algorithm that solves dynamic control
model with convergence guarantee. We also design dynamic control algorithms integrating hysteresis poli-
cies and we show that they are faster while ensuring the optimality of the solution;
∗ We perform a large set of numerical experiments and exhibit that dynamic control approach strongly out-
performs the other one for optimality and running time criteria.Wemake theoretical analysis and give some
insights explaining why the deterministic optimisation problem is sub-optimal ;
∗ Exploration of numerical experiments to check if the optimal policy is of hysteresis type ;
∗ We develop and analyse a financial cost model. It takes into account prices of VM instantiations from cloud
providers as well as energy consumption of VMs. A presentation of minimised costs for a problem based
on this concrete cloud model is done. We noticed that optimal thresholds are generated in just few seconds
even for large systems which could have a significant impact for a cloud operator.

Reminders about basics formalism for queuing systems and computation of stationary distribution in asso-
ciatedMarkov chains are provided in the appendix A.

4.2 CloudModel

4.2.1 Cloud use-case
Cloud computing includes threemajor deliverymodels as described inChapter II : Software-as-a-Service (SaaS)

in which the consumer is able to use an application to meet specific needs, Platform-as-a-Service (PaaS) which
provides the consumerwith anhosting environment for applicationdevelopment, and Infrastructure-as-a-Service
(IaaS) inwhich the consumer has a greater access to computing resources including processing power, storage, and
networking components (see Fig. 4.1).

In this section, we present the cloud system, denotedCloudModel. This is a continuous time systemmodelled
by a continuous time controlledmulti-server queueingmodel, where arrivals of requests are processed by servers.
The servers in the queueing system represent logical units in the cloud. Since we consider IaaS clouds (Infrastruc-
ture as a Service) which provide computing resources as a service, the logical units are either virtual machines or
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Figure 4.1 – Representation of a Cloud Architecture

docker components. We propose a mathematical analysis of the queueing model in order to derive performance
as well as energy consumption measures.

4.2.2 Controlled multi-server queue
The Cloud model is a physical node hosting several virtual resources with a multi-server queuing model de-

picted in Figure 4.2 and described as follows :
1. Arrivals of requests follow a Poisson process of rate λ, and service times of all VMs are independent of
arrivals and independent of each other. Moreover, they are i.i.d. and follow an exponential distribution
with an identical rate µ ;

2. Requests enter in the queue, which has a finite capacity B, and are served by one of the K servers. The
service discipline is supposed FIFO (First In First Out).

A customer is treated by a server as soon as this server becomes idle and the server is active. Servers can be turned
on and off by the controller. When the server is turned on it becomes active while it becomes inactive when it is
turned off.

WedefineS the state space,whereS = {0, 1, . . . , B}×{1, . . . , K}. Any statex ∈ S is such thatx = (m, k)
wherem represents the number of requests in the system, and k is the number of operational servers (or active
servers, this number can also be seen as a service level). We defineA = {0, . . . , K}, be the set of actions, where
action a denotes the number of servers to be activated. With this system, are associated two kinds of costs that a
cloud provider encounters :

1. Costs corresponding to the performance of the system, for the control of the service quality defined in the
SLA : as costs (CH) per unit of time for holding requests in the queue or instantaneous costs (CR) for losses
of requests.

2. Costs corresponding to the use of resources (operational and energy consumption) : as costs for using a VM
per unit of time (CS) and instantaneous costs for activating/deactivating (CA andCD).

We define for the system a global cost containing both performance and energy consumption costs. We have the
following objective function we want to minimise :

C̄ = lim
T→∞

1

T
E

{∫ T

0

Ct (X(t), A(t)) dt

}
(4.1)
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whereA(t) is the action taken at time t (it is possible that nothing was performed) andCt(X(t), A(t)) is the cost
that is charged over time when the state isX(t) and actionA(t) is performed. This problem can be solved in two
different ways based on two different models : using a Continuous Time Markov Chain to solve deterministic
optimisation problem (see section 4.3.2) or using Semi Markov Decision Processes (see section 4.6).

Figure 4.2 –Multi-server queuing system

4.3 Hysteresis policies and hysteresis queuing model

4.3.1 Hysteresis policies
Adecision rule is amapping from some information set to some action. A policy is a sequence of decision rules

η = (q0, q1, q2, . . .). The most general set of policies is that of history-dependent randomised policies, but the
classical results on average infinite-horizon, time-homogeneousMarkovian optimal control [5] allow us to focus
on stationary Markov Deterministic Policies. Such policies are characterised by a single, deterministic decision
rule whichmaps the current state to an action.We thus consider themapping q fromS toA such that q(x) = a.

All along the chapter we restrict our attentionwith a special form of policies : the hysteresis policies. Neverthe-
less, there are few homogeneities between definitions of hysteresis policies in the literature and we provide here
a correspondence between them. Indeed, it can refer to policies defined with double thresholds (especially when
K = 2), or to a restrictive definition when Markov chains are used. We follow the works of [58, 78] to present
an unified treatment of hysteresis.

Hysteresis policies with multiple activations We assume in this part that the decision rule is a mapping
from the state to a number of active servers q(m, k) = k1 with k1 ∈ [1, . . . , K]. Several servers can be activated
or deactivated to pass from k to k1 active servers.
Definition 2 (Double threshold policies [58, 78]). We call double threshold policy a stationary policy such that
the decision rule q(m, k) is increasing in both of its arguments and is defined by a sequence of thresholds such
that for any k and k1 in [1, K] we have :

q(m, k) = k1 when `k1(k) ≤ m < `k1+1(k) ,

where `k1(k) = min{m : q(m, k) ≥ k1}. Thisminimum is∞ if the set is empty. For allk, we also fix `K+1(k) =
∞ and `1(k) = 0 (since at least one server must be active).

A monotone hysteresis policy is a special case of double threshold policy.
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Figure 4.3 – An isotone hysteresis policy.

Definition 3 (Monotone Hysteresis polices [58]). A policy is a monotone hysteresis policy if it is a double thre-
shold policy and moreover if there exist two sequences of integers lk and Lk such that

lk = `k(K) = `k(K − 1) = . . . = `k(k)

Lk = `k(1) = `k(2) = . . . = `k(k − 1) ,

with lk ≤ Lk for k = 1, . . . , K + 1 ; lk ≤ Lk+1 for k = 1, . . . , K ; l1 = L1 = 0, lK+1 = LK+1 =∞.
And if, for all (m, k) ∈ S ,

q(m, k) =


q(m, k − 1) ifm < lk and k > 1

k if lk ≤ m < Lk+1

q(m, k + 1) ifm ≥ Lk+1 and k < m

.

The thresholds lk can be seen as the queue levels at which some servers should be deactivated and theLk+1 are
the analogous activation points. Roughly speaking, the difference between a double threshold and a monotone
hysteresis policy lies in the fact that some thresholds toward a level are identical in hysteresis.
Definition 4 (IsotoneHysteresis polices [58]). ] A policy is an isotone policy if it is a monotone hysteresis policy
and if 0 = l1 ≤ l2 ≤ . . . ≤ lK+1 =∞ and 0 = L1 ≤ L2 ≤ . . . ≤ LK+1 =∞.

Example 1. In Figure 4.3, we represent an isotone policy. The number indicates the number of servers that should
be activated in each state. The bold line means that the number of activated servers is the same than the decision
and then no activation or deactivation have to be performed.

Proposition 1 (Optimality of monotone hysteresis policies [134]). In the multi-server queueing model presented
in Section 4.2 and for which there is activation/deactivation costs, working costs and holding costs, Szarkowicz and
al. showed that monotone hysteresis policies are optimal policies.

However, the presence of a rejection cost, as we assume here, is not considered in the assumptions of [134]
and there is no proof about the optimality of hysteresis policies for the model studied here.
Remark. There is an alternate way to express the policy by giving the number of servers to activate or deactivate
instead of giving directly the number of servers that should be active.
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Hysteresis policies with single VM activation We focus now on models in which we can only operate
one machine at a time. Now the decision rule indicates an activation or deactivation. Therefore, the action space
is nowA = {−1, 0, 1}. For a state (m, k), when the action q ∈ A is−1 then we deactivate a server, when the
action is 0 then the number of active servers remains identical, when the action is 1 then we activate a server.

It could be noticed that, for this kind of model, double threshold policies and hysteresis policies coincide. In-
deed, the decision now relates to activation (resp. deactivation) and no longer to the number of servers to activate
(resp. deactivate). There exist only two thresholds by level k :Lk+1 to go to level k+ 1, and lk to go to level k−1.
There are no other levels that can be reached from k. For example, in Figure 4.3 all decisions smaller than the level
are replaced by−1while all decisions larger than the level are replaced by 1. Definition 4 remains unchanged, but
Definition 3 should be rephrased in :
Definition 5 (Monotone hysteresis policy). A policy is a monotone hysteresis policy if it is a stationary policy
such that the decision rule q(m, k) is increasing inm and decreasing in k and if is defined by two sequences of
thresholds lk and Lk such that for all (m, k) ∈ S :

q(m, k) =


−1 ifm < lk and k > 1

0 if lk ≤ m < Lk+1

1 ifm ≥ Lk+1 and k < m

,

with lk ≤ Lk for k = 1, . . . , K + 1 ; lk ≤ Lk+1 for k = 1, . . . , K and l1 = L1 = 0 ; lK+1 = LK+1 =∞.

Hysteresis policies and Markov chain As presented in [137], there exists a different model of multi-server
queuewith hysteresis policywhich received a lot of attention (see Ibe andKeilson [63] or Lui andGolubchik [98]
and references therein). Thismodel is still amulti-server queueing systembut is no longer a controlledmodel : the
transitions between levels are also governed by sequences of prefixed thresholds this is why it is called an hysteresis
model. It is built to be easily represented by a Markov chain. The differences between the controlled model and
this Markov chain model are detailed in Section 4.6.3.
Remark. For convenience, deactivation and activation thresholds will be denoted respectively byR andF in the
Markov chain model, while they will be denoted l and L in the MDPmodel.
Definition 6 (Hysteresis policy [98]). AK-server threshold-based queueing systemwith hysteresis is defined by
a sequenceF = [F1, F2, . . . , FK−1] of activation thresholds and a sequence [R1, R2, . . . , RK−1] of deactivation
thresholds. For 1 ≤ k < K , the thresholdFk makes the system goes from level k to level k+ 1when a customer
arrives with k active servers and Fk customers in the system. Conversely, the thresholdRk makes the system goes
from level k + 1 to level k when a customer leaves with k + 1 active servers andRk + 1 customers in the system.

Furthermore, we assume that F1 < F2 < . . . < FK−1 ≤ K , 1 ≤ R1 < R2 < . . . < RK−1, andRk < Fk,
∀ 1 ≤ k ≤ K − 1. We denote the vector that gathers the two threshold vectors F andR by [F,R].
Remark. It can be noticed that, no server can remain idle all the time here since the threshold values are boun-
ded, whereas in Definition 5 when a threshold is infinite the server remains inactive. Hence the hysteresis policy
presented in [63] can be seen as a restricted version of isotone policies given in 5. Furthermore, the inequalities
being strict in [98], the hysteresis of Definition 6 is a very specific case of hysteresis of Definition 5 that we call
strictly isotone.

4.3.2 Hysteresis queuing model and the associatedMarkov chain
This section is devoted to the study of the policies defined inDefinition 6 and their aggregation properties.We

consider the controlled multi-server queue model defined in Section 4.2.2 for which we integrate the hysteresis

48



Figure 4.4 – The hysteresis queuing model

queuing properties. The model is characterised by a vector of activation thresholds F = [F1, F2, ..., FK−1],
where Fk for 1 ≤ k < K makes the system goes from level k to level k + 1 when the number of custo-
mers in the queue is equal to Fk. The model is also characterised by a vector of deactivation thresholds R =
[R1, R2, ..., RK−1], where Rk for 1 ≤ k < K makes the system goes from level k + 1 to level k when the
number of customers in the queue is equal to Rk + 1. We also suppose that F1 < F2 < ... < FK−1 < B,
and R1 < R2 < ... < RK−1 and from the hysteresis hypothesis that Rk < Fk, ∀k, 1 ≤ k < K . The vector
that merges the activation threshold vector F and the deactivation threshold vectorR is denoted by [F,R]. The
model is depicted in Figure 4.4.

In thehysteresismodel ofDefinition6 thresholds are fixedbefore the systemworks.Once the thresholds [F,R]
are fixed, the underlyingmodel is described by aContinuous-TimeMarkovChain (CTMC), denoted {X(t)}t≥0.
Each state (m, k) is such thatm is the number of requests in the system and k is the number of active servers.
The state space is denoted byX withX ⊂ S since we do not consider non reachable states of S. Thus, the state
space is given by :

X ={(m, k) |0 ≤ m ≤ F1, if k = 1 , Rk−1+1 ≤ m ≤ Fk, if 1 < k < K ,RK−1+1 ≤ m ≤ B, if k = K}.
(4.2)

The transitions between states are described by :

(m, k)→ (min{B,m+ 1}, k), with rate λ , ifm < Fk ;

→ (min{B,m+ 1},min{K, k + 1}),with rate λ , ifm = Fk ;

→ (max{0,m− 1}, k), with rateµ·min{m, k}, ifm > Rk−1 + 1;

→ (max{0,m− 1},max{1, k − 1})with rateµ·min{k,m} , ifm = Rk−1 + 1 .

In Figure 4.5, we give an example of these transitions for a maximum number of requests in the system equal
toB and a number of levelsK equal to three.

4.3.3 Cloud provider global cost
We define the mean cost that a cloud provider encounters in the cloud system. It takes into account the per-

formance and the use of resources. It is computed knowing the stationary distribution π of the Markov Chain
{X(t)}t≥0, for a given vector of thresholds. The global cost defined in Equation (4.1) can be rewritten for fixed
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Figure 4.5 – Example with K=3 VMs and B maximum requests in the system

[F,R]. We have :

C
π

[F,R] =
K∑
k=1

Fk∑
m=Rk−1+1

π(m, k) · C(m, k) , (4.3)

whereπ(m, k) represents the stationary probability in state (m, k). For a given state of the environment (number
of requests, number of activated VMs), the cloud provider pays a cost :
C(m, k) = CH ·m+ CS · k + CA · λ · 1m=Fk, k<K + CD · µ ·min{m, k} · 1m=Rk−1+1, 2≤k≤K

+ CR · λ · 1m=B, k=K . (4.4)

4.4 Aggregation methods to compute the global cost
One of the contributions of this chapter is to propose an aggregation technique to accelerate the calculation

of the cost. Indeed, solving the Markov chain quickly becomes complex when the number of levelsK increases :
although it exists closed forms of the stationary distribution, their computations suffer from numerical stability
problems. To overcome this issue, we propose to apply the SCA (Stochastic Complement Analysis) method [98],
based on a decomposition and an aggregation of the Markov chain. This approach allows a simplified computa-
tion of the exact stationary distribution π. The aim is to separate theK levels of the considered Markov chain
intoK independent sub-chains, calledmicro-chains and then to solve each of them independently.We then build
the aggregated Markov chain which hasK states such that each state represents an operating level. This chain is
called macro-chain.

4.4.1 Description of micro-chains and macro-chain

4.4.1.1 Micro-chains

Each micro-chain of a level k, such that 1 ≤ k ≤ K , is built by keeping the transitions, of the initial Markov
Chain, inside the same level k. On the other hand, the transitions between states of different levels are cut and
replaced by new transitions inside the micro-chains from a leaving state to an entering state of the initial chain.
For example, the transitions inside the states of level 2 with rates λ and 2µ in the Fig. 4.5 are kept, while the
links between level 2 and level 3, and level 2 and level 1 are deleted, as it can be seen in Fig. 4.6. Then, the cut
transitions between levels 2 and 3 in the initial Markov chain of Fig. 4.5 are replaced by a transition between
(F2, 2) and (R2, 2), with rate λ, and a transition between (R2 + 1, 3) and (F2 + 1, 3)with rate 3µ (see Fig. 4.6).
The approach is similar for the other transitions between other levels and for any number of levels.
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Figure 4.6 – Example of micro-chains fromMarkov Chain of Fig.4.5

4.4.1.2 Macro-chains

Concerning the macro-chain, it is described by a Markov chain withK states, where each state k (with 1 ≤
k ≤ K) represents the level. The macro-chain is actually a birth-death process for which the resolution is usual
with the following transition values :{

λk = λ · πk(Fk) ∀ k = 1, . . . , K − 1

µk = k · µ · πk(Rk−1 + 1) ∀ k = 2, . . . , K
.

We denote by Π the stationary probability distribution of the macro-chain and display the macro-chain in
Figure 4.7.

Figure 4.7 – TheMacro chain

We denote by πk the stationary probability distribution of the micro-chain of level k (with 1 ≤ k ≤ K) and
we denote by π the stationary distribution of the initial Markov chain. We obtain the distribution of the initial
chain with the following equation :

∀ (m, k) ∈ X , π(m, k) = Π(k) · πk(m) . (4.5)

The reader can see [98] for further details on the method. Each micro-chain will be solved independently, then
the birth-death process and finally the model chain.

4.4.1.3 Stationary distribution computation

Since, as pointed out in [71], the use of closed formulas suffers from numerical instability, the solving ofMar-
kov chains (micro and macro) is done numerically using the power method or GTH algorithm implemented in
themarmoteCore software [66] (see sectionA.1). Eachmicro-chain is solved separately, next themacro-chain, and
lastly, with Eq. 1, the initialMarkov chain. The distributions obtained with the aggregation process are compared
with those obtained by direct computations on thewhole chain. The difference is always smaller than 10−8 which
is the precision we choose for our computations.
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4.4.2 Computation of the mean cost on the aggregated chain

We use the aggregation method described in section 4.4, to aggregate the global costCπ

[F,R], from Eq. (4.3), as
a function of costs per level computed on the micro-chains.

Theorem 1 (Aggregated Cost Function). The mean cost Cπ

[F,R] of the system with fixed thresholds [F,R] can be
written under the form :

C
π

[F,R] =
K∑
k=1

Π(k) · C(k) ,

where C(k) represents the mean cost of level k with :

C(k) =

Fk∑
m=Rk−1+1

πk(m) · C(m, k) .

Proof.We use Eq. (4.3) :

C
π

[F,R] =
K∑
k=1

Fk∑
m=Rk−1+1

π(m, k) · C(m, k) . (4.6)

However, we know from the aggregationmethod and from the chain decomposition inmicro-chains andmacro-
chain, that π(m, k) = πk(m) · Π(k) (from Eq. (1)).

This implies :

C
π

[F,R] =
K∑
k=1

Fk∑
m=Rk−1+1

πk(m) · Π(k) · C(m, k) .

Removing Π(k) from the second sum (since it does not depend onm), we get :

C
π

[F,R] =
K∑
k=1

Π(k) ·
Fk∑

m=Rk−1+1

πk(m) · C(m, k)

︸ ︷︷ ︸
C(k)mean cost per level

.

This yields the average aggregated costs per level weighted by the macro-chain stationary distribution :

C
π

[F,R] =
K∑
k=1

Π(k) · C(k) .

�
The relevance of Theorem 1 is to propose an efficient approach for the mean cost computation. Instead of

computing the cost on a multidimensional Markov chain, we compute it from several one dimensional Markov
chains. Next in section 4.5.2, we will take advantage of this aggregated expression of the cost coupled with a
property on threshold changes, to improve the speed of the mean cost computation.

Corollary 2. Let [F,R] be a fixed vector of thresholds. It is assumed that the micro-chains and the costs per level
associated with [F,R] are already computed. The modification of a threshold Fk or Rk in [F,R] only impacts
the levels k and k + 1 in the Markov chain. Thus, the computation of the new average cost only requires a new
computation of πk, πk+1, and Π as well as C(k) and C(k + 1).
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The intuition about the corollary 2 can be guessed from the transition graph in Figure 4.5. When modifying
F2, it only impacts the distributions π2 and π3. We thus have to compute newC(2),C(3) and Π, while the last
expected costC(1) remains unchanged. This is shown in the following proof.

Proof. Recall that we define the load of the system by ρ = λ/µ. Using the balance equations in [98], we
exhibit the impact generated by the modification of activation and deactivation thresholds on the stationary pro-
bability distributions of the micro-chains first and then the macro-chain.

Impact on the micro-chains : Owing tom ∈ [Rk−1 + 1, Fk] for all k ∈ {1, . . . , K}, we can express the
stationary probability of each state in the level k in the following way :

πk(m) = πk(Rk−1 + 1) · γkm ,

where (from [98]) :

γkm =



m−Rk−1−1∑
j=0

(
ρ

k
)j ,

ifRk−1 + 1 ≤ m ≤ Rk ;
m−Rk−1−1∑

j=0

(
ρ

k
)j − γkFk ·

m−Rk∑
j=1

(
ρ

k
)j ,

ifRk + 1 ≤ m ≤ Fk−1 + 1 ;
m−Rk−1−1∑
j=m−Fk−1−1

(
ρ

k
)j − γkFk ·

m−Rk∑
j=1

(
ρ

k
)j ,

if Fk−1 + 2 ≤ m ≤ Fk − 1 ;

ρ

k + ρ(
ρ

k
)Fk−Rk

[
(
ρ

k
)Fk−Fk−1 − (

ρ

k
)Fk−Rk−1+1

]
,

ifm = Fk .

Note thatπk(Rk−1+1) is determined throughnormalisation conditionwhich states that the sumof probabilities
of all states of the micro-chain of level k equals 1. So we obtain :

πk(Rk−1 + 1) =

(
Fk∑

m=Rk−1+1

γkm

)−1

.

We notice, in the equations above, that the stationary probability formulas of πk(m) of levels k only depend on
the thresholdsRk−1,Rk, Fk−1 and Fk. This shows that the variation of a thresholdRk or Fk has an impact only
on levels k and k + 1 but not on the other levels. Moreover, since the micro-chain of level k starts from state
(Rk−1 +1, k) and ends in state (Fk, k), then thresholds from level 1 to k−2 as well as thresholds from level k+2
toK are not involved on the stationary distribution of the level k.

To resume, if we modify an activation thresholdFk, then it will modify states (Fk, k) and (Fk +1, k+1) and
the twomicro-chains of level k and k+ 1. If we modify, a deactivation thresholdRk−1, then it will modify states
(Rk−1 +1, k) and (Rk−1, k − 1) and the two micro-chains of levels k − 1 and k.

Finally, the variation of a threshold from level k modifies only the two micro-chains of level k and k + 1.
Hence, to compute the cost with respect to Theorem 1 we only need to recalculate the stationary probabilities
and thus the associated costs of these levels. The costs of the other levels are left unchanged.

Impact on themacro-chain : A change in a threshold valuemodifies some transitions of themacro-chain. This
can be seen, similarly as previously, using the balance equations :
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The transition values are :{
λk = λ · πk(Fk) ∀ k = 1, . . . , K − 1

µk = k · µ · πk(Rk−1 + 1) ∀ k = 2, . . . , K
.

This gives the following formulas, for all k ∈ {2, . . . , K} :

Π(k) = Π(1) ·
k−1∏
j=1

(
λj
µj+1

)
,

and, from the normalisation condition, we get :

Π(1) =

[
1 +

K∑
k=2

k−1∏
j=1

(
λj
µj+1

)]−1

.

Since Π(1) depends on all threshold values and since we notice that Π(k) depends on Π(1) for all k ∈
{2, · · · , K}, therefore, when we modify a threshold Fk or Rk of any level k we need to recalculate the whole
stationary probabilities of all states of the macro-chain.�

4.4.2.1 Cost calculation with aggregation technique

The aggregation framework described above, allows to compute the global cost Cπ

[F,R], defined by Eq. (4.3),
in an aggregated form based on the costs per level computed with micro-chains. Algorithm 8 displays how to
compute the global cost with a given set of initial thresholds denoted by [F,R]0. Algorithm 9 displays how to
compute the global cost with a given set of thresholds [F,R] after an iteration process where one of the thresholds
has changed (either Fk orRk).

Algorithm 8: First aggregated cost computation : FACC
Input: [F,R]0, λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C [F,R]0

/* Calculation of stationary distributions of micro-chains and costs per level */
1 for 1 ≤ l ≤ K do
2 Generate matrix P l of the level lmicro-chain and compute stationary vector πl
3 C(l) = 0 // Cost per level
4 for (m = Rl−1 + 1 ; m ≤ Fl ; m+ +) do
5 Compute πl(m) ∗ C(m, l)
6 C(l) = C(l) + πl(m) ∗ C(m, l)

/* Calculation of the stationary distribution of the macro-chain and the global cost */
7 Build the generator matrixQ of the macro-chain from the local micro-chains πl and compute the

stationary vector Π
8 C = 0 // Global cost
9 for 1 ≤ l ≤ K do

10 Compute Π(l)
11 C = C + C(l) ∗ Π(l)
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Algorithm 9: Calculation of the cost for the current solution after changes in Fl orRl : CACC
Input: λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C [F,R]

/* Calculation of the stationary distributions of the micro-chains and the costs per level
impacted by the modified thresholds */

1 for l = k , k + 1 do
2 Generate matrix P l of the level lmicro-chain and compute stationary vector πl
3 C(l) = 0 // Cost per level
4 for (m = Rl−1 + 1 ; m ≤ Fl ; m+ +) do
5 Compute πl(m) ∗ C(m, l)
6 C(l) = C(l) + πl(m) ∗ C(m, l)

/* Calculation of the stationary distribution of the new macro-chain and the global cost */
7 Build the generator matrixQ of the macro-chain from the local micro-chains πl and compute the

stationary vector Π
8 C = 0 // Global cost
9 for 1 ≤ l ≤ K do

10 Compute Π(l)
11 C = C + C(l) ∗ Π(l)

4.5 Heuristics for thresholds calculationusing stationarydistributionsofMar-
kov chain

Now that we have presented the SCAmethod for the steady-state computation, we present in this section the
different optimisation methods in order to minimise the global cost function. Our first approach relies on thre-
sholds calculation using the stationary distribution of the underlinedMarkov chain coupled with a deterministic
optimisation problem.We focus here on different deterministic algorithmswhich compute the optimal threshold
policy minimising the expected global cost.

The optimisation problem For a set of fixed parameters : λ, µ, B,K , and costs : Ca, Cd, Ch, Cs, Cr, the
algorithms seeks to find the vector of thresholds [F,R], such that the objective function isminimal. The objective
function is the expected costCπ

[F,R] defined by Eq.(4.3). For any solution [F,R], the computation of the expected
cost depends on the stationary distribution π of theMarkov chain {X(t)}t≥0 induced by [F,R]. The thresholds
must verify some given constraints resulting from the principle of hysteresis. That is :Rk < Fk,Rk−1 < Rk and
Fk−1 < Fk. Also, it is assumed that servers do not work for free. That is : k < Fk. Therefore, we have to solve
the constrained optimisation problem given by :

Minimise
F,R

C
π

[F,R]

u.c. Ri < Fi i = 1, . . . , K − 1.

F1 < F2 < · · · < FK−1 < B

0 ≤ R1 < R2 < · · · < RK−1

Fi , Ri ∈ N

. (4.7)

Obviously, this optimisation problem seems NP-hard, as the cost function is non-convex (see Section 4.5.4.1)
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and the resolution time increases exponentially with the number of thresholds.

4.5.1 Local search heuristics
To solve this optimisation problem, several local search heuristics have been developed in [141]. Most of the

heuristics are inspired by Kranenburg et al. [84] which presents three different heuristics to resolve a lost sales
inventory problem with, unlike us, only a single threshold by level. Actually usual base-stock heuristics had to
be adapted to the hysteresis model as it is necessary to manage double thresholds now. To detail the different
algorithms, we define :
• [F,R] : vector of thresholds.
• solve[F,R] : function that, for a given vector of thresholds, generates its associatedMarkovChain, computes
its stationary distribution with the aggregated chain method then computes the mean costCπ

[F,R] from Eq.
(4.3).
• C∗ is the solution of the optimisation problem (4.7) and [F,R]∗ is the corresponding vector of thresholds.
These heuristics are differentiated by several points : the initialisation phase, the choice of the neighbourhood

and how we explore different threshold vectors. This has a noticeable influence on the convergence of the algo-
rithms that we illustrate later in numerical experiments (see section 4.8). It could be noticed that the running time
of algorithms will depend both on the number of threshold vectors they will explore during the execution, but
also on the time to calculate the stationary probability ofmicro-chains andmacro-chain. This time is not constant
since it increases with the system load ρ. We briefly detail the three heuristics in an intuitive way to understand
their behaviour, then display the algorithms.

Best Per Level (BPL) This algorithm first initialises [F,R] with the lowest feasible value, i.e. F1 = 1, F2 =
2, ..., FK−1 = K andR1 = 0, R2 = 1, ..., RK−1 = K − 1. Then it improves each threshold in the following
order : it starts with the first activation threshold F1 by testing all its possible values taking into account the
hysteresis constraints. A new value ofF1 that improves the global cost, will replace the old one. Then, it will move
on to F2, F3, ... , FK−1, R1, R2, ..., RK−1. Once a loop is finished, it will restart again until the mean global cost
is not improved anymore (see details in Algorithm 10).

Algorithm 10: Best per Level
Input: λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C∗ , [F,R]∗

1 Initialise a vector of thresholds [F,R]0
2 Apply solve[F,R] for the current vector
3 Repeat
/* Activation Thresholds */

4 for k ∈ [1, K − 1] do
5 for Fk respecting constraints do
6 solve[F,R] and store the vector if improvement

/* Deactivation Thresholds */
7 for k ∈ [1, K − 1] do
8 forRk respecting constraints do
9 solve[F,R] and store the vector if improvement

10 Until no improvement in a loop
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Increasing (INC) The process of this heuristic is to increase by one a threshold (Fk orRk) when testing a new
feasible solution. When this improves the solution we keep the new value otherwise we keep the old one. Then
we move to a next set of thresholds by increasing one of them by one (see details in Algorithm 11).

Algorithm 11: Increasing
Input: λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C∗ , [F,R]∗

1 Initialise a vector of thresholds [F,R]0
2 Apply solve[F,R] for the current vector
3 Repeat
/* Activation Thresholds */

4 for k ∈ [1, K − 1] do
5 Give +1 to Fk, solve[F,R] and store the vector if improvement
/* Deactivation Thresholds */

6 for k ∈ [1, K − 1] do
7 Give +1 toRk, solve[F,R] and store the vector if improvement
8 Until no improvement in a loop

Neighborhood Local Search (NLS) This algorithm is the classical local search algorithm.We randomly initialise
the solution [F,R]. Thenwe generate the neighborhoodV(x) of a current solutionx. Each neighboring solution
is the same as the current solution except for a shift±1 for one of the thresholds. The algorithm explores all the
neighborhood and returns the best solution amongV . Again, it loops the same process until themean global cost
is not improved anymore (see details in Algorithm 12).

Algorithm 12:Neighbour Local Search
Input: λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C∗ , [F,R]∗

1 Initialise a vector of thresholds [F,R]0
2 Apply solve[F,R] for the current vector
3 Repeat
4 Generate the neighbourhoodV
5 for [F,R] ∈ V do
6 solve[F,R] and store the vector if improvement
7 Until no improvement in a loop

4.5.2 Improvement of local search algorithms with aggregation
Local search algorithms are based on an exploration step in a set of feasible solutions that must be evaluated.

From section 4.3.3, the evaluation of a solution depends on the stationary distributions of micro-chains and the
macro-chain as well as the costs per level, thus we should, after any threshold modification, compute them again.
But the use of Corollary 2 will widely improve the algorithm’s speed without impacting the efficiency. Indeed,
it allows to compute only the stationary distributions of the two impacted micro-chains k, k + 1 among theK
micro-chains and their associated costs. The macro chain still needs to be solved.
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Although decomposition and aggregation approaches reduce the number of computations to perform, some
algorithmic tricks should be used in order to ensure a proper running of the method. we have to store the two
modified micro-chains of the current solutions since they will be used many times. The modification of local
search heuristics with the help of aggregation reduces the number of computations to perform and then the
running time. Moreover, we can conceive that this method will be more effective asK increases.

We provide an illustration withBPL algorithm coupled with aggregation in algorithm 13. The functioning
is the same for all local search heuristics and we will refer to coupled heuristics with aggregations as BPL Agg,
INC Agg and NLS Agg. The main change comes from the fact that in the aggregated version algorithms, the
cost is computed with the FACCmethod at the beginning and then with CACC during the rest of the algorithm
which drastically reduces the complexity of the methods.

Algorithm 13: Best per Level coupled with cost aggregation
Input: λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C∗ , [F,R]∗

1 Initialise a vector of thresholds [F,R]0
2 Apply solve[F,R] with FACC for the current vector
3 Repeat
/* Activation Thresholds */

4 for k ∈ [1, K − 1] do
5 for Fk respecting constraints do
6 solve[F,R] withCACC and store the vector if improvement

/* Deactivation Thresholds */
7 for k ∈ [1, K − 1] do
8 forRk respecting constraints do
9 solve[F,R] withCACC and store the vector if improvement

10 Until no improvement in a loop

4.5.3 Improvement of local search heuristics coupled with initialisation techniques
As it stands, the proposed local search heuristics do not have specific initialisation process and one possibility

to improve them is to quickly compute a reasonable initial solution to accelerate convergence. We display here
two heuristics for the initialisation : Fluid approximation andMMK approximation.

4.5.3.1 Initialisation with fluid approximation

Mitrani in [103] proposed amulti server systemwith a fixed amount of servers that are always turned on and a
reserve of servers that can be activated if the load of the system increases, or deactivated if the load decreases. In this
work the author proposed a heuristic based on fluid approximations to find the optimal threshold for activation
and the one for deactivation. This corresponds to a two-levels model with only one activation threshold and
one deactivation threshold. This is done in order to minimise a cost which includes an holding cost and a server
utilisation cost. However, since we consider a more complex cost function (activation, deactivation and reject
cost) and a more complex model (multilevel thresholds), we have to adapt this fluid approximation method to
our approach. Sincewe turnonVMsonebyone,weneed to find anoptimal threshold at each levelwhich indicates
when to turn on or down a VM depending on the number of requests in the system.

We adapt this heuristic in our approach as follows :
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Deactivation Thresholds Similarly as [103],we decide to turn off virtualmachineswhenever they are unused
as we don’t want VMs to work for free. For the deactivation thresholds, we consider at each level k that the
reserve is composed of only one virtual machine, since we have k VMs activated. This implies that we have k− 1
VMs activated plus the reserve, which is exactly one VM here. Therefore, deactivating the reserve will lead to
Rk = k − 1.

Activation Thresholds Adding a newVMwill empty the queue faster and indeedwill improve theQoS, but
will deteriorate the energy part by adding operational costs. Letting unchanged the current number of activated
VMs will empty the queue in a slower time but will be less expensive regarding energy costs. In order to obtain
activation thresholds, we use a fluid approximation (inspired from [103]) to approximate if it is useful to turn on
a new VM to empty the queue or not. We define by C̃k(u) the approximated cost corresponding to k working
servers and u requests is the system :

C̃k(u) =
u

2
· B̃k(u) · Ch + k · B̃k(u) · Cs + p̃k ·

λ

λ+ k · µ
· Cr . (4.8)

The time until the queue is empty when there are u requests in the system, is defined by B̃k(u). Assuming the
queue behaves like a deterministic fluid, the load would decrease at the rate of k · µ− λ and we get

B̃k(u) =
u

kµ− λ
unit of times .

The loss probability in level k is p̃k and is computed by approximating the loss probability of anM/M/1/Bqueue,
with arrival rateλ, and service ratek·µ.Notice that (u·Ch·B̃k(u))/2 represents thequeuing cost and B̃k(u)·k·Cs
is the consumption cost of k active VMs.

The activation threshold Fk represents the smallest amount of requests u in the system, for which it is inter-
esting to activate a new VM, i.e. the cost for k + 1 VMs activated plus the activation cost is lower than the cost
with k VMs activated. At level k, we thus solve a computational problem to determine the activation thresholds.
Precisely, we have to find the first u∈ N denoted by uk such that :

Ĩ(u) = C̃k+1(u) + Ca − C̃k(u) < 0 .

However, B̃k(u) is relevant only when kµ − λ > 0, which intuitively means that the queue can be empty.
Otherwise if λ ≥ kµ, we decide, in those cases, to fix the thresholds as low as possible, which is relevant because
if the load is high, then one has to activate the VMs quickly to satisfy the QoS defined by the SLA. Finally, the
optimal activation thresholds are given by :

Fk =

{
max {Fk−1 + 1,min{uk, B}} if λ < kµ

Rk + 1 if λ ≥ kµ
.
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The pseudo-code is given in the Algorithm 14.

