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Abstract 
 

As one of the terrestrial ecosystem components, vegetation can maintain ecological balance 
and improve the environment. Vegetation is inseparable from humans, thus playing an essential role 
in human survival and development. Remote sensing data are increasingly used, particularly through 
inversion methods, for vegetation monitoring due to its improved measurement accuracy and 
spatial/spectral/temporal resolution and the advances in remote sensing data interpretation methods. 
Traditional one-dimensional radiative transfer models are often inaccurate when simulating the 
reflectance of vegetation, which translates into inaccurate inversion of remote sensing observations 
in terms of bio-optical parameters. Three-dimensional radiative transfer models are usually much 
more accurate because they consider a realistic architecture of foliage coverage (FC). However, the 
application of 3D radiative transfer simulation and inversion encounters three major problems. (1) 
Existing simulation models do not have continuous-time phase simulation capability due to the lack 
of knowledge of the spatial and temporal variation of key ground parameters. However, remote 
sensing images are mostly time series data, making it difficult to use together with time series of 
remote sensing data. (2) Existing leaf spectral inversion methods are mainly applicable to densely 
vegetated areas. However, in scenes with complex components and many mixed pixels, such as 
cities, the inversion accuracy of leaf optical properties is seriously degraded. (3) Existing vegetation 
indices are easy to saturate in high FC areas, severely limiting their inversion capability. The 
problems mentioned above are addressed with the coupling of the Discrete Anisotropic Radiative 
Transfer (DART) model and a growth model. Also, the accurately inverting of the spectral signatures 
of leaves in urban areas is achieved by introducing an innovative calibration of DART. Finally, we 
analyze the vegetation isolines behaviours and propose the intersection point right shift phenomenon 
based on the DART simulation data to mitigate the soil-adjusted vegetation index (SAVI) saturation 
effect in high FC areas. 

In order to achieve a 3D radiative transfer simulation capability in the continuous-time phase, 
a static 3D maize modelling model constructed from the extended L-system (ELSYS) is coupled 
with a dynamic maize growth equation using degree days as the growth factor and development 
rules describing canopy structure throughout the plant growing season from seedling emergence to 
the male flowering stage. Maize canopy reflectance for the corresponding scenes is simulated using 
various 3D radiative transfer models for cross-validation, and a good agreement among them is 
achieved. The simulated canopy reflectances from the 3D radiative transfer models are compared 
with the 1D radiative transfer model under the same leaf area index (LAI) conditions as true values. 
Results show that the homogeneity assumptions of the 1D radiative transfer model under the same 
LAI conditions resulted in an approximately 1.5 times overestimation of FC, leading to a significant 
overestimation of the reflectance in the Near-InfraRed (NIR) in the nadir direction. This 
overestimation may be because the homogeneity assumption fails to consider that the vegetation 
seen at the nadir is the smallest part of the scene and that multiple scattering is mainly from 
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vegetation. Considering that the nadir direction is a vital observation direction for the sensor, and 
the NIR is an essential band for vegetation monitoring, we believe that the overestimation due to 
the homogeneity assumption is not negligible and result in an underestimation of the amount of 
vegetation (LAI, etc.) in the remote sensing inversions based on the homogeneity assumption. 

In order to invert the optical properties of leaves in urban areas, the DART calibration is 
introduced. DART calibration first separates the single scattered reflectance of the canopy using a 
linear spectral mixture model and iteratively corrects the optical properties of the input leaves to 
simulate the canopy reflectance close to the mixed pixel separation. The inversion results are 
evaluated for accuracy assessment and sensitivity analysis. The mean relative errors of the ideal 
noise-free simulation experiment are 0.013, 0.005, 0.027, 0.297, and 0.250 for ground, roof, water, 
tree, and shrub in all bands. Under noise interference experimental conditions (pixel shifting, 
geometric accuracy of the 3D scene and modulation transfer function with some deviation from the 
true value), significant errors in the inversion are observed: for ground, roof, water, trees and shrubs, 
the mean relative errors are 0.233, 0.507, 3.088, 0.834, and 1.256 respectively. The parameters that 
have the most significant influence on the inversion accuracy of the optical properties of urban 
matter are the SZA, the spatial resolution of the satellite images, the pixel shifting, the inaccuracy 
of the 3D urban scene modelling and the modulation transfer function, in descending order of 
importance. 

In order to alleviate the saturation effect of SAVI in areas with high FC, the vegetation isolines 
are analyzed, and a right-shift phenomenon is proposed for the vegetation isolines intersection point. 
The right-shift phenomenon shows that as the FC increases in the homogeneous canopy (defined in 
this paper as a canopy with a clumping index equal to 1), the vegetation isolines and soil line's 
intersection points gradually move towards the positive direction of the red band axis. When the 
intercept of the vegetation isolines is smaller than that of the soil line, the final intersection point 
can reach the positive region of the red band axis. The right-shift phenomenon successfully solves 
the two primary debates in the current academic community and achieves a dialectical unification 
from a new perspective. Considering that the optimal soil adjustment factor is the negative value of 
the abscissa of the intersection of the vegetation isolines and the soil line, based on the right-shift 
phenomenon, the hypothesis that the optimal soil adjusted factor should be negative in high FC areas 
is put forward. Results show that the optimal soil adjustment factor is approximately equal to -0.148 
when the average LAI equal 5.35; the optimal soil adjustment factor is approximately equal to -
0.183 when the average LAI equal 6.72. The hypothesis can mitigate the saturation effect of SAVI 
and improve the accuracy of LAI estimation in the high FC area. 

In this thesis, vegetation reflectance simulation and bio-optical property inversion based on a 
three-dimensional radiative transfer model is the research object in terms of both simulation and 
inversion. The first half of this thesis focuses on the modelling and reflectance simulation of a 3D 
vegetation scene with a coupled growth model. The second half focuses on the inversion of 
vegetation bio-optical parameters using the 3D radiative transfer model. Potential applications 
include providing high-quality analytical validation data for sensor design and adequate data support 
for quantitative remote sensing inversion modelling, spatial and temporal scale conversion, and 
multi-source data assimilation to achieve the objective of "quantitative simulation, quantitative 
evaluation". 
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Résumé 
 

En tant que composante de l'écosystème terrestre, la végétation peut maintenir l'équilibre 
écologique et améliorer l'environnement. La végétation est indissociable de l'homme, jouant ainsi 
un rôle essentiel dans sa survie et son développement. Les données de télédétection sont de plus en 
plus utilisées, en particulier via les méthodes d'inversion, pour la surveillance de la végétation en 
raison de l'amélioration de la précision des mesures et de la résolution spatiale/spectrale/temporelle, 
ainsi que des progrès des méthodes d'interprétation des données de télédétection. Les modèles de 
transfert radiatif unidimensionnels simulent souvent avec une mauvaise précision la réflectance de 
la végétation, si bien que leur utilisation dans des procédures d'inversion des mesures de 
télédétection en termes de paramètres bio-optiques conduit à des paramètres estimés qui peuvent 
être très imprécis. Les modèles de transfert radiatif tridimensionnels sont beaucoup plus précis, car 
ils peuvent prendre en compte de manière réaliste l'architecture des couverts végétaux (FC), si bien 
qu'ils peuvent modéliser avec précision les mécanismes radiatifs complexes qui surviennent au sein 
des FC. Cependant, l'emploi des modèles 3D, et en particulier leur inversion, se heurte à trois 
problèmes majeurs. (1) Les modèles de simulation actuels ne permettent pas de simuler de manière 
continue l'évolution de la végétation du fait de la méconnaissance de la variation spatiale et 
temporelle des paramètres clés du sol. Cette difficulté est une contrainte importante pour la mise en 
œuvre de l'inversion de séries temporelles d'images de télédétection. (2) Les méthodes d'inversion 
spectrale foliaire existantes sont principalement applicables aux couverts homogènes tels que 
chaque unité spatiale d'inversion comprend plusieurs éléments de paysages (e.g., arbres). Cependant, 
l'observation de scènes qui comportent de nombreuses composantes dont la dimension est du même 
ordre de grandeur ou inférieure à la résolution spatiale du capteur, conduit à l'apparition de  
nombreux pixels mixtes. C'est en particulier le cas des villes, où la précision de l'inversion des 
propriétés optiques foliaires des arbres tend à être imprécise, voire très imprécise. (3) Les indices 
de végétation existants sont facilement saturés dans les zones à forte couverture végétale, ce qui 
limite fortement leur capacité d'inversion. Pour résoudre les problèmes mentionnés ci-dessus 
concernant l'inversion des images de télédétection, nous avons couplé le modèle DART (Discrete 
Anisotropic Radiative Transfer) de transfert radiatif 3D avec un modèle de croissance. Cette 
approche permet de simuler avec une meilleure précision l'évolution de la réflectance des couverts 
en fonction de leur développement. L'inversion de la végétation en milieu urbain est 
particulièrement complexe du fait de sa distribution éparse et de l'impact de l'architecture urbaine. 
Nous avons résolu ce problème via le développement de la méthode appelée "Etalonnage de DART". 
Nous avons aussi analysé les comportements des isolignes de végétation et proposé un décalage 
vers la droite du point d'intersection des isolignes calculé à partir de simulations DART pour atténuer 
l'effet de saturation de l'indice de végétation ajusté au sol (SAVI) dans les zones à fort FC. 

Afin de simuler l'évolution temporelle du transfert radiatif 3D dans les couverts végétaux, un 
modèle de modélisation 3D statique du maïs construit à partir du système L étendu (ELSYS) a été 
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couplé à une équation de croissance dynamique du maïs utilisant les degrés-jours comme facteur de 
croissance et des règles de développement décrivant la structure de la canopée tout au long de la 
saison de croissance de la plante, de l'émergence des semis au stade de la floraison. La réflectance 
de couvert de maïs a ainsi été simulée avec plusieurs modèles de transfert radiatif 3D pour une 
validation croisée, et un bon accord entre eux est obtenu. Les réflectances de la canopée simulées 
avec plusieurs modèles de transfert radiatif 3D sont comparées à un modèle de transfert radiatif 1D 
dans les mêmes conditions d'indice de surface foliaire (LAI) que les valeurs réelles. Les résultats 
montrent que les hypothèses d'homogénéité du modèle de transfert radiatif 1D, utilisé avec le même 
indice de surface foliaire, entraînent une surestimation d'environ 1,5 fois de la FC, ce qui conduit à 
nettement surestimer la réflectance dans le proche infrarouge (NIR), pour la direction d'observation 
du nadir. Cette surestimation peut être expliquée par l'hypothèse d'homogénéité, car celle-ci ne 
considère pas le fait que la section efficace de la végétation est en général minimale si la direction 
d'observation est le nadir, alors que les diffusions multiples sont surtout dues à la végétation. 
Considérant que la direction du nadir est la direction d'observation la plus commune et que le NIR 
est une bande essentielle pour la surveillance de la végétation, nous pensons que la surestimation 
due à l'hypothèse d'homogénéité n'est pas négligeable et entraîne une sous-estimation de la quantité 
de végétation (LAI, etc.) dans les inversions de mesures de télédétection. 

Afin d'inverser les propriétés optiques des feuilles dans les zones urbaines, la calibration DART 
est introduite. Cette calibration décompose tout d'abord la réflectance d'ordre 1 de la canopée à l'aide 
d'un modèle de mélange spectral linéaire et corrige de manière itérative les propriétés optiques 
foliaires de manière à ce que la réflectance de la canopée simulée soit proche de la somme de ses 
composantes. Les résultats de l'inversion sont analysés via une évaluation de leur précision et une 
analyse de sensibilité. Les erreurs relatives moyennes de l'expérience de simulation idéale sans bruit 
sont de 0,013, 0,005, 0,027, 0,297 et 0,250 pour le sol, le toit, l'eau, les arbres et les arbustes dans 
toutes les bandes. Pour des conditions expérimentales réalistes, c’est-à-dire en présence de différents 
bruits (décalage des pixels, précision géométrique de la scène 3D et fonction de transfert de 
modulation avec une certaine déviation de la valeur réelle), des erreurs significatives dans l'inversion 
sont observées : pour le sol, le toit, l'eau, les arbres et les arbustes, les erreurs relatives moyennes 
sont respectivement de 0,233, 0,507, 3,088, 0,834 et 1,256. Les paramètres qui ont la plus grande 
influence sur la précision de l'inversion des propriétés optiques des matériaux urbains sont la SZA, 
la résolution spatiale des images satellites, le décalage des pixels, l'imprécision de la modélisation 
de la scène urbaine en 3D et la fonction de transfert de modulation, par ordre décroissant 
d'importance. 

Afin d'atténuer l'effet de saturation de SAVI dans les zones à FC élevé, les isolignes de 
végétation sont analysées, et un phénomène de décalage vers la droite est proposé pour le point 
d'intersection des isolignes de végétation. Le phénomène de décalage vers la droite montre que 
lorsque le FC augmente dans la canopée homogène (définie dans cet article comme une canopée 
avec un indice d'agglutination égal à 1), les points d'intersection des isolignes de végétation et de la 
ligne de sol se déplacent progressivement vers la direction positive de l'axe de la bande rouge. Quand 
l'interception des isolignes de végétation est plus petite que celle de la ligne de sol, le point 
d'intersection final peut atteindre la région positive de l'axe de la bande rouge. Ce décalage vers la 
droite résout avec succès deux controverses majeures dans ce domaine. Il réalise une unification 
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dialectique à partir d'une nouvelle perspective. Considérant que le facteur optimal d'ajustement du 
sol est la valeur négative de l'abscisse de l'intersection des isolignes de végétation et de la ligne de 
sol, sur la base du phénomène de décalage vers la droite, l'hypothèse selon laquelle le facteur optimal 
d'ajustement du sol devrait être négatif dans les zones à FC élevé est avancée. Les résultats montrent 
que le facteur optimal d'ajustement du sol est approximativement égal à -0.148 si le LAI moyen est 
égal à 5.35 ; le facteur optimal d'ajustement du sol est approximativement égal à -0.183 si le LAI 
moyen est égal à 6.72. L'hypothèse peut atténuer l'effet de saturation de SAVI et améliorer la 
précision de l'estimation du LAI dans les zones à FC élevé. 

Dans cette thèse, la simulation de la réflectance de la végétation et l'inversion des propriétés 
bio-optiques basées sur un modèle de transfert radiatif tridimensionnel constituent l'objet de 
recherche tant en termes de simulation que d'inversion. La première moitié de cette thèse se 
concentre sur la modélisation et la simulation de la réflectance d'une scène de végétation en 3D avec 
un modèle de croissance couplé. La seconde moitié se concentre sur l'inversion des paramètres bio-
optiques de la végétation en utilisant le modèle de transfert radiatif 3D DART. Les applications 
potentielles comprennent la fourniture de données de validation analytique de haute qualité pour la 
conception de capteurs et un support de données adéquat pour la modélisation d'inversion de 
télédétection quantitative, la conversion d'échelle spatiale et temporelle, et l'assimilation de données 
multi-sources pour atteindre l'objectif de "simulation quantitative, évaluation quantitative". 
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Chapter 1  Introduction 

Vegetation is a general term for all kinds of plants that grow on Earth's surface. As one of the 
main components of the ecosystem, vegetation plays a vital role in human survival and development, 
including maintaining and improving ecological balance and the environment. Thus, it is inseparable 
from human survival and development. As a renewable energy source, vegetation plays an essential 
role in the earth's ecosystem. Vegetation is a major influencing factor and indicator for monitoring 
the dynamics of global change. Vegetation influences the energy balance of the earth's climate 
system and plays a vital role in climatic, hydrological and biochemical cycles. It is an indicator of 
climate and human activities in the natural world. Vegetation participates in and controls 
biogeochemical cycles, such as water, carbon and nitrogen. Documenting vegetation dynamics is 
essential for a better understanding of the terrestrial carbon cycle and improving forest management. 
Therefore, many studies have been carried out to monitor vegetation change. However, human 
activities (e.g., deforestation) put enormous pressure on the environment, causing significant land 
cover changes, affecting the regional and global climate system. These changes and the resulting 
impacts need to be harnessed on a regional or global scale. Remote sensing is an essential tool to 
monitor global vegetation changes as they allow for rapid, extensive scale observations in outer 
space, offering the possibility to study human activities and climate changes on a large scale. 

1.1  Motivation 

Remote sensing data are increasingly used because of improvements in the accuracy of sensor 
radiometry and remote sensing imagery in terms of spatial/spectral/temporal resolution and 
advances in remote sensing data interpretation methods [1, 2]. These methods typically use remote 
sensing models to simulate the surface's bi-directional reflectance factor (BRF). In addition, realistic 
3D structural models (terrain, trees, buildings, etc.) are increasingly used due to the growing demand 
for satellite inversion information and radiative budget accuracy. Remote sensing data are 
increasingly used to obtain vegetation optical and biophysical properties due to advantages such as 
high-frequency re-entry cycles and wide observational ranges [3-5]. Inferring the state of the land 
surface through the interpretation of remote sensing electromagnetic signals (reflections or 
emissions) is the "inversion problem" in remote sensing. In general, inversion aims to determine the 
model's input parameters to match the available measurements. In the noise-free ideal case, the input 
and output are mathematically related. However, the scene structure is often difficult to describe in 
terms of simple statistical parameters due to its complexity. It explains why scenes are often 
simplified in remote sensing models. For example, radiative transfer (RT) models based on the 
homogeneity assumption model the vegetation canopy as a horizontal layer with randomly 
distributed leaves. Based on this scene simplification, many one-dimensional models relying on 
atmospheric RT theory have been developed [6]. For example, canopy RT models are usually 
developed by formulating relationships between the BRF and vegetation parameters such as leaf 
area index (LAI), leaf angle distribution (LAD), and leaf optical properties (OPs). So far, 1D RT 
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models, for example, Scattering by Arbitrary Inclined Leaves (SAIL) model and Soil Canopy 
Observation, Photochemistry and Energy fluxes (SCOPE) model, have been widely used for 
parametric inversion of remote sensing. However, due to their high abstraction of the earth's surface, 
the simulation accuracy of 1D models is usually too low. For example, they usually fail to consider 
the significant gaps between tree canopies and trees of different heights. Therefore, three-
dimensional (3D) RT models are needed to accurately invert remote sensing data because they can 
present complex heterogeneous remote sensing scenes. 

3D RT models use schematic geometric objects (e.g., ellipsoids), triangular meshes and/or 
voxels with turbid media to describe 3D remote sensing scenes [7] and often employ ray tracing or 
radiosity methods in order to solve the RT equations [8, 9]. They can simulate remote sensing data 
under arbitrary conditions, which is essential for relating remote sensing signals to realistic scene 
structures. Three-dimensional radiative transfer models allow the maximum use of information from 
multi-source remote sensing data and alleviate the 'intractable' problems remote sensing inversions 
faced for many years [10]. Today, with the increasing availability of 3D spatial data because of 
advances in computer technology, the potentials of 3D RT models are growing, and their 
developments have two main implications [11]. 

(1) Providing high-quality validation data for sensor design development 

Simulated remote sensing data can provide a reference for performance tests before satellite 
launch. Remote sensor developers need to systematically use the simulated data to validate sensor 
parameters for future development. The sensor application department needs to use the simulated 
data to prioritize data processing and applicability modelling to use the relevant data rapidly. For 
some western countries with solid hardware manufacturing capabilities, it is common to prioritize 
the production of airborne simulators with the same capabilities before the launch of on-board 
sensors to assess their performance and potential applications, e.g., the National Aeronautics and 
Space Administration (NASA) conducts Moderate-resolution imaging spectroradiometer / 
Advanced Spaceborne Thermal Emission and Reflection Radiometer airborne simulator (MASTER) 
airborne simulation imaging experiments before the launch of MODerate-resolution Imaging 
Spectroradiometer (MODIS) to provide a reference value for its performance. 

(2) Providing reliable support for quantitative remote sensing inversion modelling, spatial 

and temporal scale conversion and assimilation of multi-source remote sensing data 

Current research on the design of remote sensing sensors is difficult to combine high spatial 
resolution, high temporal resolution and high spectral resolution simultaneously, especially when 
interfered with by cloud cover, weather and other imaging conditions. Thus, it cannot obtain sufficient 
satellite data to meet the needs of scientific research applications such as disaster emergency monitoring 
and continuous time series analysis. The research on vegetation reflectance simulation and bio-optical 
property inversion based on a three-dimensional radiative transfer model helps to integrate remote 
sensing, computer, agronomy, mathematics and other methods by coupling soil-leaf-canopy-atmosphere 
radiative transfer model with optical remote sensor imaging models, constructing multi-dimensional 
remote sensing data simulation of continuous multi-temporal crop growth, and realizing multiple load 
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platforms (airborne, satellite-based, multi-angle, hyperspectral). It can provide reliable support for 
research on quantitative remote sensing inversion modelling, spatial and temporal scale conversion and 
multi-source remote sensing data assimilation. 

1.2  Research background 

1.2.1   Canopy reflectance simulation study 

The canopy reflectance simulation model describes the propagation and interaction (scattering, 
transmission, absorption, etc.) of energy between the various components of the canopy (leaves, soil, 
branches, etc.). Canopy reflectance simulation models allow the scaling up of leaf OPs to canopy 
level using canopy structural parameters. Besides, they are the base for the leaf OPs inversion. There 
are three main types of canopy reflectance simulation models commonly used today. 

(1) Empirical and semi-empirical models 

Empirical models do not attempt to explain the physical mechanisms between biophysical 
parameters and the BRF; they describe mathematically the patterns observed in the BRF data set. 
Semi-empirical models rely on the physical principles of simplified geometric optical (GO) models 
and radiative transfer theory. For example, the kernel-driven model [12-14] describes the BRF as 
the sum of isotropic and anisotropic scattering functions (i.e., kernel functions) characterizing voxel 
and surface scattering. Widely used semi-empirical models benefit from the use of numerical 
solutions with few parameters. For example, the Rahman, Pinty Verstraete (RPV) model [15] and 
several subsequent versions of accelerated inversion, such as the Modified RPV model (MRPV) [16] 
and the Exponential Modified Rahman, Pinty Verstraete (EMRPV) model [17], are proposed to 
speed up the inversion process. Apparent BRF / albedo products from remote sensing sensors, such 
as MODIS, POLarization and Directionality of Earth's Reflectance (POLDER), Meteosat Second 
Generation / Spinning Enhanced Visible and InfraRed Imager (MSG / SEVIRI), Advanced Very 
High Resolution Radiometer (AVHRR), VEGETATION, are mainly generated by kernel-driven 
models that use multi-angle bi-directional reflectance under clear-sky observation conditions to 
invert BRF parameters [18]. 

(2) Geometric optics model 

GO models use the size and structure of the forest as input parameters to simulate BRF. GO 
models assume forest cover as a combination of canopy, shadow, and background [19], with each 
component defining surface OPs and implicitly integrating body scattering, which is one cause of 
inaccuracy. Typically, tree canopies have characteristic shapes in a particular spatial dimension. The 
simulation results are based on the proportions of the various components of the scene (illuminated 
canopy, illuminated background, shadows). They are better suited to simulating discrete forest 
scenes (e.g., sparse trees). The earliest GO models were developed by Li and Stralher [20], from 
which the more recent 4-scale model [21] is derived. 4-scale models simulate tree canopies as 
discrete geometric objects: cones and cylinders are used to represent coniferous trees, and ellipsoids 
are used to represent deciduous trees. With a single branch inclination, the deciduous canopy 
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consists of discrete leaves with the fixed angular distribution and the coniferous canopy consists of 
shoots with the fixed angular distribution. It uses the view factor to express the multiple scattering 
mechanisms. The 5-Scale model [22] is a merger of 4-Scale and Leaf Incorporating Biochemistry 
Exhibiting Reflectance and Transmittance Yields (LIBERTY) [23], which simulates the OPs of 
leaves. 

(3) Radiative transfer model 

Radiative transfer models, also known as physical models, simulate radiation propagation 
based on physical mechanisms. Radiative transfer models are based on the basic radiative transfer 
equation, which relates changes in the brightness of radiation along the light path to local absorption 
and scattering. Radiative transfer models are potentially robust and accurate because they can be 
applied to three-dimensional realistic structural scenes. In general, simulations of the bottom of 
atmosphere (BOA) BRFs involve three main radiative transfer components: soil models (e.g., the 
Hapke model [24]), leaf models (e.g., the PROSPECT model [25]), and canopy models (e.g., the 
SAIL model [26]). In addition, some models such as DART use the output of soil and leaf radiative 
transfer models to simulate the radiative transfer of the entire "Earth-atmosphere system". 

One of the main difficulties in radiative transfer modelling is the accurate calculation of 
multiple scattering under the precondition of energy conservation. Different methods of calculation 
are available, and four main ones are described. 

(i) Discrete ordinate method 
The discrete ordinate method assumes that the radiation propagates along N discrete directions 

and is therefore based on N radiative transfer equations. For example, the SAIL model [26] relies 
on a system of 4 differential equations with 4 fluxes / 4 directions applied to horizontally 
homogeneous scenes: one solar flux, two upward and downward isotropic fluxes, and one flux along 
the direction of the sensor observation. For better consideration of anisotropic radiation, the number 
of fluxes can be much larger (e.g., 100 and more) [27], as in the DART model [28, 29]. A classical 
approach [30, 31] is to discretize the spatial variables into a set of spatial nodes to consider the three-
dimensional heterogeneity of the scene (i.e., voxelization). 

(ii) Successive orders of scattering (SOS) 
Successive orders of scattering is the oldest and conceptually most straightforward methods 

for solving multiple scattering problems. It uses an iterative approach to calculate the continuous 
order of scattering: the total irradiance vector is the sum of the contributions after several times 
photon scattering. For example, the Successive Orders of Scattering Vector Radiative Transfer 
(SOSVRT) model [32] simulates polarised radiative transfer in a vertically inhomogeneous parallel 
planar medium. 

(iii) Monte Carlo 
Monte Carlo simulates a series of scattering events of photons between a light source and a 

receiver. It has the advantage that only a single scattering characteristic needs to be accurately 
modelled [8]. However, calculation time is its major limitation. 3-D Forest LIGHT model (FLIGHT) 
[33], Drat [34] and Raytran [35] are well-known examples. There are also powerful models, such 
as LuxCoreRender (https://luxcorerender.org/), which are physically based, unbiased estimation 
rendering engines but are not suitable for remote sensor configurations. The DART-Lux model 
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makes LuxCoreRender adaptable to remote sensor configurations. 
(iv) Radiosity 
Radiosity is based on the radiative balance equation for a finite number of N discrete scattering 

facets [36]. Unlike the radiative transfer, radiosity is based on the radiative balance of the voxels in 
three dimensions. It requires solving the inverse matrix of an N × N matrix. It needs to calculate the 
view factor between all N facets to do this. This step can be very time-consuming and complex if N 
is large, especially for scene elements such as trees. Therefore, one objective of our study is to 
accurate the computation of the view factor of the radiosity based model. 

In addition to radiative transfer tracking, classification can also be based on simplifying remote 
sensing scenes: homogeneous and realistic landscapes. Stacking homogeneous and horizontal layers 
of turbid media creates homogenous landscapes (i.e., random distribution of infinitely small facets). 
With this assumption, "basic" models may replicate trends as crop BRF changes in response to 
changes in LAI. Landscape architecture is frequently just given a sliver of a picture. The realistic 
landscape is widely used in RS and radiative budget (RB) models. There are two main approaches: 
discretizing the spatial variable into voxels filled with turbid media and/or simulating each 
individual scene element as a juxtaposition of facets. It should be able to prove a more accurate 
simulation result on the condition that an accurate landscape is provided[37]. Therefore, one 
objective of our study is to simulate the 3D maize scene accurately. 

1.2.2   Inversion of leaf optical properties study 

The OPs of leaves reflect their combination of biochemical, morphological and physiological 
properties and play an essential role in many ecological and earth system processes. There are three 
principal methods for obtaining OPs of leaves: instrumental measurements, simulations of leaf 
biochemical parameters, and canopy spectral inversion. 

(1) Optical instrument measurement 

Remote sensing simulations or inversions of leaf OPs require spectral measurements to verify 
accuracy. There are currently three main methods for measuring the OPs of leaves [38]: (1) The 
instrument's optical fibre is connected to a port on an external integrating sphere, such as the LI-
1800-12 or ASD RTS-3ZC, with an internal halogen light source for measuring the diffuse 
reflectance or transmittance. (2) The instrument's optical fibre is connected to unique accessories 
(plant probes and leaf clips) with an internal halogen light source. Using a double-sided rotating 
head containing a recessed background plate, reflectance (black panel, reflectance < 5%) and 
transmittance (Spectralon white panel, reflectance > 99% in the visible to the near-infrared band) 
measurements can be carried out simultaneously. This measurement method has the advantage of 
reducing external disturbances such as angle of incidence or unstable light sources. (3) The 
instrument's fibre optic is connected to a gun (Pistol Grip), and the leaf is observed vertically, for 
example, in the laboratory with light as the light source or the field with the sun at any angle of 
incidence as the light source. Then the bi-directional reflectance factor is measured, assuming that 
sensors and sunlight are assumed to be mono-directional. 

Calibrating these data can be a daunting task, and most of the time, the calibration is not 
performed correctly. Few studies compare the reflectance of the same leaf recorded using different 
systems or spectrometers, each with a unique spectral resolution and sampling intervals. Castro-
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Esau et al. [39] perform an instrument comparison and standardization of sampling procedures. 
Depending on the instrument, they observe slight to severe differences in shape and amplitude 
between spectra of the same leaf. For some applications, such differences may not be significant at 
a practical level, as the calculated spectral indices are similar. For other applications, such as the use 
of physical models, such differences may be critical. Therefore, inverting PROSPECT model 
parameters using data measured by ASD probes or leaf clamps may lead to biased estimates of leaf 
biochemical parameters. 

(2) Simulation of leaf radiative transfer 

Variations of leaf reflectance and transmittance are modelled by analyzing the interaction 
processes of electromagnetic waves with the biochemical components within the leaf and the leaf 
structure. Light propagation in plant leaves is mainly governed by absorption and scattering 
interactions. In parallel with advances in experimental measurements of the OPs of leaves, 
deterministic methods using different representations of the interaction of light with plant leaves 
have been developed. These models differ depending on the underlying physics and the complexity 
of the leaf. The simplest models treat the leaf as a single scattering and absorbing layer, while in the 
most complex models, all cells' shape, size, location, and biochemical content are described in detail. 
Regardless of the approach used, these models have improved understanding of the interaction of 
light with plant leaves. Baranoski and Rokne [40], Ustin et al. [41], and Jacquemoud et al. [42] have 
extensively reviewed computer-based leaf models that have improved the understanding of the 
interaction between light and plant leaves from the late 1960s to the present. These models are 
divided into different categories and arranged in increasing complexity [43]. 

(i) Flat model 
The flat plate model, first proposed by Allen et al. [44] in 1969, treats a dense leaf as a 

homogeneous flat plate with a rough surface. Light incident on such a leaf surface is reflected and 
transmitted several times. It is partially reflected and partially transmitted at the first interface, and 
the transmitted part is then reflected back and forth between the two interfaces. The total reflectance 
of the plate can be obtained by summing the amplitudes of successive reflections and refractions. 
However, this model does not apply to non-compact leaves. After Allen et al. [45], Breece and 
Holmes [46] extended the flat plate model to non-compact leaves by introducing the generalized 
flat plate model, subdividing the leaf into N homogeneous compact plates separated by N-1 air 
spaces. In the 20th century, N values were extended from integers to the real number domain. The 
PROSPECT model, now widely used in the remote sensing community, was developed from the flat 
model [47]. It is one of the first radiative transfer codes to accurately model the hemispheric 
reflection and transmission of various plant leaves and conditions (monocotyledons, dicotyledons 
of healthy or senescent leaves) across the solar spectrum from 400 nm to 2500 nm. The input 
parameters for the early PROSPECT models are: structural parameter N, green pigment and water 
content to simulate fresh leaves. If dry leaf spectra need to be simulated, protein and cellulose + 

lignin content must be added. However, the plate model cannot be applied to needle leaves because 
they cannot be treated as discrete parallel plates. 

(ii) Compact spherical particle model 
Dawson [48, 49] modified the equation for the interaction of light with spherical particles and 
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designed a degree-of-freedom model precisely to calculate the OPs of dried and fresh slash pine 
(Pinus elliottii) needles to model the OPs of needles. The model treats needle cell structures as 
spherical cells with diameters and air gaps according to the laws of geometrical optics and then 
combines leaf thickness, absorption coefficients of water, chlorophyll, cellulose, lignin and 
nitrogenous compounds in the leaf to correct for the OPs of the needles. 

(iii) N flux model 
The N-flux model is derived from the Kubelka-Munk (KM) theory, which considers leaves 

plates filled with absorption and scattering coefficients [50]. In order to eliminate edge effects, 
lateral extension and boundary reflections below the plate are assumed to be absent, and the OPs 
are expressed as a function of the absorption coefficient, the scattering coefficient and the thickness 
of the leaf. The absorption coefficient and scattering coefficient are expressed in later versions as a 
function of the leaf thickness. Radiative transfer within the leaf is modelled using paired fluxes, 
such as two- and four-flux models. N-flux model has the advantage that the pigment content can be 
inverted without damage. The complete leaf biochemistry is described by Conel et al. [51], who 
used a two-flux model to study the effects of water, protein, cellulose, lignin and starch on mid-
infrared radiation in leaves. However, they did not validate their model. Finally, note that the 
parameter N describing the internal structure of the leaf in the generalized flat plate model plays a 
role similar to that of the scattering coefficient in the KM model. One drawback of this approach is 
that it cannot consider the multiple scattering of leaf flesh objects of a size comparable to the 
wavelength of the incident radiation (cells, organelles, bubbles and others) and cannot characterize 
them. 

(iv) Radiative transfer equation 
The primary electromagnetic theory can describe the propagation of light through plant leaves. 

The leaf can be considered a random medium with a spatially varying dielectric constant, and the 
electric field variation can be described by Maxwell's theory. Thus, the problem is simplified as the 
one-dimensional energy flow through the medium. In contrast to canopy radiative transfer, only a 
few models directly use the radiative transfer equations at the leaf scale. The mathematical 
complexity of the algorithm and the lack of information on the leaf's internal structure and 
biochemical distribution lead to substantial simplifications, making this approach less efficient than 
more powerful formulations [52]. 

(v) Stochastic models 
Tucker and Garratt [53] present a primitive stochastic model in which the radiative transfer is 

modelled by a Markov chain, which is a stochastic process. They divide the leaf into two different 
tissues (palisade parenchyma and spongy mesophyll) and define states of photons (incident solar 
radiation, specularly reflected radiation, diffuse reflected radiation, diffuse transmitted radiation, 
absorbed radiation and scattered radiation, in each tissue). The random photon states can only take 
on discrete values, such as "absorbed in the palisade parenchyma" or "scattered in the spongy 
mesophyll". The initial vector sets the incident radiation, and the OPs of the leaf is obtained when 
iterative state shifts are made until they smooth out. 

(vi) Light tracing model 
The advantage of ray-tracing models is that they can describe the complexity of the internal 

structure of a leaf (e.g., individual cells and their unique arrangement within the tissue). By defining 
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the OPs of the leaf material (cell walls, cytoplasm, pigments, stomata, etc.), the propagation of 
individual photons incident on the leaf surface can be simulated using the laws of reflection, 
refraction and absorption. Once a sufficient number of rays have been simulated, a statistically valid 
estimate of the radiative transfer in the leaf can be deduced. The technique has been applied to many 
variants. The earliest studies were carried out at the cellular level. Senn [54], Haberlandt [55] and 
more recently, Gabrys-Mizera [56] and Bone et al. [57] construct geometric models of the passage 
of light through cross-sections of plant cells of different shapes, particularly epidermal cells, whose 
shape may influence the path of the incident light. Allen et al. [58] treat leaves as cell walls and cell 
gaps and model the spectrum of maple leaves using ray tracing. However, this method requires a 
significant computational load and has been commonly applied to validate simple models and 
understand the light transmission processes inside the leaf. 

