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Chapter 1

Introduction 1.1 Generality

The aim of theoretical chemistry is to mathematically describe chemical and biochemical systems in order to predicts their properties. Formally, in quantum chemistry, one must solve the Schrödinger equation but, except for the hydrogen atom and its isoelectronic ions (the so-called hydrogen-like ions), the many-body problem cannot be solved without approximation. One of the most common approximations is the basis set approximation where, roughly speaking, one "discretizes" the Hilbert space. Within this approximation, the full configuration interaction (FCI) wave function and energy represent the exact solution of the Schrödinger equation but, unfortunately, the computational cost of this method scales exponentially with system size and so can only be applied to very small systems.

The most basic approximation of quantum chemistry (and usually the starting point of any correlated treatment) is the Hartree-Fock (HF) method [START_REF] Szabo | Modern quantum chemistry: introduction to advanced electronic structure theory[END_REF]. HF is what we call a mean-field method because the electron-electron interaction is treated approximately as an averaged interaction. More specifically, within the HF approximation, each electron "feels" the averaged interaction of the remaining electrons. The computational cost of such mean-field method is cubic with system size and can then be applied to large systems. Importantly, the energetic error associated with HF, i.e., the energy difference between the exact solution of the Schrödinger equation and the HF energy is called the correlation energy [START_REF] Helgaker | Molecular electronic-structure theory[END_REF][START_REF] Jensen | Introduction to computational chemistry[END_REF], a very central quantity in electronic structure theory.

Even though, since the advent of computer [START_REF] Turing | On computable numbers, with an application to the entscheidungsproblem[END_REF], one has access to more and more computational power, one can compute the FCI energy only for very small systems. Hence, one has to rely on approximations or alternative ansatz as FCI is usually too expensive. These approximations form a large family of models that range from expensive quantum chemistry methods to inexpensive molecular mechanics methods. Of course, the introduction of approximations induces errors on the properties or/and unphysical artifacts. Over the years, many different basis sets and many methods have been developed and used by theoretical chemists around the world, each of them having their own pros and cons. One of the main skills of quantum chemists is to be able to choose the right combination of method and basis for a given purpose.

Excited states

Within a given basis, the FCI Hamiltonian has many roots (or eigenstates), each corresponding to a different electronic state with a well-defined energy. The lowest-energy state is named the ground state while the higher-energy roots are excited states. Though it is already hard to obtain accurate energies and properties for the ground state, it is usually even more challenging for excited states. Hence, the difficulty of finding an appropriate method is really present in the context of excited states. Electronic excited states are especially relevant for photochemical reactions because one must calculate excitation energies defined as the energy difference between two electronic states. fluo in blue are respectively the absorption and fluorescence vertical transition energies. E adia in green is the adiabatic transition energy and E 0-0 in purple is the 0-0 transition energy. The E GS reorg and E ES reorg in orange are respectively the ground state and excited states (geometrical) reorganization energy. All these energies are defined as positive quantities [START_REF] Loos | Evaluating 0-0 energies with theoretical tools: a short review[END_REF].

Methods for excited states

As shown in Figure 1.1, there are different types of excitation energies. First, we have vertical transitions for which the electronic transition between the two states occurs without geometry relaxation. In absorption and fluorescence, one starts respectively from the geometry of the lowestenergy state (usually the ground state) and from the geometry of a given excited state. In adiabatic transitions, the geometry of the system relaxes to their corresponding minimum of the potential energy surface. In practice, we must therefore optimize not only the geometry of the lowest-energy state, but also the excited-state geometry. This can be a real technical and computational challenge for methods targeting excited states as one must have access to the first derivatives of the energy with respect to the nuclear displacements (Table 1.1). Last but not least, 0-0 energies are adiabatic energies where one takes into account zero-point vibrational energy (ZPVE) corrections for both states. However, the ZPVE correction represents a significant additional computational cost as one has to compute the second derivatives of the energy with respect to the nuclear displacements.

Unfortunately, for the most expensive methods, this type of calculations is not possible with the current implementations and machines. Note that, although 0-0 transition energies are much more expensive from a computational point of view, they have the huge benefit to be directly comparable with experimental data (which is not the case of vertical excitation energies as commonly and wrongly done in the literature) [START_REF] Loos | Evaluating 0-0 energies with theoretical tools: a short review[END_REF].

The first mainstream ab initio method for excited states was probably configuration interaction with singles (CIS), which has been around since the 1970s [START_REF] Bene | Self-consistent molecular orbital methods. x. molecular orbital studies of excited states with minimal and extended basis sets[END_REF]. Overall, this method overestimates significantly the energy of the excited states, and it is quite usual to have an error of ∼1 eV. Because CIS often provides an incorrect energetic ordering of the excited states, it is usually dangerous to use CIS as a qualitative method. Twenty years later, a second-order perturbative correction was added to the CIS and gave birth to CIS(D) [START_REF] Head-Gordon | A doubles correction to electronic excited states from configuration interaction in the space of single substitutions[END_REF][START_REF] Ishikawa | Analytical gradient of the CIS(D) perturbative correction to single-excitation configuration interaction excited states[END_REF]. This second-order correction greatly improves the accuracy with typical errors in the range 0.2-0.3 eV. In the early 90s, the complete active space self-consistent field (CASSCF) method [START_REF] Roos | A complete active space scf method (casscf) using a density matrix formulated super-ci approach[END_REF][START_REF] Andersson | Second-order perturbation theory with a CASSCF reference function[END_REF] and, especially, its CASPT2 extension [START_REF] Andersson | Second-order perturbation theory with a complete active space self-consistent field reference function[END_REF] (where 1.3. Methods for excited states one computes a second-order perturbative correction to take into account the missing dynamical correlation) were a real breakthrough. Even if it took more than 10 years to obtain analytical gradients [START_REF] Celani | Analytical energy gradients for internally contracted second-order multireference perturbation theory[END_REF], CASPT2 was probably the first method that could provides quantitative excitation energies for chemically-interesting molecular systems [START_REF] Roos | Multiconfigurational perturbation theory: applications in electronic spectroscopy[END_REF]. However, in its standard settings, it clearly underestimates vertical excitation energies in organic molecules. In the early 2000s, NEVPT2 (which fixes some of the issues of CASPT2) was developed by Angeli, Malrieu and coworkers [START_REF] Angeli | Introduction of nelectron valence states for multireference perturbation theory[END_REF]. CASPT2 and NEVPT2 permit to obtain more accurate results (0.1-0.2 eV) and access double excitations. The advent of time-dependent density-functional theory (TD-DFT) [START_REF] Runge | Density-functional theory for time-dependent systems[END_REF][START_REF] Casida | Time-dependent density functional response theory for molecules[END_REF] had a significant impact on theoretical chemistry community because it gave the possibility to obtain relatively accurate excitations energies (0.2-0.4 eV) with a (much) lower cost because TD-DFT scales, in its standard implementation, as O(N 4 ) (where N is proportional to the system size). It is currently one of the methods of choice for photochemistry though it suffers from many problems associated with, for example, charge-transfer states [17,18], Rydberg states [19], and double excitations [20][21][22]. Another method also developed in the 2000s is equation-of-motion coupled cluster with singles and doubles (EOM-CCSD) [23] where it is not unusual to have errors as small as 0.1 eV and 0.2 eV for small and larger compounds, respectively. Another variant (EOM-CCSDT) includes triple excitations but with a higher cost [24]. The second-and third-order approximate coupled cluster methods, CC2 [25] and CC3 [26], where one skips the most expensive terms and avoids the storage of the higher-excitation amplitudes, were developed few years after. The CC3 method is particularly interesting because it provides almost systematically chemically-accurate excitation energies for single transitions with an error of ∼0.04 eV at a reduced cost (O(N 7 )) compared to CCSDT (O(N 8)). The recent and efficient reimplementation of the ADC (2) [27] and ADC (3) [28, 29] Green's function-based methods makes them competitive with coupled-clsuter methods, especially ADC( 2) that provides satisfactory results (0.1-0.2 eV) with a O(N 5 ) scaling only [30-33]. Finally, the recent development of highly parallel selected configuration interaction (SCI) methods (where one only selects the relevant determinants from the FCI space via a predefined criterion) [34,[START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] provides near-FCI quality energies [30,[START_REF] Loos | Reference energies for double excitations[END_REF][START_REF] Holmes | Excited states using semistochastic heat-bath configuration interaction[END_REF][START_REF] Chien | Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction[END_REF] at a relatively cheap price compared to FCI. However, even if the prefactor of SCI methods is reduced, their overall scaling remains exponential with system size (see Table 1.1).

Everything that has been said in the previous paragraph is only correct in the case of single excitations (i.e., excitations with a dominant contribution from the singly-excited determinants) but one can also encounter double excitations (i.e., excitations with a dominant contribution from the doubly-excited determinants) that can be relevant in particular class of systems, such as polyenes [START_REF] Loos | Reference energies for double excitations[END_REF]. However, from a theoretical point of view, one cannot strictly classified an excitation as single or double excitation as every transition is a complicated mixture of singles, doubles, triples, and higher excitations. Therefore, it is common to define %T 1 , the percentage of singly-excited determinants involved in the transition, to assess the extent to which this excitation can be considered as a genuine single excitation. For small %T 1 values, it has been shown [START_REF] Loos | Reference energies for double excitations[END_REF] that CASSCF-based models are better than methods based on response formalism (such as CC3). In the latter case, the introduction of quadruple excitations is mandatory to reach high accuracy in order to reach a balanced treatment of the ground and excited states. This drawback of linear-response and equation-of-motion formalisms has been referred to as the sin of the ground state by Burke and coworkers [START_REF] Burke | Time-dependent density functional theory: past, present, and future[END_REF] due to their natural bias towards the ground state. That explains why CC3 and other similar methods describe correctly single excitations but badly double excitations.

In summary, during the last decades, theoretical chemists have continued to innovate and improve the accuracy of excited-state methods in order to faithfully describe the various types of electronic transitions present in chemical and biochemical systems. One can safely conclude from our discussion above that there is no perfect method for every situations as many factors must be taken into account, such as the type of excitations (single, double, . . . ) or its physical nature (charge transfer, Rydberg, . . . ). Therefore, it is challenging to find a systematic protocol to accurately compute excitations energies. Nonetheless, a tentative of such systematic procedure is actually the aim of the QUEST project that we are going to discuss in Chapter 4. TABLE 1.1: Formal computational scaling of various excited-state methods with respect to the number of one-electron basis functions N and the accessibility of various key properties in popular computational software packages. For organic derivatives, the typical error range for single excitations is also provided as a qualitative indicator of the method accuracy [START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]. a The error range is strongly functional and state dependent. The values reported here are for well-behaved cases; b Typical error bar for singlet transitions. Larger errors are often observed for triplet excitations. TABLE 1.2: Curie CPUs specifications [41,42] Intel ® Xeon ® E5 Gold 2670@2.60 GHz 2680 v2@2.80 GHz 2680 v3@2.50 GHz 2680 v4@2. [START_REF] Burke | Time-dependent density functional theory: past, present, and future[END_REF] 

Computational resources 1.4.1 Curie

We rely on different computational strategies based on the size of the system that is studied and the method used. We have indeed access to several clusters with different computational power.

The first cluster we have access to is Curie, the cluster of our laboratory, that is used for "small" calculations. Curie has many types of partitions with many types of processor. Here we will talk only about xeon nodes (see Table 1. [START_REF] Jensen | Introduction to computational chemistry[END_REF]. With the set of Intel ® Xeon ® CPUs (Central Processing Units) (see Table 1.2) available in Curie, we can see that the evolution of processors is not currently performed by an improvement in terms of frequencies, but rather by an increase in parallelization through multi-core architectures with more and more cores and by a vectorization of calculations through the Advanced Vector Extensions (AVX) and its improvements. Unfortunately our quantum chemistry programs must be adapted to these new architectures by offering massively parallel implementation to our methods [START_REF] Sutter | Software and the concurrency revolution[END_REF].

We can calculate theoretically the flops (floating point operations per second) per node using the equation below Flops = n core × f req × Flops Cycle (1.1) where n core is the number of processor cores, f req is the processor frequency, and Flops Cycle is the number of double precision operation per cycle. This value depends on the possibility of a CPU to make multiple addition and multiplication operations per cycle for example with FMA and/or with the possibility to vectorize calculation using AVX. With the exception of xeonv6, we have an increase number of Flops/node (see Table 1.3).

Olympe

When we have to perform heavier calculations, we have access to the CALMIP computational resources. In 2018, CALMIP abandoned its 4-year old EOS cluster for a five times more powerful cluster named Olympe. Each CPU node of Olympe has a Skylake, Intel ® Xeon ® Gold 6140@2.30 GHz (see Table 1.4).

There are two types of nodes on Olympe, some with only CPUs and some hybrids with CPUs and a GPU (Graphics Processing Unit) also named accelerator card because the usage of this type of card is not limited to the graphics related operations but also for HPC (High Performance Computing) as it is the case here (see Table 1.5) We may notice that on Olympe, a calculation TABLE 1.4: Olympe CPU (Intel ® Xeon ® Gold 6140@2.30 GHz) specifications [41,42,[START_REF]Caractéristiques techniques du système de calcul olympe[END_REF] Processor accelerated by GPU will be able to be 14 times faster. However, in the same way as for the multicore architectures, to benefit from the computational power of the CPU/GPU hybrid nodes, one must change the implementation of the codes to adapt it to the GPU architecture. If we compare a CPU node of Olympe and a xeonv5 node which is the best type of Curie CPU node, we can see that there is no significant difference in term of computational power between a xeonv5 Curie node and a Sequana X1120 Olympe node, but on Curie, we have 180 times less xeonv5 nodes that Olympe has Sequana X1120 nodes.

Joliot-Curie

The TGCC Joliot-Curie of GENCI-CEA is another computational resource used for this thesis. This cluster has two Intel ® CPU partition one called SKL Irene with a CPU Intel ® skylake. Another called KNL Irene with a CPU Intel ® Knight Landing. There is also the partition AMD Irene Rome with an AMD Epyc ™ Rome processor (see Table 1.6). A CPU/GPU hybrid partition called Irene V100 is also available with an Intel ® Cascade Lake CPU and an accelerator card NVIDIA ® V100.

If we compare Olympe and Joliot-Curie, we can see that for example for an Olympe Sequana X1120 node and a SKL Irene node from Joliot-Curie that a SKL Irene node is 2 times more powerful than a Sequana X1120 Olympe node. And theoretically if we take all the nodes of each partition then we would have 9 times more computing power with the SKL Irene nodes than with Sequana X1120 nodes. 42,[START_REF][END_REF] Intel ® Xeon ® AMD Epyc ™ Platinum8168@2.70 GHz Phi7250@2.30 GHz Rome7H12@2. 60 3 TFlops 3 TB a Intel ® Xeon ® Platinum 8168@2.70 GHz b Intel ® Xeon Phi ™ 7250 c AMD Epyc ™ Rome@2.60 GHz d NVIDIA ® V100

Structure of the manuscript

The main purpose of this thesis is the accurate calculation of excited states with various methods (ranging from relatively cheap Green's function methods like GW to very expensive SCI methods) in order to create a database of excitation energies that allows to evaluate the accuracy of a given method thanks to the generation of a large number of statistical quantities. This database has been designed to be the most diverse possible and is divided into several subsets gathering from small, medium and large molecules, double excitations, singlet, doublet, and triplet transitions, more "exotic" molecules, etc. We are also interested in the accurate calculation of ground-state energies for cyclic molecules like furan or benzene. Another subject addressed in my thesis is the development of web tools for quantum chemistry. Indeed we have developed two web tools. The first one is a web terminal that offers to potential future users of the quantum chemistry software QUANTUM PACKAGE the possibility to test it without the burden of the installation. The second is a website created for the QUEST project in order to perform cross-comparisons between quantum chemistry methods thanks to statistics but also simply to gather the huge amount of data generated by this project.

More specifically this manuscript contains five parts. Chapter 2 introduces the methodology and the some of the mainstream methods of quantum chemistry. First, of course, we start with the Schrödinger equation and then the Hartree-Fock approximation. After that, we talk about the main methods used in this manuscript like CI. We describe CI methods in their full and truncated versions but also its selected variant called CIPSI which consists in selecting iteratively the most important determinants, allowing to move towards the FCI limit as quickly as possible. This method is very important for the third, fourth and fifth parts of the manuscript. We will also discuss about coupled cluster, another quantum chemistry method that relies on an exponential ansatz for the many-body wave function. This type of methods is considered in the fourth part of the manuscript.

In Chapter 3, we will take time to introduce GW approximations, a family of methods that can be applied as post-Kohn-Sham or post-Hartree-Fock corrections and that rely on the one-body Green's function G. Electron correlation is explicitly incorporated via a sequence of self-consistent steps connected by Hedin's equations [START_REF] Hedin | New method for calculating the one-particle Green's function with application to the electron-gas problem[END_REF] that transform an unsolvable many-electron problem into a set of non-linear one-electron equations thanks to the introduction of an effective potential Σ named the self-energy. Hedin's approach uses a screened Coulomb interaction W instead of the standard bare Coulomb interaction. The GW methods are central in the second part of the manuscript, which is concerned with (unphysical) discontinuities in GW methods, a consequence of the mathematical structure of Σ. In this part, we describe our study of these discontinuities and the influence of the type of GW methods that one employs.

In Chapter 4, we describe the QUEST project which concerns transition energies and excited states in molecular systems. The aim of this research project is to create reference absorption and fluorescence energies with computational chemistry tools, leading to chemically accurate vertical transition energies for small-, medium-and large-sized molecules. To do this, we use a composite protocol that combines SCI and high-level coupled cluster calculations. Having at hand these reference energies, we then compare the respective accuracy of lower-level methods using various Chapter 1. Introduction statistical tools and quantities. All of these data are gathered in a website specifically designed for the present project that allows to view the data of the QUEST project and generate on-the-fly statistics to allow the user to compare methods specifically for his/her own purposes.

Chapter 5 describes the quantum chemistry software called QUANTUM PACKAGE developed in our group and our work to offer an interactive demo of this software directly in the web browser. QUANTUM PACKAGE is a determinant-driven open-source programming environment for quantum chemistry (and beyond) specifically designed for wave function methods. The flagship method of QUANTUM PACKAGE is the SCI algorithm named CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively). The philosophy of QUANTUM PACKAGE is to create an easy-to-develop quantum chemistry software (using the IRPF90 preprocessor and a plug-in system) and easy to use (using QUANTUM PACKAGE SHELL). We use a LINUX container with an expiration time as a sandbox where the user can test QUANTUM PACKAGE. In Chapter 6, pursuing the recent work of our team on the benzene molecule, we undertook to compute accurate (with an error smaller than 1 mE h ) FCI frozen-core correlation energy estimates for the twelve five-and six-membered ring molecules present in the QUEST project in the cc-pVDZ basis set. Our near-FCI estimates are based on energetically optimized-orbital CIPSI calculations. Based on these valuable reference correlation energies, we benchmarked several well-known families of methods and study their convergence properties.

Finally, in Chapter 7, we draw our conclusions and discuss prospects.

Chapter 2

Quantum chemistry methods

In this chapter we provide details about the main concepts and methods used in the present thesis.

Atomic units

Generally, in macroscopic physics, we use the international system of units (also called SI). In quantum mechanics, however, it is more convenient to use another unit system named atomic units (a.u.), where some constants are arbitrary set to 1 and form the base units (see Table 2.1). Widely-used atomic units are the Bohr radius (a 0 ) for the length and Hartree (E h ) for the energy:

a 0 = 4π 0 h2 m e e 2 = 1 k e h2 m e e 2
(2.1)

E h = h2 m e a 0 2
(2.2)

Throughout this thesis, we consistently used atomic units unless otherwise stated.

Schrödinger equation

The Schrödinger equation, where one applies the Hamiltonian operator Ĥ to the wave function Ψ, has two different forms, time-dependent and time-independent, that are used respectively for non-stationary and stationary states. The wave function depends on the vector X = (R, S) = x 1 , . . . , x p which is a composite coordinate vector gathering the spin coordinates S = s 1 , . . . , s p and the space coordinates R = r 1 , . . . , r p with p the number of particles. In the case of the time-dependent Schrödinger equation, Ψ depends on the time t as additional argument i ∂Ψ(X, t) ∂t = ĤΨ(X, t).

(2.

3)

The time-independent expression is an eigenvalue equation with the energy E as eigenvalue and with its corresponding wave function as eigenvector: ĤΨ(X) = EΨ(X).

(2.4) Chapter 2. Methods

The Hamiltonian operator Ĥ is the operator that provides, via its expectation value, the energy of the system. In non-relativistic quantum mechanics, the molecular Hamiltonian reads Ĥ = Te + Ven + Vee + Tn + Vnn = -

N ∑ i ∇ 2 i 2 - N ∑ i M ∑ A Z A r Ai + N ∑ i<j 1 r ij - M ∑ A ∇ 2 A 2 + M ∑ A<B Z A Z B r AB , (2.5) 
where r pq is the distance between the particles p and q, N is the number of electrons, M is the number of nuclei, A and B are two nuclei and i and j are two electrons. Thus, the total energy corresponds to the sum of the kinetic energy of the electrons ( Te ), the kinetic energy of the nuclei ( Tn ), the energy associated with the Coulomb attraction between electrons and nuclei ( Ven ), the Coulomb repulsion between electrons ( Vee ), and the Coulomb repulsion between nuclei ( Vnn ).

Born-Oppenheimer approximation

For any nucleus n we have m e m n , therefore, one can assume that the nuclei are fixed (at least compared to the electrons). Hence, one can decouple the motions of electrons and nuclei and, consequently, separate the Hamiltonian operator as the sum of a nuclear Hamiltonian Ĥn and an electronic Hamiltonian Ĥe , such that Ĥ = Ĥe + Ĥn , (2.6) with Ĥe = Te + Ven + Vee , (2.7a) Ĥn = Tn + Vnn .

(2.7b)

Within the so-called Born-Oppenheimer approximation, the electronic Hamiltonian Ĥe reads explicitly Ĥe = -

N ∑ i ∇ 2 i 2 - N ∑ i M ∑ A Z A r Ai + N ∑ i<j 1 r ij .
(2.8)

The Hartree-Fock approximation

Within the Hartree-Fock (HF) approximation, the many-electron wave function is defined as a Slater determinant

Ψ HF (X) = 1 √ N! ψ 1 (x 1 ) ψ 2 (x 1 ) . . . ψ N (x 1 ) ψ 1 (x 2 ) ψ 2 (x 2 ) . . . ψ N (x 2 ) . . . . . . . . . . . . ψ 1 (x N ) ψ 2 (x N ) . . . ψ N (x N ) , ( 2.9) 
made of N one-electron wave functions known as spinorbitals ψ i (x) = φ i (r)σ(s), (2.10) where σ(s) is its spin part σ(s) = α(s), for spin-up electrons, β(s), for spin-down electrons, (2.11) and φ i (r) is its spatial part. A key property of the the spinorbitals is that they form an orthonormal basis, i.e., ψ i ψ j = δ ij , (2.12) where δ ij is the Kronecker delta defined as

δ ij = 1, if i = j 0, otherwise. (2.13)
Now, one can define the HF energy, E HF , as the expectation value of the Hamiltonian operator with respect to Ψ HF : .14) In the spinorbital basis, the HF energy reads .15) where one usually defines three operators:

E HF = Ψ HF | Ĥ|Ψ HF Ψ HF |Ψ HF . ( 2 
E HF = N ∑ i ψ i (x 1 )| Ĥc |ψ i (x 1 ) + N ∑ i<j ψ i (x 1 )ψ j (x 2 ) 1 r 12 ψ i (x 1 )ψ j (x 2 ) -ψ i (x 1 )ψ j (x 2 ) 1 r 12 ψ j (x 1 )ψ i (x 2 ) . ( 2 
• The one-electron core Hamiltonian Ĥc = Te + Ven .

(2.16)

• The two-electron Coulomb operator Ĵi (x 1 )ψ j (x 1 ) = ψ j (x 1 )

ψ i (x 2 ) 1 r 12 ψ i (x 2 )dx 2 .
(2.17)

• The two-electron exchange operator Ki (x 1 )ψ j (x 1 ) = ψ i (x 1 ) ψ i (x 2 ) 1 r 12 ψ j (x 2 )dx 2 .

(2.18)

Moreover, the stationarity of the HF energy with respect to the spinorbitals allows us to define the Fock operator F as F ψ i (x 1 ) = ε i ψ i (x 1 ), (2.19)

F (x 1 ) = Ĥc (x 1 ) + N ∑ i
Ĵi (x 1 ) -Ki (x 1 ) , (2.20) the spinorbitals ψ i (x) being defined as the eigenfunctions of F with ε i their corresponding oneelectron energies.

Restricted Hartree-Fock

Within the restricted Hartree-Fock (RHF) approximation that applies to closed-shell systems (i.e., a system where each spatial orbital is doubly-occupied by a pair of electrons), we assume that the spatial part of the spinorbitals is independent to the spin of the electrons:

Fφ i (r 1 ) = ε i φ i (r 1 ), (2.21) Chapter 2. Methods where, in this case, the Fock operator becomes

F = Ĥc + N/2 ∑ i 2 Ĵi -Ki , (2.22) with 
• The Coulomb operator Ĵi (r 1 )φ j (r 1 ) = φ j (r 1 ) φ i (r 2 ) 1 r 12 φ i (r 2 )dr 2 .

(2.23)

• The exchange operator Ki (r 1 )φ j (r 1 ) = φ i (r 1 ) φ i (r 2 ) 1 r 12 φ j (r 2 )dr 2 .

(2.24)

Roothaan-Hall equations

To practically solve the HF equations, one must use the Roothaan-Hall equations where one starts by expanding the spatial orbitals [also known as molecular orbitals (MOs)] as linear combinations of basis functions χ µ (r) also known as atomic orbitals (AOs)

φ i (r) = K ∑ µ c µi χ µ (r).
In the AO basis, we have

F µν = χ µ F χ ν ≡ µ| F|ν = H c µν + K ∑ λσ P λσ µλ|νσ - 1 2 µλ|σν , (2.25) 
where H c µν = µ| Ĥc |ν (2.26) are the elements of the core Hamiltonian in the AO basis and µλ|νσ = (µν|λσ) = χ µ (r 1 )χ λ (r 2 ) 1 r 12 χ ν (r 1 )χ σ (r 2 )dr 1 dr 2 (2.27) are the two-electron integrals. Moreover, the density matrix is defined, for a closed-shell system, as

P µν = 2 N/2 ∑ i c µi c νi .
(2.28)

The electronic HF energy of the system is then given by .29) In matrix form, the Fock matrix F can be decomposed as 

E HF = K ∑ µν P µν H c µν + 1 2 K ∑ µνλσ P µν P λσ G µνλσ . ( 2 
F = H c + G, ( 2 
G µνλσ = µλ|νσ - 1 2 µλ|σν . (2.32)
is the two-electron part of the Fock operator. This yields the Roothaan-Hall equations: (2.33) or, in matrix form, FC = SCε (2.34) where the elements of the overlap matrix S are given by .35) and C is the matrix of the MO coefficients and ε is a diagonal matrix gathering the MO eigenvalues. To switch between the non-orthogonal AO basis to an orthogonal basis, we define the orthogonalization matrix X such as

K ∑ ν F µν c νi = ∑ ν S µν c νi ε i ,
S µν = µ|ν . ( 2 
X † SX = I, (2.36) 
where I is the identity matrix. Two common methods are available to compute X:

• The Löwdin orthogonalization

X = S -1/2 , ( 2.37) 
• The canonical orthogonalization (2.38) where U and s are respectively the eigenvectors and eigenvalues of the overlap matrix S.

X = Us -1/2 ,
Rotating the Fock matrix F into the orthogonal basis yields (2.39) where F = X † FX. (2.40) The matrices C and ε can be determined by the diagonalization of Eq. (2.39), and the matrix C is obtained by back-transforming the eigenvectors in the original basis

F C = C ε,
C = XC .
(2.41)

The self-consistent field procedure

In order to obtain the MO coefficients C, we must diagonalize the Fock matrix F. But this matrix does depend on the MO coefficients itself. Therefore, one must employ an iterative procedure called self-consistent field (SCF) method. Before the procedure we need to define a convergence criterion. An appropriate choice for this purpose is the following error vector: e = FPS -SPF. (2.42) Chapter 2. Methods which is known to be equal to zero at convergence as the Fock and density matrices must share a common set of eigenvectors. Then, in practice, at convergence, we have max |e| < τ, (2.43) with τ a small value typically 10 -6 . The SCF algorithm is described below 1. Obtain an estimate of the density matrix P (from an extended Hückel calculation for example).

2. Build the Fock matrix: F = H c + G.

3.

Transform the Fock matrix in the orthogonal matrix: F = X † FX.

4. Diagonalize F to obtain C and ε.

5. Back-transform the MOs in the original basis: C = XC .

6. Compute the new density matrix P = CC † , as well as the HF energy: Even if the HF approximation can be seen as a useful first step, unfortunately, it cannot be used to obtain the exact energy due to its mean-field character which approximates the electron-electron interaction via an averaging over all the electrons of the system (i.e., a given electron "feels" only the averaged repulsion of the N -1 remaining electrons). As we shall see in the next section, one must go beyond the HF approximation in order to catch what is known as the correlation energy.

E HF = 1 2 Tr{P(H c + F)}. ( 2 

Post-Hartree-Fock methods

We define the correlation energy as the difference between the (non-relativistic) exact energy and the HF energy

E c = E -E HF (2.46)
Moreover, we define Ψ 0 as the reference determinant, which may or may not be the HF ground-state determinant Ψ HF . The aim of post-HF methods is to catch as much correlation energy as possible.

Configuration interaction method

In configuration interaction (CI) methods, one defines the correlated wave function as a linear combination of Slater determinants

|Ψ CI = c 0 Ψ 0 + occ ∑ i virt ∑ a c a i |Ψ a i + occ ∑ ij virt ∑ ab c ab ij Ψ ab ij + occ ∑ ijk virt ∑ abc c abc ijk Ψ abc ijk + • • • (2.47)
where occ is the number of occupied orbitals, virt the number of virtual (i.e., unoccupied) orbitals, and Ψ a i corresponds to a singly-excited determinant where an electron from the occupied orbital i has been excited to the vacant orbital a. Likewise, Ψ ab ij is a doubly-excited determinants where electrons from the occupied orbitals i and j have been excited to the vacant orbitals a and b. (Same rule applies for the higher excitations.) From here on, i, j, . . . are occupied spinorbitals, a, b, . . . denote virtual (unoccupied) spinorbitals, and p, q, r, and s indicate arbitrary (orthonormal) spinorbitals. If one considers all the possible excited determinants constructed by placing N electrons in 2K spinorbitals, one talks about full configuration interaction (FCI) which corresponds to the exact solution (hence energy and wave function) of the system for a given set of basis functions. Conversely, if one only considers all single excitations, one obtains CI with singles (CIS), a well-known exited-state method, while if one considers all single and double excitations, one obtains CI with singles and doubles (CISD).

At the CI level, the energy is computed as

E CI = Ψ CI | Ĥ|Ψ CI Ψ CI |Ψ CI (2.48)
and is an upper bound to the exact energy of the system thanks to the variational property of the above formula. Even if it recovers all the correlation energy, FCI is, in practice, very expensive and is limited to small Hilbert space.

Selected CI methods

In conventional CI methods (see above), one chooses the determinants to include in the so-called variational space based on their maximum excitation degree. However, within this predefined subspace of determinants, it is well known that only a small number of them significantly contributes to the total energy. Hence, the fundamental idea behind selected CI (SCI) methods is to select the determinants among the entire set of determinants (i.e., the FCI space) based on their estimated contribution to the FCI energy and/or wave function. Although the SCI family of methods has many members, below, we only discuss the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) algorithm [34] that is implemented in QUANTUM PACKAGE, a quantum chemistry software developed in our laboratory. However, the reader should keep in mind that the idea behind the CIPSI method is very generally and that SCI methods usually differ by the definition of the selection criterion.

In the CIPSI iterative process (which is described below) [34], a (multireference) second-order perturbation correction is employed to select the determinants. In practice, we start with a small set of determinants (typically the HF determinant or a determinant made of natural orbitals but a small set of determinants can also be chosen). Then, the following steps are iteratively performed:

1. Compute the variational wave function |Ψ var and its energy E var for a given set of determi- nants {|I } that defines, at a given iteration, the variational space:

|Ψ var = ∑ I c I |I (2.49) E var = Ψ var | Ĥ|Ψ var Ψ var |Ψ var ≥ E FCI (2.50) 2.
For each determinant |α belonging to the external space, i.e., Ψ var | Ĥ|α = 0, compute their (individual) second-order perturbative contribution:

e α = Ψ var | Ĥ|α 2 E var -α| Ĥ|α (2.51)
3. Estimate the missing correlation energy via the computation of the (total) second-order perturbative correction as follows:

E PT2 = ∑ α e α (2.52)
The sum of the variational energy and the PT2 

Coupled-cluster methods

The coupled cluster (CC) family of methods [START_REF] Jensen | Introduction to computational chemistry[END_REF][START_REF] Čížek | On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods[END_REF][START_REF] Paldus | Correlation problems in atomic and molecular systems. iv. extended coupled-pair many-electron theory and its application to the bH 3 molecule[END_REF][START_REF] Crawford | An Introduction to Coupled Cluster Theory for Computational Chemists[END_REF][START_REF] Bartlett | Coupled-cluster theory in quantum chemistry[END_REF] is one of the most successful wave function approaches for the description of chemical systems [START_REF] Purvis | A full coupled-cluster singles and doubles model: the inclusion of disconnected triples[END_REF][START_REF] Scuseria | A new implementation of the full ccsdt model for molecular electronic structure[END_REF][START_REF] Scuseria | Is coupled cluster singles and doubles (ccsd) more computationally intensive than quadratic configuration interaction (qcisd)?[END_REF]. In particular, low-order truncated CC methods, such as CC with singles, doubles and perturbative triples CCSD(T) [START_REF] Purvis | A full coupled-cluster singles and doubles model: the inclusion of disconnected triples[END_REF][START_REF] Raghavachari | A fifth-order perturbation comparison of electron correlation theories[END_REF], properly describe weak correlation, while inclusion of higher-order excitations is required for strongly correlated systems.

In CC theory, one represents the wave function as follows .54) where the cluster operator is

Ψ CC = e T Ψ 0 . ( 2 
T = N ∑ k Tk , (2.55) with T1 = occ ∑ i virt ∑ a t a i âi â † a T2 = 1 4 occ ∑ ij virt ∑ ab t ab ij âi âj â † a â † b . . . (2.56) 
Here, â † a and âi are the usual annihilation and creation operators which annihilates an electron in the occupied spinorbital i and creates an electron in the vacant spinorbital a, respectively.

By performing a Taylor expansion of the exponentiated operator

e T = ∞ ∑ k=0 Tk k! = T + T2 2! + T3 3! + T4 4! + • • • (2.57)
the CC wave function can be rewritten as

Ψ CC = Ψ 0 1 + T1 + T2 + 1 2 T2 1 + T3 + T2 T1 + 1 6 T3 1 + T4 + T3 T1 + 1 2 T2 2 + 1 2 T2 T2 1 + 1 24 T4 2 + • • • , (2.58)
where 1 is the identity operator. The first term in a parenthesis (of form T2 , T3 . . . ) generate the connected excitations while the others ( T2 1 , T2 T1 ) generate the disconnected excitations, i.e., the excitations that are the product of two or more lower-order excitations. So physically, a connected type such as T4 corresponds to four electrons interacting simultaneous, while a disconnected term such as T2 2 corresponds to two non-interacting pairs of interacting electrons.We can now apply the Schrödinger (2.4) to the CC wave function,

Ĥ |Ψ CC =E |Ψ CC , (2.59a) Ĥe T |Ψ 0 =Ee T |Ψ 0 . (2.59b)
At this point we could evaluate the energy as an expectation value of the CC wave function, .60) where by expanding e T, we get

E var. CC = Ψ CC | Ĥ|Ψ CC Ψ CC |Ψ CC = e T Ψ 0 Ĥ e T Ψ 0 e T Ψ 0 e T Ψ 0 , ( 2 
E var. CC = 1 + T1 + T2 + 1 2 T2 1 + • • • Ψ 0 Ĥ 1 + T1 + T2 + 1 2 T2 1 + • • • Ψ 0 1 + T1 + T2 + 1 2 T2 1 + • • • Ψ 0 1 + T1 + T2 + 1 2 T2 1 + • • • Ψ 0 .
(2.61)

Unfortunately this expansion leads to a series that does not truncate before the number of electrons.

The standard formulation of coupled cluster theory instead proceeds by projecting the coupled cluster Schrödinger equation ( 2.59) onto the reference wave function. Thus, multiplying to the left by Ψ 0 | and integrating, one gets

Ψ 0 | Ĥe T |Ψ 0 =E CC Ψ 0 e T Ψ 0 , (2.62) 
Ψ 0 | Ĥe T |Ψ 0 =E CC Ψ 0 1 + T1 + T2 + 1 2 T2 1 + • • • Ψ 0 , (2.63) 
E CC = Ψ 0 | Ĥe T |Ψ 0 .
(2.64)

Because the Hamiltonian operator given by Eq. (2.5) is a two-electron operator, we can limit ourselves to the first two levels of excitation, i.e.,

E CC = Ψ 0 | Ĥ 1 + T1 + T2 + 1 2 T2 1 |Ψ 0 ,
(2.65) .67) Thanks to Brillouin's theorem [START_REF] Szabo | Modern quantum chemistry: introduction to advanced electronic structure theory[END_REF] that states that a singly-exited determinant Ψ a i does not interact directly with a reference Hartree-Fock determinant |Ψ 0 (i.e., Ψ 0 Ĥ Ψ a i = 0), Eq. ( 2.67) becomes

E CC = Ψ 0 | Ĥ|Ψ 0 + Ψ 0 Ĥ T1 Ψ 0 + Ψ 0 Ĥ T2 Ψ 0 + 1 2 Ψ 0 Ĥ T2 1 Ψ 0 , (2.66) 
E CC =E 0 + occ ∑ i virt ∑ a t a i Ψ 0 | Ĥ|Ψ a i + occ ∑ i<j virt ∑ a<b t ab ij + t a i t b j -t a j t b i Ψ 0 Ĥ Ψ ab ij . ( 2 
E CC = E HF + occ ∑ i<j virt ∑ a<b t ab ij + t a i t b j -t a j t b i ij|ab . (2.68)
From the previous equation, one can see that the CC correlation energy is determined completely by the singles and doubles amplitudes and the two-electron integrals (in the MO basis). To get the amplitudes, one must project the Schrödinger equation onto the space of the excited determinants. This can be done via a similarity transformation of the Hamiltonian operator e -T Ĥe T, where, by analogy with the excitation operator e T we have defined the deexcitation operator e -T. More explicitly, this yields

e -T Ĥe T Ψ 0 = E CC Ψ 0 , (2.69a 
)

E CC = Ψ 0 |e -T Ĥe T |Ψ 0 .
(2.69b)

Chapter 2. Methods which can be considered as the expectation value of a similarity transformed Hamiltonian. Following the same strategy, the so-called amplitude equations read

Ψ j i e -T Ĥe T Ψ 0 =0 Ψ ab ij e -T Ĥe T Ψ 0 =0 Ψ abc ijk e -T Ĥe T Ψ 0 =0 . . . (2.70)
The full coupled cluster (which is equivalent to FCI) is, of course, too expensive. Consequently, one generally truncates the coupled cluster amplitudes to a specific excitation level. For example, for CCSD (coupled cluster with singles and doubles), we have T = T1 + T2 and e T = e T1 + T2 ,

= 1 + T1 + T2 + 1 2 T2 1 + T1 T2 + 1 6 T3 1 + 1 2 T2 2 + 1 2 T2 T2 1 + 1 24 T2 1 + • • • (2.71)
We can now compare coupled cluster and configuration interaction. Truncating the CI and CC ansatze to singles and doubles, we have from Eqs. (2.47) and (2.54)

CI: T = 1 + T1 + T2 , (2.72) 
CC:

e T = 1 + T1 + T2 + 1 2 T2 1 + T2 T1 + 1 6 T3 1 + 1 2 T2 2 + 1 2 T2 T2 1 + 1 24 T4 2 + • • • (2.73)
which clearly evidences that the CC ansatz produces parts of the triple, quadruple, and higher excitations as disconnected terms of the form 1 2 T2 2 or T2 T1 . These terms are, of course, not present in its CI counterpart and is the cause of the non-size-extensivity of truncated CI methods.