Algorithm 14: Fluid approximation
Input: λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C∗ , [F,R]∗

/* Deactivation Thresholds */
1 for k ∈ [1, K − 1] do
2 Rk = k − 1

/* Activation Thresholds */
3 for k ∈ [1, K − 1] do
4 while Ĩ(u) > 0 do
5 for u ∈ [Fk−1 + 1, B] do
6 Compute Ĩ(u)

7 ūk = last u computed
8 Fk ← ūk w.r.t. hysteresis constraints

4.5.3.2 Fluid approximation coupled with local search heuristics

It will be observed later (section 4.8) that NLS is not efficient mainly because of its initialisation phase in
which thresholds are randomly chosen. Since fluid approximation heuristic is very fast but also not so efficient
as we will see in the experimental results of section 4.8, our aim is to improve both speed and accuracy of the
local search heuristics by coupling them. The initialisation phase of theNLSwill be now performed by the fluid
approximation method. This initialisation is very fast and we try to be placed in the basin of attraction of the
optimal solution that we will be reached with the local search. We define by NLS Fluid the adapted heuristic
(see pseudo-code 15).

Algorithm 15:Neighbour Local Search with Fluid approximation initialisation
Input: λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C∗ , [F,R]∗

1 Initialise a vector of thresholds [F,R]0 with Fluid approximation
2 Apply solve[F,R] for the current vector
3 Repeat
4 Generate the neighbourhoodV
5 for [F,R] ∈ V do
6 solve[F,R] and store the vector if improvement
7 Until no improvement in a loop

4.5.3.3 Initialisation with queuing model approximations

Wework here on a new heuristic which calculates a near-optimal solution very quickly. It can be considered as
a method in its own right but can be also used for the initialisation step in local search heuristics. This heuristic
is called MMK approximation since it usesM/M/k/B results to compute costs of these fairly close models.
We devised this heuristic because we obtained promising results with the Fluid approximation for initialising the
NLS algorithm.Yetwe think thatwe candobetter initialising the heuristicswith anothermethod to approximate
the first solution.
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Principle of the heuristic The main idea of the heuristic is that, at each level k, we compute an approxima-
tion of the mean global cost by using the stationary distribution of the Markov chain of aM/M/k/B queue
model instead of using theMarkov chain of Section 4.3.2. In such queues, the stationary distribution of theMar-
kov chain is given by a closed formula. Thus, the computation of the distribution is done in a constant time due
to the closed formula while the exact computation relative to the stationary distribution of the Markov chain is
much longer. Hence, we obtain an approximate solution of the expected cost very quickly. In order to find the
best thresholdm for which it is better to activate or deactivate, we proceed by comparing approximated costs of
having k VMs activated with the one of having k + 1 (respectively k− 1) VMs activated added by the activation
(respectively deactivation) cost. This indicates if it is worth being in level k or k+1 for a given number of requests
m in the system. The detailed heuristic with calculations is described below.

Design of the heuristic We recall the formulas of the stationary distributions inM/M/k/B queues. Let
π̂(k,m) be the stationary distribution of state (m, k), we get :

π̂(k,m) = π̂(k, 0) · ρ
m

m!
for 1 ≤ m ≤ k and π̂(k,m) = π̂(k, 0) · a

m · kk

k!
for k < m ≤ B.

where ρ =
λ

µ
, a =

ρ

k
< 1 and where π̂(k, 0) is :

π̂(k, 0)=

(
k−1∑
m=0

ρm

m!
+
kk

k!
(B − k + 1)

)−1

if a = 1 and π̂(k, 0)=

(
k−1∑
m=0

ρm

m!
+
ρk

k!

1− aB−k+1

1− a

)−1

if a 6= 1.

We define Ĉk(m) as the approximate cost of having k VMs turned on andm requests in the system by :

Ĉk(m) = π̂(k,m)
(
m · CH + k · CS

)
+ π̂(k,B) · λ · CR ;

ĈA
k+1(m) as the approximate cost of havingm requests in level k + 1 knowing that we have just activated a

new VM by :

ĈA
k+1(m) = π̂(k + 1,m)

(
m · CH + (k + 1) · CS

)
+ π̂(k + 1, B) · λ · CR + π̂(k,m− 1)λCA .

Last we define ĈD
k (m) as the approximate cost of havingm requests in level k knowing that we have just deacti-

vated a new VM by :

ĈD
k (m) = π̂(k,m) (mCH + kCS) + π̂(k,B)λCR + π̂(k + 1,m+ 1)min(m+ 1, k + 1)µCD .

Wewant to compare these costs to know whether we should activate, deactivate or let the servers unchanged.

Activation thresholds . We define φAk (m) = Ĉk(m) − ĈA
k+1(m). If φAk (m) < 0 then it is better to not

activate anew serverwhile ifφAk (m) ≥ 0 it is better to activate anewone.There is no evidenceof themonotonicity
of φAk (m) inm, nevertheless we choose the threshold by Fk = min

{
m : φAk (m) ≥ 0

}
. To compute the whole

thresholds, all k are studied in an ascending order. For a fixed level k, we need to compute φAk (m) for allm and
stop when the function φAk (m) is larger than 0.
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Deactivation thresholds . We define φDk (m) = Ĉk+1(m)− ĈD
k (m). If φDk (m) < 0 then it is better to stay

with k + 1 servers while if φDk (m) ≥ 0 it is better to deactivate a virtual machine. Similarly, there is no evidence
about themonotonicity ofφDk (m) but we defineRk = min

{
m : φDk (m) ≥ 0

}
. The computation of the whole

deactivation thresholds is similar to the activation ones.
We summarise theMMK approximation heurisitc in pseudo-code 16.

Algorithm 16:MMK approximation
Input: λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C∗ , [F,R]∗

/* Activations thresholds */
1 Activation Threshold 1st Level
2 k=1 // First level
3 form ∈ [1, B] do
4 Compute φA1 (m)
5 When φA1 (m) > 0 ,BREAK, then F1 =m if constraints respected
6 Activation thresholds level k for k ∈ [2, K − 1] do
7 form ∈ [Fk−1 + 1, B] do
8 Compute φAk (m)
9 When φAk (m) > 0 ,BREAK, then Fk =m if constraints respected

/* Desactivations thresholds */
10 Deactivation Threshold 1st Level
11 k=1 // First level
12 form ∈ [0, Fk − 1] do
13 Compute φD1 (m)
14 When φD1 (m) ≥ 0 ,BREAK, thenR1 =m if constraints respected
15 Deactivation Thresholds level k for k ∈ [2, K] do
16 form ∈ [Rk−1 + 1, Fk − 1] do
17 Compute φDk (m)
18 When φDk (m) ≥ 0 ,BREAK, thenRk =m if constraints respected

Specific case where not all levels are reached Whenwe use this method to compute the optimal vector of
thresholds, it appears that the optimal policy returned by the heuristic does not activate or deactivate every VMs
depending on the system load.Under specific loads, it can appear that nonem values satisfy inequality onφ. Thus
the heuristic does not find activation or deactivation thresholds for some levels k. In scenarios where the load is
very low and where the heuristic does not find some activation thresholds for all levels : we define Fk = B - k + 1
andRk = k. Similarly considering the case where the load is too high and where some deactivation thresholds are
not all computed for all levels : we defineFk = k andRk = B-K.

This is discussed in more details in section 4.6.

4.5.3.4 MMK approximation coupled with local search heuristics

The initialisation of the local search heuristics presented in 4.5.1 either is totally random or simply chooses
the bounds (lowest values or highest values) of the solution space. The aim here is to improve the speed and the
accuracy of these heuristics by coupling them with the MMK approximation used as an initialisation step.
This initialisation aims at finding an initial solution that will be in the basin of attraction of the optimal solution.
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Starting with this solution improves the ability of local search algorithms to reach the best solution in a faster
time. We define by Alg MMK the coupled heuristic with MMKB approximation (see pseudo-code 17).

Algorithm 17:Neighbour Local Search
Input: λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C∗ , [F,R]∗

1 Initialise a vector of thresholds [F,R]0 withMMK approximation
2 Apply solve[F,R] for the current vector
3 Repeat
4 Generate the neighbourhoodV
5 for [F,R] ∈ V do
6 solve[F,R] and store the vector if improvement
7 Until no improvement in a loop

4.5.4 Meta-heuristic approach : the Simulated Annealing (SA)
Numerical experiments in Section 4.8will show that local searchheuristics can obtain localminima.To address

this issue, we investigatemeta-heuristics whose design ismade to avoid localminima.This investigation ismade to
improve the accuracy of the solutions returned by local searches, while maintaining a reasonable execution speed.
In this section, we first give an example showing the non-convexity of the cost function that explains why local
search heuristics can fall into local optima. Next we provide the methodology of the Simulated Annealing (SA)
which is one possible meta-heuristic and last we address its parameterisation.

4.5.4.1 Non-convexity of the cost function

First we point out the non-convexity of the cost function in the following example.

Example 2. We took a low scale system (K = 3 and B = 20). We take λ = 1, µ = 1, Ca = 0.5, Cd = 0.5,
Cs = 20, Ch = 20, Cr = 1. The solution of the exhaustive search is the following : Optimal Cost = 52, 53
with thresholds [F1, R1, F2, R2] = [2, 1, 3, 2] and the one of the NLS is : Optimal Cost = 53, 17 with thresholds
[F1, R1, F2, R2] = [1, 0, 3, 2]. The NLS returned solution is not optimal and we then study its neighbourhood to
see if it was indeed a local minimum. We studied all the possible neighbours (under the constraints) of the solution
returned by the NLS and verified that their costs were indeed higher than the returned one.

This counter-example shows that the cost function can be non-convex and therefore heuristics can be stuck
in a local minimum. The use of the simulated annealing is thus relevant in our scenario.

4.5.4.2 Intuition of the Simulated Annealing

The simulated annealing (SA) [9] is a meta-heuristic that aims to avoid the convergence in a local minimum,
allowing for certain iterations to exit this localminimumby accepting a higher cost or a deterioration of the objec-

tive function with a probability, defined by the Boltzmann probability distribution exp(−4C
Ti

). Ti represents
the current temperature and4C is the mean difference between the cost of the current solution and the costs of
its neighbours. This is done at the expense of the execution time, which can be very long for the Simulated An-
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nealing, to converge towards the global optimum.We give in the algorithm 18 themain steps of the SA approach.

Algorithm 18: Simulated Annealing
Input: λ, µ,B,K,Ca, Cd, Ch, Cs, Cr
Output:C∗ , [F,R]∗

1 Initialise at random a vector of thresholds [F,R]0, and optimal parameters< T0, α, L >
2 Repeat
3 Apply solve[F,R] for the current vector
4 Generate its neighbourhoodV
5 for [F,R] ∈ V do
6 solve[F,R], and compute the cost
7 if Improvement then
8 Save the solution
9 else

10 Draw a probability p ∈ [0, 1]
11 if p ≤ e−4C/Ti then
12 Accept the new solution

13 Every L iterations, Ti+1 = αTi, and go to (Step 2)
14 Until Ti = 0 ORMax Iterations reached

4.5.4.3 Simulated Annealing parameterisation

The principal challenge in meta-heuristics is to fix the parameters values of the algorithm as best as possible.
Indeed, depending on the values of the initial parameters, the meta-heuristic will be accurate or not. Some guide-
lines for determining parameters have been given in [9] and we adapt them for our purpose. This requires some
initial simulations to capture how the simulated annealing behaves in our case so one can tune its parameters op-
timally. The setting of the parameters is a trial and error process. Basically, one try arbitrary settings and launch
the algorithm then adjust step by step the parameters. The initial temperature T0 should be taken such that a lot
of worse solutions will be saved at the beginning. Then it will follow a decreasing sequence such that at the end
of the algorithm, it will only take neighbours improving the solution. The intuition is that when T is high en-
ough compared to4C , then we accept enough deteriorated solutions and as a reverse, when T is near 0, we will
not accept deteriorated solutions anymore. Onemethod to compute the initial temperature T0 is to launch some
simulations with random settings and take a mean cost difference4C between a solution and its neighbours.
Then we obtain :

T0 = −4C/ ln(p0) ,

where p0 is the initial probability generated such that the initial temperature T0 will be high. The probability of
taking a wrong solution at the beginning is high (≈ 0.9), and then we want to make this temperature decrease
such that the accepting probability tends to 0 at the end and, by this way, we only choose better solutions.

Once the initial temperature is chosen, onemay find the cooling factorα < 1which is the rate of thedecreasing
sequenceTi+1 = αTi. Usually in the Simulated Annealing, it is fixed at 0.9 or 0.95 but in our case, it will be fixed
very low, at 0.1, since we have small values for the cost. Indeed, since our value of T is very low, because 4C
is small, if the decreasing rate is too large, then the temperature will decrease slowly and will reach 0 in a huge
number of iterations. If α is very small, then the temperature decreases faster and we reach T = 0 in a shorter
time, which leads to the end of the algorithm. This is a reason why taking a small value for α (like 0.1) is relevant
in our setting. The last parameter to optimise is the number of iterationsL per step of the temperature sequence :
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it must be sufficiently large to accept enough deteriorated solutions.

4.5.5 Heuristics comparisons : concluding remarks
Finally, we have many heuristics that we compare in numerical experiments (see section 4.8) by their accuracy

and execution time. To summarise (see table 4.1), we have the three main local search heuristics : BPL, INC and
NLS. Next we have the aggregation cost technique that we couple with each heuristics. We also provide initiali-
sation with Fluid approximation and MMK approximation for the heuristics. Last, we devise a meta-heuristics
(simulated annealing).

Table 4.1 – Summary of algorithms based onMarkov chain stationary distribution computation

Algorithms Settings

BPL Select the best threshold at each iteration
INC Increase by one threshold at each iteration
NLS Select the best neighbour at each iteration

BPL Agg BPL with aggregation cost computation
INC Agg INC with aggregation cost computation
NLS Agg NLS with aggregation cost computation

Fluid Fluid approximations for fast computation of set of thresholds
NLS-Fluid Agg NLS with Fluid approximation initialisation

MMK MMK queue approximation for fast computation of set of thresholds
BPL MMK BPL withMMK approximation initialisation
INC MMK INC withMMK approximation initialisation
NLS MMK NLS withMMK approximation initialisation

Simulated Annealing Meta-heuristic to avoid local optima

4.6 Computing policies with Markov Decision Process
We consider here the multi-server queue of Section 4.2.2 and the controlled model in which only a single

virtual resource can be activated or deactivated at a time decision. This optimal control problem is a continuous
time process and thus should be solved using a Semi Markov Decision Process (SMDP). In this section, we first
describe the uniformised SMDP and its solving. Then we underline the differences between the optimal control
model and the optimisation problem of Section 4.3.2.

4.6.1 The SMDPmodel

4.6.1.1 Elements of the SMDP

The state space is the one defined in Section 4.2 : S = {0, 1, . . . , B} × {1, . . . , K}. Hence, a state s ∈ S
is such that x = (m, k) wherem is the number of customers in the system and k the number of active servers.
Similarly, the action spaceA = {−1, 0, 1} represents respectively : deactivate one machine, left unchanged the
active servers, or activate one machine.

The system evolves in continuous time and at some epoch a transition occurs. When a transition occurs, the
controller observes the current state and reacts to adapt the resources by activating or deactivating the virtual
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machines. The activation or deactivation are instantaneous and then the system evolves until another transition
occurs. Two events can occur : an arrival with rate λ which increases the number of customers present in the
system by one or a departure which decreases the number of customers by one.

Let x = (m, k) be the state and a the action, we defineN(k + a) as the real number of active VM after the
action awas triggered.We haveN(k+ a) = min{max{1, k+ a}, K}. It follows that the transition rate is equal
to {

λ if y =
(
min{m+1, B}, N(k + a)

)
µ·min{m,N(k+a)} if y =

(
max{0,m−1}, N(k + a)

) .
4.6.1.2 Uniformised transition probabilities

We apply here the standard method to deal with continuous timeMDP : the uniformisation framework. We
follow the line of chapter 11 of [5] to define the uniformisedMDP.

We defineΛ(m, k, a) as the transition rate per state.We haveΛ(m, k, a) = λ+µ·min{m,N(k+a)}. From
now on, any component denoted by "∼" refers to the uniformised process. We thus define the uniformisation
rate by Λ̃ with Λ̃ = max(m,k,a)Λ(m, k, a) = λ + Kµ which is the maximum transition rate. The transition
probability from state x to state y when action a is triggered is denoted by p̃(y|x, a) in the uniformised model.

We have :

p̃(y|x, a) =



λ

Λ̃
if y = (m+ 1, N(k + a))

µmin{m,N(k + a)}
Λ̃

if y = (m− 1, N(k + a))

Λ̃− Λ(m, k, a)

Λ̃
when y = (m, k)

0 otherwise ,

when x = (m, k) such that 0 < m < B and a is arbitrary ; when x = (B, k) with a 6= 0, or when x = (B, k)
with k 6= K and a 6= +1 or also when x = (B, k) with k 6= 1 and a 6= −1 ; when x = (1, k) with a 6= 0, or
when x = (1, k) with k 6= K and a 6= +1, or also when x = (1, k) with k 6= 1 and a 6= −1.

We have :

Λ̃× p̃(y|x, a) =


µmin{m,N(k + a)} if y = (B − 1, N(k + a))

Λ̃− µmin{m,N(k + a)} when y = (B, k)

0 otherwise ,

when x = (B, k) with a = 0, or when x = (B, k) with k 6= K and a 6= +1, or also when x = (B, k) with
k 6= 1 and a 6= −1.

We have :

Λ̃× p̃(y|x, a) =


λ if y = (1, N(k + a))

Λ̃− λ when y = (0, k)

0 otherwise ,

when x = (0, k) with a = 0, or when x = (0, k) with k 6= K and a 6= +1, or when x = (0, k) with k 6= 1
and a 6= −1.
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4.6.1.3 The uniformised stage costs

We take the definition of costs of Section 4.2.2. Instantaneous costs are charged only once and are related to
activation, deactivation and losses. Accumulated costs are accumulated over time and are related to consumption
and holding cost.

k(x, a) =
(
CA1{a=1} + CD1{a=−1}

)
+ CR.1{m=B} and r(x, a) =

(
N(k + a) · CS +m · CH

)
.

∀x ∈ S , c(x, a) = k(x, a) + E

∫
τ

0

r(x, a).dt

where τ is a r.v. following an exponential law of parameter Λ(x, a)

τ ∼ E(Λ(x, a))

So, we have :

∀x ∈ S , c(x, a) = k(x, a) +

∫
∞

0

∫
z

0

r(x, a).Λ(x, a). exp−Λ(x,a)z .dt.dz

∀x ∈ S , c(x, a) = k(x, a) + r(x, a).

∫
∞

0

∫
z

0

Λ(x, a). exp−Λ(x,a)z .dt.dz

∀x ∈ S , c(x, a) = k(x, a) + r(x, a).

∫
∞

0

∫
z

0

dt.Λ(x, a). exp−Λ(x,a)z .dz

∀x ∈ S , c(x, a) = k(x, a) + r(x, a).

∫
∞

0

z.Λ(x, a). exp−Λ(x,a)z .dz

︸ ︷︷ ︸
= 1 /Λ(x, a) because E[τ ]

Finally, we obtain [5] :

∀x ∈ S , c(x, a) = k(x, a) + r(x, a).
1

Λ(x, a)
(4.9)

For the treatment of stage costs, the non uniformised instantaneous costs and accumulated costs should be
multiplied by (Λ(x, a)/Λ̃) to get the uniformised costs.

k̃(x, a) =
(
CA1{a=1}+CD1{a=−1}

)Λ(x, a)

Λ̃
+
λ

Λ̃
CR.1{m=B} and r̃(x, a) =

1

Λ̃

(
N(k+ a) ·CS +m ·CH

)
.

c̃(x, a) = k̃(x, a) + r̃(x, a) .
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After uniformisation of instantaneous and accumulated costs (Chapter 11.5 of [5]), we obtain the following
equation of the uniformised stage cost for x = (m, k) :

c̃(x, a) =
(
CA1{a=1} + CD1{a=−1}

)Λ(x, a)

Λ̃
+
λ

Λ̃
CR1{m=B} +

1

Λ̃

(
N(k + a) · CS +m · CH

)
.

Objective function The objective function defined in Equation (4.1) translates for all x ∈ S into

ρπ(x) = lim
N→∞

Eπ
[ 1

N

N−1∑
t=0

c̃(xt, π(xt)) | x0 = x
]
,

for a given policy π. The value ρπ is the expected stage cost and equals C̄ when actions follow policy π.

4.6.2 Solving the MDP

4.6.2.1 Classification of the SMDP

Our SMDP is an average cost model. This is why, the expected stage costs depend on the recurrent properties
of the underlying Markov chain that is generated by a deterministic policy. A classification is then necessary to
study them. We use the classification scheme of [5]. For communicating multichain SMDP, [67] insures that
uniformisation does not break neither structural properties of the generator nor the optimality of the policy
computed in the uniformised model.
Definition 7 (Chapter 8.3.1 in [5]). AMDP is :

i Unichain if, the transitionmatrix corresponding to every deterministic stationary policy is unichain, that is,
it consists of a single recurrent class, plus a possibly empty set of transient states ;

ii Multichain if, the transition matrix corresponding to at least one deterministic stationary policy contains
two or more recurrent classes ;

iii Communicating if, for every pair of state x and y inS , there exists a deterministic stationary policy π under
which y is accessible from x, that is, pnπ(y, x) > 0 for some n ≥ 1 ;

Proposition 2. The MDP is multichain. There is a stationary deterministic policy with monotone hysteresis
properties that induces a corresponding Markov chain with more than two di�erent recurrent classes.

Proof. We assume thatK ≥ 2 and let k be such that k ∈ [1, . . . , K]. We define the policy q as follows. For
any level l such that l < k − 1, we have only activation. This means that there existsm ∈ [0, · · · , B] such that
q(m′, l) = 1 for anym ≤ m′ and q(m, l) ≤ q(m, l− 1). For level k we have neither activation nor deactivation
and q(m, k) = 0 for allm ∈ [0, · · · , B]. For any level l with l > k + 1, we have only deactivation. There exists
m ∈ [0, · · · , B] such that q(m′, l) = −1 for anym′ ≤ m and q(m, l) ≥ q(m, l + 1).

Hence, starting from any state such that l < k− 1, then the highest attainable level is k− 1. Equally, starting
from any state of the level k, we remain in this level. At last, starting from any state such that l ≥ k+ 1, then the
lowest attainable level is k+ 1. Therefore, we have three recurrent classes : the level k, the level k− 1 and the level
k + 1 (and two recurrent classes forK = 2).�

We display an example in Figure 4.8 of an isotone hysteresis multichain MDP.

Lemma 3. The MDP is communicating. There exists a stationary isotone hysteresis policy such that the correspon-
ding Markov chain is irreducible.
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Figure 4.8 – Example of an isotone hysteresis multichain MDP

Proof. We exhibit such a policy. Let π be the deterministic stationary policy such that the thresholds lk are
defined by lk = 0 and the thresholds Lk by Lk = B for all k. The induced Markov chain is irreducible since
any level can be reached from another one (whenm = 0 orm = B) and since in a given level all the states are
reachable from any state. Thus, we have that pnπ(y, x) > 0 for some n ≥ 1 for all couples (x, y). Therefore the
MDP is communicating.�

Bellman Equations In the multichain case, the Bellman Equations are composed by two equations. In the
uniformised model, we then have the two following optimality equations [5] :

mina∈A

{∑
y∈X

p̃(y |x, a)ρ(y)−ρ(x)

}
= 0 and U(x) = mina∈Bx

{
c̃(x, a)− ρ(x)

Λ̃
+
∑
y∈X

p̃(y |x, a) ·U(y)

}

for all x ∈ S , where
Bx =

{
a ∈ A

∣∣ ∑
y∈X

p̃(y |x, a)ρ(y) = ρ(x)
}
.

It could be noticed that in the unichain case,Bx = A and that the two equations reduce to only the second one.
These two non linear equation systems should be numerically solved to find U(x) and ρ(x). Once these terms
are approximated we deduce the optimal policy with :

q(x) = argmina∈Bx

{
c̃(x, a) +

∑
y∈S

p̃(y |x, a) · U(y)

}
.

4.6.2.2 Algorithms

We describe here the choice of the algorithms used to solve this multichain and communicating model. Com-
putations in a multichain model are far more complicated since testing if for any induced Markov chain there
are several separated connected components seems to be a NP complete problem [5]. We first show that we ac-
tually can use some unichain algorithms due to the communicating properties of our SMDP, then we present
two structured algorithms based on hysteresis properties.
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Unichain algorithms From[5] it exists amultichainpolicy iteration algorithm that solvesmultichainmodels.
It requires to solve two equation systems and thus is time consuming. However, by Proposition 3, our MDP is
communicating and in Theorem 8.3.2 of [5] it is proved that unichain value iteration algorithm converges to the
optimal value in communicating models. This property allows us to use the unichain value iteration algorithm.

There is also, in [5], a policy iteration algorithm for communicating models. It requires to start with an initial
unichain policy and its inner loop roughly differs from the unichain case in order to keep some properties. We
decide to use here algorithms based on unichain policy iteration. There does not exist theoretical guarantee of
their convergence, but we showed in numerical experiments that they always converge to the same policy than
value iteration.

Four different usual unichain algorithms will be considered : Value Iteration, Relative value iteration, Policy
Iteration modified and Policy Iteration modified adapted, which adapts its precision during the policy evaluation
step. They are respectively referred by VI, RVI, PI and PI Adapt. The algorithms are all described in [5] and are
already implemented in the software [66].

Structured Policies algorithm We now integrate hysteresis properties in the algorithms. Two classes of po-
licies have been investigated : Double Level class (Definition 2) and Monotone Hysteresis class (Definition 5).
The goal is to plug hysteresis assumptions during the policy improvement step of policy iteration. This allows to
test less actions at each iteration and to speed up the algorithm. Two algorithms are implemented : one for the
double level properties (referred asDL-PI ) and one for the hysteresis properties (referred asHy-PI ). We describe
in pseudocodes 19 and 20 the modified policy iteration algorithms with integration of structural properties.

The properties of Double Level and Hysteresis policies induce some constraints on the best action selection
in the Policy improvement step, mainly by restricting the choice of possible actions :
∗ Double Level : FromDefinition 2, the rule (policy) q(m, k) is increasing in the number of jobs in the system
m. This increasing property is integrated such that when we choose the best action, the set of decision is
constrained. As an example : suppose that q(0, k) = 0, then q(1, k) ≥ 0 which impose to test only two
actions over three.
∗ Hysteresis : The hysteresis property integrates the Double Level property plus a supplementary constraint
on the number of activated resources k. Indeed the hysteresis property, for a single activation setting, insures
that q(., k) is decreasing in k. As an example : suppose that q(m, 1) = 0, then q(m, 2) ≤ 0 which impose
to test only two actions over three.

To integrate these properties, the policy improvement step is modified. We divide the process by the dimen-
sions of the state (m, k). We first fix the level k and take the best actions for allm in an increasing order such that
we consider the increasing property of q inm. For the hysteresis constraint, when we move from level k to level
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k + 1 we constraint the decisions set according to the decreasing property of q in k.

Algorithm 19: Policy Iteration with double level properties pseudo-code
Input: V 0, q0

Output: q∗

Data:M = {P ,R} is known
/* Policy Evaluation */

1 for s ∈ S do
2 V t+1(s) = R(s, qt(s)) + γ

∑
s′∈S
P(s′|s, qt(s))V t(s′)

/* Policy Improvement */
3 for s ∈ S do
4 qt+1(s) = argmaxa′R(s, a) + γ

∑
s′∈S
P(s′|s, a)V t(s′) with a′ s.t. Double Level is satisfied between

qt+1 and qt

5 Until qt(s) = qt+1(s)

Algorithm 20: Policy Iteration with hysteresis properties pseudo-code
Input: V 0, q0

Output: q∗

Data:M = {P ,R} is known
/* Policy Evaluation */

1 for s ∈ S do
2 V t+1(s) = R(s, qt(s)) + γ

∑
s′∈S
P(s′|s, qt(s))V t(s′)

/* Policy Improvement */
3 for s ∈ S do
4 qt+1(s) = argmaxa′R(s, a) + γ

∑
s′∈S
P(s′|s, a)V t(s′) with a′ s.t. Hysteresis is satisfied between qt+1

and qt

5 Until qt(s) = qt+1(s)

On the other hand, we do not have any theoretical guarantee that these methods converge, first because we do
not theoretically know if hysteresis policies are optimal for our model, and second because the underlying PI also
has no convergence guarantees in multichainMDPs. Nevertheless, with reasonable input values in the numerical
experiments we made (see Section 4.8), all the optimal policies returned by classical algorithms have hysteresis
properties. Furthermore, all MDP algorithms considered here (structured as well as classical) returned the same
solution. This therefore underlines the interest of considering such hysteresis policies especially since the gain in
running time is obvious as observed in the experiments. Note that we also explored special input values that led
us to different conclusions and that are displayed in Section 4.9.

Computation of the hysteresis thresholds The non-structured MDPs (also called simple MDPs) do not
assume any restrictions for their policy research. Thus, they return the optimal policy and so return a decision
rule q∗ which gives the optimal action to take but not the thresholds. Therefore, we need to test the hysteresis
property and to compute the l and L hysteresis thresholds consistently with Definition 5. Let q∗ be the optimal
policy returned by the PI algorithm. We check if q∗ is monotone, if not the optimal policy is not hysteresis. If
so, we proceed as follows. We consider, for all k, the set {m | q∗(m, k) = 1 and q∗(m − 1, k) = 0}. If the
set is empty then Lk+1 = ∞, else if it is of size 1 then k + 1 = m otherwise when the size is larger than 2
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there are multiple values for a threshold and the policy is not hysteresis. Also, we consider, for all k, the set {m |
q∗(m + 1, k) = 0 and q∗(m, k) = −1}. If he set is empty then lk+1 = 0, if the size is 1 then lk+1 = m and
otherwise the policy is not hysteresis.

4.6.3 Theoretical comparison between the two approaches MC andMDP
Although they seem very similar these two models present some rather subtle theoretical differences with no-

table consequences. They are studied here while the numerical comparisons will be carried out in Section 4.8.

4.6.3.1 Number of activated resources

We will see now that the hysteresis Definition 6 from Lui [98] used in the deterministic approach have worse
results and that it does not activate the same number of VM than SMDP. Recall that strictly isotone assumption
is required to keep the size of the chain constant (see [63]).

Proposition 3 (Suboptimality of strictly isotones policies). The minimum computed with strictly isotone policies
(and deterministic model) is greater or equal than the minimum computed with structured SMDP which, in turn,
is greater or equal to the one computed with single MDP. Furthermore, in MC model it is not possible to activate
(resp. deactivate) only a subset of the VM.

Proof. The Markov chain approach (Section 4.3.2), deals with strictly isotone policies (i.e. 0 = l1 < l2 <
. . . < lK ≤ B and 0 = L1 < L2 < . . . < LK ≤ B). On the other hand, the SMDP model either considers
isotone policy (see Definition 4) or does not assume any structural property at all. Since the constraints are more
and more relaxed then the set of strictly isotone policy (MC model) is smaller or equal than the one of SMDP
with isotone policy assumption which is smaller or equal than the one of single SMDP.

For the second point, since, LK can not be infinite, all theK servers should be activated. On the other hand,
since inequalities are strict then lK ≥ K , and the only state in which there is only one active server is restricted to
the level k = 1.�

During the numerical experiments in Section 4.8, we identify numerous cases inwhich strictly isotone policies
are not optimal. This is mainly due to the phenomenon of non activation or non deactivation. Hence examples
of non-optimality are found in two specific categories of the whole categories described below. We noticed that
these categories depend on the relative values of the parameters (λ, µ) between them. However, we do not know
how to precisely quantify their borders.
Definition 8. These categories are :

1. Medium arrival case : All VMs are turned On and turned Off in both approaches. This occurs when the
system load ismedium, i.e. the arrival rate λ is close to the service rate k × µ.

2. Low arrival case : AllVMs are turned On and turned Off in (MC) while in (MDP) someVMswill never be
activated. This occurs when the system load is low, i.e. the arrival rate λ is very small compared to the service
rate k × µ.

3. High arrival case : All VMs are turned On and turned Off in (MC) while in (MDP) some VMs will never
be deactivated. This occurs when the system load is high, i.e. the arrival rate λ is very large compared to the
service rate k × µ.

The proposition 3 highlights another benefit of MDP approaches since they allow to size the exact number
of machines to be activated (this is particularly true in the low arrival case). Hence, if in a policy resulting from a
MDPthere exits ak such that for all l > k and for allm ∈ {1, . . . , B}wehave q(m, l) < 1, thenK−kmachines
are not necessary. This is not true in MC heuristics, nevertheless, it is possible to adapt the previous heuristics to
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find the optimal number of VM to be activated in low arrival case. This requires running the algorithms for each
level k with k ∈ {1, . . . , K}. Then take the level k which has the smallest cost says k∗. If k∗ = K all machines
must be turned on inK , otherwise only k∗ machines are important and the other ones useless. But this method
is time consuming. This method could be adapted for high arrival cases.

4.6.3.2 Different temporal sequence of transitions

The last point to investigate is the difference in dynamical behavior between transitions. This difference is
slight and has no effect on average costs, nevertheless it induces a difference on the values of the thresholds. In
this system, there are two kinds of transitions : natural transitions which are due to events (departures or arrivals)
and triggered transitions which are caused by the operator (activation or deactivation). These two transitions are
instantaneous.Due to their intrinsic definitions, themodels consideredhere donot observe the systemat the same
epochs. Hence, in theMarkov chain the system is observed just before a natural transition while in theMDP the
system is observed just after a natural transition. More formally, let us assume that x is the state before a natural
transition : it is seen by theMarkov chain. Then the transition occurs and the state changes instantaneously in x′
that is the state seen by theMDP. The controller reacts and the triggered transition occurs, thus the systemmoves
in x′′ in which the system remains until the next event which will cause the next natural transition. Since state
changes are instantaneous, this has no impact on costs. We display in Figures 4.9 and 4.10 the temporal behavior
for the Markov chain andMDP approaches.

Figure 4.9 – Temporal behavior for the Markov chain approach

Figure 4.10 – Temporal behavior for the MDP approach

In themedium case arrival defined byDefinition 8, thresholds are fully comparable andwe have the following
lemma :

Lemma 4. In the medium case arrival, hysteresis thresholds of Markov chain and SMDP hysteresis threshold
can be inferred from each other. Let (F1, . . . , FK−1) and (R1, . . . , RK−1) be the thresholds of the MC model
and let (L2, . . . , LK) and (l2, . . . , lK) be the SMDP thresholds. Then, for all k ∈ {1, . . . , K − 1}, we have :
Lk+1 − 1 = Fk and lk+1 + 1 = Rk.

Proof. We make the proof for an activation threshold. Let assume that the state just before a transition is
x = (Fk, k), if an arrival event occurs then the system moves instantaneously in a state x′ = (Fk + 1, k).
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According Definition 6, a virtual machine is activated and then the system instantaneously moves again in x′′ =
(Fk+1, k+1).Observe now, that the statex′ (accordingDefinition 3) is the state inwhich the SMDPobserves the
system an takes its activation decision. Thus, we haveLk+1 = Fk+1. The proof works similarly for deactivation.
�

4.7 Real model for a Cloud provider
Wewant to apply the algorithms presented before on concrete models derived from real environments values.

Wemight now consider some true values of energy consumption, financial costs of virtualmachines, and financial
costs of Service Level Agreement. However, one of the difficulties of such an approach lies in the small number of
works that consider both energy and quality of service.Hence, we should take different separate elements to build
such a model. This allows us to assess the real impact, especially the financial cost and the reduction of the energy
consumption, that a cloud owner can generate with such heuristics and to determine the optimisation method it
should use.

4.7.1 Cost-Aware Model with Real Energy Consumption and Pricing

4.7.1.1 Energy Consumption Data

Manymeasurements are performed on the real datacenter grid5000 in [25], and energy consumption data are
obtained for VMs hosted on physical servers in [87]. We keep these values in Watt for energy consumption of
virtual machines.

The work [25] details information about real energy consumption in virtualised system. The authors have
made some simulations on a real Datacenter, grid5000, and have recovered datas about energy consumption for
VMs based on some physical servers whom characteristics will be described in section 4.8.3. This will allow us to
take these real values in Watt for energy consumption of virtual machines, when we built a concrete case.

4.7.1.2 Financial Cost

In order to keep the relevance of our cost-aware model, we must represent a financial cost. Henceforth, we
transform energy consumption given in Watts into a financial cost based on the price in euros of the KWh in
France fixed by national company. To obtain the financial values of the other prices, we observe the commercial
offers of providers [13]. This gives us the operational costs.