(3) Inversion of canopy radiative transfer 

Taking the inversion of the OPs of leaves as an example, as the leaf and canopy radiative 
transfer models continue to be studied in-depth, researchers have found that the radiation signals 
observed by sensors can be used to interpret the biophysical state of the vegetation. The canopy 
radiation signal captured by the sensor can be simulated by a priori knowledge of the vegetation 
(canopy structure, leaf OPs, etc.) using a suitable canopy radiative transfer model, a process known 
as forwarding simulation. In contrast, the bio-optics of the leaf or the canopy's geometry can be 
obtained by using a suitable canopy radiative transfer model based on the a priori knowledge of the 
radiation signal captured by the sensor. For example, Otterman [59] assumed a canopy structure and 
inverted a protrusion model to determine the reflectance of the leaf in the nadir observation direction 
and several bands. Otterman [60] later attempted to invert the leaf orientation but found it difficult 
to isolate the leaf reflectance from the leaf orientation or LAI. Kuusk [61] and Privette et al. [62] 
invert the OPs of leaves and the spatial distribution of scatters in the canopy by inversion of a bi-
directional reflectance analysis model. 

A major problem limiting the accuracy of the inversion is multi-solvability. An accurate canopy 
radiative transfer model is difficult to invert the input parameters from the output parameters, and it 
is difficult or even impossible to find the inversion function corresponding to the radiative transfer 
equation. Inverting the model is to find the parameter that minimizes the difference between the 
measured and simulated data. The critical factor for the success of leaf OPs inversion is choosing a 
suitable canopy radiative transfer model and inversion method. Commonly used canopy radiative 
transfer models and their applicability are listed in section 1.2.1, and standard inversion methods 
are described in detail below, including iterative optimization algorithms [47, 63], Look-Up Tables 
algorithms (LUTs) [64, 65], and machine learning algorithms such as neural networks tool (NNT) 
and support vector machines [66-68]. 

(i) Iterative optimization algorithm 
An iterative optimization algorithm is a process that continually recurses old values of a target 

parameter (e.g., the OPs of a leaf) to new values, provided that the initial values of the target 
parameter are known. The iteration can be done by setting different iteration steps to run the 
radiative transfer model repeatedly to find the most suitable value of the OPs of the leaf for the 
simulated and measured spectral values of the canopy. Standard methods include genetic algorithms, 
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quasi-Newtonian methods and least-cost functions. Iterative optimization algorithms take full 
advantage of the computer, such as high computing speed and repetitive operations. However, 
iterative optimization algorithms also have limitations: (1) the initial value strongly influences the 
final inversion result. In addition, if the model is not monotonic, the inversion result may fall into a 
local optimum rather than a global optimum. (2) The error function significantly impacts the final 
inversion results. In addition, different error functions may require different a priori knowledge (e.g., 
spectral parameters, structural parameters). (3) It is computationally intensive and unsuitable to 
equally computationally intensive canopy radiative transfer models such as ray tracing. Despite 
these limitations, iterative optimization algorithms are still the most classical inversion methods. 
Many authors used iterative optimization to obtain biochemical parameters for various vegetation 
types [47, 63, 69]. 

(ii) Look-Up Tables method 
The use of iterative optimization algorithms for bio-optical property inversion with remote 

sensing from large vegetation areas requires many cost functions and a high operational load, which 
is a problem that can be well avoided with LUTs. LUTs are an efficient and straightforward inversion 
method. LUTs can improve the problem of machine learning algorithms falling into local optima 
when the training sample is small. In addition, LUTs can reduce the outliers between the simulated 
spectra and the observed spectra of the sensors. Moreover, LUTs do not rely on ground sampling 
sites for modelling, so they can invert vegetation parameters based on radiative transfer models 
when the number of ground sampling sites is insufficient, effectively eliminating the instability of 
statistical methods. However, the LUT size can be proliferated if the step size of the input parameters 
is too small, leading to non-representative results. Therefore, a parameter sensitivity analysis should 
first be conducted to set reasonable parameters' range and step size before building a LUT to 
improve the efficiency and accuracy of the inversion. Darvishzadeh and Matkan [70] obtain canopy 
chlorophyll content using a LUT approach by inverting the PROSPECT + SAIL (PROSAIL) 
vegetation radiative transfer model. Dorigo [71] uses Compact High Resolution Imaging 
Spectrometer (CHRIS) / Project For On-Board Autonomy (PROBA) multi-angle remote sensing 
images to obtain the chlorophyll content of the canopy. 

(iii) Machine learning methods 
The goal of machine learning is to draw lessons from training samples. The main machine 

learning methods for the inversion of vegetation bio-OPs are currently artificial neural networks and 
support vector machines. The inversion based on artificial neural networks consists of two main 
steps: (1) training the neural network using many training samples; and (2) using the training 
network to invert the canopy bio-optical property. Neural networks have a solid non-linear mapping 
capability and are suitable for complex internal mechanisms problems. However, neural networks 
require a large number of training samples in the training process and are prone to overfitting. The 
support vector machine approach is mainly applied in remote sensing for classification and less 
frequently in vegetation bio-optical parameter inversion. Durbha [68] uses support vector machines 
and the PROSAIL radiative transfer model to invert the leaf area index from Multi-angle Imaging 
SpectroRadiometer (MISR) images with reasonable accuracy. Therefore, the applications of 
machine learning methods to invert vegetation biochemical parameters needs further research. 

A short comparison between the look-up tables method and machine learning methods is that 
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machine learning methods do not need to know the underlying data distribution explicitly. Hence, 
machine learning methods are developed without assuming a particular probability density 
distribution, which is why they work well with all kinds of data types [72]. However, for the lookup 
table methods, the data distribution must be considered when creating the lookup table. Machine 
learning methods also offer the possibility of incorporating prior knowledge and the flexibility to 
include different data types in the analysis. The machine learning methods use all available training 
data. As a result, all data take effect. However, for the LUT method, not all data take effect. The 
main problem for machine learning is the collinearity complicating regression. However, noise 
removal is still a standard and much-needed pre-processing step for the lookup table method. 

Although various inversion methods are used, at present, the research on the inversion of leaf 
spectral characteristics is still based on the assumption that the scene is a homogeneous canopy. This 
assumption may be reasonable for dense vegetation cover areas such as forests. However, this 
assumption may not be feasible for urban plants, especially in the current commonly used satellite 
images (i.e., 10 m for Sentinel-2). Therefore, one objective of our study is to retrieve leaf optical 
property (OP) in the urban areas based on DART radiative transfer model and iterative optimization 
algorithm. 

1.2.3   Inversion of leaf area index study 

LAI is a critical biophysical parameter in studies of ecophysiology, atmosphere-ecosystem 
interactions and global climate change [73-82]. Since measuring LAI in the field is time consuming 
and laborious, remote sensing methods are now widely used to invert LAI over extensive areas [83-
86]. Inversion of LAI using remote sensing observations can be broadly classified into physical and 
empirical methods [87]. Physical radiative transfer models have the advantage of being based on 
radiative transfer model mechanisms and vegetation ecology theory. Therefore, they are not 
susceptible to the influence of vegetation type and non-vegetation factors [88]. Commonly used 
physical radiative transfer models are described in section 1.2.1, while common inversion methods 
are described in section 1.2.2. The procedure for physical model-based LAI inversion is similar to 
that for leaf spectral inversion and is not repeated here. However, the a priori parameters required 
for inversion using physical models are complicated. Moreover, in many cases, it is not possible to 
obtain all required inversion parameters precisely. For example, Goel and Thompson [89, 90] and 
Deering [91] uses directional reflectance data to invert the Leaf Area Index (LAI) and lower 
accuracy average leaf inclination angle (ALA), respectively, from SAIL [26] and Three-dimensional 
Radiation Interaction Model (TRIM) [92] models. However, they must know the reflectance and 
transmittance of the leaves, the reflectance of the soil, and the skylight ratio in advance. In addition, 
physical models may fail due to uncertainties in input reflectance data such as clouds and aerosols 
when empirical models are often used as backup algorithms [87]. The most common method used 
in empirical models is vegetation indices (VIs) [83, 93]. 

In order to invert LAI over large areas, a variety of VIs have been devised over the last few 
decades[94]. The applications of these indices can be broadly classified into two categories [95]. 

(1) Single angular index 

According to their application, single-angle VIs can be broadly classified into three categories: 
intrinsic VIs, atmosphere-adjusted VIs, and soil-adjusted VIs [95]. The intrinsic VIs are the most 
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commonly used and contain only spectral reflectance with no other parameters. They are widely 
used because of their simplicity. However, they are susceptible to the atmosphere and soil OPs [95-
99]. This shortcoming has led to the emergence of atmosphere-adjusted VIs to minimize the 
atmospheric impact. However, with the development of atmospheric radiative transfer models, 
atmosphere-corrected images are increasingly available as remote sensing images [100-106]. On the 
other hand, the soil effect in the vegetation mixed-image meta-spectrum can hardly be eliminated 
[97, 98, 107], which explains the development of soil-adjusted VIs. 

(i) Inherent vegetation index 
One of the first VIs was proposed by Jordan and Carl [108] in 1969 and named the Ratio 

Vegetation Index (RVI), which is based on the OP of vegetation. The leaves absorb more red band 
light than the Near-InfraRed (NIR) band, so plants have a lower reflectance in the red band.  

 nir

red
RVI R

R
=   ····································· (1.1) 

where Rnir and Rred are the atmospheres calibrated surface reflectance in the red and NIR bands, 
respectively.  

The reflectance of vegetation shows a high correlation with LAI, Leaf Dry Biomass Matter 
(LDBM) and chlorophyll content of leaves [109]. RVI is widely used to estimate and monitor green 
biomass, especially in high-density Foliage Coverage (FC), as this index is susceptible to vegetation 
and correlates well with plant biomass. However, RVI is susceptible to atmosphere influences and 
becomes sensitive if FC is sparse (less than 50% coverage), and its correlation with biomass 
weakens. Although very sensitive to soil spectral variation, the Differential Vegetation Index (DVI) 
can also monitor vegetation ecology. 

The most widely used Vegetation Index (VI), Normalised Difference Vegetation Index (NDVI) 
is proposed by Rouse et al. [110] as 

 nir red

nir red
NDVI R R

R R
−

=
+

 ··································· (1.2) 

As the NDVI values are calculated by normalization, the index ranges from 0 to 1. The NDVI 
is sensitive to green vegetation even in areas of low FC. The index is often used in regional and 
global vegetation assessment studies and is related to canopy structures such as LAI and canopy 
photosynthesis [111, 112]. However, NDVI is sensitive to soil brightness, soil colour, atmosphere, 
clouds and canopy shadows and requires remote sensing calibration. It has been shown that when 
soil background brightness increases, NDVI also increases systematically. 

(ii) Soil adjusted vegetation index 
In order to mitigate the interference of soil noise, many scholars have worked on soil-adjusted 

VIs. Richardson and Wiegand [113] propose a method to distinguish vegetation from soil 
background spectra by analyzing soil lines: soil lines describe the linear relationship between soil 
reflectance in the red-NIR two-dimensional plane. The spectral response of the soil (soil line) is 
oblique in the red-NIR two-dimensional plane, as the soil shows a higher spectral response in the 
red-NIR plane. Therefore, it is considered an integrated description of a large amount of soil spectral 
information in a number of environments [114]. Soil-adjusted VIs, such as the perpendicular 
vegetation index (PVI), are mainly designed based on the soil line. For example, PVI is defined as 
the distance between the reflectance of the vegetation pixels and the soil line. In this way, it 
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effectively filters the influence of the soil background. At the same time, PVI is also less sensitive 
to the atmosphere, and it is mainly used for the inversion of vegetation parameters (LAI, grass 
production, chlorophyll content), vegetation identification and classification [115]. 

Due to some shortcomings of NDVI and PVI in describing the OP of vegetation and soil 
background, Huete [97] develops a Soil Adjusted Vegetation Index (SAVI) to reduce the sensitivity 
of NDVI to soil background noise by adding a soil adjustment factor, XSAVI, and assuming that 
vegetation isolines intersect on the third quadrant angle bisector. 

 
( )nir red SAVI

nir red SAVI

(1 )
SAVI

R R X
R R X

− +
=

+ +
 ···························· (1.3) 

where XSAVI is the soil adjustment factor of SAVI, which is suggested to be equal to 0.5 in its 
original paper [97]. In contrast to NDVI, SAVI uses a soil adjustment factor XSAVI to account for 
first-order soil background variability. When XSAVI = 0, SAVI is equivalent to NDVI. The advantage 
of SAVI is that the appropriate value of XSAVI can be chosen autonomously with prior knowledge of 
the vegetation density. XSAVI is the soil adjustment factor; its recommended value for general FC 
conditions is (XSAVI = 0.5) [97], and the optimum soil adjustment factor should be close or equal to 
0 under dense FC and close or equal to 1 under sparse FC.  

Compared to RVI, SAVI is much less sensitive to background noise due to soil colour or soil 
surface moisture content. Three new versions of SAVI (SAVI2, SAVI3 and SAVI4) have been 
developed based on the spectral theory of wet and dry soils [116]. SAVI2, SAVI3 and SAVI4 reduce 
background soil noise by considering the effects of changes in the angle of solar incidence and 
changes in the soil's physical structure. 

Based on the changing rule of XSAVI, the Modified Soil Adjusted Vegetation Index (MSAVI) 
[98] replaces the constant XSAVI in the SAVI of Eq.(1.3) with an inductive soil adjustment function. 
In this way, MSAVI reduces the disturbance of SAVI by soil noise.  

According to Eq.(1.3), we assume any seed value X0SAVI(-∞,+∞), which can minimize the soil 
noise 

 
( )

SAVI

SAVI

0
nir red

0
nir red

(1 )
SAVI

R R X

R R X

− +
=

+ +
  ··························· (1.4) 

Based on the rule of optimal XSAVI, we can get an inductive soil adjustment function to 
minimize the soil noise further 

 11 MSAVIu uL −= −   ·································· (1.5) 

where u is the iteration number. 
These iterations continue U times until soil noise cannot reduce further, namely MSAVIU= 

MSAVIU-1, then we have 

 ( )nir red

nir red
MSAVI 2 MSAVI

1 MSAVIU U
U

R R
R R

−
= −

+ + −
  ················ (1.6) 

One of the two solutions for Eq.(1.6) within the range of 0 and 1 is 

 ( ) ( )2
nir ni ni rerr d2 1 2 1 8

MSAVI
2

R R R R+ − + − −
=   ·················· (1.7) 
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Based on MSAVI, Richardson and Wiegand [113] propose a modified secondary soil-adjusted 
vegetation index (MSAVI2). MSAVI2 does not rely on the soil line principle, and its algorithm is 
simple; it is mainly used for plant growth analysis, desertification studies, grassland yield inversion, 
LAI assessment, soil organic matter analysis, drought monitoring, soil erosion analysis, etc. 

Some VIs are designed based on the concept of the soil line 

 nir,soil red,soilR a R b= ⋅ +   ································ (1.8) 

where Rred,soil and Rnir,soil represent the reflectance of soil pixels in the red and NIR band, and a and 
b represent the slope and intercept of the soil line. 

The Perpendicular Vegetation Index (PVI) is the distance between vegetation reflectance point 
and soil line in the red-NIR plane. 

 nir red
2

PVI
1

R a R b

a

− ⋅ −
=

+
  ······························· (1.9) 

The Transformed Soil Adjusted Vegetation Index (TSAVI) [107] considers both soil adjustment 
factors and soil line parameters and is free from SAVI restriction that vegetation isolines must 
intersect on the angle parallel. 

 ( )
( )

nir red
2

nir red TSAVI

TSAVI
1

a R a R b

a R R a b X a

⋅ − ⋅ −
=

⋅ + − ⋅ + ⋅ +
 ··················· (1.10) 

where a and b are the slope and intercept of the soil line, set to 1.2 and 0.04, respectively; they 
are considered the global soil line parameters [107]. XTSAVI is the soil adjustment factor for TSAVI 
and is suggested to take a value of 0.08 in its original paper [107]. 

Simulated data from the SAIL model suggest that TSAVI appears to be the most reliable VI 
when the leaf inclination angle is known. However, it is not widely used due to the many parameters 
required (soil line parameters and soil adjustment factors). Rondeaux et al. [95] study the sensitivity 
of five VIs, including NDVI, SAVI, MSAVI, TSAVI and Global Environmental Monitoring Index 
(GEMI), to the soil background. They simulate the performance of the VIs under different soil 
textures, moisture and roughness by using the SAIL model. They determine an optimal soil 
adjustment factor to reduce the effect of soil background and then propose the Optimised Soil 
Adjusted Vegetation Index (OSAVI).  

 nir red

nir red OSAVI

OSAVI R R
R R X

−
=

+ +
  ························· (1.11) 

where XOSAVI is the soil adjustment factor and equals 0.16, it is easy to observe that OSAVI is 
a special case of TSAVI with soil line parameters a equal 1 and b equal 0. 

OSAVI is independent of soil line and can effectively remove the effect of soil background. 
However, OSAVI is not widely used, and it is mainly used to calculate above-ground biomass, leaf 
nitrogen content and chlorophyll content [117]. 

(iii) Atmosphere-adjusted vegetation index 
Since the atmosphere effect has a much more significant effect on the red band than the NIR 

band, Kaufman and Tanre [115] modified the red reflectance to differentiate between the blue and 
red bands. Thus, Soil and Atmosphere Resistant Vegetation Index (SARVI) can effectively reduce 
the effects of the atmosphere effect, especially aerosols. However, this VI still requires the remote 
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sensing images undergoing atmosphere calibration by the 5S [118] atmospheric transport model. In 
addition, to achieve the calibration, the corresponding atmospheric parameters are required, which 
are difficult to obtain. Without atmospheric calibration of remote sensing images, this index is not 
expected to perform better than the NDVI. 

Huete et al. [119] further proposed an Enhanced Vegetation Index (EVI) for the elimination of 
both atmosphere and soil noises 

 nir red

nir 1 red 2 blue EVI
EVI R RG

R C R C R X
−

=
+ − +

 ······················· (1.12) 

where Rblue is the atmosphere corrected surface reflectance in the blue band. G is the gain factor 
and is equal to 2.5. C1 and C2 are aerosol adjustment factors (C1 = 6, C2 = 7.5) that correct the aerosol 
effect for the red band reflectance using the blue band reflectance. XEVI is the soil adjustment factor 
initially equal to 1 [119]. 

Jiang et al. [106] established a two-band EVI without the blue band (EVI2) as an alternative to 
EVI with three bands, defined as 

 nir red

nir 1 2 red EVI
EVI2

( / )
R RG

R C C c R X
−

=
+ − +

  ····················· (1.13) 

where C1, C2 and XEVI have the same values as in EVI. c is the band correlation coefficient 
designed to achieve the best similarity between EVI and EVI2, c = Rred / Rblue. Jiang et al. [106] 
derive c equal to 2.08 by fitting EVI2 from MODIS data to EVI. 

 
Table 1.1 Summary of single angular indices 

VI Prerequisites Strengths Limitations 

RVI Rred, Rnir Good at high-density vegetation 

coverage 

Poor at low-density vegetation 

coverage 

NDVI Rred, Rnir Relate to canopy structure, LAI and 

canopy photosynthesis 

Sensitive to the soil brightness, soil 

colour, atmosphere, cloud and 

cloud shadow, and shadow 

SAVI Rred, Rnir, XSAVI Insensitive to soil noise The determination of soil 

adjustment factor 

MSAVI Rred, Rnir No soil adjustment factor Sensitive to atmosphere 

PVI Rred, Rnir, a, b Good at low-density vegetation 

coverage 

Poor at high-density vegetation 

coverage 

TSAVI Rred, Rnir, XTSAVI, a, b Insensitive to soil noise Require soil line parameters 

OSAVI Rred, Rnir, XOSAVI Do not depend on soil line 

parameters 

Applications are not extensive 

EVI Rblue, Rred, Rnir XEVI, C1, C1 Good at soil and atmosphere noise Require blue band reflectance 

EVI2 Rred, Rnir, XEVI, C1, C1, c No requirement for blue band 

reflectance 

Sensitive to sensor 

(2) Directionality Index 

The studies show that multi-angle remote sensing is more valuable than fixed-angle remote 
sensing in obtaining three-dimensional structural information of vegetation. For example, Baret et 
al. [120] found that the highest accuracy of LAI is obtained when the zenith angle is 53.5°. Stavros 
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et al. [121] use CHRIS / PROBA data and found that the VIs calculated using reflectance obtained 
from off-nadir angles are better than those obtained from the nadir direction. Breunig et al. [122] 
used MODIS data to invert the LAI and found that the inversion accuracy of the pixels in the 
backward observation area is higher than that of the pixels in the MOD15 alternate algorithm (LAI-
NDVI empirical model) for the inversion of the LAI. The common LAI-NDVI empirical model 
used by MODIS products. Therefore, many studies have been carried out to calculate VIs using the 
reflectance obtained from off-nadir observation directions, which led to the development of 
directionality indices. 

(i) Angular indices 
The reflectances of the canopy have a clear directional character. For example, in the backward 

direction with the same view zenith angle as sun zenith angle, very high reflectance is observed and 
is named as “hot spot”; in the forward direction with the same view zenith angle as sun zenith angle, 
a very low reflectance is observed and is named as “dark spot” (Figure 1.1). The hotspot is observed 
because when the observation direction is the same as the sun direction, the sensor observed the 
least proportion of the shadows; The darkspot is observed because when the observation direction 
is opposite to the sun direction, the sensor observed the largest proportion of the shadows. 

 

Figure 1.1 Example of changes in the reflectance of red and near-infrared bands according to the 
view zenith angle changes. Data were simulated using the DART model with homogeneous canopy 
and LAI equal 0.8. 

 
The hotspot and the darkspot are usually used to construct the angular indices. The angular 

indices are linear combinations of the reflectance in the observed directions of the canopy at the 
hotspot and darkspot. The hotspot is the observation direction in the solar PP in the same direction 
as solar incidence, and the darkspot is the observation direction in the solar PP opposite the direction 
of solar incidence. The angular index is considered negatively linearly related to the clumping index. 
Common angular indices include the Hot-Dark Spot vegetation index (HDS) and the normalised 
difference between hotspot and darkspot (NDHD). 

HDS [123] is defined as 
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 HS DS

DS

HDS R R
R
−

=  ·································· (1.14) 

where RHS is the reflectance at the hotspot and RDS is the reflectance at the darkspot. As hotspot 
and darkspot are challenging to sample by sensors routinely, the model can also be used to fit a 
bidirectional reflectance coefficient to existing observed data and calculate the hotspot and darkspot 
values [123-125]. 

NDHD [125, 126] is defined as 

 HS DS

HS DS

NDHD R R
R R

−
=

+
 ·································· (1.15) 

Reflectance tends to be minimal at darkspot, where shadows from vegetation can be observed 
to the greatest extent possible [123]. The reflectance in the red band depends on the physiological 
conditions of the green leaves, especially at darkspot, where reflectance is low. It explains the 
potentially significant errors in calculating NDHD [127]. Therefore, we use the reflectance in the 
NIR band to calculate NDHD. The main difference between HDS and NDHD is that the linear 
correlation with NDHD and the clumping index is better than that of HDS, suggesting that NDHD 
may be a better index than HDS [125]. 

(ii) Hotspot signature vegetation index 
As a type of directionality VIs, the hotspot signature VI takes the form of a multiplication of 

the nadir observed VI and the angular index. The best known of these is the normalised hotspot 
signature vegetation index (NHVI) [127], which is defined as 

 NHVI = NDVI  HDS×  ······························· (1.16) 

The reason for considering the clumping index in VIs is that clumping indirectly affects the 
relationship between LAI and VIs through the fraction of absorbed photosynthetically active 
radiation (FAPAR). The angular indices (HDS, NDHD) are negatively linear to the clumping index, 
whereas FAPAR shows an excellent linear relationship with various VIs (NDVI, SAVI, ...) [127, 
128]. In addition, the angular indices show good sensitivity to LAI even in high LAI regions [126]. 
Thus, based on measured data in boreal forests, researchers have found that NHVI, generated by the 
product of NDVI and HDS, better improves linear correlation with LAI [126-128]. 

Although the formations of vegetation indices are enormous, they are suffering from the 
saturation effect to varying degrees. Therefore, studies should be carried out to alleviate the 
saturation effect of vegetation indices. It is one of our study objects. Besides, even though vegetation 
indices are designed to enhance the optical signal of vegetation, they are inevitably affected by 
environmental factors. Therefore, these influencing factors should be quantitatively analyzed before 
using VIs. 

1.2.4   Problems 

The three-dimensional radiative transfer model is the theoretical basis and a powerful tool for 
performing a component spectral inversion. It also points out three issues facing the simulation and 
inversion studies. 

(1) How can the 3D vegetation remote sensing scenes be accurately modelled? Three-
dimensional remote sensing scenes are the necessary basis for modelling reflectance using three-
dimensional radiative transfer models. Current research on remote sensing modelling lacks 
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knowledge of the spatial and temporal variation of critical parameters of the ground and cannot 
achieve continuous-time phases simulation. For example, in China's extensive crop growing areas, 
crop growth leads to significant changes in plant structure and biochemical parameters and 
significant changes in the spatial distribution of crops. Therefore, maize growth processes and 
models must be introduced to achieve continuous temporal phase data simulation. 

(2) How can we accurately invert the OPs of leaves in areas with high heterogeneity and 
complex component distribution? Much of the current research assumes that the canopy is 
homogeneous and that the pixel contains only two components, the leaf and the soil. This 
assumption applies to areas of high FC. However, the spectra that make up the pixel's reflectance 
may originate from the vegetation, soil and the surrounding artificial structures in the urban area. In 
this case, the current inversion method would no longer be applicable, and spectral unmixing of the 
pixels would need to be considered. 

(3) How to improve the robustness of vegetation indices? Vegetation indices are widely used 
for vegetation monitor and LAI estimation. The vegetation indices are designed to enhance the 
spectral information of vegetation. However, vegetation indices are fragile to environmental noise, 
such as spectral response functions, atmosphere effect, soil noise, and saturation effect. Therefore, 
studies should be carried out to study the impact of these factors on vegetation indices and propose 
a corresponding improvement approach to enhance the ability of vegetation indices. 

1.3  Outline of the thesis 

Based on the above problems, three study contents are proposed below: 

1.3.1   Study content 

(1) Simulation of multi-temporal three-dimensional radiative transfer in maize canopies by 

coupling growth models 

We propose using the ELSYS model, combined with the maize dynamic growth model, to 
model the 3D vegetation remote sensing scenes accurately. Maize time-controlled growth 
parameters are input into the maize growth equation to obtain maize geometric parameters, and the 
geometric parameters are input into the ELSYS model to obtain a time-series simulation of a three-
dimensional maize scene with cumulative degree days as a variable is achieved by coupling the 
maize growth equation. The time-series maize canopy reflectance is simulated using a Radiosity-
Graphics based Model (RGM) after parallel acceleration and DART, respectively, and a good 
agreement is achieved. The simulation results are compared with 1D radiative transfer simulations 
to analyse the shortcomings of the homogeneous canopy-based assumption. 

(2) Leaf optical property inversion based on radiative transfer model at the sub-pixel scale 

We proposed to use DART calibration to accurately invert the OPs of leaves in areas with high 
heterogeneity and complex component distribution. Leaf OP inversion from the mixed pixel in the 
urban area is achieved based on DART calibration. Based on the DART calibration, inversion of 
leaf OPs at sub-pixel scale in urban areas is achieved. DART simulated images are used for 
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validation with two cases, including ideal and non-ideal cases. Only the OPs are assumed to be 
unknown in the ideal scene, and all other radiative transfer simulation parameters are known. In this 
case, an inversion accuracy analysis is performed. In the non-ideal scene, a certain amount of error 
is assumed to exist in the model input parameters, and sensitivity analysis of the error and an 
inversion accuracy assessment are performed. This method is also applied to the Basel area to obtain 
spectral data of leaves, soils and buildings. 

(3) Vegetation indices study for noise immunity and LAI estimation 

We propose to study the behaviours of vegetation isoline for LAI saturation studies. The 
behaviours of vegetation isolines are analysed, and the intersection right-shift phenomenon is 
proposed. The use of negative soil adjustment factors to mitigate SAVI saturation is deduced from 
the intersection right-shift phenomenon and validated. We propose to study the impact of 
environmental factors (i.e. SRF, soil noise, atmosphere) on vegetation indices to improve the 
robustness of vegetation indices. The effect of spectral response functions and atmosphere on 
vegetation indices are studied. The spectral correlation coefficient of EVI2 is calibrated for Sentinel-
2 and Landsat-8 sensors. The ability of soil noise resistance is compared between single angular 
index and hotspot signature vegetation indices, together with LAI estimation. 

The relationships between the above chapters are visualized in Figure 1.2. 

1.3.2   Thesis structure 

The thesis is divided into 7 chapters: 
Chapter 1 introduces the background of the study, gives the purpose and significance of the 

research and summarises the research background. 
Chapter 2 introduces the physical basis of quantitative remote sensing. Three common 

vegetation radiative transfer models, SAIL, DART and RGM models, are introduced for subsequent 
chapters. The simplified assumptions for the canopy of them are demonstrated and the radiative 
transfer theory. A parallel accelerated RGM version based on OpenACC is proposed, and the results 
show that acceleration and power increase is possible without loss of quality of the simulated signal. 

Chapter 3 focuses on the canopy reflectance simulation by coupling the maize growth equation 
with the cumulative degree day to achieve a three-dimensional scene of maize, and the canopy 
reflectances of this scene are simulated using RGM and DART for cross-validation. The 
corresponding homogeneous canopy reflectance is simulated using SAIL to compare the differences 
between the one-dimensional radiative transfer model and the three-dimensional radiative transfer 
model.  

Chapter 4 focuses on the inversion of OPs of leaves by performing mixed pixel decomposition 
and physical inversion of leaf OPs from the mixed pixels in urban areas. The inversion results are 
validated using simulated and satellite images; Accuracy assessment and sensitivity analysis are 
carried out. 

Chapter 5 evaluate the performance of VIs to estimate the leaf area index. We propose several 
new hotspot signature vegetation indices and compare their performance with the single angular 
index for leaf area index estimation. We propose a hypothesis that a negative soil adjustment factor 
can alleviate the saturation effect of SAVI based on the shift rule of vegetation isolines and soil line. 
This hypothesis is well observed in both remote sensing and field measured data sets. 
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Chapter 6 analyses the robustness of the VIs as influenced by the spectral response function, 
atmosphere effect and soil noise. The spectral correlation coefficient of EVI2 is calibrated for 
Sentinel-2 and Landsat-8 sensors. The effect of the atmosphere on various vegetation indices are 
studied, and the soil noise resistance of several vegetation indices are compared. 

Chapter 7 summarises the whole text, points out the innovations and provides an outlook for 
future research work. 

 
Figure 1.2 Thesis structure. The whole thesis can be divided into simulation and inversion parts. 
For the inversion part, it can then be divided into leaf OP inversion and LAI inversion part. 
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Chapter 2  Basics of vegetation canopy 

radiative transfer models 

The syntax rules of the ELSYS are introduced, and the programming ideas for modelling real 
structural trees using the ELSYS based on fractal typology are described. Three types of vegetation 
canopy scenes created by the discrete anisotropic radiative transfer (DART) model are presented, 
including a homogeneous assumption canopy scene, a simplified heterogeneous canopy scene and 
a real structural canopy scene, together with the modelling steps. The principles of radiative transfer 
modelling for RGM and DART are presented to provide the basis for subsequent chapters. 

As an essential chapter, this chapter details the three 3D radiative transfer models mentioned 
in the introduction (section 1.2.1): SAIL, RGM and DART. Section 2.1 focuses on the vegetation 
remote sensing scene construction, together with their radiative transfer simulation for SAIL 
(section 2.1.1), DART (section 2.1.2) and RGM (section 2.1.3), respectively. One major limitation 
of RGM is the huge calculation load of view factors. Therefore, section 2.2 focuses on improving 
the RGM model: we speed up the RGM model using the multithreading technology based on the 
OpenACC. The results are compared and validated with the RGM and DART models. 

2.1   Radiative transfer models 

2.1.1   Scattering by Arbitrary Inclined Leaves (SAIL) model 

(1) Canopy structure 

Canopy radiation characteristics depend primarily on canopy structure. Different modelling 
techniques reflect the structure of the canopy at different scales. In the radiative transfer model, the 
vegetation canopy can be assumed to be a one-dimensional mixed medium (e.g. atmosphere and 
water), and the canopy units are randomly distributed, as shown in Figure 2.1. The canopy is 
infinitely uniform horizontally for the one-dimensional case with a limited vertical variation. The 
substrate of the canopy may be soil or another canopy (e.g. grass), and for simplicity, the canopy 
may be considered foliage only because the main photosynthetic tissue in the vegetation is leaves. 
When radiation is transmitted in the vegetation, it is more likely to interact with the leaves to change 
the radiation characteristics. The average effect of proportional distribution can summarise the true 
canopy consisting of leaves and branches. The physical properties of the leaf include leaf size, leaf 
orientation, leaf surface roughness, and leaf optical properties such as reflectivity, transmittance, 
and absorptivity. Since we pay more attention to the overall nature of the leaves, it is necessary to 
define some vegetation group characteristic parameters. They are a refined description of the 
vegetation canopy structure and optical properties and are the results of the statistical average of the 
distribution of all leaves. The main structural parameters of the canopy include the leaf area index 
(LAI) and the leaf inclination angle distribution function (LAD). 
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Figure 2.1 Schematic diagram of vegetation canopy in one-dimensional mixed media. The leaves 
are evenly and randomly distributed in the whole space. 

(i) Leaf area index 

When radiation is transmitted in the medium, the influence is greatly related to the density 
distribution of scatters and absorbers. For vegetation, it is the leaf.  

The leaf area index is defined as the one-sided area of a leaf per unit background area, i.e. the 
integral of the density distribution function ul(z) of the leaf area in the vertical direction (H) 

 1
0

LAI ( )d
H

u z z= ∫  ··································· (2.1) 

where the upper limit of integral H is the depth of vegetation canopy and the orientation of z is 
downward (z = 0 is the upper bound of vegetation and z = H is the lower bound of vegetation). Leaf 
area density refers to the sum of leaf (single-sided) area per unit volume. Its spatial distribution is 
called leaf area density distribution, and the unit is m-1. 

There are many models to describe ul(z). For example, under the assumption of plane parallel 
distribution of vegetation, the leaf area density distribution of many canopies tends to be higher and 
closer to the top of the canopy, and the simplest assumption is that the density function is constant 
along with the canopy height [such as ul(z) = L / H]. 

(ii) Leaf projection function 

The radiation transfer process of vegetation has a great relationship with the scattering and 
absorption medium-leaf orientation, unavailable in other fields. Therefore, geometric functions G(Ω) 
is defined to describe the average projection of the normal direction of leaves in the Ω direction. 

 ( )
2π 1

1 1 1 1
0 0

1( ) d
2π

G gΩ = Ω Ω ⋅Ω Ω∫ ∫   ························· (2.2) 

where gl(Ωl) is the probability density of leaf normal distribution, representing the probability 
of a blade in a unit solid angle near Ωl in its normal direction (taking the unilateral normal direction 
of its upper hemisphere space). gl(Ωl) has normalization condition 

 l l l
2π

1 ( )d 1
2π

g
+

Ω Ω =∫   ································ (2.3) 
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The integral region 2π+ is the upper hemisphere space because the blade can only calculate one 
side. 