Møller-Plesset perturbative methods

In Rayleigh-Schrödinger perturbative theory, one expands both the energy and the wave function as Taylor series with respect to the coupling parameter λ following the present partition of the Hamiltonian:

Ĥ = Ĥ0 + λ V (2.74)
where Ĥ0 is the zeroth-order (reference) Hamiltonian and V is the so-called perturbation. In the case of Møller-Plesset perturbation theory, we have

Ĥ0 = N ∑ i F (i) (2.75)
which gives, in the case of second-order Møller-Plesset perturbation theory (MP2), the well-known formulas 

E (2) = occ ∑ i<j virt ∑ a<b Ψ 0 ∑ n k<l 1 r kl Ψ ab ij 2 i + j -a -b = 1 4 occ ∑ ij virt ∑ ab ij||ab t ab ij (2.76) t ab ij = ij||ab ∆ ab ij (2.77) ∆ ab ij = i + j -a -b (2.78)

Many-body Green's function methods

Many-body perturbation theory methods based on the one-body Green's function G are fascinating as they are able to transform an unsolvable many-electron problem into a set of non-linear oneelectron equations, thanks to the introduction of an effective potential Σ, the self-energy. Electron correlation is explicitly incorporated via a sequence of self-consistent steps known as Hedin's equations [START_REF] Hedin | New method for calculating the one-particle Green's function with application to the electron-gas problem[END_REF], which connect G, the irreducible vertex function Γ, the irreducible polarizability P, the dynamically-screened Coulomb interaction W, and Σ through a set of five integro-differential equations (see Figure 3.1): 34)G( 42)d( 34), (3.1a) 12)δ [START_REF] Roos | Multiconfigurational perturbation theory: applications in electronic spectroscopy[END_REF] + δΣ( 12) δG( 45) G( 46)G( 75)Γ( 673)d( 4567), (3.1b) 13)P(34)W( 42)d( 34), (3.1d) 13)W( 14)Γ(324)d( 34), (3.1e) where G H is the one-body Hartree Green's function, v is the bare Coulomb interaction, δ( 12) is Dirac's delta function and (1) is a composite coordinate gathering spin, space and time variables (σ 1 , r 1 , t 1 ).

G(12) = G H (12) + G H (13)Σ(
Γ(123) = δ(
P(12) = -i G(13)Γ(324)G(41)d(34), (3.1c) 
W(12) = v(12) + v(
Σ(12) = i G(
In particular, Hedin's approach uses a dynamically screened Coulomb interaction W instead of the standard bare Coulomb interaction v. Important experimental properties such as ionization potentials, electron affinities as well as spectral functions, which are related to direct and inverse photo-emission, can be obtained directly from the one-body Green's function [57]. A particularly successful and practical approximation to Hedin's equations is the so-called GW approximation [57][58][59] which bypasses the calculation of the most complicated part of Hedin's equations, the vertex function [START_REF] Hedin | New method for calculating the one-particle Green's function with application to the electron-gas problem[END_REF].

Although (perturbative) G 0 W 0 is probably the simplest and most widely used GW variant [60-65], its starting point dependence has motivated the development of partially [66][67][68][69][70][71][72][73][74] and fully [75][76][77][78][START_REF] Caruso | Bond Breaking and Bond Formation: How Electron Correlation is Captured in Many-Body Perturbation Theory and Density-Functional Theory[END_REF][START_REF] Caruso | Self-consistent G W : All-electron implementation with localized basis functions[END_REF][START_REF] Caruso | Self-consistent GW approach for the unified description of ground and excited states of finite systems[END_REF][START_REF] Koval | Fully self-consistent G W and quasiparticle selfconsistent G W for molecules[END_REF][START_REF] Wilhelm | Toward GW Calculations on Thousands of Atoms[END_REF] self-consistent versions in order to reduce or remove this undesirable feature. Here, we will [START_REF] Hedin | New method for calculating the one-particle Green's function with application to the electron-gas problem[END_REF]. The red path shows the self-consistent GW process which bypasses the computation of the vertex function Γ.
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focus our attention on partially self-consistent schemes as they have demonstrated comparable accuracy and are computationally lighter than the fully self-consistent version [START_REF] Caruso | Benchmark of GW approaches for the GW100 test set[END_REF]. Moreover, they are routinely employed for solid-state and molecular calculations and are available in various computational packages [61,68,74,[START_REF] Caruso | Benchmark of GW approaches for the GW100 test set[END_REF][START_REF] Blase | The Bethe-Salpeter equation in chemistry: relations with TD-DFT, applications and challenges[END_REF][START_REF] Bruneval | Molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters[END_REF][START_REF] Kaplan | Off-Diagonal Self-Energy Terms and Partially Self-Consistency in GW Calculations for Single Molecules: Efficient Implementation and Quantitative Effects on Ionization Potentials[END_REF][START_REF] Krause | Implementation of the Bethe-Salpeter equation in the TURBOMOLE program[END_REF][START_REF] Maggio | GW 100: A Plane Wave Perspective for Small Molecules[END_REF]. Recently, an ever-increasing number of successful applications of partially self-consistent GW methods have sprung in the physics and chemistry literature for molecular systems [62-65, 73, 82, 85, 86, 90-96], as well as extensive and elaborate benchmark sets [64,65,[START_REF] Maggio | GW 100: A Plane Wave Perspective for Small Molecules[END_REF][START_REF] Bruneval | A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules[END_REF][START_REF] Richard | Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules I. Reference Data at the CCSD(T) Complete Basis Set Limit[END_REF][START_REF] Gallandi | Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules II: Non-Empirically Tuned Long-Range Corrected Hybrid Functionals[END_REF][START_REF] Knight | Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods[END_REF][100][101].

There exist two main types of partially self-consistent GW methods: i) "eigenvalue-only quasiparticle" GW (evGW) [66][67][68][69], where the quasiparticle (QP) energies are updated at each iteration, and ii) "quasiparticle self-consistent" GW (qsGW) [70][71][72][73][74], where one updates both the QP energies and the corresponding orbitals. Note that a starting point dependence remains in evGW as the orbitals are not self-consistently optimized in this case.

In an article [102], while studying a model two-electron system [103-108], we have observed that, within partially self-consistent GW (such as evGW and qsGW), one can observe, in the weakly correlated regime, (unphysical) discontinuities in the energy surfaces of several key quantities (ionization potential, electron affinity, HOMO-LUMO gap, total and correlation energies, as well as vertical excitation energies). In the present chapter, we provide further evidences and explanations of this undesirable feature in real molecular systems. For sake of simplicity, the present study is based on simple closed-shell diatomics (H 2 , F 2 and BeO). However, the same phenomenon can be observed in many other molecular systems, such as LiF, HeH + , LiH, BN, O 3 , etc. Although we mainly focus on G 0 W 0 and evGW, similar observations can be made in the case of qsGW and second-order Green's function (GF2) methods [START_REF] Szabo | Modern quantum chemistry: introduction to advanced electronic structure theory[END_REF]102,[109][110][111][112][113][114][115][116][117][118]. Unless otherwise stated, all calculations have been performed with our locally-developed GW software, which closely follows the MOLGW implementation [START_REF] Bruneval | Molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters[END_REF].

Theory

Here, we provide brief details about the main equations and quantities behind G 0 W 0 and evGW considering a (restricted) Hartree-Fock (HF) starting point [START_REF] Szabo | Modern quantum chemistry: introduction to advanced electronic structure theory[END_REF]. at the G 0 W 0 @HF/6-31G (solid lines) and evGW@HF/6-31G (dashed lines) levels. For convenience, the intermediate (center) branch is presented in lighter green for the LUMO+2.
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For a given (occupied or virtual) orbital p, the correlation part of the self-energy is conveniently split in its hole (h) and particle (p) contributions

Σ c p (ω) = Σ p p (ω) + Σ h p (ω), (3.2) 
which, within the GW approximation, read

Σ h p (ω) = 2 occ ∑ i ∑ x [pi|x] 2 ω -i + Ω x -iη , (3.3a) Σ p p (ω) = 2 virt ∑ a ∑ x [pa|x] 2 ω -a -Ω x + iη , (3.3b)
where η is a positive infinitesimal. The screened two-electron integrals (3.4) are obtained via the contraction of the bare two-electron integrals [119] (pq|rs) and the transition densities (X + Y) x ia originating from a random phase approximation (RPA) calculation [120, 121]

[pq|x] = ∑ ia (pq|ia)(X + Y) x ia
A B B A X Y = Ω 1 0 0 -1 X Y , (3.5) 
with

A ia,jb = δ ij δ ab ( a -i ) + 2(ia|jb), B ia,jb = 2(ia|bj), (3.6) 
and δ pq is the Kronecker delta [122]. The one-electron energies p in Eqs. (3.3a), (3.3b) and (3.6) are either the HF or the GW quasiparticle energies. Equation (3.5) also provides the neutral excitation energies Ω x .

In practice, there exist two ways of determining the G 0 W 0 QP energies [60,61]. In its "graphical" version, they are provided by one of the many solutions of the (non-linear) QP equation

ω = HF p + Re[Σ c p (ω)]. (3.7) 
In this case, special care has to be taken in order to select the "right" solution, known as the QP solution. In particular, it is usually worth calculating its renormalization weight (or factor), Z p ( HF p ), where

Z p (ω) = 1 - ∂ Re[Σ c p (ω)] ∂ω -1 . (3.8)
Because of sum rules [123][124][125][126], the other solutions, known as satellites, share the remaining weight.

In a well-behaved case (belonging to the weakly correlated regime), the QP weight is much larger than the sum of the satellite weights, and of the order of 0.7-0.9.

Within the linearized version of G 0 W 0 , one assumes that

Σ c p (ω) ≈ Σ c p ( HF p ) + (ω -HF p ) ∂Σ c p (ω) ∂ω ω= HF p , (3.9)
that is, the self-energy behaves linearly in the vicinity of ω = HF p . Substituting (3.9) into (3.7) yields

G 0 W 0 p = HF p + Z p ( HF p ) Re[Σ c p ( HF p )]. (3.10)
Unless otherwise stated, in the remaining of this chapter, the G 0 W 0 QP energies are determined via the linearized method.

Results
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HOMO (ω) and Σ c LUMO+2 (ω) (in eV) as functions of the frequency ω obtained at the evGW@HF/6-31G level for H 2 at R H 2 = 1.0 a 0 . The solutions of the QP equation are given by the intersection of the orange and blue curves.

In the case of evGW, the QP energy, GW p , are obtained via Eq. (3.7), which has to be solved self-consistently due to the QP energy dependence of the self-energy [see Eq. (3.2)] [66-69]. At least in the weakly correlated regime where a clear QP solution exists, we believe that, within evGW, the self-consistent algorithm should select the solution of the QP equation (3.7) with the largest renormalization weight Z p ( GW p ). In order to avoid convergence issues, we have used the DIIS convergence accelerator technique proposed by Pulay [127,128].

Moreover, throughout this chapter, we have set η = 0.

Results

Virtual orbitals

As a first example, we consider the hydrogen molecule H 2 in a relatively small gaussian basis set (6-31G) in order to be able to study easily the entire orbital energy spectrum. Although the number of irregularities/discontinuities as well as their locations may vary with the basis set, the conclusions we are going to draw here are general. Figure 3.2 reports three key quantities as functions of the internuclear distance R H 2 for various orbitals at the G 0 W 0 and the self-consistent evGW levels: i) the QP energies [ 

p ∼ (1 + δ -2 ) -1 ∼ δ 2 , which yields G 0 W 0 p ∼ HF p + δ.
In plain words, G 0 W 0 p remains finite near the poles of the self-energy thanks to the linearization of the QP equation [see Eq. (3.7)]. It also evidences that, at the pole locations (i.e. δ = 0), we have G 0 W 0 p = HF p , i.e., by construction the QP energy is forced to remain equal to the zeroth-order energy. This is nicely illustrated in Figure 3.3, where we have plotted the HF orbital energies (dotted lines) as well as the G 0 W 0 QP energies (solid lines) around the two "problematic" internuclear distances. The behavior of G 0 W 0 LUMO+1 (solid orange line on the right panel of Figure 3.3) is particularly instructive and shows that the G 0 W 0 QP energies can have an erratic behavior near the poles of the self-energy.

It is interesting to investigate further the origin of these poles. As evidenced by Eq. (3.2), for a calculation involving 2n electrons and N basis functions, the self-energy has exactly nN(Nn) poles originating from the combination of the N poles of the Green's function G (at frequencies p ) and the n(Nn) poles of the screened Coulomb interaction W (at the RPA singlet excitations Ω x ). For example, at R H 2 = 2.11 a 0 , the combination of HF LUMO = 3.83 eV and the HOMO-LUMO-dominated first neutral excitation energy Ω 1 = 22.24 eV are equal to the LUMO+1 energy G 0 W 0 LUMO+1 = 26.07 eV. Around R H 2 = 1.0 a 0 , the two poles of Σ c LUMO+1 are due to the following accidental equalities:

G 0 W 0 LUMO+1 = HF LUMO + Ω 2 , and G 0 W 0 LUMO+1 = HF LUMO+1 + Ω 1 .
Because the number of poles in G and W (at the non-interacting or HF level) are both proportional to N, these spurious poles in the self-energy become more and more frequent for larger gaussian basis sets. For virtual orbitals, the higher in energy the orbital is, the earlier the singularities seem to appear.

Finally, the irregularities in the G 0 W 0 QP energies as a function of R H 2 can also be understood as follows. Since within G 0 W 0 only one pole of G is calculated, i.e., the QP energy, all the satellite poles are discarded. Mixing between QP and satellites poles, which is important when they are close to each other, hence, is not considered. This situation can be compared to the lack of mixing between single and double excitations in adiabatic time-dependent density-functional theory and the Bethe-Salpeter equation [20,[130][131][132] evGW Within partially self-consistent schemes, the presence of poles in the self-energy at a frequency similar to a QP energy has more dramatic consequences. The results for H 2 at the evGW@HF/6-31G level are reported in the bottom row of Figure 3.2. Around R H 2 = 1.0 a 0 , we observe that, for the LUMO+2, one can fall onto three distinct solutions depending on the algorithm one relies on to solve self-consistently the QP equation (see bottom left graph of Figure 3.2). In order to obtain each of the three possible solutions in the vicinity of R H 2 = 1.0 a 0 , we have run various sets of calculations using different starting values for the QP energies and sizes of the DIIS space. In particular, we clearly see that each of these solutions yield a distinct energy separated by several electron volts (see zoom in Figure 3.3), and each of them is associated with a well-defined branch of the self-energy, as shown by the center graph in the bottom row of Figure 3.2. For convenience, the intermediate (center) branch is presented in lighter green in Figures 3.2 and 3.3, while the left and right branches are depicted in darker green. Interestingly, the evGW iterations are able to "push" the QP solution away from the poles of the self-energy, which explains why the renormalization factor is never exactly equal to zero (see bottom right graph of Figure 3.2). However, one cannot go smoothly from one branch to another, and each switch between solutions implies a significant energetic discontinuity. Moreover, we observe "ripple" effects in other virtual orbitals: a discontinuity in one of the QP energies induces (smaller) discontinuities in the others. This is a direct consequence of the global energy dependence of the self-energy [see Eq. (3.2)], and is evidenced on the left graph in the bottom row of Figure 3.

2 around R H 2 = 2.1 a 0 .
The main observation of the present study is that each branch of the self-energy is associated with a distinct QP solution. We clearly see that, when one goes from one branch to another, there is a transfer of weight between the QP and one of the satellites, which becomes the QP on the new branch [102]. As opposed to the strongly correlated regime where the QP picture breaks down, i.e., there is no clear QP, here there is alway a clear QP except at the vicinity of the poles where the weight transfer occurs. As for G 0 W 0 , this sudden transfer is caused by the artificial removal of the satellite poles. However, in the evGW results the problem is amplified by the self-consistency. We expect that keeping the full frequency dependence of the self-energy would solve this problem.

It is also important to mention that the self-consistent algorithm is fairly robust as it rarely selects a solution with a renormalization weight lower than 0.5, as shown by the center graph in the bottom row of Figure 3.2. In other words, when the renormalization factor of the QP solution becomes too small, the self-consistent algorithm switches naturally to a different solution. From a technical point of view, around the poles of the self-energy, it is particularly challenging to converge self-consistent calculations, and we heavily relied on DIIS to avoid such difficulties. We note that an alternative ad hoc approach to stabilize such self-consistent calculations is to increase the value of the positive infinitesimal η.

Figure 3.4 shows the correlation part of the self-energy for the HOMO and LUMO+2 orbitals as a function of ω (orange curves) obtained at the self-consistent evGW@HF/6-31G level for H 2 with R H 2 = 1.0 a 0 . The solutions of the QP equation (3.7) are given by the intersections of the orange and blue curves. On the one hand, in the case of the HOMO, we have an unambiguous QP solution (at ω ≈ -20 eV) which is well separated from the other solutions. In this case, one can anticipate a large value of the renormalization factor Z HOMO as the self-energy is flat around the intersection of the two curves. On the other hand, for the LUMO+2, we see three solutions of the QP equation very close in energy from each other around ω = 50 eV. In this particular case, there is no well-defined QP peak as each solution has a fairly small weight. Therefore, one may anticipate multiple solution issues when a solution of the QP equation is close to a pole of the self-energy.

Finally, we note that the multiple solutions discussed here are those of the QP equation, i.e., multiple QP poles associated to a single Green's function.

Occupied orbitals

So far, we have seen that multiple solutions seem to only appear for virtual orbitals (LUMO excluded). However, we will show here that it can also happen in occupied orbitals. We take as an example the fluorine molecule (F 2 ) in a minimal basis set (STO-3G), and perform evGW@HF calculations within the frozen-core approximation, that is, we do not update the orbital energies associated with the core orbitals. Figure 3.5 shows the behavior (as a function of the distance between the two fluorine atoms R F 2 ) of the same quantities as in Figure 3.2 but for some of the occupied orbitals of F 2 FIGURE 3.5: QP energies (left), correlation part of the self-energy (center) and renormalization factor (right) as functions of the internuclear distance R F 2 for various occupied orbitals of F 2 at the evGW@HF/STO-3G level.

HOMO-6) and R F 2 = 2.7 a 0 (for the HOMO-5). For information, the experimental equilibrium geometry of F 2 is R F 2 = 2.668 a 0 , which evidences that the second discontinuity is extremely close to the experimental geometry. Let us mention here that we have not found any discontinuity in the HOMO orbital. The case of the frontier orbitals will be discussed below. For F 2 , here again, we clearly observe ripple effects on other occupied orbitals. Similarly to virtual orbitals, we have found that the lower in energy the orbital is, the earlier the singularities seem to appear.

Frontier orbitals

Before concluding, we would like to know, whether or not, this multisolution behavior can potentially appear in frontier orbitals. This is an important point to discuss as these orbitals are directly related to the ionization potential and the electron affinity, hence to the gap. Let us take the HOMO orbital as an example. A similar rationale holds for the LUMO orbital. According to the expression of the hole and particle parts of the self-energy given in Eqs. (3.3a) and (3.3b) respectively, Σ c HOMO (ω) has poles at ω = i -Ω x and ω = a + Ω x with Ω x > 0. Evaluating the self-energy at ω = HOMO would yield HOMOi = -Ω x and HOMOa = +Ω x , which is in clear contradiction with the assumption that Ω x > 0. Therefore, the self-energy is never singular at ω = HOMO and ω = LUMO and the linearized G 0 W 0 equations can be solved without any problem for the frontier orbitals. This is true for any G 0 , that is, it does not depend on the starting point. As can be seen from Eqs. (3.3a) and (3.3b), the two poles of the self-energy closest to the Fermi level are located at ω = HOMO -Ω 1 and ω = LUMO + Ω 1 . As a consequence, there is a region equal to HOMO -LUMO + 2Ω 1 around the Fermi level in which the self-energy does not have poles.

Because Ω 1 ≈ HOMO -LUMO = E gap , this region is approximately equal to 3E gap .

For "graphical" G 0 W 0 , the solution might lie outside this range, even for the frontier orbitals. This can happen when E gap is much smaller than the true GW gap. In particular, this could occur for graphical G 0 W 0 on top of a Kohn-Sham starting point, which is known to yield gaps that are (much) smaller than GW gaps. Within graphical G 0 W 0 , multiple solution issues for the HOMO have been reported by van Setten and coworkers [64,[START_REF] Maggio | GW 100: A Plane Wave Perspective for Small Molecules[END_REF] in several systems (LiH, BN, BeO and O 3 ). In their calculations, they employed PBE orbital energies [133] as starting point, and this type of functionals is well known to drastically underestimate E gap [134].

As an example, we have computed, within the frozen-core approximation, Σ c HOMO (ω) and Σ c LUMO (ω) as functions of ω at the G 0 W 0 @PBE/cc-pVDZ level for beryllium monoxide (BeO) at its experimental geometry (i.e. R BeO = 2.515 a 0 ) [129]. These calculations have been performed with MOLGW [START_REF] Bruneval | Molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters[END_REF]. The results are gathered in Figure 3.6, where one clearly sees that multiple solutions appear for both the HOMO and LUMO orbitals. Note that performing the same set of calculations with a HF starting point yields a perfectly unambiguous single QP solution. For this system, PBE is a particularly bad starting point for a GW calculation with a HOMO-LUMO gap equal to 1.35 eV. Using the same basis set, HF yields a gap of 8.96 eV, while G 0 W 0 @HF and G 0 W 0 @PBE yields 7.54 and 5.60 eV. The same observations can be made for the other systems reported as problematic by van Setten and coworkers [64,[START_REF] Maggio | GW 100: A Plane Wave Perspective for Small Molecules[END_REF]. As a general rule, it is known that HF is usually a better starting point for GW in small molecular systems [63,68,102,135]. For larger systems, hybrid

-�� -� � � �� -�� -�� -�� -� -� -� -� � -�� -�� -� � � �� FIGURE 3.6: Σ c
HOMO (ω) and Σ c LUMO (ω) (in eV) as functions of the frequency ω obtained at the G 0 W 0 @PBE/cc-pVDZ level for BeO at its experimental geometry [129]. The solutions of the QP equations are given by the intersection of the orange and blue curves.

functionals [136] might be the ideal compromise, thanks to the increase of the HOMO-LUMO gap via the addition of (exact) HF exchange [63,[START_REF] Bruneval | A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules[END_REF][START_REF] Boulanger | Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach[END_REF]101,137].

Concluding remarks

The GW approximation of many-body perturbation theory has been highly successful at predicting the electronic properties of solids and molecules [57][58][59]. However, it is also known to be inadequate to model strongly correlated systems [138][139][140][141][142]. Here, we have found severe shortcomings of two widely-used variants of GW in the weakly correlated regime. We have evidenced that one can hit multiple solution issues within G 0 W 0 and evGW due to the location of the QP solution near poles of the self-energy. Within linearized G 0 W 0 , this implies irregularities in key experimentally-measurable quantities of simple diatomics, while, at the partially self-consistent evGW level, discontinues arise. Because the RPA correlation energy [START_REF] Bruneval | Molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters[END_REF]120,143,144] and the Bethe-Salpeter excitation energies [START_REF] Blase | The Bethe-Salpeter equation in chemistry: relations with TD-DFT, applications and challenges[END_REF]145,146] directly dependent on the QP energies, these types of discontinuities are also present in these quantities, hence in the energy surfaces of ground and excited states. Illustrative examples can be found in our previous study [102]. We believe that such discontinuities would not exist within a fully self-consistent scheme where one does not iterate the QP energies but the one-body Green's function and therefore takes into account each QP peak as well as its satellites at every iteration. Obviously, this latter point deserves further investigations. However, if confirmed, this would be a strong argument in favor of fully self-consistent schemes. Also, for extended systems, these issues might be mitigated by the plasmon modes that dominate the high-energy spectrum of the screened Coulomb interaction. The results of this work will be useful for self-consistent GW calculations of dynamical phenomena, i.e., with nuclear motion. We are currently exploring different routes in order to remove these unphysical features. Padé resummation technique could be of great interest [147] for such purpose. However, other techniques might be successful at alleviating this issue. For example, one could i) impose a larger offset from the real axis (i.e. increasing the value of η), ii) favor, in the case of small systems, a HF starting point in order to avoid small HOMO-LUMO gaps, or iii) rely, for larger systems, on hybrid functionals including a significant fraction of HF exchange. Also, regularization techniques, such as the one developed for orbital-optimized second-order Møller-Plesset perturbation theory, could be pragmatic and efficient way of removing such discontinuities [148].

Chapter 4

The QUEST database of vertical excitation energies This chapteris based on M. Véril et al., "QUESTDB : a database of highly accurate excitation energies for the electronic structure community", WIREs Comput. Mol. Sci. 11, e1517 (2021) In this chapter, my main contribution was to build the QUEST website and the different tools around it. I have also imported all the data on the website.

Introduction

Nowadays, there exist a very large number of electronic structure computational approaches, more or less expensive depending on their overall accuracy, able to quantitatively predict the absolute and/or relative energies of electronic states in molecular systems [START_REF] Szabo | Modern quantum chemistry: introduction to advanced electronic structure theory[END_REF][START_REF] Helgaker | Molecular electronic-structure theory[END_REF][START_REF] Jensen | Introduction to computational chemistry[END_REF]150]. One important aspect of some of these theoretical methods is their ability to access the energies of electronic excited states, i.e., states that have higher total energies than the so-called ground (that is, lowest-energy) state [START_REF] Roos | Multiconfigurational perturbation theory: applications in electronic spectroscopy[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]121,[151][152][153][154][155][156][157][158]. The faithful description of excited states is particularly challenging from a theoretical point of view but is key to a deeper understanding of photochemical and photophysical processes like absorption, fluorescence, phosphorescence, chemoluminescence, and others [159][160][161][162][163][START_REF] Robb | Theoretical chemistry for electronic excited states[END_REF][165]. For a given level of theory, ground-state methods are usually more accurate than their excited-state analogs. The reasons behind this are (at least) threefold: i) accurately modeling the electronic structure of excited states usually requires larger one-electron basis sets (including diffuse functions most of the times) than their ground-state counterpart, ii) excited states can be governed by different amounts of dynamic/static correlations, present very different physical natures (π → π * , n → π * , charge transfer, double excitation, valence, Rydberg, singlet, doublet, triplet, etc), yet be very close in energy from one another, and iii) one usually has to rely on response theory formalisms [26,[166][167][168][169][170][171][172], which inherently introduce a ground-state "bias". Hence, designing excited-state methods able to tackle simultaneously and on an equal footing all these types of excited states at an affordable cost remains an open challenge in theoretical computational chemistry as evidenced by the large number of review articles on this particular subject [START_REF] Roos | Multiconfigurational perturbation theory: applications in electronic spectroscopy[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]121,[151][152][153][154][155][156][157][158]173].

When designing a new theoretical model, the first feature that one might want to test is its overall accuracy, i.e., its ability to reproduce reference (or benchmark) values for a given system with a well-defined setup (same geometry, basis set, etc). These values can be absolute and/or relative energies, geometrical parameters, physical or chemical spectroscopic properties extracted from experiments, high-level theoretical calculations, or any combination of these. To this end, the electronic structure community has designed along the years benchmark sets, i.e., sets of molecules for which one can (very) accurately compute theoretical estimates and/or access solid experimental data for given properties. Regarding ground-states properties, two of the oldest and most employed sets are probably the Gaussian-1 and Gaussian-2 benchmark sets [174][175][176] developed by the group of Pople in the 1990's. For example, the Gaussian-2 set gathers atomization energies, ionization energies, electron affinities, proton affinities, bond dissociation energies, and reaction barriers. This Chapter 4. The QUEST database of vertical excitation energies set was subsequently extended and refined [177,178]. Another very useful set for the design of methods able to catch dispersion effects [179] is the S22 benchmark set [180] (and its extended S66 version [181]) of Hobza and collaborators which provides benchmark interaction energies for weakly-interacting (non covalent) systems. One could also mentioned the GW100 set [64,182,183] (and its GW5000 extension [184]) of ionization energies which has helped enormously the community to compare the implementation of GW-type methods for molecular systems [61,[START_REF] Caruso | Benchmark of GW approaches for the GW100 test set[END_REF][START_REF] Bruneval | Molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters[END_REF]185]. The extrapolated ab initio thermochemistry (HEAT) set designed to achieve high accuracy for enthalpies of formation of atoms and small molecules (without experimental data) is yet another successful example of benchmark set [186][187][188]. More recently, let us mention the benchmark datasets of the Simons Collaboration on the Many-Electron Problem providing, for example, highly-accurate ground-state energies for hydrogen chains [189] as well as transition metal atoms and their ions and monoxides [190]. Let us also mention the set of Zhao and Truhlar for small transition metal complexes employed to compare the accuracy of density-functional methods [134] for 3d transition-metal chemistry [191], and finally the popular GMTKN24 [192], GMTKN30 [193,194] and GMTKN55 [195] databases for general main group thermochemistry, kinetics, and non-covalent interactions developed by Goerigk, Grimme and their coworkers.

The examples of benchmark sets presented above are all designed for ground-state properties, and there exists specific protocols taylored to accurately model excited-state energies and properties as well. Indeed, benchmark datasets of excited-state energies and/or properties are less numerous than their ground-state counterparts but their number has been growing at a consistent pace in the past few years. Below, we provide a short description for some of them. One of the most characteristic example is the benchmark set of vertical excitation energies proposed by . The so-called Thiel (or Mülheim) set of excitation energies gathers a large number of excitation energies determined in 28 medium-sized organic CNOH molecules with a total of 223 valence excited states (152 singlet and 71 triplet states) for which theoretical best estimates (TBEs) were defined. In their first study, Thiel and collaborators performed CC2 [25,200], CCSD [23,168,201,202], CC3 [26,203], and CASPT2 [START_REF] Andersson | Second-order perturbation theory with a CASSCF reference function[END_REF][START_REF] Andersson | Second-order perturbation theory with a complete active space self-consistent field reference function[END_REF][START_REF] Roos | Multiconfigurational perturbation theory: applications in electronic spectroscopy[END_REF]204] calculations (with the TZVP basis) on MP2/6-31G(d) geometries in order to provide (based on additional high-quality literature data) TBEs for these transitions. These TBEs were quickly refined with the larger aug-cc-pVTZ basis set [198,199]. In the same spirit, it is also worth mentioning Gordon's set of vertical transitions (based on experimental values) [205] used to benchmark the performance of time-dependent density-functional theory (TD-DFT) [START_REF] Runge | Density-functional theory for time-dependent systems[END_REF][START_REF] Casida | Time-dependent density functional response theory for molecules[END_REF]206,207], as well as its extended version by Goerigk and coworkers who decided to replace the experimental reference values by CC3 excitation energies [208][209][210]. For comparisons with experimental values, there also exists various sets of measured 0-0 energies used in various benchmarks, notably by the Furche [211,212], Hättig [START_REF] Winter | Benchmarks for 0-0 transitions of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data[END_REF] and our [START_REF] Loos | Evaluating 0-0 energies with theoretical tools: a short review[END_REF]102,[START_REF] Loos | Chemically accurate 0-0 energies with not-so-accurate excited state geometries[END_REF] groups for gas-phase compounds and by Grimme [215,216] and one of us [217,218] for solvated dyes. Let us also mention the new benchmark set of charge-transfer excited states recently introduced by Szalay and coworkers [based on equation-of-motion coupled cluster (EOM-CC) methods] [219] as well as the Gagliardi-Truhlar set employed to compare the accuracy of multiconfiguration pair-density functional theory [157] against the well-established CASPT2 method [220].

Following a similar philosophy and striving for chemical accuracy, we have recently reported in several studies highly-accurate vertical excitations for small-and medium-sized molecules [30,32,[START_REF] Loos | Reference energies for double excitations[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]221]. The so-called QUEST dataset of vertical excitations which we will describe in detail in the present chapter is composed by 5 subsets (see Figure 4.1): i) a subset of excitations in small molecules containing from 1 to 3 non-hydrogen atoms known as QUEST#1, ii) a subset of double excitations in molecules of small and medium sizes known as QUEST#2, iii) a subset of excitation energies for medium-sized molecules containing from 4 to 6 non-hydrogen atoms known as QUEST#3, iv) a subset composed by more "exotic" molecules and radicals labeled as QUEST#4, and v) a subset known as QUEST#5, specifically designed for the present chapter, gathering excitation energies in larger molecules as well as additional smaller molecules. One of the key aspect of the QUEST dataset is that it does not rely on any experimental values, avoiding potential biases inherently linked to experiments and facilitating in the process theoretical comparisons. Moreover, our protocol has been designed to be as uniform as possible, which means that we have designed a very systematic procedure for all excited states in order to make cross-comparison as straightforward as possible. Importantly, it allowed us to benchmark, in a very systematic and balanced way, a series of popular excited-state wave function methods partially or fully accounting for double and triple excitations as well as multiconfigurational methods (see below). In the same vein, as evoked above, we have also produced chemically-accurate theoretical 0-0 energies [START_REF] Loos | Evaluating 0-0 energies with theoretical tools: a short review[END_REF]102,[START_REF] Loos | Chemically accurate 0-0 energies with not-so-accurate excited state geometries[END_REF] which can be more straightforwardly compared to experimental data [211-213, 215-218, 222-224]. We refer the interested reader to Ref. [START_REF] Loos | Evaluating 0-0 energies with theoretical tools: a short review[END_REF] for a review of the generic benchmark studies devoted to adiabatic and 0-0 energies performed in the past two decades.

The QUEST dataset has the particularity to be based to a large extent on selected configuration interaction (SCI) reference excitation energies as well as high-order linear-response (LR) CC methods such as 168,169,171,[225][226][227][228][229][230]. Recently, SCI methods have been a force to reckon with for the computation of highly-accurate energies in small-and medium-sized molecules as they yield near full configuration interaction (FCI) quality energies for only a very tiny fraction of the computational cost of a genuine FCI calculation [30, 32, 36-39, 221, 231-250]. Due to the fairly natural idea underlying these methods, the SCI family is composed of numerous members [34, 36-38, 240, 251-276]. Their fundamental philosophy consists, roughly speaking, in retaining only the most relevant determinants of the FCI space following a given criterion to slow down the exponential increase of the size of the CI expansion. Originally developed in the late 1960's by Bender and Davidson [251] as well as Whitten and Hackmeyer [252], new efficient SCI algorithms have resurfaced recently. Three examples are iCI [272,[277][278][279], semistochastic heat-bath CI (SHCI) [37, 240-242, 262, 263], and Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI) [34,[START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]256,258]. These flavors of SCI include a second-order perturbative (PT2) correction which is key to estimate the "distance" to the FCI solution (see below). The SCI calculations performed for the QUEST set of excitation energies relies on the CIPSI algorithm, which is, from a historical point of view, one of the oldest SCI algorithms. It was developed in 1973 by Huron,Rancurel,and Malrieu [34] (see also ). Recently, the determinantdriven CIPSI algorithm has been efficiently implemented [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] in the open-source programming environment QUANTUM PACKAGE by the Toulouse group enabling to perform massively parallel Chapter 4. The QUEST database of vertical excitation energies computations [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]249,259,266]. CIPSI is also frequently employed to provide accurate trial wave functions for quantum Monte Carlo calculations in molecules [256-258, 260, 261, 264, 265, 285-290] and more recently for periodic solids [291]. We refer the interested reader to Ref. [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] where one can find additional details regarding the implementation of the CIPSI algorithm.

The present chapter is organized as follows. In section 4.2, we detail the specificities of our protocol by providing computational details regarding geometries, basis sets, (reference and benchmarked) computational methods, and a new way of estimating rigorously the extrapolation error in SCI calculations which is tested by computing additional FCI values for five-and sixmembered rings. We then describe in section 4.3 the content of our five QUEST subsets providing for each of them the number of reference excitation energies, the nature and size of the molecules, the list of benchmarked methods, as well as other specificities. A special emphasis is placed on the add-on published during my thesis, QUEST#5, specifically designed for the present part of this thesis where we have considered, in particular but not only, larger molecules. Section 4.4 discusses the generation of the TBEs, while section 4.5 proposes a comprehensive benchmark of various methods on the entire QUEST set which is composed by more than 400 excitations with, in addition, a specific analysis for each type of excited states. Section 4.6 describes the feature of the website that we have specifically designed to gather the entire data generated during these last few years. Thanks to this website, one can easily test and compare the accuracy of a given method with respect to various variables such as the molecule size or its family, the nature of the excited states, the size of the basis set, etc. Finally, we draw our conclusions in section 4.7 where we discuss, in particular, future projects aiming at expanding and improving the usability and accuracy of the QUEST database.

Computational tools

Geometries

The ground-state structures of the molecules included in the QUEST dataset have been systematically optimized at the CC3/aug-cc-pVTZ level of theory, except for a very few cases. As shown in Refs. [172,292], CC3 provides extremely accurate ground-and excited-state geometries. These optimizations have been performed using DALTON 2017 [293] and CFOUR 2.1 [294] applying default parameters. For the open-shell derivatives belonging to QUEST#4 [221], the geometries are optimized at the UCCSD(T)/aug-cc-pVTZ level using the GAUSSIAN16 program [295] and applying the "tight" convergence threshold. For the purpose of the present chapter, one can find all the geometries in the supporting information of the associated review article.

Basis sets

For the entire set, we rely on the 6-31+G(d) Pople basis set [296][297][298][299][300][301][302], the augmented family of Dunning basis sets aug-cc-pVXZ (where X = D, T, Q, and 5) [START_REF] Dunning | Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen[END_REF][START_REF] Kendall | Electron affinities of the first-row atoms revisited. systematic basis sets and wave functions[END_REF][305][306][307], and sometimes its doublyand triply-augmented variants, d-aug-cc-pVXZ and t-aug-cc-pVXZ respectively. Doubly-and triplyaugmented basis sets are usually employed for Rydberg states where it is not uncommon to observe a strong basis set dependence due to the very diffuse nature of these excited states. These basis sets are available from the basis set exchange website [308][309][310].

Computational methods

Reference computational methods

In order to compute reference vertical energies, we have designed different strategies depending on the actual nature of the transition and the size of the system. For small molecules (typically 1-3 non-hydrogen atoms), we mainly resort to SCI methods which can provide near-FCI excitation energies for compact basis sets. Obviously, the smaller the molecule, the larger the basis we can afford. For larger systems (i.e., 4-6 non-hydrogen atom), one cannot afford SCI calculations anymore except in a few special occasions, and we then rely on LR-CC theory 226,(228)(229)(230)) to obtain accurate transition energies. In the following, we will omit the prefix LR for the sake of clarity, as equivalent values would be obtained with the equation-of-motion (EOM) formalism [23,201].