Recall that the model proposed here is cost-aware and evaluates a financial cost for the cloud owner and that
our goal was to minimise the operational cost while guaranteeing the QoS. One way to build real experiments is
to consider real datas about energy consumption and to transformWatts consumption in a financial cost consi-
dering the price in euros of the KWh in France defined by EDF company. So, once we have our energy costs fixed
depending on the system settings (CPU, vCPU, etc.), we can translate these watt costs into financial costs.

4.7.1.3 Service Level Agreement

We propose to modify the performance part of our cost function for capturing the realistic scheme of the Ser-
vice Level Agreement. Actually, we have to give a concrete meaning to our holding cost since it does not translate
directly from usual SLAmodels. Indeed, in SLA contracts, it could be stated that when the response time exceeds
a pre-defined threshold TSLA then penalty costs must be paid. Here, the penalty Cp is the price that a customer
pays for one hour of service of a virtual machine (full reimbursement) [13] and the threshold corresponds to a
maximal time to process a request.
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With our model, it is possible to define an holding cost that models the penalty to pay when the QoS is not
satisfied. We focus on the mean response time in the system where the response time is denoted byRT . The SLA
condition translates in : E[RT ] ≤ TSLA. We introduce the mean number of customers E(N) computed with
Little’s law and assuming that the loss probability δ is negligible, i.e. E[N ] = E[R].λ(1 − δ) =⇒ E[N ] =
E[R].λ. Therefore we have :E[N ] ≤ TSLA · λ.

We thus may define a customer threshold NSLA such that NSLA = TSLA · λ. This customer threshold is
the maximum number of requests, that the system can accept to keep the requiredQoS satisfied. Therefore, each
timem > NSLA, the cloud provider will pay a holding cost penalty ofCp per customer.

In order to capture the realistic scheme of the Service Level Agreement, wemodify our cost function by chan-
ging the performance part. Therefore the mean global cost for the cloud provider is :

C(m, k) = Cp.(m−NSLA, 0)+ + CS.k

+ Cp.λ.1{m=B,k=K} + CA.λ.1{m=Fk, k<K}

+ CD.µ.min{m, k}.1{m=Rk−1+1, 2≤k≤K}

+ Cstatic ,

whereCstatic represents the static financial cost obtained from the idle energy consumption inWatt of thephysical
server hosting the virtual machines. The energy part of the cost function remains the same with the activation,
deactivation, and energy cost of aVMbeingused. For theperformancepart, the issuewehadwas to give ameaning
and real values for the holding cost since this one does not translate directly from usual SLA models. However,
the holding cost can represent the penalty to pay if the QoS is not satisfied.

4.7.2 Real Packets traces and CPU utilisation
For obtaining concrete values of parameters λ and µ we must search workload traces with real scenarios in

public cloud. Here the traces come fromMetaCentrum Czech National Grid data [54].
After defining some real financial costs for energy and performance, we may want to give a meaning and real

values to λ and µ. We consider in our model one request arriving at a time and one VM is processing one request
at a time. Describing these parameters in this way, allows us to take some concrete values that can happen in real
schemes. Looking at workload traces fromMetaCentrumCzech National Grid datas [54], we can take a number
of requests per hour arriving in a real data center.We also have some experimental results about themean run-time
of jobs, which give us real values of µ. Let us refer to 4.8.3 for numerical results with real scenarios.

Parameter values used in experiments can be found in Section 4.8.3.

4.8 Experimental Results
This part is devoted to numerical experiments and the comparison between all previous algorithms. We have

implemented all methods in C++, with the stand-alone library MarmoteCore [66]. The experiments were laun-
ched with a processor Intel Xeon X7460 @2,66 GHz with 6x4 cores (24 threads) and 16 GB of RAM. The pa-
rameters of the system have been taken arbitrarily in a first phase in order to rank the different algorithms by
comparing them to an exhaustive search when it is possible or to the one which has the best cost otherwise. We
define four cloud scenarios that will be used for comparison in both : comparison of heuristics and comparison
of heuristics withMDP approach.We call Scenario A a cloud systemwithK = 3VMs andB = 20maximum
customers in the system, Scenario B a cloud systemwithK = 5VMs andB = 40, Scenario C a cloud system
withK = 8 VMs andB = 60 and Scenario D a cloud system withK = 16 VMs andB = 100 regarding the
best solution among the heuristics. Finally, we tested in 4.8.3 our best algorithms on real scenarios.
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4.8.1 Generic experiments to rank the algorithms
Wefirst compared theheuristics to sort themand select thebest ones for comparisonwithMDPapproach.The

results are displayed in the first part of Table 4.2.We present below some results for cloud systems with arbitrarily
parameters. We compare all the algorithms presented above in terms of running time and in terms of optima-
lity. The algorithms have been tested on 46656 instances obtained by combination of sets of fixed values : (λ, µ,
costs). Costs (Ca, Cd, Ch, Cs) were taking values in [0.5, 1, 2, 5, 10, 20], Cr in [1, 10, 100, 1000, 5000, 10000],
queueing parameters λ, µ in [0.5, 1, 2, 5, 10, 20].

For Scenario A, accuracy is computed based on optimal solution generated by exhaustive search. For higher
scale scenarios (B,C,D), we compute accuracy by comparing solutions with the best one among all heuristics.
The results are given in Table 4.2. The mean execution time is given in the first column while the efficiency of
algorithms is given in the last column.

Figure 4.11 displays the accuracy and time execution of the heuristics for the four cloud scenarios.

Figure 4.11 – Comparison of accuracy and time execution between heuristics

4.8.1.1 Analysis

Ranking of the heuristics Table 4.2 shows that the heuristics are very efficient for low scale systems such as
K = 3 andB = 20. However, the efficiency of those algorithms is decreasing with the size of the system. This
is due to the fact that the number of sets of thresholds tested by the heuristics compared to the total number of
sets of thresholds decreases and therefore we potentially explore less candidates.
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Looking at the results of the experiment, we detect thatBPL Agg has the best percentage of optimality even
for large systems. Unfortunately its running time is the highest. The fastest one, INC Agg returns the solution
in less than a second but reveals an accuracy which is not the worse without being impressive. At lastNLS-Fluid
Agg presents a good compromise keeping a good precision and returning the solution in a short time.

Aggregation method strongly improves algorithms Table 4.2 show a significant time saving offered by
the aggregation method for the same efficiency. In all cases, the aggregation method significantly improves our
heuristics and the running times of all the algorithms are widely reduced. The improvement for three virtual
machines is small, as expected, but the gain increases as the size of the system increases. Hence the running time
is divided by about 1.3 whenK = 3 and B = 20 and by about 3.8 whenK = 16 and B = 100 (e.g. BPL
algorithm passes from 757 seconds to 186 seconds).

Impact of the M/M/k approximation Coupled with heuristics BPL and NLS,M/M/k approximation
brings significant improvement considering the efficiency and the time execution. For a large scale case (Scenario
D inTable 4.2), theBPLMMKAgg provides the best solution for 87.24%of the instances in 31.7 seconds,which
is the best heuristic in terms of time-accuracy ratio. We can notice, in all cases, that coupled heuristic always have
better accuracy than the heuristic alone. Moreover, the initialisation technique does not only improve efficiency
but also time execution. For example in Scenario C, BPL Agg has a mean time of 10,27 seconds for 79,57 %
accuracy while BPL-MMk Agg obtains 95,39 % accuracy in 5,16 seconds, providing a double major gain.

Simulated annealing is not worth it We noticed that the simulated annealing suffers from a temporal
overcost whatever the size of the system. Unfortunately this overcost does not allow to obtain a greater precision,
since it obtains similar accuracy than some heuristics. Actually, it seems that greater precision could be obtained
at the price of a very large running time.

4.8.2 Heuristics vs MDP
We compare next the best heuristics according to section 4.8.1 with the MDP algorithms. Numerical experi-

ments have been done for the same Cloud model parameters and same system parameters. Results are displayed
in Table 4.2. We first compare all the local search heuristics and their improvement inMC Heuristics. Then we
compare all the (MDP) algorithms with the value iteration solution (convergence is known from Section 4.6.2.2)
inMDP, before comparison with the heuristics to compare both approaches inComparison. Again, we compare
all methods for the four cloud scenarios A, B, C and D. For the heuristics, values in blue correspond to the mini-
mum execution time for a given Scenario, values in red correspond to the best efficiency and values in green the
ones that have the best ratio optimality-time. For the comparison between MDP and Heuristics, we only point
out in green the methods with the best ratio.

4.8.2.1 Analysis

By Section 4.6.2.2, we theoretically know that value iteration algorithm converges to the exact solution. The-
refore, we can use it as a benchmark to compare theMDP algorithms. Recall that we had no guarantee for conver-
gence of unichain policy iteration algorithm. Yet, we observe in these numerical experiments, that all MDP algo-
rithms obtain 100% of accuracy (optimal solution being given by value iteration) in all scenarios. Thus, all MDP
algorithms converge to the optimal solution. Concerning the running time, we observe that policy iteration algo-
rithms PI and PI Adapted are twice as good than value iteration on all studied scenarios. Furthermore, we see
that the execution time of the structured MDP algorithms DL-PI and Hy-PI is divided by 2 compared to PI
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Models Algorithms Scenario A Scenario B Scenario C Scenario D
Time (sec) % Opt Time (sec) %Min Time (sec) %Min Time (sec) %Min

MCHeuristics

Exhaustive Search 4,16 sec 100 % ND ND ND ND ND ND
Fluid approximation 0,00045 sec 47 % 0,002 sec 38,51% 0,012 sec 33 % 0,047 sec 21,7 %
MMK approximation 0,001 sec 48 % 0,003 sec 38,87 % 0,029 sec 34 % 0,11 sec 15,37 %

BPL 0,063 sec 96,9 % 2,684 sec 86,81% 37,23 sec 79,57 % 757 sec 55,39%
BPL Agg 0,047 sec 96,9 % 1,163 sec 86,81% 10,27 sec 79,57 % 186 sec 55,39%

BPL-Fluid Agg 0,07 sec 97 % 0,635 sec 89,13 % 9,35 sec 80,53 % 48 sec 55,05 %
BPL-MMK Agg 0,036 sec 97,78 % 0,53 sec 96,59 % 5,16 sec 95,39 % 31,7 sec 87,24 %

INC 0,007 sec 97,51 % 0,018 sec 89,53% 0.157 sec 61,63 % 0.213 sec 34,95 %
INC Agg 0,006 sec 97,51 % 0,009 sec 89,53% 0,048 sec 61,63 % 0,034 sec 34,95 %

NLS 0.043 sec 92,70 % 1,007 sec 62,24 % 12,38 sec 43,51 % 257 sec 20,44 %
NLS Agg 0,034 sec 92,70 % 0,458 sec 62,24 % 4,05 sec 43,51 % 61 sec 20,44 %

NLS-Fluid Agg 0,039 sec 95,6 % 0,043 sec 84,60% 0,751 sec 72,39 % 2,03 sec 50,30 %
NLS-MMK Agg 0,014 sec 96,32 % 0,06 sec 93,58 % 0,9 sec 89,54 % 8,39 sec 76,17 %

SA 7,43 sec 99 % 33,1 sec 83,62 % 74,59 sec 59,68 % 302 sec 24,37 %
SA-MMK Agg 5,76 sec 99 % 18,32 sec 91,73 % 55,44 sec 92,13 % 245 sec 90,96 %
SA-Fluid Agg 8 sec 99% 17,98 sec 92,57% 48,7 sec 93,38 % 160 sec 87,78 %

MDP

Time (sec) % Opt Time (sec) % Opt Time (sec) % Opt Time (sec) % Opt
VI 0.0057 sec 100 % 0.021 sec 100 % 0.0406 sec 100 % 0,0944 sec 100 %

RVI 0.0057 sec 100 % 0.021 sec 100 % 0.0406 sec 100 % 0,095 sec 100 %
PI 0.0028 sec 100 % 0.0124 sec 100 % 0.0214 sec 100 % 0.0606 sec 100 %

PI Adapted 0,0023 sec 100 % 0,0117 sec 100 % 0,0201 sec 100 % 0,0583 sec 100 %
DL-PI 0,00115 sec 100 % 0,0072 sec 100 % 0,0105 sec 100 % 0,0452 sec 100 %
Hy-PI 0,00113 sec 100 % 0,0069 sec 100 % 0,0100 sec 100 % 0,0442 sec 100 %

Comparison

Time (sec) % Opt Time (sec) % Opt Time (sec) % Opt Time (sec) % Opt
NLS-MMK Agg 0,014 sec 64,82 % 0,06 sec 61,52 % 0,9 sec 59,82 % 8,39 sec 52,61 %
BPL-MMK Agg 0,036 sec 65,15 % 0,53 sec 62,65 % 5,16 sec 61,69 % 31,7 sec 57,1 %

VI 0.0057 sec 100 % 0.021 sec 100 % 0.0406 sec 100 % 0,0944 sec 100 %
DL-PI 0,00115 sec 100 % 0,0072 sec 100 % 0,0105 sec 100 % 0,0452 sec 100 %
Hy-PI 0,00113 sec 100 % 0,0069 sec 100 % 0,0100 sec 100 % 0,0442 sec 100 %

Table 4.2 – Numerical experiments for comparison of heuristics andMDP algorithm
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Adapted. This leaves us to conclude that integration of policy with structural properties strongly accelerates the
convergence.

4.8.2.2 Comparison between (MDP) and (MC) approaches

We now compare which approach works best to obtain optimal thresholds. We first observe that the accuracy
difference is striking, indeed, theMC approach is optimal only about half the time. Indeed, from Section 4.6.3.1,
we know that depending on the queueing parameters, (MDP) approach could not activate or deactivate certain
virtual resourceswhereas the (MC) approach always find thresholds for all levels due to constraints on the searched
policy. This is why (MC) heuristics are outperformed by (MDP) algorithms. Hence, for many instances their
optimal cost is higher due to additional activation or deactivation thresholds, generating extra costs. We see that
MDP algorithms are faster than heuristics in the four scenarios. Hence for small scenarios Hy-PI is about 100
times faster than the best heuristic and about 200 times faster for large scenarios. Therefore, the MDP approach
is significantly better than the (MC) approach.

4.8.2.3 High-scale simulations MDP

We ran numerical simulations for high-scale scenarios (real size datacenter) with best MDP algorithmHy-PI
to assess its performance. Simulations were performed on pre-selected costs and queuing parameters. Our sizesK
andB are larger than these in previousworks e.g. [103].Results are displayed inTable 4.3.We also display the state
space size and the results of BPL-MMK Agg to show that they (heuristics) do not scale. Observe that, for small
data centers (64VM and 400 customers) the optimal policy can be computed in a reasonable time in practice : 2
seconds. However, for large data centers some further researches should be done since the time represents around
6 hours for a scenario with 1024 VMs and 6400 customers. We fill the table with ND (Not defined) for the
heuristic when the execution time is above 10 hours. We show that the best heuristic already suffers in the case of
64 VM and 400 customers therefore demonstrating that heuristics do not scale to large Cloud systems.

K=3,
B=20

K=5,
B=40

K=8,
B=60

K=16,
B=100

K=32,
B=200

K=64,
B=400

K=128,
B=800

K=256,
B=1600

K=512,
B=3200

K=1024,
B=6400

State Space 60 200 480 1600 6400 25600 102400 409600 1, 6 · 106 6, 5 · 106

Hy-PI 0.0002 0.0019 0.0274 0.0517 0.3023 2,4238 37,97 329.54 2327 6.3 H
BPL-MMK
Agg

0.036 0.53 5.16 31.7 590 ND ND ND ND ND

Table 4.3 – High-scale datacenter resolution withMDP algorithmHy-PI

4.8.3 Numerical experiments for concrete scenarios

Data and scenarios We define now numerical values to the real model of Section 4.7. Several case-studies
as well as several performance and metrics curves are used to select the values. Throughout this section the time
unit is the hour. The Cloud platform studies come from [87] : the physical hardware is a Taurus Dell PowerEdge
R720 server having a processor Intel Xeon e5-2630 with 6 × 2 cores up to 2.3GHz. The processor hosts virtual
machines by an hypervisor. One core is considered to be one vCPU and cores are distributed equally among the
virtual machines : 12 VMs with 1 core per VM, 6 VMs with 2 cores per VM, and 3 VMs with 4 cores per VM.
These three different cases are selected such that we can use the prices of Amazon EC2 instances [13].

Energy consumption values come from [87]. Physical hardware consumption is around 100W. The dynamic
consumption of the virtual machines is stated in accordance with the number of cores per VM.Namely, theWatt
consumption for activation, deactivation and use is different as it depends on the characteristics of the virtual
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Table 4.4 – Parameter values for three scenarios

Parameter Model A Model B Model C

#VMs 3 6 12
Instances a1.xlarge t3.small t2.micro
#vCPUs 4 2 1
RAM(Go) 8 2 1

Cp 0.0914e/h 0.0211e/h 0.0118e/h
CS 0.00632e/h 0.00316e/h 0.00158e/h

CA = CD 0.00158e 0.00079e 0.00032e
CStatic 0.0158e/h 0.0158e/h 0.0158e/h

B 100 100 100
λ 50 req/h 50 req/h 50 req/h
µ 20 req/h 10 req/h 5 req/h

machines hosted on the physical server. Hence, 1 VM with 4 vCPU which executes a request requires 40W to
work while its activation and deactivation take a power of 10W. At last, all the energy consumption values are
transformed in financial costs.

Some workload samples which come from real traces of theMetaCentrum Czech national grid are detailed in
[54].We select some samples to build concrete daily scenarios for huge size requests. Hence, we pick a number of
arrivals per hour of λ = 50 and number of served requests per hour as µ = 5, 10 or 20. Table 4.4 details all the
parameter values for each model.

Next, we focus on three concrete cases depending on the values chosen for the SLA.We give for each of them,
the optimal cost and the optimal policy considering each model (A,B,C) that have been calculated with the best
algorithmHy-PI.

The results forNSLA = 10 are :
1. Model C :
∗ mean hourly cost = 0,0778 €/h
∗ optimal policy : F=[1,2,4,5,7,8,9,10,11,12] ;
R=[0,1,2,3,4,5,6,7,8,9,10].

2. Model B :
∗ mean hourly cost = 0.0798 €/h
∗ optimal policy : F=[1,3,4,5,7] ; R=[0,1,2,3,4].

3. Model A :
∗ mean hourly cost = 0.136 €/h
∗ optimal policy : F=[1,3] ; R=[0,1].

The results forNSLA = 30 are :
1. Model C :
∗ mean hourly cost = 0.0354 €/h
∗ optimal policy : F=[2,4,5,7,8,10,12,14,16,18,19] ; R=[0,1,2,3,4,5,6,7,8,9,10].

2. Model B :
∗ mean hourly cost = 0.0358 €/h
∗ optimal policy : F=[3,6,9,12,16] ; R=[0,1,2,3,6].

3. Model A :
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∗ mean hourly cost = 0.0397 €/h
∗ optimal policy : F=[5,10] ; R=[0,1].

The results forNSLA = 50 are :
1. Model C :
∗ mean hourly cost = 0,0324 €/h
∗ optimal policy : F=[3,5,7,9,11,14,17,21,26,30,34] ; R=[0,1,2,3,4,5,6,7,10,14,19].

2. Model B :
∗ mean hourly cost = 0,0326 €/h
∗ optimal policy : F=[4,8,13,21,30] ; R=[0,1,2,5,14].

3. Model A :
∗ mean hourly cost = 0,0334 €/h
∗ optimal policy : F=[9,22] ; R=[0,5].

We provide the mean run time of the best algorithm (Hy-PI) among concrete experiments : 0,00127 s for
Model A; 0,0073 sec forModel B and 0,0372 sec forModel C. The optimal solution is computed in a short-time
and therefore can allow to recompute new policy when the demand is evolving, in order to dynamically adapt to
the need.

Mean global costs given SLA parameter or arrival rate From numerical simulations it could be noticed
first that, for a fixed arrival rate λ, when the SLA is not so strict, then the cost decreases. Second that, when the
response time set by the SLA rises, then the operating costs for the cloud providers are reduced. Indeed, providers
will pay fewer penalties to clients and fewer power bills for running VMs. On the other hand, we observe that
Model C is always better than Model B and Model A for any possible values of NSLA and for any values of λ
given a fixed SLA parameter. We can conclude that it is always better to decompose physical machine in several
virtual resources, since it allows a more efficient resource allocation in dynamic scenario. Indeed, the more virtual
resources you have, the less you will pay per utilisation since they require less CPU consumption. Moreover, it
allows a more flexible system where you can easily adapt virtual resources to the demand.

Thresholds given SLA parameter or arrival rate We also observe thatModel C always activates a second
virtual resource before the two other models B and A, for any fixed values of λ and SLA parameterNSLA. Fur-
thermore, when the arrival rate λ is fixed, then all models will activate later when the SLA is less restrictive. Lastly,
when the SLA parameter is fixed, we notice that the first activation threshold decreases when λ increases. Indeed,
if the demand is growing, it requires more resources and requires faster activation of virtual resources.

Cost evaluation We display on Figure 4.12 an example (K = 8, B = 60) which exhibits the evolution of
the financial cost per hour according to a givenNSLA, or to the load. We can see in the figure the impacts of such
parameters regarding performance and energy costs.
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Figure 4.12 – Energy and performance costs given fixed SLA or arrival rate

Metrics and Performance We want to give some performance behaviour depending on some parameters,
mostly how the financial cost per hour evolves depending on the givenNSLA, or on the load.The cost is calculated
with theBPLAggheuristic for these examples.We can see inFig. 4.13 the impact of the SLAon the financial hourly
cost for a cloud provider.

Figure 4.13 – Financial Cost for an hour depending on the SLA
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Fig. 4.14 shows the evolution of the cost depending on the workload. It has been drawn with the parameters
of Model B and a fixed SLA :NSLA = 30.

Figure 4.14 – Financial Cost for an hour depending on the workload

4.9 Are hysteresis policies really optimal?
This section relies on structural properties of the optimal policy and provides a counter-example to contradict

usual statements about optimality of hysteresis policies. Several works have tried to prove the optimality of spe-
cial kind of policy (stationary, threshold, hysteresis) in this type of cloud models. The different works deal with
optimal control for dynamic admission of requests in a queue and the service rate control to allocate in the queue
depending on the number of requests. As an example, Yang et al. [151] proved that optimal policy is of hysteresis
type in a similar cloudmodel. They study a scenario where a data center hasmultiple data servers to deal with jobs
and the servers are switched into sleeping mode in periods of low traffic load to reduce energy consumption. The
authors formulate the problem as aMDP and show that the optimal policy has a double threshold structure. Yet
their cost function is different from our model since they do not consider activation, deactivations costs. Moreo-
ver, Szarkowicz et al [134] study the problem of determining optimal operating policies for an M/M/S queuing
system. Their system state is also defined by the number of customers in the system, and the number of active
service channels. Their cost structure includes customer holding and service channel operating costs as well as a
linear switching cost. In their work, they also show the optimality of hysteresis policies. Last, Maccio and Down
[99] state that for all energy-aware systems and for all linear well-formed cost functions, the optimal policy is a
threshold policy. In addition, they emphasise that in general these policies are hysteretic in nature due to separate
thresholds.

All numerical experiments provided in section 4.8 turned out to return hysteresis policies when calculation
were made by MDP algorithms (e.g. VI or Hyst-PI). However we have remarked when manipulating the Cloud
parameters that it could exist optimal policies returned from VI (with proven convergence) that were not of
hysteresis type.We provide here a counter-example in a particular cloud systemwhere the optimal policy returned
byMDP algorithm is not of hysteresis type. Notice that this example relies on cloud parameters that do notmake
sense in real cloud environments but still shows mathematically that we can not prove optimality of hysteresis
structure here, since it will not be true for all cloud environments. In contrast to the works of [78], [58] showing
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optimality of hysteresis policies for their queuing model, this is not true in our scenario due to the addition of
activation, deactivation and reject costs.

Example 3. Let us define the following cloud environment with :
K = 3, B = 10
CA, CD, CR, CH , CS = 50000, 0.05, 1000, 1, 0.05
λ, µ = 20, 5
The optimal policy returned by the Value Iteration algorithm, which has proven convergence is displayed in Table

4.5. Notice that the Policy Iteration algorithm has returned the same policy and cost.

Policy Number of jobs m k = 1 k = 2 k = 3

q(m, k)

0 q(m, k) = −1 q(m, k) = 0 q(m, k) = 0

1 q(m, k) = −1 q(m, k) = 0 q(m, k) = 0

2 q(m, k) = 1 q(m, k) = 0 q(m, k) = 0
3 q(m, k) = 1 q(m, k) = 1 q(m, k) = 0
4 q(m, k) = 1 q(m, k) = 1 q(m, k) = 0
5 q(m, k) = 1 q(m, k) = 1 q(m, k) = 0
6 q(m, k) = 1 q(m, k) = 1 q(m, k) = 0
7 q(m, k) = 1 q(m, k) = 1 q(m, k) = 0
8 q(m, k) = 1 q(m, k) = 1 q(m, k) = 0
9 q(m, k) = 1 q(m, k) = 1 q(m, k) = 0
10 q(m, k) = 1 q(m, k) = 1 q(m, k) = 0

Table 4.5 – Policy q(m, k) returned by Value Iteration showing non-hysteresis

We recall that the hysteresis policy should satisfy two properties :
∗ q(., k) increases
∗ q(m, .) decreases
In this example, the first property is satisfied since we always have for a given k : ∀m q(m, k) ≤ q(m+ 1, k).

Yet the second property is violated since we have : q(1, 1) = −1 and q(1, 2) = 0 which contradict the hysteresis
property of q(m, .) being decreasing. This is due to cost choices that are drastically di�erent, which does not provide
realistic meaning but prevents us to show optimality of hysteresis policies in our model, for all cloud environments.

The intuition here is that when we take a very high activation cost CA compared to the others, the agent does
not chose to activate in states where the load is very low such asm = 0 orm = 1..

4.10 Discussion

4.10.1 Summary of the chapter
In this chapter we have compared theoretically and numerically two different approaches to minimise the

global cost and to find auto-scaling thresholds policies integrating both performance and energy consumption in
an auto-scaling cloud system when the agent is provided the full model of the cloud environment. The relevance
of this study for a cloud provider is to provide an auto scaling resource allocation policy very quickly to minimise
its financial cost (around 38 seconds for 128VMs and 800 customers with the best MDP algorithm). We exhibit
that the best static heuristics are strongly outperformedby SMDPmodels and that hysteresis presents a significant
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improvement. Although we have provided a counter-example with specific costs parameters for optimality of
hysteresis policies, it turns out that the optimal policies returned from numerical experiments were all hysteresis
when taking consistent costs. From the numerical results, we show that the (MDP) approach is faster, but also
much more accurate. Moreover, it allows in some cases to define the number of resources needed to be allocated
on the physical server. Finally, we devised a realistic scenario of our cloudmodel we assessed our bestmethods and
analysed numerical results depending on SLA parameters and queueing parameters.

4.10.2 How to proceed with unknown statistics
This chapter assumes that the autonomous agent fully knows the cloud environment and its dynamics, which

allows him to compute optimal policies. In real cloud systems, this hypothesis no longer holds since it is difficult to
capture queuing statistics such as arrival rates, service rates, etc. In this context we need to consider RL techniques
that can learn in unknown environments.
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CHAPTER 5

MODEL-BASEDREINFORCEMENT LEARNING FORMULTI-TIER
NETWORK

The contributions of this chapter have been published in [142] :
∗ Thomas Tournaire, Jeanne Barthélémy, Hind Castel-Taleb, Emmanuel Hyon. Reinforcement Learning
withModel-Based Approaches for Dynamic Resource Allocation in a TandemQueue. In Performance En-
gineering and Stochastic Modeling. Springer International Publishing (ASMTA 21), 2021

The challenge for resource allocation in Cloud networks is that human experts do not easily know the exact
statistics of the system (arrivals, services) in real environments, because they evolve too quickly. Therefore a soft-
ware agent does not possess any environment model for computation of the optimal policy. This requires the
implementation of Reinforcement Learning solutions. On the other hand, we are not sure that the practitioners
approaches are robust (often very experimental). Most of the work concerning RL for Cloud resource allocation
is dedicated to model-free techniques such as Q-Learning [39] or Deep RL [113], but there exists no application
of model-based techniques for such use-cases.

In this chapter, we want to evaluate the model-based RL approaches in the case of queuing networks, which
has been little done so far.Moreover, we want to extend the range ofmodels studied (in Chapter IV to go beyond
the simple single multi-server model) to networks of several queues, which is better able to represent multi-tier
architectures,whichhas alsonotbeendonemuch in the literature.Consequently,wenowassume that the learning
agent does not carry the knowledge of theMDPmodel.The aim is therefore to adoptmodel-basedRLapproaches
[106], especially Dyna architectures [8] and MDP online techniques [27] to assess their relevance, if ever, or to
improve them for dynamic resource allocation in queuing network systems. Moreover, we want to assess the
robustness of such approaches in use-cases where there are arrivals that are bursty.

Therefore, the key contributions of this chapter are as follows :
∗ We extend the one node scenario and propose two queuing systems for modelling three-tier architectures :
tandemqueueingmodelwith Poisson arrivals, and thenwith (MMPP)Markovmodulated Poisson process ;
∗ We integrate and discuss literature considerations regarding experimental comparison of reinforcement lear-
ning algorithms;
∗ We implement several versions of Dyna architecture and experimentally show that model-based reinfor-
cement learning techniques can outperform classical model-free algorithms such as Q-Learning, on cloud
auto-scaling applications ;
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∗ Westudy the robustness ofRLalgorithmsonapartially observable systemwithMMPParrivalswhere arrival
rate is varying over time and is hidden to the agent. Nevertheless, we show that deterministic model-based
methods suffer more than Q-learning in changing environments, while stochastic model-based methods
such as MDP online can manage to have better performances.

The chapter first gives a more detailed overview of model-based reinforcement learning techniques, next pre-
sents twoqueuingmodels to expressmulti-tier network architectures. Then it shows howwehave selectedmodel-
based RL techniques by providing a general algorithm and how we parameterised them to compare with state
of the art model-free RL on the multi-tier cloud network. Last, we present comparison results between RL tech-
niques on different cloud scenarios andparameters in a simulated environment, demonstrating the gain ofmodel-
based RL techniques.

5.1 BackgroundModel-Based Reinforcement Learning
Now, we present in more details the model-based RL framework introduced in Chapter III. We first describe

Dyna architectures [8] and prioritised replay techniques [122], state of the art MDP online techniques [27],
[74], [109] and more advanced techniques following [106]. More precisely, we describe in this background sec-
tion how the RL agent can learn the model of the world and how it can integrate learning and planning. We
encourage readers to check out the section 3.2.4.2 in Chapter III that discusses the planning phase and especially
how it is performed : Simulated trajectories, breadth and depth, dynamic programming. Broadly, the planning
phase consists of simulating trajectories with the learned model for updating the value or policy functions and
the learning phase consists of extracting an environment model with dynamics and reward functions from col-
lected data. Next, we provide more details about SoTAmodel-based RL algorithms regarding their learning and
planning processes.

5.1.1 Dyna architectures - Deterministic models and buffer replay
Dyna architectures [8] aims to improvemodel-freemethods by adding a supplementary planning phase where

the agent canupdatemoreoften its state-value function fromexperiences.The collected samples (st, at, rt+1, st+1)
can be used to directly improve the value function and policy by storing them into a bu�er replay. This buffer re-
play serves as a deterministic model of the world by predicting what will be the reward rt+1 and the next state
st+1 when the agent selects action at in state st. The interaction between experience, model, values, and policy
are depicted in Figure 5.1. The experience can improve value and policy functions either directly or indirectly via
the model.

Figure 5.1 – The reinforcement learning scheme in Dyna architectures (Figure from [8])
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5.1.1.1 Dyna-Q

Dyna-Q [133] is the natural Dyna architecture built upon the model-freeQ-Learning algorithm. In this algo-
rithm, the learning agent continues to update itsQ-value functionwith the one-stepQ-learning update equation
(Q(s, a) ← Q(s, a) + α(r + max′aQ(s′, a′) − Q(s, a)) in a model-free manner. However, it also stores the
collected experiences obtained from environment interactions in a buffer that is reused for planning :Di = {<
s, a, r, s′ >1, < s, a, r, s′ >2, · · · , < s, a, r, s′ >i}. The planning method is the random-sample one-step ta-
bularQ-planningmethod, i.e. that the agent randomly select a state-action pair (s, a) that have been experienced
and generates the outcome (s′, r) from the buffer model to re-update itsQ-value function.

Inmore detail, after each transition st, atrt+1, st+1, themodel records in its table entry for st andat the predic-
tion that rt+1, st+1 will deterministically follow. The latter is referred asmodel-learning. Next, it does a planning
phase by selecting randomly from the buffer a state–action pair that has been experienced before, and simply
returns the last-observed next state and next reward as its prediction. This step is actually a one-step simulation
used for planning and update of theQ function.

In summary, the Dyna-Q agent alternatively updates itsQ-value function for a pair (s, a) either with theQ-
Learning equation, from direct experiences (model-free) or from the planning with buffer replay (model-based).
Conceptually, planning, acting,model-learning, andmodel-free reinforcement learning occur simultaneously and
in parallel in Dyna agents. We provide the pseudo-code of the Dyna-Q learning method in Algorithm 21. We
denote byM(s, a) the buffer replay model that predicts the outcome for a state-action pair (s, a), and by ε-
greedy(Q, s) the policy that randomly exploit or explore.

Algorithm 21:Dyna-Q Algorithm [8]
Input:Q0(s, a),M(s, a) empty buffer, ε
Output:Q∗

Data: System dynamicsP and rewardR unknown
/* Loop until end of episodes */

1 for e ∈MaxEpisode do
2 Select state s0 ∈ S // Initial state
3 for i ∈MaxIteration do
4 a← ε− greedy(Q, s)
5 Execute action a and observe resultant reward r and new state s′
6 Q(s, a)← Q(s, a) + α[r + γmax′aQ(s′, a′)−Q(s, a)] // Model-free update
7 M(s, a)← r, s′ // Model-learning

/* Planning */
8 for j ∈MaxPlanningSteps do
9 s← randomly selected from buffer

10 a← randomly selected from actions previously taken in s
11 r, s′ ←M(s, a) // Simulating
12 Q(s, a)← Q(s, a) + α[r + γmax′aQ(s′, a′)−Q(s, a)] // Planning update

5.1.1.2 Dyna-Q-+

Deterministic models learned by the agent in Dyna architectures might however be incorrect because the en-
vironment is stochastic and only a limited number of samples have been observed. Moreover, the environment
might have changed and its new behavior has not yet been observed by the agent. When the model is poorly
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approximated, the planning process will compute a suboptimal policy. This requires the agent to explore states
where the dynamics might have changed so it can adjust its predictive model for better planning. One heuristic
developed by Sutton [8] is Dyna-Q-+, where the principle is to give incentive to the learning agent for explora-
tion of state-action pairs that have not been seen for a given time. For this purpose, the agent keeps track for each
state–action pair of how many time steps have elapsed since the pair was last tried in a real interaction with the
environment. The more time that has elapsed, the greater the chance that the dynamics of this pair has changed
and that the current model of it is incorrect. To encourage the phenomenon of visiting long-time unseen state-
action pairs, we provide an extra reward κ (relatively small) so the agent will be attracted by these pairs. Formally,
we denote τs,a the time steps passed after the agent visited the pair (s, a) and for which it got the reward r. In the
buffer replay, the reward r is changed into r+ κ.

√
τs,a. The planning steps considering these pairs will therefore

update theQ-value function in this direction. The process is summarised in Algorithm 22.

Algorithm 22:Dyna-Q-+ Algorithm [8]
Input:Q0(s, a),M(s, a) empty buffer, ε, κ, τ
Output:Q∗

Data: System dynamicsP and rewardR unknown
/* Loop until end of episodes */

1 for e ∈MaxEpisode do
2 Select state s0 ∈ S // Initial state
3 for i ∈MaxIteration do
4 a← ε− greedy(Q, s)
5 Execute action a and observe resultant reward r and new state s′
6 Q(s, a)← Q(s, a) + α[r + γmax′aQ(s′, a′)−Q(s, a)] // Model-free update
7 ∀(s, a) ∈ Buffer : τs,a ← τs,a + 1
8 r ← r + κ.