Based on Eq.(2.3), we get 
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From Eq. (2.4), we get 

 
π
2
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0
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It is generally assumed that the zenith angle and azimuth angle of the normal distribution of 
the leaf are not correlated and uniformly distributed along the azimuth direction, so 

 l l l l l( , ) ( )g gθ ϕ θ=  ··································· (2.6) 

Based on Eq.(2.5) and Eq.(2.6), we get 

 
π
2

l l l l
0

( )sin d 1g θ θ θ =∫   ································· (2.7) 

Define gl
*(θl)=gl(θl)sinθl as LAD. The choice of LAD depends on the vegetation type. Some 

common forms of LAD are listed in Table 2.1. 
Table 2.1 Parameters of some common used LAD. 

Leaf angle distribution Function forms Mean leaf angle (°) 

Spherical gl
*(θl)=sinθl 57.30 

Uniform gl
*(θl)=2/π 45.00 

Planophile gl
*(θl)=2(1+cos2θl)/π 26.76 

Erectophile gl
*(θl)=2(1-cos2θl)/π 63.24 

Plagiophilel gl
*(θl)=2(1-cos4θl)/π 45.00 

Extremophile gl
*(θl)=2(1+cos4θl)/π 45.00 

 

(iii) Scattering phase function 

Like other radiative transfer theories, scattering phase function is also defined in vegetation, 
denoted as function. The function is also related to the leaf orientation at the scattering point and is 
not normalized. 

Firstly, the scattering phase function γl(Ωl, Ω'→Ω ) is introduced, and the ratio of scattering to 
Ω direction is expressed when the radiation in Ω' direction is incident to the blade with normal 
orientation Ωl. 

If the scattering characteristics of the blade can be seen as two different radius reflection and 
transmission hemispheres, namely: 

Incoming flux E+ can be written as:  

 0=π cos 'E L α+   ···································· (2.8) 

Projection of reflection radiance Lr(Ωl) is 

 ( )l 0 lcos ' c s= | o |rL L rα αΩ   ······························ (2.9) 
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Projection of transmission radiance Lt(Ωl) is 

 ( )l 0 lco | s |s ' cotL L tα α=Ω   ····························· (2.10) 

Based on Eq. (2.8), Eq. (2.9) and Eq. (2.10) 
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where α’=cos-1(Ω’·Ωl) is incidence angle, α=cos-1(Ω·Ωl) is exit angle, rl is the leaf reflectance, 
tl is the leaf transmittance. 

In order to characterize the scattering characteristics of leaf groups, a function Г must be 
introduced. At the scattering position z, the differential probability of the blade with normal Ωl is 
gl(z, Ωl) ∙ dΩl. When incidents with Ω', the incident intensity must also multiply by the factor |cosα'|. 
Therefore, we introduce: 

 l l l l l
2π

1 1( , ' ) ( , ) cos ' ( , ' )d
π 2π

z g z α γ
+

Γ Ω →Ω = Ω Ω Ω →Ω Ω∫   ··········· (2.12) 

If the leaf has double-hemisphere scattering characteristics, the group scattering phase function 
is 

 l l l l l l l l
1 1( , ' ) ( , ) cos cos d ( , ) cos cos d

2π 2π
z g z t g z rα α α α

+ −Ω Ω
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where the integral region Ω± satisfies ±cosα cosα' > 0, and Ω+ + Ω− = 2π+. 

(iv) Leaves size 

In addition to LAI and LAD, another feature to be considered in canopy radiative transfer 
modelling is the size of the leaves, which is often used as a driver of the hotspot correction function. 
It is because the hotspot effect is mainly explained based on shadow shading theory, whereas 
statistically speaking, the number of gapes is the same as the number of leaves, and the size and 
number of leaves uniquely determines the size of the gapes. 

(2) SAIL model radiative transfer simulation 

SAIL (light scattering by arbitrarily inclined leaves) model is extended from Suits model, 
which assumes that the canopy consists only of vertical and horizontal leaves and parameterizes 
canopy structure, sun, and observation geometry. The main difference between the SAIL model and 
the Suit model is that leaves replace the horizontal and vertical projections of the Suit model at 
arbitrary angles close to reality. Results show that the odd inflexion point disappears compared with 
the Suits model. 

The input parameters of the SAIL model include optical properties of leaves (i.e., reflectance 
and transmittance) and soil (i.e., reflectance), view geometry (sun zenith angle, view zenith angle, 
and relative azimuth angle between sun azimuth angle and view azimuth angle), Leaf area index 
(LAI), the average leaf angle (ALA). The output parameter is the canopy reflectance. The computer 
simulation code is open-source and provided by several language versions on the website 
(http://teledetection.ipgp.jussieu.fr/prosail/). 
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The continuous vegetation radiative transfer equation is a physical condition describing the 
value of the radiation radiance in any direction at any point within the vegetation layer that should 
be satisfied, together with the boundary conditions. This differential-integral equation is in principle 
solvable, requiring that the solution of such an equation must satisfy: (i) the determination of the 
phase function; and (ii) the determination of the boundary conditions. So far, it has not been possible 
to find a strictly analytical solution of the RT equation, only a variety of approximate solutions, each 
of which has its own adaptation conditions. 

SAIL (Scattering by Arbitrary Inclined Leaves) is one of the earliest canopy reflectance models 
to simulate the bidirectional reflectance factor of turbid medium plant canopies by solving the 
scattering and absorption of four upward / downward radiative fluxes. SAIL actually provides all 
four-stream optical properties (nine in total) of the canopy layer at the output Figure 2.2.  

The system of SAIL equations takes the following form: 

 S
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=   ···································  (2.14) 
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where z is the radiation transfer direction, K and k represent the extinction coefficient of light 
propagating along with the incident and observed radiation directions, respectively. ES is the top-
down transmitted direct radiation flux density, E0 is the radiation flux density in the direction of 
observation, E+ and E- represent upstream and downstream radiation flux densities, respectively; a 
is the extinction coefficient, b is the backscattering coefficient, c' is the scattering coefficient for 
forwarding scattering direct radiation and c is the scattering coefficient for backward scattering 
direct radiation. u, v and w represent the scattering coefficients of the radiance transmitted from E+, 
E- and ES to the observed direction, respectively. 

 

Figure 2.2 Flux tracking theory of SAIL model. It is based on the four radiative fluxes method. 
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2.1.2   Discrete Anisotropic Radiative Transfer Model 

The DART Model (https://dart.omp.eu/#/) is a physically-based 3D radiative transfer model 
that simulates the radiative transfer of electromagnetic radiation from visible to thermal infrared 
wavelengths in a realistic 3D structural scene. It has been developed at the CESBIO in Toulouse, 
France, since 1992 and was patented in 2003. It provides radiation balance and measurements from 
satellite, airborne and ground-based passive (imaging spectrometer) to remote sensing active light 
detection and ranging (LiDAR). The DART [28, 88, 103-105, 129-133] modelled the surface 
explicitly, so the spatial extent and accuracy of the simulation are limited only by the input data and 
available computational power. 

(1) DART scene creation 

DART scenes can be built with both voxels or facets, and the voxels representing vegetation in 
the DART model can be filled in two ways to represent the scattering properties, including turbid 
media or discrete triangular facets. A turbid medium is the light scattering of significant intensity 
due to irregular (randomly distributed) optical inhomogeneities in composition or generation. 
Scattering in a turbid medium causes a change in the initial direction of the light striking the medium. 
Whether using the turbid medium or triangular facets to fill the canopy depends primarily on the 
size of the trees relative to the resolution of the simulated scene (i.e., the voxels size that make up 
the scene). The triangular facets can be independent of the unit voxels that make up the scene, 
whereas the turbid medium depends on the unit voxels. For example, if the size of the simulated 
vegetation is much smaller than the resolution of the simulated image (i.e., the size of the constituent 
scene voxels), then it is preferable to use triangulated surfaces for filling. If the size of the simulated 
vegetation is much larger than the resolution of the simulated image, then both are possible. When 
the scene resolution is too large, and the canopy size is too small, care needs to be taken when filling 
with turbid media because no corresponding vegetation voxel can be created when the foliage makes 
up less than 50% of the unit voxel. 

DART supports three approaches to modelling the vegetation in a scene. The first is an entirely 
homogeneous ideal voxel consisting of a turbid medium or triangular surface, referred to as a 
homogeneous assumption canopy. The second is a tree with a simple geometric shape (which 
includes a canopy modelled by a voxel filled with a turbid medium or a discrete triangular surface), 
and the vegetation scene constructed in this way is said to be a simplified heterogeneous canopy. 
The third is a three-dimensional real structural canopy composed of facets, and the vegetation scenes 
constructed in this way are called real structural canopies. All three vegetation modelling approaches 
are addressed in this study. 

The simplified heterogeneous canopy scene creates a tree consisting of two parts: the trunk and 
the crown. The concept of "species" is used to manage the different tree types. Trees of the same 
species share some of the same characteristics, such as the way the canopy is modelled, the OP of 
the tree, the vertical hierarchical stratification of the defined canopy, the density of the leaf area 
volume, the size and shape of the canopy. The trunks are vertically stacked in an octagonal shape, 
both within or below the canopy. The crown can be defined in different shapes: ellipsoid, compound 
ellipsoid, truncated cone, trapezoid, and compound cone. For canopies with hierarchical layers in 
the vertical direction, the relative height of the layer, the relative leaf area voxel density of the layer, 
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the relative trunk diameter, the OP of the leaves and trunk, the proportion of clumping in the 
horizontal direction, and so on can be defined on each hierarchical layer. There are two types of 
infill methods within the canopy. The first method is the turbid medium canopy layer, which is 
composed of a turbid medium and void voxel. In the DART model, a voxel is created as a turbid 
medium voxel only when the percentage of leaves within the voxel reaches 50% or more of the total 
voxel. The user specifies the parameters that make up the turbid medium voxels, such as the leaf 
area index or leaf area voxel density, the branch area index, the leaf inclination index, etc. In addition, 
the proportion of the whole leaf voxels occupied by the leaf cannot exceed 100%, and any portion 
exceeding 100% will be preserved in the surrounding neighbourhood of other voxels. The second 
infill method is a discrete isosceles triangular facet, where the triangle's height is twice the height 
of the bottom edge, and the user can specify the total area or the total number of triangles within the 
canopy. It has been shown that whether or not short branches are simulated within the canopy has 
little effect on the total BRF [134]. Similar filling rules can also be applied to the creation of 
vegetation plots. 

DART's graphical user interface (GUI) provides three modes for users to set the spatial 
distribution, size and species of trees [104, 129, 135-138]. The first requires the user to enter the 
exact location and the exact size of each tree. Input parameters (i.e., location and size) need to be 
written in a text file, and this text file can be specified in the GUI of the DART. An example file 
called "trees.txt" is available in the DART's database folder and can be used as a basis for user 
modifications. In addition, the user can use some of the output parameters of the forest growth model 
to obtain the required geometry parameters in "trees.txt" and use them as input parameters to the 
DART model for the forest scene simulation. The second method requires the input of exact 
locations and random dimensions, where the location fields are entered as in the first method using 
a file and only the "Species_ID, POS_X, POS_Y" fields are retained, and the mean and standard 
deviation of the dimension fields are set in the DART GUI. The third method uses random positions 
and random dimensions. In this mode, no files are used, and the user can specify a small area (ellipse 
or rectangle) or the whole scene as a tessellation and define the intervals Δx and Δy between 
neighbouring nodes. The simplified heterogeneous forest canopy simulated in section 2.2.2 was 
created from the DART model using this method. 

In addition to the tree models created by the GUI, DART also supports 3D realistic structural 
plants constructed by other plants’ modelling software using facets, and the 3D plants composed of 
facets are also resolution independent from the simulated scene. 

(2) DART radiative transfer simulation 

DART consists of four main parametric modules: (1) the direction module, where the direction 
of radiation propagation in spherical space is pre-calculated; (2) the phase module, which pre-
calculates the OPs of facet and voxel of the existing earth surface and atmosphere (e.g., simulating 
the phase function of vegetation under turbid conditions) in order to minimise the computational 
time required to simulate radiative transfer; (3) the maket module, which simulates the optical and 
thermal properties of 3D buildings and scenes; (4) the DART model, which simulates the radiative 
transfer. 

In addition to these four modules, DART includes a simulation sequencer and many tools, such 
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as the ability to simulate broadband satellite imagery, generate schematic Digital Terrain Model 
(DTM), integrated bidirectional surface reflectance models from Hapke [24] and RPV [15], Fluspect 
and PROSPECT [47] optical leaf models, etc. The format of the input data depends on the nature of 
the data: Structured Query Language (SQL) databases of OPs of materials, solar irradiance and 
physical properties of the atmosphere, obj files of 3D scenes (e.g., city geometry databases, trees, 
etc.), simple text files of solar irradiance measured in the field, etc. On the other hand, the DART 
model is controlled via a GUI or directly via scripts written in Python. 

The N-flux tracking method used by DART solves the radiative transfer equations along all 
previously defined discrete directions. The general equation describing the propagation of a single-
band stationary electromagnetic wave of wavelength λ (natural light is the sum of monochromatic 
waves), at position r along direction Ω, with luminosity L(r, Ω) in a medium of temperature T is 
described as (for simplicity of notation, no spectral dependence is specified) 
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where ξ, η and µ are the directional cosines of the propagation direction along the x, y and z 
axes. αa(r,Ω) is the absorption coefficient of the medium. αd(r,Ω) is the diffusion coefficient of the 
medium. αe(r,Ω) is the extinction coefficient of the medium (diffusion + absorption). P(r,Ω'→Ω) is 
the normalised phase function. LB(T) is the Planck illuminance. In the case of discrete directions, 
this equation can be written as 
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where n and m are both directions, and Ndir is the total number of directions, L(r,Ωn) is the 
radiance of the point r in the direction of Ωn. To ensure a suitable discretisation of the equation, the 
value of the solid angle ΔΩn must be sufficiently low, depending on the degree of anisotropy of the 
phase function and the inhomogeneity of the medium under consideration. The flux-tracking mode 
consists of light rays that carry a stream of spectral energy in a limited number of directions. In 
heterogeneous 3D scenes [28] and atmospheres [139], it is based on an exact kernel and discrete 
longitudinal coordinate approach using iterative and convergent methods. All or part of the radiation 
intercepted by the scene elements in the ith iteration is diffused in the next i+1st iteration. The 
iterative process stops when the relative difference in scene exitance between two successive 
iterations is less than a previously specified threshold. In addition, if the angular energy of the light 
is less than the average angular energy of the scene diffused in the first iteration multiplied by a 
factor chosen by the user, the light is stopped. 

The general scheme for modelling remote sensing sensor measurements includes five main 
steps: (1) Calculation of scene illuminance: the transmission and scattering of solar radiation and 
thermal emission from the atmosphere give a direct and diffuse illuminance of the scene under 
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consideration (at BOA, Top of the atmosphere (TOA) and other specified sensor levels in the 
atmosphere). (2) Calculation of the radiative transfer in the model: the model and its elements 
iteratively scatter the radiation they intercept and the thermal radiation they emit. The radiation 
balance and images can be stored at the end of each iteration. (3) Calculation of the coupling 
irradiance: the exitance of the landscape at the BOA level results in backscattered energy from the 
atmosphere. (4) Calculation of the Earth-Atmosphere Coupling: the energy backscattered by the 
atmosphere is scattered back by the Earth scene. This scattering is calculated with a single iteration, 
but an extrapolation based on step 2 allows multiple scatterings to be considered. The Earth-
Atmosphere coupling has been successfully cross-comparisons with simulations of the MODTRAN 
atmospheric radiative transfer model. (5) Calculation of radiation at TOA and sensor levels: transfer 
of upwelling BOA radiation at TOA and sensor levels into the atmosphere. A more detailed 
theoretical presentation of the DART model can be found in the literature [28]. 

The DART model was validated by comparison with measurements [140] and other 3D 
reflection models such as FLIGHT [33], Spreading Of Photons For Radiation Interception (SPRINT) 
[141], Raytran [35] in Radiative Transfer Model Inter Comparison (RAMI) studies. It is being and 
has been used successfully in many scientific applications, including the development of satellite or 
inversion methods of aircraft reflectance images [88, 142], satellite sensor design such as NASA 
DES Dynl, CNES Pleiades, CNES LIDAR missions [143], estimating the effect of canopy structure 
on satellite image texture [140, 144], modelling the 3D distribution of photosynthesis in plant 
canopies [145-147], designing of new chlorophyll estimation indices for coniferous forests [145], 
in tropical forest research [148-150], etc. 

2.1.3   Radiosity-graphics based model 

(1) Radiosity-graphics based model scene building 

RGM uses the ELSYS to build remote sensing scenes. The ELSYS originated at the State 
University of New York (SUNY), is a language interpretation system written in C. It is similar to 
the compilers widely used in programming. ELSYS accepts source files with the suffix ".lsy" for 
compilation. The outputs are files with the suffix ". in", containing the vertex 3D coordinates of the 
facets that make up the remote sensing scene. ELSYS is an executable program in a Disk Operating 
System (DOS) environment and therefore has no code editing interface. Any text editing software 
(Textbook, Notepad++, etc.) can be used to edit the input file (*.lsy) and output files (*.in). Besides, 
it supports compilation errors. The compilation process is similar to that of other compilers and 
consists of: word scanning → assignment statement identification → syntax pre-analysis → syntax 
analysis → variable separation → instruction sequence generation → instruction execution. 

ELSYS uses facets to build realistic structures of trees and therefore needs to model the realistic 
3D structure of trees using its specific syntax rules through fractal principles. The grammar rules of 
ELSYS are presented in Appendix.A. Here the basic programming idea is explained using the 
example code provided by ELSYS for a broadleaf tree: the structure of a tree is fractal in nature, 
with the tree consisting of roughly two parts: the crown and the trunk. The crown is made up of 
different levels of branches, and the branches are made up of poles, twigs and leaves. Therefore, the 
programming is based on the idea of moving from the general to the local, abstracting the whole 
scene into major parts to build the scene, and then replacing the general part with details to subdivide 
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the scene. As shown in Figure 2.3, the scene is divided into the ground part and the tree part. The 
ground part is made up of many small squares. A predecessor “soil” statement is used to determine 
the ground space position, and then the “soil” statement is replaced with a subsequent “quarter” 
statement to determine precisely how many small squares consist of the ground. Finally, the “quarter” 
statement is replaced with a subsequent “tile” statement to draw each small square. 

 

Figure 2.3 Iterative diagram of the tree structure. The whole scene comprises trees and soil, and 
trees comprise trunk and crown. 

The tree part is determined in the “tree” statement by determining the tree's exact location in 
space and then dividing the tree into two major parts: the “crown” statement and the “trunk” 
statement. The trunk is first determined in the predecessor “trunk” statement by determining the 
number of octagons is stacked vertically, then the “trunk” statement is replaced by the successor 
“layer” statement to specify each of the trapezoidal sides of the octagons, all of which are enclosed 
together to form the bark. In contrast, the bottom and top sides of the octagons are not drawn. Finally, 
the “layer” statement is replaced by a subsequent “facet” statement to draw each trapezoid. The 
“crown” statement divides the crown into three layers based on the vertical height of the trunk: top, 
middle and bottom. The branches inclination angle varies at each level: the branches at the top and 
bottom of the crown extend along the zenith direction, while the branches in the middle of the crown 
extend horizontally. The “crown” statement is replaced by a subsequent “branch” statement to 
specify the length of each first-level branch in each of the three tiers crown. The middle of the crown 
is longer than the top and bottom of the crown. The succeeding “branch1” statement replaces the 
“branch” statement to implement the combination of primary and secondary branches (a secondary 
branch “twig” statement grows outward between every two primary branch poles), the “pole” 
statement and the “twig” statement are used to draw the square to represent the branches. In addition, 
the “twig” statement is required to determine the position of the leaves in space. The subsequent 
“leaf” statement replaces the “twig” statement to draw the leaves on the secondary branch. The leaf 
consists of two parts: represented by a rectangle (the “stem” statement) and consisting of triangles 
and trapezoids (the “leaf2” statement).  

In addition, the primary branches grow on the main trunk, and secondary branches grow on the 
primary trunk, with all leaves growing on the secondary trunk only. The leaves grow on the twig, 
which grows on the secondary trunk. All the branches are consisted of rectangles, with a secondary 
branch growing between every two primary branches. In summary, the scene can be simplified to 
the form shown in Figure 2.4. The single tree remote sensing scene in section 2.2.1 was modelled 
using this method based on ELSYS. 
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Figure 2.4 Tree structure diagram created using ELSYS. 

(2) Radiosity-graphics based model radiative transfer simulation 

Radiosity has been widely used in reflectance simulations of the 3D real scenes, and its 
theoretical core is the radiosity equation. The radiosity equation describes the radiative energy 
balance within a scene containing N discrete facets, assuming that all facets comprising the scene 
are Lambertian and have specific OPs (reflection and transmission). The radiant flux density 
(radiosity) leaving a facet consists of three components: the reflected flux density, the transmitted 
flux density and the emitted flux density obtained after being irradiated by the sun (Figure 2.5). 

 
Figure 2.5 Schematic diagram of the radiosity model principle. The green arrow represents the 
incident energy, and the yellow arrow represents the outgoing energy. 



PhD Thesis, Université de Toulouse 

32 

The radiance Bi for a single differential facet dSi can be defined as 
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where Bi is the radiance (W∙m-2) per unit facet dSi. N is the total number of facets that make up 
the scene, and since each facet has both positive and negative faces, the total number of faces to be 
counted is 2N. χi represents the OPs per unit facet i, which can be expressed as reflectance ρi or 
transmittance τi, depending on the relative positions of facet i and facet j 
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where ni is the normal vector of facet i, and nj is the normal vector of facet j. Ei is the emitted 
flux density that the sunlight irradiates to facet i such that the facet has, which is defined as 
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where Si is the total area of the facet i, (x,y) is a point in the local coordinate system defined in 
terms of facet i, and Ei(x,y) is the emission flux density at that point, which is defined as 
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where HID(x,y) is the occlusion coefficient, which is 0 if there is another facet between position 
(x,y) of facet i and the sun, and 1 otherwise (no occlusion). E0 is the incident solar flux density. s is 
the direction of solar incidence. 

d dj iS SF →  is the view factor, which represents the proportion of the radiation flux density 

(unitless) leaving the infinitesimal surface dSj and reaching the infinitesimal facet dSi, and is 
calculated as 
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where θi and θj are the angles formed by the line between the normal and facet i and facet j, 
and r is the distance between the two facets. A more detailed description of the principle of the 
radiosity model and its derivation can be found in the literature [36]. 

2.2  Simulating Canopy BRF with Radiosity-Graphics based Model 

(RGM) at Pixel Scale based on OpenACC 

As one type of computer simulation model, the facet-based radiosity fully preserves the spatial 
correlations of the canopy, the gap fraction and clumping effect and so on within the canopy in 
simulating the radiative transfer between facets, which is an excellent solution to the shortcomings 
of traditional 1D radiative transfer models [151]. However, the view factor calculation has been the 
main bottleneck limiting the radiosity models. Since each facet needs to calculate the view factor 
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with all other facets in the scene, if the number of facets making up the scene is too large (50,000 
facets), its calculation will be very slow or even crash [152]. It directly limits the application of 
radiosity models in the field of remote sensing. For this reason, Huang et al. [152] proposed the 
Radiosity Applicable to Porous Individual Objects (RAPID) model by simplifying the facets that 
make up the scene and using porous individual thin objects as a basic unit instead of facets. This 
model has been successfully applied to simulate canopy reflectance at the pixel scale [153]. 
However, RAPID cannot be applied to real 3D structural remote sensing scenes. Based on the GPU 
acceleration technology, the calculation part of the view factors of the RGM model [154] was 
rewritten in parallel to increase the simulation speed of the RGM model while increasing the 
maximum number of computable facets. Based on both real and simplified canopy scenes, the 
simulated reflectance was verified in both the principal plane (PP) and the cross-principal plane (CP) 
observation directions. 

 
Figure 2.6 Modelling of a real structural mono-tree scene using ELSYS. (a) Real structure single 
tree; (b) ELSYS modelling of the single tree. 

 

2.2.1   Reflectance simulation of realistic structural single tree canopy 

The purpose of the real structural single tree validation was to evaluate the computational speed 
of the improved RGM model. Due to the limited computational power of the original RGM model, 
we selected a previously used single tree constructed with a certain number of facets as the research 
target. The previously used single young elm tree in Chaoyang Park, Changchun, Jilin Province 
[155], was selected as the study subject (Figure 2.6.a), and the detailed data collection and 
processing flows can be found in the original literature. 

The basic geometric parameters of the elm were obtained using multiple measurements for 
averaging, including basic parameters such as total tree height, trunk height, trunk radius, crown 
length, crown width, number of levels, branch length and branch inclination, number of twig leaves, 
leaf size and shape (Table 2.2). The length units were measured using a leather ruler and straightedge, 
and the angle units were measured using a protractor and compass. LAI and ALA were measured 
using the LAI-2000 plant canopy analyzer. Three-dimensional modelling of a single elm was 
achieved using the collected geometric structure parameters as input variables to the ELSYS (Figure 
2.6.b). Figure 2.6, Table 2.2, Table 2.3 and Table 2.4 were all cited from the literature [155]. 
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Table 2.2 Measurement parameters of the elm 
Parameters Value Parameters Value 

Height (m) 

Tree height 1.31 

Crown width 

(m) 

East 0.50 

Trunk height 0.77 South 0.65 

Canopy height 0.56 West 0.53 

Height below canopy 0.69 North 0.53 

Diameter at breast 

height (m) 

Base diameter 0.16 Average stem length (m) 0.0056 

Diameter at breast 1 0.15 Average leaf inclination 59.85° 

Diameter at breast 2 0.14 Leaf area index 5.27 

Diameter at breast 3 0.12 Number of twig leaves 12 

Diameter at breast 4 0.12 Average branch inclination 76.4° / 132.6° 

 
Table 2.3 Components optical properties of the single tree scene 

Grouping Bands 
Blue 

(440.0nm) 

Green 

(550.0nm) 

Red 

(660.0nm) 

NIR 

(860.0nm) 

Leaf 
Reflectance 0.062 0.119 0.107 0.349 

Transmittance 0.029 0.166 0.096 0.573 

Trunk 
Reflectance 0.268 0.328 0.388 0.580 

Transmittance 0.000 0.000 0.000 0.000 

Stem 
Reflectance 0.030 0.060 0.096 0.347 

Transmittance 0.000 0.000 0.000 0.000 

Grass 
Reflectance 0.039 0.108 0.059 0.433 

Transmittance 0.000 0.000 0.000 0.000 

 
 
Table 2.4 Input parameters of the RGM model in the real structural single tree scene 

Parameters Value 

Scene length (cm) 120 

Scene width (cm) 120 

Solar zenith angle (°) 53.04 

Solar azimuth angle (°) 156.44 

Skylight ratio 0.001 

Number of hemispheric divisions of the sky 40 

View zenith angle (°) 0 to 70 at 5° intervals 

View azimuth angle (°) 156.44, 336.44, 66.44, 246.44 

View solid angle (°) 0.002 

Based on the elm's three-dimensional structural model and each component's OP, the RGM 
model was used to simulate the BRF of the elm canopy in the direction of the solar PP and CP with 
the parameters shown in Table 2.4. 
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Figure 2.7 Comparison of the simulated BRF of real structural single tree scene using RGM before 
and after acceleration. (a) Blue band in the principal plane direction (PP); (b) Green band in the PP 
direction; (c) Red band in the PP direction; (d) NIR band in the PP direction; (e) Blue band in the 
cross-principal plane (CP) direction; (f) Green band in the CP direction; (g) Red band in the CP 
direction; (h) NIR band in the CP direction 

 
The BRFs of a single elm scene in the solar PP and CP directions were simulated using the 

RGM model before and after the speedup, respectively, to validate the improvement in the 
operational speed and the simulated reflectance of the RGM. The two simulations used identical 3D 
scenes with exactly the same input parameters. The total number of facets in the 3D scene 
constituted by the young elm modelled by the ELSYS was 61,792, which was the upper limit the 
RGM model could accommodate before the improvement [152]. The 3D scene served as one input 
parameter in the RGM model to simulate BRFs. From Figure 2.7, it can be seen that in the solar PP, 
good agreement was observed between the simulated BRF values of the canopy in the visible and 
NIR bands, with a clear hotspot signature and an overall more significant and more pronounced 
bowl edge effect in the NIR band. In the solar CP, good agreement of simulated BRFs was also 
achieved, with a clear symmetry at the 0° observation angle. 

In addition, the computing speed of the models before and after the improvements was 
compared. The experiments were conducted using a DELL laptop, Windows 10 home edition system 
with an Intel (R) Core (TM) i5-9300 HCPU @2.40 GHz and 32G BRAM. The time required for the 
BRF simulation before the improvement was 3 hours, 29 minutes and 53 seconds (12593 seconds) 
and the time required for the BRF simulation after the improvement was 17 minutes and 43 seconds 
(1063 seconds). 

Figure 2.8 further analyses the simulated reflectance difference before and after the parallel 
computing improvements. Scatter plots were drawn, and coefficient of determination (R2) and Root 
Mean Square Error (RMSE) were calculated using the reflectance of the pre-improved simulation 
as the horizontal axis and the post-improved simulation as the vertical axis. The results indicate that 
the differences were minor. 
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Figure 2.8 Accuracy validation of post-accelerate RGM model for real structural single tree scene. 
(a) Blue band; (b) Green band; (c) Red band; (d) NIR band 

 

2.2.2   Reflectance simulation of simplified heterogeneous canopy scene 

The improved RGM model has substantially increased its computational power, allowing for 
simulations at the pixel scale. Therefore, the DART model, also computationally powerful, was 
chosen to validate the simulation results. The pixel-scale validation was based on the official DART 
work package (WP6B). The work package can be downloaded via the website 
(https://dart.omp.eu/#/doc). The OPs of the components were derived from the corresponding 
components in the DART database (Table 2.5). The input parameters were slightly modified to fit 
the study objectives (Table 2.6). The 3D scene at the pixel scale was a mixed scene consisting of 
trees and soil, where the trees consist of trunks and canopies. The trunk was a square octagon, and 
the crown was filled with small triangles distributed homogeneously. All trees had identical 
geometry and were randomly distributed in the horizontal scene (Figure 2.9). The entire 3D scene 
was generated from the DART model and inputted into the RGM model. 

Since the total number of facets that make up the scene was 580817, which was approximately 
eight times the amount of operations that the original RGM could handle [152]; therefore, the DART 
model was used to validate the pixel scale scene. From Figure 2.10, there was a substantial similarity 
between the RGM simulation results and the DART simulation results, with the overall shape of the 
curves being nearly the same and the trend of the BRF with the observed azimuth being consistent 
with each other overall. The best agreement was found in the NIR band, and the worst was found in 
the blue band. In the blue band, the BRF simulated by the RGM model was slightly lower than that 
of the DART model. 

 
Table 2.5 Components optical properties of the simplified heterogeneous canopy scene in the blue, 
green, red and NIR band. 

Grouping Bands 
Blue 

(400.0 nm) 

Green 

(560.0 nm) 

Red 

(660.0 nm) 

NIR 

(900.0 nm) 

Leaf 
Reflectance 0.056 0.102 0.049 0.554 

Transmittance 0.041 0.075 0.036 0.410 

Trunk 
Reflectance 0.103 0.190 0.199 0.396 

Transmittance 0.000 0.000 0.000 0.000 

Grass 
Reflectance 0.004 0.154 0.232 0.351 

Transmittance 0.000 0.000 0.000 0.000 
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Figure 2.9 Simplified heterogeneous canopy scene. Trees are randomly distributed in the scene, and 
small triangles fill the crown with uniform random distribution. 

 
Figure 2.11 further analyses the differences in simulated reflectance between the RGM and 

DART. The scatter plot was plotted, and R2 and RMSE were calculated using the DART simulated 
reflectance as the horizontal axis and the improved RGM simulated reflectance as the vertical axis. 
The correlation coefficients of canopy BRF values in the visible and NIR bands were 0.38, 0.45, 
0.83 and 0.96, respectively, with RMSEs of 0.0033, 0.0050, 0.0041 and 0.0141, respectively. The 
results showed that the simulated reflectances between the RGM and DART models were in good 
agreement. 

 

 
Figure 2.10 Simulated BRF of RGM and DART model with simplified heterogeneous canopy. (a) 
Principal plane (PP) direction in the blue band; (b) PP direction in the green band; (c) PP direction 
in the red band; (d) PP direction in NIR band; (e) Cross-principal Plane (CP) direction in the blue 
band; (f) CP direction in the green band; (g) CP direction in the red band; (h) CP direction in NIR 
band. 
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Table 2.6 Input parameters of the simplified heterogeneous canopy scene. 
 Category Parameters Value 

Radiative 

transfer 

Scene 

Length (m) 20 

Width (m) 20 

Resolution (m) 0.5 

Sun direction  

Solar zenith angle (°) 30 

Solar azimuth angle (°) 315 

Skylight ratio 0.3 

Sky hemispheric division number 40 

Observation 

direction  

View zenith angle (°) 0 to 85 at 5° intervals 

View azimuth angle (°) 45, 135, 225, 315 

View solid angle (°) 0.002 

Three-

dimensional 

scenes 

Trees 

Distribution 
Random distribution with a 

specified interval 

Occurrence probability  0.9 

Leaf size (m) 0.0028 

Leaf area index 4 

Horizontal tree spacing (m) 4 

Longitudinal tree spacing (m) 5 

Tree trunk 

Height of tree under the crown (m) 5 

Diameter at breast height (m) 0.4 

Tree height in the crown (m) 3 

Crown 

Canopy shape ellipsoidal 

Crown height (m) 6 

Crown width (m) 4 

 
Figure 2.11 Accuracy validation of the RGM model for simplified heterogeneous canopy. (a) Blue 
band; (b) Green band; (c) Red band; (d) NIR band. 

Summary 

As a basis for the subsequent chapters, three radiative transfer models (SAIL, RGM and DART) 
are introduced briefly. Two methods to build the 3D remote sensing scene, including ELSYS and 
DART GUI, are introduced briefly. One improvement method of RGM using OpenACC to lift 
calculated load and running speed is introduced. 
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(1) The RGM model uses the ELSYS platform to build the 3D scene, an L-system-based 3D 
modelling platform similar to a compiler but without a GUI. The RGM considers the flux density 
leaving the facets consisting of the reflected flux density, the transmitted flux density, and the 
emitted flux density after sun irradiation and calculates the radiative transfer. 

(2) The DART model supports using a voxel or a facet as the basic unit to build a scene. 
Several simple 3D scenes can be generated in the GUI of the DART model. In addition, the DART 
model supports the import of 3D scenes composed of facets from external sources. The DART model 
uses the N-flux tracking method to calculate the radiative transfer. 

(3) Take RGM as an example; it shows that the efficiency increase is possible without losing 
the quality of the simulated signal for radiative transfer simulation. Compared to the pre-acceleration 
RGM model, the parallel accelerated RGM has an R2 of up to 0.97 in the solar PP and CP in a 
realistic structural single tree scene. Also, the parallel accelerated RGM model has an R2 of up to 
0.96 in the NIR band compared to the DART model in a simplified heterogeneous forest scene. The 
RGM model takes 91.6% less time to simulate and can tolerate a minimum of 840% increase in the 
maximum number of facets. 
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Chapter 3  Continuous-time phase 

reflectance simulation of the realistic 

structural maize scene 

The maize growth equation is coupled with a 3D realistic structural maize scene simulation 
based on the ELSYS platform. A static 3D maize modelling model developed based on the ELSYS 
platform was driven by coupling the maize growth equations presented in the literature [156, 157]. 
The results were based on a 4D real structural maize growth equation driven by cumulative degree 
days developed on the ELSYS platform. The reflectance simulations are carried out using RGM and 
DART and cross-validated, respectively.  