The CC calculations are performed with several codes. For closed-shell molecules, CC3 [26,203] calculations are achieved with DALTON [293] and CFOUR [294]. CCSDT and CCSDTQ calculations are performed with CFOUR [294] and MRCC 2017 [311, 312], the latter code being also used for CCSDTQP. The reported oscillator strengths have been computed in the LR-CC3 formalism only. For open-shell molecules, the CCSDT, CCSDTQ, and CCSDTQP calculations performed with MRCC [311,312] do consider an unrestricted Hartree-Fock wave function as reference but for a few exceptions. All excited-state calculations are performed, except when explicitly mentioned, in the frozen-core (FC) approximation using large cores for the third-row atoms.

All the SCI calculations are performed within the frozen-core approximation using QUANTUM PACKAGE [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] where the CIPSI algorithm [34] is implemented. Details regarding this specific CIPSI implementation can be found in Refs. [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] and [START_REF] Scemama | Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion monte carlo[END_REF]. A state-averaged formalism is employed, i.e., the ground and excited states are described with the same set of determinants and orbitals, but different CI coefficients. Our usual protocol [30,32,[START_REF] Loos | Reference energies for double excitations[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]221,264,265,[START_REF] Scemama | Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion monte carlo[END_REF] consists of performing a preliminary CIPSI calculation using Hartree-Fock orbitals in order to generate a CIPSI wave function with at least 10 7 determinants. Natural orbitals are then computed based on this wave function, and a new, larger CIPSI calculation is performed with this new set of orbitals. This has the advantage to produce a smoother and faster convergence of the SCI energy toward the FCI limit. The CIPSI energy E CIPSI is defined as the sum of the variational energy E var (computed via diagonalization of the CI matrix in the reference space) and a PT2 correction E PT2 which estimates the contribution of the determinants not included in the CI space [259]. By linearly extrapolating this second-order correction to zero, one can efficiently estimate the FCI limit for the total energies. These extrapolated total energies (simply labeled as E FCI in the remainder of the chapter) are then used to compute vertical excitation energies. Depending on the set, we estimated the extrapolation error via different techniques. For example, in Ref. [32], we estimated the extrapolation error by the difference between the transition energies obtained with the largest SCI wave function and the FCI extrapolated value. This definitely cannot be viewed as a true error bar, but it provides an idea of the quality of the FCI extrapolation and estimate. Below, we provide a much cleaner way of estimating the extrapolation error in SCI methods, and we adopt this scheme for the five-and six-membered rings considered in the QUEST#3 subset. The particularity of the current implementation is that the selection step and the PT2 correction are computed simultaneously via a hybrid semistochastic algorithm [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]259]. Moreover, a renormalized version of the PT2 correction (dubbed rPT2) has been recently implemented for a more efficient extrapolation to the FCI limit [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]. We refer the interested reader to Ref. [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] where one can find all the details regarding the implementation of the CIPSI algorithm. Note that all our SCI wave functions are eigenfunctions of the Ŝ2 spin operator which is, unlike ground-state calculations, paramount in the case of excited states [313].

Benchmarked computational methods

Using a large variety of codes, our benchmark effort consists in evaluating the accuracy of vertical transition energies obtained at lower levels of theory. For example, we rely on GAUSSIAN [295] and TURBOMOLE 7.3 [314] for CIS(D) [START_REF] Head-Gordon | A doubles correction to electronic excited states from configuration interaction in the space of single substitutions[END_REF]315]; Q-CHEM 5.2 [START_REF] Krylov | Q-chem: an engine for innovation[END_REF] for EOM-MP2 [CCSD( 2)] [START_REF] Stanton | Perturbative treatment of the similarity transformed hamiltonian in equation-of-motion coupled-cluster approximations[END_REF] and ADC (3) [29, 31, 173]; Q-CHEM [START_REF] Krylov | Q-chem: an engine for innovation[END_REF] and TURBOMOLE [314] for ADC (2) [173, 318]; DALTON [293] and TURBOMOLE [314] for CC2 [25,200]; DALTON [293] and GAUSSIAN [295] for CCSD [23,168,202]; DALTON [293] for CCSDR (3) [319]; CFOUR [294] for 321]; and ORCA [322] for similarity-transformed EOM-CCSD (STEOM-CCSD) [323,324]. In addition, we evaluate the spin-opposite scaling (SOS) variants of ADC( 2), SOS-ADC(2), as implemented in both Q-CHEM [325] and TURBOMOLE [326]. Note that these two codes have distinct SOS implementations, as explained in Ref. [325]. We also test the SOS and spin-component scaled (SCS) versions of CC2, as implemented in TURBOMOLE [314,326]. Discussion of various spin-scaling schemes can be found elsewhere [216]. For the STEOM-CCSD calculations, it was checked that the active character percentage was, at least, 98 %. For radicals, we applied both the U (unrestricted) and RO (restricted open-shell) versions of CCSD and CC3 as implemented in the PSI4 code [327] to perform our benchmarks. Finally, the composite approach, ADC(2.5), which follows the spirit of Grimme's and Hobza's MP2.5 approach [328] by averaging the ADC(2) and ADC(3) excitation energies, is also tested in the following [33].

For the double excitations composing the QUEST database, we have performed additional calculations using various multiconfigurational methods. In particular, state-averaged (SA) CASSCF and CASPT2 [START_REF] Andersson | Second-order perturbation theory with a CASSCF reference function[END_REF]204] have been performed with MOLPRO (RS2 contraction level) [329]. Concerning the NEVPT2 calculations (which are also performed with MOLPRO), the partially-contracted (PC) and strongly-contracted (SC) variants have been tested [START_REF] Angeli | Introduction of nelectron valence states for multireference perturbation theory[END_REF]330,331]. From a strict theoretical point of view, we point out that PC-NEVPT2 is supposed to be more accurate than SC-NEVPT2 given that it has a larger number of perturbers and greater flexibility. PC-NEVPT2 calculations were also systematically performed for the QUEST#3. In the case of double excitations [START_REF] Loos | Reference energies for double excitations[END_REF], we have also performed calculations with multi-state (MS) CASPT2 (MS-MR formalism) [332], and its extended variant (XMS-CASPT2) [333] when there is a strong mixing between states with same spin and spatial symmetries. The CASPT2 calculations have been performed with level shift and IPEA parameters set to the standard values of 0.3 and 0.25 a.u., respectively. Large active spaces carefully chosen and tailored for the desired transitions have been selected. The definition of the active space considered for each system as well as the number of states in the state-averaged calculation is provided in their corresponding publication.

Estimating the extrapolation error

In this section, we present our scheme to estimate the extrapolation error in SCI calculations. This new protocol is then applied to five-and six-membered ring molecules for which SCI calculations are particularly challenging even for small basis sets. Note that the present method does only apply to state-averaged SCI calculations where ground-and excited-state energies are produced during the same calculation with the same set of molecular orbitals, not to state-specific calculations where one computes solely the energy of a single state (like conventional ground-state calculations).

For the mth excited state (where m = 0 corresponds to the ground state), we usually estimate its FCI energy E rPT2 [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF][START_REF] Holmes | Excited states using semistochastic heat-bath configuration interaction[END_REF] using

E (m) var ≈ E (m) FCI -α (m) E (m) rPT2 , (4.1) 
where

E (m)
var and E (m)

rPT2 are calculated with CIPSI and E (m)

FCI is the FCI energy to be extrapolated. This relation is valid in the regime of a sufficiently large number of determinants where the second-order perturbational correction largely dominates. However, in practice, due to the residual higher-order terms, the coefficient α (m) deviates slightly from unity.

Using Eq. ( 4.1) the estimated error on the CIPSI energy is calculated as

E (m) CIPSI -E (m) FCI = E (m) var + E (m) rPT2 -E (m) FCI = 1 -α (m) E (m) rPT2 , (4.2) 
and thus the extrapolated excitation energy associated with the mth state is given by

∆E (m) FCI = E (m) var + E rPT2 + α (m) -1 E rPT2 -E (0) var + E rPT2 + α (0) -1 E rPT2 + O E 2 rPT2 , (4.3)
which evidences that the error in ∆E (m)

FCI can be expressed as

α (m) -α (0) E rPT2 + O E 2 rPT2
. Now, for the largest systems considered here, |E rPT2 | can be as large as ≈2 eV and, thus, the accuracy of the excitation energy estimates strongly depends on our ability to compensate the errors in the calculations. Here, we greatly enhance the compensation of errors by making use of our selection procedure ensuring that the PT2 values of both states match as well as possible (a trick known as PT2 matching [288,289]

), i.e.E rPT2 = E (0) rPT2 ≈ E (m)
rPT2 , and by using a common set of state-averaged natural orbitals with equal weights for the ground and excited states. This last feature tends to make the values of α (0) and α (m) very close to each other, such that the error on the energy difference is decreased. In the ideal case where we would be able to fully correlate the CIPSI calculations associated with the ground and excited states, the fluctuations of ∆E (m) CIPSI (n) as a function of n would completely vanish and the exact excitation energy would be obtained from the first CIPSI iterations. Quite remarkably, in practice, numerical experience shows that the fluctuations with respect to the extrapolated value ∆E (m) FCI are small, zero-centered, almost independent of n when not too close iteration numbers are considered, and display a Gaussian-like distribution. In addition, as stated just above, the fluctuations are found to be (very weakly) dependent on the iteration number n (see Figure 4.2), so this dependence will not significantly alter our results and will not be considered here. We thus introduce the following random variable

X (m) = ∆E (m) CIPSI (n) -∆E (m) FCI σ(n) (4.4)
where

∆E (m) CIPSI (n) = E (m) var (n) + E (m) rPT2 (n) -E (0) var (n) + E (0) rPT2 (n) , (4.5) 
and σ(n) is a quantity proportional to the average fluctuations of ∆E (m)

CIPSI . A natural choice for σ 2 (n), playing here the role of a variance, is

σ 2 (n) ∝ E (m) rPT2 (n) 2 + E (0) rPT2 (n) 2 , ( 4.6) 
which vanishes in the large-n limit as it should.

Chapter 4. The QUEST database of vertical excitation energies

The histogram of X (m) resulting from the excitation energies obtained at different values of the CIPSI iterations n and for the 13 five-and six-membered ring molecules, both for the singlet and triplet transitions, is shown in Figure 4.2. To avoid transient effects, only excitation energies at sufficiently large n are retained in the data set. The criterion used to decide from which precise value of n the data should be kept will be presented below. In our application, the total number of values employed to make the histogram is about 200. The dashed line of Figure 4.2 represents the best Gaussian fit (in the sense of least-squares) reproducing the data. As seen, the distribution can be described by the Gaussian probability

P X (m) ∝ exp - X (m) 2 2σ * 2 (4.7)
where σ * 2 is some "universal" variance depending only on the way the correlated selection of both states is done, not on the molecule considered in our set.

An estimate of ∆E (m)

FCI as the average excitation energy of ∆E (m)

CIPSI is thus

∆E (m) FCI = ∑ M n=1 ∆E (m) CIPSI (n) σ(n) ∑ M n=1 1 σ(n)
, where M is the number of data kept. Now, regarding the estimate of the error on ∆E (m) FCI some caution is required since, although the distribution is globally Gaussian-like (see Figure 4.2) there exists some significant departure from it and we need to take this feature into account.

More precisely, we search for a confidence interval I such that the true value of the excitation energy

∆E (m) FCI lies within one standard deviation of ∆E (m) CIPSI , i.e., P ∆E (m) FCI ∈ ∆E (m) CIPSI ± σ G = 0.6827. In a Bayesian framework, the probability that ∆E (m) FCI is in an interval I is P ∆E (m) FCI ∈ I = P ∆E (m) FCI ∈ I G × P(G) (4.8)
where P(G) is the probability that the random variables considered in the latest CIPSI iterations are normally distributed. A common test in statistics of the normality of a distribution is the Jarque-Bera test J and we have

P(G) = 1 -χ 2 CDF (J, 2) (4.9)
where χ 2 CDF (x, k) is the cumulative distribution function (CDF) of the χ 2 -distribution with k degrees of freedom. As the number of samples M is usually small, we use Student's t-distribution to estimate the statistical error. The inverse of the cumulative distribution function of the t-distribution, t -1 CDF , allows us to find how to scale the interval by a parameter

β = t -1 CDF 1 2 1 + 0.6827 P(G) , M (4.10) such that P ∆E (m) FCI ∈ ∆E (m) CIPSI ± βσ = p = 0.682 7.
Only the last M > 2 computed transition energies are considered. M is chosen such that P(G) > 0.8 and such that the error bar is minimal. If all the values of P(G) are below 0.8, M is chosen such that P(G) is maximal.

The singlet and triplet FCI/6-31+G(d) excitation energies and their corresponding error bars estimated with the method presented above based on Gaussian random variables are reported in Table 4.1. For the sake of comparison, we also report the CC3 and CCSDT vertical energies from Ref.

[32] computed in the same basis. We note that there is for the vast majority of considered states a very good agreement between the CC3 and CCSDT values, indicating that the CC values can be trusted. The estimated values of the excitation energies obtained via a three-point linear extrapolation considering the three largest CIPSI wave functions are also gathered in Table 4.1. In this case, the error bar is estimated via the extrapolation distance, i.e., the difference in excitation energies obtained with the three-point linear extrapolation and the largest CIPSI wave function. This strategy has been considered in some of our previous works [32,221,249]. The deviation from the CCSDT excitation energies for the same set of excitations are depicted in Figure 4.3, where the red dots correspond to the excitation energies and error bars estimated via the present method, and the blue dots correspond to the excitation energies obtained via a three-point linear fit and error bars estimated via the extrapolation distance. These results contain a good balance between well-behaved and ill-behaved cases. For example, cyclopentadiene and furan correspond to well-behaved scenarios where the two flavors of extrapolations yield nearly identical estimates and the error bars associated with these two methods nicely overlap. In these cases, one can observe that our method based on Gaussian random variables provides almost systematically smaller error bars. Even in less idealistic situations (like in imidazole, pyrrole, and thiophene), the results are very satisfactory and stable. The six-membered rings represent much more challenging cases for SCI methods, and even for these systems the newly-developed method provides realistic error bars, and allows to easily detect problematic events (like pyridine for instance). The present scheme has also been tested on smaller systems when one can tightly converge the CIPSI calculations. In such cases, the agreement is nearly perfect in every scenario that we have encountered.

The QUEST database

Overview

The QUEST database gathers more than 500 highly-accurate excitation energies of various natures (valence, Rydberg, n → π * , π → π * , singlet, doublet, triplet, and double excitations) for molecules ranging from diatomics to molecules as large as naphthalene (see Figure 4.4). This set is also chemically diverse, with organic and inorganic systems, open-and closed-shell compounds, acyclic and cyclic systems, pure hydrocarbons and various heteroatomic structures, etc. Each of the five subsets making up the QUEST dataset is detailed below. Throughout the present review, we report several statistical indicators: the mean signed error (MSE), mean absolute error (MAE), root-mean square error (RMSE), and standard deviation of the errors (SDE), as well as the maximum positive [Max(+)] and maximum negative [Max(-)] errors.

QUEST#1

The QUEST#1 benchmark set [30] consists of 110 vertical excitation energies (as well as oscillator strengths) from 18 molecules with sizes ranging from one to three non-hydrogen atoms (water, hydrogen sulfide, ammonia, hydrogen chloride, dinitrogen, carbon monoxide, acetylene, ethylene, formaldehyde, methanimine, thioformaldehyde, acetaldehyde, cyclopropene, diazomethane, formamide, ketene, nitrosomethane, and the smallest streptocyanine). For this set, we provided two sets of TBEs: i) one obtained within the frozen-core approximation and the aug-cc-pVTZ basis set, and ii) another one including further corrections for basis set incompleteness and "all electron" effects. For the former set, we systematically employed FCI/aug-cc-pVTZ values to define our TBEs, except for a few cases. For the latter set, both the "all electron" correlation and the basis set corrections were systematically obtained at the CC3 level of theory and with the d-aug-cc-pV5Z basis for the nine smallest molecules, and slightly more compact basis sets for the larger compounds. Our TBE/aug-cc-pVTZ reference excitation energies were employed to benchmark a series of popular excited-state wave function methods partially or fully accounting for double and triple excitations, namely CIS(D), CC2, CCSD, STEOM-CCSD, CCSDR(3), CCSDT-3, CC3, ADC(2), and ADC(3). Our main conclusions were that i) ADC( 2) and CC2 show strong similarities in terms of accuracy, ii) STEOM-CCSD is, on average, as accurate as CCSD, the latter overestimating transition energies, iii) CC3 is extremely accurate (with a mean absolute error of only ∼0.03 eV) and that although slightly less accurate than CC3, CCSDT-3 could be used as a reliable reference for benchmark studies, 
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Be Octatetraene FIGURE 4.4: Molecules from each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies: QUEST#1 (red), QUEST#2 (magenta and/or underlined), QUEST#3 (black), QUEST#4 (green), and QUEST#5 (blue).

and iv) ADC( 3) was found to be significantly less accurate than CC3 by overcorrecting ADC(2) excitation energies.

QUEST#2

The QUEST#2 benchmark set [START_REF] Loos | Reference energies for double excitations[END_REF] reports reference energies for double excitations. This set gathers 20 vertical transitions from 14 small-and medium-sized molecules (acrolein, benzene, beryllium atom, butadiene, carbon dimer and trimer, ethylene, formaldehyde, glyoxal, hexatriene, nitrosomethane, nitroxyl, pyrazine, and tetrazine). The TBEs of the QUEST#2 set are obtained with SCI and/or multiconfigurational [CASSCF, CASPT2, (X)MS-CASPT2, and NEVPT2] calculations depending on the size of the molecules and the level of theory that we could afford. An important addition to this second study was also the inclusion of various flavors of multiconfigurational methods (CASSCF, CASPT2, and NEVPT2) in addition to high-order CC methods including, at least, perturbative triples (CC3, CCSDT, CCSDTQ, etc). Our results demonstrated that the error of CC methods is intimately linked to the amount of double-excitation character in the vertical transition.

For "pure" double excitations (i.e., for transitions which do not mix with single excitations), the error in CC3 and CCSDT can easily reach 1 and 0.5 eV, respectively, while it goes down to a few tenths of an eV for more common transitions involving a significant amount of single excitations (such as the well-known A g transition in butadiene or the E 2g excitation in benzene). The quality of the excitation energies obtained with CASPT2 and NEVPT2 was harder to predict as the overall accuracy of these methods is highly dependent on both the system and the selected active space. Nevertheless, these two methods were found to be more accurate for transitions with a very small percentage of single excitations (error usually below 0.1 eV) than for excitations dominated by single excitations where the error is closer to 0.1-0.2 eV.

QUEST#3

The QUEST#3 benchmark set [32] is, by far, our largest set, and consists of highly accurate vertical transition energies and oscillator strengths obtained for 27 molecules encompassing 4, 5 and 6 non-hydrogen atoms (acetone, acrolein, benzene, butadiene, cyanoacetylene, cyanoformaldehyde, cyanogen, cyclopentadiene, cyclopropenone, cyclopropenethione, diacetylene, furan, glyoxal, imidazole, isobutene, methylenecyclopropene, propynal, pyrazine, pyridazine, pyridine, pyrimidine, pyrrole, tetrazine, thioacetone, thiophene, thiopropynal, and triazine) for a total of 238 vertical transition energies and 90 oscillator strengths with a reasonably good balance between singlet, triplet, valence, and Rydberg excited states. For these 238 transitions, we have estimated that 224 are chemically accurate for the aug-cc-pVTZ basis and for the considered geometry. To define the TBEs of the QUEST#3 set, we employed CC methods up to the highest technically possible order (CC3, CCSDT, and CCSDTQ), and, when affordable SCI calculations with very large reference spaces (up to hundred million determinants in certain cases), as well as one of the most reliable multiconfigurational methods, NEVPT2, for double excitations. Most of our TBEs are based on CCSDTQ (4 non-hydrogen atoms) or CCSDT (5 and 6 non-hydrogen atoms) excitation energies. For all the transitions of the QUEST#3 set, we reported at least CCSDT/aug-cc-pVTZ (sometimes with basis set extrapolation) and CC3/aug-cc-pVQZ transition energies as well as CC3/aug-cc-pVTZ oscillator strengths for each dipole-allowed transition. Pursuing our previous benchmarking efforts, we confirmed that CC3 almost systematically delivers transition energies in agreement with higherlevel theoretical models (±0.04 eV) except for transitions presenting a dominant double-excitation character where multiconfigurational methods like NEVPT2 have logically the edge. This settles down, at least for now, the debate by demonstrating the superiority of CC3 (in terms of accuracy) compared to methods like CCSDT-3 or ADC [START_REF] Jensen | Introduction to computational chemistry[END_REF]. For the latter model, this was further demonstrated in a recent study by two of the present authors [33].

QUEST#4

The QUEST#4 benchmark set [221] consists of two subsets of excitations and oscillator strengths.

An "exotic" subset of 30 excited states for closed-shell molecules containing F, Cl, P, and Si atoms (carbonyl fluoride, CCl 2 , CClF, CF 2 , difluorodiazirine, formyl fluoride, HCCl, HCF, HCP, HPO, HPS, HSiF, SiCl 2 , and silylidene) and a "radical" subset of 51 doublet-doublet transitions in 24 small radicals (allyl, BeF, BeH, BH 2 , CH, CH 3 , CN, CNO, CON, CO + , F 2 BO, F 2 BS, H 2 BO, HCO, HOC, H 2 PO, H 2 PS, NCO, NH 2 , nitromethyl, NO, OH, PH 2 , and vinyl) characterized by open-shell electronic configurations and an unpaired electron. This represents a total of 81 high-quality TBEs, the vast majority being obtained at the FCI level with at least the aug-cc-pVTZ basis set. We additionnaly performed high-order CC calculations to ascertain these estimates. For the exotic set, these TBEs have been used to assess the performances of 15 "lower-order" wave function approaches, including several CC and ADC variants. Consistent with our previous works, we found that CC3 is very accurate, whereas the trends for the other methods are similar to that obtained on more standard CNOSH organic compounds. In contrast, for the radical set, even the refined ROCC3 method yields a comparatively large MAE of 0.05 eV. Likewise, the excitation energies obtained with CCSD are much less satisfying for open-shell derivatives (MAE of 0.20 eV with UCCSD and 0.15 eV with ROCCSD) than for closed-shell systems of similar size (MAE of 0.07 eV).

QUEST#5

The QUEST#5 subset is composed of additional accurate excitation energies that we have produced for the present chapter. This new set gathers 13 new systems composed by small molecules as well as larger molecules (see blue molecules in Figure 4.4): aza-naphthalene, benzoquinone, cyclopentadienone, cyclopentadienethione, diazirine, hexatriene, maleimide, naphthalene, nitroxyl, octatetraene, streptocyanine-C3, streptocyanine-C5, and thioacrolein. For these new transitions, we report again quality vertical transition energies, the vast majority being of CCSDT quality, and we consider that, out of these 80 new transitions, 55 of them can be labeled as "safe", i.e., considered as chemically accurate or within 0.05 eV of the FCI limit for the given geometry and basis set.

Aza-naphthalene

In contrast to naphthalene (see below), its tetraaza counterpart (1,4,5,8-tetraazanaphthalene) has not been much investigated although it also has a D 2h symmetry. The vibronic couplings of one low-lying state were nevertheless well characterized theoretically by Dierksen and Grimme with TD-DFT [334] and compared to the experimental spectrum [335]. The latter work also contains some CIS and CNDO calculations and a few assignments for higher-lying states. Our CC results collected in Table 4.2 are therefore clearly the most advanced to date. For the singlet transitions, no %T 1 is smaller than 80 %, and we have obtained consistent CC3 and CCSDT values with the Pople basis set. Indeed, the two models yield values within ±0.03 eV of each other, the two exceptions (the second B 1u and the 1 B 3u states) being considered as "unsafe" in the database. Comparisons to experimental 0-0 energies in condensed medium and CNDO calculations can be found in the Table, but are not very helpful to assess our TBEs. To the best of our knowledge, the present work is the first to report triplet excited states, and we list in Table 4.2 eight valence transitions obtained at the CC3/aug-cc-pVTZ level. As we were not able to perform CCSDT calculations for the triplets, all these transition energies are labeled "unsafe" in the QUEST database. Nevertheless, given the large %T 1 values, one can likely consider them accurate (for the basis set used at least).

Benzoquinone Benzoquinone, the simplest quinoidic dye, has been treated at several levels of theory previously, e.g., CASPT2 [196,198,336,337], and various CC levels up to CC3 [196,199], ADC [START_REF] Helgaker | Molecular electronic-structure theory[END_REF] and ADC (3) [29, 33] as well as TD-DFT [197,[START_REF] Bousquet | Excitedstate geometries of heteroaromatic compounds: a comparative td-dft and sac-ci study[END_REF][340][341][342][START_REF] Da Costa | An ab initio investigation for elastic and electronically inelastic electron scattering from para-nenzoquinone[END_REF]. Our results and comparisons with a selection of the existing literature can be found in Table 4.3.

For the singlet transitions, we could obtain CCSDT/aug-cc-pVDZ values for the 10 considered excited states. For the two lowest transitions of n → π * character, these agree well with the TABLE 4.2: Transition energies (in eV) determined in aza-naphthalene (1,4,5,8tetraazanaphthalene). For all transitions, we provide the single-excitation character %T 1 obtained at LR-CC3/aug-cc-pVTZ level. For the dipole-allowed transitions, we provide the corresponding values of the oscillator strength at the same level of theory. corresponding CC3 values and we can define safe TBE/aug-cc-pVTZ of 2.82 and 2.96 eV. These values are within 0.10 eV of the most recent estimates of Thiel [199] and are clearly larger than older CASPT2 estimates [336,337], which appear too low. The experimentally available data return 0-0 energies of roughtly 2.5 eV for both transitions [344,345]. These values are located 0.3-0.4 eV below our vertical estimates which is a quite reasonable difference between vertical and 0-0 energies. The next transition of A g symmetry has a pure double excitation character so that unsurprisingly both CC3 and CCSDT yield values that are much too large. Indeed, at the NEVPT2/aug-cc-pVTZ level, we obtain a transition energy of 4.57 eV for this excitation, more than 1 eV below the CC3 estimate, yet again slightly above earlier CASPT2 estimates. Although one cannot consider this 4.57 eV estimate as chemically accurate (the error bar of NEVPT2 is typically ±0.10 eV for transitions of pure double character [START_REF] Loos | Reference energies for double excitations[END_REF]), it is likely the most accurate value available at this stage. The next transition of 1 B 3g symmetry is the first of π → π * character. Although its associated %T 1 value is rather large, there is substantial difference between CC3 and CCSDT, making our TBE of 4.58 eV falling in the "unsafe" category, though it is obviously more accurate than previous CASPT2 values that are too close from the experimental 0-0 energies to be trustworthy. For the next strongly-allowed transition ( 1 B 1u ), one also notices small yet non-negligible differences between CC3 and CCSDT. Our TBE of 5.62 eV is slightly larger than Thiel's one (5.47 eV obtained using CC3) [198], It is objectively hard to determined which one is the most accurate, and if the difference in the ground-state geometries (CC3 here vs MP2 in Thiel's work) also plays a significant role in this discrepancy. The situation is similar for the B 3u transition, although in that case the present TBE of 5.79 eV is close to Thiel's CC3 value of 5.71 eV. Note that Thiel selected a CASPT2 value of 5.55 eV as TBE due to the rather small %T 1 value for that state. However, this value is likely slightly too low as the agreement between CC3 and CCSDT is rather good. For the higher-lying singlet transitions, we note that: i) we could produce "safe" TBEs for the two B 2g excited states that both show minimal changes between CC3 and CCSDT, although %T 1 is small for the lowest transition of that symmetry; ii) for the (second) 1 A u transition, the differences are too large between CC3 and CCSDT to provide trustworthy estimates; iii) for the (second) 1 B 1g excitation, these differences are less marked and although we rated our TBE (6.38 eV) as "unsafe", it is likely the best estimate proposed to date in the literature.

For the triplets, we considered the four lowest transitions, two of n → π * character ( 3 B 1g and 3 A u ) and two of π → π * character ( 3 B 1u and 3 B 3g ), see Table 4.3. For all fours excited states, there is a very nice match between the CC3 and CCSDT transition energies obtained with Pople's basis set, and the single-excitation characters are very large, so that we are confident that our TBEs are trustworthy. For the 3 B 1g and 3 A u transitions, our energies are very slightly larger than Thiel's extrapolated CC3 ones, and again ca. 0.3-0.4 eV above the experimental 0-0 energies. As for the singlet transitions, the early CASPT2 values are too low. For the two π → π * excitations, exactly the same trends are found, but no experimental measurements exist to our knowledge. f Absorption spectroscopy (0-0 energies) from Ref.

[344] (gas-phase and pure crystals). g Absorption spectroscopy (0-0 energies) from Ref. [345].

Chapter 4. The QUEST database of vertical excitation energies Cyclopentadienone and cyclopentadienethione This two five-membered rings with an external (thio)ketone moiety have been investigated theoretically by Serrano-Andrés and coworkers in 2002 [347] who used the best method available at the time, namely CASPT2 (without IPEA). Our results are compared to these earlier estimates in Table 4.4. For both structures and both spin symmetries, the two lowest singlet transitions are of A 2 (n → π * ) and B 2 (π → π * ) spatial symmetries. There is a good to excellent agreement between the CC3 and CCSDT values for both the 6-31+G(d) and the aug-cc-pVDZ basis sets for these eight excited states, consistent with the large single excitation character. Thus, one can likely trust the obtained TBEs as these transitions are unproblematic. Experimentally, a tBu substituted cyclopentadienone shows a weakly-allowed band peaking at 3.22 eV in vapour [348], which is likely the 1 B 2 state. For the lowest triplet state of cyclopentadienone, the experimental triplet energy was (indirectly) estimated experimentally to be 1.50 [START_REF] Helgaker | Molecular electronic-structure theory[END_REF] eV [349], but this value corresponds to the triplet lowest-energy geometry, so that direct comparisons with our data is unreasonable. This 2014 work also contains CCSD(T) estimates of the adiabatic electron affinities for the two lowest triplet states.

In the singlet manifold of this molecule, one next finds one dark transition of purely double (n, π) → (π * , π * ) character, for which CC theory is not well suited, as clearly illustrated by the huge difference between CC3 and CCSDT. Using a minimal active space (π space and lone pairs), we obtained with NEVPT2 value of 5.02 eV, i.e., 0.7 eV below the CCSDT estimate and roughly half an eV higher than the earlier CASPT2 values. This 5.02 eV estimate although not chemically accurate is likely the best available today. The fourth singlet state is an interesting yet challenging (π, π) → (π * , π * ) showing a %T 1 of 49.9 %. For this particular state, the NEVPT2 value is 6.02 eV, which is likely again the most realistic value available. The fifth transition shows a butadiene-A glike character, that is a totally-symmetric π → π * transition with a significant double excitation character around 25 %. For this transition, we based our TBE on the CCSDT estimate, but it might be too large by roughly 0.10 eV. The experimental spectrum of the related compounds shows a strong peak at 5.93 eV [348], likely corresponding to the overlap between these two 1 A 1 transitions. In cyclopentadienone, the third triplet is an unproblematic π → π * transition, for which there is a remarkable consistency between our CC estimates, again significantly above the previous CASPT2 data [347]. Finally, the highest triplet considered has originally a highly dominant multi-excitation character and our best estimate of 4.91 eV was obtained with NEVPT2, the CC values being too large.

For the singlet manifold of cyclopentadienethione, on finds again a 1 B 1 (n, π → π * , π * ) purely double transition and a 50/50 single/double 1 A 1 (π, π) → (π * , π * ) transition. The methodological trends are similar to those noted for the oxygen-derivatives, and the TBE listed in the QUEST database are obtained with NEVPT2: 3.16 eV and 5.43 eV. For the latter, it should be noted that there are several transitions of mixed character close in energy, so that definitive attribution is challenging. In contrast to cyclopentadienone, the 1 A 1 (π → π * ) transition shows a very large %T 1 value and small differences between CC3 and CCSDT, so that we have been able to define a "safe" TBE of 4.96 eV. For the records, our NEVPT2 estimate for that state is consistent, 4.90 eV. For the triplets of cyclopentadienethione, the trends are totally similar to those of the oxygen structure. For the fourth triplet of double character, our TBE is 3.13 eV, a value again obtained with NEVPT2. TABLE 4.4: Transition energies (in eV) determined in cyclopentadienone and cyclopentadienethione. For all transitions, we provide the single-excitation character %T 1 obtained at LR-CC3/aug-cc-pVTZ level. For the dipole-allowed transitions, we provide the corresponding values of the oscillator strength at the same level of theory. Diazirine This compact molecule is the diazo equivalent of cycloproprene, and it has been introduced in our latest work [350]. It is a rather elusive compound experimentally so that the most complete study of its transitions energies are theoretical and have been performed at the MCQDPT2 [351] and EOM-CCSD [352] levels. For the eight considered transitions (Table 4.5), the %T 1 values are larger than 90 % and the differences between the CC3, CCSDT, and CCSDTQ values are at most 0.02 eV. In addition, except possibly for the 1 B 2 transition, the basis set effects are rather limited. In short, one can be very confident that the TBEs/aug-cc-pVTZ given in the database are chemically accurate at least for the selected geometry and basis set. If we compare to the previously published values, one notes that the MCQDPT2 results are likely slightly off target, whereas there is quite a good agreement with the EOM-CCSD values of Krylov and coworkers [352]. This latter work used a very diffuse basis set, so that one cannot be definitive that the remaining differences are purely related to the level of theory. Finally, we are aware of only one experimental data: the 0-0 energy of the lowest singlet state at 3.87 eV [353], a value slightly smaller than the computed vertical transition energy, as it should. TABLE 4.5: Transition energies (in eV) determined in diazirine with CC3, CCSDT, and CCSDTQ. For all transitions, we provide the singleexcitation character %T 1 obtained at LR-CC3/aug-cc-pVTZ level. For the dipole-allowed transitions, we provide the corresponding values of the oscillator strength at the same level of theory. Hexatriene and octatetraene Ethylene and butadiene, the two shortest members of the polyenes, have been treated in QUEST#1 and QUEST #3, respectively [30, 32]. The evolution of excited state energies in longer polyenic chains is obviously of interest and this is why we considered hexatriene and octatetraene here. It should be noted that the transition energies are rather sensitive to the bond length alternation in polyenes, so that we trust that our choice of CC3 geometries is an asset as compared to previous estimates. Our results are collected in Table 4.6. Let us start by the famous singlet B u and A g valence states. The transition to B u is bright and has a strong single-excitation character, so that one expects CC to be an adequate methodology, and one indeed finds small differences between CC3 and CCSDT values (ca. 0.03 eV). Our TBE/aug-cc-pVTZ are 5.37 and 4.78 eV for hexatriene and octatetraene, respectively. These values are compared to selected previous theoretical estimates in Table 4.6 and one clearly notices quite a large spread. Experimentally, the 0-0 transition has been measured to be 4.95 eV by electron impact [START_REF] Flicker | Low energy, variable angle electron-impact excitation of 1,3,5-hexatriene[END_REF] and 4.93 eV by optical spectroscopy [START_REF] Leopold | Direct absorption spectroscopy of jet-cooled polyenes. ii. the 1 1 B + u ← 1 1 Ag transitions of butadienes and hexatrienes[END_REF] for hexatriene, and 4.41 eV with the latter technique for the longer oligomer [START_REF] Leopold | Direct absorption spectroscopy of jet-cooled polyenes. i. the 1 1 B + u ← 1 1 Ag transition of trans,trans-1,3,5,7-octatetraene[END_REF], values logically smaller than our vertical estimates. However, one clearly notices a decrease of 0.53 eV when increasing the chain length, as compared to 0.59 eV with our TBE/aug-cc-pVTZ highlighting the consistency of quantum and measured trends. The A g transitions are known to be much more challenging: the states are dark in one-photon absorption, and it has a very significant multi-excitation character (%T 1 of roughly 65 % for both compounds). On a positive note, the basis set effects are very limited for the A g state, 6-31+G(d) being apparently sufficient. In contrast, as expected for such transition, there is a significant drop of the theoretical estimate in going from CC3 to CCSDT. From the analysis performed for double excitations in Ref. [START_REF] Loos | Reference energies for double excitations[END_REF], it is unclear if NEVPT2 or CASPT2 would in fact outperform CCSDT for such "mixedcharacter" state, so that we cannot define a trustworthy TBE on this basis. However, based on our experience for butadiene [32], one can widely estimate the transition energy to be in the range 5.55-5.60 eV for hexatriene and in the range 4.80-4.85 eV for octratetraene. Interestingly the FCI value of Chien et al. with a small basis set for hexatriene (5.59 eV) is compatible with such an estimate. Experimentally, for hexatriene, multiphoton experiments estimate the A g state to be slightly above the B u transition [357], an outcome that theory reproduces.

For the two Rydberg transitions of hexatriene, the differences between CC3 and CCSDT estimates are very small, %T 1 values are large, so that CC estimates can likely be trusted. However, the basis set effects are rather large, and aug-cc-pVTZ might be insufficient to reach basis set convergence. Our values are reasonably similar to those obtained with CASPT2 almost thirty years ago [358]. The experimental 0-0 energies are 5.68 eV and 6.06 eV [359], but the assignments of Rydberg transitions is a matter of discussion [358], so that we prefer again not to use measured data as reference.

For the triplet excited states, given their very large %T 1 values, we logically trust the CC estimates. We note that, to the best of our knowledge, this work is the first to report true CC3/augcc-pVTZ values for these two systems. Indeed, the previous CC3 estimates provided by Thiel [198,199] were obtained by correcting CC3/TZVP values thanks to CC2 calculations using a larger basis set. These authors nevertheless provided very close estimates to ours: 2.71, 4.33, 2.32 and 3.69 eV (going down the list of triplet excited states in Table 4.6). These data are within 0.04 eV of the current values. Comparatively, the previous MRMP and CASPT2 results [198,358,360] are therefore slightly too low for the triplet transition energies. For hexatriene (octatetraene), electron impact studies return maxima at 2.61(210) and 4.11 [START_REF] Leopold | Direct absorption spectroscopy of jet-cooled polyenes. ii. the 1 1 B + u ← 1 1 Ag transitions of butadienes and hexatrienes[END_REF] eV for the two lowest transitions [START_REF] Flicker | Low energy, variable angle electron-impact excitation of 1,3,5-hexatriene[END_REF] ([361]), in reasonable agreement with the values listed in the QUEST database.