√
τs,a

9 M(s, a)← r, s′ // Model-learning
/* Planning */

10 for j ∈MaxPlanningSteps do
11 s← randomly selected from buffer
12 a← randomly selected from actions previously taken in s
13 r, s′ ←M(s, a) // Simulating
14 Q(s, a)← Q(s, a) + α[r + γmax′aQ(s′, a′)−Q(s, a)] // Planning update

5.1.1.3 Prioritised replay techniques integrated in Dyna architecture

In the twoDyna-Q algorithms presented before, simulated transitions are started in state–action pairs selected
uniformly at random from all previously experienced pairs. But a uniform selection is usually not the best and
planning can be much more efficient if simulated transitions and backups focus on particular state-action pairs.
Silver et al. [122] cover several techniques to prioritised the replay buffer for Deep-Q-network algorithm such
that the Q neural network trains on pertinent samples. Fortunately, this can be used in the Dyna architectures.
The goal is to replay in the planning phase the important transitions more frequently, and therefore learn more
efficiently. The key idea is that an RL agent can learn more effectively from some transitions than from others.
In particular, Silver et al. propose to more frequently replay transitions with high expected learning progress, as
measured by the magnitude of their temporal-difference (TD) error.
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Prior replay buffer with TD-error The first criterion to consider would be the amount the RL agent can
learn from a transition in its current state (expected learning progress). While this measure is not directly acces-
sible, a reasonable proxy is the size of a transition’s TD error δ, which indicates how unexpected the transition
is : specifically, how far the value is from its next-step bootstrap estimate. The algorithmDyna-Q-prior stores in
the buffer memory, in addition to the quadruple (s, a, r, s′), the TD error computed in the model-free update
equation. The selection process for the planning phase is to select state-action pairs with the largest absolute TD
error. Then, as the usual Dyna algorithm, a Q-learning update is applied to this transition, which updates the
Q-function in proportion to the TD error. Obviously this adds complexity due to larger buffer memory but also
the sorting process to select pairs with highest TD error. The process is summarised in Algorithm 23.

Algorithm 23:Dyna-Q-prior Algorithm [8]
Input:Q0(s, a),M(s, a) empty buffer, ε
Output:Q∗

Data: System dynamicsP and rewardR unknown
/* Loop until end of episodes */

1 for e ∈MaxEpisode do
2 Select state s0 ∈ S // Initial state
3 for i ∈MaxIteration do
4 a← ε− greedy(Q, s)
5 Execute action a and observe resultant reward r and new state s′
6 δ(s, a) = r + γmax′aQ(s′, a′)−Q(s, a)
7 Q(s, a)← Q(s, a) + αδ(s, a) // Model-free update
8 M(s, a)← r, s′, δ(s, a) // Model-learning

/* Planning */
9 for j ∈MaxPlanningSteps do

10 s, a←with highest δ(s, a)
11 r, s′ ←M(s, a) // Simulating
12 Q(s, a)← Q(s, a) + αδ(s, a) // Planning update

Stochastic prioritisation The principal issue of prioritising the replay buffer with the TD-error is that state-
action pairs with low TD errors that have been experienced on first visit, might not be replayed for a long time
in the planning process. To overcome this issue, the work [122] introduces a stochastic selection process that lies
between pure greedy prioritisation on the TD-error and random sampling, by associating to each action-pair a

probability h(s, a) =
1

rank(s, a)
where rank(s, a) is the position of the sample in the replay buffer, sorted by

the highest TD-error. This gives a chance for experiences with low TD-error to be selected for planning.

5.1.2 Real Time Dynamic Programming (RTDP)
The major drawback with Dyna architectures is that they consider (or assume) a deterministic model of the

world. In stochastic environment with changes, this becomes amajor problem since the update of the value func-
tion ismadewith experiments that do not integrate the system’s randomness. It exists techniques that aim to learn
a stochastic model of the world, by learning the probability functionP .
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5.1.2.1 The primary concept : adaptive control

In 1999, Barto et al. [23] have covered the field of Dynamic Programming extensively. In their paper, they
study Real Time Dynamic Programming techniques where a learning agent updates its value function or policy
with DP techniques and always decide to act greedy, i.e. selecting a = argmaxaQ(s, a). In addition, they study
what they call adaptive control, which is MDP scenario with incomplete information, i.e. where the agent does
not know the dynamics of the system. Notice that this is in fact Reinforcement Learning. The authors claim that
it exists twomajor classes of adaptive control methods forMDPwith incomplete information :Bayesian methods
and non-Bayesian methods. The former (Bayesian) assumes a known a priori probability distribution over the
class of possible stochastic dynamic systems. As observations accumulate, this distribution is revised via Bayes’
rule.

The latter (non-Bayesian) explicitly models the dynamic system being controlled and will be considered in
this chapter. They use system identification algorithms to update parameters whose values determine the current
system model. They typically make control decisions under the assumption that the current model is the true
model of the system, i.e. they consider the confidence in their model used for planning. In a nutshell, these non-
Bayesian methods estimate the unknown state-transition probabilities and immediate costs based on the history
of state transitions and immediate costs observed while the controller interacts with the environment. The most
common form of this identification approach is the maximum-likelihood technique [8], that allows to update
the transition model by counting occurrences of visited state-action pairs (s, a) and (s, a, s′) :

P(s′|s, a) =
](s, a, s′)

](s, a)

Last, it appears in these methods a conflict between conducting enough exploration to achieve model conver-
gence and the objective of eventually following an optimal policy. This is related to the exploration-exploitation
dilemma of the RL field. Adaptive optimal control algorithms require mechanisms for resolving these problems,
but no mechanism is universally favored.

5.1.2.2 PAC-MDP algorithms

In this section, we give an overview of model-based RL techniques that ought to learn the stochastic model
of the dynamics and plan with DP techniques. These techniques directly inherit from the adaptive control idea.
Most of the theoretical works about these algorithms study the sample complexity (Def. 9) of the methods [27,
69, 74, 136]. The twomost known algorithms that exist are : E3 [74] for Explicit-Exploit-or-Explore andR-max
[27]. They both have in common the learning of the probability distribution to performMDPplanningwith the
learned model. Note that planning can be done in two different ways : using dynamic programming algorithms
such as Value Iteration [5] or using its model to generate new samples trajectories and update in a model-free
fashion, such as Dyna mode. They also share a common property : both algorithms are PAC-MDP, for provably
approximately correct in MDPs, i.e. that they have convergence bounds properties. To understand what is PAC-
MDP, we first need to define Sample Complexity.
Definition 9 (Sample Complexity [69]). LetM be an MDP with NS states, NA actions, discount factor γ ∈
[0, 1) and amaximal rewarddenotedRmax > 0. LetAbe aRLalgorithmwhich acts in the environment, resulting
in s0, a0, r0, s1, a1, r1, . . .

Let V A
t,M = E[

∞∑
k=0

γkrt+k|s0, a0, r0, . . . , st−1, at−1, rt−1, st] and V ∗ the value function of the optimal po-

licy. Now, let ε > 0 be the accuracy and δ > 0 be an allowed probability of failure.
The expression η(ε, δ,NS, NA, γ, Rmax) is a sample complexity bound for algorithm A if independently of

the choice of s0, the number of timesteps such that V A
t,M < V ∗ − ε is at most η(ε, δ,NS, NA, γ, Rmax) with
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probability at least 1− δ.
Intuitively, this quantity tells how many non-optimal (exploratory) steps does the agent make at most before

convergence.We say that an algorithmwith sample complexity that is polynomial in1/ε, log(1/δ), NS, NA, 1/(1−
γ), Rmax is called PAC-MDP. Finally, such algorithms differ mainly by their sample complexity due to how they
treat the exploitation-exploration dilemma.

5.1.2.3 E3

The E3 algorithm scheme is as follows. The agent interacts with the environment to collect experiences for
model-learning and use its model for planning. The planning process is done online, i.e. the agent performs plan-
ning immediately before executing an action so the plan drives the selected actions that will be executed in the en-
vironment. The learning process is done by counting number of visits in experiences (s, a, r, s′). The confidence
about the model is given by a condition : either the agent has observed sufficiently many times the state-action
pairs. This is done by maintaining a count about the visits in state-action couples n(s, a). We say that a state s is
known if all actions a ∈ A have been executed sufficiently many times in this state. With a given learned model
P andR and the knowledge about known states, the agent builds twoMDP to solve :
∗ MDP known : including all known states with the estimatesP(st+1|st, at) andR(st, at) ;
∗ MDPunknown : including theMDPknown+an absorbing aggregated state that comprise all the unknown
states and where the agent receives maximum rewardRmax (incentive for exploration in unknown states).

The process is displayed in Algorithm 24.

Algorithm 24: E3 - PAC-MDP Algorithm [74]
Input: State s
Output:Action a
Data: Learned dynamicsP and rewardR

1 if s is a known state then
2 Plan in the MDP known if return obtained from the planning above some threshold then
3 Return action a from the plan // Exploitation

4 else
5 Plan in the MDP unknown
6 Return action a from the plan // Planned exploration

7 else
8 Select action awith the least observations in state s // Pure exploration

5.1.2.4 Rmax

R-max [27] is a model-based reinforcement learning algorithmwhich can attain near-optimal average reward
in polynomial time, and initially built upon the E3 scheme. In R-max, the agent always maintains a complete,
but possibly inaccurate model of its environment and acts based on the optimal policy derived from this model.
Themodel is initialised in an optimistic fashion : all actions in all states return themaximal possible rewardRmax

and the probability transition is initialised to the identity matrix such that states are in a self-loop mode at the
beginning.Moreover, they define a threshold valuemwhich serves as an indicator to consider a given state-action
pair as known. On the contrary to E3, R-max solves only one unique MDP model (no separate MDP known
and MDP unknown) and therefore implicitly explores or exploits. We denote by∼ the learned functions of the
model P̃ and R̃. The method is depicted in Algorithm 24.
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Algorithm 25:R-max - PAC-MDP Algorithm [27]
Input: State space S, Action spaceA,Rmax,m
Output: q∗, V ∗

Data:DynamicsP and rewardR are unknown
1 Initialise R̃(s, a) = Rmax and P̃ = I
2 Initialise all counters n(s, a) = 0 , n(s, a, s′) = 0 and r(s, a) = 0
3 Initialise random policy q
4 repeat
5 Execute action a = q(s) and observe s′, r
6 Update counters n(s, a)← n(s, a) + 1, n(s, a, s′)← n(s, a, s′) + 1 and r(s, a)← r(s, a) + r

/* Known state-action pair with confidence */
7 if n(s, a) ≥ m then

8 Update the model P̃(s′|s, a) =
n(s, a, s′)

n(s, a)
and R̃(s, a) =

r(s, a)

n(s, a)
// Model-learning

9 Solve the MDP(P̃ , R̃) to update V and q // Planning

10 until not converged

In addition, we can also quote theMormax algorithmproposed by Szita and Szepesvári in [136] where the au-
thors reviewed different PAC-MDP algorithms and their sample complexity bound before proposing a modified
version of the Rmax algorithm.
Definition 10. In this document, we will call MDP online algorithms any model-based reinforcement learning
techniquewhere the learning agent ought to estimate the stochastic transitions and plans with dynamic program-
ming techniques.

5.1.3 More recent model-based RL techniques
Up to now, the learnedmodels (deterministic or stochastic) were all exact tabular functions. Althoughmodel-

based RL techniques can be efficient, this modelling is not efficient in very large scale system and approximation
is needed to overcome the dimension of the state or action spaces. In the precedent techniques, they only consi-
der tabular representations of dynamics and rewardmodels whichmay be impractical in large scale environments
with very high size state and action spaces. More recent works [106] about model-based RL methods have been
consideringusing approximation functions to represent the dynamics and the reward.Among them,RLmethods
have been proposed to approximate for example the dynamics of themodelP by linear or non-linear approxima-
tions [108], [106]. Overall, there aremultitude of approximation functions that can be implemented to represent
the dynamics and the reward functions [115] :
∗ Linear model :P(s′|s, a) = N (s′|wT [s, a], σ2I)

∗ Non-linear models
— Stochastic : Gaussian processes withP(s′|s, a) = GP (s′|wT [s, a], σ2I) ;
— Deterministic : Neural networks with s′ = P(s, a).

The scheme of a learning episode is depicted in Algorithm 26.
Finally, we leave these techniques as perspectives and won’t be investigated in this document.
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Algorithm 26:Model-based RL with model approximations at a given episode t [115]
Input:Q,wP ,wR initialised
Output: q∗, Q∗

Data:True DynamicsP and rewardR are unknown
1 Start in state s = s0

2 repeat
3 Execute action a = ε− greedy(Q, s) and observe s′, r

/* Model-learning */
4 Update transition approximator weightswP ← wP − αP (P(s, a)− s′)∇wPP(s, a)
5 Update reward approximator weightswR ← wR − αR(R(s, a)− r)∇wRR(s, a)

/* Planning */
6 UpdateQ by planning withP(s, a),R(s, a) // Generate trajectories, dynamic programming

7 until end of the episode
8 returnQ,q

5.2 Multi-tier CloudModels
The goal of this chapter is to evaluate the performances of model-based RL techniques compared to state of

the art model-free Q Learning usually assessed in Cloud resource allocation scenarios [38, 68]. More precisely,
we do the comparison in a multi-tier Cloud architecture where the aim is to learn the auto-scaling policy that
minimise a cost function comprising energy and performance parameters.

This section presents the behaviour of a three-tier architecture model which is modeled by a tandem multi-
server queuing system. We describe the associated tandem queuing system as well as the transition probabilities
and the costs.Note that thismulti-tier cloudmodelwill be the use-case for the rest of the thesis, i.e. ChapterVI and
Chapter VII. Moreover, it describes the same model with Markov Modulated Poisson Process (MMPP) arrivals
to consider partially observable MDP (POMDP) environment and to assess the robustness of model-based RL
methods.

5.2.1 TandemQueue : Environment 1
We concentrate on a small segment of a multi-tier network with two physical nodes in tandem and conse-

quently consider a 3-tier model (Figure 5.2). We model the 3-tier software architecture by two nodes (or multi-
server stations) in tandem,where onenode acts for one tier : application tier anddata tier. Eachnode is represented
by a multi server queue (or a buffer, where requests wait for a service) and servers (or Virtual Machines : VMs)
which can be activated or deactivated by a controller. We assume that each node has a finite capacity, letB1 (resp.
B2) the capacity of node 1 (respectively node 2), where the capacity of the node represents themaximumnumber
of requests either waiting for a service or in service. Each VM is represented by a server and we define byK1 (res-
pectivelyK2) the maximum number of usable VMs in node 1 (respectively node 2) knowing that we must have
at least onemachine activated. All virtual machines (VMs) in a given node are homogeneous, and the service rates
can be modelled by an exponential distribution with rate µi for node i (i = 1, 2).
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Figure 5.2 – Tandem queue representation of three-tier architecture

We suppose that requests arrive in the system only in node 1 and arrivals follow a Poisson process with para-
meter λ. When a request arrives in node 1 and findsB1 customers in node 1, then it is lost. Otherwise, it waits in
the queue until a server becomes free, then after being served in node 1 the request enters in node 2 unless the
second queue is full in which case the request is lost. Once the request finishes its service in node 2, it leaves the
system. At each transition epoch, a single controller manages the number of activated VM in each tier and can
decide to turn on or turn off virtual machines or to do nothing. Only one VM can be deactivated or activated in
each station each time. The only actions that the controller can trigger are then activation or deactivation on each
node.

5.2.2 Semi Markov Decision Process Description
We detail now how the system works.

5.2.2.1 System’s dynamics

The system state includes the current number of requests in node 1, denoted bym1, in node 2, denoted by
m2, as well as the number of active servers in node 1, denoted by k1, and in node 2, denoted by k2. Thus, the state
space is defined by S with s = (m1,m2, k1, k2) ∈ S such that 0 ≤ m1 ≤ B1, 0 ≤ m2 ≤ B2, 1 ≤ k1 ≤ K1,
and 1 ≤ k2 ≤ K2.

We denote by ai the action available in node i (with i ∈ {1, 2}). It can take three values : 1 if we activate one
VM; −1 if we deactivate one VM; and 0 if the number is left unchanged. Any action taken by the controller
is the couple of actions in each of the nodes. Hence, the action space isA where a = (a1, a2) ∈ A with ai ∈
{−1,0,1}.

We describe now the transitions. We consider here that the controller can observe the system just after any
change in the state and reacts. The actions are instantaneous.Wedescribe now the effects of the controller’s action.
Its knowledge of the system as well as the way it decides which action to perform are described in Section 5.2.4.
After an action, the system evolves until the next transition occurs. We define the effect of the action in node i by
N(ki + ai) = min{max{1, ki + ai}, Ki}.

So, at state s=(m1,m2, k1, k2), after triggering action a = (a1, a2), the possible transitions are :
In case of an arrival in queue 1, we move, with rate λ, in :

s′1 =
(
min(m1 + 1, B1),m2, N(k1 + a1), N(k2 + a2)

)
.
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In case of departure from queue 1 and entry in queue 2, we move, with rate µ1min(m1, N(k1 + a1)) in :

s′2 =
(
max(m1−1, 0),min(m2+1, B2), N(k1+a1), N(k2+a2)

)
.

In case of departure from queue 2, we move, with rate µ2min(m2, N(k2 + a2)), in :

s′3 = (m1,max(m2 − 1, 0), N(k1 + a1), N(k2 + a2)) .

We define the transition rate of state-action pair (s, a) by Λ(s, a) such that :

Λ(s, a)=λ+ µ1min{m1, N(k1+a1)}+ µ2min{m2, N(k2+a2)} .

We finally have the following transition probability structure derived from the infinitesimal generatorQ. We
describes the embedded markov chain associated to the transition structure as :

p (s′ | s, a) =



λ
Λ(s,a)

if an arrival occurs : s′ = s′1

min{m1,N(k1+a1)}.µ1
Λ(s,a)

if a departure occurs : s′ = s′2

min{m2,N(k2+a2)}.µ2
Λ(s,a)

if a departure occurs : s′ = s′3

0 otherwise with : s′ = s

5.2.2.2 System’s costs

We consider a continuous time discounted model [5] with the discount factor γ. We define the costs that
represent the trade-off between quality of services (QoS) and energy consumption. There are instantaneous costs
that are charged only once where CA denotes the activation cost of a VM, CD its deactivation cost and CR the
cost of rejecting a request. There are accumulated costs that accumulate over time : CS denote the cost per time
unit of using a VMandCH the cost per time unit of holding a request in the system. In [141] is presented away to
give values to these costs so that they have a realmeaning regarding cloud infrastructure. Formally, after triggering
action a = (a1, a2) in state s = (m1,m2, k1, k2), the accumulated cost ci at node i equals :

ci(s, a) = Ni(ki + ai) · CS +mi · CH
and the instantaneous cost at node i is equal to :

hi(s, a) = CA · 1{ai=1} + CD · 1{ai=−1} +
λ

Λ(s, a) + γ
CR1{mi=Bi} if i = 1;

hi(s, a) = CA · 1{ai=1} + CD · 1{ai=−1} +
min{m1, N(k1 + a1)} · µ1

Λ(s, a) + γ
CR1{mi=Bi}

if i = 2 .

Terms in front of the reject cost CR comes from the probability that the event is an arrival and the buffer is
full.

We consider here a continuous time discountedmodel. The discount factor is denoted by γ. We define aMar-
kov Deterministic stationary policy q as a mapping from state space to action space q : S → A. This mapping
defines the action to be performed in a given state s. From discounted model in [5], we define the stage cost
functionR as :

R(s, a)=
1

Λ(s, a)+γ
[c1(s, a) + c2(s, a)] + h1(s, a)+h2(s, a).
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5.2.2.3 Uniformisation

Most reinforcement learningmodels andmore precisely model-based applications deal with discrete time sce-
nario. In order to handle this control model with anRL approach we will uniformise the continuous timemodel
to obtain a discrete time model on which we can use standard methods of R.L. some of which are already imple-
mented in R.L. libraries.

The way to proceed (see details in chapter 11 of [5]) is first to define a constant which is finite and larger or
equal to the maximum transition rate. Here we take Λ̃ = λ + K1 · µ1 + K2 · µ2. Then, for each state-action
couple (s, a) we add a transition associated with a pseudo event so that the process remains in the same state s.
In (s, a), this transition has rate Λ̃ − (Λ(s, a)) thus the transition rate is constant with rate Λ̃ regardless (s, a).
The transition probabilities in the uniformised model are denoted by p̃(s′|(s, a)) and are given by :

Λ̃× p̃(s′|s, a) =



λ if s′ = s′1
µ1min{m1, N(k1 + a1)} if s′ = s′2
µ2min{m2, N(k2 + a2)} if s′ = s′3(
Λ̃− Λ(s, a)

)
when s′ = s

0 otherwise .

The states s′2 and s′3 are defined in the system’s dynamic part above. It exists only few states for whichwe naturally
jump into the same state (i.e. s′ = s).These states are such thatm1 = B1 andN(k1+a1) = k1 andN(k2+a2) =
k2 and the event is an arrival. In such cases the transition probability toward s′ = s is equal to Λ̃ − (Λ(s, a) −
λ
)
/Λ̃, see [5].
The stage costs also need to be modified. Now they are given in the discounted model by :

R̃(s, a) =
Λ(s, a) + γ

Λ̃ + γ
R(s, a) .

Then the Bellman Equation of such a model is :

V ∗(s) = mina∈A
(
R̃(s, a) +

Λ̃

Λ̃ + γ

∑
s′

p̃(s′|(s, a))V ∗(s′)
)
.

Note that this equation is never solved in R.L. methods but we solve it in our numerical experiments to assess the
precision of the algorithms. Indeed its solution is the theoretical optimal value.

5.2.3 MMPP TandemQueue model : Environment 2
In this section we want to assess robustness of reinforcement learning algorithms and especially model-based

algorithms. For this purpose, we consider variations in the requests arrival rate with MarkovModulated Poisson
Process system. However, these variations would be remained ignored by the agent which expects a constant
intensity.We studyhow the algorithms react to sudden and large increases of packet arrivals and if they canquickly
adapt their policy to overcome bursts traffic. This is a key element in network inwhich statistics are often not very
precise. This is all the more important for model-based methods, since it was quoted in [46] that offline policies
might no be adequate as soon as there exist changes in the dynamics of the environment. It is believed that this lack
of flexibility comes from the offline learning of the policy in model-based methods and that this offline learning
is done from a predefined model which does not allow to adapt to changes in the dynamics of the environment.
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5.2.3.1 MarkovModulated Poisson Process

Wemodify now the arrival process.Wewant to integrate a variability feature andwe consider aMarkovmodu-
lated Poisson process (MMPP) where arrival rates vary over time. The process switches between different Poisson
process which differ by their intensity indicated by their arrival rate λj . We assume we have J phases, each of
them corresponding to a specific arrival rate λj . The switch between the phases follows a continuous time Mar-
kov chain. It is represented by a birth and death process [125] with ratesQ. Wemove from phase j to phase j+ 1
with rate qj,j+1 and fromphase j to phase j−1with rate qj,j−1. Usually [125], qj,j+1 and qj,j−1 for all j aremuch
smaller than arrival rates {λj}j . We extend the previous state s = (m1,m2, k1, k2) to a new state representation
integrating the phase in the SMDP :

s = (j,m1,m2, k1, k2)

with λj the current arrival rate in phase j.
In ourmodel, we assume that J = 2. The first phase is considered as normal and the second phase called burst

is a phase with a very high intensity. We denote by q1,2 the transition rate from phase 1 to phase 2 and by q2,1 the
transition rate from phase 2 to phase 1.

MMPP System’s dynamics Weneed to integrate new phase transitions in thewhole environment dynamics.
Under given phases j, we have the dynamics detailed in section 5.2.2.1 for arrival rate λj . The system can have
two additional events corresponding to a change of its phase, i.e. the current arrival rate changes. Thus :
We move :

from s =
(
j,m1,m2, N(k1+a1), N(k2+a2))with rate qj,j+1 to s′4 = (j+1,m1,m2, N(k1+a1), N(k2+

a2)
)
;

from s =
(
j,m1,m2, N(k1+a1), N(k2+a2))with rate qj,j−1 to s′5 = (j−1,m1,m2, N(k1+a1), N(k2+

a2)
)
.

We define the new transition rate by state by Λ(s, a) such that :
Λ(s, a) = qj,j+1 + qj,j−1 + λj + µ1min{m1, N(k1 +a1)} + µ2min{m2, N(k2 +a2)}. The cost function

remains the same since variation in the arrival rate does not induce additional costs.

MMPP Uniformisation For the MMPP uniformisation process we take Λ̃ = maxjqj,j+1 + maxjqj,j−1 +
maxjλj+K1 ·µ1 +K2 ·µ2. Then, for each state-action couple (s, a)we add a transition associatedwith a pseudo
event so that the process remains in the same state s. In (s, a), this transition has rate Λ̃− Λ(s, a) such that the
transition rate of the whole point process is constant with rate Λ̃ regardless (s, a). The transition probabilities in
the uniformised model are denoted by p̃(s′|(s, a)) and satisfy :

Λ̃× p̃(s′|s, a) =



λj if s′ = s′1
µ1 ·min{m1, N(k1 + a1)} if s′ = s′2
µ2 ·min{m2, N(k2 + a2)} if s′ = s′3
qj,j+1 if s′ = s′4
qj,j−1 if s′ = s′5(
Λ̃− Λ(s, a)

)
when s′ = s

0 otherwise

.

Similarly as before, the states for which it exists a natural jump into the same state are those already described for
which the event is an arrival. In such a case the transition probability toward s′ = s is equal to(

Λ̃− (Λ(s, a)− λj
))
/Λ̃.
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5.2.4 Simulated SMDP environment and objective function for RL agent
Now, we first provide how the agent perceives and interacts with the simulated environment, next display the

objective function that the learning agent ought to optimise.

5.2.4.1 Simulated SMDP environment and agent’s observation

We are dealing with a reinforcement learning model therefore the uniformised model of Section 5.2 is not
knownbutonly experiencedby the controller. Indeed, the controller doesnothave any information aboutqueuing
statistics (arrival rate, etc.), therefore does not know the dynamics of the system. The environment has state space
S and action spaceA similarly to the SMDPmodel. When the agent interacts with the environment, the SMDP
model is simulated. It will behave by returning a state, sampled according to the transition probabilities P , and
return the costsR(s, a). The cost and the new state are the only information that the controller will discover.

For the partially observable scenario described with theMMPP environment, the agent’s observation remains
the same.As already said,we consider amodelwith variation of arrivals, thus the systembehaves as the SMDPdes-
cribed just above and the system state is described by s = (j,m1,m2, k1, k2). However, we assume that the lear-
ning agent ignores these variations. Hence, the system can be only observed partially and the environment state is
described by o = (m1,m2, k1, k2). In this way, the two system states (1,m1,m2, k1, k2) and (2,m1,m2, k1, k2)
translate in the same environment state (m1,m2, k1, k2). The goal is to assess and compare the robustness of rein-
forcement learning algorithms in the contextwhere the agent does not have knowledge of an explanatory variable.

Overall, we consider in this work countable discrete state space where the agent can evaluate value function,
policy, transition and reward matrices with tabular forms. We want to minimise the expected discounted cumu-
lative costs.

5.2.4.2 Objective function

We search the best policy q tominimise the expected discounted expected reward, therefore the objective func-
tion is :

V ∗(s) = minqEq

[
∞∑
k=0

exp−γtk R(sk, q(sk)) | s0 = s

]
, (5.1)

with tk the epoch and sk the state of the kth transition.

5.3 Generalisation and Selection of Model-based Reinforcement Learning
Algorithms

In this chapter,wewant to compare several tabularmodel-basedRLalgorithmswith state of the artmodel-free
algorithm, such as tabular Q-Learning, in the tandem queue scenario. We want to assess if the learning agent can
benefit from learning themodel underlying the environment and if it is worth increasing the complexity to speed
up learning convergence. After selecting the model-based RL techniques, we present an aggregated pseudo-code
formodel-based reinforcement learning anddiscuss theparameterisationof themethods,with respect to the items
presented in Chapter III (breadth planning, depth planning, integration learning and planning, etc.). Moreover,
we assume here that the reward function is provided to the agent, thus it only needs to update the dynamicmodel
P .
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5.3.1 Algorithms selection
For comparison of model-based Reinforcement Learning with SoTAmodel-free techniques we have selected

the following methods :
∗ Deterministic models - bu�er replay : Dyna architectures withDyna-Q,Dyna-Q-+ and Dyna-Q with prio-
ritisation on the TD-error in the buffer replay, denotedDyna-Q-prior ;
∗ Stochastic model :MDP online, an algorithm that learns the stochastic transitions to performDP algorithms
such as VI or PI, inspired by Rmax and E3 techniques.

In this part,wedescribe the different elements onwhichwe canoperate in themodel-based algorithms. Indeed,
many factors affect the quality of learning : the frequency of model update, the frequency of planning, and the
planning itself (breadth, depth, etc.).

5.3.2 Learning process
The learning process is different in deterministic and stochastic models. For Dyna architectures, the learning

process consists of storing the experiments (s, a, r, s′) into the replay buffer, and for the prioritised version to
add the TD-error for each tuple δ(s, a) in order to sort the samples for planning. On the other hand, the learning
in the stochastic process is made by counting occurrences of samples and updating the transition probability for
state-action pairs as explained in Section 5.1 [23] :

P(s′|s, a) =
](s, a, s′)

](s, a)

5.3.3 Planning process
We encourage the readers to take over Figure 3.3 to see the difference between different approaches. In the

Dyna architectures during the planning phase, the learning agent reuse its past experiences to simulate trajecto-
ries for supplementary update of theQ-value function. As we have seen in Section 5.1, the planning process has
several parameters, regarding the number of trajectories it generates, the breadth and depth of the process. In our
implementation, the agent will generate several rollouts starting from a state s encountered in the buffer and will
proceed a single time step (depth ξ equal to 1) by retrieving the next state s′ and reward r from the memory. The
number of rollouts (or breadth) is denoted ζ . InDyna-Q andDyna-Q-+, the sampling of state s is done randomly
while it is carefully done inDyna-Q-prior. In this last deterministicmodel algorithm, the sameprocess is done only
the selection of states s is made by taking the samples with the highest TD-error. In the implementation process,
this is done by sorting decrasingly the tuples (s, a, r, s′, δ(s, a)).

On the other side, theMDP onlinemethod plans using DP algorithms such as Value Iteration on the learned
modelM = {P ,R}.

5.3.4 Integration planning and learning
To integrate the learning and theplanningphases,weprovide twoparameters that basically gives the frequency

on which the agent should update its model or plan. We refer to ν as the frequency on which the agent should
update its model. Note that this is only for the stochastic models approach since model-learning in Dyna archi-
tectures only consist in storing the experiment in the memory. Knowing when to update the model is a complex
task. Indeed, updating themodel too often will increase complexity and, during the early phase of learning, agent
will plan using a very poor precision approximated model. Moreover, we denote β the frequency on which the
agent should plan with its learned model and update its value function or policy. Finally, for the exploitation
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versus exploration dilemma, we have chosen the ε-greedy policy to drive the acting process in the environment,
that is used in Dyna architectures presented by [8]. This technique will be applied to all assessed model-based
techniques.

5.3.5 Parameters of model-based RL techniques
The generalisedmodel-based algorithm is described inAlgorithm 27.Overall, all model-basedmethods works

similarly : they simulate several episodes for which the agent performs several iterations (s, a, r, s′). The model-
learning phase depends on the type of the algorithm (either it stores the samples in the buffer as a deterministic
model, either it updates the stochastic transitionmatrixwith the collected data). At times, it performs planning by
simulating trajectories with the learned models : with DP techniques for MDP online and rollouts with specific
breadth and depth forDyna techniques. At the end of each episode, we decrease the value of ε such that the agent
is increasingly tempted to exploit its policy. The comparison criteria will be further discuss in Section 5.4.

We provide a reminder of notations for the model-based RL algorithms parameters that occur in all tech-
niques :
∗ Integration Learning and Planning :

— Model learning frequency : ν
— Planning frequency : β

∗ Planning complexity with simulated trajectories :
— Breadth : ζ
— Depth : ξ

We also mention that having the learned transition probabilities P could serve as a predictor to simulate tra-
jectories such as in Dyna algorithms yet we will only run DP algorithms with MDP online technique in this
chapter.We resume in Table 5.1 the RLmethods that will be evaluated on the two tandem queue systems. Notice
that different parameterisation of the algorithms such as breadth and depth planning, model frequency update
and planning frequency will be assessed in the experimental results.

Algorithms Model Type of Model Planning Bonus exploration
Q-Learning / / / /
Dyna-Q Experience samples Deterministic Trajectories with random experiments /
Dyna-Q-+ Experience samples Deterministic Trajectories with random experiments κ

Dyna-Q-prior Experience samples Deterministic Trajectories with prior experiments /
MDP online TabularP ,R Stochastic Dynamic Programming /

Table 5.1 – Summary of selected model-based RL algorithms

5.4 Experimental Results
This section presents the experimental results of RL algorithms comparison in the simulated tandem queue

systems.We first discuss the comparison criteria that we have selected to efficiently and fairly compare the perfor-
mances of the algorithms. Next, we describe the tandem queue simulator and environment parameters. Finally,
we display the results for the initial tandem queue system, followed by comparison in the MMPP scenario.
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Algorithm 27:Generalised Model-based reinforcement learning
Input: V0, Q0, ν : frequency model update, β : frequency planning, ξ : planning depth, ζ : planning

breadth, ε : exploitation vs exploration
Output: q∗, Q∗

Data: System dynamicsP unknown
/* Loop until end of episodes */

1 for e ∈MaxEpisode do
2 Select state s0 ∈ S // Initial state
3 for i ∈MaxIteration do
4 Take action a ∈ Awith ε-greedy policy // Action selection
5 Observe s′ and reward r(s, a) and store tuple (s, a, r, s′) // Deterministic model-learning

6 Model-free updateQ(s, a) = Q(s, a) + α
[
r(s, a) + γmax′aQ(s′, a′)−Q(s, a)

]
/* Model-learning frequency */

7 if i% ν = 0 then
8 Update transitions probabilitiesP(s′|s, a) // Update model M̃

/* Planning frequency */
9 if i% β = 0 then

/* For Dyna architectures */
10 for b ∈ 1, .., ζ do
11 Select (s, a) from replay buffer
12 for p ∈ 1, ..., ξ do
13 s′, r ← Buffer(s, a) // With buffer-oriented methods
14 Q learning updateQ(s, a)

/* For MDP online */
15 Solve the MDP with the learned modelM : VI or PI
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5.4.1 Comparison Criteria between RL Algorithms
Directly adapting methods to compare algorithms used by practitioners is proving to have little relevance and

utility. We adopt the guidelines proposed in [34] as a guide for rigorous comparisons of reinforcement learning
algorithms. Comparisons are divided into twomain parts : comparison while learning and comparison after lear-
ning on test environment.

5.4.1.1 Learning curves comparison

First, we compare different algorithms during the learning phase. Instead of only comparing the final perfor-
mances of the RL methods after t timesteps in test environment, we can compare performances along learning.
Indeed, performance measures while learning are represented by a learning curve. This reveal differences in speed
of convergence and can provide more robust comparisons. In more detail, the learning curve will display the ave-
rage discounted reward obtainedby the algorithms at the endof each learning episode.Thiswill give the evolution
of the average reward obtained and will show how fast the algorithm learns a good policy, therefore displaying
the speed of convergence. Since our problem is a cost minimisation problem, best performances will come from
algorithm that can quickly decrease the average discounted reward.

5.4.1.2 Test policy comparison

RL algorithms should also be assessed offline. The algorithm performance after t iterations is measured as the
average of the returns overN evaluation episodes conducted independently after training, similarly as a Monte
Carlo policy evaluation. The evaluation is done implementing the policy q returned by the RL method at step
t. Again, we look at the average discounted reward obtained by the plugged-in policy for comparison between
different algorithms.

5.4.1.3 Comparison criteria used in our experiments

Based on literature and experimental considerations, we devised our own comparison criteria, mainly for the
learning comparison between algorithms.We express two comparisons regarding learning curves. The first one is
the average reward obtained after each learning episodes e. For this purpose, we store at the end of each episode
the average discounted reward obtained by the algorithm and plot at the end of the learning process the learning
curve that depicts the average reward over all episodes. This will show how fast the algorithms can optimise the
average reward obtained by the updated policy, i.e. how fast the convergence is and how quickly RL algorithms
can adapt the policy in environment with changes such as Section 5.2.3.1.

After learning, we evaluate the learned policy of each algorithm in a test environment. We evaluate all policies
inMonte Carlo simulations (starting from a state s0) for 50 episodes of 10000 iterations.We finally take themean
discounted reward obtained overall and can compare the goodness of the algorithms.

