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Abstract 
Human activity on Earth has been driven by the need to innovate towards the next level. Survival needs, competitive 

advantage, and intellectual curiosity, among others, have incentivized us to go beyond, and often against the everlasting 
hassle of finding resources or support. Around the second decade of the century, complexity, heritage, and resource scarcity 
among others, are increasingly influencing hardware-based complex architectures in terms of design, optimization, and 
implementation. Based upon critical synergies among domains such as systems engineering, architecture, and engineering 
design this thesis presents results, approaches, and contributions towards a novel system design methodology.  

Nowadays, complex hardware-based systems such as cars, computers, robotic systems, virtual platforms, smart 
buildings, and other electro-mechanical devices show a growing need for quantum-leaps in terms of system performance, 
which are often beyond the limits of any existing heritage. For instance, consumer products have become more sophisticated 
by the day, requiring a better integration of hardware and software, as well as other social and cultural requirements to be 
competitive. Purely mechanical systems a few decades ago, like an automobile, today include hundreds of thousands of 
lines of code and showcase other disruptive manufacturing techniques (e.g., additive manufacturing) to deliver better quality, 
cheaper complexity, and easier customization at a lower price. However, beyond the competitiveness of a product within 
markets worldwide, the demand for better system performance (e.g., sustainable houses consuming less energy), and 
system adaptability (e.g., modular systems) is a growing trend partially based on the infusion of data-driven capabilities such 
as processes, product characteristics, or operational schemes. Namely, telecommunication businesses nowadays are no 
longer just about transmitting data over large distances, since they need to involve social trends, subsystems connectivity, 
and user experiences as well. In essence, such inherent new complexity is assumed in this research as a multidisciplinary 
networked reality rather than a unidimensional challenge, because our world is getting much more complex very fast, so our 
design methods must evolve in parallel as well.  

At the same time, we are entering a whole new phase in terms of resource availability due to climate uncertainty and 
population growth, as well as other socioeconomic factors. Therefore, the balance between the need for complexity and the 
availability of resources (e.g., energy, workforce, building materials, etc.) is entering a new paradigm, which is the starting 
point for this research. Regardless the field of work (e.g., architecture, car-making, finance, product design, medicine, 
aerospace, etc.) the need to go beyond in terms of system performance, novelty, efficiency, uniqueness, and adaptability is 
becoming a major force in the design of any complex technical endeavor. Markets, customers, and requirements will keep 
demanding more of any system architecture, affecting ‘what’ they are as a system (artifact), and ‘how’ they are being 
developed (method) across all multiple development phases such as: design, optimization, prototyping, implementation, 
management, and sustainability. Thus, considering heritage constraints and resource scarcity, how could we achieve much 
better levels of system performance and capability when developing new complex systems? Furthermore, how could 
we design those systems better with less resources while using faster and more efficient means?  

This dissertation presents theoretical bases, literature reviews, practice gaps, methodologies, and study cases of a 
novel, fast-paced, and synergetic technical approach towards design systems engineering of complex system 
architectures. Inspired by evolutionary principles, adaptive principles, and proven state-of-the-art techniques, this evolutive 
architecture approach tackles design, optimization, and implementation of complex systems under such tight 
constraints while it is focused on multiple connections across disciplines. The overarching goal of this approach is to quickly 
overcome design barriers that are driven by heritage, performance, and uniqueness in the same way that nature does, 
as a continuous and efficient process building upon synergies rather than disciplinary and subsystem divisions. 
Within this method those three key areas are linked as nodes of a networked approach.  

However, this thesis is structured and centered mainly around the design node of the methodology while highlighting 
other phases such as implementation and operations. To exemplify this methodology, a smart portable habitat system is 
being used as a study case to introduce and elaborate critical methodology tools and principles, due to the complexity of the 
topic and the importance of system heritage in the field of architectural design and construction.  

After an introductory chapter, a second part presents the context and rationale for this synergetic method tackling 
stressors, barriers, enablers, and gaps. The need to design better and more efficiently implies also to do so faster and 
cheaper. This is founded on upcoming climate, socio-economic, and technical uncertainties driving new balances 
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among system needs, resources, and heritage. Technical, science, market-driven needs compete for better and faster 
performance, leading to increasingly more complex systems. In the long term, this not only stresses current design 
capabilities, but also it makes more difficult to embrace new solutions, especially for heritage-rich and risk-averse sectors 
and organizations. Furthermore, such evolutionary-based method should provide adaptability, scalability, and efficiency 
towards any dramatic improvement enabled by current state-of-the-art solutions. Thus, a third chapter presents an extensive 
literature review tackling design methods, theories, and systems engineering approaches. Frugal, social, and low-tech design 
trends, among many others propose multiple options toward doing ‘more with less’, however this evolutive approach 
tackles doing ‘better with less’ in the context of ‘high-tech’ nature-inspired designs and system design engineering 
domains. Evolutive methods are driven towards systematic, radical, and disruptive change instead of incremental innovation.  

Within such broad context, the fourth chapter makes an emphasis in a series of key characteristics within hardware-
based system architectures that are increasingly becoming more critical due to multiple sources of resource scarcity, as well 
as the need to handle much more system complexity both as a product and within the development process. Evolutive 
architectures are defined by a regenerative approach toward the use of resources, a high-level system adaptability, and 
a reactivity-driven operational mode.  

Under the evolutive perspective, any complex system could be described by its geometry (descriptive principles), its 
behavior (functional principles), and its substance (component nature). Thus, the next chapter lays out the evolutive system 
design methodology upon such context. Chapter six presents a study case that exemplifies evolutive principles, steps, tools, 
and criteria used to efficiently obtain feasible and ultra-performance design solutions fast, while being tool agnostic. This 
example provides the baseline to answer all research questions as well as to obtain conclusions for the multiple contributions 
developed and presented in this doctoral dissertation.  

The foundation of this research is based on almost 20 years of professional experience designing complex 
systems. This thesis is complemented by other fundamental research examples of public domain that have also published 
by the author during his activity at the Jet Propulsion Laboratory of NASA-Caltech for almost a decade. Hence, the guidelines 
and findings presented in this thesis develop a theoretical foundation, applicable to the design, optimization, and 
implementation of any complex system architecture design (evolutive or not) across multiple technical fields. Doing 
“better with less” is critical due to tackle resource scarcity, address the need for design agility, and increase the adaptability 
to more complex system requirements beyond any heritage solution. Furthermore, it is also essential to address such 
objective with a holistic perspective, just like nature does, while making the most of current design and manufacturing 
techniques. Thus, this approach creates a foundation towards the infusion of upcoming automation methods, and other 
disruptive techniques regarding both design and implementation. In a world that is challenged by increasing and 
changing stressors such as climate change, population growth, system complexity, and everlasting market 
pressures, we deserve a more efficient way of getting better and more holistic solutions, so we can keep daring mighty 
new challenges. 
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EVOLUTIVE SYSTEMS ARCHITECURE 
Introduction and contributions 

CHAPTER 1 

 
“Un voyage de mille lieues commence toujours par un premier pas”. 

Lao-Tzu 
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1. Introduction 

 Motivation, Context, and Problem Statement 

Nowadays the practice of multidisciplinary system design across technical fields is increasingly handling more 
complexity due to a growing number of global stressors such as resource scarcity, crosspollination drivers, workforce 
availability, and the influence of cultural and technical heritage, among many others. 

This accelerating situation is especially relevant among hardware-based complex system architectures, since not 
only they are becoming a blend of hardware, software, data, and user interaction, but they are also demanding a many more 
new assets and capabilities in a world where the data-driven revolution is reaching our physical reality. Often these new 
systems do not have much relevant heritage, yet they aim towards challenges demanding much higher performance levels.  

The overarching goal of this thesis is to provide a foundational design methodology to enable these fast-changing 
complex hardware-based systems (CHS). More specifically, the objective is to structure how to efficiently evolve from an [A] 
unadaptable, passive, and resource depleting system solution, to a [B] highly adaptable, reactive, and regenerative system 
architecture (Figure 1). This problem statement also implies the assessment of new contexts, practices, and system 
characteristics as key elements towards elaborating a novel, adaptable, and resilient system design approach. Based upon 
state-the-art techniques across multiple domains and inspired by nature, this system design research is also associated 
towards operational, implementation, and optimization workflows required in a system development process like this.  

 Research Questions 

Upon such complex context, this thesis is organized around several intertwined research questions: 

1. What new characteristics and complementary design needs do these ultra-complex systems present within resource-
scarce environments? 

2. What principles could enhance more traditional design and system engineering workflows to achieve faster, better, 
and more efficiently such multidisciplinary complex systems?  

3. How could a design method that considers previous questions be used to develop more efficiently complex systems 
within such environment, when there is no direct heritage and ultra-system performance is a must? 

Figure 1. Three-dimensional representation of evolutive design coordinates (adaptability, regeneration, and reactivity).   
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 General Research Approach 

The associated research activity to tackle such questions is based on several key points such as:  

• A thorough study of state-of-the-art techniques and gaps towards multidisciplinary design approaches. 

• A comparative analysis complemented by an integrative approach, so it builds upon the gaps across techniques. 

• An applied research and practice over two decades designing, leading, and managing complex systems design. 

 Delimitations and foundation 

While the nature of this thesis is to address complex systems in general, and evolutive system architectures 
specifically as the following chapters elaborate, there are bounding conditions regarding scope, context, and applications: 

• Hardware-based systems are the main study subject, although they can be enhanced by software, data, etc.  

• System architectures range from top-level systems and assemblies to subsystems, components, and other assets.   

• Full cycle development is the objective of this approach tackling design, implementation, and system operations.  

• Systems and design engineering topics, workflows, and domains are studied and combined within this approach. 

 Literature Review Approach 

Therefore, the strategy towards the selection of literature review topics includes the following areas. 

• Design engineering techniques tackling geometry-driven design processes, from antiquity to today.  

• Systems engineering workflows and methods handling the definition and development of large complex systems.  

• Evolutionary principles coming from both biology studies, as well as pioneering software-driven applications.  

 Contributions  

Research contributions of this doctoral dissertation are presented in chapter 7. They could be summarized as: 

• A thorough literature review and joint gap analysis among design engineering (DE), systems engineering (SE), 
and evolutionary driven techniques. 

• A novel classification for a complex system architectures subset driven by adaptability, regeneration, and reactivity.  

• A new evolutive system design and development method tackling key aspects of such hardware-based systems.  

 Significance  

The design of highly adaptable complex systems that can improve resource utilization and environmental interaction 
is at the core of many technical and creative areas in today’s world. From shoe designs, to building improvements and data-
driven consumer products, smart hardware-based systems become more complex and all associated design workflows need 
to cope with more complexity, and better performance at much faster speeds. In a world facing a growing scarcity of 
resources, such evolutive approach presents a novel and adaptable foundation from both academic and practice standpoints. 
It is a method based on disciplinary synergies that also integrates traditional and discrete DE/SE approaches. 

 Thesis outline 
The layout of this doctoral dissertation follows the conducted research process through the following chapters.  

1. Introduction: motivation, research questions, limitations, contributions, and significance.   
2. Context: scarcity, complexity, performance, multidisciplinarity, agility, network, heritage, innovation, and culture. 
3. Literature review: engineering design, systems engineering, evolutionary principles, gaps, and conclusions. 
4. Evolutive system architectures (eSAR): approach, keystones, drivers, and interconnections. 
5. Evolutive system architecture design method (eSARD): approach, characteristics, objectives, principles, helix 

design model, workflow, eADQNs, eAMGs, eASGs, eASMs, eAMLs, as well as metrics and conclusions.  
6. Study case: evolutive portable habitat and deployment subsystem. 
7. Discussion, conclusion, and future steps. 
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 Domains and Perspectives 
In this research several interconnected domains and perspectives are addressed from a multidisciplinary approach. 

These include both design engineering and systems engineering, as well as concepts coming from architecture, computer 
science, and biological evolution studies. This multidisciplinary and multifaceted approach highlights the standpoint of the 
global analysis in chapter 2, as well as the detailed literature review in chapter 3. 

 Design System Engineering 

This thesis is developed within the intersection between design engineering (DE) and system engineering (SE), since 
the goal is to address the full design of complex systems from a holistic perspective. This intersection is defined as design 
system engineering or DSE (Faisander and Adcock, 2020) and it combines key aspects of both domains as follows: 

• Engineering design (a.k.a. design engineering). This group of disciplines focusses on the conceptual, 
organizational, and configuration description of a geometry-driven system in general, and hardware-based systems 
in particular (Cross, 2008). This includes the exploration of the design space, as well as all required activities to 
define, describe, and design multiple aspects of the system such as logic, idiosyncrasy, configuration, organization, 
shape, volume, interfaces, mechanisms, assemblies, states, etc.  Among some of the most relevant techniques, tools, 
and workflows within this disciplinary domain are the following: hand sketching, technical drawing, three-dimensional 
models, movement analysis, installation diagrams, flowcharts, CAD models, CAM schemes, etc.  

• Systems engineering. Within this context, this domain of disciplines relates to the analytical definition, integration, 
and management of complex hardware-based systems (Buede, 2009) with emphasis on non-geometrical aspects 
throughout the system lifecycle. Among the many activities included in this category are the management of 
requirements, system description, parametric studies, risk assessment, project coordination, project management, 
process engineering, system optimization, project management, and many more (Badiru, 2019; Braha et al., 2006; 
Haberfellner et al., 2019; INCOSE, 2015; Liu, 2015; Long and Scott, 2011). 

Both areas and their associated techniques will be studied in detail in chapter 3, however the approach used in this 
thesis integrates both sides from full system design, implementation, and operations standpoints. From a more detailed 
perspective some application domains include complex electro-mechanical systems, complex machines, product designs, 
process designs, robotic systems, cybernetic systems, architectural designs, and architectural buildings, among many more 
highly complex hardware-based systems.  

 Architectural Multidisciplinary Mindset  

While architectural design is certainly not the only application 
domain of this research it provides an important mindset towards this 
approach.  Architecture is one of the oldest disciplines of humankind 
(Benevolo, 1977). Starting with the first megalithic testimonies (Figure 2) 
the design, technology, and construction of dwellings, houses, and other 
representative buildings, has been the keystones of this field over 
millennia  (Moffett et al., 2004). The ancient Greek etymology of the word 
architect comes from ἀρχιτέκτων (arkhitéktōn, “master builder”), which 
has its origins in ἀρχός (arkhós, “leader”) or ἀρχι- (archi-, “chief”), and 
τέκτων (téktōn, “builder, mason”) (Dejtiar, 2018; Retamosa, 2020). Thus, 
architecture is the discipline of the ‘leading’ worker, so it could be 
understood as the process of making a vision, which was often 
expressed graphically through a drawing, to come true. That also implies the facilitation of the project by connecting people, 
knowledge, resources, and technologies. Therefore, architecture since its beginning has been about creating synergies, 
which are multidisciplinary in nature. Such is the power of that subtle concept, that even in today’s world of information 
technology and advanced computing, the term architecture (architecting) is used to describe a meta-level organizational 
approach and overarching design principles for any logical and digital activity beyond its physical origins (Maier, 2009).  

Figure 2. Poulnaborne Dolmen, Ireland  
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In its more traditional form, the practice of architecture is about 
managing both complexity (e.g., cultural needs) and scarcity forces 
(e.g., gravity or materials), which has shaped the architecture 
standpoint over centuries (Roth, 1994) beyond the action of building. 

However, as a mindset, its practice also provides a unique 
perspective leveraging and managing big-picture perspectives, while 
understanding enough of the details involved in its implementation 
(Figure 3, Polit-Casillas, 2008) so such vision could be buildable 
(‘firmitas’), feasible (‘utilitas’), and desirable (‘venustas’) beyond its 
heritage (Pollio, 2018). Hence, such mindset is at its best when 
creating and facilitating synergetic connections, as well as guiding its 
implementation. Such dual perspective is key towards this research. 
The practice of architecture historically has been about dealing with 
complexity and entropy, as its objective is to build human 
environments that address technical and cultural requirements. Thus, 
this discipline also presents a consequent mindset towards managing 
both quantifiable and qualifiable parameters.  

Therefore, from a domain standpoint this design, management, and implementation perspective not only includes 
architectural constructions of any kind, but also complex hardware system assemblies requiring overarching facilitation.  

 Biological Natural Evolution  

Finally, as section 3.3 will elaborate in detail, this thesis includes principles and perspectives coming from the domain 
of natural evolution and biological studies. The study of species, and the development of organisms, among other topics 
enabled over the years an understanding of multiple natural mechanism with application towards complex systems design. 
Techniques such as genetic algorithms and evolutionary programming among many more, are examples of this approach. 
As next chapters will elaborate in detail, such perspectives can influence new perspectives and they are an integrated part 
of the evolutive approach in this thesis. From this standpoint, other associated and non-biological domains of application 
include complex software design, project management, system optimization, and SE techniques, among many more.  

 Summary  

Table 1 presents a summary of perspectives, application domains, and toolsets associated with this research. 

 Fields Key Perspective  Toolsets Application Domains References 

E
vo

lu
ti

ve
 A

rc
h

it
ec

tu
re

 a
n

d
 D

S
E

 

Design Engineering (DE) 
Systems Design 
Geometrical Design 
Assembly integration 

Drawing, CAD, 
schemes, BIM, 
diagrams, CAD, 
PLM, math, etc. 

Electro-mechanical systems, 
complex machines, product 
designs, process designs, 
robotic systems, cybernetics, etc. 

(Cross, 2008) 
(Pahl et al., 2007) 
(Ullman, 2009) 
(Curedale, 2013) 

Systems Engineering (SE) 

Systems design  
Systems parametrics  
Systems Integration 
Project management 
Risk Assessment  

Diagrams, lists, 
documents, models, 
math, coding, 
scripts, etc. 

Complex systems, enterprises, 
SoS, complex machines, 
interfaces, requirements, etc. 

(Buede, 2009) 
(Badiru, 2019) 
(Liu, 2015) 
(INCOSE, 2015) 

Architecture Development 
(AD) 

Architecture design 
Project management 
Integrations and Mfg. 
Visualizations 

Drawings, diagrams, 
models, renders, 
CAD, BIM, 
documents, etc. 

Buildings, structures, complex 
systems, virtual systems, civil 
engineering, etc. 

(Dehlinger, 2009) 
(Neufert & Neufert, 2000) 
(Lawson, 2014) 
(Roth, 1994) 

Natural Evolution Studies 

Biological evolution 
Systems engineering 
Computer science 
Software design 
Hardware design 

Models, diagrams, 
schemes, evolutive 
trees, genetics, 
coding, etc. 

Biological studies, genetics, evo-
devo studies, eco-evo-devo 
studies, software development, 
algorithm development, AI, etc.  

(Zeiger, 2009) 
(Chen & Han, 2002) 
(Bentley, 1999) 
(Gros, 2015) 

Table 1. Integrated perspectives and domains within evolutive architecture research.  

Figure 3. Construction details and architecture vision on a 
sustainable building. (Polit-Casillas, 2008) 
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 Definitions  

In the context of this research there are a few definitions requiring clarification since they bound the scope, application, 
and domain of this dissertation. This is key since it is applicable to many industrial and technical sectors. The following 
sections explore common definitions across literature, while highlighting which definition is used within this thesis. 

 Architecture 

Table 3 summarizes multiple definitions of architecture across fields, categories, domains, and applications, among 
the thousands of them available. Since the concept is well distributed only the most relevant domains are presented.  

Id Source / Category Definition  Domain References 

AD1 General 
Epistemologically architecture [1] techne, [2] mechanical art, [3] design, and [4] fine 
art after Kristeller’s studies.  

