N

N

Evolutive system architecture design: design,
optimization, and implementation of adaptable,
regenerative, and reactive complex system architectures
in the era of climate scarcity
Raul Polit Casillas

» To cite this version:

Raul Polit Casillas. Evolutive system architecture design: design, optimization, and implementation
of adaptable, regenerative, and reactive complex system architectures in the era of climate scarcity.
Other. Université de Strasbourg, 2021. English. NNT: 2021STRADO017 . tel-03700057

HAL Id: tel-03700057
https://theses.hal.science/tel-03700057

Submitted on 20 Jun 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03700057
https://hal.archives-ouvertes.fr

Université UNIVERSITE DE STRASBOURG msi;

de Strasbourg

ECOLE DOCTORALE MSII

ICUBE

TH ES E présentée par :
Raul POLIT CASILLAS

soutenue le : 17 mars 2021

pour obtenir le grade de : Docteur de I'université de Strasbourg

Discipline/ Spécialité : Ingénierie Systéme

Evolutive Systems Architecture Design

Design, optimization, and implementation of
adaptable, regenerative, and reactive
complex system architectures
in the era of climate scarcity

THESE dirigée par :

M. CAILLAUD Emmanuel Professeur des Universités, université de Strasbourg
RAPPORTEURS :

Mme BARON Claude Professeur des Universités, INSA Toulouse

M. BONJOUR Eric Professeur des Universités, ENSGSI-université de Lorraine
AUTRES MEMBRES DU JURY :

Mme BERGER-WOLF Tanya Professeur, Ohio State University / TDAI

M. Naderi Firouz Retired, JPL Caltech

PhD Thesis, University of Strasbourg, Ecole Doctorale MSII, ICUBE

EVOLUTIVE SYSTEMS
ARCHITECTURE DESIGN

Design, Optimization, and Implementation of
Adaptable, Regenerative, and Reactive Complex
System Architectures in the Era of Climate Scarcity

Raul Polit Casillas
3-17<2021

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Evolutive Systems Architecture Design

Design, Optimization, and Implementation of
Adaptable, Regenerative, and Reactive Complex
System Architectures in the Era of Climate Scarcity

by

Raul Polit Casillas

Submitted to the

Ecole Doctorale « Mathématiques, Sciences de I'Information et de I'Ingénieur », ICUBE

on March 17th, 2021

for the degree of

Doctor of Philosophy in Systems Engineering Design
at the

Université de Strasbourg

Advisor/Director: Professor Emmanuel Caillaud, University of Strasbourg
Thesis study case: Evolutive Portable Habitat (EPH) © 2020 Raul Polit Casillas

This work was done as a private venture and not in the author's capacity as an employee of the Jet Propulsion Laboratory,
California Institute of Technology. This is a fundamental research activity presenting only theoretical results.

Cover image by Ramon Polit Alabau - “Intenciones” Limited Series

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Abstract

Human activity on Earth has been driven by the need to innovate towards the next level. Survival needs, competitive
advantage, and intellectual curiosity, among others, have incentivized us to go beyond, and often against the everlasting
hassle of finding resources or support. Around the second decade of the century, complexity, heritage, and resource scarcity
among others, are increasingly influencing hardware-based complex architectures in terms of design, optimization, and
implementation. Based upon critical synergies among domains such as systems engineering, architecture, and engineering
design this thesis presents results, approaches, and contributions towards a novel system design methodology.

Nowadays, complex hardware-based systems such as cars, computers, robotic systems, virtual platforms, smart
buildings, and other electro-mechanical devices show a growing need for quantum-leaps in terms of system performance,
which are often beyond the limits of any existing heritage. For instance, consumer products have become more sophisticated
by the day, requiring a better integration of hardware and software, as well as other social and cultural requirements to be
competitive. Purely mechanical systems a few decades ago, like an automobile, today include hundreds of thousands of
lines of code and showcase other disruptive manufacturing techniques (e.g., additive manufacturing) to deliver better quality,
cheaper complexity, and easier customization at a lower price. However, beyond the competitiveness of a product within
markets worldwide, the demand for better system performance (e.g., sustainable houses consuming less energy), and
system adaptability (e.g., modular systems) is a growing trend partially based on the infusion of data-driven capabilities such
as processes, product characteristics, or operational schemes. Namely, telecommunication businesses nowadays are no
longer just about transmitting data over large distances, since they need to involve social frends, subsystems connectivity,
and user experiences as well. In essence, such inherent new complexity is assumed in this research as a multidisciplinary
networked reality rather than a unidimensional challenge, because our world is getting much more complex very fast, so our
design methods must evolve in parallel as well.

At the same time, we are entering a whole new phase in terms of resource availability due to climate uncertainty and
population growth, as well as other socioeconomic factors. Therefore, the balance between the need for complexity and the
availability of resources (e.g., energy, workforce, building materials, etc.) is entering a new paradigm, which is the starting
point for this research. Regardless the field of work (e.g., architecture, car-making, finance, product design, medicine,
aerospace, etc.) the need to go beyond in terms of system performance, novelty, efficiency, uniqueness, and adaptability is
becoming a major force in the design of any complex technical endeavor. Markets, customers, and requirements will keep
demanding more of any system architecture, affecting ‘what’ they are as a system (artifact), and ‘how’ they are being
developed (method) across all multiple development phases such as: design, optimization, prototyping, implementation,
management, and sustainability. Thus, considering heritage constraints and resource scarcity, how could we achieve much
better levels of system performance and capability when developing new complex systems? Furthermore, how could
we design those systems better with less resources while using faster and more efficient means?

This dissertation presents theoretical bases, literature reviews, practice gaps, methodologies, and study cases of a
novel, fast-paced, and synergetic technical approach towards design systems engineering of complex system
architectures. Inspired by evolutionary principles, adaptive principles, and proven state-of-the-art techniques, this evolutive
architecture approach tackles design, optimization, and implementation of complex systems under such tight
constraints while it is focused on multiple connections across disciplines. The overarching goal of this approach is to quickly
overcome design barriers that are driven by heritage, performance, and uniqueness in the same way that nature does,
as a continuous and efficient process building upon synergies rather than disciplinary and subsystem divisions.
Within this method those three key areas are linked as nodes of a networked approach.

However, this thesis is structured and centered mainly around the design node of the methodology while highlighting
other phases such as implementation and operations. To exemplify this methodology, a smart portable habitat system is
being used as a study case to introduce and elaborate critical methodology tools and principles, due to the complexity of the
topic and the importance of system heritage in the field of architectural design and construction.

After an introductory chapter, a second part presents the context and rationale for this synergetic method tackling
stressors, barriers, enablers, and gaps. The need to design better and more efficiently implies also to do so faster and
cheaper. This is founded on upcoming climate, socio-economic, and technical uncertainties driving new balances

3

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

among system needs, resources, and heritage. Technical, science, market-driven needs compete for better and faster
performance, leading to increasingly more complex systems. In the long term, this not only stresses current design
capabilities, but also it makes more difficult to embrace new solutions, especially for heritage-rich and risk-averse sectors
and organizations. Furthermore, such evolutionary-based method should provide adaptability, scalability, and efficiency
towards any dramatic improvement enabled by current state-of-the-art solutions. Thus, a third chapter presents an extensive
literature review tackling design methods, theories, and systems engineering approaches. Frugal, social, and low-tech design
trends, among many others propose multiple options toward doing ‘more with less’, however this evolutive approach
tackles doing ‘better with less’ in the context of ‘high-tech’ nature-inspired designs and system design engineering
domains. Evolutive methods are driven towards systematic, radical, and disruptive change instead of incremental innovation.

Within such broad context, the fourth chapter makes an emphasis in a series of key characteristics within hardware-
based system architectures that are increasingly becoming more critical due to multiple sources of resource scarcity, as well
as the need to handle much more system complexity both as a product and within the development process. Evolutive
architectures are defined by a regenerative approach toward the use of resources, a high-level system adaptability, and
a reactivity-driven operational mode.

Under the evolutive perspective, any complex system could be described by its geometry (descriptive principles), its
behavior (functional principles), and its substance (component nature). Thus, the next chapter lays out the evolutive system
design methodology upon such context. Chapter six presents a study case that exemplifies evolutive principles, steps, tools,
and criteria used to efficiently obtain feasible and ultra-performance design solutions fast, while being tool agnostic. This
example provides the baseline to answer all research questions as well as to obtain conclusions for the multiple contributions
developed and presented in this doctoral dissertation.

The foundation of this research is based on almost 20 years of professional experience designing complex
systems. This thesis is complemented by other fundamental research examples of public domain that have also published
by the author during his activity at the Jet Propulsion Laboratory of NASA-Caltech for almost a decade. Hence, the guidelines
and findings presented in this thesis develop a theoretical foundation, applicable to the design, optimization, and
implementation of any complex system architecture design (evolutive or not) across multiple technical fields. Doing
“better with less” is critical due to tackle resource scarcity, address the need for design agility, and increase the adaptability
to more complex system requirements beyond any heritage solution. Furthermore, it is also essential to address such
objective with a holistic perspective, just like nature does, while making the most of current design and manufacturing
techniques. Thus, this approach creates a foundation towards the infusion of upcoming automation methods, and other
disruptive techniques regarding both design and implementation. In a world that is challenged by increasing and
changing stressors such as climate change, population growth, system complexity, and everlasting market
pressures, we deserve a more efficient way of getting better and more holistic solutions, so we can keep daring mighty
new challenges.

Keywords: architecture, evolutive, evolution, evolutionary, systems engineering, hardware-based systems, systems
architecture, system design, hardware-based systems, optimization, evolutive systems architecture, systems design
4

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Acknowledgments

| dedicate this research, which has slowly matured over the last 25 years of personal and professional experience,
to my father Ramon Polit Alabau and my mother Charo Casillas Martinez who always believed in me.
‘Estoy siguiendo Papa... y sé que esto te hace sonreir desde alli.’

| dedicate the hard work behind this dissertation to my thesis advisor Emmanuel Caillaud,
who guided me with a very smart smile along some of the darkest times | have lived through.

Many thanks to the University of Strasbourg for allowing this thesis to see the light during such complicated times.
Thank you as well to Lew Soloway, Sean Jenkins, Bahman Chavoshan, and Nathan Strange for their comments and reviews.

s

The future is made by those who dare to dream ‘impossibles
and never back out in their pursuit, making the present always brighter.

Feet on the ground and the head in the stars...

Raul Polit Casillas
Los Angeles, Malibu, Valencia, July 2020

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Copyright 2021*, by Raul Polit-Casillas.

*This copyright does not apply to any image and content developed by other authors or in the public domain that are included
and referenced accordingly in this document.

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Table of Content

PN LY I 7 Y05 LS 3
ACKNOWLEDGMENTSoctiicciissssssssssss s sssssssssssssssss s sssssssssssssssssssssssss s bssssss s s ss s ssss st s ss s s s s ssssananans 5
TABLE OF CONTENT ..ottt ssssssssssss s ssssssss s st sas s ss s s e s st sbs b s e b bbb e b bbb E AR R bbb eE e b b 7
LIST OF FIGURES ...t ss s s s s st st s s s ss b b s s bbb bbb bbb eE bbbt 10
LIST OF TABLES ...ttt sssssss st s bbbt sttt s st bbb s b bbb bbb e 15
[0 g I I 16
1. INTRODUCTION......co it bbb s bbb e bbb e R bbb R R b 19
1.1. MOTIVATION, CONTEXT, AND PROBLEM STATEMENToveieeeeeeeeeeeeeeeeeeeeseseeeeeseseeessssseeeesesesseseseeesesesesesssssesenesesseseseesenenenees 19
1.2, RESEARCH QUESTIONSviteivietieeteeesteststeeestststesssaesassssesesseasssesesessestesesesssesstessseeseatasesesssasstessseesessesesenssasstestseessstesesestereanas 19
1.3, DELIMITATIONS AND FOUNDATIONvivviutetststetetesssseseststessssss st st tssebess s s sesesbassssssssstssebesess s st stababebess et st sbebebess s se st sesbabssnannas 20
T, CONTRIBUTIONSteteeeeeeeeeeeeteeeeee s e seseeeseseseeeeeeeesseseseaeeesesesassessesesessseeseseseesseseseseseseseneeeseseseneesessesasesnseseseenesesseseneesesnenanaes 20
IR T 11T TodY o TR 20
1B, THESIS OUTLINE ... e ettt e e et et ee e eeeeeee e eeseeeeeees s e eseesseneseee e eeseseseesseseseseseseneneeeeeseneseeseeseseseenseseneennessesenneseeneneneens 20
1.7, DOMAINS AND PERSPECTIVESeeeeeeeeteteeeeeeeeeeeeee et seseeeeeseseseesesseseseesessesesessessesesesssesesensesesseseseesessesasesasssesenanessesesneseenenenees 21
(IR T B =11 0 N TR 23
2. CONTEXT OF SCARCITY: NEEDS AND RESOURGCEScococimmmnssnes 29
2.1, RESOURCE SCARCITY ...ttt eteesestetetee et st s tste e ss st st seststessss et st st et esese s st seseesesses et et st et et esess e st st esetesses b et st et esese s sesestesasssnananas 31
2.2, COMPLEXITY ettt et et ee e e e et e e e e ee e et eseseeeee e e et eeeeeeeeees e et eseseeeeeee e et eeseesee s s eseseseseneeaeesesenesasesenenesesesesenaeneerereneseeennenaens 36
2.3, PERFORMANGE ...ttt ettt et et ee et eeeee e e et seeeeeeeees e et esesaeeee e e eeeeseesee s s eseseseseneeaeseeeesesaeesenesanesaseneneeneesesenesenenenanaens 37
2.4 MULTIDISCIPLINARITY .o ttitetetie et eeses e tete et st st etesess s st e s tasesses s ststesesese e seseseeb et seses et st et et esese e st seesesessse s et st et esese s sesesessatesnananas 38
2 A GILITY ettt ettt ettt et et e et ettt et et et e e et eteeeeete e et et et et et ea e et et et eeeaeeeeren et eserereneen e et renneeeenenerann 39
2.8. INTERCONNECTION AND NETWORKScoiuiiiiiiteteteis it st ses et sesest st ststesese st sesessesses s et stsbesesass st st sessesessss s et st et esesesesesesessassssananas 39
2.7 DESIGN HERITAGE. ...t eeeeeeee et eee e e et eeee et eee e e e et eeeeeeee e s e et eseseseee e e et seseesees s s eseseseneenesseeesesaeeseneseseseseseneneesesenesenennenaens 39
2.8, INNOVATION ..ottt ettt et e e et et et eeeee e e et eeeeeee e e s e et eeeseeeseen e et eeeeeeee s s et eseseseneeaeeeeeeneeaeenesesesesesesenaeneeresenesaaennanaens 40
2.9. CULTURAL DISRUPTION: METHODS AND PRODUCTScvivtieieiist sttt te ettt s ettt ess s st sse s st st s st et ss s e sesesnasssnananas 40
2.10. CONCLUSION ...ttt ettt ettt eee et e te et st st e et saese et ese st ess et stessseesessesssesseasstesssaeseeteseseee s et eseseseeeessessseese et ese e seeesstessseesnesesesenennaras 42
3. DESIGN, SYSTEMS, AND EVOLUTION: LITERATURE REVIEW ... ssssssssssssssssssssssssssssens 44
3.1, DESIGN ENGINEERING PARADIGMS........ceeeeeeeeeeeeeeeee et eeeeeee e seeeteeseeeeee e s et seseeseesesesassseseneeaesessesesasesesenessssseseneenessesenesasennenanns 45
3.2. SYSTEMS ENGINEERING PARADIGMSeeueeieieeeeeees et seseseeeseseeesstseseeseesss et seseseessessesstssessssss st sesesesssesesesssssssenesnssssseseseassenananas 68
3.3. EVOLUTIONARY PRINCIPLES: NATURE, ENGINEERING, AND DESIGNc.cucuiuiiieeeeeetceieeeees e es st en et en e 100
3.4. OVERALL LITERATURE REVIEW GAPS AND CONCLUSIONScvcvvvieieieieiestetsesesese st s ssssesets s st st ssssassssssssssassssssssssssssssssasasanas 122
4. EVOLUTIVE SYSTEM ARCHITECTUREScccoiiiiciiiimini s ss s s sssssssss s sssssssssssssssssassssssssssssanns 124
4.1. EVOLUTIVE APPROACH: INSPIRED BY EVOLUTION AND DRIVEN BY ADAPTABILITYvvvvierireeesceceeee ettt ssesssess s seesssesnns 124
4.2. EVOLUTIVE SYSTEM KEYSTONESoiuiitiieeeeeeetee st ses st eesessesseststeeess s st sesesesesess et stssesssess s sssesesesssennesssssesesesn s ssseseseesnenananas 132
4.3, EVOLUTIVE DESIGN DRIVERS ...ttt ettt ettt es sttt e s s s et st st e e et e et et se s e et ee s s s et ss st et eseen s seseeeeenennananns 140
4.4, INTERRELATIONSHIPS AMONG DESIGN DRIVERS.......cocuiuiiiiiiieiececeete ettt stsssses sttt ssse st st sssssse bttt st essssssssssssatassssssnsns 146
4.5, COMPLEXITY AS INTEGRATION.vvieieeetetseeeeeees et et ses et eeses s et s tsteteeees s sesesesteeses s et stssesesese s ssseseseessenanesssssesesesn s seseseseeenenananas 147
T 070 o3 U] (o TR 148

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

5. EVOLUTIVE SYSTEM ARCHITECTURE DESIGN METHODOLOGYceconuemmrnmmmsmmsesssensessssssssssessssssesssssssssssssesasens 150
5.1, APPLIED EVOLUTIONARY PROCESScucuueuurereereereereereeeeseeseesesssesessessassassassassssassssssssssssssessssssssessessesssssessessssassssassasssens 150
5.2, DESIGN PROCESS APPROACH.cuuteuteuieueeseesteeesesseasessessessessebssssess sttt bbb 152
5.3, ARR DEVELOPMENT AREASotttuetuteeseteeeesetsetessetsetessessstessessesessebsss s bt es bbbt s bt b bbb aeb bbb s bbbttt 154
5.4, DESIGN OBUECTIVESooutuiuuerceesesneeeeseseeessessessessessessessessesssesessessessessssessassassassssssesssssessesssssessessessessessessassassssasssssens 165
5.5, DESIGN PRINCIPLESvuotuieitieeiceseiebseisesse bbb 171
5.6. EVOLUTIVE DESIGN HELIX IMODEL.......covuiuuieeseiieeseteeeesetseiee ettt bbbt 175
5.7. EVOLUTIVE SYSTEM DESIGN WORKFLOW IN DETAIL ...cucvuvrvueseiaeseiseeseisssssssssssssseseesss st 190
5.8. DYNAMIC QUESTIONING NETWORKS (EADQN), EXPLORATION AND FOUNDATION.courerrerrereereereereeseeseiseesesseesessessssssssnseneens 192
5.9, MATURATION GAPS (EAMGS)ovuiiiiseiriieeseisetee ettt bbbt 203
5.10. DESIGN STRATEGY AND SEED GEOMETRIES (EASGS)......cucvuieriuiesiieeiisntsssnssssisseseissssesesss st ssessssssssssssens 206
5.11. EVOLUTIVE SEED MODELS (EASIMS) ... ceururrereeeereereereeeeseeseeseessesesssesessassassesssssasssssssssssssssessesssssessessesssssessessassassssassassnens 209
5.12. ARCHITECTURE MATURITY LEVELS (EAML)euceuitriereirtireiseteeseiee ettt 212
5.13. REFINING DESIGN, FAST SYNCHRONOUS DESIGN CYCLES........cuvuerieereenesesnesssnsesessessssseessssesssssessessesssssessessessessssessasssens 215
5.14. METRICS AND COMPARISON........cuuvuueeueeseereeseeseeseesesseaseesessessessessessesses st essssess b ass b b s bbb bbb s bbbt 216
515, CONCLUSIONvutrtseseeseseisese s s ees bbb bbbt 220
6. STUDY CASE: EVOLUTIVE MICRO-HABITAT ARCHITECTUREccooummmmmrmrmsssssssssssssssssessesssssssssssssssssssssens 223
6.1. THE ARCHITECTURE FIELD OF MICRO-HABITATScctuuttuiureimeeseisieseiseeseisssssssssssstsseseisesseises sttt 223
S o 1 V=SSOSO 224
8.3, STUDY CASE APPROACHuvuuetuieueeuettestesessetseesesessesses s b sse s s s bbb bbb 226
8.4, APPROACH AND SET-UPoiuiiiiiiittiitse et seesesse ittt 227
6.5. EVOLUTIVE ARCHITECTURE DYNAMIC QUESTION NETWORK (1D, EADQINS) ..ottt 231
6.6. EVOLUTIVE ARCHITECTURE MATURITY GAPS (EAMGS).......cvuiurimieiiieiiisesesnssssissiseisesse st 234
6.7. EVOLUTIVE ARCHITECTURE SEED GEOMETRIES (EASGS)euvriuerirerceneseenssnssnsesessssssssssssssssssssessessesssssessessssessssessasssens 235
6.8. EVOLUTIVE ARCHITECTURE SYSTEM MODELS (EASMS)cuvuiriuiriieiiisessessssssiseeseesesseises ettt 236
8.9, NEXT STEPS AND PHASESocuuiuiuuiteeneeeieereeseeesse s sesses st s bbb bbb bbb 237
B.10. CONCLUSIONeuiereeereesceeseeeesesetseees et seee s ee bbb bbb bbb b e bbbt 237
7. CONCLUSION: EVOLUTIVE ARCHITECTURE SYSTEM DESIGN PATHScoconirereereeeenseeseesseseessessesseeseseens 240
8 PR o1 PO STTOO 240
7.2, APPLICATIONS AND LIMITATIONS.cooceueeuueenrseeseeseeseeeeeseessesseessesssessesssessesesess s ss st es sttt aes st e ssestessessessssneses 243
7.3, CONCLUSION ..euvuteueretsetseeseesetseeseesee s sse e bbbt s8££ bbb 243
7.4, RESEARCH CONTRIBUTIONSeuvuieernieesmeeesnesneesesessessessessesseesessessessessessessssessssassassssssssssssessesssssesssssesssssessassassessassssnes 245
7.5, FUTURE WORK ..ottt bbb bbb 246
8. RESUME EN FRANGAISooooriereusieritsssssssssssssssssssssssessessessesse s s s st s bbb ssessssss e 247
B.1. INTRODUCTION (CHAPITRE 1) ...cuuvuueuueeueeueeneeneeneeseeseeseeseesessessessessessessessessessassessassasssessesssssessessessessessessessnssessessssssssssassnsens 250
8.2. CONTEXTE DE PENURIE : BESOINS ET RESSOURCES (CHAPITRE 2)......cucuuieerueeeeneeeeneereeneesessssessessessessesssssessessssessassessasssens 251
8.3. CONCEPTION, SYSTEMES ET EVOLUTION : REVUE DE LA LITTERATURE (CHAPITRE 3)....cvvuiurereirereierreeiee e niesesiessessssssseeens 253
8.4. ARCHITECTURES DE SYSTEMES EVOLUTIFS (CHAPITRE 4).......euuiuerirereresesassnsenseseeessessesssssessessessessessessessessessesssssssssens 255
8.5. METHODOLOGIE DE CONCEPTION D'UNE ARCHITECTURE DE SYSTEME EVOLUTIVE (CHAPITRE 5)ovvuvrrieriierisinseneeseesneeens 267
8.6. CASD'ETUDE : ARCHITECTURE EVOLUTIVE DE MICRO-HABITAT (CHAPITRE 6).....c.vuurereereeeereeeereeeeeiseeeiseesessessssesssssssssseeens 273
8.7. CONCLUSION : PISTES DE CONCEPTION DE SYSTEMES D'ARCHITECTURE EVOLUTIVE (CHAPITRE 7) w..ovvuvrricrneenenreenenseeeneenns 276
REFERENCEScoituiuirntsissssissssisssssessssssssssssessse s sss s s s SRR s 283
PUBLISHED PAPERScoitiiininsississisessisssssssssssssssssssssssss st s s e 313

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

OUTREACH AND MEDIA PUBLICATIONScoviiiiminssssssssssssssssss s sssssss s sssssssssss s sssssssssssss s 314
LEGAL NOTES, COPYRIGHT, AND RESTRICTION DISCLOSUREcooniniiisssissssssssssssssssssssssssssssssssssssssns 316
WORK AT UPL .t bbb bbb bbbt 316
L0702 TR 316

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

List of figures
Figure 1. Three-dimensional representation of evolutive design coordinates (adaptability, regeneration, and reactivity).............. 19
Figure 2. Poulnaborne DOIMEN, IFIANGceuririrrieeerieerte ettt s st st s et ns s neas
Figure 3. Construction details and architecture vision on a sustainable building. (Polit-Casillas, 2008)
Figure 4. Input-process-output model of a system (Badiru, 2019).couerrinnire e
Figure 5. Evolution in the type of information being transmitted by communication devices from 19t century to the 2020s. 29
Figure 6. Performance efficiency of system architectures upon the needs versus resources balance.cccooevvvivereccninnnas 30
Figure 7. Stressors displace the architecture efficiency on the need-vs-resource graph.ccoocvennennenneneneesene 31
Figure 8. Global warming forecast. IPCC Special Report on Global Warming (Masson-Delmotte.V., et al., IPCC, 2019)........... 32
Figure 9. Population by age bracket (UN Projections), After Our World in Data (Roser, 2013).ccvvveneneneneneneneinene 32
Figure 10. Cost evolution during project phases. (Kihlander, 2009)..........ccocvinnnnee e 33
Figure 11. Global electricity generation values and use by sector (EIA, 2019).ccoovvvrniniinnenecs e 35
Figure 12. GHG Emissions Baseline 2010-2050 by gasses and region. Source OECD (Marchal et al., 2012).cccocovvverveninnnn. 35
Figure 13. System architecture efficiency based on complexity level versus resource utilization.ccccoueeveceievceiicninna, 36
Figure 14. Heritage and incremental improvements (A), versus performance leaps (B) enabled by design and methodology. ... 37
Figure 15. Everest Rogers’ diffusion of innovation per Paetz, 2014. ..o 40
Figure 16. Serial versus network design methodologies With tIMEccciiiieicci e 41
Figure 17. Concept by Autodesk — JPL using Al-driven generative design tools to optimize Structuresccoocveveneneninn. 42
Figure 18. Product development phases after Dieter and Schmidt, 2012.cccoocuiiciiiniiieecer e 45
Figure 19. Ancient Greek house drawing DY VITTUVIUSc.curieiienieiineese e 47
Figure 20.The Modulor. Le COorbUSIEr 1943. ... 47
Figure 21. Asimow design process (Dieter and Schmidt, 2012).c.cccverinnnninenes e 48
Figure 22. Systematic System Design (Pahl and Beith 2007). ..o e 48
Figure 23. Design environment (UlIman et al., 1990) ...t
Figure 24. Basic design approach. (EVans, 1959) ...ttt
Figure 25. Design thinking methodology (Plattner and Meinel, 2009) ..o e
Figure 26. Brainstorming Process after OSborn. (GWaUr, 2016)..........coeuriirrieireiene e ea st
Figure 27. Example of network of problems. (Fiorineschi et al., 2015)
Figure 29. Representation of C-K process, and creation of ‘Crazy’ CONCEPIS.ceureirriiieiriirree e 52
Figure 29. Representation of C-K process, and creation 0f ‘Crazy’ CONCEPIS.ccvevreirieiniinienereese e 52
Figure 30. DRM framework after Blessing and Chakrabarti, 2000.coir et 52
Figure 31. Gero’s FBS framework (Gero and KannengieSSer, 2014). ..o e 53
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36. C&C2-A approach with connectors, working surface pairs (WS), and channel support structures (CSS)cco...... 56
Figure 37. Example of a generative design applied to structural optimization design.coceveviennnneinenee e 56
Figure 38. SKetching 0N @ NOLEDOOKcuieceecee bbbt 57
Figure 39. Technical drawing DY NANG.c.oo i 58
Figure 40. Generic coding tools broadly USEd CUMTENEIY...........coi et 59
Figure 41. Example of a mechanical assembly redesigned using generative design tools (Autodesk, 2020)..........cccocoeurrerrerenceee 59
Figure 42. Physical to virtual process and back (Jones et al., 2020).cocrrinirinnninnne e 60
Figure 44. Examples of rapid prototyping tOOIS. ... ettt st 60
Figure 44. Rapid prototyping workflow (Kamrani €t al., 2016).ccereuririririeienienere e 60
Figure 45. Color scale addressing time, detail, and structure level of a design method............cccooveriirncsscc e 61
Figure 46. Type of design processes and methodologies within the engineering design literature review.ccccocooevvecnnenee 61

10

https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079458
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079459
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079460
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079461
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079462
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079463
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079464
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079465
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079466
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079467
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079468
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079469
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079470
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079471
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079472
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079473
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079474
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079475
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079476
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079477
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079478
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079479
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079480
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079481
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079482
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079483
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079484
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079485
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079486
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079487
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079488
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079489
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079490
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079491
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079492
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079493
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079494
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079495
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079496
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079497
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079498
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079499
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079500
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079501
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079502
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079503

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Figure 47. Hierarchy of complex systems after Kossiakoff et al. 2020,ccccovierriicriniiiesice e 69
Figure 48. Conceptualization of NASA project life-cycle process and phases (NASA SE Handbook, 2007)c.cccovereineininnne 71
Figure 49. NASA system engineering design process (NASA SE Handbook, 2007).ccevveerieenieeniess e snnnas 72
Figure 50. COSYSMO standard phases (after Badiru, 2019).coerrnnieneene e 73
Figure 51. CMMI maturity levels (Godfrey, 2008).coerieririenieieine e 73
Figure 52. Right. Acquisition management system of DoD, after Kossiakoff (Kossiakoff et al., 2020; Lapham et al., 2014). 74
Figure 53. Functional Flow Block Diagram, after Manske (Defense Acquisition University, 2005; Manske, 2008).cccccveve.. 75
Figure 54. Historical top-down systems engineering (TTDSE) process (Buede, 2009)..........ccccoeeviieernicenisrssneeessesessssennnnns 75
Figure 55. Incremental and iterative development (IID) derived and based on Forsberg et al. (2005) on (INCOSE, 2015). 76
Figure 56. Systems engineering V-Model (Buede, 2009).ciiuieiiniirieienie e 76
Figure 57. Spiral systems engineering MOdel (LiU 2015)........cceirimininininieiesse ettt 77
Figure 58. Waterfall systems engineering model (Buede, 2009). ..o 77
Figure 59. House of Quality or HOQ (LIt 2005)........ccuuiuierierieiereirieneiseieiseiseee s ssssssse st sses st 78
Figure 60. SIMILAR networked process, after Bahil et al. (2016).ccvvenriinriecre e 78
Figure 61. DEJI systems engineering model (Badirl, 2015).c.ccvieiiiininininieieniessisse et 79
Figure 62. Hybrid SE lifecycle per Douglas (Douglass, 2016).cccverieiiinireineinieieinseississe st ssssesss s sssssssessssssenns 79
Figure 63. Integrated product development (IDP), after INCOSE (2015).ccceuriurireiniinieneine e 80
Figure 64. Example of a MBSE diagram (Long and SCOtt, 2011).c.vrieiinieiieniesennese ettt 81
Figure 65. Function block. After FAA (Mdd, 2008)...........ccerimiirennieeise et 82
Figure 66. Block diagram, after Karayanakis (1995)........c..cuurieiiiinieiieinieinesseise ettt snsssnns 82
Figure 67. Process flow diagram, after ONare (2015).........cvirieiiiinieiinesese et 82
Figure 68. Gantt chart, after MalYSZKZ (2011)......c..cuvieerercreere e 82
Figure 69. N2 Diagram, after BatSON (1986).cvueuiirieiieiriieiieisiie ettt bbbt 83
Figure 70. PERT diagram, after KEMP (2015). ...t 83
Figure 71. Use case diagram, after Satzinger (2008).ceeuririreirieirreieireneie et 83
Figure 72. Sequence diagram, after Windle (2003). ..ottt s 83
Figure 73. DSM Example, after Madani €t al. (2014)..........corrrecrece e 84
Figure 74. Pugh matrix example, after Miller €t al. (2011). ... 84
Figure 75. Requirement verification and traceability matrix (RVTM), after Wasson (2005).ccooeveriennnnennenenenenenenns 84
Figure 76. House of quality, after Cask (2006).eueeuriruririeirireieirrteis ettt e 85
Figure 77. RiSK @SSESSMENT MALIIXcuveereecietiieie ettt b bbbt 85
Figure 78. IDEF Methods, after Mayer (2009).cciureririeirireeisee ettt 86
Figure 79. UML class diagram, after Borky and Bradley (2018).cooeririereere et 86
Figure 80. SysML diagrams, after GFAB (2010).........c.iiurieiririeiieiree sttt 87
Figure 81 DRAKON-C example, after IVannikov (1995).ccceirieiiinienieisense ettt 87
Figure 82. RUP lterative development, after DUtchguilder (2007). ..ot 88
Figure 83. FEAF Consolidated reference model, after ClO (2003).........ceuriuririninienreene e 88
Figure 84. Modeling, simulation, and systems engineering within DoDAF, after Mittal (2018).ccceveeenernecerees e 89
Figure 85. Simplification Zachman Enterprise Framework, after Zuech (2002)..........ccccooenineninienenesere s 89
Figure 86. OOSEM Activities and artifacts, after Stefan (2008).............ccouerriiiice e 90
Figure 87. Vitech MBSE domains and activities, after Stefan (2008). ..o e 90
Figure 88. Example of simple OPD and OPL modeling examples in OPM, after Stefan (2008).ccooevevnneneneneneninne 91
Figure 89. PLM use across the system and product lifecycle, after Tyulin and Chursin (2020).cccoeeerirrnirnniernecneeae 92
Figure 90. Natural selection applied to antibiotic resistance, after Wykis (2007)...........ccoeurereiinineinineineeeneeeseeeeeseieenes 101
Figure 91. Hox genes across species after Hueber et al. (2010).......c.oreeriirierrcceeeerse e 102
Figure 92. Speciation mechanisms after Karonen (2008)...........couueureurierrieinienieinieeiseeeet sttt sessssennes 102
Figure 93. Co-evolution paradigm after Tolio €t al. (2010).cvevieriiirieereeeree et 103
Figure 94. Emergence of self-organization after SChWeitzer (1997).corrrccr e 104

https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079504
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079505
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079506
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079507
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079508
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079509
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079510
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079511
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079512
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079513
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079514
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079515
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079516
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079517
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079518
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079519
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079520
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079521
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079522
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079523
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079524
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079525
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079526
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079527
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079528
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079529
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079530
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079531
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079532
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079533
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079534
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079535
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079536
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079537
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079538
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079539
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079540
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079541
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079542
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079543
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079544
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079545
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079546
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079547
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079548
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079549
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079550
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079551

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Figure 95. Time-scale scaling of biological phenomena after Pianka (2011).ccoviieieiccir e 104
Figure 96. Graphics presentation of three networks models after Kepes (2007)........coceeuriereenieeininieneeeseieeeeieeenseieenes
Figure 97. Modeling in biosciences after Marin-Sanguing €t al. (2019)........ccceiieeieceiessecs e

Figure 101. Cultural algorithms components after Reynolds (2018)...........cveieririnirreeeee et
Figure 102. General architecture of evolutionary algorithms after Bentley (1999)

Figure 103. Flowchart of the GP approach after Koza (1994). ..ottt 109
Figure 104. Differences between adaptive and traditional models, after 2013ooerriernerr e 110
Figure 105. Scrum framework process after MItchell (2015).cviieiirireseeseee sttt 110
Figure 108a. Evo. optimization of a table (Bentley, 1999). ... 112

Figure 108c. Generative evolutive design of @ tADIE...........cccceiieiiiiii e
Figure 108b. Conceptual evo. design (Bentley, 1999)
Figure 109. Different agents after SHEN (2019). ..ottt 113
Figure 110. Holon after GraRler, €1 al. (2017).....c.cieerieieirieieiseieseissise ettt eb st

Figure 111. ST5 antenna designed using GA techniques (NASA, 2006 - public domain)
Figure 112. Evolutive tetrahedron of SYStEM deSIgN.cccuiiiiciiiciiiece et b e
Figure 113. Adaptability within the evolutive tetrahedron of system architecture design............coocvevieeneneeenes

Figure 114. Firefighter protective jacket has a complex design architecure with multiple variations.ccccoeecvevivcsiecninne, 132
Figure 115. Visual representation of an architecture definition based on an evolutive network of variables.ccccceeeunnnnne. 133
Figure 116. Example of static variable framewOrK.ccri bbbt 134
Figure 117. Reactivity within the evolutive tetrahedron of system architecture design...........cccccovvieivicieiniieesice e, 135
Figure 118. Millions of lines of code across different systems - multiple sources (Desjardins and McCandless, 2017) 136

Figure 119. Evolutive reactivity, system design, and system interaction concurrent flow...........cccooeeriiniinciencsnccnes
Figure 120. Regeneration within the evolutive tetrahedron of system architecture design

Figure 121. Full evolutive resources lifecycle within the evolutive systems design Process.cceveeerreneineeeereeeneenenenes 138
Figure 122. Resource regeneration during the design cycle considering both system context and system design. 139
Figure 123. System design drivers as faces within the evolutive tetrahedron. ... 140
Figure 124. Relationship across evolutive design drivers from a geometry, behavior, and substance standpoint. 146
Figure 125. Evolutive three dimensional reference framework with adaptability, reactivity, and regeneration as coordinates. ... 147
Figure 126. Species characteristics. Engraving in ‘Voyage of the Beagle (Darwin, 1845). ..o 150
Figure 127. Evolutive design tetrahedron defining key methodology phases such as design, implementation, and operations.. 152
Figure 128. eSARD evolutive design and systems engineering approach SChEME.cvueueurinieinenreineeeineeeisees e 153
Figure 129. Examples of eSARD approach applied to an add-on component for an existing car design.cccocveeevnevnenenas 154
Figure 130. ESARD NEWOIKEA PIOCESS.uvereerirrirereietrineteireeeetseseie sttt seseb e a b ses bbb b e e b b e s e bbb ees b s ese bbb b es e 154
Figure 131.System architecture geometrical seed, presented as a captured instance within an evolutive design process......... 155
Figure 132. Operative optimization design node within the evolutive design methodology.coceerrrniernicerecrccees 157
Figure 133. Implementation node within the evolutive system design methodology.cccveerriierniienc e 159
Figure 134. eSARD evolutive design reference framework addressing balances, process objectives, and design principles..... 165
Figure 135. Assessment of design solutions and paths within the eSARD evolutive design reference framework..................... 166
Figure 136. Interaction (reactivity) vs. resource optimization (regeneration) within the geometry plane (design).cccoccvueenee 167
Figure 137. Resource optimization (regeneration) vs. functions (adaptiblity) within the behavior plane (performance)............... 168
Figure 138. Interaction (reactitivy) vs. functions (adaptiblity) within the substance plane (resource SCience)........c.cocovvvrrevreenenee 169
Figure 139. Relative cost and evaluation of system capabilities among different types of eSARD strategies.cccccoeovverneees 170
Figure 140. Multifunctional 3D printed fabric developed by the author, after JPLL NASA / Caltech (2017). ...covvvveervivncnireininnnes 171
Figure 141. Multidisciplanry and concurrent eSARD cycles versus traditional parallel design approaches.cccocvvereerinenes 172
Figure 142. Consecutive design cycle within an eSARD process addressing multiple networked solutions.c.ccccverneeee 173

12

https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079552
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079553
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079554
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079555
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079556
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079557
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079558
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079559
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079560
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079561
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079562
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079563
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079564
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079565
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079566
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079567
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079568
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079569
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079570
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079571
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079572
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079573
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079574
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079575
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079576
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079577
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079578
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079579
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079580
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079581
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079582
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079583
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079584
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079585
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079586
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079587
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079588
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079589
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079590
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079591
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079592
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079593
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079594
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079595
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079596
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079597
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079598
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079599

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Figure 143. Resource utilization lifecycle within an eSARD development for an instance design (A1).ccoocevveieviescecniinnns 174
Figure 144. Evolutive system design networked process, presenting all three ARR activity nodes addressing design, operations,

AN IMPIEMENTALION. ... et b bbb e e e s s e bbb bbb s e ettt e s e s s s e e s e Rt enetenas 175
Figure 145. eSARD helix model of design species sharing a common design path within an evolutive framework. 176
Figure 146. Elements of the eSARD_he scheme within the 2D evolutive SPIral............ccoeveininenieereeeeeeeeeenes 177
Figure 147. System design sector within the eSARD helix diagram based on the ARR evolutive tetrahedron.............cccccoeuennne. 179

Figure 148. Foundation and @ADQINS fOr SFR ...ttt bbb
Figure 149. Milestones and tools from SRF to PDR (eSARD)
Figure 150. Milestones and tools from PDR to CDR (eSARD)
Figure 151. Milestones and tools for multiple CDR (ESARD)ccuiuiiriiriirereiee ettt

Figure 152. Milestones and tools from CDR {0 TRR (ESARD).cvuieriiririirieiseinieissesstssies sttt sses st sssssessessssenaas 182
Figure 153. Implementation sector within the eSARD helix diagram based on ARR tetrahedron.ccooevennnenienininnns 183
Figure 154. eSARD incremental versions and heritage iNPULS.ccccvceviiieiiceecee et 184
Figure 155. eSARD verification loop (implementation SECIOT).cvuiriirirere e 184
Figure 156. eSARD external input [00p (implementation SECIOM).ccuviurieiririreireeeisee et 185
Figure 157. Operative sector within the eSARD helix diagram based on the ARR tetrahedron.ccccovvveeiviceniceiecninna, 187
Figure 158. Multiple verification loops within the eSARD_he representation of an evolutive system design activity. 188
Figure 159. Summary of key ARR system design milestones in the €SARD ProCESS.........ccccveviuriireriiiresieie s 188
Figure 160. Workflow within the eSARD 3C framework including disicipline inputs, workforce activity, and eSAR paths. 190

Figure 161. 40 principles of the TRIZ method. (FotoSceptyk, CCA 3.0, 2016).......ccccerirrmurinrririneinseieiseeeessieseesssesessssennes
Figure 162. EVOIUtiVE MAtUrAtion SPACE..........cceueueieieiiisisisiceic ettt s bbb bbb n s
Figure 163. Maturation space as a multisource information and design framework
Figure 164. eADQNs workflow within the €SARD evolutive design NOTE.cuvverriurieireiriinieiseee ettt

Figure 165. Example of evolution of figures of merit Over a design ProCESS.cvevririeiriireeinieeree et 199
Figure 166. Example of eADQN created for the discussion regarding a generic electromechanical actuatorccccocovveenee 201
Figure 167. Examples of concept definition elements used within a fast evolutive sketch (sketch by Raul Polit Casillas, 2009). 207
Figure 168. Example of an evolutive sketch used in the design of a fictional and generic small electronic device...................... 207
Figure 169. Example of an evolutive architecture seed geometry (€ASGs) for a personal habitat (© 2020 Raul Polit Casillas). 208
Figure 170. Simplified version of a generic evolutive geometry, behavior, and substance equipmment list (€GBSEL). 212
Figure 171. TRL 1eVels @fter NASA (2014). ..ottt 213
Figure 172. AMG levels for system architecture and SUDSYSIEMS.c.ceiirniercr e 214

Figure 173. eSARD metrics parameters and relative comparison with other approaches. The higher the number, the better....219
Figure 174. Example of micro habitat or microarchitecture in the Netherlands (Reiderwolder Polderdijk, 9688 Drieborg). 224
Figure 175. [Left, top] El tempietto in San Pietro in Montorio by Bramante (Markus, 2008) [Top, center] Small portable aluminum
trailer (Meyers, D.) [Right, top] Micro-architecture habitat for warm weather conditions (Samoh, A.) [Left, bottom] Small portable

tent for hot climates (Hendry, P.) [Right, bottom] Technical outpost in the mountains (Nir, A.).......ocerierncrineeneereeene 225
Figure 176. Summary of objectives for the eSARD study case and initial figures of merit. © 2020 Raul Polit Casillas 227
Figure 177. General eSARD diagram showing an emphasis in the system design SECtor ... 229
Figure 178. Mind map scheme of some initial DOI questions, and GBS details............ccoeurrininininieneenceesceeseieenas 231
Figure 179. eSARD summary of eADQNs for the EPH development study Case.cccocvvenivicnicicneencceeecneies 233
Figure 180.Design paths based on eAMGs for a EPH deployment subsystem. © 2020 Raul Polit Casillas (patent pending)..... 235
Figure 181. Portion of the initial eGBSEL for the EPH design (first design CyCle). ..o 236
Figure 182. Evolutive design tetraN@arON. ...ttt ettt 241
Figure 183. Evolutive system design networked process (eSARD) addressing design, operations, and implementation 242

Figure 184. Evolutive reference framework for complex evolutive system architecures (eSAR) based upon ARR principles. 244
Figure 185. Représentation tridimensionnelle des coordonnées du design évolutif (adaptabilité, régénération et réactivité). 250
Figure 186. Evolution du type d'informations transmises par les dispositifs de communICationccoooerrrrvverisissrrrrreees 251
Figure 187. Adaptabilité dans le tétraédre évolutif de la conception de I'architecture du systéme. ... 256

https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079600
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079601
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079601
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079602
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079603
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079604
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079605
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079606
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079607
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079608
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079609
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079610
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079611
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079612
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079613
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079614
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079615
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079616
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079617
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079618
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079619
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079620
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079621
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079622
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079623
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079624
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079625
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079626
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079627
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079628
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079629
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079630
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079631
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079632
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079632
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079632
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079633
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079634
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079635
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079636
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079637
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079638
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079639
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079640
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079641
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079642
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079643
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079644

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Figure 188. Représentation visuelle de la définition d'une architecture basée sur un réseau évolutif de variables. 258
Figure 189. La réactivité dans le tétraédre évolutif de la conception de I'architecture du Systeme.ocoovevevvncnicncninns 259
Figure 190. Réactivité évolutive, conception de systémes et flux simultané d'interactions entre systémes..........ccccooeveveinnnnes 260
Figure 191. La régénération dans le tétraédre évolutif de la conception de I'architecture du Systéme.cccoevvrenierininnnes 262
Figure 192. Cycle de vie complet des ressources évolutives dans le cadre du processus de conceptionccoeverenennnes 263
Figure 193. Les moteurs de la conception du systéme comme faces du tétragdre Volutif.cccvvveeiviieesiciesicce e, 265
Figure 194. Tétraédre de conception évolutive définissant les phases clés de la méthodologie.cccocvvrenivriniincnins 268
Figure 195. Exemples de I'approche eSARD appliquée a un composant additionnel pour une conception de voiture existante. 269
Figure 196. Processus évolutif de conception de systemes en réseau, présentant les trois nceuds d'activité ARR. 271
Figure 197. Cadre de référence évolutif pour les architectures de systémes évolutifs complexes (eSAR)ccocoeveveereninnnes 279

14

https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079645
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079646
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079647
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079648
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079649
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079650
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079651
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079652
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079653
https://arqesscom-my.sharepoint.com/personal/raul_arqess_com/Documents/The%20Shop%20R%20-%20Personal/PhD/Final%20Submission/Final%20A/Polit-Casillas_Raul_2021_ED269_A.docx#_Toc76079654

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

List of tables

Table 1. Integrated perspectives and domains within evolutive architecture research............ccccevvvveccccicicsieee s 22
Table 2. ArchiteCture defINIHIONS.c.curcier ettt et ettt renet s
Table 3. DEfiNItIONS OF SYSIEM.cuiiieciicc bbb bbb bbb bbbt b b b en st s
Table 4. System ArchiteCture defiNItioncco ettt s
Table 5. System of Systems (SoS) definitions

Table 6. Systems engineering definitions across technical dOCUMENAtIoN.cccvvieiricieiice s 25
Table 7. Design engineering definitions across technical IErature ... 26
Table 8. Definitions, uses, dOMaiNS, aNd FEFEIENCES. ..ot s bbb naen 27
Table 9. Design engineering theories organized in categories by key characteristics and historical period.c.cccovvreriennnne 45
Table 10. Engineering design phases across multiple design thEOMES.veurrrriienrerrrees e sereees 46
Table 11. Design engineering toolS DY CAEGOMIES.ttt 57
Table 12. Design engineering theories and MEthOAOIOGIES.cuuerriurieriiirireiirree et 66
Table 13. Categories of systems engineering modeling tools, resources, and PractiCes.ccoovurririrrnmeriereneeresseesesenees 68
Table 14. This table presents relationships across engineering design and systems engineering lifecycle phases.c.c..... 71
Table 15. Systems engineering methods, theories, and T00IS.vvvrrriererr et enees 98
Table 16. Fields and scope of eVOIUtIONAry METNOAS.viuririiiriises e 100
Table 17. Evolutionary concepts, methods, and techniques across multiple fields. ... 119
Table 18. Summary of conclusions and gaps regarding evolutionary theories and methods

Table 19. Key foundational characteristics of VOlUtiONAry PrOCESSES. ... e 126
Table 20. Key foundational characteristics of an adaptive design approach. ... 128
Table 21. Correlations between general stressors, methodology gaps, evolutionary principles, etc...........covnrienenieseninnns 131
Table 22. eSARD system design development inputs, process, and OUIPULS. ..o 156
Table 23. eSARD operative optimization development inputs, process, and QUIPULS.ccccevereiriiiririicccceee e 159
Table 24. eSARD implementation and resource utilization optimization (SUDSEANCE).ccoceverierineririiereeree e 161

Table 25. Summary table regarding the comparison between traditional DE-SE techniques and DSE eSARD methodologies.. 164

Table 27. Summary of most relevant eSARD tools and models within the DOI system design SECtor.cccoeveniriereninnn. 191
Table 28. Some system-level types of requirements organized by discipline

Table 29. Identification, comparison, and ranking of system design gaps and eAMGs within and eSARD approach. 205
Table 30. Evolutive architecture maturity levels (eAMLs) considering system design, operations, and implementation aspects.214
Table 31. Evolutive fast synchronous design cycles objectives, tools, and processes within the eSARD methodology.............. 215
Table 32. Summary matrix of eSARD success and COMPAriSON MELHICS.cvruierirrerierieiriieeiree e
Table 33. Summary of micro habitats across history, uses, and DOI critical @SPECIS.ccvverrrieirrieere s 225
Table 34. eSARD evolutive 3C working environment set-up and CharacteristiCs. ..o 228
Table 35. Phases, tools, and connections within the eSARD design sector for the EPH study case

Table 36. Key requirements and parameters defining the Design DOI SeCtor actiVity.coceverieriinieierenneeseeene
Table 37. eADQNs and eAMGs identifcation for the EPH StUAY CASE.ciririirieirirene e

15

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Nomenclature

3DP Three-dimensional printing

AM Additive manufacturing

AML Algebraic Modeling Languages

ANSI American National Standards Institute
Al Artificial Intelligence

ABM Agent-based modeling
ARR Adaptability Reactivity & Regeneration

BIM Building Information Modeling

BPM Business Process Mapping

CAS Complex Adaptive System

CHS Complex Hardware-based Systems

CAD Computer Aided Design
CAM Computer Aided Manufacturing

CE Concurrent Engineering
CES Complex Engineered System
Cl Configuration Item

COSYSMO Constructive Systems Engineering Cost Model
CMMI Capability Maturity Model Integration

CML Concept Maturation Level

CSA Complex System Architecture

CCA Cross-Consistency Assessments
DAU Design-Artifact-User

DE Differential Evolution

DE Design Engineering

DIO Design Implementation & Operations
DSE Design System Engineering

eADQN Evolutive Architecture Dynamic Questioning Network
eAMG Evolutive Architecture Maturity Gaps

eAML Evolutive Architecture Maturity Level

eGBSEL Evolutive Geometry Behavior Substance Equipment List
eSAR Evolutive System Architecture

eSARD Evolutive System Architecture Design

eASG Evolutive Architecture Seed Geometry

eASM Evolutive Architecture Seed Model

EC Evolutionary Computation
ED Evolutionary Development
EO Evolutionary Optimization
EP Evolutionary Programming
EPH Evolutive Portable Habitat
EIS Enhanced Imaging System
ES Evolutionary Strategy

ESD Evolutive System Diagram
ESS Evolutive Seed Sketch
ESM Evolutionary System Model
ESE Evolutionary Systems Engineering
EVP Evolutionary Principle

16

Evolutive Architectures - PhD Thesis, Raul Polit Casillas

FEA Finite Element Analysis

FDD Feature-driven Development

FoS Family of Systems

FPDS Family of Point-Design Solution

GA Genetic Algorithms

GBS Geometry Behavior Substance

GE Grammatical Evolution

GHG Green House Gas

HD Hardware Design

HMS Holonic Manufacturing System

IBM International Business Machine

ICAS Intelligent Complex Adaptive Systems

ICSM Incremental Commitment Spiral Model.

ID Intelligent Design

IDP Integrated Product Development

IDPT Integrated Product Development Team

D Incremental and lterative Development

IMF International Monetary Fund

INCOSE International Council con Systems Engineering
IP2D2 Integrated product and process design and development
ISO International Organization for Standardization
JPL Jet Propulsion Laboratory

MA Memetic algorithm

MBSE Model-based system engineering
MPM The Munich Procedural Model
MIL-STD Military Standard

NASA National Aeronautics and Space Administration
NoP Network of Problems

OMG Object Management Group™

PDS Point-Design Solution

PIT Product Integration Team

PSO Particle Swarm Optimization

RFP Request for Proposal

RIBA Royal Institute of British Architects
SOA State-of-the-art

SoS System of Systems

SoSE System of Systems Engineering
SDLC System Development Life Cycle

SE System Engineering

SEDS System Engineering Detailed Schedule
SEFT System Engineering Competency Framework
SEIT System Engineering and Integration Team

SEMP System Engineering Management Plan
SEMS System Engineering Master Schedule

SIT Systematic Inventive Thinking
TRL Technology Readiness Level
TRIZ Teoriya Resheniya Izobretatelskikh Zadatch (“theory of the resolution of invention-related tasks")

WBS Work Breakdown Structure
17

Ch1 Introduction - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

EVOLUTIVE SYSTEMS ARCHITECURE
Introduction and contributions

CHAPTER 1

“Un voyage de mille lieues commence toujours par un premier pas’.

Lao-Tzu
} . a* " ":x)"‘x\ S
" ¥ 512 bl B | /4
| ¥ ;”' b }" ar /A
ﬂ N 7 Y
| Y & & !
< 3 J : i ‘ "
4 . : o _u‘, i — a
S : # "" | ‘ £ A
e ¢ ¢
W
75
o "l'
i
! i 4
it "2‘) IR &
4 v , e o) - - 3 ‘_,
- ¥ . 4 e r
™ ;)) 5 A
15 I\ \
i S | oA 5 £ !
> o
F 7 A 1 ,!
J . A3

Ch1 Introduction - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

1. Introduction

1.1. Motivation, Context, and Problem Statement

Nowadays the practice of multidisciplinary system design across technical fields is increasingly handling more
complexity due to a growing number of global stressors such as resource scarcity, crosspollination drivers, workforce
availability, and the influence of cultural and technical heritage, among many others.

This accelerating situation is especially relevant among hardware-based complex system architectures, since not
only they are becoming a blend of hardware, software, data, and user interaction, but they are also demanding a many more
new assets and capabilities in a world where the data-driven revolution is reaching our physical reality. Often these new
systems do not have much relevant heritage, yet they aim towards challenges demanding much higher performance levels.

The overarching goal of this thesis is to provide a foundational design methodology to enable these fast-changing
complex hardware-based systems (CHS). More specifically, the objective is to structure how to efficiently evolve from an [A]
unadaptable, passive, and resource depleting system solution, to a [B] highly adaptable, reactive, and regenerative system
architecture (Figure 1). This problem statement also implies the assessment of new contexts, practices, and system
characteristics as key elements towards elaborating a novel, adaptable, and resilient system design approach. Based upon
state-the-art techniques across multiple domains and inspired by nature, this system design research is also associated
towards operational, implementation, and optimization workflows required in a system development process like this.

1.2. Research Questions

Upon such complex context, this thesis is organized around several intertwined research questions:

1. What new characteristics and complementary design needs do these ultra-complex systems present within resource-
scarce environments?

2. What principles could enhance more traditional design and system engineering workflows to achieve faster, better,
and more efficiently such multidisciplinary complex systems?

3. How could a design method that considers previous questions be used to develop more efficiently complex systems
within such environment, when there is no direct heritage and ultra-system performance is a must?

Evolutj
M Ive
ore '”te'a‘:fion Heﬂctive

©generatjy
System ©

Reactivity

R More
930urces

Unadaptap)e -
Passive ~ 2
Depleting L.
System " e
Architeclure

Loss Interactio,
Figure 1. Three-dimensional representation of evolutive design coordinates (adaptability, regeneration, and reactivity).

19

Ch1 Introduction - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

1.2.1. General Research Approach

The associated research activity to tackle such questions is based on several key points such as:

o Athorough study of state-of-the-art techniques and gaps towards multidisciplinary design approaches.
o A comparative analysis complemented by an integrative approach, so it builds upon the gaps across techniques.
An applied research and practice over two decades designing, leading, and managing complex systems design.

1.3. Delimitations and foundation

While the nature of this thesis is to address complex systems in general, and evolutive system architectures
specifically as the following chapters elaborate, there are bounding conditions regarding scope, context, and applications:

Hardware-based systems are the main study subject, although they can be enhanced by software, data, etc.
System architectures range from top-level systems and assemblies to subsystems, components, and other assets.
Full cycle development is the objective of this approach tackling design, implementation, and system operations.
Systems and design engineering topics, workflows, and domains are studied and combined within this approach.

1.3.1. Literature Review Approach

Therefore, the strategy towards the selection of literature review topics includes the following areas.

¢ Design engineering techniques tackling geometry-driven design processes, from antiquity to today.
o Systems engineering workflows and methods handling the definition and development of large complex systems.
Evolutionary principles coming from both biology studies, as well as pioneering software-driven applications.

1.4. Contributions

Research contributions of this doctoral dissertation are presented in chapter 7. They could be summarized as:

o A thorough literature review and joint gap analysis among design engineering (DE), systems engineering (SE),
and evolutionary driven techniques.

¢ Anovel classification for a complex system architectures subset driven by adaptability, regeneration, and reactivity.

¢ Anew evolutive system design and development method tackling key aspects of such hardware-based systems.

1.5. Significance

The design of highly adaptable complex systems that can improve resource utilization and environmental interaction
is at the core of many technical and creative areas in today’s world. From shoe designs, to building improvements and data-
driven consumer products, smart hardware-based systems become more complex and all associated design workflows need
to cope with more complexity, and better performance at much faster speeds. In a world facing a growing scarcity of
resources, such evolutive approach presents a novel and adaptable foundation from both academic and practice standpoints.
It is a method based on disciplinary synergies that also integrates traditional and discrete DE/SE approaches.

1.6. Thesis outline

The layout of this doctoral dissertation follows the conducted research process through the following chapters.

Introduction: motivation, research questions, limitations, contributions, and significance.

Context: scarcity, complexity, performance, multidisciplinarity, agility, network, heritage, innovation, and culture.
Literature review: engineering design, systems engineering, evolutionary principles, gaps, and conclusions.
Evolutive system architectures (eSAR): approach, keystones, drivers, and interconnections.

Evolutive system architecture design method (eSARD): approach, characteristics, objectives, principles, helix
design model, workflow, eADQNs, eAMGs, eASGs, eASMs, eAMLs, as well as metrics and conclusions.

Study case: evolutive portable habitat and deployment subsystem.

7. Discussion, conclusion, and future steps.

o=

L4

20

Ch1 Introduction - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

1.7. Domains and Perspectives

In this research several interconnected domains and perspectives are addressed from a multidisciplinary approach.
These include both design engineering and systems engineering, as well as concepts coming from architecture, computer
science, and biological evolution studies. This multidisciplinary and multifaceted approach highlights the standpoint of the
global analysis in chapter 2, as well as the detailed literature review in chapter 3.

1.7.1. Design System Engineering

This thesis is developed within the intersection between design engineering (DE) and system engineering (SE), since
the goal is to address the full design of complex systems from a holistic perspective. This intersection is defined as design
system engineering or DSE (Faisander and Adcock, 2020) and it combines key aspects of both domains as follows:

o Engineering design (a.k.a. design engineering). This group of disciplines focusses on the conceptual,
organizational, and configuration description of a geometry-driven system in general, and hardware-based systems
in particular (Cross, 2008). This includes the exploration of the design space, as well as all required activities to
define, describe, and design multiple aspects of the system such as logic, idiosyncrasy, configuration, organization,
shape, volume, interfaces, mechanisms, assemblies, states, etc. Among some of the most relevant techniques, tools,
and workflows within this disciplinary domain are the following: hand sketching, technical drawing, three-dimensional
models, movement analysis, installation diagrams, flowcharts, CAD models, CAM schemes, etc.

o Systems engineering. Within this context, this domain of disciplines relates to the analytical definition, integration,
and management of complex hardware-based systems (Buede, 2009) with emphasis on non-geometrical aspects
throughout the system lifecycle. Among the many activities included in this category are the management of
requirements, system description, parametric studies, risk assessment, project coordination, project management,
process engineering, system optimization, project management, and many more (Badiru, 2019; Braha et al., 2006;
Haberfellner et al., 2019; INCOSE, 2015; Liu, 2015; Long and Scott, 2011).