5.4.2 Simulation Environment and Parameters
To compare the list of RL algorithms, described in Section 5.3 Table 5.1, we implemented a python software

to simulate the two tandem queue systems, that serves as the environment in which the agent interacts with and
collect data.
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5.4.2.1 Gym environment

OpenAI Gym [29] is a toolkit for developing and comparing reinforcement learning algorithms. We develo-
ped a python simulator under a Gym environment. Two environments were implemented : Environment 1
represents the tandem queue model and Environment 2 represents the model with MMPP. The implementa-
tion of the environment class is made with two principal methods :
— Reset : Reinitialise the environment with a new state s = (m1,m2, k1, k2) ;
— Step(action) : Return the new state s′ and the reward r after the agent has done action a in state s by simu-

lating the uniformised probability and reward of the tandem queue model.

5.4.2.2 Cloud parameters

We ran multiple simulations on both environments. We first describe cloud simulations parameters that are
common to all experiments. We considered three main cloud scenarios :

∗ C1 :B1 = B2 = 5,K1 = K2 = 3 , λ = 8 , µ1 = 2, µ2 = 2 ;
∗ C2 :B1 = B2 = 20,K1 = K2 = 5 , λ = 15 , µ1 = 2, µ2 = 2 ;
∗ C3 :B1 = B2 = 30,K1 = K2 = 8 , λ = 15 , µ1 = 2, µ2 = 2.

The cost parameters remain the same for all Cloud scenarios : {Ca = 5, Cd = 5, Cs = 10, Ch = 10, Cr =
100}.

5.4.2.3 Learning parameters

The learning phase runs for 50 episodes of length 10000 iterations. One iteration corresponds to a transition
from state s with action a to state s′ with reward r. We collect at the end of each episode the average discounted
reward obtained by the learning agent while interacting with the environment. The agent runs an epsilon-greedy
policy over thewhole learning process,with initial epsilon set to ε = 1 and epsilondecay εdec = 0.95.Wedecrease
epsilon value after each episode. The discount rate is set to γ = 0.9.

5.4.2.4 Algorithms parameters

For the first series of simulation, we provide a single set of parameters for the model-based RL algorithms.
This includes frequency update of the model (formodel algorithms, frequency of planning phases and the depth
of the planning phase (number of planning iterations).

Parameters for Dyna architectures For the Dyna architectures, the agent does the planning after each ite-
ration, i.e. β = 1 and perform a one-step sampling for 10 samples stored in the buffer, i.e. ζ = 10 and ξ = 1.
The model learning is also done after each iteration by storing the samples (s, a, r, s′) in the buffer memory, i.e.
ν = 1.

Parameters for MDP online The parameters are different in the MDP online algorithm. The model lear-
ning is done at the end of each episode. The agent updates the whole transition matrixP(s′|s, a) for all couples
(s, a, s′) with the collected data. The model-learning frequency is thus ν = MaxIteration. For the planning
part, it is also done at the end of each episode. Once the agent have updated its MDP model with the dynamics
P , it solves the MDP with the Value Iteration algorithm to update its value function V and the policy q. The
breadth and depth are therefore the ones of DP algorithms as displayed in Figure 3.3.
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5.4.3 Experimental Results for Initial TandemQueue Environment
First, we display experimental results for the Environment 1, i.e. the initial tandem queue scenario. We first

look at the learning curves to compare the speed of convergence of algorithms in the Cloud scenarios C1, C2, C3.
Before showing the results, we first provide some preliminary results in Figure 5.3 showing that the Dyna-Q-+
algorithm was not providing improvements in this situation. Indeed, we can observe that it performs similarly
as the original Dyna-Q algorithm. For this purpose, the rest of the experimental results are conducted only with
Q-Learning, Dyna-Q, Dyna-Q-prior andMDP online.

Figure 5.3 – Average reward over learning episodes in tandem queue environment with larger scale

5.4.3.1 Learning Curves Comparison

We conducted the experimental results on the three Cloud scenarios. Figures 5.4, fig :asmtaRes2, fig :asm-
taRes3 respectively show the average discounted reward obtained over the learning process by the different al-
gorithms on the three Cloud scenarios C1, C2, C3. Moreover, we display a black threshold line corresponding
to the optimal policy computed from an oracle agent that solves the MDP with DP techniques. We observe in
these Figures a small gain from Dyna architectures compared to Q-Learning. Dyna-Q accelerates very slightly
the convergence (red line below the blue line) but this can be improved by increasing the breadth and depth for
the planning. We also notice that the Dyna-Q-prior performs better than then original Dyna-Q, demonstrating
the gain of prioritising the samples used in the planning process. Last, what strikes us when we see these curves,
are the performances of the MDP online algorithm which clearly outperforms the others and can even reach the
optimal policy.
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Figure 5.4 – C1 average discounted reward obtained by RL algorithms

Figure 5.5 – C2 average discounted reward obtained by RL algorithms

Figure 5.6 – C3 average discounted reward obtained by RL algorithms

Now, these results need to be completed by more simulations. First, by acting on the different algorithms
parameters for planning and model-learning. Secondly, these simulations are conducted for a same amount of
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iterations in the system. However, we seek to consider two quantitative elements : the quantity of interactions
as well as the execution time. Indeed, these are two important elements for a machine learning analyst. It must
be noticed that, due to the offline updates, the complexities of the model-based algorithms are greater than these
of model-free algorithms. Thus model-based algorithms have a larger running time for the same number of in-
teractions with the environment. Henceforth, we seek to provide two comparisons : one where the number of
interactions are the same between model-based algorithms and Q-learning and a second one where the running
times are the same.

5.4.4 Experimental Results for MMPP TandemQueue
Now, we display preliminary experimental results for the second Cloud environment : the MMPP scenario.

5.4.4.1 Environment characteristics

We consider a scenario where burst arrivals can appear. The goal is to assess robustness of RL algorithms to
sudden changes in the system. Arrival rates λj can take two values : 5, 30. We define transition rate between
phases by : q0,1 = 1 and q1,0 = 10. This leads to low chances to have burst phase and when it happens to
remain in this phase a very short amount of time. We did a first comparison on a small Cloud scenario where
B1 = B2 = 10, K1 = K2 = 3 and service rates were µ1 = µ2 = 2.

5.4.4.2 Policy evaluation

We first show a comparison between Q-Learning with the Dyna architectures and demonstrate that these
model-based techniques with deterministicmodels suffer from variation in queuing statistics.We can see in Table
5.2 that the average discounted rewardmeasured after aMonte Carlo simulation is better inmodel-free technique
compared tomodel-based ones for a same learning time.One explanation is thatmodel-basedRL agent keeps up-
dating its value functionbased on anoutdatedmodel of theworld.Therefore, they donot integrate newdynamics
change and blend model-free update with model-based update resulting in poor performances. These findings
confirm theoretical assumptions about thesemodel-based techniques for varying environment. However, we can
notice that in this environment, the Dyna-Q-+ performs better than the others.

Algorithms policy Average discounted reward
Q-learning 2,63

Dyna-Q-buffer 3,05
Dyna-Q-buffer-plus 2,92
Dyna-Q-buffer-prior 2,98

Table 5.2 –Average discounted reward obtained by aMonteCarlo policy evaluation after a fix period of learning

5.4.5 Final comparison in two multi-tier environments
To conclude on the reinforcement learning algorithms comparison in both environments, we provide a sum-

mary table in 5.7 with comparisons on both initial tandem queue environment and MMPP environment. We
display the mean distance between average reward obtained in the learning episodes and the average reward cal-
culated from the optimalMDP policy. This distance is displayed at in the tables for different episodes (25,50 and
100).We demonstrate that in the first initial tandem queue environment, theMDP online algorithm has the best
performance regarding speed of convergence and confirm the sample efficiency of such approaches.Moreover, the
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Dyna approaches perform slightly better than the model-free Q-Learning , however take more time to converge
to the optimal solution.

On the contrary, for the MMPP tandem queue environment, the results are different. First, we observe a
deterioration of the performances in all RL algorithms due to the partially observable setting of this environment.
The MDP online algorithm remains the best technique in this scenario as it allows the RL agent to learn the
stochastic transitionmatrix andhave an idea about themean value of different arrival rates. Last,weobserve a huge
deterioration ofDyna architectures that obtain less performances than theQ-Learning.One possible explanation
is that the learning of a deterministic model could lead to poor performance since the agent will plan with an old
model of previous environment transitions while the environment has changed (burst phase, etc.).

Figure 5.7 – Comparison of RL algorithms in two tandem queue environments

5.5 Summary of the chapter
In this chapter, we first have shown that on the initial tandem queue environment, model-based RLmethods

could provide a significant gain regarding the convergence speed. Although Dyna architectures performs slightly
better than the Q-Learning, the MDP online algorithm outperforms all the assessed techniques. This demons-
trates the sample-efficiency and faster convergence of deterministic and stochastic model-based RL algorithms.
Moreover,more simulations are conducted for a fair evaluation of the algorithms ondifferent learning parameters
and algorithms parameters. On the partially observable systemwith varying arrival rates however, the determinis-
tic models are suffering as expected, where on the other hand stochastic models can handle efficiently the changes
in the system’s statistics. Last, we underline that the approach presented here can be applied to more general net-
work models and with a large set of distributions for arrivals or services and even directly by using traffic traces of
cloud platforms. We expect these results would be still valid in these cases.

Furthermore, we did not study the policies structure in this chapter as we did in Chapter IV. It is therefore a
track to consider since it has been studied in the literature the structure of value functions and policies in tandem
queue system [94]. This structural properties can be integrated in the RL algorithms to accelerate the conver-
gence.

Now, themajor issue in this chapter is the consideration of relatively small Cloud environments due to difficult
representation and implementation of tabular approaches in large scale systems. Although one direction is to
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consider approximation approaches such as described in Section 5.1, we decided next to investigate structural
approaches and to assess if providingmore knowledge about the environment to the agent could help to represent
more compactly theworldmodel and also could help for convergence acceleration.These approaches are explored
in the following chapters with Factored RL Chapter VI and Causal RL Chapter VII.
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PART III

MODEL-BASEDREINFORCEMENT
LEARNINGWITHRELATIONAL

STRUCTURE BETWEEN ENVIRONMENT
VARIABLES
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CHAPTER 6

FACTOREDREINFORCEMENT LEARNING FORMULTI-TIER
NETWORK

The contributions of this chapter have been published in [140] :
∗ Thomas Tournaire, Yue Jin, Armen Aghasaryan, Hind Castel-Taleb, Emmanuel Hyon. Factored Reinfor-
cement Learning for Auto-scaling in TandemQueues. InNetwork and Service Management in the Era of
Cloudification, Softwarization and Artificial Intelligence (NOMS 22), 2022

In the precedent chapters, we only considered tabular representations of dynamics and reward models which
may be impractical in large scale environments with very high size state and action spaces. As we have seen at the
beginning of this work, the factored MDP framework ought to represent more compactly the modelM of the
world by integrating the relations between environment variables. In environments which have specific relations
between state variables, it could be highly beneficial to use this representation to accelerate the convergence and
the ease of implementation.

This chapters proposes FMDP online, a factored RL algorithm that can overcome convergence issues by
expressing the problem in a compact form. Indeed, all the solutions described in theMDP framework of chap IV
and chap V, whether for planning or reinforcement learning with models, all share a common drawback : they
are not adapted to the resolution of large problems. The use of unstructured representations such as tables for
dynamics and value function requires an explicit enumeration of the set of all the possible states of the problem
to represent the functions necessary to solve it.

The factored approach provides the learning agent with the relational structure of the environment, here with
Dynamic Bayesian Networks (DBN). Indeed, we believe that in distributed network environments such as 5G
slicing architectures, queuing networks or multi-tier infrastructures presented here with the tandem queue mo-
del, there exist local dependencies between physical nodes. Events in a physical node have direct impacts only
on its neighbours and affect other nodes indirectly in most cases. In this context Factored MDP [26] frame-
work takes advantage of local dependencies structure in the environment, accelerates convergence and overcomes
the so-called ’curse of dimensionality’ in MDP solutions. We use the Factored MDP framework to model the
auto-scaling problem in the tandem queue with two nodes, described in section 5.2.1. The very few number of
applications with factored solutions in the literature call for further research in this topic and for comparison
with existingmodel-free andmodel-based algorithms. To the best of our knowledge, we have not seen works that
apply factored RL approaches on networking systems and this is why we wanted to investigate such approach in
a feasible environment.
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Contributions of this chapter are as follows :
∗ Proposal of FMDP online algorithm;
∗ FactoredMDPmodel for the tandem queue environment ;
∗ Comparison of FMDP online with state of the art algorithms on the tandem queue model.

6.1 Background
We first providemore details about the FactoredMarkovDecisionProcess (FMDP) framework thatwas briefly

introduced in Chapter III, by providing mathematical formalism and state of the art algorithms.

6.1.1 Coffee Robot Example : Illustration for the factored framework
To illustrate the factored representational methodology, we will use the Co�ee Robot example of a feature-

based, stochastic, sequential decision problem, following the work of [26]. In this example, a robot, aka the lear-
ning agent, must go to a coffee shop to buy a cup of coffee for its owner who is located at its office. When it is
raining, it must get an umbrella to stay dry when going to the shop. The state of the system is composed of six
binary variables si whereDom(si) = {0, 1} (corresponding respectively to False and True). These variables are :
∗ sH : Has the owner a coffee?
∗ sC : Has the robot a coffee?
∗ sW : Is the robot wet?
∗ sR : Is it raining?
∗ sU : Has the robot an umbrella?
∗ sO : Is the robot in the office?

This problem being composed of 6 binary variables, there is 26 = 64 possible states. In this problem, four actions
are available to the robot :

∗ Go : Move to the other location;
∗ BuyC : Buy a coffee (only available in the coffee shop) ;
∗ DelC : Deliver coffee to the owner (only possible in the office and if the robot has coffee) ;
∗ GetU : Get an umbrella (only in the office).

Actions can be noisy to represent stochastic problems. For instance, when the robot gives the coffee, its owner
will get his coffee only with a given probability (the cup may fall). Thus, when the action DelC is executed in the
state s = (sC = 0, sH = 1, sW = 0, sR = 1, sU = 0, sO = 1) (the robot is in the office and the owner does
not have a coffee), the transition function of the problem defines :
— P((sC = 1, sH = 1, sW = 0, sR = 1, sU = 0, sO = 1)|s,DelC) = 0.8 ;
— P((sC = 0, sH = 1, sW = 0, sR = 1, sU = 0, sO = 1)|s,DelC) = 0.2.
Otherwise all remains deterministic. Finally, for the reward function, the robot gets a reward of 0.9when the

owner has a coffee (0when it does not) and 0.1when it is dry (and 0when the robot is wet). The reward the robot
obtains when the owner gets a coffee is larger than the reward obtained when the robot is dry so as to specify that
the task of getting a coffee has a higher priority than the constraint of staying dry.
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6.1.2 Formalism
The idea of factorisation comes from the necessity to represent large-scale problems that cannot be solvedwith

the standard MDP representations. FMDP [26] exploit the structure of the problem to represent large MDPs
compactly when the state of the problem can be decomposed into a set of random variables. It is a feature-based
representation of MDP framework in which the set of of possible states can be characterised by a set of random
variables. Formally, the set of possible states S is described by a set of random variables S = S1, . . . , SN where
each variable Si can take different values in its domainDom(Si). The environment state s can be characterised
by a finite set of random variables s = {s1, . . . , sN}.

It uses dynamic Bayesian networks (DBNs) to represent the transition probabilities associated with a specific
action a. The Bayesian network nodes correspond to local state variables si and is partitioned into two sets :
the state of the system at time t before the action is performed, sti and the state after the action is executed at
time t + 1, st+1

i . Note that we will use indifferently s′ and st+1 to represent the state value at time t + 1. Edges
between these two set of nodes represent direct probabilistic influence among the corresponding variables under
the action a. We denote by Ga the DBN under action a which is a two-layer directed acyclic graph whose nodes
are {s1, . . . , sN ; s′1, . . . , s

′
N}. Figure 6.1 is an illustration of the DBN associated with actionDelC in the Coffee

Robot example. The action ’Deliver Coffee’ will provide direct influences only in local variables that are involved
with this action, namely sH , sC and sO, i.e. if the human has the coffee, if the robot has the coffee and if the robot
is in the office.

Figure 6.1 – Example of the DBN under actionDelC in the Coffee Robot

For a DBN under action a we can extract the conditional probability distributions (CPDs) or conditional
probability tables (CPTs) of each variable si at time t + 1 and under an action a, denoted Pi(s′i|Pa(si), a),
where Pa(si) represents the parents variables of si at time t. Table 6.1 represents the CPT of variable sC under
the actionDelC . Note that the entries of the CPT are extracted from the DBN of Figure 6.1, i.e. that the parents
of variable sC under actionDelC are {sH , sC , s0}. The left part expresses the values of parents variable at time
twhile the right part expresses the probability that the variable sC = 1 at time t+ 1.
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Figure 6.2 – Representation of the reward functionR in the Coffee Robot

stC stH stO st+1
C

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0.8
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Table 6.1 – CPT of local variable sC under actionDelC

Now, we can express the global conditional distribution P (s′|s, a) as a product of local conditional probabi-
lities. We need for this purpose to ensure that there exists no synchronic arcs at time t+ 1.

Proposition 4 ([100]). If ∀s′i, s′j ∈ S ′, s′i ⊥ s′j|s, then

P (s′|s, a) =
∏
i

Pi(s
′
i|Pa(si), a)

For a given function and a given context, it is not necessarily required to test every variable on which the
function depends to define the output of the function. Such property is named context-specific independence.
Definition 11 (Context [2]). A context c ∈ Dom(C) is an instantiation of a multivariate random variable
C = (C0, . . . , CK) such thatC ⊆ S. In other words, the context c is the instantiation of some state variables si
and will mainly be used for parents-child relations.

Finally, notice that theMDP elements can also be factored such as the probabilitywith local CPTs. It is the case
for the reward function for example that can be linearly decomposed. We display in Figure 6.2 the dependencies
between state variables and the rewardR. Only local variables sH and sW have influence on the reward. Table
6.2 shows the reward values given sH and sW .

sH sW R
0 0 0.1
0 1 0
1 0 1
1 1 0.9

Table 6.2 – Tabular representation of the reward function in the Coffee Robot
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Naturally, we can decompose linearly the reward function such thatR(s) = R(sH) +R(sw).
In a nutshell, the factored framework allows to represent more compactly the elements of the MDP by de-

composition of the reward function, policy or value functions and the transitions. This is done by understanding
the dependencies that occur between two time steps in the system under the decisions of the agent.However, this
factored framework requires specific representational structure in order to do planning and learning algorithms.

6.1.3 FactoredMDPmethodologies
This section describes different planning methods to solve problems specified as FMDPs. Rather than descri-

bing the algorithms in details, we describe the different representations and data structures they use as an outline
of their main properties. We first give an overview of techniques assuming the system’s dynamics and reward are
known and the agent has access to P and R, therefore considering MDP scenarios. As we have seen, the aim
of factored representation is to represent more compactly the environment dynamics and reward. This brings
several benefits : smaller memory implementation for large-scale systems and higher speed of convergence with
less computations. The first works consider graphical representations with decision trees and decision diagrams
[26, 83, 2]. These two objects allow to represent relations between state variables and conditional probabilities
in a compact form, but also all the agent’s objects (value function, policy). FMDPs can be solved by Structured
Dynamic Programming (SDP) algorithms [26], but also Linear Programming (LP) [50]. However we will only
focus on SDP algorithms in this chapter.

6.1.3.1 Decision Tree representation

Decision trees can represent any function by partitioning its input space and associating the output value to
each of these partitions. A decision tree is composed of :
∗ internal or decision nodes : they represent a test on a variable of the input space. They are parents of other
nodes in the tree and define the partitions of the input space ;
∗ edges : they connect a parent interior node to a child node and constrain the value of the variable tested at
the parent node to one value to reach the child node;
∗ external or leaves nodes : they represent the terminal nodes of the tree and define the value of the function
for the partition defined by the parent (internal) nodes.

A function f represented by a decision tree is noted Tree[f ]. Graphically, we represent decision trees with
the following convention : for an internal node testing a Boolean variable si, the left and right edges correspond
respectively to si = 1 and si = 0 (or respectively si being true and si being false). We display in Figure 6.3 the
tree representation for the CPT of Table 6.1. Whereas 8 lines are required (Table 6.1) for the tabular form, only 4
are required for the same function with a decision tree.
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Figure 6.3 – Tree representation for the CPT of variable sC under actionDelC

Standard SDP algorithms such as Structured Value Iteration (SVI) and Structured Policy Iteration (SPI) use
decision trees as factored representation. They use trees to represent functions of the FMDP, such as reward func-
tions, transition functions, policies andvalue functions.The twoalgorithmsSVI andSPI canbe seen as an efficient
way to perform the Bellman-backup operation on trees, expressed as follows :

Tree[Qa] = Tree[Ra] + γTree[PaV ]

In order to be able to compute and represent the trees, SVI and SPI use several operations on decision trees :
merging trees, simplifying trees and appending trees. These operations are mainly to compress the representations
by aggregating nodes of the trees due to the factored structure and relations between variables. Consequently,
rather than iterating on all the states of the problem to update the value function as Value Iteration and Policy
Iteration do, SVI and SPI compute the update only for each leaf of the decision tree, decreasing the computation
when states are aggregated and represented with one leaf.

6.1.3.2 Decision Diagram representation

An other SoTA technique to solve FMDP with SDP is the representation of the problem withAlgebraic De-
cision Diagrams (ADD). ADDs are a generalisation of binary decision diagrams. An ADD is defined by :
∗ internal or decision nodes : they represent a test on a variable from the input space. They are the parent of
two edges corresponding respectively to the values and;
∗ edges : they connect each parent internal node to a child node depending of its associated value or ;
∗ external or leaves nodes they represent terminal nodes in the diagram and are associated with the value of
the function in the subspace defined by the set of tests of the parent nodes to reach the leaf.

In comparison to decision trees, ADDs have several interesting properties. First, since an order is given, each
distinct function (transitions, rewards, values, policy) has only one representation. Moreover, the size of the re-
presentation can be compressed because identical subgraphs can be factored in the description. be taken into
account in the description. Finally, optimised algorithms have been proposed for most of the basic operators,
such asmultiplication, addition ormaximisation of twoADDs (similar to tree operations). In addition, the orde-
ring is exploited to handle ADDs more efficiently compared to decision trees where there is no ordering. Figure
6.4 shows the different representations of trees and ADDs.
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Figure 6.4 – Comparison of the representation of a function f as a decision tree Tree [f] (a) and as an algebraic
decision diagram ADD[f] (b) ; Figure from [2]

Boutlilier et al. proposed SPUDD in [59], which stands for Stochastic Planning Using Decision Diagrams. It
uses the ADDs instead of decision tree to represent the transition function of FMDPs. This results in a more
compact representation and consequently it accelerates the computations. It is such as SVI, based on the Value
Iteration algorithm, adapted with ADDs in scenarios where all state variables are binary. Both of the advantages
(ordering,more compact) described above allow SPUDD to perform significantly better than SPI or SVI onmost
problems proposed in the FMDP literature [26] (Coffee Robot, Taxi problem, etc.).
Remark. The works with decisions trees and ADDs [26, 83] often show applications with binary feature va-
riables in the state space. In this setting,Magnan [100] extended the current frameworkwithmulti-valued feature
variables by treatingmore complex graphical representation of FMDPs.However, there also exists fewworks that
considered factored tabular representation that can handle multi-valued environment variables.

6.1.3.3 Tabular representation

On the other hand, some works have been investigating the factored form of classic MDP algorithms in the
initial representation, namely tabular. This includes Factored Policy Iteration [79] and Factored Value Iteration
(FVI) [135]. In this work, we will focus on the FVI method that will be utilised in our Factored RL algorithm.
To present the FVI algorithm, we first recall the update process in Value Iteration and in Approximate Value
Iteration (AVI) that uses linear approximation of the value function V .

Value Iteration The Value Iteration algorithm [5] uses the Bellman equations (eq 3.1) to update the value func-
tion V . It starts with V0 and update at iteration t the value function V (s) for all state s with backprojection
formula :

Vt+1(s)← maxa
∑
s′

p(s′|s, a) [r(s, a) + γVt(s
′)]

We can rewrite the set of equations in matricial form :

Vt+1 ← maxa(ra + γP aVt)
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Approximate Value Iteration with Linear Approximation The Value Iteration algorithm also exist for linear
approximation of the value function [4]. Consider the value function V to be a linear combination ofK basis
functions hk whereK << |S|. We have :

V (s) =
K∑
k=1

wkhk(s)

By substituting Vt byHwt, we can rewrite the Bellman equation 3.1 in its matricial form by :

Hwt+1 ← maxa(ra + γP aHwt)
However the right-hand-side (r.h.s.) might not be contained in the image space ofH. Hence, we need to project
the r.h.s. on the image space with a projector G :

wt+1 ← G [maxa(ra + γP aHwt)]
The choice of the projection operator is important for convergence and is discussed later in the factored value

iteration part.

Factored Value Iteration Factored Value Iteration [135] presents a factored version of the Value Iteration with
convergence guarantees. We first have linear decomposition of the reward and value functions.

R(s, a) =
J∑
j=1

Rj(s[Zj], a)

V (s) =
K∑
k=1

hk(s[Ck]) · wk

where Zj ⊆ S and Ck ⊆ S are sets of local variables. Here, s[Zj] and s[Ck] correspond respectively to
the values of local variables in Zj and Ck for state s. For example in the coffee robot, the reward function was
decomposed linearly with two reward functionsR1 andR2. In this setting, we would have Z1 = sH and Z2 =
sW and s[Z1] would be the value that takes local variable sH .

The idea of factored value iteration is to replace Bellman’s equation with a factored version, by considering
factored local transitions Pi with their CPTs representation and linear value function approximation. The linear
decomposition gives us :

Vt+1 =
K∑
k=1

hk(s[Ck]) · wt+1
k

The factored transition probability under an actiona and under the same scopesCk used in the value function
decomposition, gives us :

P (s′|s, a) =
∏
i∈Ck

Pi(s
′
i|Pa(si), a)

By replacing the terms in the original Bellman equation, we have :

K∑
k=1

hk(s[Ck]) ·wt+1
k = Gmaxa

[
J∑
j=1

Rj(s[Zj], a)

]
+γ

K∑
k=1

∑
s′[Ck]∈S[Ck]

(∏
i∈Ck

Pi(s
′
i|Pa(si), a)

)
hk(s[Ck]) ·wtk

(6.1)
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We can observe in equation 6.1 that the update complexity is reduced compared to the original Bellman equa-
tion 3.1 since we do less calculations by considering the factored form of transitions. By considering the backpro-
jection matrix B such that :

Bas,k =
∑

s′[Ck]∈S[Ck]

(∏
i∈Ck

Pi(s
′
i|Pa(si), a)

)
hk(s

′[Ck])

we have in matricial computation the update of the value function’s weights by :

wt+1 = Gmaxa
[
ra + γBawt

]
where G is the matrix form of the projection operator G.
Overall, they show that their algorithm is only polynomial in the number of basis functions k, which de-

monstrates a huge gain compared to originalMDPValue Iteration. Also, the authors [135] propose in their work
a sampling method to work on a subset of the original state space Ŝ ⊆ S where |Ŝ| = poly(N). Algorithm 28
displays the FVI algorithm.

Algorithm 28: Factored Value Iteration
Input: Basis functionsHi,G projector, V 0 = Hw0, q0, ξ accuracy
Output: q∗, V ∗

Data: Statistics and DBNs known
1 N1 number of samples // Sampling method

2 Ŝ uniform randomN1-elements subset of S
3 Create Ĥ and Ĝ
4 Create B̂a = ˆP aH and r̂a for all actions a ∈ A
5 w0 = 0, t = 0
6 repeat
7 wt+1 = Gmaxa

[
ra + γBawt

]
8 ∆t = ||wt+1 − wt||
9 t← t+ 1

10 until ∆t ≤ ξ
11 returnwt, V t, qt

6.1.4 Factored Reinforcement Learning
So far, we have provided an overview of factored techniques to solveMarkovDecision Process scenarios where

the agent was provided the true environment model. These methods are inspired by DP algorithms often used
for MDP resolutions. Several works have also proposed factored solutions in the RL paradigm where the agent
has missing knowledge and needs to learn from data the model of the world to perform planning. We find in
these proposal the same characteristics as in the model-based RL domain, namely, the learning and planning
in the factored framework. Factored Reinforcement Learning (FRL) [73, 83] is a model-based Reinforcement
Learning approach to FMDPswhere the transition and reward functions of the problem are learned. First, it uses
the methods of Supervised Learning to construct the factored representation of the environment. In parallel,
planning algorithms can use this representation to build the policy.

The FRL algorithms are mainly inspired byDyna architectures (deterministic models) andMDP online tech-
niques (stochastic models). Among these methods the structural knowledge is an hypothesis that can be assumed
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or not. Therefore, someworks [73, 83] require to learn only the statistics because the agent already knows how the
environment variables influence each other. In other words, the learning agent is provided the relational structure
of the environment but does not know the statistics. Nevertheless, other researchers [35] have tempted to consi-
der more complex scenarios where the agent should also learn the relations between variables from the collected
data.

6.1.4.1 Factored Dyna architectures : SDYNA

Structured-Dyna (SDYNA) framework proposed byDegris et al. [35], is a structured version of theDYNAar-
chitecture. SDYNA integrates incremental planning algorithms based on FMDPs with supervised learning tech-
niques building structured representations of the problem. It uses the decision tree representation. The inner
loop of SDYNA is decomposed into three phases :
∗ Acting : choosing an action according to the current policy, including some exploration;
∗ Model-Learning : updating themodel of the transition and reward functions of the FMDP from (s, a, r, s′)
observations ;
∗ Planning : updating the value functionTree[V ] and policyTree[q] using one iteration of SDP algorithms.

6.1.4.2 FactoredMDP online

It has also been proposed solutions for stochastic models methods. For model-based Reinforcement Lear-
ning techniques, Kearns and al. present in [73] a factored implementation of the E3 MDP-online algorithm,
called DBN-E3. The authors proposed a provably efficient and near-optimal algorithm that generalises the E3
technique. In their work, they assume that they are given both an algorithm for approximate planning, and the
graphical structure (but not the parameters) of the DBN. Unlike the original E3 algorithm, this factored version
of E3 exploits the DBN structure to achieve a running time that scales polynomially in the number of parameters
of the DBN, which may be exponentially smaller than the number of global states.

Guestrin et al. [51] also proposed a factored version for the R-max algorithm, called Factored R-max. In their
work, Guestrin et al. address a significant shortcoming of Factored E3 : namely that it requires an oracle planner
that cannot be feasibly implemented. They propose an alternative approach that uses a practical approximate
planner and approximate linear programming. Furthermore, they develop an exploration strategy that is targeted
toward improving the performance of the linear programming algorithm, rather than an oracle planner. This
leads to a simple exploration strategy that visits the relevant states for the LP solution, and achieves logarithmic
sample efficiency in the size of the problem description. Moreover, they show in experimental results that their
proposal performs better.

Finnaly, Strehl et al. [131] have studied the optimality and performances of both factored E3 and factored
Rmax. They have shown that factored Rmax was performing near-optimally on all but a number of timesteps
that is polynomial in the size of the compact representation,which is often exponentially smaller than the number
of states and showed the equivalence with the result obtained by Kearns and Koller [73] for their DBN-E3 algo-
rithm. Moreover they proposed a new algorithm inspired from the two above, Factored IE that uses the Interval
Estimation approach to exploration and can be expected to outperform factored Rmax on most domains.

6.1.4.3 Learning the structure - SPITI

Finally, some works have considered cases where the learning agent was not provided the structure of the
environment (e.g.DBN).Degris et al. [35] have extended the SDYNAalgorithm in scenarioswhere the agent also
needs to learn the structure of the FMDPandderived the SPITI. SPITI is a particular instance of SDYNAusing ε-
greedy as exploration method, the Incremental Tree Induction (ITI) algorithm to learn the model of transitions
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and reward functions as a collection of decision trees. During the learning phase of the SPITI algorithm, the
decision trees are built from the flow of examples, extracted from the current state of the environment. Each tree
Tree[P ] quantifying the probabilities of transitions is built directly without building the corresponding DBN
for each action.

Last, Strehl et al. [132] also studied this scenario and extend existing algorithms with learning of conditional
probability tables of DBNs in cases in which DBN structure is not known in advance. Their method learns the
DBN structures as part of the reinforcement-learning process and provably provides an efficient learning algo-
rithm when combined with factored Rmax.

6.1.5 Feasibility study of FVI in the Coffee Robot Problem
Before presenting our factored RL algorithm and the factored representation of the multi-tier Cloud archi-

tecture, we first did a feasibility study of the convergence of FVI on the Coffee Robot example since we will use
it for the planning phase.

We implemented FVI and compared the results with classical VI algorithm and demonstrated that the two
policies were equal. The value functions were different due to linear approximation in the FVI method. Note
that the value function of FVI depends on the basis functions choices that have been selected here to integrate the
reward function knowledge. We display the policy and value function values for some states s ∈ S in Table 6.3.
We can remark that the value functions of both algorithms have similar trend with a gap of∼ 30 between them.
This gapmight be due to a missing basis function that could integrate more knowledge, e.g. a basis function that
takes as input both sH and sW or considering polynomial features.

States VI q VI exact V FVI q FVI approximate V
(sC = 1, sH = 0, sW = 0, sR = 1, sU = 0, sO = 1) DelC 99.79 DelC 60,93
(sC = 0, sH = 0, sW = 0, sR = 1, sU = 0, sO = 1) GetU 99,99 GetU 61,89
(sC = 0, sH = 0, sW = 0, sR = 1, sU = 1, sO = 1) Go 99,99 Go 61,89
(sC = 0, sH = 0, sW = 0, sR = 0, sU = 0, sO = 0) BuyC 99,99 BuyC 61,89
(sC = 1, sH = 0, sW = 0, sR = 0, sU = 0, sO = 0) Go 100,98 Go 63,15

Table 6.3 – Policies and value functions returned by VI and FVI for some Coffee Robot states

6.2 FactoredModel-Based Reinforcement Learning
We describe in this section our proposal for a factored model-based reinforcement learning algorithm. As op-

posed to principal literature solutionswithDecisionTrees andDecisionDiagrams,wework herewith probability
tables such as inDBN-E3 or FactoredR-max.Ourmethod is inspired byMDPonline techniques where the auto-
nomous agent learns the dynamics model P of the world by interactions before performing planning. The only
variation is that here we operate with a factored representation to accelerate the convergence by reducing the cal-
culations. We propose FMDP online (Algorithm 29) that uses methodologies from MDP online algorithms
and the Factored Value Iteration (FVI) [135] for the planning phase. Recall that the DBN-E3 was assuming in its
proposal that a planning method was provided for their algorithm, yet not treated in their paper [73]. Here, we
consider that the planning method is the FVI algorithm and the learning agent will learn the factored model of
the environment to plan in a factored manner.
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6.2.1 Factored probabilities inference
As opposed to usual model-based methods, we now assume that the agent has a supplementary knowledge.

It understands the relational structure of the environment : how state variables are related to each other. The
dynamics are now represented byDBNs and local conditional distributionsPi(s′i|Pa(si), a), implementedwith
conditional probability tables (CPTs). However the agent does not know the statistics and needs to interact with
the environment to learn these statistics for planning. We assume that the reward function is known and only
dynamics Pi have to be updated.

As inR-max [27], themethod starts by assuming that the initial system is in an absorbing state, i.e. we initialise
all local CPTs as identity matrices. This is a fair assumption at the beginning since the agent does not know how
the environment behaves. At the end of an episode e, it updates its local CPTs from its experiences. The update
is done by counting occurrences, i.e. :

P (s′i|Pa(si), a) =
](s′i, Pa(si), a)

](Pa(si), a)

where ](·) denotes the number of occurrences and tuple (s′i, Pa(si), a) = (s′[i], s[Pa(si)], a). As a diffe-
rence with R-max and E3 algorithms presented in Section 5.1, themethod here assumes that the agent does know
the full state space and does not need to iteratively solve known sub-MDPs plus an absorbing unknown MDP
like in E3. Here if the model is approximated, it can be solved with dynamic programming methods in the whole
environment.Once the local CPTs are updated from experiences, the agent can performplanningwith its learned
model M̃.