Section 3.1 illustrates the three-dimensional maize growth equation and the way to cooperate 
it with the static maize modelling model. Section 3.2 shows the maize canopy's continuous-time 
phase reflectance simulation results using the DART and RGM model based on this real structural 
maize canopy scene and the homogeneous assumption canopy scene. Differences in FC between 
this real structure scene and the homogeneous assumption scene over the same growing period 
(same LAI) were compared, the corresponding canopy reflectance was simulated using SAIL, RGM 
and DART and analyzed for comparison. 

3.1  3D maize scene modelling 

The maize growth equation [156] uses a simple geometric description of plant structure and a 
small number of canopy variables. The equation uses maximum leaf area per plant, the maximum 
number of leaves, plant density, row spacing, maximum plant height and thermal time-driven plant 
growth stage as input parameters to simulate the maize canopy. The model can be used in various 
situations without having extensive a priori knowledge of the geometric structural parameters of the 
canopy. The time variables are based on the maize canopy leaf sequence N proposed in the literature 
[158]. N is calculated based on two variables: cumulative degree day (Td) since planting and thermal 
spacing (Td interval between the appearance of two consecutive leaves). Leaf stages can then be 
converted to calendar dates. Only the necessary information is provided here. For a detailed 
description, see the literature [156, 157]. 

For a leaf with order N, the area of the leaf SN is 

 
d

max

1 1 sin
2 a 2N

NS
N

π π     = + ⋅ −      

 ·························· (3.1) 

where a and d are fixed parameters 0.59526 and 1.4158. Nmax is a user-specific input parameter 
that means the maximum number of leaves a single maize plant has. After that, the leaf area needs 
to be normalized to SN' 
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where Smax is a user specifies input parameter that means the maximum total leaf area produced 
by a plant. The basal width of the leaf WN is 

 width,lengthN NW S R′= ⋅  ································· (3.3) 

where Rwidth,length is the leaf base to leaf length ratio and is a user-defined input parameter (here, 
we set it as 0.35). So, the leaf length LN is 

 
width,length

N
N

S
L

R

′

=  ···································· (3.4) 

Some maize leaves may break. For leaf sequence numbers less than 12, there is a 15% 
probability of breaking; for leaf sequence numbers greater than or equal to 12, there is a 25% 
probability of breaking. If a leaf breaks, the breakage is randomly located between 0.25 and 0.95 
times the LN, and the probability distribution follows a uniform distribution [157]. 

The inclination angle of the leaf θN is 

 ( )max randrandnN NSθ θ θ θ′′= ⋅ ∆ + +  ·························· (3.5) 

where Δθ is the difference between the first leaf's inclination and the leaf's inclination with the 
largest leaf area (fixed at 20°). θmax is the maximum leaf inclination (fixed at 45°), and the randn(θrand) 
term introduces some randomness (-θrand / 2 < rand(θrand) < θrand / 2, θrand fixed at 5°). S''N is the 
normalized difference between the largest and the smallest leaf, calculated as 

 ma
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xN N
N

N

S SS
S

′ ′
′′

′

−
=  ··································· (3.6) 

The leaves grow alternately on both sides of the plant, and the distribution of azimuth angle 
has a Gaussian standard deviation of φrand (fixed at 5°) at random. 

The vertical height HN of a leaf with leaf order N is [157] 
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where H1 is the height of the first leaf of the maize, which takes a fixed value of 0.015 m, and 
Hmax is the user-defined maximum plant height. The coefficient c is calculated as follows 

 max max3.7 0.1 0.36c N S= − ⋅ − ⋅  ····························· (3.8) 

The width of the base stem (RN) at order N is calculated as a linear function: 

 max 1
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N
 −

= + ⋅ − 
− 

 ···························· (3.9) 

where R1 is the width of the stem in the first stage of the leaf, which is equal to 0.002, and RNmax 
is the maximum width of the stem proportional to Hmax, and is calculated as 

 max max0.008NR H= ⋅  ································· (3.10) 
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The number of leaf sequences N present in the plant was determined based on the degree days 
required to grow the first leaf, the degree days required to grow the second leaf and the degree days 
the leaf could survive. According to Eq. (3.1) to Eq. (3.10), the relevant geometric parameters were 
calculated, and these geometric parameters were applied to a static 3D maize modelling model 
developed based on ELSYS. 

ELSYS [159] is described in Appendix. A. For maize models developed using ELSYS, the 
input parameters were geometric parameters, including the maximum height of the plant, the radius 
of the top stem, and the radius of the bottom stem. Leaf width and length, leaf attachment point 
height, leaf breakpoint length and leaf inclination angle were all required. Individual maize plants 
were then modelled, and the entire maize scene was reproduced by replicating individual maize 
plants at specified locations according to plant density and row spacing (Figure 3.1). 

 

Figure 3.1 Flowchart of maize 3D scene modelling and reflectance simulation. Light ellipses 
indicate input parameters, dark ellipses indicate output parameters, and white ellipses indicate 
intermediate parameters. Nmax, Td, Smax, θmax, Hmax were entered into the maize growth equation to 
calculate the geometric parameters of a single maize plant at a given Td, including leaf order (N), 
base stem width (RN), leaf basal width (WN), leaf length (LN), leaf vertical height (HN), leaf 
inclination angle (θN) and leaf azimuth angle (φN). Leaf breakpoint location (Pbreak) was then 
calculated from N and LN. Pbreak, N, RN, WN, LN, HN, θN and φN were input into the ELSYS model to 
simulate the 3-dimensional structure of the single maize. Finally, the generated single maize 
structures, D, drows, SZA, Sun Azimuth Angle (SAA), View Zenith Angle (VZA) and View Azimuth 
Angle (VAA), were input into the radiative transfer (RT) model to create remote sensing scenes to 
simulate canopy bi-direction reflectance factor (BRF). See Table 3.1 for the meaning of 
abbreviations. 
 

ELSYS output files were stored in a specific format and can be used by RGM or Thermal 
Radiosity-Graphics based Model (TRGM) models. Here, the format was converted 
programmatically to a standard 3D structure file with the suffix ".obj" and applied to other radiative 
transfer models like DART. 

The 3D maize structure was modelled using the ELSYS platform. Figure 3.2 shows the growth 
stages of maize at six equally spaced consecutive time series. The maize canopy was expressed in 
its true LAI and FC for a qualitative description of maize growth. Trends in FC and true LAI with 
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Td were shown in Figure 3.2.g. True LAI and FC rose significantly between Td = 100 and Td = 1100, 
a period when maize was growing. After a long period of stability (Td = 1150 to Td = 1600), maize 
declined (old leaves began to fall off) after Td = 1600. 

 
Figure 3.2 Growth scenes of maize at equally spaced continuous time series. (a) Degree days (Td) 

= 300; (b) Td = 600; (c) Td = 900; (d) Td = 1200; (e) Td = 1500; (f) Td = 1800; (g) Variation of true LAI 
and Foliage Coverage (FC) with cumulative degree day. True LAI is plotted on the left y-axis, while 
FC is plotted on the right y-axis. FC shows a significant difference between the homogeneous and 
heterogeneous canopy, especially with the increase of LAI. Maize has gone through periods from 
emergence to male anthesis. Withering is simulated by the gradual loss of the bottom leaves. The 
DART model displays the 3D scenes. 
 

FC witnessed a considerable difference during the same growth period even though 
homogeneous and real structure maize canopies shared the same true LAI. For example, at the 
growth stage (Td = 100 to Td = 1100), the absolute difference between homogeneous and real 
structure maize canopy ranged from 0 to 0.25. Then, during the stabilization stage (Td = 1150 to Td 

= 1600), the absolute difference ranged from 0.26 to 0.33. Finally, during the decay stage (Td = 1600 
to Td = 1950), the absolute difference ranged from 0.27 to 0.33. Moreover, the FC of the 
homogeneous canopy was approximately 1.5 times greater than that of the real structure maize 
canopy for the same true LAI. There was a significant difference in FC between homogeneous and 
real structure maize canopies, especially for fully developed plants with high LAI (Figure 3.2.g). It 
implied that the homogeneity assumption leads to an overestimation of FC. 
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Table 3.1 Input parameters for maize scene modelling and canopy reflectance simulation. 
Parameters Value 

 Spectral parameters* Red NIR 

Rsoil Soil reflectance (%) 13.6 21.6 

Rleaf Leaf reflectance (%) 8.48 46.58 

Tleaf Leaf transmittance (%) 0.62 47.59 

 Maize Scene  

Nmax Maximum number of leaves produced 22 

Smax Maximum total leaf area produced by a plant (m2) 0.5 

D Plant density (number of plants / m2) 8.8 

drows Row spacing (m) 0.8 

Hmax Maximum canopy height (m) 2.5 

θmax Maximum leaf inclination (°) 45 

Td Cumulative degree day difference 100-1950 (step 50) 

 Sun-target-observation geometry  

SZA Sun zenith angle (°) 45 

SAA Sun azimuth angle (°) 225 

VZA View zenith angle (°) 0 

VAA View azimuth angle (°) 0 
*The optical properties (OPs) of the leaves were selected from Leaf Optical Properties Experiment 93 (LOPEX93) 

data. 

 

3.2  Multi-temporal simulation analysis of maize canopy reflectance 

Three vegetation radiative transfer models were used: The Scattering by Arbitrarily Inclined 
Leaves (SAIL) model [26] simulated BRFs based on a homogeneous canopy, and the accelerated 
RGM model (for simplicity, we call it the RGM model after this text) simulated BRFs based on a 
3D real structural canopy. BRFs based on homogeneous and real structural canopies were simulated 
using the DART model and compared with the SAIL and RGM simulations. The geometrical 
parameters and soil OPs of the scenes were taken from the literature [160]. Leaf OPs were obtained 
using reflectance and transmittance data of maize leaves from the Leaf OPs Experiment 93 
(LOPEX93) database. The size of the voxels along the x, y and z axes was set to 0.1 m to ensure that 
the true LAI ("sum of the true LAI" / "number of voxel layers") of each voxel in the homogeneous 
scene was always less than 0.5 [3]. There were many definitions of LAI, such as "effective LAI" or 
"true LAI". Here, LAI refers to "true LAI", defined as "the area of green leaves per unit area on one 
side". The LAD was spherical in the homogeneous canopy simulations, a typical value for 
describing maize canopy [160]. At the same Td, the true LAI of a homogeneous canopy was the 
same as that of a real structure canopy. 
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Figure 3.3 The simulated Bi-directional Reflectance Factors (BRFs) in (a) red and (b) NIR spectral 
bands in the hotspot (HS), the darkspot (DS), and the nadir for homogeneous and heterogeneous 
canopy as a function of Td. SAIL simulates the homogeneous canopy reflectance, and RGM 
simulates the heterogeneous canopy reflectance. DART simulated homogeneous (DART homo) and 
heterogeneous (DART hete) data are used to validate the results of SAIL and RGM separately. 
Overestimation of the homogeneous canopy's simulated reflectance in the nadir direction in the NIR 
band is observed. 

 
Figure 3.3 shows the comparison of the BRFs for the homogeneous and heterogeneous (or 3D 

real structure) maize scene simulations in the red and NIR bands along with the three observation 
angles (hotspot, darkspot and nadir direction) that were considered to provide richer information on 
the canopy structure. There was a good agreement between SAIL (red line) and DART homogeneous 
canopy (blue line) for the three observation angles in the red band. However, the RGM (light green) 
and DART heterogeneous canopy (dark green) were less consistent than the SAIL and DART 
homogeneous canopy in the red band, especially in the nadir direction. This inconsistency may be 
due to the different radiative transfer modules of the different models. The consistency in the NIR 
band is not as good as the red band, which may be due to the strong multiple scattering effects in 
the NIR band. 

There was a significant similarity between homogeneous and heterogeneous canopies in the 
red band's hotspot observation direction (solid line). However, there were minor differences between 
homogeneous and heterogeneous canopies in the darkspot observation direction (dashed line) and 
the nadir observation direction (dotted line). The differences between homogeneous and 
heterogeneous canopies in the NIR band were minor in the hotspot observation direction (solid line) 
and slightly different in the darkspot observation direction (dashed line). However, there were 
significant differences between homogeneous and heterogeneous canopies in the NIR band's nadir 
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observation direction (dotted line). 
In the NIR band, the darkspot reflectance was greater than the nadir reflectance (Figure 3.3). 

Thus, our results confirmed that the lowest reflectance does not always occur in the darkspot 
direction, especially in the NIR band, where multiple scattering was strong [3, 127]. Moreover, in 
the NIR band, the nadir direction reflectance of homogeneous canopies was much greater than the 
nadir reflectance of real maize canopies, implying that the homogeneity theory assumption would 
lead to overestimating reflectance. Other studies of maize also showed that the homogeneity theory 
assumption could lead to an overestimation of NIR band reflectance in the nadir direction [157]. 
They attributed this phenomenon to the fact that multiple scattering was mainly from vegetation. 
The vegetation fraction seen at the nadir was minimal; however, the homogeneity assumption was 
not well accounted it. Most VIs used the NIR band, and the nadir observation direction was essential 
in remote sensing studies. Therefore, the error caused by the homogeneous canopy assumption was 
not negligible for maize canopies. 

Summary 

The maize growth equation [156] is introduced into a 3D static maize model developed using 
the ELSYS platform to achieve multi-temporal maize scene simulations and radiative transfer 
simulations. The reflectance of three vegetation canopy scenes with homogeneous assumptions, 
simplified heterogeneity and real structures are simulated with SAIL, DART and RGM radiative 
transfer models for comparisons and cross-validations. 

(1) The reflectance of the darkspot is not necessarily the lowest in all observation directions. 
In the red band, the reflectance of the darkspot observations is the lowest. However, the nadir 
observations have the lowest reflectance in the NIR band rather than the darkspot. 

(2) For the simulation of BRFs with row crops (i.e., maize), the canopy homogeneity 
assumption leads to an overestimated nadir reflectance in the NIR band. It is because multiple 
scattering is mainly from vegetation, and the proportion of vegetation seen at the nadir is minimal, 
which is not well considered by the homogeneity assumption. 
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Chapter 4  Inversion of leaf optical 

properties in urban areas at the sub-pixel 

scale 

The OPs of the leaves have a positive effect on the analysis of their biochemical parameters 
and the monitoring of vegetation growth status. DART calibration has been successfully used to 
simulate the short-wave net radiation in the cities. Here we show another potential usage of DART 
calibration to invert the OPs of leaves in the cities. Based on the DART calibration, a mixed pixel 
decomposition and physical inversion of leaf OPs are performed to invert the OPs of leaves from 
mixed pixels in the urban areas. The inversion results are validated using simulated cases (with or 
without noise) and satellite images, and accuracy assessment and sensitivity analyses are performed. 

Section 4.1 examine the DART calibration based on the DART simulated images. This first 
experiment is an ideal case where the only unknown parameters are the optical properties of 
landcover, and we assume that we know precisely other remote sensing parameters. A second 
analysis focuses on the common case for which certain acquisition parameters are known with a 
certain level of uncertainty. Sensitivity analysis allows us to identify the parameters whose 
uncertainty will greatly impact the accuracy of the optical properties inverted by the DART 
calibration. 

Section 4.2 examine the DART calibration based on one sentinel-2 satellite image of the Basel 
city, in which a detailed 3D database describing the main elements (buildings, road infrastructures, 
vegetation) exists. The image obtained after DART calibration is very similar to the real image. The 
optical properties inverted for the different landcover of the scene show a very realistic heterogeneity, 
demonstrating the potential of the method to invert optical properties in complex environments with 
the presence of mixed pixels. 

The chapter is presented in the paper: 
(1) Z. Zhen, J-P Gastellu-Etchegorry, S. Chen, T. Yin, E. Chavanon, N. Lauret, and J Guilleux, 

"Quantitative Analysis of DART Calibration Accuracy for Retrieving Spectral Signatures Over 
Urban Area," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 
vol. 14, pp. 10057-10068, 2021. (SCI, IF: 3.784) 

4.1  Inversion of leaf optical properties using simulated images 

A virtual 3D city structure scene was constructed using the DART model, and a corresponding 
satellite remote sensing image was simulated. This image replaced the real satellite image to assess 
the accuracy of the inversion-derived leaf OPs. 

The study area was a synthetic 128 m × 128 m 3D urban scene with five components: ground, 
water, buildings, shrubs and trees (Figure 4.1). Three 15 m water surfaces and nine buildings with 
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three types of roofs were evenly distributed in the scene. The roofs were triangular prism on the left 
side of the scene, flat in the middle and frustum of a square pyramid on the right side, all with a 
slope equal to 20°. The length, width and height of the buildings were all 15 m. The length and 
width of the ground between the buildings were also 15 m. These values were typical of European 
cities [161]. 

 
Figure 4.1 Schematic urban scene: ground, water, shrubs, trees, and buildings with the flat, 
triangular prism and frustum of a square pyramid roof. (a) 3D view. (b) Top view. 

The scene contained two shrubs with a length and width of 15 m and a height of 1 m. The 
shrubs were modelled as the homogeneous canopy filled with leaves with a spherical LAD and a 
leaf area density equal to 0.5 m2/m3. The scene also contained four trees. These trees were created 
directly by DART to simplify the analysis of the inversion procedure. In addition, the leaves in the 
canopy and the shrubs were simulated with fractional triangles rather than turbid medium. The 
trunks of the trees created with DART were replaced with regular octahedrons, and the crowns had 
specific vertical and horizontal LAD profiles and leaf area voxel density. Here, all trees had the 
same geometric parameters: an elliptical crown with a height of 10 m and a diameter of 10 m at the 
mid-height, uniformly filled with leaves with a leaf density of 0.5 m2/m3. The urban components 
were spatially distributed to conform to conventional light conditions, and the shading and mixed 
pixels effect could be considered. 

DART calibration is an iterative inversion method applied to satellite images to obtain OP maps 
with urban anthropogenic heat flux for each urban component. First, the DART calibration 
continuously corrects the input to invert the OP of the components by iteratively comparing 
simulated and satellite images. This two-dimensional component OP map allows one to compute 
anthropogenic radiation flux maps. A detailed description of the DART calibration can be found in 
the literature [162-164]. The inversion procedure consists of two major steps. 

The first step is to provide a first-order OP map using a linear spectral mixture analysis (LSMA) 
method, where DART estimates the “amount” of urban components in a pixel by simulating 
reflectance images and reflectance images for each type of component in the city (called 
“component reflectance images”). The term “amount” indicates the spectral contribution of each 
component rather than its relative area. The inversion starts with a user-defined OP value, which 
can be selected from the DART database. The first-order OP map is calculated by assuming that all 
urban components of the same type share the same OP within a certain distance. The urban 
components with a small “amount” are ignored because their OPs are challenging to be estimated. 
Here, a threshold of 1% is set. The estimation of the first-order reflectance relies on a linear mixed 
pixel decomposition 
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where ρ0n(x,y) represents the OPs of component n at coordinate (x,y) for the initial iteration 0. 
ρ1n(x,y) is the OP solved for in the first iteration and is unknown here. ρ0DART,n(x,y) is the reflectance 
value of the component image simulated by the DART model using ρ0n(x,y). ρ1DART(x,y) is the 
reflectance value simulated by DART in the first iteration. Because we want the DART simulated 
ρ1DART(x,y) to be infinitely close to the satellite reflectance value at the first iteration, which leads to 
the following equation 

 ( ) ( )1
sat DART, ,x y x yρ ρ=   ······························· (4.2) 

From the Eq., (4.1) only one equation can be written For a single pixel. However, if the number 
of components within a pixel is larger than one, this equation system is unsolvable. Therefore, it is 
necessary to assume that the same components n within adjacent pixels have the same ρ0n(x,y), 
increasing the number of equations to make the equation system solvable. 

The second step is a series of iterations in which the final OPs maps of each type of urban 
component converge at the spatial resolution of the satellite images. It combines the dichotomous 
and Newtonian methods. The OPs are the independent variables, and the component reflectance 
images are the dependent variables. If the pixel reflectance of the DART simulated images is less 
than the reflectance of the satellite image, the OP values of the components in this pixel increase, 
and vice versa. The iterative process is carried out on a pixel-wise basis. If the relative difference 
between the reflectance of the DART and the satellite image is less than a user-defined threshold, 
the OP values of the components in the pixel are not updated in the following iterations; here, this 
threshold is set to 1%. This step implicitly considers the multiple scattering between components. 
At the end of the procedure, the DART simulated image with the OP map obtained by inversion is 
almost equal to the satellite image (i.e., the mean relative error is less than 10-3). 

For DART simulated remote sensing images with one-pixel reflectance ρn
k-1 (x,y) and ρn

k (x,y), 
if the simulated pixel reflectance is lower than the remote sensing image reflectance in two 
consecutive iterations k-1 and k, the OPs of component n at the next iteration k+1 can be 
approximated using Newtonian iteration 
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We want the DART simulated image's pixel reflectance to be very close to the satellite image 
in the next iteration. Therefore, we have 

 ( )
DART

1
sat( , ) ,k x y x yρ ρ+ =   ································ (4.4) 

Combining Eq.(4.3) and Eq.(4.4), we have 
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For DART simulated remote sensing images with one-pixel reflectance ρn
k-1(x,y) and ρn

k(x,y), 
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if in two consecutive iterations (k-1 and k), the simulated image reflectance is one lower and one 
higher than the satellite image, the OPs of the component n at the next iteration (k+1) can be 
approximated by a weighted dichotomous method 

 ( ) ( ) ( )1 1, , ,k k k k
n n n nx y x y x yρ ρ α ρ ρ+ −= ± −   ····················· (4.6) 

where α is the weight and is calculated as 
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The accuracy of the DART calibration method was assessed using the DART-simulated 
pseudo-satellite BOA reflectance image. DART, therefore, calculated two products: the pseudo-
satellite image and the so-called initial image, which converged to the pseudo-satellite image as the 
calibration method iteratively changed the component OPs image. The relative difference between 
the true and inversion-derived OP values was used to indicate the accuracy of the DART calibration. 
Six spectral bands were considered (three visible bands, NIR and two shortwave infrared bands). It 
was important to note that the DART calibration handled all bands independently; it could even 
handle single-band images. In addition, the DART atmosphere radiative transfer module [165, 166] 
was not used because the satellite images were considered to be atmosphere corrected. 

 
Figure 4.2 (a) DART pseudo satellite image of the 3-D scene. It has some spectral confusions (e.g., 
the different reflectance for nine roofs and the same reflectance of three roofs as ground reflectance). 
(b) DART image simulated with constant SS per urban component. (c) DART image after the 
calibration procedure. All images are RGB colour composites. 

4.1.1   Noiseless ideal case for leaf optical properties inversion 

As mentioned previously, two base simulation cases were investigated: the noise-free ideal 
case and the noise-interference case. In the noise-free ideal case, the OP values were the only 
unknowns (Table 4.1). ρ and τ referred to reflectance and transmittance, respectively. The OP of the 
tree was equal to reflectance + transmittance, and SWIR referred to the shortwave infrared band. All 
other input parameters were the same in the base and satellite simulations. SZA equal 30°, a perfect 
sensor Modulation Transfer Function (MTF), a 4 m spatial resolution of the satellite images, a 
perfect geometric calibration between the initial image and the satellite images, etc. (Table 4.2). The 
SZA greatly influenced the bidirectional reflectance effect [140, 167, 168] and the distribution of 
shadows in the images. Furthermore, together with the roof slope, they determined the angle of 
incidence of light striking the roof. MTF defined how the sensor retained much contrast for the 
original target. It defined the genuine transition of the spatial frequency content of the object in the 
image. It could cause neighbouring pixels to interfere with each other's spectra, thus affecting the 
accuracy of OP inversion [169]. The spatial resolution referred to the size of a pixel on the ground. 
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Table 4.1 Input optical property (OP) for the DART calibration procedure. ρ means reflectance and 
τ means transmissivity. SWIR means short wave infrared. 

Component OP 
Ground 

(ρ) 

Roof 

(ρ) 

Shrubs 

(ρ) 

Water 

(ρ) 

Trees 

(ρ + τ) 

Basic simulation 

initial OP 

Blue 

(492.4 ± 66nm) 
0.2169 0.0748 0.1173 0.0695 0.3578 

Green 

(559.8 ± 36nm) 
0.2483 0.1122 0.2635 0.0649 0.4600 

Red 

(664.6 ± 31nm) 
0.2561 0.2501 0.0987 0.0543 0.6140 

NIR 

(832.8 ± 106nm) 
0.2366 0.3100 0.9289 0.0283 0.9289 

SWIR 1 

(1613.7 ± 91nm) 
0.2011 0.7165 0.6794 0.0053 0.8722 

SWIR 2 

(2202.4 ± 175nm) 
0.1693 0.7190 0.4178 0.0051 0.6497 

Pseudo-satellite 

simulation of initial 

OP 

Blue 

(492.4 ± 66nm) 
0.0574 

0.1067 

0.1131 

0.0574 

0.0927 

0.0536 

0.0277 

0.0364 

0.0326 

0.1153 

0.0829 

Green 

(559.8 ± 36nm) 
0.0710 

0.1456 

0.1206 

0.0710 

0.1996 

0.1329 

0.0269 

0.0250 

0.0380 

0.1733 

0.1942 

Red 

(664.6 ± 31nm) 
0.1003 

0.3074 

0.1308 

0.1003 

0.0892 

0.0405 

0.0267 

0.0206 

0.0245 

0.0854 

0.0820 

NIR 

(832.8 ± 106nm) 
0.1681 

0.3257 

0.1460 

0.1681 

0.9426 

0.9013 

0.0262 

0.0198 

0.0198 

0.9596 

0.9013 

SWIR 1 

(1613.7 ± 91nm) 
0.3349 

0.3623 

0.1049 

0.3349 

0.5631 

0.5551 

0.0210 

0.0186 

0.0186 

0.5199 

0.6668 

SWIR 2 

(2202.4 ± 175nm) 
0.2635 

0.3213 

0.1009 

0.2635 

0.3091 

0.2494 

0.0189 

0.0163 

0.0163 

0.2778 

0.4911 

 
Figure 4.2 shows the pseudo-satellite image and DART simulated image before and after 

calibration. There was spectral confusion in the pseudo-satellite image, including roofs with 
different OP and one type of roof with the same OP as the ground. In the initial image, all roofs 
shared the same reflectance. As expected, the calibrated images were visually very similar to the 
pseudo-satellite images. Figure 4.3 shows the evolution of the mean relative error for each 
component |ε|���componentwith iterations in the green band. The mean relative error at iteration 0 was 
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due to the selected initial OP values. The relative error for each component was calculated pixel-
wise, and the mean of the absolute values of the relative errors was calculated. Similar trends were 
observed in the other bands. The mean relative error |ε|���component was large for each component in 
the uncalibrated images (ground:13.08, roof:8.72, water:33.88, trees:4.47, shrubs:5.27). These 
values dropped sharply to around 0.01 for ground, roof, and water in the calibrated images. However, 
for shrubs and trees, it only dropped to 0.29 and 0.36. In addition, for trees, the relative error 
fluctuated and dropped with iterations. 

Figure 4.4 shows the spatial image and violin plot of the relative error for each component in 
the calibrated image. The blank areas in the image indicated that there was no corresponding 
component in that pixel. The relative error of each component was calculated pixel-wise. Besides, 
the violin plot vertical axis coordinates range was restricted to the range of relative errors. Similar 
phenomena were observed for other bands. The calibration accuracy of the pure pixels appeared to 
be more accurate than the mixed pixels: |ε|���pure ground=0.0065 , |ε|���mixed ground=0.0693 ; 
|ε|���pure roof=0.0070 , |ε|���mixed roof=0.0089 ; |ε|���pure water=0.0015 , |ε|���mixed water=0.0268 ; |ε|���pure tree=0.2519 , 
|ε|���mixed tree=0.3806. In addition, the accuracy of the OP was very similar in sunlight and shade, and 
the initial confusion of the OP spectra had a negligible effect on the results ε̅component. Ground was 
excellent, even with shaded ground, except for the mixed pixels with vegetation. The results for 
roofs and water surfaces were excellent, even in the shaded areas, except for the mixed water surface 
pixels containing vegetation. The shape of the roof had a negligible effect on the results. However, 
the accuracy of vegetation, which included shrubs and trees, was relatively unsatisfactory compared 
to other components. 

 
Table 4.2 Input simulation parameters for the DART calibration procedure. 

Parameters No noise  With noise   

MTF 1 0.15 - 0.3 

The eFAST sensitivity 

analysis determines the 

step size for each input 

parameter. 

Solar zenith angle 30° 0 - 60° 

Pixel resolution 4 m 0.5 - 15 m 

X-axis pixel shifting 0 pixel 0 - 1 pixel 

Y-axis pixel shifting 0 pixel 0 - 1 pixel 

Inaccurate city database 100% 95% - 105% 

 

4.1.2   Artificially noise case for leaf optical properties inversion 

The additional noise experiment considered the complexity of the satellite images. Several 
satellite observation factors of the DART input parameters for the initial image were not precisely 
known. Their imprecision affected the inversion of the OPs. The five considered influencing factors 
correspond to two broad categories: (1) parameters at image acquisition: the SZA, the spatial image 
resolution and the MTF; (2) the accuracy of the image calibration (shifting along the x and y axes) 
and the 3D geometric accuracy of the urban scene. 

In the noise interference case, the SZA and spatial resolution of satellite images were the same 
in pseudo-satellite and initial images, as they were usually known. In contrast, the MTF, the 
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geometry registration errors and the accuracy of the 3D scene were often not well known. Therefore, 
they differed in satellite and base simulations. MTF was modelled with a Gaussian filter but was 
only used in satellite simulations because the current DART calibration methods could not consider 
it. Similarly, the geometric calibration of satellite images and the geometry of the 3D city scene 
were not perfectly accurate. Therefore, they were fixed in the satellite simulation and varied in the 
base simulation to simulate geometric inaccuracies. Each influence factor (Table 4.2) produced 70 
samples, which resulted in 420 samples in total. The range of MTF was set to 0.15 - 0.3, 
corresponding to the 10 m spatial resolution band of the Sentinel-2 (S2) image [170]. The range of 
SZA was set to 0 - 60°. The range of spatial resolution was set to 0.5 - 15 m, corresponding to most 
high-resolution satellites, including Satellite Pour l'Observation de la Terre (SPOT), RapidEye, 
Advanced Land Observing Satellite (Alos), Ziyuan-3 (ZY3), Gaofen-1 (GF1), KeyHole (KH), 
IKONOS, QuickBird, WorldView, GeoEye, and the Pleiades. According to the literature [171, 172], 
the co-registration accuracy of satellite images can be subpixels. Therefore, the maximum range of 
the pixel shifting was set to one pixel. Furthermore, the input parameters used to construct the 3D 
scene (e.g., the geometry of buildings, trees, water and leaf area) were not precisely known. As a 
result, the coefficient of variation of these parameters in the base simulation with noisy interference 
scenes was between 95% and 105% compared to the pseudo-satellite simulation. 

The global sensitivity analysis focused on the effect of differences in the values of the DART 
input parameters on the accuracy of the inversion-derived OP. Global sensitivity analyses were 
performed only in the presence of noisy interference cases. The global sensitivity analysis model of 
the extended Fourier Amplitude Sensitivity Test (eFAST) [173] was used to assess the effects of 
these factors, including the MTF, SZA, satellite spatial resolution, pixel-shifting errors in the x and 
y axes, and inaccuracies of the 3D scene. 

The eFAST is a sensitivity analysis method that calculates a model's predicted values and 
variance. The calculation is based on turning a multi-dimensional problem into a one-dimensional 
integration over all unknown model inputs. A search curve through the entire parameter space is 
created to avoid multidimensional integration. The Fourier series representation decomposition 
obtains each input variable's fractional contribution to the model's predicted variance. The analysis 
consists of four stages: (1) establishing the range and distribution of the input parameters and 
specifying the predicted values and output variances in the form of integrals over the input parameter 
space; (2) transforming the given multidimensional integrals into single-dimensional integrals over 
the input parameter space; (3) estimating the predicted values and performance variances; and (4) 
estimating the sensitivity indices. 



PhD Thesis, Université de Toulouse 

56 

 
Figure 4.3 Evolutions of the mean absolute value of the relative error of the component SS with the 
iterations in the green band. The mean absolute value of the relative error at iteration 0 is due to the 
selected initial SS value. Relative errors are calculated pixel-wise for each component, and a mean 
statistical value of the absolute value of the relative error is calculated. Similar trends are found in 
the other bands. 
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Figure 4.4 Final calibration results of the error analysis for ground (a and b), roof (c and d), water 
(e and f), shrub (g and h), and trees (i and j) in the green band in the spatial and frequency domain. 
Relative errors are calculated pixel-wise. Blank in the image means there is no corresponding 
component in that pixel. Violin range is limited to within the range of the relative error. A similar 
phenomenon was also observed for other bands. 
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The first-order and total-order sensitivity indices were calculated using the Fourier 
decomposition term of the model output [174]. The first-order sensitivity index is a direct measure 
of sensitivity based on variance and contributes to the output variance of the main effects of the 
input parameters. As such, it measures the effect of variation in only one input parameter but 
averages over the variation in the other input parameters. The total order sensitivity index measures 
the contribution of each input parameter to the output variance, including all the variance resulting 
from its interaction with other input variables in any order. 

A sensitivity study was carried out in the presence of noisy interference. Figure 4.3 shows that 
the calibration procedure had almost converged when the fifth iteration was performed. Therefore, 
a constant maximum iteration value of 8 was set for all sensitivity analyses. The eFAST sensitivity 
analysis was used to analyse SZA, satellite image resolution, pixel shifting, scene modelling 
inaccuracies and MTF. The eFAST methods were used for sensitivity analyses based on 420 cases. 
Sensitivity indices were calculated on a per-component per-band basis and superimposed over all 
bands (Figure 4.5). 

MTF: MTF had a minimal effect on calibration accuracy. The highest mean first-order 
sensitivity (0.095) and total order sensitivity (0.658) of all bands were for shrubs. The lowest mean 
first-order sensitivity (0.018) and total order sensitivity (0.093) of all bands were for the ground. 
The mean first-order and total-order sensitivity of the MTF over all bands were 0.056 and 0.346. 

SZA: The highest mean first-order sensitivity (0.721) and mean total order sensitivity (0.861) 
were ground in all bands. Water had the lowest mean first-order sensitivity (0.047) and mean total 
order sensitivity (0.348) over all bands. Overall, the average first-order and total-order sensitivities 
for all bands of the SZA were 0.253 and 0.660, respectively. 

Satellite resolution: water had the highest mean first-order sensitivity (0.327), and shrubs had 
the highest mean total-order sensitivity (0.891) over all bands. The ground had the lowest mean 
first-order sensitivity (0.036) and total-order sensitivity (0.137) over all bands. The mean first-order 
and total-order sensitivities for spatial resolution over all bands were 0.222 and 0.628. 

X-axis shifting: the highest mean first-order sensitivity (0.145) and total order sensitivity 
(0.806) over all bands was for shrubs. The lowest mean first-order sensitivity (0.033) and total-order 
sensitivity (0.129) over all bands was ground. The mean first-order and total-order sensitivity of the 
x-shift over all bands for all components were 0.096 and 0.441, respectively. 

Y-axis shifting: the roof had the highest mean first-order sensitivity (0.105) over all bands, and 
the shrub had the highest mean total-order sensitivity (0.727) over all bands. The ground had the 
lowest mean first-order sensitivity (0.050) and total-order sensitivity (0.172) over all bands. The 
mean y-shift first-order and total-order sensitivity for all components were 0.085 and 0.437 over all 
bands. 

Geometric accuracy of the 3D city database: the highest mean first-order sensitivity (0.094) 
and total-order sensitivity (0.758) over all bands was for shrubs. Roofs had the lowest mean first-
order sensitivity (0.015) over all bands, while the ground had the lowest mean total-order sensitivity 
(0.088) over all bands. The mean first-order and total-order sensitivities of the 3D scene model 
accuracy over all bands over all components were 0.054 and 0.407. 