Both areas and their associated techniques will be studied in detail in chapter 3, however the approach used in this
thesis integrates both sides from full system design, implementation, and operations standpoints. From a more detailed
perspective some application domains include complex electro-mechanical systems, complex machines, product designs,
process designs, robotic systems, cybernetic systems, architectural designs, and architectural buildings, among many more
highly complex hardware-based systems.

1.7.2. Architectural Multidisciplinary Mindset

While architectural design is certainly not the only application
domain of this research it provides an important mindset towards this
approach. Architecture is one of the oldest disciplines of humankind
(Benevolo, 1977). Starting with the first megalithic testimonies (Figure 2)
the design, technology, and construction of dwellings, houses, and other
representative buildings, has been the keystones of this field over
millennia (Moffett etal., 2004). The ancient Greek etymology of the word :
architect comes from dGpyirékrwy (arkhitékton, “master builder”), which —EESSSS
has its origins in Gpxd¢ (arkhés, “leader”) or &pyi- (archi-, “chief’), and
TéKTwWY (tékton, “builder, mason”) (Dejtiar, 2018; Retamosa, 2020). Thus,
architecture is the discipline of the ‘leading’ worker, so it could be
understood as the process of making a vision, which was often ’9“r92 Poulnabome Doimen, reland
expressed graphically through a drawing, to come true. That also implies the facilitation of the project by connecting people,
knowledge, resources, and technologies. Therefore, architecture since its beginning has been about creating synergies,
which are multidisciplinary in nature. Such is the power of that subtle concept, that even in today’s world of information
technology and advanced computing, the term architecture (architecting) is used to describe a meta-level organizational
approach and overarching design principles for any logical and digital activity beyond its physical origins (Maier, 2009).

21

Ch1 Introduction - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

In its more traditional form, the practice of architecture is about
managing both complexity (e.g., cultural needs) and scarcity forces
(e.g., gravity or materials), which has shaped the architecture
standpoint over centuries (Roth, 1994) beyond the action of building.

However, as a mindset, its practice also provides a unique
perspective leveraging and managing big-picture perspectives, while
understanding enough of the details involved in its implementation
(Figure 3, Polit-Casillas, 2008) so such vision could be buildable
(‘firmitas’), feasible (‘utilitas’), and desirable (‘venustas’) beyond its
heritage (Pollio, 2018). Hence, such mindset is at its best when
creating and facilitating synergetic connections, as well as guiding its
implementation. Such dual perspective is key towards this research.
The practice of architecture historically has been about dealing with
complexity and entropy, as its objective is to build human
environments that address technical and cultural requirements. Thus,
this discipline also presents a consequent mindset towards managing
both quantifiable and qualifiable parameters.

==

Figure 3. Construction details and architecture vision on a
sustainable building. (Polit-Casillas, 2008)

Therefore, from a domain standpoint this design, management, and implementation perspective not only includes
architectural constructions of any kind, but also complex hardware system assemblies requiring overarching facilitation.

1.7.3. Biological Natural Evolution

Finally, as section 3.3 will elaborate in detail, this thesis includes principles and perspectives coming from the domain
of natural evolution and biological studies. The study of species, and the development of organisms, among other topics
enabled over the years an understanding of multiple natural mechanism with application towards complex systems design.
Techniques such as genetic algorithms and evolutionary programming among many more, are examples of this approach.
As next chapters will elaborate in detail, such perspectives can influence new perspectives and they are an integrated part
of the evolutive approach in this thesis. From this standpoint, other associated and non-biological domains of application
include complex software design, project management, system optimization, and SE techniques, among many more.

1.7.4. Summary
Table 1 presents a summary of perspectives, application domains, and toolsets associated with this research.
Fields Key Perspective Toolsets Application Domains References
Systems Design Drawing, CAD, Electro-mechanical systems, (Cross, 2008)
. R . . schemes, BIM, complex machines, product (Pahl et al., 2007)
L3 0 A bz {2 Geometncgl De3|gn diagrams, CAD, designs, process designs, Ullman, 2009
w Assembly integration 9 9 9
) PLM, math, etc. robotic systems, cybernetics, etc. | (Curedale, 2013)
o .
Systems design . .
°©
= Systems parametrics géac%ﬁ'::{shsl;so‘ dels Complex systems, enterprises, Eg:gldrﬁ gg?g;
o Systems Engineering (SE) | Systems Integration math. co diﬁ " | SoS, complex machines, (Liu 20’1 5)
] Project management o 9. interfaces, requirements, etc. INéOSE 2015
9 Risk Assessment scripts, ete. (')
2
= Architecture design Drawings, diagrams, . (Dehlinger, 2009)
E Architecture Development | Project management models, renders, SBus'lt(:;r?gs’Visrttrllj;t:risté;osmgilvﬁf (Neufert & Neufert, 2000)
P (AD) | Integrations and Mfg. CAD, BIM, e¥1 ineer’in o y ’ (Lawson, 2014)
-E Visualizations documents, etc. 9 g, etc. (Roth, 1994)
S o)
S g?sl?é]rlr?:leiv?rl:g:s?ir; Models, diagrams, Biological studies, genetics, evo- | (Zeiger, 2009)
L Natural Evolution Studies C)c/)m uter sgience 9 schemes, evolutive devo studies, eco-evo-devo (Chen & Han, 2002)
Softv?are desian trees, genetics, studies, software development, (Bentley, 1999)
Hardware des?gn coding, efc. algorithm development, Al, etc. (Gros, 2015)

Table 1. Integrated perspectives and domains within evolutive architecture research.

22

Ch1 Introduction - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

1.8. Definitions

In the context of this research there are a few definitions requiring clarification since they bound the scope, application,
and domain of this dissertation. This is key since it is applicable to many industrial and technical sectors. The following
sections explore common definitions across literature, while highlighting which definition is used within this thesis.

1.8.1. Architecture

Table 3 summarizes multiple definitions of architecture across fields, categories, domains, and applications, among
the thousands of them available. Since the concept is well distributed only the most relevant domains are presented.

Id Source / Category Definition Domain References
Epistemologically architecture [1] techne, [2] mechanical art, [3] design, and [4] fine L
AD1 General art after Kristeller's studies. Historical | (Parcell, 2012)
“is both the process and the product of planning, designing, and constructing (Oxford University
buildings or other structures” Press, 2003)
“...The functional architecture of a system contains a hierarchical model of the

AD2 Construction AD

AD3 Fu:gt';:: ?,|a” functions performed by the system, the system’s components, and the system’s SE (Buede, 2009)
9 configuration items...”

Software architecture is the structure behind the creation of a system including SEJ

software elements, relationships, and their characteristics. (Clements, 2011)
AD4 Software “...Software architecture is the conceptual glue that holds every phase of the CSO 'T‘p“‘er (Carnergi Mellon, 2017)

. . » cience

project together for its many stakeholders...

AD5 Hardware It includes all physical components, relationships among them, and their SE/DE (Yadin, 2016)

characteristics regarding machines, devices, components, efc. Computers | (INCOSE, 2015)
Table 2. Architecture definitions.

Architecture is understood in this research as the overarching and organizational design principle of a complex
system and all its parts beyond ‘the inevitable art of the human activity framework’ (Roth, 1994) such as buildings, dwelling,
art pieces, etc. Therefore, this concept refers to the highest system level of a complex subsystem-based artifact (hardware
and software), including its representation and relationships among components [Def01].

1.8.2. System

There are also many definitions of system in the literature across domains and fields as Table 3 presents:

Id Source/Category Definition Domain References
“a regularly interacting or interdependent group of items forming a unified whole, such
as: [1] a group of interacting bodies under the influence of related forces, [2] an
assemblage of substances that is in or tends to equilibrium, [3] a group of body organs
that together perform one or more vital functions, [4] the body considered as a functional
unit” and a “group of devices or artificial objects or an organization forming a network
especially for distributing something or serving a common purpose”

“a collection of hardware, software, people, facilities, and procedures organized to
accomplish some common objectives.”

“A system is a construct or collection of different elements that together produce results
not obtainable by the elements alone. The elements, or parts, can include people,
S3 NASA hardware, software, facilities, policies, and documents; that is, all things required to
produce system-level results”. The value of the system is in the synergy beyond its parts
and the “big picture” perspective.

‘A system is represented as consisting of multiple parts, all working together for a
common purpose or goal. Systems can be small or large, simple, or complex. Small
devices can also be considered systems. Systems have inputs, processes, and
outputs.”

“A group of elements which are relevant (and not merely useful) for achieving a purpose,
S5 Winner which interact with each other, and which have a structure within predefined | Automotive | (Winner, 2013)
boundaries.”

“A system can be broadly defined as a set of integrated components that interact with
S6 Liu each other and depend upon each other, to achieve a complex function together. A
system can be decomposed into smaller subsystems or components and a system may
be one of the components for a larger system.”

S7 Wasson “System. An integrated set of interoperable elements, each with explicit specified and SA (Wasson, 2005)

(Merriam Webster,

S1 General 2020)

Al

S2 General SE (Buede, 2009)

SE

Aerospace (NASA, 2007)

S4 Badiru SE (Badiru, 2019)

SE (Liu, 2015)

23

Ch1 Introduction - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

bounded capabilities, working synergistically to perform value-added processing to
enable a User to satisfy mission-oriented operational needs in a prescribed operating
environment with a specified outcome and probability of success.”
ISO/IEC/IEEE “Systems [...] are man-made, created to provide products or services in defined
S8 15288 environments for the benefit of users and other stakeholders.” SE (INCOSE, 2015)
System is “[...] an integrated set of elements, subsystems, or assemblies that
s9 INCOSE gccompllsh a defined objective. _These e_Iements mplude prodg_cts (hardyvare, software, SE (INCOSE, 2015)
firmware), processes, people, information, techniques, facilities, services and other
support elements.”
Table 3. Definitions of system.
Thus, the modern notion of system presents the Controls (Constraints)
concept of a whole made of components that support a Controls constraln and directactivity

(e.g., plans, instructions, directives, authorities)

function. This conception of system involves an input-
process-output model (Badiru, 2019) that also considers
controls and enablers. Any system also presents the TS GUTPUTS

following characteristics (Buede, 2009; INCOSE, 2015): — PROCESS —

(Activity)

Hierarchical structure
Reliability as a whole
Interacting subsystems and components, with attributes that regulate the

behavior of the system through their multiple interrelations (Badiru, 2019).

Systems could be natural, man-made, static, dynamic, adaptive, evolutionary, conceptual, physical, open, and closed
(Liu, 2015). Based on the literature review, and under the context of this thesis regarding hardware-based developments,
the definition for system is based on the INCOSE approach with a small variation due to the nature of evolutive architectures,
as they will be presented later (chapter 4). The definition within this research is the following:

System “is a synergetic, multidisciplinary, integrated and evolvable set of elements, subsystems, or assemblies that
accomplish a defined objective. These elements include products (hardware, software, firmware), processes, people,
information, techniques, facilities, construction, services, and other support elements.” From this thesis standpoint, any
system presents geometry, behavior, and substance, and it is defined by quantifiable and qualifiable parameters [Def02].

1.8.3. System Architecture

Another term that is broadly used in this research is system architecture. This one also presents many definitions on
the technical literature across fields and application domains as Table 4 presents:

Figure 4. Input-process-output model of a system (Badiru, 2019).

e Operating environment
e Environmental interactions: external & internal
e System boundary i
. Mechanisms
hd Life CyC|e and phaseS Mechanisms are the physical aspects of the activities
° Main fUﬂCtiOﬂ or pUI'pOSG (e.g., people, resources, space, budget, etc.)
[]
[]
[]

Id Source / Category Definition Domain References
“System element architecture is defined by two entities: [1] System of interest (SOI)
SA1 General which is comprised of the mission system and the support system, and [2] operating SE (Wasson, 2005)
environment.:
System architecture is “[...] the fundamental concepts or properties of a system in its
SA2 INCOSE environment embodied in its elements, relationships, and the in the principles of its SE (INCOSE, 2015)

design and evolution.”
“[-..] and ensemble of elements (ultimately hardware and software components) that

SA3 D collaborate to fulfill defined requirements allocated to a node or systems (implying DSE (Borky & Bradley, 2018)
Software " ;
that a clear system boundary and user interfaces are defined) |...]
“[...] defines a comprehensive solution based on principles, concepts, and properties
logically related to and consistent with each other.” “...System Architecture is
SA4 Sy.stem.s a}bstract, conceptualization-oriented, global, and focusgd to achieve the mission and SE (Faisandier et al., 2020)
Engineering life cycle concepts of the system. It also focuses on high-level structure in systems

and system elements. It addresses the architectural principles, concepts, properties,
and characteristics of the system-of-interest. [...]"

24

Ch1 Introduction - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

“[...] an abstract description of the entities of a system and the relationships between
those entities, [...] represented as a set of decisions [...]"

[...] to express the strong relation and dependency between the system and its
systems architecture, a composition association describes this relation. [..] it is the
SA6 Model-based SE functional architecture, [..] depending on a number of principles regarding its MBSE (Weilkiens et al., 2015)
organization, the design, and the system’s evolution, [...], interactions within the
systems and its context|[....]"

“[...] the rationale to ensure that the architecture’s components, connections, and

SA5 | Complex systems DSE (Crawley et al., 2016)

SA7 | Software Systems | constraints define a system that will satisfy a set of defined stakeholder needs for | Software (Gacek et al., 1995)
the system.”
System architecture includes systems models, behaviors in those models, system Complex

SA8 NASA components, interfaces, as well as technical budgets. This term refers to system Har dv‘\)/are (NASA, 2015)

requirements, operations, and other artifacts within the global system.
Table 4. System Architecture definition

System architecture, in the context of this thesis is the concept model defining logic, purpose, geometry, structure,
behavior, material, aesthetic, and cultural properties of a system or group of systems with independence of its field of
application. This definition applies to both hardware, software, and hybrid systems. This principle is based on general SE,
INCOSE, and IEEE principles (Faisandier et al., 2020) [Def03].

1.8.4. Systems of Systems

Table 5 captures some definitions regarding system of systems (SoS).

Id Source Definition Domain References
SoS1 INCOSE ‘A system of §ystem§ (So0S) is a system of"mterest (SOI) whose elements are managerially SE (INCOSE, 2015)
and-or operationally independent systems.
“A set or arrangement of systems that results when independent and useful systems are (Kossiakoff et al.,
S0S2 DoD . ; . . LS SE
integrated into a larger system that delivers unique capabilities. 2020)

Table 5. System of Systems (SoS) definitions

An SoS is a system in itself, and it is defined by multiple challenges (INCOSE, 2015), such as: authorities, leadership,
constituent system perspectives, capabilities, requirements, autonomy, interdependencies, emergence, testing, validation,
and learning constraints, as well as its design principles [Def04].

1.8.5. Systems Engineering

There are indeed multiple definitions of systems engineering across the literature, therefore only a few have been
selected as reference because of the relationships among the approach of this research and other domains.

Id Source Definition Domain References

“[...] Systems engineering is a discipline that concentrates on the design and application of (INCOSE, 2015)
the whole (system) as distinct from the parts. It involves looking at a problem in its entirety, o

SE1 INCOSE - : L . : SE (Valencia etal.,
taking into account all the facets and all the variables and relating the social to the technical 2011)
aspect. (FAA 2008)[...]"
“[...] it is an applied science [...] concerned with the big picture of the system: it is a top-

SE2 Liu down design processing [...] starting with the needs from user/stakeholder expressed in the SE (Liu, 2015)

format of requirements. [....] is a multidisciplinary field with four categories: [1] art and science
domain, [2] engineering domain, [3] management domain, and [4] supporting roles [...]"
“[...] engineering discipline that develops, matches, and trades off requirements, functions,
SE3 Buede and alternate system resources to achieve a cost-effective, life-cycle-balanced product DSE (Buede, 2009)
based upon the needs of stakeholders.

Table 6. Systems engineering definitions across technical documentation.

Systems engineering, based on the INCOSE definition (INCOSE, 2020a), is understood as the interdisciplinary
‘approach to enable the successful design’, implementation, ‘use and retirement of an engineered system, using systems
principles and concepts, and scientific, technological, and management methods’ [Def05].

1.8.6. Design Engineering
Usually, engineering design refers in literature to the design process, while design engineering refers to more
25

Ch1 Introduction - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

aesthetical concepts. In the context of this research engineering design and design engineering are considered synonyms
like in many other publications. Among some of the definitions considered are the following:

Id Source Definition Domain References
“[...] to design is to pull together something new or to arrange existing things in a new way
a to satisfy a recognized need of society [...] this means synthesis, design, problem (Dieter and
Bl Dlctey decomposition, and analysis. [...] The four C’s of design include: creativity, complexity, DIEIPEEESS Schmidt, 2012)
choice, and compromise.”
“Designing in engineering has the purpose of creating future operating artifacts (TS) and the
operational processes (TP) for which they can be used, to satisfy the needs of customers,
. . . (Eder and
R stakeholders, and user. These artifacts can actively we operative or be operated as tool by
Engineering ; h ; - : Hosnedl, 2010)
DE2 . a human. [...] design engineers explore alternatives solutions, and delivers proposals for DE .
Design (Samuel and Weir,

appearance and present, manufacturing specifications for a design [....]"

“[...] Design engineering is progress towards designing an object or process that fulfills a
purpose, and that includes a substantial engineering content. [...]"

“[...] the discipline, art, and profession of acquiring and applying scientific, mathematical,

1999)

R economic, social, and practical knowledge to design and build structures, machines, .
DR e devices, systems, materials and processes that safely realize solutions to the needs of LR (Eifles 2015
society [...]"
Design “[...] the design process, then, is the organization and management of people and the
DE4 process information they develop in the evolution of a product. DSE (Ullman, 2010)

Table 7. Design engineering definitions across technical literature

Therefore, design engineering (Cross, 2008) within this dissertation is considered as the holistic process of [1]
understanding and decomposing need and requirements, [2] synthesis a solution (often also geometrical), [3] analysis of
alternatives, and [4] visualization of results through development of products, services, and systems in general, and
hardware-based system in particular [Def06].

1.8.7. Systems Design

Regarding the approach within this dissertation, the concept of systems design is understood as the action and
methodology of designing and conceptualizing a system to fulfill specific as well as open requirements in the context of
complex architectures. ‘Design definition is the process of developing, expressing, documenting, and communicating the
realization of the system through a complete set of design characteristics described in a form suitable for implementation.’
(Faisander and Adcock, 2020) [Def07].

1.8.8. Other Explicit Definitions

There are other terms used across this dissertation and its associated research, coming from other sectors and
domains that are less common within DE and SE contexts. The following table summarizes them.

Id Concept Definition Uses & Domains References
Svstem It is the set of processes and actions by which a system DSE process, (Ullman, 2010)
Def08 Matu!:ation becomes more mature including geometrical, behavioral, biology studies, (Oxford University Press,
and substance through time, detailing, and growth. system dev. 2020)
This refers to the capability of a system and its associated DSE, DE,
. processes to adapt to environmental, design, operative, and biology, (Conrad, 2012)
Def09 Adaptability implementation changes. It is one of the ARR evolutive cognitive (Burke et al., 2006)
overarching characteristics. See section 4.2.1 for details. studies
It refers to a system that participates and integrates DSE, SE, DE, (Dieckmann et al, 2004)
Def10 Adaptive | adaptability principles throughout its design and biology, control (Mareel y
. - . o . . s & Polderman, 1996)
implementation. A system based on adaptation principles. & information
This refers to the capability of a system and associated
- development processes to interact with its environment and (Barnard et al., 2000)
Deft Reactivity among its subsystems. It is one of the ARR evolutive DSE, SE, DE (Fox, 2016)
overarching characteristics. See section 4.2.2 for details.
This refers to the capability of a system and its associated
DSE, SE, DE,
. development processes to use, manage, reuse, recycle, and ; (Lyle, 1996)
Def12 Regeneration ; ; ; ; biology,
replenish resources require for its development, operations, . (Mang et al., 2016)
; ;) . architecture
and operations. This also includes physical, energy,

Ch1 Introduction - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

workforce, virtual, and digital resources, among others. It is
one of the ARR evolutive overarching characteristics. See
section 4.2.3 for details.

Def13

Evolutionary
System

“[...] are entities, described as systems, which have been
generated within the framework of an evolutionary process.”

DSE, SE,
biology,
computer
science

(Vijver etal., 2013a).

Def14

Evolutive
Architecture

Evolutive architectures are considered those system
architectures designed, optimized, and implemented using
applied evolutionary methodologies towards their concept
development, system engineering, physical and logical
optimization, physical manufacturing, and construction
among other lifecycle key phases. These characteristics are
independent from the field of application and they could be
present one, several or all phases of the development cycle.
See chapter 4 for more details.

DSE, SE, DE

(Hingston et al., 2008)
(Charlesworth and
Charlesworth, 2017)

Def15

Design

Within this research this refers to development processes
and outcome activity to describe, manage, communicate,
and implement a system as well as all relationships among
its components. See section 4.3.1 for more details.

DSE, SE, DE

(Samuel and Weir, 1999)
(Asimov, 1976)
(Roth, 1994)

Def16

Operations

This concept related to the analysis, definition, description,
and management of the system functional behavior, as well
as other associated processes such as development and
implementation. This includes workforce and knowledge too.
See section 4.3.2 for more details.

DSE, SE, DE

(NASA, 2007)
(Mahadevan, 2010)

Def17

Implementation

This concept is used in this dissertation to capture
processes, materials, and other resources required to turn a
design into a reality regardless of its physical, logical, digital,
and virtual nature. See section 4.3.3 for more details and
links among concepts.

DSE, SE, DE

(Farid and Suh, 2016)
(Gilmore, 2014)

Def18

Geometry

This related to all ‘properties and relations of geometrical
elements such as points, lines, surfaces, solid, and higher
dimensional analogs’ describing the shape or configuration
of a system over time, as well other logical, structural,
material, and interface considerations regarding systems
and components. See section 5.3.1 for details.

DSE, SE, DE

(Merriam Webster, 2020b)
(Elam, 2001)
(Kimura, 2001)

Def19

Behavior

This is “the functional and behavioral range of anticipated
actions describing how the system will be operated under all
possible use-case scenarios”. This includes both system
architecture and associated development process. See
section 5.3.2 and 4.3.2 for more details.

DSE, SE, DE

(NASA, 2007)

Def20

Substance

This refers to chemical, mechanical, physical, and biological
properties, characteristics, and processes involved in the
physical implementation of a system architecture. This also
includes fabrication, manufacturing, construction, and
resource management, as well as the materialization of
parts and subcomponents. See section 5.3.3 for more
details and links among concepts.

DSE, SE, DE

(Sass, 2011)

Table 8. Definitions, uses, domains, and references.

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

SCARCITY, COMPLEXITY, AGILITY, & HERITAGE
Evolutive Architecture Context
CHAPTER 2

“It is not they don’t see the solution.
It is that they do not see the problem”.

G.K. Chesterton
} ¥ & '} ,?;ggé"\
’ 5 % .\4"-'3“3‘ L 3 y,
. t '\ 5. ’/ i ;é‘ : ;‘f’ . //
| E o
: 2 e A =<3
N o ’ { £ \
’ b
3 - o1
. { -
|
! ¥ 2
ol s : : p
o A)" -:' ’
g A
: ¢ \

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

2. Context of Scarcity: Needs and Resources

As a species we have been led by the need to do more. The urge to find, discover, or reach new levels has driven
innovation through millennia, often tackling what and how we do things. We have even classified periods of our history (e.g.
bronze age) by the design and manufacturing capabilities we developed (Harari, 2018). Survival needs, competitive
advantage, and intellectual curiosity, among others have incentivized us to push all limits, often against cultural
preconceptions, personal fears, and the everlasting hassle of finding enough resources to start such new ventures.

Audio +Video +Data +Geometry

Figure 5. Evolution in the type of information being transmitted by communication devices from 191 century to the 2020s.

During the second decade of this century, the need to deal with increasing levels of complexity in terms of design,
implementation, and management still keeps growing (Kravtsov and Kadtke, 1996), because we keep demanding more of
our architectures independently of the field of application. A good example of this is the evolution in capability, and therefore
complexity, of communication systems during the last century (see Figure 5). In the context of this research, as section 1.8.1
presented, the term architecture is referring to the highest system level definition of a complex subsystem-based artifact
(hardware, software, or both). For instance, a building, a car, and an electromechanical consumer product are good examples
of generic architectures among many others. Furthermore, data shows we are facing an upcoming phase in terms of
resources availability due to climate uncertainty (WMO, 2020) and population growth (United Nations et al., 2019), while an
increasing number of new and disruptive technologies (Buchholz et al., 2020) could become key in tackling such challenges.
Hence, the balance between ‘what we need’ (requirements) and ‘what we can do’ (resources / capabilities), becomes an
open field for exploration nowadays. This lands itself very well into a new paradigm for how we design and implement
complex systems. Thus, addressing the relationship between needs (requirements) and resources (constraints), through the
perspective of the offer-demand theory (Sloman et al., 2018) allows us to understand the complexity of a system architecture
development (Figure 6) as a balance between those forces. The more needs or requirements are covered with less
resources, the more efficient a system becomes. So, the slope of that curve could be understood as the complexity of such
architecture. Following an efficient complexity curve (blue line) is often complicated, since economical, workforce, cultural,
and technical constraints tend to flatten such curve. As a result, similar needs could be covered with a more efficient use of
resources. However, providing a leap in that efficiency is often only possible through systematic new paths or disruptive
technologies. Enabling and structuring such leap is the target of an evolutive design process developed in this thesis.

Regardless the field of work (e.g., architecture, car manufacturing, finance, product design, and medicine, etc.) the
need to go beyond in terms of performance, novelty, efficiency, uniqueness, and adaptability is becoming a major force in
any complex technical design endeavor. In today’s context of design engineering and system engineering practices multiple
drivers influence this balance of forces, and they will be studied in following sections. These factors are the foundation for
new approaches towards both complex architecture systems and their associated design methods.

The consequences of both resource scarcity and the human drive to go beyond, push new design efforts and methods
to be able to do more with less (Radjou and Prabhu, 2014), forcing in essence such effort towards the top left of the needs-
resources curve presented in Figure 6. Markets, customers, and requirements demand more of any system architecture,
affecting ‘what’ they are as a system, and ‘how’ they are developed as a method. That pressure ripples through all the
multiple development phases in the lifecycle of a design development such as design, optimization, prototyping,
implementation, management, and sustainability (Pahl et al., 2007).

29

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Needs

. Leap
Efficient

Inefficient
Complex
System Architecture
Complex

System Architecture

Resources
Figure 6. Performance efficiency of system architectures upon the needs versus resources balance.

Across time, tendencies, and practices there are, and have been multiple ways to tackle that balance between forces
represented in Figure 6. While section 3 will present an elaborated and detailed literature review across the areas of design
engineering, system engineering, and evolutionary principles, it is worth mentioning some overall approaches to clarify the
context of this research. The balance between requirements and resource utilization could be understood also as the balance
between technology, user, complexity, and cost. From that perspective we can identify several tendencies such as

o Low-tech that approaches complex problems with design and simple technology (Hirsch-Kreinsen and Jacobson,
2008), addressing the lack of resources as well as associated human needs (Philippe, 2020). This tendency had a
big influence in the 70s with the do-it-yourself (DIY) approach (Wolf and Mcquitty, 2011). Under this trend we could
also include small-tech, no-tech, slow-tech, and passive design, among other variations of related principles.

o Social Design tackles complexity with social and human needs at the center of such process (Margolin and Margolin,
2002). The use and level of technology is not as important as the responsibility behind it. This approach has
applications across the board, affecting complex fields such as urbanism and architecture (Michael and Lin, 2018).

o frugal design as described in this intro is about doing more with less (Radjou and Prabhu, 2014) while bringing the
notion of control and equity within that balance through innovation (Micaélli et al., 2016). The key is the efficiency of
the approach, and it is applicable to different levels of technology as well as types of balances.

o High-technology, deep-tech, or frontier-tech, on the contrary answer such critical battles by relying heavily on cutting-
edge technical solutions that may not necessarily reflect other social and innovation aspects (Steenhuis and Bruijn,
2006). The influence of this perspective could be seen in architecture solutions (Macdonald, 2019), information
technology (Cortright and Mayer, 2001) project, Al new developments (Malach-Pines and Ozbilgin, 2010), etc.

Nevertheless, this research embraces this full spectrum with a broad perspective by being agnostic of the technology
level used in such balance, as well as other aspects such as innovation or social approaches. The objective though is to
address the capability of the system first, and the subsequent design method after. Any other area of this activity affecting
the complexity of such challenge could and should be addressed regardless the posture that was taken. In other words, from
a truly broad perspective this is about getting the best and most optimized system result.

Thus, the principal focus of this research is about how we could achieve more efficiently, better system performances
and capabilities when developing new complex systems that have no previous heritage. Furthermore, the inherent scarcity
of resources also highlights the needs of a design and system engineering approach adaptable enough towards short and
long-term changes regarding requirements, constraints, methods, etc. In other words, how we could design faster and
smarter by doing not only more but better with less is the objective of this theoretical framework (validated over years of
practical experience across industries). Tackling key stressors that affect the balance in the development of any complex
architecture is always needed, but it is especially relevant under the foreseeable scarcity conditions affecting the technical
practice of architecture and engineering in the coming decades. Thus, next sections tackle multiple context design stressors.

30

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

2.1. Resource Scarcity

The availability of all required resources to design, implement, and operate a complex system architecture could be
stressed by multiple external and internal factors withing such development process. As Figure 6 showed, highly efficient
architectures (and processes) respond to higher needs or requirements using less resources, while low efficient ones do the
opposite. The objective is to increase the system performance for a given complexity, while at the same time enabling an
adaptable methodology that aims to enable performance quantum leaps onto such systems for a given level of heritage and
scarcity. The need-resource curve in Figure 7 shows those performance quantum jumps, showing a system architecture that
responds to many more needs with less resources. These jumps are the ultimate efficiency goal for an evolutive design
process. However, the efficiency of a system design method responds to a series of key design resources including among
others knowledge, workforce, computing power, materials, energy, etc. (Pahl et al., 2007). In the beginning of the 21st century
there are several areas contributing to a potential resource scarcity capable of significantly stressing current and future
design context conditions. These stressors displace the curve to the left (Figure 7), so less needs can be addressed for a
similar architecture approach. They become a major contributor to be addressed towards more efficient design methods.

S Climate

Overpopulation
Economy
Competitiveness
Energy

Needs

.......
.

Stressor
h

Resources

Figure 7. Stressors displace the architecture efficiency on the need-vs-resource graph.

2.1.1. Climate uncertainty

Climate change is a very complex and extensive subject beyond the scope of this research. However, the potential
consequences of this global phenomena (Masson-Delmotte et al., 2019) must be considered as an overarching constraint
forcing the need of new design approaches affecting communities (Boswell et al., 2019), policies (Harvey et al., 2018), and
multiple industries such as architecture (Smith, 2006) among many others which are very resource dependent. As a simplified
approach we could state that since mid-20t century, scientists have been warning of the consequences of an unsustainable
development, leading to an increase in the release of CO2 and other greenhouse gasses, as well as the subsequent global
warming (Siegmund et al., 2019). Such delta in planetary temperature levels presents many potential related effects such
as increased ice melting rates, lack of planetary surface albedo, water sea level rising, changes in energy distribution through
air and water movements because of changes in water salinity, temperature, etc. (Robertson et al., 2018). This not only
affects local climate conditions, but also plants, animal species, and of course human activity.

Dwelling is a major area of human activity affected by climate change. It also affects climate change and is directly
related to the continuous increase in human population globally. These reasons highlight the need of new design and
construction paradigms, while they showcase the type of influence these stressors could present. Current estimations by the
UN present a likely increase of 3 billion people by 2050 if current conditions are maintained (United Nations et al., 2019),
with projections above the 10 billion people beyond 2100 (Roser, 2013) as Figure 9 shows. Assuming an average number
of 1.5 people per home, and a simplified reduction of 25% due to existing houses, this means around 1.5 billion new homes

31

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

would need to be built between 2020 and 2050 (Smith, 2018). In other words, a city center like Paris of two million people
should be designed, built, and delivered every week including houses, schools, streets, hospitals, etc. during that period.
Buildings today consume 40% of all generated energy worldwide (EIA, 2019) and up to 50% of all solid waste worldwide is
construction materials (Kaza et al., 2018). Therefore, this represents a major challenge with huge and unsolved implications
when it comes to resource availability, workforce, construction technology, design methods, and energy efficiency affecting
directly or indirectly all design and development efforts due to its magnitude.

Current warming rate

1.5°C

Human-induced
warming

Climate uncertainty

for 1.5°C pathwa
2017 . v

1960 1980 2000 2020 2040 2060 2080 2100

Figure 8. Global warming forecast. IPCC Special Report on Global Warming (Masson-Delmotte.V., et al., IPCC, 2019)

2.1.2. Population growth

This challenge is even bigger, especially when likely dislocations due to climate change could lead up to 1 billion
climate migrants by 2050 (International Organization for Migration, 2014). Furthermore, up to 1.6 billion people did not have
a proper shelter already in 2015 (UN, 2019). The use and construction of dwellings represents a basic human economic
activity with a value around US$280.8 trillion in 2017 (Barnes, 2018). This indirectly relates to design and implementation
activities of home equipment devices and energy production systems, among many more markets and industrial sectors.

= Change country

""""""""""""""" Total projection

10 billion sozaenstih
8 billion

6 billion
[T 25-64 projection
4 billion

""" Under-25 projection

Under-25

==vess=siiis Under-15 projection

2billion T

''' Under-5 projection

0
1950 1980 2000 2020 2040 2060 2080 2100
Source: United Nations - Population Division (2019 Revision) CCBY
Figure 9. Population by age bracket (UN Projections), After Our World in Data (Roser, 2013).
32

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Constraints driven by both climate uncertainty and world population growth combined are increasingly bringing new
levels of resource scarcity affecting populations, ecosystems, economics, and institutions (Evans, 2010). This growing trend
affects consequently all industrial, agriculture, and technology fields worldwide in different ways, while it emphasizes the
need for quantum leaps in terms of system efficiency as a possible response. Architecture and construction specifically, and
any complex system architecture in general (e.g., cars, trains, solar farms, computers systems, etc.) would require a new
design and implementation approach if current levels of comfort and capability must be addressed under an increasing
population. Consequently, these constraints will force and spark new approaches and needs in architecture and engineering
practices dealing with complex systems that this thesis takes as one starting point to address new methodologies.

2.1.3. Economic Constraints

The combined effect of climate change and population growth could impose the need to reduce the number of
resources used in any system (Figure 10) at a global scale, if no new technologies and concepts are introduced since Earth
is for that purpose and simplifying a close-loop system (Miller, 2017). Within an economic system where services and
products are rendered for currency, this brings the need to assess new cost reduction approaches (less resources) and
viable risk strategies (more resilience) at both system design and design process levels (Brown, 2013). As Figure 10 shows,
to achieve certain needs (e.g., solar power for a dwelling) an architecture uses certain resources (e.g., number of solar
panels, transport, deployment, installation, etc.) The more complex the system is (e.g., F1 car, airplane, power plant, etc.),
the bigger portion of the resources used in the developing phase lies within the design process itself (e.g., workforce hours).
This is especially relevant if the process is set up with a cost committed approach [Ullman’s manufacturing and cost cited
in (Jack, 2013) and (Kihlander, 2009)]. However, this could be very constraining when unique solutions, prototypes, or small
series are the objective since the initial design and testing cost cannot be shared or distributed among multiple users or
product sales. Thus, the more complex and unique a system architecture becomes, the higher is the relative cost to create
a single one in terms of design and validation towards its implementation (fabrication, construction, and manufacturing)
(Larson, 2010). This is reinforced by the lack of an economy of scale factor, as well as a heritage of directly applicable
solutions. Therefore, a reduction in both implicit and explicit costs to create new system architectures that could provide
better performance levels beyond any existing heritage becomes a powerful drive in any market-driven economy (Bade and
Parkin, 2012). Such development advantage is not only driven by technology, new concept design, or disruptive techniques
enabling the system architecture itself, but also the design engineering methodology used to create it since development
cost most likely is the most critical initial barrier. Hence, this relationship is critical, and becomes an objective for this thesis.
It is a complex challenge with multiple contributors such as: technology knowledge, computation capability, workforce
availability, schedule, funding, prototyping cost, implementation capability, operations scheme, and design principles, among
many others.

Concept | Detailed

Desi ! Desi f
esign | esign " Cost
| . Committed

Cost

Cost
Incurred

Testing !
Validation | Implementation

A J

Time
Figure 10. Cost evolution during project phases. (Kihlander, 2009)
33

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

2.1.4. Competitiveness

Therefore, if less resources could be used in the design, implementation, and operations of a system that performs
at similar or better performance levels, this would mean a cost reduction, and a more competitive system architecture
providing an advantage against competitors as well as older versions (improvement). Current market and industry trends
invoke the principle of doing more with less, as economy and business frugal principles show (Radjou and Prabhu, 2014).

Competitiveness is in today’s world more and more driven by enabling and rewarding flexible research and
development, innovative solutions, affordable quantities, and customer involvement. Under that light, new design methods
must provide ways to bring agility towards prototyping and development, as well as infusing data-driven steps into the design
method so adaptability to new needs is easier (Daszko, 2018). Furthermore, methodology optimization should be
systematically explored and integrated, as well as newer techniques that can increase speed and reduce cost. Thus,
innovation is at the core of development processes enabling sustainability and competitiveness (Kuncoro and Suriani, 2018).

A design and systems engineering methodology within this new context should be about bringing faster, easier, and
more efficiently better products to market, while reducing resource utilization and cost. This is indeed applicable to known
economic conditions, but it becomes even more relevant under foreseeable and growing scarcity constraints.

2.1.5. Workforce and Capabilities

Another source of change and scarcity is the current situation of workforce (PWC, 2020). This is emphasized by new
social and work dynamics established with the infusion of cultural changes and new techniques such as Al-driven and
machine-driven methodologies (West, 2018). Disruption is indeed one key concept within this point. While tools and
techniques at the disposal of organizations are starting to disrupt workflows (e.g., 3D printing and machine learning), they
also mean that the way we work is changing. However, not only are tools developed during the “gig-economy” a source of
change, but the planet itself is also in that mode. From climate change and social changes, to environmental situations like
the pandemic in 2020, the future of work is becoming outdated and work dynamics are being challenged by new realities
and possibilities (Vollini et al., 2020). Technology change drives today’s economic growth and quality of life improvements,
thus design, implementation, and operation methods need to address those social, generational, and professional changes
and opportunities today.

The consequence of a high specialization within organizations is, among others, the lack of system-level thinking,
that often leads to a growing need of generalist professionals across industries, markets, and businesses (Lurie et al., 2002).
Those generalists are systems engineers and systems architects connecting disciplines and know-how to support products
and services provided by an organization. In many ways they are the glue among teams, professionals, methods, and
deliverables. Within an increasingly complex world specialists are both needed (Epstein, 2019) and often misused, however
they are key for any healthy organization to go beyond their current state upon any heritage foundation.

Furthermore, the importance of heritage and the growing complexity of today’s world also force us to find new and
better methods to deliver products, services, and partnerships. Within that context, growing technology trends such as data-
driven and Al-driven workflow enhancements are also a potential source of scarcity towards the use of more traditional
methodologies. The integration of machines, machine-driven enhancement tools, and humans poses both huge
opportunities and challenges such as: [1] the re-education of workforce (Rampersad, 2020) and Al training, [2] the creation
of collaborative methodologies between machines and people (Daugherty and Wilson, 2018), and among others [3] a unique
opportunity and need to reshape engineering practice. The evolutive design approach takes this as a foundational point,
emphasizing tool-agnostic principles towards architecture system design methods applicable to these challenges.

2.1.6. Energy and CO;

An everlasting constraint in human history has been the need for energy (Smil, 2018), in today’s mid and long-term
future where climate change, population growth, cost reduction, technological conditions, and market competitiveness
among others need to be considered (Madureira, 2014) even more so. Today main energy sources of energy worldwide are
basically fossil fuels (oil, coal, gas) and nuclear, with a growing participation of renewable energies (Letcher, 2008). However,
as Figure 11 shows, those needs are going to grow significantly (EIA, 2019), and so their associated CO2 emissions (Marchal
etal., 2012) especially with an end-use consumption shifting towards electricity across fields (EIA, 2019). However, with 10B

34

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

people by 2050, current levels of energy efficiency need to increase at least 65% of $ per W and per person (Cody, 2017) in
order to maintain the same level of comfort we have today.

The implications of this shift in the energy paradigm affect global warming and pollution levels among many other
environmental and health challenges. Thus, achieving better energy performances across complex system architectures
(e.g., homes, cars, machines, etc.) using more optimized workflows is critical. This is very relevant because human trends
show that we tend to constantly surpass any given energy production capability very quickly as the graphs shows.

Global net electricity generation Global electricity use by sector =
trilion kilowatthours quadrilion British thermal units cla
35 history! projections 60 history | projections

30 50

industrial

25
40
20 non-OECD residential
30
156
QECD 20 commercial
10
A 10 transportation
0 —_/

—_—

2010 2020 2030 2040 2050 2010 2020 2030 2040 2050

Figure 11. Global electricity generation values and use by sector (EIA, 2019).

Nevertheless, the energy balance of a hardware-based architecture must be measured from ideation to operations
considering design efforts, workforce, computing power, materials, manufacturing, transport, repairs, etc. In other words, it
should include the whole process of how we do things (McDonough and Braungart, 2010). Therefore, at a high level if a
system architecture can accomplish better with less, its energy needs could directly be reduced. At the same time, the more
adaptable such system is, the less energy is needed to rebuild, remake, and change components, leading to better direct
and indirect energy efficiencies. Furthermore, energy scarcity is not only about the difficulty of its generation and availability,
but other indirect consequences such as CO2 emission, processing of natural resources, cost of living, social development,
etc. Perhaps dwelling activity (Gevorkian, 2009) exemplifies this associated scarcity (and indirect cost) better than any other
field due to its market size worldwide. It is also the perfect example showcasing the needs for better design approaches,
because of the inherent complexity of the systems in the field (Bauer et al., 2009).

B CO;(energy+industrial) M COy(Landuse) ®CH, N20 HFC+PFC+SF, WOECD A1 (23% in 2050) BWRussia & rest of A1(7%)
Rest of BRIICS (44%) mROW (26%)

90 90 -
80

GtCOze

70

60

50

40

30

20

O N ¥ O 0O O N T O 0 O N T O
rrrrr NN NN NG MM MM T T T T
O O C oo oo oo oo o o

NN NN NN NN NN NN NN

Figure 12. GHG Emissions Baseline 2010-2050 by gasses and region. Source OECD (Marchal et al., 2012).

2048
2050
2022
2024
2026
2028
2030
2032
2034
2036
2038
2040
2042
2044
2046
2048
2050

35

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

2.2. Complexity

The nature of these challenges makes complexity both a stressor in the design process as well as in the context of
technical practices. Complexity influences new needs for system design practices, as well as system architecture capabilities
in the beginning of the 21st century (Alexiou et al., 2009). During the past decades, developments in electronics, computation,
telecommunications, and manufacturing have made system complexity a characteristic of increasing importance. For
instance, traditional land-line phone evolved into smartphones, simple combustion-engine automobiles are leading the way
to autonomous cars, and VHS video clubs enabled online personalized streaming services. In summary our society demands
complexity (Alexiou et al., 2009). In fact, the practice of systems engineering and lately also systems architecture (as a
multidisciplinary approach toward complex systems design) is increasingly being dedicated to both managing and improving
system complexity, as well as associated design processes (Frey et al., 2011).

- -
H
!

i

Highly Efficient
System Architecture

Less Efficient
System Architecture

Complexity (parts & features)

Resources (time, materials, effort...)

Figure 13. System architecture efficiency based on complexity level versus resource utilization.

Dealing with complexity could be quite costly when traditional engineering design methods are used, since they are
algorithmic, deterministic, and point-design driven (Braha et al., 2006). However, designing complex engineered systems
(CES) must deal with the self-organization and open nature of complexity. On the other hand, if we understand complexity
as the characterization of a system with multiple interacting parts, then it is at the heart of the system efficiency and
performance levels. For instance, if we compare a robotic limb with an organic leg, the latter has many more elements and
interacting parts (e.g., cells), however its level of performance, dexterity, repairability, and implementation easiness is much
higher. In essence, more complexity could bring more efficiency, thus an improved design methodology needs to be based
on an evolutionary foundation and open relationships among its parts (Braha et al., 2006).

Therefore, the inherent complexity of a system is at the same time a way to improve resource utilization efficiency,
as well as a source of scarcity if not managed properly. Regarding the first, natural and biological systems use much less
resources, do not need manufacturing (they grow by themselves), and can adapt to a new environment (adaptation) over
time (evolution) much better if they are compared to human (artificial) electromechanical systems.

On the other side, a lack of proper complexity management and adequate system design methodology for complex
system architectures could be a huge source of scarcity. Complexity is driven by society, economy, nature, circumstances,
requirements, and system capabilities. If not tackled properly, the alternative is a less optimum and often opposite path
leading to loss, defeat, stagnation, and suffering. For instance, if dwelling systems needs for upcoming decades in terms of
resource utilization, comfortability, and cost are not met, the result could affect generations to come affect generations to
come impacting societal development at large. This is something that has happened before, for instance during the Middle
Ages in Europe after the fall of the Roman empire (Benevolo, 1977) in terms of salubrity, economic stability, and dwelling

36

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

comforts. Design, engineering, and art complexity comes from many areas (Alexiou et al., 2009), for instance;

e Multidisciplinary: More and more disciplines are involved in the design process of a complex system (e.g., mechanics,
electronics, thermal Eng., marketing, etc.), increasing the complexity levels of both system architecture and the
related design process. The more software, hardware, and user concerns become part of a system, the more efficient
solutions are needed as shown in Figure 13 (Frey et al., 2011). Furthermore the collaborative (Safavi, 2016) and
concurrent nature (Salomone, 2019) of such process increase even more the importance of the design process itself.

e Environmental: Availability of resources in the natural environment often leads to higher levels of complexity as a
strategy to cope with change (Norberg and Cumming, 2008). The interaction with the natural environment is about
dealing with the unexpected, with changing parameters, and often with uncontrollable environments.

e Resources (supply chain): Manufacturing and natural resources utilization have indeed an intrinsic complexity
associated to them (Milner et al., 2013). Production constraints, material incompatibility, cost constraints, and more
intricate geometries in product and system designs are among some of the current and growing challenges directly
related to system complexity (Duehr et al., 2019).

o Biological systems are complex by nature and defined by self-organization principles. State-of-the-art techniques for
software design (Hingston et al., 2008), and structural topology optimization (Rozvany and Lewinski, 2013), among
many others are based on biological principles and subsystems interaction (Nomura and Asai, 2010).

e Cultural: Technology and engineering have increasingly become an intrinsic part of complex artistic manifestations
such as architecture, theater, cinema, etc. (Casti and Karlqvist, 2003). However, at the same time many technology-
driven sectors (e.g., IT, social media, web, etc.) keep integrating more often cultural aspects as part of their service
and product development, for instance user experience (UX), human-computer interaction, and ubiquitous computing
among many more (Ekman et al., 2015).

o Architectural: This is indeed the case when dealing with dwelling systems since the human factor is included, on top
of all the previous points. Both at the largest scale of urbanism (Walloth et al., 2013) and the simplest level of individual
homes (Venturi, 1990), architecture is often both based and driven by complexity.

2.3. Performance

The search for performance in terms of efficiency, speed, and capability for any system architecture is directly related
to the process and tools used to implement such achievement. Thus, this process often depends on a specific culture,
management style, and heritage associated to any given organization or institution (Kunda, 2009). Figure 14 shows how a
specific architecture design (A) could incrementally improve its performance (A1 to An) by serving more needs with the same
amount of resources, but requires a change in both design and methodology to achieve a more efficient solution (B), so
more requirements could be served with less resources.

»

Needs

*A,

. A

Resources

Figure 14. Heritage and incremental improvements (A), versus performance leaps (B) enabled by design and methodology.

37

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

For an accomplished organization, professional, or discipline practice used to a specific method or process, it is
complicated to embrace change and follow new paths, especially when a specific way of doing has been prolonged over
relative long periods of time with relative success (McCalman et al., 2015). However, the study of natural evolution (Herron
and Freeman, 2013) shows us that adaptability through variation is the key towards dealing with change and entropy, which
is indeed one of the most important physics laws in the universe (Charlesworth and Charlesworth, 2017) .However, inherent
to that process is the fact that those changes are based on heritage, which means they are based on previous proven
solutions and therefore have been validated at some point. In the everlasting balance game between resources and needs,
the ubiquitous cultural heritage is often seen as barrier for innovators due to the inertia against change that it brings, and as
a risk for more conservative managers. Hence, heritage solutions and methods could and should be turned into a positive
and necessary component within an evolutive design process. This is especially relevant if current capabilities and
implementation solutions of a system are considered as building blocks towards any new system architecture based upon
them. They can provide both a feasibility assessment and a design foundation. This is what nature does, it builds upon
validated solutions, to optimize more fitted performances which continuously adapt to the environment through genetic,
temporary environmental, and genotype-by-environment variations (Borgnakke and Sonntag, 2013). The balance and
integration of current and future methods is key for this research, as well as it is to any design and systems engineering
methodology seeking better performance and faster methods (Braha et al., 2006). Furthermore, this approach also works
when there is no heritage towards a new system architecture and a new approach needs to be implemented, but there is an
abundance of feasible subsystem technologies. This is a key objective of this systems engineering and design process which
is oriented towards those quantum evolutionary leaps (Figure 14) in the systems performance.

2.4. Multidisciplinarity

As previous points highlighted, complexity is intrinsic to human development, and stressors such as competitiveness,
lack of resources, status, etc. push it towards improving the performance level of system architectures, as well as to create
completely new approaches and methodologies that enable them.

However, such complexity is multidisciplinary in nature and becomes both a stressor and a constraint, towards
products and processes. Multidisciplinarity or interdisciplinarity could be addressed from technical, social, and humanities
standpoints (Finkenthal, 2008), and it has multiple fields of application as standpoints (Frodeman et al., 2017). Thus, the
need to address a common challenge is both critical and often challenging when considering: [1] multiple design disciplines,
[2] connections across parameters and geometries, and finally [3] workforce and organizational management aspects.
Studying them in detail brings several conclusions as follows:

o Design. Independent of the field of application, a multidisciplinary approach is both an enabler and a stressor. While
such perspective enables results that are not possible otherwise (e.g., adding energy studies to a mechanical design
process), it also forces the process to address many more constraints.
e Connections. Those constraints also lead to the establishment of a process or a framework where they can be tackled.
When design efforts include not only analytical parameters (e.g., systems engineering) but geometrical information
as well (e.g., architectural design), complexity increases. This is especially critical towards feasible, reliable,
competitive, and efficient systems, with a potential great influence in the culture of an organization.
e Management. Such culture involves managing different types of professionals from creators and generalists to highly
specialized and technically driven teams. Nevertheless, this also means that resources management needs to be
tackled at a different scale and from a different perspective. From computational power to schedules, requirements,
and constraints they all become more complex from a multidisciplinary perspective that requires coordination.
These aspects are certainly interrelated, and therefore a key question within this area is how to find synergies across
all of them. Because this stressor conditions design efforts, as well as cost, schedule, and workforce (knowledge) activities,
among other managerial but necessary aspects, it is certainly at the core of any future complex system development.

Thus, making more with less, could be then identified as a clear objective towards the improvement of system
performance and capability, as so it is towards its design methodology. Complexity brings the need of a multidisciplinarity
approach, which needs to be managed to efficiently address resource utilization (scarcity) and time constraints.

38

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

2.5. Agility

Nowadays, time is becoming indeed more and more a design stressor. The pressure towards getting lower time-to-
market solutions, growing user expectations tend to accelerate the need for faster processes especially from a marketing
standpoint (Singhania et al., 2019). Social media and other new trends in the era of information technology also contribute
to create and enhance that sense of immediacy (Petro, 2017).

Agility however is not only about time, since it has lot to do as well with the leanness in resource utilization of any
design and development process. The less time and resources are needed, the faster, easier, and therefore more agile any
methodology becomes.

Regarding temporal constraints, the notion of agility involves not only the speed of the design process, but also the
capability of such process to quickly change due to variations in requirements, constraints, upgrades, etc. This is critical in
any present and future system design engineering effort in highly competitive environments.

From a leanness standpoint, how those resources are used is the essence. In the development of a complex system,
not only the number of resources is relevant but also how efficient that use is, since both enable flexibility and agility. These
resources include workforce, people, power, computing power, hardware, time, schedule compatibility, among others.

2.6. Interconnection and Networks

Within the context of complex system architectures, another key stressor and enabler quite characteristic of current
times, is the interconnection among systems and the concept of network. These have multiple sides and represent a valuable
and new contemporary feature, that can also be seen in the natural world.

The development of computer science during the last century and the increasing use of data across products and
services is becoming today a new standard changing both designs and methodologies. This is something upcoming sections
will tackle from technique and modeling standpoints. However, it is already a trend changing forever how things are done.
The integration of data-driven techniques not only make systems smarter (e.g., smartphones or autonomous cars versus
traditional versions), but they also foster the connection between the system and its environment (e.g., car + GPS).

A perspective based on data brings a standpoint of interconnection between all subsystems integrating a system of
systems (SoS), as well as in-between the system and its functional or environmental framework. In essence, data
measurement means comparison, and comparison means interconnections and network thinking (Mitchell, 2006).

Consequently, modern complex systems more and more rely on data to improve their operations, optimize their
performance, and even to condition new generations of their designs. Such complexity brings the concept of interconnected
network (Duato et al., 2003) its components and subsystems, as well as to their environments and frameworks of operations.
Therefore, designing complex architecture systems is becoming more and more a networked process that needs to consider
its present and future environmental context. This is a both new enabler and stressor of current times, with critical
consequences across products, services, platforms, and processes (Parker et al., 2016).

2.7. Design Heritage

Heritage solutions that are validated and proven approaches towards specific design challenges are indeed a
powerful stressor in terms of systems design. Heritage brings pressure, influence, and opportunity towards risk assessment,
decision making, and design principles for any complex system design and implementation. This applies to any organization,
field, or even professional practice. In high technology fields such space exploration, the notion of heritage, and thus the
readiness and feasibility of a future technology or system has been standardized, measured, and ruled. Technology
readiness levels (TRLs, Mankins, 2009) present a strategy across fields to assess risk, planned technology development,
and most importantly assess system feasibility and project management (Blokdyk, 2019). Thus, heritage becomes a highly
relevant stressor, as well as an enabler towards new system developments since it conditions system assessment,
development, and planning especially under a context of increasing scarcity. Heritage provides a strong foundation, which
does not have to be considered as a constraint towards any development.

While the inclusion of heritage in a design process could be perceived as a hindrance towards the infusion or even

39

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

the disruption of new solutions (Henchoz and Mirande, 2014), it could also be a reinforcement that opens doors towards truly
quantum-leap solution across technical fields. The next section will introduce the notion that technical heritage, natural
selection, and evolution processes are connected at many levels.

2.8. Innovation

Changes in society, the environment, and the operational context of a system often drive a constant need for new
solutions, improvements, and upgrades that can ripple throughout design and development methods in any industry. Such
need usually is managed and conditioned by resource availability, technical constraints, market needs, behaviors, and
cultural factors (An and Rau, 2019), among many others defining a posture that could be conservative, incremental, or
radical. In other words, innovation is indeed an interrelated network of inventions, innovations, and needs (Frodeman et al.,
2017) that could be understood through both static and dynamic models (Narayanan and O’Connor, 2010). Disruption is the
more radical approach towards innovation, and it has deeper consequences in the context of system design (Williams, 2010)
and across the full system lifecycle (Paetz, 2014) while conditioning market infusion (Figure 15).

100
B 80
Market disruptor |
typically holds .~ °Z
40-80% share . *
i L 50 &
@
¥
=3
3
Tipping point of ©
inevitability % 2
| 0

2.5% 135% 3% 34% 16%
Innovators Early Adopters Early Mainstream Late Mainstream Laggards

Figure 15. Everest Rogers’ diffusion of innovation per Paetz, 2014.

In our current and globalized world, innovation as a construct is starting to be understood as something on the edge
of a greater change or wave (de la Tour et al., 2020). Traditionally very disruptive technologies capable of creating full
technical ecosystems such as the invention of internet, the distributed electric power, the radio, biotech, or blockchain tend
to require large amounts of investment and time, before the technology is ready. However, nowadays this is changing and
new trends like deep-tech (European Union, 2019) see a combination of biology, computer technology, and new
manufacturing and energy technologies, among others as a way to speed this dramatically (De la Tour et al., 2017).

2.9. Cultural Disruption: Methods and Products

In summary today’s complex architecture systems across technical and creative fields, require a multidisciplinary
standpoint for their development. From single components (e.g., sunglasses) to large complex systems (e.g., modern
building), they all need a multidisciplinary approach towards design, optimization, and validation. These standpoints not only
include quantifiable disciplines such as mechanical engineering, thermal design, structural analysis, data management, etc.
(Pahl et al., 2007), but also qualifiable ones such as aesthetics or user experience (UX). New methods, such as evolutionary
techniques have been increasingly embraced from digital (Bonanomi, 2019), software, and computer science perspectives.
However, hardware-based processes still rely heavily on linear and non-evolutionary workflows (Braha et al., 2006) rather
than more disruptive approaches capable of dealing with more uncertainty and complexity.

However, these iterative design processes often use a serial approach, so the result of a disciplinary step becomes
the input for the next one, and so on. For instance, an artist conceptualizes a design that the engineering team will have to
make implementable considering architectural and mechanical aspects, and then structural, thermal, material assessment,
etc. Finally, a manufacturing team will make it cost effective so it can be produced (one-off, series, or mass produced) while

40

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

marketing and finance teams flush out all other subsequent details (Kamrani et al., 2016). This process can be tedious,
costly, and very complex, regardless the sector. Mass production increases complexity due to large production volume
making the most of automated processes. On the other end, short-series products endure the burden of ad-hoc methods
and higher cost. From both perspectives, the increasing complexity driven by new design requirements and production
stressors tend to challenge the method itself, and often requires exploring, testing, infusing, and maturing improvements.

MECH MFG
SYSTEM

REQ O O O O ARCHITECTURE

ARCH THERMAL

time

ARCH Q omer SYSTEM

req —— () T f- \ e TURE
/ O wre
O.\
MECH ™ (O tHeERmAL

Figure 16. Serial versus network design methodologies with time

The last decades have seen a growing increase in the rapid prototyping approach (Liou, 2007), partially due to
improvements in both digital modeling and 3D printing for instance. The resulting workflow is well stablished today, going
from fast-handmade architecture or product designs in workshops and studios worldwide, to elaborated 3D printed
prototypes in engineering (Cooper, 2001), product design, archeology, or medical (Bértolo et al., 2012) fields. The design
approach is completed with fully functional prototyped robotic and electromechanical systems (Macdonald et al., 2014, Jones
and Flynn, 1993). This has also been enhanced recently with machine-driven methodologies such as generative design
workflows (Wujec, 2017). These advancements are becoming more affordable and available in the areas of design (e.g.,
BIM), analysis (e.g., Multiphysics FEA), and rapid prototyping tools (Killi, 2017), as well as digital and rapid manufacturing
(Hopkinson et al., 2006). These new tools allow addressing multidimensional problems, with both synergetic and hands-on
experience so architects, designers, and engineers can make decisions faster and disregard unfeasible paths. Furthermore,
not only tools and methods have evolved, but the management of design competencies and organizational schemes (Bonjour
and Micaélli, 2010) has also been evolving and is considered as a key aspect in the culture of a company.

The combination of these methods allows us to approach the challenge of complex system architecture development
from a full cycle perspective, so design, manufacturing, and operations are starting to be become more closely
interconnected and potentially optimized simultaneously. Computational trends based on data-driven and machine learning
methodologies (e.g., artificial intelligence or Al) such as generative design (Gross et al., 2018), also present a feasible
framework to tackle all aspects of the creative and implementation business. Figure 17 shows a concept research project
developed between Autodesk and JPL that used Al-driven techniques to optimize structures and reduce mass while
considering multiple manufacturing methods (traditional and otherwise). With or without artificial intelligence, if data-driven
computational methods are combined with a complete full-cycle design flow, multiple discipline standpoints can be connected
and balanced towards a faster and more adaptable digital manufacturing approach (Wang and Nee, 2009).