Historical (Parcell, 2012) 

AD2 Construction 
“is both the process and the product of planning, designing, and constructing 
buildings or other structures” 

AD 
(Oxford University 
Press, 2003) 

AD3 
Functional / 

Logical 

“…The functional architecture of a system contains a hierarchical model of the 
functions performed by the system, the system’s components, and the system’s 
configuration items…” 

SE (Buede, 2009) 

AD4 Software 

Software architecture is the structure behind the creation of a system including 
software elements, relationships, and their characteristics.  
“…Software architecture is the conceptual glue that holds every phase of the 
project together for its many stakeholders…” 

SE / 
Computer 
Science 

(Clements, 2011) 
(Carnergi Mellon, 2017) 

AD5 Hardware 
It includes all physical components, relationships among them, and their 
characteristics regarding machines, devices, components, etc.  

SE/DE 
Computers 

(Yadin, 2016) 
(INCOSE, 2015) 

Table 2. Architecture definitions. 

Architecture  is understood in this research as the overarching and organizational design principle of a complex 
system and all its parts beyond ‘the inevitable art of the human activity framework’ (Roth, 1994) such as buildings, dwelling, 
art pieces, etc. Therefore, this concept refers to the highest system level of a complex subsystem-based artifact (hardware 
and software), including its representation and relationships among components [Def01].  

 System 

There are also many definitions of system in the literature across domains and fields as Table 3 presents: 

Id Source / Category Definition  Domain References 

S1 General 

“a regularly interacting or interdependent group of items forming a unified whole, such 
as: [1] a group of interacting bodies under the influence of related forces, [2] an 
assemblage of substances that is in or tends to equilibrium, [3] a group of body organs 
that together perform one or more vital functions, [4] the body considered as a functional 
unit” and a “group of devices or artificial objects or an organization forming a network 
especially for distributing something or serving a common purpose” 

All 
(Merriam Webster, 
2020) 

S2 General 
‘‘a collection of hardware, software, people, facilities, and procedures organized to 
accomplish some common objectives.’’ 

SE (Buede, 2009) 

S3 NASA 

“A system is a construct or collection of different elements that together produce results 
not obtainable by the elements alone. The elements, or parts, can include people, 
hardware, software, facilities, policies, and documents; that is, all things required to 
produce system-level results”. The value of the system is in the synergy beyond its parts 
and the “big picture” perspective. 

SE 
Aerospace 

(NASA, 2007) 

S4 Badiru 

“A system is represented as consisting of multiple parts, all working together for a 
common purpose or goal. Systems can be small or large, simple, or complex. Small 
devices can also be considered systems. Systems have inputs, processes, and 
outputs.” 

SE (Badiru, 2019) 

S5 Winner 
“A group of elements which are relevant (and not merely useful) for achieving a purpose, 
which interact with each other, and which have a structure within predefined 
boundaries.” 

Automotive (Winner, 2013) 

S6 Liu 

“A system can be broadly defined as a set of integrated components that interact with 
each other and depend upon each other, to achieve a complex function together. A 
system can be decomposed into smaller subsystems or components and a system may 
be one of the components for a larger system.” 

SE (Liu, 2015) 

S7 Wasson “System. An integrated set of interoperable elements, each with explicit specified and SA (Wasson, 2005) 
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bounded capabilities, working synergistically to perform value-added processing to 
enable a User to satisfy mission-oriented operational needs in a prescribed operating 
environment with a specified outcome and probability of success.” 

S8 
ISO/IEC/IEEE 

15288 
“Systems […] are man-made, created to provide products or services in defined 
environments for the benefit of users and other stakeholders.” 

SE (INCOSE, 2015) 

S9 INCOSE 

System is “[…] an integrated set of elements, subsystems, or assemblies that 
accomplish a defined objective. These elements include products (hardware, software, 
firmware), processes, people, information, techniques, facilities, services and other 
support elements.” 

SE (INCOSE, 2015) 

Table 3. Definitions of system.  

Thus, the modern notion of system presents the 
concept of a whole made of components that support a 
function. This conception of system involves an input-
process-output model (Badiru, 2019) that also considers 
controls and enablers. Any system also presents the 
following characteristics (Buede, 2009; INCOSE, 2015): 

• Operating environment 

• Environmental interactions: external & internal 

• System boundary 

• Life cycle and phases 

• Main function or purpose 

• Hierarchical structure 

• Reliability as a whole 

• Interacting subsystems and components, with attributes that regulate the 
behavior of the system through their multiple interrelations (Badiru, 2019). 

Systems could be natural, man-made, static, dynamic, adaptive, evolutionary, conceptual, physical, open, and closed 
(Liu, 2015). Based on the literature review, and under the context of this thesis regarding hardware-based developments, 
the definition for system is based on the INCOSE approach with a small variation due to the nature of evolutive architectures, 
as they will be presented later (chapter 4). The definition within this research is the following:  

 System “is a synergetic, multidisciplinary, integrated and evolvable set of elements, subsystems, or assemblies that 
accomplish a defined objective. These elements include products (hardware, software, firmware), processes, people, 
information, techniques, facilities, construction, services, and other support elements.” From this thesis standpoint, any 
system presents geometry, behavior, and substance, and it is defined by quantifiable and qualifiable parameters [Def02]. 

 System Architecture 

Another term that is broadly used in this research is system architecture. This one also presents many definitions on 
the technical literature across fields and application domains as Table 4 presents: 

Id Source / Category Definition  Domain References 

SA1 General 
“System element architecture is defined by two entities: [1] System of interest (SOI) 
which is comprised of the mission system and the support system, and [2] operating 
environment.: 

SE (Wasson, 2005) 

SA2 INCOSE 
System architecture is “[...] the fundamental concepts or properties of a system in its 
environment embodied in its elements, relationships, and the in the principles of its 
design and evolution.” 

SE (INCOSE, 2015) 

SA3 
Hardware + 

Software 

“[…] and ensemble of elements (ultimately hardware and software components) that 
collaborate to fulfill defined requirements allocated to a node or systems (implying 
that a clear system boundary and user interfaces are defined) […]” 

DSE (Borky & Bradley, 2018) 

SA4 
Systems 

Engineering 

“[…] defines a comprehensive solution based on principles, concepts, and properties 
logically related to and consistent with each other.” “…System Architecture is 
abstract, conceptualization-oriented, global, and focused to achieve the mission and 
life cycle concepts of the system. It also focuses on high-level structure in systems 
and system elements. It addresses the architectural principles, concepts, properties, 
and characteristics of the system-of-interest. […]” 

SE (Faisandier et al., 2020) 

Figure 4. Input-process-output model of a system (Badiru, 2019). 
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SA5 Complex systems 
“[…] an abstract description of the entities of a system and the relationships between 
those entities, […] represented as a set of decisions […]” 

DSE (Crawley et al., 2016) 

SA6 Model-based SE 

‘[…] to express the strong relation and dependency between the system and its 
systems architecture, a composition association describes this relation. [..] it is the 
functional architecture, [..] depending on a number of principles regarding its 
organization, the design, and the system’s evolution, […], interactions within the 
systems and its context […]” 

MBSE (Weilkiens et al., 2015) 

SA7 Software Systems 
“[…] the rationale to ensure that the architecture’s components, connections, and 
constraints define a system that will satisfy a set of defined stakeholder needs for 
the system.” 

Software (Gacek et al., 1995) 

SA8 NASA 
System architecture includes systems models, behaviors in those models, system 
components, interfaces, as well as technical budgets. This term refers to system 
requirements, operations, and other artifacts within the global system.  

Complex 
Hardware 

(NASA, 2015) 

Table 4. System Architecture definition 

System architecture, in the context of this thesis is the concept model defining logic, purpose, geometry, structure, 
behavior, material, aesthetic, and cultural properties of a system or group of systems with independence of its field of 
application. This definition applies to both hardware, software, and hybrid systems. This principle is based on general SE, 
INCOSE, and IEEE principles (Faisandier et al., 2020) [Def03].  

 Systems of Systems   

Table 5 captures some definitions regarding system of systems (SoS). 

Id Source Definition  Domain References 

SoS1 INCOSE 
“A system of systems (SoS) is a system of interest (SOI) whose elements are managerially 
and-or operationally independent systems.” 

SE (INCOSE, 2015) 

SoS2 DoD 
“A set or arrangement of systems that results when independent and useful systems are 
integrated into a larger system that delivers unique capabilities.” 

SE 
(Kossiakoff et al., 

2020) 

Table 5. System of Systems (SoS) definitions 

An SoS is a system in itself, and it is defined by multiple challenges (INCOSE, 2015), such as: authorities, leadership, 
constituent system perspectives, capabilities, requirements, autonomy, interdependencies, emergence, testing, validation, 
and learning constraints, as well as its design principles [Def04].   

 Systems Engineering  

There are indeed multiple definitions of systems engineering across the literature, therefore only a few have been 
selected as reference because of the relationships among the approach of this research and other domains. 

Id Source Definition  Domain References 

SE1 INCOSE 

“[…] Systems engineering is a discipline that concentrates on the design and application of 
the whole (system) as distinct from the parts. It involves looking at a problem in its entirety, 
taking into account all the facets and all the variables and relating the social to the technical 
aspect. (FAA 2008) […]” 

SE 
(INCOSE, 2015) 
(Valencia et al., 

2011) 

SE2 Liu 

“[…] it is an applied science […] concerned with the big picture of the system: it is a top-
down design processing […] starting with the needs from user/stakeholder expressed in the 
format of requirements. […] is a multidisciplinary field with four categories: [1] art and science 
domain, [2] engineering domain, [3] management domain, and [4] supporting roles […]”  

SE (Liu, 2015) 

SE3 Buede 
“[…] engineering discipline that develops, matches, and trades off requirements, functions, 
and alternate system resources to achieve a cost-effective, life-cycle-balanced product 
based upon the needs of stakeholders. “ 

DSE (Buede, 2009) 

Table 6. Systems engineering definitions across technical documentation.  

Systems engineering, based on the INCOSE definition (INCOSE, 2020a), is understood as the interdisciplinary 
‘approach to enable the successful design’, implementation, ‘use and retirement of an engineered system, using systems 
principles and concepts, and scientific, technological, and management methods’ [Def05].  

 Design Engineering 

Usually, engineering design refers in literature to the design process, while design engineering refers to more 
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aesthetical concepts. In the context of this research engineering design and design engineering are considered synonyms 
like in many other publications. Among some of the definitions considered are the following: 

Id Source Definition  Domain References 

DE1 Dieter 

“[…] to design is to pull together something new or to arrange existing things in a new way 
to satisfy a recognized need of society […] this means synthesis, design, problem 
decomposition, and analysis. […] The four C’s of design include: creativity, complexity, 
choice, and compromise.” 

DE Process 
(Dieter and 

Schmidt, 2012) 

DE2 
Engineering 

Design 

“Designing in engineering has the purpose of creating future operating artifacts (TS) and the 
operational processes (TP) for which they can be used, to satisfy the needs of customers, 
stakeholders, and user. These artifacts can actively we operative or be operated as tool by 
a human. […] design engineers explore alternatives solutions, and delivers proposals for 
appearance and present, manufacturing specifications for a design […]” 
“[…] Design engineering is progress towards designing an object or process that fulfills a 
purpose, and that includes a substantial engineering content. [...]” 

DE 

(Eder and 
Hosnedl, 2010) 

(Samuel and Weir, 
1999) 

DE3 Engineering 

“[…] the discipline, art, and profession of acquiring and applying scientific, mathematical, 
economic, social, and practical knowledge to design and build structures, machines, 
devices, systems, materials and processes that safely realize solutions to the needs of 
society […]”  

DSE (Childs, 2013) 

DE4 
Design 
process 

“[…] the design process, then, is the organization and management of people and the 
information they develop in the evolution of a product. “ 

DSE (Ullman, 2010) 

Table 7. Design engineering definitions across technical literature 

Therefore, design engineering (Cross, 2008) within this dissertation is considered as the holistic process of [1] 
understanding and decomposing need and requirements, [2] synthesis a solution (often also geometrical), [3] analysis of 
alternatives, and [4] visualization of results through development of products, services, and systems in general, and 
hardware-based system in particular [Def06].  

 Systems Design 

Regarding the approach within this dissertation, the concept of systems design is understood as the action and 
methodology of designing and conceptualizing a system to fulfill specific as well as open requirements in the context of 
complex architectures. ‘Design definition is the process of developing, expressing, documenting, and communicating the 
realization of the system through a complete set of design characteristics described in a form suitable for implementation.’ 
(Faisander and Adcock, 2020) [Def07]. 

 Other Explicit Definitions 

There are other terms used across this dissertation and its associated research, coming from other sectors and 
domains that are less common within DE and SE contexts. The following table summarizes them. 

Id Concept Definition Uses & Domains  References 

Def08 
System 

Maturation 

It is the set of processes and actions by which a system 
becomes more mature including geometrical, behavioral, 
and substance through time, detailing, and growth. 

DSE process, 
biology studies, 

system dev. 

(Ullman, 2010) 
(Oxford University Press, 

2020) 

Def09 Adaptability 

This refers to the capability of a system and its associated 
processes to adapt to environmental, design, operative, and 
implementation changes. It is one of the ARR evolutive 
overarching characteristics. See section 4.2.1 for details. 

DSE, DE, 
biology, 
cognitive 
studies 

(Conrad, 2012) 
(Burke et al., 2006) 

Def10 Adaptive 
It refers to a system that participates and integrates 
adaptability principles throughout its design and 
implementation. A system based on adaptation principles.  

DSE, SE, DE, 
biology, control 
& information 

(Dieckmann et al., 2004) 
(Mareels & Polderman, 1996) 

Def11 Reactivity 

This refers to the capability of a system and associated 
development processes to interact with its environment and 
among its subsystems. It is one of the ARR evolutive 
overarching characteristics. See section 4.2.2 for details. 

DSE, SE, DE 
(Barnard et al., 2000) 

(Fox, 2016) 

Def12 Regeneration 

This refers to the capability of a system and its associated 
development processes to use, manage, reuse, recycle, and 
replenish resources require for its development, operations, 
and operations. This also includes physical, energy, 

DSE, SE, DE, 
biology, 

architecture  

(Lyle, 1996) 
(Mang et al., 2016) 
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workforce, virtual, and digital resources, among others. It is 
one of the ARR evolutive overarching characteristics. See 
section 4.2.3 for details. 

Def13 
Evolutionary 

System 
“[…] are entities, described as systems, which have been 
generated within the framework of an evolutionary process.” 

DSE, SE, 
biology, 

computer 
science 

(Vijver et al., 2013a). 

Def14 
Evolutive 

Architecture 

Evolutive architectures are considered those system 
architectures designed, optimized, and implemented using 
applied evolutionary methodologies towards their concept 
development, system engineering, physical and logical 
optimization, physical manufacturing, and construction 
among other lifecycle key phases. These characteristics are 
independent from the field of application and they could be 
present one, several or all phases of the development cycle. 
See chapter 4 for more details.  

DSE, SE, DE 
(Hingston et al., 2008) 

(Charlesworth and 
Charlesworth, 2017) 

Def15 Design 

Within this research this refers to development processes 
and outcome activity to describe, manage, communicate, 
and implement a system as well as all relationships among 
its components. See section 4.3.1 for more details. 

DSE, SE, DE 
(Samuel and Weir, 1999) 

(Asimov, 1976) 
(Roth, 1994) 

Def16 Operations 

This concept related to the analysis, definition, description, 
and management of the system functional behavior, as well 
as other associated processes such as development and 
implementation. This includes workforce and knowledge too. 
See section 4.3.2 for more details. 

DSE, SE, DE 
(NASA, 2007) 

(Mahadevan, 2010) 

Def17 Implementation 

This concept is used in this dissertation to capture 
processes, materials, and other resources required to turn a 
design into a reality regardless of its physical, logical, digital, 
and virtual nature. See section 4.3.3 for more details and 
links among concepts. 

DSE, SE, DE 
(Farid and Suh, 2016) 

(Gilmore, 2014) 

Def18 Geometry 

This related to all ‘properties and relations of geometrical 
elements such as points, lines, surfaces, solid, and higher 
dimensional analogs’ describing the shape or configuration 
of a system over time, as well other logical, structural, 
material, and interface considerations regarding systems 
and components. See section 5.3.1 for details.  

DSE, SE, DE 
(Merriam Webster, 2020b) 

(Elam, 2001) 
(Kimura, 2001) 

Def19 Behavior 

This is “the functional and behavioral range of anticipated 
actions describing how the system will be operated under all 
possible use-case scenarios”. This includes both system 
architecture and associated development process. See 
section 5.3.2 and 4.3.2 for more details. 

DSE, SE, DE (NASA, 2007) 

Def20 Substance 

This refers to chemical, mechanical, physical, and biological 
properties, characteristics, and processes involved in the 
physical implementation of a system architecture. This also 
includes fabrication, manufacturing, construction, and 
resource management, as well as the materialization of 
parts and subcomponents. See section 5.3.3 for more 
details and links among concepts.  

DSE, SE, DE (Sass, 2011) 

Table 8. Definitions, uses, domains, and references.  
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SCARCITY, COMPLEXITY, AGILITY, & HERITAGE   
Evolutive Architecture Context 

CHAPTER 2 

 

 
“It is not they don’t see the solution. 

It is that they do not see the problem”. 
G.K. Chesterton 
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2. Context of Scarcity: Needs and Resources  
As a species we have been led by the need to do more. The urge to find, discover, or reach new levels has driven 

innovation through millennia, often tackling what and how we do things. We have even classified periods of our history (e.g. 
bronze age) by the design and manufacturing capabilities we developed (Harari, 2018). Survival needs, competitive 
advantage, and intellectual curiosity, among others have incentivized us to push all limits, often against cultural 
preconceptions, personal fears, and the everlasting hassle of finding enough resources to start such new ventures.  

During the second decade of this century, the need to deal with increasing levels of complexity in terms of design, 
implementation, and management still keeps growing (Kravtsov and Kadtke, 1996), because we keep demanding more of 
our architectures independently of the field of application. A good example of this is the evolution in capability, and therefore 
complexity, of communication systems during the last century (see Figure 5). In the context of this research, as section 1.8.1 
presented, the term architecture is referring to the highest system level definition of a complex subsystem-based artifact 
(hardware, software, or both). For instance, a building, a car, and an electromechanical consumer product are good examples 
of generic architectures among many others. Furthermore, data shows we are facing an upcoming phase in terms of 
resources availability due to climate uncertainty (WMO, 2020) and population growth (United Nations et al., 2019), while an 
increasing number of new and disruptive technologies (Buchholz et al., 2020) could become key in tackling such challenges. 
Hence, the balance between ‘what we need’ (requirements) and ‘what we can do’ (resources / capabilities), becomes an 
open field for exploration nowadays. This lands itself very well into a new paradigm for how we design and implement 
complex systems. Thus, addressing the relationship between needs (requirements) and resources (constraints), through the 
perspective of the offer-demand theory (Sloman et al., 2018) allows us to understand the complexity of a system architecture 
development (Figure 6) as a balance between those forces. The more needs or requirements are covered with less 
resources, the more efficient a system becomes. So, the slope of that curve could be understood as the complexity of such 
architecture. Following an efficient complexity curve (blue line) is often complicated, since economical, workforce, cultural, 
and technical constraints tend to flatten such curve. As a result, similar needs could be covered with a more efficient use of 
resources. However, providing a leap in that efficiency is often only possible through systematic new paths or disruptive 
technologies. Enabling and structuring such leap is the target of an evolutive design process developed in this thesis.  