Maleimide Maleimide was quite surprisingly much less studied theoretically than other similar compounds. We are only aware of the 2003 CASPT2 analysis of Climent and coworkers [363], a refined 2020 joint theory/experiment study using CASPT2, ADC(3), and EOM-CCSD [364], as well as two quite recent investigations focussed on the geometries of specific states [292,365] rather than on the transition energies. Our results are listed in Table 4.7. For all considered singlet (triplet) transitions, we obtained %T 1 values larger than 85 % (95 %), and one indeed notices very consistent estimates with CC3 and CCSDT, the largest difference being 0.03 eV. All transitions can therefore TABLE 4.6: Transition energies (in eV) determined in hexatriene and octatetraene. For all transitions, we provide the single-excitation character %T 1 obtained at LR-CC3/aug-cc-pVTZ level. For the dipole-allowed transitions, we provide the corresponding values of the oscillator strength at the same level of theory. be considered as rather "safe". Comparing the 2003 and 2020 CASPT2 values Table 4.7, one notices large differences between the two, and our present estimates are (much) closer from the most recent values. Nevertheless, even the 2020 CASPT2 results seem rather too low as compared to the values provided here. The experimental data are limited. Interestingly, Climent and coworkers attributed the experimental 0-0 absorption at 3.33 eV (see footnotes in Table 4.7) to the second transition, but given our data, we believe that it is more likely the B 1 transition, an assignment consistent with the fact that this band shows non-zero experimental intensities. The A 2 transition seems indeed significantly too high with CCSDT to be attributed to the 3.33 eV measurement. For this assignment, we therefore agree with the analysis of Ref. [364]. Globally, our CCSDT values are typically bracketed by the EOM-CCSD and CASPT2 values of this recent study, which we consider a good hint of accuracy. TABLE 4.7: Transition energies (in eV) determined in maleimide. For all transitions, we provide the single-excitation character %T 1 obtained at LR-CC3/aug-cc-pVTZ level. For the dipole-allowed transitions, we provide the corresponding values of the oscillator strength at the same level of theory. [366]: the 3.33 eV value is a 0-0 energy at low temperature in (frozen) EPA, the 4.4 eV value is the lowest (close from 0-0) peak observed in vapour for N-Me-maleimide, and the 5.53 eV value is a 0-0 energy in vapour for the N-Me-maleimide. d Vapour measurements at 315 K from Ref. [364].

Naphthalene Naphthalene, due to its high-symmetry and significance for organic electronics, is also a popular benchmark molecule [29,196,198,199,[367][368][369][370], although some studies are focussed on the lowest-energy states "only" [371,372]. Our results are listed in Table 4.8. We believe that the convincing work of Fliegl and Sundholm remains the most complete analysis to date [370].

For the singlet transitions, we could obtain CCSDT, albeit only with Pople's basis set. However, these remain quite significant as none of the considered excited state (even those with Rydberg character) seems to be strongly affected by the basis set. Indeed, the mean absolute deviation between CC3/6-31+G(d) and CC3/aug-cc-pVTZ is 0.16 eV, the maximal discrepancy being 0.23 eV.

When one compares the CCSDT and CC3 values, we note that there are only two transitions (the lowest 1 A g and the second 1 B 3u ) for which changes exceeding 0.03 eV can be found between the two bases. It is also striking that for the higher-lying A g state, both CC3 and CCSDT transition energies are the same despite %T 1 being 72 % only. It therefore appears that naphthalene provides a series of well-behaved transitions for which CC theory is well suited. For the valence transition, the TBEs that we obtained are very close from the previous Thiel's CC3 values. Let us now discuss the valence transitions in more details. For the lowest 1 B 3u and 1 B 2u transitions, our TBEs/aug-cc-pVTZ are 4.27 eV and 4.90 eV. On the theoretical side, these can be compared to Thiel's 4.25 eV and 4.82 eV values [198], or Fliegl and Sundholm 4.16 and 4.80 eV estimates (obtained with larger basis sets) [370]. On the experimental side, we are aware of vapour phase energy loss values of 4.0 and 4.45 eV [373] and (optical) 0-0 energies of 3.97 and 4.45 eV [374], as well as a 3.93 and 4.35 eV 0-0 energy measurement in cyclohexane [375]. The next transition is the lowest Rydberg state [ 1 A u (π → 3s)], and our TBE/aug-cc-pVTZ is 5.65 eV, which fits very well the old CASPT2 estimates of Rubio and coworkers (5.54 eV [367]), the more recent CC-derived value (5.56 eV [370]) and the only experimental value we are aware off (5.60 eV by energy loss [373]). It is also likely that the use of even large basis set than aug-cc-pVTZ would decrease a bit our estimate. Next come the valence 1 B 1g and A g states for which our TBE/aug-cc-pVTZ are 5.84 and 5.89 eV (we recall that we labeled the second one as "unsafe"). On the theoretical side, previous calculations led 5.75 and 5.90 eV with exCC3 [198], 5.87 and 6.00 eV with RASPT2 [369], 5.64 and 5.77 eV with exCC3 [370]. On the experimental side, the measured 0-0 energies are 5.22 and 5.52 eV [376] and 5.28 and 5.50 eV, both in solution [375]. All these estimates are rather consistent with one another. Next come two π → 3p Rydberg transitions, for which our TBE of 6.07 and 6.09 eV are slightly larger than the CASPT2 values of Ref. [367] and the extrapolated CC2 estimates of 5.94 and 5.96 eV. To our knowledge, no experimental measurement exists for these two transitions. We estimate the next valence 1 B 3u excited state to be close to 6.19 eV with the aug-cc-pVTZ basis set. This value is consistent with recent estimates of 6.11 [198], 6.20 [369] and 6.06 eV [370]. For this bright state, there are several available experimental values: 5.55 eV (crystal) [377], 5.62/5.63 eV (solution) [377,378] and 5.89 eV (vapour) [374], the latter value being also found by energy loss [373]. The last of the four Rydberg states considered herein, 1 B 1u (π → 3s), is located by us at 6.33 eV, a value 0.3 eV above the CASPT2 value [367] but consistent with a recent CC2 estimate (6.26 eV [370]). For the second 1 B 2u (π → π * ) transition, our vertical best estimate is 6.42 eV, fitting Thiel's (6.36 eV) [198] and Sundholm's (6.30 eV) results [370]. The experimental values are around 6.0 eV (energy loss [373]) and 6.14 eV (optical spectroscopy) [374]. Finally, for the higher-lying 1 B 1g (π → π * ) and 1 A g (π → π * ) states, our TBE/aug-cc-pVTZ values of 6.48 and 6.87 eV appear too high as compared to the estimates of Ref. [370] (6.19 and 6.40 eV), which is likely due to the strong basis set effects for these two excited states. The 1 A g transition was estimated at 6.05 eV [376] by two-photon spectroscopy.

For the triplet transitions, we have investigated almost the same valence transitions as in Thiel's set [196,198,199]. Let us note that for all states, CC3 returns very large %T 1 , and that the differences between aug-cc-pVDZ and aug-cc-pVTZ estimates is at most 0.04 eV. This clearly hints that the present estimates are trustworthy, but as we have been unable to perform CCSDT calculations, we nevertheless rate all of them as "unsafe" in the QUEST database, which is a conservative choice. The present values are also very similar to those obtained by basis set extrapolation thanks to the work of Thiel [198], except for the highest triplet transition considered here in which a significant difference of 0.2 eV is found. For most transitions, one also find a good consistency with earlier RASPT2 calculations [369]. Experimentally, the available data are typically T-T absorption, and this includes values of +2.25 eV, +2.93 eV for the two 3 A g states [379] and 3.12 eV for the intermediate 3 B 1g transition [380], that we can compare to our +2.32, +3.22 and +3.00 eV values, respectively.

Nitroxyl (HNO)

In QUEST#2 [START_REF] Loos | Reference energies for double excitations[END_REF], we treated only one excited state, of pure double-excitation character, of this compact molecule. We have used a large panel of high-level methods here, considering five excited states Table 4.9. For all transitions (except the Rydberg one), we could nicely converge FCI/aug-cc-pVTZ values that can be used a solid references. For the Rydberg transition, which is naturally more sensitive to the basis set effect, the CCSDTQ/aug-cc-pVDZ and FCIaug-cc-pVDZ also perfectly match. A previous CASPT2 work [381], reported transition energies to the lowest singlet and triplet of 0.67 and 1.53 eV, two values that now appear rather too low, a usual trend for CASPT2 when no IPEA shift is applied. TABLE 4.9: Transition energies (in eV) determined in nitroxyl with CC3, CCSDT, CCSDTQ and FCI. For all transitions, we provide the single-excitation character %T 1 obtained at LR-CC3/aug-cc-pVTZ level. For the dipole-allowed transitions, we provide the corresponding values of the oscillator strength at the same level of theory. Streptocyanines In addition to the smallest streptocyanine treated in our earliest work [30], we have investigated here the properties of the two next members of the cationic series which contain 3 and 5 carbon atoms respectively bracketed by NH 2 groups (see Table 4.10). These systems are of specific interest because it is well-known that there are challenging for TD-DFT [382]. We report in Table 4.10 the transition energies to the lowest excited states of both spin symmetries with (valence) π → π * character. For the smallest of the two compounds treated here, we have been able to converge a CIPSI calculation with the 6-31+G(d) basis set, and it clearly gives us confidence that both CC3 and CCSDT values are accurate, the former method being actually even closer to the FCI extrapolation for that specific molecules. The detailed investigation of these compounds likely remains the one of Send,Valsson,and Filippi [383]. These authors reported for the singlet states of these two cyanines: i) exCC3 values of 4.84 and 3.65 eV; ii) DMC values of 5.03(2) and 3.83 [START_REF] Helgaker | Molecular electronic-structure theory[END_REF] eV; and iii) CASPT2 estimates of 4.69 and 3.53 eV. The present estimates better match the previous CC estimates, the DMC (CASPT2) transition energies appearing sightly too large (too low). Once more, given the results in Table 4.10, we believe that our TBEs are the most accurate to date, at least for the considered geometries. 

Theoretical best estimates

We discuss in this section the generation of the TBEs obtained with the aug-cc-pVTZ basis. For the closed-shell compounds, the exhaustive list of TBEs can be found in Table 4.12 alongside various specifications: the molecule's name, the excitation, its nature (valence, Rydberg, or charge transfer), its oscillator strength (when symmetry-and spin-allowed), and its percentage of single excitations %T (computed at the LR-CC3 level). All these quantities are computed with the same aug-cc-pVTZ basis. Importantly, we also report the composite approach considered to compute the TBEs (see column "Method"). Following an ONIOM-like strategy [386,387], the TBEs are computed as "A/SB + [B/TB -B/SB]", where A/SB is the excitation energy computed with a method A in a smaller basis (SB), and B/SB and B/TB are excitation energies computed with a method B in the small basis and target basis TB, respectively. Table 4.13 reports the TBEs for the open-shell molecules belonging to the QUEST#4 subset.

Talking about numbers, the QUEST database is composed of 551 excitation energies, including 302 singlet, 197 triplet, 51 doublet, 412 valence, and 176 Rydberg excited states. Amongst the valence transitions in closed-shell compounds, 135 transitions correspond to n → π * excitations, 200 to π → π * excitations, and 23 are doubly-excited states. In terms of molecular sizes, 146 excitations are obtained in molecules having in-between 1 and 3 non-hydrogen atoms, 97 excitations from 4 non-hydrogen atom compounds, 177 from molecules composed by 5 and 6 non-hydrogen atoms, and, finally, 68 excitations are obtained from systems with 7 to 10 non-hydrogen atoms. In addition, QUEST is composed by 24 open-shell molecules with a single unpaired electron. Amongst these excited states, 485 of them are considered as "safe", i.e., chemically-accurate for the considered basis set and geometry. Besides this energetic criterion, we consider as "safe" transitions that are either: i) computed with FCI or CCSDTQ, or ii) in which the difference between CC3 and CCSDT excitation energies is small (i.e., around 0.03-0.04 eV) with a large %T 1 value. TABLE 4.12: Theoretical best estimates TBEs (in eV), oscillator strengths f , percentage of single excitations %T 1 involved in the transition (computed at the CC3 level) for the full set of closed-shell compounds of the QUEST database. "Method" provides the protocol employed to compute the TBEs. The nature of the excitation is also provided: V, R, and CT stands for valence, Rydberg, and charge transfer, respectively.

[F] indicates a fluorescence transition, i.e., a vertical transition energy computed from an excited-state geometry. AVXZ stands for aug-cc-pVXZ. 
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Y 3 B 1 (n → π * ) V 98 3.49 CCSDTQ/6-31+G(d) + [CCSDT/AVTZ -CCSDT/6-31+G(d)] Y 3 B 2 (π → π * ) V 98 5.06 CCSDTQ/6-31+G(d) + [CCSDT/AVTZ -CCSDT/6-31+G(d)] Y 3 A 2 (n → π * ) V 98 6.12 CCSDTQ/6-31+G(d) + [CCSDT/AVTZ -CCSDT/6-31+G(d)] Y 3 A 1 (n → 3p) R 98 6.81 CCSDTQ/6-31+G(d) + [CCSDT/AVTZ -CCSDT/6-31+G(d)] Y Diazomethane 1 A 2 (π → π * ) V 90 3.14 FCI/AVTZ Y 1 B 1 (π → 3s) R 93 0.016 5.54 FCI/AVTZ Y 1 A 1 (π → π * ) V 91 0.234 5.90 FCI/AVTZ Y 3 A 2 (π → π * ) V 97 2.79 FCI/AVDZ + [CCSDT/AVTZ -CCSDT/AVDZ] Y 3 A 1 (π → π * ) V 98 4.05 FCI/AVTZ Y 3 B 1 (π → 3s) R 98 5.35 FCI/AVTZ Y 3 A 1 (π → 3p) R 98 6.82 FCI/AVTZ Y 1 A [F](π → π * ) V 87 0.000 0.71 FCI/AVTZ Y Difluorodiazirine 1 B 1 (n → π * ) V 93 0.002 3.74 CCSDT/AVTZ Y 1 A 2 (π → π * ) V 91 7.00 CCSDT/AVTZ Y 1 B 2 (π → π * ) V 93 0.026 8.52 CCSDT/AVTZ Y 3 B 1 (n → π * ) V 98 3.03 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 B 2 (π → π * ) V 98 5.44 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 A 2 (π → π * ) V 98 5.80 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y Dinitrogen 1 Πg (n → π * ) V 92 9.34 FCI/AVTZ Y 1 Σ - u (π → π * ) V 97 
(π → π * ) V 98 4.20 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 A 1 (π → π * ) V 98 5.46 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 A 2 (π → 3s) R 97 6.02 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 B 1 (π → 3p) R 97 6.59 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y Glyoxal 1 Au (n → π * ) V 91 0.000 2.88 CCSDTQ/6-31+G(d) + [CCSDT/AVTZ -CCSDT/6-31+G(d)] Y 1 Bg (n → π * ) V 88 4.24 CCSDTQ/6-31+G(d) + [CCSDT/AVTZ -CCSDT/6-31+G(d)] Y 1 Ag (double) V 0 0.000 5.61 FCI/AVDZ + [CCSDT/AVTZ -CCSDT/AVDZ] Y 1 Bg (n → π * ) V 83 6.57 CCSDTQ/6-31+G(d) + [CCSDT/AVTZ -CCSDT/6-31+G(d)] Y 1 Bu (n → 3p) R 91 0.095 7.71 CCSDTQ/6-31+G(d) + [CCSDT/AVTZ -CCSDT/6-31+G(d)] Y 3 Au (n → π * ) V 97 2.49 CCSDT/AVTZ Y 3 Bg (n → π * ) V 97 3.89 CCSDT/AVTZ Y 3 Bu (π → π * ) V 98 
/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 1 A (π → π * ) V 89 0.124 6.41 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 1 A (n → π * ) V 93 0.028 6.50 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 1 A (π → 3p) R 88 0.035 6.83 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] N 3 A (π → π * ) V 98 4.73 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y 3 A (π → 3s) R 97 5.66 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 A (π → π * ) V 97 5.74 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y 3 A (n → π * ) V 97 6.31 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y Isobutene 1 B 1 (π → 3s) R 94 0.006 6.46 CCSDT/AVTZ Y 1 A 1 (π → 3p) R 94 0.228 7.01 CCSDT/AVTZ Y 3 A 1 (π → π * ) V 98 4.53 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y Ketene 1 A 2 (π → π * ) V 91 3.85 FCI/AVDZ + [CCSDT/AVTZ -CCSDT/AVDZ] Y 1 B 1 (n → 3s) R 93 0.035 6.01 FCI/AVTZ Y 1 A 1 (π → π * ) V 92 0.154 7.25 CCSDTQ/AVDZ + [CCSDT/AVTZ -CCSDT/AVDZ] Y 1 A 2 (π → 3p) R 94 7.18 FCI/AVTZ Y 3 A 2 (n → π * ) V 91 3.77 FCI/AVTZ Y 3 A 1 (π → π * ) V 98 5.61 FCI/AVTZ Y 3 B 1 (n → 3p) R 98 5.79 FCI/AVTZ Y 3 A 2 (π → 3p) R 94 7.12 FCI/AVTZ Y 1 A " [F](π → π * ) V 87 0.000 1.00 FCI/AVTZ Y Maleimide 1 B 1 (n → π * ) V 87 0.000 3.80 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 1 A 2 (n → π * ) V 85 4.52 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 1 B 2 (π → π * ) V 88 
d) + [CC3/AVTZ -CC3/6-31+G(d)] Y 1 B 1g (π → π * ) V 84 5.84 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y 1 Ag (π → π * ) V 83 5.89 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] N 1 B 3g (π → 3p) R 92 6.07 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y 1 B 2g (π → 3p) R 92 6.09 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y 1 B 3u (π → π * ) V 90 (n.d.) 6.19 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] N 1 B 1u (π → 3s) R 91 (n.d.) 6.33 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y 1 B 2u (π → π * ) V 90 (n.d.) 6.42 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y 1 B 1g (π → π * ) V 87 6.48 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y 1 Ag (π → π * ) V 71 6.87 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y 3 B 2u (π → π * ) V 97 3.17 CC3/AVTZ N 3 B 3u (π → π * ) V 96 4.16 CC3/AVTZ N 3 B 1g (π → π * ) V 97 4.48 CC3/AVTZ N 3 B 2u (π → π * ) V 96 4.64 CC3/AVTZ N 3 B 3u (π → π * ) V 97 4.95 CC3/AVTZ N 3 Ag (π → π * ) V 97 5.49 CC3/AVTZ N 3 B 1g (π → π * ) V 95 
(π → π * ) V 71 8.69 CC3/AVTZ N 3 B 3u (n → π * ) V 97 3.59 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 B 1u (π → π * ) V 98 4.35 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 B 2u (π → π * ) V 97 4.39 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 Au (n → π * ) V 96 4.93 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 B 2g (n → π * ) V 97 5.08 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 B 1u (π → π * ) V 97 5.28 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y Pyridazine 1 B 1 (n → π * ) V 89 0.005 3.83 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 1 A 2 (n → π * ) V 86 4.37 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 1 A 1 (π → π * ) V 85 
Y 3 B 2 (π → π * ) V 98 3.44 FCI/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y Streptocyanine-5 1 B 2 (π → π * ) V 85 1.182 3.64 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 B 2 (π → π * ) V 97 2.47 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y Tetrazine 1 B 3u (n → π * ) V 89 0.006 2.47 CCSDT/AVTZ Y 1 Au (n → π * ) V 87 3.69 CCSDT/AVTZ Y 1 Ag (double) V 0 4.61 NEVPT2/AVTZ N 1 B 1g (n → π * ) V 83 4.93 CCSDT/AVTZ Y 1 B 2u (π → π * ) V 85 0.055 5.21 CCSDT/AVTZ Y 1 B 2g (n → π * ) V 81 
Y 3 A 2 (n → π * ) V 97 2.33 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y 3 A 1 (π → π * ) V 98 3.45 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y Thioacrolein 1 A (n → π * ) V 86 0.000 2.11 CCSDT/AVTZ Y 3 A (n → π * ) V 96 1.91 CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] Y Thioformaldehyde 1 A 2 (n → π * ) V 89 2.22 FCI/AVTZ Y 1 B 2 (n → 3s) R 92 0.012 5.96 FCI/AVTZ Y 1 A 1 (π → π * ) V 90 0.178 6.38 CCSDTQ/AVDZ + [CCSDT/AVTZ -CCSDT/AVDZ] Y 3 A 2 (n → π * ) V 97 1.94 FCI/AVTZ Y 3 A 1 (π → π * ) V 98 3.43 FCI/AVTZ Y 3 B 2 (n → 3s) R 97 5.72 FCI/AVDZ + [CCSDT/AVTZ -CCSDT/AVDZ] Y 1 A 2 [F](n → π * ) V 87 1.95 FCI/AVTZ Y Thiophene 1 A 1 (π → π * ) V 87 

Benchmarks

In this section, we report a comprehensive benchmark of various lower-order methods on the entire set of closed-shell compounds belonging to the QUEST database. Statistical quantities are reported in Table 4.14Additionally, we also provide a specific analysis for each type of excited states. Hence, the statistical values are reported for various types of excited states and molecular sizes for the MSE and MAE. The distribution of the errors in vertical excitation energies (with respect to the TBE/aug-cc-pVTZ reference values) are represented in Figure 4.15 for all the "safe" excitations having a dominant single excitation character (i.e., the double excitations are discarded). 

Chapter 4. The QUEST database of vertical excitation energies

The most striking feature from the statistical indicators gathered in Table 4.14 is the overall accuracy of CC3 with MAEs and MSEs systematically below the chemical accuracy threshold (errors < 0.043 eV or 1 kcal mol -1 ), irrespective of the nature of the transition and the size of the molecule. CCSDR( 3) are CCCSDT-3 can also be regarded as excellent performers with overall MAEs below 0.05 eV, though one would notice a slight degradation of their performances for the n → π * excitations and the largest molecules of the database. The other third-order method, ADC(3), which enjoys a lower computational cost, is significantly less accurate and does not really improve upon its second-order analog, even for the largest systems considered here, an observation in line with a previous analysis by some of the authors [33]. Nonetheless, ADC(3)'s accuracy improves in larger compounds, with a MAE of 0.24 eV (0.16 eV) for the subsets of the most compact (extended) compounds considered herein. The ADC(2.5) composite method introduced in Ref. [33], which corresponds to grossly average the ADC(2) and ADC(3) values, yields an appreciable accuracy improvement, as shown in Figure 4.15. Indeed, we note that the MAE of 0.07 eV obtained for "large" compounds is comparable to the one obtained with CCSDR(3) and CCSDT-3 for these molecules. All these third-order methods are rather equally efficient for valence and Rydberg transitions.

Concerning the second-order methods (which have the indisputable advantage to be applicable to larger molecules than the ones considered here), we have the following ranking in terms of MAEs: EOM-MP2 ≈ CIS(D) < CC2 ≈ ADC(2) < CCSD ≈ STEOM-CCSD, which fits our previous conclusions on the specific subsets [30,32,33,[START_REF] Loos | Reference energies for double excitations[END_REF]221]. A very similar ranking is obtained when one looks at the MSEs. It is noteworthy that the performances of EOM-MP2 and CCSD are getting notably worse when the system size increases, while CIS(D) and STEOM-CCSD have a very stable behavior with respect to system size. Indeed, the EOM-MP2 MAE attains 0.42 eV for molecules containing between 7 and 10 non-hydrogen atoms, whereas the CCSD tendency to overshoot the transition energies yield a MSE of 0.22 eV for the same set (a rather large error). For CCSD, this conclusion fits benchmark studies published by other groups [196,324,[388][389][390][391]. For example, Kánnár and Szalay obtained a MAE of 0.18 eV on Thiel's set for the states exhibiting a dominant single excitation character. The CCSD degradation with system size might partially explain the similar (though less pronounced) trend obtained for CCSDR [START_REF] Jensen | Introduction to computational chemistry[END_REF]. Regarding the apparently better performances of STEOM-CCSD as compared to CCSD, we recall that several challenging states have been naturally removed from the STEOM-CCSD statistics because the active character percentage was lower than 98 % (see above). In contrast to EOM-MP2 and CCSD, the overall accuracy of CC2 and ADC(2) does significantly improve for larger molecules, the performances of the two methods being, as expected, similar [29]. Let us note that these two methods show similar accuracies for singlet and triplet transitions, but are significantly less accurate for Rydberg transitions, as already pointed out previously [391]. Therefore, both CC2 and ADC( 2) offer an appealing cost-to-accuracy ratio for large compounds, which explains their popularity in realistic chemical scenarios [172,212,[START_REF] Winter | Benchmarks for 0-0 transitions of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data[END_REF]216,218,224]. For the scaled methods [SOS-ADC( 2), SOS-CC2, and SCS-CC2], the TURBOMOLE scaling factors do not seem to improve things upon the unscaled versions, while the Q-CHEM scaling factors for ADC(2) provide a small, yet significant improvement for this set of molecules. Of course, one of the remaining open questions regarding all these methods is their accuracy for even larger systems.

The QUESTDB website

Quite a large number of calculations were required for each of the QUEST articles [30,32,33,[START_REF] Loos | Reference energies for double excitations[END_REF]221]. Up to now, all the curated data was shared as supplementary information presented as a file in portable document format (pdf). This way of sharing data does not require too much effort for the authors, but it is obviously not optimal from the user's point of view. We have now addressed this problem by creating a database which contains all the vertical and fluorescence transition energies as well the corresponding molecular geometries. This data can be manipulated via a web application which allows to plot the statistical indicators (generated with the Plotly library) computed on selected subsets of molecules, methods and basis sets. The application also gives the possibility to the user to import external data files, in order to compare the performance of methods that are not in our database. Both the web application and the data are hosted in a single GitHub repository (https://github.com/LCPQ/QUESTDB_website) and available at the following address: https://lcpq.github.io/QUESTDB_website. In this way, extending the database is as simple as adding new data files to the repository, together with the corresponding bibliographic references, and we strongly encourage users to contribute to enlarge this database via GitHub pull requests.

Website specifications

The specifications of the website are as follows.

• Display and export excitation energy values of the QUEST project as tables;

• Download of various data such as geometries and excitation energies;

• Import local files from the user's computer;

• Data filtering using various physical and chemical parameters;

• Calculate the statistics based on these parameters;

• Display box plots to easily visualize the accuracy of the methods and the corresponding statistics.

Architecture

The architecture of the website is designed to be simple and facilitate the integration of new data. It is composed of two parts.

• A static website designed to view data and generate statistics;

• A series of PYTHON tools used to generate readable data through the website.

The static website

The static website is the main component of this project. All statistical calculations are performed locally on the Dataset page. The server is only used to serve the pages and the data of the QUEST project to the client. If one wants to work with data from the QUEST project, one must access the Dataset page. Firstly, the website offers the possibility to import new data (see section 4.6.2) but also to export some of them (e.g., geometries) as simple text files. These imported data are temporarily added to the current session (and deleted after leaving the page). There are four multi-selection list. Each list depends on the previous ones. These lists allow to filter information from the QUEST subsets (see Figure 4.1), such as the molecules (see Figure 4.4), the methods, or the basis sets (see section 4.2.3). The next step is to choose the type of excitations to include using the dedicated filters. We also provide the possibility of filtering with respect to the size of the molecules or by the percentage of single excitations involved in a given transition (%T 1 ). After that, one must define a reference method among previously selected methods (default TBE). We also provide a flag to remove all values declared as "unsafe". As defined previously, a value is defined as "unsafe" if we consider that it is not chemically accurate.

Statistical calculations

Our aim is to assess the accuracy of each method for a given basis set with respect to the reference (usually TBEs). For each method, we define a vector containing all the energies of the vertical transitions selected by the user. Defining as "meth" a couple method/basis, E X meth the vertical excitation energy associated with the transition X computed at the meth level of 

SDE meth = 1 X X ∑ X=1 (e X meth -MAE meth ) 2 (4.16)
where X is the total number of excitation energies considered in the selected set. On the website, the statistics are displaying using a table and a box plot.

Data generation tools

We use several tools to generate the data. These tools are also available for the user (see scenario 2)

The main tool is datafileBuilder used to generate data files from a L A T E X tabular. The tabular is associated with certain options and L A T E X\newcommand analyzed by the main script and the tabular environment is converted to a NumPy 2D array. Therefore, the options, i.e., the L A T E X\newcommand to be applied and the 2D array that represents the tabular environment, are passed to the appropriate tabular parser module chosen using the \formatName option in the input file. The module declares its format name itself using the @formatName (see Figure 4.17) decorator. Each module is responsible to parse the tabular and return all the corresponding data files as object. Next, the main script serializes these objects into the corresponding files. These files can be used on the website by 

Usage

Manipulation and scenarios

First, the user can add his own absorption and fluorescence data if he/she wants to analyze a custom dataset. In the Dataset tab, the user can select the data of interest by selecting the sets, molecules, methods and basis. After that, the user can customize the excitations he/she wants to take into account.

One can anticipate that two different types of users may be interested by the QUEST website:

Scenario 1

The user wants to choose a method for a calculation or a series of calculations on a given system of a given type of systems. Of course, he/she looks for a compromise between accuracy and cost. In this case, he/she wishes to compare the accuracy of each method with a subset of excitation data corresponding to his/her target. Hence, the user can optimize the filters to match its target (molecule, molecule size, or excitation type). If he/she is particularly lucky, he/she can only select the target molecule when this molecule is available in QUEST dataset.

Scenario 2

The user has created a new very promising method and wants to assess its accuracy with respect to other methods of the same family or highly accurate reference data (or both) provided by the QUEST dataset. First of all, the user must create an input file for PYTHON tools (see section 4.6.2) formatting the calculated results as L A T E X tabular. After generating the data, the same PYTHON tools are employed to import them in the QUEST database. A dedicated button is provided on the website for such purposes. The new data are therefore used in the same way as the other data to generate statistics and for comparison purposes.

Concluding remarks

In this part, we have presented and extended the QUEST database of highly-accurate excitation energies for molecular systems [30,32,[START_REF] Loos | Reference energies for double excitations[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]221] that we started building in 2018 and that is now composed by more than 500 vertical excitations, many of which can be reasonably considered as within 1 kcal mol -1 (or less) of the FCI limit for the considered CC3/aug-cc-pVTZ geometry and basis set (aug-cc-pVTZ). In particular, we have detailed the specificities of our protocol by providing computational details regarding geometries, basis sets, as well as reference and benchmarked computational methods. The content of our five QUEST subsets has been presented in detail, and for each of them, we have provided the number of reference excitation energies, the nature and size of the molecules, the list of benchmarked methods, as well as other useful specificities. Importantly, we have proposed a new statistical method that produces much safer estimates of the extrapolation error in SCI calculations. This new method based on Gaussian random variables has been tested by computing additional FCI values for five-and six-membered rings. After having discussed the generation of our TBEs, we have reported a comprehensive benchmark for a significant number of methods on the entire QUEST set with, in addition, a specific analysis for each type of excited states. Finally, the main features of the website specifically designed to gather the entire data generated during these past few years have been presented and discussed. Paraphrasing Thiel's conclusions [196], we hope that not only the QUEST database will be used for further benchmarking and testing, but that other research groups will also improve it, providing not only corrections (inevitable in such a large data set), but more importantly extensions with both improved estimates for some compounds and states, or new molecules.

Regarding future improvements and extensions, we would like to mention that although our present goal is to produce chemically accurate vertical excitation energies, we are currently devoting great efforts to obtain highly-accurate excited-state properties [392,393] such as dipoles and oscillator strengths for molecules of small and medium sizes [350,394], so as to complete previous efforts aiming at determining accurate excited-state geometries [292,395]. Reference ground-state properties (such as correlation energies and atomization energies) are also being currently produced [249,290]. Besides this, because computing 500 (or so) excitation energies can be a costly exercise even with cheap computational methods, we are planning on developing a "diet set" (i.e., a much smaller set of excitation energies which can reproduce key results of the full QUEST database, including ranking of approximations) following the philosophy of the "diet GMTKN55" set proposed recently by Gould [396]. We hope to report on this in the near future. A new article was recently published by some of my coworkers in order to complete the QUEST project with intermolecular charge-transfer (CT) excitations where a significant chunk of the charge density spatially migrates upon electronic excitation [397]. This type of excitations are ubiquitous in many technologies like OLEDs or photovoltaics. CT transitions are characterized by a large change in dipole moment as well as a small overlap between the starting and final molecular orbitals (MOs), or electron densities, involved in the transitions. For this set which includes much larger molecule, one cannot afford SCI calculations. Hence, the TBEs were calculated by correcting EOM-CCSDT/cc-pVDZ values by the difference between CC3/cc-pVTZ and CC3/cc-pVDZ and extended to aug-cc-pVTZ and aug-cc-pVQZ by applying a basis set correction. Globally, for the lowest CT characters, as one might expect, we reach a similar accuracy as the previous sets, except for transitions with a more pronounced CT nature.

One other aspect that we could improve in the future concerns the the data generation tools. Indeed, the present tools depend on several PYTHON packages like TEXSOUP, NUMPY, CROSS-REF_COMMONS, or GITPYTHON. Therefore, in order to prevent the user from manually installing dependencies, it might be useful to dissociate the tools from the website and gather them in a PYTHON package. Besides, it would also be interesting to create a real plug-in system to allow anyone to easily create table formats for DATAFILEBUILDER. The main idea behind the creation of QUANTUM PACKAGE is to provide a platform for an easy implementation and experimentation of new ab initio methods, while making parallel computation as simple and efficient as possible. Following this philosophy, it contains a standalone easy-to-use library for developers (plug-in system), its own shell QUANTUM PACKAGE SHELL (QPSH) and the IRPF90 fortran preprocessor. However, even if QUANTUM PACKAGE is easy to use, it takes a while to install and this can limit its democratisation in our community. To allow quantum chemists to test QUANTUM PACKAGE quickly without the burden of its installation, we decided to create a demo which can be directly accessible via a web browser. This allows anyone to run QUANTUM PACKAGE simply from a web page without any configuration or installation effort. The purpose of this chapter is to explain how we have integrated the demonstration of QUANTUM PACKAGE in its website.

The specifications were

• An interactive terminal with all standard UNIX and QUANTUM PACKAGE commands;

• A limited number of users;

• A non-persistent and isolated environment without privileges and identical for each user;

• A fixed time limit;

To enforce these specifications, we have used the two tools described below.

Shellinabox

The first challenge of this work was to create a UNIX compatible terminal emulator in a web page connected to a remote machine. We found a tool called SHELLINABOX [401] that does exactly what we wanted. SHELLINABOX is a web server that creates a terminal web application and exports all commands to the host. This tool is fully configurable and one can easily choose the command to run at startup. On the client side, this tool requires only a web browser compatible with JAVASCRIPT and CSS. 

Docker

DOCKER [402] is a well-known software in the community of system administrators. This software looks like a conventional virtualization software but it is not really the case. This is a containerization (also called operating-system-level virtualization) software. The host shares its kernel with containers and this drastically improves performance compared to conventional virtualization technologies because there is no guest operating system and not hypervisor (see Figure 5.1) and no virtualized hardware. In addition, this containerization technology is more advanced with respect to isolation than a simple chroot. 

Container lifecycle

By definition, a container is designed to be ephemeral. It can be in different states (see Table 5.1). When a container is created, its content is based on a specific prebuild image and when a container is deleted, all its content is deleted. The container is in pause Exited

Docker

83

The process of the container is terminated or the container is stopped Dead

The container is broken 

Linux kernel component used by libcontainer for containerization

The container filesystem and union mounting

The filesystem of a container is constructed by successive layers using a type of filesystem that supports union mounting (overlay2 for a modern LINUX system), a mount type used to merge multiple filesystems into a virtual filesystem. When we build a DOCKER image, we base this image on another image downloaded from the internet. We perform operations on the image and these operations are saved in another layer on top of the base image. In addition, when we use this image, all changes are combined with a union mounting to create the filesystem. The full container filesystem is based on an image built as described above. A union mounting is made between all parts of the image as read-only and a read-write layer is added for the modifications inside the container [405]. With this union mounting technology, the size of the image can be very light, the build time can be very short and the modifications inside a container are independent of the other containers even if they are based on the same image. In addition, the modifications made in this container are not persistent and respects the container's lifecycle.

Resources handling with cgroups

In the LINUX kernel, there is a feature called cgroup that limits some processes to a certain amount of resources. DOCKER is suitable for resource management because it uses cgroups. One can therefore choose the amount of memory, the number of CPUs and so on for each container.

Host separation with the namespaces

The LINUX namespaces provide to DOCKER the ability to create separate environments. Indeed the process environment depends on the namespaces associated with it. There are different types of namespaces (see Table 5.

2).

For each process, the kernel associates a namespace of each type. One can easily watch the namespace IDs of a process using the Proc filesystem. (see Figure 5.2).

# For example , if we want to show the namespace IDs # for the process with the PID 42 # One can type the following command ls -l / proc /42/ ns FIGURE 5.2: List namespaces for a pid < iframe id = " shellframe " src = " http :// host : port " width = " 100% " height = " 500 " frameBorder = " 0 " scrolling = " no " / > FIGURE 5.3: HTML code to integrate SHELLINABOX into another website

In practice

In practice, for better security, we installed DOCKER and SHELLINABOX in a VM. We use SHEL-LINABOX by integrating it to the QUANTUM PACKAGE official website on the following page https://quantumpackage.github.io/qp2/page/try thanks to an HTML inline frame (iframe) (see Figure 5.3).

SHELLINABOX is configured to start a SHELL script in the DOCKER host. We wrote this script to handle the lifecycle of the demo container. We have built the image that we use to create demo containers on the official DOCKER image of the well known LINUX distribution UBUNTU in its long-term support (LTS) version (currently 20.04) in which we have added useful software like HTOP, VIM and TMUX. We used a complete and popular [407] distribution as a base image to ensure that the user has a complete LINUX environment with all the commands he/she can expect to have. Of course, we have also added a new standard user. Then at the root of this user's directory, we added QUANTUM PACKAGE alongside some examples. When the user opens the demo web page containing the SHELLINABOX terminal, it runs the script that creates and start a QUANTUM PACKAGE container in interactive mode (see Figure 5.4). The containers are configured to start the QUANTUM PACKAGE SHELL as a standard user. The script handles the closing of the terminal or the end of the allocated time to kill the container; it is configured to automatically self-destruct on exit and any changes made by the user are therefore destroyed. 

Conclusion and perspectives

Following the QUANTUM PACKAGE philosophy and in order to make it easy to test, we designed a demo environment accessible via a terminal emulator on a web page. The demo is built using two software: (i) SHELLINABOX is the tool that provides the terminal emulator web elements and the connection to the remote machine; (ii) DOCKER provides the isolated and ephemeral environment for the demo. The demo's lifecycle is handled by a BASH script started by SHELLINABOX on the remote machine. One can test QUANTUM PACKAGE at https://quantumpackage.github.io/qp2/ page/try and one can download the ready to run DOCKER image used for the demo on the Docker Hub at https://hub.docker.com/r/mveril/qp_demo. Normally to use DOCKER in a DOCKER container, one needs to use a privileged container which is somehow insecure (see Figure 5.6). This is why we chose a VM to host SHELLINABOX and DOCKER even if it affects performance. Recently, we discovered [408] the ability to create a system-level container in order to use DOCKER in a DOCKER container without security issue. This can be a solution for transferring the host containing DOCKER and SHELLINABOX from a VM to a DOCKER container and thus improve performance without creating a security issue for the host machine.