The need to consider new methods as well as the new capabilities that are already available, defines the last stressor
considered within this research, cultural disruption. More and more, these new ways are a must because: [1] new design
requirements are not feasible without them, [2] competitiveness forces the reduction in cost while increasing capability and
agility, [3] overall resource scarcity forces new trends. While disruptive innovation becomes the modern currency within new
companies (e.g., start-ups), in older and bigger organizations (Fried and Hansson, 2010) the question is about how to fully
embrace such new processes in harmony with an already established (and perhaps rigid) cultural heritage. New
methodologies (Figure 16), workflows, and solutions do stress established methods in any given organization. They affect

41

Ch2 Literature Review - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

risk perception and influence any outcome based on environmental and cultural changes. Nevertheless, traditional, and
culturally accepted approaches could be combined with more disruptive methods. Most likely they must do so since heritage
methodologies often not only present a solid foundation but also a broadly distributed platform for news ways to be
implemented.

Figure 17. Concept by Autodesk — JPL using Al-driven generative design tools to optimize structures. (Autodesk, Core77 et al., 2019)

2.10.Conclusion

Designing complex hardware-based systems today must address a series of stressors due to increasing changes in
the context of many technical practices. These stressors, which previous sections summarized, not only influence any system
design practice currently, but they are also a growing trend. The lack of actual heritage for a new system, the increase in
resource scarcity, and the cultural influence of an established way of doing business raises a question that affect both the
product result as well as the design process behind it: How do we make a multidisciplinary design process efficient and
disruptive enough (Rowan, 2019) when a challenge is being addressed for the first time while potential outcomes require a
radical new approach and new methodologies are most likely needed?

Considering the inherent complexity behind such system architectures across fields, the goal in answering that
question could be more about creating a solid, universal, and adaptable foundation that enables such new design, rather
than a static approach which could easily become too tailored to a specific field or given deterministic context. Within the
nature of these stressors lies the need for adaptability in any approach tackling them in a robust way. A method to find faster
and better mature system architectures offers a powerful platform to reduce the use of resources (e.g., workforce,
computation, etc.) across the system lifecycle, from exploration and ideation to implementation and operations.

Today’s world is dramatically changing from multiple perspectives at once. Any process aiming to design, develop,
and implement present and future systems needs to address and embrace those changing conditions. Furthermore, those
systems themselves should be able to address rapid changing conditions, reduce resource utilization, and embrace all
disruptive capabilities that new design and implementation methodologies can enable.

42

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

DESIGN, SYSTEMS, AND EVOLUTION
Literature Review
CHAPTER 3

‘He who makes a question becomes a fool for five minutes.
But he who does not asks a question remains a fool forever.”

Chinese Proverb
} y SN B " ,:"5’.“"\
o WL : S o
: \ e b - 4
T\ B L
f | : s - +—3
| | T "1 E
J +) § 'S A
e & " f
V44 '.;
v‘ \; ,.'
- N &
" i -
|
! i 4
L "*’:')c-:"’
’ = ; - :
-~ ¥ V ‘ » > o
-0) ,:" 1
72 14 . \
; v G N

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3. Design, Systems, and Evolution: Literature Review

This chapter addresses heritage, state-of-the-art, and related gaps within theories, tools, and applied methodologies
involved in the design, description, development, and study of complex system architectures. These approaches and
practices come from engineering, biology, and computer science realms and they represent the foundation toward the
development of a novel and complementary evolutive system design approach.

Thus, this chapter is structured in four parts. The first three sections address methodologies within these areas:

o Design engineering (3.1). This section reviews design methodologies and theories across human history from a
multidisciplinary standpoint towards system architectures and complex systems.

o Systems engineering (3.2), including practice, techniques, and approaches used and validated across industries.

¢ Evolutionary theories and design (3.3). This section includes principles, methods, and applications across domains
and disciplines. This section is quite foundational since it tackles both an overview of natural evolution principles, as
well as their application to current evolutionary computational and other engineering techniques.

These reviews of the state-of-the art methods are always done under the perspective of hardware-based system
architectures. The overarching objective it to address design methodologies considering constraints such as complexity,
heritage, scarcity, and agility, among others. While each section presents conclusions and gaps under the light of this
research, the last section 3.4 introduces an overall conclusion as a keystone for this thesis.

Multiple reasons are behind this literature review across domains. They are summarized in the following points:

o Designing for complexity, or in other words, tackling the process of designing and managing the design process of
a complex system architecture has been an evolving practice since the beginnings of civilization. In recent decades,
the notion of design has not only been applied to hardware but also to software and other services. It is key then to
understand and identify key gaps across the full spectrum of such activity while considering: [1] time, [2] life cycle, [3]
field, [4] software and hardware capability, [5] efficiency, and [6] speed, among many more. Within the domain of
hardware-based systems, this point tackles the geometrical definition and management of parts, components,
assemblies, and other technical visualizations.

o The other side of this process is to manage non-geometrical aspects of a complex system architecture, including
documentation, development, definition, optimization bases, etc. This is the domain of systems engineering (SE) and
hence this literature reviews both theory and practice trends within this area. Nevertheless, within the vast field of SE
this research especially addresses methodologies that are oriented towards a more efficient way to tackle large and
complex systems, independently of their software or hardware nature.

o During the last decades especially, complexity and efficiency have often been tackled across technical fields with
nature-inspired methodologies. Biology in general, and natural selection in particular have indeed become two
critical areas in such approach. For instance, evolutionary computational techniques such as genetic algorithms in
the 90s spun off a new approach towards both programming and systems optimization. Hence, it is critical to review
all available literature towards: [1] core natural principles used by such techniques, [2] practical applications from
systems, computation, software, and hardware design standpoints.

While these areas and domains might seem unconnected, the reality is that they are tightly involved in the design
and design optimization of any complex system. On the other hand, such broad perspective could also present multiple
potential gaps across these fields, and most importantly across key connections and synergies between them. A method to
tackle a multidisciplinary problem requires a multidisciplinary foundation. Following sections present findings and reviews of
such state-of-the-art techniques as well as those critical design gaps among them.

Section 1.8 already presented multiple definitions used within this research. Nevertheless, the fields of engineering
design and systems engineering could be interwoven across some of these methodologies and techniques. For instance,
concepts within the fields of design thinking and engineering systems thinking are overlapped (Greene et al., 2017). Hence,
in these cases such links should be noted, and their approach will be studied only in one of the sections.

44

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.1. Design Engineering Paradigms
3.1.1. Approach and Categories

Within the research area of design engineering there are two interconnected main subjects addressed by this
literature review. First, are design theories and models (Chakrabarti and Blessing, 2014) developed over the last decades,
which address different approaches toward design processes themselves, as well as targeted outcomes. From methods to
facilitate the discovery of innovative solutions, to approaches developed towards their implementation through machine
learning and Al, this research considers both sides. Furthermore, the spectrum from modern design theory protocols (Gero,
2011) to design approach techniques such as TRIZ (Fiorineschi et al., 2015) is also fully covered. Due to the broad extension
of the human design activity, these design engineering theories are organized in categories as follows:

IDCode Category Time Period Field Driven by Tools (See Table 11)
DE1 Classical 300 BCto 14 C. Architecture Artist perspective To1
DE2 Renaissance 140 C.t0 17t C. Architecture, Art Avrtist, Method To1
DE3 Enlightenment 17t C.to 18 C. Architecture, Art, Objects Artist, Knowledge To1
DE4 Modern 19t C.t0 200 C. Arch., Product, Process Objective, Method To1
DE5 Descriptive 50s to 10s Product, Process Concepts To1, To2
DE6 Prescriptive 40s to 10s Product, Process Analysis To1, To2, To3
DE7 Design 50s to 10s Product, Process, Framework To1, To2
thinking Service
DE8 Innovative 50s to Today Product, Process, New systems To1, To2
Service
DE9 Method-driven 90s to Today Product, Process, Opt. Statistics To1, To2, To3
DE10 Process- 10s to Today Product, Service, Opt. Ontology To2, To3, To3
driven
DE11 Integrative 10s to Today Product, Optimization Algorithms To1, To2, To3, To4
DE12 Evolutionary 90s to Today Product, Optimization Evolution principles To2, To3, T4

Table 9. Design engineering theories organized in categories by key characteristics and historical period.

The second review area represents applied design methods and tools enabling specific uses and subsequent
design workflows. For instance, these include fast concept hand-drawing techniques and integrated BIM methods (Deutsch,
2011). These methodologies enable different types of results at different design phases. This research is agnostic in terms
of tools, but these families of solutions present a specific way to tackle design challenges, which can condition its practice.

3.1.2. Design Phases for Products and Processes

Regardless the field of application, going from one idea to the actual fully-functional physical system is usually a long
process that requires multiple iterative steps (Dieter and Schmidt, 2012). Any design-to-implementation process aspiring to
produce a hardware-based system at the end most likely will involve multiple looped steps and workflows to design, validate,
and implement an idea. Moreover, this most likely considers both software and hardware. Across theories, models, and
authors multiple and different steps or phases are considered from both practice and theory standpoints.

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Planning Concept System-level Detail Testing and Production
Development Design Design Refinement Ramp-up

Figure 18. Product development phases after Dieter and Schmidt, 2012.

45

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

In general terms, multiple phases of product design could be organized in five main groups (Buede, 2009; Cross,
2008; Dieter and Schmidt, 2012; Dym, 2013): [1] problem exploration, definition and planning, [2] concept / preliminary
design, [3] embodiment design, [4] detailed design, [5] evaluation. While descriptive methods start with a problem exploration
phase followed by concept design activities, prescriptive methods begin the process with the analytical study of the problem,
followed by analysis and synthesis of the preliminary concepts. Understanding and identifying the overall design phases, as
well as main barriers and connections among them is key to better understand the broad spectrum of design theories.
Furthermore, synergies, overlaps, and connections among design phases, also help improving the quality and reliability of
the process as well as the system architecture itself. Table 10 shows multiple considerations regarding different design
phases across techniques as well as their main barriers and key connections. The next section 3.1.3. studies in detail those
groups of design engineering theories and summarizes their most important characteristics.

A. Classic

E. Modern

F. Descriptive

G. Prescriptive
H. D. Thinking

1. Innovative

J. Method-driven
K. Process-driven
L. Integrative

M. Evolutionary

Phase / Theory Main barrier ~ Key links

Customer needs, requirements,
constraints, problem definition, Client, 36713
information gathering, feasibility, ~ Heritage

heritage, reverse engineering, etc.

Preliminary design, architecture,

Problem X X X X X X X X X

Embodiment D. X X X x X x x x x x Materials, 'manufacturlng, Culture 301012
configuration, parametric, Resources

tolerances, diagrams, layouts, etc.

Tools,

Analysis X FEA, technical analysis, etc. Knowledge 57
Testing X Prototyping, testing methods, etc. Culture

Qualification, manufacturing, post-
processing

Marketing / Com. Visualization Society All

Decommission Culture

Table 10. Engineering design phases across multiple design theories.

Implementation Technology 5,9

46

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.1.3. Literature Review

The goal of this section is not to present a complete list of techniques from a chronological or development standpoint,
but rather a comprehensive reference of the most relevant theories and methods to this date affecting both [1] how a
hardware-based complex system can be described and designed, and [2] all design thinking methodologies associated to
its development. Within the vast exploration of design methods over the years (Wynn and Clarkson, 2018), this review as
the previous section 1.7 about domains explained, merges both architecture and engineering practices across history.

3.1.3.1. Traditional Design Theories

Perhaps one of the first attempts towards the study of what
it takes to create architecture, and therefore its design
methodology could be found during the Roman Empire. The ten
volumes of De architectura, written by Roman architect, author,
and civil engineer Marcus Vitruvius Pollio (80-15 BC) address the
three key principles of building design such as firmitas (strength),
utilitas (utility), and venustas (beauty) (Pollio, 2018). These
principles became later a foundational part of many modern
design theories, and they established the first design principle
behind not only building developments, but also complex
machines at the time such weapons, dewatering machines, and
military devices, among others. His approach not only considered
the design of the object itself, but also the role of the designer and its context addressing weather, location, logistics, etc.

During the Renaissance, Leon Battista Alberti contributed to the beginnings of a systematic design theory by
addressing critical theoretical principles in the design of buildings (Lewis, 2020). The number of components, the control of
their outline, and their position became the guidelines of his design methodology as explained in his ten books De re
aedificatoria (On the Art of Building). The development of complex systems such as a buildings, during this time was based
on numerical relationships ruling the work of architects and artists such as Leonardo Da Vinci (Z6liner et al., 2003),
Brunelleschi, and Bramante (Roth, 1994). Thus, the object of the design process still goes through a heuristic process of
conceptualization, but there is already an initial analysis of the problem and a synthesis of the solution. Quite often, a trial
and error approach validates the final implementation, and influences the theorical principles afterwards.

During the age of Enlightenment, a renewed sense of rationality in the design practice was developed, bringing the
notion of unreality as a way for design to explore possibilities that cannot be implemented in real life. The works of architects
such as Ledoux or Boullee are paradigms of this approach, opening the space to a rational exploration of impossibilities.

The industrial revolution started to merge again engineering and classic
architecture, leading to new range of materials, uses, and technologies. From the
works of Violet-le-Duc and the Arts and Crafts movement in the late XIX century

L€ <ORKVSK' to the Art Nouveau, the practice of design not only affects the product itself (e.g.,
building, furniture, decoration objects, etc.), but also encourages reflection about
the process itself (Benevolo, 1977). This served as a foundation of many
developments occurring in the practice of engineering and architecture design
during the Modemn era in the beginning of the XIX century. Among many
contributors of this time to the development, theory, and practice of complex
systems from both architecture and product design there are two very relevant.
First, the Bauhaus school founded by Walter Gropius in 1919, which made an
emphasis not only on the practicality and innovation of the product, but also the
constraints of cost and production. Secondly, the figure of Le Corbusier is also
Figure 20.The Modulor. Le Corbusier 1943, very critical among all architects, designers, and engineers of the time. He
introduced key systematic principles regarding both the design construct and the

design process itself, while enabling an optimization of such designs through combinations of key design features such as

47

UE}@@D n

| l
|

ml=naln

8 i) bt "

ol

L]

Figure 19. Ancient Greek house drawing by Vitruvius

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

reinforced concrete columns, standardized stairs, and open floors (Benton and Cohen, 2019). In his book Five Points of a
New Architecture, he presents a systematic approach to the practice of architecture. His work also highlighted the importance
of initial analysis in the synthesis of architecture solutions (Jencks, 2000), also affecting product design after World War Il.

Descriptive design methods have been used
General
information

since the beginning of time. However, it is in the
contemporary world and since the beginning of the XX
—» Design operation Outcome

century when the theories about the design practice and
design engineering methods really advance. Such
design methods were later described by people like
Frenchin 1985 (Cross, 2008) in which they start with the
exploration of the problem, then with the generation of a

Specific
information

concept that is evaluated later, and finally with its o s 0O
communication. This approach could be fast, but it is e Evaluation o
limited in the use of optimization and parametric tools to STEP

assess other solutions. Modern design approaches

divide this complex problem into a hierarchical construct, Figure 21. Asimow design process (Dieter and Schmict, 2012).

using abstraction, modularity, and problem-thinking from

both top-down and bottom-up approaches, as well as the linearly and iterative waterfall approaches (Shukla and Krishnan,
2016). A simplified, yet very powerful approach to the design process was given by Morris Asimow based on a series multiple
design sub-processes (Asimov, 1976). These sub-processes are based on information gathering (general and specific),
design operations, and the evaluation of the outcome. This simple approach is repeated iteratively to explore alternative
solutions, develop mathematical models, define subsystems, and address its implementation (Dieter and Schmidt, 2012).

The modern systematic design approach has developed since the

1

System studies late sixties by authors such as Pahl, Beitz, March, and organizations such
5“‘"""'““'@*”‘a"*"“’ as the Verein Deutscher Ingenieure (VDI). They presented a prescriptive

Goal programme
Goal setting, problem formulation

; methodology (Cross, 2008), based on system interrelationship. Energy,
I material, and signals are the key drivers at the base of functional, working,

| constructional, and system relationships that organize the designer
R e —— approach toward the challenge ahead. Under this light, “designing is the
Systom vyntats | ‘ ’ optimization of given objectives, against conflicting constraints” (Pahl et al.
i

Development of solution variants

2007). Thus, both product and process design are organized around basic

; . | phases of analysis, synthesis, and development. This specific design

System analysis

e Shiiow o Wi ‘ I method influences the full design process including: problem and task
<§'>—— e | definition, information gathering, concept generation, evaluation,

System evaluation . embodiment design and detail design (Dieter and Schmidt, 2012). While
Evaluation of variants against goal programme X there are iterative cycles in between such phases, that enable among other
<f;>—R . things, the optimization of the final solution, this approach could become

System dedsion rigid and often leads to strict procedures within the culture of an
Optimum system selected organization, due to lead-times and risk posture. This methodology is widely

— . | distributed, and often aims towards developing a point design or a defined
poem impl;‘;aﬁm — family of solutions. It is more prone towards quantitative requirements rather
Planning the next system phase than qualitative ones, and it discretizes all disciplines involved.

Within the systematic view, theorists such as March proposed a

system based on a production-deduction-induction scheme. The analysis of

Figure 22. Systematic System Design (Pahl requirements produces presuppositions that the designer could use to
and Beith 2007). foresee and analyze the performance of a design, as well as to make
changes accordingly (Cross, 2008). This is an interesting approach since

while being systematic in nature, it addresses the design approach from an intuitive and psychological standpoint.
Nevertheless, the traditional systematic design approach towards analysis, synthesis, and evaluation, could also be altered
48

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

creating a bridge between descriptive and prescriptive methods when it comes to the design process. As such, the design
process could start from a synthesis approach leading to analysis and evaluation (Seider et al., 2016), as chemistry
engineering exemplifies. Under this prescriptive perspective the design space was defined by Uliman, Wood and Craig in
the 90s (Ullman et al., 1990) and Dym reapplied it in this century (Dym, 2013) as Figure 23 shows:

EXTENDED
MEMORY
\ Notes
Drawings
\ Sketches

Computer

N
N
N

Given Constraints
Colleagues/Clients
Handbooks

Catalogs

EXTERNAL
ENVIRONMENT

Figure 23. Design environment (Ullman et al., 1990)

N
Datab:
X atabase

STATE RS

Accepted design \

proposals
Constraints
Strategies

PROCESSOR

Short-Term
Memory

,yKQ,

Long-Term
Memory

.« Operators
« Control

INTERNAL
ENVIRONMENT

A constant and universal rule in this evolution of design engineering is that the more complex problems are, the better
methods designers need (Jones, 1992). Many of these design processes are conceptually organized as linear or in a
waterfall scheme with multiple iterative phases. However, also in the 50s, Evans describe the methodology to design complex
ships within a spiral (Figure 24) approach (Evans, 1959), addressing the complexity in between those phases.

LINES anD
I BONJEAN CURVES

Figure 24. Basic design approach. (Evans, 1959)

With origins in the 50s and authors such as John E. Arnold,
design thinking theories addressed a series of cognitive processes in
order to develop new and innovative concepts across industrial, social,
information technology, software, educational, and service areas, among
others (Curedale, 2013).

Design thinking presents three main areas, as defined by Plattner
et al., across all tools and techniques within this approach (Plattner et
al., 2010): [1] exploring problem space, [2] exploring solutions space,
and [3] aligning both iteratively. While the applications are plenty for this
approach, from a hardware-based standpoint the prototyping phase is
critical (Greene et al., 2017). This is clearly enhanced by the rise of new
rapid manufacturing techniques (Hopkinson et al., 2006) such as 3D
printing, as well as the infusion of smart devices and mechatronics in our
daily lives. This involves a design process tackling: [1] empathy with the
problem (understanding and observation), [2] synthesis, [3] ideation, [4]
prototyping, and [5] testing under an iterative approach among these

steps. These are also related to the creative process phases as described by: [a] insight (problem formulation, [b]
preparation (conscious solution attempt), [c] incubation (no conscious effort), [d] illumination (emergence of ideas), and [e]
verification (conscious development) (Lawson, 2014). Within the design thinking perspective, problem and solution evolve
together (Dorst and Cross, 2001) enabling further innovation. Such approach presents flexibility, but at the same time lacks

49

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

the structure that systematic approaches present. Agility and analysis are not necessarily part of this approach which is more
concentrated on initial phases of design engineering.

This creative platform led to other approximations based on the involvement of the human perspective in problem-
solving techniques such as human-centered design (HCD), with the objective of addressing user needs, improving user
experience, reducing stress, improving competitive advantage, and enhancing sustainability (Rosenbrock, 1989).

Similarly, User-centered design (UCD) develops a framework that considers goals, users, environment, tasks, and
product workflows (Norman and Draper, 2018). The objective of such approach is to simplify and clarify the process, while

Design Thinking ‘:'l'::; { Observe (s"(’r‘,'g;;" | 1deate | Prototype [Test)
Methodology A /A /] & / A / \ / \ /

Design Flow \ u) ﬂ °) s }/) \M 5 .1\ -) s- } »IV ’ ’P- N >,- } > “‘ o ' T

— e e R oo - ~ ~—— ~r— ~

—
Design Artifacts | Do

Figure 25. Design thinking methodology (Plattner and Meinel, 2009)

making the most of system restrictions and constraints. For this

T * purpose, the system considers the person, the scenario, and the
%{%mmmmmm e aoum use case. Similarly related techniques enhance the design
(Expian problem We—{Warm p mactics) methodology with an emphatic use of tests (Rubin et al., 2008)

and questionnaires (Vredenburg et al., 2002) as key tools.
Within the space of design theories and methodologies
lideats) avallzbie], ~more] o e there is another group of focused techniques developed towards
e e e the pursuit of more innovative designs. Among of them is the
widely distributed technique of brainstorming, which was created
in the 60s as a way to explore the trade space of ideas (Osborn,

1993). This is a facilitated and very effective activity that gathers
all ideas (including wild ones) from participants allowing people to
build new ideas upon someone else’s. Then these ideas are
combined synergistically to allow a collective development of new

% z and unforeseen options. See Figure 26 (Gwaur, 2016) to see the
[none] ¥ ¥ ey g .
e e CETEEENTD Gy initial process within this approach.
[no time left]
N Along these lines, Synectics is also a problem solving
¥ methodology for groups developed by George Prince and Gordon
e Williams (Gordon, 1961; Prince, 2012). The process uses the

Figure 26. Brainstorming Process after Osborn. (Gwaur, 2016). ratanhor as an idea development technique to make interesting
ideas feasible by identifying new paths of action.

Related to these approaches, TRIZ theory was developed by Altshuller in the 80s. It is based on 40 systematic
principles (Altshuller, 1984) that define in principle any complex system. He obtained these principles after studying
thousands of inventions. These principles when applied to a new system often contradict themselves. By managing such
contradiction, he developed a problem-solving approach that tackles the evolution of the system and the development of

50

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

new and innovative solutions. This technique has influenced

[po1 many others techniques such as systematic inventive thinking
E—FF—F—F——=i | L, or SIT (Horowitz, 1999) and OSTM-TRIZ (Fiorineschi et al.,
[[4| 7 2015) that uses a network of problems (NoP, Figure 27)
Q o HFT me| e | related to key TRIZ principles (Becattini et al., 2015). The use
[g [‘ i] 2 fresq) pos] ford of NoP to divide a problem into smaller problems is based on
rospord pori o P2 sl Aq e [..3,,1 the work of Khomenko about how to start the design process
R fﬁJ || Eﬂ iq@ [p.‘.;,] nT of complex systems. This could be summarized by several
= Lp— ‘"7 T W=t 1 - _g [.J,; basic operations between problems and partial solutions such
C plre e T as [1] a problem that implies a problem, [2] a problem that can
s B furg be solved and lead to a partial solution, [3] a problem that can
i e be partially solved by a partial solution, [4] a partial solution
:—;—f frosd that becomes a problem, [5] a problem that could be solved by
M S [.,—q ol a partial solution, and [6] a partial solution that remains a
s ”‘:] B2 |ER solution (Cavallucci, 2017). The design problem is therefore
‘.,',‘I'L;'Z.f—[p.’,u Es " o decomposed in subsystems, subproblems, etc. Then it is
s g e 34 = —ﬁig mapped using these mechanisms which will lead to a network
foa] [poad n,;‘] — ‘M] of contradictions based on known TRIZ principles.
'.,.,! = = ‘.,';| Algorithmic processes such as ARIZ have also evolved
Jg g w = from TRIZ to use currentimprovements in available computing
j:q L7 T capabilities. They are based on contradiction matrixes and
:] evolution laws to predict improvements on the system.
= Furthermore, the analysis of substance fields (SuField) allows

one to address the structure of the system through an
algorithmic approach and to transform it so more solutions
Figure 27. Example of network of problems. (Fiorineschi et al., 2015) could be obtained. These techniques are widely used in

multiple business sectors, although they present limitations
when creating ‘quantum leaps’, or in other words new and highly innovative systems for other uses. All these methods divide
a complex problem or system into smaller challenges.

C-K theory was developed by Armand Hatchuel as an innovative design approach based on a series of operations
between the concept space (C) and the knowledge space (K) as Figure 29 shows (Ingi, 2009). The goal was to create a
method that could bring innovative solutions, independent of the field, but also capable of embracing ‘crazy’ or disruptive
concepts. The disjunction mechanism proposes new concepts, and those are expanded within the C space. Then using
conjunctions new knowledge is created. Within this process new concepts can be created or conceptualized easily.

Similarly, morphological analysis was developed by Fritz Zwicky to address multidisciplinary complex problems that
cannot be quantifiable (Ritchey, 2002). With applications on many technical and industrial fields, this approach assesses the
concepts through a series or cross-consistency assessments (CAA). These allow the problem to be divided so ‘trivial
questions can be removed, which simplifies, and eases the design process. However, this approach does not include the
possibility of addressing geometry properly. Furthermore, some multidisciplinary problems are too complex to be divided into
components or parts that could be addressed by this method.

Another category of design theory refers to those method-based approaches developed upon scientific, algorithmic,
mathematical, and statistical principles. Among those is axiomatic design (AD) (Farid and Suh, 2016), which is quite
definitional. It was developed towards the beginning of the century to look at the design process from a mathematical
standpoint. Based on axioms that present an independence from functional requirements and a reduction of information, a

51

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Concept Space (C) Knowledge Space (K)

No lagical status (nor true or untrue) Preposition with a logical status

s - - — Ki: Existing knowledge

Initial concept

Crazy
Concept

K2: Added Knowledge

O from concept exploration

—=| K3:Kr brought by
"Crazy Concept"

Knowledge re-used
in more "sensible” concept]
to allow conjunction

\ Final concept

~ becomes new
~ -
S | ! knowledge

Figure 29. Representation of C-K process, and creation of ‘crazy’ concepts.

matrix is used to analyze the process to advance decision making within the system design. This method has been applied
in the optimization of lifecycle product developments extensively (Gumus, 2005).

Design research as a field (Robert and Curedale, 2013) encompasses many perspectives towards understanding,
and therefore improving the design process. Within it, design research methodology (DRM) uses the scientific method to
refine and better define requirements, as well as to enable general improvements of the design method by bringing
systematically previous results and overviews of existing research into the design process with scientific rigor. DRM brings
more rigorous methods and guidelines that can be applied to the design research while enabling a more efficient design
workflow (Blessing and Chakrabarti, 2009). The objective here is to address how to make a product more successful, how
such product is created, and how to increase the probabilities for such product to be successful. This framework is intended
to support both design and process development as well. This method includes the following phases (Figure 30): [1] research
clarification (literature analysis), [2] descriptive study (empirical data), [3] prescriptive study (assumption and synthesis), and
[4] descriptive study. Networks of influencing factors
are developed to understand the design situation,

Basic means Stages Main outcomes '
while reference models represent both the current

Literature Research Clarification | =— Goals des@gn situation and the impact model towards a

Analysis - desired situation.
l, A limitation of DRM is the fact that is does not
Empirmdat_a Deseriptive Study T | > Understanding provide a design technique by it§e|f, but rather a
ysis - framework to support the design process. Its
l thoroughness also makes the process not very
AES;um?ﬁon _— reseriiive Stad — Swoort flexible towards new ideas and techniques since an
Srmihess P Y op impact model needs to be in sight to define a goal.
lﬂ‘ This presents quite a contrast with more flexible
Emprical data pemesta | = Evaation F:oncepts such as C-K theory towards new descriptive
Analysis ideas. Table 12 presents a summary of all key
aspects and characteristics relevant to this research
approach as well as other related and similar

Figure 30. DRM framework after Blessing and Chakrabarti, 2009. techniques.

52

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

To summarize some other mathematic-driven approaches, Taguchi (Nair et al., 1992) and Six Sigma (Pande et al.,
2000) methodologies are based on statistical data as well as parametric values with the objective of improving the quality

and reliability of current system designs and associated processes.
6

Be = expected behaviour —» = transformation
Bs = behaviour derived from structure «— = comparison

D = design description

F = function

R = requirement

S = structure

Figure 31. Gero’s FBS framework (Gero and Kannengiesser, 2014).

Studying design theories from a process-driven design standpoint there are several key relevant approaches.
Design ontologies such as Gero's function-behavior-structure or FBS (Gero and Kannengiesser, 2014) study how the design
process actually happens, presenting later applications and implications. FBS is based on three constructs as Figure 31
shows. These include [1] function (F) which represents the teleology of the systems (what purpose of the artifact is), [2]
behavior (B) or what the system does, and finally [3] structure (S) or what artifacts or systems are made of and their internal
relationships. Designing within this framework is based on operations between these phases (Figure 31). Formulation (1)
goes from F to B, while synthesis goes from B to S. Behavior is split into expected and derived behavior, and it is separated
from the structure, with reformulation describing all iterations between them. Analysis goes from S to B, and finally
documentation departures from S. While this approach explains quite well some the basics of design mechanisms, the
process does not include very well other aspects such as materiality (substance) in the design process, conceptual
designing, highly dynamic processes, and fast environmental changes where the design activity actually happens (Gero and
Kannengiesser, 2004).

The Munich Procedural Model (MPM) is a process-driven
approach based on previous systems engineering and design
engineer approaches as Lindeman presents on Chakrabarti’'s

Fioral it book (Chakrabarti and Blessing, 2014). Within this approach a
,Q\"W“, y series of key points need to be addressed for a design to be
SR o Lo TR completed. This approach is mainly used for analysis purposes
Goal < i Y. Y i “~__ Ensuring and problem solving. These parameters (Figure 32) are
Planring G\:"":L"":QI""'f-"_:,Qa.Sv”;mm integrated within a networked scheme and they include: goal
N W planning, goal analysis, properties assessment, ensuring goal
2R XX achievement, decision making, task structuring, and solution
O O o
Task Decision generation (Lindemann, 2009).
Structuring Making

Along these lines, the FORFLOW model (Chakrabarti and
Blessing, 2014) was also developed to address product
development planning presenting six major steps: clarification,
Figure 32. Munich procedural model. (Chakrabarti and function and structure determination, solution principles and
Blessing, 2014) after (Lindemann, 2009). structures, concept development, system design, production
supervision, and starting point (Rodenacker, 2013).

53

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Concurrent engineering (CE) is a design engineering methodology (Salomone, 2019) widely distributed through some
complex industrial sectors such as aerospace, energy, or product design that tackles complex system design methodology.
Instead of following an iterative or waterfall approach, in which each discipline or design phase happens one after the next
one, (Prasad, 1995) in CE they all happen simultaneously (Figure 33). A series of interconnected models capture all key
functions of a complex system architecture such as energy, structures, thermal, communication, manufacturing, electronics,
etc. Once objectives, requirements, and constraints are set, engineering teams or individuals can keep assessing and
modifing their design models based on feedback from other disciplines, while their changes affect others (Backhouse and
Brookes, 1996a). This process continues until an optimal solution is obtained, and often it is connected to historical heritage
data and other statistical information models (Eastman, 2012). This process could be extremely fast in finding a compromised
solution, although due to the speed and the type of historical data being used, it could be quite problematic towards
developing new innovative or disruptive solutions especially without previous and relevant heritage.

Detailed D.

\

Waterfall Iterative Design Process (WA) Concurrent Design Process (NET)

Concept D.
Detailed D.

Process D.

Figure 33. Waterfall linear design process versus concurrent networked design process.

Set-based design is a subset of this methodology. It is a highly effective and efficient concurrent design methodology
developed by Toyota in the 90s (Liker et al., 1995). In Toyota’s model, the emphasis on communication across teams under
a matrix organization approach is as important as the technical design work itself. Ironically, the objective of this concurrent

process is not a point-design solution (Figure 34), but rather a series of
Marketng solutions at the system and subsystem level. Then analysis, prototyping,
manufacturing, etc. as well as key negotiations with vendors and suppliers

W of each subcomponent allow the process to narrow down the system
architecture and its components (Sobek et al., 1999). The process reduces
constraints required to achieve performance and allows the system of

Wb—\ vendors to fill the gaps. This requires a lot more work in the initial effort but
ensures a more efficient process along the way. These variations allow

——— better communication, greater parallelism, and data-based decisions, as
well as workforce learning and development. For its implementation, a
c 2 network of design agents is set-up for a negotiation process among them.

. They include the following subjects such as concept, styling, design,
v B components, and manufacturing.

pr—) Regarding modern architecture design, RIBA charted the design
A process in four main steps (Lawson, 2014) including: assimilation, general
study, development, and communication. These could be expanded to

Set-Narrowing Phase problem Correction Phase inception, feasibility, outline, scheme design, detail design, production info,
bills, tender action, project planning, operation, completion, and feedback.
This traditional process for architectural practice is iterative and linear,

Figure 34. Toyota’s CE approach. (Liker et al.,, 1995) however jumps among those steps can happen across the process.

Time

54

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Within an integrative design methodology (Cross, 2008) design and analysis could be done simultaneously. Thus,
the role of the designer iterates from problem to concept space continuously. Advancements during the last decades
regarding data-driven techniques not only enable this approach even more, but they also open the door to a different
approach to the role of the designer. There are several techniques and methodologies within this approach.

Integrated product and process design and development or IP2D2 (Magrab and Magrab, 2010) was developed due
to the influence of early stage decisions in the final cost of a system architecture development. The general objective of this
design process (Figure 35) is to reduce cost, increase quality, and increase the process efficiency, as well as to allow the
creation of more capable workforce teams in performing such processes. Team members participate in the decision process,
which is information-based. These inputs are scientific, and they are based on the experience of team members. This process
is concurrent in nature and presents four stages: [1] product definition, [2] concept development, [3] design and
manufacturing, and [4] launch. In this process the role of technology maturation is key, affecting decisions about
manufacturing, control, operations, and failure-modes.

Stase 1 Disposal or}
Stage 1 Define Customer and Establish|" | ==~ ~ " Recycle 1
Customer Needs e - — - - oot -
1
Y 4T !
Establish Company Strate !
pany 8Y l— i
Product goals s 2
Product benefits L] Define Product tage
Market definition and share
Customers Product performance
Sales volume Product features Il Generate Feasible Designs
Applicable technologies Determine competitive edge
Product target cost (hen‘chmar kinlg‘) i Concept generation
Schedule (product’s date in Functional partitioning
marketplace) (decomposition)
Quality plan Generate design specification
Business plan (financing,
manufacturing resources)
Innovation needed
Members of IP2D? team
Process Design Evaluate and Select Concept;
Create Embodiment
Select manufacturing methods| Design tradeoffs
and process parameters Generate product
Select suppliers configurations and Time
Complete cost analysis embodiments and analyze
Complete production them
i“sm‘i plan and schedule ™| Build, test, evaluate, and
earne Complete engineering verify design, fabrication
drawings and manufacturing
Complete product design processes
specification Generate engineering
Select assembly needs and drawings
procedures Select materials
Complete marketing plan Perform cost analysis
Manufacturing and assembly Identify suppliers
start-up plan Identify capital equipment
DFX (Table 2.1)
Product, marketing, process,
Stage 3 soc1.:|l, life-cycle, cqst, and
= environmental design
Manufacture and Assemble Market Product Customer Support | _}__
Maintain production e Distribute | Maintenance
schedule Install Service
Verify that product design Sales training Training
specification is met Warranty
Stage 4

Figure 35. Integrated product and process design and development or IP2D2
(Magrab and Magrab, 2010)

55

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

The contact and channel approach (C&C2-A) is developed and related to the function of a system and its physical
structure or embodiment (Albers and Wintergerst, 2014). This one is based on the fact that designers use geometry in early
phases of the process to facilitate the design process, as well as in the importance of analyzing the geometry of current
products to understand how they really work. The objective is to better understand the relationship between the function of
the system, and its physical structure or geometry, emphasizing all relationships between quantitative and qualitative
descriptions of such system. This approach defines three key elements: [1] channel and support structures (CSS) or physical
structures, [2] working surface pairs (WSP) or interfaces, and [3] connectors (C) as Figure 36 presents. A limited number of
these elements perform a given function, conforming a wirk-net. Multiples wirk-nets create a work-structure. This type of
analysis optimizes the system by understanding its functionality.

design space

Figure 36. C&C2-A approach with connectors, working surface pairs (WS), and channel support structures (CSS)(Albers and Wintergerst, 2014)

Generative design (Shea et al., 2005) is a performance-based (Brandon and Kocatirk, 2009) algorithmic iterative
design process. To obtain certain goals, a series of system design constraints are defined and an algorithm produces multiple
outputs, geometrical or otherwise (Wu et al., 2019). Then designers can assess the relative cost of each parameter and
perform variations in real time that ripple through the system. Instead of several designs, thousands of designs can be done
simultaneously. In the context of hardware-based design this approach has been especially used and developed by multiple
design software companies (Keane, 2018) toward the infusion of structural topology optimization techniques (Rozvany and
Lewinski, 2013) in the last decades. This field is still in development, and it is aiming towards a full multidisciplinary full-cycle
approach, in which the designer is key to create the proper technical questions. This approach presents the following loop
design cycle: [1] performative simulation, [2] generation, and [3] evaluation (Brandon and Kocatirk, 2009).

i te Together

Figure 37. Example of a generative design applied to structural optimization design.

56

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.1.3.2. Design Engineering Tools

Once design engineering theories and models have been studied, the evaluation of design tools available for these
methods is also necessary. This analysis allows to address gaps and connection across methodologies, as well as to assess
how such tools influence both design theories and practices. Table 11 shows several main groups of tools identified within
this research, and Table 9 links design theories and models among these toolsets. Finally, Table 12 presents a detailed
summary and analysis of theories, models, and tools.

IDCode Category Time Period Based upon Driven by

To1 Analog 300 BC to Today Manipulation of real objects Designer

To2 Digital 70s to Today Development of virtual constructs ~ Designer, computer power

To3 Code-based 90s to Today Data and algorithm programming DIESIUITEN, 1T Els), B,
computer power

Integration of implemented
To4 Integrative 10s to Today artifacts, functional actuators,
system digital models, dataflows

Designer, rapid manufacturing,
computer power

Table 11. Design engineering tools by categories.

One of the activities that highlighted the beginning of humankind culture was, or in other word sketching and marking
enabled by multiple tools. With the first sketch on the wall of a cave humans started turning marks on a surface into abstract
concepts (Gombrich, 1995). This was a necessary mechanism towards written language and drawing among other
constructs. In the context of creating hardware-based system architectures, there is a broad spectrum of tools being used.

Among analog tools, we include those based upon the manipulation by hand of objects and markings on different
mediums. These techniques can be applied to both physical and digital frameworks. These include the following.

e Conceptual wording. This is based in the use of words
to describe, think, communicate, analyze, and discover.
It is a very powerful concept design tool (Cross, 2011).
The association of concepts with words allows the use of
metaphors and allusions of concepts, so complex ideas
can be managed without the use of geometry. Among
other techniques writing, word listings, whiteboarding,
storytelling, six-thinking hats, brainstorming, mind maps,
and pros & cons are often used during the whole design
and implementation processes. This is especially relevant
during the generation of new ideas and concepts either
individually or as part of a group activity.

e Sketching. This is one of the most powerful tools within - i, 38 Setching on a notebook
the design engineering arsenal and it is also one of the
oldest when designing hardware-based systems (see Figure 38) or objects. From mechanical and electrical
engineering to architecture designs, sketching is a powerful method to explore, convey, and validate ideas (Ullman
et al., 1990). This technique using free-hand drawing allows to create very detailed and proportionate designs (e.g.,
renaissance studies and engravings) as well as fast, intuitive, and insinuating drawings (e.g., modern architecture
sketches). This technique also allows to describe individually, collectively, digitally, and physically complex
geometries, concepts, processes, etc.

o Technical Drawing: The next step beyond sketching is the detailed graphical representation of complex systems
using drawing tools and codes. This can be done on paper or digitally, and it allows to capture, study, and
communicate geometry, organization principles, arrangements, behaviors, tolerances, implementation instructions,
etc. This technique allows to represent and study architecture design, mechanical assemblies, electrical circuits, or
microchip blueprints. Furthermore, this old tool also allows to assess system feasibility towards implementation.

57

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

o Tinkering. Using crafts, fidget toys, and other simple physical elements to conceptualize, communicate, or visualize
ideas is a common and useful tool in multiple creativity environments (Nyqvist, 2016). Among many others these
include techniques such as toys, clay modeling, collage, doodling, tinker toys, etc. These tools can also be used
digitally within multiple software frameworks allowing virtual, augmented, and digital creations.

These techniques enable and substantiate multiple fast-paced design workflows due to the high interaction with the
individual. Within the physical world, and nowadays also within digital or virtual realities, they allow a rapid feedback between
the idea and the construct. Thus, they present a good platform towards [1] studying the problem, [2] exploring and inspiring
new and innovative solutions, as well as [3] providing detailed technical documentation and direction.

The second group of digital design engineering tools is possible due to key advancement in the last decades in
computer systems. These can only be used digitally within software frameworks. The most relevant are the following.

—=

o Computer aided design and manufacturing
(CAD/CAM). This technique uses software frameworks
where the designer can create precise geometrical
models and assemblies (Leondes, 2019). They also
allow to capture and create solid and surface models,
assembly constraints, geometrical tolerances,
mechanical behaviors, materials properties, and even
structural analysis, among many others. Furthermore,
simulations and manufacturing studies can also be
accomplished using these tools.

o Building information modeling (BIM) was developed
originally by the military and provides a multidisciplinary
design framework where the real building can be
mimicked, copied and created digitally (Kensek, 2014).
This technique allows to incorporate geometry,
assemblies constraints, energy studies, illumination studies, construction phases, uses, schedules, behaviors,
structural schemes, cost studies, technical schemes (e.g. HVAC), physical properties, and operation studies, among
many others (Deutsch, 2011). Like CAD digital components and assemblies can easily be dragged and infused into
the model to create more complex assemblies as well as to address parametrical studies and variations.

o Building energy modeling (BEM). Based on BIM, this is a software framework and multi-purpose tool to assess,
design, validate, and qualify building designs based on energy analysis (Brackney et al., 2018). The use of energy
as a design tool or design principle for complex system designs (Cody, 2017) is a new and very interesting approach
tackling both the implementation of the system as well as operations and manufacturing processes.

o Model-based system engineering (MBSE). These tools are mainly based on system modeling tools (Borky and
Bradley, 2018), software frameworks (e.g., SysML - (Friedenthal et al., 2008), and languages like UML (Fowler, 2018).
These techniques are based on abstract models describing requirements, structure, parametrics, behaviors, lifecycle
phases, and risk assessments among others aspects of a complex system architecture (Fernandez and Hernandez,
2019). They can also be used beyond systems engineering applications as design engineering tools towards
assessing and studying trade space options and non-geometrical relationships among subsystems and components.

All these techniques can tackle complex systems designs independently of the field of application. The number of
subcomponents is virtually limitless, and they are only constrained by the computational power of the equipment. They also
enable a very different design flow independently from the design scale. These tools also allow very fast changes of
standpoint, detail definition, and time phases. Thus, they can address both details (e.g., bolt definition) and overarching
architecture design principles. Their use influences design models tackling the development of families of components, as
well as their modifications and changes over time through a simplification of the process (less time) and a reduction of the
cost (less workforce and tools). While all previous tools could use digital, virtual, and software frameworks, they do not
necessarily need to use mathematical-driven principles in their workflow. However, there is a complementary family of
techniques based on the use of codes and mathematical models. Several of these groups can be identified as it follows.

58

Figure 39. Technical drawing by hand.

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

o Math-driven tools such as mathematic and multi-physics
programing languages (Tiller, 2012), software frameworks
(Wolfram and lllinois), 1999), and other programmable tools
allow designers to quickly create analytical and descriptive
models for design, study, assessment, and validation of
multiple topics across all design phases of a system design
and implementation. These models are the foundation of
computer analysis and provide broadly available techniques
such as finite elements analysis or FEA (Bathe, 2006).

e Code-based tools. While previous tools provide a framework
with predefined computer functions, this toolset is based on
the creatition of an algorithm or model from scratch by the
user (Pierce and Pennsylvania), 2002). These code-based
software tools (Figure 40) allow to prototype, design, and
deliver custom models supporting hardware-based designs,
as well as the delivery of fully finished mechatronics and other
robotic systems that are enhanced by software.

o Parametric tools are a subset of previous techniques. They
use physical models, CAD, math, code, and MBSE to address Figure 40. Generic coding tools broadly used currently.
and study the creation of multiple design solutions, families of
solutions, and variations regarding the same system. These present multiple dimensions, such as 1D (code), 2D
(drawings and plates), 3D (volumes) (Kimura, 2001), and 4D (movement). They also allow to create catalogs and
manage data regarding constraints, requirements, features, comparisons, etc. from multiple and different views.

o Generative tools are algorithmic and parameter-based design and assessments software tools (Shea et al., 2005).
They are a subset of computational design tools (Autodesk, 2020), using mathematical laws and algorithms to create
variations of parametrical variables. These tools are ideal to explore trade space options as well as to create designs
based on analysis inputs such as FEA models. Optimized topologies (Rozvany and Lewinski, 2013) for additive
manufacturing are also a good example. These techniques allow to reduce mass and assembly components, as well
as simplify manufacturing among other benefits derived from such a new design workflow.

Figure 41. Example of a mechanical assembly redesigned using generative design tools (Autodesk, 2020).

59

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Finally, the integration of all the above tools enables two main families of techniques that can create fully functional

integrative models of a complex hardware-based systems architectures across all design phases, virtually and physically.

Digital Twin (DT). These are cyber-physical —
frameworks (Figure 42), models, and tools that g
allow to design, evaluate, and assemble digitally
complex system architectures before they are
physically built (Tao et al., 2019). This technique
is increasingly present across the production
lifecycle (Jones et al., 2020). The concept of
system twin started with NASA during the Apollo
program, and enable the creation of an
engineering copy for testing, analysis, etc. Today
DT is a digital copy of the real system addressing
design, optimization, metrology, validation, and
manufacturing, as well as other new areas of
data-driven services (Boje et al., 2020). This
framework is completed with a feedback loop
once the system is implemented which allows Figure 42. Physical to virtual process and back (Jones et al., 2020).
real-time optimization and system performance

tuning afterwards. Applications include manufacturing (e.g., industry 4.0), architecture (Farsi et al., 2019), etc.
Rapid Prototyping (RP) is based on the use of rapid manufacturing and prototyping tools such as 3D printing,
breadboards, etc. (Kamrani et al., 2016) to assess, study, design, implement, validate, and communicate functional
hardware-based systems. They are applied to mechanical systems, mechatronics, electrical systems, robotics, and
software systems, among many others. This technique offers a fast approach towards implementing ‘functional-
enough’ systems, however improvements in advanced manufacturing such as 3D printing allows this technique to
produce faster and more fully defined functional components.

sical-Virtual Connection/Twinning

<
Virtual-Physical Connection/Twinning

Phy:

Twinning Rate

3D CAD
Data

Physical

Mockup Data

CAD Solid 3D Modeling
Model

CAD to STL

2D .\llrl«wcl

CAD to ONC Data Conversion &

[~

Build RP Machine
Prototype Prototype

Post Processing

Figure 44. Rapid prototyping workflow (Kamrani et al., 2016). Figure 44. Examples of rapid prototyping tools. '

These final techniques bring a unique perspective upon the latest advancements in manufacturing and digitalization.

They also connect the beginning (e.g., concept development) and the end of the design process (e.g., manufacturing,
advance simulation, etc.) from the start of the design activity. These two approaches reshape the traditional evolution of the
design process due to different reasons such as [1] concept design and manufacturing simultaneous start, [2] cyber-physical
connections among disciplines and models (networked design process), [3] capture, reuse, and comparison of complex
design work, [4] simultaneous system optimization, and finally [5] real-time adaptable complex design workflows.

60

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.1.3.3. Literature Review Matrix of Design Theories and Models

Based upon the introduction in section 3, Table 12 presents a summarized review of multiple design engineering
methodologies and theories from a literature review and practice standpoint. A brief description of their key characteristics
is provided as well as an evaluation of several aspects regarding hardware-based complex systems such as:

o Foundation. This is a summarized description of key principles and characteristics.

o Design phase. What phases are addressed by this approach? Basic design phases are numbered as it follows: [1]
planning, [2] problem study, [3] concept design, [4] embodiment design, [5] detailed design, [6] analysis, [7]
optimization, [8] testing and validation, [9] documentation, [10] implementation, [11] delivery, [12] marketing, [13]
operations, [14] decommission, [15] product or process recycling (Seider et al., 2016) (Haik et al., 2010). A colored
scale is presented based upon these phases and the level of structure and detail of each method (Figure 45).

<+— < structured | < detailed | earlier later | > detailed | > structured —»

2

Planning : Problem : Concept EEmbad\m!nlE Detail : Analysis Eomimi:.-timE Testing EWEME Delivery 5marmstlng Ef.)paraﬁms:‘l:v:a:::m'seimE Recycling
Figure 45. Color scale addressing time, detail, and structure level of a design method.

o Geometrical information. Does the design methodology allow to use, manage, author, and edit geometrical
information (e.g., volumes, shapes, sections, tolerances, and other graphical constructs)?

¢ Qualitative / quantitative (Qt./Ql.). Can the method be used to qualify, qualify, or both multiple design parameters?
Scope. Can the design methodology handle point-design solutions (PDS), families of point-design solutions (FDPS),
development process (DEV), continuous designs (CONT), or a combination (COMB) of them?

o Adaptable. Is the design approach adaptable to the challenge at hand through a flexible (FLE) or networked process
(NET)? Does it present a more rigid approach such as linear methodologies (LI), iterative cycles (ITE), waterfall (WA),
or spiral approaches (SPI)? Figure 46 presents graphically these types of methodologies.

-)—(- +_)— -

Linear Design Process (LI) Linear Iterative Design Process (ITE) Flexible Design Process (FLE)
G—
— (—)
(— —
(— (—
—)
Spiral Design Process (SPI) Waterfall Iterative Design Process (WA) Networked Design Process (NET)

Figure 46. Type of design processes and methodologies within the engineering design literature review.

o Perspective. Is the design method based upon a discrete disciplinary standpoint (DD) or a synergetic disciplinary
approach (SA)? Is it based on a ‘divide-and-conquer’ approach discretizing disciplines and subsystems, or can it
tackle simultaneously multidisciplinary problems?

e Optimization. Does the approach allow a parametric optimization of the system design?

Tool platform. What type of tool and technique does the design approach enable or support? This includes: [1]
mathematical models, [2] drawings, [3] CAD/PLM, [4] graphs, [5] Eng. models, and [5] documents or text.

e Reference. List of most relevant technical references and professional practice inputs that were reviewed.

61

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Theory/Method Foundation

Date

Phase

Geo.

Qt./Ql.

Scope

Adapt.

Pers.

Opt.

Tools

References

Design Theories & Models
1208 Yes QT/QL

DI NSEEST1I Driven by art and architecture.
Production based on thinking and making.
Vitruvius’s Strength + utility + beauty. Architecture
driven theory.
DAY ETELEN YN Driven by art and architecture.
M Component + outline + position.
Alberti’s Architecture driven theory.

DRSS M R Driven by art, architecture, and objects.

Impossibility and abstraction as design
el e tool. Architecture driven theory.
Product + Process. Based upon use of
VISR materials & technologies. Architecture and
product driven.
=YL Y IO Driven by product and process.
Product and architecture driven.
=ENNETR] Practicality, innovation, constraints (cost),
and production. Education.
Systematic. Architecture driven.
(YL Combination of key elements. Scientific
analysis.
DI TR0 N E xplore, concept, evaluation, detailing.

Design by drawing for continuous changes.
m Need - concept — embodiment - details.

Multiple design operations are connected
on a loop (general and specific information
— deign operation — evaluation — outcome —
next operation).

Critical design spiral based upon iterative
[AZLERTTIEN and heuristic principles. Based on designer
preferences. Parametric.
DEG Prescriptive D. AnaIyS|s,l sypthesm, development,
communication.

Problem analysis, conceptual design,
scheme embodiment, detailing (objective
[W(EY] tree, function assessment, performance,
quality functions, morphology, weighted
objectives, value engineering).

Prescriptive method. It is based on system
Pahl & Beitz mterrelgtlonshlps I(energy, signal, material).
Analysis, synthesis, and development.
Enabling complex system design.
VDI 2211 Problem gnalysis, sub-prqblems, suitable
sub-solution, overall solution
m Solution-focused approach. Synthesis-

Morris Asimow

driven. Production, deduction, induction.

Systematic design thinking. Training,
programming, data collection, synthesis,

10th

20th

20s

30s

50s
-10s

70s

90s

70s

50s

60s
-10s

40s
-10s

60s
-10s

80s

80s

80s

1,23

259,

—
N

N
L
N w©

N
N
)

N
N
)

N
N
9

IaaiENdl —
w o w B

45

1-10

1-10

1-13

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

N/A

Yes

Yes

QL

QT/QL

QT/QL

QT/QL

QT/QL

QT/QL

QT/QL

QT/QL

QT/QL

QT/QL

QT/QL

QT/QL

QT

QT/QL

QT

QT/QL

QT

QT

QT

QT/QL

QT

N/A

PDS

PDS

PDS

PDS

PDS
FPS

PDS
FPS

PDS
FPS

PDS

PDS
FPS
DEV

PDS

PDS

PDS
FPS

PDS
DEV

PDS
DEV

PDS
DEV

N/A

N/A

N/A

N/A

N/A

N/A

N/A

FL

LI

ITE

FL

LI

LI

WA

NET

ITE

SA

SA

SA

SA

SA

SA

SA

SA

DD

DD
SA

SA

DD

DD

DD

SA/
DD

DD

No

No

No

No

No

No

Yes

No

No

Yes

Yes

No

Yes

N/A

N/A

N/A

Concept

Drawing

Drawing

Drawing

Drawing

Drawing

Drawing
Math

Drawing

Drawing

Drawing
CAD
Math

Drawing
CAD
Math

Drawing
Math

Drawing
CAD
Math
PLM

Drawing
CAD
Math

Drawing
Math

Drawing
CAD

(Roth, 1994)

(Koskela et al., 2014)
(Natali, 2013)

(Pollio, 2018)
(Benevolo, 1977)
(Roth, 1994)
(Vitruvius, 2012)

(Evers etal., 2015)

Lewis, 2020)
Benevolo, 1977)
Roth, 1994)
Williams et al., 2010)

(Etlin, 1996)

(Benevolo, 1977)
(Roth, 1994)
(Williams and
Ostwald, 2015)

(Viollet-le-Duc and
Hearn, 1990)
(Roth, 1994)

Frampton, 2020)

Droste, 2015)
Lockwood, 2010)
Benevolo, 1977)

(Jencks, 2000)
(Benton and Cohen,
2019)

(Roth, 1994)

(Cross, 2008)

(Jones, 1992;
Lawson, 2014)

(Shukla and
Krishnan, 2016)

(Dieter and Schmidt,
2012) (Asimov, 1976)

(Vossen et al., 2013)
(Singer et al., 2009)
(Evans, 1959)

(Dym, 2013)

(Cross, 2008)

Pahl et al., 2007)
Cross, 2008)
Hubka, 2015)
Haik etal., 2010)

(Pahl et al., 2007)
(Cross, 2008)

(Cross, 2008)
(Cross, 2008)

62

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

_ development, communication. - Math
Need, collection, analysis, synthesis, Draui
selection of feasible concept, simulation, PDS "awing 7v1 etal, 2007)
optimization, implementation, test & 80s pulCl Yes QT FPS d Eo | iR ﬁ':g (Suireg, 1981)
evaluation.
Planning, concept generation, concept 40s PDS D’SXVS‘Q
evaluation, product generation, product 10s GVl Yes QT FPS LI DD Yes o (Uiman, 2009)
evaluation, documentation, communication DEV PLM
Briefing, analysis, synthesis, evaluation. 70s | 16 | Yes QT PO WA SA VYes D'G;vtrg E'Eg‘:’f:"{:g)‘”
Concept, embodiment, detailing. It enables PDS Drawing

structure, judgement, and managementof ~ 80s [EECEN Yes QT DEV ITE DD N/A CAD (Pugh, 1986)
Math

design. It uses a decision matrix.

FUSECEE b L IR 2 10s BEEN No QT PO WA SA Yes Math (Seideretal,2016)

Seider & Lewin
Eggert

evaluation.

Systemt.atiC Paralmgtric. Flornt\ulation, 10 PDS Drawing

generation, analysis, evaluate, S) CAD

optimization. Re-specification between 1 -10s Ll Yes QT EE\S/ U BE | i ';'Em e 20

and 3. Re-design between 2, 3, 5.

Ml Cognitive, strategic concept development ;
DE7 D.es'gn of complex problems. Understand, s 1-6 P QT/QL (Curedale, 2013)
Thinking p -10s e
improve, apply.

Creative engineering. Analysis, evaluation, PDS

and synthesis. Four areas of development:) Drawing (Arnold and Clancey,
Incremental innovation, radical innovation, Os NUl Yes QUL EE\S/ Ime SA Yes “eap 1959)

lower cost, and more salability.

[1] empathize with the problem
(understanding and observation), [2]

(S

(Curedale, 2013;

ESLLRNTTA] synthesis, [3] ideations, [4] prototyping and ~ 50s A5 Drca/xvg]g el AN
[5] testing. Wicked problems, problem 20s [l Yes QT EE\S/ LN I/\I/Eé(BT Fslfg\l:v:%glsﬁ’)201o)

framing, solution-driven, co-evolution of
solution-problem, abductive reasoning.

T—— HCD. Human perspective in every PDS Drawing (Rosenbrock, 1989)
S problem-solving step. Human skills, 80s (MBI QT/QL FPS ITE SA NO CAD g;g;g‘;g,gs:;ﬁgé,a,ﬂ
9 flexibility, knowledge, and creativity. DEV Text 4990)
; PDS Drawing (Vredenburg et al.,
Usi rCentered UCD. goals, user, environment, task, and 10s IR vYes QTQL FPS ITE SA NO Text 2002) (Norman and
DS workflows of a product. DEV e Dtralpe;,020%1)3) (Rubin
etal,

NN N innovation is a drive or a central objective. 520035 17 e

Facilitated idea generation. Gathers ideas
(including wild one) from participants,

(Kolko, 2010)

<
@
@»

llowi le to build id 60! Possibl PDS (Osborn, 1993)

. BN 2llowing peaple to build ideas upon s ., Possi Drawing (Wison, 2013)

REI] < cone clse's. These ideas are 20 2 o QTaL EE\S/ ITE SA NO "7 a1
wkins,

combined synergistically to allow a
collective development of new options.

Group problem solving. It uses metaphors PDS Drawing (Gordon, 1961)
RUEaile] as an idea development technique tomake 50s = 14 < N/A QL FPS ITE SA NO Text (Prince, 2012)
them feasible. DEV WEB (Wake, 2000)

(

(

(

40 Systematic principles. Contradiction A
LIi{r4 matrix, system evolution laws and SuField.
Algorithmic nature.

Cavallucci, 2017)
Schofer et al., 2015)
(Montecchi and
Russo, 2015)

PDS . Text
FPS ITE SA Possible

No QT Math

(Fiorineschi et al.,
Network of problems (NoP) contradictions PDS o Tet 219
OSTM-TRIZ and solutions based on TRIZ principles. g e FPS NET ~ SA Possble oy, 53232}}35‘3513?15’
Systematic inventive thinking. TRIZ-driven. PDS ' Text (Horowitz, 1999)
Close box approach (def. problem space). i | e T SA Possible i (Blokcy, 2018
Concept and knowledge space dialog. 123 PDS Drawing (Hatchueletal.
(X' 1TV Design formalization independent of 10s Jousgll Yes QUL FP NET SA Possble Text fch . iu
domains. Provides a framework to innovate ’ DEV Math 9002)

63

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

within the design process. “Crazy”
concepts are part of the process.

Complex problem solving based on cross
consistency assessments (CCA).

Morphology

ISR GG TATEN] Design theory based on specific
SN methodology or enhancements.

Axiom-driven approach for the design
process. Algorithm-based. Complex
problems are divided, and ‘trivial’ problems
removed.
Design research methodology provides a
research framework using scientific
techniques to support design and
requirement definitions.

Axiomatic Design
Statistical method to improve product and

m process design quality. Multidisciplinary.