Regardless the field of work (e.g., architecture, car manufacturing, finance, product design, and medicine, etc.) the 
need to go beyond in terms of performance, novelty, efficiency, uniqueness, and adaptability is becoming a major force in 
any complex technical design endeavor. In today’s context of design engineering and system engineering practices multiple 
drivers influence this balance of forces, and they will be studied in following sections. These factors are the foundation for 
new approaches towards both complex architecture systems and their associated design methods.  

The consequences of both resource scarcity and the human drive to go beyond, push new design efforts and methods 
to be able to do more with less (Radjou and Prabhu, 2014), forcing in essence such effort towards the top left of the needs-
resources curve presented in Figure 6. Markets, customers, and requirements demand more of any system architecture, 
affecting ‘what’ they are as a system, and ‘how’ they are developed as a method. That pressure ripples through all the 
multiple development phases in the lifecycle of a design development such as design, optimization, prototyping, 
implementation, management, and sustainability (Pahl et al., 2007).  

Figure 5. Evolution in the type of information being transmitted by communication devices from 19th century to the 2020s. 
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Across time, tendencies, and practices there are, and have been multiple ways to tackle that balance between forces 
represented in Figure 6. While section 3 will present an elaborated and detailed literature review across the areas of design 
engineering, system engineering, and evolutionary principles, it is worth mentioning some overall approaches to clarify the 
context of this research. The balance between requirements and resource utilization could be understood also as the balance 
between technology, user, complexity, and cost. From that perspective we can identify several tendencies such as  

• Low-tech that approaches complex problems with design and simple technology (Hirsch-Kreinsen and Jacobson, 
2008), addressing the lack of resources as well as associated human needs (Philippe, 2020). This tendency had a 
big influence in the 70s with the do-it-yourself (DIY) approach (Wolf and Mcquitty, 2011). Under this trend we could 
also include small-tech, no-tech, slow-tech, and passive design, among other variations of related principles.  

• Social Design tackles complexity with social and human needs at the center of such process (Margolin and Margolin, 
2002). The use and level of technology is not as important as the responsibility behind it. This approach has 
applications across the board, affecting complex fields such as urbanism and architecture (Michael and Lin, 2018). 

• Frugal design as described in this intro is about doing more with less (Radjou and Prabhu, 2014) while bringing the 
notion of control and equity within that balance through innovation (Micaëlli et al., 2016). The key is the efficiency of 
the approach, and it is applicable to different levels of technology as well as types of balances.  

• High-technology, deep-tech, or frontier-tech, on the contrary answer such critical battles by relying heavily on cutting-
edge technical solutions that may not necessarily reflect other social and innovation aspects (Steenhuis and Bruijn, 
2006). The influence of this perspective could be seen in architecture solutions (Macdonald, 2019), information 
technology (Cortright and Mayer, 2001) project, AI new developments (Malach-Pines and Özbilgin, 2010), etc. 

Nevertheless, this research embraces this full spectrum with a broad perspective by being agnostic of the technology 
level used in such balance, as well as other aspects such as innovation or social approaches. The objective though is to 
address the capability of the system first, and the subsequent design method after. Any other area of this activity affecting 
the complexity of such challenge could and should be addressed regardless the posture that was taken. In other words, from 
a truly broad perspective this is about getting the best and most optimized system result.  

Thus, the principal focus of this research is about how we could achieve more efficiently, better system performances 
and capabilities when developing new complex systems that have no previous heritage. Furthermore, the inherent scarcity 
of resources also highlights the needs of a design and system engineering approach adaptable enough towards short and 
long-term changes regarding requirements, constraints, methods, etc. In other words, how we could design faster and 
smarter by doing not only more but better with less is the objective of this theoretical framework (validated over years of 
practical experience across industries). Tackling key stressors that affect the balance in the development of any complex 
architecture is always needed, but it is especially relevant under the foreseeable scarcity conditions affecting the technical 
practice of architecture and engineering in the coming decades. Thus, next sections tackle multiple context design stressors. 

Figure 6. Performance efficiency of system architectures upon the needs versus resources balance.  
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 Resource Scarcity  

The availability of all required resources to design, implement, and operate a complex system architecture could be 
stressed by multiple external and internal factors withing such development process. As Figure 6 showed, highly efficient 
architectures (and processes) respond to higher needs or requirements using less resources, while low efficient ones do the 
opposite. The objective is to increase the system performance for a given complexity, while at the same time enabling an 
adaptable methodology that aims to enable performance quantum leaps onto such systems for a given level of heritage and 
scarcity. The need-resource curve in Figure 7 shows those performance quantum jumps, showing a system architecture that 
responds to many more needs with less resources. These jumps are the ultimate efficiency goal for an evolutive design 
process. However, the efficiency of a system design method responds to a series of key design resources including among 
others knowledge, workforce, computing power, materials, energy, etc. (Pahl et al., 2007). In the beginning of the 21st century 
there are several areas contributing to a potential resource scarcity capable of significantly stressing current and future 
design context conditions. These stressors displace the curve to the left (Figure 7), so less needs can be addressed for a 
similar architecture approach. They become a major contributor to be addressed towards more efficient design methods.  

 Climate uncertainty  

Climate change is a very complex and extensive subject beyond the scope of this research. However, the potential 
consequences of this global phenomena (Masson-Delmotte et al., 2019) must be considered as an overarching constraint 
forcing the need of new design approaches affecting communities (Boswell et al., 2019), policies (Harvey et al., 2018), and 
multiple industries such as architecture (Smith, 2006) among many others which are very resource dependent. As a simplified 
approach we could state that since mid-20th century, scientists have been warning of the consequences of an unsustainable 
development, leading to an increase in the release of CO2 and other greenhouse gasses, as well as the subsequent global 
warming (Siegmund et al., 2019). Such delta in planetary temperature levels presents many potential related effects such 
as increased ice melting rates, lack of planetary surface albedo, water sea level rising, changes in energy distribution through 
air and water movements because of changes in water salinity, temperature, etc. (Robertson et al., 2018). This not only 
affects local climate conditions, but also plants, animal species, and of course human activity.  

Dwelling is a major area of human activity affected by climate change. It also affects climate change and is directly 
related to the continuous increase in human population globally. These reasons highlight the need of new design and 
construction paradigms, while they showcase the type of influence these stressors could present. Current estimations by the 
UN present a likely increase of 3 billion people by 2050 if current conditions are maintained (United Nations et al., 2019), 
with projections above the 10 billion people beyond 2100 (Roser, 2013) as Figure 9 shows. Assuming an average number 
of 1.5 people per home, and a simplified reduction of 25% due to existing houses, this means around 1.5 billion new homes 

Figure 7. Stressors displace the architecture efficiency on the need-vs-resource graph.  
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would need to be built between 2020 and 2050 (Smith, 2018). In other words, a city center like Paris of two million people 
should be designed, built, and delivered every week including houses, schools, streets, hospitals, etc. during that period. 
Buildings today consume 40% of all generated energy worldwide (EIA, 2019) and up to 50% of all solid waste worldwide is 
construction materials (Kaza et al., 2018). Therefore, this represents a major challenge with huge and unsolved implications 
when it comes to resource availability, workforce, construction technology, design methods, and energy efficiency affecting 
directly or indirectly all design and development efforts due to its magnitude.    

 Population growth 

This challenge is even bigger, especially when likely dislocations due to climate change could lead up to 1 billion 
climate migrants by 2050 (International Organization for Migration, 2014). Furthermore, up to 1.6 billion people did not have 
a proper shelter already in 2015 (UN, 2019). The use and construction of dwellings represents a basic human economic 
activity with a value around US$280.8 trillion in 2017 (Barnes, 2018). This indirectly relates to design and implementation 
activities of home equipment devices and energy production systems, among many more markets and industrial sectors.   

Figure 8. Global warming forecast.  IPCC Special Report on Global Warming  (Masson-Delmotte.V., et al., IPCC, 2019) 

Figure 9. Population by age bracket (UN Projections), After Our World in Data (Roser, 2013). 
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Constraints driven by both climate uncertainty and world population growth combined are increasingly bringing new 
levels of resource scarcity affecting populations, ecosystems, economics, and institutions  (Evans, 2010). This growing trend 
affects consequently all industrial, agriculture, and technology fields worldwide in different ways, while it emphasizes the 
need for quantum leaps in terms of system efficiency as a possible response. Architecture and construction specifically, and 
any complex system architecture in general (e.g., cars, trains, solar farms, computers systems, etc.) would require a new 
design and implementation approach if current levels of comfort and capability must be addressed under an increasing 
population. Consequently, these constraints will force and spark new approaches and needs in architecture and engineering 
practices dealing with complex systems that this thesis takes as one starting point to address new methodologies.    

 Economic Constraints 

The combined effect of climate change and population growth could impose the need to reduce the number of 
resources used in any system (Figure 10) at a global scale, if no new technologies and concepts are introduced since Earth 
is for that purpose and simplifying a close-loop system (Müller, 2017). Within an economic system where services and 
products are rendered for currency, this brings the need to assess new cost reduction approaches (less resources) and 
viable risk strategies (more resilience) at both system design and design process levels (Brown, 2013). As Figure 10 shows, 
to achieve certain needs (e.g., solar power for a dwelling) an architecture uses certain resources (e.g., number of solar 
panels, transport, deployment, installation, etc.) The more complex the system is (e.g., F1 car, airplane, power plant, etc.), 
the bigger portion of the resources used in the developing phase lies within the design process itself (e.g., workforce hours). 
This is especially relevant if the process is set up with a cost committed approach  [Ullman’s manufacturing and cost cited 
in (Jack, 2013) and (Kihlander, 2009)]. However, this could be very constraining when unique solutions, prototypes, or small 
series are the objective since the initial design and testing cost cannot be shared or distributed among multiple users or 
product sales. Thus, the more complex and unique a system architecture becomes, the higher is the relative cost to create 
a single one in terms of design and validation towards its implementation (fabrication, construction, and manufacturing) 
(Larson, 2010). This is reinforced by the lack of an economy of scale factor, as well as a heritage of directly applicable 
solutions. Therefore, a reduction in both implicit and explicit costs to create new system architectures that could provide 
better performance levels beyond any existing heritage becomes a powerful drive in any market-driven economy (Bade and 
Parkin, 2012). Such development advantage is not only driven by technology, new concept design, or disruptive techniques 
enabling the system architecture itself, but also the design engineering methodology used to create it since development 
cost most likely is the most critical initial barrier. Hence, this relationship is critical, and becomes an objective for this thesis. 
It is a complex challenge with multiple contributors such as: technology knowledge, computation capability, workforce 
availability, schedule, funding, prototyping cost, implementation capability, operations scheme, and design principles, among 
many others.  

Figure 10. Cost evolution during project phases.  (Kihlander, 2009) 
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 Competitiveness 

Therefore, if less resources could be used in the design, implementation, and operations of a system that performs 
at similar or better performance levels, this would mean a cost reduction, and a more competitive system architecture 
providing an advantage against competitors as well as older versions (improvement). Current market and industry trends 
invoke the principle of doing more with less, as economy and business frugal principles show (Radjou and Prabhu, 2014).  

Competitiveness is in today’s world more and more driven by enabling and rewarding flexible research and 
development, innovative solutions, affordable quantities, and customer involvement. Under that light, new design methods 
must provide ways to bring agility towards prototyping and development, as well as  infusing data-driven steps into the design 
method so adaptability to new needs is easier (Daszko, 2018). Furthermore, methodology optimization should be 
systematically explored and integrated, as well as newer techniques that can increase speed and reduce cost. Thus, 
innovation is at the core of development processes enabling sustainability and competitiveness (Kuncoro and Suriani, 2018). 

A design and systems engineering methodology within this new context should be about bringing faster, easier, and 
more efficiently better products to market, while reducing resource utilization and cost. This is indeed applicable to known 
economic conditions, but it becomes even more relevant under foreseeable and growing scarcity constraints.  

 Workforce and Capabilities 

Another source of change and scarcity is the current situation of workforce (PWC, 2020). This is emphasized by new 
social and work dynamics established with the infusion of cultural changes and new techniques such as AI-driven and 
machine-driven methodologies (West, 2018). Disruption is indeed one key concept within this point. While tools and 
techniques at the disposal of organizations are starting to disrupt workflows (e.g., 3D printing and machine learning), they 
also mean that the way we work is changing. However, not only are tools developed during the “gig-economy” a source of 
change, but the planet itself is also in that mode. From climate change and social changes, to environmental situations like 
the pandemic in 2020, the future of work is becoming outdated and work dynamics are being challenged by new realities 
and possibilities (Vollini et al., 2020). Technology change drives today’s economic growth and quality of life improvements, 
thus design, implementation, and operation methods need to address those social, generational, and professional changes 
and opportunities today.  

The consequence of a high specialization within organizations is, among others, the lack of system-level thinking, 
that often leads to a growing need of generalist professionals across industries, markets, and businesses (Lurie et al., 2002). 
Those generalists are systems engineers and systems architects connecting disciplines and know-how to support products 
and services provided by an organization. In many ways they are the glue among teams, professionals, methods, and 
deliverables. Within an increasingly complex world specialists are both needed (Epstein, 2019) and often misused, however 
they are key for any healthy organization to go beyond their current state upon any heritage foundation.  

Furthermore, the importance of heritage and the growing complexity of today’s world also force us to find new and 
better methods to deliver products, services, and partnerships. Within that context, growing technology trends such as data-
driven and AI-driven workflow enhancements are also a potential source of scarcity towards the use of more traditional 
methodologies. The integration of machines, machine-driven enhancement tools, and humans poses both huge 
opportunities and challenges such as: [1] the re-education of workforce (Rampersad, 2020) and AI training, [2] the creation 
of collaborative methodologies between machines and people (Daugherty and Wilson, 2018), and among others [3] a unique 
opportunity and need to reshape engineering practice. The evolutive design approach takes this as a foundational point, 
emphasizing tool-agnostic principles towards architecture system design methods applicable to these challenges.   

 Energy and CO2 

An everlasting constraint in human history has been the need for energy (Smil, 2018), in today’s mid and long-term 
future where climate change, population growth, cost reduction, technological conditions, and market competitiveness 
among others need to be considered (Madureira, 2014) even more so. Today main energy sources of energy worldwide are 
basically fossil fuels (oil, coal, gas) and nuclear, with a growing participation of renewable energies (Letcher, 2008). However, 
as Figure 11 shows, those needs are going to grow significantly (EIA, 2019), and so their associated CO2 emissions (Marchal 
et al., 2012) especially with an end-use consumption shifting towards electricity across fields (EIA, 2019). However, with 10B 
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people by 2050, current levels of energy efficiency need to increase at least 65% of $ per W and per person (Cody, 2017) in 
order to maintain the same level of comfort we have today.   

The implications of this shift in the energy paradigm affect global warming and pollution levels among many other 
environmental and health challenges. Thus, achieving better energy performances across complex system architectures 
(e.g., homes, cars, machines, etc.) using more optimized workflows is critical. This is very relevant because human trends 
show that we tend to constantly surpass any given energy production capability very quickly as the graphs shows.  

Nevertheless, the energy balance of a hardware-based architecture must be measured from ideation to operations 
considering design efforts, workforce, computing power, materials, manufacturing, transport, repairs, etc. In other words, it 
should include the whole process of how we do things (McDonough and Braungart, 2010). Therefore, at a high level if a 
system architecture can accomplish better with less, its energy needs could directly be reduced. At the same time, the more 
adaptable such system is, the less energy is needed to rebuild, remake, and change components, leading to better direct 
and indirect energy efficiencies. Furthermore, energy scarcity is not only about the difficulty of its generation and availability, 
but other indirect consequences such as CO2 emission, processing of natural resources, cost of living, social development, 
etc. Perhaps dwelling activity (Gevorkian, 2009) exemplifies this associated scarcity (and indirect cost) better than any other 
field due to its market size worldwide. It is also the perfect example showcasing the needs for better design approaches, 
because of the inherent complexity of the systems in the field (Bauer et al., 2009). 

Figure 11. Global electricity generation values and use by sector (EIA, 2019). 

Figure 12. GHG Emissions Baseline 2010-2050 by gasses and region. Source OECD (Marchal et al., 2012).  
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 Complexity  

The nature of these challenges makes complexity both a stressor in the design process as well as in the context of 
technical practices. Complexity influences new needs for system design practices, as well as system architecture capabilities 
in the beginning of the 21st century (Alexiou et al., 2009). During the past decades, developments in electronics, computation, 
telecommunications, and manufacturing have made system complexity a characteristic of increasing importance. For 
instance, traditional land-line phone evolved into smartphones, simple combustion-engine automobiles are leading the way 
to autonomous cars, and VHS video clubs enabled online personalized streaming services. In summary our society demands 
complexity (Alexiou et al., 2009). In fact, the practice of systems engineering and lately also systems architecture (as a 
multidisciplinary approach toward complex systems design) is increasingly being dedicated to both managing and improving 
system complexity, as well as associated design processes (Frey et al., 2011).    

Dealing with complexity could be quite costly when traditional engineering design methods are used, since they are 
algorithmic, deterministic, and point-design driven (Braha et al., 2006). However, designing complex engineered systems 
(CES) must deal with the self-organization and open nature of complexity. On the other hand, if we understand complexity 
as the characterization of a system with multiple interacting parts, then it is at the heart of the system efficiency and 
performance levels. For instance, if we compare a robotic limb with an organic leg, the latter has many more elements and 
interacting parts (e.g., cells), however its level of performance, dexterity, repairability, and implementation easiness is much 
higher. In essence, more complexity could bring more efficiency, thus an improved design methodology needs to be based 
on an evolutionary foundation and open relationships among its parts (Braha et al., 2006).  

Therefore, the inherent complexity of a system is at the same time a way to improve resource utilization efficiency, 
as well as a source of scarcity if not managed properly. Regarding the first, natural and biological systems use much less 
resources, do not need manufacturing (they grow by themselves), and can adapt to a new environment (adaptation) over 
time (evolution) much better if they are compared to human (artificial) electromechanical systems. 

On the other side, a lack of proper complexity management and adequate system design methodology for complex 
system architectures could be a huge source of scarcity. Complexity is driven by society, economy, nature, circumstances, 
requirements, and system capabilities. If not tackled properly, the alternative is a less optimum and often opposite path 
leading to loss, defeat, stagnation, and suffering. For instance, if dwelling systems needs for upcoming decades in terms of 
resource utilization, comfortability, and cost are not met, the result could affect generations to come affect generations to 
come impacting societal development at large. This is something that has happened before, for instance during the Middle 
Ages in Europe after the fall of the Roman empire (Benevolo, 1977) in terms of salubrity, economic stability, and dwelling 

Figure 13. System architecture efficiency based on complexity level versus resource utilization.  
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comforts. Design, engineering, and art complexity comes from many areas (Alexiou et al., 2009), for instance: 

• Multidisciplinary: More and more disciplines are involved in the design process of a complex system (e.g., mechanics, 
electronics, thermal Eng., marketing, etc.), increasing the complexity levels of both system architecture and the 
related design process. The more software, hardware, and user concerns become part of a system, the more efficient 
solutions are needed as shown in Figure 13 (Frey et al., 2011). Furthermore the collaborative (Safavi, 2016)  and 
concurrent nature (Salomone, 2019) of such process increase even more the importance of the design process itself.  

• Environmental: Availability of resources in the natural environment often leads to higher levels of complexity as a 
strategy to cope with change (Norberg and Cumming, 2008). The interaction with the natural environment is about 
dealing with the unexpected, with changing parameters, and often with uncontrollable environments.  

• Resources (supply chain): Manufacturing and natural resources utilization have indeed an intrinsic complexity 
associated to them (Milner et al., 2013). Production constraints, material incompatibility, cost constraints, and more 
intricate geometries in product and system designs are among some of the current and growing challenges directly 
related to system complexity (Duehr et al., 2019).  