In general, the mean sensitivity values for all components of the six bands were close to each 
other: 0.317 for the blue band, 0.305 for the green band, 0.307 for the red band, 0.264 for the NIR, 
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0.301 for the shortwave infrared 1 (SWIR1) band, and 0.342 for the shortwave infrared 2 (SWIR2) 
band. In addition, the mean total order sensitivity (0.485) was four times greater than the mean first-
order sensitivity (0.127) over all bands and all components. 

In decreasing order, the DART calibration accuracy was affected by SZA, satellite spatial 
resolution, pixel shifting, 3D city database inaccuracy, and MTF. SZA significantly affected the 
apparent ground reflectance through shadowing and bi-directional reflectance effects. In addition, 
the SZA and the roof angle determined the angle of incidence for roofs. The low sensitivity of the 
SZA to water maybe because the water was treated as a surface without topography here. 

The spatial resolution of satellite images was essential in urban studies because it determined 
the distribution of pure pixels in satellite images [175]. Welch et al. [176] used averaged city maps 
to demonstrate that high-frequency detail of urban scene components was necessary for remote 
sensing data with a spatial resolution of 0.5-10 m. A spatial resolution of at least 5 m was required 
to capture applications of urban structure adequately [177]. The spatial resolution was also a 
constraint on the DART calibration, as it assumed that the OPs of the components were constant 
within that pixel. Subclassification of urban components could be a potential solution. For example, 
roofs in the same pixel could be classified as sub-components if additional information (e.g., type 
of material) was available. Furthermore, this assumption could also be mitigated by using higher-
resolution remote sensing imagery. 

The pixel shifting and the accuracy of the 3D model had little impact on the inversion accuracy 
of continuous and homogeneous components such as the ground, as they had a similar geometric 
impact on the problem of estimating the “amount” for each component inside a mixed pixel. MTF 
had less impact on large and homogeneous scene components such as the ground than on small 
components such as roofs, trees, water and shrubs. In summary, small and highly heterogeneous 
components were much more sensitive than large and highly homogeneous ones. 

Figure 4.6 shows the mean relative error for each component for all 420 cases. The ground and 
roof performed well in all bands: the range was 0.015-1.572 for the ground and 0.024-1.7662 for 
the roof. The other components were less accurate than the ground and roof, especially those with 
low reflectance in the corresponding bands. If the OP of the components was low, significant errors 
tended to occur. For example, for vegetation (i.e., shrubs, trees), the range of the mean relative error 
in the green band was 0.159-2.709. Similarly, the mean relative error of the water increased sharply 
in SWIR1 and SWIR2, which had very low values of OPs. The range of the mean relative error for 
water in all bands was 0.053-15.683. 

The DART calibration was validated only by comparing the time series of the DART-simulated 
shortwave Radiative budget with the time series measured in the flux tower in Basel, Switzerland 
[164]. Over one year, the mean relative difference was 2.7%, which was a very encouraging result. 
However, this comparison was only a single-pixel validation. Here, the validation was extended to 
each pixel by using pseudo-satellite images from the DART simulation. 

The inversion results (Figure 4.2 and Figure 4.3) show that the DART calibration had an 
excellent overall accuracy under ideal experimental conditions. However, the inversion accuracy of 
the vegetation's OPs was significantly lower than the other urban components. Three explanations 
were proposed here. (1) As a voxel composed of leaf elements, vegetation could not be modelled as 
a simple surface like the other urban components. (2) The OPs of the leaf include transmittance and 



PhD Thesis, Université de Toulouse 

60 

reflectance. Here, they were represented by the single scattered albedo of the leaf with a pre-defined 
spectral ratio between its reflectance and transmittance. (3) The values of the OPs of the leaf were 
low in the spectral bands under consideration. 

Other work has highlighted the poor performance of vegetation in unmixing models [175], 
particularly for mixed pixels containing vegetation. The complexity of vegetation structure, 
including multiple scattering, leads to a complex non-linear relationship between leaf albedo and 
canopy reflectance [3, 178]. Consistent with these conclusions, DART calibration provides a less 
accurate map of vegetation's OPs than urban surface components, such as ground and roof. Similarly, 
the low reflectance of the water complicates the inversion of its OPs [175]. Here, however, the 
results for water are excellent, even in the shaded areas. It is because the water is treated as an 
opaque surface in this work (no transmission is considered). 

Shadows are often considered a significant factor in the inaccuracy of pixel unmixing [179]. 
For example, shadows cast by buildings in dense urban areas can significantly obscure local 
information in an image, leading to results that may be corrupted or misinterpreted [180]. Methods 
like Multiple Endmember Spectral Mixture Analysis (MESMA) solve this problem by treating 
shadows as one component [175]. Here, the small relative error of shadows on the inversion of OPs 
suggests that the DART calibration algorithm is well suited for dealing with urban areas with 
shadows. 

The presence of noisy interference situations emphasises that inaccurate DART input 
parameters can seriously affect calibration accuracy. For example, inaccurate geometric calibrations 
of satellite images lead to inaccurate estimates of the “amount” and, finally, inaccurate OPs. 
Compared to some traditional unmixing methods, the DART calibration does not estimate the 
abundance calculated from the OPs of the endmembers, which is a significant advantage as it allows 
the OPs of the endmembers to vary between pixels. However, it requires a very precise co-
registration of the satellite image and the 3D city database. In addition, some components with low 
OPs (e.g., water and vegetation) produce high relative errors and variance. It is because the error is 
assessed using a relative error. If the pixel shifting problem results in a high reflectance pixel to a 
low optical property component, the denominator in the relative error is too small, resulting in high 
relative error and variance. 
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Figure 4.5 Sensitivity analysis results. The eFAST method is used for sensitivity analysis based on 
420 cases. Sensitivity indices are calculated per component per band and stacked over all bands. All 
subplots share the same x-axis. In descending order of magnitude, the effect magnitudes are SZA, 
satellite spatial resolution, pixel-shift, landscape model inaccuracy, and MTF. 
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Figure 4.6 Mean absolute value of the relative errors on the retrieved SS of scene components for 
the blue, green, red, NIR, SWIR1, and SWIR2 bands. The relative errors were calculated for each 
component in terms of pixels. The absolute value of the relative error was the average of all 420 
cases. The violin range was constrained to the boundary of the mean relative error. 
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4.2  Inversion of leaf optical properties using satellite image 

4.2.1   Study area overview and PlanetScope data pre-processing 

The DART calibration was applied to real satellite data to validate its accuracy. The study area 
was chosen as Basel, one of the research targets of the Urban Anthropogenic Heat FLUX from Earth 
Observation Satellites (URBANFLUXES) project provided by the Earth Observation Satellite [181]. 
Basel is on the Rhine River in north-western Switzerland, where the Swiss, French and German 
borders meet [162, 164]. The study area encompassed almost the entire city of Basel, with latitudes 
ranging from 47.53° N to 47.57° N and longitudes from 7.55° E to 7.62° E. Its geometric database 
was very detailed (Figure 4.7). Basel is a representative city in Europe, so the results can be extended 
to other European cities. Basel's 3D realistic remote sensing scenes were constructed and used by 
Lucas et al. [162-164]. According to the URBANFLUXES project [182, 183], land cover categories 
in Basel included buildings, impervious cover, water, low vegetation, bare soil, deciduous and 
evergreen forest. In our study, some categories were regrouped. The tree category contained 
deciduous and evergreen; the ground category contained impervious layer, low vegetation and bare 
soil; and the building and water categories were the same as that in the URBANFLUXES project. 
The location and geometry of all urban components, including the local digital elevation model 
(DEM), were taken from the local urban database. The location, height and canopy dimensions of 
the trees were set from the measurements. DART simulated the trunks as regular octahedrons and 
the crowns as ellipsoidal bodies filled with fragmented triangles. Only the necessary information 
about the urban database was given here. A more detailed description can be found in the literature 
[162]. 

 
Figure 4.7 Basel 3-D scene. (a) Top view. (b) Side view of the red square in (a). Buildings (roofs: 
dark, walls: light grey), trees (green), river (blue), and ground (yellow). 

 
PlanetScope is the land-based observation system of Planet, a commercial satellite remote 

sensing company in the U.S. The first PlanetScope satellites were launched in 2014, and the satellite 
constellation now has a temporal resolution of more than the daily frequency and a spatial resolution 
from 3 m to 5 m for its satellites. PS2 and PS2-SD have four spectral bands, including blue, green, 
red and NIR, while PSB has five spectral bands, with an additional red fringe band compared to PS2 
and PS2-SD. The spatial resolution of the International Space Station (ISS) orbit is 3 m, and the 
Sun-Synchronous Orbit (SSO) solar synchrotron orbit is 3.7 m. More details can be found in the 
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document [184]. A 4-band multispectral surface reflectance image with 3 m resolution was 
downloaded from the Planet website (https://www.planet.com/). This image was orthorectified and 
atmosphere corrected, and it was selected because it had an off-nadir angle of exactly 0.0°. Table 
4.3 shows the detailed parameters of this image. 

 
Table 4.3 Satellite image parameters. 

Parameters Value 

Identity document 20190915_100328_1003 

Date September 15, 2019, 10:03:28 UTC 

Source Four-band PlanetScope 

Percentage of cloud computing 0% 

Spatial resolution 3 m 

Serial identifier 1003 

Off nadir angle 0.0° 

Sun altitude angle 42.2° 

Solar azimuth angle 152.0° 

Sensors PS2 

Spectral band (nm) 
Blue Green Red NIR 

455-515 500-590 590-670 780-860 

 

Figure 4.8 (a) PlanetScope image in the Basel area. (b) DART image simulated with constant SS 
per urban component. (c) DART image after the calibration procedure. All images are RGB colour 
composites. 

 
The data processing consisted of a co-registration between the satellite image and the DART 

simulated image. The satellite images were first clipped according to geographic latitude and 
longitude, retaining only the remote sensing images within the study area. The 3D urban database 
was then shifted along the x and y axes to warp to the satellite images. The geometric accuracy of 
the DART simulated image was much higher than that of the satellite image due to observation angle 
and image distortion factors. Therefore, the DART simulated image was used as the base image, and 
the satellite image was warped to the DART simulated image for co-registration using GeFolki [171, 
172], developed by the French Aerospace Laboratory. Gefolki is a module that performs co-
registration of two remote sensing images with a geometry error of less than 0.1 pixels. Finally, the 
warped satellite image was used for inversion with the DART simulated image. 
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Figure 4.9 Retrieved SS of vegetation, river, roof, and ground by DART calibration. All images are 
RGB colour composites. The black pixels indicate no corresponding landcover in that pixel. 

 
The Subarctic Summer (SAS) was chosen as the atmospheric model in the DART simulations. 

This atmospheric model was selected based on the total water vapour column and atmospheric 
temperature [185]. These data were derived from water vapour and surface temperature data from 
the National Centers for Environmental Prediction and National Center for Atmospheric Research 
(NCEP/NCAR) reanalysis data [186]. The aerosol model was chosen directly from the study area 
as the urban model [185]. Atmosphere parameters had a minimal influence on the results (only the 
skylight ratio distribution was affected) as atmosphere corrected surface reflectance data were used, 
assuming atmosphere effects were removed. The input parameters of the spectral band, spatial 
resolution and solar-target-satellite geometry remained consistent with the satellite images (Table 
4.3) in the DART simulations. 

4.2.2   Inversion of optical properties of leaves from multispectral images 

Figure 4.8 shows the satellite image and DART simulated image before and after DART 
calibration. Before calibration, the difference between the DART simulated image and the satellite 
image was significant. However, after calibration, the differences became minimal. The distribution 
of OPs in space and frequency is depicted in Figure 4.9 and Figure 4.10, where the cross symbols 
indicate the initial OPs at iteration 0 of the DART calibration in Figure 4.8.b. Reasons for the 
bimodal problem of the water was due to the lack of bridges in the urban 3D database. Therefore, 
the OP of some bridges was assigned to the water component. In addition, some ground pixels 
showed typical vegetation spectral features (Figure 4.9). It is because there was no distinction 
between ground and grass in the urban 3D database. As a result, the grass pixels were also considered 
an opaque surface during the DART radiative transfer simulations. Overall, there were apparent 
spectral differences between the components, indicating good spectral unmixing. 
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Figure 4.10 Frequency distribution of SS obtained from DART calibration in (a) blue, (b) green, (c) 
red, and (d) NIR bands. The cross symbol indicates the SS in iteration 0 of DART calibration in Fig. 
8(b). 

 
It should be noted that a satellite image with an off-nadir angle of 0.0° was used in this study. 

The major difficulty in using off-nadir images was the inconsistent coordinate system between the 
satellite images and the DART simulated images. Most surface reflectance products (e.g., Sentinel2 
L1C products dated before March 2021, https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-
msi/definitions) used DEM to do orthorectification. This process was known as “orthorectification”. 
As a result, some buildings were skewed in the image (the walls are visible in the image). However, 
the DART model used the Digital Surface Model (DSM) for orthorectification, known as "true 
orthorectification ". As a result, all buildings were vertical (there are no wall elements in the 
simulated image). The coordinates of the corresponding image points in the two images were 
different. However, geometric accuracy was crucial for DART calibration, especially for scenes with 
strong heterogeneity. The DART model is currently being investigated to provide an 
"orthorectification" image in addition to the "true orthorectification" image. 
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Summary 

The accuracy of the DART calibration to invert the OPs of each component of the urban scene 
in the visible, NIR and two short-wave infrared bands is assessed in noise-free ideal experiments 
and experiments with artificially added noise. Sensitivity analyses are also carried out for a number 
of parameters. In the ideal case without noise, the average relative errors for all bands for ground, 
roof, water, trees and shrubs are 0.013, 0.005, 0.027, 0.297 and 0.250, respectively. In noise 
interference case, the corresponding values are 0.233, 0.507, 3.088, 0.834 and 1.256. 

(1) Calibration accuracy is influenced by SZA, satellite spatial resolution, pixel shifting, 3D 
city database inaccuracy and MTF in descending order of magnitude. 

(2) The calibration is insensitive to the number of bands and is highly resistant to shadow 
interference. 

(3) Some uncontrollable external factors may significantly affect inversion accuracies, such 
as co-registration errors or user-defined leaf reflectance and transmittance ratios. 
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Chapter 5  Using vegetation indices to 

estimate leaf area index 

Leaf area index (LAI), defined as the one-sided green leaf area per unit ground area in broadleaf 
canopies and one-half the total needle surface area per unit ground area in coniferous canopies, is 
an essential indicator for describing the canopy structure of forest ecosystems. LAI estimates the 
stand's primary productivity and evaluates forest condition over large areas. A number of studies 
link the LAI and radiometric measurements of vegetation. Despite their wide variety and is designed 
to correlate with LAI [107], all VIs inevitably suffer from saturation effects [119]. For LAI values 
more than a certain threshold, the derivative of VIs is relative to LAI decreases. It is the so-called 
saturation effect [107, 187]. Saturation is primarily due to the low sensitivity of reflectance in the 
red band [187, 188]. It directly limits the application of VIs in areas of dense vegetation areas. 
Therefore, this chapter aims to alleviate the saturation of vegetation indices for LAI estimation. 

Section 5.1 focuses on the anti-saturation study on single angular indices. We study the 
behaviours of index isolines and vegetation isolines based on DART simulated data. Then, the 
hypothesis that the negative soil adjustment factor should be optimal in the dense vegetation cover 
area is proposed and validated using both a long time series MODIS LAI data in the Apiacás region 
and a global field measurement LAI data. 

Section 5.2 focuses on the anti-saturation study on hotspot-vegetation indices. We examine the 
performance of hotspot-vegetation indices to estimate the LAI using DART simulated data (section 
5.1) and field measurement data in Canada's boreal forests. Hotspot-vegetation indices have a much 
wider range of linear correspondence with LAI than that of the single nadir angular index. Two 
experimental conditions are considered, an ideal case without noise and a nonideal case with random 
noise interference to test the performance of hotspot vegetation indices on LAI estimation.  

The chapter is presented in the papers: 
(1) Z. Zhen, S. Chen, T. Yin, E. Chavanon, N. Lauret, J. Guilleux, M. Henke, W. Qin, L. Cao, 

J. Li, P. Lu, and J.-P. Gastellu-Etchegorry, "Using the Negative Soil Adjustment Factor of Soil 
Adjusted Vegetation Index (SAVI) to Resist Saturation Effects and Estimate Leaf Area Index (LAI) 
in Dense Vegetation Areas," Sensors, vol. 21, no. 6, pp. 2115, 2021. (SCI, IF: 3.576)  

The chapter is partly presented in the papers: 
(2) Z. Zhen, S. Chen, W. Qin, G. Yan, J.-P. Gastellu-Etchegorry, L. Cao, M. Murefu, J. Li, and 

B. Han, "Potentials and Limits of Vegetation Indices With BRDF Signatures for Soil-Noise 
Resistance and Estimation of Leaf Area Index," IEEE transactions on geoscience and remote sensing, 
vol. 58, no. 7, pp. 5092-5108, 2020. (SCI, IF: 5.855) 
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5.1  Using negative soil adjustment factor of SAVI to mitigate 

vegetation index saturation effect 

According to the original SAVI literature [97], the optimum soil adjustment factor should be 
close or equal to zero under dense vegetation area and close or equal to one under sparse vegetation 
area. However, Ren et al. [189] find a good performance of negative soil adjustment factor using 
field-measured data in arid grasslands where LAI is very low. In order to study the different results 
of optimal adjustment factors, we deduce the geometric interpretation of vegetation indices. Then, 
vegetation isoline behaviours are studied based on the DART simulated data. Finally, the assumption 
that using negative soil adjustment factor to mitigate vegetation index saturation effect is proposed 
and validated. 

5.1.1   Study of index isoline and vegetation isoline 
The variations of the VI value of constant canopy optical properties induced by canopy 

background may be simply expressed in the red-near infrared (NIR) reflectance space as the 
difference between vegetation isolines and index isolines [190].  

(1) Index isoline 

Vegetation indices are usually designed based on the isoline concept. Every VI has its isoline, 
and usually, their isolines cannot fully overlap on the vegetation isolines. The ideal VI should be 
designed with the maximum overlap between isoline and vegetation isoline. Here we take RVI, 
NDVI, SAVI, PVI and TSAVI as an example to illustrate their isolines, and their corresponding 
geometry meanings are shown in Figure 5.1. 

(i) RVI 

RVI is the slope of isoline 

 RVI tan( )α=   ···································· (5.1) 

(ii) NDVI 

Based on Eq.(1.2), we can get  
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As a result, NDVI is a tan value of α-π/4, and it is a positive correlation with α when -π/2 < α-
π/4 < π/2. The index isolines of NDVI is depicted in Figure 5.2.a. 

(iii) SAVI 

Based on Eq.(1.3), we can get 
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Compared with NDVI, SAVI shifts the convergent point from the original point to the point (-
XSAVI / 2, -XSAVI / 2), and the (1+ XSAVI) is multiplied to maintain the bounded conditions. The index 
isolines of SAVI is depicted in Figure 5.2.b. 

 
Figure 5.1 The geometry explanation of vegetation indices. A vegetation pixel is depicted as (Rnir, 
Rred), and the isoline of TSAVI (upper) and RVI (lower) go through it. A soil pixel is depicted as 
(Rnir,soil, Rred,soil), and the soil line goes through it. 

(iv) TSAVI 

Based on Eq.(1.10), we can write  
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Because XTSAVI is the negative abscissa of soil adjustment factor, by assuming the slope of 
vegetation isoline as kv and based on Eq.(5.4), we get 
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It should be noted that when β = 90°, TSAVI equal ∞; When 90° < β < 180°, TSAVI is negative. 

(v) PVI 

PVI is the distance between the vegetation reflectance point and the soil line based on the 
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distance equation from point to line. The index isolines of PVI is depicted in Figure 5.2.d. 

 
Figure 5.2 Concepts of vegetation isolines for various vegetation indices. (a) NDVI; (b) SAVI; (c) 
TSAVI; (d) PVI. The convergence point of NDVI is located in the original point; the convergence 
point of SAVI is located in the angle dividing line of the first and third quadrants; the convergence 
point of TSAVI is located in the soil line; the isolines of PVI is parallel to the soil line. 

(2) Vegetation isoline 

Vegetation isolines are a series of canopy reflectance points with the same optical and structural 
properties (e.g. constant leaf reflectance, leaf transmittance, LAI and green cover) but with different 
background brightness [190]. 

Most of the two-band VIs were designed based on the geometry of the convergence points of 
all vegetation isolines in the red-NIR plane or the intersection of vegetation isolines with soil lines. 
Understanding vegetation isolines behaviour is essential because the desired VI should yield a 
constant value for the reflectance points on the same vegetation isolines where vegetation conditions 
are considered constant. Therefore, it is essential to study the behaviours of vegetation isolines. 

BRFs of homogeneous and heterogeneous canopies simulated by the DART model was used 
to investigate the vegetation isolines behaviours. The DART model simulated the reflectance of 
homogeneous and heterogeneous vegetation canopy scenes and compared the differences between 
different levels of simplification of the remote sensing scene. This model can simulate the energy 
radiation balance and remote sensing images of an Earth scene with an atmosphere and simulate 
both homogeneous and non-homogeneous canopy scenes [28, 88, 130, 132, 133, 191-193]. A variety 
of LAI, ALA, and canopy bi-directional reflectance factors for soil OPs was simulated using DART. 
Most of the input parameters (Table 5.1) were taken from the literature [107], where a well-known 
soil adjusted family VI was proposed, called TSAVI. It was designed to improve SAVI. Several 
parameters were modified to fit the study objectives better: two SZAs of 30° and 60° were added to 
examine the effects of SZA. Hotspot directions and darkspot directions were also considered in 
calculating hotspot signature VIs. As the maximum LAI field measurement was 6.3, the maximum 
LAI value (12.8) was removed to keep the LAI range between the simulated and measured data not 
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too large for the LAI inversion. The OPs of leaves and soils were referenced from the literature 
[107]. 

 

Figure 5.3 Canopy scene created by DART for reflectance simulation. (a) Homogeneous scene; (b) 
heterogeneous scene. 
 
Table 5.1 Input parameters for the canopy reflectance simulation datasets. 

Solar zenith angle: 30, 45, 60° 

Observation angle: nadir, hotspot, darkspot, 57.5° 

Remote sensing scene modelling: 

- Voxel size: 0.2 (m) × 0.2 (m) × 0.2 (m) 

- Scene size: 30 (m) × 30 (m) × 30 (m) 

Canopy structure parameters: 

- Leaf angle distribution: ellipsoidal 

- Average leaf inclination angle: 30, 35, 40, 45, 50, 55, 60, 65, 70° 

- Leaf area index: 0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40 

Spectral domain 
650 nm 850 nm 

(red band) (NIR band) 

Leaf reflectance 0.050 0.465 

Leaf transmittance 0.020 0.490 

Soil reflectance: 0.050, 0.100, 0.150, 0.200, 0.250, 0.300, 0.350 

(650 nm) 

 
Homogeneous scenes (Figure 5.3.a) were superimposed by a turbid medium of homogeneous 

and horizontal layers (i.e., a random distribution of elements in infinitely small planes). Therefore, 
the components of the scene included soil and homogeneous vegetation as the substratum. The voxel 
sizes were set to ensure that the true LAI ("sum of the true LAI" / "number of voxel layers") of each 
voxel in the scene was always less than 0.5, even at the maximum LAI (6.4), to ensure an accurate 
simulation of the multiple scattering within the voxel [3]. In the heterogeneous scene (Figure 5.3.b) 
simulated by DART (Table 5.2), trees consisted of a trunk and a crown filled by an isosceles triangle 
(twice the height of the bottom edge). All trees with random dimensions were randomly positioned 
in the scene using the DART “random tree positioning” model [135-138, 192]: trees were randomly 
set in a disk (radius r) centred on a Δx / Δy grid node on the scene, with a probability of existence. 
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In this model, the geometric properties of the tree were defined as the mean and standard deviation. 
The standard deviation was set to 20% of its value for each parameter. Each trunk consisted of 8 
trapezoids (horizontal segments = octagonal). Each crown was ellipsoidal, and the interior was 
randomly filled with isosceles triangles. The scene included only vegetation and soil. In the DART 
model, tree LAI was defined as the ratio of "total leaf area of all trees of the selected species" / 
"scene area". In this experiment, only one tree species was used. 
 
Table 5.2 Additional input parameters for the heterogeneous scenes. 

Parameters Value 

Scenes 

Number of trees 72 

Probability of tree presence at nodes 0.90 

X-axis tree spacing (∆x) 3 m 

Y-axis tree spacing (∆y) 3 m 

The radius of tree presence (r) 5 m 

Trunk 

Height under crown 5 m 

Diameter under the crown 0.4 m 

Diameter inside the crown 0.3 m 

Height within crown 3 m 

Crown 
Canopy height 6 m 

Diameter of the canopy in the horizontal direction 4 m 

 

 
Figure 5.4 DART simulated BRF in red and NIR spectral bands for homogeneous and 
heterogeneous canopy as a function of LAI with ALA equal to 40◦ and soil reflectance in red band 
equal to 0.25 when SZA equal to (a) 30◦, (b) 45◦, and (c) 60◦. Similar trends are also found for other 
ALA and soil optical property values. The dynamic ranges of the homogeneous canopy are slightly 
larger than the heterogeneous canopy because the low-NIR-reflectance soil occupies a large fraction 
of the heterogeneous canopy. 
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Due to the significant variation in LAI, the range of variation in the reflectance of the simulated 
canopy in red and NIR was very large (Figure 5.4). However, when the LAI increased above 3, the 
reflectance no longer varied dramatically, indicating saturation of the VIs. Reflectance also varied 
with the observation direction due to anisotropic scattering by vegetation. The dynamic range of the 
NIR reflectance was significantly greater than that of the red reflectance, as described in the 
literature [119]. Besides, hotspot reflectance was highest in the PP, while darkspot reflectance was 
not always the lowest, as described in the literature [126, 127]. In addition, the highest values of 
NIR band reflectance were smaller in the heterogeneous canopy than in the homogeneous canopy 
because soils with low NIR occupied a large part of the scene. Also, as the SZA increased, the 
dynamic range of red band reflectance was much smaller than that of the NIR band, which may 
increase VIs values, as described in the literature [194]. 

Here, vegetation condition was summarised in terms of “FC” (i.e., the proportion of the scene 
covered by foliage) as a variable to characterise vegetation isolines [95]. As the FC of turbid media 
cannot be calculated using its definition, LAI and ALA [195] were used to calculate it, as used in 
the literature [95]. Figure 5.5 shows the vegetation isolines figures for the direction of nadir 
observation with SZA equal to 45° and ALA equal to 70°. Figure 5.6 shows the scatter plots of the 
FC variation with the abscissas of the intersection of the vegetation isoline and the soil line for the 
corresponding LAI. 

 
Figure 5.5 Vegetation isolines with SZA equal to 45◦ and ALA equal to 70◦ for (a) homogeneous 
and (b) heterogeneous canopy from nadir observation. In the homogeneous canopy, the highest LAI 
vegetation isoline intersects with the soil line in the first quarter, whereas in the heterogeneous 
canopy, the lowest LAI vegetation isoline intersects with the soil line in the first quarter. Besides, 
the dynamic slope range in the heterogeneous canopy is far smaller than that in the homogeneous 
canopy with the increase of LAI. The vegetation reflectance points in the same isoline are due to 
the variation of soil reflectance. 

For homogeneous canopies, the slope of the vegetation isoline increased with increasing FC 
(Figure 5.5.a), and the abscissa of the intersection of the vegetation isoline and the soil line gradually 
increased and converged to an immobile point (Figure 5.6.a). This phenomenon may help explain 
why VIs such as PVI, which assume parallel vegetation isolines, perform better in areas with low 
FC. In contrast, VIs such as SAVI, which assume a convergence of vegetation isolines to a common 
point, perform better in areas with high FC. Furthermore, there was a clear tendency for the 
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intersections of the vegetation isolines with the soil lines to shift to the right, and these intersections 
can even move from the second or third quadrant towards the first quadrant. Thus, the results further 
confirmed the conclusion from Ren et al. [189] that the intersections of vegetation isolines with the 
soil line can be located in the first quadrant. 
 

 
Figure 5.6 Relationship between abscissae of crosspoints and foliage cover using (a) homogeneous 
and (b) heterogeneous simulated data set when SZA equal to 45◦. The symbols represent the ALA, 
and the colours represent the LAI. In the homogeneous scene, the right shift phenomenon of 
crosspoints is obvious. Besides, the abscissae of crosspoints in the homogeneous canopy are linearly 
positive with foliage cover, and the value of abscissae can vary from negative to positive. However, 
in the heterogeneous scenes, the right shift phenomenon of crosspoints is not obvious, and the value 
of abscissae can even be positive when LAI is low. 

 
Previous conclusions suggested that the intersections of vegetation isolines moved close to the 

origin as FC increased [97-99]. In contrast, Ren et al. [189] noted that the intersection of vegetation 
isolines moved away from the origin as FC increased, thus contradicting the previous findings [97-
99]. This contradiction was that vegetation isolines in previous studies intersected the soil line in 
the second or third quadrant, whereas in Ren et al. [189] case, they intersected in the first quadrant. 
Therefore, here we proposed to describe the intersections movement using the abscissa rather than 
the absolute distance from the origin and to propose a phenomenon of the right shift of the 
intersections, which was not only consistent with Ren et al. [189] but also with the previous findings 
[97-99]. 

It is not hard to prove that a decrease in XSAVI implies an increase in SAVI. Thus, it must be 

shown that y= (a-b)∙(1+x)
a+b+x

 to be a decreasing function, where a, b, x and y represent the reflectance in 

the NIR band, the reflectance in the red band, the soil adjustment factor XSAVI and SAVI. Obviously, 
some preconditions can be derived, such as y > 0, 0 < b ≤ a < 1 and 0 ≤ x ≤ 1. In addition, usually for 
vegetation, the sum of the reflectance values in the NIR band (b) and the red band (a) in the nadir 
direction observation does not exceed 1. Therefore, a + b < 1. By assuming that x1 < x2, we have 
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It implied: y1> y2. Thus, a decrease in XSAVI leads to an increase in the SAVI value. 
A decrease in XSAVI led to a right shift in the intersection of the SAVI isoline with the soil line 

[97] and an increase in the slope of the SAVI isoline, which was why the optimal XSAVI should 
decrease as LAI increases. It was worth noting that this conclusion applied both when XSAVI was 
positive and negative. Therefore, there was no significant difference between positive and negative 
values of XSAVI. The sign of the intersection abscissa depended strongly on the soil line's intercept 
and the vegetation isolines' intercept. It was negative when the intercept of the vegetation isoline 
was greater than that of the soil line. When the intercept of the vegetation isoline was smaller than 
that of the soil line, the abscissa of the intersection was positive. If the intersection of the vegetation 
isoline lines with the lowest LAI had a positive transverse coordinate, then most of the intersection 
points had a positive transverse coordinate. 

Compared to the homogeneous canopy, the dynamic slope range in the heterogeneous canopy 
was much less with increasing LAI (Figure 5.5.b). In addition, there was no significant right shift in 
the position of the intersection (Figure 5.6.b). This conclusion contradicted the results of 
homogeneous canopy studies [97-99, 189] and previous studies, suggesting that the conclusions 
drawn from homogeneous canopies did not necessarily apply to heterogeneous canopies. 

5.1.2   Relationship between vegetation indices and LAI 

(1) The empirical relationship between vegetation index and leaf area index 

For convenience, a linear relationship is normally used to descript the relationship between VIs 
and LAI. That is to say, the maximum value of VIs corresponds to the maximum value of LAI, and 
LA1 can be inferred from standardized VI values 

 min
max

max min

VI VILAI LAI
VI VI

−
=

+
  ···························· (5.7) 

However, the relationship between VI and LAI is not always linear. For example, the VI always 
tends to be asymptotically saturated within the range of LAI from 2 to 6. It also depends on 
vegetation cover type and environmental conditions. When the linear relationship is no longer 
satisfied, the saturation effect occurs. Therefore, the linear relationship is a major focus in our anti-
saturation study.  

The semi-empirical relationship for saturation case between VIs and LAI can be expressed in 
terms of a modified Beer's law to descript the non-linear relationship [107] 

 ( ) ( )max min max VIVI=VI + VI VI exp LAIK− ⋅ − ⋅ ⋅Ω  ···················· (5.8) 

where KVI is the coefficient controlling the slope (equivalent to the extinction coefficient), 
VImax is the maximum value of the VI (equivalent to the asymptotic value of VI as LAI tends to 
infinity), and VImin is the minimum value of VI (equivalent to the VI of bare soil). 

(2) Time series decomposition analysis of remote sensing LAI data 

Time series analysis is a statistical method for predicting, controlling and understanding 
characteristics of time series data [196]. The ability of the VIs to invert LAI in areas of high FC was 
evaluated. Seasonal decomposition of the time-series leaf area index (LAI) was first performed to 



PhD Thesis, Université de Toulouse 

78 

test the data stability. The VIs were then calculated for the period corresponding to the LAI to 
estimate trends in LAI variation. 

The study area (Figure 5.7) comprised the Apiacás region (latitude: -7.35° ~ -9.82°N, longitude: 
57.04° ~ 58.57°W) located in the northernmost intact part of Mato Grosso, Brazil. There were five 
land cover types in the study area: water body (blue), evergreen broadleaf vegetation (dark green), 
deciduous broadleaf vegetation (yellow), annual grass vegetation (yellow-green), and urban and 
built-up land (dark grey). The area was chosen for its dense vegetation. It contains part of the 19,582 
square kilometres of the Juruena National Park, one of the largest conservation units in Brazil. Its 
elevation is around 200 m [197]. 

The multispectral satellite data and MODIS LAI data were provided and processed by GEE 
[198-200] (https://earthengine.google.com/). They were used to validate the LAI of inversions of 
VIs calculated using S2 image from 4 February 2019 to 10 November 2020 and L8 Tier 1 imagery 
from 16 April 2013 to 21 October 2020 for multispectral surface reflectance data. The use of 
multiple data sources helped to increase the sampling frequency of the time series. Differences in 
VIs due to different sensors were ignored because of the similarity in resolution between S2 (10 m) 
and L8 (30 m) satellites. 

LAI data were obtained from the MODIS 4-day global 500 m LAI product (MCD15A3HV6 
Level 4). The global MODIS 4-day 500 m LAI product [201] was used. The MCD15A3H V6 Level 
4, Fraction of Photosynthetically Active Radiation (FPAR) and LAI product is a composite dataset 
with a temporal resolution of 4 days and a spatial resolution of 500 m. Over four days, the algorithm 
selects the "optimal" available pixels for inversion from all observations from the two MODIS 
sensors located on NASA's Terra and Aqua satellites. LUT is generated using the three-dimensional 
radiative transfer equation [202]. Inputs to the algorithm include (i) the type of vegetation structure; 
(ii) the geometry of the sun and sensor; (iii) the BRF in the red (648 nm) and NIR (858 nm) spectral 
bands and (vi) its uncertainty. Each pixel compares the observed and modelled spectral BRFs for a 
set of vegetation structures and soil patterns that represent the expected range of typical conditions 
of a given biome type. All canopy/soil patterns and corresponding FPAR values are acceptable 
solutions if the modelled and observed BRFs differed within a given level of uncertainty. Inversion 
products included LAI, mean FPAR, dispersion, Standard Deviation (STD) LAI and STD FPAR, 
and uncertainties [202]. In areas of high FC, the optical reflectance saturates, and therefore the 
sensitivity of the spectral to canopy properties becomes weak. The reliability of inversion 
parameters under saturated conditions is low because of the large dispersion of the solution 
distribution. Such inversion results will be flagged in the quality detection layer. A backup method 
is utilised when the LUT method does not yield a solution. The type of inversion algorithm used is 
archived in the Quality Assurance (QA) layer. Analysis of the performance of the algorithms shows 
that the best quality and most accurate inversion results are obtained from the main algorithm [203, 
204]. Therefore, the algorithm used for the inversion is an essential quality indicator. The algorithm 
has interfaces with the MODIS surface reflectance product (MOD09GA) and the MODIS land cover 
product (MCD12Q1). Technical details of the algorithm can be found in the Algorithmic Theoretical 
Basis Document (ATBD) [205]. 