Taquchi Statistical method to improve design
9 quality, and variation studies.

DE10 Process- Design approach defined by the process

driven Design gn app ythep '
Munich Procedural Model. Problem-solving
analysis. Seven steps.
Product design process. Clarification,
function and structure, solution principles

FORFLOW and structures, concept development,

system design, production.

Concurrent engineering networked
(WO ST process. Multiple disciplinary models
connected for simultaneous design.

Function, Behavior, Structure ontology-
driven design theory.

Concurrent engineering method by Toyota.
Broad design parameters left opened
longer and converging gradually. Agent
Interaction Diagrams.

Architecture design based upon

(=71 assimilation, general study, development,
communication. Jumps across steps.

Design + Analysis simultaneously
Concurrent engineering process. Data-
driven. Four stages: product definition,
concept development, design &
manufacturing, launch
Function-based design. Wirk-structure
made of wirk-nets made of CSS (channel

(93w I\ and support structures, (WASP) working
surface pairs, and (C) connectors for
design & analysis.

Algorithmic iterative design process, that
[T B e ED ST] produces multiple outputs based on
constraints and towards certain goals.

Set-Based Design.

90s
-10s

90s
-20s

90s

10s

90s
-10s

90s
-10s

90s
-20s

10s
-20s

30s
-10s

30s
-10s

90s
-20s

90s

70s

10s
-20s

10s

10s

90s
-20s

1-14

1-6

1-14

1-14

2-11

1-14

No QL
No QT
No QT
No QT
No QT
No QT

Possible QT/QL

No QT/QL
Yes QT/QL
Yes QT/QL

Possibl
o QT
Possibl QraL

Yes QT/QL
Yes QT
Yes QT/QL
Yes QT/QL
Yes QT

PDS

DEV

PDS

DEV

PDS
DEV

FP
DEV

FP
DEV

PDS
DEV

PDS
FPS
DEV

PDS
FPS
DEV

PDS
DEV

FPS
DEV

PDS
FPS

PDS
FPS
DEV

PDS
FPS

PDS
FPS

NET

ITE

WAT

ITE

ITE

ITE

NET

ITE

NET

NET

WA

ITE

NET

NET

SA Possible
DD Yes
DD Yes
DD Yes
DD Yes
DD Yes
SA Yes
SA Yes
DD Possible
DD/SA Yes
DD Yes
SA Yes
SA Yes
DD Yes

Drawing
Text
Math

Text
Math

Text
Math

Text
Math

Text
Math

Text
Drawing
Math

Drawing
CAD
Process

Drawing
CAD
Process

Drawing
CAD
Process

Text
Drawing
Process

Drawing
CAD

Drawing
CAD
Process

Drawing
CAD
Math

CAD
Math

(Massotte and Corsi,
2015)

(Salustri, 2014)
(Ritchey, 2002)
(Alvarez and Ritchey,
2015)

(Flanagan et al.,
2013)

(Farid and Suh, 2016)
(Park, 2007)
(Saha, 2014)

(Blessing and
Chakrabarti, 2009)
(Cash et al., 2016)

(Pande and Holpp,
2001)

(Snee and Hoerl,
2003)

(Nair et al., 1992)
(Roy, 1990)

(Gero, 2011)

(Gero and
Kannengiesser, 2004)
(Chakrabarti and
Blessing, 2014)

(Kan and Gero, 2017)
(Vermaas and Dorst,
2007)

(Chakrabarti and
Blessing, 2014)
(Lindemann, 2009)

(Rodenacker, 2013)

(Eastman, 2012)
(Backhouse and
Brookes, 1996a)
(Prasad, 1995)
(Salomone, 2019)
(Frey etal., 2011)

(Singer et al., 2009)
(Liker et al., 1995)
(Sobek et al., 1999)
(Maulana et al., 2017)

(Lawson, 2014)

(Magrab and Magrab,
2010)
(Rufe, 2013)

(Albers and
Wintergerst, 2014)
(Chakrabarti, 2019)

(Shea et al., 2005)
(Brandon and
Kocatiirk, 2009)
(Keane, 2018)

64

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Designers can tune them.

See section 3.3 for details. Design +
3] Analysis + Selection concurrently. This field
also relates to systems engineering.

=]
m
=
N
m
<

e
f=

=
(=]

MR Adaptable and innovative system design.
Design optimization, algorithms, CAD.

m
<
=2
o
=
o

<
o
@
@

=]
=

90s
-20s

1
) s

No

Yes

QT
QT

PDS
FPS

NET

NET

DD

Yes

CAD
Math
Process

(Wu etal., 2019)
(Marcus, 2014)

(Braha et al., 2006)
(Bentley, 1999)
(Hingston et al.,
2008)

LEYWELT] Physical, digital, or virtual. Scaled.

Writing, word lists, storytelling, six-thinking
[LENIRNLIGE hats, brainstorming, mind maps, etc. are
used to describe concepts, processes, etc.

Powerful tool that can used to described
complex geometries, concepts, process.
Individual or collective technique.

Detailed graphical representation of
complex system capture and communicate
geometry, order, arrangements, behaviors,
tolerances, instructions, efc.

Using crafts, fidget toys, and other simple
physical elements to conceptualized,
LILLENRTR] communicate, or visualized ideas (e.g.,
clay modeling, collage, doodling, efc.)
These tools are both physical and digital.

Technical Drawing

Lrikliell Digital, virtual, without scale.

Computer aided design and manufacturing
uses software frameworks to create
precise geometrical assemblies (solid
modeling).

CAD/CAM

Building information modeling provides a
multidisciplinary design framework for
geometry, phases, behaviors, and physical
properties. Imitates digitally a real system.

Building energy modeling, is a software
framework and multi-purpose tool to
assess, design validate, qualify building
designs based on energy calculations.

Model-based system engineering tools
could be use as design engineering tools,
towards assessing and studying trade
space options, etc.

MBSE Design

LLEE L LR EREN] Digital, math-based, without scale.

Math tools, such mathematic programing
languages, software frameworks, and other
ENG AL R IR allow designer to quickly create
mathematical models for design, study,
assessment, and validation.

Software code-based tools allow to
(o1 R ELELRGTIY prototype, design, and deliver tools to
support hardware-based design

These tools use physical models, CAD,
LETEN G Math, MBSE, etc. models to address and
study multiple solutions, variations, etc.

Design Tools

BC
-20s

BC

BC

10th
-20s

BC

80s
-20s

80s
-20s

90s
-20s

10s
-20s

90s
-20s

18th
-20s

1 8th
-20s

90s
-20s

70s
-20s

1-15

No

Yes

15
2-9,
29 IS
34 | Yes
Yes
Yes
Yes
1-15 [[\fe)
1-15 B
(= No
1-15)
1-8 No

QT/QL

QT/QL

QT/QL

QT/QL

QT/QL

QT

QT/QL

QT/QL

QT

QT

QT

QT

QT

QT

PDS
FPS
DEV
PDS
FPS
DEV

PDS
FPS
DEV

PDS

PDS
FPS
DEV

PDS
DEV

PDS
FPS
DEV

PDS
FPS
DEV

PDS

DEV

FPS
DEV

PDS
FPS
DEV

FLE

FLE

FLE

FLE

NET

NET

NET

NET

NET

NET

NET

SA

SA

SA

SA

DD

SA

SA

SA

DD

SA

SA

Partial

Partial

Partial

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Concept

Drawing
Concept

Drawing
Concept

Concept
Model

Drawing
Model
Math

Drawing
Model
Math

Drawing
Model
Math

Model
Math

Model
Math

Model
Math

Model
Math

(Lawson, 2014)
(Lees-Maffei, 2013)

(Wang, 2002)
(Cross, 2008)
(Ullman et al., 1990)

(Ullman, 2009)
(Dym, 2013)
(Goetsch et al., 2015)

(Nyquist, 2016)
(Fishel, 2018)

(Leondes, 2019)
(Rao, 2004)
(Soenen and Olling,
2016)

(Sendler and Wawer,
2008)

(Deutsch, 2011)
(Kensek, 2014)
(Kamrani et al., 2016)

(Brackney et al.,
2018)

(Clarke, 2007)
(Hemsath and
Bandhosseini, 2017)

(Fernandez and
Hernandez, 2019)
(Borky and Bradley,
2018)

(Dori, 2016)
(Friedenthal et al.,
2008)

(Tiller, 2012)
(Wolfram & lllinois),
1999)

(Chaturvedi, 2010)
(Bathe, 2006)
(Cottrell et al., 2009)
(Koutromanos, 2018)
(Barr & Massa, 2006)
(Pierce and
Pennsylvania), 2002)
(Bradley, 2011)
(Kimura, 2001)
(Dickerson and
Mavris, 2016)
(Corser, 2012)
(Woodbury, 2010)

65

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

(Shea et al., 2005)
(Wu etal., 2019)
(Agkathidis, 2016)
(Abruzzo et al., 2007)

Algorithmic and parameter-based design PDS (Gengnagel etal.

. and assessments tools. Multiple solutions ~ 10s X FPS Model 2011)
Generative Tools are created based on parameters and -20s Cl Yes QTAL DEV NET ~SA Yes Math (2Leagch and Yuan,
laws. Ideal for trade space exploration. CONT (,Sllnges and
Ahlquist, 2011)
(Rodrigues et al.,
2015)
. Physical + analog, + digital + virtual. 50s L
To4 Fully Functional Scaled approach, 20s YSVE Yes QT/QL
Cyber-physical models, framework, and PDS (Jones etal., 2020)
tools that allow to design, evaluate, and FPS Drawi Ep et al.,|2022001)g)
i rawing (Taoetal.,
TR o) 2ssemble digitally a complex system 105 NUYSM Yes QUL DEV NET SA Yes Model (Evengelne,2020)
before they are built and close the -20s CONT Math (Farsi etal, 2019)
feedback loop once the system is COMB (Boje et al., 2020)
implemented.
Use of rapid manufacturing and prototyping (Cooper, 2001)
tools such as 3D printing, breadboards, PDS {eneclell, 200

Rapid Prototyping

FPS (Bartolo et al., 2012)
Concept (Liou, 2007)
QT/QL FLE ~ SA Yes ‘gl (Rayna and
Striukova, 2016)
CcomB (Kamrani and Nasr,
2010)

etc. to assess, study, validate, and 50s
communicate functional mechanical, -20s
mechatronics, electrical, robotics and

software systems, among others.

Table 12. Design engineering theories and methodologies.

3.1.4. Conclusion
After conducting an extensive literature review, which is summarized on Table 12, engineering design theories,

models, and tools have been studied and evaluated from ancient times to the current digital state-of-the-art. Several points
presented in section 3.1.3.3 were used to study those techniques and models from the perspective of a hardware-based
system architecture design. This analysis allowed to identify several key gaps among them that are consistent across most
techniques and models. These gaps have been identified based on the following points:

Global stressors presented in section 2 influence both system architecture design and system design process. For
instance, the capability of a technique to enable or simplify the design process towards the creation of disruptive
ideas represents a criterion to assess the capability of such technique.

Complex systems related. Design techniques present gaps and enhancements capabilities towards addressing
complex systems design. These topics are used to assess their capabilities across the design lifecycle.
Hardware-based systems related. Similarly, it is crucial to evaluate if the technique or method is specifically capable
of handling hardware designs across all lifecycle design phases.

Design process efficiency. Finally, key gaps in these methods regarding their contribution to the efficiency of the
process and the result are another aspect to be assessed and evaluated.

These criteria points are relative. Thus, their characteristics, capabilities, and applications are the final contribution to

assess these conclusive remarks based on all points identified in section 3.1.3.3. In this final assessment, such inputs are
combined to identify all the most relevant and overarching gaps as it follows:

Synergy. All design theories tackling the development of complex systems present a ‘divide-and-conquer’ approach.
In general, a complex problem is subdivided into subsystems, disciplines, topics, and components which are tackled
individually. Later these are integrated and optimized. The iterative nature of linear, waterfall, or even more flexible
workflows comes often out of the need to find convergence across disciplines while considering workforce and
organizational resources. This is especially relevant across prescriptive methodologies (Cross, 2011), while some
methodologies such as DRM (Blessing and Chakrabarti, 2009), FBS (Gero and Kannengiesser, 2014), and MPM
addressing the design process as a whole. These address multiple phases of any disciplinary practice at hand, but
they still divide the complexity of a design challenge hierarchically. In opposition to contemporary models, pre-modern
theories such as Vitruvius's approach (Vitruvius, 2012) address complex problems as a whole dividing their
complexity not from a component-standpoint but rather from a perception standpoint. On the other side, state-of-the-

66

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

art (SOA) fully functional or integrative methods such as DT, generative design, and RP present synergetic
disciplinary frameworks. Within those, multiple disciplines get combined address simultaneously software and
hardware design topics. These tool-based methodologies or workflow also merge conceptual designs towards system
manufacturing and production. Thus, it seems than modern design theories, as heirs of discreet and empirical
perspectives coming from the industrial revolution (Deane and Deane, 1979), do not have a synergetic model capable
of embracing complexity from a holistic standpoint. However, while classical tools partially have such approach, SOA
design techniques already implement a feasible design context enabling the study of system complexity in detail and
from a multidisciplinary perspective.

o Qualification. While classical techniques allow to tackle both quantifiable and qualifiable aspects, modern and
contemporary techniques are focused on quantitative parameters, especially those based on mathematical principles
(Farid and Suh, 2016). When contemporary techniques such as morphological analysis (Ritchey, 2002) can handle
complex non-quantifiable challenges, they tend to do it from a non-geometrical standpoint.

o Continuity and linearity. Design models capable of tackling both complex geometries and quantifiable parameters
present across all different groups of design theories some form of iterative linear process. This is something directly
related to previous synergy and qualification gaps. Therefore, these methods tend to set a specific design objective
that is concentrated on a point-design or unique solution. Therefore, tackling the generation of a family of solutions
is not necessarily part of the workflow of these techniques beyond a small subset of parametrized solutions. On the
other hand, some complex system designs such as those within the category hardware-based system architectures
need a multidisciplinary approach. Such approach requires interconnection and refinement among different phases
of the design process. In summary, these design techniques do not look at the design workflow from a continuous
perspective, but the tools (e.g., CAD and BIM) present such capability. Among them, generative design techniques
preliminary present such continuous workflows but do not have an applied multidisciplinary capability yet.

o Adaptable. While in general design tools are quite adaptable to changes, especially those better suited for fast-
paced environments, the associated design process does not present the same level of adaptability across multiple
design phases. Once a concept synthesis has been obtained only the modification of parameters allows rapid
changes, but major divergences and changes in the system design require extensive efforts within the process.

o Innovation. In general terms, Table 12 presented techniques that especially address the development of innovative
ideas such as design thinking (Lockwood, 2010). These have a structured approach towards highly detailed technical
design of complex system geometries. However, those prescriptive techniques with highly structured and organized
methodologies are not flexible enough to easily infuse new ideas at different phases of the design process. These
methods allow to gradually bring more definition into the system design once a concept synthesis has been obtained.
Such synthesis requires though a thorough analysis of requirements. Nevertheless, major design changes entail to
restart the process all over again. These design methodologies do not have a clear and specific approach towards
the value and use of heritage as part of the design process. Techniques such TRIZ divide previous related solutions
using system design principles, but the relationship between innovation and heritage is not a part of the process.

In conclusion, there is a huge potential for new tools and methods capable of synergetic and multidisciplinary design
outcomes. Design engineering techniques present powerful capabilities and proven approaches, but there is not a clear
theory or methodology adapted to embrace these gaps across methodologies and eventually system characteristics.

These conclusions are part of the starting point for this research activity as the following chapters will elaborate. They
represent in combination with the upcoming section a foundational baseline, since they address both proven capabilities and
critical gaps in tools and techniques used in the design, implementation, and eventually operations of complex hardware-
based system architectures.

67

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.2. Systems Engineering Paradigms
3.2.1. Approaches and Categories

The second field in this literature review within the context of a multi-domain research is systems engineering (SE)
methods and theories. While previous theories and techniques presented a clear design purpose dealing with geometrical
relationships, systems engineering is about describing relationships and creating models that represent the system
abstractly. Systems engineering is about complexity (Borky and Bradley, 2018), or in other words it is about “internal and
external interactions, structures, behaviors”, and connections across components and system parameters. Typical areas of
study and practice of these methods are systems and enterprises over their lifecycle (Buede, 2009). These methods have
the objective of applying quantitative methods to “analyze, design, optimize, measure, document, communicate, and control”
such constructs (Borky and Bradley, 2018). In this section, ‘systems’ and ‘systems architecture’ have the same definition
that was provided in chapter one even if there can be differences and nuances among authors.

Similarly to the previous section, the main objective here is to understand, study, and compare multiple key theories,
models, languages, and tools that are used generally in SE studies. There are specifically relevant in Model-based systems
engineering (MBSE) as well as system of systems engineering (SoSE). Table 15 summarizes and provides organization and
context to this extensive literature review in the context of hardware-based system architectures.

The origins of SE are in the military as a process to create requirements for military systems (Badiru, 2019). Since
then, numerous standards and developments such as ANSI, MIL, ISO, CMMI, EIA, COSYSMO, etc. have been created and
used by governments, agencies, organizations (e.g., INCOSE), and professional groups worldwide. The scope of systems
engineering methods is very broad and includes requirements, operations, risk management, industrial processes,
manufacturing, systems control, construction, architecture, aerospace, and energy, among many more.

Table 13 shows under this perspective how this literature review is organized in a series of categories including
theories, standards, models, tools, languages, and frameworks. These groups represent an overall summary regarding how
SE techniques are applied and used, with an emphasis on the development of complex systems. Section 3.2.2 presents the
morphology of systems, while section 3.2.3 introduces a study of systems lifecycle from a SE perspective. Then section
3.2.4 introduces an overview of the SE practice landscape until today that is organized by topics, scope, and capabilities,
summarized in Table 15. Finally, section 3.2.5 presents key findings and conclusions.

IDcode Categories Sub-Family Code Description Driven by
This includes general SE approaches, historical

SE1 Theories / gE] ; g:stodricaél perspectives, and overall standards regarding the Eheory it
Standards - Slandaras foundation and bases for the practice of SE. ommunity
Models / SE2.1 Document-Based | This group relates to SE overall processes and
SE2 SE2.2 Lifecycle-based | constructs addressing SE lifecycle phases, SE engineer | Practice
Process SE2.3 Cross-cutting roles, and interactions with stakeholders, among others.
SE3.1 Documents
SE3.2 Diagrams
SE3.3 Matrixes They include specific technical methodologies and Systems
SE3 Tools SE3.4 Analysis toolsets defining the practice of SE such as diagrams, er): ineer
SE3.5 Graphs computer applications, etc. 9
SE3.6 Charts
SE3.7 Code

SE4.1 Modeling

SE4 Languages SE4.2 Systems These are mathematical and ontological languages and Standards

SE4 3 Mathematical codes for the practice of system engineering. Practice
SE4.1 Software Practice
SE4.2 Systems Eng. These are related to both methodologies and tools Capabilities
SE5 Frameworks | SE4.3 MBSE integrated within specific frameworks. These refine and So?tware
SE4.4 Architecture enable both practices and methods. Capabilities

SE4.5 General design
Table 13. Categories of systems engineering modeling tools, resources, and practices.

68

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.2.2. Components of Complex Systems

As stated in section 1.8, the concept of a system is based upon a series of elements and components working
together. Thus, a study of multiple SE approaches must address both the hierarchy and structure of those systems. This is
done under a hardware-based perspective, and as such the following components (Kossiakoff et al., 2020) were identified:

Context. This relates to the environment and framework where the system performs its function or purpose.

o Interfaces. Any system presents interfaces with other systems, its contexts, subsystems, and components based on
signals, data, materials, or energy exchange.

e Subsystems. These could be considered as “a major portion of the system” performing a “subset of the overall
function” (Kossiakoff et koal., 2020). These tend to be organized by disciplines (e.g., thermal, mechanical, design,
etc.), functions, and management reasons, among others depending on the culture of the organization.

e Component/ Assembly. These are lower-level entities and middle-level aggregations of subsystems.

e Subcomponents / Subassembly. They are composed of several parts performing elementary functions.

Parts. These are elements at the lowest level of a system. They perform no significant function system-wise besides
becoming elements within other components. They can be understood as the building blocks of the system.

Furthermore, there are several other levels above the system level such as:
Family of system (FoS) is a group of systems with common characteristics.

o System of systems (SoS) is made of multiple independent systems that are integrated altogether.
o Enterprise (SoSE) includes multiple SoS given a general structure.

Systems
Communications Information systems Material processing Aerospace
systems systems systems
Subsystems
Signal networks Databases Material preparation Engines
Components
Signal receivers Data Databases Power Material Thrust
displays programs transfer reactors generators
Subcomponents
Signal amplifiers Cathode Library Gear Reactive Rocket
ray tubes utilities trains valves nozzles
Parts
Transformer LED Algorithms Gears Couplings Seals

Figure 47. Hierarchy of complex systems after Kossiakoff et al. 2020,

Within the literature there are multiple types of parameters or variables related to the practice of SE. Some authors
(Liu, 2015) identified several basic parameters categories as it follows:

o Design-independent parameters (DIPs), which are related to external attributes and context characters that affect the
performance but not the system design.

o Design-dependent parameters (DDPs) that define the system itself and can alter its performance.

o Technical performance measurements (TPMs), which quantify DDPs.

69

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.2.3. SE Lifecycle Phases and Applications

In the previous section Table 10 and Figure 45 presented different phases in the development of complex system
architectures. While these phases do not necessarily happen in the same order, there is an overall increase in details and
structure along the way. The following Table 14 introduces a correlation between design engineering phases and systems
engineering development lifecycle phases (Badiru, 2019; Buede, 2009; Liu, 2015; Valacich et al., 2017). In the same table
there are references organized by phases with regards to several key aspects such as:

o Systems Value (Badiru, 2019). The use of SE pursues to improve and manage the outcome of the design process
enabling these characteristics across the system design process: [v1] affordability, [v2] practicality. [v3] desirability,
[v4] configurability, [v5] modularity, [v6] reliability, [v7] desirability, [v8] maintainability, [v9] testability, [v10]
transmissibility, [v11] reachability, [v12] quality, and [v13] agility.

o Application domains are specific areas and fields of application for SE practices across multiple system lifecycle
phases. Some of the most relevant domains are the following: [d1] requirements, [d2] physical, [d3] allocated
resources, [d4] interface, [d5] integration, [d6] qualification, [d7] human factors, [d8] ergonomics, [d9] vehicle
design, [d10] product design, [d11] process design, [d12] interactions, and [d13] risk, among others.

Theories
Models
Tools
Languages
Frameworks

DE Phases SE Phases Function / Task

Key domain Key Systems Value

Analysis
® Requirement
® Mission D1 V1-13
® Functional

P. Analysis

2| B e Operational needs

Design

® Alternative
evaluation

. Embodiment Preliminary Des.
Design Development ® Decision making

Performance

Analy5|s Analysis ® Optimization

B ostimization Optimization ® Concurent Eng

Testing Testing © Economy

Integration
('R Implementation Construction
Production

Implementation
Marketlng & ® Simulation
cDmmunlcatlon o Management
.--IIII -
Decommlssmn FHEEDal
Retirement

),

70

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Table 14. This table presents relationships across engineering design and systems engineering lifecycle phases.

3.2.4. System Engineering Methods Literature Review

This section starts with the assessment of theories, models, tools, languages, and frameworks regarding the practice
of SE towards the definition of complex systems. Systems engineer roles are not part of the scope of this research. The
definition of ‘system’ and ‘system architecture’ has been already established in section 1.8.

3.2.4.1. Theories and Standards

Historically, the beginnings of generic systems engineering as a concept is identified by many authors as a memo
created by Bell Telephone Laboratories in 1948 (Buede, 2009), with also some initial books about this discipline appearing
during the late 1950s and 60s. The RAND corporation introduced the concept of system analysis in the 1940s (Liu, 2015).
Arthur David Hall established in 1962 that SE presented 5 phases (Buede, 2009; Hall, 1962): [1] systems and program
planning, [2] exploration planning, [3] development planning, [4] development, and [5] current engineering (with an
operational system).

Further developments in the practice and approach towards this emergent discipline were accomplished by
government institutions such as DoD and NAVY for the development of complex weapons systems. The NAVY program for
evaluation and review technique (PERT, 1958) was a manufacturing scheduling method based on activities, optimum costs,
and other schedule criteria (Liu, 2015) setting a historical heritage for all SE methodologies.

With the influence of commercial practices such as Hughes Aerospace, NASA's Apollo program started the
development of SE at the largest scale (Liu, 2015; NASA, 2007). Under NASA’s perspective SE and project control
techniques were connected with an approach based upon: [1] SE processes, [2] technical management processes, and [3]
product realization through a series of well-defined linear phases across formulation and implementation (Figure 48).
Stakeholder expectations, cost, system validation, and verification are key aspect of the NASA SE flow. Such SE practice
aimed historically towards a baseline design (NASA, 2007) that is performed within a hybrid waterfall networked process as
Figure 49 shows. This is based on key aspects such as: [a] mission objectives, [b] operational objectives, [c] mission success

Formulation A al Implementation
Pre-Phase A: Phase A: Phase B: Phase C: Phase E: Phase F:
Concept Studies Concept & Technology Preliminary Design & Final Design & Operations & Closeout
Development Technology Completion Fabrication Sustainment

el SRV WYYV

Technical Development

A
%

A A A A A . A \
A1 [61 % A1

% 57 —
§ | [==—] | | || [— | | — | ———1 |
g 2 | _ — 4
5 — —» > > —— >
g e 1 | 1 | 1 — 1 |
Kb A 4 v—v | |y =¥ || v =N ——— ve—ly

Figure 48. Conceptualization of NASA project life-cycle process and phases (NASA SE Handbook, 2007)
7

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

criteria, [d] general requirements, [e] decomposition constraints(functional, logical, behavioral, design), [f] trade studies, [g]
design studies, [h] product breakdown structure, [i] derived and allocated requirements, and [j] con-ops (Hitchins, 2008).

Stakeholder
Expectations

Mission Trade Studies and Iterative Design Loop

Objectives &|
[VIESTl I Start Constraints
Authority + Derived and

Design and Allocated
> |Operational 5| High-Level BPrOk(:jUCt ?EF?::E:.E;B
Objectives Requirements| reakdown
Structure = Performance
= Interface
v A
Mission

Success
Criteria

= Operational
= “llities”

No — Next Level

Legend:

No
D Stakeholder Expectations Definition

Rebaseline
Yes “requirements?

Select

O] Technical Requirements Definition Baseline

[Logical Decomposition
B Design Solution Definition

D Decision Analysis

Figure 49. NASA system engineering design process (NASA SE Handbook, 2007).

Lifecycle and role-based approaches such as those developed by INCOSE (INCOSE, 2015) since 1990s influenced
both the practice and education of SE practices. INCOSE (Liu, 2015) has developed an evidence-based SE competency
framework (SECF) based on several key groups, such as: [1] SE management, [2] professional development, [3] core SE
principles, [4] integration, and [5] technical competencies. They present multiple proficiency levels, as well as an organized
competency description including areas, descriptions, purposes, and roles. This theoretical framework allows individuals and
organizations to apply a systematic practice of SE. The INCOSE framework also covers the systems engineering
management plan (SEMP), which is a document covering process planning, requirement analysis, functional analysis,
synthesis, systems analysis, and control analysis. Furthermore, it also addresses key technologies and risks, while it also
describes the integration of systems engineering efforts, activities, schedule, and metrics for the process.

The increasing complexity of systems across industries brings the notion of SE management in the context of SoS
(Badiru, 2019). Systems of systems engineering (SoSE) is still a field under development but a few key domains are
recognized in the literature review (Boardman and Sauser, 2006; Luzeaux et al., 2013) such as: autonomy, belonging,
connectivity, diversity, emergence, resilience, and fluidity. Among relevant authors, the idea of an open system approach
(Jamshidi, 2011) is critical emphasizing synergism, self-government, reconfiguration, symbiosis, and modularity. The
concept of SoSE brings closer the notion of biological guiding principles (Sauser et al., 2010) in the current cutting-edge
practice of systems engineering.

Within such practice of SE the creation of SE standards has also been notoriously relevant. In the 1990s the
ANSI/EIA-632 protocol (Badiru, 2019) was based on a work breakdown structure (WBS) approach with potential
consequences for some fundamental processes such as: [1] acquisition, [2] technical management, [3] system design, [4]
product realization, and [5] technical evaluation. Among other historical SE standards (INCOSE, 2015) we can identify these:

e MIL-STD 499 (1969).
e |EEE 1220 (1999).
o ISO/IEC/IEEE 15288 (2002) tackles systems engineering, software engineering, and SE lifecycle among many other

standards within ISO/IEC/IEEE such as 24765, 29148, 42010, 15289, 15939, 16085, 16326, 24748-4.

e IS0 31000 for risk management.

72

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

o ANSI/AIAA G-043A-2012¢ for operational concept documents.

e XMI (metadata interchange) is an OMG metamodeling standard for exchange information via XML (OMG, 2015).

o MOF (meta-object facility) is an OMG model-driven engineering standard for CORBA architecture (OMG, 2019).

The constructive systems engineering cost model (COSYSMO) was developed upon the basic five ANSI/EIA-632

principles extending them to another 33 activities. The COSYSMO standard was developed by Ricardo Valerdi at USC
(Valerdi et al., 2003) to tackle life cycle phases, processes, and system models. Basic steps described by this standard are
(Figure 50) the following: [1] conceptualize, [2] development, [3] operational test and evaluation, [4] transition to evaluation,
[5] operations, maintenance, enhancement, and finally [6] system replacement and dismantling.

Transiti Operate, \\ Replace

ansition \\ maintain,

Conceptualize ») Develop 2’;,::%“ to i p.
Operation Enhance Dismantle

Figure 50. COSYSMO standard phases (after Badiru, 2019).

The capability maturity model integration (CMMI) developed by ISACA was release in 2002 under version 1.1 as a
process-based improvement protocol for software development. CMMI identifies a series of maturity levels for general
processes such as: [1] initial, [2] managed, [3] defined, [4] quantitatively managed, and [5] optimizing as Figure 51 shows
(Godfrey, 2008). Under this approach there are three areas being addressed as both product and service, such as [a]
development (CMMI-DEV), [b] establishment and management (CMMI-SVC), and [c] acquisition (CMMI-ACQ), (CMMI
Product Team, 2018). Core processes of this approach tackle configuration, planning, risks, and system analysis among
many more. In this context the capability maturity model (CMM) also relates to the level of formality, detail, and optimization
of the process.

Focus on process
improvement

Level 4 Processes measured
uantitatively Managed and controlled

Processes characterized for the

organization and is proactive.
(Projects tailor their processes from
organization's standards)

Level 3

Defined

Processes characterized for projects
and is often reactive.

Processes unpredictable,
poorly controlled and reactive

Figure 51. CMMI maturity levels (Godfrey, 2008).

In the current age of information, the modern practice of SE beyond professional protocols is based on a constantly
evolving body of knowledge and practice which is defined by challenges and technical capabilities. Modern theories
(Kossiakoff et al., 2020) are based on systems lifecycle and a series of functional system elements such as [1] signals, [2]
data, [3] materials, and [4] energy. This contemporary lifecycle presents the following steps: [a] concept development, [b]
engineering development, and [c] post-development. Thus, DoD, ISO, IEC, and NASA standards present the bases for an
elaborated decision and SE development process as Figure 52 shows (Kossiakoff et al., 2020; Lapham et al., 2014).

73

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

At the same time, computer capabilities developed during the last decades enable the idea of system thinking (Senge,
2010) as a way to look at the SE practice from a “deep” analysis standpoint (INCOSE, 2015). This line of thought includes
aspects, such as [a] system dynamics (e.g., multidisciplinary simulation languages), [b] action research and soft systems
(e.g., attitudes, procedures, etc.), and finally [c] pattern discovery (e.g., taxonomics, standards, templates, etc.).

* The material development decision precedes

| entry into any phase of the acquisition
msornoecs management system
I bay oncoriunitos and ranel | * Entrance criteria met before entering phase
9y opp e » Evolutionary acquisition or single step to
full capability
(Program
/p\ B \initiation) /C\ 10C FOC
Material Technology Engineering and Production and Operations and
solution jevelopment manufacturing e support
analysis development POyt ppo
Material . FRP
development <™, Post- <> Post- LRIP/IOT and E <>decision
cision ~"PDRA CDRA review
Presystems acquisition Systems acquisition Sustainment
<>, decision point /\ milestone review “ decision point if PDR is not conducted before milestone B

PDR, preliminary design review
CDR, critical design review
LRIP, low-rate initial production

Development Iteration and recursion FRP, full-rate production
cvelopme possible on all paths 10T and E, initial operational test and evaluation

10C, initial operational capability
| Concept H Production I—)I Utilization H Retirement
t f

FOC, full operational capability

Figure 52. Right. Acquisition management system of DoD, after Kossiakoff (Kossiakoff et al., 2020; Lapham et al., 2014).
Left. ISO/IEC lifecycle after INCOSE (INCOSE, 2015).

3.24.2. Models and Processes

The study of SE models and processes from a traditional and document-based standpoint highlights several key
processes in the systems engineering practice (Kamrani and Nasr, 2010; Martin, 1996) that can be summarized as the
following documents. They are related to multiple systems engineering phases:

o Systems engineering management plan (SEMP) is a document describing SE planning activities after the concept
design phase. It reviews and assigns updates and functions: configuration, requirement definition, verification etc.

o Systems engineering master schedule (SEMS) includes event-based milestones, relationships, and criteria.

o Systems engineering detailed schedule (SEDS) is a detailed task-oriented document complementing SEMS.

Work breakdown structure (WBS) is a classic multidisciplinary document based on a Gantt that captures aspects
such as services, data, resources (e.g., hardware, software, infrastructure), workforce, cost, and work effort control.

o Technical performance measurement (TPM) is a progress assessment document used in risk mitigation.

e Requirement documents (RD) are capturing documents (often driven by corporate or sector cultures) that define
systems objectives and thresholds, such as: [1] request for proposal (RPF) that captures stated requirements by the
customer, [2] requirement analysis (RA), [3] affinity diagrams (AD) for large volumes, and [4] house of quality (HOQ)
diagrams which allows as a tool to turn requirements into design and user specifications (Liu, 2015).

o Functional flow block diagram (FFBD) is a multilevel and step-by-step graphical document that shows the functional
operational structure of a system (Badiru, 2019) as a sequence of operations. As Figure 53 shows (Defense
Acquisition University, 2005; Manske, 2008) this document includes the following elements: [1] functional graphic

74

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

block, [2] function number, [3] functional connection, [4] functional flow directions, [5] numbering changes, [6] stopping
criteria. This principles are broadly used in business process mapping (BPM) as a SE practice to define structure,
responsibility, and products (Darwish, 2011) for enterprises and business.

Abbreviations/Notes:

“And"” Gate: Parallel Function
“Or"” Gate: Alternate Function

Functional

’/ description

e s B e o e e e e et 5
|

Ref 9.2, Provide guidance

Func:ion 2 33232

|
|
I
I 921
I
I
I

3
3.5 Ref Parallel 1 1y, [Ref
[y functions 1 11.31
= |
: See Detail Diagram 923 = |See Detail Diagran
|
| Casasmscmmn
b Alternate | |
L functions | |
524 L

Sys
Malf.

function

!

k '
No go flow : ZI’ entative

1

|

Interface reference Leader not See Detail Diagram

block (used on first-

and lower-level i e et e e e S 4

function diagrams T ——

Ol'lly) ow levi lesigna’ Or_’znd Level

ScopeNote: ; Functional Flow Block
Title block and standard drawing number ————» Diagram Format

Figure 53. Functional Flow Block Diagram, after Manske (Defense Acquisition University, 2005; Manske, 2008).

However, the practice of SE since the 1950s has provided a series of workflow models as a set of processes and
frameworks to develop a system from a lifecycle-based perspective. The historical top-down systems engineering (TDSE)
process starts with a deep meta-system analysis of the system and its context including other related or interconnected
systems (Buede, 2009). Such analysis then leads to the definition of the system and all its parts or components as
configuration items (Cl). Figure 54 shows how the definition of the system is linked to a verification effort at each level
between design and testing, and across all steps within this traditional approach.

System analysis;
Upgrade selection

Meta-system analysis;
Concept selection

stem Definition System V.V &A
Y

Discipline Engineering Design

Figure 54. Historical top-down systems engineering (TTDSE) process (Buede, 2009).

75

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

System Level
Design Requireme

System Level

Subsystems

Item Level
Design Requirements

Configuration Items

Assemblies

Components

All Design Requirements Gomplete

SFR = System Functional Review TRR = Test Readiness Review
PDR = Preliminary Design Review SVR = System Verification Review
CDR = Critical Design Review

Figure 56. Systems engineering V-Model (Buede, 2009).

This traditional approach can also be identified in other lifecycle-based SE models such as the Vee model (Buede,
2009; INCOSE, 2015; Liu, 2015) that Figure 56 shows. This one is an evolution of the simplified waterfall model presented
in Figure 58 (Forsberg and Mooz, 2003, 1992; MDD, 2007). In a Vee model, the left side refers to the definition, design, and
development phase of a system. This side includes all Cls. The left side includes general requirements, design requirements,
and other design development topics. The bottom of the Vee represents all implementation requirements and the beginning
of the implementation process. Thus, the left side presents a full definition of the system while the right side is about
fabrication, integration, testing, and verification. There are many variations in the literature about this approach
(Aughenbaugh and Paredis, 2004; Buede, 2009; Fairley and Forsberg, 2020; Forsberg and Mooz, 1992; INCOSE, 2015),
however its basic advancements, structure, and limitations remain. This model is strongly related to software driven projects.
It also provides a context for product definition, as well as workflows within the context of project lifecycles, stakeholders,
standards, and activities. Nevertheless, some aspects of the lifecycle are not covered such as decommission, services, and
other support activities. While this model presents a rigid iterative approach some of its variations allow to increase its
adaptability, such as: [1] incremental and iterative development (IID) and [2] the evolutionary approach (see section 3.3).
These techniques (Figure 55) present multiple iterative cycles of design and delivery to obtain a faster SOI (Forsberg, 2020;

System System
pDR Some requirements Some requirements TR R
PDR+2 PDR+3 TRR1 TRR2 TRR3

PDR+1

Some requirements

INCREMENTAL CDRs
Figure 55. Incremental and iterative development (IID) derived and based on Forsberg et al. (2005) on (INCOSE, 2015).
76

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Forsberg et al., 2005; INCOSE, 2015; Larman, 2004) that addresses SE process agility, adaptability, and management.

Systems

Requirements \

Software

Requirements \

Preliminary

Detailed

v

Coding and

Debugging \

Integration

and Testing \

Operations and
Maintenance

Figure 58. Waterfall systems engineering model (Buede, 2009).

In the 1970s the waterfall model was introduced by authors like Boehm (Buede, 2009; Liu, 2015) as an iterative
linear process where different phases interact among them and under a continuous flow (Figure 58). As Liu describes, this
model presents advantages (Liu, 2015) such as simplicity, frugality, and clarity in terms of structure and implementation.

Cumulative Cost

—A—)' Progress
through phases

Evaluate Alternatives;
Identify and Resolve Risks

Determine Objectives,
Alternatives, and
Constraints

Risk Analysis

Risk Analysis

Risk Analysis > ard Operational
p 1sbs -~ 2nd Prototype Prototype
i Commitment Protofype\ Prototype
review artition : ~—~[Simulations
Requirements | operational == Models [genchmarks

Flan Concept Software
Requirement

Detailed
- Design

Software
Product

Design ¢ Code

~

Development

Plan Requirements

Validatio

Integration

and Test Plan | Design Validation “<Unit Test ~_

and Verification

kS Integratioﬁ\‘
Plan Next A +.and Test
cceptance

Phases ' \
\Test

\

Develop and Verify

Implementation Next Level Product

Figure 57. Spiral systems engineering model (Liu 2019).
77

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

However, connections among phases are not simple in practice Featureto-feature

and often they happen across non-immediate phases s
(Haberfellner et al., 2019). Thus, a variation from this approach
is the spiral model (Kamrani and Nasr, 2010) that speeds up

the SE process (Figure 57) with roots in software engineering. ,...c
This approach is based on four corners: [1] objectives, [2] *\ I } | 1mportance of user voice
evaluation, [3] development, and [4] next phase planning. —— vy

These covered clockwise a spiral path that defines a new
iteration cycle per each pass. This SE model brings flexibility
and agility, but it is still based on a linear approach just like the
waterfall model. Similarly to the Vee, the spiral model also
presents an incremental commitment variation (ISCM) — —
developed by Boehm (INCOSE, 2015). This approach enables - |
a faster risk-driven process that tackles concurrent systems
engineering efforts. This method tackles both product and
processes (Boehm et al., 2012) allowing a stakeholder value-

based approach for any complex system development. The — \

Design features

SIMILAR process (Bahill and Madni, 2016) is related to this ‘ | L rrrrr
approach, presenting a networked approach (Figure 60) based ~ prorteea /

on the interconnected phases, such as: [1] problem statement, desciptors . _
and targets elationship between user

[2] alternatives, [3] system model, [4] integration, [5] system needs and design featurcs
launch, [6] performance, and finally [7] re-evaluation. Figure 59. House of Quality or HOQ (Liu 2005).

The walking skeleton model (Badiru, 2019) is also an
incremental model. The first step within this approach is a very basic but functional system model with only key elements
acting as the ‘bones’ of the system. Subsequent steps add ‘muscles and skin’, meaning higher levels of fidelity, new features,
and complementary system models. While it started as a software technique, this approach can also be applied to hardware-
based systems. A key aspect within this technique is that every phase allows in the next one to work faster by applying
lessons learned. This approach presents the following steps: [1] information gathering and methodology workshop based on
previous experiences, [2] reflection workshop tackling needs and methods, [3] blitz planning addressing tasks, cost, and
assignments, [3] Delphi estimation by experts, [4] daily stand-ups as short efficient meetings, [5] agile interaction design as
a fast-paced approach to deliver software products, [6] process miniaturization to reduce cost and learning time, [7] side-by-
side programming to provide faster and more reliable results among multiple people working together, and finally [8] burn
charts to assess the work that has been done.

The prototyping approach (Haberfellner et al., 2019) can

it:,ﬁ::: also be considered as a very similar technique using four types

s g of prototypes, such as: [1] proof-of-principle, [2] forms study, [3]

Assess Investigate visual, and [4] functional prototypes. These prototypes help the
eI dios Alternatives design process dramatically as Haberfellner et al. presented.

e The DEJI SE model (Badiru, 2019) has also four main

(poriebics il l and phases including: [1] design addressing agility, end goal, and

maah Rl stakeholders engagement, [2] evaluation including feasibility,

AP . .met.rics,. evidgnce lgathelring, and lutility asgessment, [3]

Syutam Systen justification involving implementation, desirability —and

conclusions, and finally [4] integration including affordability,

e sustainability, and practicality ~ (Figure 61). Under these

frameworks, multiple tools and toolsets are incorporated (Badiru,
2019) while the model also includes quality assessment.

Figure 60. SIMILAR networked process, after Bahil et al. (2016).

78

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

s

Problem
Identification
Identify
Objectives

Design
Identify Data &
Inputs

Evaluation
D EJ I Select Systems
Model

Model i
Use Model to
Justification Identify
Alternatives Wiske
l analysis

Select Best needed? (Move On)
Alternative

Integration

Implement/

Integrate
Solution

e
Figure 61. DEJI systems engineering model (Badiru, 2015).

Considering all design phases, concurrent engineering (CE) brings a new approach capable of accelerating the
design process by running multiple processes in parallel so newer products can get to the market faster (Haberfellner et al.,
2019). Once a concept is defined, its development is divided into simultaneous and partial phases determined by the
disciplines involved in the process. This approach requires a holistic method to compress the design cycle (Salomone, 2019)
which also allows a faster infusion of new technologies. This approach is not only based on models but also collaboration,
behavioral dynamics, and process design tools. The goal is to follow a horizonal vee approach, where all efforts converge
quickly into a product or a process. In general, CEs enable faster, cheaper, and better valued products for the customer.

i Also agile and lean SE processes are some
e of the first cross-cutting models driven by planning

goals. These are used in software development

because to have faster, cheaper, and leaner
development processes (Haberfellner et al., 2019).

These are variations of the spiral model,
including among others the incremental iterative
development (IID), SCRUM, adaptive software, and
extreme programming (XP) techniques (Douglass,
2016), among others. Based on the agile manifesto
a set of key principles organize these SE
processes. Among some of the most relevant
characteristics are the following: [1] individuals and
interactions are more important than tools and
processes, [2] the customer collaborates, [3] it is
about responding to change not to follow a plan,
and [4] self-organization leads to better
architectures. This process relates as much to
techniques as they do to workforce and team
participation (Larman, 2004). Evolutionary process
will be tackled in detail in section 3.3, however as a
transition from non-agile system it is worth
I ——— | mentioning these hybrid SE lifecycle processes
] (Douglass, 2016) as Figure 62 shows. Here,
multiple design cycles are continuously running,
Figure 62. Hybrid SE lifecycle per Douglas (Douglass, 2016). often within each other, to provide faster an
outcome with better quality.

System
verification

Stakeholder
requirements

System
specification
cycle

System
verification
cycle

System
architecture

Subsystem
discipline
integration

Software Electronics Mechanical
development development development

| Dependability analysis |

I Project management

79

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Holistic methodologies and models within this category bring approaches such as system thinking (Boardman and
Sauser, 2008) that understands the system as the synergy among all its parts. This field includes areas such as game theory,
pattern formation, and behavioral science. Such approach presents multiple fields of application, and based on the
determination of structures, boundaries, frameworks, and emergence among other key aspects leads to the creation of maps
(Boardman and Sauser, 2013) and models known as systemigrams (Squires et al., 2010). However, while this approach
captures the definition of a complex system, does not necessarily defines the process for its development.

Within the group of cross-cutting SE methods we can find several approaches building upon these models. The
object-oriented system engineering process (OOSEM) is based on a series of basic objects or elements that need to be
integrated into the system. This approach is characterized by [1] inheritance, so the object gets specialized by inheriting
properties of the objects (Buede, 2009), and [2] information hiding, so each object works as ‘black-box’ that does not know
how others objects work. These processes include: [1] architecture development, [2] behavior specification, [3] codesign
process and transformation, [4] synthesis, and [5] product development (Morris et al., 2012).

The object-oriented analysis and design (OOAD) is another agile approach that embraces change across the lifecycle
of a project (Badiru, 2019). This model groups data, processes, and systems that are turned into objects being managed by
one executive person. Each system engineer manages and perfects each object, while a systems manager puts everything
together to create the final system solution. This is a people-driven process relaying on the excellence of the workforce.
However, managing control within this approach in complicated for larger teams and complex efforts.

Function-based system engineering (FBSE) focuses on system architecture functions including activities, actions,
tasks, etc. (INCOSE, 2015). This approach is about what needs to be done instead of the process to enable it. Thus, it
creates a functional map of system. Then, those functions are performed by multiple elements (e.g., hardware, software,
people, etc.). There are several steps in this iterative networked method including: [1] setting top-level functions and
performance requirements, [2] definition of lower-level functions, [3] necessity-based evaluation of lower-level functions, [4]
cycle iteration, [5] division of functions into sub-functions, [6] decomposition of requirements, [7] evaluation of alternative
decompositions, and [8] identification of all interfaces. This process produces: [1] diagrams such as input-process-output,
behavior, control flow, data flow, entity relationship, and functional flow block, [2] models, and [3] simulation results. Tools
used by this approach include analysis, modeling, simulation, prototyping, and requirement traceability (INCOSE, 2015).

Similarly, integrated product

development (IDP) is a process-oriented Level Program System Other integration
. processes functions areas

approach that considers the full system
lifecycle. It creates a continuous integration Exernal 1 £ f. | | Endtoendissues
of the team through requirements, L 1 | | Dovtovment
manufacturing, verification, and support i i el Mission algorithms
(INCOSE, 2015) using integrated product swem 7] &fl&f & || Rearime sulaon
development teams (IPDTs) as Figure 63 | _ 2 [] A A
shows. In essence, this approach is based | 2 F" 3 11| |- Top-to-botiom issues
on: [1] decentralization of the process, [2]a | 22 A Cont exgiaetiing
better connection between the beginningand | =2 Subsystem — PlIPLIP Speciality engineering
the end (manufacturing) of the process, [3] 3 P Trade studies
interface control, and [4] a concurrent = Assembly ‘é — | |* Interfaces
engineering approach. This approach tackles g E s ‘Igf(E:ﬂﬁ'mmnh
both design and manufacturing processes to E% Component A sllstls -
. rep s . R R ; * Cost and schedule
implement the system. Within this approach, § g control
cross-functional teams are created to tackle % Part * Current and follow-on
all products and services used in a system - —— — systems
qUICkly and independently through SyStemS ’ Team responsibilies: L, lead: S, support: P. participate: A, audil,]

engineering and integration teams (SEIT),

product integration teams (PIT), and product Figure 63. Integrated product development (IDP), after INCOSE (2015).
development teams (PDT). The key aspect of

80

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

this approach is to use all disciplines and engage all teams from the very beginning, while system-level requirements are
passed down to all subsystems and components. Regarding those teams there are several steps involved such as [1] define
IPDT, [2] delegate responsibilities, [3] staffing, [4] team operating system, [5] planning and start point, [6] training, [7] team
vision and definition, [8] job expansion, [9] routine process and continuous improvement, [10] progress monitoring, [11] team
evolution through the project, and finally [12] documentation.

Model-based systems engineering (MBSE) methods use models to create a methodology and a framework (set of
models) tackling all lifecycle phases of a system development (Badiru, 2019). These methods include system requirements,
design, analysis, verification, and validation (INCOSE, 2015). This approach differs from a document-based approach
significantly since it uses active models rather than passive documents. These models consists of requirements, design
concepts, test cases, verification plans, trade studies, and relationships between them (Haberfellner et al., 2019). Therefore,
they present a multidisciplinary standpoint that is applicable to any agile method. Some authors define this as a flexible
“thought” process (Long and Scott, 2011) bringing adaptability, efficiency, agility, and single-source-of-truth into the SE
process (Douglass, 2016).

)

Figure 64. Example of a MBSE diagram (Long and Scott, 2011).

The use of models allows to have a common language for different information sources enabling a comprehensible
solution that can be verified and an effort that can be reuse. These sources are captured within models as well as any
complex relationship among them. There are multiple frameworks and methodologies within MBSE, but they all layer the
effort into subsequent cycles of definition which are detailed by the domain. Any change at the domain level ripples
throughout the whole model. These models [1] ensure rigor and repeatability, [2] promote quality, [3] reduce risk, and [4]
finally enhance communications and synchronization across disciplines, people, efforts, and models (Borky and Bradley,
2018). The MBSE approach is connected to vee models sharing how the approach to tackle the system lifecycle. In general,
this methodology includes the following steps: [1] concept development and analysis, [2] requirement capture, analysis,
allocation, and traceability, [3] detail design (non-geometrical), [4] integration and test, [5] verification and validation, and
finally [6] operations and support. The MBSE approach allows to create a template from any work effort formalizing the SE
practice and expanding its reach across all system development activities and its complexity management (Badiru, 2019).
The next sections review and study multiple MBSE framework and languages.

Similarly, dynamic and fuzzy systems introduce decision support systems or DSS (Badiru, 2019) capable of dealing
with uncertainty and fuzziness. This is based upon probabilistic techniques such as fuzzy-stochastic methods and other
related toolsets (Pedrycz and Gomide, 2007). The need for extreme complexity management as well as the emergence of
artificial intelligence (Al) and machine learning techniques presents a new context full of potential opportunities for ruled-
based SE and other process control methodologies (Nedjah and Mourelle, 2005a). Table 15 presents a detailed summary
of tools, languages, and frameworks. The next sections also elaborate the overarching characteristics of these SE techniques
from a high-level standpoint since they are used throughout some of the previous theories, process, and methods.

81

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.24.3. Tools

Basic tools used in the practice of system engineering can be organized in the following categories:

o Documents. The use of physical documents (e.g., notebooks, notes, files, etc.) and lately digital files (e.g., Excel,
text edited, etc.) has become the backbone of the SE practice. These documents mainly capture quantifiable
parameters (e.g., requirements) using text, formulas, and tables that can be edited. However, these documents are
not necessarily interconnected so relationships among them might not be captured. This technique requires a system
document strategy to be implemented upfront (Grady, 1995; Wasson, 2005), especially for complex systems.
Examples of these are: requirement documents, interface control documents, SEMP, SEMS, SEDS, WBS, TMS, etc.

o Diagrams. The application of diagrams as a graphical description capable of capturing parameters and relationships
has been critical as well. The use of these not only become the base for system descriptions, but they also enable
effective descriptions of workflows and schedules. Among some relevant diagrams we can identify:

e Block diagrams (Figure 66) are used to represent system Input During Function
functions or parts across many disciplines (Karayanakis, 1995).
e Flowcharts illustrate processes and workflows, presenting both = RIS NIASS
elements and relationships. These are at the core of many SE Prodious™—# (Function Titly) (—— Ta Next Function
practices, tools, and languages. These are also defined by [-
standards such as ANSI, ISO, MIL, etc. (Nakatsu, 2010) OuputDuring Function

o Signal-flow graphs (SFG) are used to represent variables ﬂ
(nodes) and connectors or branches (equations, functions, etc.) i
among multiple system components (Levine, 1996). 5 E_, ® f,!

e Functional flow block diagrams (FFBD) are classical SE tools
Figure 66. Block diagram, after Karayanakis (1995).

since the 1950s (Figure 53), which illustrate functional operational
and system structures, sequences, inputs, outputs, and
relationships (Liu, 2015; Mdd, 2008). These diagrams allow to
create logical symbols (Booleans) and contextual references.

o Data-flows diagram (BDFD, 70s) is a diagram that represents
how data flows through a process or a system, capturing both
inputs and outputs. These diagrams are developed by systems
engineers after questioning stakeholders, users, and other
systems description efforts (Shelly and Rosenblatt, 2009).

o Reliability block diagram (RBB) is a diagram method created to
assess component reliability, dependencies, and redundancy
(Birolini, 2007) within complex systems across multiple fields. Figure 67. Process flow diagram, after Ohare (2015).

e Process flow diagram (PFD) shown in Figure 67 (Ohare, 2015), e, 123 456 789 wrmm
is used within SE processes and other physics and chemistry- wes 1 summary erement 1 S 57 convice

based engineering system descriptions (Turton et al., 2008). WBS 11 ActityA _ {759 com
o N2 chart (Figure 69) is a matrix-shaped diagram addressing ~ wesxzsae ™" - :
functions and interfaces among systems (Batson, 1986). HEs pa Ry C e T

WBS 1.4 Activity D

.
WBS 2 Summary Element 2 PRI o complete

WES 2.1 Activity E - ;.

e GANTT chart (Figure 68) represents a project schedule with
milestones, tasks, and dependencies against time (2010s). This is
a classic tool used today in project management (DuBrin, 2011; ... -
Malyszkz, 2011) across multiple industries and industrial fields. WES 2.3 Acivity O

e Event chain diagram is a complementary Gantt chart allowing to
visualize relationships among events. These are also relevant Figure 68. Gantt chart, after Malyszkz (2011).
tools in risk assessment and system analysis (Hulett, 2016).

e Control flow diagram (CFD) is used to describe control flow and signals involved in multiple processes as part
of a classic SE approach. They are applied to change, configuration, process, performance, and quality flows
within a system, among others areas (Hatley et al., 2013).

'
TODAY

82

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

in Figure 70 is a statistical diagram developed during the
2010s. Itis used to evaluate and design multiple tasks within
a project under the measurement of time. These diagrams
express relationships, time, and milestones. They are also

e Program evaluation and review technique (PERT) shown V e — — —
1
,I
|
|

often used in conjunction with critical path methods (CPM) | : -
techniques (Nicholas, 2004). I oo ON o naTLy
e Use case diagrams (Figure 71) are critical for some SE : 3‘;:;"’;_7 5 Q FUNCTIONAL
languages. They represent an activity performed by a system . O {
in response or by request of a user (Satzinger et al., 2008). == === = =,-yl " g
These diagrams also imply the use of definitions such as O'SO}
scenario, exceptions, actors, trigger events, stakeholders, as : fa !
well as preconditions and post conditions, among others. ! Fio O;
e Sequence diagrams (Figure 72) show similarly interaction mﬁ*'mw""“s.yl "
among systems under a timeline (Windle and Abreo, 2003). o ===

Vertical lifelines present sequences, horizontal lines describe

coexistent elements, and arrows represent communication Figure 69. N2 Diagram, after Batson (1986).
between elements. These last two diagrams are the base of

some SE languages such as UML, which will be explained

more in details in the next section.

% ~MainScreen < G4

i
Proiectlanager | I |
| | | |
| ChckVersion(} | geoia) | |
I
’L—“‘U .
I |
L | | |
| clickAdd) I | I
T clearFieids() |
: ’L-(: : Figure 70. PERT diagram, after Kemp (2015).
a | | |
1 ummﬁm()l -1 I
| |
| ’Lll |
1 | |
| ClckSave() | I |
-
: saveVersion() |
| display()
|
I 1 I
1 | |
T I I | >
| | I |
| | I |
I | | 1 Caller Get Call History
Figure 72. Sequence diagram, after Windle (2003). Figure 71. Use case diagram, after Satzinger (2008).

83

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

e Matrixes. These have been another classic tool in the historical toolset of SE. The use of tables has multiple
applications. They are capable to tackle both qualifiable and quantifiable parameters. These can be physical (paper)
or digital. Software tools like spreadsheet packages are widely used in SE and are purely based on matrix
spreadsheet operations. Beyond their generic use there are a few relevant types in the practice of SE, such as:

o Design structure matrix (DSM) also known as dependency structure 1B AR RENDRaNOaEEE
matrix was developed in the 1960s. It is a table-based representation 5 3 ‘o
of system components and dependencies (Madani et al., 2014). 7o 3 AR ==MLIL v

e Pugh matrix, coupling matrix, or decision-matrix method (PM) [[w[o| [FW[w v Ml l v
allows to compare multiple candidates based on specific criteria to [Jw[e|w [w aju W]l | [
select the most optimum solution (Burge, 2009; INCOSE, 2015). This || [o[%|[| |* ™ * -
method also allows to weight multiple options and find the best [Tfottu s | v ouww [
alternative as the example in Figure 74 (Muller et al., 2011) shows. | |w[o wulgw v |

e House of Quality (HOQ) is a part of the quality function development [«[[w[o[w]™ | wws w w|n
method (QFD). It was created in Japan to transform qualitative needs |1, R =
into quantitative parameters with multiple application across industrial 1 o o T M
and business sectors (Madu, 2006). Relationships between rows and ™[w[w[w/w|w w w[w v w[w] w w[s]
columns are codded with symbols (strong, moderate, weak, and very o
weak). It works as a SE communication device (Liu, 2015) allowing also FZI%%G 73. DSM Example, after Madani et al.
to turn user desires into requirements (Figure 76, Cask05, 2006). (2014).

e Requirement verification and traceability matrix (RVTM) is used to e — o |G
trace requirements across the lifecycle of a system as well as during ™ === o v e .
testing (Phillips, 2004; Wasson, 2005). The use of codes allows to trace | rossnes =" e
back the Vee model. Other aspects of the process can also be tracked s R
such as accountability, analyses, inspections, etc. (Figure 75). iy e te

e Risk assessment matrix is a standard tool to assess risk in multiple | __ gt : ;
SE environments such as NASA, ISO, DoD (Figure 77). While this T s s
approach can present challenges in terms of resolution and allocations, , ey -
is widely used across industries (Popov et al., 2016). — 118 s

Besides these classic tools there are other general toolset techniques: P s 4t

o Graphs showing mathematical and statistical information. Figure 74. Pugh matrix example, after Miller

e Codes used to run scripts and other data management tools. etal. (2011).

o Maps are used for information illustration and decision-making processes such as mind maps and systemigrams.

o Analyses of different nature are also a key SE tool to study regression, reliability, feasibility, FEM, risk, etc.

o Simulations also used for testing (quantification) and demonstrations (qualification) purposes (INCOSE, 2015).

Regmt. ID Requirements Statement Allocated to Verification Level Method of Verification Traces Vertically to

Inspect Analysis Demo Test

SYS_136 3.1.1 Capability A Subsystem 123 Subsystem X 3.1 Capability XXXX
The system shall ...

SYS_137 3.1.1 Capability A1 Assembly Al Assembly X X 3.1.1 Capability A
The system shall (Capability Al).

SYS_138 3.1.1.2 Capability A2 Assembly A2 Subsystem X 3.1.1 Capability A
The system shall (Capability A2).

SYS_139 3.1.1.3 Capability A3 Assembly A3 Assembly X 3.1.1 Capability A
The system shall (Capability A3).

SYS_140 3.1.1.4 Capability A4 Assembly X 3.1.1 Capability A
The system shall (Capability Ad).