• Biological systems are complex by nature and defined by self-organization principles. State-of-the-art techniques for 
software design (Hingston et al., 2008), and structural topology optimization (Rozvany and Lewinski, 2013), among 
many others are based on biological principles and subsystems interaction (Nomura and Asai, 2010). 

• Cultural: Technology and engineering have increasingly become an intrinsic part of complex artistic manifestations 
such as architecture, theater, cinema, etc. (Casti and Karlqvist, 2003). However, at the same time many technology-
driven sectors (e.g., IT, social media, web, etc.) keep integrating more often cultural aspects as part of their service 
and product development, for instance user experience (UX), human-computer interaction, and ubiquitous computing 
among many more (Ekman et al., 2015). 

• Architectural: This is indeed the case when dealing with dwelling systems since the human factor is included, on top 
of all the previous points. Both at the largest scale of urbanism (Walloth et al., 2013) and the simplest level of individual  
homes (Venturi, 1990), architecture is often both based and driven by complexity.  

 Performance 

The search for performance in terms of efficiency, speed, and capability for any system architecture is directly related 
to the process and tools used to implement such achievement. Thus, this process often depends on a specific culture, 
management style, and heritage associated to any given organization or institution  (Kunda, 2009). Figure 14 shows how a 
specific architecture design (A) could incrementally improve its performance (A1 to An) by serving more needs with the same 
amount of resources, but requires a change in both design and methodology to achieve a more efficient solution (B), so 
more requirements could be served with less resources.  

Figure 14. Heritage and incremental improvements (A), versus performance leaps (B) enabled by design and methodology.  
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For an accomplished organization, professional, or discipline practice used to a specific method or process, it is 
complicated to embrace change and follow new paths, especially when a specific way of doing has been prolonged over 
relative long periods of time with relative success (McCalman et al., 2015). However, the study of natural evolution (Herron 
and Freeman, 2013)  shows us that adaptability through variation is the key towards dealing with change and entropy, which 
is indeed one of the most important physics laws in the universe (Charlesworth and Charlesworth, 2017) .However, inherent 
to that process is the fact that those changes are based on heritage, which means they are based on previous proven 
solutions and therefore have been validated at some point. In the everlasting balance game between resources and needs, 
the ubiquitous cultural heritage is often seen as barrier for innovators due to the inertia against change that it brings, and as 
a risk for more conservative managers. Hence, heritage solutions and methods could and should be turned into a positive 
and necessary component within an evolutive design process. This is especially relevant if current capabilities and 
implementation solutions of a system are considered as building blocks towards any new system architecture based upon 
them. They can provide both a feasibility assessment and a design foundation. This is what nature does, it builds upon 
validated solutions, to optimize more fitted performances which continuously adapt to the environment through genetic, 
temporary environmental, and genotype-by-environment variations (Borgnakke and Sonntag, 2013). The balance and 
integration of current and future methods is key for this research, as well as it is to any design and systems engineering 
methodology seeking better performance and faster methods (Braha et al., 2006). Furthermore, this approach also works 
when there is no heritage towards a new system architecture and a new approach needs to be implemented, but there is an 
abundance of feasible subsystem technologies. This is a key objective of this systems engineering and design process which 
is oriented towards those quantum evolutionary leaps (Figure 14) in the systems performance.  

 Multidisciplinarity 

As previous points highlighted, complexity is intrinsic to human development, and stressors such as competitiveness, 
lack of resources, status, etc. push it towards improving the performance level of system architectures, as well as to create 
completely new approaches and methodologies that enable them.  

However, such complexity is multidisciplinary in nature and becomes both a stressor and a constraint, towards 
products and processes. Multidisciplinarity or interdisciplinarity could be addressed from technical, social, and humanities 
standpoints (Finkenthal, 2008), and it has multiple fields of application as standpoints (Frodeman et al., 2017). Thus, the 
need to address a common challenge is both critical and often challenging when considering: [1] multiple design disciplines, 
[2] connections across parameters and geometries, and finally [3] workforce and organizational management aspects. 
Studying them in detail brings several conclusions as follows: 

• Design. Independent of the field of application, a multidisciplinary approach is both an enabler and a stressor. While 
such perspective enables results that are not possible otherwise (e.g., adding energy studies to a mechanical design 
process), it also forces the process to address many more constraints. 

• Connections. Those constraints also lead to the establishment of a process or a framework where they can be tackled. 
When design efforts include not only analytical parameters (e.g., systems engineering) but geometrical information 
as well (e.g., architectural design), complexity increases. This is especially critical towards feasible, reliable, 
competitive, and efficient systems, with a potential great influence in the culture of an organization.  

• Management. Such culture involves managing different types of professionals from creators and generalists to highly 
specialized and technically driven teams. Nevertheless, this also means that resources management needs to be 
tackled at a different scale and from a different perspective. From computational power to schedules, requirements, 
and constraints they all become more complex from a multidisciplinary perspective that requires coordination.  

These aspects are certainly interrelated, and therefore a key question within this area is how to find synergies across 
all of them. Because this stressor conditions design efforts, as well as cost, schedule, and workforce (knowledge) activities, 
among other managerial but necessary aspects, it is certainly at the core of any future complex system development.    

Thus, making more with less, could be then identified as a clear objective towards the improvement of system 
performance and capability, as so it is towards its design methodology. Complexity brings the need of a multidisciplinarity 
approach, which needs to be managed to efficiently address resource utilization (scarcity) and time constraints.   
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 Agility  

Nowadays, time is becoming indeed more and more a design stressor. The pressure towards getting lower time-to-
market solutions, growing user expectations tend to accelerate the need for faster processes especially from a marketing 
standpoint (Singhania et al., 2019). Social media and other new trends in the era of information technology also contribute 
to create and enhance that sense of immediacy (Petro, 2017).  

Agility however is not only about time, since it has lot to do as well with the leanness in resource utilization of any 
design and development process. The less time and resources are needed, the faster, easier, and therefore more agile any 
methodology becomes. 

Regarding temporal constraints, the notion of agility involves not only the speed of the design process, but also the 
capability of such process to quickly change due to variations in requirements, constraints, upgrades, etc. This is critical in 
any present and future system design engineering effort in highly competitive environments.  

From a leanness standpoint, how those resources are used is the essence. In the development of a complex system, 
not only the number of resources is relevant but also how efficient that use is, since both enable flexibility and agility. These 
resources include workforce, people, power, computing power, hardware, time, schedule compatibility, among others. 

 Interconnection and Networks 

Within the context of complex system architectures, another key stressor and enabler quite characteristic of current 
times, is the interconnection among systems and the concept of network. These have multiple sides and represent a valuable 
and new contemporary feature, that can also be seen in the natural world.  

The development of computer science during the last century and the increasing use of data across products and 
services is becoming today a new standard changing both designs and methodologies. This is something upcoming sections 
will tackle from technique and modeling standpoints. However, it is already a trend changing forever how things are done. 
The integration of data-driven techniques not only make systems smarter (e.g., smartphones or autonomous cars versus 
traditional versions), but they also foster the connection between the system and its environment (e.g., car + GPS). 

 A perspective based on data brings a standpoint of interconnection between all subsystems integrating a system of 
systems (SoS), as well as in-between the system and its functional or environmental framework. In essence, data 
measurement means comparison, and comparison means interconnections and network thinking (Mitchell, 2006).  

Consequently, modern complex systems more and more rely on data to improve their operations, optimize their 
performance, and even to condition new generations of their designs. Such complexity brings the concept of interconnected 
network (Duato et al., 2003) its components and subsystems, as well as to  their environments and frameworks of operations. 
Therefore, designing complex architecture systems is becoming more and more a networked process that needs to consider 
its present and future environmental context. This is a both new enabler and stressor of current times, with critical 
consequences across products, services, platforms, and processes (Parker et al., 2016).  

 Design Heritage 

Heritage solutions that are validated and proven approaches towards specific design challenges are indeed a 
powerful stressor in terms of systems design. Heritage brings pressure, influence, and opportunity towards risk assessment, 
decision making, and design principles for any complex system design and implementation. This applies to any organization, 
field, or even professional practice. In high technology fields such space exploration, the notion of heritage, and thus the 
readiness and feasibility of a future technology or system has been standardized, measured, and ruled. Technology 
readiness levels (TRLs, Mankins, 2009) present a strategy across fields to assess risk, planned technology development, 
and most importantly assess system feasibility and project management (Blokdyk, 2019). Thus, heritage becomes a highly 
relevant stressor, as well as an enabler towards new system developments since it conditions system assessment, 
development, and planning especially under a context of increasing scarcity. Heritage provides a strong foundation, which 
does not have to be considered as a constraint towards any development.  

While the inclusion of heritage in a design process could be perceived as a hindrance towards the infusion or even 
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the disruption of new solutions (Henchoz and Mirande, 2014), it could also be a reinforcement that opens doors towards truly 
quantum-leap solution across technical fields. The next section will introduce the notion that technical heritage, natural 
selection, and evolution processes are connected at many levels.  

 Innovation 

Changes in society, the environment, and the operational context of a system often drive a constant need for new 
solutions, improvements, and upgrades that can ripple throughout design and development methods in any industry. Such 
need usually is managed and conditioned by resource availability, technical constraints, market needs, behaviors, and 
cultural factors  (An and Rau, 2019), among many others defining a posture that could be conservative, incremental, or 
radical. In other words, innovation is indeed an interrelated network of inventions, innovations, and needs (Frodeman et al., 
2017) that could be understood through both static and dynamic models (Narayanan and O’Connor, 2010). Disruption is the 
more radical approach towards innovation, and it has deeper consequences in the context of system design (Williams, 2010) 
and across the full system lifecycle (Paetz, 2014) while conditioning market infusion (Figure 15). 

In our current and globalized world, innovation as a construct is starting to be understood as something on the edge 
of a greater change or wave (de la Tour et al., 2020). Traditionally very disruptive technologies capable of creating full 
technical ecosystems such as the invention of internet, the distributed electric power, the radio, biotech, or blockchain tend 
to require large amounts of investment and time, before the technology is ready. However, nowadays this is changing and 
new trends like deep-tech (European Union, 2019) see a combination of biology, computer technology, and new 
manufacturing and energy technologies, among others as a way to speed this dramatically (De la Tour et al., 2017).  

 Cultural Disruption: Methods and Products 

In summary today’s complex architecture systems across technical and creative fields, require a multidisciplinary 
standpoint for their development. From single components (e.g., sunglasses) to large complex systems (e.g., modern 
building), they all need a multidisciplinary approach towards design, optimization, and validation. These standpoints not only 
include quantifiable disciplines such as mechanical engineering, thermal design, structural analysis, data management, etc. 
(Pahl et al., 2007), but also qualifiable ones such as aesthetics or user experience (UX). New methods, such as evolutionary 
techniques have been increasingly embraced from digital (Bonanomi, 2019), software, and computer science perspectives. 
However, hardware-based processes still rely heavily on linear and non-evolutionary workflows (Braha et al., 2006) rather 
than more disruptive approaches capable of dealing with more uncertainty and complexity.  

However, these iterative design processes often use a serial approach, so the result of a disciplinary step becomes 
the input for the next one, and so on. For instance, an artist conceptualizes a design that the engineering team will have to 
make implementable considering architectural and mechanical aspects, and then structural, thermal, material assessment, 
etc. Finally, a manufacturing team will make it cost effective so it can be produced (one-off, series, or mass produced) while 

Figure 15. Everest Rogers’ diffusion of innovation per Paetz, 2014.  
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marketing and finance teams flush out all other subsequent details (Kamrani et al., 2016). This process can be tedious, 
costly, and very complex, regardless the sector. Mass production increases complexity due to large production volume 
making the most of automated processes. On the other end, short-series products endure the burden of ad-hoc methods 
and higher cost. From both perspectives, the increasing complexity driven by new design requirements and production 
stressors tend to challenge the method itself, and often requires exploring, testing, infusing, and maturing improvements.  

The last decades have seen a growing increase in the rapid prototyping approach (Liou, 2007), partially due to 
improvements in both digital modeling and 3D printing for instance. The resulting workflow is well stablished today, going 
from fast-handmade architecture or product designs in workshops and studios worldwide, to elaborated 3D printed 
prototypes in engineering (Cooper, 2001), product design, archeology, or medical  (Bártolo et al., 2012) fields. The design 
approach is completed with fully functional prototyped robotic and electromechanical systems (Macdonald et al., 2014, Jones 
and Flynn, 1993). This has also been enhanced recently with machine-driven methodologies such as generative design 
workflows (Wujec, 2017). These advancements are becoming more affordable and available in the areas of design (e.g., 
BIM), analysis (e.g., Multiphysics FEA), and rapid prototyping tools (Killi, 2017), as well as digital and rapid manufacturing 
(Hopkinson et al., 2006). These new tools allow addressing multidimensional problems, with both synergetic and hands-on 
experience so architects, designers, and engineers can make decisions faster and disregard unfeasible paths. Furthermore, 
not only tools and methods have evolved, but the management of design competencies and organizational schemes (Bonjour 
and Micaëlli, 2010) has also been evolving and is considered as a key aspect in the culture of a company. 

The combination of these methods allows us to approach the challenge of complex system architecture development 
from a full cycle perspective, so design, manufacturing, and operations are starting to be become more closely 
interconnected and potentially optimized simultaneously. Computational trends based on data-driven and machine learning 
methodologies (e.g., artificial intelligence or AI) such as generative design (Gross et al., 2018), also present a feasible 
framework to tackle all aspects of the creative and implementation business. Figure 17 shows a concept research project 
developed between Autodesk and JPL that used AI-driven techniques to optimize structures and reduce mass while 
considering multiple manufacturing methods (traditional and otherwise). With or without artificial intelligence, if data-driven 
computational methods are combined with a complete full-cycle design flow, multiple discipline standpoints can be connected 
and balanced towards a faster and more adaptable digital manufacturing approach (Wang and Nee, 2009).  

The need to consider new methods as well as the new capabilities that are already available, defines the last stressor 
considered within this research, cultural disruption. More and more, these new ways are a must because: [1] new design 
requirements are not feasible without them, [2] competitiveness forces the reduction in cost while increasing capability and 
agility, [3] overall resource scarcity forces new trends. While disruptive innovation becomes the modern currency within new 
companies (e.g., start-ups), in older and bigger organizations (Fried and Hansson, 2010) the question is about how to fully 
embrace such new processes in harmony with an already established (and perhaps rigid) cultural heritage. New 
methodologies (Figure 16), workflows, and solutions do stress established methods in any given organization. They affect 

Figure 16. Serial versus network design methodologies with time 
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risk perception and influence any outcome based on environmental and cultural changes. Nevertheless, traditional, and 
culturally accepted approaches could be combined with more disruptive methods. Most likely they must do so since heritage 
methodologies often not only present a solid foundation but also a broadly distributed platform for news ways to be 
implemented. 

 Conclusion 

Designing complex hardware-based systems today must address a series of stressors due to increasing changes in 
the context of many technical practices. These stressors, which previous sections summarized, not only influence any system 
design practice currently, but they are also a growing trend. The lack of actual heritage for a new system, the increase in 
resource scarcity, and the cultural influence of an established way of doing business raises a question that affect both the 
product result as well as the design process behind it: How do we make a multidisciplinary design process efficient and 
disruptive enough (Rowan, 2019) when a challenge is being addressed for the first time while potential outcomes require a 
radical new approach and new methodologies are most likely needed?   

Considering the inherent complexity behind such system architectures across fields, the goal in answering that 
question could be more about creating a solid, universal, and adaptable foundation that enables such new design, rather 
than a static approach which could easily become too tailored to a specific field or given deterministic context. Within the 
nature of these stressors lies the need for adaptability in any approach tackling them in a robust way. A method to find faster 
and better mature system architectures offers a powerful platform to reduce the use of resources (e.g., workforce, 
computation, etc.) across the system lifecycle, from exploration and ideation to implementation and operations. 

Today’s world is dramatically changing from multiple perspectives at once. Any process aiming to design, develop, 
and implement present and future systems needs to address and embrace those changing conditions. Furthermore, those 
systems themselves should be able to address rapid changing conditions, reduce resource utilization, and embrace all 
disruptive capabilities that new design and implementation methodologies can enable.    

Figure 17. Concept by Autodesk – JPL using AI-driven generative design tools to optimize structures. (Autodesk, Core77 et al., 2019) 
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DESIGN, SYSTEMS, AND EVOLUTION 
Literature Review 

CHAPTER 3 

 
“He who makes a question becomes a fool for five minutes. 

But he who does not asks a question remains a fool forever.” 
Chinese Proverb 
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3. Design, Systems, and Evolution: Literature Review 
This chapter addresses heritage, state-of-the-art, and related gaps within theories, tools, and applied methodologies 

involved in the design, description, development, and study of complex system architectures. These approaches and 
practices come from engineering, biology, and computer science realms and they represent the foundation toward the 
development of a novel and complementary evolutive system design approach.  

Thus, this chapter is structured in four parts. The first three sections address methodologies within these areas:  

• Design engineering (3.1). This section reviews design methodologies and theories across human history from a 
multidisciplinary standpoint towards system architectures and complex systems.  

• Systems engineering (3.2), including practice, techniques, and approaches used and validated across industries. 

• Evolutionary theories and design (3.3). This section includes principles, methods, and applications across domains 
and disciplines. This section is quite foundational since it tackles both an overview of natural evolution principles, as 
well as their application to current evolutionary computational and other engineering techniques.  

These reviews of the state-of-the art methods are always done under the perspective of hardware-based system 
architectures. The overarching objective it to address design methodologies considering constraints such as complexity, 
heritage, scarcity, and agility, among others. While each section presents conclusions and gaps under the light of this 
research, the last section 3.4 introduces an overall conclusion as a keystone for this thesis.  

Multiple reasons are behind this literature review across domains. They are summarized in the following points:  

• Designing for complexity, or in other words, tackling the process of designing and managing the design process of 
a complex system architecture has been an evolving practice since the beginnings of civilization. In recent decades, 
the notion of design has not only been applied to hardware but also to software and other services. It is key then to 
understand and identify key gaps across the full spectrum of such activity while considering: [1] time, [2] life cycle, [3] 
field, [4] software and hardware capability, [5] efficiency, and [6] speed, among many more. Within the domain of 
hardware-based systems, this point tackles the geometrical definition and management of parts, components, 
assemblies, and other technical visualizations.  

• The other side of this process is to manage non-geometrical aspects of a complex system architecture, including 
documentation, development, definition, optimization bases, etc. This is the domain of systems engineering (SE) and 
hence this literature reviews both theory and practice trends within this area. Nevertheless, within the vast field of SE 
this research especially addresses methodologies that are oriented towards a more efficient way to tackle large and 
complex systems, independently of their software or hardware nature.  

• During the last decades especially, complexity and efficiency have often been tackled across technical fields with 
nature-inspired methodologies. Biology in general, and natural selection in particular have indeed become two 
critical areas in such approach. For instance, evolutionary computational techniques such as genetic algorithms in 
the 90s spun off a new approach towards both programming and systems optimization. Hence, it is critical to review 
all available literature towards: [1] core natural principles used by such techniques, [2] practical applications from 
systems, computation, software, and hardware design standpoints.  

While these areas and domains might seem unconnected, the reality is that they are tightly involved in the design 
and design optimization of any complex system. On the other hand, such broad perspective could also present multiple 
potential gaps across these fields, and most importantly across key connections and synergies between them. A method to 
tackle a multidisciplinary problem requires a multidisciplinary foundation. Following sections present findings and reviews of 
such state-of-the-art techniques as well as those critical design gaps among them.  