We also recently heard about a containerization software called SINGULARITY. The main interest of SINGULARITY compared to DOCKER is its features that allow it to be adapted to the HPC world. We plan on investigating the compatibility of QUANTUM PACKAGE with the latter in the future. A similar systematic truncation strategy can be applied to CI methods leading to the wellestablished family of methods known as CISD, CISDT, CISDTQ, . . . where one systematically increases the maximum excitation degree of the determinants taken into account. Except for full CI (FCI) where all determinants from the Hilbert space (i.e., with excitation degree up to N) are considered, truncated CI methods are variational but lack size-consistency. The non-variationality of truncated CC methods being, in practice, less of an issue than the size-inconsistency of the truncated CI methods, the formers have naturally overshadowed the latters in the electronic structure landscape. However, a different strategy recently came back in the limelight in the context of CI methods [34, 251-254, 280-284, 420, 421]. Indeed, selected CI (SCI) methods [231, 256, 258, 261, 262, 266-268, 272, 274-276], where one iteratively selects the important determinants from the FCI space (usually) based on a perturbative criterion, has been recently shown to be highly successful in order to produce reference energies for both ground and excited states in small-and medium-sized molecules [30, 32, 35-38, 149, 190, 221, 240-242, 249, 257, 260, 264, 265, 286, 397, 422] thanks to efficient deterministic, stochastic, or hybrid algorithms well suited for massive parallelization. We refer the interested reader to Refs. [START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]250] for recent reviews. SCI methods are based on a well-known fact: amongst the very large number of determinants contained in the FCI space, only a tiny fraction of them significantly contributes to the energy (see, for example, Ref. [423]). Accordingly, the SCI+PT2 family of methods performs a sparse exploration of the FCI space by selecting iteratively only the most energetically relevant determinants of the variational space and supplementing it with a second-order perturbative correction (PT2) [34,[START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]259,263,266]. Although the formal scaling of such algorithms remains exponential, the prefactor is greatly reduced which explains their current attractiveness in the electronic structure community thanks to their much wider applicability than their standard FCI parent. Note that, very recently, several groups [424][425][426] have coupled CC and SCI methods via the externally-corrected CC methodology [427], showing promising performances for weakly and strongly correlated systems.

A rather different strategy in order to reach the holy grail FCI limit is to resort to Møller-Plesset (MP) perturbation theory [428], whose popularity originates from its black-box nature, size-extensivity, and relatively low computational requirement, making it easily applied to a broad range of molecular systems. Again, at least in theory, one can obtain the exact energy of the system by ramping up the degree of the perturbative series [START_REF] Marie | Perturbation theory in the complex plane: exceptional points and where to find them[END_REF]. The second-order Møller-Plesset (MP2) method [428] [which scales as O(N 5 )] has been broadly adopted in quantum chemistry for several decades, and is now included in the increasingly popular double-hybrid functionals [430] alongside exact exchange. Its higher-order variants [MP3 [431], MP4 [START_REF] Krishnan | Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory[END_REF], MP5 [START_REF] Kucharski | Fifth-order many-body perturbation theory for molecular correlation energies[END_REF], and MP6 [434,435] which scale as O(N 6 ), O(N 7 ), O(N 8 ), and O(N 9 ) respectively] have been investigated much more scarcely. However, it is now widely recognized that the series of MP approximations might show erratic, slowly convergent, or divergent behavior that limits its applicability and systematic improvability [START_REF] Marie | Perturbation theory in the complex plane: exceptional points and where to find them[END_REF][START_REF] Laidig | Is fifth-order MBPT enough?[END_REF][437][438][439][440][441][442][443][444][445]. Again, MP perturbation theory and CC methods can be coupled.

The most iconic example of such coupling, namely the CCSD(T) method [START_REF] Raghavachari | A fifth-order perturbation comparison of electron correlation theories[END_REF], includes iteratively the single and double excitations and perturbatively (from MP4 and partially MP5) the triple excitations, leading to the so-called "gold-standard" of quantum chemistry for weakly correlated systems thanks to its excellent accuracy/cost ratio.

Motivated by the recent blind test of Eriksen et al.[422] reporting the performance of a large panel of emerging electronic structure methods [the many-body expansion FCI (MBE-FCI) [243][244][245][246], adaptive sampling CI (ASCI) [268,269,446], iterative CI (iCI) [272,[277][278][279], semistochastic heat-bath CI (SHCI) [START_REF] Holmes | Excited states using semistochastic heat-bath configuration interaction[END_REF]262,263], the full coupled-cluster reduction (FCCR) [247,248], densitymatrix renormalization group (DMRG) [447][448][449], adaptive-shift FCI quantum Monte Carlo (AS-FCIQMC) [231,233,237], and cluster-analysis-driven FCIQMC (CAD-FCIQMC) [238,239]] on the non-relativistic frozen-core correlation energy of the benzene molecule in the standard correlationconsistent double-ζ Dunning basis set (cc-pVDZ), some of us have recently investigated the performance of the SCI method known as Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI) [34,[START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]256,258,266]. on the very same system [249] [see also Ref. [450] for a study of the performance of phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) [451]].

In the continuity of this recent work, we report here a large extension by accurately estimating the (frozen-core) FCI/cc-pVDZ correlation energy of twelve cyclic molecules (cyclopentadiene, furan, imidazole, pyrrole, thiophene, benzene, pyrazine, pyridazine, pyridine, pyrimidine, s-tetrazine, and s-triazine) with the help of CIPSI employing energetically-optimized orbitals at the same level of theory [241,452]. These systems are depicted in Figure 6.1. This set of molecular systems corresponds to Hilbert spaces with sizes ranging from 10 29 to 10 36 . In addition to CIPSI, the performance and convergence properties of several series of methods are investigated. In particular, we study i) the MP perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the CC2, CC3, and CC4 approximate series, and iii) the "complete" CC series up to quadruples (i.e., CCSD, CCSDT, and CCSDTQ). The performance of the ground-state gold standard CCSD(T) as well as the completely renormalized (CR) CC model, CR-CC (2,3) [151, 453-456], are also investigated.

The present chapter is organized as follows. In section 6.2, we provide theoretical details about the CIPSI algorithm and the orbital optimization procedure employed here. Section 6.3 deals with computational details concerning geometries, basis sets, and methods. In section 6.4, we report our reference FCI correlation energies for the five-membered and six-membered cyclic molecules obtained thanks to extrapolated orbital-optimized CIPSI calculations (section 6.4.1). These reference correlation energies are then used to benchmark and study the convergence properties of various perturbative and CC methods (section 6.4.2). Finally, we draw our conclusions in section 6.5.

CIPSI with optimized orbitals

Here, we provide key details about the CIPSI method [34,[START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] as well as the orbital optimization procedure which has been shown to be highly effective in the context of SHCI by Umrigar and coworkers [241,422,452]. Although we focus on the ground state, the present discussion can be easily extended to excited states [149,[START_REF] Scemama | Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion monte carlo[END_REF].

At the kth iteration, the total CIPSI energy E

CIPSI is defined as the sum of the variational energy

E (k) var = Ψ (k) var | Ĥ|Ψ (k) var Ψ (k) var |Ψ (k) var (6.1)
and a second-order perturbative energy correction

E (k) PT2 = ∑ α∈A k e (k) α = ∑ α∈A k | Ψ (k) var | Ĥ|α | 2 E (k) var -α| Ĥ|α , ( 6.2) 
Chapter 6. Accurate full configuration interaction correlation energy estimates for five-and six-membered rings where Ĥ is the (non-relativistic) electronic Hamiltonian,

Ψ (k) var = ∑ I∈I k c (k) I |I (6.3)
is the variational wave function, I k is the set of internal determinants |I and A k is the set of external determinants (or perturbers) |α which do not belong to the variational space at the kth iteration but are linked to it via a nonzero matrix element, i.e., Ψ

var | Ĥ|α = 0. The sets I k and A k define, at the kth iteration, the internal and external spaces, respectively. In the selection step, the perturbers corresponding to the largest |e (k) α | values are then added to the variational space at the next iteration. In our implementation, the size of the variational space is roughly doubled at each iteration. Hereafter, we label these iterations over k which consist in enlarging the variational space as macroiterations. In practice,

E (k) var is the lowest eigenvalue of the N (k) det × N (k)
det CI matrix with elements I| Ĥ|J obtained via Davidson's algorithm [457]. The magnitude of E (k)

PT2 provides, at iteration k, a qualitative idea of the distance to the FCI limit [266]. We then linearly extrapolate, using large variational wave functions, the CIPSI energy to E PT2 = 0 (which effectively corresponds to the FCI limit). Further details concerning the extrapolation procedure are provided below (see section 6.4).

Orbital optimization techniques at the SCI level are theoretically straightforward, but practically challenging. Some of the technology presented here has been borrowed from complete-active-space self-consistent-field (CASSCF) methods [458][459][460][461][462] but one of the strength of SCI methods is that one does not need to select an active space and to classify orbitals as active, inactive, and virtual orbitals. Here, we detail our orbital optimization procedure within the CIPSI algorithm and we assume that the variational wave function is normalized, i.e., Ψ var |Ψ var = 1.

As stated in section 6.1, E var depends on both the CI coefficients {c I } 1≤I≤N det [see Eq. ( 6.

3)] but also on the orbital rotation parameters {κ pq } 1≤p,q≤N . Motivated by cost saving arguments, we have chosen to optimize separately the CI and orbital coefficients by alternatively diagonalizing the CI matrix after each selection step and then rotating the orbitals until the variational energy, for a given number of determinants, is minimal. We refer the interested reader to the recent work of Yao and Umrigar for a detailed comparison of coupled, uncoupled, and partially-coupled optimizations within SCI methods [452]. Following the standard procedure [START_REF] Helgaker | Molecular electronic-structure theory[END_REF], we conveniently rewrite the variational energy as

E var (c, κ) = Ψ var |e κ Ĥe -κ |Ψ var , (6.4) 
where c gathers the CI coefficients, κ the orbital rotation parameters, and

κ = ∑ p<q ∑ σ κ pq â † pσ âqσ -â † qσ âpσ (6.5)
is a real-valued one-electron antisymmetric operator, which creates an orthogonal transformation of the orbital coefficients when exponentiated, âpσ ( â † pσ ) being the second quantization annihilation (creation) operator which annihilates (creates) a spin-σ electron in the real-valued spatial orbital φ p (r) [START_REF] Helgaker | Molecular electronic-structure theory[END_REF].

Applying the Newton-Raphson method by Taylor-expanding the variational energy to second order around κ = 0, i.e., (6.6) one can iteratively minimize the variational energy with respect to the parameters κ pq by setting

E var (c, κ) ≈ E var (c, 0) + g • κ + 1 2 κ † • H • κ,
κ = -H -1 • g, (6.7) 
where g and H are the orbital gradient and Hessian matrices, respectively, both evaluated at κ = 0.

Their elements are explicitly given by the following expressions [463,464]:

g pq = ∂E var (c, κ) ∂κ pq κ=0 = ∑ σ Ψ var |[ â † pσ âqσ -â † qσ âpσ , Ĥ] |Ψ var = P pq ∑ r h r p γ q r -h q r γ r p + ∑ rst v rs pt Γ qt rs -v qt rs Γ rs pt , (6.8) 
and

H pq,rs = ∂ 2 E var (c, κ) ∂κ pq ∂κ rs κ=0 = P pq P rs 1 2 ∑ σσ Ψ var |[ â † rσ âsσ , [ â † pσ âqσ , Ĥ] ] |Ψ var + 1 2 ∑ σσ Ψ var |[ â † pσ âqσ , [ â † rσ âsσ , Ĥ] ] |Ψ var = P pq P rs 1 2 ∑ u δ qr (h u p γ s u + h s u γ u p ) + δ ps (h u r γ q u + h q u γ r u ) -(h s p γ q r + h q r γ s p ) + 1 2 ∑ tuv δ qr (v uv pt Γ st uv + v st uv Γ uv pt ) + 1 2 ∑ tuv δ ps (v qt uv Γ uv rt + v uv rt Γ qt uv )] + ∑ uv (v uv pr Γ qs uv + v qs uv Γ uv ps ) -∑ tu (v st pu Γ qu rt + v tr pu Γ qu tr + v qu rt Γ st pu + v qu tr Γ ts pu )] , (6.9) 
where δ pq is the Kronecker delta, P pq = 1 -(p ↔ q) is a permutation operator,

γ q p = ∑ σ Ψ var | â † pσ âqσ |Ψ var , (6.10a) 
Γ rs pq = ∑ σσ Ψ var | â † pσ â † rσ âsσ âqσ |Ψ var (6.10b)
are the elements of the one-and two-electron density matrices, and h q p = φ p (r) ĥ(r) φ q (r)dr, (6.11a)

v rs pq = φ p (r 1 )φ q (r 2 ) 1 |r 1 -r 2 |
φ r (r 1 )φ s (r 2 )dr 1 dr 2 (6.11b) are the one-and two-electron integrals, respectively. Because the size of the CI space is much larger than the orbital space, for each macroiteration, we perform multiple microiterations which consist in iteratively minimizing the variational energy Chapter 6. Accurate full configuration interaction correlation energy estimates for five-and six-membered rings (6.4) with respect to the N(N -1)/2 independent orbital rotation parameters for a fixed set of determinants. After each microiteration (i.e., orbital rotation), the one-and two-electron integrals [see Eqs. (6.11a) and (6.11b)] have to be updated. Moreover, the CI matrix must be re-diagonalized and new one-and two-electron density matrices [see Eqs. (6.10a) and (6.10b)] have to be computed. Microiterations are stopped when a stationary point is found, i.e., g ∞ < τ, where τ is a user- defined threshold which has been set to 10 -4 a.u. in the present study, and a new CIPSI selection step is performed. Note that a tight convergence is not critical here as a new set of microiterations is performed at each macroiteration and a new production CIPSI run is performed from scratch using the final set of orbitals (see section 6.3). This procedure might sound computationally expensive but one has to realize that the microiterations are usually performed only for relatively compact variational spaces. Therefore, the computational bottleneck of this approach remains the diagonalization of the CI matrix for very large variational spaces.

To enhance the convergence of the microiteration process, we employ an adaptation of the Newton-Raphson method known as "trust region" [465]. This popular variant defines a region where the quadratic approximation (6.6) is an adequate representation of the objective energy function (6.4) and it evolves during the optimization process in order to preserve the adequacy via a constraint on the step size preventing it from overstepping, i.e., κ ≤ ∆, where ∆ is the trust radius. By introducing a Lagrange multiplier λ to control the trust-region size, one replaces Eq. (6.7) by κ = -(H + λ1) -1 • g. The addition of the level shift λ ≥ 0 removes the negative eigenvalues and ensures the positive definiteness of the Hessian matrix by reducing the step size. By choosing the right value of λ, κ is constrained within a hypersphere of radius ∆ and is able to evolve from the Newton direction at λ = 0 to the steepest descent direction as λ grows. The evolution of the trust radius during the optimization and the use of a condition to reject the step when the energy rises ensure the convergence of the algorithm. More details can be found in Ref. [465]. -600 FIGURE 6.3: ∆E var as a function of E PT2 computed in the cc-pVDZ basis for the twelve cyclic molecules represented in Figure 6.1. Two sets of orbitals are considered: natural orbitals (NOs, in red) and optimized orbitals (OOs, in blue). The five-point weighted linear fit using the five largest variational wave functions for each set is depicted as a dashed black line. The weights are taken as the inverse square of the perturbative corrections. The FCI estimate of the correlation energy is represented as a thick black line. 

Computational details

The geometries of the twelve systems considered in the present study were all obtained at the CC3/aug-cc-pVTZ level of theory and were extracted from a previous study [32]. Note that, for the sake of consistency, the geometry of benzene considered here is different from the one of Ref.

[249] which was obtained at a lower level of theory [MP2/6-31G(d)] [196]. The MP2, MP3, MP4, CC2, CC3, CC4, CCSD, CCSDT, and CCSDTQ calculations were performed with CFOUR [466], the CR-CC(2,3) calculations were made with GAMESS 2014R1 [467], and MP5 and CCSD(T) calculations were computed with GAUSSIAN 09 [468]. The CIPSI calculations were performed with QUANTUM PACKAGE [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]. In the current implementation, the selection step and the PT2 correction are computed simultaneously via a hybrid semistochastic algorithm. [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]259] Here, we employ the renormalized version of the PT2 correction which was recently implemented and tested for a more efficient extrapolation to the FCI limit thanks to a partial resummation of the higher orders of perturbation [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]. We refer the interested reader to Ref. [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] for further details. For all these calculations, Dunning's correlation-consistent double-ζ basis (cc-pVDZ) has been employed. Although the FCI energy has the enjoyable property of being independent of the set of oneelectron orbitals used to construct the many-electron Slater determinants, as a truncated CI method, the convergence properties of CIPSI strongly dependent on this orbital choice. In the present study, we investigate, in particular, the convergence behavior of the CIPSI energy for two sets of orbitals: natural orbitals (NOs) and optimized orbitals (OOs). Following our usual procedure [30,32,[START_REF] Loos | Reference energies for double excitations[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]221,249,264,265,[START_REF] Scemama | Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion monte carlo[END_REF], we perform first a preliminary SCI calculation using HF orbitals in order to generate a SCI wave function with at least 10 7 determinants. Natural orbitals are computed based on this wave function and they are used to perform a new CIPSI run up to 8 × 10 7 determinants. Successive orbital optimizations are then performed, which consist in minimizing the variational CIPSI energy at each macroiteration up to approximately 2 × 10 5 determinants. When convergence is achieved in terms of orbital optimization, as our production run, we perform a new CIPSI calculation from scratch using this set of optimized orbitals to 8 × 10 7 determinants. Using optimized orbitals has the undeniable advantage to produce, for a given variational energy, more compact CI expansions (see section 6.4). For the benzene molecule, we have also explored the use of localized orbitals (LOs) which are produced with the Boys-Foster localization procedure [469] that we apply to the natural orbitals in several orbital windows in order to preserve a strict Chapter 6. Accurate full configuration interaction correlation energy estimates for five-and six-membered rings Chapter 6. Accurate full configuration interaction correlation energy estimates for five-and six-membered rings σ-π separation in the planar systems considered here [249]. Because they take advantage of the local character of electron correlation, localized orbitals have been shown to provide faster convergence towards the FCI limit compared to natural orbitals [START_REF] Chien | Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction[END_REF]249,422,[470][471][472][473]. As we shall see below, employing optimized orbitals has the advantage to produce an even smoother and faster convergence of the SCI energy toward the FCI limit. Note that both localized and optimized orbitals do break the spatial symmetry. Unlike excited-state calculations where it is important to enforce that the wave functions are eigenfunctions of the Ŝ2 spin operator [474], the present wave functions do not fulfill this property as we aim for the lowest possible energy of a closed-shell singlet state. We have found that Ŝ2 is, nonetheless, very close to zero (∼10 -3 ) for each system. The present CIPSI calculations have been performed on the AMD partition of GENCI's Irene supercomputer. Each Irene's AMD node is a dual-socket AMD Rome (Epyc ™ ) CPU at 2.60 GHz with 256 GiB of RAM, with a total of 64 physical cores per socket. These nodes are connected via Infiniband HDR100. In total, the present calculations have required around 3 million core hours.

All the data (geometries, energies, etc) and supplementary material associated with the present chapter are openly available in Zenodo at http://doi.org/10.5281/zenodo.5150663.

Results and discussion

CIPSI estimates

We first study the convergence of the CIPSI energy as a function of the number of determinants. Our motivation here is to generate FCI-quality reference correlation energies for the twelve cyclic molecules represented in Figure 6.1 in order to benchmark the performances of various mainstream MP and CC methods (see section 6.4.2). For the natural and optimized orbital sets, we report, in Figure 6.2, the evolution of the variational correlation energy ∆E var = E var -E HF (where E HF is the HF energy) and its perturbatively corrected value ∆E var + E PT2 with respect to the number of determinants N det for each cyclic molecule. As compared to natural orbitals (solid red lines), one can see that, for a given number of determinants, the use of optimized orbitals greatly lowers ∆E var (solid blue lines). Adding the perturbative correction E PT2 yields very similar curves for both sets of orbitals (dashed lines). This indicates that, for a given number of determinants, E PT2 (which, we recall, provides a qualitative idea to the distance to the FCI limit) is much smaller for optimized orbitals than for natural orbitals. This is further evidenced in Figure 6.3 where we show the behavior of ∆E var as a function of E PT2 for both sets of orbitals. From Figure 6.3, it is clear that the behavior of ∆E var is much more linear and produces smaller E PT2 values when optimized orbitals are selected, hence facilitating the extrapolation procedure to the FCI limit (see below). The five-point weighted linear fit using the five largest variational wave functions are also represented (dashed black lines), while the FCI estimate of the correlation energy (solid black line) is reported for reference in Figures 6.2 and 6.3. Figure 6.4 compares the convergence of ∆E var for natural, localized, and optimized orbitals for benzene. As mentioned in section 6.3, although both the localized and optimized orbitals break the spatial symmetry to take advantage of the local nature of electron correlation, the latter set further improves on the use of former set. More quantitatively, optimized orbitals produce the same variational energy as localized orbitals with, roughly, a ten-fold reduction in the number of determinants. A similar improvement is observed going from natural to localized orbitals. According to these observations, all our FCI correlation energy estimates have been produced from the set of optimized orbitals.

To this end, we have extrapolated the orbital-optimized variational CIPSI correlation energies to E PT2 = 0 via a weighted five-point linear fit using the five largest variational wave functions (see Figure 6.3). The fitting weights have been taken as the inverse square of the perturbative corrections. Our final FCI correlation energy estimates are reported in Tables 6.1 and 6.2 for the five-and six-membered rings, respectively, alongside their corresponding fitting error. The stability of these estimates are illustrated by the results gathered in Table 6.3, where we list the extrapolated correlation energies ∆E extrap and their associated fitting errors obtained via weighted linear fits 6.4. Results and discussion 101 varying the number of fitting points from 3 to 7. Although we cannot provide a mathematically rigorous error bar, the data provided by Table 6.3 show that the extrapolation procedure is robust and that our FCI estimates are very likely accurate to a few tenths of a millihartree. Logically, the FCI estimates for the five-membered rings seem slightly more accurate than for the (larger) six-membered rings. It is pleasing to see that, although different geometries are considered, our present estimate of the frozen-core correlation energy of the benzene molecule in the cc-pVDZ basis (-862.9 mE h ) is very close to the one reported in Ref.

[249] (-863.4 mE h ). Table 6.3 does report extrapolated correlation energies and fitting errors for both natural and optimized orbitals. Again, the superiority of the latter set is clear as both the variation in extrapolated values and the fitting error are much larger with the natural set. Taking cyclopentadiene as an example, the extrapolated values vary by almost 1 mE h with natural orbitals and less than 0.1 mE h with the optimized set. The fitting errors follow the same trend.

Benchmark of CC and MP methods

Using the CIPSI estimates of the FCI correlation energy produced in section 6.4.1, we now study the performance and convergence properties of three series of methods: i) MP2, MP3, MP4, and MP5, ii) CC2, CC3, and CC4, and iii) CCSD, CCSDT, and CCSDTQ. Additionally, we also report CCSD(T) and CR-CC [START_REF] Helgaker | Molecular electronic-structure theory[END_REF][START_REF] Jensen | Introduction to computational chemistry[END_REF] correlation energies. The raw data are reported in Tables 6.1 and 6.2 for the fiveand six-membered rings, respectively. In Figure 6.5, we show, for each molecule, the convergence of the correlation energy for each series of methods as a function of the formal computational scaling of the corresponding method. Statistical quantities [mean absolute error (MAE), mean signed error (MSE), minimum (Min) and maximum (Max) absolute errors with respect to the FCI reference values] are also reported in Table 6.4 for each method as well as their formal computational scaling.

First, we investigate the "complete" and well-established series of methods CCSD, CCSDT, and CCSDTQ. Unfortunately, CC with singles, doubles, triples, quadruples, and pentuples (CCSDTQP) calculations are out of reach here [229,475]. As expected for the present set of weakly correlated systems, going from CCSD to CCSDTQ, one systematically and quickly improves the correlation energies with respective MAEs of 39.4, 4.5 and 1.8 mE h for CCSD, CCSDT, and CCSDTQ. As usually observed, CCSD(T) (MAE of 4.5 mE h ) provides similar correlation energies than the more expensive CCSDT method by computing perturbatively (instead of iteratively) the triple excitations, while CCSD(T) and CR-CC [START_REF] Helgaker | Molecular electronic-structure theory[END_REF][START_REF] Jensen | Introduction to computational chemistry[END_REF] performs equally well.

Second, we investigate the approximate CC series of methods CC2, CC3, and CC4. As observed in our recent study on excitation energies [397], CC4, which returns a MAE of 1.5 mE h , is an outstanding approximation to its CCSDTQ parent (MAE of 1.8 mE h ) and is, in the present case, even slightly more accurate in terms of mean errors as well as maximum and minimum absolute errors. Moreover, we observe that CC3 provides very accurate correlation energies with a MAE of 2.7 mE h , showing that this iterative method is particularly effective for ground-state energetics and outperforms both the perturbative CCSD(T) and iterative CCSDT models. It is important to mention that even if the two families of CC methods studied here are known to be non-variational (see section 6.1), for the present set of weakly-correlated molecular systems, they never produce a lower energy than the FCI estimate as illustrated by the systematic equality between MAEs and MSEs.

Third, let us look into the MP series which is known, as mentioned in section 6.1, to potentially exhibit "surprising" behaviors depending on the type of correlation at play. [START_REF] Laidig | Is fifth-order MBPT enough?[END_REF][437][438][439][440][441][442][443][444][445] (See Ref. [START_REF] Marie | Perturbation theory in the complex plane: exceptional points and where to find them[END_REF] for a detailed discussion). For each system, the MP series decreases monotonically up to MP4 but raises quite significantly when one takes into account the fifth-order correction. We note that the MP4 correlation energy is always quite accurate (MAE of 2.1 mE h ) and is only a few millihartree higher than the FCI value (except in the case of s-tetrazine where the MP4 number is very slightly below the reference value): MP5 (MAE of 9.4 mE h ) is thus systematically worse than MP4 for these weakly-correlated systems. Importantly here, one notices that MP4 [which scales as O(N 7 )] is systematically on par with the much more expensive O(N 10 ) CCSDTQ method which exhibits a slightly smaller MAE of 1.8 mE h . Chapter 6. Accurate full configuration interaction correlation energy estimates for five-and six-membered rings

Conclusion

Using the SCI algorithm named Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI), we have produced FCI-quality frozen-core correlation energies for twelve cyclic molecules (see Figure 6.1) in the correlation-consistent double-ζ Dunning basis set (cc-pVDZ). These estimates, which are likely accurate to a few tenths of a millihartree, have been obtained by extrapolating CIPSI energies to the FCI limit based on a set of orbitals obtained by minimizing the CIPSI variational energy. Using energetically optimized orbitals, one can reduce the size of the variational space by one order of magnitude for the same variational energy as compared to natural orbitals. Thanks to these reference FCI energies, we have then benchmarked three families of popular electronic structure methods: i) the MP perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the approximate CC series CC2, CC3, and CC4, and iii) the "complete" CC series CCSD, CCSDT, and CCSDTQ. With a O(N 7 ) scaling, MP4 provides an interesting accuracy/cost ratio for this particular set of weakly correlated systems, while MP5 systematically worsen the perturbative estimates of the correlation energy. In addition, CC3 (where the triples are computed iteratively) outperforms the perturbative-triples CCSD(T) method with the same O(N 7 ) scaling, its completely renormalized version CR-CC [START_REF] Helgaker | Molecular electronic-structure theory[END_REF][START_REF] Jensen | Introduction to computational chemistry[END_REF], as well as its more expensive parent, CCSDT. A similar trend is observed for the methods including quadruple excitations, where the O(N 9 ) CC4 model has been shown to be slightly more accurate than CCSDTQ [which scales as O(N 10 )], both methods providing correlation energies within 2 mE h of the FCI limit. Of course, the present trends are only valid for this particular class of (weakly-correlated) molecules and it would be desirable to have a broader variety of systems in the future by including more challenging systems such as, for example, transition metal compounds. Some work along this line is currently being performed.

As perspectives, we are currently investigating the performance of the present approach for excited states in order to expand the QUEST database of vertical excitation energies [149]. We hope to report on this in the near future. The compression of the variational space brought by optimized orbitals could be also beneficial in the context of quantum Monte Carlo methods to generate compact, yet accurate multi-determinant trial wave functions [288][289][290]476].

Chapter 7

General conclusion

In this thesis, I have presented the main projects where I was one of the main contributors. The main purpose of the present thesis is to perform a large overview of electronic structure methods that target excited states but also the development of web tools for quantum chemistry.

In order to present the work I have done in this thesis, in the introduction, I have presented, from a general point of view, excited states in molecular systems and computational resources (Chapter 1). In addition, Chapter 2 provides a general overview of the various methods which have been employed in this thesis.

Chapter 3 deals with the study of GW methods, a family of approximations that is highly successful at predicting the electronic properties of solids and molecules in the weakly-correlated regime [57][58][59]. In this chapter, we have discussed and exemplified a severe limitation of the GW approximation, namely the appearance of discontinuities and/or irregularities in key physical and chemical quantities. These issues are particularly troublesome in the context of the calculation of potential energy surfaces, which are of paramount importance in photochemistry (for example). Although GW is known to be inadequate in the case of strongly correlated systems where the quasiparticle approximation usually breaks down [138][139][140][141][142], these severe shortcomings of two widely-used variants of GW have been observed in the weakly correlated regime. More specifically, we have evidenced that one can hit multiple solution issues within G 0 W 0 and evGW due to the location of the quasiparticle solution near poles of the self-energy. In the case of linearized G 0 W 0 , this implies irregularities in key experimentally-measurable quantities of simple diatomics, while, and in the case of partially self-consistent evGW, discontinues arise. The correlation energy of the ground states and the excited states depend on the quasiparticle energies so the energy surfaces of these electronic states are affected by the multi-solution issue. My colleagues have also shown that these discontinuities affect the Bethe-Salpeter equation applied on top of GW (BSE@GW) as well because of its dependency on the quasiparticle energies [477]. Recently my coworkers have also shown that the present issues can be cured if one relies on a fully self-consistent GW (scGW) scheme since one does not have to make a distinction between quasiparticle and satellites [478]. Thus, one obtains continuous quantities with respect to the geometric parameters. However, one has to mention that scGW is significantly more computationally expensive and cumbersome than G 0 W 0 and evGW. According to another article recently published by some of my coworkers on this project [479], the Coulomb hole plus screened exchange (COHSEX) scheme fixes the issue of multiple solutions. Indeed, the physics inside the COHSEX self-energy is very similar to that included in the GW self-energy, but, unlike the GW self-energy, it is Hermitian and frequencyindependent. As a consequence, COHSEX calculations can be done self-consistently using standard diagonalization of a Fock-like operator.

In the next chapter (Chapter 4), we have discussed molecular excited states in the context of the QUEST database of highly-accurate excitation energies [30,32,[START_REF] Loos | Reference energies for double excitations[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]221] that we started building in 2018 and that is now composed by more than 600 vertical excitations, many of which can be reasonably considered chemically accurate for the considered CC3/aug-cc-pVTZ geometry and basis set (aug-cc-pVTZ). In particular, we have provided computational details regarding geometries, basis sets, as well as reference and benchmarked computational methods to allow the reproducibility of the results. The content of the five QUEST subsets has been presented in detail, and for each of them, we have provided the number of reference excitation energies, the nature and size of the molecules, the list of benchmarked methods, as well as other useful specificities. Importantly, we have proposed a new statistical method that produces much safer estimates of the extrapolation error in SCI calculations. This new method based on Gaussian random variables has been tested by computing additional FCI values for five-and six-membered rings. After having discussed the generation of our TBEs, we have reported a comprehensive benchmark for a significant number of methods on the entire QUEST set with, in addition, a specific analysis for each type of excited states. Finally, the main features of the website specifically designed to gather the entire data generated during these past few years have been presented and discussed. A key aspect of this website is the possibility of generating statistics that match the needs of each specific user. In this framework, we have provided in the supplementary material of the paper [149] a file with all our benchmark data. Geometries can be found there, but they can also be downloaded from the website. Recently, my colleagues continued to expand the QUEST database with QUEST#6 that provide reference excitation energies for charge-transfer excited states.

For the QUEST project, we built a web tool to help quantum chemists who work on excited states to easily find reference values and adequate methods for their own interest. In the next chapter (Chapter 5), we continued in this direction by building a web demo for QUAN-TUM PACKAGE, a quantum chemistry software developed in your research group in order to provide an easy-to-use and easy-to-develop quantum chemistry software to the electronic structure community. The flagship method of QUANTUM PACKAGE is Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI) that provides near-FCI energies for a fraction of its computational cost via a sparse exploration of the FCI space. The demo, which has been built using SHELLINABOX and DOCKER, was designed in order to make QUANTUM PACKAGE easy to test via a terminal emulator on a web page. While SHELLINABOX is the tool that provides the terminal emulator web elements and the connection to the remote machine, DOCKER provides the isolated and ephemeral environment for the demo. In practice, all these components are wrapped in a virtual machine (VM) to isolate it from the rest of the server. One can test QUANTUM PACKAGE at https://quantumpackage.github.io/qp2/page/try and one can download the ready-to-run QUANTUM PACKAGE DOCKER image on Docker Hub at https://hub.docker.com/r/mveril/qp_demo. Recently, we discovered [408] the ability to create a system-level container in order to use DOCKER in a DOCKER container without security issue. This can be a solution for transferring the host containing DOCKER and SHELLINABOX from a VM to a DOCKER container and thus improve performance without creating a security issue for the host machine. We also heard about a containerization software called SINGULARITY. The main interest of SINGULARITY compared to DOCKER is its features that allow it to be adapted to the HPC (High Performance Computing) world. We shall investigate the compatibility of the QUANTUM PACKAGE demo container with the latter in the foreseeable future.

In the continuity of the search for reference energies, the next chapter (Chapter 6) applied the same type of protocol than the QUEST project but on the ground state of the five-and six-membered cyclic molecules included in the QUEST database. Indeed, using CIPSI, we have produced FCIquality frozen-core correlation energies for the twelve cyclic molecules in the correlation-consistent double-ζ Dunning basis set (cc-pVDZ). These estimates, which are likely accurate to a few tenths of a millihartree, have been obtained by extrapolating CIPSI energies to the FCI limit. In order to improve the calculation performance we have based our FCI on a set of orbitals obtained by minimizing the CIPSI variational energy. Using energetically optimized orbitals, one can reduce the size of the variational space by one order of magnitude for the same variational energy as compared to natural orbitals. In the same way as for the QUEST project, thanks to these reference FCI energies, we have then benchmarked three families of popular electronic structure methods: i) the Møller-Plesset perturbation series up to fifth-order, ii) the approximate CC series from CC2, to CC4, and iii) the "complete" CC series from CCSD to CCSDTQ. With a O(N 7 ) scaling, MP4 provides an interesting accuracy/cost ratio for this particular set of weakly correlated systems, while MP5 systematically worsen the perturbative estimates of the correlation energy. In addition, CC3 (where the triples are computed iteratively) outperforms the perturbative-triples CCSD(T) method with the same O(N 7 ) scaling, its completely renormalized version CR-CC (2,3), as well as its more expensive parent, CCSDT. A similar trend is observed for the methods including quadruple excitations, where the O(N 9 ) CC4 model has been shown to be slightly more accurate than CCSDTQ [which scales as O(N 10 )], both methods providing correlation energies within 2 mE h of the FCI limit. Of course, the present trends are only valid for this particular class of (weakly-correlated) molecules and it would be desirable to test this procedure on a larger variety of molecules by following the same principle as for the QUEST project. In particular, we plan on attempting the same approach on more difficult systems such as transition metal compounds. Some work along this line is currently being performed. As perspectives, we are currently investigating the performance of the present approach for excited states in order to expand the QUEST database of vertical excitation energies [149]. We hope to report on this in the near future. The compression of the variational space brought by optimized orbitals could be also beneficial in the context of quantum Monte Carlo methods to generate compact, yet accurate multi-determinant trial wave functions [288][289][290]476].

Although GW methods are widely used for the calculation of electronic transitions and band gaps (also in combination with the Bethe-Salpeter equation formalism), we have shown that in some cases one can observe (unphysical) discontinuities in the energy surfaces of several key quantities. Encouraging work makes it possible to see that some workaround are possible like the usage of self-consistent GW (scGW) which unfortunately is computationally heavy [478] or COHSEX that eliminate the discontinuities by using a frequency-independent algoritm [479]. We have also started a long work to provide very accurate reference vertical transition energies and used them to benchmark many low-level quantum chemistry methods. Following the same philosophy as GW100 [185] we have created a website to gather all the data of the QUEST project. We have already started working to complete this database with additional data. An example is the work of my coworkers on intramolecular charge-transfer excitations [397]. Also our work on optimized orbitals [409] could be a key for improving the reference data of the QUEST project. We could also reproduce what we did with the QUEST project, but for ground-state correlation energies, atomization energies, and/or ionization energies and electron affinities. Also we plan on applying the optimized orbitals method again but this time on transition metal compounds. Another interesting work has also been done is the web demo of QUANTUM PACKAGE that allows quantum chemists to test QUANTUM PACKAGE directly on the web. This work led to the creation of a VM containing a web terminal server and a DOCKER image used as a demo environment. An improvement on this architecture could be implemented in the future using a "system level container" to replace the VM in order to improve the performance. Also the DOCKER image used for the demo can be used to enable the usage of QUANTUM PACKAGE on WINDOWS or MACOS desktop computer (even if other solutions exists) or to avoid the long QUANTUM PACKAGE installation process. The DOCKER image of QUANTUM PACKAGE could also be used on HPC machine using SINGULARITY but we need to study the compatibility of this image with this software.

Annexe A

Résumé en français

Après une introduction générale sur les états excités dans les systèmes moléculaires et les ressources de calcul (chapitre 1) ainsi qu'une vue d'ensemble des différentes méthodes utilisées dans cette thèse (chapitre 2), nous allons parler de deux sujets principaux : i) les états électroniques moléculaires excités et ii) les outils numériques pour la chimie quantique théorique.

La thèse actuelle commence par une étude de la famille d'approximations GW (chapitre 3). Celles-ci sont connues pour être des méthodologies précises et relativement bon marché pour le calcul des excitations chargées, telles que les potentiels d'ionisation et les affinités électroniques dans les molécules et les intervalles de bande dans les solides. Ces méthodes peuvent être perturbatives, partiellement ou totalement auto-cohérentes et sont capables de fournir des valeurs de propriétés chimiquement précises pour les systèmes faiblement corrélés. Toutefois, comme indiqué en détails, des discontinuités peuvent être observées pour plusieurs propriétés essentielles, notamment dans les surfaces d'énergie potentielle, même dans les régimes faiblement corrélés. Ces discontinuités sont dues à des pôles dans la self-energy -une quantité clé du formalisme GW -chacune de ses branches est associée à une solution distincte de l'équation quasiparticule. Nous montrons que, dans les molécules diatomiques, le comportement multisolution dans les orbitales frontières est plus probable si l'écart d'énergie entre ces orbitales est faible.

La partie centrale de cette thèse traite du projet QUEST (chapitre 4), une vaste base de données de plus de 600 énergies d'excitation verticales de différentes nature. L'objectif de cette base de données open-source facilement modifiable est de fournir des énergies d'excitation de référence extrêmement précises pour des analyses comparatives et des comparaisons croisées de modèles de calcul. Ces énergies d'excitation de référence sont divisées en six sous-ensembles en fonction de la taille des molécules et des types d'excitation. Afin de rassembler l'énorme quantité de données du projet QUEST, nous avons créé un site web où l'on peut facilement tester et comparer la précision d'une méthode donnée par rapport à diverses variables telles que la taille de la molécule ou sa famille, la nature de l'état excité, le type de base, etc.