6.2.2 Factored planning
The algorithm is divided in two steps : statistical inference to update the factored dynamics then planning

to update the value function. The planning is done in a factored manner with the Factored Value Iteration al-
gorithm [135]. We remind here that the value function V is decomposed with a linear approximation V (s) =
K∑
k=1

wkhk(s), thus the planning step ought to update the weightswk of the linear decomposition. However, one

major drawback of model-based reinforcement learning techniques is the planning step with a poor model ap-
proximation that leads to a policy with poor performance. To overcome this problem, since the agent might not
be confident in the approximated model M̃ during first episodes, we only run FVI algorithm for a few number
of iterations. In practice, we do e number of iterations to update the weights w of the value function V , where
e is the current running episode number. This means that the learning agent will do more planning iterations as
time goes by : few iterations at the beginning and many iterations at the end.

6.2.3 Exploration-Exploitation trade-off
To explore and exploit efficiently, we provide the agent with an ε-greedy policy. This choice was made arbitra-

rily regarding the literature techniques. Some algorithms often consider this technique to treat this exploration-
exploitation dilemma, however other researchers propose that the agent follows its policy q and provide incentive
reward for exploration (such as in Rmax).

6.2.4 Inputs and parameters
The inputs of the FMDP online algorithm are mainly inputs of the FVI planning method. It includes the

choice of ’good’ basis functions and the choice of the projection operator.Wewill describe in the next section our
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choices for the application of our method in the tandem queueMDPmodel. Finally, we display in Algorithm 29
the whole method.

Algorithm 29: FactoredMDP online algorithm
Input: Basis functionsHi,G projector, local CPTs Pi = I, V 0 = Hw0, q0

Output: q∗, V ∗

Data: Statistics unknown, DBNs known
1 for e ∈MaxEpisode do
2 for i ∈MaxIterations do
3 Select state s ∈ S
4 Take action a ∈ Awith epsilon-greedy policy
5 Observe s′ and reward r(s, a) and collect tuple< s, a, r, s′ >

/* Factored inference end of the episode */
6 for i = 1, .., n do
7 Update local transitions P (s′i|Pa(si), a)→ approximated model FACT(M̃)

/* Factored planning */
8 we, qe = Factored Value Iteration planning with e update iterations

6.3 FactoredMDP representation of the TandemQueue Environment
In this section we first present the factored representation of the tandem queue environment regarding state

space, dynamics and reward. Next we provide the inputs design of our factored Reinforcement Learningmethod
for this given application.

6.3.1 Factored model representation
Understanding structural properties of the tandem queue system is key to help the agent learn faster the auto-

scaling policy.Wemodel the tandem queue environment with a factored approach to bring this knowledge to the
learning agent.

6.3.1.1 Original TandemQueueMDP with DBNs

To build the factored representation of the current tandem queue MDP, we need to define the relationship
between all state variables from time t to time t + 1. This is depicted with a dictionary of child-parent variables
in the Table 6.4.

Child variables at time t+1 Parents variables at time t
m1 m1, k1

m2 m1, k1,m2, k2

k1 k1

k2 k2

Table 6.4 – Child-parent architecture
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In order to see how we can factorised the MDP, we need to represent it with Dynamic Bayesian Network. In
factored approaches, it is common to have a DBN for each action a ∈ A. Yet all the DBNs in the tandem queue
scenario have the same structure (see Figure 6.5). Now if we currently try to use factorisation on the current state
space representation, thenwewill have dependencies within the state at time t+1, whichwill violate Proposition
4 and does not allow us to use the factored representation. In other words, the factored form of the probability

distribution P (s′|s, a) =
N∏
i=1

Pi(s
′
i|Pa(si), a) is not possible because the two events, departure from node 1

(m1 → m1 − 1) and arrival in node 2 (m2 → m2 + 1), are the same, thus interdependent at time t + 1. In
details, when a customer goes from node 1 to node 2, we have :

p(s′|s, a) 6= p(m′1|m1, k1, a)p(m′2|m1, k1,m2, k2)p(k′1|k1, a)p(k′2|k2, a)

Figure 6.5 – Dynamic Bayesian Networks under any action a for original tandem queueMDP

This dependency between variablemt+1
1 at time t+ 1 andmt+1

2 is demonstrated in Figure 6.6 which provides
Pearson correlations between all state variables at time t and time t+1over 20000 samples collectedby interactions
with the environment. We can see that corr(mt+1

1 ,mt+1
2 ) = −0.31 showing negative correlation.
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Figure 6.6 – Correlation between state variables after 20000 samples collected by RL agent

6.3.2 FactoredMDPmodel with Augmented State Space
We did slight modification of the tandem queue MDP model to build the factored model. To overcome the

violated assumption, we extended the state space to break the dependency between the variablesm1 andm2 at
time t+ 1. This is done while considering variablesm1 andm2 at previous time step t− 1, denotedmp

1,m
p
2 and

the current variablem1 at time t. We now consider the state at time t : s = (mp
1,m1,m

p
2, k1, k2). We draw the

DBN associated to the new representation of the state space in Figure 6.7.

Figure 6.7 – Dynamic Bayesian Network representation for factored tandem queueMDP

Weused the pyAgrum library [37] for implementation of CPTs andDBNs.We show in Figure 6.11 an example
of the local CPT of variable k1 under all actions a, where the CPT structure is derived from the DBN.
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Figure 6.8 – Action a1 = −1 Figure 6.9 – Action a1 = 0 Figure 6.10 – Action a1 = 1

Figure 6.11 – Factored probabilities for variable k1 under all actions a1

6.3.2.1 Factored system’s dynamics

We can henceforth build the factored dynamics of the tandem queue environment. We define the factored
transition probabilities Pi for each local state variable si. First we have deterministic local transitions for servers
variables k1 and k2 since these values only depend on the agent’s decision a. Therefore, we will move from local
states k1 toN(k1 + a1) and from k2 toN(k2 + a2) with probability 1 (see Figure 6.11).

We have the same factored transition for local variablemp
1 sincem

p
1 at time t+ 1 simply retrieves the value of

local variablem1 at time t. Therefore, the randomness in the system is only integrated in the factored transitions
of local variablesm1 andmp

2, which will represent possible events (arrival in node 1, departure from node 1 to
node 2 and departure from node 2).

Now the full probability distribution can be written under the factored form.

P (s|s′, a) = P (mp′

1 |Pa(mp
1), a) · P (m′1|Pa(m1), a) ·

P (mp′

2 |Pa(mp
2), a) · P (k′2|Pa(k2), a) ·

P (k′1|Pa(k1), a)

Therefore, we will use these local conditional probabilities in the factored Bellman equation 6.1 in the FVI
planning phase of our FRL algorithm.Thiswill avoid to do the computations for all states s and s′ thus providing
a huge gain in the number of computations.

6.3.2.2 Factored system’s costs

The reward function is also linearly decomposed such as in the coffee robot example, i.e. that the learning agent
has a linear decomposition representation of the reward for the planning phase. We decide naturally to represent
two features, one for each network node i.We haveR(s, a) = R1(m1, k1, k2, a)+R2(m1,m2, k1, k2, a)where
eachRi takes into account the local costs (activation, deactivation, service, holding, reject) in each node.

Therefore we have :

R1(m1, k1, k2, a) = (m1CH1 + (k1 + a1)CS1)/Λ̄

+CR1λ
Λ(s, a) + γ

Λ̄ + γ

+CA1

Λ(s, a) + γ

Λ̄ + γ
1(a1=1)

+CD1

Λ(s, a) + γ

Λ̄ + γ
1(a1=−1)
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R2(m1,m2, k1, k2, a) = (m2CH2 + (k2 + a2)CS2)/Λ̄

+CR2k1µ1
Λ(s, a) + γ

Λ̄ + γ

+CA2

Λ(s, a) + γ

Λ̄ + γ
1(a2=1)

+CD2

Λ(s, a) + γ

Λ̄ + γ
1(a2=−1)

6.3.3 Objective function
We consider here a continuous time discountedmodel. The discount factor is denoted by γ. We define aMar-

kov Deterministic stationary policy q as a mapping from state space to action space q : S → A. This mapping
defines the action to be performed in a given state s. From discounted model in [5], we define the stage cost
functionR as :

R(s, a)=
1

Λ(s, a)+γ
[c1(s, a) + c2(s, a)] + h1(s, a)+h2(s, a).

We search the best policy q to minimise the expected discounted expected reward, then the objective function is :

V ∗(s) = minqEq

[
∞∑
k=0

exp−γtk R(sk, q(sk)) | s0 = s

]
, (6.2)

with tk the epoch and sk the state of the kth transition.

6.3.4 Parameters selection of FMDP online
Also for the FVI algorithm we have a linear decomposition of the value function. Thus we need to define the

basis functions which is very tough to adjust for good results. Last, we need to choose a projector for the factored
Bellman update to compute the weightsw. We describe our choices for basis functions and projection operator.
We choose least-squares (L2)-projection for the projection operator G, following recommendation from [135].
Least-squares fitting is very often applied for projecting value functions. In this case, the linear weights w are
chosen so that it minimises the least-squares error w = argminw||Hw − v||22. This corresponds to the linear
projectionG = H+ (i.e.,w = H+v) whereH+ = HT (HHT )−1 is the Moore-Penrose pseudoinverse.

For basis functions selection, we decided after several tests, to select several sub-parts of the reward function.
We have chosen 8 basis functions to combine as much as possible the relations between the local variables and the
impact of each local variables such that it will be integrated in the value function.

Basis H Functions
h1(mp

1) (Ch1 ·m
p
1)/Λ̄

h2(mp
2) (Ch2 ·m

p
2)/Λ̄

h3(k1) (Cs1 · k1)/Λ̄
h4(k2) (Cs2 · k2)/Λ̄

h5(mp
1, k1, k2) λCr1 · 1(mp1=B1)/Λ̄

h6(mp
1,m

p
2, k1, k2) min(mp

1, k1)µ1Cr2 · 1(mp2=B2)/Λ̄

h7(mp
1, k1)

(
(Ch1 ·m1)2 + Cs1 · k1

)
/Λ̄

h8(mp
2, k2)

(
(Ch1 ·m1)2 + Cs1 · k1

)
/Λ̄

Table 6.5 – Basis functions selection for factored value iteration
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6.4 Numerical Results

We present in this section the comparison between our method FMDP online and state-of-the-art Reinfor-
cement Learning algorithms on the tandem queue system.

6.4.1 Environments and Simulation Parameters
We keep the same python Gym simulator as described in Chapter V Section 5.4. What changes now is how

the RL agent perceives the environment. In this factored approach, it has a new observation of the environment
as described above s = (mp

1,m1,m
p
2, k1, k2).

6.4.1.1 Cloud parameters

We first describe cloud simulations parameters.We consider two cloud scenarios of different scalesC1 : {B1 =
B2 = 10, K1 = K2 = 3, µ1 = µ2 = 2, λ = 8} andC2 : {B1 = B2 = 15, K1 = K2 = 5, µ1 = µ2 = 2, λ =
15}. For all these scenarios the costs parameters are the same in the two nodes : {Ca = 1, Cd = 1, Cs = 2, Ch =
2, Cr = 10}.

6.4.1.2 Algorithms comparison

We compare our FMDP onlinemethod with state-of-the-art RL algorithms.We choose one model-free RL
method : Q-Learning, one buffer-based RL method : Dyna Q and finally the conventional model-based RL
method :MDP online. TheMDPonline algorithmworks similarly to FMDPonline.However it works directly
with the global conditional distribution P (s′|s, a). Therefore it can suffer from heavy update computations be-
cause of the matrix size in large-scale systems. This is one issue our method can resolve since it only updates small
size matrices (local conditional probabilitiesPi), and does not require excessive amount of memory for problems
in large-scale systems. We also recall that in the FVI algorithm we can use a sampling method that considers only
a subset S ′ ⊆ S of the whole state space.

6.4.1.3 Simulation and algorithms parameters

We detail here the simulation and algorithms parameters. Learning phase runs for 100 episodes of length
10000 iterations. One iteration corresponds to a transition from state s with action a to state s′ with reward r.
The agent runs epsilon-greedy policy over thewhole learning process, with initial epsilon set to ε = 1.Wedecrease
epsilon value after each episode with a decay rate εdec = 0.99. The discount rate is set to γ = 0.9.

6.4.2 Comparison Criteria between Algorithms
We compare the different algorithms during the learning phase. Performance measurements during learning

are represented by a learning curve. We look at running time of algorithms and the average reward obtained after
each episode to compare the goodness of the RL methods. We note that RL algorithms should also be assessed
offline, e.g. with Monte-Carlo offline policy evaluation. For this purpose we need to convert the factored policy
of the augmented state space for fair comparison with the classical policy. This is currently being investigated as
part of further research. Henceforth we only display the comparison during the learning process.
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Figure 6.12 – Average reward per episode over learning episodes in cloudC1

6.4.3 Results
We display the average reward over learning episodes for first cloud scenario C1 in Figure 6.12. We observe

that our method FMDP online converges much faster than model-free Q-Learning and Dyna Q techniques.
Its convergence is on par with the MDP online techniques. The model-based techniques with stochastic models
require much less interactions with the environment to find optimal solution. To fully observe this convergence
gain, we draw a black dot line on the figures that correspond to a discounted expected reward value. This helps
the reader to see how fast algorithms can reach this mean discounted reward. For example in Cloud scenarioC1,
the Q-Learning algorithm reaches this bound at the 100th episode while model-based techniques reach it much
faster.

We display numerical results in Figure 6.13 for the second cloud scenario C2. The learning process lasted for
100 episodes and the epsilon decay rate was smaller εdec = 0.95. The same conclusions as in scenario C1 are
drawn. The number of iterations required to reach an average reward of 2.05 is impressively less for model-based
RL techniques compared to model-free.

In Figure 6.14, we show the comparison of running time between the MDP online method and our FMDP
online method for the two scenarios. In the first scenario, our method has a similar running time to the MDP
online method, as shown in 6.14(a). As the problem scale grows, our method has a lower running time in the
second scenario, as shown in 6.14(b). This demonstrates an advantage of factored solution in execution timewith
similar policy quality as the problem scale grows.

129



Figure 6.13 – Average reward per episode over learning episodes in cloudC2

Figure 6.14 – Barplots showing running time of model-based RL algorithms

Last we consider a large scale cloud scenario B = 50 k = 10 with state space considering 250000 states.
In this setting, it’s not feasible for our computational setup to hold in memory the representations of the full
transition matrix (25000x25000) and state values. Thus under tabular forms, only the FMDP online method
is feasible, since it only requires lower dimensional arrays to represent local conditional distributions and uses
sampling technique.

Inorder to fully grasp the gainofFMDPonline technique,weprovide simulationsnot only for a givennumber
of episodes and iterations per episode, but for a same computation time.
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6.5 Summary of the chapter

In this chapter we presented FMDP online, a factored Reinforcement Learning algorithm for optimal re-
source management inmulti-tier Cloud architecture.We demonstrate that if we integrate local relations between
state variables in the representation of the environment, it can help to overcome the ’curse of dimensionality’
issues in standard RLmethods.

We have shown the performance improvement obtained by the proposed method in a tandem queue system.
It presents a good trade-off between policy quality and computation time. Themodel-free techniques such as Q-
Learning or Dyna architectures may require too many iterations to converge. The model-based algorithms may
require fewer iterations to converge. But they suffer greatly on large-scale systems simply due to an exponential
increase of the state space. Working with huge matrix representation for the transition probability leads to long
computations for the updates and low confidence in the approximated dynamics. Moreover as the state space
grows, it may become infeasible to hold the transitionmatrix in memory. On the contrary, the factored approach
have smaller size matrices for the local conditional distributions and can be quickly updated. The sampling tech-
nique of factored value iteration also allows to reduce the complexity by considering a subset of the whole state
space.

Nevertheless this work requires further investigations. The first one is about evaluating learned policy offline
withMonte-Carlo evaluations where we need to convert factored policy for fair comparison. Secondly we would
like to extend this work to larger scale network models such as network of queues. Lastly we plan to evaluate
FMDP online on very large scale cloud scenarios with deep Reinforcement Learning methods.
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CHAPTER 7

CAUSAL REINFORCEMENT LEARNING FORMULTI-TIER
NETWORK

Up to now, we have seen different model-based approaches to learn auto-scaling policies in Cloud environ-
ments such as a one physical node system or a more complex scenario with multi-tier architectures. The major
issues encountered is about the curse of dimensionality that occurs when we consider larger scale Cloud envi-
ronments. First model-free RL methods highly suffer to converge. Secondly, the use of tabular model-based RL
algorithms (see Chapter V) can improve performance regarding speed of convergence and policy quality but still
have trouble to handle very large scale scenarios, precisely when addressing learning objects implementation but
also convergence. Instead of investigating the approximation path for improvement with neural networks as a
representative tool of environment models, we decided to focus on the structural properties of the environments
to be integrated in the learning agent’s knowledge. We considered the factored framework developed in Chapter
VI which has obtained good performance regarding the improvement for implementation and considering hi-
gher scale scenarios. Yet the factored representation is still a tabular approach and also has difficulty in addressing
very large problems. We believe that a causal approach can provide even better enhancements by going further
in the understanding of environment variables relations. This causal dimension goes beyond the associational re-
presentation proposed in the factored framework. The benefits can be numerous. Among those are the increased
capability of copying with high-scale systems, the explainability of the obtained policies, improved convergence
speed, as well as capability of dealing with hidden variables or unobserved confounders. Our focus in this chapter
will be the two last aspects. In this regard, this chapter acts as an orthogonal view : we are more concerned with
MDP environments with particular structure (hidden variables, unobserved confounders, etc.) than very large
systems.

Therefore in this chapter we propose to unify causal reasoning in reinforcement learning algorithms to acce-
lerate convergence with counterfactuals and deal with Cloud environments with unobserved state variables that
can have confounding effects or not.We first providemore detailed background about theCausality domain then
propose a generalised formalism forMDPenvironment representationwithStructural CausalModels (SCM) that
are defined in the causality background section. After this combination of causality and reinforcement learning
formalism, we evaluate Causal Reinforcement Learning (CRL) algorithms on the multi-tier Cloud environment,
considering several scenarios : the initial tandem queue, the partially observable tandem queue withMMPP arri-
vals and the tandem queue with unobserved confounders.

The chapter contributions are listed in the following :
∗ Generalisation of Structural Causal Model formalism for any MDP environment and Counterfactual rea-
soning;
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∗ Proposal of a counterfactual model-free RL algorithm;
∗ Assessment of causal RL methods in tandem queue environments.

7.1 Introduction to causality : Pearl’s Causal Hierarchy
In order to fully understand the integration of causal reasoning in the reinforcement learning scheme, we first

provide elements of causality. Cause-and-effect relationships play a key role in how we perceive and make sense
of the world around us, how we interact with it and, ultimately, how we comprehend ourselves. Almost two
decades ago, computer scientist Judea Pearl [3] made a breakthrough in understanding causality by proposing
and studying the “Ladder of Causation”, a framework that showcases the distinct roles of seeing, doing, and
imagining. We summarise in this section his vision and its proposal for a mathematical formalism of causality,
namely structural causal models. For this purpose, we follow the description given by Bareinboim et al. in [20].
A SCM naturally defines a hierarchy of concepts, described as the “ladder of causation” which Bareinboim et al.
have been calling the Pearl Causal Hierarchy, or PCH. There exist three layers :Associational, Interventional and
Counterfactual (see Figure 7.1).

Figure 7.1 – Pearl’s causal hierarchy representation of the world (Figure from [20]

Definition 12 (Structural Causal Model [20]). We define a structural causal model SCMMC as a 4-tuple <
V,U,F , P (U) >where :
— U = {U1, U2, . . . , Uk} is a set of exogenous (unobserved) variables, determined by factors outside the

model ;
— V = {V1, V2, . . . , Vn} are called endogenous (observed) and are determinedby other variables in themodel

– that is, variables in U ∪ V ;
— F = {f1, f2, . . . , fn} is a set of causal assignments such that fi maps variables from Ui ∪ Pai to Vi.
∀i = 1, . . . , n, vi ← fi(Pai, ui), i.e. the value of vi will change caused by its parents Pai and noise ui ;

— P (U) is the distribution of noises variables.
It is assumed that the causal assignments fi are invariant, except if intervention forces them to change.

7.1.1 Layer 1 - Observational
If you let the system behaves by itself and just observe it evolving, then you can observe the joint distribution

of endogenous variables P (V ) which is defined by :
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Definition 13 (Observational distribution [20]). An SCMMC =< U, V,F , P (U) > defines a joint probabi-
lity distribution PMC(V ) such that for each Y ⊆ V : PMC(y) =

∑
u|Y (u)=y

P (u) where Y (u) is the expression

for Y after evaluation withF and U = u.
In this setting, we only rely on observational data with no interventions in the system.

7.1.2 Layer 2 - Interventional
Secondly, one agent (human, software) can interact with an environment by intervening in the system. The

data collected in this setting will be interventional.
Definition 14 (Interventional SCM [20]). LetM be a causal model,X a set of variables in V , and x a particular
realisation ofX . A submodelMx ofM is the causal modelMx =< U, V,Fx, P (U) >, where Fx = {fi :
Vi /∈ X} ∪ {X ← x}. In other words, an interventional SCM has a subset of endogenous variables where their
causal assignments has been changed by intervention.

Notice that this intervention is a do-operatorwhich in Pearl’s terminology is amathematical operator, denoted
do(X = x)which simulates physical interventions by deleting certain functions from themodel, replacing them
with a constantX = x, while keeping the rest of the model unchanged. Naturally, this interventional world is
similar to reinforcement learning/MDP scenarios where an autonomous agent interacts with the environment
by intervening in the system, therefore changing directly values of some endogenous variables or forcing causal
assignments to change. However, PCH goes further and define a third layer : the counterfactual world that gives
the ability to learning agents for imagining.

7.1.3 Layer 3 - Counterfactual : the imaginary world
The counterfactual mode is an imaginary world where an agent can measure the possible effect of non-taken

interventions, that is, thinking about alternative ways the world could be. In other worlds, it can evaluate the
outcomes of imaginary decisions that would have happened in a given situation (or evidence).
Definition 15 (Evidence). We define E an evidence of a systemM the realisations of the environment variables
at a given time t. The evidence E is therefore the expression of the endogenous and exogenous variables E =
{u1, . . . , uk, v1, . . . , vn}. It does not depend on whether there was an intervention or not in the system; it only
depicts the systems values at a given time.

In the RL paradigm, when the learning agent interacts with the environment, it observes the state of the sys-
tem s and decides to act according to its policy q(s). Rollouts (or trajectories) resulting from this state-action pair
can be propagated backwards for updating value functions or policies (as we have seen thorough this document
with model-free or model-based RL techniques). However, this backpropagation update is done based on the
fact that there was a specific evidence E at time twhen agent did action a in state s. One possibility to update the
value function for this pair (s, a) is to visit it infinitely many times (which is an objective in RL for convergence).
However, counterfactual reasoning can do this update in the meantime by evaluating the outcome (new state
and reward) of other actions not-taken and under the same evidence that occurred. This reasoning brings a sup-
plementary knowledge and more powerful learning process since the agent can evaluate the outcomes of many
decisions in a given state s and under the same evidence. The counterfactual reasoning is possible if the agent is
provided the SCM of the world and is based on three principles that we describe below :
— Abduction : Discover noise realisations u after deciding action a in the environment va. In other words,

the agent discovers the evidence E of the system and more generally updates conditional probability distri-
butions p(u|va) ;
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— Intervention : Intervene in the environment by changing fi for some endogenous variables vi. This is
usually a new decision a′ ;

— Evaluation-Prediction : Predict or evaluate theoutcomeva′ after intervention in the same contextp(u|va).
We provide a simple example to illustrate the counterfactual reasoning.

Example 4. Imagine a patient named Joe has taken a treatment (X = 1) and died (Y = 1). The question
counterfactual reasoning asks is the following : What is the probability that Joe would have survived (Y = 0) had
he not taken the treatment (X = 0), denoted P(YX=0 = 0|X = 1, Y = 1) ?

Assume the following SCM model :

M =

{
x = u1

y = xu2 + (1− x)(1− u2)

The first counterfactual step abduction is used to update the probabilityP(u) knowing the evidence of the system
e. In this example we have the following observation of the system e = {x = 1, y = 1}. From the SCM, we can
retrieve the noise values and infer that {u1 = 1, u2 = 1}.

The second step intervention would be to test the action that has not been taken, namely (X = 0) here.
Therefore, we can replace x in the SCM as follows :

M =

{
x = 0

y = xu2 + (1− x)(1− u2)

Finally, we can do the prediction phase by evaluating the outcome Y from the noise discovery u = {u1 =

1, u2 = 1} and the new intervention (X = 0) :M =

{
x = 0

y = x ∗ 1 + (1− 0)(1− 1)

which leads to :

M =

{
x = 0

y = 0

The conclusion of the counterfactual reasoning is that Joe would have been alive if he had not taken the treatment.

Finally, we display in Figure 7.2 a summary of the three causal layers and their association with optimisation
techniques.

Figure 7.2 – Summary of the three causal layers [20]
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7.1.4 Why reinforcement learning can suffer for policy optimisation
We provide in this section a well-known example in the Causality domain that explains the effects of confoun-

ding variables and their impact on the policy to be learned. This example is given in order to motivate the inte-
gration of causality in the RL field.

7.1.4.1 The kidney stone example

We illustrate in this section why reinforcement learning agents can suffer to learn efficient policies in specific
environments and why a causal knowledge can help the learning agent to improve its policy. The kidney stone
example illustrates the Simpson’s paradox 1. A doctor can administrate to a patient either treatmentAor treatment
B. A confounder variable Z representing the size of the kidney stone can influence the physician’s decision T
(T = A or T = B) and the recoveryR (0 or 1).

T R

Z

After experiments, we observe in Figure 7.3 that patients have higher recovery rate with treatment A when
we look separately for different stones size (small, large). But if we look at the whole population, patients have
higher recovery rate with treatment B. Therefore there is a paradox (Simpson’s paradox) on what treatment the
physician should administrate.

Formally, we have :
p(R = 1|T = b) > p(R = 1|T = a)

but

p(R = 1|T = b, Z = l) < p(R = 1|T = a, Z = l) and p(R = 1|T = b, Z = s) < p(R = 1|T = a, Z = s).

Figure 7.3 – Recovery rate for patients in kidney stone example

One intuitive interpretation of this kidney stone example of Simpson’s paradox is that large stones are more
severe than small stones and aremuchmore likely to be treatedwith treatmentA,making treatmentA seemworse
overall than treatment B.A second possible explanation is that treatment B is less expensive and less intrusive (e.g.,
an oral pill), so it ismore commonly used for less severe cases, includingmost cases of small kidney stones.Doctors
therefore prefer to avoid treatment A, which is very efficient but much more costly and invasive (e.g., surgery),
except in the most difficult cases.

Note that the data gathered in this example comes from physician observation in a hospital, whichmeans that
treatments are assigned based on physician thinking and current norms of care. Physicians allocate treatments in
part based on the severity of the patient’s case, but the severity of the patient’s case also influences the patient’s

1. https ://plato.stanford.edu/entries/paradox-simpson/
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chances of recovery. In contrast, a randomized trial, inwhichwe randomly assign treatments to patients regardless
of the size of the kidney stone, will break down any associations that may exist between treatment assignment
and severity ; therefore, it will undermine the confounding effect. However, this random exploration is avoided
in most real-world environments for obvious reasons such as safety to cite one example (healthcare, autonomous
vehicles, etc.). Thus, in many use cases, solutions must be found to deal with the confounding effect.

7.1.4.2 How to solve Simpson’s paradox : Counterfactual or Adjustment Set

We can overcome this issue by evaluating the distribution of outcomeP (R|T ) by integrating confounder. In
the kidney stone example, we evaluated p(R = 1|T = b, Z = l) and p(R = 1|T = a, Z = l) and compared
the conclusion with evaluation of P (R = 1|T = a) and P (R = 1|T = b). We observe that the conclusions are
different from both approaches : Treatment A is better when considering kidney stones values while Treatment
B is better if we omit these values.

Now to evaluate the effects of treatment on the recovery rate P (R|do(T = t)), one can use adjustment set
technique where confounder is observable.

T R

Z

By intervening on variable T , we break influence ofZ on T , rendingZ and T completely independent. The-
refore we can evaluate :

P (R|do(T )) =
∑
z

p(R|do(T ), Z)P (do(T ), Z) =
∑
z

p(R|do(T ), Z)P (do(T ))P (Z) =
∑
z

p(R|do(T ), Z)P (Z)

which differs from :

P (R|T ) =
∑
z

p(R|T, Z)P (T, Z) =
∑
z

p(R|T, Z)P (T )P (Z|T ) =
∑
z

p(R|T, Z)P (Z|T )

Evaluating P (R|do(T ))with adjusment set technique will give the right conclusion. Now, this technique as-
sumes first that confounder can be observable and are used in observations settings which enables the estimation
of P (R|do(T )) without intervention. However in many cases these values are unobserved and this technique
can’t be applied. Thus counterfactual reasoning can be applied if causal model is known.We describe here an idea
of couterfactual reasoning for this example yet the framework will be further developed in Section 7.2.5. One
assume that an agent knows causal relation R = fR(T, Z, U) where U is a noise expressing pure randomness
of the system. Given a dataset with observation tuples {t, r}i, one can retrieve realisations of z by computing
z = f−1

R (r, t). By doing so, we will retrieve a value for (z, u) which will be z if the system is purely determi-
nistic with U = 0 w.p. 1. If we have computed realisations of Z values for data Di, we can infer conditional
distributionP (Z|x̂0)where x̂0 are observations (t, r). Then agent can do counterfactual planning by evaluating
do-operations (do(T = A), do(T = B) e.g.) in SCM system with fR, P (Z|x̂0). Moreover, in RL we won’t
need this adjustment formula as we will estimate P = (R|do(T )) directly through interventions.

To summarise, hidden variables with confounding effects may be one of the reasons why reinforcement lear-
ning severely suffers in real industrial use-cases andhaving a causalmodel of theworld for counterfactual reasoning
could be one major improvement to encourage the utilisation of RL algorithms in practice.
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7.2 Causal Reinforcement Learning : Formalism and Environments
This section ought to build a general formalism for Reinforcement Learning methods with causal model ap-

proaches. We first give an overview of the recent literature works about Causal Reinforcement Learning. Then,
we display the main difference for representing Markov Decision Process environment with usual models and
with causal models. Afterwards, we describe possible existing MDP environments, next provide definitions for
SCM equivalent description of the MDP environment models. Finally, we provide the counterfactual reasoning
process in different MDP environments.

7.2.1 Causal Reinforcement Learning literature
Very recently, researchers [30, 47, 153] ought to merge the causal and reinforcement learning fields. To in-

troduce this new emerging field, we first provide understanding about causal and initial MDP representations.
Secondly, we give a well-known example in the causality field that can explain why RL can fail in some environ-
ments. Next, we give an overview of very recent works that studied this integration by providing CRL techniques
and formalism. We have seen that reinforcement learning domain was associated with interventional layer 2 of
the causality domain. As for the kidney stone example where counterfactual reasoning can bring benefit for the
optimal policy search, the idea of CausalReinforcement Learning is to bring this counterfactual reasoning in rein-
forcement learning methods. This emerging domain has received very few attention in the past years but starts
to grow. The works [153] and [30] are two works dealing with causal reinforcement learning and counterfactual
reasoning. They both demonstrates that counterfactual reasoning can bring policy optimisation improvement in
specific scenarios, compared to SoTA reinforcement learning methods. Bareinboim et al. [153] focus onMarkov
decision processes with unobserved confounders (MDPUC ) environment, where a set of endogenous variables
H is hidden to theRL agent and these variables confound the agent’s policy q(S,H) and the rewardR. However,
in their formalism they integrate unobserved confounders (UC) inside exogenous set of variables, regarding the
SCMdefinition 12.On the other hand, theDeepmind team [30] restricts its scope on partially observableMarkov
decision process (POMDP) environment where they integrate a noise hiding some state features to the agent in
the SOKOBAN environment 2.

Both papers represents the MDP environment with structural causal model (SCM), described in section 7.1.
Definition 16 ([153]). AMarkovDecision Process with Unobserved Confounders (MDPUCs) is an augmented
SCMMwith finite action domainA, state domain S , and reward variableR :
— γ ∈ [0, 1) is the discount factor ;
— U(t) is the exogenous variable at round t ;
— V (t) = A(t)∪R(t)∪S(t) is the set of endogenous (observable) variables at round t withA(t) the action

space, S(t) the state space andR(t) the reward function;
— F = {fa; fy; fs} is the set of structural equations relative to V such that A(t) = fa(s(t);u(t)) =

q(s(t);u(t)), R(t) = fr(a(t); s(t);u(t)) and S(t) = fs(a(t− 1); s(t− 1);u(t− 1)) ;
— P(u) encodes the probability distribution over the exogenous variables U.
The work [30] also consider an SCM modelling of the MDP environment but does not formally define

this translation MDP → SCM . Yet they propose in their paper a solution to equivalently describe state-
transitional modelsM with causal assignments. For generalisation of dynamics modelling in causal model and
state-transitional model, one can represent both structure equivalently. In [30] is stated a lemma for this equiva-
lent representation.

2. https ://fr.wikipedia.org/wiki/Sokoban
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Lemma 5 (Auto-regressive uniformisation [30]). Consider random variablesX1, . . . , XN with joint distribution
P. There exist functions fn for n ∈ {1, . . . , N} such that with independent random variablesUn ∼Uniform[0,1],
the random variables X ′ equal X in distribution, i.e. X ′ d

= X , where X ′ = (X ′1, . . . , X
′
n) are defined as :

X ′n := fn(Un, X
′
<n).

Inotherwords,we can express relationsbetween state variables by a functional form,whereas in state-transitional
model we only express the possible future value of a variable at next time step with probabilities distribution. Ta-
king functional assignment between state variables allows to express time causal relation and to decompose causal
link and noise. The reverse is always true since we can derive probability distribution from the functional links.
Moreover, this ensure that the two dynamics representation are equivalent, meaning that both formalism express
the same environment dynamics. However, they represent the same environment at different level of knowledge,
since learning agents can perform counterfactual in the new causal representation.

7.2.2 Markov decision process environment’s representation
As described in the Definition 12 of Structural Causal Models, the dynamics and reward functions are de-

picted in the system with causal assignments fi and exogenous and endogenous variables U and V . This is a
fundamentally different representation for theMDP environments. This approach separates causal determinism
and system’s randomness whereas it is represented as single objects in classical reinforcement learning models. To
fully distinguish the two approaches, we redefine in Definition 17 the usual MDP models, denoted now State-
Transitional models.
Definition 17 (State-transitional model). We define the state-transitional modelM of the environment to be
the initial representation of theMDP environment, namely the transition and reward functions :M = {P ,R}.

In usual MDP environments, a state-transitional model acts as a predictor that can give the new state s′ and
reward r when agent acts action a in state s : (s′, r) ← M(s, a) ⇐⇒ (s′, r) ← P(s, a),R(s, a). To be
consistent with the works described in this document, we assume also that the reward function is stationary and
that p(R(s, a) = r) = 1 for all state-action pairs. This is why we highlight only the difference in the dynamics
representationof the system.The state-transitional dynamicsP(s′|s, a) representedby a conditional distribution
represents the probability to move in state s′ knowing that the agent has done action a in state s. This object
integrates both the environment determinism and randomness and the two aspects can not be differentiated.

On the contrary, the causal model s′ = fs(s, a, u) represented by a causal assignment, provides the future
value of state s′ knowing that the agent has done action a in state s. The causal model can differentiate the deter-
ministic part from the intrinsic randomness of the system, represented by exogenous noiseu. This representation
difference is illustrated in Figure 7.4.