Section 1.8 already presented multiple definitions used within this research. Nevertheless, the fields of engineering 
design and systems engineering could be interwoven across some of these methodologies and techniques. For instance, 
concepts within the fields of design thinking and engineering systems thinking are overlapped (Greene et al., 2017). Hence, 
in these cases such links should be noted, and their approach will be studied only in one of the sections.   
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 Design Engineering Paradigms 

 Approach and Categories 

Within the research area of design engineering there are two interconnected main subjects addressed by this 
literature review. First, are design theories and models (Chakrabarti and Blessing, 2014) developed over the last decades, 
which address different approaches toward design processes themselves, as well as targeted outcomes. From methods to 
facilitate the discovery of innovative solutions, to approaches developed towards their implementation through machine 
learning and AI, this research considers both sides. Furthermore, the spectrum from modern design theory protocols (Gero, 
2011) to design approach techniques such as TRIZ (Fiorineschi et al., 2015) is also fully covered. Due to the broad extension 
of the human design activity, these design engineering theories are organized in categories as follows: 

ID Code Category Time Period  Field Driven by Tools (See Table 11) 

DE1 Classical 300 BC to 14th C. Architecture  Artist perspective To1 

DE2 Renaissance  14th C. to 17th C. Architecture, Art Artist, Method To1 

DE3 Enlightenment 17th C. to 18th C. Architecture, Art, Objects Artist, Knowledge To1 

DE4 Modern 19th C. to 20th C. Arch., Product, Process Objective, Method To1 

DE5 Descriptive 50s to 10s Product, Process Concepts To1, To2 

DE6 Prescriptive 40s to 10s Product, Process Analysis To1, To2, To3 

DE7 Design 
thinking 

50s to 10s Product, Process, 
Service 

Framework To1, To2 

DE8 Innovative 50s to Today Product, Process, 
Service 

New systems To1, To2 

DE9 Method-driven 90s to Today Product, Process, Opt. Statistics To1, To2, To3 

DE10 Process-
driven 

10s to Today Product, Service, Opt. Ontology To2, To3, To3 

DE11 Integrative  10s to Today Product, Optimization Algorithms To1, To2, To3, To4 

DE12 Evolutionary  90s to Today Product, Optimization Evolution principles To2, To3, T4 
Table 9. Design engineering theories organized in categories by key characteristics and historical period.  

The second review area represents applied design methods and tools enabling specific uses and subsequent 
design workflows. For instance, these include fast concept hand-drawing techniques and integrated BIM methods (Deutsch, 
2011). These methodologies enable different types of results at different design phases. This research is agnostic in terms 
of tools, but these families of solutions present a specific way to tackle design challenges, which can condition its practice.   

 Design Phases for Products and Processes 

Regardless the field of application, going from one idea to the actual fully-functional physical system is usually a long 
process that requires multiple iterative steps (Dieter and Schmidt, 2012). Any design-to-implementation process aspiring to 
produce a hardware-based system at the end most likely will involve multiple looped steps and workflows to design, validate, 
and implement an idea. Moreover, this most likely considers both software and hardware. Across theories, models, and 
authors multiple and different steps or phases are considered from both practice and theory standpoints.  

Figure 18. Product development phases after Dieter and Schmidt, 2012. 
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In general terms, multiple phases of product design could be organized in five main groups (Buede, 2009; Cross, 
2008; Dieter and Schmidt, 2012; Dym, 2013): [1] problem exploration, definition and planning, [2] concept / preliminary 
design, [3] embodiment design, [4] detailed design, [5] evaluation. While descriptive methods start with a problem exploration 
phase followed by concept design activities, prescriptive methods begin the process with the analytical study of the problem, 
followed by analysis and synthesis of the preliminary concepts. Understanding and identifying the overall design phases, as 
well as main barriers and connections among them is key to better understand the broad spectrum of design theories. 
Furthermore, synergies, overlaps, and connections among design phases, also help improving the quality and reliability of 
the process as well as the system architecture itself. Table 10 shows multiple considerations regarding different design 
phases across techniques as well as their main barriers and key connections. The next section 3.1.3. studies in detail those 
groups of design engineering theories and summarizes their most important characteristics.  
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Details Main barrier Key links 

1 Planning X X X X X X X X X  
Resources, expectations, cost, 
scheduling, workforce, team, etc. 

Client All 

2 Problem  X X X X X X X X X 

Customer needs, requirements, 
constraints, problem definition, 
information gathering, feasibility, 
heritage, reverse engineering, etc. 

Client, 
Heritage 

3,6,7,13 

3 Concept D. X X X X X X X X X X 

Generation, evaluation (e.g., 
decision matrix and Pugh matrix), 
morphological analysis, synectics, 
brainstorming, etc. 

Designer 4,9,12 

4 Embodiment D. X X X X X X X X X X 

Preliminary design, architecture, 
materials, manufacturing, 
configuration, parametric, 
tolerances, diagrams, layouts, etc. 

Culture 
Resources 

3,9,10,12 

5 Detailed D. X X X X X X  X X X CAD, drawing, specifications, etc. Culture 4,6,7,9,10 

6 Analysis  X X X X   X X X FEA, technical analysis, etc. 
Tools, 
Knowledge 

5,7 

7 Optimization    X    X X X Optimization techniques Tools 6,5,3 

8 Testing  X  X    X X  Prototyping, testing methods, etc. Culture 7,5 

9 Document.  X X X X    X   Knowledge, visualization, eval. Tools 5,11,12 

10 Implementation  X  X    X   
Qualification, manufacturing, post-
processing 

Technology 5,9 

11 Delivery  X  X    X   Production planning Client 5,10 

12 Marketing / Com.  X  X    X   Visualization Society All 

13 Operations        X  X  Client All 

14 Decommission        X    Culture 1,3, 

15 Recycling        X    Culture All 

Table 10. Engineering design phases across multiple design theories.  
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 Literature Review  

The goal of this section is not to present a complete list of techniques from a chronological or development standpoint, 
but rather a comprehensive reference of the most relevant theories and methods to this date affecting both [1] how a 
hardware-based complex system can be described and designed, and [2] all design thinking methodologies associated to 
its development. Within the vast exploration of design methods over the years (Wynn and Clarkson, 2018), this review as 
the previous section 1.7 about domains explained, merges both architecture and engineering practices across history.  

3.1.3.1. Traditional Design Theories 

Perhaps one of the first attempts towards the study of what 
it takes to create architecture, and therefore its design 
methodology could be found during the Roman Empire. The ten 
volumes of De architectura, written by Roman architect, author, 
and civil engineer Marcus Vitruvius Pollio (80-15 BC) address the 
three key principles of building design such as  firmitas (strength), 
utilitas (utility), and venustas (beauty) (Pollio, 2018). These 
principles became later a foundational part of many modern 
design theories, and they established the first design principle 
behind not only building developments, but also complex 
machines at the time such weapons, dewatering machines, and 
military devices, among others. His approach not only considered 
the design of the object itself, but also the role of the designer and its context addressing weather, location, logistics, etc.  

During the Renaissance, Leon Battista Alberti contributed to the beginnings of a systematic design theory by 
addressing critical theoretical principles in the design of buildings (Lewis, 2020). The number of components, the control of 
their outline, and their position became the guidelines of his design methodology as explained in his ten books De re 
aedificatoria (On the Art of Building). The development of complex systems such as a buildings, during this time was based 
on numerical relationships ruling the work of architects and artists such as Leonardo Da Vinci (Zöllner et al., 2003), 
Brunelleschi, and Bramante (Roth, 1994). Thus, the object of the design process still goes through a heuristic process of 
conceptualization, but there is already an initial analysis of the problem and a synthesis of the solution. Quite often, a trial 
and error approach validates the final implementation, and influences the theorical principles afterwards.   

During the age of Enlightenment, a renewed sense of rationality in the design practice was developed, bringing the 
notion of unreality as a way for design to explore possibilities that cannot be implemented in real life. The works of architects 
such as Ledoux or Boullee are paradigms of this approach, opening the space to a rational exploration of impossibilities.  

The industrial revolution started to merge again engineering and classic 
architecture, leading to new range of materials, uses, and technologies. From the 
works of Violet-le-Duc and the  Arts and Crafts movement in the late XIX century 
to the Art Nouveau, the practice of design not only affects the product itself (e.g., 
building, furniture, decoration objects, etc.), but also encourages reflection about 
the process itself (Benevolo, 1977). This served as a foundation of many 
developments occurring in the practice of engineering and architecture design 
during the Modern era in the beginning of the XIX century. Among many 
contributors of this time to the development, theory, and practice of complex 
systems from both architecture and product design there are two very relevant. 
First, the Bauhaus school founded by Walter Gropius in 1919, which made an 
emphasis not only on the practicality and innovation of the product, but also the 
constraints of cost and production. Secondly, the figure of Le Corbusier is also 
very critical among all architects, designers, and engineers of the time. He 
introduced key systematic principles regarding both the design construct and the 

design process itself, while enabling an optimization of such designs through combinations of key design features such as 

Figure 19. Ancient Greek house drawing by Vitruvius 

Figure 20.The Modulor. Le Corbusier 1943.  
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reinforced concrete columns, standardized stairs, and open floors (Benton and Cohen, 2019). In his book Five Points of a 
New Architecture, he presents a systematic approach to the practice of architecture. His work also highlighted the importance 
of initial analysis in the synthesis of architecture solutions (Jencks, 2000), also affecting product design after World War II. 

Descriptive design methods have been used 
since the beginning of time. However, it is in the 
contemporary world and since the beginning of the XX 
century when the theories about the design practice and 
design engineering methods really advance. Such 
design methods were later described by people like 
French in 1985  (Cross, 2008) in which they start with the 
exploration of the problem, then with the generation of a 
concept that is evaluated later, and finally with its 
communication. This approach could be fast, but it is 
limited in the use of optimization and parametric tools to 
assess other solutions. Modern design approaches 
divide this complex problem into a hierarchical construct, 
using abstraction, modularity, and problem-thinking from 
both top-down and bottom-up approaches, as well as the linearly and iterative waterfall approaches (Shukla and Krishnan, 
2016). A simplified, yet very powerful approach to the design process was given by Morris Asimow based on a series multiple 
design sub-processes (Asimov, 1976). These sub-processes are based on information gathering (general and specific), 
design operations, and the evaluation of the outcome. This simple approach is repeated iteratively to explore alternative 
solutions, develop mathematical models, define subsystems, and address its implementation (Dieter and Schmidt, 2012).  

The modern systematic design approach has developed since the 
late sixties by authors such as Pahl, Beitz, March, and organizations such 
as the Verein Deutscher Ingenieure (VDI). They presented a prescriptive 
methodology (Cross, 2008), based on system interrelationship. Energy, 
material, and signals are the key drivers at the base of functional, working, 
constructional, and system relationships that organize the designer 
approach toward the challenge ahead. Under this light, “designing is the 
optimization of given objectives, against conflicting constraints” (Pahl et al. 
2007). Thus, both product and process design are organized around basic 
phases of analysis, synthesis, and development. This specific design 
method influences the full design process including: problem and task 
definition, information gathering, concept generation, evaluation, 
embodiment design and detail design (Dieter and Schmidt, 2012). While 
there are iterative cycles in between such phases, that enable among other 
things, the optimization of the final solution, this approach could become 
rigid and often leads to strict procedures within the culture of an 
organization, due to lead-times and risk posture. This methodology is widely 
distributed, and often aims towards developing a point design or a defined 
family of solutions. It is more prone towards quantitative requirements rather 
than qualitative ones, and it discretizes all disciplines involved.  

Within the systematic view, theorists such as March proposed a 
system based on a production-deduction-induction scheme. The analysis of 
requirements produces presuppositions that the designer could use to 
foresee and analyze the performance of a design, as well as to make 
changes accordingly (Cross, 2008). This is an interesting approach since 

while being systematic in nature, it addresses the design approach from an intuitive and psychological standpoint. 
Nevertheless, the traditional systematic design approach towards analysis, synthesis, and evaluation, could also be altered 

Figure 22. Systematic System Design (Pahl 
and Beith 2007).  

Figure 21. Asimow design process (Dieter and Schmidt, 2012).  
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creating a bridge between descriptive and prescriptive methods when it comes to the design process. As such, the design 
process could start from a synthesis approach leading to analysis and evaluation (Seider et al., 2016), as chemistry 
engineering exemplifies. Under this prescriptive perspective the design space was defined by Ullman, Wood and Craig in 
the 90s (Ullman et al., 1990) and Dym reapplied it in this century (Dym, 2013) as Figure 23 shows:  

A constant and universal rule in this evolution of design engineering is that the more complex problems are, the better 
methods designers need  (Jones, 1992). Many of these design processes are conceptually organized as linear or in a 
waterfall scheme with multiple iterative phases. However, also in the 50s, Evans describe the methodology to design complex 
ships within a spiral (Figure 24) approach (Evans, 1959), addressing the complexity in between those phases.   

With origins in the 50s and authors such as John E. Arnold, 
design thinking theories addressed a series of cognitive processes in 
order to develop new and innovative concepts across industrial, social, 
information technology, software, educational, and service areas, among 
others (Curedale, 2013).  

Design thinking presents three main areas, as defined by Plattner 
et al., across all tools and techniques within this approach (Plattner et 
al., 2010): [1] exploring problem space, [2] exploring solutions space, 
and [3] aligning both iteratively. While the applications are plenty for this 
approach, from a hardware-based standpoint the prototyping phase is 
critical (Greene et al., 2017). This is clearly enhanced by the rise of new 
rapid manufacturing techniques (Hopkinson et al., 2006) such as 3D 
printing, as well as the infusion of smart devices and mechatronics in our 
daily lives. This involves a design process tackling: [1] empathy with the 
problem (understanding and observation), [2] synthesis, [3] ideation, [4] 
prototyping, and [5] testing under an iterative approach among these 

steps.   These are also related to the creative process phases as described by: [a] insight (problem formulation, [b] 
preparation (conscious solution attempt), [c] incubation (no conscious effort), [d] illumination (emergence of ideas), and [e] 
verification (conscious development) (Lawson, 2014). Within the design thinking perspective, problem and solution evolve 
together (Dorst and Cross, 2001) enabling further innovation. Such approach presents flexibility, but at the same time lacks 

Figure 24. Basic design approach. (Evans, 1959) 

Figure 23. Design environment (Ullman et al., 1990) 
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the structure that systematic approaches present. Agility and analysis are not necessarily part of this approach which is more 
concentrated on initial phases of design engineering.  

This creative platform led to other approximations based on the involvement of the human perspective in problem-
solving techniques such as human-centered design (HCD), with the objective of addressing user needs, improving user 
experience, reducing stress, improving competitive advantage, and enhancing sustainability (Rosenbrock, 1989).  

Similarly, User-centered design (UCD) develops a framework that considers goals, users, environment, tasks, and 
product workflows (Norman and Draper, 2018). The objective of such approach is to simplify and clarify the process, while 

making the most of system restrictions and constraints. For this 
purpose, the system considers the person, the scenario, and the 
use case. Similarly related techniques enhance the design 
methodology with an emphatic use of tests (Rubin et al., 2008) 
and questionnaires  (Vredenburg et al., 2002) as key tools.  

Within the space of design theories and methodologies 
there is another group of focused techniques developed towards 
the pursuit of more innovative designs. Among of them is the 
widely distributed technique of brainstorming, which was created 
in the 60s as a way to explore the trade space of ideas (Osborn, 
1993). This is a facilitated and very effective activity that gathers 
all ideas (including wild ones) from participants allowing people to 
build new ideas upon someone else’s. Then these ideas are 
combined synergistically to allow a collective development of new 
and unforeseen options. See Figure 26 (Gwaur, 2016) to see the 
initial process within this approach.  

Along these lines, Synectics is also a problem solving 
methodology for groups developed by George Prince and Gordon 
Williams (Gordon, 1961; Prince, 2012). The process uses the 
metaphor as an idea development technique to make interesting 
ideas feasible by identifying new paths of action.  

Related to these approaches, TRIZ theory was developed by Altshuller in the 80s. It is based on 40 systematic 
principles (Altshuller, 1984) that define in principle any complex system. He obtained these principles after studying 
thousands of inventions. These principles when applied to a new system often contradict themselves. By managing such 
contradiction, he developed a problem-solving approach that tackles the evolution of the system and the development of 

Figure 25. Design thinking methodology (Plattner and Meinel, 2009) 

Figure 26. Brainstorming Process after Osborn. (Gwaur, 2016). 
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new and innovative solutions. This technique has influenced 
many others techniques such as systematic inventive thinking 
or SIT (Horowitz, 1999) and OSTM-TRIZ (Fiorineschi et al., 
2015) that uses a network of problems (NoP, Figure 27) 
related to key TRIZ principles (Becattini et al., 2015). The use 
of NoP to divide a problem into smaller problems is based on 
the work of Khomenko about how to start the design process 
of complex systems. This could be summarized by several  
basic operations between problems and partial solutions such 
as [1] a problem that implies a problem, [2] a problem that can 
be solved and lead to a partial solution, [3] a problem that can 
be partially solved by a partial solution, [4] a partial solution 
that becomes a problem, [5] a problem that could be solved by 
a partial solution, and [6] a partial solution that remains a 
solution (Cavallucci, 2017). The design problem is therefore 
decomposed in subsystems, subproblems, etc. Then it is 
mapped using these mechanisms which will lead to a network 
of contradictions based on known TRIZ principles.   

Algorithmic processes such as ARIZ have also evolved 
from TRIZ to use current improvements in available computing 
capabilities. They are based on contradiction matrixes and 
evolution laws to predict improvements on the system. 
Furthermore, the analysis of substance fields (SuField) allows 
one to address the structure of the system through an 
algorithmic approach and to transform it so more solutions 
could be obtained. These techniques are widely used in 
multiple business sectors, although they present limitations 

when creating ‘quantum leaps’, or in other words new and highly innovative systems for other uses. All these methods divide 
a complex problem or system into smaller challenges. 

C-K theory was developed by Armand Hatchuel as an innovative design approach based on a series of operations 
between the concept space (C) and the knowledge space (K) as Figure 29 shows (Ingi, 2009). The goal was to create a 
method that could bring innovative solutions, independent of the field, but also capable of embracing ‘crazy’ or disruptive 
concepts. The disjunction mechanism proposes new concepts, and those are expanded within the C space. Then using 
conjunctions new knowledge is created. Within this process new concepts can be created or conceptualized easily.  

Similarly, morphological analysis was developed by Fritz Zwicky to address multidisciplinary complex problems that 
cannot be quantifiable (Ritchey, 2002). With applications on many technical and industrial fields, this approach assesses the 
concepts through a series or cross-consistency assessments (CAA). These allow the problem to be divided so ‘trivial’ 
questions can be removed, which simplifies, and eases the design process. However, this approach does not include the 
possibility of addressing geometry properly. Furthermore, some multidisciplinary problems are too complex to be divided into 
components or parts that could be addressed by this method.  

Another category of design theory refers to those method-based approaches developed upon scientific, algorithmic, 
mathematical, and statistical principles. Among those is axiomatic design (AD) (Farid and Suh, 2016), which is quite 
definitional. It was developed towards the beginning of the century to look at the design process from a mathematical 
standpoint. Based on axioms that present an independence from functional requirements and a reduction of information, a 

Figure 27. Example of network of problems. (Fiorineschi et al., 2015) 
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matrix is used to analyze the process to advance decision making within the system design. This method has been applied 
in the optimization of lifecycle product developments extensively (Gumus, 2005).       