La partie suivante concerne les outils numériques, en particulier, la mise en place d'une démo web de QUANTUM PACKAGE (chapitre 5), un logiciel open-source développé principalement par notre groupe de recherche, qui a été conçu pour être facile à utiliser par des chimistes quantiques, qu'ils soient utilisateurs ou développeurs. La possibilité de tester le logiciel sans la nécessité de l'installer est une réelle opportunité de faire que QUANTUM PACKAGE soit plus populaire dans notre communauté. La technologie de conteneurisation fournie par DOCKER et le noyau LINUX nous permet de démarrer rapidement un environnement de démonstration propre pour chaque utilisateur et de l'arrêter facilement avec des performances intéressantes.

Enfin, au chapitre 6, poursuivant les travaux récents de notre équipe sur la molécule de benzène, nous reportons des énergies de corrélation de coeur gelé de référence pour les douze molécules cyclique à cinq et six atomes du projet QUEST, en utilisant l'algorithme d'interaction de configuration à l'aide d'une sélection perturbative effectuée itérativement (CIPSI) dans la base de corrélation standard double ζ (cc-pVDZ). Celles-ci correspondent à des espaces de Hilbert avec des tailles allant de 10 28 à 10 36 . Les propriétés de performance et de convergence de plusieurs séries de méthodes sont étudiées. En particulier, nous étudions les propriétés de convergence de la série de perturbations Møller-Plesset jusqu'au cinquième ordre ainsi que divers modèles de clusters couplés à référence unique qui incluent des excitations quadruples.

Annexe B

Résumé étendu en français

Introduction Généralité

Le but de la chimie théorique est de décrire mathématiquement les systèmes chimiques et biochimiques afin de prédire leurs propriétés. Formellement en chimie quantique, nous résolvons l'équation de Schrödinger, sauf pour l'atome d'hydrogène et les ions hydrogénoïdes, nous avons un problème à plusieurs corps qui ne peut pas être résolu sans approximation. L'une des approximations les plus courantes est l'introduction d'une base monoélectronique. Dans celle-ci, la méthode d'interaction de configuration complète (FCI) est la solution exacte de l'équation de Schrödinger, mais malheureusement, cette méthode est d'ordre O(N!) et ne peut être appliquée que pour des systèmes très petits. Comme point de départ, l'approximation la plus élémentaire de la chimie quantique est la méthode Hartree-Fock (HF) [START_REF] Szabo | Modern quantum chemistry: introduction to advanced electronic structure theory[END_REF]. Avec cette méthode, nous introduisons la notion de champ moyen qui permet d'approximer l'interaction électronique en une interaction entre l'électron et la moyenne des champs de Coulomb des autres électrons. Cette méthode est d'ordre O(N 3 ) et peut être appliquée aux gros systèmes. L'erreur entre l'énergie Hartree-Fock et la solution exacte de l'équation de Schrödinger s'appelle l'énergie de corrélation [START_REF] Helgaker | Molecular electronic-structure theory[END_REF][START_REF] Jensen | Introduction to computational chemistry[END_REF].

Même si depuis le 20e siècle et l'avènement de l'ordinateur [START_REF] Turing | On computable numbers, with an application to the entscheidungsproblem[END_REF], nous avons accès à de plus en plus de puissance de calcul, nous ne pouvons calculer l'énergie FCI uniquement pour de très petits systèmes. Habituellement, nous utilisons des approximations de la méthode FCI, tant FCI est chère. Ces approximations forment un grand ensemble allant de méthodes de chimie quantique coûteuses aux méthodes de mécanique moléculaire peu coûteuses. Il existe de nombreuses bases et de nombreuses méthodes avec chacune leurs propres approximations et systèmes chimiques sur lesquels nous pouvons les appliquer en fonction de notre domaine d'études.

États excités

Comme représenté sur la Figure B.1, Il existe différents types d'énergies d'excitation. Tout d'abord, nous avons les transitions verticales pour lesquelles la transition électronique entre les deux états se produit sans relaxer la géométrie. Pour l'absorption et la fluorescence, on commence respectivement à partir de la géométrie de l'état d'énergie le plus bas (généralement l'état fondamental) et de la géométrie d'un état excité donné. Dans les transitions adiabatiques, la géométrie du système est relaxée au minimum de la surface d'énergie potentielle. En pratique, il faut donc optimiser non seulement la géométrie de l'état d'énergie le plus bas, mais aussi la géométrie de l'état excité. D'un point de vue computationnel, ce type de calcul peut être un véritable défi technique pour les méthodes ciblant les états excités, car il faut avoir accès aux dérivées premières de l'énergie par rapport aux déplacements nucléaires (voir Tableau B.1). Enfin les énergies 0-0 sont des énergies adiabatiques où l'on prend en compte les corrections d'énergie vibrationnelle de point zéro (ZPVE) pour les deux états. Cependant, la correction de ZPVE représente un important coût de calcul supplémentaire, car on doit calculer les dérivées secondes de l'énergie par rapport aux déplacements nucléaires. Malheureusement, pour les méthodes les plus coûteuses, ce type de calcul est impossible avec les implémentations et les machines actuelles. Notez que, même si 

Méthodes

La première méthode conventionnelle ab initio pour les états excités était probablement l'interaction de configuration avec les simples (CIS), dans les années 1970 [START_REF] Bene | Self-consistent molecular orbital methods. x. molecular orbital studies of excited states with minimal and extended basis sets[END_REF]. Globalement, cette méthode surestime de manière significative l'énergie des états excités et il n'est pas inhabituel d'avoir une erreur de ∼1 eV. Étant donné que CIS fournit souvent un ordre énergétique incorrect des états excités, il est généralement dangereux de l'utiliser comme méthode qualitative. Vingt ans plus tard, une correction perturbative de second ordre a été ajouté à CIS et donna naissance à CIS(D) [START_REF] Head-Gordon | A doubles correction to electronic excited states from configuration interaction in the space of single substitutions[END_REF][START_REF] Ishikawa | Analytical gradient of the CIS(D) perturbative correction to single-excitation configuration interaction excited states[END_REF]. Cette correction de second ordre améliore considérablement la précision par rapport à CIS. En effet, la plage d'erreurs typique est 0,2-0,3 eV. Au début des années 90, la méthode auto-cohérente de l'espace actif complet (CASSCF) [START_REF] Roos | A complete active space scf method (casscf) using a density matrix formulated super-ci approach[END_REF][START_REF] Andersson | Second-order perturbation theory with a CASSCF reference function[END_REF] et, en particulier, son extension CASPT2 [START_REF] Andersson | Second-order perturbation theory with a complete active space self-consistent field reference function[END_REF] était une véritable percée. Même s'il a fallu plus de 10 ans pour obtenir des gradients analytiques [START_REF] Celani | Analytical energy gradients for internally contracted second-order multireference perturbation theory[END_REF], CASPT2 était probablement la première méthode qui pourrait fournir des énergies d'excitation quantitatives pour les systèmes moléculaires chimiquement intéressants [START_REF] Roos | Multiconfigurational perturbation theory: applications in electronic spectroscopy[END_REF]. Cependant, dans ses paramètres standard, elle sous-estime clairement les énergies d'excitation verticales des molécules organiques. Au début des années 2000, NEVPT2 (qui corrigent certains problèmes de CASPT2) a été développé par Angeli, Malrieu et leurs coauteurs [START_REF] Angeli | Introduction of nelectron valence states for multireference perturbation theory[END_REF]. CASPT2 et NEVPT2 permettent d'obtenir des résultats plus précis 0,1-0,2 eV et aussi d'avoir accès aux doubles excitations. L'avènement de la théorie de la fonctionnelle de la densité dépendante du temps (TD-DFT) [START_REF] Runge | Density-functional theory for time-dependent systems[END_REF][START_REF] Casida | Time-dependent density functional response theory for molecules[END_REF] a eu un impact significatif dans la communauté de la chimie théorique, car elle a donné la possibilité d'obtenir des énergies d'excitation relativement précises (0,2-0,4 eV) avec un coût (très) inférieur, car la TD-DFT, dans son implémentation standard, a un coût comme O(N 4 ) (où N est proportionnel à la 

O(N 4 ) 0,2-0,4 a BSE@GW O(N 4 ) 0,1-0,3 b CIS O(N 5 ) ∼1,0 CIS(D) O(N 5 ) 0,2-0,3 ADC(2) O(N 5 ) 0,1-0,2 CC2 O(N 5 ) 0,1-0,2 ADC(3) O(N 6 ) 0,2 EOM-CCSD O(N 6 ) 0,1-0,3 CC3 O(N 7 ) ∼0,04 EOM-CCSDT O(N 8 ) ∼0,03 EOM-CCSDTQ O(N 10 ) ∼0,01 CASPT2/NEVPT2 O(N!) 0,1-0,2 SCI O(N!) ∼0,03 FCI O(N!) 0,

Olympe

Lorsque nous devons effectuer des calculs plus lourds, nous pouvons utiliser les ressources informatiques du CALMIP. En 2018, le CALMIP a abandonné son cluster EOS âgé de 4 ans pour un cluster cinq fois plus puissant nommé Olympe. Chaque noeud CPU d'Olympe a des processeurs Skylake, Intel ® Xeon ® Gold 6140@2,30 GHz (voir Tableau B.4) Il existe deux types de noeuds sur Olympe, certains avec uniquement des processeurs, d'autres hybrides avec des processeurs et une carte graphique (GPU) nommée également carte accélératrice, car l'utilisation de celle-ci ne se limite pas au traitement graphique, mais aussi au HPC (calcul haute performance). Comme c'est le cas ici (voir Tableau B.5). Nous pouvons remarquer que sur Olympe, un calcul accéléré par GPU pourrait être 14 fois plus rapide. Cependant, de la même manière que pour les architectures multicoeurs, pour bénéficier de la puissance de calcul des noeuds hybrides CPU/GPU, il faut modifier l'implémentation des codes pour l'adapter à l'architecture GPU. Si nous comparons un noeud CPU d'Olympe et un noeud xeonv5, le meilleur type de noeud CPU de Curie, nous pouvons voir qu'il n'y a pas de différence significative en matière de puissance de calcul entre un noeud de Curie xeonv5 et un noeud Sequana X1120 d'Olympe, mais sur Curie, nous avons 180 fois moins de noeuds xeonv5, qu'Olympe a de noeuds Sequana X1120. 

Joliot-Curie

Le TGCC Joliot-Curie de Genci-CEA est une autre ressource informatique utilisée pour cette thèse. Ce cluster a deux partitions CPU Intel ® une appelée SKL Irene avec un processeur Intel ® skylake et l'autre appelée KNL Irene avec un processeur Intel ® Knight Landing. Il y a aussi la partition AMD Irene Rome avec un CPU AMD Epyc ™ Rome (voir Tableau 1.6). Une partition hybride CPU/GPU appelée Irene V100 est également disponible avec un CPU Intel ® Cascade Lake et un GPU NVIDIA ® v100.

Si nous comparons Olympe et Joliot-Curie, nous pouvons voir que par exemple un noeud SKL Irene est 2 fois plus puissant qu'un noeud Olympe Sequana X1120 et théoriquement, si nous prenons tous les noeuds de chaque partition alors, nous aurions 9 fois plus de puissance de calcul avec les noeuds SKL Irene qu'avec les noeuds Sequana X1120.

Méthodes de chimie quantique

Dans le chapitre 2, nous fournissons des détails sur les concepts principaux et les méthodes utilisées dans cette thèse. 

Équation de Schrödinger

= - N ∑ i ∇ 2 i 2 - N ∑ i M ∑ A Z A r Ai + N ∑ i<j 1 r ij , (B.5)
où r pq est la distance entre les particules p et q, N est le nombre d'électrons, M est le nombre de noyaux, A est un noyau, i et j sont deux électrons. Ainsi, l'énergie totale de l'hamiltonien électronique correspond à la somme de l'énergie cinétique des électrons ( Te ), de l'énergie associée à l'attraction de Coulomb entre les électrons et les noyaux ( Ven ) et de la répulsion de Coulomb entre les électrons ( Vee ).

L'approximation Hartree-Fock

Dans l'approximation Hartree-Fock (HF), la fonction d'onde multiélectronique est définie comme un déterminant de Slater, et φ i (r) est sa partie spatiale. On définit l'énergie HF, E HF , comme valeurs propres de l'opérateur Hamiltonien appliqué à Ψ HF :

Ψ HF (X) = 1 √ N! ψ 1 (x 1 ) ψ 2 (x 1 ) . . . ψ N (x 1 ) ψ 1 (x 2 ) ψ 2 (x 2 ) . . . ψ N (x 2 ) . . . . . . . . . . . . ψ 1 (x N ) ψ 2 (x N ) . . . ψ N (x N ) , ( B 
E HF = Ψ HF | Ĥ|Ψ HF Ψ HF |Ψ HF . (B.9)
Dans la base de spinorbitale, l'énergie HF est donnée par 

E HF = N ∑ i ψ i (x 1 )| Ĥc |ψ i (x 1 ) + N ∑ i<j ψ i (x 1 )ψ j (x 2 ) 1 r 12 ψ i (x 1 )ψ j (x 2 ) -ψ i (x 1 )ψ j (x 2 ) 1 r 12 ψ j (x 1 )ψ i (x 2 ) . (B.10) F (x 1 ) = Ĥc (x 1 ) + N ∑ i Ĵi (x 1 ) -Ki (x

Méthodes post-Hartree-Fock

Nous définissons l'énergie de corrélation comme la différence entre l'énergie exacte (non relativiste) et l'énergie HF

E c = E -E HF (B.14)
De plus, nous définissons Ψ 0 comme déterminant de référence, qui peut ou ne pas être le déterminant de l'état fondamental HF Ψ HF . L'objectif des méthodes post-HF est de récupérer autant d'énergie de corrélation que possible.

Méthode d'interaction de configuration

Dans les méthodes d'interaction de configuration (CI), on définit la fonction d'onde corrélée comme une combinaison linéaire de déterminants de Slater

|Ψ CI = c 0 Ψ 0 + occ ∑ i virt ∑ a c a i |Ψ a i + occ ∑ ij virt ∑ ab c ab ij Ψ ab ij + occ ∑ ijk virt ∑ abc c abc ijk Ψ abc ijk + • • • (B.15)
où occ est le nombre d'orbitales occupées, virt le nombre d'orbitales virtuelles (c'est-à-dire, inoccupée), et Ψ a i correspond à un déterminant simplement excité où un électron de l'orbitale occupée i a été excité vers l'orbitale vacante a. De même, Ψ ab ij est un déterminant doublement excité où les électrons des orbitales occupées i et j ont été excité vers les orbitales vacantes a et b. (La même règle s'applique aux excitations plus élevées.) Ici, i, j, . . . sont des spinorbitales occupées, a, b, . . . désignent des spinorbitales virtuelles (inoccupées) et p, q, r, et s des spinorbitales quelconque (orthonormées). Si on considère que tous les déterminants excités possibles construit en plaçant N électrons dans 2K spinorbitales, on parle d'une interaction de configuration complète (FCI) qui correspond à la solution exacte du système pour un ensemble de fonctions de base donné. Inversement, si on considère uniquement les monoexcitations, on obtient CI avec les simples (CIS), tandis que si on considère toutes les excitations simples et doubles, on obtient CI avec des simples et des doubles (CISD).

Au niveau CI, l'énergie est calculée comme

E CI = Ψ CI | Ĥ|Ψ CI Ψ CI |Ψ CI . (B.16)
Elle est une limite supérieure de l'énergie exacte du système grâce à la propriété variationnelle de l'équation ci-dessus. Même si elle récupère toute l'énergie de corrélation, la méthode FCI est dans la pratique, très coûteuse et limitée à un petit espace de Hilbert.

Méthodes CI sélectionné

Dans les méthodes CI conventionnelles (voir ci-dessus), on choisit les déterminants à inclure dans l'espace dit variationnel en se basant sur leur degré d'excitation maximum. Cependant, dans ce sous-espace prédéfini des déterminants, il est bien connu que seul un petit nombre d'entre eux contribuent de manière significative à l'énergie totale. Par conséquent, l'idée fondamentale derrière certaines méthodes CI sélectionné (SCI) consiste à sélectionner les déterminants parmi l'ensemble des déterminants (c'est-à-dire, l'espace FCI) sur la base de leur contribution estimée à l'énergie et/ou la fonction d'onde FCI. Bien que la famille de méthodes SCI ait de nombreux membres, dans cette section, nous ne discuterons que de l'algorithme CIPSI (interaction de configuration à l'aide d'une sélection perturbative effectuée itérativement) [34] implémenté dans QUANTUM PACKAGE, un logiciel de chimie quantique développé dans notre laboratoire. Dans le processus itératif CIPSI [34], une correction perturbative de second ordre est utilisée pour sélectionner les déterminants. En pratique, nous commençons par un petit ensemble de déterminants ; Ensuite, nous évaluons à chaque itération les contributions des déterminants appartenant à l'espace dit extérieur à l'aide de la méthode perturbative PT2 et incluons le sous ensemble avec la plus grande contribution dans le calcul CI de l'itération suivante, et ce, jusqu'à la convergence. La somme de l'énergie variationnelle et de l'énergie PT2 est une approximation de l'énergie FCI.

Méthodes du cluster couplé

La famille de méthodes du cluster couplé (CC) [START_REF] Jensen | Introduction to computational chemistry[END_REF][START_REF] Čížek | On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods[END_REF][START_REF] Paldus | Correlation problems in atomic and molecular systems. iv. extended coupled-pair many-electron theory and its application to the bH 3 molecule[END_REF][START_REF] Crawford | An Introduction to Coupled Cluster Theory for Computational Chemists[END_REF][START_REF] Bartlett | Coupled-cluster theory in quantum chemistry[END_REF] est l'une des approches de la fonction d'onde les plus intéressantes pour la description des systèmes chimiques [START_REF] Purvis | A full coupled-cluster singles and doubles model: the inclusion of disconnected triples[END_REF][START_REF] Scuseria | A new implementation of the full ccsdt model for molecular electronic structure[END_REF][START_REF] Scuseria | Is coupled cluster singles and doubles (ccsd) more computationally intensive than quadratic configuration interaction (qcisd)?[END_REF]. En particulier, les méthodes CC tronquées à faible ordre, telles que CC avec des simples, des doubles et des triples perturbatifs CCSD(T) [START_REF] Purvis | A full coupled-cluster singles and doubles model: the inclusion of disconnected triples[END_REF][START_REF] Raghavachari | A fifth-order perturbation comparison of electron correlation theories[END_REF], décrivent correctement la faible corrélation, tandis que l'inclusion d'excitation d'ordre supérieur est nécessaire pour les systèmes fortement corrélés.

Dans la théorie CC, on représente la fonction d'onde comme suit

Ψ CC = e T Ψ 0 , (B.17) où l'opérateur de cluster est T = N ∑ k Tk , (B.18) avec T1 = occ ∑ i virt ∑ a t a i âi â † a T2 = 1 4 occ ∑ ij virt ∑ ab t ab ij âi âj â † a â † b . . . (B.19)
Ici, â † a et âi sont respectivement les opérateurs habituels d'annihilation et de création qui annihilent un électron dans la spinorbitale occupée i et crée un électron dans la spinorbitale vacante a.

En effectuant une expansion de Taylor de l'opérateur exponentialisé 'Hedin [47]. Le chemin rouge montre le processus GW auto-cohérent qui contourne le calcul de la fonction vertex Γ.

e T = ∞ ∑ k=0 Tk k! = T + T2 2! + T3 3! + T4 4! + • • • (B.20) G Γ P W Σ In Out Γ = 1 + δ Σ δ G G G Γ P = -i G G Γ W = v + v P W Σ = i G W Γ G = G 0 + G 0 ΣG P = -i G G ε HF/KS ε GW FIGURE B.2 : Le Pentagone d
à plusieurs corps basées sur la fonction de Green à un corps G sont fascinantes, car elles sont capables de transformer un problème à plusieurs électrons insoluble en un ensemble d'équations non linéaires à un électron, grâce à l'introduction d'un potentiel effectif Σ, la self-energy. La corrélation électronique est explicitement incorporée via une séquence d'étapes auto-cohérente appelée équations d'Hedin [START_REF] Hedin | New method for calculating the one-particle Green's function with application to the electron-gas problem[END_REF], qui connecte G, la fonction vertex irréductible Γ, la polarisation irréductible P, l'interaction de Coulomb écrantée dynamiquement W, et Σ à travers un ensemble de cinq équations intégro-différentielles (voir Figure B.2). En particulier, l'approche d'Hedin utilise une interaction de Coulomb écrantée dynamiquement W au lieu de l'interaction standard de Coulomb v. Des propriétés expérimentales importantes telles que les potentiels d'ionisation, les affinités électroniques ainsi que les fonctions spectrales, qui sont liées aux spectres de photo-émission directe et inverse, peuvent être obtenues directement à partir de la fonction de Green à un corps [57]. Une approximation particulièrement réussie et pratique des équations d'Hedin est ladite approximation GW [57-59] qui contourne le calcul de la partie la plus compliquée des équations d'Hedin, la fonction vertex Γ [START_REF] Hedin | New method for calculating the one-particle Green's function with application to the electron-gas problem[END_REF].

Bien que G 0 W 0 est probablement la variante de GW la plus simple et la plus largement utilisée [60-65], sa dépendance au point de départ a motivé le développement de plusieurs versions partiellement [66-74] et entièrement [75][76][77][78][START_REF] Caruso | Bond Breaking and Bond Formation: How Electron Correlation is Captured in Many-Body Perturbation Theory and Density-Functional Theory[END_REF][START_REF] Caruso | Self-consistent G W : All-electron implementation with localized basis functions[END_REF][START_REF] Caruso | Self-consistent GW approach for the unified description of ground and excited states of finite systems[END_REF][START_REF] Koval | Fully self-consistent G W and quasiparticle selfconsistent G W for molecules[END_REF][START_REF] Wilhelm | Toward GW Calculations on Thousands of Atoms[END_REF] auto-cohérente afin de réduire ou de supprimer cet effet indésirable. Ici, nous nous sommes concentré sur les méthodes partiellement auto-cohérentes, car elles ont démontré une précision comparable et sont plus légères en calcul que la version entièrement cohérente [START_REF] Caruso | Benchmark of GW approaches for the GW100 test set[END_REF]. De plus, elles sont régulièrement utilisées pour des calculs sur les solides et les molécules et sont disponibles dans divers logiciels de calcul [61,68,74,[START_REF] Caruso | Benchmark of GW approaches for the GW100 test set[END_REF][START_REF] Blase | The Bethe-Salpeter equation in chemistry: relations with TD-DFT, applications and challenges[END_REF][START_REF] Bruneval | Molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters[END_REF][START_REF] Kaplan | Off-Diagonal Self-Energy Terms and Partially Self-Consistency in GW Calculations for Single Molecules: Efficient Implementation and Quantitative Effects on Ionization Potentials[END_REF][START_REF] Krause | Implementation of the Bethe-Salpeter equation in the TURBOMOLE program[END_REF][START_REF] Maggio | GW 100: A Plane Wave Perspective for Small Molecules[END_REF]. Récemment, un nombre toujours croissant d'applications des méthodes GW partiellement auto-cohérentes sont apparues dans la littérature de physique et de chimie pour les systèmes moléculaires [62-65, 73, 82, 85, 86, 90-96], ainsi que de vastes ensembles de référence élaborés [64,65,[START_REF] Maggio | GW 100: A Plane Wave Perspective for Small Molecules[END_REF][START_REF] Bruneval | A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules[END_REF][START_REF] Richard | Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules I. Reference Data at the CCSD(T) Complete Basis Set Limit[END_REF][START_REF] Gallandi | Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules II: Non-Empirically Tuned Long-Range Corrected Hybrid Functionals[END_REF][START_REF] Knight | Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods[END_REF][100][101].

Il existe deux types principaux de méthodes GW partiellement auto-cohérentes : i) evGW [66-69], où les énergies de quasiparticules (QP) sont mises à jour à chaque itération, et ii) qsGW [70][71][72][73][74], où l'on met à jour les énergies QP et les orbitales correspondantes. Notez qu'une dépendance au point de départ reste dans evGW car les orbitales ne sont pas optimisées de manière auto-cohérente dans ce cas.

Dans un article récent [102], tout en étudiant un modèle de système à deux électrons [103-108], nous avons observé que, dans les méthodes GW partiellement auto-cohérentes (telles que evGW et Nous avons trouvé de graves lacunes dans deux variantes largement utilisées de GW dans le régime faiblement corrélé. Nous avons mis en évidence que l'on peut se heurter à des problèmes de solutions multiples dans G 0 W 0 et evGW en raison de la localisation de la solution QP près des pôles de la self-energy. Dans G 0 W 0 linéarisé, Cela implique des irrégularités dans les principales quantités mesurables expérimentalement, tandis qu'au niveau partiellement auto-cohérent evGW, des discontinuités surgissent. Parce que l'énergie de corrélation RPA [START_REF] Bruneval | Molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters[END_REF]120,143,144] et les énergies d'excitation Bethe-Salpeter [START_REF] Blase | The Bethe-Salpeter equation in chemistry: relations with TD-DFT, applications and challenges[END_REF]145,146] dépendent directement des énergies QP, ces types de discontinuités sont également présents dans ces quantités, et donc dans les surfaces d'énergie des états fondamentaux et excités. De plus, pour les systèmes étendus, ces problèmes peuvent être atténués par les modes de plasmon qui dominent le spectre à haute énergie de l'interaction de Coulomb écrantée. Les résultats de ce travail seront utiles pour les calculs auto-cohérents GW de phénomènes dynamiques, c'est-à-dire, avec le mouvement nucléaire.

La base de données QUEST d'énergies d'excitation verticales

De nos jours, il existe un très grand nombre d'approches de calcul pour la structure électronique, plus ou moins coûteuse en fonction de leur précision globale, capable de prédire quantitativement les énergies absolues et relatives d'états électroniques dans des systèmes moléculaires [START_REF] Szabo | Modern quantum chemistry: introduction to advanced electronic structure theory[END_REF][START_REF] Helgaker | Molecular electronic-structure theory[END_REF][START_REF] Jensen | Introduction to computational chemistry[END_REF]150]. Un aspect important de certaines de ces méthodes théoriques est leur capacité d'accéder aux énergies des états électroniques excités, [START_REF] Roos | Multiconfigurational perturbation theory: applications in electronic spectroscopy[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]121,[151][152][153][154][155][156][157][158]. La description fidèle des états excités est particulièrement difficile d'un point de vue théorique, mais est essentielle à une compréhension plus profonde des processus photochimiques et photophysiques comme l'absorption, la fluorescence, la phosphorescence et la chimioluminescence [159][160][161][162][163][START_REF] Robb | Theoretical chemistry for electronic excited states[END_REF][165]. Pour un niveau de théorie donné, les méthodes d'état fondamental sont généralement plus précises que leurs analogues d'état excité. Les raisons derrière cela sont (au moins) triples : i) modéliser avec précision la structure électronique des états excités nécessite généralement de plus grosses bases monoélectroniques (y compris des fonctions diffuses la plupart des temps) que leur homologue de l'état fondamental, ii) les états excités peuvent être régis par différentes quantités de corrélations dynamiques/statiques, présentant des natures physiques très différentes (π → π * , n → π * , transfert de charges, double excitation, valence, Rydberg, singulet, doublet, triplet, etc), pourtant très proche en énergie les uns des autres, et iii) il faut généralement compter sur le formalisme de la théorie de la réponse [26,[166][167][168][169][170][171][172], qui introduit intrinsèquement un « biais » sur l'état fondamental. Par conséquent, concevoir des méthodes d'état excité capables de cibler simultanément et de la même façon, tous ces types d'états excités à un coût abordable reste un défi ouvert en chimie théorique computationnelle, comme en témoigne le grand nombre d'articles sur ce sujet [START_REF] Roos | Multiconfigurational perturbation theory: applications in electronic spectroscopy[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]121,[151][152][153][154][155][156][157][158]173]. Lors de la conception d'un nouveau modèle théorique, le premier aspect que l'on pourrait vouloir tester est sa précision globale, c'est-à-dire sa capacité à reproduire des valeurs de référence pour un système donné avec des paramètres bien définis et une même configuration (même géométrie, base, etc). Ces valeurs peuvent être des énergies absolues et/ou relatives, des paramètres géométriques, des propriétés spectroscopiques physiques ou chimiques extraites d'expériences, de calculs théoriques de haut niveau, ou de toute combinaison de ceux-ci. À cette fin, la communauté de structure électronique a conçu au fil des années des données de référence, c'est-à-dire des séries de molécules pour lesquelles on peut calculer avec une grande précision des estimations théoriques et/ou accéder à des données expérimentales solides pour des propriétés données. En ce qui concerne les propriétés de l'état fondamental, deux des ensembles les plus anciens et les plus utilisés sont probablement les ensembles de référence Gaussian-1 et développés par le groupe de Pople dans les années 1990. Par exemple, l'ensemble Gaussian-2 rassemble des énergies d'atomisation, des énergies d'ionisation, des affinités électroniques, des affinités de proton, des énergies de dissociation et des barrières de réaction. Cet ensemble a ensuite été étendu et raffiné [177,178]. Un autre ensemble très utile pour la conception de méthodes capables de cibler les effets de dispersion [179] est l'ensemble de référence S22 [180] (et sa version étendue S66 [181]) de Hobza et ses collaborateurs qui fournissent des énergies d'interaction de référence pour des systèmes interagissants faiblement (non covalents). On pourrait aussi mentionner l'ensemble GW100 [64,182,183] (et son extension GW5000 [184]) d'énergies d'ionisation qui a contribué énormément à solidifier l'implémentation des méthodes de type GW pour les systèmes moléculaires [61,[START_REF] Caruso | Benchmark of GW approaches for the GW100 test set[END_REF][START_REF] Bruneval | Molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters[END_REF]185]. L'ensemble ab initio de données thermochimique (HEAT) conçu pour atteindre une grande précision sur les enthalpies de formation d'atomes et de petites molécules (sans données expérimentales) est un autre exemple d'un ensemble de référence [186][187][188]. Plus récemment, mentionnons les données de référence du Simons Collaboration on the Many-Electron Problem qui fournit, par exemple, des énergies d'état fondamental très précises pour des chaînes d'hydrogène [189] ainsi que les atomes de métaux de transitions, leurs ions et leurs monoxydes [190]. Mentionnons également l'ensemble de Zhao et Truhlar pour les petits complexes de métaux de transition employés pour comparer la précision des méthodes de la fonctionnelle de la densité (DFT) [134] pour la chimie de métaux de transition 3d [191], et enfin les bases de données populaires GMTKN24 [192], GMTKN30 [193,194] et GMTKN55 [195] pour la thermochimie, cinétique, et les interactions non covalentes développées par Goerigk, Grimme et leurs collègues.

Les exemples d'ensembles de référence présentés ci-dessus sont tous conçus pour des propriétés à l'état fondamental, et il existe des protocoles spécifiques adaptés pour modéliser avec précision les énergies d'états excités et leurs propriétés. En effet, les jeux de données de référence des énergies des états excités et/ou de leurs propriétés sont moins nombreux que leurs homologues de l'état fondamental, mais leur nombre a augmenté à un rythme constant au cours des dernières années. Ci-dessous, nous vous proposons une brève description de certains d'entre eux. L'un des exemples les plus caractéristiques est l'ensemble de référence des énergies d'excitation verticales proposé par Thiel et ses collaborateurs [196][197][198][199]. Cet ensemble d'énergies d'excitation regroupe un grand nombre d'énergies d'excitation déterminé dans 28 molécules organiques moyennes CNOH avec un Annexe B. Résumé étendu en français 123 total de 223 états excités de valence (152 singulets et 71 états triplets) pour lesquels les meilleures estimations théoriques (TBE) ont été défini. Dans leur première étude, Thiel et ses collaborateurs ont effectué des calculs CC2 [25,200], CCSD [23,168,201,202], CC3 [26,203], et CASPT2 [START_REF] Andersson | Second-order perturbation theory with a CASSCF reference function[END_REF][START_REF] Andersson | Second-order perturbation theory with a complete active space self-consistent field reference function[END_REF][START_REF] Roos | Multiconfigurational perturbation theory: applications in electronic spectroscopy[END_REF]204] (avec la base TZVP) sur des géométries MP2/6-31G(d) afin de fournir (à partir de données de la littérature de haute qualité) des TBE pour ces transitions. Ces TBE ont été rapidement affiné avec la plus grande base aug-cc-pVTZ [198,199]. Dans le même esprit, il convient également de mentionner l'ensemble de transitions verticales de Gordon (basées sur des valeurs expérimentales) [205] utilisé pour comparer les performances de la TD-DFT [START_REF] Runge | Density-functional theory for time-dependent systems[END_REF][START_REF] Casida | Time-dependent density functional response theory for molecules[END_REF]206,207], ainsi comme sa version étendue par Goerigk et ses collègues qui ont décidé de remplacer les valeurs de référence expérimentales par des énergies d'excitation CC3 [208][209][210]. Pour les comparaisons avec les valeurs expérimentales, il existe aussi différents ensembles de mesure utilisés dans les énergies 0-0, notamment par le groupe de Furche [211,212], par celui de Hättig [START_REF] Winter | Benchmarks for 0-0 transitions of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data[END_REF], par notre groupe [START_REF] Loos | Evaluating 0-0 energies with theoretical tools: a short review[END_REF]102,[START_REF] Loos | Chemically accurate 0-0 energies with not-so-accurate excited state geometries[END_REF] pour des composés en phase gazeuse, par le groupe de Grimme [215,216] et de Jacquemin [217,218] pour les colorants solvatés. Mentionnons également la nouvelle série d'états excités de transfert de charge par Szalay et ses collaborateurs [référence basée sur la méthode du cluster couplé avec équation de mouvement (EOM-CC)] [219] ainsi que l'ensemble Gagliardi-Truhlar utilisé pour comparer la précision de la théorie fonctionnelle multiconfiguration pair-density [157] contre la méthode CASPT2 bien établie [220].

Avec une philosophie similaire et une exigence de précision chimique, nous avons récemment rapporté dans plusieurs études des excitations verticales extrêmement précises pour des molécules de petite et moyenne taille [30,32,[START_REF] Loos | Reference energies for double excitations[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]221]. Ces valeurs composent la base de données d'excitation verticales QUEST que nous décrivons en détail dans le chapitre 4 qui est composé de 5 sous-ensembles (voir Figure B.5) : i) un sous-ensemble d'excitation dans de petites molécules contenant de 1 à 3 atomes non-hydrogène appelés QUEST#1, ii) un sous-ensemble de doubles excitations dans des molécules de petites et moyennes tailles connues sous le nom de QUEST#2, iii) un sous-ensemble d'énergies d'excitation pour des molécules de taille moyenne contenant de 4 à 6 atomes non hydrogènes appelés QUEST#3, iv) un sous-ensemble composé de molécules plus « exotiques » et des radicaux appelé QUEST#4 et v) un sous-ensemble appelé QUEST#5, spécialement conçu pour cette thèse, rassemblant des énergies d'excitation sur de plus grandes molécules ainsi que des molécules plus petites supplémentaires. L'un des principaux aspects de la base de données QUEST est qu'elle ne repose pas sur des valeurs expérimentales, en évitant les biais potentiels intrinsèquement liés aux expériences et faciliter les comparaisons entre méthodes théoriques. De plus, notre protocole a été conçu pour être aussi uniforme que possible, ce qui signifie que nous avons conçu une procédure très systématique pour tous les états excités afin de faire des comparaisons croisées aussi facilement que possible.

L'ensemble de données QUEST a la particularité de se fonder dans une large mesure sur les énergies d'excitation de référence SCI ainsi que de méthodes à réponse linéaires (LR) CC d'ordre élevé tels que LR-CCSDT et LR-CCSDTQ [24,168,169,171,[225][226][227][228][229][230]. Récemment, les méthodes SCI ont été d'une grande importance pour le calcul des énergies très précises dans les petites et moyennes molécules, car SCI donne des énergies d'une qualité proche du FCI pour seulement une très petite fraction du coût de calcul d'un véritable calcul FCI [30,32,[START_REF] Loos | Reference energies for double excitations[END_REF][START_REF] Holmes | Excited states using semistochastic heat-bath configuration interaction[END_REF][START_REF] Chien | Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]221,[231][232][233][234][235][236][237][238][239][240][241][242][243][244][245][246][247][248][249][250]. En raison de l'idée assez naturelle sous-jacente de ces méthodes, la famille SCI est composée de nombreux membres [34, 36-38, 240, 251-276]. Leur philosophie fondamentale consiste, grosso modo, à ne conserver que les déterminants les plus pertinents de l'espace FCI selon un critère donné pour ralentir l'augmentation exponentielle de la taille de l'expansion du CI. Développé à l'origine à la fin des années 1960 par Bender et Davidson [START_REF] Bender | Studies in configuration interaction: the first-row diatomic hydrides[END_REF] ainsi que Whitten et Hackmeyer [252], de nouveaux algorithmes SCI efficaces ont refait surface récemment. Trois exemples sont iCI [272,[277][278][279], heatbath semistochastique CI (SHCI) [37, 240-242, 262, 263] et Interaction de configuration à l'aide d'une sélection perturbative effectuée itérativement (CIPSI) [34,[START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]256,258]. Cette méthode SCI comprend une correction perturbative de second ordre (PT2) qui est la clé pour estimer la « distance » à la solution FCI. Les calculs SCI effectués pour l'ensemble de QUEST des énergies d'excitation repose sur l'algorithme CIPSI, qui est, d'un point de vue historique, l'un des plus anciens algorithmes SCI. Il a été développé en 1973 par Huron, Rancurel et Malrieu [34].Récemment, l'algorithme CIPSI a été efficacement implémenté [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] dans l'environnement de programmation open-source QUANTUM PACKAGE par le groupe de Toulouse permettant d'effectuer des calculs massivement parallèles [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]249,259,266]. CIPSI est aussi fréquemment utilisé pour fournir des fonctions d'ondes d'essai précises pour le calcul Monte Carlo quantique dans les molécules [256-258, 260, 261, 264, 265, 285-290] et plus récemment pour les solides périodiques [291]. Nous avons étendu la base de données QUEST d'énergies d'excitation très précises pour les systèmes moléculaires [30,32,[START_REF] Loos | Reference energies for double excitations[END_REF][START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF]221] que nous avons commencé à construire en 2018 et qui est maintenant composée de plus de 500 excitations verticales, dont beaucoup peuvent être raisonnablement considérés comme à moins de 1 kcal mol -1 de la limite FCI pour la géométrie CC3/aug-cc-pVTZ et la base (aug-cc-pVTZ) considérées. Nous avons créé un site web spécialement conçu pour rassembler toutes les données générées au cours de ces dernières années. Un aspect clé de ce site web est la possibilité de générer des statistiques correspondant aux besoins de chaque utilisateur spécifique. Il est aussi possible d'importer de nouvelles données pour par exemple comparer de nouvelles méthodes aux méthodes déjà étudiées dans le cadre de ce projet.

En paraphrasant les conclusions de Thiel [196], nous espérons que non seulement la base de données QUEST sera utilisée pour d'autres analyses et tests, mais que d'autres groupes de recherche l'amélioreront également, fournissant non seulement des corrections. (inévitable dans un ensemble de données aussi vaste), mais surtout des extensions avec des estimations améliorées pour certains composés et états, ou de nouvelles molécules.