RVTM columns

Applicability

RTM & RVM RVTM RVM RVM RVM RVM RVM RTM

Figure 75. Requirement verification and traceability matrix (RVTM), after Wasson (2005).

84

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

CONSEQUENCES

Unlikely | Negligible

Catastrophic

Marginal

Certain High High Extreme Extreme Extreme O}

Likely Moderate High m Extreme Extreme

Moderate

Possible

LIKELIHOOD

Unlikely

Figure 77. Risk assessment matrix @ OX ®@ 5 @© @O OO O©

= Voice of the Company
= Enterprise Product Development Capabilities
: = = =
B — %CLJ;L?ES; Quality Processes Project Management [;reevcqugﬁgﬁt
File. Exarfrle QFD Project 817 N = = = = = = = [(= = =R =R =

Date: 2/5i2006 1532

Strong Symbaol 9
Weak Symbol 1
Medium Syrnbol 3
Larger The Better 0
Srmaller The Better 0
Momninal The Best 0

Customer Impottance

O@XXO€+CP@

Effective proposals that meet or exceed custom
Cost as an independent variable, design to

=
@ -
2 5 E e @
o % & @ i
E £ |8 gl Elels 8
2 T | § = k=] 5| 2 2
£ £l 2 2 T = 2
o E | E = =4 S @ =
o sls|x|sg| 3|22 3 £
Strong Megative -3 = T | = =}] o @ o = =
g zlelz| B |8 |5|2l5 |29
Negatr -1 = = @ S |8 |2
eyative c E = % g E E g £ g =
Strong Positive 9 = Sl=| 2 = =] o] @ o) z
st 5 E = | E| e > o e = =]
ositive H = S o | = [@ @ @ 2 = =
2 s|l@| £ e =lzlz| @ |® |2
w| 3| & c| 312l |8 |8|g| 5|22
= I = A =] & & o) = T
| o] Bl |2l ol & | ||| 3|6
v 5| & gli|lac|lo | |w|w|w| 3 |=>]|&
Direction of Improvement + 1+t OTT+|T T+ OT|ITHIO]T OO
Produce innovative solutions that
Frod 0167 | ® | @ ® ® O ®|®|®
-
£
w
3 |Quality of product 0.167 ® | @ ® | O ® ®
® 3
o Company that is open, honest
c ' ' 0.167
@ E understanding of customer needs ® Ol® ®
®s
i |Effective customer contact 0167 | @ O] O] O
OO A5
2
® g Want products on-time 0167 [ORNSRROREO]

[
@
@®
O
O

Target program cost performance |0.167

=)
=
x g z |; :
= - = z = = = =
B 2 |z |= ilz ,|E 2 (B |2 |z =
S 2 =1 = 2|2 3= o | & S| =] a
@ = @ T o S22 g @ |2 B 2 = 2
= = =} = 5|T 2o B 5 > | s 5 E|° cEI|IE |B
[=] gEl=T|le gL | = = Blo S8 e =
= @ = Emls 2z 5 g 5 |E |EEP =2 |5 =
e ¢ |oElRwZnSE| £ |5 |ERlE |TE|L LB
=1 = 5 @ = = E EYES Lo @
5 - = = 2|E | &
How Much = Zylzs|BTlesle=]| & o |8 =|E Ea|gal|ooe
@ = 3| = o| e = Sz A ER=I R
E A e R sl =| E |Sol|= 2 EE2E
ZE o |a c &= |8 2lm = o Tlx IS EE|ls
= & £ I a2 ~ @
Ee|fs B2z E2d|Ezsts] & |EB (2 E|2 i |sEls &
2rl2E|22 B2z Elea=a| 5 |2 3 == S l|zElgE
= Z @ |=Z E |0 & o=|5 @ = =56 (T =2 FR R z
Ce =2 lR e |ogleaglEe|lsl| 5 |EL Bl Sg|cE|EE
Er oo 2|cElEc|cE| & |E2|=8|E |ZE|2E5|E5
- =S |7 &|s 5|EC|sF| Z |9% |z 5|5 N R
ss|ZE|E8 |28z E|les|25| & |@=|z %2222
s—mE E%:{“:mhm%:i—) (=1 mfﬁl—sm*mﬁm
-3] s |Da|e|da|cn®| @ e (Es|@aL| S s ([T -
=
Organizational Difficulty {10=difficult] 7] LA BT R A]] g1 ERN MU IS

w
[
i)
o
[
=
=
h
=
(&N
=
[N
i)
o

Weighted Importance

Relative Importance

;
F
=.

Figure 76. House of quality, after Cask (2006).
85

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.24.4. Systems Engineering Languages

Complementing the use of previous tools there are a series of SE modeling languages, which can be understood as
a series of graphical, mathematical, and procedural structured codes. These languages enable to analyze, design, and
implement systems through multiple SE workflows. Their origins are found in multiple fields going from software to
mathematics. Today, there is a growing infusion of these practices which is changing the SE practice and creating new
possibilities to explore components, parameters, and interrelationships, as well as to broaden them with data-driven
perspectives. Several categories can be identified across the vast number of techniques and languages including:

e Modeling languages. Objected and function-oriented SE practices, as well as object modeling techniques (OMT)
present the foundation for the use of modeling languages as an evolution of classical FFBDs. These present some
common capabilities (Borky and Bradley, 2018) such as; [1] abstraction to work with common characteristics among
elements, [2] encapsulation to compartmentalize systems, subsystems, and architectures, [3] modularity to reuse
elements, [4] generalization and inheritance to create instantiations with a hierarchical structure, [5] aggregation and
composition to build new elements upon previous solutions, [6] interfaces, and [7] polymorphism. Thus, an element
can perform differently depending on its uses and needs. These languages provide the means to have a single source
of truth (Douglass, 2016) and an easier integration of multiple data sources, easier maintenance, management, and
verification. Among the most relevant languages supporting MBSE and SE practice we could find:

e Structured analysis and design technique (SADT) evolved First Generation IDEF Methods
from the FFBS approach (Ramos et al., 2012) as a graphical L iformaton ogelng (0F }
language to describe hierarchically systems and functions.

o Integration definition for functional modeling (IDEF) is a ™
family of systems and software modeling languages, including —
IDEFO (functional), IDEF1(information), IDEF1X (data), IDEF3 | - erocess pescription capture nees) j& C——

+)

* Information Modeling (IDEF1)
* Simulation Modeling (IDEF2)

* Object-Oriented Design (IDEF4)

(processes), IDEF4 (object-oriented design), and IDEFS | : G ovlectoriented pesin uncraic-

_* Ontology Description Capture (IDEFS)

(ontologies) (Haberfellner et al., 2019; Mayer, 2009). Here, the : :
function node represents inputs, outputs, control, and Partially Devsioped IDEF Methas (|
mechanism calls (Williams et al., 2010) as a support tool for [; E':Q?:e"i?éﬁ?m?;‘E’S‘;L‘:,CESTFSE‘FEFFE]/ ' |
function-driven SE practices and workflows (Buede, 2009). > Network Design (DEFL4} ,/U

¢ Universal systems language (USL) was developed after the At thod Vst
NASA Apollo program (Hamilton technologies). It is based on ;. Information Afifact Modeing (IDEF10)
axioms and includes a heavy inherent error-testing approach :
and an ontology (Hamilton and Hackler, 2009). It is based upon : J
principles to look at the system from an asynchronous, Figure 78. IDEF Methods, after Mayer (2009).
distributed, and event-driven perspective. This language uses
among others functions maps (FMaps), type maps (TMaps),
and control applications as part of the workflow.

e Unified modeling language (UML) is a multi-purpose
modeling language oriented towards software engineering. It
uses graphic diagrams and specified data objects, program
entities, attributes, and relationships (Haberfellner et al.,
2019). UML presents three types of diagrams (Buede, 2009):
[1] structural that includes class, components, composite
structure, deployment, objects, package, and profile, [2]
behavioral activity, state machine, and use case, and finally
[3] interaction including collaboration-communication,
interaction overview, sequence, and timing.

o Lifecycle modeling language (LML) is an open-standard _. .
and user-friendly SE modeling language (Hettema, 2013). It gg%i;?é(%’g’; class dlagram, after Borky and
covers the full lifecycle including concept, use, support, and

86

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

retirement phases. It is based on classes (entities), relations o pisgrams
(relationships), and properties (attributes), which are called
ERA. It also includes risk, cost, schedule, and performance
(form, function, metric, interface) as basic ontology aspects.

o Systems modeling language (SysML) is a standardized
graphical systems engineering modeling language based upon
UML (Haberfellner et al., 2019), see Figure 80. The system
model presents the following families of elements / diagrams
(Friedenthal et al., 2008; GFAB, 2010): [1] structure (block
definition, internal block, package), [2] requirements, [3]
behavior (activity, sequence, state machine, use case), [4]
parametrics. This subset of the UML language is more oriented
towards systems, and includes more flexible semantics, better I A e
allocation tables, and management principles and tools. The G
model becomes the single-source-of-truth (Estefan, 2008). Figure 80. SysML diagrams, after GFAB (2010).
There are multiple releases such as the OMG SysML™,

e Drakon is a visual programing modeling language developed Clanguagd] Txamples of pro- Examplés of programs
in Russia in the 1990s. DRAKON 27 flowcharts are understood 2o 1 gmisinC S——

as letters which can be used to graphically create words and e o

sentences using a syntax. Then, this graphics syntax can be @ if g;:uz:%gm

customized using textual syntaxes from other languages such wo

as C+, ASM, Java, etc. see Figure 81 (Ivannikov, 1995). while, ff g’ng,nsm

o Mathematical and coding languages provide nowadays systems L rend mlw('r?u“}-‘{

engineering, programming, and MBSE support enabling the s=k+5;
capability to run scripts, analysis, and study tools that complement mlip=q-r
more traditional workflows. We can identify several of them: 11+ end*/

¢ Algebraic modeling languages (AML) is a family of high-level
mathematical languages allowing to solve complex large-scale
mathematical problems (Kallrath, 2004). This include AMPL,
GAMS, AIMMS, etc. The AML approach allows to manage
multiple solvers (algorithms) tackling different aspect of the
problem-solving workflow. Figure 81 DRAKON-C example, after Ivannikov

e MATLAB™ is a multi-paradigm and object-oriented functional (7995).
language developed in the 1970s. It is widely distributed among
multiple engineering practices worldwide (Dukkipati, 2008).

e Wolfram Mathematica™ is a language supporting for machine learning, image processing, geometry, data
science, statistical analysis, and neural networks, among other traditional engineering fields (Magrab, 2014).

e Other languages include Maple, GNU Octave, Scilab, FreeMAT, Julia, etc.

o Coding languages. Generic coding languages are also widely distributed today outside purely computer programing
workflows. These include object-oriented, imperative, declarative, concurrent, visual, multimedia-based, web-based,
event-based, and integrative languages (Bansal, 2013). Good examples among some of these languages supporting
SE practices are the following:

Visual Basic for general applications (Badiru, 2013) (Alves et al., 2009).

C++ is used for trade studies, telecommunications SE, etc. (Thompson, 2020).

Python infusion and use is growing (e.g., operations, trade studies, and engineering optimization) (Allbee, 2018).

SQL is used among other fields in data management (Baba et al., 2001).

PHP is applied to enterprise SE (SeE) among other areas (Gorod et al., 2014).

JavaScript has information SE and blockchain applications among others (Matulevicius and Dijkman, 2018).

87

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.2.4.5. Systems Engineering Frameworks and Methodologies

The combination of dedicated tools and languages within a technical context constitutes a SE framework within this
literature review. These frameworks not only present a series of integrated tools and languages within a software suite or
tool collection, but they also imply a specific set of methodologies and sometimes even entire fields of application. The
following groups of SE tool frameworks are identified as key categories:

o Software systems engineering development frameworks:

Business value is delivered incrementally in

e Computer-aided software engineering (CASE) is a time-boxed cross-discipline iterations.
set of tools developed by IBM from the 1960s to the oo T Bt o ——— e
1990s to support the multiple phases of system 11 |E1|E2|c1|c2|c3 | ca |T1|T2
development lifecycle (SDLC). There are (Valacich gt Businesstodeins
al., 2017) the following: [1] project identification and ~ Feairemens — —
selection (diagrams and matrix tools), [2] project start A= & esion I —
and planning (repository), [3] analysis (diagrams), [4] ~ "merertater =] ——
logical and physical design (document generators), [5] Test L
implementation (code generators), and [6] Deployment ,

maintenance. This framework includes and integrates
workbenches, environments (language centered
processes), and tools. (Berdonosov and Redkolis,
2010; Shelly and Rosenblatt, 2009).

e Rational unified process (RUP) is an iterative object-
oriented software development framework, which was also created by IBM Rational software (Valacich et al.,
2017). It presets four stages: [1] inception, [2] elaboration, [3] construction, and [4] construction (Figure 82).
Some areas of best practices include iterative development, requirement management, components use, visual
modeling, quality verification, and change control (Kruchten, 2004, Dutchguilder, 2007), among many others.

o Systems engineering architecture frameworks present a reference environment to standardize system definitions,
as well as to provide support for enterprise architectures. These frameworks are used worldwide and they include
among others (Friedenthal et al., 2008; INCOSE, 2015) the following:

e The open group architecture framework or TOGAF (INCOSE, 2015) includes supporting tools for information
technology enterprise architectures, becoming the industry standard its main goal (Dickerson and Mavris, 2016).

o Federal enterprise architecture framework (FEAF) is a federal enterprise reference architecture to integrate
businesses and technologies (Kappelman, 2009). Figure 83 shows the full suite of tools under FEAF with the
consolidated reference model (CRM) at its core (CIO Council, 2013).

Time

v

Figure 82. RUP lterative development, after Dutchguilder
(2007).

Performance Reference Model (PRM) * Goals

“ Meas. A
» Cross-Agency and Intra-Agency Goals and Objectives gas.curd

% Meas.
* Uniquely tailored performance indicators Category

<

¢ Mission Sector

«* Business <
Function

< Service

Business Reference Model (BRM)
* Intra- and inter-agency shared services
* Agencies, customers, partners, providers

uonejuawajdwi/ udisap [013u0d AJINIAS o
uonaio.d Adeanid/ Ajiindas paisnipe-ysiy e

—> Data Reference Model (DRM) % Domain
« Business-focused data standardization % Subject <
« Cross-agency information exchanges < Topic
p———p Application Reference Model (ARM) < System
« Software providing functionality < Application €7
 Enterprise service bus Component
< Interface PR
oOx v
—p- |nfrastructure Reference Model (IRM) < Platform S&s
* Hardware providing functionality « Network <« a g
 Hosting, data centers, cloud, virtualization ** Facility &

Figure 83. FEAF Consolidated reference model, after CIO (2003).
88

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Department of defense architecture network (DoDAF) is a foundational visualization framework for large SE
developments (Liu, 2015). Furthermore, it also provides a model-driven analysis and simulation framework for

systems engineering practices across many technical fields (Mittal and Martin, 2018).

Dynamic Complexity of metamodel/transformation
analysis
MODELING . o o
Iteration n Scalability of simulation framework
DoDAF Iteration 2
SIMULATION
Iteration 1
Static
analysis
Automated
transformations
Structural Behavioral
analysis analysis

Systems engineering

Figure 84. Modeling, simulation, and systems engineering within DoDAF, after Mittal (2018).

MoDAF is the British ministry of defense architecture framework (Dickerson and Mavris, 2016) that includes
seven key areas: technical standards, strategic, operations, service, system, and acquisition (Babers, 2015).

e Zachman Framework is an enterprise ontology based on identification, definition, representation, specification,
configuration, and instantiation. It presents a set of rules (Zachman, 1987) that are simplified in Figure 85 (Zuech,

2002) with the key objective of providing an organizational scheme for artifacts and systems.

Row 1 - Scope
Extemal Requirements and Drivers

tion Modeli
B Fi 9

Row 2 - Enterprise Model
Business Process Models

Row 3 - System Model
Logical Models

Requirements Definition

Row 4 - Technology Model
Physical Models

Solution Definition and Development
Row 5 - As Built

As Built

Deployment

Row 6 - Functioning
Enterprise

Evaluation

Contextual

Conceptual

Logical

Physical

Functioning

Functi

When

Figure 85. Simplification Zachman Enterprise Framework, after Zuech (2002).

MBSE. There are several SE frameworks within MBSE state-of-the-art practice, including these ones:
Harmony SE (IBM Telelogic). It is a model-driven development environment. It uses Vee models, OMG
SysML™, and a basic flow including: [1] requirements analysis, [2] system function analysis (identification,

states, modes, physical architecture), and [3] architecture design and synthesis (Estefan, 2008; Ramos et al.,

2012). Telelogic Tau and Telelogic Rhapsody are the main support tools for this framework.

89

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

e OOSEM (INCOSE) presents an object and A Major SE Development Activities
. . . . +Causal analysis
scenario-driven Vee environment, using N esicn uas Cotesromiticn

SysML™ and OMG tools (Ramos et al., 2012).
Its development process (Figure 86) includes:
[1] stakeholder need analysis, [2] system
requirement analysis, [3] logical architecture
definition, and [4] physical architecture
synthesis of candidates (INCOSE, 2015).

e RUP SE (IBM Rational) is a model-driven ICSM ety | +Test system
systems development framework for SE i
(INCOSE, 2015). This approach is based on Common Subactivities
object-oriented spiral models and it uses both
UML and SysML™ (Ramos et al., 2012), while
it emphasizes the business model side (Brusa
et al., 2017). Its lifecycle approach presents four stages: [1] inception, [2] elaboration, [3] construction, and [4]
transition. However, new roles, workflows, and artifacts are introduced within this MBSE approach when
compared to the purely software-driven RUP approach (Estefan, 2008).

e Architecture analysis and design integrated approach (ARCADIA) is an MBSE development framework for
software and hardware architectures developed by Thales. It is based on three activities: [1] need analysis and
modeling, [2] architecture and validation, and [3] requirements engineering (Brusa et al., 2017).

e Alstom advanced system architecture program (ASAP) is a top-down SE application with multiple views: [1]
operational, [2] functional, and [3] constructional. This approach includes an evolution of the system (Fanmuy et
al., 2016) since the object of information can be duplicated and manage more easily.

e Vtech MBSE (Vtech corporation) uses Vtech CORE™ environment as a SE design repository across
stakeholders and domains. These include: [1] requirements analysis, [2] behavior/functional analysis, [3]
architecture synthesis, and [4] verification and validation (Brusa et al., 2017). Figure 87 shows more details. It
also uses the system definition language (SDL), which is based on elements, relationships, structure, entities,
attribute of relationships, and attributes using a patented ‘onion’ SE model. Multiple layers in the framework this
approach enable SE activities to increase concurrently and incrementally all levels of definition (Estefan, 2008).

Define *System use cases/scenarios
System | *Elaborated context
Requirements| *Req’ts diagram

Define +Logical decomposition
Logical sLogical scenarios

«Logical sub

*Parametric Diag
Alternatives | .Trade study

Synthesize |*Node diagram
+«HW, SW, Data arch

Figure 86. OOSEM Activities and artifacts, after Stefan (2008).

y Behavior Domain
Source Requirements Originating

Domain Requirements

trace to behavior

—

Behavior
Analysis
8
D) Architecture
Requirements [g] Analysis
Analysis .

Behavioris
allocated to physical
components

Architecturg Domain

verified by

=)) ==

V&V Domain

— Process
oomams Domain
TET e % = - verfiedby |
e] ——
verifiedby |

Originating Requirements
trace to physical components

Figure 87. Vitech MBSE domains and activities, after Stefan (2008).
90

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

e Object process methodology (OPM) was developed by Professor Dov Dori as a holistic modeling language
and methodology based on an ontology of objects (things that exists) and related processes transforming
patterns of those objects. This method is used for natural and artificial systems based on: [1] function (what they
do), [2] structure (how they are constructed), and [3] behavior (how they change over time) (Dori, 2016). This
approach defines the system development, lifecycle, and evolution including maintenance and usage based
upon: [1] requirement specification, [2] analysis and development, and [3] implementation (Brusa et al., 2017).
The OPM uses simple graphics or OPD (object-process diagrams) as well as natural languages sentences or
OPL (object-process language) (Dori, 2016). OPM uses OPCAT software tools (Ramos et al., 2012). See Figure
88 for a simple example of both OPD and OPL (Estefan, 2008).

OPD OPL
Person Person can be single or married.
(single) (" married) Marrying changes Person from single to
> P married.

> Man and Woman are Persons.
Couple KI—
— @ Marrying yields Couple.
x Couple consists of Man and Woman.

Man Woman

Figure 88. Example of simple OPD and OPL modeling examples in OPM, after Stefan (2008).

o Architecture and engineering tools. Within these disciplines, certain families of tools present specific workflows,
which while they are not fully SE in nature. These can be used in the practice of SE as well as in the development of
complex system development lifecycles. Among the most widely used toolsets are the following ones:

¢ Building information modeling (BIM) provides a framework to plan, create, manage, and modify digital
representations of buildings tackling functions, properties, phases, and designs across the lifecycle of
construction. This tool integrates requirements analysis, design, construction, operations, cost, sustainability,
and recycling (Smith and Tardif, 2009). This is especially relevant in the creation of system definitions and
documentation delivery that including manuals, model views, etc. (Eastman et al., 2011). BIM creates a digital
representation of the building in a 3D environment, including multiple discipline perspectives into the model (e.g.,
architecture design, structures, HVAC, plumbing, etc.). There are expansions of this workflow into SE and MBSE
realms (Polit Casillas and Howe, 2013) such as: [1] 4D BIM (connecting 3D components with scheduling), [2] 5D
BIM (adding cost information), and [3] 6D BIM (adding the dimension of operations, and maintenance).

e Product lifecycle management (PLM) aims towards connecting all information with regards of products and
enterprises questions (Elangovan, 2020) such as documents, workforce, and relationships with enterprise
resource planning (ERP). PLM serves multiple phases and steps across the lifecycle of a system such as: [1]
systems engineering (requirements, variations, reliability), [2] product portfolio, [3] product design, [4]
manufacturing, and [5] product data management (Tyulin and Chursin, 2020). Figure 89 shows the PLM lifecycle.

¢ Rational dynamic object-oriented requirements system (DOORS™) is a requirement system developed by
IBM Telelogic. It was created aiming requirement optimization, communications, verification and collaboration
(Stiepandi¢ et al., 2015). This allows the use and generation of UML models linking requirements and enabling
a collaborative platform between all stakeholders such as system engineers, vendors, analysts, etc.

e Microsoft Office Suite is also widely distributed across the SE and general engineering practice. Spreadsheets,
schedules, databases, etc. are used by individuals and organizations across the world, both discreetly and using
interconnected models to address requirements, reliability, trade-space studies, cost, etc. (Badiru, 2013).

91

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Profitability calculation and monitoring

Prime cost prediction and correction with reference to economic factors

Design to cost strategy Actual value analytics

Evaluation of source credibility, raw prodnct quality and
purchased integrated parts

Service cost analysis

< sop @ cor eos &

In-house production
Product cost

Supplied components

SOP=Start of production

EOP=End of production

EOS=End of service
ERP=Enterprise resources planning

Figure 89. PLM use across the system and product lifecycle, after Tyulin and Chursin (2020).

3.24.6. Systems Engineering Literature Review Matrix

Table 15 presents a similar summary to the one in section 3.1.3.3 regarding state-of-the-art practice systems
engineering approaches that were elaborated in previous points. Key characteristics addressed by this study include:

o Foundation. This is a short summary description or keywords of basic principles and characteristics.

o Main function or task. Does the systems engineering approach concentrate on analysis (ANSY), design (DES),
implementation (IMP), or all of them at once?

o System design phase. What lifecycle phases are addressed by this approach? Basic design phases are numbered
as it follow: [1] planning, [2] problem study, [3] concept design, [4] embodiment design, [5] detailed design, [6]
analysis, [7] optimization, [8] testing and validation, [9] documentation, [10] implementation, [11] delivery, [12]
marketing, [13] operations, [14] decommission, and [15] recycling of products and processes (Seider et al., 2016)
(Haik et al., 2010). See Figure 45 for color codes, detail level, and structure.

o Geometrical or abstract information. This refers to the capability of the SE method to [1] manage, author, and edit
geometrical information (GEO) such as volumes, shapes, sections, tolerances, and other graphical constructs, [2]
handle abstract information (ABS) such as analytical parameters, and finally [3] address system interfaces (INT).

¢ Qualitative / quantitative (Qt./QL.). Can the method be used to quantify and qualify multiple parameters?

e Scope. Can the SE method handle only point-design solutions (PDS), families of point-design solutions (FDPS),
development process (DEV), continuous designs (CONT), or a combination (COMB) of all of them?

o Adaptability. This addresses if the SE method is flexible (FLE), networked (NET), strict linear (LI), iterative (ITE),
waterfall (WA), or used spiral (SPI) methodologies. Figure 46 shows graphically these types of methods.

o Perspective. Is the SE method based upon discrete disciplinary standpoints (DD) or synergetic multidisciplinary
approaches (SA)? In other words, is the method based on a ‘divide-and-conquer’ approach discretizing disciplines
and subsystems? Or on the hand, can it tackle multidisciplinary perspectives?

e Optimization. Does the approach allow a parametric optimization of the system or just its parameters?

e Tool platform. What type of tool or technique does the SE approach enable or support? This can include: [1]
mathematical models, [2] drawings, [3] CAD/PLM, [4] graphs, [5] Eng. models, [5] documents/text, and [6] schedule.

o Reference. This is a summary list of relevant technical references and professional practice inputs reviewed during
this research and thesis dissertation.

92

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Theory/Method/Tool Foundation Function Phase Geo. Qt/Ql. Scope Adapt. Pers. Opt. Tools References

SE1 - System Engineering Theories and Standards

SIS B WETNTTEN Historical SE techniques and theories.
(

1958) Evaluation program for evaluation

. . . PDS
and review technique for manufacturing ANSY | KA Math .
NAVY PERT scheduling method based on: [1] activity, [2] IMP ABsy il Fggvs LISSIRER R Graphs (Liu, 2015)
costs, and [3] time.
(1962) This is a SE method with 5 phases:
[1] systems and program planning, [2] ANSY (Liu, 2015)
exploration planning, [3] development DES GESN RGINY RESN BN AR NED No " Maty (Buede, 2009)

planning, [4] development, & [5] current Eng.
(1960-20s) It is based on: [a] mission, [b]
operations objectives, [c] mission success, NSY PDS

. . . Math (Johnson, 2006)

[0 requtements, fe] constiant (fnctional, - “pes [EELH ABS QT DEV. \E DD Yes Gephs (NASA 2007)

ogical, behavioral & design), [f] trade IMP COMB Models (Hitchins, 2008)

studies, [g] design studies, and [h] product

breakdown structure.

Complex system engineering based on ;

signal, data, materials, and energy. Three ~ ANSY PDS TE Math %‘;%?'ak"ff etal,
[WNIE W ERIRTS phases: [a] concept development, [b] DES BNEEM ABS QT DEV NET DD Yes Graphs s e e

engineering development, and [c] post- IMP COMB Models oy 4) E

development (DoD, ISO, NASA, IEC)

SE based on deep analysis: [a] system ANSY 1 PDS TE Math (Senge, 2010)
BTG CUER LTTLdil] dynamics, [b] action research & soft DES 1013 ABS QT DEV NET DD Yes Graphs (INCgéE 2015)

systems, and [c] pattern discovery. IMP ’ COMB Models :

Itis a system of systems engineering (Badiu, 2019)
adiry,
methods for exltreme complex systems. Keys ANSY FPDS NET Math (Jamshidi, 2011)
include synergism, self-government, DES BEEN ABS QT DEV ELEX DD Yes Graphs
. .2 . (Sauser et al.,
reconfiguration, symbiosis, and modularity. ~ IMP Models 2010)
Potential biological guiding principles.

RISV ENGEIGE] Systems engineering standards and models 1-14 (Badiru, 2019)

(70s) Itis a SE standard based on: [1]
system performance parameters (operational
needs), [2] technical efforts (development,
manufacturing, verification, deployments,
operations), [3] system configuration, [4]
WBS (cost, schedule), and [5] information.

(90s) It addresses potential consequences of

fundamental processes such as: [1] ANSY PDS Math (Buede, 2009)
LRI 3R¥Cxy] acquisition, [2] technical management;, [3] DES | (5kf ABS QT DEV ITE DD Yes Graphs (Valerdiand

system design, [4] product realization, and IMP COMB Models ~ Wheaton, 2015)

[5] technical evaluation.

(2002) ISO/IEC/IEEE 15288 includes ANSY oS -
systems engineering, software engineering,) (INCOSE, 2015)
SRR and systems lfecycle (24765, 20148, 42010, D05 WGER ABS QT DEW (ITE DD Yes Gamme g0 5009

15289, 15939, 16085, 24748-4, etc.)

(2003) It includes SE lifecycle phases,
processes, and models: [1] conceptualize, ANSY PDS _
. Math (Valerdi et al.,
oS e o] (2] development, [3] operational testand — “neq WM ABS QT DEV ITE DD Yes Graphs 2003)
evaluation, [4] transition to evaluation, [5] IMP Models (Badiru, 2019)
operations, maintenance, enhancement, and :
[6] replacement and dismantling.

ANSY Math

DES WEPA ABS QT E[E)\S/ ITE DD Yes Graphs
IMP Models

(Buede, 2009)

MIL-STD 4998 (Liu, 2015)

(2002) It s a process-based protocol, using (TCMM';O’?g““
) process matury levels such as: (1) intal, 2] ANSY AR \os o1 DEV TE DD Yes Mads (vumpey 196)
managed, [3] defined, [4] quantitatively IMP i and
managed, and [5] optimizing. Nasr, 2010)
Metadata interchange is an OMG ANSY
} (1] metamodeling standard for exchange DES MBS ABS QT DEV NET DD No Models (OMG, 2015)
information via XML. IMP

93

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Meta-object facility is an OMG model-driven ANSY (OMG, 2019)
engineering standard for CORBA DES WEBEM ABS QT DEV NET DD No Models (Gasevicetal.,
architectures. IMP 2006)

SE2 - System Engineering Models and Paradigms

Document-based Document-based models and techniques 1-10

SE management plan includes process
planning, requirement analysis, functional

analysis, synthesis, control analysis, IMP
technologies, risks, integration efforts,

activities, schedule, and metrics.

(Martin, 1996)
Document (Kamrani and
ABS QT DEV ITE DD No Schedule Nasr,2010)
Workflow (Liu, 2015)
(INCOSE, 2015)

(Liu, 2015)

SE master schedule is an event-based 12 Document (Martin, 1996)
document based on milestones, IMP 10-11 ABS QT DEV ITE DD No Schedule (Kamréniand

relationships, and selected criteria. Nasr, 2010)

.) \ (Martin, 1996)
Systems engineering detailed schedule. MP EEXl] ABS QT DEV ITE DD No Document Teee
Calendar-based task schedule. Schedule \-c 201 0)

(hardware, software, data, infrastructure), Schedule

Work breakdown structure allows to (Martin, 1996)
in,
schedule and track efforts, tasks, resources mp EMRN ABS QT DEV ITE DD No Document enErle
)) . Nasr, 2010)
items and services. It is Gantt chart based.

These are capturing document addressing ~ ANSY PDS
systems objectives and thresholds. DES FPDS

Technical performance measurement is a (Martin, 1996)
L] progress assessment document. It is used IMP] ABS QT DEV ITE DD No Document (Kamraniand

for risk mitigation. Nasr, 2010)

Functional flow block diagram is a multilevel, .
step-by-step graphical document showing (Badiru, 2019)
the sequence of operations. Elements: ANSY Document (K 2015)

Requirements Doc. 14 ABS QT LIN DD No Document (Martin, 1996)

functional graphic block, function IMP AR R R L Diagram g\[izf;rs];ﬁm
(identification, connection, and flow) University, 2005)

directions, changes, and stopping criteria.

0

1
(1990s) It is an evidence-based SE (Liu, 2015)

. iu,
competgncy framework.l [1] management,. 2] ANSY (Badiru, 2019)
[L\[o 1RSI B professional, [3] core principles, [4] technical IMP (8 ABS QT/QL DEV N/A DD N/A Models (INCOSE, 2015)

competencies. It presents individual and (Buede, 2’009)
organizational applications.

1

5

1
1
1
N Lifecycle-based SE methodologies 115
Lifecycle-based y 9
Itis a top-down SE (multiple levels) including GBS PDS
1
1
1

DES WX ABS QT TE DD No WWorkfow g ede 2009)

analysis, definition, and verification. DEV Models

IMP

COMB Models \cosE, 2015)

(Aughenbaugh &
Paredis, 2004)

incremental and iterative development (IID), ~ IMP
Vee model XT (extreme tailoring), etc.

(Liu, 2015)
PDS Workfiow INCOSE, 2015)
ABS QT DEV WA DD No Models (Buede, 2009)
COMB (Haberfellner et

al., 2019)

Itis an iterative sequential process with ANSY
VEIELE loops between subsequent design phases. It DES
is simple, frugal, and not very adaptable. IMP

. . .) (Forsberg and
It has several sides: [right side] design Mooz, 1992)
(requirements), [bottom] implementation, and ANSY PDS Workflow (Fairley and
'CY [left side] fabrication. There are variations: ~ DES ABS QT DEV ITE DD Yes , " Forsberg, 2020)

A=
A=
2-
A=
1-

. Model Ki i and
phase, covered with subsequent passes. IMP FPDS e S\Z??ﬂfa;(l)fg)

(Boehm, 1988)

(&1 Incremental commitment spiral modelisa~ ANSY [REEM ABS QT PDS SPI DD No yOoiov (NOOSE2019)

94

(Liu, 2015)
Itis based on [1] objectives, [2] evaluation, ~ ANSY (INCOSE, 2015)
[3] development, and [4] planning of next DES JRNIM ABS QT DS gp pp No Workflow (Buede, 2009)

=i m A @
7 ©
m) (=) —

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

- valued-based, concurrent, and fast methods
based on IID tackling product & processes.
It is wheel-structured with networked steps:
1] problem statement, [2] alternatives, [3
SIMILAR [sy]srt’em model, [4] integ[ra]tion, [5] syster£1]
launch, [6] performance, [7] re-evaluation.
Itincludes [1] design, [2] evaluation, [3]

DIA]] justification, and [4] integration. It also
addresses quality system integration.

Itis based on [1] information gathering, [2]
reflection workshop, [3] blitz planning, [3]
VU EILGERLEEIGT delphi estimation, [4] daily stand-ups, [5]
agile design, [6] process miniature, [7] side-
by-side programming, [8] burn charts.

Itis a simultaneous and past-pace SE
(NI CHIRTS] process that is based on parallel and
incremental partial design cycles.

SE2-3 e .
Cross-cutting Multidisciplinary methodologies and models

This includes simultaneous fast-paced and
method-based SE techniques with

LC[IERYS interconnected cycle under the agile
manifesto. Many tools and techniques: XP,
SCRUM, FDD, etc.

Itis a complex system description based
SECuRLITTT] upon multidisciplinary synergies. Presents a
graphical representation of relationships.

Object-oriented SE. Basic elements are
integrated into a system. Specialization is
based on inheritance and ‘black-box’ models
and components.

Object-oriented analysis and design. Agile
SE model. Data, processes, and systems
[o[07.1] are turned into objects, and managed by one
person. System manager puts everything
together. People-driven. Small teams.

Function-oriented SE includes: [1] top-level
functions & performance requirements, [2]

FBSE lower-level function definition, [3] lower-level
function evaluation, [4] iterations, [5] sub-
functions, [6] sub-requirements, [7]
alternatives, and [8] interfaces.

Integrated product development (IDP) is a
process-oriented full lifecycle approach. It is
based on a continuous integration of cross-
functional teams. Its characteristics include:
[1] decentralized, [2] design-to-
manufacturing integration, [3] interface
control, [4] concurrent, [5] fast-pace agile,
and [6] multidisciplinary.

Model-based SE is a multidisciplinary, full-
lifecycle, and agile methods. It is based on
interconnected elements (e.g., requirements,
concepts, test cases, verification plans, trade
studies, etc.). It enables multiple
improvements: [1] better rigor and
repeatability, [2] more quality, [3] risk
reduction, and [4] enhanced communications
across disciplines and people. It has multiple
workflows, tools, and methodologies.

DES

IMP

ANSY

pes BN Ass
IMP

ANSY

DES RELH ABS
IMP

DES

ANSY ABS
nes [RECH A5°
IMP

ANSY ABS
oes [RECH 425
VP

ANSY [

pes EPEEY ABS
ANSY

pEs [REEN ABS
IMP

ANSY

pEs [REEM ABs
IMP

ANSY

pEs [REEW ABS
IMP

ANSY

DES | [ABS
IMP

ANSY

DES RGN ABS
VP

QT

QT/QL

QT

QT/QL

QT/QL

QT/QL

QT

QT

QT

QT

QT

DEV
COMB

PDS
DEV
COMB

PDS
FPDS

PDS
FPDS
COMB

PDS
FPDS
DEV

PDS
FPDS
DEV

PDS
FPDS
DEV
COMB
PDS
FPDS
DEV
COMB

PDS
FPDS
DEV

PDS
FPDS
DEV

PDS
FPDS

COMB

PDS
FPDS
DEV
COMB

NET

FLEX

ITE
NET
FLEX

NET

NET

FLEX
NET

FLEX
NET

NET

FLEX
NET

FLEX
NET

FLEX
NET

DD

DD

DD

SA

SA

SA

DD

DD

DD

SA

DD

No

No

Yes

Yes

Yes

No

No

No

Yes

No

Yes

Workflow
Models

Document
Workflow
Models

Code
Workflow
Models
CAD

Document
Workflow
Models
CAD

Document
Workflow
Models
CAD

Document
Models

Document
Workflow
Models

Document
Workflow
Models

Diagram
Simul.
Models

Document
Workflow
Models

Docu.
Workflow
Models

2019)
(Boehm et al., 2014)

(Haberfellner et al.,
2019)

(Bahill and Madni,
2017)

(Badiru, 2019)

(Badiru, 2019)

(Backhouse and
Brookes, 1996b)
(Salomone, 2019)
(Haberfellner et al.,
2019)

(Haberfellner et al.,
2019)

(Douglass, 2016)
(Larman, 2004)
(Huang etal., 2012)

(Boardman and
Sauser, 2013)
(Boardman and
Sauser, 2008)

(Buede, 2009)
(INCOSE, 2015)
(Morris et al., 2012)

(Badiru, 2019)
(Ramnath and
Dathan, 2010)

(INCOSE, 2015)

(INCOSE, 2015)

(INCOSE, 2015)
(Haberfellner et al.,
2019)

(Badiru, 2019)
(Friedenthal etal.,
2008)

(Fernandez and
Hernandez, 2019)
(Borky & Bradley,
2018)

(Long & Scott, 2011)
(Ramos et al., 2012)

95

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

" ANSY Math
APNg| This is a ruled-based SE method based on - “nes SN ABs T P25 FLEX DD Yes Mode
fussy probabilistic logic for process control. IMP DEV Graph

(Pedrycz and
Gomide, 2007)
(Badiru, 2019)
(Nedjah and
Mourelle, 2005a)

SE3 - System Engineering Tools

These are text-based documents (physical &

L L T SY
digital) containing parameters, relationships, PDS
Mand components. Documents can be ?I\ES ABsy il DEV LN SAR SO NA
reviewed and edited but they are not linked.
They are graphics-based representation
describing: [1] system components and
actors, [2] relationships, [3] flows, [4]
functions, and [5] timelines. They can be
physical or digital. They are complemented ~ ANSY PDS
DIELTEDNE] with alphanumeric parameters. Among some DES BEEEE ABS QT/QL DEV LIN DD No N/A
of the most relevant are block diagrams, IMP
flowcharts, SFG, FFBD, BFFB, RBB, PFD,
N2, GANTT, event chain diagrams, CFD,
PERT, use case diagrams, sequence
diagrams, etc.
They tackle quantifiable and qualifiable
parameters. They are digital or physical. ANSY FPDS
There are many standard techniques and DES | (K| ABS QT/QL DEV N/A SA Yes N/A
custom applications, such as: DSM, PM, IMP
HOQ, RVTM, risk assessment, etc.
These are graphical mathematical and B FPDS
o DES BEEN ABS QT/QL N/A SA Yes N/A
statistical tools. IMP DEV
These include scripts, data management AU 1-8 FPDS
Codes techni ' DES . ABS QT LIN DD Yes N/A
echniques, and tools. IMP 13-15 DEV
They include information illustrations,
mcommunication, decision making, etc. ADNEsg ABS QL PSS UN sA Mo wa
Examples are mind maps and systemigrams.
These are mathematical, physics, or multi- ~ ANSY PDS
LY ENWEIR] physics in nature. Applications include DES ABS QT DEV LIN DD Yes N/A
regression, feasibility, FEM, FEA, risk, etc. IMP
Testing (parameter quantification) and ANSY FPDS
mwmonstmtions (result qualification). DES 218 [A gy | R e

(Grady, 1995)
(Wasson, 2005)
(Liu, 2015)

(Karayanakis, 1995)
(Nakatsu, 2010)
(Levine, 1982)

(Liu, 2015)

(Shelly and
Rosenblatt, 2009)
(Turton et al., 2008)
(Nicholas, 2004)
(Hatley et al., 2013)
(Satzinger et al.,
2008)

(Windle and Abreo,
2003)

(Madani et al., 2014)
(Burge, 2009)
(Muller etal., 2011)
(Madu, 2006)

(Liu, 2015)

(Popov et al., 2016)

(Parnell etal., 2011)
(INCOSE, 2015)

(Haberfellner et al.,
2019)
(Squires et al., 2010)

(Badiru, 2019)

(INCOSE, 2015)

SE4 - System Engineering Languages

Integration definition for functional modeling
is modeling family of languages, including: DES
IDEFO (functional), IDEF1(information), IMP (568 ABS QT DEV NET DD No N/A
IDEF1X (data), IDEF3 (processes), IDEF4
(object-oriented dee.), & IDEF5 (ontologies).
Universal systems language is based on ANSY
axioms, error-testing principles ontologies. It

usL presents functions maps (FMaps) and type ?NI;:I? A5 R By DA el L NIA
maps (TMaps). It has control applications.
Unified modeling language is a multi-
purpose graphic modeling language. lthas ANSY |58

umL three types of diagrams: [1] structural, [2] DES BERE i R R NIA
behavioral, and [3] interaction.
Lifecycle modeling language is an open-

LML ;tﬁggzgiulszilrlf"r;zzggesgowggglﬁe ANESSY 1-15 SE(S) QT DEV NET DD No N/A
support, and retirement. ERA: Classes IMP INT

(entity), relations (relationship), and
properties (attribute). It includes risk, cost,

(Buede, 2009)
(Haberfellner et al.,
2019)

(Hamilton and
Hackler, 2009)

(Haberfellner et al.,
2019)

(Borky & Bradley,
2018)

(Hettema, 2013)

96

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

schedule, and performance (form, function,
metric, and interface) in its ontology.
Systems modeling language is a
standardized graphical SE modeling
language based upon UML. Elements /
diagrams include: [1] structure (block
definition, internal block, package), [2]
requirements, [3] behavior (activity,
sequence, state machine, use case), and [4]
parametrics. Release by OMG SysML™.
Itis a visual programing modeling language
using flowcharts as letters, which can be
used to graphically create words and
sentences using a syntax. Textual syntaxes
from other languages can be added.
Mathematical coding languages provide SE
and MBSE support to run scripts, provide
analysis tools, etc. Examples of them are
AML, MATLAB™, Mathematica™, etc.

Generic coding languages are used for SE
and MBSE purposes. These include object-
(oL AN GEL T (oriented, imperative, declarative, concurrent,
visual, multimedia-based, web-based, event-
based, and integrative languages.

Math Languages

SE5 - System Engineering Frameworks

ANsY [
DES |7\ ABS QT DEV
IMP |

1

Software. It is a computer-aided toolset for
SDLC including: [1] project identification and
[W:X13 selection, [2] project start and planning, [3]
analysis, [4] logical and physical design, [5]
implementation, and [6] maintenance.
Software. Rational unified process is an
iterative object-oriented software Dev.
framework covering [1] inception, [2]
elaboration, [3] construction, [4] construction.
Enterprise Framework. The open group
Lole7.\g architecture framework includes tools for
information technology enterprise Arch.

Enterprise FW. Federal enterprise
[\ architecture framework is for business and
technology integration.

Enterprise FW. Department of defense
architecture network is a large SE
visualization framework and model-driven
analysis and simulation framework.

Enterprise FW. British ministry of defense
architecture framework, includes seven key
views: technical standards, strategic,
operations, service, system, and acquisition.
Enterprise FW. Enterprise ontology is based
on identification, definition, representation,
specification, configuration, and instantiation.
SE. This model-driven development
environment is based on: [1] requirements
LETW LIRS analysis, [2] system function analysis
(identification, states, modes, physical arch.),
and [3] architecture design and synthesis.

SE. Object and scenario-driven is a Vee
environment process based on: [1]
Stakeholder needs analysis, [2] system
requirement analysis, [3] logical architecture

DoDAF

ABS

QT

QT

QT

QT

DEV

DEV

DEV

DEV

ANSY [
DES ABS QT DEV
el 11,13
ANSY [T
DES {4 ABS QT DEV
IMP [
ANSY
DES [ABS QT DEV
11,13
QT DEV
ANSY
DES 11'16'193' ABS QT DEV
IMp [
ANSY
DES ABS QT DEV
IMP
ANSY
DES ABS QT DEV
IMP
ABS QT DEV

NET

NET
LIN

NET

NET

NET
PDS

NET
PDS

NET

NET

NET

NET

NET

NET

NET

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

No

No

Yes

Yes

No

No

No

No

No

No

No

No

No

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

(Friedenthal etal.,
2008)

(Buede, 2009)
(Estefan, 2008)
(INCOSE, 2015)

(Ivannikov, 1995)
(Schwarzbach et al.,
2015)

(Kallrath, 2004)
(Magrab, 2014)

(Bansal, 2013)
(Friedman and Wand,
2008)

(Valacich et al.,
2017)
(Berdonosov and
Redkolis, 2010)
(Shelly and
Rosenblatt, 2009)

(Kruchten, 2004)
(Valacich et al.,
2017)

(INCOSE, 2015)
(Dickerson and
Mavris, 2016)

(Kappelman,
2009)

(Mittal and Martin,
2018)
(Liu, 2015)

(Dickerson and
Mavris, 2016)
(Babers, 2015)

(Zachman, 1987)
(Zuech, 2002)

(Ramos et al.,
2012)
(Estefan, 2008)

(Ramos et al.,
2012)
(INCOSE, 2015)

97

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

_ definition, [4] physical architecture synthesis.
SE. (IBM Rational) It is a Model-driven ICSM
system development framework based on an
spiral model. lts lifecycle presents four
stages: [1] inception, [2] elaboration, [3]
construction, and [4] transition.

SE. Architecture analysis and design
integrated approach is a SE development
ARCADIA framework for softv‘vgr‘e a.nd hardware. It is
based on three activities: [1] need analysis
and modeling, [2] architecture and validation,
[3] requirements engineering.
SE. Advanced system architecture program
Alstom ASAP & top-down SF appllcanpn with multiple
views including: [1] operational, [2]
functional, and [3] constructional.

Vtech corporation concurrent environment
tackles [1] requirements analysis, [2]
behavior/functional analysis, [3] architecture
LGOS synthesis, and [4] verification and validation.
Itis based on elements, relationships,
structure, entities, attribute of relationships,
and attributes, using an ‘onion’ SE model.

SE. This is a holistic modeling language and
methodology based on objects and
processes for natural and artificial systems.
Itis based on: [1] function (what they do), [2]
structure (how they are constructing), and [3]
behavior (how the change over time). OPM
tackles: [1] requirement specification, [2]
analysis & development, and [3]
implementation using OPD (object-process
diagrams) & OPL (object-process language).
Arch. Building information modeling provides
a framework to plan, create, manage, and
modify digital representation of buildings
tackling functions, properties, phases, and
designs across the lifecycle. There are
several levels: [1] 4D BIM (3D components +
scheduling), [2] 5D BIM (adding cost related
information) and [3] 6D BIM (adding the
dimension of operations, maintenance, etc.)
It also tackles sustainability and recycling.

Eng. Product lifecycle management
connects information about people and the
lifecycle of a product or an enterprise. PLM
serves multiple phases across the system:
[1] systems engineering (requirements,
variations, reliability), [2] product portfolio, [3]
product design, [4] manufacturing, and [5]
product data management.

Eng. Dynamic object-oriented requirements
system is a requirement system developed
for requirement optimization,
communications, verification, and
collaboration. It links requirements and
stakeholders collaboratively.

Itis widely distributed. Spreadsheets,
schedules, databases, efc. are used by
individuals and organizations across the
world, both discreetly and interconnected.

Table 15. Systems engineering methods, theories, and tools.

Microsoft Office

ANSY
DES
IMP

ABS

ANSY
DES
IMP

ABS

ANSY
DES
IMP

1-10,

13 ABS

ABS

ANSY
DES
IMP

1-14

ABS

ANSY ABS

1-15 GEO

IMP

ANSY
DES
IMP

ABS

1-10 GEO

(ECA ABS

ANSY
DES ABS
IMP

QT

QT

QT

QT

QT

QT
QL

QT
QL

QT

QT

DEV

DEV

DEV

DEV

DEV

FPDS
PDS
DEV

COMB

FPDS
PDS
DEV

COMB

FPDS

DEV
COMB

FPDS
PDS
DEV

comB

NET

NET

NET

NET

NET

NET

NET

NET

NET

DD

DD

DD

DD

DD

SA

SA

DD

DD

No

No

No

No

No

Yes

Yes

No

No

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

(Ramos et al.,
2012)
(INCOSE, 2015)
(Estefan, 2008)

(Brusa et al.,
2017)

(Fanmuy et al.,
2016)

(Estefan, 2008)
(Brusa et al.,
2017)

(Dori, 2016)
(Estefan, 2008)
(Brusa et al.,
2017)

(Eastman et al.,
2011)

(Smith and Tardif,
2009)

(Elangovan, 2020)
(Tyulin and
Chursin, 2020)

(Stiepandic et al.,
2015)

(Badiru, 2013)

98

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.2.5. Conclusion

Based on this literature review of state-of-the-art systems engineering theories, standards, models, languages, and
frameworks several conclusions and gaps can be drawn from the perspective of hardware-based systems development;

o Geometry. While SE methodologies are developed to handle complex systems, they do not have a clear way to deal
with geometrical information or to connect with non-SE geometrical design tools such as CAD or BIM. Managing
abstract analytic information is at the core of many of these approaches since they evolved from software
development techniques, but they do not handle physical relationships natively. Frameworks such as BIM, PLM, and
concurrent CAD present platforms capable of handling analytical parameters, but do not handle complex relationships
among them. Concurrent (Salomone, 2019) and agile SE (Douglass, 2016) approaches tackle the management of
geometrical information but do not present a specific framework or toolset to represent them. On the other hand, LML
(Hettema, 2013) tackles some geometrical aspects in the language approach, but it does not seem to present a clear
workflow or interface either with complex geometry-driven frameworks. The development of complex hardware-based
system architectures needs a multidisciplinary combination of quantifiable (analytical) and qualifiable parameters
(including geometry), as well as relationships among them that evolve over time during multiple design cycles.

o Continuity. Most of all addressed methods present quite a compartmentalized approach between phases and steps
across the lifecycle of a system or enterprise. The development of complex systems often requires multiple and
iterative design cycles. Among all these methods two approaches present a unique approach tackling the SE
development as a continuous process: [1] the skeleton SE method (Badiru, 2019) and [2] IID approaches such as
ICSM (INCOSE, 2015). However, both approaches do tackle specifically geometrical information. SE techniques
tend to specifically disregard whether the scope of the method is a single-point solution or families of solutions beyond
a single instantiation of key parameters. Among them, OPM (Dori, 2016) does take into account the evolution of the
system from the beginning, enabling the use of adaptable language and diagrams that describe such system change.

o True full cycle. Similarly, most SE methodologies do not consider some phases of the lifecycle such as
communication, marketing, recycling, and decommission. SE practices consider more design and analysis aspects
than implementation topics. They address implementation management, but not necessarily detailed areas such as
manufacturing, testing, analysis, etc. While languages and tools can be used in principle across the full lifecycle of a
system, model, theory, and framework they need to include these last phases as part of their teleoclogy, otherwise
they would not be really integrated in their workflow. Thus, closing the design loop is key so an SE process could be
reinforced, feedbacked, and improved with the information coming from the last phases of a project development.

o Synergy. Besides generic SE frameworks such as BIM and reviewed toolsets (documents, matrixes, graphs), all
system engineering methodologies present a very discipline-oriented approach. The type of challenges and problems
these methods tackled are multidisciplinary in nature, but their approach tends to divide the problem by discipline.
Concurrent and agile techniques are closer to a more multidisciplinary and holistic approach than the rest since
multiple disciplinary problems are addressed faster, and in more detail, than other techniques. Along those lines, the
Vtech MBSE framework presents an ‘onion’ model similar to the walking skeleton and 1ID methods. Among these,
multiple design and SE cycles occur much faster to subsequently increase the level of definition. A fast-paced
approach increases interactions and brings a more synergetic approach just by temporal proximity in the lifecycle.

e Optimization. While SE techniques can be used in optimization activities and efforts, these methods and theories do
not necessarily embrace the optimization as a specific part of the theoretical workflow. Optimization is often perceived
as a task, rather than a part of the development lifecycle process itself. As a result, optimization tends to be addressed
during the design phase only providing feedback to reassess or modify analysis and implementation later on.

o Flexibility. Finally, there is a gap that connects all previous points. All these methods present a clear and defined
workflow that tackles analysis, design, and implementation separately. While the practice of SE and DE often requires
multiple in-between steps across phases, such theoretical frameworks present a significantly rigid structure. However,
all these methods do allow to have more flexible workflows while the use of related toolsets also enable a more
flexible utilization. As such, all of them with the exception of some design framework such as BIM, tackle efficiently
quantifiable and non-geometrical parameters.

99

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.3. Evolutionary Principles: Nature, Engineering, and Design
3.3.1. Approach

The concept of evolution as well as subsequent evolutionary mechanisms have outgrown the purely biological realm
and influenced already many technical fields such as software design, bio-engineering, and system engineering, among
other disciplines (Hingston et al., 2008). While this is indeed a growing and under-development field, this literature review
section addresses concepts, mechanism, principles, and applications that not only are a foundational base for this research.
Furthermore, these also highlight key gaps along this new paradigm especially regarding hardware-based system
architectures. Biological evolution is one of nature’s mechanisms to deal with change and entropy, and it is also the approach
behind how complexity emerges within biological systems in general (Ray, 1994).

In physics, evolution is the approach of a system to its thermodynamic equilibrium defined by an increase in entropy
(second law of thermodynamic). On the other hand, from a biological perspective it means an increase in the complexity of
its structure and internal connections. This contradiction is reconciled by the scale at which this is applied while it also brings
the notion of stability (Chakrabarti and Ghosh, 2011). In essence, evolution is the engine of complexity (Mayfield, 2013) and
mastering its methodology has served of inspiration in multiple technical fields, such as software development to increase,
manage, and harness the inherent complexity of a system. As Braha, Minai, and Bar-Yam exposed is their complex
engineered systems book, when it comes to complex systems current paradigms of goal-oriented reductionist analysis and
centralized control are not capable of handling very large or very complex systems (Braha et al., 2007). At the same time,
evolution-driven principles of adaptability, self-organization, resilience, and scalability, among others serve very well
upcoming systems engineering and design challenges in an era of increasing complexity and more global scarcity.

Section 3.3.2 presents an organized literature review of all these topics across multiple technical fields. This is based
on a series of key overarching evolutionary principles (EVPs) as shown in Table 16. Furthermore, Table 17 presents a
detailed summary of each method, principle, and technique addressed in the literature review. This last table also presents
the same format and scale than the DE and SE review tables to make any further comparison and reference easier.

Theories
Principles
Concepts
Applications

ID Code Field of study Description Driven by Applied Domain

This includes modern biology theories,
evolutive mechanisms, and principles.

This is about methodologies and theories

based on the previous point and applied to Data
a modern use of computer science tackling

complex engineering challenges.

Computer
Science

Optimization

It is a subset within the previous computer
science point that is applied to fast-paced
software development techniques.

This field includes all the above points to
X X tackle more efficient systems engineering Workflow Efficiency
methods across the system lifecycle.

Systems
Engineering

Examples and concepts using this
approach are included in this category.

Table 16. Fields and scope of evolutionary methods.

100

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.3.2. Literature Review Summary

These sections elaborate and summarize some of the most relevant principles across key fields, as well as their
relevance towards their application, usage, and relationship to hardware-based system design engineering.

3.3.2.1. Biological Evolution (Evo1)

Within the scientific study of natural evolution, several key principles and concepts could be understood as very
relevant in the context of this research, independently of their biological nature. They provide approaches validated by nature
which have inspired multiple new methodologies specially in the computer science and software domain. Among some of
the most relevant principles in this realm we could find the following:

o Natural selection is a key evolutionary mechanism, based on how Before selection
certain phenotypes (physical observable characteristics of an organism)
increase their statistical survival above other less fitted traits, ensuring O .
their reproduction and continuation as Drawing and Wallace described O
(Herron and Freeman, 2013). But selection is also an organized route in . .

itself against complexity (Bell, 1996). While entropy at large continues to .
increase, evolution tends towards a greater level and order. Evolution O
only happens through natural selection if there are enough genetic
variations. At the most basic level, natural selection is based on inherited
variations within species that allow them to have a survival advantage
(Zeigler, 2014). This mechanism also considers destructive processes .
such as predation, competition for resources, climate changes, and .
diseases, among others. Figure 90 presents a graphical representation

of this process (Wykis, 2007). This basic evolution mechanism describes

After selection

and predicts life evolution on Earth (Dobzhansky, 1973) and it was later Final population
connected to genetics by the modern synthesis theory. Relevance. .

Natural selection raises two concepts that relate to both DE and SE such . . .

as [1] the optimization of the solution is performed by multiple variations
that are being tested against environmental requirements, and [2]

previous solutions serve as leverage towards a new generation that

become heritage. Application. This principle today is relevant at different Resistance level

levels because the evolution of products and services can be understood

as small trending variations among multiple brands and customer O O O
feedback evolving towards an established design within their business Low High
ecosystem. In broader terms and with some caveats the concept of

evolution also applies to technology development as Ziman pointed out

(Ziman, 2003). Furthermore, the concept of finding more fitted solutions

(or approximations) based on modifications within a given context is in Figure 90. Natural selection applied to antibiotic
essence the foundational principle of genetic algorithms developed in the resistance, after Wykis (2007).

1990s for software programing (Forrest, 1993; Koza, 1994).

e Evolutionary developmental biology (‘evo-devo’) deep homology and pleiotropy. Evolution is about
descendants with modifications and represents changes at both genetic and organism levels, enabling permanent
changes in all species (phylogeny). On the other hand, development is about how an organism is produced
(ontogeny) within its own individual time scale (Hall, 2012a). The evo-devo approach studies and compares those
ontogeny processes to infer phylogenetic relationships (Arthur, 2002). In essence, ontogeny produces phylogenetic
change and evo-devo studies how embryonic changes during one generation relate to evolutionary changes at the
species level, and in any stage of the life cycle (Hall, 2012b). With the development of molecular genetics, evo-devo
also studies the relationship between physical traits (phenotype) and genetics (genotype). Among many mechanisms
discovered within this approach, deep homology describes how certain genes (hox genes) control the development

101

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

process (growth and differentiation) within a species, and across many species (Hall and Olson, 2003). Figure 91
show this concept graphically (Hueber et al., 2010). Eco-eco-devo incorporates the notion of ecology into this retro-
alimented cycle. Furthermore, across the smaller portion of genes controlling the development, one gene affects
multiple and unrelatedly phenotypic characteristics. This process is called pleiotropy (Miglani, 2010). Relevance. At
a high level, this approach brings a couple of important points in the development of any complex system, such as
[1] the development of the system affects the system itself and possible futures generations and [2] a small control
mechanism guiding the development process affects multiple subsystems. Regardless of the biological origin of this
approach, these principles can apply to both system design and systems engineering developments. The notion that
the process intrinsically affects point designs as well as whole families of designs, provides a much broader and
richer perspective with multiple design consequences. Application. Evo-devo principles are being explored for
software and hardware developments especially toward optimization and computer generation of solutions without
human involvement, with applications in urbanism and architecture for instance (Richards et al., 2012).

@ g" anterior central posterior

~ : pon L/ s
~E&—e)— T —E)— <

Caenorhabditis elegans lin-39 ceh-13 mab-5 | egl-5 ! php-3 nob-1

—

f

m% <o <o < <
lab | pb Dfd | Scr | Antp” Ubx “abd-A

Drosophila melanogaster

g T e

Branchiostoma floridae

s le |71
group 1+2 group 3
Figure 91. Hox genes across species after Hueber et al. (2010).