Design research as a field (Robert and Curedale, 2013) encompasses many perspectives towards understanding, 
and therefore improving the design process. Within it, design research methodology (DRM) uses the scientific method to 
refine and better define requirements, as well as to enable general improvements of the design method by bringing 
systematically previous results and overviews of existing research into the design process with scientific rigor. DRM brings 
more rigorous methods and guidelines that can be applied to the design research while enabling a more efficient design 
workflow (Blessing and Chakrabarti, 2009). The objective here is to address how to make a product more successful, how 
such product is created, and how to increase the probabilities for such product to be successful. This framework is intended 
to support both design and process development as well. This method includes the following phases (Figure 30): [1] research 
clarification (literature analysis), [2] descriptive study (empirical data), [3] prescriptive study (assumption and synthesis), and 

[4] descriptive study. Networks of influencing factors 
are developed to understand the design situation, 
while reference models represent both the current 
design situation and the impact model towards a 
desired situation.  

A limitation of DRM is the fact that is does not 
provide a design technique by itself, but rather a 
framework to support the design process. Its 
thoroughness also makes the process not very 
flexible towards new ideas and techniques since an 
impact model needs to be in sight to define a goal. 
This presents quite a contrast with more flexible 
concepts such as C-K theory towards new descriptive 
ideas. Table 12 presents a summary of all key 
aspects and characteristics relevant to this research 
approach as well as other related and similar 
techniques.  

Figure 29. Representation of C-K process, and creation of ‘crazy’ concepts.  Figure 29. Representation of C-K process, and creation of ‘crazy’ concepts.  

Figure 30. DRM framework after Blessing and Chakrabarti, 2009. 
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To summarize some other mathematic-driven approaches, Taguchi (Nair et al., 1992) and Six Sigma (Pande et al., 
2000) methodologies are based on statistical data as well as parametric values with the objective of improving the quality 
and reliability of current system designs and associated processes.  

Studying design theories from a process-driven design standpoint there are several key relevant approaches. 
Design ontologies such as Gero’s function-behavior-structure or FBS (Gero and Kannengiesser, 2014) study how the design 
process actually happens, presenting later applications and implications. FBS is based on three constructs as Figure 31 
shows. These include [1] function (F) which represents the teleology of the systems (what purpose of the artifact is), [2] 
behavior (B) or what the system does, and finally [3] structure (S) or what artifacts or systems are made of and their internal 
relationships. Designing within this framework is based on operations between these phases (Figure 31). Formulation (1) 
goes from F to B, while synthesis goes from B to S. Behavior is split into expected and derived behavior, and it is separated 
from the structure, with reformulation describing all iterations between them. Analysis goes from S to B, and finally 
documentation departures from S. While this approach explains quite well some the basics of design mechanisms, the 
process does not include very well other aspects such as materiality (substance) in the design process, conceptual 
designing, highly dynamic processes, and fast environmental changes where the design activity actually happens (Gero and 
Kannengiesser, 2004). 

The Munich Procedural Model (MPM) is a process-driven 
approach based on previous systems engineering and design 
engineer approaches as Lindeman presents on Chakrabarti’s 
book (Chakrabarti and Blessing, 2014). Within this approach a 
series of key points need to be addressed for a design to be 
completed. This approach is mainly used for analysis purposes 
and problem solving. These parameters (Figure 32) are 
integrated within a networked scheme and they include: goal 
planning, goal analysis, properties assessment, ensuring goal 
achievement, decision making, task structuring, and solution 
generation (Lindemann, 2009).   

Along these lines, the FORFLOW model (Chakrabarti and 
Blessing, 2014) was also developed to address product 
development planning presenting six major steps: clarification, 
function and structure determination, solution principles and 
structures, concept development, system design, production 
supervision, and starting point (Rodenacker, 2013). 

Figure 31. Gero’s FBS framework (Gero and Kannengiesser, 2014). 

Figure 32. Munich procedural model. (Chakrabarti and 
Blessing, 2014) after (Lindemann, 2009). 
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Concurrent engineering (CE) is a design engineering methodology (Salomone, 2019) widely distributed through some 
complex industrial sectors such as aerospace, energy, or product design that tackles complex system design methodology. 
Instead of following an iterative or waterfall approach, in which each discipline or design phase happens one after the next 
one, (Prasad, 1995) in CE they all happen simultaneously (Figure 33). A series of interconnected models capture all key 
functions of a complex system architecture such as energy, structures, thermal, communication, manufacturing, electronics, 
etc. Once objectives, requirements, and constraints are set, engineering teams or individuals can keep assessing and 
modifing their design models based on feedback from other disciplines, while their changes affect others (Backhouse and 
Brookes, 1996a). This process continues until an optimal solution is obtained, and often it is connected to historical heritage 
data and other statistical information models (Eastman, 2012). This process could be extremely fast in finding a compromised 
solution, although due to the speed and the type of historical data being used, it could be quite problematic towards 
developing new innovative or disruptive solutions especially without previous and relevant heritage.   

Set-based design is a subset of this methodology. It is a highly effective and efficient concurrent design methodology 
developed by Toyota in the 90s (Liker et al., 1995). In Toyota’s model, the emphasis on communication across teams under 
a matrix organization approach is as important as the technical design work itself.  Ironically, the objective of this concurrent 

process is not a point-design solution (Figure 34), but rather a series of 
solutions at the system and subsystem level. Then analysis, prototyping, 
manufacturing, etc. as well as key negotiations with vendors and suppliers 
of each subcomponent allow the process to narrow down the system 
architecture and its components (Sobek et al., 1999). The process reduces 
constraints required to achieve performance and allows the system of 
vendors to fill the gaps. This requires a lot more work in the initial effort but 
ensures a more efficient process along the way. These variations allow 
better communication, greater parallelism, and data-based decisions, as 
well as workforce learning and development. For its implementation, a 
network of design agents is set-up for a negotiation process among them. 
They include the following subjects such as concept, styling, design, 
components, and manufacturing. 

Regarding modern architecture design, RIBA charted the design 
process in four main steps (Lawson, 2014) including: assimilation, general 
study, development, and communication. These could be expanded to 
inception, feasibility, outline, scheme design, detail design, production info, 
bills, tender action, project planning, operation, completion, and feedback. 
This traditional process for architectural practice is iterative and linear, 
however jumps among those steps can happen across the process.  

Figure 33. Waterfall linear design process versus concurrent networked design process.  

Figure 34. Toyota’s CE approach. (Liker et al., 1995) 
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Within an integrative design methodology (Cross, 2008) design and analysis could be done simultaneously. Thus, 
the role of the designer iterates from problem to concept space continuously. Advancements during the last decades 
regarding data-driven techniques not only enable this approach even more, but they also open the door to a different 
approach to the role of the designer. There are several techniques and methodologies within this approach. 

Integrated product and process design and development or IP2D2 (Magrab and Magrab, 2010) was developed due 
to the influence of early stage decisions in the final cost of a system architecture development. The general objective of this 
design process (Figure 35) is to reduce cost, increase quality, and increase the process efficiency, as well as to allow the 
creation of more capable workforce teams in performing such processes. Team members participate in the decision process, 
which is information-based. These inputs are scientific, and they are based on the experience of team members. This process 
is concurrent in nature and presents four stages: [1] product definition, [2] concept development, [3] design and 
manufacturing, and [4] launch. In this process the role of technology maturation is key, affecting decisions about 
manufacturing, control, operations, and failure-modes. 

Figure 35. Integrated product and process design and development or IP2D2 
(Magrab and Magrab, 2010) 
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The contact and channel approach (C&C2-A) is developed and related to the function of a system and its physical 
structure or embodiment (Albers and Wintergerst, 2014). This one is based on the fact that designers use geometry in early 
phases of the process to facilitate the design process, as well as in the importance of analyzing the geometry of current 
products to understand how they really work. The objective is to better understand the relationship between the function of 
the system, and its physical structure or geometry, emphasizing all relationships between quantitative and qualitative 
descriptions of such system. This approach defines three key elements: [1] channel and support structures (CSS) or physical 
structures, [2] working surface pairs (WSP) or interfaces, and [3] connectors (C) as Figure 36 presents. A limited number of 
these elements perform a given function, conforming a wirk-net. Multiples wirk-nets create a work-structure. This type of 
analysis optimizes the system by understanding its functionality.  

Generative design (Shea et al., 2005) is a performance-based (Brandon and Kocatürk, 2009) algorithmic iterative 
design process. To obtain certain goals, a series of system design constraints are defined and an algorithm produces multiple 
outputs, geometrical or otherwise (Wu et al., 2019). Then designers can assess the relative cost of each parameter and 
perform variations in real time that ripple through the system. Instead of several designs, thousands of designs can be done 
simultaneously. In the context of hardware-based design this approach has been especially used and developed by multiple 
design software companies (Keane, 2018) toward the infusion of structural topology optimization techniques (Rozvany and 
Lewinski, 2013) in the last decades. This field is still in development, and it is aiming towards a full multidisciplinary full-cycle 
approach, in which the designer is key to create the proper technical questions. This approach presents the following loop 
design cycle: [1] performative simulation, [2] generation, and [3] evaluation (Brandon and Kocatürk, 2009).  

Figure 36. C&C2-A approach with connectors, working surface pairs (WS), and channel support structures (CSS)(Albers and Wintergerst, 2014) 

Figure 37. Example of a generative design applied to structural optimization design.  
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3.1.3.2. Design Engineering Tools  

Once design engineering theories and models have been studied, the evaluation of design tools available for these 
methods is also necessary. This analysis allows to address gaps and connection across methodologies, as well as to assess 
how such tools influence both design theories and practices. Table 11 shows several main groups of tools identified within 
this research, and Table 9 links design theories and models among these toolsets. Finally, Table 12 presents a detailed 
summary and analysis of theories, models, and tools.  

ID Code Category Time Period  Based upon Driven by 

To1 Analog  300 BC to Today Manipulation of real objects  Designer 

To2 Digital 70s to Today Development of virtual constructs Designer, computer power 

To3 Code-based 90s to Today Data and algorithm programming  
Designer, models, theories, 
computer power 

To4 Integrative 10s to Today 
Integration of implemented 
artifacts, functional actuators, 
system digital models, dataflows 

Designer, rapid manufacturing, 
computer power 

Table 11. Design engineering tools by categories. 

One of the activities that highlighted the beginning of humankind culture was, or in other word sketching and marking 
enabled by multiple tools. With the first sketch on the wall of a cave humans started turning marks on a surface into abstract 
concepts (Gombrich, 1995). This was a necessary mechanism towards written language and drawing among other 
constructs. In the context of creating hardware-based system architectures, there is a broad spectrum of tools being used.   

Among analog tools, we include those based upon the manipulation by hand of objects and markings on different 
mediums. These techniques can be applied to both physical and digital frameworks. These include the following. 

• Conceptual wording. This is based in the use of words 
to describe, think, communicate, analyze, and discover.  
It is a very powerful concept design tool (Cross, 2011). 
The association of concepts with words allows the use of 
metaphors and allusions of concepts, so complex ideas 
can be managed without the use of geometry. Among 
other techniques writing, word listings, whiteboarding, 
storytelling, six-thinking hats, brainstorming, mind maps, 
and pros & cons are often used during the whole design 
and implementation processes. This is especially relevant 
during the generation of new ideas and concepts either 
individually or as part of a group activity.   

• Sketching. This is one of the most powerful tools within 
the design engineering arsenal and it is also one of the 
oldest when designing hardware-based systems (see Figure 38) or objects. From mechanical and electrical 
engineering to architecture designs, sketching is a powerful method to explore, convey, and validate ideas (Ullman 
et al., 1990). This technique using free-hand drawing allows to create very detailed and proportionate designs (e.g., 
renaissance studies and engravings) as well as fast, intuitive, and insinuating drawings (e.g., modern architecture 
sketches). This technique also allows to describe individually, collectively, digitally, and physically complex 
geometries, concepts, processes, etc. 

• Technical Drawing: The next step beyond sketching is the detailed graphical representation of complex systems 
using drawing tools and codes. This can be done on paper or digitally, and it allows to capture, study, and 
communicate geometry, organization principles, arrangements, behaviors, tolerances, implementation instructions, 
etc. This technique allows to represent and study architecture design, mechanical assemblies, electrical circuits, or 
microchip blueprints. Furthermore, this old tool also allows to assess system feasibility towards implementation. 

Figure 38. Sketching on a notebook 
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• Tinkering. Using crafts, fidget toys, and other simple physical elements to conceptualize, communicate, or visualize 
ideas is a common and useful tool in multiple creativity environments (Nyqvist, 2016). Among many others these 
include techniques such as toys, clay modeling, collage, doodling, tinker toys, etc. These tools can also be used 
digitally within multiple software frameworks allowing virtual, augmented, and digital creations.  

These techniques enable and substantiate multiple fast-paced design workflows due to the high interaction with the 
individual. Within the physical world, and nowadays also within digital or virtual realities, they allow a rapid feedback between 
the idea and the construct. Thus, they present a good platform towards [1] studying the problem, [2] exploring and inspiring 
new and innovative solutions, as well as [3] providing detailed technical documentation and direction.  

The second group of digital design engineering tools is possible due to key advancement in the last decades in 
computer systems. These can only be used digitally within software frameworks. The most relevant are the following. 

• Computer aided design and manufacturing 
(CAD/CAM). This technique uses software frameworks 
where the designer can create precise geometrical 
models and assemblies (Leondes, 2019). They also 
allow to capture and create solid and surface models, 
assembly constraints, geometrical tolerances, 
mechanical behaviors, materials properties, and even 
structural analysis, among many others. Furthermore, 
simulations and manufacturing studies can also be 
accomplished using these tools.  

• Building information modeling (BIM) was developed 
originally by the military and provides a multidisciplinary 
design framework where the real building can be 
mimicked, copied and created digitally (Kensek, 2014). 
This technique allows to incorporate geometry, 
assemblies constraints, energy studies, illumination studies, construction phases, uses, schedules, behaviors, 
structural schemes, cost studies, technical schemes (e.g. HVAC), physical properties, and operation studies, among 
many others (Deutsch, 2011). Like CAD digital components and assemblies can easily be dragged and infused into 
the model to create more complex assemblies as well as to address parametrical studies and variations.  

• Building energy modeling (BEM). Based on BIM, this is a software framework and multi-purpose tool to assess, 
design, validate, and qualify building designs based on energy analysis (Brackney et al., 2018). The use of energy 
as a design tool or design principle for complex system designs (Cody, 2017) is a new and very interesting approach 
tackling both the implementation of the system as well as operations and manufacturing processes.  

• Model-based system engineering (MBSE). These tools are mainly based on system modeling tools (Borky and 
Bradley, 2018), software frameworks (e.g., SysML - (Friedenthal et al., 2008), and languages like UML (Fowler, 2018). 
These techniques are based on abstract models describing requirements, structure, parametrics, behaviors, lifecycle 
phases, and risk assessments among others aspects of a complex system architecture (Fernandez and Hernandez, 
2019). They can also be used beyond systems engineering applications as design engineering tools towards 
assessing and studying trade space options and non-geometrical relationships among subsystems and components.  

All these techniques can tackle complex systems designs independently of the field of application. The number of 
subcomponents is virtually limitless, and they are only constrained by the computational power of the equipment.  They also 
enable a very different design flow independently from the design scale. These tools also allow very fast changes of 
standpoint, detail definition, and time phases. Thus, they can address both details (e.g., bolt definition) and overarching 
architecture design principles. Their use influences design models tackling the development of families of components, as 
well as their modifications and changes over time through a simplification of the process (less time) and a reduction of the 
cost (less workforce and tools). While all previous tools could use digital, virtual, and software frameworks, they do not 
necessarily need to use mathematical-driven principles in their workflow. However, there is a complementary family of 
techniques based on the use of codes and mathematical models. Several of these groups can be identified as it follows.   

Figure 39. Technical drawing by hand.  
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• Math-driven tools such as mathematic and multi-physics 
programing languages (Tiller, 2012), software frameworks 
(Wolfram and Illinois), 1999), and other programmable tools 
allow designers to quickly create analytical and descriptive 
models for design, study, assessment, and validation of 
multiple topics across all design phases of a system design 
and implementation. These models are the foundation of 
computer analysis and provide broadly available techniques 
such as finite elements analysis or FEA (Bathe, 2006).  

• Code-based tools. While previous tools provide a framework 
with predefined computer functions, this toolset is based on 
the creatition of an algorithm or model from scratch by the 
user (Pierce and Pennsylvania), 2002). These code-based 
software tools (Figure 40) allow to prototype, design, and 
deliver custom models supporting hardware-based designs, 
as well as the delivery of fully finished mechatronics and other 
robotic systems that are enhanced by software.  

• Parametric  tools are a subset of previous techniques. They 
use physical models, CAD, math, code, and MBSE to address 
and study the creation of multiple design solutions, families of 
solutions, and variations regarding the same system. These present multiple dimensions, such as 1D (code), 2D 
(drawings and plates), 3D (volumes) (Kimura, 2001), and 4D (movement). They also allow to create catalogs and 
manage data regarding constraints, requirements, features, comparisons, etc. from multiple and different views. 

• Generative tools are algorithmic and parameter-based design and assessments software tools (Shea et al., 2005). 
They are a subset of computational design tools (Autodesk, 2020), using mathematical laws and algorithms to create 
variations of parametrical variables.  These tools are ideal to explore trade space options as well as to create designs 
based on analysis inputs such as FEA models. Optimized topologies (Rozvany and Lewinski, 2013) for additive 
manufacturing are also a good example. These techniques allow to reduce mass and assembly components, as well 
as simplify manufacturing among other benefits derived from such a new design workflow.   

Figure 40. Generic coding tools broadly used currently. 

Figure 41. Example of a mechanical assembly redesigned using generative design tools (Autodesk, 2020).   
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Finally, the integration of all the above tools enables two main families of techniques that can create fully functional 
integrative models of a complex hardware-based systems architectures across all design phases, virtually and physically. 

• Digital Twin (DT). These are cyber-physical 
frameworks (Figure 42), models, and tools that 
allow to design, evaluate, and assemble digitally 
complex system architectures before they are 
physically built (Tao et al., 2019). This technique 
is increasingly present across the production 
lifecycle (Jones et al., 2020). The concept of 
system twin started with NASA during the Apollo 
program, and enable the creation of an 
engineering copy for testing, analysis, etc. Today 
DT is a digital copy of the real system addressing 
design, optimization, metrology, validation, and 
manufacturing, as well as other new areas of 
data-driven services (Boje et al., 2020). This 
framework is completed with a feedback loop 
once the system is implemented which allows 
real-time optimization and system performance 
tuning afterwards. Applications include manufacturing (e.g., industry 4.0), architecture (Farsi et al., 2019), etc.  

• Rapid Prototyping (RP) is based on the use of rapid manufacturing and prototyping tools such as 3D printing, 
breadboards, etc. (Kamrani et al., 2016) to assess, study, design, implement, validate, and communicate functional 
hardware-based systems. They are applied to mechanical systems, mechatronics, electrical systems, robotics, and 
software systems, among many others. This technique offers a fast approach towards implementing ‘functional-
enough’ systems, however improvements in advanced manufacturing such as 3D printing allows this technique to 
produce faster and more fully defined functional components.  

These final techniques bring a unique perspective upon the latest advancements in manufacturing and digitalization. 
They also connect the beginning (e.g., concept development) and the end of the design process (e.g., manufacturing, 
advance simulation, etc.) from the start of the design activity. These two approaches reshape the traditional evolution of the 
design process due to different reasons such as [1] concept design and manufacturing simultaneous start, [2] cyber-physical 
connections among disciplines and models (networked design process), [3] capture, reuse, and comparison of complex 
design work, [4] simultaneous system optimization, and finally [5] real-time adaptable complex design workflows.    

Figure 44. Examples of rapid prototyping tools.  Figure 44. Rapid prototyping workflow (Kamrani et al., 2016). 