The multispectral images were first processed. All available S2 and L8 Tier 1 surface 
reflectance datasets in the GEE by 10 November 2020 were selected, and the datasets were first 
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filtered by selecting images that covered the study area and images with less than 20% average cloud 
coverage. Each remaining image was then clipped to ensure that only the pixels in the study area 
were retained. Afterwards, two boundary masks were used in a pre-processing stage. The first was 
a cloud mask, and the second was a vegetation mask. GEE provided cloud masks for S2 and L8. 
Pixels in the cloud mask were removed in the subsequent data processing. The vegetation mask for 
S2 was obtained by classifying NDVI and GRVI [206] images using the thresholds proposed in the 
technical report for S2 [207]: classifying (NDVI > 0.40) or (0.36 ≤ NDVI ≤ 0.40 and GRVI > 2.50) 
pixels were labelled as vegetation pixels. The same rules were used to create the L8 vegetation mask. 
The VIs and reflectance values were calculated pixel-wise, and the final VIs and reflectance for each 
satellite image were obtained by aggregating the VIs and reflectance calculated for each image. In 
the next step, LAI extraction was performed on each satellite image. 

 
Figure 5.7 Study area with the base map of the MODIS classification product (MCD12Q1V6). It 
has five types of land cover: water body (blue), evergreen broadleaf vegetation (dark green), 
deciduous broadleaf vegetation (yellow), annual grass vegetation (yellow-green), and urban and 
built-up lands (dark grey). 

 
Based on the acquisition time of the surface reflectance images, LAI data were searched for 

within eight days of using the MODIS LAI 4-day global 500m (MCD15A3HV6, 
https://doi.org/10.5067/MODIS/MCD12Q1.006) [208]. If no LAI product was available, LAI data 
within the 16-day interval was taken instead. This surface reflectance image was skipped if LAI data 
was not available within 16 days. After obtaining LAI data for the time range of the satellite images, 
the pixels within the boundary of the study area and the boundary of the reflectance image were 
extracted separately, and an average LAI value was obtained by aggregating the LAI of all pixels 
within these two boundaries. Finally, for each multispectral image, mean values of the different VIs, 
mean values of the different band reflectances, and mean values of LAI were obtained. 

Depending on the type and location of the sensor, the study area could correspond to multiple 
remote sensing images of the day. In this case, the VIs, reflectance and LAI were averaged using 
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the images acquired on that day. The reason for treating the whole study area as one object rather 
than pixels was to attenuate inconsistencies due to differences in the resolution of remote sensing 
data. 

 
Figure 5.8 Decomposition analysis for the long-term LAI in the Apiacás (2013–2020). (a) LAI is 
decomposed into (b) trend, (c) seasonal, and (d) residual. The full-year LAI is separated into four 
quarters. Then, the mean value of each quarter is calculated and is used for time series analysis. 

 
A time-series analysis of the LAI of the study area was carried out to ensure the stability of the 

vegetation condition in the study area. The independent variable was the date in the time series 
analysis, and the dependent variable was LAI. The time series of LAI can be divided into trends, 
seasons and residuals. The trend was the increasing (or decreasing) value in the data series. 
Seasonality was the recurring short-term cycle in the data series. After the trend and seasonal 
components were removed, residual residuals were the time series data. The decomposition was 
achieved by sliding average using the classical seasonal decomposition [209]. The seasonal 
multiplicative component was selected for a base-level static analysis using the rolling mean and 
Dickey-Fuller test. A 99% significance level was applied to the null hypothesis (i.e., no trend) as a 
threshold for analysis. This test explored trends from one quarter of the year to the following year. 

The results of the LAI time series decomposition analysis can be seen in Figure 5.8. All LAI 
data (marked as observations in the graph) were averaged using quarters (winter, spring, summer 
and autumn). The LAI for the whole year was first divided into four quarters. The average of the 
quarters was then calculated and used for the time series analysis. However, there were very few 
quarters where the corresponding LAI was not available due to cloud cover, in which case an 
average was assigned between the previous and the next value of this null value. All quarterly LAI 
data were then decomposed into the trend, seasonal and residual components at a quarterly frequency. 
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Figure 5.9 Stationarity analysis of MODIS LAI residual by rolling mean and standard deviation 
over the whole observation period. 

 
Table 5.3 Dickey-Fuller test.  

Parameters Value 

Test statistics -6.979 

MacKinnon's approximate p-value 8.281 × 10-10 

Lag time for use 1 

Number of observations used 26 

Threshold (1%) -3.711 

Threshold (5%) -2.981 

Threshold (10%) -2.630 

 
The smoothness of the LAI residuals was verified using the rolling mean (Figure 5.9) and the 

Dickey-Fuller test (Table 5.3). According to the results of the Dickey-Fuller test (Table 5.3), the 
statistic was much smaller than the critical value at 1%, implying that the data could be considered 
stable at the 99% confidence level. 

The time-series variation of the VIs and LAI was shown in Figure 5.10, where the trend in VI 
with leaf area index can be seen. VIs were calculated using the default soil adjustment factors (XSAVI 

= 0.5, XTSAVI = 0.08, XEVI = 1). LAI values ranged from 2 to 6.5. NDVI had the highest values 
throughout the period (i.e., 0.7 to 0.9), followed by EVI (i.e., 0.4 to 0.7). The range of SAVI and 
TSAVI was almost the same, from 0.2 to 0.6. These high values indicated a high level of FC in the 
area. In addition, Figure 5.10 shows the time series of VIs (left vertical axis) and LAI (right vertical 
axis). It suggests that VIs may or may not be an indicator of trends in LAI over time. Solid circles 
highlight a period when the LAI is trending against all VIs; the dot-dash circles highlight a period 
when the LAI is trending in line with the NDVI and against the other VIs; the dotted circles highlight 
a period when the LAI is trending in line with all VIs. It can be seen that the saturation effect severely 
limits the ability of VIs to invert the LAI. 

(3) Using vegetation indices to estimate LAI 

Since the optimum soil adjustment factor is the negative value of the abscissa of the intersection 
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of the vegetation isolines and the soil line, the optimum soil adjustment factor of SAVI in high FC 
areas can be taken as a negative value according to the right shift phenomenon. The ability of the 
negative soil adjustment factor to resist saturation was verified using linear regression with remote 
sensing data and global LAI measurements. 

 
Figure 5.10 Time series of VIs (left axis) and LAI (right axis). The solid circles highlight a period 
when the LAI has a trend opposite to that of all VIs. The slash circles highlight a period when the 
trend of LAI is consistent with NDVI while being opposite to other VIs. The dashed circles highlight 
a period when the trend of LAI is consistent with all VIs. 

 
In addition to the MODIS LAI time series mentioned above, a global LAI field measurement 

dataset was used to calculate VIs using the Landsat-5 surface reflectance product. The field 
measurement dataset was derived from the global leaf area index from field measurements 
(GLAIFM) dataset of global LAI data [210], a dataset based on approximately 1000 published LAI 
estimates from 1932 to 2000. These historical LAI data include natural and semi-natural (managed) 
ecosystems and some cultivated vegetation. It contains a wide range of LAI values for 15 biome/land 
cover types, ranging from 0.46-2.16 for deserts to 4.4-13.04 for planted forests. It was downloaded 
from the website (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id= 584). 

Landsat-5 Tier 1 surface reflectance products were extracted for each LAI pixel using LAI 
measurements and geographic information (latitude and longitude). The VIs were then calculated 
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from these reflectance values. The steps were as follows: (1) Data cleaning removes data with zero 
values for latitude, longitude or measured LAI dates. In addition, data with LAI as a range value 
rather than a specific value were removed, and data with a range of LAI measurements date longer 
than one month were removed. (2) Data corresponding to areas of dense FC were screened to remove 
data with LAI values less than 4.0. (3) Screen time ranges, removing LAI measurement data ranges 
outside the time range covered by Landsat-5. (4) Duplicate data were removed, with some data 
measured simultaneously and geographic location with different LAI values. We found that some 
of these data were from measurements of different biomes on further examination. Therefore, these 
data were removed as it was impossible to establish a one-to-one correspondence between LAI and 
VI. (5) Matching of LAI with satellite reflectance imagery: As the temporal accuracy of all measured 
LAI data is one month, all surface reflectance data from one month of Landsat-5 Tier 1 data were 
searched and averaged to obtain the final surface reflectance data. Due to cloud cover, some of the 
reflectance data could not be inverted, so the corresponding LAI data were excluded. 

Table 5.4 shows the LAI data and corresponding station information that remained after the 
above steps. These data were used to evaluate the accuracy of the VIs of LAI inversion. The LAI 
values ranged from 4.06 to 10.59 and were mainly distributed in Canada, Japan and the USA. 

Linear regression was used to establish the relationship between VIs and LAI. Linear 
regression is a method of establishing a linear relationship between a dependent variable and one or 
more independent variables [211]. Using a univariate linear regression with VI as the independent 
variable and LAI as the dependent variable, the linear regression equation is defined as 

 LAI= VIsc d⋅ +  ···································· (5.9) 

where c and d are the intercept and slope of the fitting line, linear regression is widely used to 
invert LAI from VIs because of its simplicity [3, 127]. When LAI increases to a certain threshold, 
saturation effects are observed and no longer maintain a linear relationship with VIs. 

Table 5.4 Field measured LAI data from GLAIFM for evaluating the LAI estimation accuracy of 
VIs. 

Name of measuring station Latitude (°) Longitude (°) LAI Date 

BOREAS NSA/OJP, Thompson 55.92 -98.62 4.38 July 1994 

BOREAS NSA/OBS, Thompson 55.91 -98.45 4.06 July 1994 

BOREAS NSA, Thompson 55.91 -98.52 8.41 July 1994 

BOREAS NSA, Thompson 55.80 -98.00 6.21 July 1994 

BOREAS NSA, Thompson 55.75 -97.80 5.44 July 1994 

BOREAS SSA, Prince Albert 54.06 -105.93 10.59 August 1994 

Arakawa River, Urawa 35.83 139.62 4.24 September 1985 

Westvaco, Summerville, SC 33.20 -80.25 10.4 February 1991 

The ability of the VIs to estimate LAI was examined, and the scatter plots of LAI (y-axis) and 
VIs (x-axis) are given in Figure 5.11. VIs were compared using a linear regression model. The 
coefficients of the linear regression model are given in Table 5.5. Figure 5.11 and Table 5.5 clearly 
show that all VIs have an intense saturation effect. The VIs show almost no upward trend with the 
increase of LAI. In addition, all VIs were weakly correlated with LAI. Overall, NDVI showed better 
performance in both cases, with the highest R2 (0.1632 for MODIS LAI and 0.4313 for measured 
LAI), the lowest P (0.0173 for MODIS LAI and 0.2860 for measured LAI), and the second-highest 
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is TSAVI. EVI and SAVI performed unsatisfactorily, especially with MODIS LAI data that were 
negatively correlated. In conclusion, using VIs to invert LAI in very dense vegetation areas may 
lead to significant errors. 

 
Figure 5.11 Scatter plot between VIs and (a) MODIS and (b) field-measured LAI. The solid lines 
represent the trendlines of the linear regression model. 
 

For discrete problems for which no valid solution method is known, it may be necessary to 
perform a sequential test for each possibility to determine whether the result is a solution. This 
exhaustive test of all possibilities is called an exhaustive search [212]. The exhaustive search was 
used to evaluate the performance of a SAVI calculated with the exhaustively optimal soil adjustment 
factor XSAVI. Here the independent variable was XSAVI, and the dependent variables were R2, slope 
and P of the linear regression equation. Work by Ren et al. [189] demonstrated that a negative XSAVI 
value (e.g., -0.2) is acceptable, which allows the specific interval of XSAVI to be set to [-0.3,1] and 
the bound to be divided into 2000 by 0.001 intervals sections. The ability of SAVI to invert the LAI 
was investigated throughout the study period using XSAVI sequences. A linear regression model 
between LAI and SAVI calculated using the XSAVI sequence was used for inversion. MODIS and 
field measurement LAI data were used here. Finally, the linear regression performance of the 
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various SAVI values calculated from positive or negative XSAVI value was evaluated using R2 and P. 
As can be seen from the two LAI data sets, the best results occurred mainly at XSAVI between -

0.18 and 0, indicating that negative XSAVI values were highly desirable and performed well compared 
to positive values. In the MODIS LAI data set (Figure 5.12.a), XSAVI appeared with a negative R2 

and slope in the range of 0.225 to 1, indicating that the correlation between SAVI and LAI was 
extremely weak. Furthermore, the negative slope implied a negative correlation between LAI and 
SAVI. A maximum R2 (0.2472) and a minimum P (0.0003) occur at XSAVI = -0.148. In the field 
measurement data, XSAVI shows a negative R2 and slope between -0.3 and -0.2 (Figure 5.12.b), and 
R2 and P fluctuate considerably in this region. The maximum R2 (0.6417) and minimum P (0.0863) 
occur at XSAVI = -0.183. As XSAVI increases from -0.184 to 1, SAVI performance becomes 
progressively worse, with R2 decreasing and P increasing. 

 
Figure 5.12 Linear regression between SAVI and (a) MODIS and (b) field-measured LAI with 
varying XSAVI. The optimal results are observed in the negative XSAVI region. 

 
Table 5.5 Linear regression of the four VIs on LAI (slope, intercept, R2, P) 

VIs LAI Type Slope intercept  R2 P * 

NDVI MODIS LAI 2.4769 3.1819 0.1632 0.0173 
In-situ measurement of LAI 6.2097 3.4104 0.4313 0.2860 

SAVI MODIS LAI -2.4165 6.4499 -0.0904 0.1894 
In-situ measurement of LAI 10.1760 3.9748 0.2915 0.4836 

TSAVI MODIS LAI 1.0364 4.7082 0.0454 0.5103 
In-situ measurement of LAI 7.6553 4.9714 0.3386 0.4120 

EVI MODIS LAI -3.0249 6.8936 -0.1504 0.0285 
In-situ measurement of LAI 4.4827 5.3874 0.1017 0.8106 

* Hypothesis testing for two-sided P with a null hypothesis of a zero-slope using the Wald Test with a t-
distribution test statistic. 

According to an earlier study [97], the value of the optimal soil adjustment factor was related 
to the general condition of vegetation: XSAVI should be close but equal or lesser than 1 for sparse 
vegetation and close but equal or greater than 0 for dense vegetation. However, Ren et al. [189] and 
Zhen et al. [3, 213] questioned the zero point of the lower boundary for dense vegetation based on 
field-measured data from arid grasslands and DART simulated data, respectively. 
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Similar to Ren et al. [189], the negative soil adjustment factor performed optimally in this study. 
However, the vegetation condition differed from Ren et al. [189], where NDVI in the dry grassland 
was around 0.2, indicating very sparse vegetation. In our study area, NDVI values were mainly 
distributed around 0.8, indicating very dense vegetation. It is assumed that the reason for the better 
performance of the negative soil adjustment factor in both cases was that the intersections of the soil 
line with the vegetation isolines lied in the first quadrant, despite the huge differences in vegetation 
density. 

Field measurements and remote sensing data (Figure 5.12) further confirmed that the lower 
boundary of the soil adjusted factor could be negative [3]. The locations of the intersections between 
the soil line and the vegetation isolines are determined by the intercept of the vegetation isoline and 
that of the soil isoline. If the vegetation isoline intercept is greater than the soil line intercept, the 
intersection is in the second or third quadrant of the red-NIR plane. The intersection is located in 
the first quadrant if the vegetation isoline intercept is smaller than the soil line intercept. Furthermore, 
the intercept depends heavily on the OPs of the leaves and soil, in addition to canopy structural 
parameters such as LAI. This study further confirms this conclusion using field measurements and 
remote sensing data. 

Furthermore, it is noted that NDVI has better performance than SAVI, even though SAVI is 
considered an improved version of NDVI. Similar suboptimal performance of SAVI has been 
reported in the literature [189, 214]. The reason for this poor performance may be that NDVI 
assumes that the vegetation isolines converge at the origin, and SAVI assumes that the vegetation 
isolines converge at a point located in the third quadrant (-0.5, -0.5). In this study (a very densely 
vegetated area), the vegetation isolines converge to a point in the first quadrant. Therefore, the 
origin-based assumption is better than the point (-0.5, -0.5). This phenomenon can also be seen from 
the slightly better performance of TSAVI over SAVI since TSAVI assumes that the intersection of 
the vegetation isolines lies between the origin and the point (-0.5, -0.5). Another possibility is the 
use of NDVI in the inversion backup algorithm for MODIS LAI products if the radiative transfer 
inversion method fails, which may also affect the results. 

5.2  Using hotspot signature vegetation indices to estimate LAI 

Hotspot signature vegetation indices are superior to single angular indices for LAI estimation 
[126-128]. To evaluate the performance of hotspot signature vegetation indices for LAI estimation, 
NHVI[127], together with other kinds of hotspot signature VIs proposed below, are validated for 
LAI estimation using both simulated and field measured data. 

Similar to NHVI, see Eq.(1.16), here we defined Hotspot-signature Soil-adjusted Vegetation 
Index (HSVI) as the product of the multispectral index SAVI and the angular index NDHD 

 HSVI = SAVI  NDHD×  ······························· (5.10) 

where SAVI [97] is the soil-adjusted vegetation index, expressed by Eq.(1.3). 
We replace HDS in the Eq.(1.14) with NDHD and propose NHVI2, which is defined as 

 NHVI2 = NDVI  NDHD×  ····························· (5.11) 

where NDVI [110] is the normalised difference vegetation index, expressed by Eq.(1.2). 
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In order to evaluate the ability of hotspot signature VIs for soil noise resistance and LAI 
estimation, the Hotspot-signature 2-band Enhanced Vegetation Index (HEVI2) is also defined as 

 HEVI2 = EVI2  NDHD×  ······························ (5.12) 

where EVI2 [106] is the two-band atmospheric enhanced vegetation index, expressed by 
Eq.(1.13). 

Reflectances tend to be minimal at the darkspot because the field of view is maximally filled 
with shadows from vegetation in the darkspot observation direction [123]. The reflectance in the red 
band depends on the physiological conditions of the green leaves and is particularly low at darkspot, 
which explains the potentially significant errors in calculating NDHD [127], so the reflectance in 
the NIR band is used to calculate NDHD and HDS. A fixed viewing zenith angle (57.5°) is also 
added because it is a long-established view angle to give LAI estimation close to actual value [120, 
215-219]. In this paper, the VIs calculated using this view angel are called VIs57.5. 

Two data sets were used, including DART simulations (section 6.1) and field measurements. 
Field measurements were from the Boreal Ecosystem-Atmosphere Study (BOREAS) as a 
heterogeneous canopy [220, 221]. Data were downloaded from the website 
(https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=2). For accuracy, LAI data were used rather than 
LAIe data. 

 
Figure 5.13 Map of the Canadian boreal forest shows the BOREAS project's two specific study 
areas: SSA and NSA. Six sites are investigated, including old jack pine (SOJP), young jack pine 
(SYJP), old black spruce (SOBS), old aspen (SOA) in the SSA and young jack pine (NYJP), and 
old black spruce (NOBS) in the NSA. 

In situ data used in this study were from BOREAS [127, 220, 221]. This area was chosen 
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because boreal forests have a more complex canopy structure [126]. Field measurements were taken 
from two specific study areas of the BOREAS project (Figure 5.13), the Southern Study Area (SSA) 
near Prince Albert and Candle Lake, Saskatchewan and Thompson, and the Northern Study Area 
(NSA) near Nelson House, Manitoba [222]. Bi-directional reflectance factors were acquired by the 
POLDER [221] instrument on the helicopter and tower. The instrument had five bands: 443 nm 
(blue), 550 nm (green), 670 nm (red), 864 nm (NIR1) and 910 nm (NIR2). At the NSA sampling 
point, multi-angle reflectance data sets were obtained by varying the angle of observation in 1° 
increment. Data were randomly varied at the SSA sampling site in the observed zenith and azimuth 
angles. The BOREAS project [220] measured LAI intensively along three transects at 10 m step 
intervals. Hemispheric photographs were taken on some of the transects. A detailed description of 
the field measurement site can be found in the literature [220]. All data were carefully examined, 
and six sampling sites were found to satisfy the conditions for calculating the hotspot signature VI 
while having LAI data. The Ross-Li model [13] was used to fit the bidirectional reflectance 
distribution function (BRDF) curves to the available data points and to find reflectance values for 
the specific observed directions to calculate the VIs [123-125]. Figure 5.14 shows the variation 
curve of BRF values with LAI. From the figure, significant fluctuations in reflectance at different 
sampling sites exist because of the variations in the leaves OPs and the spatial distribution of the 
leaves of the tree species. 

 
Figure 5.14 Fitting reflectance in the red and NIR spectral bands from BOREAS study areas as a 
function of LAI when SZA is equal to (a) 30◦, (b) 45◦, and (c) 60◦. 

5.2.1   Evaluation of inversion of leaf area index without noise interference 

Simulated and measured data were used to test the ability of all VIs considered to invert the 
LAI. The effectiveness of all VIs for LAI inversion was assessed by regression analysis. Regression 
parameters for homogeneous scenes, heterogeneous scenes and field measurements are presented in 
Table 5.6 and Table 5.7, Table 5.8 and Table 5.9, and Table 5.10 and Table 5.11, respectively. The 
corresponding standard fit statistics for the 10 VIs are compared in Figure 5.15, Figure 5.16 and 
Figure 5.17. Four fit models, unsaturation (linear), saturation (exponential), and two common used 
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math models (logarithmic and power), were combined with standard fit statistics, coefficient of 
determination (R2) and root mean square error (RMSE) to assess and compare the performance of 
the VIs in estimating LAI. 

The exponential fit performed the best of all fits for both types of vegetation scenes due to the 
“saturation phenomenon”, as shown in Eq.(5.8). Multispectral VIs performed well in homogeneous 
simulated data (Figure 5.15), with the highest R2 and lowest RMSE, followed by VIs57.5. The hotspot 
signature VIs did not perform better than the other two VIs in the homogeneous scene, which 
Hasegawa et al. [127] ignored. However, it can be noted that HEVI2, HSVI and NHVI2 outperform 
NHVI. Good performance of the hotspot signature VIs can be seen in both the heterogeneous 
simulated data (Figure 5.16), and the field measured data (Figure 5.17). Furthermore, the 
performances of VIs57.5 were unstable and outperformed the multispectral VIs in the heterogeneous 
simulated data when the SZA was small (SZA = 30°). However, when SZA was large, only NDVI57.5 
outperformed its multispectral counterpart VIs (SZA = 45° and SZA = 60°). In the field 
measurements, VIs57.5 outperformed the multispectral VIs overall. 

 

Figure 5.15 Standard goodness-of-fit statistics: R2 and RMSE of regression between the ten VIs 
and LAI of the homogeneous simulated data, for four fitting models when SZA equal to (a) 30◦, (b) 
45◦, and (c) 60◦. Multispectral VIs show the best performance. 
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Figure 5.16 Standard goodness-of-fit statistics: R2 and RMSE of regression between the ten VIs 
and LAI of the heterogeneous simulated data, for four fitting models when SZA equal to (a) 30◦, (b) 
45◦, and (c) 60◦. Hotspot-signature VIs show the best performance. 
 

 
Figure 5.17 Standard goodness-of-fit statistics: R2 and RMSE of regression between the ten VIs 
and LAI of field measurements, for four fitting models when SZA equal to (a) 30◦, (b) 45◦, and (c) 
60◦. Hotspot-signature VIs show the best performance. 
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Table 5.6 Parameters of the linear and logarithmic fitted model in the homogeneous canopies. 

VIs Model* 
Linear Logarithmic 

SZA = 30° SZA = 45° SZA = 60° SZA = 30° SZA = 45° SZA = 60° 

NDVI 
a 6.4063 6.3285 6.2162 2.9696 2.9756 3.0051 

b -2.0500 -2.0923 -2.1809 3.6740 3.5953 3.4604 

SAVI 
a 8.7534 8.6769 8.5810 3.0747 3.0868 3.1301 

b -1.8983 -1.9523 -2.0660 4.8821 4.8079 4.6859 

EVI2 
a 7.7166 7.6389 7.5345 2.7929 2.8011 2.8339 

b -1.5871 -1.6390 -1.7445 4.5862 4.5082 4.3769 

NDVI57.5 
a 6.0725 5.9904 5.9404 2.9614 2.9872 3.0493 

b -2.1270 -2.2003 -2.3170 3.4162 3.3092 3.1917 

SAVI57.5 
a 8.6167 8.1519 7.6726 3.1268 3.1109 3.0978 

b -2.0599 -2.0912 -2.1168 4.7032 4.4746 4.2301 

EVI257.5 
a 7.5958 7.0715 6.5199 2.8353 2.8038 2.7687 

b -1.7451 -1.7582 -1.7521 4.4020 4.1501 3.8789 

NHVI 
a 9.9660 8.0588 6.7866 1.2336 1.2596 1.3257 

b -0.5502 -0.5706 -0.5960 4.1841 3.9102 3.7150 

NHVI2 
a 25.1249 21.2949 18.7819 1.3073 1.3512 1.4373 

b -0.6349 -0.6827 -0.7489 5.4268 5.2435 5.1713 

HSVI 
a 35.1257 29.8895 26.0295 1.3514 1.4097 1.4915 

b -0.6228 -0.6759 -0.7161 6.0509 5.9153 5.8491 

HEVI2 
a 32.3840 27.5053 23.8331 1.3075 1.3616 1.4341 

b -0.5541 -0.6035 -0.6366 5.9062 5.7644 5.6750 
*Linear: y=ax+b; logarithmic: y=a∙ln(x)+b; where a and b are the parameters of the fitted model, determined using 

the Marquardt-Levenberg algorithm, x represents VI and y represents LAI. SZA represents the solar zenith angle. 
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Table 5.7 Parameters of the exponential and power fit model in the homogeneous canopy. 

VIs Model* 
Exponent Power 

SZA = 30° SZA = 45° SZA = 60° SZA = 30° SZA = 45° SZA = 60° 

NDVI 
a 0.0001 0.0001 0.0001 12.1888 12.1704 11.6137 

b 11.6596 12.5845 13.4342 10.9410 11.7817 12.3995 

SAVI 
a 0.0284 0.0154 0.0066 25.8920 32.6541 43.0951 

b 7.3482 8.1770 9.3108 4.6696 5.4084 6.3311 

EVI2 
a 0.0633 0.0412 0.0234 13.1243 14.6867 16.6426 

b 5.6524 6.1712 6.8414 3.7341 4.2725 4.9316 

NDVI57.5 
a 0.0001 0.0001 0.0001 8.6426 8.7964 10.2528 

b 11.2820 13.1848 17.5224 10.5486 12.4349 16.6176 

SAVI57.5 
a 0.0033 0.0148 0.0381 60.2814 24.9076 13.5794 

b 10.3810 7.8152 6.1618 7.1697 5.4532 4.2936 

EVI257.5 
a 0.0136 0.0434 0.0930 20.8621 11.0840 7.0568 

b 7.6138 5.7140 4.4265 5.6084 4.2816 3.3343 

NHVI 
a 0.0835 0.1660 0.2500 89.7483 21.4376 10.1741 

b 8.9803 5.9663 4.3287 3.6812 2.6495 2.0753 

NHVI2 
a 0.0441 0.0956 0.1510 10014.4321 805.8288 194.1731 

b 25.9988 18.2210 13.9267 4.4615 3.3393 2.6764 

HSVI 
a 0.0563 0.1130 0.2070 23131.5800 1719.9606 254.5588 

b 32.9982 23.4318 16.8295 4.2277 3.2084 2.3737 

HEVI2 
a 0.0898 0.1464 0.2451 5258.0039 771.4886 156.8637 

b 26.9992 19.9430 14.5383 3.6517 2.9119 2.2019 
*Exponent: y=a·ebx; powers: y=a·xb; where a and b are parameters of the fitted model, determined using the 

Marquardt-Levenberg algorithm, x represents VI and y represents LAI. SZA represents the solar zenith angle. 
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Table 5.8 Parameters of the linear and logarithmic fit model in the heterogeneous canopies. 

VIs Model* 
Linear Logarithmic 

SZA = 30° SZA = 45° SZA = 60° SZA = 30° SZA = 45° SZA = 60° 

NDVI 
a 7.8729 7.6749 7.3225 3.3747 3.4223 3.5240 

b -2.3171 -2.4487 -2.6781 4.3119 4.1379 3.8259 

SAVI 
a 13.7324 13.0677 12.0432 3.8605 3.7568 3.6283 

b -2.6396 -2.6028 -2.5615 6.4948 6.2230 5.8137 

EVI2 
a 13.0048 12.3225 11.2624 3.5739 3.4674 3.3312 

b -2.3332 -2.2946 -2.2456 6.2595 5.9850 5.5696 

NDVI57.5 
a 7.0462 6.8924 6.8876 3.4875 3.5503 3.7674 

b -2.6869 -2.8198 -3.1464 3.6592 3.4872 3.2728 

SAVI57.5 
a 11.2763 10.2241 8.8646 3.4383 3.2923 3.1229 

b -2.4189 -2.3001 -2.1610 5.5098 5.1327 4.6169 

EVI257.5 
a 10.5078 9.3752 7.8813 3.1496 2.9955 2.8038 

b -2.1145 -1.9827 -1.8064 5.2709 4.8769 4.3288 

NHVI 
a 9.1791 7.0631 5.9318 1.8945 2.3130 3.1206 

b -0.8825 -1.2617 -1.8892 4.7688 4.2868 3.7394 

NHVI2 
a 25.5830 21.7590 20.2524 2.0386 2.5103 3.3598 

b -1.0611 -1.5381 -2.3213 6.8410 6.9912 7.5477 

HSVI 
a 42.1506 36.1692 33.4403 2.2726 2.8521 3.6725 

b -1.0973 -1.5584 -2.2164 8.4914 9.1066 10.0329 

HEVI2 
a 40.9385 34.6456 31.2983 2.1854 2.7020 3.3898 

b -0.9887 -1.3899 -1.9382 8.3039 8.8022 9.4852 
*Linear: y=ax+b; logarithmic: y=a∙ln(x)+b; where a and b are the parameters of the fitted model, determined using 

the Marquardt-Levenberg algorithm, x represents VI and y represents LAI. SZA represents the solar zenith angle. 

 



PhD Thesis, Université de Toulouse 

94 

Table 5.9 Exponential and power fit model parameters in the heterogeneous canopies. 

VIs Model* 
Exponent Power 

SZA = 30° SZA = 45° SZA = 60° SZA = 30° SZA = 45° SZA = 60° 

NDVI 
a 0.0964 0.0536 0.0055 9.2658 9.4684 10.8040 

b 4.7755 5.3445 7.6861 3.2634 3.9035 6.3928 

SAVI 
a 0.0523 0.0343 0.0190 70.5309 86.0224 100.3810 

b 9.1001 9.6392 10.1963 3.8354 4.3156 4.9717 

EVI2 
a 0.0856 0.0634 0.0424 45.8887 50.7466 51.9962 

b 7.9522 8.2457 8.4539 3.3123 3.6533 4.1015 

NDVI57.5 
a 0.0028 0.0002 0.0001 9.6727 10.0167 11.3722 

b 8.2077 10.8540 16.3924 7.1050 9.8359 15.2866 

SAVI57.5 
a 0.0089 0.0251 0.0697 149.7779 52.6041 18.7216 

b 11.3145 8.7487 6.2624 5.8634 4.7010 3.5264 

EVI257.5 
a 0.0266 0.0572 0.1339 63.0527 27.5656 11.3918 

b 9.0266 7.0199 4.8947 4.6664 3.8121 2.8415 

NHVI 
a 0.3119 0.3208 0.2559 14.6215 7.1111 3.7794 

b 4.5055 3.1593 2.5755 2.1344 2.1360 2.3528 

NHVI2 
a 0.2407 0.2021 0.1252 198.7988 145.3202 145.1828 

b 13.6717 11.3338 10.7294 2.4272 2.6415 3.1182 

HSVI 
a 0.2441 0.2202 0.1741 539.9359 368.4561 340.4486 

b 21.9301 17.8326 15.8897 2.3469 2.4481 2.6907 

HEVI2 
a 0.2849 0.2542 0.2036 363.7233 264.7138 243.8130 

b 20.4285 16.6526 14.7390 2.1671 2.2859 2.5203 
*Exponent: y=a·ebx; powers: y=a·xb; where a and b are parameters of the fitted model, determined using the 

Marquardt-Levenberg algorithm, x represents VI and y represents LAI. SZA represents the solar zenith angle. 
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Table 5.10 Parameters of the linear and logarithmic fitted model in the field measured data. 

VIs Model* 
Linear Logarithmic 

SZA = 30° SZA = 45° SZA = 60° SZA = 30° SZA = 45° SZA = 60° 

NDVI 
a 4.6498 4.7694 3.2455 3.4655 3.8051 2.8431 

b 0.2837 0.0426 1.0764 4.8081 4.7407 4.3225 

SAVI 
a 2.2827 -0.6380 -4.2412 1.2828 -0.0548 -1.8177 

b 2.7866 3.8819 5.1516 4.9267 3.5933 1.7174 

EVI2 
a 1.7316 -0.7760 -3.7763 1.0510 -0.1245 -1.6159 

b 3.0108 3.9229 4.9369 4.7286 3.5162 1.8574 

NDVI57.5 
a 9.4790 -6.0954 -5.0803 8.3484 -5.2254 -3.8769 

b -4.4473 8.9971 8.3122 4.9790 2.9469 3.2635 

SAVI57.5 
a -6.5589 -8.1280 -6.8570 -2.7449 -3.3045 -1.9831 

b 5.8180 6.4513 6.2299 0.5229 -0.0307 1.4127 

EVI257.5 
a -5.7890 -7.1026 -6.1330 -2.3988 -2.8775 -1.7936 

b 5.4716 6.0001 5.9238 0.7758 0.2885 1.5507 

NHVI 
a 4.5848 2.7814 0.1864 3.0574 3.0322 1.1300 

b 1.1239 0.7873 2.9006 5.6888 3.8314 3.0587 

NHVI2 
a 22.1552 18.2641 7.2137 4.4854 5.2219 3.2502 

b -0.6220 -1.6869 0.8512 11.1883 10.2372 6.9991 

HSVI 
a 54.1838 53.6655 21.5021 5.2466 6.6833 3.9000 

b -1.7004 -3.6825 0.1122 15.9358 17.0805 10.8928 

HEVI2 
a 55.7362 53.2029 22.5904 5.0053 6.2135 3.7857 

b -1.6911 -3.3414 0.1046 15.5258 16.3838 10.8553 
*Linear: y=ax+b; logarithmic: y=a∙ln(x)+b; where a and b are the parameters of the fitted model, determined using 

the Marquardt-Levenberg algorithm, x represents VI and y represents LAI. SZA represents the solar zenith angle. 
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Table 5.11 Exponential and power fit model parameters in field measured data. 