7.2.3 MDP Environments
To represent the variability of environments available in nature, we define three possible environment scena-

rios. The first application is a system fully observable by the agent (MDP), i.e. the agent can observe all system’s va-
riables including : state variables, reward variables. The second application partially observable systems (POMDP)
is therefore similar but some endogenous variables are hidden to the agent at any epoch. The last application is
MDPwithunobserved confounders (MDPUC)where some endogenous environment variables are never observed
(e.g. difficult to measure) but yet can influence outcome, other state variables, or even an expert’s decision policy
(expert can imagine possible value of a variable), thus confounding the effect of a decision on the environment,
rendering the evaluation biased. In other words, in POMDP, hidden variables does not have a confounding effect
while they do inMDPUC scenarios.
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Figure 7.4 – Two different representations of the environment dynamics

In addition, we denote the intrinsic difference between contexts by a change of the letter, and we denote a
change in the state space type by a number 1 or 2, where 1 deals for countable discrete state space and 2 deals
for uncountable discrete or continuous state space. We cautiously differentiate state space types for agent’s repre-
sentation of the model, value function and policy. We call exogenous variables expressing the randomness of the
systems by U , endogenous variables expressing all environment variables by V .
Definition 18 (MDP Environments). All MDP environments in nature can be described by :
∗ MDP. EnvA. Environments with fully observable V :
They are fully observable, i.e. the RL agent can observe all variables that exist in the environment and its
policy is based on the full observation of the system.Wedenote byA1 environmentswith countable discrete
state space and byA2 environments with continuous/uncountable discrete state space.
∗ POMDP. Env B. Environments with partially observable V and without unobserved confounders :
They are partially observable, i.e. the RL agent can only observe at a given time t a subset of variables that
exist in the environment and its policy is based on the partial observation of the system. In this setting,
the Markovian property is violated (more explanations in Section 7.2.4). Moreover, no hidden variables
have confounding properties.We denote byB1 environments with countable discrete state space and byB2

environments with continuous/uncountable discrete state space.
∗ MDPUC. Env C. Environments with partially observable V and with unobserved confounders :
They are partially observable, i.e. the RL agent can only observe at a given time t a subset of variables that
exist in the environment and its policy is based on the partial observation of the system. In this setting,
the Markovian property is still valid (more explanations in Section 7.2.4). Moreover, at least one hidden
variable is a confounder that can confound several endogenous variables v ∈ V (state variables, reward,
policy). We denote by C1 environments with countable discrete state space and by C2 environments with
continuous/uncountable discrete state space.

We will detail the difference between POMDP and MDPUC in the structural causal model representation
displayed in the next section 7.2.4 but still give a little explanation here. As we have seen, there seems to be two
kind of considered use-cases when researchers tackle causality in reinforcement learning : POMDP [30, 154] and
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Figure 7.5 – Partially observable MDP transition from t to t+ 1 (Figure from [2])

MDPUC [97, 153]. We propose to differentiate POMDP and MDPUC by the nature of the hidden variables,
i.e. that they should have properties such that in POMDP scenario theMarkovian property is violated while it is
maintained in the MDPUC scenario.

APOMDP[2] is aMDP inwhich the agent does not observe the real environment state.The general principle,
illustrated in Figure 7.5, is that at each time t, the agent does not know the current state st ∈ S but can only
partially perceive it with an observation denoted ot. This observation is given by the observation functionO(st).
When the learning agent applies an action at ∈ A on the process, it then randomly modifies the the state of the
process according to the environment transitionsP() to bring it in the state st+1 while the agent only perceives the
observation ot+1. Finally, the agent receives a reward r as in the MDP setting. Moreover, even if the observation
function O() is deterministic i.e. each state is associated with one and only one observation, the agent may not
know the state. Therefore, two states can be associated to the same observation which generates ambiguity and
can lead to poor quality of the policy. This can be simply understand by looking at the policy learned from the
agent’s perspective. It updates a policy q : O → A such that for each observation o it generates a decision a. Now
imagine that for a given observation o1 is associated two states s11 and s12. This means the agent has learned after
the learning process to do q(o1)whichmay be optimal in the state s11 but very bad in s12. This is why in POMDP
settings, algorithms [2] often deal with history of observations such that the agent can have a clue in which state
he is regarding the trajectory. Intuitively, this is a solution to overcome the violatedMarkovian property.

Notice also that Bareinboim et al. [153] already provided first explanations about the differences between
POMDP and MDPUC environments. According to the authors, POMDP are MDPs with partial or no in-
formation of the state variables, where the partial observation does not summarise all the trajectories that led
to the present state (Markovian property is violated). MDPUC are MDPs with local unobserved variables that
confound the relationships between actions a(t), effectsRt+1, and states st+1. They claim two key differences
between POMDP andMDPUC. First, POMDPdo not necessarily imply the confounding, i.e., it is possible that
no knowledge about the state variable is available, but there exists still no unobserved confounding in the sys-
tem. Secondly, the authors demonstrate in [153] that theMarkovian property holds inMDPUCwhile it is clearly
violated in POMDP.
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7.2.4 SCM representation of MDP environments
Webuild a bridge between the three families ofMDP environments :MDP, POMDPandMDPUCby forma-

lising a general SCMfor anyMDPenvironmentmodels. Formally, we differentiate unobserved confounders from
noise exogenous variables and consider them as endogenous variables that can be unobserved by the agent. Thus
we consider a physical system or environment E by having two distinct parts. The first one is the deterministic
causal relation partwith causal assignmentsF between environment endogenous state variablesS = (s1, ..., sn),
reward variableRwhich is a function of state variables si and action variablesA = (a1, ..., al). The second class
represents natural inherent randomness of the system with exogenous noise variables U = (u1, ...uk) that can
disturb deterministic relations.
Definition 19 (Markov Decision Process with SCM). AMarkov Decision Process can be represented by a struc-
tural causal modelMwith finite action domainA, state domain S , and reward variableR :
— γ ∈ [0, 1) is the discount factor ;
— U t is the set of exogenous variables at time t determined by factors outside the model and representing the

randomness of the system. All noise variables u are independent from each other ;
— V t = At ∪ Rt ∪ St is the set of endogenous (potentially observable) variables at time t. This includes all

environment variables potentially observable by the agent ;
— F = {fa; fr; fs} is the set of structural equations relative toV such that at = fa(s

t;uta) ∼ q(at|st), Rt =
fr(a

t; st;ut) ∼ P (Rt|st, at) and St+1 = fs(a
t; st;ut) ∼ P (st+1|st, at). Note that policy q is determi-

nistic if uta = 0 else stochastic ;
— P(U) encodes the probability distribution over the exogenous variables U.
Definition 19 defines the structural causal model representation of aMDPwhere the state s is represented as a

single object.We have seen in Chapter VI that the state could be represented by a vector of state variables si in the
factored approach. For this purpose, we also propose a definition for structural causal model representation of
factoredMDP. And finally, this latest formalism is themost suitable since wewill also deal with causal graphs and
local causal relations in the SCM approach. Therefore, the following definition 20 will be themain formalism for
MDP representation by SCM.
Definition 20 (Causal Markov Decision Process). A FactoredMarkov Decision Process can be represented by a
structural causal modelM with finite action domainA, state domain S = {s1, . . . , sN}, and reward variable
R :
— γ ∈ [0, 1) is the discount factor ;
— U t = {ut1, . . . , utk, uta, utr} is the set of exogenous variables at time t determined by factors outside the

model and representing the randomness of the system. All noise variables u are independent from each
other ;

— V t = At ∪ Rt ∪ St is the set of endogenous (potentially observable) variables at time t. This includes all
environment variables potentially observable by the agent. If some variables in V are hidden at some times
t, we are in POMDP orMDPUC;

— F = {fa; fr; fs1 , . . . , fsN} is the set of structural equations relative to V such that at = fa(s
t;uta) ∼

q(st),Rt+1 = fr(a
t, Pa(Rt);utr) ∼ P (Rt+1|Pa(Rt), at) and

∀i = {1, . . . , N}, st+1
i = fsi(a

t;Pa(sti);u
t
i) ∼ Pi(s

t+1
i |Pa(sti), a

t)

, where Pa(.) ∈ S denotes the parents variables values at previous time step;
— P(U) encodes the probability distribution over the exogenous variables U.
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In order to treat specific environments, we providemore explanations tomake a clear distinction between par-
tially observable environments with no confounders and with confounders. Indeed, POMDP andMDPUC are
specific environments that can also be described by definitions 19, 20with supplementary constraints or hypothe-
sis on the environment endogenous variablesV .We provide definitions for the two componentswith the factored
framework and where there is only one hidden variable. Recall that in the POMDP scenario, theMarkovian pro-
perty is violated. On the contrary, in MDPUC, the Markovian property is still valid, and missing information
about the hidden variable does not avoid to fully grasp what will happen in the next time step t+ 1.
Definition 21 (Causal Partially ObservableMarkov Decision Process). A FactoredMarkov Decision Process can
be represented by a structural causal modelM with finite action domainA, state domain S = {s1, . . . , sN},
and reward variableR :
— γ ∈ [0, 1) is the discount factor ;
— U t = {ut1, . . . , utk, uta, utr} is the set of exogenous variables at time t determined by factors outside the

model and representing the randomness of the system. All noise variables u are independent from each
other ;

— V t = At ∪Rt ∪ St is the set of endogenous (potentially observable) variables at time t ;
— zt ∈ V t a hidden variable. This variable can be derived from external factors outside the environment but

has to be influenced by itself and eventually by other endogenous variables, i.e. zt+1 = fz(z
t, Pa(zt), utz)

and ∃vi ∈ V s.t. zt ∈ Pa(vt+1
i ). This ensures that the Markovian property is violated ;

— F = {fa; fr; fs1 , . . . , fsN} is the set of structural equations relative to V such that at = fa(s
t;uta) ∼

q(st), Rt+1 = fr(a
t, Pa(Rt);utr) ∼ P (Rt+1|Pa(Rt), at) and

∀i = {1, . . . , N}, st+1
i = fsi(a

t;Pa(sti);u
t
i) ∼ Pi(s

t+1
i |Pa(sti), a

t) ;
— P(U) encodes the probability distribution over the exogenous variables U.
In the POMDP scenario, missing the value of z will break theMarkovian property of the system sincemissing

this information will collapse the knowledge about state transitions. Therefore the learning agent will have to
treat the problem with history of observations to have information about dynamics and missing value. This is
done in the work proposed byDeepmind [30]. Now, the difference with unobserved confounder scenario is that
the Markovian property is not broken. The UC variable follows a distribution with external factors outside the
environment. In other words, missing the value of the UC variable does not introduce a lack of information for
the state transition from step t to t+ 1 as it does in the POMDP scenario.
Definition 22 (Causal Markov Decision Process with Unobserved Confounder). A Factored Markov Decision
Process can be represented by a structural causal modelM with finite action domain A, state domain S =
{s1, . . . , sN}, and reward variableR :
— γ ∈ [0, 1) is the discount factor ;
— U t = {ut1, . . . , utk, uta, utr} is the set of exogenous variables at time t determined by factors outside the

model and representing the randomness of the system. All noise variables u are independent from each
other ;

— V t = At ∪Rt ∪ St is the set of endogenous (potentially observable) variables at time t ;
— (UC)t ∈ V t an unobserved confounder that influences other environment variables in V t. This variable

should be derived from external factors outside the environment, i.e. following its own distribution, i.e.
(UC)t ∼ PUC . This ensures the Markovian property to be valid.

— F = {fa; fr; fs1 , . . . , fsN} is the set of structural equations relative to V such that at = fa(s
t;uta) ∼

q(st), Rt+1 = fr(a
t, Pa(Rt);utr) ∼ P (Rt+1|Pa(Rt), at) and

∀i = {1, . . . , N}, st+1
i = fsi(a

t;Pa(sti);u
t
i) ∼ Pi(s

t+1
i |Pa(sti), a

t) ;
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— P(U) encodes the probability distribution over the exogenous variables U.
We have so far proposed SCM formalism for three types of MDP environments : MDP, POMDP and MD-

PUC. We want to see now how the learning agent can do counterfactual reasoning to ameliorate RL algorithms
performance in each of these environments.

7.2.5 Counterfactual reasoning inMDP environments
We display in this section the counterfactual reasoning framework in all scenarios MDP, POMDP and MD-

PUC.We first provide a toy example to illustrate the counterfactual process then display RLmethods to integrate
the counterfactual reasoning in the different MDP environments.

7.2.5.1 Toy example

We provide a toy example on these three scenarios for better understanding. We consider an environment
with two state variablesX = (X1,X2), an action variableA and an outcome/reward variableR. Formally V =
X∪A∪R. Next we consider exogenous noise variablesU withu1, u2 respectively for expressing the randomness
for state variables X1 and X2, ua for expressing the stochasticity of agent’s policy q and ur the randomness for
the outcome variable. We draw the causal graph for the initial MDP case in Figure 7.6 and provide the associated
structural causal model with P (U) unknown :

MMDP =


At = q(X t

1, X
t
2, u

t
a)

X t+1
1 = f1(X t

1, X
t
2, A

t, ut+1
1 )

X t+1
2 = f2(X t

2, A
t, ut+1

2 )

Rt+1 = fr(A
t, X t

1, X
t
2, u

t+1
r )

Next, we display CRL algorithms that handle this counterfactual process for each environments and that will
be applied on the tandem queue scenario in Section 7.4.

Figure 7.6 – Temporal causal graph for toy example
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7.2.5.2 MDP counterfactual

In the MDP scenario, since all endogenous variables are observed, the counterfactual reasoning can be utili-
sed to infer information about exogenous noise variables U , i.e. about the system’s randomness similarly as the
learning of stochastic transitions in the state-transitional model. This is the first step of counterfactual reasoning,
corresponding to the abduction phase and we will show the process for one single variable si.

Abduction In general, the causal assignment associated to a variable si takes as input parent’s variables at time
t of the local variable si, the agent’s decision at and a noise uti, then outputs the value of si at time t+ 1.

st+1
i = fi(Pa(st+1

i ), at, ut+1
i )

For a given tuple (Pa(st+1
i ), at, st+1

i ), obtained from data, the agent can infer the noise value ut+1
i by taking

the inverse of the causal assignment fi under some assumptions on the function form :

ut+1
i = f−1

i (st+1
i , Pa(st+1

i ), at)

We denote by ūi the discovered noise value. Therefore the agent has now the evidence of the system at time t
when he did action at and can infer the outcome of non taken decisions a′ ∈ A \ {a}, by doing the intervention
and the prediction phases with its updated SCM. Concretely in our example, its new SCMwould be :

MMDP =


At = q(X t

1, X
t
2, ūa)

X t+1
1 = f1(X t

1, X
t
2, A

t, ū1)

X t+1
2 = f2(X t

2, A
t, ū2)

Rt+1 = fr(A
t, X t

1, X
t
2, ūr)

Intervention With its updated SCM, the learning agent can imagine a new intervention (the counterfactual
decision) in the systemby doing action a′ in the system do(At = a′). In our example, this would change the SCM
as follows :

MMDP =


a′ ← do(At = a′)

X t+1
1 = f1(X t

1, X
t
2, a
′, ū1)

X t+1
2 = f2(X t

2, a
′, ū2)

Rt+1 = fr(a
′, X t

1, X
t
2, ūr)

Prediction Finally, it can predict or evaluate the outcome of the system by using causal assignments and the
evidence to predict what would action a′ do :

st+1
i = fi(Pa(st+1

i ), a′, ūi)

In our example, this would mean to evaluateX t+1
1 ,X t+1

2 and rt+1 from the SCM computations.
Notice that we have shown the counterfactual process on one data sample by discovering the value of noises

and using these evidence values to predict new outcomes. This can be generalised by considering distribution of
noises, i.e. the agent has an a priori distribution for noise variablesPprior(U)which can be updated from the noise
values discovery with Bayesian learning techniques, leading toPposterior(U). Finally, the evaluation of non taken
decisions is made by simulating the system with the updated SCM that includes the a posteriori distributions of
noise variables. This allows for a broader and more generic evaluation of counterfactuals since it considers larger
possibilities for the noise values.
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Finally, we depict in Algorithm 30 a causal Dyna-Q-Learning method with the counterfactual reasoning to
discover noise values and do planning by evaluating counterfactuals. This method can be seen as a data augmen-
tation technique since the agent will be able to plan and update itsQ-function for all possible actions at each time
step. At each time step, when the agent performs action a in state s, it recovers from the SCM and the abduc-
tion phase the noise values of the system (We denote in the pseudocode this process by InferenceSCM ). Next it
updates the Q-function for all the non taken actions with the SCM.

Algorithm 30: Counterfactual-based data augmentation RL (CDYNA - Causal Dyna-Q-Learning)
Input:Q0, q0, α learning rate, γ discount rate, ε
Output: q∗, Q∗

Data: SCMM is known,P(U) is unknown
/* Loop until end of episodes or criterion */

1 for e ∈MaxEpisode do
2 Select state s ∈ S , s = (s1, . . . , sn) // Initial state
3 for i ∈MaxIteration do
4 Take action a ∈ Awith ε-greedy policy // Action selection
5 Observe s′ and reward r(s, a) and collect tuple< s, a, r, s′ > // Collecting tuples data
6 Q(s, a)← Q(s, a) + α [r(s, a) + γmax′aQ(s′, a′)−Q(s, a)] // Update Q

7 Ūi ← InferenceSCM(s,a,r,s’) // Abduction
/* Counterfactual evaluation of non-chosen actions */

8 for a′ ∈ A \ a do
9 Replace action a′ in the SCM // Intervention

10 Calculate r′, s′′ = F (s, a′, Ūi) // Prediction
11 Q(s, a′)← Q(s, a′) + α [r′ + γmaxa′′Q(s′′, a′′)−Q(s, a)] // Update Q

7.2.5.3 POMDP counterfactual

Let us now consider the partially observable scenario with no confounding variable, i.e. it exists some endoge-
nous variables in V that are unobserved and the Markovian property is violated. In this context, we should treat
the problem by using history of data to gain information about transitions between two time steps. Suppose that
in our example the endogenous variableX2 is unobserved. This leads to the following SCM that the agent carries
where the agent’s policy is only influenced by variableX1 :

MPOMDP =
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1, u
t
a)

X t+1
1 = f1(X t

1, X
t
2, A

t, ut+1
1 )(

X t+1
2 = f2(X t

2, A
t, ut+1

2 )
)
unobserved

Rt+1 = fr(A
t, X t

1, X
t
2, U

t+1
r )

We display the partially observable example in Figure 7.7.
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Figure 7.7 – Temporal causal graph for toy example with partial observation

The counterfactual reasoning in thePOMDPscenario should integrate history of data and shoulddiscover not
only exogenous noise variables but also hidden variables. In usual POMDP solutions, there exist algorithms that
deal with a belief function b of the real state when observing o, i.e. b(o) gives the probability to be in states s. The
Algorithm 31 proposed by Deepmind’s team in [30] has a similar idea where the abduction phase ought to learn
a conditional distribution of hidden variables from history of observations. Intuitively, the inference of hidden
variables made with the SCM and with collected data should act as a proxy for information on past transitions
in the system. The first step for the reinforcement learner is to collect interventional data. In these data, only
endogenous observed values are displayed (a, r, sobs). We define by D̂ = { at, rt+1, stobs, s

t+1
obs } the evidences

obtained by interventions in the environment for one iteration. We want to infer hidden variables given D̂ with
the SCM then evaluate counterfactual. To do so we use causal assignments F inverse functions to compute the
values for unobserved variables, in the same setting such as in the MDP scenario for noise values. This allows
the learning agent to infer conditional distributions of hidden variables and noises, conditioned on the history
of data : P (U |D̂) and P (si|D̂). These conditional distributions are next integrated in the SCM for intervention
and prediction phases.

7.2.5.4 MDPUC counterfactual

Last scenario focuses onMDP environments with unobserved confounder. In this setting, as we have seen in
Section 7.2.4, the unobserved confounder does not violate the Markovian property since the agent still has the
necessary information to understand how the system evolves between two time steps t and t + 1. Following the
same example as POMDP, in scenarios with unobserved confounders, we assume the agent can not measure the
variableX2 but this variable follows a distribution on its own. This changes the SCM as follows :

MMDPUC =
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We display the unobserved confounder case in Figure 7.8.
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Algorithm 31: Causal policy-based reinforcement learning for POMDP [30]
Input: q0 = µ0, structural causal modelM : ∀i ∈ |S|,∀a ∈ A, si := fi(Pa(si)) + Ui, N : frequency

update
Output: q∗

Data: Causal graph G, structural assignments F are known, Noise distributionsP(U) is unknown
1 for e ∈MaxEpisode do
2 Select state s ∈ S , s = (s1, . . . , sk) // Initial state

/* Step 1: Collect interventional data Dobs running policy q in the environment */
3 for i ∈MaxIteration do
4 Take action a ∈ A following q(s, uA). // Action selection
5 Observe s′ and reward r and collect tuple< s, a, r, s′ > inDobs // Collecting tuples data

/* Step 2: Infer noises distribution from Dobs */
6 Knowing F , inferP(U|Dobs) // Abduction
7 Replace priorP(U)← P(U|Dobs) in modelM

/* Step 3: Digital twin simulation for counterfactual evaluation */
8 Simulate several trajectories with digital twin modelMwith F andP(U) by running policy µ

/* Step 4: Policy update */
9 Update policy µwith trajectories returns

/* Step 5: Push new policy in real environment */
10 if e%N == 0 then
11 q ← µ

Figure 7.8 – Temporal causal graph for toy example with unobserved confounder
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In the MDPUC context, there is no need to treat the problem with historical data since the Markovian pro-
perty is not violated. Therefore, the counterfactual reasoning process here would only infer an a posteriori dis-
tribution of the hidden variableX2, not conditioned on history of data. Again, this learned distribution would
serve as an element of the new SCM to generate rollouts for counterfactual planning. The algorithm that we will
use in the experimental results Section 7.4 in the Algorithm 30 but the InferenceSCM() part will also discover the
value of the UC variable.

7.2.5.5 Overview of counterfactual in MDP environments

To summarise the counterfactual reasoning in Reinforcement Learning, the learning agent is provided the
SCMof theworld (relations between environment variables, causal assignments) and can infer information about
hidden and noise variables from collected interventional data and by taking the inverse of causal functions. De-
pending on the scenario (POMDP or MPDUC), the agent will deal with historical data or not. Finally, it will
evaluate counterfactual decisions based on its updated SCM with distributions or discovered values for the hid-
den variables. Notice that this counterfactual planning is different than initial planning of model-based RL tech-
niques. The simulated trajectories are generated by differentiating the causal deterministic part and the random-
ness part of the system with noises distributions. This creates more precise trajectories illustrated with the follo-
wing example.

Example 5. Planning in Model-based RL : The agent will generate rollouts with its model P and R such that
s′, r ← P(s′, s, a),R(s, a) and will update its policy or value function according to this sample (or trajectory).
Yet, the evidence of the environment that occurred when the agent visited (s, a) in the past are lost in the state-
transitional model because there is no distinction between causal assignments and randomness.

Planning in Counterfactual RL : The agent will generate rollouts with its SCMmodel and inferred distributions
of hidden and noise variables such that s′, r ← F (s, a, u), P (U),R(s, a, u). This sampling process is more precise
because it considers the evidence information that occurred when the agent has visited the state-action pair (s, a)
in the past.

In a nutshell, the counterfactual process should provide a gain in usual MDP systems by accelerating the
convergence because the counterfactual process could evaluate multiple non-taken decisions more quickly. Ho-
wever the main benefit will reside in context with hidden variables where non causal models will suffer to infer
information about unobserved variables and can be potentially biased resulting in learned policies with poor
quality. This is what we will demonstrate in Section 7.4 with an application for the tandem queue Cloud envi-
ronment.

7.3 Causal modelling of multi-tier Cloud architectures
This section presents the application of CRL techniques inmulti-tier Cloud architectures. It consists of refor-

malising the MDP model with SCMmodelling and comparing counterfactual reinforcement learning methods
with SoTARL algorithms in different environments (MDP, POMDP,MPDUC). However, we let the treatment
of POMDP cases in perspective and only deal with the initial tandem queue environment and scenario with
unobserved confounders, namely MDP andMDPUC environments.
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Figure 7.9 – Tandem queue temporal causal graph

7.3.1 EnvA1 Tandem queueMDPmodel

7.3.1.1 SCM representation

Wedescribe thequeuing systemunder anSCMrepresentationwhich is equivalent to the initial state-transitional
model presented in Chapter V withP andR. We depict in Figure 7.9 the causal graph associated to the SCM re-
presentation of the tandem queue scenario. Black dot lines represent the influence of state variables si on the
policy q, thus on the agent’s decision at at time t. Black lines represent the local dependencies between state va-
riables between time t and time t+1. The red dot lines represent the influences of state variables and action on the
reward. Finally, green lines show effects of noise variables on environment variables. Noise variables U represents
the randomness of arrivalsum1 in node 1, potential breakouts in node 1uk1 , in node 2uk2 , and the randomness of
departure from node 1 to node 2with um2 . The variable utA represents the randomness if the policy q is stochastic
but for convenience we will set utA = 0 since we only consider deterministic policies in this document.U t

r repre-
sents the reward noise. In Env 1, noises Uk1 and Uk2 are set to 0 since we assume no breakouts can occur, i.e. the
influence of agent’s decision on the number of activated virtual resources is fully deterministic. Same reasoning
occurs for the reward function which is deterministic in this environment.

Notice that the Figure 7.9 shows the behaviour of the system when the agent follows its policy q. Yet in the
reinforcement learning paradigm (layer 2 of causality), it will perform interventions on the system by acting on
variableAt. The agent will intervene by changing value ofAt with do(At = (a1, a2)). We depict in Figure 7.10
the behavior of the systemwhen the agent takes decisions different from the policy for exploration. In this setting,
the influence of other variables are removed.

Next, we provide the equivalent SCM representation of the tandem queueMDP environment providing the
causal assignment :
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Figure 7.10 – Tandem queue temporal causal graph under intervention
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SinceR is the same reward function defined in Chapter V Section 5.2.1, we only need to find mathematical
expression of functions fm1 and fm2 to have an equivalent representation for the tandem queue environment.

Let us recall the transitions for state variablesmt+1
1 andmt+1

2 .

mt+1
1 =


mt

1 + 1 if arrival in node1;

mt
1 − 1 if departure from node1;

mt
1 else.

and mt+1
2 =


mt

2 + 1 if arrival in node2;

mt
2 − 1 if departure from node2; (M1M2)

mt
2 else.

Therefore we have the following probability transitions :
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P (mt+1
1 |Pa(m1), at) =



λ

Λ̃
if arrival inN1;

µ1(kt1 + at1)

Λ̃
if departure fromN1;

Λ̃− λ− µ1(kt1 + at1)

Λ̃
else.

and

P (mt+1
2 |Pa(m2), at) =



µ1(kt1 + at1)

Λ̃
if arrival inN2;

µ2(kt2 + at2)

Λ̃
if departure fromN2;

Λ̃− µ1(kt1 + at1)− µ2(kt2 + at2)

Λ̃
else.

We propose to rewrite the following dynamics in the SCM form, i.e. with causal assignments to express what
will be the next value of state variables at time t+ 1. (M1M2) can be rewritten by :
mt+1

1 = mt
1 + 1(event=arrival) − 1(event=departure)

⇔ mt+1
1 = mt

1 + 1Um1≤λ/Λ̃
− 1Um1≤(λ+µ1(kt1+at1))/Λ̃ where U t

m1
∼ Unif [0, 1]

and
mt+1

2 = mt
2 + 1Utm2

≤λ/Λ̃ − 1Utm2
≤(λ+µ1(kt1+at1))/Λ̃ where U t

m2
∼ Unif [0, 1]

Finally, we have the SCM representing tandem queue dynamics with :
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Notice that we could also have found the functions with the inverse-CDFmethod and the proposed method
from the Deepmind’s work [30] in Lemma 5.

7.3.1.2 Counterfactual calculations

Recall that we consider theMDP scenario first where the agent can observe the full environment state. Accor-
ding to Section 7.2.5, it only requires to discover the exogenous noise values with the counterfactual reasoning.
Thus, for one experience tuple, the agent can discover the noises realisations with inverse causal assignments in
the following way :
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Concretely, from a data sample (s, a, r, s′) it computes from the SCM the noise values ūm1 and ūm2 :

U =

{
ūm1 = f−1

m1(m1, k1 + a1,m
′
1)

ūm2 = f−1
m2(m1,m2, k1 + a1, k2 + a2,m

′
2)

Once the agent has the noise realisations under a specific experience tuple, it can evaluate counterfactual deci-
sions followingAlgorithm30.As inChapterV andChapterVI the learning agent observes from the environment
samples (s, a, r, s′) and ought to learn the dynamics of the system by discovering exogenous noise variables. We
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will compare the causal RL approach with Q-Learning, Dyna-Q and MDP online technique on the tandem
queue scenario in Section 7.4.

7.3.2 Env C1 Tandem queueMDPUC environment
To present the MDPUC scenario, we first provide more details about the scenario considered by Bareinboim

et al. in [153]. Next, we display the SCM representation of the tandem queue with unobserved confounder and
finally provide experimental results with the causal RL algorithms.

7.3.2.1 Toy example illustration [153]

We present here the reproduction of the results of Bareinboim et al. in [153] that allows us to consider the
MDPUC scenario for the tandem queue environment and that will help for understanding. In their paper, the
authors consider a medical treatment example where a physician has to heal patients at the hospital by providing
a treatment or not A = {0, 1}. The patient has a given level of corticosteroids C = {0, 1} and a given health
which is the outcome tomaximise here :R = {0, 1}. The goal of the learning agent is tomaximise the cumulative
health score in the long term with a discounted rate γ = 0.99. Moreover, the agent’s health scoreR is influenced
by external factors such as economical status E and patient’s moodM which are also binary variables. Last, the
physician’s decision is influenced by the external factors that are observed from him when he treats the patients.
However these variables have a confounding effect since they also influence the health of the patient. We depict
in Figure 7.11 the behavior of the environment when the physician follows its policy qphy.

Figure 7.11 – Environment behavior under physician’s policy q

The goal of this paper is to demonstrate the gain of counterfactual reasoning in reinforcement learning. The
authors settle a scenario where a learning agent has to improve the physician’s policy from collected data but the
variables E andM were not stored in the data. This is a fair assumption in real environments since industrial
applications could require to find better solutions than existing one and the existing solutions conducted by hu-
man experts could be biased by confounding factors that are notmeasurable in the data (e.g. autonomous vehicles
with imitation learning). Therefore in their example, the learning agent only has observational data ofC ,R and
a = qphy(). It acts by changing the value ofA and observe the outcomeR. The objective of the software agent is
to improve qphy() by providing a better policy qctf (). This is shown in Figure 7.12.
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Figure 7.12 – Environment behavior under the learning agent’s decisions

The method proposed by Bareinboim et al. is to extend the observation space of the learning agent with the
expert’s policy that acts as a proxy to the confounding variablesM andE. In this setting, the abduction phase of
the counterfactual reasoning is to infer from the physician’s decision what was the value of variablesM and E
when the expert took his decision. This is depicted in Figure 7.13.

Figure 7.13 – Environment behavior under the learning agent’s decisions with the extended observation

To fully grasp the counterfactual reasoning in aMDPUC scenario, we reproduced the simulation proposed by
the authors [153]. It compares four algorithms/policies under environments characteristics, i.e. how the system
evolves.We did the same process for one of the environment inwhich the expert’s policy is very bad. The compari-
son is done offline between a random policy, the physician’s policy, an oracle/optimal policy and two policies that
have been learned by the software agents withMDP online techniques. The first method calledMormax [136] is
very close to Rmax and the second one is a causal version ofMormax with the extended observation and counter-
factual reasoning. The numerical experiments displayed in Figures 7.14 and 7.15 show the cumulative reward and
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average reward obtained from the different policies when simulating the environment. Notice that the scenario
we selected from the paper is a case where the physician’s policy is very bad. Moreover, we can see that a learning
agent (Mormax) does not perform better than a random policy showing how hidden confounding variables can
deteriorate policies quality. Last the results demonstrate a gain using counterfactual reasoning in RL (Mormax
Causal) algorithm.

Figure 7.14 – Cumulative reward obtained by different algorithms over learning episodes

Figure 7.15 – Average reward obtained by different algorithms over learning episodes
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Figure 7.16 –MDPUCTandem queue temporal causal graph

7.3.2.2 SCM representation

To come back to our use-case, our goal was to consider a similar scenario in the tandem queue environment
so we can demonstrate the gain of counterfactual reasoning in RL methods. This is why we consider in the last
part the unobserved confounder scenario where there might exist unobserved variable that confound environ-
ment variables and an expert’s policy. This environment is derived from theMMPP tandem queue environment
described in Chapter V Section 5.2.3.1. However, the MMPP scenario is a POMDP environment therefore we
slightly modify this environment to fall in theMDPUC setting. For this purpose, the arrival rate λ is still hidden
but follows a distribution on its own. In other words, its value depends on a probability distributionPλ and does
not depend on previous values of arrival rates, which is still consistent with real Cloud systems. Therefore, at each
time step, the variableλ is drawn from this distribution, nomatter what was its previous value. The environment
state is given by s = (λ,m1,m2, k1, k2) and the agent only observes o = (m1,m2, k1, k2). We depict in Fi-
gure 7.16 the MDPUC environment when the agent follows its policy q and in Figure 7.17 when the agent does
interventions.

The associated structural causal model is described belowwith the same consideration for noise variables as in
the fully observable MDP scenario (Ur = Uk1 = Uk2 = Ua = 0) :
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In detail we have :
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Figure 7.17 –MDPUCTandem queue temporal causal graph under intervention
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To remain faithful to the scenario of [153], we consider in our use-case that a human is acting in the system
according to a policy qhum and imagines possible values ofλ by observing the system, i.e. it derives from the values
ofm1 andm2, a possible value of λ. This process remains consistent with real Cloud environments. Therefore,
our goal is to improve a human’s policy with a learning software agent that will learn a policy with RL methods
on collected data, similarly as in [153].

7.3.2.3 Counterfactual calculations

The counterfactual reasoning in this situation would be to infer noise variables, similarly as in the MDP
scenario but also the hidden arrival rate variable λ. For this purpose, we augment the observation space of the
learning agent with the human’s decision taken in the data. Therefore we consider the following observations
o = (m1,m2, k1, k2, qhum) where qhum acts as a proxy for confounding variables and belongs to the abduction
phase. The noise variables um1 and um2 are discovered with the same computations as in the MDP scenario. Fi-
nally, the intervention and prediction phase remains the same. Henceforth, we will also use the Algorithm 30 only
it will be improved with the augmented observation proposed by [153].

7.4 Experimental results
In this section we evaluate counterfactual RL algorithms compared with state of the art methods that were as-

sessed in previous chapters.Moreover we consider only countable state space scenarios, i.e.A1, C1 environments.
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Figure 7.18 – Average reward over learning episodes between RL algorithms inMDP scenario

Since we do not deal with the POMDP scenario, our counterfactual RL method does not provide a solution
considering history of observations.Therefore our goal in this section is to compare the counterfactual Q-Learning
algorithm described in Algorithm 30 with Q-Learning and Dyna-Q-Learning methods.

7.4.1 Environments and Simulation Parameters
We keep the same python Gym simulator as described in Chapter V Section 5.4. In this chapter, we extend

also the Gym simulator with two cases, the MMPP scenario for POMDP use-case and the MDPUC scenario,
basically where the arrival rate is following a distribution on its own.

7.4.2 EnvA1 Tandem queueMDP environment
We display in Figure 7.18 the average reward over learning episodes obtained during the learning process for

different algorithms on the chosen Cloud scenario. For fair comparison, we have parameterised the Dyna-Qme-
thod such that it does only 8 one-step planning phase at each iteration such that the counterfactual RL method
whichwill evaluate the 8 other counterfactual decisions.We show a gain in the speed of convergence with the cau-
sal RL method compared to Q-Learning and to Dyna-Q which means that the counterfactual evaluation helps
to accelerate the convergence (same complexity as Dyna-Q).

7.4.3 Env C1 Tandem queueMDPUC environment
Wedisplay in Figure 7.19 the average reward over learning episodes obtainedduring the learningprocess for the

MDPUC scenario. The arrival rate λwas taking several values and changing at a given frequency, where its values
were drawn from a uniform distribution. We first observe that the Q-learning algorithm was suffering to learn
an efficient policy due to unobserved arrival rate that was varying many times during the learning. On the other
hand, the Causal Q Learning could handle more efficiently this scenario with the augmented state space where
the new feature was a predefined policy of an ’expert’. This policy was telling the ’expert’ what action to play with
a function telling himwhatwas the possible value ofλ in a given observation of the system (m1,m2, k1, k2). This
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Figure 7.19 – Average reward over learning episodes between RL algorithms inMDPUC scenario

result has been drawn from a single Cloud scenario (the one described above) and need to be further investigated
for generalisation. However, this is a good beginning to demonstrate the gain in MDPUC scenarios.

7.5 Summary of the chapter
In this chapter we have treated Causal Reinforcement Learning for multi-tier network applications. After

presenting the causality domain, we have shown how the CRL emerging field could integrate the counterfactual
reasoning in RL methods. Last we have applied the CRL algorithm on the tandem queue environment (with
and without hidden variables) and demonstrated the gain of using causal models in RL algorithms. Moreover,
it is believed that in many industrial applications, a causal model is already known by human experts and can be
implemented in the software agent (robotics, vehicles, networks, etc.). In other fields, where researchers ought to
discover causal influences, RL can also be important for causal discovery.