Mus musculus and Homo sapiens

Allopatric Peripatric Parapatric Sympatric

e Speciation. In such evolutionary path, one species could evolve into multiple
other species over time (speciation), thus becoming the common ancestorof 22, © © O© O
those (Dieckmann et al., 2004). Populations that are isolated from each other
can evolved into new species driven by adaptive mechanisms such —museor () @) e ©
ecological, reproductive (Dieckmann et al., 2004), and artificial divergence. JSarer Newnire Newscho Gee
These mechanisms include: [1] geographical separation, [2] small population ~_
entering an isolated niche, [3] entering a new connected niche, [4] and a gedueve [® @& ©
population going through genetic changes (Butlin et al., 2009; Karonen, REISGR] Wil ol W
2006). Relevance. While implications of this simple concept have multiple ~ Newdisinct
consequences and theories in the literature, the essence is that the creation 2;:21322‘#’915@ @ @ @
of diversity (and therefore all ties between individuals) is part of the Figure 92. Speciation mechanisms after
evolutionary process. Application. Software techniques such as digital ~ Karonen (2006).
forensics explore these principles (Cooper, 2005).

102

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

o Mutations are changes in DNA molecules leading to the genetic variation of species. These genetic changes may
lead to phenotype changes, and these to an evolutionary advantage in the natural selection process (Nei, 2013).
Relevance. Change is at the core of evolution, and nature show us that smaller variations lead over time to greater
complexity and more efficiency in any environmental context. Regardless of the biological or artificial nature of a
system, this mechanism applies to the notion of continuity and the approach towards what design methodologies are
aimed. Application. This principle can be found across software testing techniques (King and Offutt, 1991), structural
design optimization (Burns, 2002), and genetic algorithms (Srinivas and Patnaik, 1994), among others.

e Coevolution happens when two or more (guild) species affect
each other evolution through natural selection (Thompson,
2005), and it is one of the most powerful mechanism on the
Earth ecosystem. Multiple paths lead to coevolution including
predator-prey, host-parasite, or mutualism (e.g., flowers and
insects), and they imply some specialization of species
involved (Thompson, 2009) while bringing a geographical
standpoint. Relevance. Coevolution goes beyond biology, - P
affecting from systems engineering and computer science to ~Techologal tesures
culture and human diversity (Durham, 1991). The notion that -
unrelated systems can help, support, and thrive upon each Figure 93. Co-evolution paradigm after Tolio et al. (2010).
other, is at the core of any complex system as well as it could
be within systems engineering efforts. Thus, the duality of specialization and co-evolution applies to all kinds of
systems, natural or otherwise. Application. This mechanism is found across many technical fields such as: [1]
computer science to develop coevolutionary algorithms for artificial intelligence and machine learning (Potter and
Jong, 2000), [2] cosmology and astronomy (Ho, 2004), [3] manufacturing, applied for instance to the coordinated
development of products, processes, and production systems (Tolio et al., 2010), [4] architecture design, for instance
within biomimetic architecture (Mazzoleni, 2013), [5] management such as the coevolutionary NKCS model (Allen et
al., 2011), [6] sociology (Durham, 1991), and [7] technology (Lee, 2020), among others.

o Adaptation. Furthermore, the aforementioned dynamic evolutionary process leads consequently organisms to
become more fitted within their environment and potentially evolve as species if phenotypic changes become
hereditary. Adaptation and biological fitness are therefore related, since the last one relates to the genotype and the
ability of an organism to pass genes they carry (Werf et al., 2008). Relevance. Physical self-organization and
evolutionary adaptation are also interconnected (Vijver et al., 2013a) since a higher level of evolutionary adaptability
(based on variations and selection) requires a higher level of self-organization among components and their
interactions. In general and beyond biology, the adaptation of a system is related to its capability to react against
environmental changes influencing the designer to forecast such situations (Levi and Kernbach, 2010). These
changes could happen because: [1] a new situation, [2] a new functionality need, [3] a modified behavior, and [4] an
optimization of system parameters. Application. This principle is widely used across multiple fields within design
principles and an optimization strategy such as: [1] robotics (Levi and Kerbach, 2010), [2] architecture (Kosir, 2019),
and [3] artificial intelligence (Holland et al., 1992), among others.

o Evolvability is the capacity of a developmental system for its adaptive evolution (Minelli, 2018). The key is to provide
phenotypic (physical) variations that become heritable, so they are maintained over time leading to the evolution of
the specie through natural selection. This concept is also related to the robustness of an organism and the persistence
of certain traits under external perturbations (Wagner, 2013). Robustness against mutation is therefore as important
as the capacity of the system to evolve. Thus, biological systems are capable of changing and tolerating change at
multiple levels. Relevance. This is a critical aspect to understand how complicated systems can withstand a lot of
change (Wagner, 2013), and it can be key to understand heritage as an unchanged but proven solution or species
trait. Application. As well as previous concepts shown, this principle is used in multiple fields such as [1] robotics,
optimizing towards arbitrary behavior and creating novel system functions (Long et al., 2018), and [2] system
architecture, reducing cost in large systems by managing changes in smaller parts through defeaturing, abstraction,
duplication reduction, etc. (America et al., 2010).

Changes
+ Machine

103

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

o Self-organization is the principle by which natural systems become structured _
through their own internal processes and unlike technological systems which : Sevl
achieve such state through external commands (Yates, 2012). These internal —
processes lead to patterns at a system-level (Schweisguth and Corson, 2019; :
Schweitzer, 1997), because of interactions at lower system levels. This requires
enough available energy although they appear not to have a clear directive
sometimes. Mechanisms leading to self-organization include: [1] positive and
negative feedbacks increasing or reducing the magnitude of a perturbance in the
system, [2] exploitation and exploration, [3] multiple interactions, and [4] energy
versus entropy or disorder (Camazine et al., 2003). A key aspect of this
mechanism is the access to information, since organization arises from
interactions among individuals that include signals and cues obtained from each
other as a work in progress or stigmergy. Self-organized systems are dynamic,
flexible, and they present emergent properties through local interactions within a
more global order. They are also non-linear, with an organizational hierarchy, and
inherently complex, while staying far from the thermodynamic equilibrium.
Multiple theories are also behind this principle such as: [1] dissipative structure
theories based on a matter/energy exchange balance, [2] synergetic principles based on the coordination or synergy
of mechanism between internal components, and [3] catastrophe theories based upon “the long-run and stable
equilibrium that can be identified with the minimum of a smooth well-defined function”. In other words, it is a transition
towards a steady state through unsteady states. Relevance. However self-organization not only applies at the
organism level, but also at molecular, mineralogy, thermodynamic, behavioral, social, economic, urban, information
science, and cultural (Vijver et al., 2013a; Yates, 2012) levels. As Ashby defined in its “Principles of the self-organizing
system”, any deterministic dynamic system will evolve towards an equilibrium state (attractor), leaving all non-attractor
states behind so its evolution will constrain it into the attractor itself (Ashby, 1991; Zhang, 2015). In essence, the
multiple literature about self-organization reinforces the idea of an intrinsic self-order for any complex system within
a contextual environment. Application. Self-organization principles and theories are used and applied across
multiple fields such as: [1] biology (Camazine et al., 2003), [2] chemistry (e.g., molecular self-assembly Whitesides
etal., 1991), [3] systems control (Gershenson, 2007) , [4] cybernetics (Ashby, 1991), [5] thermodynamics (Nagarajan
and Ruckenstein, 1991), [6] computer science (Winfree, 2006), [7] socio-economics (Witt, 1997), and [8] linguistics
(Zhang and Park, 2008), to name a few.

o Evolutionary ecology is in between ecology and evolutionary biology (Mayhew, 2006) perspectives. This field
studies variations (genotype differences) “within individuals, among individuals, among populations, and among
species” (Fox et al., 2001), considering the relationship with the physical environment and the effects of performance,
behavior, longevity, and fertility. Thus, this implies that is key to understand when a phenotype trait within an organism
is caused by its genotype and how much this will drive
its natural selection. This approach requires a s

P q P level 2

level 3

Figure 94. Emergence of self-
organization after Schweitzer (1997).

P

Molecules Tissues Ecosy

perspective that takes into account simultaneously time _ ek noviess . Comexates

scale, complexity, size, and space (see Figure 95, smee oo Meem Koo —~
Pianka, 2011), as well as the complex interactions I [[]

among species, populations, and individuals. The term -l 100 108 105 107 100 1on 1o
system ecology refers to both massive complexity and : ™ - 16:4 > - - . i ﬁo . o : i
subtle interactions. However, the limitation in predicting

such responses with models that are limited by state- l l J l \ l
conditioned data is based on the difficulty of inferring ™ "Seconas Hoos Wesks Yews Coswics Milleasia |
new behaviors in any new state going beyond any Processes ™ Biochemisy - s = Ecology ~ e

available data (Pianka, 2011). Relevance. This field
provides a unique perspective regarding complexity Figure 95. Time-scale scaling of biological phenomena after
because not only it addresses subtle and complex Pianka (2011).

104

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

interactions between all components of an ecology, but also relates to different scales within such ecology.
Independently of the biological origin, such perspective could also be very applicable to the development of very
complex artificial ecosystems, such aerospace, energy, etc. Application. Again there are multiple fields where this
approach is being used or based upon, such as: [1] biology, [2] social sciences (Smith, 2017), [3] information
processing (Dukas, 1998), [4] technology (Solée et al., 2013), and [5] urbanism (Rivkin et al., 2019).

o Biological network. Biological systems at multiple scales (e.g.
protein-protein interactions, between-species interactions, food webs,
etc.) are better captured by network representations as Figure 96
(Kepes, 2007) shows. In essence, modeling processes in bioscience
can be summarized by the following phases: [1] conceptualization, [2]
mathematical formalization, and [3] management or optimization
(Marin-Sanguino et al., 2019) as seen in Figure 97. Bioinformatics turn
such complex systems into building blocks or nodes that interact
among them while representing biological units based on graph theory
such as genes, molecules, cells, and organisms (Proulx et al., 2005).
At the core of this mathematical approach there are several s S
parameters, which are critical to understand the network topology such e«
as: [1] degree distribution or variation in the connectivity to the nearest
neighbors P(k) (Kepes, 2007), [2] clustering coefficient representing
the ratio of connections or small-world properties of a graphs, [3]
assortativity coefficient as a measure of how many edges in a network
tend to connect similar nodes (Boccaletti, 2010), [4] eigenvector (Guzzi
and Roy, 2020) that measures the influence of a node in a network, [5]
hierarchy, [6] motifs, and [7] betweenness centrality that defines how o ‘
central a graph is based on the shortest possible path (Freeman, Figure 97. Modeling in biosciences after Marin-
1977). Relevance. This approach applies beyond biological studies "9/ et @ (2019).
and presents a unique way to look at complex systems as networked
elements under multiple inherent relationships that are defined by their nature. Complexity of natural systems does
not reside only in the number of components (e.g., cells) but also key relationships among them and at multiple levels.
Application. This approach is used across multiple fields in biosciences tackling scales such as molecule and protein
interactions, systems (e.g., immune, or neural systems), and ecologies (e.g., system of systems).

g
g
©
2
3
=
&

Random network Scale—-free network Hierarchical network

(a) (b)

Figure 96. Graphics presentation of three networks models after Kepes (2007).
105

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.3.2.2. Evolutionary Computer Science (Evo2)

The use of evolutionary computational (EC) principles inspired by these biological mechanisms has been widely used
since the 1960s across multiple technical fields, with an emphasis in both optimization and artificial intelligence (Jong, 2006).
The width of these fields is very extensive and is out of the scope of this research, however it is key to understand some
basic principles behind. This subset of computer science is based upon algorithms, models, programming, and strategies
(Dumitrescu et al., 2000) with many potential applications to planning, design, simulation, optimization, identification, control,
machine learning, scheduling, strategy acquisition, and classification, among others within this realm (Baeck et al., 2018;
Bentley, 1999). Evolution is a good problem solver, and has many commonalities with human design (Bentley, 1999).

GENERATION 1 GENERATION 2 GENERATION 3 GENERATION 4

-

,
7 - L4 ~

/A A N \ m
1 Y4 IIIEI ~ ! 1
v |

l

s
"= = (N |
1
- So - , : mpm)’ < - m[m
P -l . - - [E=l==] Il
(an) (mn]

JH B

\

| ‘-’- —
mYm a— LN

om0/

Figure 98. Generation of evolving house designs (population of 4) after Bentley (1999).

Interactive evolutionary computation (IEC) is a subset of EC GoEs
that optimizes a system based upon a subjective human evaluation
(Figure 99, Takagi, 2001) with multiple applications in animation, 3D [target system —
computer graphics, industrial design, speech processing, etc. This |7 P2 .0
approach merges the quantifiable parameter space with the qualifiable \
psychological ~ space. Similarly, human-based evolutionary =y [|
computation (HBEC) relies on humans to manage candidate solutions EC

either through a centralized approach (e.g., web server) or a
distributed way (e.g., information sharing among people) (Ohnishi et
al., 2017; Tan et al., 2017). These could be applied to both selection Figure 99. IEC basic scheme, after Takagi (2001).
and evolutionary methods across multiple technical fields.

These methods address evolution as an optimization process (Baeck et al., 2018). Generally, they are based upon
producing multiple initial solutions which are iteratively and stochastically refined through every following generation until a
fitted solution is obtained. This is based upon natural selection principles (Eiben and Smith, 2007). EC is about searching
within a space of possible solutions using evolutionary algorithms that combine several techniques (Ashlock, 2006).

Evolutionary algorithms (EA) are a subset of EC, and in general they are all based in the natural selection principle.
A preliminary algorithmic population is genetically created using a collective learning process for such population, then
through a fitness function a parent group is selected to breed a new descendant population that based on multiple
randomized processes (Baeck et al., 2018) until the solution is approximated well enough. Among the most relevant EA are
genetic algorithms (GA), which were developed by John Holland in 1962 (Dumitrescu et al., 2000). These are also based
on the survival of the fittest principle with the purpose of designing robust adaptive systems. This metaheuristic process
presents an evolution of candidate solutions (chromosomes or fixed-length binary strings) through different search operations
such as crossover, mutations, and inversion. Figure 100 shows an example of a genetic algorithm. Within this context,
genotypes can be understood as solutions seeds, which map phenotypes or solutions. Figure 102 also presents the general
architecture of GA algorithms (Bentley, 1999) that can be summarized in three basic steps: [1] generation of an initial
population, [2] selection of a portion of that population to seed the next generation, and [3] development of a next generation
from that portion through crossover (recombination of parental genetic information to create a new offspring) and mutation
(changing some algorithm chromosomes). In general, the GA method needs a genetic representation of the solution and a
fitness function to evaluate it. Advanced genetic algorithms include among others (Bentley, 1999): [1] steady-state (offspring

106

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

replaced after generation according to fitness), [2] parallel (multiple processes in parallel), [3] distributed, [4] niching &
speciation (segregating population into different species), [5] messy, [6] hybrid (GAs combined with search algorithms), [7]
structured, [8] ‘genetic engineering’, and [9] multi-objective (Takahashi et al., 2011), among many others.

INITIALISE POPULATION WITH RANDOM ALLELES

— EVALUATE ALL INDIVIDUALS TO DETERMINE THEIR FITNESSES

REPRODUCE (COPY) INDIVIDUALS ACCORDING TO THEIR FITNESSES
INTO ‘MATING POOL’ (HIGHER FITNESS = MORE COPIES OF AN INDIVIDUAL)

RANDOMLY TAKE TWO PARENTS FROM ‘MATING POOL’
USE RANDOM CROSSOVER TO GENERATE TWO OFFSPRING
RANDOMLY MUTATE OFFSPRING
PLACE OFFSPRING INTO POPULATION
HAS POPULATION BEEN FILLED WITH NEW OFFSPRING?

| ves

IS THERE AN ACCEPTABLE SOLUTION YET?
NO (OR HAVE x GENERATIONS BEEN PRODUCED?)

| ves
FINISHED

Figure 100.Example of a genetic algorithm after Bentley (1999).

GA are heuristic in nature, so within an optimization problem they are designed to find a ‘good-enough’ solution (Vose,
1999). Nevertheless the GA method presents limitations when compared to other methods (Sivanandam and Deepa, 2007)
such as: [1] identification of a proper fitness functions, [2] premature convergence, [3] parameter selection, [4] gradients are
not possible, [5] local optimization is complicated, [6] they required a coupled search technique, [7] dynamic data sets are
complicated to tackle, [8] the criteria to terminate the process is often not clear, and [9] scalability to deal with more complexity
if often complicated as well, among many others others.

Adaptive genetic algorithms (AGA) present a variation of AGs where key parameters such as population and
mutation change at the same time the algorithm is running allowing changes ‘on-the-fly’ (Pearson et al., 2012). These
variations present the following steps (Sivanandam and Deepa, 2007): [1] initialization, [2] genetic operators (selection,
crossover, mutation), [3] local search (iterative), [4] heuristic for adaptive regulation, and [5] stop conditions.

Other related evolutionary computing techniques include meta-heuristic optimization techniques based upon
search methods in the decision space to find optimal solutions (Bozorg-Haddad et al., 2017). These techniques can be
summarized in both trial-and-error and sampling, which could be grid, random, and targeted. Among multiple examples these
AGAs are highlighted: [1] ant-colony optimization that uses graphs and artificial ants behaviors as a solver mechanism for
optimization (Dorigo et al., 2004), [2] cultural algorithms

expanding generic GAs with a domain-specific belief space that update()

conditions the search space as shown in Figure 101 (Reynolds, (7

2018), [3] memetic algorithms (MA) extending GA with domain-

specific local search (individual) capabilities (Neri et al., 2011),

[4] stochastic optimization using random search variables such

as Monte Carlo (Schneider and Kirkpatrick, 2007), [5] particle T |

swarm optimization (PSO) that iteratively improves accept() influence()
convergence candidates (continuous non-linear functions) by I

using participles, coordinates, and speed within a solution {\ /\
space (Clerc, 2013; Erdogmus, 2018), [6] grammatical select() Population space obj()

evolution (GE) that evolves solutions based on a user-driven

grammar (O’'Neill and Ryan, 2012), [7] dual-phase evolution V :

(DPE) that promotes self-organization in large scale systems

generate() —>
using both graphs and networks (Green et al., 2013). The

system goes through multiple phases globally and locally Figure 101. Cultural algorithms components after Reynolds
processes affecting connections and components in each (2078).

107

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

phase for both natural and artificial systems, and finally [8] differential evolution (DE) that uses differences among individuals
as a fast linear operator (Feoktistov, 2007).

On the other hand, evolutionary programming (EP) simulates evolution through behavioral relationships instead of
a genetic descendance (Fogel and Fogel, 1995). Intelligent behavior is simulated within EP methods through symbols. The
machine creates an output symbol, which is the prediction of what the next input symbol will be. Then a payoff function
evaluates the quality of the prediction (Dumitrescu et al., 2000). Applications of this technique can be found in medicine,
geology, and economics, among many more fields.

Evolutionary strategies (ES) or evolutionstrategie is an optimization technique created by Bienert, Rechenberg and
Schwefel (Bentley, 1999) to tackle hardware systems at first (e.g., pipe bent optimization). In ES methods, there is also no
distinction between phenotype and genotype. The child solution is created by randomly mutating parameters of the parent
(Rechenberg, 1989). Then it is evaluated by its fitness, leading to another solution until the objective is met. This 1+1
approach presents a problem of stagnation at the local answer (Beyer, 2013) and also a slow convergence to a solution.

random (coded) values

Initialise
genotypes m
: 5
6 =<
o —
Q
henotypes g<) 3
Evaluate i rzn
fitness values w
%))
-
m
g
© eno s, fithess values =
5 Fertility genotype o
& fertility values
%=
rent geno s, fertility values S X
Reproduce pa 9 type geneticopyerahors 5:;!
child genotypes % 'g
O —
= en w P
s Replace 9 “y?ﬁ.‘ace m % 2
5 genotypes g g
@ — EI
c
2 em
° w
m
© opulation
g Move pop migrate/inject Q
'ﬁ _ genotypes >
o population =
(@)
P

=}
I

Figure 102. General architecture of evolutionary algorithms after Bentley (1999).

108

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.3.2.3. Evolutionary Software Design (Evo3)

The use of evolutionary techniques has influenced computer science and its application like software design. With
goals such as efficiency, speed, and complexity several techniques can be highlighted as examples of evolutionary principles
that are applied to the development of this field.

Genetic Programming (GP) was developed by Koza in the
1990s as a software development technique (see 3.3.2.3). GP is
based on the same natural evolution principles as GA, and applies
them to find the fittest computer program (Koza, 1994). Figure 103
shows a flowchart representation of the genetic programming.
Computer programs are then genetically programmed, and through
genetic recombination (crossover) there are mated in a Darwinian
process to obtain the fittest solution or its best approximation. Unlike
GA, this approach does not make a difference between search space
and solution space, so genotypes and phenotypes are the same
(Bentley, 1999) altering the solutions directly. The GP method uses
hierarchical tree representations to show operations.

Agile techniques were introduced within SE practices and
originally developed for software developments in the beginning of
the century. These are based on self-organization principles, bringing
speed and flexibility towards changing requirements (Eckstein, 2013).
Thus, these methods present an adaptive approach, prioritizing code
(“genotype”) over documentation or product (“phenotype’) and always
with a goal-oriented path. These techniques can be applied to large
projects (Stober and Hansmann, 2009). Several key characteristics
summarize some basic relationship with EC practices such as: [1]

agile software projects are meant to grow and evolve constantly until %ﬂmﬁ
certain size (complexity) makes them not viable any longer, [2] P‘;‘;m
practices are tailored or fitted to specific problems by teams, and [3]

the practice is defined by a bottoms-up approach filling gaps within [??ﬁ_'

workforce teams and techniques. Among some of the most relevant
agile software techniques are the following:

e Scrumis an agile practice and software framework development with its origins in product development. It presents
a heavy emphasis in both processes and small teams management (Ockerman and Reindl, 2019). Scrum methods
are based on: [1] transparency (every team member is aware of all aspects and goal-oriented), [2] inspection (short
and frequent meetings — scrums - are used for updates and reviews), and [3] adaptation (fast inspection allows to
quickly change strategy, plans, and behaviors in order to achieve goals efficiently and with more quality) (Cohn, 2010;
Ockerman and Reindl, 2019). Figure 105 (Mitchell, 2015) shows the scrum cycle using multiple fast sprints.

o Extreme programming (XP) is oriented towards quality improvement and customer needs adaptability. This is based
on both coding and testing, while integrating customers in the process. It encourages simplicity, feedbacks (system,
clients, team), and embraces change (Beck and Andres, 2004). XP presents a process with fast small releases and
a continuous integration (teams are always synced) using feedback techniques such as pair programming where two
programmers work in the same code simultaneously to reduce errors and increase speed (Zannier et al., 2004).

o Test driven development (TDD) is also based on very short redevelopment cycles with requirements being validated
through tests cases (Astels, 2003; Beck, 2003). TDD presents a rapid cycle of testing, coding, and refactoring (Shore
et al., 2008) that provides proven code every few minutes. Adding features is done in pairs as well and in small
increments, reducing defects and improving resilience. Thus, TDD follows an incremental evolutionary approach.

e Lean software development (Lean SD) evolved from lean manufacturing and presents a solid framework based upon
some key principles such as: [1] eliminate waste, [2] amplify learning (set-based development), [3] decide as late as

109

Figure 103. Flowchart of the GP approach after Koza (1994).

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

possible (concurrent development), [4] deliver as fast as possible (pull systems), [5] empower the team, and [6] a
holistic optimization of the whole (Poppendieck and Poppendieck, 2003). Lean SD also involves short iterations and

Newtonian Waterfall
k Development

Scientific

automation (Hibbs et al., 2009) with a continuous approach towards the integration and development of the product.
o Adaptive software development (ASD) is a change-driven Emergent Order Imposed Order
technique (Highsmith and Highsmith, 2002) that embraces
uncertainty within both process and technical ecosystems. This

approach intertwines concepts, developments, and

management models (Highsmith, 2013) for the development of napive R Acapive

a complex adaptive system (CAS) presenting high speed, high

change, and high uncertainty. ASD sees the project team of an "‘

organization as a living organism and applies concepts to it

inspired by nature, for a much faster approach than waterfall Management

and other evolutionary engineering paradigms. The adaptability

in this method is based upon leadership and collaborations Figure 104. Differences between adaptive and

rather than control and command. At the core of this approach traditional models, after 2013.

is the principle that a ‘complex behavior’ implies ‘simple rules and rich relationships’ (Highsmith, 2013). ASD is

presented as an iterative design lifecycle (plan, build, and revise) approach, as well as iterative development lifecycle

(learn, collaborate, and speculate). ASD has three critical mission artifacts: [1] the project vision (charter), describing

objectives, specifications, etc., [2] the project data sheet which is as single page summary used to focus team

members, managers, and customers, and finally [3] the product specification outline that presents features, functions,

data, and operations, among others high-level product definition documents. This adaptive approach also influences

project management by addressing the core question of how to proceed when the solution is not known either partially

or completely (Wysocki, 2010). Thus, ASD and adaptive project framework (APF) are centered around the goal but

not the solution, so they can accommodate change as a continuous aspect towards developing products and services
(Yuetal., 2019). APF manages the ‘scope triangle’ (time, cost, and resource availability) through multiple cycles until
the goal is fuffilled. It is also a client-driven approach that enables and uses continuous increments and questioning.
Finally, evolutionary software architecture (Ford et al., 2017) is a set of tools and frameworks to create incremental
and guided software developments. This approach presents three phases: [1] incremental change, [2] fitness functions, and
[3] appropriate coupling. Like other techniques, the evolutionary approach involves finding a fitted system for an ever-
changing environment. This method emphasizes the overall adaptability of the system beyond its components.

Stakeholder liaison

8 ®) Product

Backl
-‘- N g S R:%ngg\em
Product Owner g ~
>

Development Team

uspe Ny W i Ieliici 11
S /) men CEVEIOPMEREITEIVETY oy
Q / . ' ! Releasable
Sprint Sprint Increment |
Plannin Backlo < - .2
Topic 1: " . ° g N i\ £)
3 opic 1: forecast PBI's . ™~ . Afwar
u Topic 2: plan work (e.g. tasks) Sprint & A Sprint = <
Review Retrospective
Product
Backlog

Figure 105. Scrum framework process after Mitchell (2015).
110

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.3.2.4. Evolutionary Systems and Computer Engineering (Evo5)

The notion of evolutionary-based systems engineering methods was already introduced in section 3.2. However, this
section presents details regarding several of these general methodologies, as well as their connection to natural evolution
principles. Among some of the most relevant evolutionary systems engineering methods are the following:

o Evolutionary system architecture (Jamshidi, 2011) tackles dynamic and not fully formed system of systems (SoS).
Within this approach, the evolution of a SoS is developed through mechanisms such as [1] self-evolution, when sub-
systems interfaces change, [2] joint evolution, when multiple integrated systems take part on the effort, and [3]
emergent evolution, when a new system excesses the capabilities of its subsystems. ES architecture considers
several aspects such as [1] business, [2] operations, [3] technology, and [4] interfaces, among others. These are all
within structured layers and evolution environments addressing the system complexity (Chen and Han, 2002). This
approach follows these steps (Jamshidi, 2011): [1] identify evolution requirements, [2] identify technology options, [3]
generate an architecture to fill gaps, and [4] evolve such generated architecture though an architecting process.
According to Jamshidi, this approach presents a unique framework to be reinforced by artificial intelligence and other
EC techniques including multimethodology analysis capabilities (Grésser, 2012) to obtain better solutions.

¢ Incremental and iterative development (IID) was already presented in section 3.2. Nevertheless, it can be applied
to both SE and software development domains (Blokdyk, 2017; Larman and Basili, 2003). As previously stated, 11D
is based upon multiple iterative cycles that provide incremental and smaller improvements until the goal is fulfilled
(Isaias and Issa, 2014). Each cycle serves as feedback input for the next cycle, allowing revisions and improvements
at each step. Once more, this approach presents a layer-structured framework taking into account perspectives from
team members, customers, and managers (Bittner and Spence, 2006).

o Evolutionary development (ED) is common in research and development (R&D) environments (Forsberg, 2020).
Each cycle is used as input for the next one and its output can present an unknown nature. This approach includes
the user perspective in the development framework and prototypes as way to validate and collect information for the
decision process (Hirschheim et al., 1995). This method involves both software and hardware, and implies a
collaborative and experimental learning capability using prototypes in the context of ED.

o Evolutionary System Development Prototyping (Budde et al., 2012) is an approach based on the evolutionary
development of software systems and it involves the production of multiple early working versions as an
experimentation source. It was developed by Reinhard Budde, Karlheinz Kautz, and others. This approach brings a
rapid engineering standpoint to the process, as well as to other development activities such as project start,
information system modeling, software design, software construction, installation, and organizational integration. This
approach also includes verification and validation of models through prototyping across the full system lifecycle.

o Evolutionary System Model (ESM) is a layered approach for evolutionary complex computation systems, especially
for business environments (Henderson, 2012). There are six layers within this approach: [1] technology (e.g.,
including hardware, networks, operative systems, etc.), [2] domain machine (e.g., computer services), [3] domains
(e.g., ontology) as fixed points of an evolutionary system, [4] enterprise (e.g., business practices and organizational
structures), [5] process (e.g., individual process and functions), and [6] executive (e.g., human interface).

¢ Evolutionary systems engineering (ESE) presents a systems engineering process in three phases (Hitchins,
2003): [1] basic capabilities including operations and system familiarization, [2] additional capabilities, and [3] delivery.
This is especially relevant for lean volume supply productions as well as acquisition and procurement efforts. It
presents a very different approach that other systems methods for mass development and production.

o Evolutionary SoS development (Rainey and Tolk, 2015) is a systems engineering method where a SoS is never
fully formed or complete. Furthermore time, structure, function, and purpose are also developed through evolutionary
methods. SoS emerges from existing systems and its evolution implies changes over time (e.g., Arpanet).

o Feature-driven development (FDD) is an agile system engineering method made of collections of workflows and
techniques that us based on features and roles with an added value such as chief architect (Haberfellner et al., 2019).
This method presents a two-weeks fast-paced five steps including: [1] overall model development, [2] feature list
considering actions, results, and objectives, [3] feature planning, [4] feature design, and [5] feature construction.

o Complex adaptive systems (CAS) is a method based on the notion that complex natural and social systems present

111

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

stable states outside an equilibrium (Carmichael and Hadzikadi¢, 2019) with multiple and correlated feedbacks among
all agents within such systems. The CAS is often not addressed at the system-level and requires the study of the
agent behavior. Thus, as a SE framework, CAS is an agent-based approach (Miller and Page, 2009) that presents:
[1] multiple levels of feedback among agents and components of such complex systems, [2] emergent properties and
self-organization, and [3] non-linear dynamic behaviors (Miller and Page, 2009) similarly to those of natural organism.
Feedbacks within CAS imply ‘that the output of a system at a time t has influenced the input of a system at a time
t+1°. Intelligent complex adaptive systems (Ang and Yin, 2008) applies a multidisciplinary approach towards the
simulation of multi-agent systems and organizational studies to understand the behavior of synergetic complex
systems. In summary, this approach presents a perspective that looks at a system as a: [1] complex construct due to
dynamic behavioral interactions among parts and components, and an [2] adaptable element since a system that can
evolve and self-organize itself is based on events within its environment. Applications of this approach are used in
economics, agent-based modeling (ABM), strategic management, etc. (Yin and Ang, 2008). Adaptive systems extract
and give energy to their environment (Gros, 2015) reflecting the importance within this approach to consider
contextual relationships. Thus, CAS systems learn and adapt as they interact (Holland et al., 1992).

3.3.2.5. Evolutionary Hardware Design (Evo4)
Finally, evolutionary techniques have been proposed and keep being applied to a growing number of hardware design

topics and design theories towards physical systems. Among some of the most relevant techniques are the following:

design (CAD) since the 1990s (Bentley, 1999). Real examples exist in

,7»—-*””>7>7\
such as biomimetics and comparative studies, computer science (EC), and e
Bl
\
multiple fields, as Figure 111 shows. There are four pillars in this approach:

Evolutionary design combines evolutionary biology techniques

Evolutionary design optimization uses EC to optimize existing

hardware designs making use of parametrics and adaptive CAD “”'f,;;z‘zt;",sﬂ"Z%f?fz??ﬁ";;";‘;zmm:w

(Holland et al., 1992), but it does not generate a brand new design Lo 115 3 Dance o3 tomcent
(Kalyaany’ 2008) Related approaChes Invo've Concept deSIQn’ 11010110 10101101 10101110 !OOG:I’:;ngel:mTU\O 10001010 11110010 00101110
detail design, evaluation, and iterative redesign (Bentley and ol DNcter! b Tpuin2 Loplid Dmeocs . b 4 Do

Wakefield, 1996). See Figure 108a for a visual example. Figure 108a. Evo. optimization of a table (Bentley, 1999).

Creative evolutionary design is based upon the creation of

evolutionary designs starting from scratch using two perspectives: Q

e Conceptual evolutionary design provides a high-level design Flatsurtace
framework with simpler representations showing basic building ~ #ncten suepers oects proveiee Aiolin: gyl ot mrttces fhes or

a stable base, has negligible height more provide stable base, has height

Conceptual Building Blocks:

Leg

blocks (Figure 108b) for the system. In this phase, basic Phenotypes:
genetic algorithms are used to assess system phenotypes. e iy
o Generative evolutionary design (genetic design) uses ! \ch - L;
computer methods based upon GA to create 3D i Flat surface
representations of phenotypes. As Figure 108c shows, this Genotype:

0000 1111 0001 0000 0001 0000 0001 0000 0001 0000

approach goes from unshaped components to detailed and Concepti Pirf Concept2 Pir2 Concept3 Pir3 Conceptd Pird Concepts PI
valid designs based on genotype generations and fitting ~ Figure 106b. Conceptual evo. design (Bentley, 1999).
evaluations of the system. '
Evolutionary art involves the generation of images using EC (e.g., r e
digital trees, vegetation, moving crowds, etc.) with great success in N e
the fields of animation, design, etc. (McCormack, 2008).
Evolutionary artificial life form is a method based upon the creation
of artificial behaviors, problem solving approaches, and
communication strategies, among other tools using EC techniques. e
In essence, this has the objective to simulate natural and complex o Tl R M

behaviors virtually within a digital environment and in combination f(:égugf 10%-9 g)enefaﬁve evolutive design of a table
entley, .

112

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

of a series of fitness functions to validate multiple complex facets.
¢ Induction design is a method of evolutionary design

applied to architecture and urban development l?m

(Watanabe, 2002). This approach reinforces the need | | [|

of diversity towards system design resilience. T ¢ J ¢ *d *3
e Multi-agent system (Shen, 2019) tackles multiple (a) (b) () @

aspects of systems implementation from an agent-
based standpoint. This integrates collaborative,
concurrent, planning, and other advanced manufacturing techniques, such as holonic manufacturing across
engineering fields. Agent based models (ABMs) are computer models simulating the interaction between agents with
design consequences to the overarching system. Ants are a good natural example of the inspiration behind agent-
based models (Wilensky and Rand, 2015). Multiagent systems

bring a similar approach considering intelligent agents (Weiss, ' RESOUEE HOLON~
1999). Holonic manufacturing systems or HMS (GraBler and AT

Pohler, 2017) within this multi-agent approach use “autonomous (—)
and cooperative building blocks of manufacturing systems to ~ 'merholen | .

transform, transport, store, and validate physical objects” (Shen, il / \/\

Figure 109. Different agents after Shen (2019).

2019). The agents within this method include specialists, sensors, L%/ communication " Process
action agents (e.g., robots), and interactive agents with humans :" ’:(PO AT (fu‘:c';;',‘,’,'a,,j
(e.g., assistants). Figure 109 shows a general agent diagram. MD‘ 7N P N o /
These agents process information (messages), make decisions, i

execute, and record information transactions as part of the m’,'n’;"u‘:zft'i’an N
methodology. Thus, this method [1] studies learning mechanisms & B ﬂﬂ

among agents, [2] establishes architectures accordingly to
optimize their implementation, [3] tackles other phases and
challenges such as coordination, concurrency, allocation, conflict Figure 110. Holon after Grakler, et al. (2017).
resolution, and knowledge ontologies (Monostori et al., 2006).

o Evolutionary robotics (ER) uses EC to develop and optimize both hardware designs and controllers for autonomous
robotics (Nolfi et al., 2000). Under this method, the control system of a robot becomes an artificial chromosome, so
EC techniques are used to improve its fitness. This applies as well to
the body morphology (structure), sensors, motor properties, and
design layouts (Vargas et al., 2014). ER is based on the fitness of the
robot behavior which is generated from genomes. Here genetic
operators are used like in other EC techniques to select and produce
the next system generation. This method is applied to hardware and
robotic systems allowing to explore new and unconventional designs
based on large numbers of variables, tune parameters, design
optimizations, and system robustness through its fitness (Vargas et
al., 2014). Besides the fitness-based evolution, another approach
within ER is a novelty-based evolution (Silva et al., 2016). Such
approach is an evolution based on behavioral diversity, that avoids
early convergence issues and enables an open-ended system
evolution addressing both hardware and system behavior (Evans and
Back, 2011) simultaneously.

o Evolutionary machine design (Nedjah and Mourelle, 2005b)
exemplifies a growing trend addressing how evolvable hardware and
genetic programming can be combined to improve and optimize both
hardware designs and behavioral capabilities of hardware-based
systems. Applications of this can be found in adaptable circuits (Koza

Figure 111. ST5 antenna designed using GA
techniques (NASA, 2006 - public domain).

13

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

etal., 2005), neural network controlled robots (Bekey and Goldberg, 2012), and SOA hardware systems across fields.
3.3.2.6. Evolutionary Principles and Models Review Matrix

Table 17 presents a summarized review of evolutionary key principles (EVP) across different fields of study. A brief
description and basic characteristics regarding their approach and use are also provided, while an evaluation of critical
aspects related to the design of hardware-based complex system architectures is considered based upon these points:

o Foundation. This is a summary description of the evolutionary principle (EVP) and its characteristics. The following
prefixes describe the category as [1] theory (TH), [2] principle (PRI), [3] technique (TEC), [4] model (MOD), [5] method
(MET), and [6] mechanism (MECH).

e Main function or task. Is the EVP approach concentrated on analysis (ANSY), design (DES), implementation (IMP),
or development (DVP)?

o System design phase. What phases are addressed by this approach? Basic design phases are numbered as it
follows: [1] planning, [2] problem study, [3] concept design, [4] embodiment design, [5] detailed design, [6] analysis,
[7] optimization, [8] testing and validation, [9] documentation, [10] implementation, [11] delivery, [12] marketing, [13]
operations, [14] decommission, [15] recycling of products and processes (Seider et al., 2016) (Haik et al., 2010). See
Figure 45 to identify color codes and structure level.

o Information type. Does the EVP tackle geometrical information (GEO), such as volumes, shapes, sections,
tolerances, and other graphical constructs)? Can it handle abstract information (ABS) such as analytical or genetic
parameters? Can it handle interfaces (INT)?

o Qualitative / quantitative (Qt./Ql.). Does the EVP tackle qualification and quantification parameters?

e Scope. Can the SE method handle point-design solutions (PDS), families of point-design solutions (FDPS),
development process (DEV), continuous designs (CONT), or a combination (COMB) of all of them?

o Adaptability. Does the EVP present an approach that is considered flexible (FLE), networked (NET), strict linear (L),
iterative (ITE), waterfall (WA), spiral (SPI) or natural (NAT) methodologies (see Figure 46)?

o Perspective. Is the EVP based upon a discrete disciplinary standpoint (DD) or a synergetic multidisciplinary approach
(SA)? This question studies again whether it is based on a ‘divide-and-conquer’ approach discretizing disciplines and
subsystems, or on the hand it can tackle multidisciplinary perspectives all at once.

e Optimization. Does the approach allow any optimization of the system, solution, or process?

o Tool platform. What type of tool and technique does the EVP enable or support? This could include: [1] computer
models, [2] drawings, [3] CAD, [4] graphs, [5] physical prototypes, [6] documents, [7] schedules, and [8] math models.

o Reference. This is a summary list of relevant technical references and professional practice inputs reviewed during
this research.

Foundation / Application Function Phase Geo. Qt/Ql. Scope Adapt. Pers. Opt. Tools References

Evo1 - Biological Evolution

Driving Principles

(Bell, 1996)
(Herron and
Freeman, 2013)
(Zeigler, 2014)
(Forrest, 1993)
(Koza, 1994)

MECH. ltis based on the survival of the

fittest phenotype principle. This mechanism DES

\ENN IR Y increases system complexity and provides IMP
an adaption approach against Env. changes.

Application: genetic algorithms

MECH. The development of an individual
(ontogeny) produces changes at the species

ABS QT

U GEo QL

FPDS NAT SA Yes NA

level (phylogeny). Deep homology describes (Arthur, 2002)
ST how certain genes (nox genes) control the o E:Z:: fn? é‘l’lon
Deep Homology developmen't of an individual as well as DES ABS QT FPDS NAT SA Yes NA 2003 g
. across species. The development of a GEO QL DEV :
and Pleiotropy ' IMP (Richards et al.,
natural system affects species and control 2012)
mechanisms of its development including (Miglani, 2010)

multiple subsystems.
Application: software and hardware

114

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

_ computer optimization.

MECH. Species could evolve into other
species over time (speciation) becoming the
common ancestor (descent). lts mechanisms
include: [1] geographical separation, [2]
small population entering an isolated niche,
[3] entering a new connected niche, [4] and a
population going through genetic changes.
The creation of diversity is part of the
evolutionary process.

Application: software.

MECH. Mutations are changes in DNA
molecules leading to phenotype changes
and the genetic variation of species. Smaller
variations on system components lead to
more complexity and efficiency in the
environmental context over time.
Application: software testing, structural
optimization, genetic algorithms, etc.

Speciation

MECH. Two or more (guild) species affect
each other evolution through natural
selection. Related paths include predator-
prey, host-parasite, or mutualism. Thus,
unrelated systems can help, support, and
thrive upon each other.

Applications: computer science, cosmology
and astronomy, manufacturing, architecture,
management, sociology, technology.

PRIN. The dynamic evolutionary process
leads for an organism to become fitter to its
environment and potentially evolve as
species if phenotypic changes become
hereditary. Adaptation and biological fitness
are related. A higher level of evolutionary
adaptability requires a higher level of self-
organization among components and their
interactions. These happen because of [1]
new situations, [2] new functionality needs,
[3] a modified behavior, and [4] an
optimization of system parameters.

Adaptation
Applications: robotics, architecture, artificial
intelligence, machine leaning, efc.

PRIN. It is the capacity for adaptive evolution
of a developmental system. This is related to
the robustness of an organism, and the
persistence of certain traits under
IATIVELIINI perturbations. This is a critical aspect to
understand how complicated systems can
withstand a lot of change.
Application: robotics, systems architecture,
design, etc.

PRIN. Self-organization is the principle by
which natural systems become structured
through their own internal processes, and
without external commands. Self-
organization mechanisms include: [1]
positive and negative feedback, [2]
exploitation and exploration, [3] multiple
interactions, and [4] energy versus entropy
or disorder. A key aspect is the access to
information (e.g., interactions).
Application: biology, chemistry, systems
control, cybernetics, thermodynamics,

Self-organization

S'ESY 15 WS
e 710 N
’S’ggY 15 WS
el 7.0 [
gggv T ABS
el 7,10 e
ANSY

DES ffo ABS
mp

A 26,

IMP .
NS 26,

lMP ABS

QT
QL

QT
QL

QT
QL

QT
QL

QT
QL

QT
QL

FPDS
DEV

FPDS
DEV

FPDS
DEV

FPDS
DEV

FPDS
DEV

FPDS
DEV

NAT

NAT

NAT

NAT

NAT

NAT

SA

SA

SA

SA

SA

Yes

Yes

Yes

Yes

Yes

Yes

N/A

N/A

N/A

N/A

N/A

N/A

(Dieckmann et al.,
2004)

(Butlin et al., 2009)
(Cooper, 2005)

(Nei, 2013)
techniques (King
and Offutt, 1991)
(Burns, 2002)
(Srinivas and
Patnaik, 1994)

(Thompson, 2009)
(Thompson, 2005)
(Durham, 1991)
(Potter and Jong,
2000)

(Ho, 2004)

(Tolio et al., 2010)
(Mazzoleni, 2013)
(Allen et al., 2011)
(Durham, 1991)
(Lee, 2020)

(Werf et al., 2008)
(Levi and
Kernbach, 2010)
(Kosir, 2019)
(Holland et al.,
1992)

(Minelli, 2018)
(Wagner, 2013)
(Long et al., 2018)
(America et al.,
2010)

(Yates, 2012)
(Schweisguth and
Corson, 2019)
(Camazine et al.,
2003)

(Ashby, 1991)
(Zhang, 2015)
(Whitesides et al.,
1991)
(Gershenson,
2007)

(Nagarajan and
Ruckenstein,
1991)

115

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

computer science, socioeconomics,
linguistics, etc.

MOD. It studies the variation (genotype
differences) within individuals and among
individuals, populations, and species. It
considers the effects of the physical
environment. It is based upon the scale of
time, complexity, size, space, and
interactions between species, populations,
and individuals.

Application: biology, social sciences,
information processing, technology,
urbanism, etc.

PRIN. Biological systems at multiple scales
are captured by network representations
using nodes for different biological entities

QT FPDS
QL DEV

Evolutionary
Ecology

ABS

X . ANSY
N (e.g., cells, molecules, organism). This (B ABS QT FPDS
Biological Network approach looks at complex systems as R/IIEPS (AN GEO QL DEV

networked elements with relationships
among parts.
Application: biosciences, genetics, ecology...

(Winfree, 2006)
(Witt, 1997)
(Zhang & Park,
2008)

(Vijver et al.,
2013a)

(Fox et al., 2001)
(Pianka, 2011)
(Smith, 2017)
(Dukas, 1998)
(Solée et al.,
2013)

(Rivkin et al.,
2019)

(Kepes, 2007)
(Marin-Sanguino
etal., 2019)
(Proulx et al.,
2005)
(Boccaletti, 2010)
(Guzzi and Roy,
2020)

(Freeman, 1977)

Evo2 - Computer Science
Function ~ Phase Geo. Qt/Ql. Scope

MET. Genetic algorithms are a metaheuristic
process. A preliminary algorithmic population
is genetically created, then through a fitness
function a parent group is selected to breed
a new descendant population based on
multiple randomized processes until the
solution is approximated enough. Basic
steps are: [1] generation of initial population,
Genetic [2] seed selection, [3] next generation by
Algorithms crossover (recombination of parental genetic ANSY ABS FPDS
(GA) information) and mutation (changing DES DEV
algorithm chromosomes). Types of GA are:
[1] steady state, [2] parallel, [3] distributed,
[4] niching & speciation, [5] messy, [6]
hybrid, [7] structured, [8] genetic
engineering, [9] multi-objective, etc.

GA limitations include proper fitness
function, premature convergence, parameter
selection, gradients, local optimization, and
scalability, among others.

MET. Adaptive genetic algorithms present a
variation of AG where key parameters (e.g.,
population, mutation, etc.) change at the
same time the algorithm is running, which
allows changes ‘on-the-fly’. Key steps are:
[1] initialization, [2] genetic operators
(selection, crossover, mutation), [3] local
search (iterative), [4] heuristic for adaptive
regulation, [5] stop conditions.

MET. Evolutionary programming (EP)
simulates evolution through behavioral
TN ELT relationships instead of genetic

- . . ANSY
L Ielnnll] descendance. Intelligent behavior is DES
(3] simulated within EP through symbols. Payoff
functions evaluates the prediction.
Applications: medicine, geology, and

Adaptive
Genetic
Algorithms
(AGA)

ANSY
DES

FPDS

ABS QT DEV

FPDS

ABS QT DEV

(Baeck et al.,
2018)
(Dumitrescu et al.,
2000)

(Holland, 1962)
(Bentley, 1999)
(Takahashi et al.,
2011)

(Vose, 1999)
(Sivanandam and
Deepa, 2007)

(Pearson et al.,
2012)
(Sivanandam and
Deepa, 2007)

(Dumitrescu et al.,
2000)
(Fogel and Fogel,
1995)

116

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

_ economics, among many others -

MET. Itis a system optimization with no

Evolutionary distinction between phenotype and (Bentley, 1999)
R genotype. Child solutions are created by ANSY W% FPDS (Rechenberg,
Strate?éess) randomly mutating parental parameters, DES 6,7 BEE | I DEV AZIE | RS st 1989)
evaluating by its fitness, and enabling the (Beyer, 2013)
next child solution until objectives are met.
Evo3 - Software Design

Techniques Function Phase Geo. Qt/Ql. Scope Adapt. ~ Pers. ~ Opt. Tools

MET. ltis based on the same natural

evolution principles as GA. Computer

program are genetically programmed, and

[eI-) 1114 through genetic recombination (crossover)

CLIETNNT] they are mated in @ Darwinian process to gggY PZXNA ABS = QT EIEE)/S NET DD Yes mg?hel Eggﬁﬁg;?ggm
[(¢1d] obtain the fittest solution (or approximation). :

This approach does not make a difference

between search space and solution space,

so genotypes and phenotypes are the same.

TEC. ltis an agile practice and software

) . ANSY BWZ'S (Ockerman and
framgwork development done |nlle|It|pIe DES W Bs QT PDS NET DD Yes Model Reindl, 2019)
iterative fast-paced cycles. Its principles are IMP 711 DEV Math (Cohn, 2010)
transparency, inspection, and adaptation. '
TEC. Itis oriented towards quality
improvement and adaptability to customer
SN needs based on both coding and testing, ~ ANSY X% PDS Model (z%gik and Andres,
L [ETuTnt | while integrating customers in the process. | DES GA ABS QT NET DD Yes)

[b4d] XP uses small releases, continuous IMP 7-11 P it %%2?'” L

integration (team members are always sync)
and feedback methods (pair programming).

TEC. Itis based on very short
redevelopment cycles, with requirements

Test Driven . ANSY RWZ% (Astels, 2003)
Development being valldateq through tests.cases. TDD DES 6, ABS QT FPDS NET DD Yes Model (Shore et al,
presents a rapid cycle of testing, coding, and DEV Math
(TDD) ;)) 2 S IMP 7-1 2008)

refactoring. Adding features is done in pairs
as well and in small increments.
TEC. Itis a framework based upon: [1]
eliminate waste, [2] amplify learning (set- :
ORI 1ascd development), 3] decide as late as o\ [EP &%F:)F;Z‘:fcik and
A lver o o o0 posste pul sysiems), 5] DES O 488 OT pIUS NETsa ves it ooy
(Lean SD) ! IMP 7-11 (Hibbs et al.,

empower the team, and [6] holistic 2009)
optimization of the whole. It uses continuous
short iterations and automation.

TEC. ltis a change-driven technique that

intertwines concept, development, and

management models for the development of

complex adaptive systems (CAS). ASD

presents an iterative life cycle (plan, build, (Highsmith and
revise) and an iterative development life ANSY RWZ% FPDS Model Highsmith, 2002)
cycle (learn, collaborate, speculate). Ithas ~ DES 6, ABS QT DEV NET DD Yes Math (Koza et al., 2005)
three key artifacts: [1] project vision, [2] IMP A (Wysocki, 2010)
project data sheet, [3] product specification. (Yuetal, 2019)
The adaptive project framework (APF) within

it manages the ‘scope triangle’ (time, cost,

and resource availability) through multiple

client-driven cycles until the goal is fulfilled.

TEC. Itis a set of tools and frameworks to
create incremental software developments. It ANSY

Adaptive
Software
Development
(ASD)

Evolutionary . 2-4,
Software 23; gspg‘;i‘t’:)r[;] Qﬁge[rgfgta'rghfig?:' @ pes MM ABs ar E'EE’/S NET SA Yes mgfhe' (Ford et al., 2017)
Architectures ' pprop MP AN

coupling. This involves finding a fitted
system for an ever-changing environment,

117

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

- emphasizing the system adaptability. -
Evo 4 - Systems Engineering

Function ~ Phase Geo. Qt/Ql. Scope Adapt. Pers. Opt. Tools

TEC. It tackles dynamic and not fully formed
system of system (SoS) in three ways: [1]
self-evolution (sub-systems interfaces
change), [2] joint evolution (multiple

SN ELY integrated systems take part onit), and [3] ANSY 2.4 FPDS Model (Jamshidi, 2011)
SYE Gl emergent evolution (the new system excess DES 6 BN ABS QT DEV NET SA Yes Docu (Chen & Han,
LU the capabilities of its subsystems). Key steps IMP 7_1’ 1 GEO CONT CAD " 2002)
((F:X))] are: [1] identified evolution requirements, [2] INT (Grosser, 2012)
identify technology options, [3] generate
architecture to fill the gaps, [4] evolutionary
architecting process based on generated
architecture.
TEC. It is applied to both SE and software
development. It is based upon multiple
iterative cycle, providing incremental and (Blokdyk, 2017)
NI tel] smaller improvements until the goal is ANSY 2.4 g—:srifl‘i‘aznogg;‘
0 I fulfilled. Each cycle Serves as feefil?ack input DES B s ar FPDS NET SA Yes Model (Isaias&Issa,
YRy for the next cycle, allowing for revisions and IMP 711 DEV 2014)

[(I)] improvements at each step. It is layer- INT (Bittner and
structured framework considering Spence, 2006)
perspectives from team members,
customers, and management.

IATIIINENRY TEC. It is based on evolutionary software
S El systems development producing multiple gggY 2-4, ABS II:IE’)SS '\Dﬂggfl (Budde et a
DI DT early working versions. It uses a rapid IMP 6, GEO QT DEV NET SA Yes CAD ’ 2012) o
(Y 0] engineering process including verification, 7-1
P . INT CONT Proto.
(S]] validation, and prototyping.
TEC. ltis a layered approach for
evolutionary complex computation systems,
. used in business environments. It presents
Evoluélonary six layers such as [1] technology, [2] domain ALY 2-4, e e
ystem 4 A 8 ES ABS FPDS Docu.
Model machine (computer sgrwces),. [3] domalq IMP 6, GEO QT DEV NET SA Yes CAD (Henderson, 2012)
(ESM) (ontology),_ [4]. enterprise (business practices INT 7-1 CONT Proto.
and organizational structures), [5] process
(individual process and functions), and [6]
executive (human interface).
[ALINTNELY TEC. ESE presents 3 phases: [1] basic ANSY 2.4 PDS Model
RS EUH capabilities (operations and system DES N ABS FPDS Docu. . ..
NN tamiarization), [2 additonal capabilties, IMP UMM GEO G TR I I I e ()
((2513] and [3] delivery. INT CONT Proto.
TEC. It presents a SE approach where a
Evolutionary SoS is never complete, so time, structure, ANSY 2.4 PDS Model
SoS function, and purpose are developed through DES 5 N ABS qQr FPDS NET SA Yes Docu. (Rainey and Tolk,
PT——— evolutionary methods. SoS emerges from IMP 7_1’ 1 GEO DEV CAD 201%)
existing systems and their evolution implies INT CONT Proto.
changes over time.
TEC. ltis an agile SE method with five fast-
Feature-driven paced steps done in two weeks:l[1] overall ANSY 2.4 PDS Model
Development modgl de_velopr_nent, [2] feature list - DES 6 8 ABS QT FPDS NET SA Yes Docu. (Haberfellner et
(FDD) considering actions, results, and objectives, IMP 7_1’1 GEO DEV CAD al, 2019)
[3] feature planning, [4] feature design, and INT CONT Proto.
[5] feature construction.
Carmichael and
Complex TEC. CAS is based on the notion that ANSY PDS Model S—Iadiikadié, 2019)
Adaptive complex natural apd social gystgms prgsent DES 2-4, ABS FPDS Docy, (Miller & Page,
Systems stab!e states outside an equilibrium, with IMP 6, GEO QT DEV NET SA Yes CAD 2009)
(CAS) multiple and correlated feedbacks among INT 7-11 CONT Proto %Ig;nd Ang,

agents within such systems.
(Gros, 2015)

118

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

TEC. In ED each cycle is used as input for
the next one, and the output is unknown. It
includes a user perspective in the

1AV EN development framework, and it uses ANSY 2-4,
: : . DES ABS
DEEILT BRI prototypes to validate and collect information 6, QT
! . : IMP GEO
[(=3)] in the decision process. It involves software INT 7-1

and hardware and involves a collaborative
and experimental leamning approach using
prototypes across the lifecycle.

TH. ED combines evolutionary biology,
computer science (EC), and design (CAD). It ANSY

Evolutionary presents four areas such as [1] design DES

De?é%r; optimization, [2] creative evolutionary design, IMP

and [3] evolutionary art, and [4] evolutionary INT
artificial life forms.

MET. This is a method of evolutionary
design applied to architecture and urban
development. This approach reinforces the
need of diversity for design resilience.

2-4
7- 1
MOD. It tackles multiple aspects of a system
implementation from an agent-based
standpoint such as collaborative work,
concurrent, planning, advanced
manufacturing, holonic manufacturing across
Multi-Agent engineering fields. Agent-based models ANSY
s sgt em (ABMs) are computer models simulating DES ABS QT
y interactions among agents including IMP GEO
(ABM) 7- 1
specialists, sensors, action agents (e.g., INT
robots), and interactive agents for humans
(e.g., assistants). These agents process
execute, and record information

ABS

ceo T

ANSY
DES
IMP

Induction Design ABS QT

information (messages), make decisions,
transactions.

MET. ER uses EC to develop and optimize
controllers and hardware for autonomous

robotics (body morphology, sensor, motor
properties, and layout). It is based on [1] the
fitness of the robot behavior (genomes) and ANSY
[2] genetic operators to select and breed the DES
next generation. This method allows to: [1] IMP
explore unconventional designs, [2] tune INT
parameters, [3] optimize designs, and [4]

improve system robustness through its

fitness. ER presents both fitness-based and
novelty-based evolution.

MET. It combines evolvable hardware and

genetic programming to improve and

SN optimize both hardware design and ANSY
L EVHINTY behavioral capabilities of hardware-based ~ DES
DENYsystems. IMP
Applications: adaptable circuits, neural
network-controlled robots, efc.

This involves agile software techniques, ANSY
YL EIGIYENE MBSE methods, and rapid prototyping to DES
delay design freezes. IMP

Table 17. Evolutionary concepts, methods, and techniques across multiple fields

Evolutionary
Robotics
(ER)

ABS

ceo T

ABS QT

1
1
1
1
1

ABS QT
1

PDS
FPDS
DEV
CONT

Scope

PDS
FPDS
DEV
CONT

FPDS
CONT

PDS
FPDS
DEV
CONT

PDS
FPDS
DEV
CONT

FPDS
DEV

FPDS

Model
Docu.
CAD

Proto.

Tools

Model
Docu.
CAD

Proto.

Model
Docu.
CAD

Model
Docu.
CAD

Proto.

Model
Docu.
CAD

Proto.

N/A

N/A

(Holland et al.,
1992)

(Forsberg, 2020)

Evo 5 - Hardware Design
Methods & Theories Function Phase Geo. Qt/Ql. ! b]

(Bentley, 1999)
(Kalyanmoy, 2008)
(Bentley and
Wakefield, 1996)
(McCormack,
2008)

(Watanabe, 2002)

(Shen, 2019)
(Wilensky and
Rand, 2015)
(Weiss, 1999)
(GraRler and
Paohler, 2017)
(Shen, 2019)
(Monostori et al.,
2006)

(Vargas et al.,
2014)

(Nolfi et al., 2000)
(Silva et al., 2016)
(Evans and Back,
2011)

(Nedjah and
Mourelle, 2005b)
(Koza et al., 2005)
(Bekey and
Goldberg, 2012)

(Huang et al.,
2012)

119

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.3.3. Evolutionary Methods Conclusions and Gaps

Across all these multiple topics and methods that evolve from the study of natural systems, there are some
overarching principles and critical gaps relevant to this research. These gaps and conclusions regarding evolutionary
domains are summarized in Table 18, including key foundational aspects towards evolutive systems design methods.