VIs Model* 
Exponent Power 

SZA = 30° SZA = 45° SZA = 60° SZA = 30° SZA = 45° SZA = 60° 

NDVI 
a 1.6311 1.5656 1.9869 4.8122 4.7060 4.2722 

b 1.1053 1.1138 0.7652 0.8471 0.9037 0.6728 

SAVI 
a 3.0004 3.8697 5.8925 4.8536 3.5996 1.9396 

b 0.5162 -0.1610 -1.3725 0.2878 -0.0134 -0.5868 

EVI2 
a 3.1536 3.9132 5.5222 4.6422 3.5307 2.0114 

b 0.3944 -0.1984 -1.2359 0.2355 -0.0309 -0.5291 

NDVI57.5 
a 0.5389 15.9786 10.4680 4.9744 2.9834 3.2957 

b 2.2336 -1.6926 -1.1625 1.9781 -1.4344 -0.8952 

SAVI57.5 
a 8.6646 11.2891 7.3022 0.9924 0.8880 2.0608 

b -2.7139 -3.5204 -2.0090 -1.1065 -1.1965 -0.4647 

EVI257.5 
a 7.5554 9.6873 6.9533 1.0837 0.9744 2.1116 

b -2.4101 -3.2003 -1.9146 -0.9783 -1.0611 -0.4266 

NHVI 
a 2.0857 1.7859 2.9769 5.6254 3.6295 3.0649 

b 0.9757 0.6541 0.0407 0.6922 0.7801 0.2504 

NHVI2 
a 1.3496 0.8046 1.8607 22.7432 22.8017 7.8036 

b 5.0011 4.9467 1.6221 1.1119 1.5101 0.7861 

HSVI 
a 0.9915 0.3211 1.5504 94.1681 385.1687 21.1641 

b 12.8240 17.0814 4.9349 1.4088 2.3729 0.9732 

HEVI2 
a 0.8982 0.2759 1.5071 111.8443 471.7868 22.5653 

b 14.1849 18.8194 5.3470 1.4661 2.4311 0.9839 
*Exponent: y=a·ebx; powers: y=a·xb; where a and b are parameters of the fitted model, determined using the 

Marquardt-Levenberg algorithm, x represents VI and y represents LAI. SZA represents the solar zenith angle. 
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5.2.2   Evaluation of inversion of leaf area index with random noise interference 

As the VIs saturate with LAI over 3, 14 different sets of random errors were added to the 
reflectance to compare the robustness of the VIs. The maximum values of these random errors 
ranged from 0 to 0.007 in steps of 0.0005, with the expectation always being zero. The absolute 
value of the maximum error of the random noise was set according to the minimum value of all 
reflectances to ensure a constant positive reflectance. The R2 and RMSE of the exponential fit model 
were used to compare the performance of the VIs considered. 

For the homogeneous simulated data (Figure 5.18), all three multispectral VIs (NDVI, SAVI 
and EVI2) performed well on the LAI inversions, and HEVI2 and HSVI performed about the same 
as SAVI57.5 and EVI257.5, while NHVI and NHVI2 did not perform as well. Furthermore, HEVI2 
and HSVI performed similarly to SAVI57.5 and EVI257.5, while NHVI and NHVI2 did not perform 
well. For both the heterogeneous simulated data (Figure 5.19) and the field measurements (Figure 
5.20), the hotspot signature VIs performed best in the LAI inversion, having the highest R2 and 
lowest RMSE, resulting in the most reliable LAI estimation. VIs57.5 could give overall reasonable 
LAI estimates, especially NDVI57.5. On the other hand, SAVI57.5 and EVI257.5 performed unsteadily. 

 

Figure 5.18 Performances of VIs by considering 14 groups of random errors in the homogeneous 
simulated data using an exponential model when SZA is equal to (a) 30◦, (b) 45◦, and (c) 60◦. 
Multispectral VIs are drawing as dotted lines, VIs57.5 are drawing as dash-dot lines, and hotspot-
signature VIs are drawing as solid lines. The good LAI estimation performance of multispectral VIs 
can be seen. 
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Figure 5.19 Performances of VIs by considering 14 groups of random errors in heterogeneous 
simulated data using exponential model when SZA equal to (a) 30◦, (b) 45◦, and (c) 60◦. Multispectral 
VIs are drawing as dotted lines, VIs57.5 are drawing as dash-dot lines, and hotspot-signature VIs are 
drawing as solid lines. The good LAI estimation performance of hotspot-signature VIs can be seen. 

 

 
Figure 5.20 Performances of VIs by considering 14 groups of random errors in field measurements 
using exponential model when SZA equal to (a) 30◦, (b) 45◦, and (c) 60◦. Multispectral VIs are 
drawing as dotted lines, VIs57.5 are drawing as dash-dot lines, and hotspot-signature VIs are drawing 
as solid lines. The good LAI estimation performance of hotspot-signature VIs can be seen. 
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Summary 

The robustness of LAI estimation using VIs is compared. We recommend using the negative 
soil adjustment factor of SAVI in dense vegetation cover area for the single observation sensors; we 
recommend using hotspot-signature vegetation indices for the multi-angle observation sensors. 

(1) The right shift phenomenon indicates that as the FC increases, the intersection points 
between the vegetation isoline and the soil line gradually move towards the positive red band axis. 
If the intercept of the vegetation isoline is smaller than that of the soil line, the final intersections 
can reach the positive area of the red band axis. In areas with low LAI, vegetation isolines tend to 
be parallel. In areas with high LAI, vegetation isolines tend to converge at a point. 

(2) The vegetation isolines behaviours may help explain why VIs such as PVI, which assume 
parallel vegetation isolines, perform better in areas with low FC. In contrast, VIs such as RVI, NDVI, 
SAVI, and TSAVI assume a convergence of vegetation isolines to a common point perform better 
in areas with high FC.  

(3) Therefore, based on the intersection right shift phenomenon, we recommend using PVI 
for extremely low vegetation cover, using SAVI and TSAVI for relatively low vegetation cover, 
using NDVI for relatively high vegetation cover, using SAVI with a negative soil adjustment factor 
for extremely high vegetation cover. 

(4) Since the optimal soil adjustment factor is the negative value of the abscissa of the 
intersection of the vegetation isoline and the soil line, the optimal soil adjustment factor for SAVI 
can take a negative value in high FC area according to the right shift phenomenon. In the experiment, 
the optimal soil adjustment factor is approximately -0.148 when the mean LAI is 5.35 and -0.183 
when the mean LAI is 6.72. 

(5) Hotspot signature vegetation indices show better performance for LAI estimation than 
single angular indices in the heterogeneous. However, this advantage cannot be observed in the pure 
homogeneous canopy. 
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Chapter 6  Analysis of the influence of 

environmental noise on vegetation indices 

It is generally believed that some algebraic combination of remote sensing spectral bands can 
reflect some helpful information about vegetation structure and vegetation cover states, such as leaf 
density and distribution, leaf moisture content, tree age, lack of minerals and pests and diseases. A 
good vegetation index should be sensitive to these factors. On the other hand, other factors also 
affect spectral reflectances, such as soil properties, sunshine and atmospheric conditions, and sensor 
geometry parameters. A good vegetation index should be insensitive to these factors. Therefore, 
studies should be carried out to evaluate the effect of environmental noise on VIs. 

Section 6.1 compares the performances of VIs for soil noise influence. An assumption that 
hotspot vegetation indices can better enhance the vegetation signal and reduce soil noise is proposed 
and validated using simulated reflectance data. 

Section 6.2 studies the atmosphere effect on EVI, EVI2, NDVI and SAVI. Atmospheric 
absorption and scattering can lead to variations in wavelength radiance, thus affecting VIs. 
Therefore, it is essential to understand the behaviours of VIs to atmosphere effect, 

Section 6.3 studies the effect of spectral response functions on EVI2. EVI2 is a 2-band 
alternative to 3-band EVI using a spectral correlation coefficient between red and blue from MODIS. 
Therefore, it is necessary to evaluate the performance of EVI2 on different sensors with different 
spectral response functions and calibrate the spectral correlation coefficients of EVI2 for other 
sensors. 

The chapter is partly presented in the paper: 
(1) Z. Zhen, S. Chen, W. Qin, G. Yan, J.-P. Gastellu-Etchegorry, L. Cao, M. Murefu, J. Li, and 

B. Han, "Potentials and Limits of Vegetation Indices With BRDF Signatures for Soil-Noise 
Resistance and Estimation of Leaf Area Index," IEEE transactions on geoscience and remote sensing, 
vol. 58, no. 7, pp. 5092-5108, 2020. (SCI, IF: 5.855) 

6.1  Comparison of vegetation indices for soil noise resistance 

The spectral signal of the soil affects the mixed spectra of vegetation and soil, which can reduce 
the accuracy of monitoring vegetation LAI using remote sensing. Therefore, VIs should be designed 
to reduce soil response and improve vegetation response. The DART simulated data were used to 
analyse the resistance of the VI to soil noise based on two indicators, the Signal-to-Noise Ratio 
(SNR) and the dependent coefficient (T). 

Two assessment criteria, the signal-to-noise ratio [223] and the LAI-dependent parameter [224], 
were used to assess the soil noise tolerance of VIs (multispectral VIs, VIs57.5 and hotspot signature 
VIs). 
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Figure 6.1 Values of SNR for all VIs considered when SZA equal to (a) 30◦, (b) 45◦, and (c) 60◦. 
The SNR values corresponding to ALA in the nine groups are averaged and presented here. The 
four hotspot-signature VIs show good performance for the homogeneous and heterogeneous 
simulated data in most cases, followed by VIs57.5. 

The first evaluation indicator was defined by Leprieur and Roujean [223] based on SNR as 

 
( )
( ) max

min

max min
LAI

LAI

VI(LAI ) VI(LAI )VI

VI [maxVI(LAI) minVI(LAI)] d(LAI) 
S

N

−
=

−∫
 ······················· (6.1) 

where VI(LAI)����������� is the mean value of the VIs at the corresponding LAI. The "signal" compares 
the mean value of the VI corresponding to the maximum and minimum LAI canopy. The "noise" is 
measured by the area between the highest and the lowest curves (i.e., the product of the change in 
the index due to the change in the OPs of the soil and the LAI range value). Since a desirable index 
is susceptible to vegetation spectral while unaffected by soil spectral, a larger SNR indicates a better 
VI. 

The second criterion for evaluating VI is based on the LAI dependent parameter (T) [224], 
which is defined as follows 

 ( ) LAILAIT
σ

σ
=  ······································ (6.2) 

where σLAI is the standard deviation of VIs corresponding to a specific LAI value and 𝜎𝜎� is the 
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standard deviation of VIs corresponding to the whole LAI variation range. In contrast to SNR, this 
parameter decreases as the VI efficiency increases. 

The hotspot signature VIs performed best under both types of canopies compared to the 
multispectral VIs and VIs57.5. Of all the hotspot signature VIs, HSVI had the highest SNR ratio 
(Figure 6.1), which averages the SNR of the nine sets of ALA and is presented here. HSVI had the 
lowest T value (Figure 6.2), which averaged the values of the T corresponding to the nine sets of 
ALA and was presented here. VIs57.5 was superior to the multispectral VIs, especially when SZA 
was high (SZA=45° and SZA=60°). Of all VIs57.5, SAVI57.5 showed good resistance to soil noise for 
both canopies. Furthermore, in moderate LAI canopies with prevalent soil background and 
pronounced multiple scattering effects, it was observed that NDVI, NDVI57.5, NHVI and NHVI2 
barely attenuated soil effects which presented relatively low SNR and the largest T values. The 
literature [95, 97-99] also reported similar findings. For dense homogeneous canopies (where LAI 
was large), all VIs showed the lowest T values because the contribution of soil was less significant, 
as reported in the literature [99]. Thus, HSVI emerged as the VI with the best resistance to soil noise. 

 
Figure 6.2 Efficiency of the different VIs as measured by means of T as a function of LAI for the 
homogeneous and the heterogeneous canopy when SZA equal to (a) 30◦, (b) 45◦, and (c) 60◦. The T 
values corresponding to ALA in the nine groups are averaged and presented here. The excellent 
performance of HSVI and HEVI2 can be observed overall. 

6.2  Effects of atmosphere on vegetation indices 

Absorption and scattering of the atmosphere can lead to changes in wavelength radiance [104, 
166], which can cause changes in band reflectance. Four VIs (NDVI, SAVI, EVI, EVI2) were used 
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as examples to explore the atmosphere effect. VIs calculated with TOA and SR data from L8 and 
S2 sensors were compared to assess the atmosphere effect on VIs. 

Here we used a similar pre-processing step as in section 6.3. TOA images were needed to 
evaluate the atmosphere effect on VIs. However, it was found that TOA and SR images did not 
always exist in pairs in the GEE. Therefore, an additional filter was needed for the SR images: all 
SR images without a corresponding TOA image were also removed, and this filter was only applied 
for the study of atmosphere effect (see section 6.2) and not for the EVI2 cross-sensory calibration 
(see section 6.3). 

The VIs calculated using the SR data were considered true values, while the VIs calculated 
using the TOA reflectance images were considered the measured values. The relative error 
Eatmosphere,VI(x,y) of atmosphere effect for each pixel (x,y) was then defined as [225] 

 ( ) ( ) ( )
( )

TOA SR
atmosphere,VI

SR

VI , VI ,
, 100%

VI ,
x y x y

E x y
x y
−

= ×   ··············· (6.3) 

where VISR(x,y) was the VIs calculated with SR images (i.e., NDVI, SAVI, EVI, EVI2), and 
VITOA(x,y) was the VIs calculated with TOA reflectance image. The Eatmosphere,VI(x,y) of all pixels in 
an image was then summed and averaged to the Eatmosphere,VI,i for each image i. 

 
Figure 6.3 Relative error of atmospheric effects (Eatmosphere) for EVI, EVI2, NDVI, and SAVI. 
Surface reflectances calculated from L8 and S2 were considered true values, while the VIs 
calculated from TOA reflectance were considered measured values. The Eatmosphere,VI (x,y) was 
calculated pixel-wise, and the Eatmosphere,VI,i values for all vegetation pixels in a scene image i were 
averaged and plotted as a box plot. The outliers in the box plot were hidden for better visualization. 

 
The VIs calculated using TOA and SR data were compared separately to evaluate the 

atmosphere effect. Figure 6.3 shows the Eatmosphere,VI distribution for the four VIs, including the EVI, 
EVI2, NDVI and SAVI. Table 6.1 depicts the statistical distribution of Eatmosphere,VI. It should be 
noted that EVI2 and EVI produced opposite results when influenced by the atmosphere. 
Eatmosphere,NDVI, Eatmosphere,SAVI and Eatmosphere,EVI2 were mainly distributed in the negative region, 
indicating that NDVI, SAVI and EVI2 were underestimated when influenced by the atmosphere. 
However, Eatmosphere,EVI was mainly located in the positive region, suggesting that atmospherically 
influenced EVI was overestimated. In addition, S2 had the smallest median value of Eatmosphere,EVI, 
indicating good atmospheric resistance in most cases. However, the maximum and minimum values 
of Eatmosphere,EVI were also non-negligible (Table 6.1), indicating that EVI may cause poor results in 
some extreme cases. The atmosphere effect was approximately the same for EVI2, NDVI and SAVI. 

The literature [101, 225] results that the atmosphere effect can underestimate common dual-
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band VIs were confirmed by analysing all available global L8 Tier 1 and S2 SR data up to 2021 
(Figure 6.3), with a larger temporal and spatial resolution scales data. Aerosols can reduce the 
difference between NIR and red reflectance captured by orbital sensors because the atmosphere 
effect has a net increase in reflectance in the red band [101]. The results suggest that for the three-
band VIs like EVI, the atmosphere effect may have different impacts than for two-band VIs. EVI2, 
NDVI and SAVI are underestimated by the atmosphere effect (and potentially lead to an 
underestimation of inversion of LAI), while EVI is overestimated (and potentially leads to an 
overestimation of LAI inversion). It is suspected that this overestimation may be due to the positive 
net atmosphere effect in the blue band. As a result, the denominator of EVI becomes smaller, and 
the fractional value becomes large. Consequently, an opposite reaction to the atmosphere effect 
would inevitably increase the difference between EVI and EVI2. In addition, EVI2, NDVI and SAVI 
show minor differences in terms of atmosphere effect. Therefore, the study emphasises the 
importance of considering the different reactions of VIs to the atmosphere effect. 

Despite its low median, Eatmosphere,EVI had much high maximum and minimum values than the 
other three double-band VIs (e.g., EVI2, NDVI, SAVI). All images with a very large Eatmosphere,EVI 
were carefully examined and found that they were concentrated mainly in the Greenland region. 
The S2 classified images were then examined, and it was found that the number of pixels classified 
as the vegetation was minimal in the image and that the larger Eatmosphere,EVI was mainly from these 
pixels. Due to experimental limitations, it is challenging to determine whether the vegetation pixels 
corresponding to the S2 classification bands in this region correspond to actual vegetation or 
whether they are misclassified pixels. Further research is needed on the accuracy of S2 classification 
products. 

 
Table 6.1 Statistics of the relative error of atmospheric effects (Eatmosphere) of EVI, EVI2, NDVI, and 
SAVI of Landsat-8 (L8) and Sentinel-2 (S2).  

Statistics 
EVI EVI2 NDVI SAVI 

L8 S2 L8 S2 L8 S2 L8 S2 

25 percentile 0.252 0.022 -0.175 -0.297 -0.212 -0.290 -0.169 -0.278 

50 percentile 0.295 0.094 -0.111 -0.238 -0.137 -0.213 -0.105 -0.220 

75 percentile 0.324 0.158 -0.087 -0.189 -0.105 -0.162 -0.082 -0.173 

Max 7137.023 29965.000 9.900 3808.099 9.689 5133.701 8.934 4125.002 

Mean -0.203 0.143 -0.376 -0.240 -0.240 -0.272 -0.369 -0.226 

Min -10750.800 -29861.800 -97.576 -345.676 -9.557 -313.473 -97.324 -357.240 

STD 20.189 47.252 1.612 4.187 0.268 3.891 1.606 4.313 

 

6.3  Effect of spectral response functions on vegetation indices 

The Enhanced Vegetation Index (EVI) [119] represents an optimized estimation of landscape 
vegetative conditions in space, spectrum, and radiometry evaluated by the two regular Terra and 
Aqua Modis products. Compared with NDVI, EVI can weaken the effects of atmosphere and soil 
background on vegetation index [119]. Besides, EVI has more excellent biophysical linearity with 
indicators for vegetation and a more comprehensive range of values that estimates the leaf area 
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index (LAI) [83]. NDVI starts to reach saturation thresholds in cropland during the growing season, 
while EVI is more robust during development [226]. EVI is less prone to saturation in forests [227]. 
The EVI has also been shown to effectively monitor, detect, and assess seasonal changes in 
evergreen forests [228]. 

However, apart from the red and NIR bands, EVI requires the sensor systems to be equipped 
with a blue band, making EVI less commonly used than NDVI. For example, the generation of EVI 
products is not possible for sensors without a blue band, such as the Advanced Very High Resolution 
Radiometer (AVHRR). In addition, the spatial resolution of MODIS' blue band is 500 m, lowering 
the resolution of MODIS EVI products from 250 m to 500 m. Therefore, to solve these issues, the 
2-band enhanced vegetation index (EVI2) [106] is developed without requiring the blue band. EVI2 
shows good agreements with EVI in MODIS data [106, 229]. However, for some non-MODIS 
sensors (i.e., PlanetScope), it is observed that the performance of EVI and EVI2 differ significantly 
[230]. Although many studies [231, 232] investigate cross-sensor continuity of NDVI and EVI, 
investigations on EVI2 cross-sensor translation are quite few. It indeed induces uncertainty if the 
VIs from the different sensors are not calibrated [231]. Cross-sensor continuity studies are essential 
for vegetation because the vegetation monitor usually requires a high frequency of VIs observation 
in the growth period, while one single sensor is challenging to provide VIs with such a high temporal 
frequency [4]. Thus, it is necessary to verify the stability of EVI2 on other sensors except for MODIS, 
such as the widely used Sentinel-2 (S2) and Landsat-8 (L8) sensors. A study has been conducted to 
provide a harmonized surface reflectance for these two satellites to provide a high time-frequency 
and spatial cover monitor [233]. 

Therefore, following the recommendation from Jiang et al. [106], we aim to quantitatively 
evaluate the consistency between EVI2 and EVI on L8 and S2 sensors and calibrate the spectral 
correlation coefficient c of EVI2. The calibrated EVI2 should better apply to the L8 and S2 satellites 
and other sensors with similar spectral response function (SRF) by having the best similarity as the 
3-band EVI. First, we compared the atmosphere effect on EVI and EVI2 and evaluated their 
consistency on L8 and S2 sensors. Then, two new spectral correlation coefficients, cL8 and cS2, are 
derived by regressing the band coefficient between blue and red band reflectance using L8 and S2 
SR products. Finally, we use the United States Geological Survey (USGS) reflectance library 
version 7 [234] to validate the availability of cL8 and cS2. 

Remote sensing satellites commonly used for vegetation monitoring include Landsat and 
Sentinel. Landsat is a joint project of the US Geological Survey and NASA and has been 
continuously observing the Earth from 1972 to the present. Today, Landsat satellites image the 
Earth's entire surface at a resolution of 30 m approximately once every fortnight, including 
multispectral and thermal data. The data produced by the United States Geological Survey (USGS) 
for each satellite are divided into three categories (primary, secondary and real-time). 

(i) Tier 1 (T1): data meeting geometric and radiometric quality requirements. 
(ii) Tier 2 (T2): data not meeting the requirements of Tier 1. 
(iii) Real-time: data that has not yet been evaluated (takes as long as one month). 
At the same time, Landsat offers images of three products: 
(i) Raw images: Digital Number (DN) values, representing the scaled and calibrated sensor 

radiance images. 
(ii) Top of the atmosphere (TOA): A calibrated reflectance image of the TOA. 
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(iii) Surface reflectance (SR): Atmosphere corrected SR images. 
The Landsat-8 (L8) satellite sensor, part of the Landsat Data Continuity Mission, was 

successfully launched on 11 February 2013 from Space Launch Complex-3 at Vandenberg Air Force 
Base, California. TOA reflectance calibrated by extracting calibration factors from image metadata 
Landsat 8 Collection 1 Tier 1. L8 SR data are derived from the Landsat 8 Operational Land Imager 
/ Thermal InfraRed Sensor (OLI / TIRS) sensor's atmosphere-corrected surface reflectance. These 
images contain five visible and near-infrared (VNIR) bands and two Shortwave Infrared (SWIR) 
bands, orthorectified for surface reflectance, and two thermal infrared (TIR) bands orthorectified 
for brightness temperature. These data have been atmosphere corrected using LaSRC, including 
clouds, shadow, water and snow masks generated using the C Function of MASK (CFMASK) and 
per-image saturation masks [235]. 

Landsat-5 (L5) SR data are atmosphere-corrected surface reflectances from the Landsat-5 
(Enhanced Thematic Mapper) ETM sensor. These images contain four VNIR and two SWIR bands, 
orthorectified for surface reflectance and one TIR band orthorectified for brightness temperature. 
The VNIR and SWIR bands have a resolution of 30 m per pixel. The TIR band was initially collected 
at 120 m per pixel but resampled at 30 m using cubic convolutions. These data have been atmosphere 
corrected using Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS), including 
cloud, shadow, water and snow masks generated using CFMASK and per-image saturation masks. 

S2 is an earth observation mission within the Copernicus program that systematically acquires 
high-resolution optical images (10 m to 60 m) of land and coastal waters. S2 is a wide-field, high-
resolution, multispectral imaging mission with a global 5-day revisit frequency. The S2 
Multispectral Instrument (MSI) samples 13 spectral bands: 10 m for the visible and NIR, 20 m for 
the red fringe and short-wave infrared, and 60 m for the atmosphere band spatial resolution. It 
provides data suitable for assessing the state and changes in vegetation, soil and water cover. At the 
same time, S2 offers images of two products: 

(i) Top of atmosphere reflectance images: 1C-level orthorectified top-of-atmosphere 
reflectance. 

(ii) Surface reflectance images: 2A-level orthorectified atmosphere corrected surface 
reflectance. 

Level-1C products consist of 100 km2 strips Universal Transverse Mercator - World Geodetic 
System 84 (UTM - WGS84) projected orthoimages. Level-1C products result from projecting 
images into map coordinates using the DEM. The per-image radiometry provides all parameters in 
the TOA reflectance into radiance. Level-1C products are resampled at constant ground sampling 
distances (GSD) of 10, 20 and 60 m, depending on the local resolution of the different bands. In 
Level-1C products, the pixel coordinates refer to the upper left corner of the pixel. Level-1C 
products also include land/water, cloud mask and European Centre for Medium-range Weather 
Forecasts (ECMWF) data (total ozone, total water vapour and mean sea level pressure) [236]. 

The Level-2A products provide BOA reflectance images of the associated Level-1C products. 
Each Level-2A product, therefore, also consists of a 100 km2 strip of mapping geometry (UTM / 
WGS84 projection). Level-2A products from 2017 onwards can be downloaded directly from 
European Space Agency (ESA). Users can also use the relevant Level-1C products as input for 
Level-2A generation via the S2 toolbox. 
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Band correlation coefficient c in EVI2 was obtained by fitting MODIS data to assess the 
influence of the spectral response function on the VIs. SR data from L8 and S2 were used to perform 
a linear regression between the blue and red bands. As SR products were used, the atmosphere effect 
was assumed to be almost completely removed. Therefore, the atmosphere effect was not considered. 
L8 and S2 differed significantly from the Spectral Response Functions (SRF) of the Moderate 
Resolution Imaging Spectroradiometer (MODIS) satellites. Figure 6.4 shows the SRFs for the 
MODIS, S2 and L8 sensors in the blue, red and NIR bands. The differences in SRFs between sensors 
emphasised the importance of calibrating the correlation coefficient between the blue and red bands 
on sensors other than MODIS. 

 
Figure 6.4 The spectral response functions (SRFs) of MODIS, Sentinel-2, and Landsat-8 in blue, 
red, and NIR bands. Sentinel-2 and Landsat-8 SRFs are referred from the USGS Spectral Library 
Version 7 [234], and MODIS SRFs are referred from the European Organization for Meteorological 
Satellites (https://nwp-saf.eumetsat.int/downloads/rtcoef_rttov13/ir_srf/rtcoef_eos_1_modis-
shifted_srf.html). 

6.3.1   Pre-calibration error assessment 

All processes of remote sensing data were done on Google Earth Engine (GEE), a planetary-
star platform for earth science data and analysis [200]. Earth Engine's public data archive includes 
over forty years of historical imagery and scientific datasets updated and expanded daily. Pre-
processing of the data consisted of two main steps: filtering and masking. First, all available global 
L8 Tier 1 SR data and S2 SR data until 1 January 2021 were selected. These data were then filtered 
based on cloudiness to ensure that each view image had less than 20% cloudiness. After filtering, 
the cloud-covered areas were masked. The cloud mask provided by GEE was first implemented on 
the images to remove cloud pixels. The vegetation mask was then used to extract the vegetation 
pixels. S2's vegetation mask was created by using thresholds for NDVI and the simple ratio NIR / 
green ratio vegetation index (GRVI) [206], a land cover classification rule and corresponding 
thresholds provided by S2's technical report [207]: with (NDVI > 0.40) or (0.36≤ NDVI ≤ 0.40 and 
GRVI > 2.50) were classified as vegetation pixels. These rules were also used to create the L8 
vegetation mask [4]. 
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As EVI2 is designed to replace EVI, the EVI2 value should be sufficiently close to EVI. 
Therefore, the relative error (EEVI2) between EVI2 and EVI was used to assess accuracy by treating 
EVI as “real data” and EVI2 as “measured data”. 

 ( ) ( ) ( )
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EEVI2(x,y) was calculated pixel-wise. Obviously, the smaller the EEVI2,i was, the better 
performance of EVI2, and vice versa. 

Figure 6.5 shows the EEVI2 before calibration on L8 and S2, where EVI is considered the “real” 
data and EVI2 is considered the “measured” data. Table 6.2 depicts the statistical distribution of 
EEVI2. The EVI2 calculated from L8 and S2 mainly was underestimated. Furthermore, it could be 
observed that the EVI2 calculated from L8 performed better than that of S2. 

 
Figure 6.5 The relative error of EVI2 (EEVI2) with EVI calculated from Landsat-8 and Sentinel-2 
surface reflectance products. EVI is considered as "true" data, and EVI2 is considered as "measured" 
data. Values are calculated pixel-wise and aggregated to a mean value over the image. The figure is 
drawn using RainCloudPlots [237, 238], comprising violin (top), box (middle), and strip (bottom) 
plots. 

 

6.3.2   Band correlation coefficient calibration 

The cross-sensory calibration aimed to make the EVI and EVI2 calculated from the same 
satellite sensors as equal as possible. The spectral correlation coefficients (a and b) between the blue 
and red band reflectances were used to calibrate the spectral correlation coefficients c for EVI2 
calculated for S2 and L8, respectively. A linear equation was fitted between the blue band reflectance 
Rblue and the red band reflectance Rred for the S2 and L8 sensors 

 red blueR a R b= × +   ·································· (6.5) 

where a and b are the linear regression coefficients for slope and intercept, respectively, and 
the linear regression is performed pixel-wise, with one image corresponding to a pair of a and b 
values. The coefficient with the highest frequency was finally determined as the final value and used 
to calibrate c in EVI2. The calibrated band correlation coefficients cL8 and cS2 were applied to the 
L8 and S2 sensors. 
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Table 6.2 Statistics of relative error of EVI2 (EEVI2) for remote sensing data. 
Statistics Landsat-8 Sentinel-2 

25 percentile -0.044 -0.109 

50 percentile -0.025 -0.063 

75 percentile 0.002 -0.021 

Max 1.322 1.2 

Mean -0.025 -0.09 

Min -6.054 -7.067 

STD 0.119 0.17 

 
In addition to using remote sensing images, the vegetation spectral library of Chapter 5 from 

the USGS Spectral Library, Version 7 [234], was used to validate the improvements of the calibrated 
EVI2 on L8 and S2 sensors. Field measurements were less affected by soil, topography, and bi-
directional reflectance effects than remote sensing data. Therefore, field-measured data were used 
for validation. The spectral library contained spectral measurements using laboratory, field 
measurement and airborne spectrometers with wavelengths covered from the ultraviolet to the far-
infrared (0.2 μm - 200 μm). The spectres in the spectral library came from different components of 
plants or patches of vegetation, which included many types and different sources. Aerial 
spectrometer measurements were included in wooded vegetation plots where trees were too tall to 
be measured with a field spectrometer. For the spectra in the spectral library, four different 
spectrometer models were used. (1) Beckman 5270 (0.2 μm-3 μm), (2) standard, high resolution and 
high resolution next-generation models of the ASD field portable spectrometer (0.35 μm-2.5 μm), 
(3) Nicolet Fourier Transform Infrared (FTIR) interferometer spectrometer (1.12 μm-216 μm), and 
(4) NASA Airborne Visible - Infrared Imaging Spectrometer Airborne Visible / InfraRed Imaging 
Spectrometer (AVIRIS) (0.37 μm-2.5 μm). 

Two vegetation spectral libraries from the USGS Spectral Library, Version 7, Chapter 5 
Vegetation, were used. The first was s07LSAT8. The spectral resolution of this spectral library has 
been resampled to fit the SRF of the OLI L8. The seven-band SRF of this sensor covered visible 
and short-wave infrared wavelengths, and the ENVI 5.3 software provided the SRF. The second was 
the s07SNTL2 spectral library, whose spectral resolution was resampled into the SRF of the S2 MSI. 
Careful examination of all the data revealed negative reflectance values in the blue and red bands in 
several spectral curves. Therefore, these spectral curves were simply removed. 
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Figure 6.6 The linear regression between reflectances in a blue and red band based on USGS 
spectral library. The shadow area indicates the 95% confidence interval for the regression estimate. 
The confidence interval is estimated using a bootstrap. 

 

 
Figure 6.7 Distribution of the linear regression coefficients (i.e. slope a and interception b) in 
Eq.(6.5) from (a) Sentinel-2; (b) Landsat-8. Coefficients are calculated pixel-wise, and the mean 
value is aggregated over the whole image. A white circle highlights the spectral correlation 
coefficient c derived from the field measured data, and a white star highlights the c of the original 
EVI2 [106]. The range of a and b is limited at [0.5, 2.4] (x-axis) and [-0.04 0.04] (y-axis) for a better 
visual effect. 

 
Figure 6.6 shows the linear regression coefficients a and b of equations (6.5) derived from the 

USGS Spectral Library. The overall regression was good, with correlation coefficients (R) equal to 
0.765 (S2) and 0.747 (L8) and p-values (P) equal to 0.000 for both S2 and L8, indicating an excellent 
linear relationship. Additionally, the slope (aS2) and the intercept value (bS2) for S2 were 1.262 and 
0.021; the slope (aL8) and the intercept value (bL8) for L8 were 1.269 and 0.028. These values were 
then used to validate the fit of the regression equation for cL8 and cS2. 
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Figure 6.7 shows the distribution of linear regression coefficients a and b derived from remote 
sensing data using hexagonal binning maps to calculate pixel-wise coefficients. In the S2 data, the 
most frequent point was located at (1.60, 0.00), which was closer to the value derived from the field-
measured data (1.262, 0.021) than the original EVI2 value (2.08, 0.00). In the L8 data, most of the 
fitted parameters were located at the point (1.80, 0.00). This point was closer to the point (1.262, 
0.021) derived from the field measured data than the original point (2.08, 0.00). Therefore, it was 
assumed that cL8 = 1.80 and cS2 = 1.60 may be a better proxy than c = 2.08 with S2 and L8 when 
calculating EVI2 using S2 or L8 surface reflectance data. To distinguish the calibrated EVI2 from 
the original EVI2, EVI2L8 and EVI2S2 represented the EVI2 calculated with cL8 and cS2. 

6.3.3   Post-calibration error assessment 

Figure 6.8 shows the improvements in EVI2S2 and EVI2L8 after calibration, where EVI is 
considered the “true” value and EVI2S2 or EVI2L8 is considered the “measured” value. The relative 
error of EVI2 (EEVI2) was used to assess the robustness of EVI2 on the S2 and L8 sensors. Before 
calibration, the R2 and RMSE of EVI2 were 0.87 and 0.08 (Figure 6.8.a). After calibration, the R2 

and RMSE for EVI2S2 changed to 0.92 and 0.06 (Figure 6.8.b). Similar excellent performance can 
also be observed for EVI2L8. Before calibration, the R2 and RMSE of EVI2 were 0.92 and 0.06 
(Figure 6.8.c). After calibration, the R2 and RMSE of EVI2S2 changed to 0.95 and 0.05 (Figure 6.8.d). 
Figure 6.8.e shows the EEVI2 before and after calibration, and Figure 6.8 depicts the distribution of 
the statistics for EVI2. The error distribution for EVI2, EVI2L8 and EVI2S2 essentially satisfied a 
normal distribution. In addition, the expected EEVI2 values of EVI2L8 and EVI2S2 were closer to zero 
than those of EVI. 

Good agreement between EVI and EVI2 has been reported in MODIS data [229]. However, 
EVI2 calculated using PlanetScope data was in suboptimal agreement with EVI [230]. Moreover, 
Myers et al. [230] attributed this inconsistency to undetected atmospheric water vapour or aerosols 
affecting the reflected spectra of the inversion. However, it is suspected that the inconsistency 
between EVI and EVI2 varies from sensor to sensor. Kang et al. [83] found that EVI2 performed 
better in the L8 sensor than S2 (Figure 6.5). Furthermore, the linear regression results (Figure 6.7) 
also indicated that cL8 was closer to c than cS2. Therefore, it is speculated that the better performance 
of L8 on the cross-sensory calibration may be due to c being closer to cL8 than cS2 (Figure 6.7). Thus, 
the results suggest that the difference between SRFs may also be one of the main reasons for the 
variation in EVI and EVI2 performance. Based on the spectral correlation theory, the red and blue 
band correlation coefficients of EVI2 were calibrated on the L8 and S2 sensors, respectively, and 
the results (Figure 6.8) show that the calibrated EVI2L8 and EVI2S2 were closer to the EVI than the 
values given by EVI2 [106]. Differences in the regression parameters between laboratory 
measurements and remote sensing data may be due to external noise, such as vegetation, soil and 
atmosphere. 