Figure 42. Physical to virtual process and back (Jones et al., 2020). 
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3.1.3.3. Literature Review Matrix of Design Theories and Models 

Based upon the introduction in section 3,  Table 12 presents a summarized review of multiple design engineering 
methodologies and theories from a literature review and practice standpoint. A brief description of their key characteristics 
is provided as well as an evaluation of several aspects regarding hardware-based complex systems such as: 

• Foundation. This is a summarized description of key principles and characteristics.  

• Design phase. What phases are addressed by this approach? Basic design phases are numbered as it follows: [1] 
planning, [2] problem study, [3] concept design, [4] embodiment design, [5] detailed design, [6] analysis,  [7] 
optimization, [8] testing and validation, [9] documentation, [10] implementation, [11] delivery, [12] marketing,  [13] 
operations,  [14] decommission, [15] product or process recycling (Seider et al., 2016) (Haik et al., 2010). A colored 
scale is presented based upon these phases and the level of structure and detail of each method (Figure 45). 

• Geometrical information. Does the design methodology allow to use, manage, author, and edit geometrical 
information (e.g., volumes, shapes, sections, tolerances, and other graphical constructs)?  

• Qualitative / quantitative (Qt./Ql.). Can the method be used to qualify, qualify, or both multiple design parameters?  

• Scope. Can the design methodology handle point-design solutions (PDS), families of point-design solutions (FDPS), 
development process (DEV), continuous designs (CONT), or a combination (COMB) of them?  

• Adaptable. Is the design approach adaptable to the challenge at hand through a flexible (FLE) or networked process 
(NET)? Does it present a more rigid approach such as linear methodologies (LI), iterative cycles (ITE), waterfall (WA), 
or spiral approaches (SPI)? Figure 46 presents graphically these types of methodologies.  

• Perspective. Is the design method based upon a discrete disciplinary standpoint (DD) or a synergetic disciplinary 
approach (SA)? Is it based on a ‘divide-and-conquer’ approach discretizing disciplines and subsystems, or can it 
tackle simultaneously multidisciplinary problems? 

• Optimization. Does the approach allow a parametric optimization of the system design? 

• Tool platform. What type of tool and technique does the design approach enable or support? This includes: [1] 
mathematical models, [2] drawings, [3] CAD/PLM, [4] graphs, [5] Eng. models, and [5] documents or text. 

• Reference. List of most relevant technical references and professional practice inputs that were reviewed. 

Figure 46. Type of design processes and methodologies within the engineering design literature review.  

Figure 45. Color scale addressing time, detail, and structure level of a design method.  
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Theory/Method Foundation Date Phase Geo. Qt./Ql. Scope Adapt. Pers. Opt. Tools References 

Design Theories & Models 

DE1 Classical D. Driven by art and architecture. 1-2nd  1-9 Yes QT/QL      (Roth, 1994) 

Aristotle’s Production based on thinking and making. 
300 
BC 

1,2,3 Yes QL N/A N/A SA No Concept 
(Koskela et al., 2014) 
(Natali, 2013) 

Vitruvius’s 
Strength + utility + beauty. Architecture 
driven theory.  

50 BC 
1,3,4, 

5,9 
Yes QT/QL PDS N/A SA No Drawing 

(Pollio, 2018) 
(Benevolo, 1977) 
(Roth, 1994) 
(Vitruvius, 2012) 

DE2 Renaissance D. Driven by art and architecture. 15-17th  
1,3,4, 

5,9 
Yes QT/QL      (Evers et al., 2015) 

Alberti’s 
Component + outline + position. 
Architecture driven theory. 

16th 
1-5, 
9-12 

Yes QT/QL PDS N/A SA No Drawing 

(Lewis, 2020) 
(Benevolo, 1977) 
(Roth, 1994) 
(Williams et al., 2010) 

DE3 Enlighten. D. Driven by art, architecture, and objects.  17-18th  
1-5, 
9-12 

Yes QT/QL      (Etlin, 1996) 

Boulle & Ledoux 
Impossibility and abstraction as design 
tool. Architecture driven theory.  

18th 
25,9, 
12 

Yes QT/QL PDS N/A SA No Drawing 

(Benevolo, 1977) 
(Roth, 1994) 
(Williams and 
Ostwald, 2015) 

Violet-le-Duc 
Product + Process. Based upon use of 
materials & technologies. Architecture and 
product driven. 

19th  
2-,9, 
12 

Yes QT/QL PDS N/A SA No Drawing 
(Viollet-le-Duc and 
Hearn, 1990) 
(Roth, 1994) 

 DE4 Modern D. Driven by product and process. 20th  1-12 Yes QT/QL      (Frampton, 2020) 

Bauhaus 
Product and architecture driven. 
Practicality, innovation, constraints (cost), 
and production. Education.  

20s 1-12 Yes QT/QL 
PDS 
FPS 

N/A SA No Drawing 

(Droste, 2015) 
(Lockwood, 2010) 
(Benevolo, 1977) 
 

Le Corbusier 
Systematic. Architecture driven. 
Combination of key elements. Scientific 
analysis. 

30s 1-12 Yes QT/QL 
PDS 
FPS 

N/A SA Yes 
Drawing 

Math 

(Jencks, 2000) 
(Benton and Cohen, 
2019) 
(Roth, 1994) 

DE5 Descriptive D. Explore, concept, evaluation, detailing. 
50s 
-10s 

1-6, 
10 

Yes QT/QL      (Cross, 2008) 

Jones Design by drawing for continuous changes. 70s 
2,3, 
4,5 

Yes QT/QL 
PDS 
FPS 

FL SA No Drawing 
(Jones, 1992; 
Lawson, 2014) 

French Need – concept – embodiment - details.  90s 
2,3, 
4,5 

Yes QT PDS LI DD No Drawing 
(Shukla and 
Krishnan, 2016) 

Morris Asimow 

Multiple design operations are connected 
on a loop (general and specific information 
– deign operation – evaluation – outcome – 
next operation). 

70s 1-10 Yes QT/QL 
PDS 
FPS 
DEV 

ITE 
DD 
SA 

Yes 
Drawing 

CAD 
Math 

(Dieter and Schmidt, 
2012) (Asimov, 1976) 

Evan’s Spiral 
Critical design spiral based upon iterative 
and heuristic principles. Based on designer 
preferences. Parametric.  

50s 1-10 Yes QT PDS FL SA Yes 
Drawing 

CAD 
Math 

(Vossen et al., 2013) 
(Singer et al., 2009) 
(Evans, 1959) 

DE6 Prescriptive D. 
Analysis, synthesis, development, 
communication. 

60s 
-10s 

1-15 Yes QT/QL      (Dym, 2013) 

Cross 

Problem analysis, conceptual design, 
scheme embodiment, detailing (objective 
tree, function assessment, performance, 
quality functions, morphology, weighted 
objectives, value engineering). 

40s 
-10s 

1-10 Yes QT PDS LI DD No 
Drawing 

Math 
(Cross, 2008) 

Pahl & Beitz 

Prescriptive method. It is based on system 
interrelationships (energy, signal, material). 
Analysis, synthesis, and development. 
Enabling complex system design.   

60s 
-10s 

1-13 Yes QT 
PDS 
FPS 

LI DD Yes 

Drawing 
CAD 
Math 
PLM 

(Pahl et al., 2007) 
(Cross, 2008) 
(Hubka, 2015) 
(Haik et al., 2010) 

VDI 2211 
Problem analysis, sub-problems, suitable 
sub-solution, overall solution  

80s 1-6 N/A QT 
PDS 
DEV 

WA DD N/A 
Drawing 

CAD 
Math 

(Pahl et al., 2007) 
(Cross, 2008) 
 

March’s 
Solution-focused approach. Synthesis-
driven. Production, deduction, induction.  

80s 1-8 Yes QT/QL 
PDS 
DEV 

NET 
SA / 
DD 

N/A 
Drawing 

Math 
(Cross, 2008) 

Archer’s 
Systematic design thinking. Training, 
programming, data collection, synthesis,  

80s 1-12 Yes QT 
PDS 
DEV 

ITE DD N/A 
Drawing 

CAD 
(Cross, 2008) 
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development, communication. Math 

Suireg’s 

Need, collection, analysis, synthesis, 
selection of feasible concept, simulation, 
optimization, implementation, test & 
evaluation. 

80s 1-15 Yes QT 
PDS 
FPS 

LI DD Yes 
Drawing 

CAD 
Math 

(Zyl et al., 2007) 
(Suireg, 1981) 

Ullman 
Planning, concept generation, concept 
evaluation, product generation, product 
evaluation, documentation, communication 

40s 
-10s 

1-12 Yes QT 
PDS 
FPS 
DEV 

LI DD Yes 

Drawing 
CAD 
Math 
PLM 

(Ullman, 2009) 

Darke Briefing, analysis, synthesis, evaluation. 70s 1-6 Yes QT PO WA SA Yes 
Drawing  

Math 
(Lawson, 2014) 
(Darke, 1979) 

Pugh 
Concept, embodiment, detailing. It enables 
structure, judgement, and management of 
design. It uses a decision matrix. 

80s 1-8 Yes QT 
PDS 
DEV 

ITE DD N/A 
Drawing 

CAD 
Math 

(Pugh, 1986) 

Seider & Lewin 
Process design. Synthesis, analysis, & 
evaluation. 

10s 1-15 No QT PO WA SA Yes Math (Seider et al., 2016) 

Eggert 

Systematic Parametric. Formulation, 
generation, analysis, evaluate, 
optimization. Re-specification between 1 
and 3. Re-design between 2, 3, 5. 

40s 
-10s 

1-12 Yes QT 
PDS 
FPS 
DEV 

LI DD Yes 

Drawing 
CAD 
Math 
PLM 

(Eggert, 2010) 

DE7 Design 
Thinking 

Cognitive, strategic concept development 
of complex problems. Understand, 
improve, apply. 

50s 
-10s 

1-6 
Possibl

e 
QT/QL      (Curedale, 2013) 

Arnold’s 

Creative engineering. Analysis, evaluation, 
and synthesis. Four areas of development: 
Incremental innovation, radical innovation, 
lower cost, and more salability.  

50s 1-14 Yes QT/QL 
PDS 
FPS 
DEV 

ITE SA Yes 
Drawing 

CAD 
(Arnold and Clancey, 
1959) 

Design Thinking 
Method  

[1] empathize with the problem 
(understanding and observation), [2] 
synthesis, [3] ideations, [4] prototyping and 
[5] testing. Wicked problems, problem 
framing, solution-driven, co-evolution of 
solution-problem, abductive reasoning.  

50s 
-20s 

1-14 Yes QT/QL 
PDS 
FPS 
DEV 

ITE SA Yes 

Drawing 
CAD 
TEXT 
WEB 

(Curedale, 2013; 
Greene et al., 2017; 
Plattner et al., 2010) 
(Brown, 2009) 
(Kolko, 2010) 

Human-centered 
Design 

HCD. Human perspective in every 
problem-solving step. Human skills, 
flexibility, knowledge, and creativity.  

80s 1-14 Yes QT/QL 
PDS 
FPS 
DEV 

ITE SA NO 
Drawing 

CAD 
Text 

(Rosenbrock, 1989) 
(LUMA Institute, 
2012) (Hancke et al., 
1990) 

User Centered 
Design 

UCD. goals, user, environment, task, and 
workflows of a product.  

10s 1-14 Yes QT/QL 
PDS 
FPS 
DEV 

ITE SA NO 
Drawing 

Text 
WEB 

(Vredenburg et al., 
2002) (Norman and 
Draper, 2018) (Rubin 
et al., 2008) 

DE8 Innovative D.  Innovation is a drive or a central objective. 
50s 
-20s 

1-7 No QT/QL       

Brainstorming 

Facilitated idea generation. Gathers ideas 
(including wild one) from participants, 
allowing people to build ideas upon 
someone else’s. These ideas are 
combined synergistically to allow a 
collective development of new options. 

60s 
-20s 

1-2 
Possibl

e 
QT/QL 

PDS 
FPS 
DEV 

ITE SA NO 
Drawing 

Text 

(Osborn, 1993) 
(Wilson, 2013) 
(Rawlinson, 2017) 
(Hawkins, 2019) 

Synectics 
Group problem solving. It uses metaphors 
as an idea development technique to make 
them feasible. 

50s 1-4 N/A QL 
PDS 
FPS 
DEV 

ITE SA NO 
Drawing 

Text 
WEB 

(Gordon, 1961) 
(Prince, 2012) 
(Wake, 2000) 

TRIZ 
40 Systematic principles. Contradiction 
matrix, system evolution laws and SuField. 
Algorithmic nature. 

40s 
-20s 

1,2,3, 
6,7 

No QT 
PDS 
FPS 

ITE SA Possible 
Text 
Math 

(Altshuller, 1984) 
(Cavallucci, 2017) 
(Schöfer et al., 2015) 
(Montecchi and 
Russo, 2015) 

OSTM-TRIZ 
Network of problems (NoP) contradictions 
and solutions based on TRIZ principles.  

40s 
1,2,3, 

6,7 
No QT 

PDS 
FPS 

NET SA Possible 
Text 
Math 

(Fiorineschi et al., 
2015) 
(Becattini et al., 2015) 
(Cavallucci, 2017) 
 

SIT 
Systematic inventive thinking. TRIZ-driven. 
Close box approach (def. problem space).  

90s 
1,2,3, 

6,7 
No QT 

PDS 
FP 

ITE SA Possible 
Text 
Math 

(Horowitz, 1999) 
(Blokdyk, 2018) 

C-K Theory 
Concept and knowledge space dialog. 
Design formalization independent of 
domains. Provides a framework to innovate 

10s 
1,2,3, 

6,7 
Yes QT/QL 

PDS 
FP 

DEV 
NET SA Possible 

Drawing 
Text 
Math 

(Hatchuel et al., 
2004) 
(Hatchuel and Weil, 
2002) 
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within the design process. “Crazy” 
concepts are part of the process.  

 (Massotte and Corsi, 
2015) 
(Salustri, 2014) 

Morphology  
Complex problem solving based on cross 
consistency assessments (CCA).  

90s 
-10s 

2-5,7 No QL 
PDS 
FP 

DEV 
NET SA Possible 

Drawing 
Text 
Math 

(Ritchey, 2002) 
(Álvarez and Ritchey, 
2015) 
(Flanagan et al., 
2013) 

DE9 Method-driven 
Design 

Design theory based on specific 
methodology or enhancements.  

90s 
-20s 

1-7 No QT       

Axiomatic Design 

Axiom-driven approach for the design 
process. Algorithm-based. Complex 
problems are divided, and ‘trivial’ problems 
removed.  

90s 2,3,4 No QT 
PDS 
FP 

DEV 
ITE DD Yes 

Text 
Math 

(Farid and Suh, 2016) 
(Park, 2007) 
(Saha, 2014) 

DRM 

Design research methodology provides a 
research framework using scientific 
techniques to support design and 
requirement definitions.   

10s 2-5,7 No QT 
PDS 
FP 

DEV 
WAT DD Yes 

Text 
Math 

(Blessing and 
Chakrabarti, 2009) 
(Cash et al., 2016) 

Six Sigma 
Statistical method to improve product and 
process design quality. Multidisciplinary.  

90s 
-10s 

2-5,7 No QT 
FP 

DEV 
ITE DD Yes 

Text 
Math 

(Pande and Holpp, 
2001) 
(Snee and Hoerl, 
2003) 

Taguchi 
Statistical method to improve design 
quality, and variation studies.  

90s 
-10s 

2-5,7 No QT 
FP 

DEV 
ITE DD Yes 

Text 
Math 

(Nair et al., 1992) 
(Roy, 1990) 

DE10 Process-
driven Design 

Design approach defined by the process. 
90s 
-20s 

1-14 Possible QT/QL       

FBS 
Function, Behavior, Structure ontology-
driven design theory.  

10s 
-20s 

1-6 No QT/QL 
PDS 
FP 

DEV 
ITE DD Yes 

Text 
Drawing 

Math 

(Gero, 2011) 
(Gero and 
Kannengiesser, 2004) 
(Chakrabarti and 
Blessing, 2014) 
(Kan and Gero, 2017) 
(Vermaas and Dorst, 
2007)  

MPM 
Munich Procedural Model. Problem-solving 
analysis. Seven steps. 

30s 
-10s 

1-14 Yes QT/QL 
PDS 
FPS 
DEV 

NET SA Yes 
Drawing 

CAD 
Process 

(Chakrabarti and 
Blessing, 2014) 
(Lindemann, 2009) 

FORFLOW 

Product design process. Clarification, 
function and structure, solution principles 
and structures, concept development, 
system design, production.  

30s 
-10s 

1-14 Yes QT/QL 
PDS 
FPS 
DEV 

ITE SA Yes 
Drawing 

CAD 
Process 

(Rodenacker, 2013) 

Concurrent Design 
Concurrent engineering networked 
process. Multiple disciplinary models 
connected for simultaneous design.  

90s 
-20s 

2-11 
Possibl

e 
QT 

PDS 
DEV 

NET DD Possible 
Drawing 

CAD 
Process 

(Eastman, 2012) 
(Backhouse and 
Brookes, 1996a) 
(Prasad, 1995) 
(Salomone, 2019) 
(Frey et al., 2011) 

Set-Based Design. 

Concurrent engineering method by Toyota. 
Broad design parameters left opened 
longer and converging gradually.  Agent 
Interaction Diagrams. 

90s 1-14 
Possibl

e 
QT/QL 

FPS 
DEV 

NET DD/SA Yes 
Text 

Drawing 
Process 

(Singer et al., 2009) 
(Liker et al., 1995) 
(Sobek et al., 1999) 
(Maulana et al., 2017) 

RIBA 
Architecture design based upon 
assimilation, general study, development, 
communication. Jumps across steps.  

70s 1-10 Yes QT/QL 
PDS 
FPS 

WA DD Yes 
Drawing 

CAD 
(Lawson, 2014) 

DE11 Integrative Design + Analysis simultaneously 
10s 
-20s 

1-8 Yes QT       

IP2D2 

Concurrent engineering process. Data-
driven. Four stages: product definition, 
concept development, design & 
manufacturing, launch 

10s 1-14 Yes QT/QL 
PDS 
FPS 
DEV 

ITE SA Yes 
Drawing 

CAD 
Process 

(Magrab and Magrab, 
2010) 
(Rufe, 2013) 

C&C2-A 

Function-based design. Wirk-structure 
made of wirk-nets made of CSS (channel 
and support structures, (WASP) working 
surface pairs, and (C) connectors for 
design & analysis. 

10s 1-7 Yes QT/QL 
PDS 
FPS 

NET SA Yes 
Drawing 

CAD 
Math 

(Albers and 
Wintergerst, 2014) 
(Chakrabarti, 2019) 

Generative Design 
Algorithmic iterative design process, that 
produces multiple outputs based on 
constraints and towards certain goals. 

90s 
-20s 

2-7 Yes QT 
PDS 
FPS 

NET DD Yes 
CAD 
Math 

(Shea et al., 2005) 
(Brandon and 
Kocatürk, 2009) 
(Keane, 2018) 
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Designers can tune them.   (Wu et al., 2019) 
(Marcus, 2014) 

DE12 Evolutionary 
See section 3.3 for details. Design + 
Analysis + Selection concurrently. This field 
also relates to systems engineering.   

10s 
-20s 

1-7,13 No QT 
PDS 
FPS 

NET     

Evolutionary Design 
Adaptable and innovative system design. 
Design optimization, algorithms, CAD. 