Family Conclusion Points Foundation Points
o Natural evolution allows continuously to | e The application of o This mechanism
increase complexity and validate evolutionary presents a multi-
solutions against multiple principles to other complex nature.
environmental changes. technical fields has e The management
o Each former generation (parental been mainly of complexity is a
heritage) is a validated entry for a new monodisciplinary and secondary effect of
generation. However the new limited in the scope this mechanism.
generation is and can be very different. of its process. For e The refinement of
e Evo-devo. The development process of | instance, addressing the solution is done
a new organism (system) is as critical directly only numeric through multiple
as its genotype (design). Such process parameters when small and self-
affect organs (subsystems) in the short using evolutionary- directed variations.
term and also the whole species based methodsisa | e Both the product
(product family) in the long-term. good example. (system or
o Diversity is key for survival. Natural evolution organism) and the
Natural e Co-evolution. Evolution is complex and involves both process are
Evol | Evolution involves relationships among species, phenotype, which adaptable in nature
Process individuals, and multiple environmental can be understood when following
responses as well. as hardware, and such natural
o Evolution leads to adaptation through genotype that can mechanism.
self-organization in response to its also be understood
environment context and conditions. as software.
e Evolutive changes bring robustness to However, not many
the individual, but they need to be techniques and
heritable and successful to improve a methods apply
species permanently (evolvability). methodologies
« Self-organization works at a embracing both
multidisciplinary and multifaceted level. | Simultaneously.
o Ecology-level interactions (individuals,
species, population, and environment)
affect natural evolution processes.
o Networks provide a model to study and
represent such complex relationships,
mechanisms, and systems.
¢ Evolutionary algorithms in general and These methods only | e Optimization of
genetic algorithms-driven techniques in tackle software and both system and
particular have been very successful data-driven systems, process is done
Evolutionary | approaches towards system design, but not hardware. synergistically and
Evo2 | Computer optimization, and efficiency. Evolutionary simultaneously.
Science o EC techniques are often inspired by computational
hardware or natural systems, but they techniques do not
tackle mostly genotype or data-driven handle geometry
aspects of the system. directly. They rather

120

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

o EC techniques enable both optimization
and complexity management.

address only abstract
analytical data.
These methods
apply across all
design and system
development
lifecycle phases.

o These techniques are an applied
subset of evolutionary computing.

o Agile techniques are inspired by EC
methods. They use iterative
methodologies for faster, smaller, and
more adaptable design cycles.

These techniques do
not handle well non-
analytical data.
These are mainly
software and data
driven methods.

o Methods within
this category
tackle the design
workflow as part of
their approach.

o Machine learning and robotic designs
have embraced these techniques.

o These methodologies present a more
applied approach towards physical
design and systems implementation.

These tackle non-
complex assemblies.
There is a lack of a
full and integrated
method and theory.

Evolutionary | These methods do not tackle o There is no explicit
e Softyv are necessarily the type of coding but the reference to the use
Design process and workflow by which of technical heritage
software programs are created more solutions.
efficient, faster, and with better-quality.

o These methods embrace constant
change under a fast-paced and highly
adaptable approach.

o These methods address the evolution e These do not present | e Multiple lifecycle
of complex system of systems (SoS) hardware-based phases could be
considering the full lifecycle process considerations. addressed by
that includes all technology options. ¢ Non-geometrical these methods.

o Prototyping is a key tool and method processes are not ¢ Prototyping

Evolutionary | within this process. addressed by these becomes a key
Evo4 | Systems o Models include multiple aspects techniques. tool within many of
Engineering regarding operations, roles, domains, these approaches.
validation, and verification towards the
implementation of the system.

o These approaches address both design
and development of complex adaptive
systems (CAS).

o These methods present a path to o Lifecycle phasesare | e Geometrical
optimize hardware-based designs considered across information is
based on EC principles and algorithms. methods and multiple handled by

o They tackle geometrical information specialized areas. addressing
considering multiple scales, interfaces, | e Multidisciplinarity is interfaces and

Evolutionary | and configurations. characteristic of basic shapes.
Evo5 | Hardware o Agent-based models are based upon these methods with
Design key interactions within this approach. limited application.

Table 18. Summary of conclusions and gaps regarding evolutionary theories and methods.

121

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

3.4. Overall Literature Review Gaps and Conclusions

The study of techniques and state-of-the-art practices in the fields of design engineering (DE) and systems
engineering (SE) theories leads to several overarching conclusions that are summarized in this section. Furthermore, this
literature review of general evolutionary principles and applications also provides several key conclusive and foundational
points for this research directly aiming at the domain of hardware-based system architecture designs.

Design engineering theories and methodologies studied in section 3.1 present a general ‘divide-and-conquer’
approach. This implies that subsystems and especially disciplines, tend to be tackled independently from each other following
a sequential aggregation process across the design lifecycle. Thus, disciplines are in essence tackled one after the next one
and sometimes partially in parallel. On the other hand, very solid design methodologies such as prescriptive design embrace
both analysis and synthesis from a scientific standpoint presenting in general two tendencies. They can be more on the [1]
highly creative side (e.g., innovative design) with huge capabilities towards addressing complex problems but less powerful
than mote detailed design techniques, or [2] they could be more rigid such as method-driven techniques (e.g., axiomatic) but
with a powerful foundation towards computer-driven workflows making them less capable towards more innovative solutions
with no heritage. Similarly, tools and workflows described in section 3.1 present both a foundation and a practice approach
around those two opposed tendencies. Computer developments and data-driven techniques have made possible to bring
analysis and design simultaneously into the design and development process, however this is still done mainly from a
parametric and facilitated standpoint. In essence, design engineering in the 21st century presents a gap towards reconciliating
the characteristic multidisciplinary synergy of simpler (and older) techniques such as those created in the dawn of
architecture practice, with new analytical and process-driven capabilities that are nowadays enhanced by artificial intelligence
and machine learning techniques. Thus, adaptability is the missing link between those apparently opposed paths.

Nevertheless, complex large systems had increasingly required tackling non-geometrical aspects since the 1950s.
Systems engineering of complex challenges became a third and very solid branch in addition to those design approaches
previously described. A close study of the literature review and leading practices conducted in section 3.2 has shown that a
very fast development of this field in the last half century has led to multiple approaches, theories, workflows, and techniques.
In general, from document-based beginnings to current state-of-the-art Model-based techniques, SE has looked at the
system as an abstract construct (model), but there have been challenges regarding how to bring geometry into the SE
process. In general, most of these reviewed techniques present a rigid methodology (partially paired with DE methods)
except for iterative (IID), OPM language, and skeleton methodologies that exercise a more continuous system design
approach. Furthermore, SE methods do not tend to fully recognize the full lifecycle of complex systems today ignoring often
phases such as recycling, repurposing, and decommission to name a few. However, there is not a clear integration among
theories and their practice. In parallel, the workflow associated to these practices tends to be rigid as well presenting not
much synergy among disciplines that are tackled by SE activities or with other design processes as exposed in section 3.2.

The flexibility of workflows and methods when dealing with complex and highly adaptable system is the common
denominator between design and systems engineering sides within a joint effort. This has been the starting point for previous
evolutionary techniques addressed in section 3.3. Nature-inspired techniques dealing with complex design while increasing
system efficiency and quality have been developed mainly in the computer science area (e.g., genetic algorithms) with some
applications towards systems engineering as well.

Evolutionary computational methods (EC) are very capable and often fast-paced techniques for system
optimization in data-driven processes. Although, these present relevant gaps towards a full methodology capable of creating
hardware-based complex systems. Some of these techniques such as evolutionary design techniques and robotic application
present effective approaches manage and integrate geometrical information as well. The literature review reveals that they
are quantifiable evolutionary methods, but there is gap when it comes to methods capable of qualifiable evolutionary
workflows using a multidisciplinary standpoint with implementation and development purposes.

Finally, the study of basic natural principles behind natural-evolution-driven EC brings the inspiration towards
mechanisms capable of embracing continuity, flexibility, and heritage not only from a data or information
perspective, but also from a hardware design standpoint. Section 3.3 presents the potential and importance of
embracing of development processes in the creation of a complex and efficient system (e.g., evo-devo).

122

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

EVOLUTIVE ARCHITECTURES
Literature Review
CHAPTER 4

“It is not the strongest of the species that survives,
nor the most intelligent,
but the one most responsive to change.”
Charles Darwin, 1809

- b
- - e b 2%\
NS

Lal
Al

» ot

b .
| X 4
"1

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

4. Evolutive System Architectures

The context presented in section 2 defines a series of key characteristics affecting the present and future practice of
both design engineering and systems engineering disciplines. Beyond such practice, system architectures as solutions are
also influenced by the consequences of scarcity, agility, complexity, and heritage. This is especially critical towards the
design of high-performance hardware-based systems due to the inherent system complexity (CHS), the level of performance
often associated with them, as well as their multidisciplinary nature. Thus, this research is focused on two areas:

o Evolutive system architectures (€SAR) as a class of systems within such contexts.
o Evolutive system architecture design (€SARD) as a practical design methodology to model such architectures.

This evolutive design approach can certainly be applied to any system design architecture development,
independently from the field of application, and it is presented as a theoretical framework. The overall objective of this is to
increase system performance and efficiency beyond any existing heritage, while using an agile and system-level perspective.

The following section tackles several definitory subjects such as: [1] overall evolutive approach (section 4.1), [2] key
evolutive system characteristics (section 4.2), [3] design constraints and drivers (section 4.3), [4] eSAR definition and
methodology (section 4.4), [5] complexity as evolutive integration (section 0), and [6] overall conclusion (section 4.6).

4.1. Evolutive Approach: Inspired by Evolution and Driven by Adaptability

If general context stressors define both practice and systems outcomes, to determine the characteristics of an
evolutive system it is necessary to study an approach capable of handling such influences. Those characteristics will lead to
a final definition of eSARSs, and subsequently to the foundation for a design methodology towards their development (chapter
5).

Any complex system, for instance an organism, is also defined by its environment. Such context, as we have seen in
previous section is critical. However, such context not only affects the system itself, but also the process used to develop it.
Such context for the practice of system design engineering combines both design engineering and systems engineering
approaches among other perspectives when dealing with highly complex and/or large systems. Section 2 provided such
context for this research and highlighted a series of key stressors that any complex system endeavor should consider from
both the product and the process standpoints. Hence, these are the most relevant stressors:

e Complexity could be understood as the number of parts, features, and relationships among subcomponents or
system behaviors. Figure 13 shows how the efficiency of a complex system could be understood as the number of
resources required to enable all functions required for its completion. The origin of that complexity includes
environmental, multidisciplinarity, and other sources affecting product and processes from design to implementation.

o Heritage brings pressure, influence, and opportunity in risk assessment, decision making process, and design
principles behind any complex system design and implementation. This stressor opens a door towards mechanisms
capable of making the most with previous versions, solutions, or technologies across technical fields.

e Cultural Disruption. New methodologies (Figure 16) and solutions do stress established methods in any given
organization. They affect risk perception and influence outcomes based on environmental and cultural changes.

o Performance. Similarly, the need for higher performance is driven by previous points, affecting the efficiency and
technical capability of a system, as well the development methodology required for its implementation.

o Interconnection. Complex system architectures are not only are becoming smarter nowadays but also more
connected among their components and systems, as well as with their environments and frameworks of operation.

o Innovation. The constant need or drive towards new solutions and methods ripples through both design and
development processes. This inckudes multiple cultural postures such as conservative, incremental, and radical.

o Scarcity. External factors such as climate, population growth, economy, competitiveness, CO2 emissions, and energy
availability become stressors in the development of a complex system, driving the necessity of serving more needs
with less resources (Figure 7). The scarcity factor depends on both the lack of resources available as well as the
uncertainty given by practices used in the process. As a result, there is a growing trend for systems to use less
resources (frugal) and processes to be more adaptable so they can compensate for any uncertainty.

124

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

o Multidisciplinarity. One of the consequences of the inherent complexity of some systems is the need to tackle
multiple disciplinary standpoints to provide feasible, reliable, competitive, and efficient solutions. However, this can
also be a source of efficiency for the system, and efficiency of the process.

o Agility is related to the speed and leanness in the use of resources towards addressing constraints brought by
previous points, as well as the system flexibility increasingly needed due to environmental changes. This is key in
any present and future system design engineering efforts in highly competitive environments.

On the other hand, if a future system needs to address such environmental and contextual topics, the process of
designing, optimizing, and implementing such a system should do it too. Consequently, the literature review in section 3
detailed three areas such as [1] design engineering, since a system need to be envisioned, [2] systems engineering since a
system needs to be defined and described, and [3] evolutionary principles as a potential pool of techniques and inspirations
towards tackling such constraints. While sections 3.1.4, 3.2.5, 3.3.3, and 3.4 provided conclusions with regards to the review,
there are some key overarching gaps and areas of interest across domains, fields, and techniques worth highlighting.

o Synergy. Often design and systems engineering methods tackle challenges from a multidisciplinary standpoint at a
high level, and from a discreet disciplinary standpoint at a lower or more detailed level.

o Continuity. System design methodologies tend to be driven by point-design or discreet solutions. These often do not
allow fast, easy, or flexible changes to the process or the system solution.

¢ Qualification. While the quantification of parameters is widely distributed across techniques and fields, tackling non-
quantifiable parameters, variables, and topics is certainly more complex and less developed. This is even more
relevant when it is key for the process to handle both quantifiable and qualifiable aspects.

o Geometry. Systems engineering methodologies do not tackle geometrical information well, especially when handling
large complex systems. They rely on partial unidirectional ‘bridges’ to CAD and BIM models for instance. Furthermore,
systems design processes often struggle to pair complex geometries to complex system definitions or models.

o Full cycle. Key stressors in the context of these practices require having a fully integrated set across the complete
lifecycle of a system. This includes and reinforces both initial design and final recycling or decommission phases.

o Flexibility. Design and systems engineering methodologies need to provide an increasing level of flexibility especially
when dealing with design and context stressors. This is critical in complex systems regardless of the field.

o Disruption relates to the capability of the process and the needs of the solution in bringing new designs and concepts
into fruition with a high-level of detail, and a remarkable differentiation with other heritage solutions at any level.

o Fast paced. Currently, agility and resource leanness are key traits in a system design process, not only as a response
to the previous context stressors, but also because of the business and finance constraints such as time-to-market.

o Connectivity. Complex systems are becoming more networked in nature across subsystems, components, users,
and environments. Thus, design techniques need to respond to such increasing core characteristics.

All these points are in essence interconnected from multiple perspectives, thus a feasible response towards tackling
them completely requires a holistic and overarching approach. The evolutive outlook developed on this thesis addresses
such response, and it has a compound nature based on both evolutionary principles and adaptive concepts.

4.1.1. Evolutionary Approach

The literature review in section 3.3 highlighted and summarized some of the most basic mechanisms and principles
behind the implementation and development of natural and artificial evolutionary systems. Such processes include natural
selection, self-organization, co-evolution, adaptation, optimization, speciation, evo-devo, eco-evo-devo, mutation, agile
methods, and genetic computational techniques, among others. The natural selection process finds and develops fitted
solutions for each context where a system or organism exists. Each successful solution (parent) in such an environment,
provides the building code to a better solution (progeny), which will be better adapted to such changing environment.
Evolution is therefore nature’s solution to deal with change and therefore entropy.

Evolution is multidimensional because it works at a physical level, through the phenotype of the organism (hardware),
which has been created from successfully transmitted genotypes (software code) at the information level in such process. It
is also multidisciplinary as multiple and often highly complex factors such as environmental, biological, and even cultural
among others affect the survival and adaptation capabilities of the organism. Thus, a self-organization principle is at the core

125

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

of such process, leading a complex system to gradually find its optimum state of equilibrium among the multiple influential
design factors, environmental stressors, and opposing design forces.

Within any evolutionary process there is not just a final and singular solution, as each system is part of a species that
is in constant evolution to deal with such environmental changes and stressors. Therefore, adaptation is a consequence
along with the shared co-evolution of species, to reduce these effects and increase the efficiency (effort-energy ratio) as a
response to the environment. Thus, both natural and artificially evolved systems, can optimize in this way their responses
towards changing conditions. It is important to highlight that in evolutionary processes previous solutions or generations
could be considered as heritage and are indeed validated solutions that serve as a foundation for the next generation. Hence,
heritage is it not a limiting factor, but rather a solid foundation towards new and possibly disruptive solutions.

Akey part of this natural process is the development of the system itself or, in other words, how different components
should grow and become integrated from the early beginning of the organism (evo-devo). Such evolutionary development
also considers other ecological aspects (eco-evo-devo) becoming a critical phase in the development of any complex system.
When this is translated into creating artificial or man-made systems, this applies to the ideation, prototyping, and early-stage
development phases. These phases are often disconnected from the end results in many design methodologies, unlike the
case with natural systems where they become the initial instruction for the creation and development of any organism.
Furthermore, complex systems present a networked attribute defined by the interactions between components, subsystems
(organs), environment, users, and even other types of systems (species). Connectivity is therefore both a key characteristic
and a strength that implements and substantiates self-organization and optimization principles within such systems.

Natural evolution addresses and manages complexity, making system optimization simple, efficient, and agile. In the
1990s early genetic algorithmic practices (3.3.2.2) were influenced by this mechanism and it is the inspiration for this research
towards hardware design, implementation, and optimization. Key aspects of an evolutionary approach (overall figures of
merit) and the evolution mechanism relating to the previously mentioned stressors and are summarized in Table 19.

EVOLUTIONARY APPROACH - PRINCIPLES

Evolutionary Descriotion Figures of | Natural
Principle P Merit Evolution Tool
E1 | Continuous Soltions are alvyay s under conthuous qe\(elop ment, Complexity Functions Natural selection
so any point design becomes an instantiation.
- . Hardware, software, and algorithms are foundational ; . Phenotype and
Multidimensional Complexity Functions
E2 Multidisciolina aspects for both systems and processes. Interrelated Multidiscioiin Smartness genotype
plinary disciplines are combined and validated. pinary Self-organization
E3 | Agile Solutions are obtained fast and with less resources. Agility Resources | Self-organization
E4 | Adaptable System.capab/l/ty to adapt to changmg reqt{/rements, Scarcity Functions Evolvgblllty
constraints, and needs, as well as its associated cost. Resources | Adaption
It is the ratio between resources and functions
E5 | Evolvable integrated within systems and processes that are used | Performance Resources | Mutation
to obtain optimized solutions continuously.
Systems are defined by interactions between Functions Self-organization
E6 | Networked components, subsystems (organs), environment, Interconnection Smartness Evo-Devo
users, and even others system types (species). Bio. Network
. . Advancements or slow-downs due to previous Heritage . Speciation
E7 | Heritage-driven . ; . Functions .
successful solutions and cultural traits. Innovation Natural selection
E8 Er!wronment- Qontext characteristics influence, constra!n, and foster | Scarcity . Fesies || Gocraliin
driven integrated processes, products, and services. Culture Disrupt.
E9 De:velopment- I_Early—stage dgs:gn, prototyping, and growth phases Innovation Smartness | Eco-evo-devo
driven influence the final system output and design process.

Table 19. Key foundational characteristics of evolutionary processes.

126

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

4.1.2. Adaptive Approach

On the other hand, the complexity of the context described in section 2 highlights one key characteristic needed
above all in the practice and implementation of systems design engineering, adaptability. This concept connects all general
stressors, while encompassing both needs and gaps in the practice of design and systems engineering as identified in
sections 3.1 and 3.2. These include continuity, synergy, qualification, geometry, full cycle method, and finally flexibility.
Furthermore, this concept also links needs among disciplines, practices, techniques, and complex systems themselves with
independence of the field of application. To this end, tools certainly condition how we can approach a problem.

The concept of adaptability can be traced back to those gaps though the design and implementation of an adaptive
system design. This is a way to build upon some key characteristics of a complex system, link gaps between design and
system engineering processes, and tackle previous stressors. In essence, the question the is how we look at the design
process if adaptability becomes the main objective for both products and processes.

An adaptive design approach looks at the system from a continuous standpoint, so new designs or new requirements
could be tackled easily ‘on-the-fly’, with a process that is not discreet. Multiple methods participate from this perspective: [1]
process-driven design engineering techniques (DE10, Table 11), [2] some lifecycle-based SE (SE2-2, Table 15) such as
concurrent, agile, skeleton (Badiru, 2019), IID (INCOSE, 2015), OPM (Dori, 2016), [3] cross-cutting SE methods (e.g.,
MBSE). All these also present an approach allowing and enabling the use of models, parametrics (Kimura, 2001), and
constructs to this purpose (sections 3.1 and 3.2). Similarly, SE frameworks (SE5, Table 15) such as Harmony SE (Ramos
etal., 2012), RUP (Valacich et al., 2017), and BIM (Smith and Tardif, 2009), among others also present similar capabilities.

Adaptability is also about synergy, or in other words multidisciplinarity, involving the combination of multiple disciplines
to address feasibility, performance, and complexity often simultaneously. Similarly, some SOA techniques handle
adaptability mostly through analytical parameters that can shared or combined such as SE cross-cutting methodologies
(SE2-3, Table 15) and process-driven DE techniques (DE10, Table 12). Relevant to the second these are very relevant:
axiomatic (Farid and Suh, 2016), MPM (Chakrabarti and Blessing, 2014), Set-based (Singer et al., 2009), FORFLOW
(Rodenacker, 2013), and MPM. Furthermore, integrative DE approaches (e.g., Generative - Keane, 2018) combine such
parameters with geometry, while evolutionary DE (Braha et al., 2007) addresses system optimization from an adaptable and
multidisciplinary standpoint. Nevertheless, an adaptive approach needs to tackle this from both analytical and geometrical
standpoints. Hence, this is a gap in most design engineering techniques, as well as systems engineering techniques where
both geometrical and analytical information play a key part on the process for complex hardware-based systems (Section
3). The influence of geometry is certainly foundational in DE techniques as section 3.1 presented, but it becomes a gap in
SE approaches. On the other hand, frameworks such as BIM combine both with great success and space to grow.

At the same time, an adaptive solution should consider both quantitative and qualitative aspects of system design.
While quantitative analytical parameters are easier to compute, qualifiable aspect are difficult to measure and thus to be
computed, shared, and compared. However, some of these parameters are key in certain hardware-based systems which
are heavily influenced by aesthetics, user experience, or environment interaction among other complex characteristics. This
specifically means that an adaptive design process needs to be able to tune solutions based on complex relationships
brought by both qualifiable and quantifiable characteristic. In essence, the design process needs to handle complexity, which
can be understood as multiple internal and external relationships of different nature. Thus, for such process to embrace
adaptability the capability to handle, update, upgrade, and change connections is key. This is very important especially when
these connections are not always considered when approaching complex systems. Often those relationships, which present
a networked nature, only become evident when the design process dives deeply and broadly (full cycle) enough.
Furthermore, they set connections among components (e.g., subsystems), behaviors, and values (e.g., cultural) to name a
few, and they are driven by ‘qual-quant’ principles. Innovative DE (DE8, Table 12) due to their broad perspective and
evolutionary DSE methods that can handle complexity by addressing large numbers of key relationships (Evo4, Table 17)
have an adaptive nature.

But adaptability is also about considering all different steps in the lifecycle of system development, otherwise the
possibility of handling changes from both requirement and implementation sides becomes very limited. An adaptive approach
implies bringing connections between those phases early in the process, and across all phases. This has a foundation with

127

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

lifecycle-based SE methods (SE2.2, Table 15) such as TDSE (Buede, 2009), Spiral (Liu, 2015) ICSM, and DEJI (Badiru,
2019), among others. These tackle development challenges from a phase perspective as well, becoming models for
workflows, strategies, etc. This highlights that within such processes, adaptivity is also about efficiency and therefore speed.
So, an adaptive method promptly tackles with promptness complex architectures based upon all previous characteristics. In
a way adaptability is about making the most with all available resources (including time), as well as aiming for a better system
performance. Time is one of these key resources especially when considering design global stressors. Furthermore, an
adaptive approach needs to deal with uncertainty, thus it must be flexible towards requirements, resources, results, and
changing relationships. DE techniques such innovative methods (DE8, Table 12) present a high level of flexibility in both
processes and results, while evolutionary SE and hardware design (HD) also handle flexibility during design phases.

Innovation is also a critical aspect since the unknown is one of the most difficult aspects to handle by a design
approach. When heritage solutions are not really a proper starting point for a design process, due to the novelty of the design,
the need for systems and implementation performance, as well as flexibility for a new system architecture becomes critical
from technical, management, and business reasons. Innovative DE are a good and broad foundation (DE8, Table 12).

Overall, an adaptive design approach allows embracing constant changes, such as changing design requirements
and environmental conditions. Indirectly, this also brings efficiency, agility, and resilience to the design effort. Adaptability is
strongly coupled to evolution, and it is the essence of how to do better with less, answering to constraints that are driven by
scarcity or complexity. Table 20 presents a summary of the adaptive approach though foundation axioms and its relationship
with general context and design stressors, figures of merit, and mechanism derived from state-of-the-art techniques.

ADAPTIVE APPROACH - AXIOMS

Foundational Description Figures of | Related DE / SE
Axiom P Merit Techniques
A1 | End-to-end Method covers the full cy: clg including /de{,-ztlon, Full cycle Resources | Lifecycle-based SE
development, implementation, and recycling.
- Multiple parameters, discipline perspectives, and . Functions Process-driven DE
F | LR ey relationships are tackled simultaneously. pinetgy Smartness | Cross-cutting SE
The more adaptability a process or system Functions Innovative DE
A3 | Promptness presents, the more reactivity and thus speed brings | Fast-Pace R Evolutionary SE
. esources !
towards any changes across the lifecycle. Evolutionary HD
. . Innovative DE
A4 | ‘Qual-quant’ BOth. {analytlcal LI par ametgrs g Qualification | Smartness | Evolutionary DE
qualifiable aspects are considered simultaneously. .
Evolutionary SE
Beyond analytical design parameters describing SE Frameworks
A5 | Geometry-driven | the system, geometry is created, managed, and Geometry Functions -
Descriptive DE
assessed across the process.
Adaptability is about relationships among _ Innovative DE
components (e.g., subsystems), behaviors, and . Functions .
A6 | Network " Connectivity Evolutionary DE
values (e.g., cultural) within complex systems Smartness .
. : o Evolutionary SE
driven by ‘qual-quant’ principles.
Design efforts are continuous so modifications, :::t(;cfzz;ingin DE
A7 | Continuous detailed descriptions, and variations could happen Continuity Functions Lifegycle SE
effortlessly ‘on-the-fly’ as part of the approach. Cross-cutting SE
Changes in requirements, implementation, design ResoUrces Innovative DE
A8 | Adaptable needs, and available resources can happen without | Flexibility Evolutionary SE
. ; o . Smartness :
restarting the design and considering heritage. Evolutionary HD
Innovation- Systems design processes are open to infuse new Functions
A9 dri and disruptive approaches that could be validated Disruption Smartness | Innovative DE
riven .) ;
and reinforced by heritage solutions. Resources

Table 20. Key foundational characteristics of an adaptive design approach.

128

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

4.1.3. Evolutive = Evolutionary + Adaptive

The concept of evolutive process and system is developed within the context of this research similarly to how the
term is created, as a contraction or composition between evolutionary and adaptive principles.

Such an evolutionary approach behind natural and artificial systems addresses adaptability, change, and complexity
with proven, powerful, and potentially ‘simple’ mechanisms. Furthermore, it effectively tackles all global stressors described
in section 2 affecting both the design and implementation of complex systems, through a combination of evolutionary
principles (Table 19). In essence, the evolutionary approach represents the nature of a system and its development process.
On the other hand, an adaptive approach addresses through a series of axioms (Table 20) many gaps in both design and
systems engineering methodologies (section 3). Thus, critical goals such as improvements in systems performance, process
efficiency, and agile workflows become the foundation of this new design approach.

The evolutive workflow and perspective integrates evolutionary principles and applies adaptive axioms towards a
design and systems engineering methodology (DSE) that develops full or partial evolutionary hardware-based system
architectures (section 1.7.1). Furthermore, this approach also complements and fills gaps across state-of-the-art SE and DE
techniques while also being used to infuse key evolutive principles into any new system design efforts. This approach is
inclusive by nature, and presents a foundation based on adaptability to design upon. Therefore, upcoming sections will
present characteristics and fundaments of an evolutive architecture (section 4.2) as the ultimate objective, the associated
system design methodology (section 5), as well as an example of such an approach (section 6).

However, combining adaptability and evolution presents deeper consequences in the process and conceptualization
of such systems. Their inherent complexity intertwines both processes (designs) and outcomes (products) very closely. Thus,
before addressing all key system characteristics and subsequent methodologies it is critical to define fundamental keystones
that are created by such contractions and connections. The combined evolutive approach is based on three keystones:

o Adaptability. An evolutive architecture system is adaptive in nature from both geometrical and analytical standpoints,
in response to changes driven by requirements, design, and implementation. Thus, a system design is understood
as an instantiation within a continuous design process, rather than a final static solution. Such design is always
conceived with potential changes in mind, allowing variations in subsystems, manufacturing techniques, and
materials, among other environmental or conceptual changes. Techniques, designs, concepts, and materials among
others ‘genetic’ inputs of the future system include both quantifiable and qualifiable variables. Evolutive thinking then
works with the same principles behind them and enables not only disruptive methods to be infused into the process
but also easier alternative solutions or selections across the full lifecycle. Therefore, adaptability brings a broader
spectrum of functions, and the more functions with less components a system architecture achieves, the more
efficient it will be. Within such process, heritage solutions are validated as parent inputs for an evolutionary process.
This keystone addressed these three context stressors with the following characteristics (in italic):

e Complexity. Both qualifiable and quantifiable variables are used on a continuous system design workflow, and
are integrated within a geometry-inclusive system design framework.

o Heritage. Heritage solutions are non-limiting foundations for adaptive solutions across the full systems lifecycle.

e Cultural disruption. New methods can be infused into an evolutive design workflow, enabling subsequent
feasible alternatives in response to environment or design changes.

e Process: This point relates especially to geometrical aspects of the design process.

e Functionality (measurement): Number of functions per geometry for a given set of interactions and resources.

e Range (Figure 128, Y): Unadaptable (less functions, more parts) to evolutive (more functions, less components)

o Reactivity. Complex and simple solutions can present different levels of interaction with the environment, as well as
interaction capabilities as a function of their inherent smartness. An evolutive approach addresses the adaptability of
system also from its interactive potential. The more capability of the system to interact, the higher success it can have
against environmental changes, increasing its evolvability. This also leads to less resistance towards new solutions,
since the systems can be more easily upgraded. At the same time, complex and interactive systems, such as
organisms have a higher level of networked interconnections between subsystems and their behavioral functions.
Natural evolutionary methods are based on deep connections between subsystems as well as with internal

129

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

development processes. This connection can be traced back to the very genetic information used to drive the creation

of a phenotype, which also presents complex multidisciplinary interconnections. Thus, reactivity encompasses and

responds to three general design stressors with the following characteristics (in italic):

e Performance. The less resources a system uses in response to design requirements or environment (context)
changes the more efficient the system would be.

¢ Interconnection. Subsystems and behaviors present networked connections among them within evolutive
systems. This key stressor becomes a strong advantage regardless the level of complexity.

¢ Innovation. Evolutive solutions and processes facilitate new and disruptive solutions to be integrated, and a
networked approach ensures feasible solutions are always possible backups. Similarly, heritage inputs are a
validated baseline towards developing, infusing, and advancing new solutions.

e Process: This point relates especially to behavioral aspects of the design process.

o Interaction (measurement): Number of reactions per system behavior, for a given set of functions and resources.

e Range (Figure 128, Z): Passive (less interaction, less smartness) to reactive (more interaction, more smartness)

Regeneration. The utilization of resources either for the design process, or by the system itself during its lifetime is
key in an evolutive system and its design approach. This keystone is highly related to the other two, and directly
responds to remaining global design stressors with these characteristics (in italic):

e Scarcity. An evolutive system should adapt to both the need for optimization and the lack of resources from a
continuous perspective. The relationship between the system and its environment will change over its lifecycle
and operational cycles. This is a foundational part of a system architecture that considers different phases.

o Multidisciplinarity. Complex systems depend on a multidisciplinary perspective to achieve higher levels of
performance, through design, analysis, operational optimization, or all of them at once.

o Agility. The evolutive methodology is designed to provide promptness into the design process as well as into
further modifications or generations of a system architecture.

e Process: This point relates especially to substance and material aspects of the design process.

e Resource utilization (measurement): Resource utilization across design process and system operations.

e Range (Figure 128, X): Depleting (only consuming resources) to regenerative (replenish resources).

""....

SCARCITY 0
AGILITY
MULTIDISCIPLINARITY *,

. \
= INTERCONNECTION \
. PERFORMANCE .. REGENERATION

= INNOVATION

L]

L]
L
]
[}
L]
[

]
.
L
.
.
.

s ~ CULTURALDISRUPTION ¢
« & COMPLEXITY
Q HERITAGE
G
A 4 o

*

‘..lllll“-.“‘
Figure 112. Evolutive tetrahedron of system design.

130

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

These three keystones are interconnected and present the foundational scheme for an evolutive design methodology,

described by the evolutive tetrahedron (Figure 112). Furthermore Table 21 presents correlations between general

stressors, methodology gaps, evolutionary principles, adaptive axioms, and finally these evolutive keystones.

EVOLUTIVE APPROACH

Challenge Needs
And Responses

Evolutionary
Principle

Adaptive
Axiom

This is the capability to manage large
amounts of components, features, Geometry . , -
Evl | Complexity relationships (quantifiable and Qualification | Continuous (E1) Qual—quant_(AA) Adapt.ail)lllty
. . Geometry-driven (A5) | Reactivity
qualifiable), subcomponents, and Sinergy
behaviors that can change over time.
This is the influence of past proven
solutions in risk assessment, decision
. making process, and design features Continuity . . y o
Ev2 | Heritage behind complex systems, as well as Sinergy Heritage-driven (E7) End-to-end (A1) Adaptability
related design, implementation, and
operations processes
Itis related to the easiness to infuse
new methodologies and approaches Full cycle -
Ev3 Cyltura! that stress and disrupt established Sinergy Environment-driven (E8) | Adaptable (A8) Adapt_a l.)'my
Disruption R S, Reactivity
cultures and design inertia towards Continuity
new system designs and workflows.
Itis about a better ratio between
required resources, and system e
Ev4 | Performance | functions thatare being servedacross | Fullcycle | g oo E5) Adaptable (A8) Eza:::\el:'tgtion
the system lifecycle. This applies to Sinergy generat
: Adaptability
both system architectures and
development methodologies.
Complex system architectures are
becoming smarter and more .
Ev5 | Interconnection | connected among subcomponents, Network Networked (E6) End-{o-end (A1) Reacthlt_y_
X Network (A6) Adaptability
other systems, environments, and
frameworks of operations.
The constant need or drive towards
new solutions and methods ripples
. through both design and development | Disruption o fion-dri Reactivity
25| et processes. There are multiple cultural | Sinergy R R crtL Adaptability
postures such as conservative,
incremental, and radical.
This is the capability to continuously
address the availability, uncertainty, Continuit
. and variability of all resources . y End-to-end (A1) Regeneration
Ev7 | Scarcity X . Sinergy Adaptable (E4) . -
required for a feasible system Full cycle Continuous (A7) Adaptability
architecture, across the full system ¥
lifecycle and from every perspective.
This concept reflects the
simultaneous capability to tackle both
multiple and discrete disciplinary Sinergy Multidimensional End-to-end (A1) Regeneration
Ev8 | Multidisciplinarity | standpoints providing feasible, Geometry Multidisciplinary (E2) Multidisciplinary (A2) | Adaptability
reliable, competitive, and efficient Qualification pinary ‘Qual-quant’ (Ad) Reactivity
system architectures and subsequent
design processes.
Finally, th!s relates to the speed and Fast Pace
leanness in the use of resources Flexibility Regeneration
Ev9 | Agility addressing flexible constraints due to . Agile (E3) Promptness (A3) general
)) Sinergy Adaptability
changes in context, requirements, or S
) Continuity
design parameters.

Table 21. Correlations between general stressors, methodology gaps, evolutionary principles, adaptive axioms, and evolutive keystones.

131

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

4.2. Evolutive System Keystones

4.21. Adaptablllty

"""""" e Adaptability is a keystone of the evolutive tetrahedron that highlights
geometry aspects and design activity (Figure 113). As it was previously
SCARCITY presented, this evolutive design keystone is connected to all context stressors,

ﬁ‘fu'tﬂ}.mmm but it is especially related to complexity, heritage, and cultural disruption.

¥ Furthermore, this keystone can also be understood as being directly
related to the concept of continuous heritage. Any design under the evolutive
approach can be partially based on previously proven solutions (heritage), but it
is also always an instance in a continuous design process that keeps adapting to
new changes.

* INTERCONNECTION
: PERFORMANCE j
 INNOVATION

Therefore, adaptability in the end addresses the capability of a system to

respond to environmental, cultural, and design changes. The more changes its

NALTERE contextual environmental requires, the more design changes need to happen to

Figure 113. Adaptability within the evolutive enable new system functions as a response. Adaptability of a system design can
tetrahedron of system architecture desian. then be measured by its relative design functionality. This is how many

functions a system geometry can perform given a specific interaction capability and a resource utilization level. Within this
paradigm the goal is therefore to do better with less. Thus, the more and better functions a system can perform, the with
less resources needs and the more adaptable it is. Furthermore, under this standpoint the geometry of the system, including
shape, assembly elements, etc. is critically related to both its functions (behaviors) and the resources used (substance) by
it. In this case, the concept of behavior refers to the system itself, not to the design process as it could be understood under
Gero’s FBS framework (Gero and Kannengiesser, 2004).

An evolutive system architecture is aimed to be highly adaptable at both system and subsystem levels. This happens
by design and from both hardware and software standpoints. It is also enabled by the nature of a continuum evolutionary
design process as it has been introduced before. Thus, multiple instances can be created simultaneously as an outcome
when modifying key system variables that define its most relevant characteristics. For instance, designing a clothing piece
such as a firefighter jacket (Figure 114) under this approach would tackle multiple color and materials but also subsequent
thermal and weather protection capabilities. When that jacket is designed, a baseline is created, and it can be easily be
tweaked so patterns can address multiple sizes (e.g., small, medium, large) and different materials (e.g., color, texture,
properties, reflective, etc.). This way the design can respond to different chemical and thermal situations, as well as
alterations attend updates, upgrades (e.g., chemical resistance, thermal protection, etc.) and especial solutions such as
identification, lighting cond|t|ons etc. (Watkins and Dunne, 2015). Thus, the system itself is a one-off product, but it belongs
to a species (collection) that includes systems with similar characteristics
and multiple variations. However, even if the system itself does not
require variations, the infusion of this perspective brings enormous
benefits later regarding upgrades, work repurposing, and ultimately
system efficiency. Designing for adaptability tackles implementation
constraints and functional drivers upfront in the design process,
benefiting both the overall relative cost of the design process (e.g., time,
resources, workforce), as well as the system performance itself. If this
approach is broadly infused within the culture of an organization, all initial
efforts required to bring this process online, to outweighed by bringing
new levels of adaptability across product lines, teams, and projects too.

Such design effort to create one unit is distributed over multiple
instantiations of that architecture species and addresses multiple design
variables represented by a networked framework of characteristics and
variables, rather than a linear list or even a matrix of requirements. The

132

Figure 114. Firefighter protective jacket has a complex
desiqn architecure with multiple variations.

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

final product is a result of weighing these needs which are often interrelated or even opposed among themselves (Figure
115). In other words, under this evolutive perspective those relationships among variables are not necessarily constant and
they could vary over time due to changes in the external context (e.g., design stressors). If such open-design and adaptable
approach could be streamlined, even when tackling just a one-off solution (with heritage or not), then not only variations and
upgrades of such solutions would be easier and cheaper to make, but they could be included as useful heritage inputs
towards newer or even unrelated solutions. So, capturing and validating such relationships becomes in many ways part of
the genetic material of both the system as well as the process. Thus, under this approach such system architecture could
be defined from the perspective of an evolutive framework, as an adaptable network of interconnected variables that evolves
continuously (Figure 115), rather than a static hierarchical structure (Figure 116). The system architecture then is defined by
connections among most relevant variables, and adaptability means handling change in selected network nodes (blue lines)
within a changing framework. The more fluid such a network is, the bigger the need is for an adaptable system architecture
to reduce cost and to improve the efficiency and capability of any system design.

Variable
CULTURAL
ENGINEERING NETWORK

NETWORK
Variable A1

.t
.
o
.

SYSTEM ARCHITECTURE
DEFINITON

~ -
———————

Variable A3

MANUFACTURING
NETWORK

LS Variable B1
UNCERTAIN gy
VARIABLES

Figure 115. Visual representation of an architecture definition based on an evolutive network of variables.

However, from this framework perspective the adaptability of the system can be pushed further away to: [1] stress
the design for more efficient solutions that use less resources, as well as [2] to turn the uncertainty inherent to the design,
implementation, and operations phases into an advantage. In essence, the more areas within the network that a system
architecture can address with less resources, the more efficient it becomes and the more uncertainty it can handle without
increasing its re-design, upgrade, or interconnection design effort or cost. Furthermore, the earlier this is done in the design
effort, the more efficient the process becomes as well and more likely the system is to be optimized.

Regarding such efficiency the initial design for the firefighter jacket could require it to be strategically redesigned or
enhanced, by adding conditions such as detachable sleeves, integrated smart technology (e.g., sensors, heaters, etc.), as
well as other more complex cultural fashion variables. Those parameters were nor part of the initial design, and therefore
not included in the initial adaptability requirements and evaluation. However, these conditions are driven by future
foreseeable uses, manufacturing constraints, and market changes pushing the limits towards a future system. If that
architecture has been designed with adaptability in mind (evolutive), then part of its requirement definition (blue lines) would
include also open ‘nodes’, or areas for possible or uncertain future variables. For instance, a new sewing technique could

133

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

allow to easily add zipper lines to fixed sleeves so sleeves can be removed.
While this would apply to the architecture itself, it would also affect the

design method. Considering this early in its implementation can help
discard too unique, and therefore not adaptable solutions. This of course,
would seem highly inefficient and perhaps an unnecessary source of
complexity. However, if curated properly it can be the key towards feasible
quantum leaps in performance. The cost of including general open nodes
(green), if done properly, is minimal in comparison with the benefits of
reusing such design effort for later changes. Similar to what nature does
with evolution, openness, and randomness in the system definition
(genetics) opens the path towards adaptability due to the uncertainty in the
reality. In other words, the more potential adaptability is infused early in the
design the better the risk management (Costikyan, 2013) and less costly the system will be in the mid- and long-term.

Under this approach of evolutive adaptability, stressing the system is also a strategy towards achieving system
reliability and resilience as well. If many or all of the multiple relationships describing the system architecture within such
framework are addressed by a system, its design addresses known and most likely also known requirements. The more a
system design is being pushed against all design paths, the more that design ‘kills’ efficiently the challenge or problem that
system is aiming for. Thus, the more adaptable a system is towards addressing changes though a better with less approach,
the more capable such system is to address uncertainties and more resilient it becomes. Furthermore, even if this approach
is partially implemented, it still provides a solid foundation towards future design trade-space options and expansions.

However, the integration and addition of requirements can also lead to a hyper-integration making difficult future
changes upgrades, repairs, or updates. We cannot forget that while an initial increase in complexity, means a greater effort
and more variables (and requirements), in the ends it means much more efficient design efforts and less use of available
resources. In essence this is what nature does, since the reference point is not design effort towards a point-design or a
one-off architecture, but of the system (organism) as an instantiated part of a continuous evolution (species).

Then, pushing the limits of a system architecture towards higher levels of performance and adaptability is done
through a careful process that builds upon [1] the balance between needs and resources, and [2] a synergetic connection
among subsystems and disciplines within a requirements network. Chapter 5 will describe this process in detail. Furthermore,
infusing a high level of adaptability in the design also has the benefit of better dealing with uncertainty. Within an evolutive
architecture, the system is considered as an open solution, that is a family of solutions rather than a locked point design,
which ripples across multiple levels such as subsystems, components, parts, and even strategies (e.g., manufacturing,
marketing, etc.). Thus, design uncertainty is built up in the system as the likelihood, feasibility, and availably of statistical
parameters that need to be captured, tracked, and used for subsequent optimizations.

The range of this critical keystone, varies incrementally across a range defined by these levels:

o Unadaptable (no adaptability). These system designs present the minimum number of functions with the maximum
number of elements. These cannot handle high levels of design uncertainty efficiently, and they tend to gravitate
towards rigid and often limited point-design single solutions.

o Adaptable (balanced adaptability). Systems designs in this category present a balance between the number of
functions and their constitutive elements. They lean towards short series and limited customizable solutions.

o Evolutive (highest adaptability). On the other extreme of the spectrum these designs present the maximum number
of functions with the minimum number of elements and components. They handle high levels of design uncertainty
efficiently and they gravitate towards open solutions or families of solutions addressing open requirements very well.
The concept of evolutive adaptability could be applied to any system architecture design regardless of whether it is

physical, digital, or virtual. However, this is especially relevant for complex and smart hardware-based system architectures.
The especial nature of these complex systems integrating complex physical geometries, actuator-driven functions, and data-
driven operations certainly highlights multiple intertwined aspects of the evolutive approach as the next chapter will present.

1.1 Sub Var | 2.1 Sub Var il 2.2 Sub Var
—I _

Figure 116. Example of static variable framework.

134

"
‘e

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Reactivity is the second keystone within the evolutive tetrahedron of

" ?‘; system design (Figure 117). Similarly, this one tackles all context stressors that
o ‘a‘_ SCARCITY were summarized in section 4.1. However, this concept is especially related to

AGILITY " interconnection, system performance, and innovation.

MULTIDISCIPLINARITY

: p % From the evolutive standpoint, a system architecture is dynamic, and it
™ presents a multidisciplinary nature to deliver high-performance characteristics.
* INNOVATION . For instance, a mechanical evolutive system could be competition race car that
,BEW'O optimizes thermal performance and mass reduction. Furthermore, a physical
2 ggﬂmumsnumou 4 and adaptable configuration responds to changing design requirements, with
2 HERITAGE i key control and management functions associated with it. In this mechanical

example, the management of electro-mechanical actuators in the assembly,
could allow improvements and adjustments over the different phases of the race
to improve performance, as well as upgrades based on data collected over time.
Therefore, physical design, actuator controls, and data-driven decisions are
combined within a complex adaptable evolutive architecture to react against
environmental or design changes. In this case, reactivity is essential to address the dynamic holistic synergy of the system
components, as well as its capability to manage its adaptability across the multiple realities of a system (physical, digital,
virtual, databased, etc.). Reactivity is also related to the transient nature of the evolutive system complexity, as the continuous
development between the system and its environment. Hardware (geometry), software (behavior), and resources
(substance) are all integrated within the capability of the system to interact with external and internal integrative changes.

Therefore, transient system interaction is the measurement behind the reactivity of the system and is defined as
the number (and complexity) of reactions the behaviors of the system can provide given a specific system geometry and
utilization of resources. The more interactions with the environment a system architecture is capable of, the more reactive it
is. The less interactions the system requires to handle external changes, or in other words the smarter and more adaptable
it gets, the more efficient the system architecture becomes. In essence, the main goal brought by this principle is for the
system to become smarter (more reactive) with less.

Nowadays, modern complex system architectures across fields are becoming more and more robotic in nature. This
means they increasingly combine software, hardware and data, through some type of intelligent management, assessment,
and control (Chen et al., 2018). For instance, a modern car today has several million lines of code (Desjardins and
McCandless, 2017), which is a growing tendency as autonomy starts becoming a standard capability of any car in the future
(Towns end, 2020). The same happens with apps or software, as well as phones, vehicles, appliances, and many other
objects around us today. At the same time, the amount of information used within our systems keeps increasing, so another
growing technology trend brings connectivity among all those systems such as the internet of things (loT). All this portrays
a near-term world of interconnected devices and sensors all over (Soro et al., 2019). Thus, the growing infusion of software-
based behaviors and control in any hardware system is evolving into a ubiquitous and increasing smart capability (Figure
118) for every one of these systems. As such, intrinsic design rules for any hardware or robotic-driven hardware of the
system will change. For instance, under this approach a house would manage its own lighting or energy consumption based
on user interaction, while a car will drive itself changing speed, suspension profiles, and torque depending on the road
conditions and the environmental stimuli. Our human-built world is becoming smarter, and suddenly thermal performance,
mechanical fatigue, or system longevity will be driven by such inherent capability. Thus, an approach like this will bring great
opportunities in that balance between scarcity of resources and complexity of the system.

These smart systems need an equally smart design effort to harness, improve, and upgrade the reactivity capability
itself, but also a way to match hardware adaptability, system efficiency, and interactivity across systems. In other words, an
evolutionary approach implies the capability to prepare and design for a constant flow of information and interactions among
systems, components, and their environment. These growing evolutionary approaches will change business and industry
models (Kranz, 2017), affecting how we design, build, manufacture, and use objects around us.

Figure 117. Reactivity within the evolutive
tetrahedron of system architecture design.

135

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Google Chrome | ——— 2000
Mouse [120

Car [100
Facebook [} 61
Hadron Collider [l 50
Boeing 787 | 14
Chevy VoIt | 10
Firefox | 9
Google Chrome | 7
Mars Rover | 5
Hubble 2
Bacteria 1
Space Shuttle 0.4
Pacemaker 0.07
Iphone App 0.01

0 500 1000 1500 2000

Figure 118. Millions of lines of code across different systems - multiple sources (Desjardins and McCandless, 2017)

As previous sections referenced, organisms (systems) in nature are not isolated. They are in constant interaction with
their environment, with other organisms, and with themselves, regardless of the volume of information and the vehicle for
such exchange or survey. That interaction with the environment drives: [1] system design efforts including definition networks
like Figure 118 shows, as well as [2] interaction processes enabling the system to react and adapt. Figure 119 shows
graphically how this concurrent flow affects each process. In general, the operation of an interactive system in the
environment allows it to both send and gather data, which is used to perform variations and changes. These depend on the
capabilities of the system (e.g., moving parts), which again enable the best reaction towards those stimuli. However, this
process also has consequences towards the definition of the system and its subsequent design efforts, enabling also
changes in the design that could improve its performance based on each new situation (continuous heritage). As this small
summary presents, the system architecture needs then to be designed to enable such process, having reactivity and
adaptability at the core of its definition. Beyond these, manufacturing and operations constraints need to be integrated as
well. Currently, highly reactive system architectures, such as autonomous cars, present a different level of autonomy and
data-driven induced behaviors as part of the design process. Hence the design process itself should be changed, optimized,
and evolved based on the information management inherent to this key characteristic. Under this approach, the more a
system architecture with an intelligent baseline is used, the more the design process would change based on such feedback
data loop. This becomes feasible by an integrated and concurrent data-hardware architecture (Figure 119).

ENVIRONMENT
\\ ’A
[Sensing | \ B

INTERACTION B SYSTEM
Processing '

- X

REACTIVITY

Figure 119. Evolutive reactivity, system design, and system interaction concurrent flow.

136

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

The range of this critical keystone, varies incrementally across a range defined by these key points:

e Passive (no reactivity). These system designs present the minimum capability of interaction with the maximum
number of functional elements and resource utilization. They cannot handle many external or unexpected
changes, and they tend to gravitate towards low-tech and simple solutions.

e Active (balanced interaction). Systems here present a balance among the system interactivity and complexity
and resources required across their lifecycles. Programable, modular, and upgradable systems belong here.

e Reactive (full reactivity). These systems present the maximum capability of interaction with the minimum number
of functional elements and resource utilization. They are highly smart systems such as advanced robotics, Al-
driven architectures, autonomous systems, etc. They can handle many external and unexpected changes
efficiently with highly interactivity. They gravitate towards high-tech, biological, and software-based solutions.

This evolutive keystone does not only apply to very complex and high-tech systems, but it can also be identified in
designs as simple an adventure jacket. Such an evolutive jacket could simply have sleeves that can be removed, and
openings or pockets that could tweaked by hand for thermal management reasons. This evolutive principle of reactivity is
applicable to all technical and creative sectors. While this approach is emphasized towards hardware-based system
architectures, it can also be applied to software or virtual architectures requiring both interactions and adaptability.

4.2.3. Regeneration: Resource Performance and Sustainability
Finally, regeneration is the last keystone of an evolutive system

S LTI

----- - architecture. Similarly, this tackles all general stressors mentioned in section 4.1

o as the last foundation for the evolutive tetrahedron. Among them, regeneration
SCARCITY is especially connected to resource scarcity, agility, and multidisciplinarity.
AGILITY % oo i .

- MULTIDISCIPLINARITY Regeneration is about the utilization, management, and restoration of

;'lmRCONNEcmN S ¥ resources across the full lifecycle, whatever they may be. These could include

- meceneraTion energy, building materials, computing code, mechanical components, or
workforce availability, among many more. Resources do not need to be physical,
and they do not need to be man-made either, however they all include

: PERFORMANCE 4
* INNOVATION

. 3
" ey N4 substance. This is understood as what the system architecture is made of or
HERITAGE what resource is required for its operations. So, this concept relates to the

o resource lifecycle optimization of a system within a given exteral

| N— ’ environment. The sources used to make the system and their management are

part of an evolutive design process. Resource considerations should be done
across the full lifecycle from generation to recycling, including: [1] energy, [2]
materials, [3] people or workforce, [4] data, and [5] coding or programming.

Therefore, a key measurement behind this constitutive concept of an evolutive system architecture is the consumption
and utilization of resources for a given system geometry and reactivity capability. In other words, this is the concept of
resource utilization within this context. This addresses the consumption of resources by the system across the lifecycle
from design to decommission. Furthermore, it considers both all resources used to design the system, to develop it (evo-
devo), used by the system itself, and by the relationships with its environment be it physical, digital, or both (eco-evo-devo).

From this perspective, an evolutive system is aimed not only to be sustainable but to become resource positive (e.g.,
producing more energy that it consumes) or regenerative (Lyle, 1996). The first has clear implications on a cradle-to-cradle
approach, and it is not just about pollution or scarcity, but about efficiency across design, implementation, operations, and
all the way to decommission (Bhamra and Lofthouse, 2016). This consideration of resources could be negative (the system
only consumes), neutral (the system is sustainable), or positive (the system replenishes resources). There could also be
multiple grades across these which are applied at system level as well as at a component or sub-system levels.

Hence, the management of resources within an evolutive system is related to the concept of eco-evo-devo-lifecycle.

This is an evo-devo approach that looks the development process of the system itself by considering the environmental
ecosystem and the lifecycle of the system from a resources standpoint (Figure 121). Under this perspective, concepts such
as sustainable recycling (Bhamra and Lofthouse, 2016) and cradle-to-cradle (McDonough and Braungart, 2010) are
137

Figure 120. Regeneration within the evolutive
tetrahedron of system architecture design.

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

integrated into the understanding and optimization of resource utilization across multiple phases:

o Design in this phase is about considering both [1] all resources required to create the design (e.g., workforce, tools,
computing powers, paper, etc.), and [2] resources required by the system to function.

o Implementation. Physical and digital manufacturing of a system architecture require both direct and indirect
resources such materials, tooling, and coding. In this phase it is critical to consider especially all losses due to
inefficiencies and other intermediary steps. This phase should also address integration, transport, and installation.

e Operations. This phase addresses all resources required to operate, maintain, and even upgrade the system. Also,
system operations are critical in this phase from both active and passive standpoints since it affects all the other
phases in the lifecycle. Among other resources, workforce management and coding are tracked here.

o Decommission. Finally, this last phase considers resources regarding the repurposing, recycling, or reusing of
systems at the end of their life span. This critical phase goes beyond the sustainability of the system at any level of
resource utilization and connects the end of the lifecycle with the initial design process.

ENVIRONMENT

Figure 121. Full evolutive resources lifecycle within the evolutive systems design process.

From this perspective and across the lifecycle of an evolutive system, the relationship between the system and its
environment is always considered as a design constitutive, regardless of any given design requirements. This relationship
drives the sustainability of the system, the design posture towards resource scarcity (section 2.1), and its implementation
cost. It also conditions and stresses both system design and design methodology to deliver better performances. For
instance, if the design allows to infuse, use, or swap materials and energy sources among other constraints, it will increase
the system design adaptability and potentially the system performance in the long run. Similarly to the eco-evo-devo
approach, the study and design of the system is always done under the light of its relationship with its changing environment.
Any system is therefore defined by the design of system and its context. This context could be the assembly in which
resides (e.g., mechanical part), the natural environment (e.g., building), its software framework (e.g., app), etc.

Thus, this third keystone is a key characteristic for any system architecture, but it is especially relevant for evolutive
architectures under scarcity-driven environments. As stated previously, energy scarcity is a general global constraint for

138

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

humanity, and energy efficiency is particularly critical for longer and even more affordable operations. The use of energy is
related to the use of natural resources, including material extraction, processing, prototyping, manufacturing, and all the way
to recycling (Johnson and Gibson, 2014). This always needs to be considered for scarcity, cost, and reliability reasons as it
is critical across all general, design, and even cultural stressors (chapter 2).

For instance, cellulose-based recyclable materials that are available in the area are key to create an evolutive
approach towards printing products such as a magazine as seen in Figure 122. Regularly, the final selection of material and
vendor for the printing will come at the end of the design process. But an evolutive approach considers such key details this
early in the process, and includes local sources, alternatives, recycling schemes, and manufacturing constraints.
Furthermore, the approach should consider how the publishing can replenish trees and energy used during its design,
printing, and delivery. This leads to managing inks, formats, vendors, and transport, as well as marketing approaches,
environmental aspects, and other social constraints. All these aspects are considered towards making the final product
richer, more adaptable, and more tuned to its context. Such an approach requires an extra effort for both the designer and
the design process, and it could certainly become overwhelming. However, the key is assessing which one of those variables
and connections in such system-environment interaction are critical. Chapter 5 will present this process and its method.

Design Variables
Alternatives

Context / Environment
Alternatives

Figure 122. Resource regeneration during the design cycle considering both system context and system design.

Aiming for a surplus in the system provides several benefits from a design standpoint since [1] it stresses design
requirements enabling more adaptability, [2] it creates performance margins, and [3] it implements key environmental
principles with key economic, social, and conservational consequences. Therefore, an evolutive system architecture could
often present key design trades that both enable and use these principles. Such principles include among others:
multifunctional system architecture, repurposing, easiness in its upgradability, recyclability, mass reduction, cost reduction,
return of investment increase, etc. In essence, the design principle behind this keystone is about doing more with less from
the standpoint of resources. The range of regeneration, varies incrementally across a range defined by:

o Depleting (net negative resource consumption, consumer). These system designs present the maximum
consumption of resources and no replenishment strategy. They tend to present lower levels of performance, less
adaptability, and less reactivity. They also gravitate towards non-recyclable, disposable, and unsustainable solutions.
An example of this area could be thermomechanical systems with a high carbon manufacturing footprint.

o Sustainable (neutral resource consumption). System designs in this category present a balance between resource
consumption and replenishment. These include sustainable systems and carbon neutral solutions.

o Regenerative (net positive resource consumption, prosumer). On the opposite side these designs have a minimum
consumption of resources and a full replenishment strategy. Thus, they also have the highest levels of performance,
with more adaptability and higher system reactivity. These systems gravitate towards net positive and regenerative
solutions such as and CO2-sequestration-based electromechanical systems.

The concept of regeneration as a keystone of an evolutive system could be applied and observed across many
domains including thermomechanical, digital, computational, and biological, among others. Therefore, under this approach

139

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

energy, matter, and information (data) are multiple faces of the same reality as the substance of complex systems. This is a
fundamentally a holistic way of looking at any system architecture, independently of its complexity or scale.

Examples of sustainable design that aspire to be integrated with nature can increasingly be seen in multiple sectors
such as clothing, consumer products, and houses (Kwinter, 2017), among many more. Nevertheless, designing and
producing for the abundance of resources, rather than the rationing of available resources (McDonough and Braungart,
2013) is what regeneration opposes. This in essence means [1] to design for either a system architecture that produces
more resources than it consumes (Mang et al., 2016), or [2] to have an integrated close-loop functional scheme so the
system restores, renews, and transforms any used energy and resources (Burke, 1999, Colozza and Maloney, 2003). This
is especially applicable towards the development of energy production systems, large-size projects, and infrastructure-
oriented architectures (Hemenway, 2015). Among other smaller scale examples, we could identify sustainable buildings,
regenerative energy systems (Alotaibi et al., 2020), or plant-based food production systems to name just a few. So, this
approach is a growing trend due to the scarcity stressors and the increasing complexity of systems.

4.3. Evolutive Design Drivers

Previous sections have presented the evolutive system architecture approach in response to global design stressors
and methodology gaps. These fundamental keystones characterize any evolutive systems among the large category of
general complex systems. Figure 123 summarizes this graphically highlighting the three keystones at the base of the
evolutive design tetrahedron: adaptability, reactivity, and regeneration. However, it is necessary to fully define an evolutive
system to address more specific design drivers behind these overarching keystones principles.

Figure 123. System design drivers as faces within the evolutive tetrahedron.

140

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

These keystones are partially based on ancestral basic architectural components for any building, which were
described by Vitruvius during the Roman Empire (Vitruvius, 2012). There are structure (firmitas), function (utilitas), and
perception (venustas). But these principles need to be adapted to current times. It is relevant to highlight that unlike other
modern interpretations such as the FVS model by Gero (Gero and Kannengiesser, 2014), these principles and subsequent
design drivers relate to the system itself and not to the design development process behind it since it is a practical approach.

From the described base of the evolutive tetrahedron, three faces or planes represent these design driver groups: [1]
geometry, [2] behavior, and [3] substance. Each one of these planes is opposed to its more direct keystone (adaptability,
reactivity, and regeneration), which are the vectors in between these planes. Understanding these drivers while considering
both known and unknown relationships among them is key for designers and design processes to produce good complex
architectures. The following sections elaborate in detail these design drivers for any given evolutive system architecture.