In addition, we have built an SCM-simulator that can express the different MDP scenarios, namely : MDP,
POMDP andMDPUC. This simulator acts as a generalisation process that can simulate different environments
andmaybe easier toworkwith for assessingCRLmethods and comparingwith SoTARL techniques.Thepython
simulator takes as input a Directed acyclic graphDAG and a dictionary for all nodes of the graph with characte-
ristics such as observable, noise variable, state variable, action variable, causal assignments, etc.. An OpenAI Gym
simulatorwith implemented step(action)method simulate a one time step trajectory, i.e. going from time t to time
t+ 1, and return new observation at time t+ 1 and a reward. It is believed such investigations could highly help
to assess new CRLmethods and to help the generalisation of the methods.
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CHAPTER 8

DISCUSSION

In order to conclude this work, three sections are presented to summarise the contributions of the thesis and
to give the resulting perspectives. The first section is a taxonomy of the Reinforcement Learning field that ought
to unified all the methods we have seen throughout this document in the different chapters. This allows us to
have a broad overview of the field. The second section presents a summary of the contributions of the thesis.
It reviews the contributions of each chapter, mentioning the important points. We finish this document with
the presentation of the perspectives that derive from the different works. Here again we mention the general
perspectives of the thesis but also specific points in each chapter.

8.1 Taxonomy of the Reinforcement Learning field
In this section we want to characterise the different RLmethods and their behavior in different environments

with what we have seen throughout the manuscript in the different chapters (model-free RL, model-based RL,
factored and causal RL). We mainly try to give a global definition to all the possible elements of the RL field :
model representation, knowledge of the environment, how the agent can learn the policy or the value function.

General RL Algorithms and Agent’s Knowledge
First, we describe the potential knowledge the learning agent can carry and that he can think as a toolbox to

learn an optimal policy. Basically, we have twomajor domains : theMDPdomainwhere the agent knows perfectly
the environment model and can plan; and the RL domain where it has some missing information and needs to
interact for data collection.

Agent’s knowledge of the environment

First, the learning agent may have disparate understanding of the environment, i.e. different information
about the systems statistics but also different representation of the world model.

r Markov Decision Process with full information about dynamics and reward functions :

— State-transitional modelP ,R [MDP];
— Factored state-transitional model Fact(P), Fact(R) with DBNs structureD [FMDP];
— Structural causal modelF ,P(U) with causal graph structure G [CMDP].
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r Reinforcement Learning with partial (or none) information about dynamics :

— Zero information;
— Relational structures DBNs or SCM /Causal Graph (and causal assignments) but randomness is unk-

nown (statistics in CPTs are unknown, P (U) is unknown) ;

Overall we dispose of three main representations to solve complex dynamic problems :Markov Decision Pro-
cess (MDP) (Chapter IV and Chapter V), Factored Markov Decision Process (FMDP) (Chapter VI) and Causal
Markov Decision Process (CMDP) (Chapter VII). The three representations are linked by the following ladder
(Figure 8.1) where the most powerful tool is at the top of the ladder. We describe the representational power of
the model as the knowledge the agent can carry.

Figure 8.1 – Ladder of representation for environments dynamics

How to learn?

Given the agent’s knowledge, it canmore or less learn an efficient policy.We describe here several classes of RL
algorithms an autonomous agent canuse to learn anoptimal policy, ranging frommodel-free to puremodel-based
methods.

r Class 1. The agent has zero information and tries to learn optimal policy without any model, simply by
interaction and updates of its policy/value function→Model-free RL;

r Class 2. The agent has some information about the relational structure of the world but does not quantify
the statistics. In other words, it knows D but not the CPTs or G but not the noise distribution P (U).
Therefore it interacts with the environment to collect samples and update the statistics. It plans with its
updated model to update its policy/value function→ Light Model-based;

r Class 3. The agent has zero information but wants to learn a model of the world for planning. Therefore it
interacts with the environment to collect samples to update the relational structure (DBNs, causal inference
(CI) for G) and update the statistics. It plans with its updated model to update its policy/value function→
HardModel-based;
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r Class 4. The agent has full information and does not need to interact with the environment, it can already
calculate offline the optimal policy by planning with dynamic programming techniques→ Pure Model-
based RL∼MDP.

We provide more details about the different model representations that can be used in different RL classes.
Method i (state-transitional model-based RL) treats with P and R. Consider a discrete state space, the RL

agent can learn a tabular model for transitions P and rewardR. If the state space is continuous or discrete but
uncountable for tabular implementation, then RL agent has to learn an approximated model of the dynamics P̃
and reward R̃. Such model could be represented by functional form such as neural networks, Gaussian process,
linear approximation, etc, which makes it an approximation due to function design and updated parameters.

Method ii (factored state-transitional model-based RL) treats with Fact(P) and Fact(R). Consider a discrete
state space, the RL agent can learn a tabular model for CPTs Fact(P) and reward Fact(R). If the state space is
continuous or discrete but uncountable for tabular implementation, thenRL agent has to learn an approximated
model of the dynamics Fact(P̃) and reward Fact(R̃). Suchmodel could be represented by functional form such as
neural networks, Gaussian process, linear approximation, etc, which makes it an approximation due to function
design and updated parameters.

Method iii (SCM model-based RL) assume that RL agent fully knows structural causal assignments F bet-
ween environment variables but does not know noise distribution P(U). In this context the agent can use its
SCM to perform counterfactual reasoning as described in Section 7.2.5.

We would also like to point out that in all classes and methods, the policies or value functions can be tabular
in countable discrete state spaces or can be a functional approximation such as neural networks in uncountable
discrete/continuous state spaces.

Summary of RL algorithms
By mixing classes and methods we summarise all the Reinforcement Learning algorithms in Table 8.1.⊗

refers to "Unknown",∼ refers to "To learn/update",
√
refers to "Known".

Class Methods Properties
Relational Knowledge Model Representation Relational Structure Statistics Name

Class 1.
Method i.

⊗ ⊗ ⊗ ⊗
Method ii.

⊗ ⊗ ⊗ ⊗
Model-free algorithms

Method iii.
⊗ ⊗ ⊗ ⊗

Class 2.
Method i.

⊗
P ,R

⊗
∼ DYNA /MDP online

Method ii. DBNsD Fact(P), Fact(R)
√

∼ SDYNA / FMDPOnline
Method iii. Causal Graph G F ,P(U)

√
∼ CDYNA

Class 3.
Method i.

⊗
P ,R

⊗
∼ DYNA /MDP online

Method ii. DBNsD Fact(P), Fact(R) ∼ ∼ SDYNA / FMDPOnline + DBN learning
Method iii. Causal Graph G F ,P(U) ∼ ∼ CDYNA + CI

Class 4.
Method i.

⊗
P ,R

⊗ √
VI, PI

Method ii. DBNsD Fact(P), Fact(R)
√ √

FVI, FPI, SVI, SPI
Method iii. Causal Graph G F ,P(U)

√ √
CVI (DP with SCM)

Table 8.1 – Categorisation of reinforcement learning algorithms

8.2 Conclusion of the thesis
The work presented in this thesis focuses on Reinforcement Learning and optimisation techniques to com-

pute optimal auto-scaling policies in Cloud environments. We have evaluated several RL methods from model-
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free tomodel-based and structural approaches in different Cloud scenarios (single physical node, multi-tier archi-
tecture).

The first application (Chapter IV) where we provided the true model to the agent allows us to compare a
Markov Decision Process approach against a Markov Chain approach to compute threshold policies for Cloud
resource allocation.We provided an aggregation technique to accelerate the computations of the heuristics, based
on the Markov Chain aggregation and decomposition of the cost calculations. Moreover, we studied structural
hysteresis MDP algorithms with heuristics and we showed that structural MDP algorithms were outperforming
heuristics in accuracy and execution time and could handle large-scale systems. These results go against some
assumptions in the literature stating that heuristics perform better. Last, we performed analysis in a real Cloud
model demonstrating how fast the MDP techniques could compute optimal threshold rules in Cloud systems.
These results also encourageCloudproviders toutilise such techniques for thresholds computations after defining
consistent queuing metrics for the reward function and after inferring arrivals distributions with traces.

Secondly, we have illustrated in Chapter V that model-based reinforcement learning could outperform state
of the art model-free techniques such as Q-Learning in a tandem queue system where the agent has to learn the
model of the world from interventional data for planning. This is noteworthy because standard RL applications
in industrial use-cases are model-free and we believe that investing a little more in model-based techniques could
increase the performance of RL for concrete use-cases.

Again, adding more precise knowledge to the learning agent with structural representation of the environ-
ment model (factored and causal), demonstrated that this supplementary information provided to the agent was
helping him to obtain better performance. This was shown in the factored approach in Chapter VI (assuming
that the environment is consistent with this approach) where more compact representation of the environment
model could lead to better performance by highly reducing the complexity of algorithms.We believe that this fra-
mework should also be deeper investigated in industrial applications where environments permits its utilisation
(end-to-end scenarios with local relations : robotics, logistics, networks, etc.).

In addition, the causal reasoning (Chapter VII) can bring benefits in scenarios with hidden variables which is
often the case in practice in industrial applications. Although the field CRL is new and emerging, there is a high
interest to investigate in such solutions (theoretically and practically) to democratise CRL in real use-cases. On
the other hand, it is believed that causal relationships are intrinsically in nature and that this can be applied in all
fields.

8.3 Perspectives of the thesis
This thesis makes the link between model-based reinforcement learning algorithms and the search of auto-

scaling policies in Cloud environments. In this section, we provide some directions to deepen our work, in each
of the following areas that were cover in the document.

Cloud environments
First, the consideration ofmore complexCloud environments is crucial to evaluate the learning of auto-scaling

policies. In this document we have investigated two main applications : a single physical node hosting virtual
resources and a multi-tier Cloud network with two physical nodes in tandem. To have a deeper evaluation and
comparison of RLmethods, it is crucial to consider more complex networks ; e.g. multi-tier networks with many
nodes in tandem or general networks. This could also raise interest to demonstrate the gain of factored and causal
approaches inmore complexCloud structures. In addition to increasing the complexity ofCloud infrastructure, it
may also be interesting to considermore complexqueueingmodelswith general arrivals distributions and services,
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with load balancing process, etc. This can be achieved through more complex queueing modelling for Cloud
environments representation, for example by looking at the literature or at the behavior of real Cloud platforms.

Simulations and real platform evaluation
Secondly, all our assessments and comparison were made in simulated environments : python simulator for

Reinforcement Learning studies and computational software for the treatment of MDP versus heuristics. To
give more strength to our work, one major outlook is to evaluate all the investigations in real Cloud platforms.
This could be done in experimental Docker platforms developed with Kubernetes or Openstack for example.
Moreover, hysteresis and thresholds rules could be evaluated in real Cloud platform such as AwS EC2 or Azure.

Theoretical extensions
Finally, we mentioned throughout this document, mostly during the summary of the chapters, the improve-

ment that could bemade regarding theRL algorithms and their comparison.We aggregate here what can be done
in each chapter.

Model-based Reinforcement Learning

The work presented in the chapter Chapter V requires deeper comparison and set of parameters to evaluate
more globally the considered RL algorithms in Cloud environments. We also want to consider larger-scale sce-
narios where we might have to approximate policy, value function or models with functional forms such as neu-
ral networks, linear approximations, Gaussian processes, etc. Moreover, it could be interesting to investigate the
structural form of the optimal policies in the tandem queue environment. This could lead us to integrate this
structural properties in the Reinforcement Learning algorithms to speed up the convergence such as in Chapter
IV.

Factored Reinforcement Learning

Equally, the factored approach (Chapter VI) should be further evaluated. This should be done by considering
larger set of parameters for the simulations, but alsomore complexCloudnetworks.One other path is to compare
in very large scale environments the performance of our FMDP online method compared with state of the art
DeepRLmethods such asDQNor PPO for example.Moreover, we decided in this document towork on tabular
representation of the local factored transition probabilities. It can also be of great interest to tackle the problem
with decision tree and decision diagram representations.

Causal Reinforcement Learning

For the causal approach many paths can be considered. First on the algorithmic domain there are several ele-
ments to investigate regarding the counterfactual reasoning process for differentMDP environments (MDPUC,
POMDP, etc.). Secondly, there may be an interesting work to be explored regarding the connection between
factored and causal approaches, i.e. the relations between DBN and Causal Graph representations. In addition,
there is still a lot of evaluation to do for causal methods, in particular with the treatment of partially observable
environments with the consideration of historical data.
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Hierarchical framework

Finally, one orthogonal approach that was not presented in this document is the hierarchical framework. The
general idea of hierarchical MDPmethods is to split the state space into subsets of limited size, compute the local
optimal policies for each subset, and then combine these policies to obtain an optimal policy on the on the global
MDP. These techniques are related with the aggregation we studied in Chapter IV. The idea is similar in that its
goal is to accelerate the convergence by diminishing the dimension of the problem in smaller sub MDPs easier
to solve. Moreover, Guestrin et al. studied the intersection between factored and hierarchical MDP with Linear
Programming [50]. Kozolava [83] also investigated both approaches and this is one path that could be followed
regarding the Chapter VI.
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ANNEXE A

APPENDIX

A.1 Stationary distributions of classical queues
As this chapter treats about Markov Chains and Queuing systems, we briefly recall basics about these two
frameworks that will be used along this chapter. Markov Decision Process has already been described in Chapter
III.

A.1.0.1 Closed forms

The cost function C̃k(m) for the coupling of local search heuristics and initialisation is approximated with an
approximation of the stationary distribution of the system. Here are presented all the formulas for stationary
distribution in queues, that could be useful for the algorithm.

For an M/M/k/∞ queue

πk(m) =


πk(0).

ρm

m!
for 0 ≤ m ≤ k

πk(0).
ρm

Km−k.k!
for k ≤ m ≤ B.

and with

πk(0) =

(
k−1∑
m=0

ρm

m!
+

B∑
m=k

ρm

km−k.k!

)−1

For an M/M/k/B queue

πk(m) =


πk(0).

ρm

m!
for 1 ≤ m ≤ k

πk(0).
am.kk

k!
for k < m ≤ B.

where ρ =
λ

µ
and a =

ρ

k
< 1 and where πk(0) =

(
k−1∑
m=0

ρm

m!
+
ρk

k!

a

1− a

)−1

.
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We can also write πk(0) as :

πk(0) =



(
k−1∑
m=0

ρm

m!
+
ρk

k!
(B − k + 1)

)−1

if ρ = 1,(
k−1∑
m=0

ρm

m!
+
ρk

k!

1− aB−k+1

1− a

)−1

if ρ 6= 1.

For an MM1B with rate k.µ Let a =
λ

k ∗ µ
depending on which level we are.

We have :

∀m = 0, · · · , B, πk(m) =


1

B + 1
if ρ = 1,

(1− a)am

1− aB+1
if ρ 6= 1.

A.1.1 Computation of the stationary distribution
In Chapter IV we refer to two algorithms for computations of the Markov chain stationary distribution in the
general case and also in the aggregation settings for micro-chains :GTH and Power method [7],[66].

A.1.1.1 GTH algorithm

Algorithm 32:Markov chain resolution with GTH
Input:Generator matrixQ
Output: π

1 Consider the transposed of the infinitesimal generatorQT
2 for i = 1, 2, · · · , n− 1 do
3 Compute µi = q(i+ 1, i) + q(i+ 2, i) + · · ·+ q(n, i)
4 for j = i+ 1, i+ 2, · · · , n do
5 Compute q(i, j) = q(i, j)/µi
6 for k = i+ 1, i+ 2, · · · , n avec k 6= j do
7 q(j, k) = q(j, k) + q(j, i) ∗ q(i, k)

8 We obtain the final matrixQ′
9 Let xn = 1

10 for i = n− 1, · · · , 1 do

11 xi =
n∑

j=i+1

q(i, j) ∗ xj

/* Normalisation */

12 LetNorm =
n∑
i=1

xi

13 for i = 1, · · · , n do
14 πi = xi/Norm

177



A.1.1.2 Power method

The Power method algorithm requires to uniformise the continuous timeMarkov chain first to solve πP = P .

Algorithm 33:The power method
Input: Probability transition matrix P ,K periodical renormalisations, ε precision
Output: π
/* Begin */

1 x← any probability distribution
2 n← 0
3 repeat
4 n← n+ 1
5 y ← x× P
6 dist← ||x− y||
7 x← y
8 if nmodK = 0 then
9 x←Renormalise(x)

10 until dist < ε
11 π ←Renormalise(x)
12 return π

Algorithm 34:Renormalise(x) : Renormalisation of a vector
Input:A vector of numbers x indexed by ]x
Output:A vector proportional to xwhich entries sum up to 1

1 Let S ← 0
2 for i ∈ ]x do
3 S ← S + x[i]

4 for i ∈ ]x do
5 x[i]← x[i]/S

6 return x
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RÉSUMÉ EN FRANÇAIS ÉLARGI

Introduction
L’émergence de nouvelles technologies (villes intelligentes, milieu hospitalier, véhicules autonomes, IoT, etc.)
nécessite une allocation efficace des ressources pour satisfaire la demande. Cependant, ces nouveaux besoins
nécessitent une puissance de calcul élevée impliquant une plus grande consommation d’énergie notamment
dans les infrastructures cloud et data centers. Il est donc essentiel de trouver de nouvelles solutions qui peuvent
satisfaire ces besoins tout en réduisant la consommation d’énergie des ressources. Dans cette thèse, nous
proposons et comparons de nouvelles solutions d’IA (apprentissage par renforcement RL) pour orchestrer les
ressources virtuelles dans les environnements de réseaux virtuels de manière à garantir les performances et
minimiser les coûts opérationnels. Nous considérons les systèmes de file d’attente comme un modèle pour les
infrastructures cloud IaaS (Infrastructure as a Service) et apportons des méthodes d’apprentissage pour allouer
efficacement le bon nombre de ressources. Notre objectif est de minimiser une fonction de coût en tenant
compte des coûts de performance et opérationnels/énergétiques. Nous utilisons différents types d’algorithmes
de RL (du « sans-modèle » au «modèle relationnel ») pour apprendre la meilleure politique. L’apprentissage
par renforcement s’intéresse à la manière dont un agent doit agir dans un environnement pour maximiser une
récompense cumulative. Nous développons d’abord un modèle de files d’attente d’un système cloud avec un
nœud physique hébergeant plusieurs ressources virtuelles. Dans cette première partie, nous supposons que
l’agent connaît le modèle (dynamiques de l’environnement et coût), ce qui lui donne la possibilité d’utiliser des
méthodes de programmation dynamique pour le calcul de la politique optimale. Puisque le modèle est connu
dans cette partie, nous nous concentrons également sur les propriétés des politiques optimales, qui sont des
règles basées sur les seuils et l’hystérésis. Cela nous permet d’intégrer la propriété structurelle des politiques dans
les algorithmes MDP. Après avoir fourni un modèle de cloud concret avec des arrivées exponentielles avec des
intensités réelles et des données d’énergie pour le fournisseur de cloud, nous comparons dans cette première
approche l’efficacité et le temps de calcul des algorithmes MDP par rapport aux heuristiques construites sur les
distributions stationnaires de la chaîne de Markov des files d’attente.
L’objectif affiché de la thèse est double. Il s’agit d’une part d’apprendre la politique optimale d’allocation de
ressources dans un environnement de type cloud et d’autre part de concevoir des méthodes d’apprentissages qui
soient à la fois efficientes et adaptées aux problématiques auxquelles est confronté le monde industriel. Les
contributions de la thèse sont réparties en plusieurs chapitres, résumées ci-dessous.
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Littérature
Ce chapitre présente une revue de la littérature sur le Cloud computing, la gestion de l’énergie, les modèles de file
d’attente et les techniques d’optimisation pour l’allocation de ressources dans les systèmes à grande échelles
(centres de calcul, centres de stockages, etc.). Il présente tout d’abord ce qu’est le Cloud, comment il se comporte,
les infrastructures et modèles existants (par exemple, les centres de données) et le cadre de la virtualisation.
Ensuite, il donne un aperçu du domaine de la gestion de l’énergie en présentant le besoin, les solutions pour
mesurer et modéliser l’énergie dans le Cloud ainsi que le paradigme d’allocation dynamique des ressources.
Enfin, il présente les politiques d’auto-dimensionnement dans le Cloud existantes avec des règles basées sur des
seuils, des modèles de file d’attente et des techniques de gestion du contrôle et d’apprentissage par renforcement.
Pour optimiser la consommation énergétique des systèmes considérés, la méthode retenue dans ce document est
la mise en veille des ressources inutilisées. Il s’agit donc d’activer et de désactiver des noeuds de calcul au cours du
temps selon la demande et les engagements pris sur le niveau de service.

Apprentissage par renforcement
Le chapitre 3 présente plus en détail les méthodes d’apprentissage qui seront considérées et étudiées dans les
chapitres suivants. On introduit les bases des processus de décisionMarkoviens avec leurs différentes méthodes
de résolution et les bases de l’apprentissage par renforcement. Les méthodes sont présentées selon le degré de
connaissance du contrôleur, allant de la connaissance parfaite du modèle du système (dynamique et coût) à
l’absence de modèle. La présentation ici préfigure l’ordre de présentation des contributions dans les chapitres
suivants. Ce chapitre fournit également un bref résumé de deux cas d’applications industrielles de l’apprentissage
renforcé sans modèle. Le retour d’expérience apparait mitigé puisque les méthodes utilisées se sont révélées
intéressantes et compétitives dans un cas sur les deux. Le chapitre se conclut sur une comparaison des avantages
et des inconvénients des méthodes avec ou sans modèle.

Processus de décisionMarkovien ouHeuristiques : Comment calculer les poli-
tiques d’auto-dimensionnement dans un système de files d’attente avec unmo-
dèle connu
Dans ce chapitre, nous considérons que l’agent reçoit le véritable modèle de l’environnementM et nous situons
donc dans la classe des algorithmes d’apprentissage par renforcement avec modèle, où le modèle est
préalablement connu par l’agent. Nous considérons un problème d’optimisation d’un coût global tenant
compte de différents coûts : associés aux exigences de performance définies dans un accord de niveau de service
(SLA) et des coûts représentant la consommation d’énergie. Nous voulons calculer la politique optimale
d’activation et de désactivation des serveurs en fonction de l’occupation des requêtes dans la file d’attente. Dans
ce chapitre, nous étudions des modèles dans lesquels la structure de la politique est de type hystérésis.
Cependant, supposer que la politique a une forme d’hystérésis n’est pas suffisant pour caractériser
complètement la politique optimale. Il faut déterminer les valeurs concrètes des seuils. A cette fin, il existe deux
approches de modélisation qui correspondent à deux courants majeurs de la littérature. La première exprime le
problème dans un modèle de problème d’optimisation déterministe. Elle est réalisée par l’utilisation de la valeur
moyenne des coûts calculée par la distribution stationnaire d’une CTMC (Continuous TimeMarkov Chains).
La seconde exprime le problème sous un modèle MDP avec des politiques structurées et calcule la politique
optimale. Mais, bien qu’elles soient les plus utilisées pour le calcul des seuils, l’efficacité de ces deux approches
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n’est pas évaluée très soigneusement pour le calcul des seuils uniques par niveau. En particulier, cela n’a jamais
été fait pour les politiques d’hystérésis. Peu de travaux se sont concentrés sur l’optimalité de la politique
d’hystérésis pour les modèles de Cloud mais, à notre connaissance, aucun sur le calcul des seuils. Déterminer
quelle est la meilleure approche prometteuse et quel est le meilleur modèle à choisir dans une utilisation
pratique est donc un point important qui est abordé ici.
Nous validons également notre approche avec un modèle réel. L’approche est difficile car, à notre connaissance,
il n’existe pas, dans la littérature, un modèle unifié incluant à la fois l’énergie, la qualité de de service et les
paramètres du trafic réel. Nous proposons de construire un coût global prenant en compte à la fois la
consommation réelle d’énergie, les coûts financiers réels des machines virtuelles et de l’accord de niveau de
service (SLA) simultanément. Nous proposons de construire un coût global prenant en compte à la fois la
consommation d’énergie réelle, les coûts financiers réels des machines virtuelles et les accords de niveau de
service (SLA). Nous pensons que le modèle présenté est suffisamment générique pour représenter une large
classe de problèmes et est suffisant pour donner une une signification pertinente à tous les paramètres. Grâce à
nos algorithmes et à ce modèle, les gérants de Cloud peuvent générer des coûts optimisés significatifs dans des cas
réels.
Toutefois, ce chapitre émet une hypothèse très forte : assummer que l’agent connait le modèle exact de
l’environnement. En pratique, c’est rarement le cas et il faut trouver des solutions plus adaptées qui peuvent
apprendre une politique optimale dans des environnements partiellement connus.

Apprentissage par renforcement basé sur un modèle pour les réseaux multi-
tiers
Un des défi majeur de l’allocation des ressources dans le Cloud porte sur le fait que les experts ne connaissent pas
facilement les statistiques exactes du système (arrivées des requêtes, taux de services) dans les environnements
réels, car ils évoluent trop rapidement. Par conséquent, un agent logiciel ne possède aucun modèle précis de
l’environnement pour le calcul de la politique optimale. Cela nécessite l’implémentation de solutions
d’apprentissage par renforcement qui permettent l’apprentissage de politiques dans des environnements
inconnus. D’autre part, nous ne sommes pas sûrs que les approches des praticiens soient robustes (souvent très
expérimentales). La plupart des travaux concernant l’apprentissage par renforcement pour l’allocation de
ressources dans le Cloud sont consacrés à des techniques sans modèle telles que l’algorithme du Q-Learning ou
ou de l’apprentissage par renforcement profond, mais il n’existe aucune application de techniques basées sur des
modèles pour de tels problématiques.
Dans ce chapitre, nous voulons évaluer les approches d’apprentissage par renforcement basées sur les modèles
dans le cas des réseaux de files d’attente, ce qui a été peu fait jusqu’à présent. De plus, nous voulons étendre la
gamme des modèles étudiés dans le chapitre précédent pour aller au-delà du simple modèle multi-serveur en
considérant une application réseau avec plusieurs files d’attente, ce qui permet de mieux représenter les
architectures multi-tiers, ce qui n’a pas non plus été beaucoup fait dans la littérature. Par conséquent, nous
supposons maintenant que l’agent logiciel ne porte pas la connaissance du modèle MDP. L’objectif est donc
d’adopter les approches RL basées sur les modèles, en particulier les architectures Dyna et les techniques de
controle adaptatif afin d’évaluer leur pertinence, si jamais, ou de les améliorer pour l’allocation dynamique des
ressources dans les systèmes de réseaux de files d’attente. De plus, nous voulons évaluer la robustesse de ces
approches dans des cas d’utilisation où les arrivées peuvent arriver massivement de manière très brusque.
Ce chapitre donne d’abord un aperçu plus détaillé des techniques d’apprentissage par renforcement basées sur
des modèles, puis présente deux modèles de file d’attente pour exprimer les architectures de réseau multi-tiers. Il
montre ensuite comment nous avons sélectionné les techniques d’apprentissage par renforcement basées sur des
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modèles en fournissant un algorithme général et comment nous les avons paramétrées pour les comparer à l’état
de l’art de l’apprentissage par renforcement sans modèle sur un réseau Cloud multi-tier. Enfin, nous présentons
les résultats de la comparaison entre les techniques RL sur différents scénarios et paramètres de Cloud dans un
environnement simulé, démontrant le gain des techniques RL basées sur le modèle.

Apprentissage par renforcement factorisé pour les réseaux multi-tiers
Dans les chapitres précédents, nous n’avons considéré que des représentations tabulaires de la dynamique et des
modèles de récompense, ce qui peut s’avérer peu pratique dans des environnements à grande échelle avec des
espaces d’état et d’action de très grande taille. Le cadre de l’apprentissage par renforcement factorisé permet de
représenter de manière plus compacte le modèleM de l’environnement en intégrant les relations entre les
variables d’environnement. Dans les environnements qui ont des relations spécifiques entre les variables d’état, il
pourrait être très bénéfique d’utiliser cette représentation pour accélérer la convergence et la facilité
d’implémentation.
La dernière partie, divisé en deux chapitres, se concentre donc sur les techniques de RL basées sur des modèles
avec une structure relationnelle entre les variables d’état. Comme ces réseaux en tandem ont des propriétés
structurelles dues à la forme de l’infrastructure Cloud, nous intégrons les approches factorisées et causales aux
méthodes de RL pour inclure cette connaissance. Nous fournissons à l’agent une connaissance relationnelle de
l’environnement qui lui permet de comprendre comment les variables sont reliées. L’objectif principal est
d’accélérer la convergence : d’abord avec une représentation plus compacte avec la factorisation où nous
concevons un algorithme en ligne de MDP factorisé que nous comparons avec des algorithmes de RL sans
modèle et basés sur un modèle ; ensuite en intégrant le raisonnement causal et contrefactuel qui peut traiter les
environnements avec des observations partielles et des facteurs de confusion non observés.

Conclusion
Le chapitre 8 présente une nouvelle taxonomie de toutes les méthodes d’apprentissage abordées et mentionnées
dans la thèse, avec une vision structurelle de l’apprentissage par renforcement découplé en 3 socles : MDP, MDP
factorisé et MDP causal. Finalement, le chapitre reprend toutes les contributions et leurs perspectives, et
notamment les différentes pistes envisagées afin de consolider la partie expérimentale.
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Titre : Apprentissage par renforcement basé sur un modèle pour l’allocation dynamique des ressources dans
les environnements Cloud

Mots clés : Apprentissage par renforcement, Politiques d’auto-scaling, Cloud, Hysteresis, Apprentissage par
renforcement factorisé, Apprentissage par renforcement causal

Résumé : L’émergence de nouvelles technologies
nécessite une allocation efficace des ressources pour
satisfaire la demande. Cependant, ces nouveaux be-
soins nécessitent une puissance de calcul élevée im-
pliquant une plus grande consommation d’énergie
notamment dans les infrastructures cloud et data
centers. Il est donc essentiel de trouver de nou-
velles solutions qui peuvent satisfaire ces besoins
tout en réduisant la consommation d’énergie des res-
sources. Dans cette thèse, nous proposons et com-
parons de nouvelles solutions d’IA (apprentissage
par renforcement RL) pour orchestrer les ressources
virtuelles dans les environnements de réseaux vir-
tuels de manière à garantir les performances et mi-
nimiser les coûts opérationnels. Nous considérons
les systèmes de file d’attente comme un modèle
pour les infrastructures cloud IaaS et apportons des
méthodes d’apprentissage pour allouer efficacement
le bon nombre de ressources. Notre objectif est de
minimiser une fonction de coût en tenant compte
des coûts de performance et opérationnels. Nous
utilisons différents types d’algorithmes de RL (du
� sans-modèle � au modèle relationnel) pour ap-
prendre la meilleure politique. L’apprentissage par
renforcement s’intéresse à la manière dont un agent
doit agir dans un environnement pour maximiser une
récompense cumulative. Nous développons d’abord
un modèle de files d’attente d’un système cloud avec
un nœud physique hébergeant plusieurs ressources
virtuelles. Dans cette première partie, nous suppo-
sons que l’agent connaı̂t le modèle (dynamiques de
l’environnement et coût), ce qui lui donne la possibi-
lité d’utiliser des méthodes de programmation dyna-
mique pour le calcul de la politique optimale. Puisque
le modèle est connu dans cette partie, nous nous
concentrons également sur les propriétés des poli-
tiques optimales, qui sont des règles basées sur les
seuils et l’hystérésis. Cela nous permet d’intégrer la
propriété structurelle des politiques dans les algo-
rithmes MDP. Après avoir fourni un modèle de cloud

concret avec des arrivées exponentielles avec des
intensités réelles et des données d’énergie pour le
fournisseur de cloud, nous comparons dans cette
première approche l’efficacité et le temps de cal-
cul des algorithmes MDP par rapport aux heuris-
tiques construites sur les distributions stationnaires
de la chaı̂ne de Markov des files d’attente. Dans une
deuxième partie, nous considérons que l’agent n’a
pas accès au modèle de l’environnement et nous
concentrons notre travail sur les techniques de RL.
Nous évaluons d’abord des méthodes basées sur un
modèle où l’agent peut réutiliser son expérience pour
mettre à jour sa fonction de valeur. Nous considérons
également des techniques de MDP en ligne où l’agent
autonome approxime le modèle pour effectuer une
programmation dynamique. Cette partie est évaluée
dans un environnement plus large avec deux nœuds
physiques en tandem et nous évaluons le temps de
convergence et la précision des différentes méthodes,
principalement les techniques basées sur un modèle
par rapport aux méthodes sans modèle de l’état de
l’art. La dernière partie se concentre sur les tech-
niques de RL basées sur des modèles avec une struc-
ture relationnelle entre les variables d’état. Comme
ces réseaux en tandem ont des propriétés struc-
turelles dues à la forme de l’infrastructure, nous
intégrons les approches factorisées et causales aux
méthodes de RL pour inclure cette connaissance.
Nous fournissons à l’agent une connaissance rela-
tionnelle de l’environnement qui lui permet de com-
prendre comment les variables sont reliées. L’objec-
tif principal est d’accélérer la convergence : d’abord
avec une représentation plus compacte avec la facto-
risation où nous concevons un algorithme en ligne de
MDP factorisé que nous comparons avec des algo-
rithmes de RL sans modèle et basés sur un modèle ;
ensuite en intégrant le raisonnement causal et contre-
factuel qui peut traiter les environnements avec des
observations partielles et des facteurs de confusion
non observés.



Title : Model-Based Reinforcement Learning for Dynamic Resource Allocation in Cloud Environments

Keywords : Reinforcement Learning, Auto-scaling policies, Cloud, Hysteresis, Factored reinforcement lear-
ning, Causal reinforcement learning

Abstract : The emergence of new technologies (In-
ternet of Things, smart cities, autonomous vehicles,
health, industrial automation, ...) requires efficient re-
source allocation to satisfy the demand. These new
offers are compatible with new 5G network infrastruc-
ture since it can provide low latency and reliability.
However, these new needs require high computatio-
nal power to fulfill the demand, implying more energy
consumption in particular in cloud infrastructures and
more particularly in data centers. Therefore, it is criti-
cal to find new solutions that can satisfy these needs
still reducing the power usage of resources in cloud
environments. In this thesis we propose and com-
pare new AI solutions (Reinforcement Learning) to
orchestrate virtual resources in virtual network en-
vironments such that performances are guaranteed
and operational costs are minimised. We consider
queuing systems as a model for clouds IaaS infra-
structures and bring learning methodologies to effi-
ciently allocate the right number of resources for the
users. Our objective is to minimise a cost function
considering performance costs and operational costs.
We go through different types of reinforcement lear-
ning algorithms (from model-free to relational model-
based) to learn the best policy. Reinforcement lear-
ning is concerned with how a software agent ought
to take actions in an environment to maximise some
cumulative reward. We first develop queuing model of
a cloud system with one physical node hosting seve-
ral virtual resources. On this first part we assume the
agent perfectly knows the model (dynamics of the en-
vironment and the cost function), giving him the op-
portunity to perform dynamic programming methods
for optimal policy computation. Since the model is
known in this part, we also concentrate on the proper-
ties of the optimal policies, which are threshold-based
and hysteresis-based rules. This allows us to integrate
the structural property of the policies into MDP algo-

rithms. After providing a concrete cloud model with
exponential arrivals with real intensities and energy
data for cloud provider, we compare in this first ap-
proach efficiency and time computation of MDP algo-
rithms against heuristics built on top of the queuing
Markov Chain stationary distributions. In a second
part we consider that the agent does not have ac-
cess to the model of the environment and concen-
trate our work with reinforcement learning techniques,
especially model-based reinforcement learning. We
first develop model-based reinforcement learning me-
thods where the agent can re-use its experience re-
play to update its value function. We also consider
MDP online techniques where the autonomous agent
approximates environment model to perform dyna-
mic programming. This part is evaluated in a larger
network environment with two physical nodes in tan-
dem and we assess convergence time and accuracy
of different reinforcement learning methods, mainly
model-based techniques versus the state-of-the-art
model-free methods (e.g. Q-Learning). The last part
focuses on model-based reinforcement learning tech-
niques with relational structure between environment
variables. As these tandem networks have structural
properties due to their infrastructure shape, we inves-
tigate factored and causal approaches built-in rein-
forcement learning methods to integrate this informa-
tion. We provide the autonomous agent with a rela-
tional knowledge of the environment where it can un-
derstand how variables are related to each other. The
main goal is to accelerate convergence by : first ha-
ving a more compact representation with factorisa-
tion where we devise a factored MDP online algorithm
that we evaluate and compare with model-free and
model-based reinforcement learning algorithms ; se-
cond integrating causal and counterfactual reasoning
that can tackle environments with partial observations
and unobserved confounders.
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