Démo de Quantum Package dans un navigateur web

QUANTUM PACKAGE [START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] 

Estimations précises de l'énergie de corrélation d'interaction de configuration complète pour des cycles à cinq et six chaînons

La théorie de la structure électronique repose fortement sur des approximations [START_REF] Szabo | Modern quantum chemistry: introduction to advanced electronic structure theory[END_REF][START_REF] Helgaker | Molecular electronic-structure theory[END_REF][START_REF] Jensen | Introduction to computational chemistry[END_REF]. De façon générale, pour qu'une méthode soit utilisable en pratique, trois approximations principales sont généralement appliquées. La première approximation fondamentale, connue sous le nom d'approximation de Born-Oppenheimer, consiste à supposer que le mouvement des noyaux et des électrons sont découplés [410]. Les coordonnées des noyaux peuvent ensuite être traitées comme paramètres de l'Hamiltonien électronique. La deuxième approximation centrale qui rend les calculs réalisables est l'introduction d'une base dans laquelle l'on introduit un ensemble de fonctions La troncation de T permet de définir une hiérarchie de méthodes non variationnelles et extensive en taille avec des niveaux de précision croissants : CCSD [START_REF] Čížek | On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods[END_REF][START_REF] Purvis | A full coupled-cluster singles and doubles model: the inclusion of disconnected triples[END_REF], CCSDT [START_REF] Scuseria | A new implementation of the full ccsdt model for molecular electronic structure[END_REF]225], CCSDTQ [412,413] [228,350,394,[416][417][418][419] Une stratégie de troncation systématique similaire peut être appliquée aux méthodes CI conduisant à la famille de méthodes bien connue appelée CISD, CISDT, CISDTQ,. . . où on augmente systématiquement le degré d'excitation maximal des déterminants pris en compte. Sauf pour le CI complet (FCI) où tous les déterminants de l'espace de Hilbert (c'est-à-dire, avec degré d'excitation jusqu'à N) sont considérés, les méthodes CI tronquées sont variationnelles, mais ne sont pas consistantes en taille. La non-variationalité des méthodes CC tronquées étant, dans la pratique, moins un problème que l'inconsistance en taille des méthodes CI tronquées, ces méthodes ont naturellement éclipsé leur équivalent CI dans le domaine de la structure électronique. Cependant, une stratégie différente est récemment revenue sur le devant de la scène dans le cadre des méthodes CI [34, 251-254, 280-284, 420, 421]. En effet, certaines méthodes CI sélectionné (SCI) [231, 256, 258, 261, 262, 266-268, 272, 274-276], où l'on choisit itérativement les déterminants importants de l'espace FCI (généralement) basés sur un critère perturbatif, ont récemment eu beaucoup de succès afin de produire des énergies de référence pour les états fondamentaux et excités de petites et moyennes molécules [30, 32, 35-38, 149, 190, 221, 240-242, 249, 257, 260, 264, 265, 286, 397, 422] grâce à des algorithmes déterministes, stochastiques ou hybrides efficaces bien adaptés à la parallélisation massive. Comme dit précédemment les méthodes SCI sont basées sur un fait bien connu : parmi le très grand nombre de déterminants contenus dans l'espace FCI, seule une infime fraction de ceux-ci contribue de manière significative à l'énergie. Par conséquent, la famille de méthodes SCI+PT2 effectue une exploration de l'espace FCI en sélectionnant les déterminants de manière itérative uniquement les déterminants les plus énergiquement pertinents de l'espace variationnel et en le complétant avec une correction perturbative de second ordre (PT2) [34,[START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]259,263,266]. Bien que le coût de tels algorithmes reste exponentielle, le préfacteur est considérablement réduit, ce qui explique leur attractivité actuelle dans la communauté de la structure électronique grâce à leur applicabilité beaucoup plus large que la méthode FCI standard. Notons que, très récemment, plusieurs groupes [424][425][426] ont couplé les méthodes CC et SCI via la méthodologie CC corrigée extérieurement [427], montrant des performances prometteuses pour des systèmes faiblement et fortement corrélés.

Une stratégie assez différente pour atteindre la limite FCI est de recourir à la théorie de la perturbation de , dont la popularité provient de sa nature « boîte noire », de sa nature extensive en taille et d'une exigence de calcul relativement faible, la rendant facilement appliquée à une large gamme de systèmes moléculaires. La méthode Møller-Plesset de second ordre (MP2) [428] [qui est d'ordre O(N 5 )] a été largement adopté en chimie quantique depuis plusieurs décennies.Ses variantes d'ordre supérieur [MP3 [431], MP4 [START_REF] Krishnan | Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory[END_REF], MP5 [START_REF] Kucharski | Fifth-order many-body perturbation theory for molecular correlation energies[END_REF]et MP6 [434,435] qui sont d'ordre O(N 6 ), O(N 7 ), O(N 8 ), et O(N 9) respectivement] ont été étudié beaucoup plus rarement. Cependant, il est maintenant largement reconnu que la série d'approximations de MP pourrait montrer un comportement erratique, convergent lentement ou divergent ce qui limite son applicabilité et son amélioration systématique [START_REF] Marie | Perturbation theory in the complex plane: exceptional points and where to find them[END_REF][START_REF] Laidig | Is fifth-order MBPT enough?[END_REF][437][438][439][440][441][442][443][444][445]. Encore une fois, la théorie de la perturbation de MP et les méthodes CC peuvent être couplées. L'exemple le plus emblématique d'un tel couplage, est la méthode CCSD(T) [START_REF] Raghavachari | A fifth-order perturbation comparison of electron correlation theories[END_REF], qui comprend de manière itérative les excitations simples et doubles et perturbativement (au niveau MP4 et partiellement MP5) les triples excitations, conduisant à ce qu'on appelle « l'étalon-or » de la chimie quantique pour les systèmes faiblement corrélés grâce à son excellent ratio précision/coût.

Motivé par la récente étude d'Eriksen et ses collaborateurs [422] qui montre les performances d'un grand nombre de méthodes de structure électronique émergentes sur l'énergie de corrélation non relativiste de la molécule de benzène dans la base cc-pVDZ, certains d'entre nous ont récemment étudié la performance de la méthode CIPSI [34,[START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF]256,258,266] sur le même système [249] Dans la continuité de ce travail récent, nous rapportons ici une large extension en estimant avec précision l'énergie de corrélation FCI/cc-pVDZ de douze molécules cycliques (cyclopentadiène, furanne, imidazole, pyrrole, thiophène, benzène, pyrazine, pyridazine, pyridine, pyrimidine, stétrazine et s-triazine) avec l'aide de CIPSI utilisant des orbitales optimisées énergiquement au même niveau de théorie [241,452]. Ces systèmes sont représentés dans la Figure B.8. Cet ensemble de systèmes moléculaires correspond à des espaces de Hilbert avec des tailles allant de 10 29 à 10 36 . En plus de CIPSI, les propriétés de performance et de convergence de plusieurs séries de méthodes sont étudiées. En particulier, nous étudions i) la série perturbative de MP jusqu'au cinquième ordre (MP2, MP3, MP4 et MP5), ii) les séries approximatives CC2, CC3 et CC4, et iii) la série CC « complète » jusqu'à quadruples (c'est-à-dire CCSD, CCSDT et CCSDTQ). Les performances de CCSD(T) ainsi que du modèle CC entièrement renormalisé, CR-CC (2,3) [151, 453-456], sont également étudié.

Utilisant l'algorithme CIPSI, nous avons produit des énergies de corrélation de qualité FCI pour douze molécules cycliques (voir Figure B.8) dans la base cc-pVDZ. Ces estimations, probablement précises à quelques dixièmes de millihartree, ont été obtenu en extrapolant les énergies CIPSI à la limite FCI sur la base d'un ensemble d'orbitales obtenue en minimisant l'énergie variationnelle CIPSI. En utilisant des orbitales optimisées énergétiquement, on a pu réduire la taille de l'espace variationnel par un ordre de grandeur pour la même énergie variationnelle par rapport aux orbitales naturelles.

Grâce à ces énergies de référence FCI, nous avons ensuite comparé trois familles de méthodes de structure électronique populaires : i) la série perturbative de MP jusqu'au cinquième ordre (MP2, MP3, MP4 et MP5), ii) la série CC approximative CC2, CC3 et CC4, et iii) la série CC « entière » CCSD, CCSDT, et CCSDTQ.

Conclusion générale

Bien que les méthodes GW sont largement utilisées pour le calcul des transitions électroniques et des intervalles de bande (également en combinaison avec le formalisme d'équation Bethe-Salpeter), nous avons montré que, dans certains cas, on peut observer des discontinuités dans les surfaces d'énergie de plusieurs quantités clés. Des travaux encourageants permettent de constater que certaines solutions de contournement sont possibles comme l'utilisation de la méthode GW autocohérente (scGW) qui est malheureusement très lourde numériquement [478] ou COHSEX qui élimine les discontinuités en utilisant un algorithme indépendant de la fréquence [479]. Nous avons également lancé un long travail pour fournir des énergies de transition verticales très précises et les utiliser pour comparer de nombreuses méthodes de chimie quantique de bas niveau. En suivant la même philosophie que GW100 [185] nous avons créé un site web pour recueillir toutes les données du projet QUEST. Nous avons déjà commencé à travailler pour compléter cette base de données avec des données supplémentaires. Un exemple est le travail de mes collègues sur des excitations de type transfert de charges intramoléculaire [397]. De plus, notre travail sur les orbitales optimisées [409] pourrait être une clé pour améliorer les données de référence du projet QUEST. Nous pourrions également reproduire ce que nous avons fait avec le projet QUEST, mais pour les énergies de corrélation de l'état fondamental, les énergies d'atomisation et/ou les énergies d'ionisation et les affinités électroniques. Nous prévoyons également l'application de la méthode d'orbitale optimisée, mais cette fois sur les composés de métaux de transition. Un autre travail intéressant qui a également été fait est la démo de QUANTUM PACKAGE sur le web qui permet aux chimistes quantiques de tester QUANTUM PACKAGE directement sur le Web. Ce travail a conduit à la création d'une machine virtuelle contenant un serveur de terminal web et une image DOCKER utilisée comme environnement de démonstration. Une amélioration de cette architecture pourrait être mise en oeuvre à l'avenir à l'aide d'un conteneur « au niveau système » pour remplacer la machine virtuelle afin d'améliorer la performance. De plus, l'image DOCKER utilisée pour la démo peut être employée pour permettre l'utilisation de QUANTUM PACKAGE sur des ordinateurs de bureau WINDOWS ou MACOS ou bien d'éviter le long processus d'installation de QUANTUM PACKAGE. L'image DOCKER de QUANTUM PACKAGE pourrait également être utilisée sur des machines HPC à l'aide de SINGULARITY, mais nous devons étudier la compatibilité de cette image avec ce logiciel.
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 11 FIGURE 1.1: Representation of the different types of transition energies where E vert abs in red and E vert fluo in blue are respectively the absorption and fluorescence vertical transition energies. E adia in green is the adiabatic transition energy and E 0-0 in purple is the 0-0 transition energy. The E GSreorg and E ES reorg in orange are respectively the ground state and excited states (geometrical) reorganization energy. All these energies are defined as positive quantities[START_REF] Loos | Evaluating 0-0 energies with theoretical tools: a short review[END_REF].

FIGURE 4 . 1 :

 41 FIGURE 4.1: Composition of each of the five subsets making up the present QUEST dataset of highly-accurate vertical excitation energies.

FIGURE 4 . 3 :

 43 FIGURE 4.3: Deviation from the CCSDT excitation energies for the lowest singlet and triplet excitation energies (in eV) of five-and six-membered rings obtained at the CIPSI/6-31+G(d) level of theory. Red dots: excitation energies and error bars estimated via the present method (see section 4.2.3). Blue dots: excitation energies obtained via a three-point linear fit using the three largest CIPSI wave functions, and error bars estimated via the extrapolation distance, i.e., the difference in excitation energies obtained with the three-point linear extrapolation and the largest CIPSI wave function.

FIGURE 4 . 5 :

 45 FIGURE 4.5: Distribution of the error (in eV) in excitation energies (with respect to the TBE/aug-cc-pVTZ values) for various methods for the molecules of the QUEST database containing from one to three non-hydrogen atoms (closed-shell compounds only). Only the "safe" TBEs are considered Table4.12. See Tableinthe main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.

FIGURE 4 . 6 :

 46 FIGURE 4.6: Distribution of the error (in eV) in excitation energies (with respect to the TBE/aug-cc-pVTZ values) for various methods for the molecules of the QUEST database containing four non-hydrogen atoms (closed-shell compounds only). Only the "safe" TBEs are considered Table4.12. See Tableinthe main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.
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 48 FIGURE 4.8: Distribution of the error (in eV) in excitation energies (with respect to the TBE/aug-cc-pVTZ values) for various methods for the molecules of the QUEST database containing from 7 and 10 non-hydrogen atoms (closed-shell compounds only). Only the "safe" TBEs are considered Table4.12. See Tableinthe main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.

FIGURE 4 . 10 :

 410 FIGURE 4.10: Distribution of the error (in eV) in excitation energies (with respect to the TBE/aug-cc-pVTZ values) for various methods for the π → π * excitations of the QUEST database (closed-shell compounds only). Only the "safe" TBEs are considered Table4.12. See Tableinthe main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.

FIGURE 4 . 12 :

 412 FIGURE 4.12: Distribution of the error (in eV) in excitation energies (with respect to the TBE/aug-cc-pVTZ values) for various methods for the valence excitations of the QUEST database (closed-shell compounds only). Only the "safe" TBEs are considered Table4.12. See Tableinthe main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.

FIGURE 4 . 15 :

 415 FIGURE 4.15: Distribution of the error (in eV) in excitation energies (with respect to the TBE/aug-cc-pVTZ values) for various methods for the entire QUEST database considering only closed-shell compounds. Only the "safe" TBEs are considered Table4.12. See Table4.14 for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.

  35] is an open source quantum chemistry program developed mainly in our group, at the Laboratoire de Chimie Théorique (LCT) in Sorbonne University and by Anouar Benali and his coworkers in Argonne National Lab [291]. It is also used by several groups and researchers in the world like Hugh Burton from Oxford [398], Joshua Hollett from Winnipeg in Canada [399], Eric Neuscamman from Berkeley [400] or Claudia Filippi from the University of Twente in the Netherlands [289].
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 51 FIGURE 5.1: DOCKER container compared to virtualization technology [403]
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 54 FIGURE 5.4: Representation of the QUANTUM PACKAGE demo architecture. In dashed line, the different environments isolated from each other. In blue the OS level, in green the DOCKER containers level. The arrows represent the communications between the demo components.

85 FIGURE 5 . 5 :

 8555 FIGURE 5.5: Screenshot of the terminal giving access to the QUANTUM PACKAGE demo directly integrated on the QUANTUM PACKAGE website
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 61 FIGURE 6.1: Five-membered rings (top) and six-membered rings (bottom) considered in this study.

FIGURE 6 . 2 :

 62 FIGURE 6.2: ∆E var (solid) and ∆E var + E PT2 (dashed) computed in the cc-pVDZ basis as functions of the number of determinants N det in the variational space for the twelve cyclic molecules represented in Figure6.1. Two sets of orbitals are considered: natural orbitals (NOs, in red) and optimized orbitals (OOs, in blue). The FCI estimate of the correlation energy is represented as a thick black line.
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 65 FIGURE 6.5: Convergence of the correlation energy (in mE h ) computed in the cc-pVDZ basis as a function of the formal computational scaling for the twelve cyclic molecules represented in Figure6.1. Three series of methods are considered: i) MP2, MP3, MP4, and MP5 (blue), ii) CC2, CC3, and CC4 (green), and iii) CCSD, CCSDT, CCSDTQ (red). The FCI estimate of the correlation energy is represented as a black line.
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 1 FIGURE B.1 : Représentation des différents types d'énergies de transition où E vert abs en rouge et E vert fluo en bleu sont respectivement les énergies de transition verticale d'absorption et de fluorescence. E adia l'énergie de transition adiabatique en vert et E 0-0 l'énergie de transition 0-0 en violet. E GS reorg et E ES reorg en orange sont respectivement l'énergie de réorganisation (géométrique) de l'état fondamental et de l'état excité toutes ces énergies sont défini comme des quantités positives [5].

5 :

 5 FIGURE B.5 : Composition de chacun des cinq sous-ensembles composant le présent jeu de données d'énergies d'excitation verticales très précises actuelles du projet QUEST.

  est un programme de chimie quantique open source développé principalement dans notre groupe, au Laboratoire de Chimie Théorique (LCT) à l'université de la Sorbonne et par Anouar Benali et ses collègues au Argonne National Lab [291]. Il est également utilisé par plusieurs groupes et chercheurs dans le monde, comme Hugh Burton d'Oxford [398], Joshua Hollett de Winnipeg au Canada [399], Eric Neuscamman de Berkeley [400] ou Claudia Filippi de l'Université de Twente aux Pays-Bas [289].
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 6 FIGURE B.6 : Conteneur DOCKER comparé à la technologie de virtualisation [403]

FIGURE B. 7 :

 7 FIGURE B.7 : Capture d'écran du terminal donnant accès à la démo de QUANTUM PACKAGE directement intégré sur le site internet de celui-ci

FIGURE B. 8 :

 8 FIGURE B.8 : Les cycles à cinq atomes (en haut) et les cycles à six atomes (en bas) considérés dans cette étude.

  , avec des scaling formels correspondants de O(N 6 ), O(N 8 ), et O(N 10 ), respectivement. Parallèle à la série CC « complète » la famille de modèles CC itératifs approximatifs CC [169] ignore les termes les plus chers et évite le stockage des amplitudes d'excitation supérieure : CC2 [25], CC3 [26, 203] et CC4 [414, 415]. Ces méthodes itératives sont d'ordre O(N 5 ), O(N 7 ), et O(N 9 ), respectivement, et peuvent être considérées comme des approximations moins chères de CCSD, CCSDT et CCSDTQ. Les méthodes de clusteur couplé ont données beaucoup de résultats très satisfaisants pour le calcul des propriétés de l'état fondamental et excité pour les molécules de petite et moyenne taille.

  

  

  GHz 6130@2.10 GHz 5218@2.30 GHz

	Cores	8	10	12	14	16	16
	Threads/core	2	2	2	2	2	2
	Processor Base Frequency	2.60 GHz	2.80 GHz	2.50 GHz	2.40 GHz	2.10 GHz	2.30 GHz
	Max Turbo Frequency	3.30 GHz	3.60 GHz	3.30 GHz	3.30 GHz	3.70 GHz	3.90 GHz
	L3 Cache	20 MiB	25 MiB	30 MiB	35 MiB	22 MiB	22 MiB
	AVX	AVX	AVX	AVX2	AVX2	AVX-512 (2)	AVX-512 (2)
	FMA			FMA3	FMA3	FMA3	FMA3

TABLE 1 .

 1 

	3: Curie nodes [41, 42]

TABLE 1 .

 1 7: Joliot-Curie nodes[START_REF]Tgcc joliot curie[END_REF] (seeTable 1.6) 

	GHz

TABLE 2 .

 2 

		1: Base units of the atomic unit system
	Name		Symbol	Value in SI
	Electron rest mass Elementary charge Reduced Planck's constant Coulomb force constant	k	m e e h = h/(2π)	9.109 383 56 × 10 -31 kg 1.602 176 565 × 10 -19 C 1.054 571 726 × 10 -34 J s

e = 1/(4π 0 ) 8.987 551 787 368 1 × 10 9 kgm 2 s -2 C -2

  Select a subset of external determinants {|α } with the largest contribution e α , and add them to the variational space for the next iteration, i.e.,

	{I} ← {|I } ∪ |α	(2.53)
	5. If convergence has not been reached, go back to 1	

correction is an approximation of the FCI energy, i.e., E FCI ≈ E var + E PT2 Chapter 2. Methods 4.

  QP energies (left), correlation part of the self-energy (center) and renormalization factor (right) as functions of the internuclear distance R H 2 for various orbitals of H 2 at the G 0 W 0 @HF/6-31G (top) and evGW@HF/6-31G (bottom) levels. For convenience, the intermediate (center) branch is presented in lighter green for the LUMO+2.
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FIGURE 3.3

: HF orbital energies (dotted lines) and QP energies as functions of the internuclear distance R H 2 for the LUMO+1 and LUMO+2 orbitals of H

  [START_REF] Helgaker | Molecular electronic-structure theory[END_REF] 

  G 0 W 0 Let us first consider the results of the G 0 W 0 calculations reported in the top row of Figure3.2. Looking at the curves of G 0 W 0 p as a function of R H 2 (top left graph of Figure3.2), one notices obvious irregularities in the LUMO+2 around R H 2 = 1.0 a 0 and in the LUMO+1 around R H 2 = 2.1 a 0 . For information, the experimental equilibrium geometry of H 2 is around R H 2 = 1.4 a 0[129]. These irregularities are unphysical, and occur in correspondence with a series of poles in Σ c LUMO+1 and Σ c LUMO+2 (see top center graph of Figure3.2). For example, one can notice two poles in Σ c LUMO+2 just before and after R H 2 = 1.0 a 0 , giving birth to three branches. The origin of the irregularities in LUMO+1 and LUMO+2 can, therefore, be traced back to the wrong assumption that Σ c LUMO+1 (ω) and Σ c LUMO+2 (ω) are linear functions of ω in the vicinity of, respectively, ω = HF LUMO+1 and ω = HF LUMO+2 [see Eq. (3.9)]. However, despite the divergencies in the self-energy, the QP energies G 0 W 0 LUMO+1 and G 0 W 0 LUMO+2 remain finite thanks to a rapid decrease of the renormalization factor at the R H 2 values for which the self-energy diverges [see Eq. (3.7) and top right graph of Figure3.2]. For example, note that Z LUMO+2 reaches exactly zero at the pole locations. A very similar scenario unfolds for the LUMO+1, except that a single pole is present in Σ c LUMO+1 . Let us analyze this point further. Since the self-energy behaves as Σ c p ∼ δ -1 (with δ → 0) in the vicinity of a singularity, one can easily show that Z

	Chapter 3. Unphysical discontinuities in GW methods
	G 0 W 0

p or GW p ], ii) the correlation part of the self-energy [Σ c p ( HF p ) or Σ c p ( GW p )], and iii) the renormalization factor/weight [Z p ( HF p ) or Z p ( GW p )].

  . Similarly to the case of H 2 discussed in the previous section, we see discontinuities in the QP energies around R F 2 = 2.3 a 0 (for the
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TABLE 4 . 1 :

 41 Singlet and triplet excitation energies (in eV) obtained at the CC3, CCSDT, and CIPSI levels of theory with the 6-31+G(d) basis set for various five-and sixmembered rings.

	Molecule	Transition	CC3 CCSDT CIPSI (Gaussian) a CIPSI (3-point) b
			Five-membered rings	
	Cyclopentadiene Furan Imidazole Pyrrole Thiophene	5.80 3.33 6.28 4.28 5.77 4.81 5.25 4.58 5.77 3.94 Six-membered rings 1 B 2 (π → π * ) 5.79 3 B 2 (π → π * ) 3.33 1 A 2 (π → 3s) 6.26 3 B 2 (π → π * ) 4.28 1 A (π → 3s) 5.77 3 A (π → π * ) 4.83 1 A 2 (π → 3s) 5.25 3 B 2 (π → π * ) 4.59 1 A 1 (π → π * ) 5.79 3 B 2 (π → π * ) 3.95	5.80(2) 3.32(4) 6.31(5) 4.26(4) 5.78(5) 4.82(7) 5.23(7) 4.54(7) 5.75(8) 3.98(1)	5.79(2) 3.29(7) 6.37(1) 4.22(7) 5.96(14) 4.65(22) 5.31(1) 4.37(23) 5.73(9) 3.99(2)
	Benzene				
			03	3.03	3.08(2)	3.13(3)
	Pyrazine Tetrazine Pyridazine	3 B 2 (π → π * ) 2.30 1 B 3u (n → π * ) 4.28 3 B 3u (n → π * ) 3.68 1 B 3u (n → π * ) 2.53 3 B 3u (n → π * ) 1.87 1 B 1 (n → π * ) 3.95 27	2.32 4.28 3.68 2.54 1.88 3.95 3.26	2.37(5) 4.26(9) 3.70(3) 2.56(5) 1.91(3) 3.97(10) 3.27(15)	2.10(25) 4.10(25) 3.70(1) 5.07(16) 4.04(49) 3.60(43) 3.46(14)
	Pyridine				
			33	4.31	4.42(85)	3.68(105)
	Pyrimidine Triazine	1 B 1 (n → π * ) 4.58 3 B 1 (n → π * ) 4.20 1 A 1 (n → π * ) 4.85 3 A 2 (n → π * ) 4.40	4.57 4.20 4.84 4.40	4.64(11) 4.55(37) 4.77(13) 4.45(39)	2.54(5) 2.18(27) 5.12(51) 4.73(6)

1 

B 2u (π → π * ) 5.

13 5.10 5.06(9) 

5.21(7) 3 B 1u (π → π * ) 4.18 4.

16 4.28(6) 

4.17(

7

)

Cyclopentadienone 1 A 2 (n → π * ) 3.3 B 1 (n → π * ) 3.1 B 1 (n → π * ) 5.

12 5.10 5.15(12) 

4.90(24) 3 A 1 (π → π * ) 4.a Excitation energies and error bars estimated via the novel statistical method based on Gaussian random variables (see section 4.

TABLE 4 .

 4 3: Transition energies (in eV) determined in p-benzoquinone. For all transitions, we provide the single-excitation character %T 1 obtained at LR-CC3/aug-cc-pVTZ level. For the dipole-allowed transitions, we provide the corresponding values of the oscillator strength at the same level of theory. Benzoquinone 1 B 1g (n → π * )

	Transition			CC3			CCSDT		Litt.				
	Nature	f	%T 1 Th. 85.3 6-31+G(d) aug-cc-pVDZ aug-cc-pVTZ 6-31+G(d) aug-cc-pVDZ 2.85 2.81 2.79 2.87 2.84 2.50	2.39 2.74		2.52	2.49
	1 A u (n → π * ) 1 A g (n, n → π * , π * ) 1 B 3g (π → π * ) 1 B 1u (π → π * ) 1 B 3u (n → π * ) 1 B 2g (n → π * ) 1 A u (n → π * ) 1 B 1g (n → π * ) 1 B 2g (n → π * ) 3 B 1g (n → π * ) 3 A u (n → π * ) 3 B 1u (π → π * ) 3 B 3g (π → π * ) a CASPT2 values from Ref. [336].	0.471 0.001	84.1 0.0 88.6 88.4 79.8 76.2 74.8 83.5 86.6 96.0 95.6 97.7 97.9	2.99 5.92 4.66 5.71 5.95 6.11 6.41 6.48 7.33 2.61 2.76 3.13 3.46	2.95 5.94 4.58 5.63 5.77 5.96 6.29 6.37 7.28 2.56 2.71 3.16 3.46	2.94 6.02 4.53 5.58 5.75 5.94 6.27 6.34 7.20 2.56 2.71 3.14 3.44	3.01 5.79 4.71 5.75 5.96 6.10 6.46 6.51 7.33 2.63 2.77 3.11 3.48	2.97 5.84 4.63 5.67 5.81 5.97 6.37 6.41 7.30	2.50 4.41 4.19 5.15 5.15 4.80 5.79 5.76 5.49 2.17 2.27 2.91 3.19	2.43 2.86 4.36 4.01 4.44 5.09 5.47 5.38-5.70 4.3 4.91 5.71 4.99 5.47 5.68 5.62 2.16 2.50 2.22 2.61 2.57 3.02 3.09 3.37	4.09 5.08	2.49 4.07 5.12 2.31 2.35	2.48 2.31 2.31

a Th. b Th. c Exp. d Exp. e Exp. f Exp. g b CASPT2 values from Ref. [337]. c CC3 (extrapolated to aug-cc-pVTZ) values from Ref. [198]. d EELS from Ref. [343]. e Absorption spectroscopy (0-0 energies) from Ref. [346].

  aug-cc-pVDZ aug-cc-pVTZ 6-31+G(d) aug-cc-pVDZ Th.

	Transition	CC3			CCSDT		Litt.
	Nature	f %T 1 6-31+G(d) 115 92.2 5.54	5.37	5.34	5.56	5.40	5.01 5.37 5.74 5.59
	65.3 1 A u (π → 3s) 0.009 93.6 1 A g (π → π * ) 93.5 1 B g (π → 3p) 97.9 3 B u (π → π * ) 98.3 3 A g (π → π * ) Octatetraene 1 B u (π → π * ) n.d. 91.5 63.7 1 A g (π → π * ) 97.5 3 B u (π → π * ) 98.0 3 A g (π → π * ) a CASPT2 values from Ref. [358] (hexatriene) and Ref. [198] (octatetraene). 5.76 5.76 6.04 5.71 6.05 5.84 2.73 2.73 4.37 4.37 4.95 4.78 5.05 5.05 2.35 2.36 3.73 3.73	5.75 5.78 5.92 2.73 4.36 4.75 5.04 2.36 3.73	5.62 6.05 6.07 2.73 4.37 4.98 4.91	5.63 5.72 5.86	5.19 5.34 5.73 5.58 5.84 6.12 2.55 2.40 4.12 4.15 4.35 4.66 4.53 4.47 2.27 2.20 3.61 3.55
	b MRMP values from Ref. [360].						
	c Cumulant values from Ref. [362].					
	d FCI/double-ζ values from Ref. [38].					

a Th. b Th. c Th. d Hexatriene 1 B u (π → π * ) 1.

TABLE 4 . 8 :

 48 Transition energies (in eV) determined in naphthalene. For all transitions, we provide the single-excitation character %T 1 obtained at LR-CC3/aug-cc-pVTZ level. For the dipole-allowed transitions, we provide the corresponding values of the oscillator strength at the same level of theory.

	Transition	CC3	CCSDT	Litt.
	Nature Naphthalene 1 B 3u (π → π * ) 0.000 85.8 f %T 1 1 B 2u (π → π * ) 0.067 90.3 1 A u (π → 3s) 92.7 84.7 1 B 1g (π → π * ) 83.8 1 A g (π → π * ) 92.8 1 B 3g (π → 3p) 92.5 1 B 2g (π → 3p) n.d. 90.6 1 B 3u (π → π * ) 1 B 1u (π → 3s) n.d. 91.9 1 B 2u (π → π * ) n.d. 90.2 87.5 1 B 1g (π → π * ) 1 A g (π → π * ) 71.5 3 B 2u (π → π * ) 97.7 3 B 3u (π → π * ) 96.6 97.8 3 B 1g (π → π * ) 3 B 2u (π → π * ) 96.8 3 B 3u (π → π * ) 97.5 3 A g (π → π * ) 97.3 95.6 3 B 1g (π → π * ) 95.2 3 A g (π → π * ) a CASPT2 values from Ref. [367].	6-31+G(d) aug-cc-pVDZ aug-cc-pVTZ 6-31+G(d) 4.36 4.33 4.30 4.33 5.10 4.91 4.87 5.13 5.85 5.57 5.63 5.87 5.99 5.85 5.83 6.00 6.03 5.97 5.94 5.98 6.12 5.98 6.04 6.15 6.24 6.00 6.07 6.26 6.30 6.19 6.15 6.34 6.55 6.27 6.32 6.56 6.61 6.45 6.39 6.64 6.64 6.52 6.46 6.66 6.99 6.91 6.87 6.99 3.19 3.18 3.17 4.25 4.19 4.16 4.53 4.49 4.48 4.71 4.67 4.64 5.17 4.99 4.95 5.56 5.52 5.49 6.37 6.21 6.17 6.52 6.42 6.39	Th. a Th. b Th. c 4.03 4.25 4.23 4.56 4.82 4.61 5.54 5.53 5.75 5.87 5.39 5.90 6.00 5.98 5.94 5.54 6.11 6.20 6.03 5.93 6.36 6.12 5.87 6.46 6.35 6.04 6.87 6.66 3.09 3.21 4.09 4.11 4.42 4.44 4.56 4.62 4.92 4.66 5.42 5.46 6.12 5.95 6.17 6.25

b exCC3 values from Ref. [198]. c RASPT2 values from Ref. [369].

TABLE 4 .

 4 10: Transition energies (in eV) determined in two cyanines with CC3, CCSDT and FCI. For all transitions, we provide the single-excitation character %T 1 obtained at LR-CC3/aug-cc-pVTZ level. For the dipole-allowed transitions, we provide the corresponding values of the oscillator strength at the same level of theory.Thioacrolein This heavier analog of acrolein was not much studied theoretically before, except for calculations of its 0-0 energies [102] and rather old TD-DFT calculations[384]. We report in Table4.11 the transition energies to the lowest excited states of both spin symmetries, of clear valence n → π * character. As one can see, there is for both excited states, a remarkable insensibility to the basis set size, and also very similar CC3 and CCSDT estimates. The experimental 0-0 energies are 1.88 eV (singlet) and 1.74 eV (triplet)[385], both slightly below our vertical estimates as it should.

	Transition	CC3	CCSDT	FCI
	Nature Streptocyanine-3 1 B 2 (π → π * ) 0.755 87.2 f %T 1 3 B 2 (π → π * ) 98.0 Streptocyanine-5 1 B 2 (π → π * ) 1.182 85.8 3 B 2 (π → π * ) 97.7	6-31+G(d) aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ 6-31+G(d) 4.83 4.83 4.82 4.82 4.80 3.45 3.45 3.44 3.44 3.44 3.63 3.66 3.66 3.60 2.49 2.49 2.48 2.48	aug-cc-pVDZ 6-31+G(d) 4.81 4.83(1) 3.45(1) 3.64

TABLE 4 .

 4 11: Transition energies (in eV) determined in thioacrolein with CC3 and CCSDT. For all transitions, we provide the single-excitation character %T 1 obtained at LR-CC3/aug-cc-pVTZ level. For the dipole-allowed transitions, we provide the corresponding values of the oscillator strength at the same level of theory.

	Transition			CC3				CCSDT	
	Nature	f	%T 1						
	3 A (n → π * )	000 86.4 96.9	2.17 1.96	2.17 1.95	2.14 1.93	2.15 1.94	2.14 1.94	2.15 1.93	2.11

6-31+G(d) 

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ 6-31+G(d) aug-cc-pVDZ aug-cc-pVTZ Thioacrolein 1 A (n → π * ) 0.

Table 4 .

 4 

	6.54	CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)]	N

2g (n → π * ) V 84 4.89 CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] Y Continued on next page
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 4 

	0.664	6.22	CCSDTQ/6-31+G(d) + [CCSDT/AVTZ -CCSDT/6-31+G(d)]	Y

u (π → π * ) u (π → π * ) u [F](π → π * )

Table 4 .

 4 Chapter 4. The QUEST database of vertical excitation energies

	9.88	FCI/AVTZ	Y

u (π → π * ) u (π → π * )

Table 4 .
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	1 B 2 (π → π * ) 1 B 2 (n → 3s)	V R	89 89	0.025 0.373 0.034	4.89 6.21 7.20	CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ]	Y Y Y Continued on next page
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 4 

	Pyridine	1 A 2 (n → π * ) 1 B 2 (n → 3s) 1 B 1 (n → π * ) 1 B 2 (π → π * ) 3 B 1 (n → π * ) 3 A 2 (n → π * ) 3 B 2 (π → π * ) 3 A 1 (π → π * ) 1 B 1 (n → π * ) 1 B 2 (π → π * ) 1 A 2 (n → π * ) 1 A 1 (π → π * ) 1 A 1 (n → 3s) 1 A 2 (π → 3s) 1 B 1 (π → 3p) 1 A 1 (π → π * )	V R V V V V V V V V V V R R R V	86 88 87 90 97 96 98 97 88 86 87 92 89 93 93 90	0.016 0.001 0.004 0.010 0.004 0.028 0.010 0.011 0.045 0.291	5.26 5.72 6.17 6.37 6.75 3.19 4.11 4.34 4.82 4.95 5.14 5.40 6.62 6.76 6.82 7.38 7.39	CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ]	Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Continued on next page
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 4 

	Thiopropynal Triazine	1 B 2 (π → π * ) 1 A 2 (π → 3s) 1 B 1 (π → 3p) 1 A 2 (π → 3p) 1 B 1 (π → 3s) 1 B 2 (π → 3p) 1 A 1 (π → π * ) 3 B 2 (π → π * ) 3 A 1 (π → π * ) 3 B 1 (π → 3p) 3 A 2 (π → 3s) 1 A (n → π * ) 3 A (n → π * ) 1 A 1 (n → π * ) 1 A 2 (n → π * ) 1 E (n → π * )	V R R R R R V V V R R V V V V V	91 92 90 91 92 92 86 98 97 96 97 87 97 88 88 88	0.070 0.079 0.010 0.000 0.082 0.314 0.000 0.014	5.64 5.98 6.14 6.14 6.21 6.49 7.29 7.31 3.97 4.76 5.93 6.08 2.03 1.80 4.72 4.75 4.78	CCSDT/AVTZ CCSDT/AVTZ CCSDT/AVTZ CCSDT/AVTZ CCSDT/AVTZ CCSDT/AVTZ CCSDT/AVTZ CCSDT/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] FCI/6-31+G(d) + [CC3/AVTZ -CC3/6-31+G(d)] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVTZ CCSDT/AVDZ + [CC3/AVTZ -CC3/AVDZ] CCSDT/AVTZ CCSDT/AVTZ CCSDT/AVTZ Continued on next page Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y

TABLE 4 .

 4 13: Theoretical best estimates TBEs (in eV) for the doublet-doublet transitions of the open-shell molecules belonging to QUEST#4. These TBEs are obtained with the aug-cc-pVTZ basis set, and "Method" indicates the protocol employed to compute them.