Chapter 6 Analysis of the influence of environmental noise on vegetation indices 

113 

 
Figure 6.8 Validation of EVI2S2 and EVI2L8 using the USGS Spectral Library. (a) EVI and EVI2 
with S2 spectral respond function; (b) EVI and EVI2S2 with S2 spectral respond function; (c) EVI 
and EVI2 with L8 spectral respond function; (d) EVI and EVI2L8 with L8 spectral respond function; 
(e) Relative error of EVI2 (EEVI2) with EVI being considered as "true" value and EVI2S2 or EVI2L8 
being considered as "measured" value. Values are calculated per spectral curve. 
 
Table 6.3 Descriptive statistics for EVI2 relative error (EEVI2) in USGS Spectral Library data 

Statistics 
Landsat-8 Sentinel-2 

EVI2 EVI2L8 EVI2 EVI2S2 

25 percentile -0.060 -0.093 -0.054 -0.117 

50 percentile -0.032 -0.065 -0.020 -0.083 

75 percentile -0.006 -0.030 0.006 -0.047 

Max 0.831 0.641 1.075 0.653 

Mean -0.028 -0.064 -0.017 -0.089 

Min -0.587 -0.627 -0.577 -0.656 

STD 0.121 0.109 0.140 0.112 

Current cross-sensor studies of VIs [232] have mainly been devoted to NDVI and EVI to make 
VIs obtained from different sensors comparable. However, because EVI2 was designed to replace 
3-band EVI, we aimed to make EVI2 closer to EVI from the S2 and L8 sensors. It was where the 
research approach differs from another cross-sensory study [232]. Furthermore, unlike Jiang et al. 
[106], the difference between EVI and EVI2 was compared using relative errors rather than absolute 
errors. The reason for this was that the overall values of the VIs in the low FC areas were small, so 
absolute errors may create the illusion of some minor errors in the low FC areas, whereas the use of 
relative errors could avoid this problem. 

Summary 

Spectral response function, atmosphere effect and soil noise may impair the vegetation signal 
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expressed using vegetation indices. We compare the soil noise resistance among hotspot-signature 
vegetation indices and directionality indices, study the atmosphere effect on NDVI, SAVI, EVI and 
EVI2, calibrate the spectral correlation coefficient of EVI2 for S2 and L8 sensors. 

(1) Hotspot-signature vegetation indices can well resist the influence of soil noise. 
(2) The atmosphere effect causes the common two-band VIs (i.e., NDVI, SAVI, EVI2) to be 

underestimated. However, the atmospheric effect causes the EVI to be overestimated, which stems 
from the fact that the atmosphere effect increases the reflectance of the blue band. Thus, the 
atmosphere effect can increase the difference between EVI and EVI2. 

(3) The spectral correlation coefficient c for EVI2 is calibrated (cL8 = 1.80, cS2 = 1.60) to 
produce an EVI2 closer to the EVI with L8 and S2 satellites. The new EVI2 calculated using cL8 
and cS2 are named EVI2L8 and EVI2S2. After calibration, the R2 for S2 increases by 6%, and the 
RMSE decreases by 25%. Meanwhile, the R2 for L8 increases by 3%, and the RMSE decreases by 
17% based on the USGS vegetation Spectral Library. 

(4) For the S2 and L8 sensors, the EVI2 values are slightly smaller than EVI, with the median 
value of EEVI2 equal to -0.025 (L8) and -0.063 (S2). Furthermore, the EVI2 calculated from L8 is 
closer to the EVI than S2 because cL8 is closer to c than cS2. 
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Chapter 7  Conclusion and perspectives 

Recently, many significant achievements have been achieved for canopy reflectance simulation 
and its bio-optical parameter inversion based on 3D radiative transfer models. However, many 
important issues remain unsolved, such as continuous-time phase simulation, inversion of 
vegetation leaf OPs in urban areas, and VIs saturation effects. We present a coupled growth model 
to achieve a 3D radiative transfer simulation capability in continuous time phase; an accurate 
inversion of the OPs of leaves in urban areas based on DART calibration, and an analysis of the 
vegetation isolines behaviours and a proposed intersection right shift phenomenon to mitigate the 
saturation effect of the SAVI in high FC areas. The first half of the thesis focuses on modelling and 
reflectance simulation of 3D vegetation scenes. The second half focuses on the inversion of 
vegetation bio-optical property using the 3D radiative transfer models. The main work and 
conclusions are summarised, the innovations of the thesis are distilled, and prospects for further 
research are presented. 

7.1  Major conclusions 

Key conclusions and related discussions include: 
(1) The maize growth equation is coupled to compare the differences in simulated reflectance 

between homogeneous, simplified heterogeneous and real structural remote sensing scenes between 
the three radiative transfer models SAIL, DART and RGM. The results show that the assumption of 
homogeneous canopy leads to a non-negligible overestimation of nadir-observed reflectance in the 
NIR band. It is due to multiple scattering are mainly from vegetation. However, the proportion of 
vegetation seen at the nadir is minimal, and the homogeneity assumption does not well consider it. 
The NIR is a vital band, and the nadir is a vital viewing angle for vegetation monitoring using remote 
sensing data. Therefore, the importance of considering the three-dimensional structure of the tree 
canopy is emphasised when using nadir observations. 

(2) Inversion of leaf OPs from the mixed pixel in urban areas is achieved, simulation accuracy 
is assessed, and sensitivity analyses are performed. If only OP is unknown, the mean relative errors 
for all bands for ground, roof, water, tree and shrub are 0.013, 0.005, 0.027, 0.297 and 0.250, 
respectively. In the case of inaccuracy input parameters, it is 0.233, 0.507, 3.088, 0.834 and 1.256. 
In addition, the inversion accuracy is affected by SZA, satellite spatial resolution, pixel shifting, 
scene model inaccuracy and MTF in decreasing order of magnitude. The calibration without noise 
interference is insensitive to the number of bands and is highly resistant to shadow interference. 
Some uncontrollable external factors may significantly affect inversion accuracies, such as co-
registration errors or user-defined ratios between leaf reflectance and transmittance. 

(3) The vegetation isolines’ behaviours are analyzed, and the intersection right shift 
phenomenon is proposed. The intersection right-shift phenomenon suggests that negative soil 
adjustment factors can alleviate SAVI saturation. Negative soil adjustment factors for SAVI can 
alleviate SAVI saturation in Apiacs (i.e., the optimal soil adjustment factor takes a value of -0.148 
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for an average LAI equal to 5.35) and more generally in areas with larger LAI values (e.g., the 
optimal soil adjustment factor takes a value of -0.183 for an average LAI equal to 6.72). 

(4) The influences of soil, atmosphere and SRF on VIs are analysed. The spectral correlation 
coefficients between S2 and L8 red and blue bands are calibrated and applied to the EVI2 calculation. 
The calibration coefficients are validated using the USGS vegetation spectral library. The results of 
the atmosphere effect show that the atmosphere effect exacerbates the differences between EVI and 
EVI2. As a result, atmospherically influenced EVI is overestimated, and atmospherically influenced 
EVI2 is underestimated. The results of the quantitative analysis show that EVI2 is slightly smaller 
than EVI in the S2 and L8 sensors. Assuming that EVI is the true value and EVI2 is the measured 
value, the median relative error equals -0.025 for L8 and -0.063 for S2. The minor relative error in 
EVI2 for L8 than for S2 is that cL8 is larger than cS2 and is closer to the original c value of 2.08. The 
proposed two new spectral band correlation coefficients, cL8 = 1.80 and cS2 = 1.60, are estimated 
from SR data for S2 and L8. The new EVI2 calculated with cL8 and cS2 is named EVI2L8 and EVI2S2. 
Validations based on the USGS vegetation spectral library show a 6% increase in R2 between EVI 
and EVI2S2 and a 25% decrease in RMSE for S2 for the relative error. There is a 3% increase in R2 

between EVI and EVI2L8 and a 17% decrease in RMSE for L8 for the relative error. 

7.2  Innovations 

The main points of innovations are: 

(1) Coupling maize growth equations adds the ability to simulate continuous-time phase data 

with RGM and DART models. 

The development of three-dimensional radiative transfer models and the popularity of high-
resolution imagery emphasises the importance of realistic scene modelling. Based on maize's three-
dimensional static modelling model, growth control factors with the cumulative degree day as a 
control variable are introduced. The period from seedling emergence to male flowering is simulated, 
development rules describing the structure of the entire plant growing season are added, and the 
time-series simulation of the three-dimensional radiative transfer model is achieved. The fulfilment 
of the growth model fills in the knowledge of the spatial and temporal variation of critical parameters 
of the ground, simulates changes in the spatial distribution of crops and enables continuous time-
phased data simulations. 

(2) Based on the DART calibration, the inversion of the leaf optical properties can be 

achieved at the sub-pixel scale. 

Based on the DART calibration, canopy spectral unmixing and leaf OP inversion is performed 
based on the DART model to invert leaf OPs from a mixed spectrum containing three components 
(vegetation, soil, urban) or more. Compared to current leaf inversion methods based on the 
assumption of a homogeneous canopy, this method can consider the strong heterogeneity and non-
planarity of urban areas and the spectral-spatial variability of the endmembers. In addition, the 
method requires a low number of spectral bands (at least one band) to achieve the inversion and 
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therefore has few requirements on sensors. 

(3) The phenomenon of the right shift of the intersections is proposed to mitigate the 

saturation effect of SAVI in high FC areas. 

The "right shift phenomenon" is proposed to describe the movement of the intersection points 
between the soil line and the vegetation isolines in the red-NIR plane with the FC, and the formula 
is derived to prove it. The right-shift phenomenon shows that, as the FC increases, the intersections 
between the vegetation isolines and the soil line gradually move towards the positive red band 
coordinate direction. When the intercept of the vegetation isoline is smaller than the intercept of the 
soil line, the intersection point can eventually reach the positive region. The right-shift phenomenon 
successfully solves the two contradictory debates on describing the movement of intersection points 
between vegetation isolines and soil lines in the current academic community and achieves a 
dialectical unification in a new perspective. Because the optimal soil adjustment factor is the 
negative value of the abscissa of the intersection of the vegetation isolines and the soil line, based 
on the right-shift phenomenon, the hypothesis that the optimal soil adjustment factor should be 
negative in the high FC area is proposed and verified. This hypothesis can mitigate the saturation 
effect of SAVI and improve the accuracy of LAI inversion. 

7.3  Shortcomings and perspectives 

Reflectance simulations based on the 3D radiative transfer models are an essential theoretical 
basis for understanding 3D radiative transfer simulations and an effective tool for the inversion of 
vegetation bio-optical parameters. Researches have been carried out in both modelling and 
applications, but there are still a number of shortcomings that need further improvements. 

(1) Reflectance based on 3D maize structure simulations is generated under minimal 
experimental conditions. A more comprehensive range of experimental conditions should be 
investigated. Also, the simulated BRF has not been validated with field measurement data. It is the 
next stage of work. The currently considered growth control factors are relatively few. Several 
environmental factors that significantly impact plant growth, such as nitrogen, phosphorus, and 
potassium, will be added to the future growth model. The potential of this growth model is enormous 
because it can bridge the knowledge of plant morphology and remote sensing rather than the 
previously used simplified canopy structure parameters. 

(2) A number of uncontrollable external factors may significantly affect the accuracy of leaf 
spectral inversions, such as geometric co-registration errors or user-defined ratios between leaf 
reflectance and transmittance. The noise resistance for the inversion methods of leaf OPs should be 
adequately improved. Besides, even though this thesis only involves the spectral from visible to 
short wave infrared, the potentials of DART calibration are far more from this. The a priori 
abundance information can well solve the mixed pixels problem in the thermal infrared band. In 
addition, combining the temperature and emissivity separation algorithm and DART calibration 
allows for the temperature emissivity decomposition of non-isothermal pixels. The consideration of 
spatial heterogeneity and non-planarity in the DART calibration makes it suitable for use in complex 
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study areas such as cities. However, one limitation of the DART inversion is the use of the 3D urban 
geometry database, which is still not widely open access for many cities. However, with the 
development of surveying and mapping technology, we have reason to believe that 3D urban data 
structure data will become more and more common. The potential application of the inverted optical 
properties of urban materials is enormous, such as estimating energy budget (urban climate/heat 
island, etc.). It is vital to the urban planning (e.g., to reduce or prevent turbulent sensible heat flux 
and anthropogenic heat flux hot spots), health studies (e.g., to estimate the impact on thermal 
comfort) and future-proofing (e.g., to plan and implement interventions to reduce heat emissions). 

(3) The accuracy of the proposed inversion of LAI using the negative soil adjustment factor 
in SAVI is much higher than using a positive soil adjustment factor in the high FC area, but the 
accuracy still falls short compared to methods such as RT-based inversion or active remote sensing. 
Therefore, the proposed method is better suited to using common optical satellites with a single 
fixed observation direction. The high accuracy of LAI estimates can help increase the value of 
remote sensing technology for current hotspot issues such as large-scale agroforestry monitoring, 
global food security, global carbon cycle, global surface change monitoring, primary productivity 
analysis and global food crop security. 

This work introduced the plant growth model into the DART model. There are also interesting 
points where DART products can be introduced into the growth model, and they are listed below: 

(1) Radiative budget (e.g., Absorbed Photosynthetically Active Radiation: APAR): The 
vegetation growth stage greatly depends on the time integral of APAR. On the other hand, APAR 
depends on the vegetation 3D architecture. Therefore, a DART simulation of the plant APAR, using 
meteorological data, indicates the energy received by a plant and consequently can influence the 
vegetation growth model.  

(2) Remote sensing data (e.g., directional and albedo images): Comparing these data with 
actual remote sensing data can inform the vegetation radiative budget because DART offers the 
advantage of simulating simultaneously remote sensing and radiative budget products. Therefore, 
DART remote sensing data can be used to drive growth vegetation models. In addition, DART 
remote sensing data can be used to train machine learning algorithms to detect vegetation species 
(vegetation classification) and bio-physical parameters inversion (i.e., tree height), which are 
essential parameters in plant growth models.  

(3) Fluorescence data: Sun-induced chlorophyll fluorescence (SIF) offers a physiologically 
based GPP proxy, potentially avoiding the need for LUE parameterizations. In fact, many studies 
have already shown an empirical linear scaling between SIF and GPP across various vegetation 
types under different environmental conditions, revealing the potential of SIF to monitor GPP across 
all spatial scales[239]. Plant SIF depends on the plant growth stage and consequently on the plant 
3D architecture. It illustrates the link between DART SIF products, plant architecture and 
fluorescence parameters of the plant foliar elements.  

(4) Mock-up data. DART simulation of the 3D architecture of plants should accurately 
represent the 3D architecture of plants simulated by growth models. DART can work with different 
precision levels for representing this 3D architecture.  

 



Bibliography 

119 

Bibliography 

[1] J. Gastellu-Etchegorry, Y. Wang, O. Regaieg, T. Yin, Z. Malenovsky, Z. Zhen, X. Yang, Z. Tao, L. 
Landier, and A. Al Bitar, "Why To Model Remote Sensing Measurements In 3d? Recent Advances 
In Dart: Atmosphere, Topography, Large Landscape, Chlorophyll Fluorescence And Satellite Image 
Inversion," 2020 5th International Conference on Advanced Technologies for Signal and Image 
Processing (ATSIP), pp. 1-6, 2020. 

[2] J. Li, S. Chen, W. Qin, M. Murefu, Y. Wang, Y. Yu, and Z. Zhen, “Spatio-temporal Characteristics 
of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study 
of the Central Part of Northeast Asia,” Chinese Geographical Science, vol. 29, no. 4, pp. 679-688, 
2019. 

[3] Z. Zhen, S. Chen, W. Qin, G. Yan, J.-P. Gastellu-Etchegorry, L. Cao, M. Murefu, J. Li, and B. Han, 
“Potentials and Limits of Vegetation Indices With BRDF Signatures for Soil-Noise Resistance and 
Estimation of Leaf Area Index,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, 
no. 7, pp. 5092-5108, 2020. 

[4] Z. Zhen, S. Chen, T. Yin, E. Chavanon, N. Lauret, J. Guilleux, M. Henke, W. Qin, L. Cao, J. Li, P. 
Lu, and J.-P. Gastellu-Etchegorry, “Using the Negative Soil Adjustment Factor of Soil Adjusted 
Vegetation Index (SAVI) to Resist Saturation Effects and Estimate Leaf Area Index (LAI) in Dense 
Vegetation Areas,” Sensors, vol. 21, no. 6, pp. 2115, 2021. 

[5] B. Zhu, S. Chen, Y. Cao, Z. Xu, Y. Yu, and C. Han, “A regional maize yield hierarchical linear model 
combining landsat 8 vegetative indices and meteorological data: Case study in jilin province,” 
Remote Sensing, vol. 13, no. 3, pp. 356, 2021. 

[6] S. Liang, Quantitative Remote Sensing of Land Surfaces: Wiley-Interscience, 2004. 
[7] M. Henke, S. Huckemann, W. Kurth, and B. Sloboda, “Reconstructing leaf growth based on non-

destructive digitizing and low-parametric shape evolution for plant modelling over a growth cycle,” 
Silva Fennica, vol. 48, no. 2, pp. 1019, 2014. 

[8] M. Disney, P. Lewis, and P. North, “Monte Carlo ray tracing in optical canopy reflectance modelling,” 
Remote Sensing Reviews, vol. 18, no. 2-4, pp. 163-196, 2000. 

[9] J. Gastellu-Etchegorry, E. Martin, and F. Gascon, “DART: a 3D model for simulating satellite 
images and studying surface radiation budget,” International Journal of Remote Sensing, vol. 25, 
no. 1, pp. 73-96, 2004. 

[10] S. Liang, J. Cheng, K. Jia, B. Jiang, Q. Liu, S. Liu, Z. Xiao, X. Xie, Y. Yao, and W. Yuan, “Recent 
progress in land surface quantitative remote sensing,” Journal of Remote Sensing, vol. 20, no. 5, pp. 
875-898, 2016. 

[11] G. Yang, Q. Liu, D. U. Yongming, Y. Shi, and H. Feng, “Review of Optical Remote Sensing Imaging 
Simulation of Farmland Radiation Transfer Process,” Acta Scientiarum Naturalium Universitatis 
Pekinensis, vol. 49, no. 3, pp. 537-544, 2013. 

[12] J. L. Roujean, M. Leroy, and P. Y. Deschamps, “A bidirectional reflectance model of the Earth's 
surface for the correction of remote sensing data,” Journal of Geophysical Research: Atmospheres, 
vol. 97, no. D18, pp. 20455-20468, 1992. 



PhD Thesis, Université de Toulouse 

120 

[13] W. Wanner, X. Li, and A. Strahler, “On the derivation of kernels for kernel‐driven models of 
bidirectional reflectance,” Journal of Geophysical Research: Atmospheres, vol. 100, no. D10, pp. 

21077-21089, 1995. 
[14] S. Liu, Q. Liu, Q. Liu, J. Wen, and X. Li, “The angular and spectral kernel model for BRDF and 

albedo retrieval,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, vol. 3, no. 3, pp. 241-256, 2010. 

[15] H. Rahman, B. Pinty, and M. M. Verstraete, “Coupled surface‐atmosphere reflectance (CSAR) 

model: 2. Semiempirical surface model usable with NOAA advanced very high resolution 
radiometer data,” Journal of Geophysical Research: Atmospheres, vol. 98, no. D11, pp. 20791-
20801, 1993. 

[16] J. V. Martonchik, “Determination of aerosol optical depth and land surface directional reflectances 
using multiangle imagery,” Journal of Geophysical Research: Atmospheres, vol. 102, no. D14, pp. 
17015-17022, 1997. 

[17] O. Engelsen, B. Pinty, M. Verstraete, and J. V. Martonchik, “Parametric bidirectional reflectance 
factor models: Evaluation, improvements and applications,” Catalogue CL-NA-16426-EN-C, 
ECSC-EC-EAEC, 01/01, 1996. 

[18] D. You, J. Wen, Q. Liu, Q. Liu, and Y. Tang, “The angular and spectral kernel-driven model: 
Assessment and application,” IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing, vol. 7, no. 4, pp. 1331-1345, 2013. 

[19] D. R. Peddle, S. E. Franklin, R. L. Johnson, M. B. Lavigne, and M. A. Wulder, “Structural change 
detection in a disturbed conifer forest using a geometric optical reflectance model in multiple-
forward mode,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 1, pp. 163-166, 
2003. 

[20] X. Li, and A. H. Strahler, “Geometric-optical bidirectional reflectance modeling of the discrete 
crown vegetation canopy: Effect of crown shape and mutual shadowing,” IEEE Transactions on 
Geoscience and Remote Sensing, vol. 30, no. 2, pp. 276-292, 1992. 

[21] J. M. Chen, and S. G. Leblanc, “A four-scale bidirectional reflectance model based on canopy 
architecture,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 5, pp. 1316-1337, 
1997. 

[22] S. G. Leblanc, and J. M. Chen, “A windows graphic user interface (GUI) for the five‐scale model 
for fast BRDF simulations,” Remote Sensing Reviews, vol. 19, no. 1-4, pp. 293-305, 2000. 

[23] T. P. Dawson, P. J. Curran, and S. E. Plummer, “LIBERTY—Modeling the effects of leaf 
biochemical concentration on reflectance spectra,” Remote Sensing of Environment, vol. 65, no. 1, 
pp. 50-60, 1998. 

[24] B. Hapke, “Bidirectional reflectance spectroscopy: 1. Theory,” Journal of Geophysical Research: 
Solid Earth, vol. 86, no. B4, pp. 3039-3054, 1981. 

[25] J.-B. Feret, C. François, G. P. Asner, A. A. Gitelson, R. E. Martin, L. P. Bidel, S. L. Ustin, G. Le 
Maire, and S. Jacquemoud, “PROSPECT-4 and 5: Advances in the leaf optical properties model 
separating photosynthetic pigments,” Remote Sensing of Environment, vol. 112, no. 6, pp. 3030-
3043, 2008. 

[26] W. Verhoef, “Light scattering by leaf layers with application to canopy reflectance modeling: The 
SAIL model,” Remote Sensing of Environment, vol. 16, no. 2, pp. 125-141, 1984. 



Bibliography 

121 

[27] T. Yin, J.-P. Gastellu-Etchegorry, N. Lauret, E. Grau, and J. Rubio, “A new approach of direction 
discretization and oversampling for 3D anisotropic radiative transfer modeling,” Remote Sensing of 
Environment, vol. 135, pp. 213-223, 2013. 

[28] J.-P. Gastellu-Etchegorry, V. Demarez, V. Pinel, and F. Zagolski, “Modeling radiative transfer in 
heterogeneous 3-D vegetation canopies,” Remote Sensing of Environment, vol. 58, no. 2, pp. 131-
156, 1996. 

[29] J. Gastellu-Etchegorry, Y. Wang, O. Regaieg, T. Yin, Z. Malenovsky, Z. Zhen, X. Yang, Z. Tao, L. 
Landier, and A. Al Bitar, "Recent Improvements in the Dart Model for Atmosphere, Topography, 
Large Landscape, Chlorophyll Fluorescence, Satellite Image Inversion," IEEE International 
Geoscience and Remote Sensing Symposium, pp. 3455-3458, 20202020. 

[30] D. Kimes, and J. Kirchner, “Radiative transfer model for heterogeneous 3-D scenes,” Applied Optics, 
vol. 21, no. 22, pp. 4119-4129, 1982. 

[31] R. Myneni, G. Asrar, and F. Hall, “A three-dimensional radiative transfer method for optical remote 
sensing of vegetated land surfaces,” Remote Sensing of Environment, vol. 41, no. 2-3, pp. 105-121, 
1992. 

[32] M. Duan, Q. Min, and D. Lü, “A polarized radiative transfer model based on successive order of 
scattering,” Advances in Atmospheric Sciences, vol. 27, no. 4, pp. 891-900, 2010. 

[33] P. R. North, “Three-dimensional forest light interaction model using a Monte Carlo method,” IEEE 
Transactions on Geoscience and Remote Sensing, vol. 34, no. 4, pp. 946-956, 1996. 

[34] P. Lewis, “Three-dimensional plant modelling for remote sensing simulation studies using the 
Botanical Plant Modelling System,” Agronomie, vol. 19, no. 3-4, pp. 185-210, 1999. 

[35] Y. M. Govaerts, and M. M. Verstraete, “Raytran: A Monte Carlo ray-tracing model to compute light 
scattering in three-dimensional heterogeneous media,” IEEE Transactions on Geoscience and 
Remote Sensing, vol. 36, no. 2, pp. 493-505, 1998. 

[36] C. C. Borel, S. A. Gerstl, and B. J. Powers, “The radiosity method in optical remote sensing of 
structured 3-D surfaces,” Remote Sensing of Environment, vol. 36, no. 1, pp. 13-44, 1991. 

[37] Z. Tao, R. Shi, J. philippe Gastellu-Etchegorry, J. Shi, N. Wu, B. Tian, and W. Gao, “Effects of plant 
and scene modeling on canopy NDVI simulation: a case study on Phragmites australis and Spartina 
alterniflora,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 
vol. 14, no. 6451-6466, 2021. 

[38] S. Jacquemoud, and S. Ustin, "Measurement of Leaf Optical Properties," Leaf Optical Properties, 
S. Jacquemoud and S. Ustin, eds., pp. 74-123, Cambridge: Cambridge University Press, 2019. 

[39] K. Castro-Esau, G. Sanchez-Azofeifa, and B. Rivard, “Comparison of spectral indices obtained 
using multiple spectroradiometers,” Remote Sensing of Environment, vol. 103, no. 3, pp. 276-288, 
2006. 

[40] G. V. G. Baranoski, and J. Rokne, Light interaction with plants: Horwood Pub., 2004. 
[41] S. L. Ustin, “Remote sensing of environment: State of the science and new directions,” Remote 

Sensing of Natural Resources Management and Environmental Monitoring, pp. 679-729, 2004. 
[42] S. Jacquemoud, J.-B. Féret, and S. L. Ustin, “Compréhension et modélisation de la couleur des 

feuilles,” Ecole thématique interdisciplinaire du CNRS, 2009. 
[43] H. G. Hecht, “The interpretation of diffuse reflectance spectra,” Journal of research of the National 

Bureau of Standards. Section A, Physics and chemistry, vol. 80, no. 4, pp. 567, 1976. 



PhD Thesis, Université de Toulouse 

122 

[44] W. A. Allen, H. W. Gausman, A. J. Richardson, and J. R. Thomas, “Interaction of isotropic light 
with a compact plant leaf,” Josa, vol. 59, no. 10, pp. 1376-1379, 1969. 

[45] W. A. Allen, H. W. Gausman, and A. J. Richardson, “Mean effective optical constants of cotton 
leaves,” Josa, vol. 60, no. 4, pp. 542-547, 1970. 

[46] H. T. Breece, and R. A. Holmes, “Bidirectional scattering characteristics of healthy green soybean 
and corn leaves in vivo,” Applied Optics, vol. 10, no. 1, pp. 119-127, 1971. 

[47] S. Jacquemoud, and F. Baret, “PROSPECT: A model of leaf optical properties spectra,” Remote 
Sensing of Environment, vol. 34, no. 2, pp. 75-91, 1990. 

[48] T. Dawson, P. Curran, and S. Plummer, Modelling the spectral response of coniferous leaf structures 
for the estimation of biochemical concentrations, 1995. 

[49] T. Dawson, and P. Curran, “A new technique for interpolating the reflectance red edge position,” 
International Journal of Remote Sensing, vol. 19, no. 11, pp. 2133-2139, 1998. 

[50] P. Kubelka, “Ein Beitrag zur Optik der Farbanstriche (Contribution to the optic of paint),” Zeitschrift 
fur technische Physik, vol. 12, pp. 593-601, 1931. 

[51] J. E. Conel, J. van den Bosch, and C. I. Grove, “Application of a Two-Stream Radiative Transfer 
Model For Leaf Lignin and Cellulose Concentrations from Spectra Reflectance Measurements (Part 
1),” 1993. 

[52] S. Jacquemoud, and S. Ustin, Leaf optical properties: Cambridge University Press, 2019. 
[53] C. J. Tucker, and M. W. Garratt, “Leaf optical system modeled as a stochastic process,” Applied 

Optics, vol. 16, no. 3, pp. 635-642, 1977. 
[54] G. Senn, Die Gestalts-und Lageveränderung der Pflanzen-Chromatophoren: mit einer Beilage: Die 

Lichtbrechung der lebenden Pflanzenzelle: W. Engelmann, 1908. 
[55] G. Haberlandt, “Optical sense-organs,” Physiological Plant Anatomy, pp. 613-631, 1914. 
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Appendix 

Appendix. A: The grammar rule of ELSYS 
Similar to other types of L-systems, the control characters in the ELSYS grammar rules have 

geometric meanings (Table A.1) and are usually interpreted geometrically using a turtle 
interpretation (Figure A.1). 
Table A.1 Geometric interpretation of the character of Extended L-system. 

Character Geometric interpretation 

F Forward unit length, plotting forward path 

f Forward unit length, no path drawn 

+ Angle of rotation around U to the right 

- Angle of rotation around U to the left 

& Rotate downwards around L 

^ Rotate upwards around L 

\ Angle of rotation to the left around H 

/ Angle of rotation to the right around H 

| Endpoint and starting point are swapped 

[ Into the stack, storing the current position and direction 

] Out of the stack, return to the position and direction of the incoming stack 

{ Start drawing paths for f-operated characters 

} End of drawing paths for f-operated characters 

= Forward unit length, no path is drawn whether or not it is within curly brackets 

 

 
Figure A.1 Geometric interpretation of the turtle interpretation. 

The main difference between ELSYS and other L-system includes that: Compared with the 
traditional L-system, the ELSYS program, the extension of ELSYS includes: (1) Using variable 
name rather than the single letter for predecessor and successors in the iteration rules; (2) Data 
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structure such as integer, real, and vector are supported; (3) Supporting the parameter passing among 
iteration rules; (4) Supporting logical control statement (i.e., conditional and loop statement); (5) 
built-in functions and operators. These extensions make ELSYS much power than the traditional L-
system. 

All variables in ELSYS are case-sensitive, and there are two types of variables: user-defined 
variables and system variables. ELSYS has three types of variables and data types: integers, real 
numbers and 3D real vectors. Vectors are used to express position and direction in 3D space or to 
describe colours using Red-Green-Blue (RGB), and they are similar to arrays and can be accessed 
via subscripts. User-defined variables must start with a letter, and the type of variables is defined by 
the initial letter of the variable: i, j, k, l, m, n, I, J, K, L, M, N are integers, u, v, w, U, V, W are 
vectors and other variables starting with an initial letter are real numbers. The ELSYS syntax rules 
are described here only in a preliminary way; for system variables and more detailed syntax rules, 
see the literature [159]. 

Some commonly used built-in operators are listed in Table A.2, and commonly used mathematical 
operators are listed in Table A.3. 

 
Table A.2 Commonly used built-in operators. 

Operator Function 

val Evaluate expression 
run Specify number of iterations 
let Performs assignment(s) 

exit Stop execution 
inc Increment real or integer variable 
dec Decrease real or integer variable 
if If statement 

else Else statement 
goto Jump within a rule 

global Performs global variable assignment(s) 
setname Set animation file name 

save Save the polygons that have been produced so far 
into the structure file and increase the file index 

reset Remove all previously produced polygons 
flush Similarly to "save" followed by "reset" 

 
Input source code is written using the same process, and the code consists of four main sections 

of content: 
(1) Global variable declaration (optional): This section consists of multiple global (variable 1, 

variable 2, ......, variable n) statements that declare global variables. The scope of a global variable 
is the entire source file. 

(2) Function declaration (optional): This section consists of multiple def(function name 
(variable 1, variable 2, ......, variable n):= function body) statements that declare global functions. 

(3) Determination of the axioms of the L-system: This section determines the axiomatic 
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characters of the L-system. 
(4) Determination of L-system rules: This section specifies the iteration rules of the L-system, 

i.e., the predecessor and successors. 
 

Table A.3 Commonly used mathematical operators. 
Operator Function 

+ Add real numbers and integers 
- Subtract real numbers and integers 
* Multiply real numbers and integers 
/ Divide real numbers and integers 

** Power function 
^ Power function 

mod Modulo function for integers 
and Logical operators “and” on integers 
or Logical operators “or” on integers 
not Logical operators “not” on integers 
< For comparing numbers using smaller 
> For comparing numbers using larger 

<= For comparing numbers using smaller or equal 
>= For comparing numbers using larger or equal 
= Equality test, both for numbers and vectors. 
:= Set the value of a variable. 

 
A simple example code of describing the several periods of a flowering plant development (Figure 

A.2) from the literature [159] is listed below: 
 
animation(1,1, 7,20, 1,7, 60,170, 3) /* axiom */ 
 
animation(kx,ky, n,m, h1,h2, delta1,delta2, nsteps) --> 
let(i:= 0) setname ('an') 
nsteps*( ky*( [kx*( [object(n,m, h1+(h2-h1)*real(i)/(nsteps-1), 
delta1+(delta2-delta1)*real(i)/(nsteps-1))] 
90+ val(2*n) f 90-)] val(2*n) f) flush inc(i)) 
 
object(n,m,h,delta) --> trunk(n,m) layer(n,h,delta) 
 
trunk(n,m) --> m*(layer(n,1,90) 90^ f 90&) 
 
layer(n,h,delta) --> [n*(facet(h,delta,90-180./n)f val(360./n)+)] 
 
facet(h,delta,beta) --> [[beta+ delta^ 
{ h f | h f ] f beta- | delta^ h f }] 
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Figure A.2 Flower generated by using the example code from ELSYS  

 
The rule facet (h, delta, beta) generates a symmetrical quadrilateral polygon for constructing the 

stems and flowers of the plant. The base of the polygon is drawn in the current direction of the turtle, 
with a length of 1 ; angles delta and beta guide the turtle in how to adjust its heading to draw the 
sides of the polygon. Argument h specifies the length of the edge. 

The rule layer (n, h, delta) creates a series of n polygons ( by repeatedly calling the rule "facet". ) 
Their bases are engraved on a circle. This rule is applied to construct a “polygonal approximation” 
of a cone or cylinder. 

The rule trunk(n, m) creates a polygonal approximation of a cylinder with a height of m layers 
and has a circular base that approximates a symmetric n-sided polygon 

The rule object(n, m, h, delta) constructs a flowering plant with stem composed of rule trunk (n, 
m). The flower (constructed using regular "layers") has length h and grow from the trunk with angle 
delta. By changing the parameters of h and delta, the different stages of flowering process can be 
obtained. As the flower becomes larger, it expands from the stem with an increasing angle. 

The rule animation(kx,ky, n,m, h1,h2, delta1,delta2, nsteps) accomplish all procedure by 
continually constructing a field of kx times ky flowers (kx flowers in the x direction and ky in the y 
direction) and saving various phases of development into files an.OOl, an.002, an.003, and so on. 

The built-in operator "setname" is used to set the structure file name. In addition to kx and ky, the 
rule also describes the parameters n and m of the stem (such as in the trunk rule), the parameters h1 
and delta1 of the initial growth stage of the flower, the parameters h2 and delta2 of the final growth 
stage of the flower, and the integer n steps that represent the number of steps required for animation 
from the initial stage to the final stage. The polygon that describes the flower field is generated in a 
loop by rule animation, where the parameters h and delta of the rule "object" are linearly interpolated 
between the values of the initial and final stages of growth. When a growth phase is completed, the 
resulting polygon is recorded in the file, the file counter increases, and the number of polygons is 
reset to 0. The built-in operator "flush" executes these three purposes. 

 
 