The following descriptions are based on [1] the study of general needs regarding complex systems, [2] design and
systems engineering gaps identified in section 3, [3] key characteristics of evolutionary, adaptive, and evolutive systems,
and finally [2] almost two decades of practice designing complex systems across multiple technical fields.

4.3.1. Geometrical Complexity

In response to design requirements and context stressors, the development of an evolutive system architecture
design involves a continuous cycle that creates a geometry. This activity includes among others the definition and
development of volumes, shapes, component three dimensional assemblies, interfaces, mechanical properties (e.g., center
of gravity), mass estimates, material design constraints, packaging studies, deployment studies, integration feasibility
studies, etc. This geometrical complexity is always in constant state of change within an evolutive process. Such geometrical
continuity could be implemented using advance computational systems (e.g., generative design tools), as well as low-tech
techniques (e.g., pen and paper) just by keeping design trades open.

Practically this means that the multiple aforementioned trades are flexible and subject to an overall architecture design
strategy. Thus, under this approach both designer and the design workflow always maintain the design as unfinished and
keep floating new foreseeable design needs in the trade space of design solutions. This is not because the component
requires that particular need to be addressed right away, but because it enhances the adaptability of the current solution
which improves ultimately both performance and efficiency.

The geometry face of the tetrahedron is: [1] define by the edges of reactivity and regeneration, [2] limited by the
behavior and substance faces. This means that for a specific system architecture design seed, the geometrical aspects of
the design are bound by the materiality of the design and the functional behavior. In other words, multiple designs exist in
planes perpendicular to the adaptability axis. These axes hold the geometrical drivers, while the associated face (yellow
face, Figure 123), is bound by eight key design drivers that are interrelated among themselves and with the other faces
(Figure 124). A three-dimensional body is selected because those complex connections happen metaphorically within the
internal volume. Surfaces and edges define specific parameters and approaches, while system connections occur
multidimensionally underneath. Geometrical drivers include among others:

4.3.1.1. Aesthetics (perception)

A complex evolutionary architecture does not only mean it is only technical solution for a machine or component only
driven by its functions. Such complex architectures could be designed for human use and interaction. Indeed, under this light
the perception of such a solution from an aesthetical standpoint is a crucial and very complicated. Styles, cultural references,
political notions, and even social nuances along with many more are part of a design process. Often, the management of
this complexity relies on the capability and experience of the designer, as well as the cultural and heritage trades of the
institution or field of practice. Thus, perception of the system from the user-center or culture-centered perspectives needs to
be addressed, captured, and balanced within the development of many evolutive systems.

The goal of this research is not to describe such complexities, but rather to emphasize they are a reality of the system,
with quantifiable and quantifiable variables and parameters. An evolutive system architecture will not be complete if this area
has not been addressed and certainty its subsequent design workflow would be incomplete if it cannot handle it. At the same
time and beyond perceptual aspects, aesthetics could also be used within an evolutive approach to assess and manage

141

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

other secondary relationships across design drivers. This not only addresses often the ‘technical’ intuition of the designer
about the performance of the system, but it also establishes a comparative reference across solutions. For instance, the
components in the design of a suspension system in a race car, are going to provide a more extreme, more lightweight, and
lower profile of the car, presenting a very different aesthetics than a similar suspension system now applied to a compact
utility car. Cost, optimization (e.g., mass), etc. could be related and tracked by different aesthetics as and styles not only as
a design driver, but as a foundational principle for a development process.

For instance, the use of certainty materials, a practical manual craftmanship process, or a design allowing multiple

modular solutions by an increased the number of interfaces would change the perception, user experience, and style of the
system. As an individual design driver this one presents the following general characteristics:

Direction: It tends to be a set driver thus it is basically unidirectional, affecting other drivers.

Criticality: medium to high depending on the other drivers.

Complexity: It is non-quantifiable driver for products mostly, but it could be also quantifiable (e.g., material quality).
Range: this mainly affects product (prod) or system architecture, but it could influence the process indirectly too.

4.3.1.2. Design for Uncertainty

When designing a geometry that is the shape and material organization of a system section 3.1 presented the key
differences between descriptive and prescriptive methodologies. In the first one, an initial concept (synthesis) is created as
the starting point of the process. In the second a set of axiomatic rules and analysis are used to develop the concept. Both
approaches are iterative in nature, enabling other approaches such as design thinking, integrative, etc. However, in a
complex system and especially under the continuous evolutive approach uncertainty in the design is a critical drive in the
process. Since the system architecture needs and it is forced to respond to environmental, design, and context changes, the
unknown is critical. This means that system needs to allow design margins to enable new adaptability schemes, as well as
to integrate current design changes and future design traits. These design drivers could be present across fields, systems,
and practices. Examples of this can be found in the ultimate changes driven by packaging constraints, numbers of user, or
final range of the system, among others. Uncertainty as an individual design driver presents these general characteristics:

Direction: this is a bidirectional driver across the design space.

Criticality: low to medium. Because it is not specified it not considered as high.
Complexity: it could be both quantifiable and quantifiable.

Range: this driver affects both product (prod) and process (proc).

4.3.1.3. System and Component Interfaces

A key design driver within any complex system, especially for a an evolutive system architecture, is the interfaces
among components, subsystems, and other adjacent systems. It is crucial to identity, manage, and describe the number,
nature, and interrelation of these interfaces between the integrated components of a complex system. These interfaces
certainly affect both processes and products. Beyond the traditional system engineering approach, they require considering
geometry, materials, and data. Good examples of this can be seen in modular system architectures as well as those requiring
updates and upgrades frequently. This driver presents the following general characteristics:

Direction: it is also a bidirectional driver.

Criticality: is medium to high within evolutive systems.
Complexity: it is both quantifiable and quantifiable as a driver.
Range: it affects both products (prod) and processes (proc).

4.3.1.4. Design for Optimization

Under the paradigm of continuous design and with the overarching objective of achieving higher performance levels,
optimization becomes a critical design driver. This not only makes a difference in reducing resources consumption and
improving multifunctionality among other goals, but it is also about approaching the system’s design from an adaptable
perspective. The evolutive process is about a constant design workflow and a new generation that both adapts to new
conditions and surpass previous heritage solutions by integrating them.

142

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

Finding the better balance between system characteristics and design drivers is constantly present under an evolutive
approach. Examples of this are mass reduction, energy efficiency, the reduction of the number of assembly components, or
manufacturing cost reduction, among many more. This driver has some general characteristics such as:

Direction: it is always bidirectional.

Criticality: is high within high performance evolutive systems.
Complexity: Itis a quantifiable driver.

Range: mainly this affects the product (prod) or system architecture.

4.3.2. Functional System Behavior

The second big group of design drivers emphasize the response to the overarching principle of reactivity, while also
addressing adaptability and regeneration aspects. As previously mentioned, this category relates to the characteristics of
the system architecture itself and not to the design process per se. Given the adaptable nature of an evolutive system, the
design process needs to address the management and optimization of such changes. As section 4.2 developed, reactivity
classifies systems from passive to highly reactive both against their context environment and within their subcomponents.

Thus, designing towards those interactions involves going beyond the continuity of the process, to study the system
from a functional standpoint. Such functions will always be intrinsically related to the geometrical adaptability of the system,
as well all available resources used or needed, both of which are related to the other two faces and edges of the tetrahedron.

These behavioral design principles include governing forces that enable the adaptability of the system and materialize
its reactivity. For instance, any complex system needs energy to work and to be manufactured. However, a very efficient
energy management can be executed if the system is highly reactive, allowing a higher level of adaptation to different power
needs. So, all these principles and drivers describe a highly circular and networked approach that enables the complexity of
a system through the interconnection of multiple design variables and principles. Among the multiple design drivers related
to the behavior of a complex reactive system the following are initially highlighted within the evolutive approach.

4.3.21. Energy

Energy is universally a critical design driver which is connected to every intrinsic aspect of the system architecture,
functions, and related design processes. Firstly, addressing energy from an evolutive design driver standpoint implies to
considering the use, consumption, and production of it across the full lifecycle of the system. Within such a design
consideration there are three levels to be studied: [1] the cultural context and operative environment of the system, [2] all
energy needs across the system lifecycle including consumption, regeneration, and overall efficiency, and finally [3] key
operational modes and functions of the system that have direct consequences towards the other two points. Given a specific
design, this is essentially about where the system operates, what it needs, and how it could improve its efficiency through
reactivity and adaptability. As a design driver and a tool, this presents the following overall characteristics:

Direction is always bidirectional, but usually there is preferred one.

Criticality. This driver always has a high criticality within high performance evolutive systems and processes.
Complexity. Itis a quantifiable driver, but it can also have multiple associated qualifiable drivers.

Range. Energy considerations affect the design of both products (prod) and processes (proc).

4.3.2.2. Time and Schedule

Complexity often means more time and more demanding schedules with consequences that ripple across the system.
This limits the number of resources available to a company or a designer and greatly constrains the possibility of a better
design. The more complexity that is required, the heavier the influence of heritage and subcontracted tasks become. The
evolutive approach specifically tackles these challenges from multiple and complementary perspectives such as:

o Simplification. The design of the system should reduce as many manufacturing steps and the number of parts as
much as possible. This increases the multifunctional aspect of its components, subsystems, and overall architecture.
o Multitasking. The design of the system and its related process should enable all possible a synergy among

143

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

components, agents, efforts, and resources.

e Continuity. Making design requirements much more thorough and broader allows creating better solutions in the
short terms, and easier upgrades and new systems in the long term. Like an athlete, the more the design workflow
and the system is ‘trained’ to address current requirement needs, the easier it is to get to the next the level.

Among the most relevant characteristics of this design driver, these are critical:

Direction. It is mainly a bidirectional driver.

Criticality. This driver has always high criticality within complex systems.
Complexity. It is a quantifiable driver with multiple associated qualifiable drivers.
Range. It strongly relates to both products (prod) and processes (proc).

4.3.2.3. Multidisciplinary Synergy

A key aspect of the evolutionary approach developed in chapter 5 will develop is the fact that the system architecture
is built upon synergies across disciplines and subsystems. This design driver also has consequences across all the other
drivers and dramatically influences any further evolutive process. Rather than looking at the system from a serial disciplinary
standpoint, as chapter 2.9 presented, the system could be studied from within the connections among those disciplines. For
instance, rather than looking at it from a purely mechanical and then a thermal standpoint, an evolutive design architecture
handles synergetic thermomechanical requirements and questions simultaneously affecting and enabling both. Addressing
synergy within the design is also addresses opposing forces that have physical, cultural, heritage, and business
backgrounds. Outcomes of this are: [1] multifunctional architecture designs, [2] integrated implementation steps, [3] simpler
schedules, [4] increased sustainability, [5] improved efficiency, [6] lower cost, etc. This multifaceted driver could be
characterized as:

Direction. It is always bidirectional, and it has preference nature as well.
Criticality regarding the system design requirements goes from medium to high.
Complexity is both a quantifiable and qualifiable driver here.

Range varies from products (prod) to processes (proc).

4.3.2.4. Algorithm

An evolutive system is by nature a smart system, meaning it is highly interactive. This also means that its behavior in
terms of operative functions is driven by programming and data, so the behavior of the system has an algorithmic nature.
Furthermore, the design itself can also be algorithmic since its geometry, reactivity, and even regeneration scheme could be
based totally or partially on algorithmic models. Examples could be found in 3D printed generative components, autonomous
self-driving cars, and interactive robotics. This algorithmic nature coexists with other designer-driven and design-workflow-
driven decisions, models, and guides. Nevertheless, an evolutive system or process along with their subsequent
development processes need to address both. This specific driver presents the following characteristic traits:

Direction. This driver is mostly bidirectional.

Criticality goes from low to high. It is high on reactive evolutive systems and processes.
Complexity is a quantifiable driver, but it can have associated qualifiable drivers.
Range. This driver also affects product designs (prod) and process designs (proc).

4.3.3. Material and Data: Substance

Finally, the last group of design drivers under behavioral functions relates to the implementation of the system and
the resources used in such processes. These systems could be physical (e.g., metal alloys used in the structure) or digital
(e.g., programming language, GUls, and datasets). Geometry and design provide the rules to implement and forge the
system, while behavior drivers tackle how it performs. However, all three groups are intimately related among each other.
Within this collection of drivers there a few critical ones that are elaborated upon in the following sections.

Given a specific context and framework, or in other words an ecology, we could look at the design process from a
resource standpoint that including energy. The utilization of resources (from less to more), the capability to restore them

144

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

(from depleting to regenerative, Mang and Reed, 2017), and finally any achieved functionality (from better to worse) provide
us with a three dimensional reference system (Figure 125).

In such a framework the complexity of the system architecture becomes the curve connecting system solution
extremes. An evolutive architecture is defined by such coordinates, as is the design process. Thus, the goal is to be efficient,
meaning more complexity and more functionality, with less resources and more regenerative capabilities. The more this is
achieved, the more resilient the system will be within a scarcity context. Regeneration of course, is key for an evolutive
architecture design, since any given complex system requires full design definition, development, and optimization among
its parts and its context (e.g., environmental, commercial, social, economic). With this, complex design here is always
continuous, contextual, and evolutionary in nature, as well as the result of a specific process including the following drivers.

4.3.3.1. Implementation

A given system design, behavior, and selection of resources must have a feasible way to be implemented. Within an
evolutive architecture, such development and implementation are part of the system itself (evo-devo). So, this driver is about
the manufacturability on the physical side, as well as its programmability on the digital side, among others. In other words, it
is about the feasibility of the system across the full design and lifecycle phases. For instance, a specific design geometry
could have multiple ways to be implemented with multiple consequences and dependences across all other design drivers.
Chapter 5 and 6 will elaborate more about this driver, which present the fowling overall characteristics:

Direction is bidirectional in nature with multiple caveats depending on the nature of the system.
Criticality across systems and processes goes from low to high.

Complexity here is a quantifiable driver, but it can also have multiple qualifiable drivers associated to it.
Range varies from products (prod) to processes (proc) like the other drivers.

4.3.3.2. Relative Cost

Cost is both a driver and a consequence. As a driver for an evolutive system, it is about the relative balance across
options. These options could be resources, workforce, energy, as well as associated monetary values, among others. Its
consideration is not more special in an evolutive system than in any other approach. However, its approach is broader in the
sense that cost is not only monetary but also related to decisions made over the continuous development of the system.

Heritage solutions and standards do have a critical influence within this driver since they often drive the decision tree
behind any development or design of a complex system. It is important though to remember that relative cost is constantly
changing, therefore it is more of probabilistic driver than an absolute constraint. Part of the rationale behind the evolutive
approach could be summarized in managing this driver, which presents the following characteristics:

o Direction has a directional nature, but it could drive other alternatives bidirectionally.
o Criticality always present a high criticality for this driver.

o Complexity is mainly quantifiable driver.

e Range goes both products (prod) and processes (proc) simultaneously.

4.3.3.3. Efficiency

Finding balanced solutions among opposing forces is often the most complicated aspect of a system design task.
Common examples of this are for instance the balance between [1] mass and power, [2] mass and thermal performance,
and [3] volume and complexity, among many more. This balance could be tuned by the efficiency of the system, which is
often related to a system optimization based on synergy and refined algorithms. Chapter 5 will elaborate this in more in
detail. Therefore, efficiency here is an everlasting search among opposites with the following characteristics:

Direction is mostly bidirectional unless it assessed as a design requirement or constraint.
Criticality goes from low to high.

Complexity is a quantifiable driver here.

Range affects the design of both products (prod) and processes (proc).

4.3.3.4. Recyclability

145

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

An evolutive use of resources addresses the full lifecycle considering: [1] origin, energy, and cost, [2] reduction along
the system life span, and [3] recycling and or repurposing. Bringing this consideration upfront not only tunes solutions to
global stressors (e.g., scarcity), but it also enables a more robust and reliable system. This is characterized by:

Direction is mostly bidirectional if trade options are possible.

Criticality is high for sustainable or regenerative evolutive systems and processes.
Complexity is both a quantifiable and qualifiable driver.

Range also affects the design of both products (prod) and processes (proc).

4.4, Interrelationships Among Design Drivers

S

QQQQ E SUBSTANCE

438‘ / 8 QUAL QUANT QUANT QUANT

» M = CRIMCALITY CRITICALITY CRITICALITY CRITICALITY

*{\\\ vl" =4 PROC/ PROC/PROD PROC/PROD PROC/PROD

O # —
P ol

¢ r/M ’ = QUAL/QUANT QUAL/QUANT QUANT

M /M 8 CRITICALITY CRITICALITY CRITICALITY CRITICALITY

/ ’M P E PROC/ PROC/PROD PROC/PROD PROC/PROD
N =
| "=l < > @ > - eSS
w‘:;‘ /,v‘ ¢ —{| QUAL/QUANT QUAL/QUANT QUANT QUAL/QUANT §
(W /l‘ E CRITICALITY CRITICALITY CRITICALITY CRITICALITY S
/ﬂ", ﬂ"/, rﬂ"“ﬂ M 4 PROC/ PROC/ PROC/PROD PROC/PROD 2
(N . P > > < = B4
ﬂ"ﬂ; #M /“1 ﬂ; E QUAL / QUANT QUANT QUAL/QUANT é
i M«t‘ / / =8 CRITICALITY CRITICALITY CRITICALITY CRMCALITY ©
/ # me ’;ﬂ‘ = PROC/ PROC/PROD PROC/PROD PROC/PROD 5

‘ W

INTERFACES | OPTIMIZATION

=
NS N
<\
N

/ J PROC PROO PROC PROC PROC PROD PROC PROD
W UL~ AN T DUkl AT UL~ AT
| CRITICALI T CRITICALITY CARIIICALITY
ﬁ ’ PROC PROO PROC PROD PROC PROD
4 — i
CRITICALITY CRITICALITY
RO PROD PROC PROD Pty
UL~ UANT UL~ AN T
rROC PROD PROC PROD
RESOURCES (Regeneration) BEHAVIOR

Figure 124. Relationship across evolutive design drivers from a geometry, behavior, and substance standpoint.

These multiple drivers are organized across the three upper faces of the evolutive design tetrahedron, representing
geometry, behavior, and substance. Among them we could see internal relationships summarized in Figure 124. These
relationships within an evolutive architecture are not fixed and they should be understood under both statistical and ad-hoc
perspectives following the continuous nature of this approach. These graphics shows the relationship between them. The
arrow shows if the relationship is bidirectional or mainly one way, and the point from the main driver to the subject driver.
The reading order is from right to left. The relationship could be only quantifiable (quant), qualifiable (qual), or both (qual /
quant). The criticality of such relationship could be low (purple), medium (orange), or high (red). These initial relationships
among design drivers should be considered as adaptable tools to help the development process, and most importantly to
enable better system solutions from a holistic, feasible, detailed, and evolutive perspectives.

146

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

4.5. Complexity as Integration

As previous sections have elaborated, an evolutive system architecture presents three major principles addressing
context, design, and environmental stressors which are adaptability, reactivity, and regeneration as previous sections
elaborated. While these have multiple design drivers connecting them at multiple levels, they also provide a three-
dimensional coordinate system for complexity in the context of both evolutive and complex systems. Under that reference,
complexity could be understood as the integration of all three providing a map towards design objectives and methodologies,
as well as a performance measurement towards comparisons. Figure 125 exemplifies this reference system presenting two
extremes from the worst to the best evolutive system where A is an unadaptable, passive, and depleting system, and B is a
highly evolutive, reactive, and regenerative system. The curve between both extremes exists within a 3D surface created by
all possible solutions. This curve or line represents the inherent complexity of the system and a direction for a system
evolutive optimization. For instance, a solid and passive brick could require large amount of energy to be manufactured,
with very low-tech, and a limited adaptability beyond its spatial positioning. On the other extreme, we could envision a
multifunctional construction block with many configuration options that manages air and hygroscopic flow, uses recyclable
materials with very low energy consumption, reduces mass, and collects solar power through integrated external photovoltaic
cells. Both are valid solutions, but how to make the second a more capable solution that is easier to design, implement, and
manage is the objective of this research.

Evolutive
More |4 eactive
era
A ction egtt'-zne,-at“,e
Stem
Architecture B
2 o »©®
5 Wote ¥
E | P
8l 7T
More o et
Resources Depletlng
Unadaptap
ass“,e T e =
®Pleting T Less
ystem e r“hesomrces
Architectyrg .o+

Less I

eracﬁon

Figure 125. Evolutive three dimensional reference framework with adaptability, reactivity, and regeneration as coordinates.

147

Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

4.6. Conclusion

In response to chapter 2, section 4.1 presented new stressors affecting the practice of systems design engineering
in the upcoming decades, and the subsequent needs to manage more complexity in such endeavors. Studying the drivers
behind this new reality, as well as deeply reviewing the state-of-the-art techniques from both engineering design and systems
engineering, there are several gaps that define a new and growing subset of complex systems by themselves. They are: [1]
the relevance of geometry as the common ground between disciplines which condition the capability of the system, [2] the
consideration of fundamental functions or basic ‘behaviors’ of the system at hand that is no longer static or incapable of
adaptations, and [3] the importance of addressing the need and use of all the resources required to produce, use, manage,
and repurpose the system. These gaps not only constrain the system outcome but also the methodology itself. In other
words, new needs required new methods and new standards. This is the starting point of the evolutive approach, addressing
the need of adaptability in the system design, as well as the complementary and evolutionary nature of nature-inspired
methods that help these challenges from a fast-paced, data-driven, self-organized, and multidisciplinary approach.

These points are often found and combined throughout the intuition and gut feeling of talented architects and chief
engineers across multiple technical and artistic fields. Thus, this research aims to create a baseline approach to explore the
full potential of such approaches to enable quantification, qualification, and more importantly optimization of new
architectures, especially those hardware-based ones without heritage or previous generations.

This involves firstly studying first the special nature and characteristics of evolutive system architectures within the
context of complex hardware-based architecture systems, and secondly how to develop a methodology to enable such
system and compensate for current state-of-the-art techniques gaps.

Upon those increasingly present general stressors within scarcity scenarios described in chapter 2, and gaps in
design methodologies the evolutive approach presents three constitutive keystones of basic principles: adaptability,
reactivity, and regeneration. These were described in detail in section 4.2. They both characterize evolutive system
architectures while also providing the foundation towards the subsequent design methodology. These keystones are
intertwined (section 4.4) through a series of synergetic design drivers that map the full cycle of systems capable of reacting
and adapting to any changes within their context and among components. These were described and grouped in section 4.3
around those three main principles. Furthermore, these drivers also address the use and management of all resources
across all the design phases and lifecycle of the system. While this will be developed more in detailed in chapter 5, section
4.4 graphically presents in detail relationships across these drives within a three-dimensional reference system. Such a
reference system is based on measuring functions, the use of resources, and interactions of the systems, in response to the
three evolutive keystones, as well as those three areas describing any general system within this context: geometry, behavior
and substance. Evolutive system architectures are physical, digital, virtual, or a combination of all of them. In essence they
are highly adaptable, reactive, and sustainable or regenerative systems, as we could find among some robotic, architecture,
aerospace, and organic systems.

In essence, evolutive systems are inspired by nature and they aim towards having the same level of performance,
efficiency, and adaptation. Furthermore, the way this new class of architectures is conceived infuses basic principles proven
through millennia of natural evolution on the planet. Simple but very powerful forces describe both system (product) and
technique (methods) such as: [1] genetic and heritage information driving adaptability and selection, [2] multifunctional
optimized implementations and designs, [3] a continuous approach towards the system always in constant change, [4] the
relevance of the context or environment for the system design including cultural, technical, physical, digital virtual, etc. These

After this introductory description of evolutive system architectures, the following sections will elaborate on this
research regarding techniques and methodologies that enable them (chapter 5), as well as a simplified example (chapter 6)
that showcases both. While a key step in a networked process of development is the design phase, optimization and
implementation phases are intimately related and will also be briefly introduced as perspectives behind this new way of
looking a hardware-based system shadowing the ultimate system design, natural life.

148

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

EVOLUTIVE SYSTEMS DESIGN
Evolutive System Architecture Methodology

CHAPTER §

“Computers are useless. They can only give you answers.”

Pablo Picasso
l‘ RS
s e Bo
: s YW S ot e
< J %/
3 N e &
; : L B e N |
e 4) 7 . e " ‘ - &
4 . ‘ 4 _u‘,. 1 — o
S . , 4 s g { & N
e ¢)
- £
L
o "‘"
|
! i 4
¥ "2‘) T e
4 a1 g P — &
~ » i ‘ L -
"‘.‘ ;_,»' :’ A
VL | \
4 -+ 3 ~ . N ‘
2 £
» ’ > 1 '!
4 s L BN

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

5. Evolutive System Architecture Design Methodology

Evolutive system architectures as described previously in chapter 4 are a subset of complex systems responding to
multiple external design stressors based upon the key principles of adaptability, reactivity, and regeneration. Those
principles are founded on adaptive and evolutionary approaches, and they map some key gaps in current state-of-the-art
systems engineering and system design techniques. In essence, the tool conditions the outcome and the way to tackle a
challenge. However, to make the most of those gaps (sections 3.4, and 4.1), as well as to provide a more efficient way to
develop evolutive architectures, a subsequent methodology needs to be created. This chapter will present an approach
towards such a process developed within this research, the evolutive system architecture design (eSARD).

This method is neither closed nor rigid. It introduces a foundational path that could and should be expanded and
tuned for any especial needs required by designers, teams, machines, workflows, sectors, and industrial fields, among many
others. Thus, an evolutive design approach should be applicable to any system design architecture development,
independently from the field of application. This method presents the following general and interrelated goals:

o To develop an effective design engineering method that delivers mature evolutive system architectures without
heritage, covers the full design lifecycle, optimizes time and resources, and enables the possibility for quantum-leap
solutions. In other words, it aims at a leaner way for ground-breaking solutions with no heritage.

o To draft the foundation for a SE system approach that serves also as design methodology (DSE), and towards
further infusions of computer-aid methodologies enhanced by data-driven methods (e.g., Al workflows).

o To also create the foundation for an organizational and managerial scheme, serving both DE and SE approaches
to handle schedule, resources, and workforce, as well as any required technology and machine support.

The next sections will present in detail the development of this method through its objectives, principles, foundation,
workflows, tools, and environments. However, this research is concentrated on the design and systems engineering
foundational part. Thus, it only presents basic pointers towards the optimization and implementation aspects of SE
applications, and other organizational and managerial portions within the full evolutive methodology ecosystem.

5.1. Applied Evolutionary Process

While the universe tends towards chaos (increasing entropy), natural evolution tends towards a greater self-order
(decreasing entropy). Therefore in that process evolution increases and manages complexity (Brooks et al., 1988). Under
this perspective, a living organism could be understood as a complex system architecture. As such, it is a member of a
species, so it is part of a continuous series of similar architectures (Figure 126) as section 3.3 presented. Its adaptation is
provided by a range of mechanisms leading to the survivability of such system, and it includes genetic changes that provide
advantages (and disadvantages) against changes, development
aspects, and external environmental factors.

Those evolutionary changes are based on proven solutions, in
the sense that any previous generation was capable of reproduction
up to that point. So, a heritage solution is a proven solution that paves
the ground for a new generation. But this parental base also enables
modifications in the offspring capable of developing quantum leaps in
terms of adaptability from an evolutive standpoint (Gennaro et al.,
2011). This is also a key hypothesis for an evolutive approach as
previous chapters presented (section 4.1), which following nature
enables something new based upon validated solutions and paves the
way towards reaching much better system performances organically.
This has been developed in algorithmic and data science methods for B ol e
dynamic systems (Dempsey et al., 2009) , complex systems
engineering (Braha et al., 2006), self-organization methodologies Figure 126. Species characteristics. Engraving in ‘Voyage
(Vijver et al., 2013b) and optimization techniques (Zhang and of the Beagle (Darwin, 1845).

Sanderson, 2009), such as differential evolution (DE).

&
A
‘E
Geos
Cert

4.

iz is.
hidea oliva

150

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

However, natural biological evolution is also about ‘hardware’ since the end process is a physical biological system.
There have been several applications of evolutionary computing methodologies to new manufacturing techniques, such as
fabrication of advanced FPGA (Fernandez et al., 2004) and topology optimized geometries (Chen and Hwang, 2009), among
many more as presented in section 3.3. Nevertheless, most evolutionary methodologies are applied to the systems
engineering side of a product design such as form assessment (Shieh et al., 2018), structure optimization (Ma et al., 2020),
and control development systems engineering (Yan et al., 2011). However, these techniques always concentrate on specific
SE or manufacturing aspects, highlighting an application gap towards a more system-level and holistic thinking towards
complex system architectures. Similar multidisciplinary approaches are used in the architecture practice.

The evolutive methodology addresses that gap. It starts developing a foundational workflow towards a system-level
thinking that considers the full cycle (design-implementation-operations) of a complex multidisciplinary architecture
development, while being agnostic of tools, modeling techniques, and fields of application. Design principles, methodology
steps, and overall phases are defined in the coming paragraphs and chapters through process definition and practical
examples. Evolutive methodology is a system design engineering (DSE) approach born from an evolutionary methodology,
adaptive principles, and architecture design mindset.

Within the broad spectrum of tools developed over the last decades with advancements in computer science, there
is an area of special interest in software development, intelligent design (ID) and evolutionary computation (Ford et al., 2017).
Instead of assuming that a preconceived code would address all possible scenarios, evolutive algorithmic techniques allow
for the code to change and evolve, similarly to Nature’s genetic evolution. An evolutionary approach assumes constant
change, and with an integrated evaluation scheme, concepts, and solutions can be evolved or optimized (EO). Suddenly
there are more than one valid solution, however this comes with the cost of a much more interrelated workflow, and the
requirement of a much deeper knowledge of such algorithmic developments (Hingston et al., 2008). In essence, more
flexibility in the process comes with more management challenges. However, the current software development ecosystem
worldwide makes coding efforts a lot easier than decades ago. The same approach applies towards the study of complex
adaptive systems (CAS) and self-organization (Georgiev et al., 2019) across many technical and scientific fields.

But what happens if such an evolutionary approach is applied towards hardware-based and software-enhanced
system architecture designs? What kind of process would enable and streamline evolutive designs? Such process should
address design engineering as well as systems engineering topics from an evolutionary engineering approach (Norman and
Kuras on Braha et al., 2006), applying adaptive principles as described in section 4.1 to an open development process. This
process would aim at complex systems, and especially at those in need of modernizing their design or requiring the infusion
of new technologies. Complexity brings failures, delays, and budget overruns, among others because of the inherent nature
of both such systems, but also because of the complexity of the multiple development processes required in that endeavor.

Under an applied evolutionary approach, rather than dividing a complex overarching system into smaller and
manageable subsystems, the goal would be to improve the efficiency of the process by looking at the system holistically.
The next step in such a process would be to address the design of the hardware-based architecture itself, even if it is the
first of a kind and its requirements go beyond anything produced before. A design path that includes and combines
implementation and optimization represents a gap in current methodologies as chapter 3 explored, and it is the objective of
this research activity.

Nevertheless, a design project could become a never-ending story. The more complex the challenge becomes, the
more difficult is to define when something is good enough, as experienced, and passionate designers know well. From a
requirements standpoint on the other end it could be easier to assess if thresholds are met or not. However, along the way
the discrete nature of requirements can miss the discovery of critical designs and optimization strategies based on
connections and synergies between them. Nature does indeed manage synergy very well, as the ultimate efficiency tool.

This is especially relevant when the design process tackles something that has never been done before. Deepening
in the design problematic, often reveals hidden connections and synergies that were not explored or known before. However,
a fast process based in synergies could offer a better platform from which to make the most of inevitable iterative design
phases. Certainly, the main characteristics of an evolutive architecture such as adaptability, reactivity, and regeneration are
among those requiring interconnection among design variables and system design, as well changing complexity
management.

151

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

5.2. Design Process Approach

The development of the eSARD approach starts with the evolutive design tetrahedron characterizing the evolutive
architecture system (Figure 127). In addition to other general characteristics for complex systems, evolutive system
architectures present three major characteristic principles or keystones as elaborated in chapter 4. adaptability,
regeneration, and reactivity (ARR). However, those overall principles only describe high level architecture characteristics,
so a design process needs to address all three system descriptive areas, such as geometry, behavior, and substance
(GBS). Finally, as a practical method eSARD also tackles the scale of all design, implementation, and operations (DIO)
system details.

OPERATIONS

SYS. PERFORMANCE (vs passiveness)

44:5.’

(//Ice, 08’/.0-3'

0o ey o
iy, e .
/lr;%’/_t‘es &“Q"Q‘g\\\e PN o

0 S(,\\:'_“ 6\%‘“\\‘;
EVOLUTIVE W e
)

IMPLEMENTATION

RESOURCE EFFICACY (vs cost)

ARCHITECTURE DISRUPTION (vs heritage)
Figure 127. Evolutive design tetrahedron defining key methodology phases such as design, implementation, and operations.

As previous points have introduced, the development of complex systems architectures in the beginning of this
century is conditioned by the potential growing scarcity of resources due to multiple factors and increasing levels of systems
complexity. The balance between needs and resources is currently changing, often demanding the infusion and integration
of new and disruptive toolsets that complement more traditional methods. From the standpoint of a near 4t industrial
revolution (Machado and Davim, 2020) to new human-machine collaborative workflows (Daugherty and Wilson, 2018),
everything points towards a change in the paradigm. Such transitions have been happening at much faster rates in the fields
of software and computer systems than in hardware implementation developments (chapter 3). This is the context of this
system design engineering research, which among others is addressing two critical gaps in the design of complex hardware-
based architectures:

e How can we design more efficiently towards optimization and the implementation of better performance
architectures presenting evolutive characteristics?
o How to tackle the lack of heritage and increasing multidisciplinarity complexity in such processes?

An evolutive system design approach starts with a full-cycle perspective, which tackles design, implementation, and
operations simultaneously to enable higher system performance and more efficient system-level architectures by
building upon synergistic connections among disciplines and subsystems (Figure 128). This evolutive methodology
is especially useful when designing under a significant lack of heritage (first-of-a-kind), time constraints, as well as a broad
spectrum of feasible and yet new subsystems or technologies that must be infused for the first time.

152

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

While chapter 3 identified critical gaps in current state-of-the-art DE and SE techniques, chapter 4 highlighted and
presented in detail the characterization of evolutive architecture systems. Thus, this thesis tackles gaps and characteristics
showcased by those architecture design principles (the what), while it develops a methodology around it (the how). Inspired
by nature design methodology (Kliman, 2016) and the more holistic or multidisciplinary practice of architecture (Jarzombek
and Prakash, 2011), this approach applies proven and even ancient methods to new implementation fields

EVOLUTIVE
< %(
O 4

DESIGN

Figure 128. eSARD evolutive design and systems engineering approach scheme.

From a methods standpoint, this approach applied some aspects of evolutionary systems engineering (Braha et al.,
2006) in computer science to the realm of hardware-based implementations. As such, rather than linear and monodisciplinary
or even parallel methods, this approach has a network-driven scheme, embracing and combining both concurrent and
collaborative engineering practices to the extreme. Furthermore, this methodology is not only about quantifiable
disciplines (e.g., mechanical design) supported by analytic parameters, but also only-qualifiable subjects (e.g., aesthetics)
based on geometrical design, as well as open or changing requirements workflows.

Under this light, an evolutive approach (eSARD) does not concentrate on single point-design solutions. Rather it
tackles the system architecture development from a continuous solution scheme, while addressing further optimization,
implementation (including management), and operations from a geometry, behavioral (functions), and substance
(resources) perspectives (GBS). This is agnostic of both applications and tools, and the approach also aims to infuse
higher levels of adaptability in the methodology itself from both design (geometry) and SE (abstract) perspectives.

From a product, artifact, and system architecture perspective, an evolutive system design process aims in the end to
produce an implementable evolutive system architecture. This presents several complementary characteristics when
compared to more traditional hardware-based systems such as: [1] high system adaptability, [2] an intelligent reactive
baseline, and [3] a regenerative or sustainable resources strategy. From concept to implementation, the evolutive
approach tackles maturity gaps within the system and its parts. Then it builds upon commonalities and synergies among
disciplines, subsystems, and stakeholders. The feasibility and functional capability of the architecture at hand drive the
approach, while always keeping in mind the overall efficiency in terms of resources, agility, and adaptability.

This methodology fills the gaps in currently applied design engineering (Pahl et al., 2007), and systems engineering
(INCOSE, 2020b) techniques for physical and hardware-based systems. In essence, it also enables a novel theoretical
foundation to do better with less as its key design philosophy principle. Hence, the development of this process is based
upon: [1] extensive literature reviews, [2] research, prototyping, and hands-on activity, and finally [3] several decades of
validated professional experience as an architect and system architect across multiple industrial fields worldwide, including
almost a decade of practice at the NASA Jet Propulsion Laboratory developing complex system architectures. Nevertheless,
this approach is developed from a fundamental research perspective, so it is completely agnostic of tools, the field of
applications, and any specific technology. In summary this aims to be a universal approach towards system design (DSE).

153

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

EVOLUTIVE

ADAPTABLE

Multiple interfaces
Multiple materials

Many operating conditions

REACTIVE

Active, smart

Hardware + Software
Synergy with car systems

REGENERATIVE
Sustainable manufacturing
Recyclability

Self sustained

Figure 129. Examples of eSARD approach applied to an add-on component for an existing car design.

The development of an external add-on part for the body of an existing car design could be a good example of this
approach. For instance, this could be for instance a luggage support add-on for the trunk (Figure 129). The part itself does
not have much heritage since is quite unique and not a part of the original design. However, it requires to increase its
performance when compared to previous solutions due to increases in speed tolerance, comfort standards, and
environmental protection. Furthermore, an evolutive approach applied to this problem would consider the following points:

o Adaptability (geometry). The component should adapt to different driving parameters, environmental conditions, and
mechanical interfaces passively. Multiple finishing and material options would be part of the trade space.

o Reactivity (behavior). This aspect could enable lighting and active aerodynamical control. It should also be trackable
with GPS if gets lost, stolen, or falls off the car. Thus, batteries, sensors, and active components are integrated.

o Regeneration (substance). Both manufacturing and system complete lifecycle should fully sustainable.

The company developing this part could only be interested in addressing requirements for a specific model. However,
when an evolutive approach is applied, both designer and design workflow should adapt for more. Thus, rather than its
design being solely applicable to a single case, it is done considering many other likely or feasible possible constraints to
find more synergetic and optimized solutions. It is not about over-constraining; it is about stressing towards a better solution.

5.3. ARR Development Areas

An eSARD process tackles all three ARR areas (adaptability, reactivity, and ARCHITECTURE DESING
regeneration) from a networked perspective by addressing in detail design, ,y.q . =
implementation, and operations (DIO) of any system, as Figure 130 shows. o° 2

.] o =<

The following sections will elaborate the overall design approach of this = » . =
methodology, which is the main objective of this research. Furthermore, sections = =« - 2
5.3.2 and 5.3.3 present the general perspectives for complementary optimization and E ." ; i
implementation efforts (including management) that are also required. These 3) E
considerations happen concurrently to the design activity, and as soon as possible EVOLUTIVE =
in the process. However, the complexity and depth required for their full development
will be part of future research activities and publications. All these aspects have been
researched and tested by the author on different professional practices. Figure 130. eSARD networked process.

154

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

5.3.1. eSARD System Design (Geometry)

A critical node within the eSARD evolutive design process is to

create an initial reference system or seed architecture, so an iterative and — i .

. . Behavior \
concurrent design process can be developed around it. In the case of \
hardware-based system architectures, that seed system description also
includes a descriptive geometry, or in other words a volumetric, // X
morphological, and conceptual description. Such a geometrical definition L == Qsz%"f‘j”j”
often starts with a sketch and evolves to a fully detailed CAD/CAM model / -

including parametrized design variables, and sensitivity studies, and among
other aspects an applied e-design paradigm (Chang, 2015).

However, in this continuous evolutive process such drawings or
models are not static since they constantly change both conceptually and
functionally. Regardless the tool being used, in the mind of the designer and
at the core of workflow this representation should be considered more of an
animated cartoon or a video, rather than a static picture or CAD model.
Thus, such conceptual representation is always a snapshot in time which
gradually gains more details and definitions of key data points from other
activity nodes in the design network such as optimization and
implementation (Figure 131). This design seed will always change.

There is not a beginning or end within this approach since a complete
system architecture requires all nodes to be defined enough to be complete
and feasible. The design process conceptually never ends, and it is meant
to be capable of continuing. However, such a process considers the
evolution and adaptability of the system, therefore its behavior and
implementation are also areas for optimization, scalability, and
upgradeability even if they are not initial requirements. This design
development process presents several key features such as:

e Fast. By default, this is a fast-paced process to make an efficient use eSARD
of time and other valuable resources, as well as to improve easiness.
o Easy. This process should enable seamless synergistic efforts System Design (Geometry)
among disciplines, workforce, infrastructure, and schedules
considering multiple phases in the lifecycle (including prototyping).
o Disruptive. The ultimate goal of eSARD processes is to go beyond _ o
previous solutions performance and capabilities (if they exist). :ie:"/flgi;ee”éiiizz Zéi‘;giigﬁ;algce within
e Stressing. It is critical in this approach to stress the design process © 2021 Raul Polit Casillas '
by scouting connections among initial requirements and disciplines,
while considering other complementary ones across phases.

The geometrical aspect does not necessarily mean the system needs to be physical. Logical and non-geometrical
systems (e.g., software-based) can be addressed within this approach as well. In that case, geometry refers to the
conceptualization and logical structure of the system. For instance this could be a system model diagram (Friedenthal et al.,
2008) such as data flow, which offers a non-geometrical view of the model created for a system. This initial seed geometrical
design (Figure 131) will continue through a process of refinement and detailing, which addresses other foundational aspects
related to the behavior and implementation of the system. In other words, we need to know what we draw/model and why.

In a networked process, this all happens concurrently, so all methods should be allowed to explore, capture, and
share any knowledge or experience. This aspect is critical as enabling a good communication among all actors in the
process, human or otherwise, leads to faster, better, and more efficient efforts in creating this seed geometry.

Substance

Figure 131.System architecture geometrical

155

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

5.3.1.1.

There are multiple inputs required for this design node within an eSARD process. Table 22 presents a summary of
inputs, processes, and outputs. Among some of the principal inputs are the following:

o Requirements. These could be only quantifiable, qualifiable, or both. They could also be open in nature (e.g., as
light weight as possible) or closed (specific value). While there are key design requirements a system architecture
design must meet, there are also priorities based on importance and criticality. Thus, requirements could be essential,
or desirable, and it is critical for the design process to study and strategize them accordingly. Furthermore, an eSARD
process will developed secondary requirements during the process to stress the design, to better explore the trade
space of options better, and to address complementary implementation and operations needs that might not be
foreseen or included at the start.

o Constraints. These limit the design process unless countermeasures can be taken. They include limitations from the
standpoint of product, process, and operations. Their nature varies and includes topics such as design, interfaces,
assembly, heritage, culture, manufacturing, budget, schedule, and maturity needs, among many other limitations.

o Drivers. These are not really an input per se, but rather inherent characteristics of the design process that could
influence both designers and workflows. Some of the most relevant were described in section 4.3 (system) and will
be elaborated further in sections 5.4 and 5.5.

Inputs

5.3.1.2. Processes

This design process will be developed in detail in the following sections. From section 5.7 and on, all details regarding
phases, steps, and techniques used within this research will be laid out. Chapter 6 presents a simplified example as well.

5.3.1.3. Outputs

The product of this initial process is a system architecture seed, a fundamental geometrical and system definition of
the system being developed. This [1] addresses the most important gaps at both system and subsystem levels, [2] considers
design, implementation, and operations, and finally [3] becomes the foundation for subsequent iterative cycles to bring more
details and evaluate alternatives. Such an evolutive seed not only entails a system visualization but also capturing all
associated knowledge used to identify architecture maturity gaps (AMGs) and develop systems engineering modeling. These
will be elaborated in detail in section 5.9. These outputs could then be digital, virtual, physical, and data based.

Exploring any design challenge at hand through a series of facilitated questions allows one to identify hidden
relationships between subsystems and discipline requirements. AMGs are the most critical of the key relationships defining
both feasibility and system performance. Upon such gaps, the design (geometry) and system modeling (abstract) processes
develop the foundation for further cycles that will increase the maturity and complete the system design. Following points
will elaborate and exemplified this phase in the evolutive methodology that is summarized in the following table.

INPUTS Description PROCESSES Description OUTPUTS

ARR Drivers

Driving Process / Product

Adaptability-driven (design)

Reactivity-driven (system)

Regeneration-driven (resources)

Requirements

Driving product

Quantifiable, qualifiable, both

Primary (client-driven)

Secondary (eSARD-driven)

Constraints

Multiple types

Product outcome, design process,
operations

e eADQN, eAMG, eASG
o Geometry sketches &
refinement processes
o Volumetry & packaging

o System definition

o Rapid analysis

o SE modeling

o DE modeling

o Styling & customization
o PR modeling

o Feasibility

o CAD/FEA/CAM/BIM

o Rapid prototyping

o Visualization

Digital, physical, virtual

Geometry

Diagrams, sketches, 3D
models, 4D models

Digital, logical

Systems Description

Logical, digital

Basic Analysis

Logical

New requirements

Digital, physical, virtual

Interfaces

Digital, physical, virtual

Styles

Logical

Equipment lists

Digital, physical, virtual

Visualizations

Digital, physical, virtual

Rapid Prototypes

Table 22. eSARD system design development inputs, process, and outputs.

156

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

5.3.2. eSARD Operative Optimization (Behavior)

Understanding design needs and the complexity behind the system
architecture leads to a feasible design path and an evolutive seed Beameiry eSARD
geometry. However, this is not enough to complete the maturation of such
system. Behavioral considerations are also key complement, becoming
the base for the second node within this process, operative optimization
(Figure 132). Although this process might not start necessarily by creating
a geometry, this helps as an initial input in the process. System behavior
aspects are maturity gaps being addressed within this node. Like in any
other system architecture, (Pollio, 2018) geometry (design), behavior
(performance), and substance (resources) are both related and needed.
This operative node depends heavily on the reactivity of the system, and
it is more prone towards systems engineering and analysis within the
development process while addressing two main areas such as:

System Modeling

Optimization

e Operations. Any system is designed to be used and operated
affecting every aspect from system performance to supply chain
(Mahadevan, 2010). Understanding operational needs and bring
them upfront in the design process (networked workflow) is critical
for an evolutive system architecture that addresses the
sustainability of resources, the system adaptability, and other
subsequent smart management topics. This area includes among
other ops-con studies, system functional behaviors, prototyping,
functional analysis, model refinement and analysis, etc.

e Optimization. The operative side of a system development, as
well as its multidisciplinarity requirements bring the need to
optimize such system architecture from that perspective. This
optimization can happen at many levels such as discreet (e.g.,
topology optimization to lightweight an structure), multi-objective
(Abraham et al., 2005), and multi-criterion (Takahashi et al., 2011)
using evolutionary data science techniques. Within this node,
optimization parameters are driven by system operations, which Operative Optimization (Behavior)
include all behaviors and functions the system architecture is
capable to perform. Thus, this activity is based on the system
design, adaptability, resources management (regeneration).

As previously described in section 5.3.1 the foundation of this operations node within an eSARD process presents a
series of basic inputs, processes, and outputs. The following sections briefly develop all these areas.

5.3.2.1. Inputs

Inputs for this operational node come bidirectionally from both design and implementation activities within an eSARD
process. All three are needed almost in all cases, so no input is more important than the other. Such inputs evolve and get
more defined along the maturation process. Therefore, these are some of the most critical inputs in this phase:

o Systems behavior and performance requirements (ARR). These include descriptions, variables, models, and
measurements related to areas such as, system performance levels, scenario characteristic, autonomy requirements,
interactivity, environmental constraints, performance curves, validation codes, protocols, regulatory limitations, etc.

e Overall behavior constraints. Among others these include power limitations, software restrictions, coding
limitations, heritage, culture constraints, translation limitations, sensor capability, onboard computing, etc.

o General eSAR architecture design and eSARD process drivers. See section 4.3, 4.4, 5.4, and 5.5.

Prototyping

Validation

Substance

Figure 132. Operative optimization design node
within the evolutive design methodology.

157

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

5.3.2.2. Processes

Following a similar approach to the design node, the operative optimization node requires a series of
interconnected steps and products, which are linked to both design and implementation activities. These steps integrate
critical areas such as system behaviors, operations, and ARR aspects. These include among others the following:

o System and Operations Modeling. The seed geometry within an evolutive architecture represents and includes all
volumes, interfaces, styles, and adaptability considerations. The concept of adaptability is directly connected to the
reaction of the system, which requires the modeling of complementary systems reflecting non-geometrical
characteristics such as behavioral ops-con, structural analysis, analytic requirements, and parametrics, among many
more. Such system modeling can be done using multiple tools and methods (e.g., SysML™, UML, manual diagrams,
etc.). However, under an evolutive paradigm this process will continuously be changing based on the feedback from
both design and implementation nodes. Furthermore, this evolutive design seed model is centered in synergetic
connections across requirements, subsystems, and disciplinary analysis, which are also multidisciplinary in nature.
The more gaps are studied and connected; the better modeling of the system can be done. This point includes key
operational areas such as autonomy, data architecture, sensor architectures, ops-con studies, regulations, coding,
and programing considerations, among others. So, from this perspective, a network approach can make a difference
connecting cross-cutting areas across the lifecycle. Connection between design and operations become crucial
affecting requirements, configuration, interfaces, design, analysis, verification, risk management, optimization,
manufacturing, testing, integration, data and knowledge management, planning, reutilization, and decommission.

e Optimization. Once key primary requirements have been studied, and secondary requirements identified,
subsequent design iterations can explore feasible design strategies, where both geometry and systems behavior are
defined properly. This is critical towards improving system performance and assessing solutions beyond existing
heritage. This is also the starting point for an optimization process that will continue during the evolutive process.
Such process is directly linked to an initial analysis and evaluation of the system activity within its context. There are
two objectives within this step: [1] to find better and more optimum solutions that consider key synergetic connections
highlighted by the eSARD process, and [2] to provide an assessment of the system performance and closeness. If a
system is fully defined by an initial and feasible solution assessing all ARR areas, it can be evaluated and redone.

o Prototyping. There are aspects of a system architecture, especially when complexity is high, that cannot be modelled
or predicted. Thus, prototyping is as critical as other system functional demonstrations such as behaviors,
interactions, and other complex functional topics. This is not only a concurrent tool towards the validation of the
system, but also a design tool to discover critical maturation gaps that are not possible to identify otherwise.
Prototyping under this approach also becomes a quality control tool for the whole process affecting design,
operations, and management. This activity can be physical (e.g., 3d printing, bread boards, COTS - Macdonald et
al., 2014), virtual (e.g., computer simulations - Cooper, 2001), behavioral (e.g., user study case), or a hybrid of them.

o Validation. The system operational approach and related design paths are continuously detailed and assessed upon
the optimization and development process. As a continuation of all prototyping activities, this step has multiple
implementation paths. Assessing the validation of the system not only considers subsystem feasibility and other
general assumptions, but its whole from a design, operative, and implementation standpoints. Maturity levels are then
used to assess system completeness, similarly to aerospace concept maturity levels (CML, Wessen et al., 2013) and
technology readiness levels (TRL, NASA, 2016). However, within an eSARD approach, this point also addresses
other critical areas across the system lifecycle that are linked to both design and implementation topics.

5.3.2.3. Outputs

Within such networked and concurrent eSARD process, all outputs of the operative node are interconnected with
other areas of the process. Furthermore, data coming from instrumented real systems is integrated to optimize future outputs
and system optimizations under some design trends. In essence, future systems design and operational optimizations are
data-based. New tools such as physics based visualizations (Plowman, 2019) are also changing the way operations and
system behaviors can be studied. Table 23 presents a summary including inputs, processes, and outputs for this critical
eSARD node that tackles basically all system functional behaviors and optimizations.

158

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

INPUTS
ARR Drivers

Description
Driving process / Product

~ PROCESSES

Reactivity-driven (system)

Adaptability-driven (design)

Regeneration-driven (resources)

e eADQN, eAMG, eASG

Requirements

Driving product

o eASMs

System behavior-driven

o Operation analysis
e Ops-con

Ops-con-driven

o Ops. architecture
o System definition

Regulatory / culture-driven

o Analysis

Primary (client-driven)

o Simulations

Description
Digital, logical, virtual

OUTPUTS
Sys. Behavior

Diagrams, timetables...

Digital, physical, virtual

Ops. Architecture

Logical

Data Architecture

Digital, physical, virtual

Ops. Visualizations

Digital, logical, physical,
virtual

Functional prototypes

Digital, logical, virtual

Virtual studies

Secondary (€SARD-driven) e Functional prototyping

e Process visualization

Constraint
onstraints « Others

Multiple types, limiting:

System functions
Heritage / culture
Design process
Operational architecture

Table 23. eSARD operative optimization development inputs, process, and outputs.

5.3.3. eSARD Implementation (Substance)

Designing, optimizing, and prototyping is not enough for a complete
system architecture design. Thus, the implementation of the system is part of
an eSARD approach. This design node is directly related to the regeneration
principle pointing towards the use and management of resources (substance).
Thus, it entails materialization, manufacturing, resource management, and
resource optimization including recycling, repurposing, and regeneration (see
Figure 133). The evolutive approach towards systems engineering tackles both
method and products, thus it considers system feasibility and resources
management of (e.g., workforce, time, tools, etc.) towards implementation,
operations, and design of the system. It also includes managerial and
programmatic aspects, which are also required to set up an evolutive design
workflows and obtain evolutive system architecture designs more efficiently.
This implementation node (Figure 130) goes beyond fabrication and includes
systems integration and delivery as well. The objective of defining, designing,
analyzing, and modeling a system has been already addressed on previous
chapters, however implementing such system architecture, and managing all
required resources must be part of the development process too. Therefore,
this concurrent part of the method is about the substance of the system, a
concept that includes materials, workforce, coding, computing power, energy,
and other natural, human, and technical resources. Hence, this is about
managing, optimizing, and improving the use of those resources [1] across the
system lifecycle, [2] its development process, and [3] all system operations
within organizations (new, seasoned, or virtual), teams, and professionals.

This node is especially important when resource scarcity, system
performance, and heritage are key design stressors for the evolutive system
architecture. This effort is also critical when the need of a quantum leap from
any previous heritage solution forces to rethink the approach affecting all the
way to how the manufacturing of the system is done (Leondes, 2019).

Manufacturing Materialization

Resources Mgt.

Reuse / Recycling

Behavior

Implementation (Substance)

Figure 133. Implementation node within the
evolutive system design methodology.

159

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

5.3.3.1. Inputs

The outputs of the design and operative nodes are the inputs for this node. These also include all relevant information
regarding resource utilization, optimization, management, utilization, and implementation techniques (e.g., building,
manufacturing, programming, coding, fabrication, etc.) regardless of their human-driven or machine-driven nature.

5.3.3.2. Processes

Multiple interconnected steps and fields are part of this evolutive node tackling adaptability, reactivity, and especially
resource regeneration and management (ARR). Among others these processes include the following:

o Materialization. Implementing a physical system requires materials, the same way an algorithm-based system needs
coding and data. Hence, this point refers to all resources required to turn a system architecture into a physical, logical,
or virtual reality. The selection of the right substance is critical and influences manufacturing feasibility, as well as
energy assessment, thermal properties, design effort, and analysis, among many more. Similarly, the selection of
coding languages and data architectures directly affects cost, schedule, service (workforce), speed, etc.

¢ Manufacturing. If system design and materialization are defined, the next step in the use of those resources is to
fabricate, manufacture, build, integrate, produce, code, and release such system architecture. This presents huge
implications affecting workforce (Waldeck, 2014), cost, schedule, automation constraints (Wang et al., 2016),
technology infusion, and system integration. The increasing infusion of disruptive techniques, such as additive
manufacturing (Killi, 2017) is a good example, since their use can greatly conditioned both system design and
optimization. Just like material and code aspects, the infusion of manufacturing constraints, requirements, and options
from the very beginning not only presents a huge advantage for a concurrent cost, risk, and delivery schedule
assessments, but also for future system upgrades and developments as part of family of solutions (species). For
instance, once the design of a high-performance window is done, this step will ensure that future modifications can
easily be implemented, allowing the repurpose of work and thus lowering the cost. On the other hand, if new
manufacturing capabilities are available, it would also be easier to reassess the system architecture accordingly.

o Resources management refers to multiple managerial aspects regarding the use of resources during the design,
operations, and implementation of the system. For instance, assessing a system implementation from an energy
standpoint evaluates the energy: [1] required for system operations, [2] used to produce the system, and [3] utilized
to design and optimize the system (e.g., computing power and workforce). This step is directly related to the 3C
framework created for this networked activity and is critical towards introducing this methodology in any organization.
Both traditional frameworks that are more driven by heritage (slow pace) and innovative clusters being developed
along the way (fast pace) could use this methodology if done properly. The management of resources is a
foundational characteristic of an evolutive regenerative architecture development.

o Sustainability (reuse / replenishment / recycling / decommission). Finally, as a close-cycle economy effort, the
evolutive approach tackles the sustainability of a system architecture within its context, as well as other related design
methodology efforts. This area is connected to the regenerative evolutive principle within the ARR approach. This is
especially relevant under current tendencies of product and service-driven systems (Ceschin, 2013) that require more
innovative solutions faster, while influencing their corporate organizations in the process (Kao, 2010). Here several
areas are tackled simultaneously including energy, natural resources, environmental footprints, workforce
capabilities, knowledge management, data management, system repurposing, and recycling strategy, among many
more. In essence, this step is organized in three large areas affecting both systems and processes, such as [1]
reusing or repurposing systems, components, and work efforts, [2] replenishing directly or indirectly all used resources
by the system, [3] recycling resources, system components, and data, and lastly [3] full system decommission.
Certainly, these topics also relate to the operative side of the system, affecting its optimization across its lifecycle.

5.3.3.3. Outputs

This phase presents multiple outputs that require further development. In general, these serve as inputs for other
nodes while they tackle all key implementation areas of physical, logical, digital, and virtual systems including trade studies,
utilization schemes, implementation plans, tests procedures, cost studies, and organizational schemes, among many more.

160

Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas

The products of this node could be organized across design, development, and system operations around these areas:

o Using resources. This includes all necessary products and processes managing the implementing of a system, such
as material studies, manufacturing studies, equipment trade-offs, programming schedules, etc.
o Managing resources. These include products related to all system operations aspects.
o Regenerating resources. From system recycling studies to replenishing resources, these products tackle the full
spectrum of analysis, schemes, and design to achieve feasible regenerative and sustainable systems.
Table 23 presents a summary of some inputs, process tools, and output products of this node. The goal is not
necessarily to create a full development plan, but to enable a good system design that considers key characteristics for its
future development, mass production, or even one-off production implementation plans.

INPUTS Description PROCESSES Description OUTPUTS
ARR Drivers Driving process / Product o ¢ADQN, eAMG, eASG, Digital, physical, logical Resource schemes
Regeneration-driven (resources) eASMs _ Digital, physical, logical Mfg. Schemes
Reactivity-driven (system) : SE 2232::29 Digital, physical Mfg. Tests
Adaptability-driven (design) o Feasibility e Digital, physical, logical Dev. Schemes
Requirements Driving product / Process o Trade studies Digital, physical Dev. Tests
Quantifiable, qualifiable, both o Analysis Digital, physical, logical Org. Schemes
Primary (client-driven) e Simulations Logical Cost analysis
Secondary (eSARD-driven) * CAM
: ; — o Coding / Development
Constraints Multiple types, limiting: « Prototyping
Mfg. Techniques o Sustainability studies
Digital technologies « Recycling studies
Resource availability o Others

Table 24. eSARD implementation and resource utilization optimization (substance).

5.3.4. eSARD Overall Foundations and Uniqueness for ARR

This method tackles many especial design characteristics of evolutive systems (ARR) from a holistic and concurrent
approach. Thus, eSARD builds upon other DE, SE, and evolutionary techniques altogether, as Table 25 shows. The evolutive
standpoint rises from [1] acknowledging a series of environment conditions and needs for this subset of complex system
architectures, and [2] the inspiration of natural evolution mechanism applied to complex engineering design and systems
engineering efforts. Therefore, the process associated to the development of these architectures (eSAR) shares those
foundational points and builds upon the gaps (section 3.4 and 4.1) and strengths (chapter 3) of state-of-the-art design
engineering and systems engineering practices. Furthermore, it also includes unique features and modifications developed
during the research activity in support this thesis and an easier applied practice of the method.

Table 25 presents an organized summary of these inputs for a technique capable of addressing multiple ARR needs.
However, this classification is not rigid, and these foundational inputs and comparisons are based on the extensive literature
review in chapter 3. All these techniques have important impacts across all eSARD phases. They are organized in two areas:
[1] those already present in other methods or with a very similar implementation (red) and [2] those unique to eSARD
processes (purple). However, these two groups can present multiple connections among them. The ARR classification also
relates to the influence of the method over all DOI sectors (design, operations, and implementation).

Technique Domain Class Foundational for eSARD / to eSARD References
Vitruvius's