	#	Molecule	Transition TBE/aug-cc-pVTZ Method
	1	Allyl	B 1	3.39	FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ -CCSDT/6-31+G(d)]
	2		A 1	4.99	FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ -CCSDT/6-31+G(d)]
	3	BeF	Π	4.14	FCI/aug-cc-pVTZ
	4		Σ +	6.21	FCI/aug-cc-pVTZ
	5	BeH	Π	2.49	FCI/aug-cc-pVTZ
	6		Π	6.46	FCI/aug-cc-pVTZ
	7	BH 2	B 1	1.18	FCI/aug-cc-pVTZ
	8 9 10	CH	∆ Σ -Σ +	2.91 3.29 3.98	FCI/aug-cc-pVTZ FCI/aug-cc-pVTZ FCI/aug-cc-pVTZ
	11	CH 3	A 1	5.85	FCI/aug-cc-pVTZ
	12		E	6.96	FCI/aug-cc-pVTZ
	13		E	7.18	FCI/aug-cc-pVTZ
	14 15	CN	A 2 Π	7.65 1.34	FCI/aug-cc-pVTZ FCI/aug-cc-pVTZ
	16		Σ +	3.22	FCI/aug-cc-pVTZ
	17	CNO	Σ +	1.61	FCI/aug-cc-pVTZ
	18		Π	5.49	FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ -CCSDT/6-31+G(d)]
	19	CON	Π	3.53	FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ -CCSDT/aug-cc-pVDZ]
	20		Σ +	3.86	CCSDTQ/6-31+G(d) + [CCSDT/aug-cc-pVTZ -CCSDT/6-31+G(d)]
	21	CO +	Π	3.28	FCI/aug-cc-pVTZ
	22		Σ +	5.81	FCI/aug-cc-pVTZ
	23	F 2 BO	B 1	0.73	FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ -CCSDT/aug-cc-pVDZ]
	24		A 1	2.80	FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ -CCSDT/aug-cc-pVDZ]
	25	F 2 BS	B 1	0.51	FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ -CCSDT/aug-cc-pVDZ]
	26		A 1	2.99	FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ -CCSDT/aug-cc-pVDZ]
	27	H 2 BO	B 1	2.15	FCI/aug-cc-pVTZ
	28		A 1	3.49	FCI/aug-cc-pVTZ
	29	HCO	A	2.09	FCI/aug-cc-pVTZ
	30		A	5.45	FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ -CCSDT/aug-cc-pVDZ]
	31	HOC	A	0.92	FCI/aug-cc-pVTZ
	32	H 2 PO	A	2.80	FCI/aug-cc-pVTZ
	33		A	4.21	FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ -CCSDT/aug-cc-pVDZ]
	34	H 2 PS	A	1.16	FCI/aug-cc-pVTZ
	35		A	2.72	FCI/aug-cc-pVTZ
	36	NCO	Σ +	2.89	FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ -CCSDT/aug-cc-pVDZ]
	37		Π	4.73	FCI/aug-cc-pVDZ + [CCSDT/aug-cc-pVTZ -CCSDT/aug-cc-pVDZ]
	38	NH 2	A 1	2.12	FCI/aug-cc-pVTZ
	39	Nitromethyl B 2	2.05	CCSDT/aug-cc-pVTZ
	40		A 2	2.38	CCSDT/aug-cc-pVTZ
	41		A 1	2.56	CCSDT/aug-cc-pVTZ
	42 43	NO	B 1 Σ +	5.35 6.13	CCSDT/aug-cc-pVTZ FCI/aug-cc-pVTZ
	44		Σ +	7.29	CCSDTQ/aug-cc-pVTZ
	45 46	OH	Σ + Σ -	4.10 8.02	FCI/aug-cc-pVTZ FCI/aug-cc-pVTZ
	47	PH 2	A 1	2.77	FCI/aug-cc-pVTZ
	48	Vinyl	A	3.26	FCI/aug-cc-pVTZ
	49		A	4.69	FCI/aug-cc-pVTZ
	50		A	5.60	FCI/aug-cc-pVTZ
	51		A	6.20	

FCI/6-31+G(d) + [CCSDT/aug-cc-pVTZ -CCSDT/6-31+G(d)]
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.12. See 

Table in the main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.
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	FIGURE 4.7: Distribution of the error (in eV) in excitation energies (with respect to	
	the TBE/aug-cc-pVTZ values) for various methods for the molecules of the QUEST	

.12. See 

Table in the main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code. database containing five or six non-hydrogen atoms (closed-shell compounds only). Only the "safe" TBEs are considered Table 4.12. See Table in the main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.
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	FIGURE 4.9: Distribution of the error (in eV) in excitation energies (with respect to the TBE/aug-cc-pVTZ values) for various methods for the n → π	

.12. See 

Table in the main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code. * excitations of the QUEST database (closed-shell compounds only). Only the "safe" TBEs are considered Table 4.12. See Table in the main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.
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	FIGURE 4.11: Distribution of the error (in eV) in excitation energies (with respect to	
	the TBE/aug-cc-pVTZ values) for various methods for the Rydberg excitations of the	

12. See 

Table in the main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code. QUEST database (closed-shell compounds only). Only the "safe" TBEs are considered Table 4.12. See Table in the main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.
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	FIGURE 4.13: Distribution of the error (in eV) in excitation energies (with respect to	
	the TBE/aug-cc-pVTZ values) for various methods for the singlet excitations of the	

12. See 

Table in the main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code. QUEST database (closed-shell compounds only). Only the "safe" TBEs are considered Table 4.12. See Table in the main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code. QUEST database (closed-shell compounds only). Only the "safe" TBEs are considered Table 4.12. See Table in the main text for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.

TABLE 4 .

 4 14: Mean signed error (MSE), mean absolute error (MAE), root-mean-square error (RMSE), standard deviation of the errors (SDE), as well as the maximum positive error [Max(+)] and negative error [Max(-)] with respect to the TBE/aug-cc-pVTZ for the entire QUEST database. Only the "safe" TBEs are considered Table4.12. For the MSE and MAE, the statistical values are reported for various types of excited states and molecular sizes. All quantities are given in eV. "Count" refers to the number of transitions considered for each method.

		CIS(D) CC2 EOM-MP2 STEOM-CCSD CCSD CCSDR(3) CCCSDT-3 CC3 SOS-ADC(2) a SOS-CC2 a SCS-CC2 a SOS-ADC(2) b ADC(2) ADC(3) ADC(2.5)
	Count	429	431	427	360	431	259	251	431	430	430	430	430	426	423	423
	Max(+)	1.06	0.63	0.80	0.59	0.80	0.43	0.26	0.19	0.87	0.84	0.76	0.73	0.64	0.60	0.24
	Max(-)	-0.69	-0.71	-0.38	-0.56	-0.25	-0.07	-0.07	-0.09	-0.29	-0.24	-0.92	-0.46	-0.76	-0.79	-0.34
	MSE	0.13	0.02	0.18	-0.01	0.10	0.04	0.04	0.00	0.18	0.21	0.15	0.02	-0.01	-0.12	-0.06
	singlet	0.10	-0.02	0.22	0.03	0.14	0.04	0.04	0.00	0.18	0.20	0.13	0.00	-0.04	-0.08	-0.06
	triplet	0.19	0.08	0.14	-0.07	0.03			0.00	0.19	0.22	0.17	0.04	0.04	-0.18	-0.07
	valence	0.20	0.10	0.20	-0.06	0.10	0.06	0.05	0.00	0.19	0.24	0.20	0.02	0.04	-0.16	-0.06
	Rydberg	-0.04	-0.17	0.15	0.09	0.08	0.01	0.03	-0.01	0.16	0.12	0.01	0.02	-0.13	-0.02	-0.07
	n → π * π → π * 1-3 non-H	0.16 0.25 0.10	0.02 0.17 0.03	0.24 0.20 0.03	-0.03 -0.07 -0.02	0.17 0.06 0.04	0.07 0.05 0.01	0.07 0.04 0.01	0.00 0.00 0.00	0.26 0.15 0.13	0.32 0.19 0.16	0.22 0.19 0.11	0.05 0.00 -0.01	-0.05 0.12 -0.01	-0.01 -0.27 -0.17	-0.03 -0.07 -0.09
	4 non-H	0.13	0.04	0.12	0.00	0.09	0.03	0.04	0.00	0.19	0.26	0.19	0.03	-0.04	-0.10	-0.07
	5-6 non-H	0.17	0.02	0.30	-0.01	0.11	0.05	0.05	0.00	0.21	0.20	0.14	0.03	0.03	-0.10	-0.04
	7-10 non-H	0.15	-0.03	0.42	-0.05	0.22	0.10	0.08	-0.01	0.26	0.29	0.19	0.05	-0.06	-0.02	-0.04
	SDE	0.24	0.20	0.21	0.13	0.12	0.05	0.04	0.02	0.17	0.16	0.16	0.15	0.20	0.22	0.08
	RMSE	0.29	0.22	0.28	0.15	0.16	0.07	0.06	0.03	0.25	0.26	0.22	0.17	0.21	0.26	0.10
	MAE	0.22	0.16	0.22	0.11	0.12	0.05	0.04	0.02	0.20	0.22	0.18	0.13	0.15	0.21	0.08
	singlet	0.22	0.16	0.25	0.10	0.14	0.05	0.04	0.02	0.21	0.22	0.17	0.14	0.16	0.20	0.09
	triplet	0.23	0.15	0.18	0.12	0.08			0.01	0.20	0.23	0.19	0.11	0.15	0.22	0.08
	valence	0.22	0.14	0.24	0.12	0.13	0.06	0.05	0.02	0.21	0.25	0.20	0.12	0.13	0.22	0.08
	Rydberg	0.22	0.21	0.19	0.10	0.08	0.03	0.03	0.02	0.20	0.15	0.13	0.14	0.21	0.18	0.09
	n → π * π → π * 1-3 non-H	0.18 0.27 0.23	0.08 0.19 0.19	0.28 0.21 0.13	0.08 0.14 0.10	0.17 0.11 0.07	0.07 0.06 0.03	0.07 0.04 0.03	0.01 0.02 0.02	0.26 0.18 0.18	0.32 0.21 0.20	0.22 0.20 0.19	0.11 0.12 0.14	0.10 0.16 0.19	0.14 0.28 0.24	0.07 0.09 0.10
	4 non-H	0.22	0.19	0.15	0.11	0.11	0.03	0.04	0.02	0.19	0.26	0.22	0.13	0.18	0.23	0.08
	5-6 non-H	0.21	0.12	0.30	0.12	0.13	0.06	0.05	0.01	0.22	0.21	0.15	0.11	0.11	0.19	0.07
	7-10 non-H	0.24	0.11	0.42	0.12	0.23	0.10	0.08	0.02	0.27	0.29	0.19	0.12	0.14	0.16	0.07
	a Excitation energies computed with TURBOMOLE.												

b Excitation energies computed with Q-CHEM.
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12. See Table 4.14 

for the values of the corresponding statistical quantities. QC and TM indicate that Q-CHEM and TURBOMOLE scaling factors are considered, respectively. The SOS-CC2 and SCS-CC2 approaches are obtained with the latter code.

  or by making a pull request for new data. The modular aspect of this tool gives us enough flexibility to easily convert many types of L A T E X tabular to a standard file format.

			Chapter 4. The QUEST database of vertical excitation energies
	@formatName ( " mySuperTabularFormat " )
	class mySup e r F o Ta b u l a r F o r m a t H a n d l e r ( formatHandlerBase ):
	def readFromTable ( self , table ):
	texCommand = self . Commands
	texOpitons = self . TexOps
	. . .	. . .	. . .
	return fileList
			FIGURE 4.17: PYTHON format module skeleton
	temporarily importing it
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		1: Different states of the DOCKER container [405]
	Name	Description
	Created	The container is created but no started yet
	Restarting The container is restarting
	Running	The container is running
	Removing The container is removing
	Paused	

TABLE 5 .
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	2: List of LINUX namespaces types (the following list is indicative and
		depends on the kernel version) [406]
	Name	Description
	Cgroup	Cgroup root directory
	IPC	System V IPC, POSIX message queues
	Network Network devices, stacks, ports, etc.
	Mount	Mount points
	PID	Process IDs
	User	User and group IDs
	UTS	Hostname and NIS domain name

TABLE 6 .

 6 1: Total energy E (in E h ) and correlation energy ∆E (in mE h ) for the frozen-core ground state of five-membered rings in the cc-pVDZ basis set. For the CIPSI estimates of the FCI correlation energy, the fitting error associated with the weighted five-point linear fit is reported in parenthesis.

		Cyclopentadiene	Furan	Imidazole	Pyrrole	Thiophene
	Method	E	∆E	E	∆E	E	∆E	E	∆E	E	∆E
	HF MP2 MP3 MP4 MP5 CC2 CC3 CC4 CCSD CCSDT CCSDTQ CCSD(T) CR-CC(2,3) -193.5439 -192.8083 -193.4717 -193.5094 -193.5428 -193.5418 -193.4782 -193.5449 -193.5467 -193.5156 -193.5446 -193.5465 -193.5439 FCI	-663.4 -701.0 -734.5 -733.4 -669.9 -736.6 -738.4 -707.2 -736.2 -738.2 -735.6 -735.6 -739.2(1)	-228.6433 -229.3508 -229.3711 -229.4099 -229.4032 -229.3605 -229.4090 -229.4102 -229.3783 -229.4076 -229.4100 -229.4073 -229.4075	-707.5 -727.8 -766.6 -759.9 -717.2 -765.7 -766.9 -735.0 -764.3 -766.7 -764.0 -764.2 -768.2(1)	-224.8354 -225.5558 -225.5732 -225.6126 -225.6061 -225.5644 -225.6115 -225.6126 -225.5796 -225.6099 -225.6123 -225.6099 -225.6098	-720.4 -737.8 -777.2 -770.8 -729.0 -776.1 -777.2 -744.2 -774.6 -776.9 -774.5 -774.5 -778.2(1)	-208.8286 -209.5243 -209.5492 -209.5851 -209.5809 -209.5311 -209.5849 -209.5862 -209.5543 -209.5838 -209.5860 -209.5836 -209.5835	-695.7 -720.6 -756.5 -752.3 -702.5 -756.3 -757.6 -725.7 -755.2 -757.4 -754.9 -754.9 -758.5(1)	-551.3210 -551.9825 -552.0104 -552.0476 -552.0426 -551.9905 -552.0473 -552.0487 -552.0155 -552.0461 -552.0485 -552.0458 -552.0459	-661.5 -689.4 -726.6 -721.6 -669.5 -726.3 -727.7 -694.5 -725.1 -727.5 -724.8 -724.9 -728.9(3)

TABLE 6 .

 6 2: Total energy E (in E h ) and correlation energy ∆E (in mE h ) for the frozen-core ground state of six-membered rings in the cc-pVDZ basis set. For the CIPSI estimates of the FCI correlation energy, the fitting error associated with the weighted five-point linear fit is reported in parenthesis. ∆E var (solid) and ∆E var + E PT2 (dashed) computed in the cc-pVDZ basis as functions of the number of determinants N det in the variational space for the benzene molecule. Three sets of orbitals are considered: natural orbitals (NOs, in red), localized orbitals (LOs, in green), and optimized orbitals (OOs, in blue). The FCI estimate of the correlation energy is represented as a thick black line.

		Benzene	Pyrazine	Pyridazine	Pyridine	Pyrimidine	s-Tetrazine	s-Triazine
	Method	E	∆E	E	∆E	E	∆E	E	∆E	E	∆E	E	∆E	E	∆E
	HF MP2 MP3 MP4 MP5 CC2 CC3 CC4 CCSD CCSDT CCSDTQ CCSD(T) CR-CC(2,3) -231.5792 -230.7222 -231.5046 -231.5386 -231.5808 -231.5760 -231.5117 -231.5814 -231.5828 -231.5440 -231.5802 -231.5826 -231.5798 FCI	-782.3 -816.4 -858.5 -853.8 -789.4 -859.1 -860.6 -821.8 -857.9 -860.4 -857.5 -856.9 -862.9(3)	-262.7030 -263.5376 -263.5567 -263.6059 -263.5968 -263.5475 -263.6045 -263.6056 -263.5640 -263.6024 -263.6053 -263.6024 -263.6017	-834.6 -853.7 -902.9 -893.8 -844.5 -901.5 -902.6 -861.0 -899.4 -902.3 -899.4 -898.7 -904.6(4)	-262.6699 -263.5086 -263.5271 -263.5778 -263.5681 -263.5188 -263.5761 -263.5773 -263.5347 -263.5739 -263.5770 -263.5740 -263.5732	-838.7 -857.3 -907.9 -898.3 -848.9 -906.2 -907.5 -864.9 -904.0 -907.1 -904.1 -903.3 -908.8(1)	-246.7152 -247.5227 -247.5492 -247.5951 -247.5881 -247.5315 -247.5948 -247.5960 -247.5559 -247.5931 -247.5960 -247.5929 -247.5922	-807.5 -834.0 -879.9 -872.9 -816.3 -879.6 -880.8 -840.7 -877.9 -880.8 -877.7 -877.1 -882.7(4)	-262.7137 -263.5437 -263.5633 -263.6129 -263.6036 -263.5550 -263.6120 -263.6129 -263.5716 -263.6097 -263.6126 -263.6099 -263.6091	-830.1 -849.6 -899.3 -890.0 -841.3 -898.4 -899.3 -858.0 -896.1 -899.0 -896.2 -895.5 -900.5(2)	-294.6157 -295.5117 -295.5152 -295.5743 -295.5600 -295.5247 -295.5706 -295.5716 -295.5248 -295.5673 -295.5712 -295.5680 -295.5670	-895.9 -899.5 -958.6 -944.3 -909.0 -954.9 -955.9 -909.1 -951.6 -955.4 -952.2 -951.3 -957.9(4)	-278.7173 -279.5678 -279.5809 -279.6340 -279.6228 -279.5817 -279.6329 -279.6334 -279.5911 -279.6300 -279.6331 -279.6305 -279.6298	-850.5 -863.6 -916.7 -905.4 -864.4 -915.6 -916.1 -873.8 -912.7 -915.8 -913.1 -912.5 -918.4(3)

TABLE 6 .

 6 3: Extrapolated correlation energies ∆E extrap (in mE h ) computed in the cc-pVDZ basis for the twelve cyclic molecules represented in Figure6.1 and their associated fitting errors (in mE h ) obtained via weighted linear fits with a varying number of points. Two sets of orbitals are considered: natural orbitals and optimized orbitals. The weights are taken as the inverse square of the perturbative corrections.For a m-point fit, the m largest variational wave functions are used.

	Molecule	Number of	Natural orbitals	Optimized orbitals
		fitting points	∆E extrap	Fitting error	∆E extrap	Fitting error
	Cyclopentadiene Furan Imidazole Pyrrole Thiophene Benzene Pyrazine Pyridazine Pyridine Pyrimidine s-Tetrazine s-Triazine	3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7	-740.639 -740.243 -740.047 -739.952 -739.761 -766.090 -766.445 -766.582 -766.366 -766.507 -778.148 -777.436 -776.300 -776.104 -776.098 -758.309 -758.749 -758.405 -758.136 -757.990 -728.054 -728.240 -728.243 -728.242 -728.420 -860.350 -861.949 -861.807 -861.110 -861.410 -904.148 -904.726 -904.274 -903.980 -903.621 -910.856 -908.222 -909.282 -912.566 -910.694 -883.025 -883.862 -881.664 -880.422 -880.191 -900.386 -901.441 -900.354 -900.240 -899.689 -958.736 -958.727 -958.500 -958.162 -958.161 -917.221 -918.723 -917.402 -916.517 -916.544	0.273 0.306 0.242 0.187 0.204 0.729 0.459 0.318 0.288 0.254 2.197 1.107 0.996 0.712 0.541 0.447 0.393 0.359 0.334 0.283 0.134 0.139 0.087 0.062 0.144 0.496 0.811 0.474 0.539 0.444 0.035 0.377 0.383 0.341 0.370 3.053 1.834 1.191 1.727 2.210 3.919 1.869 1.760 1.456 1.084 1.884 0.991 0.865 0.594 0.565 0.320 0.148 0.172 0.260 0.198 0.693 0.913 0.956 0.862 0.643	-739.295 -739.309 -739.230 -739.304 -739.292 -767.790 -768.104 -768.194 -768.060 -768.086 -778.295 -778.270 -778.178 -778.174 -778.051 -758.650 -758.389 -758.460 -758.352 -758.347 -728.744 -729.052 -728.948 -728.987 -729.067 -862.325 -863.024 -862.890 -862.360 -862.083 -904.867 -904.588 -904.550 -903.982 -903.746 -909.292 -908.808 -908.820 -908.342 -908.368 -883.363 -883.413 -882.700 -882.361 -882.023 -900.817 -900.383 -900.496 -900.698 -900.464 -957.559 -957.299 -957.869 -957.744 -957.709 -919.596 -918.457 -918.355 -918.206 -917.876	0.199 0.088 0.074 0.072 0.055 0.064 0.196 0.135 0.131 0.101 0.356 0.150 0.105 0.072 0.099 0.321 0.174 0.110 0.100 0.075 0.691 0.331 0.203 0.140 0.117 0.279 0.424 0.266 0.383 0.339 1.420 0.650 0.385 0.439 0.359 0.024 0.230 0.133 0.303 0.224 0.047 0.029 0.405 0.341 0.330 0.726 0.356 0.214 0.190 0.206 0.246 0.160 0.349 0.247 0.183 0.105 0.538 0.312 0.226 0.267

TABLE 6 .
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	4: Mean absolute error (MAE), mean signed error (MSE), and minimum
	(Min) and maximum (Max) absolute errors (in mE h ) with respect to the FCI cor-
	relation energy computed in the cc-pVDZ basis for various methods. The formal
	computational scaling of each method is also reported.
	Method	Scaling MAE MSE Max Min
	MP2 MP3 MP4 MP5 CC2 CC3 CC4 CCSD CCSDT CCSDTQ CCSD(T) CR-CC(2,3) O N 7 O N 5 O N 6 O N 7 O N 8 O N 5 O N 7 O N 9 O N 6 O N 8 O N 10 O N 7	68.4 46.5 2.1 9.4 58.9 2.7 1.5 39.4 4.5 1.8 4.5 5.0	68.4 80.6 57.8 46.5 58.4 37.9 2.0 4.7 0.7 9.4 13.6 5.8 58.9 73.5 48.9 2.7 3.8 2.1 1.5 2.3 0.8 39.4 48.8 32.0 4.5 6.3 3.0 1.8 2.6 1.0 4.5 5.7 3.6 5.0 6.6 3.6

TABLE B .

 B 1 : Scaling formel de diverses méthodes d'état excité (oú N est le nombre de fonctions de base N) et l'accessibilité de diverses propriétés principales dans les logiciels de chimie quantique populaires. Pour les dérivés organiques, la plage d'erreurs typique des excitations simples est également fournie comme indicateur qualitatif de la précision de la méthode[START_REF] Loos | The quest for highly-accurate excitation energies: a computational perspective[END_REF].

	Méthode	Scaling formel d'oscillateur analytique typique (eV) Force Gradients Erreur
	TD-DFT	

  0 a La marge d'erreurs est fortement dépendante de la fonctionnelle et de l'état. Les valeurs reportées ici correspondent aux cas qui se comportent bien ; b Barre d'erreurs typique pour les transitions singulet. Des erreurs plus grandes sont souvent observées pour les excitations triplet. taille du système). C'est actuellement l'une des méthodes de choix de photochimie, bien qu'elle souffre de nombreux problèmes liés, par exemple, des états de transfert de charge [17, 18], de Rydberg [19] et aux doubles excitations [20-22]. Une autre méthode également développée dans les années 2000 est celle du clusteur couplé avec équation de mouvement avec des simples et des doubles (EOM-CCSD) [23] où il n'est pas inhabituel d'avoir des erreurs aussi petites que 0,1 eV et 0,2 eV respectivement pour des petits et plus grands composés. Une autre variante (EOM-CCSDT) comprend des excitations triples mais avec un coût plus élevé [24]. Les méthodes du clusteur couplé approximé de deuxième et troisième ordre, CC2 [25] et CC3 [26] où on ignore les termes les plus coûteux et évite le stockage des amplitudes d'excitation supérieure, ont été développé quelques années après. La méthode CC3 est particulièrement intéressante car elle fournit des énergies d'excitation quasi systématiquement précises chimiquement pour les transitions simples avec une erreur de ∼0,04 eV à un coût réduit (O(N 7 )) par rapport à CCSDT (O(N 8 )).

	La réimplémentation
	récente et plus efficace des méthodes basées sur la fonction de Green ADC(2) [27] et ADC(3) [28,
	29] les rend compétitives avec les méthodes CC, en particulier ADC(2) qui donne des résultats
	satisfaisant (0,1-0,2 eV) avec un coût en O(N

5 

) seulement

[30-33]

. Enfin, le développement récent de méthodes CI sélectionné (SCI) fortement parallèles (où on sélectionne uniquement les déterminants pertinents)

[34,[START_REF] Garniron | Quantum package 2.0: a open-source determinant-driven suite of programs[END_REF] 

fournit une énergie quasi FCI

[30,[START_REF] Loos | Reference energies for double excitations[END_REF][START_REF] Holmes | Excited states using semistochastic heat-bath configuration interaction[END_REF][START_REF] Chien | Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction[END_REF] 

est relativement bon marché par rapport à cette dernière. Toutefois, même si le préfacteur des méthodes SCI est réduit leur scaling globale reste exponentiel avec la taille du système (voir Tableau B.1).

Ce qui a été dit dans le dernier paragraphe est correct dans le cas de monoexcitation, mais

TABLE B .

 B 2 : Spécification des processeurs de Curie[41,42] . D'un point de vue théorique, il n'y a pas vraiment de simples excitations. Chaque excitation est un mélange d'excitation simple, double, triple. . .Nous définissons donc %T 1 le pourcentage de monoexcitation pour évaluer dans quelle mesure cette excitation peut être considérée comme une simple excitation. Il a été montré[START_REF] Loos | Reference energies for double excitations[END_REF] que dans ce cas, la méthode CASSCF et ses dérivés sont meilleures que CC3 (qui n'a qu'une description approximée des triples excitations) et toutes les méthodes qui ne décrivent pas correctement les quadruples excitations. Pour décrire efficacement une double excitation, il nous faut au moins des excitations triples, mais pour obtenir de bons résultats, nous avons besoin des excitations quadruples. Ainsi, pour avoir une bonne description des états excités, nous avons besoin d'une bonne description des états doublement excités de ces états excités. Une double excitation sur un état doublement excité équivaut à une quadruple excitation sur l'état fondamental. Cela explique pourquoi CC3 et d'autres méthodes décrivant correctement les états simplement excités décrivent mal les états doublement excités. En résumé au cours des dernières décennies, les chimistes théoriciens ont continué d'innover pour améliorer la précision du calcul des états excités, afin de décrire le mieux possible les transitions électroniques. Nous pouvons voir qu'il n'y a pas de méthodes parfaites et que cela dépend du type d'excitation (simple, double. . .). Par exemple avec CC3, nous avons une très bonne description des excitations simples, mais nous avons une mauvaise description des doubles excitations. Un autre exemple est la TD-DFT qui donnent un résultat relatif et qui peut être utilisée sur des systèmes plus importants, mais souffre d'un problème avec certains types d'excitation comme les transferts de charge, les états de Rydberg et les doubles excitations. Nous pouvons donc voir qu'il n'y a pas de procédure systématique pour calculer l'énergie d'excitation, mais nous devons rechercher quelle est la bonne méthode selon notre objet d'étude. C'est l'objectif du projet QUEST d'on nous parlons au chapitre 4.

				Intel ® Xeon ®			
			E5			Gold	
		2670@2,60 GHz 2680 v2@2,80 GHz 2680 v3@2,50 GHz 2680 v4@2,40 GHz 6130@2,10 GHz 5218@2,30 GHz
	Coeurs	8	10	12	14	16	16
	Threads/coeur (hyper-threading)	2	2	2	2	2	2
	Fréquence de base du processeur	2,60 GHz	2,80 GHz	2,50 GHz	2,40 GHz	2,10 GHz	2,30 GHz
	Fréquence Turbo maxi	3,30 GHz	3,60 GHz	3,30 GHz	3,30 GHz	3,70 GHz	3,90 GHz
	Mémoire cache L3	20 MiB	25 MiB	30 MiB	35 MiB	22 MiB	22 MiB
	AVX	AVX	AVX	AVX2	AVX2	AVX-512 (2)	AVX-512 (2)
	FMA			FMA3	FMA3	FMA3	FMA3
	nous pouvons également avoir des doubles excitations qui sont particulièrement importantes
	dans les polyènesRessources						

de calcul Curie Nous

  utilisons différentes stratégies de calcul en fonction de la taille du système étudié et de la méthode utilisée. Nous avons effectivement accès à plusieurs clusters avec des puissances de calculs différentes. Le premier cluster qui nous est accessible est Curie qui appartient à notre laboratoire. Il est utilisé pour les « petits » calculs. Celui-ci a de nombreux types de partitions avec des processeurs (CPUs) différents. Ici, nous ne parlerons que des noeuds xeon (voir Tableau B.3). Avec l'ensemble de processeurs Intel ® Xeon ® (voir Tableau B.2) disponibles sur Curie, nous pouvons constater que l'évolution des processeurs n'est pas actuellement dû à une amélioration en matière de fréquence, mais plutôt à une augmentation de la parallélisation grâce aux nombres croissants de coeurs par CPU et une vectorisation des calculs via le jeu d'instructions Advanced Vector Extensions (AVX) et ses améliorations. Malheureusement, nos programmes de chimie quantique doivent être adaptés à ces nouvelles architectures en proposant des implémentations massivement parallèles de nos méthodes[START_REF] Sutter | Software and the concurrency revolution[END_REF].

Nous pouvons calculer théoriquement les Flops par noeud en utilisant l'équation ci-dessous

Flops = n core × f req × Flops cycle (B.1)

TABLE B

 B 

			.3 : Noeuds de curie [41, 42]	
	Nom	Modèle	Nombre de noeuds CPUs/noeud Flops/noeud Mémoire
	xeonv1 Intel ® Xeon ® E5-2670	14	2	332,8 GFlops	64 GiB
	xeonv2 Intel ® Xeon ® E5-2680 v2	7	2	448 GFlops	64 GiB
	xeonv3 Intel ® Xeon ® E5-2680 v3	9	2	960 GFlops	64 GiB
	xeonv4 Intel ® Xeon ® E5-2680 v4	4	2	1,075 TFlops	128 GiB
	xeonv5 Intel ® Xeon ® Gold 6130	5	2	2,150 TFlops	128 GiB
	xeonv6 Intel ® Xeon ® Gold 5218	1	2	1,075 TFlops	192 GiB
		TABLE B.4 : Spécification du processeur d'Olympe (Intel ® Xeon ® Gold
			6140@2,30 GHz) [41, 42, 44]		
		Spécifications du processeur	valeur	
		Coeurs		18	
		Threads/coeur (hyper-threading)	2	
		Fréquence de base du processeur	2,30 GHz	
		Fréquence Turbo maxi	3,70 GHz	
		Cache L3		24,75 MiB	
		AVX	AVX-512 (2)
		FMA		FMA3	
	où n				

core est le nombre de coeurs de processeur, f req est la fréquence du processeur, et Flops cycle est le nombre d'opérations de double précision par cycle. Cette valeur dépend de la capacité qu'a le processeur d'effectuer plusieurs opérations d'addition et de multiplication par cycle, par exemple avec le jeu d'instruction FMA fused multiply-add et/ou la possibilité de vectoriser le calcul à l'aide d'AVX. À l'exception de xeonv6, nous avons une augmentation du nombre de Flops/noeud (voir Tableau B.3).

TABLE B .

 B 

			5 : Noeuds d'Olympe (voir Tableau B.4) [44]		
	Nom	Nombre de noeuds Processeurs/noeud GPUs/noeud Flops/noeud Mémoire
	Sequana X1120	360	2 a		2,26 TFlops	192 GiB
	Sequana X1125	12	2 a	4 b	33,8 TFlops	384 GiB
	a Intel ® Xeon ® Gold 6140				

b NVIDIA ® Volta 100 SXM2

TABLE B . 6 :

 B6 Spécifications des CPUs de42,[START_REF][END_REF] 

		Intel ® Xeon ®	AMD Epyc ™
		Platinum8168@2,70 GHz	Phi7250	Rome7H12@2,60 GHz
	Coeurs	24	68	64
	Threads/coeur (hyper-threading)	2	4	2
	Fréquence de base du processeur	2,70 GHz	1,40 GHz	2,6 GHz
	Fréquence Turbo maxi	3,70 GHz	1,60 GHz	3,30 GHz
	Mémoire cache	33 MiB Cache L3	32 MiB Cache L2	250 MiB Cache L3
	AVX	AVX-512 (2)	AVX-512 (2)	AVX2
	FMA	FMA3	FMA3	FMA3

TABLE B

 B 

		.7 : Noeuds de Joliot-Curie [46] (voir Tableau B.6)		
	Nom	Nombre de noeuds CPUs/noeud GPUs/noeud Flops/noeud Mémoire
	SKL Irene	1 656	2 a		4,4 TFlops	192 GiB
	KNL Irene (Knight Landing)	828	1 b		2,4 TFlops	112 GiB
	AMD Irene ROME	2 292	2 c		5,12 TFlops	256 GiB
	Irene V100	32	2	4 d	35,3 TFlops	3 TB
	a Intel ® Xeon ® Platinum 8168@2,70 GHz				
	b Intel ® Xeon Phi ™ 7250					
	c AMD Epyc ™ Rome@2,60 GHz				
	d NVIDIA ® V100					

  Dans l'équation de Schrödinger, on applique l'opérateur Hamiltonien Ĥ à la fonction d'onde Ψ. Cette équation a deux formes différentes, dépendante du temps et indépendante du temps. Elles sont utilisées respectivement pour les états non stationnaires et stationnaires. La fonction d'onde dépend du vecteur X qui est un vecteur de coordonnées composites rassemblant les coordonnées de spin s et les coordonnées d'espace R avec p le nombre de particules.L'expression indépendante du temps est une équation aux valeurs propres ; avec l'énergie E comme valeur propre et avec sa fonction d'onde correspondante comme vecteur propre :Pour tout électron e et noyau n on a m e m n , par conséquent on peut supposer que les noyaux sont fixes (si on les compare aux électrons). On peut donc découpler les mouvements des électrons et des noyaux, pour séparer l'opérateur Hamiltonien comme la somme d'un Hamiltonien nucléaire Ĥn et d'un Hamiltonien électronique Ĥe , tel que

	Approximation de Born-Oppenheimer	
	Ĥ = Ĥe + Ĥn ,	(B.3)
	L'Hamiltonien électronique étant	
	Ĥe = Te + Ven + Vee ,	(B.4)
	Au sein de l'approximation de Born-Oppenheimer, l'Hamiltonien électronique Ĥe est plus explici-
	tement	
	Ĥe	
	ĤΨ(X) = EΨ(X).	(B.2)

  1) ,(B.11) où Ĥc est l'Hamiltonien de coeur défini comme la somme de l'énergie cinétique des électrons et de l'énergie potentielle électrons-noyaux, Ĵ est l'opérateur de Coulomb et K est l'opérateur d'échange.

	Hartree-Fock restreint			
	L'approximation de Hartree-Fock restreinte (RHF) qui s'applique aux systèmes à couche fermée
	(c'est-à-dire, un système où chaque orbitale spatiale est doublement occupée par une paire d'élec-
	trons), nous supposons que la partie spatiale des spinorbitales est indépendante du spin des
	électrons :			
	Fφ i (r 1 ) = ε i φ i (r 1 ),	(B.12)
	où, dans ce cas, l'opérateur de Fock devient			
	F = Ĥc +	N/2 ∑ i	2 Ĵi -Ki ,	(B.13)

  Énergies QP (à gauche), la partie de corrélation de la self-energy (centre) et le facteur de renormalisation (à droite) en fonction de la distance internucléaire R H 2 pour diverses orbitales de H 2 au niveau G 0 W 0 @HF/6-31G (haut) et evGW@HF/6-31g (bas). Pour plus de commodité, la branche intermédiaire (centre) est présentée en vert clair pour le LUMO+2. Dans ce chapitre, nous fournissons d'autres preuves et explications de cet effet indésirable dans les systèmes moléculaires. Pour des raisons de simplicité, la présente étude est basée sur de simples molécules diatomiques (H 2 , F 2 et BeO). Cependant, le même phénomène peut être observé dans de nombreux autres systèmes moléculaires, tels que LiF, HeH + , LiH, BN, O 3 , etc.
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		FIGURE B.3 :												

qsGW), on peut observer, dans les régimes faiblement corrélés, des discontinuités (non physique) dans les surfaces d'énergies de plusieurs quantités clés (potentiel d'ionisation, affinité électronique, écart HOMO-LUMO, énergie totale et corrélation, ainsi que les énergies d'excitations verticales).

  Energies des orbitales HF (lignes en pointillé) et énergies QP en fonction de la distance internucléaire R H 2 pour les orbitales LUMO+1 et LUMO+2 de H 2 aux niveaux G 0 W 0 @HF/6-31G (lignes solides) et evGW@HF/6-31G (lignes en pointillé). Pour plus de commodité, la branche intermédiaire (centre) est présentée en vert clair pour le LUMO+2.
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Chapter 6

Accurate full configuration interaction correlation energy estimates for five-and six-membered rings This chapteris based on Y. Damour et al., "Accurate full configuration interaction correlation energy estimates for five-and six-membered rings", The Journal of Chemical Physics 155, 134104 (2021) In this chapter, my main contribution was to perform the CIPSI calculations using natural orbitals for the five-and six-membered cyclic molecules considered in this study.

Introduction

Electronic structure theory relies heavily on approximations [START_REF] Szabo | Modern quantum chemistry: introduction to advanced electronic structure theory[END_REF][START_REF] Helgaker | Molecular electronic-structure theory[END_REF][START_REF] Jensen | Introduction to computational chemistry[END_REF]. Loosely speaking, to make any method practical, three main approximations are typically enforced. The first fundamental approximation, known as the Born-Oppenheimer (or clamped-nuclei) approximation, consists in assuming that the motion of nuclei and electrons are decoupled [410]. The nuclei coordinates can then be treated as parameters in the electronic Hamiltonian. The second central approximation which makes calculations computationally achievable is the basis set approximation where one introduces a set of pre-defined basis functions to represent the many-electron wave function of the system. In most molecular calculations, a set of one-electron, atom-centered Gaussian basis functions are introduced to expand the so-called one-electron molecular orbitals which are then used to build the many-electron Slater determinant(s). The third and most relevant approximation in the present context is the ansatz (or form) of the electronic wave function Ψ. For example, in configuration interaction (CI) methods, the wave function is expanded as a linear combination of Slater determinants, while in (single-reference) coupled-cluster (CC) theory [48-51, 151, 411], a reference Slater determinant Ψ 0 [usually taken as the Hartree-Fock (HF) wave function] is multiplied by a wave operator defined as the exponentiated excitation operator T = ∑ N k=1 Tk (where N is the number of electrons and Tk is kth-degree excitation operator).

The truncation of T allows to define a hierarchy of non-variational and size-extensive methods with increasing levels of accuracy: CC with singles and doubles (CCSD) [START_REF] Čížek | On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods[END_REF][START_REF] Purvis | A full coupled-cluster singles and doubles model: the inclusion of disconnected triples[END_REF], CC with singles, doubles, and triples (CCSDT) [START_REF] Scuseria | A new implementation of the full ccsdt model for molecular electronic structure[END_REF]225], CC with singles, doubles, triples, and quadruples (CCSDTQ) [412,413], with corresponding formal computational scalings of O(N 6 ), O(N 8 ), and O(N 10 ), respectively (where N denotes the number of orbitals). Parallel to the "complete" CC series presented above, an alternative family of approximate iterative CC models has been developed by the Aarhus group in the context of CC response theory [169] where one skips the most expensive terms and avoids the storage of the higher-excitation amplitudes: CC2 [25], CC3 [26,203], and CC4 [414,415]. These iterative methods scale as O(N 5 ), O(N 7 ), and O(N 9 ), respectively, and can be seen as cheaper approximations of CCSD, CCSDT, and CCSDTQ. Coupled-cluster methods have been particularly successful at computing accurately ground-and excited-state properties for smalland medium-sized molecules. [228,350,394,[416][417][418][419] Annexe A. Résumé en français Nous tirons notre conclusion générale au chapitre 7.

Annexe B. Résumé étendu en français

La fonction d'onde CC peut être réécrite comme

où 1 est l'opérateur d'identité. Le premier terme d'une parenthèse (de forme T2 , T3 , . . . ) génèrent les excitations connectées alors que les autres ( T2 1 , T2 T1 ) génèrent les excitations déconnectées, c'està-dire, les excitations qui sont le produit de deux excitations voir plus, d'ordre inférieur. D'un point de vue physique, un terme connecté tel que T4 correspond à quatre électrons interagissant simultanément. Tandis qu'un terme déconnecté comme T2

2 correspond à deux paires non interagissantes d'électron interagissant.

Nous pouvons maintenant comparer CI et CC, tronquées aux simples et doubles, en partant des équations (B.15) et (B.17) nous avons 

Méthodes de fonction de Green à plusieurs corps

Dans le chapitre 3 nous étudions les discontinuités présentent dans l'approximation GW, qui est une méthode basée sur la fonction de Green. En effet, les méthodes de la théorie de perturbation