90s 
-20s 

1-7 Yes QT 
PDS 
FPS 

NET DD Yes 
CAD 
Math 

Process 

(Braha et al., 2006) 
(Bentley, 1999) 
(Hingston et al., 
2008) 

Design Tools 

To1 Analog Physical, digital, or virtual. Scaled. 
BC 
-20s 

1-15 Yes QT/QL       

Concept-Words 
Writing, word lists, storytelling, six-thinking 
hats, brainstorming, mind maps, etc. are 
used to describe concepts, processes, etc.  

BC 1-15 No QT/QL 
PDS 
FPS 
DEV 

FLE SA Partial Concept 
(Lawson, 2014) 
(Lees-Maffei, 2013) 

Sketching 
Powerful tool that can used to described 
complex geometries, concepts, process. 
Individual or collective technique. 

BC 
2-9, 
12 

Yes QT/QL 
PDS 
FPS 
DEV 

FLE SA Partial 
Drawing 
Concept 

(Wang, 2002) 
(Cross, 2008) 
(Ullman et al., 1990) 

Technical Drawing 

Detailed graphical representation of 
complex system capture and communicate 
geometry, order, arrangements, behaviors, 
tolerances, instructions, etc.  

19th 

-20s 
2-9 Yes QT/QL 

PDS 
FPS 
DEV 

FLE SA Partial 
Drawing 
Concept 

(Ullman, 2009) 
(Dym, 2013) 
(Goetsch et al., 2015) 

Tinkering 

Using crafts, fidget toys, and other simple 
physical elements to conceptualized, 
communicate, or visualized ideas (e.g., 
clay modeling, collage, doodling, etc.) 
These tools are both physical and digital.  

BC 3-4 Yes QT/QL PDS FLE SA No 
Concept 
Model 

(Nyqvist, 2016) 
(Fishel, 2018) 

To2 Digital Digital, virtual, without scale. 
80s 
-20s 

1-14 Yes QT       

CAD/CAM 

Computer aided design and manufacturing 
uses software frameworks to create 
precise geometrical assemblies (solid 
modeling). 

80s 
-20s 

2-,9, 
12 

Yes QT/QL 
PDS 
FPS 
DEV 

NET DD Yes 
Drawing 
Model 
Math 

(Leondes, 2019) 
(Rao, 2004) 
(Soenen and Olling, 
2016) 
(Sendler and Wawer, 
2008) 

BIM 

Building information modeling provides a 
multidisciplinary design framework for 
geometry, phases, behaviors, and physical 
properties. Imitates digitally a real system. 

90s 
-20s 

1-7, 
9-14 

Yes QT/QL 
PDS 
FPS 
DEV 

NET SA Yes 
Drawing 
Model 
Math 

(Deutsch, 2011) 
(Kensek, 2014) 
(Kamrani et al., 2016) 

BEM 

Building energy modeling, is a software 
framework and multi-purpose tool to 
assess, design validate, qualify building 
designs based on energy calculations.  

10s 
-20s 

1-7, 
9-14 

Yes QT 
PDS 
FPS 
DEV 

NET SA Yes 
Drawing 
Model 
Math 

(Brackney et al., 
2018) 
(Clarke, 2007) 
(Hemsath and 
Bandhosseini, 2017) 

MBSE Design 

Model-based system engineering tools 
could be use as design engineering tools, 
towards assessing and studying trade 
space options, etc.   

90s 
-20s 

1-15 No QT 
PDS 
FPS 
DEV 

NET SA Yes 
Model 
Math 

(Fernandez and 
Hernandez, 2019) 
(Borky and Bradley, 
2018) 
(Dori, 2016) 
(Friedenthal et al., 
2008) 

To3 Code-based Digital, math-based, without scale.  
18th 

-20s 
1-15 Yes QT       

Math-driven tools 

Math tools, such mathematic programing 
languages, software frameworks, and other 
allow designer to quickly create 
mathematical models for design, study, 
assessment, and validation.  

18th 

-20s 
1-15 No QT 

PDS 
FPS 
DEV 

NET DD Yes 
Model 
Math 

(Tiller, 2012) 
(Wolfram & Illinois), 
1999) 
(Chaturvedi, 2010) 
(Bathe, 2006) 
(Cottrell et al., 2009) 
(Koutromanos, 2018) 

Code-based tools 
Software code-based tools allow to 
prototype, design, and deliver tools to 
support hardware-based design  

90s 
-20s 

1-15 No QT 
FPS 
DEV 

NET SA Yes 
Model 
Math 

(Barr & Massa, 2006) 
(Pierce and 
Pennsylvania), 2002) 
(Bradley, 2011) 

Parametric 
These tools use physical models, CAD, 
Math, MBSE, etc. models to address and 
study multiple solutions, variations, etc.  

70s 
-20s 

1-8 No QT 
PDS 
FPS 
DEV 

NET SA Yes 
Model 
Math 

(Kimura, 2001) 
(Dickerson and 
Mavris, 2016) 
(Corser, 2012) 
(Woodbury, 2010) 
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Generative Tools 

Algorithmic and parameter-based design 
and assessments tools. Multiple solutions 
are created based on parameters and 
laws.  Ideal for trade space exploration.  

10s 
-20s 

2-7 Yes QT/QL 

PDS 
FPS 
DEV 

CONT 

NET SA Yes 
Model 
Math 

(Shea et al., 2005) 
(Wu et al., 2019) 
(Agkathidis, 2016) 
(Abruzzo et al., 2007) 
(Gengnagel et al., 
2011) 
(Leach and Yuan, 
2018) 
(Menges and 
Ahlquist, 2011) 
(Rodrigues et al., 
2015) 

To4 Fully Functional 
Physical + analog, + digital + virtual. 
Scaled approach. 

50s 
-20s 

2-12 Yes QT/QL       

Digital Twin (DT) 

Cyber-physical models, framework, and 
tools that allow to design, evaluate, and 
assemble digitally a complex system 
before they are built and close the 
feedback loop once the system is 
implemented.  

10s 
-20s 

2-9 Yes QT/QL 

PDS 
FPS 
DEV 

CONT 
COMB 

NET SA Yes 
Drawing 
Model 
Math 

(Jones et al., 2020) 
(Yi et al., 2020) 
(Tao et al., 2019) 
(Evangeline, 2020) 
(Farsi et al., 2019) 
(Boje et al., 2020) 
 

Rapid Prototyping  

Use of rapid manufacturing and prototyping 
tools such as 3D printing, breadboards, 
etc. to assess, study, validate, and 
communicate functional mechanical, 
mechatronics, electrical, robotics and 
software systems, among others.  

50s 
-20s 

3-8, 
10-12 

Yes QT/QL 

PDS 
FPS 
DEV 

COMB 

FLE SA Yes 
Concept 
Model 

(Cooper, 2001) 
(Chua et al., 2010) 
(Bártolo et al., 2012) 
(Liou, 2007) 
(Rayna and 
Striukova, 2016) 
(Kamrani and Nasr, 
2010) 

Table 12. Design engineering theories and methodologies. 

 Conclusion 

After conducting an extensive literature review, which is summarized on Table 12, engineering design theories, 
models, and tools have been studied and evaluated from ancient times to the current digital state-of-the-art. Several points 
presented in section 3.1.3.3 were used to study those techniques and models from the perspective of a hardware-based 
system architecture design. This analysis allowed to identify several key gaps among them that are consistent across most 
techniques and models. These gaps have been identified based on the following points:  

• Global stressors presented in section 2 influence both system architecture design and system design process. For 
instance, the capability of a technique to enable or simplify the design process towards the creation of disruptive 
ideas represents a criterion to assess the capability of such technique.   

• Complex systems related. Design techniques present gaps and enhancements capabilities towards addressing 
complex systems design. These topics are used to assess their capabilities across the design lifecycle. 

• Hardware-based systems related. Similarly, it is crucial to evaluate if the technique or method is specifically capable 
of handling hardware designs across all lifecycle design phases.    

• Design process efficiency. Finally, key gaps in these methods regarding their contribution to the efficiency of the 
process and the result are another aspect to be assessed and evaluated.    

These criteria points are relative. Thus, their characteristics, capabilities, and applications are the final contribution to 
assess these conclusive remarks based on all points identified in section 3.1.3.3. In this final assessment, such inputs are 
combined to identify all the most relevant and overarching gaps as it follows: 

• Synergy. All design theories tackling the development of complex systems present a ‘divide-and-conquer’ approach. 
In general, a complex problem is subdivided into subsystems, disciplines, topics, and components which are tackled 
individually. Later these are integrated and optimized. The iterative nature of linear, waterfall, or even more flexible 
workflows comes often out of the need to find convergence across disciplines while considering workforce and 
organizational resources. This is especially relevant across prescriptive methodologies (Cross, 2011), while some 
methodologies such as DRM (Blessing and Chakrabarti, 2009), FBS (Gero and Kannengiesser, 2014), and MPM 
addressing the design process as a whole. These address multiple phases of any disciplinary practice at hand, but 
they still divide the complexity of a design challenge hierarchically. In opposition to contemporary models, pre-modern 
theories such as Vitruvius’s approach (Vitruvius, 2012) address complex problems as a whole dividing their 
complexity not from a component-standpoint but rather from a perception standpoint. On the other side, state-of-the-
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art (SOA) fully functional or integrative methods such as DT, generative design, and RP present synergetic 
disciplinary frameworks. Within those, multiple disciplines get combined address simultaneously software and 
hardware design topics. These tool-based methodologies or workflow also merge conceptual designs towards system 
manufacturing and production. Thus, it seems than modern design theories, as heirs of discreet and empirical 
perspectives coming from the industrial revolution (Deane and Deane, 1979), do not have a synergetic model capable 
of embracing complexity from a holistic standpoint. However, while classical tools partially have such approach, SOA 
design techniques already implement a feasible design context enabling the study of system complexity in detail and 
from a multidisciplinary perspective.  

• Qualification. While classical techniques allow to tackle both quantifiable and qualifiable aspects, modern and 
contemporary techniques are focused on quantitative parameters, especially those based on mathematical principles 
(Farid and Suh, 2016). When contemporary techniques such as morphological analysis (Ritchey, 2002) can handle 
complex non-quantifiable challenges, they tend to do it from a non-geometrical standpoint.  

• Continuity and linearity. Design models capable of tackling both complex geometries and quantifiable parameters 
present across all different groups of design theories some form of iterative linear process. This is something directly 
related to previous synergy and qualification gaps. Therefore, these methods tend to set a specific design objective 
that is concentrated on a point-design or unique solution. Therefore, tackling the generation of a family of solutions 
is not necessarily part of the workflow of these techniques beyond a small subset of parametrized solutions. On the 
other hand, some complex system designs such as those within the category hardware-based system architectures 
need a multidisciplinary approach. Such approach requires interconnection and refinement among different phases 
of the design process. In summary, these design techniques do not look at the design workflow from a continuous 
perspective, but the tools (e.g., CAD and BIM) present such capability. Among them, generative design techniques 
preliminary present such continuous workflows but do not have an applied multidisciplinary capability yet.   

• Adaptable.  While in general design tools are quite adaptable to changes, especially those better suited for fast-
paced environments, the associated design process does not present the same level of adaptability across multiple 
design phases. Once a concept synthesis has been obtained only the modification of parameters allows rapid 
changes, but major divergences and changes in the system design require extensive efforts within the process.  

• Innovation. In general terms, Table 12 presented techniques that especially address the development of innovative 
ideas such as design thinking (Lockwood, 2010). These have a structured approach towards highly detailed technical 
design of complex system geometries. However, those prescriptive techniques with highly structured and organized 
methodologies are not flexible enough to easily infuse new ideas at different phases of the design process. These 
methods allow to gradually bring more definition into the system design once a concept synthesis has been obtained. 
Such synthesis requires though a thorough analysis of requirements. Nevertheless, major design changes entail to 
restart the process all over again. These design methodologies do not have a clear and specific approach towards 
the value and use of heritage as part of the design process. Techniques such TRIZ divide previous related solutions 
using system design principles, but the relationship between innovation and heritage is not a part of the process. 
 

In conclusion, there is a huge potential for new tools and methods capable of synergetic and multidisciplinary design 
outcomes. Design engineering techniques present powerful capabilities and proven approaches, but there is not a clear 
theory or methodology adapted to embrace these gaps across methodologies and eventually system characteristics.  

These conclusions are part of the starting point for this research activity as the following chapters will elaborate. They 
represent in combination with the upcoming section a foundational baseline, since they address both proven capabilities and 
critical gaps in tools and techniques used in the design, implementation, and eventually operations of complex hardware-
based system architectures.  
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 Systems Engineering Paradigms 

 Approaches and Categories 

The second field in this literature review within the context of a multi-domain research is systems engineering (SE) 
methods and theories. While previous theories and techniques presented a clear design purpose dealing with geometrical 
relationships, systems engineering is about describing relationships and creating models that represent the system 
abstractly. Systems engineering is about complexity (Borky and Bradley, 2018), or in other words it is about “internal and 
external interactions, structures, behaviors”, and connections across components and system parameters. Typical areas of 
study and practice of these methods are systems and enterprises over their lifecycle (Buede, 2009). These methods have 
the objective of applying quantitative methods to “analyze, design, optimize, measure, document, communicate, and control” 
such constructs (Borky and Bradley, 2018). In this section, ‘systems’ and ‘systems architecture’ have the same definition 
that was provided in chapter one even if there can be differences and nuances among authors.  

Similarly to the previous section, the main objective here is to understand, study, and compare multiple key theories, 
models, languages, and tools that are used generally in SE studies. There are specifically relevant in Model-based systems 
engineering (MBSE) as well as system of systems engineering (SoSE). Table 15 summarizes and provides organization and 
context to this extensive literature review in the context of hardware-based system architectures.  

The origins of SE are in the military as a process to create requirements for military systems (Badiru, 2019). Since 
then, numerous standards and developments such as ANSI, MIL, ISO, CMMI, EIA, COSYSMO, etc. have been created and 
used by governments, agencies, organizations (e.g., INCOSE), and professional groups worldwide. The scope of systems 
engineering methods is very broad and includes requirements, operations, risk management, industrial processes, 
manufacturing, systems control, construction, architecture, aerospace, and energy, among many more. 

Table 13 shows under this perspective how this literature review is organized in a series of categories including 
theories, standards, models, tools, languages, and frameworks. These groups represent an overall summary regarding how 
SE techniques are applied and used, with an emphasis on the development of complex systems. Section 3.2.2 presents the 
morphology of systems, while section 3.2.3 introduces a study of systems lifecycle from a SE perspective. Then section 
3.2.4 introduces an overview of the SE practice landscape until today that is organized by topics, scope, and capabilities, 
summarized in Table 15. Finally, section 3.2.5 presents key findings and conclusions.  

ID Code Categories Sub-Family Code Description  Driven by 

SE1 
Theories / 
Standards  

SE1.1 Historical 
SE1.2 Standards 

This includes general SE approaches, historical 
perspectives, and overall standards regarding the 
foundation and bases for the practice of SE. 

Theory 
Community 

SE2 
Models / 
Process 

SE2.1 Document-Based 
SE2.2 Lifecycle-based 
SE2.3 Cross-cutting 

This group relates to SE overall processes and 
constructs addressing SE lifecycle phases, SE engineer 
roles, and interactions with stakeholders, among others.  

Practice 

SE3 Tools  

SE3.1 Documents 
SE3.2 Diagrams 
SE3.3 Matrixes 
SE3.4 Analysis 
SE3.5 Graphs 
SE3.6 Charts 
SE3.7 Code 

They include specific technical methodologies and 
toolsets defining the practice of SE such as diagrams, 
computer applications, etc.  

Systems 
engineer 

SE4 Languages 
SE4.1 Modeling 
SE4.2 Systems 
SE4.3 Mathematical 

These are mathematical and ontological languages and 
codes for the practice of system engineering.  

Standards 
Practice 

SE5 Frameworks 

SE4.1 Software 
SE4.2 Systems Eng. 
SE4.3 MBSE 
SE4.4 Architecture 
SE4.5 General design 

These are related to both methodologies and tools 
integrated within specific frameworks. These refine and 
enable both practices and methods.  

Practice 
Capabilities 
Software 
Capabilities 

Table 13. Categories of systems engineering modeling tools, resources, and practices. 
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 Components of Complex Systems 

As stated in section 1.8, the concept of a system is based upon a series of elements and components working 
together. Thus, a study of multiple SE approaches must address both the hierarchy and structure of those systems. This is 
done under a hardware-based perspective, and as such the following components (Kossiakoff et al., 2020) were identified: 

• Context. This relates to the environment and framework where the system performs its function or purpose. 

• Interfaces. Any system presents interfaces with other systems, its contexts, subsystems, and components based on 
signals, data, materials, or energy exchange.  

• Subsystems. These could be considered as “a major portion of the system” performing a “subset of the overall 
function” (Kossiakoff et koal., 2020). These tend to be organized by disciplines (e.g., thermal, mechanical, design, 
etc.), functions, and management reasons, among others depending on the culture of the organization. 

• Component / Assembly. These are lower-level entities and middle-level aggregations of subsystems. 

• Subcomponents / Subassembly. They are composed of several parts performing elementary functions. 

• Parts. These are elements at the lowest level of a system. They perform no significant function system-wise besides 
becoming elements within other components. They can be understood as the building blocks of the system.  

Furthermore, there are several other levels above the system level such as: 

• Family of system (FoS) is a group of systems with common characteristics. 

• System of systems (SoS) is made of multiple independent systems that are integrated altogether.  

• Enterprise (SoSE) includes multiple SoS given a general structure.  

Within the literature there are multiple types of parameters or variables related to the practice of SE. Some authors 
(Liu, 2015) identified several basic parameters categories as it follows:  

• Design-independent parameters (DIPs), which are related to external attributes and context characters that affect the 
performance but not the system design. 

• Design-dependent parameters (DDPs) that define the system itself and can alter its performance. 

• Technical performance measurements (TPMs), which quantify DDPs.  

Figure 47. Hierarchy of complex systems after Kossiakoff et al. 2020,  
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 SE Lifecycle Phases and Applications 

In the previous section Table 10 and Figure 45 presented different phases in the development of complex system 
architectures. While these phases do not necessarily happen in the same order, there is an overall increase in details and 
structure along the way. The following Table 14 introduces a correlation between design engineering phases and systems 
engineering development lifecycle phases (Badiru, 2019; Buede, 2009; Liu, 2015; Valacich et al., 2017). In the same table 
there are references organized by phases with regards to several key aspects such as: 

• Systems Value (Badiru, 2019). The use of SE pursues to improve and manage the outcome of the design process 
enabling these characteristics across the system design process: [v1] affordability, [v2] practicality. [v3] desirability, 
[v4] configurability, [v5] modularity, [v6] reliability, [v7] desirability, [v8] maintainability, [v9] testability, [v10] 
transmissibility, [v11] reachability, [v12] quality, and [v13] agility. 

• Application domains are specific areas and fields of application for SE practices across multiple system lifecycle 
phases. Some of the most relevant domains are the following: [d1] requirements, [d2] physical, [d3] allocated 
resources, [d4] interface, [d5] integration, [d6] qualification, [d7] human factors, [d8] ergonomics, [d9] vehicle 
design, [d10] product design, [d11] process design, [d12] interactions, and [d13] risk, among others.  

 

DE Phases SE Phases 
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Function / Task Key domain Key Systems Value 

1 Planning Planning X  X X 

X 

Analysis 

• Requirement  

• Mission 

• Functional  

D1-D11 V1-13 

2 Problem Def. 
P. Analysis 
Operational needs 

X X X X D1 V1-13 

3 Concept Design 
Logical concept Des. 
Physical concept Des. 
Concept exploration 

X 

X X 

X 

X 

Design 

• Alternative 
evaluation 

• Decision making 

• Technical 
Performance 

• Optimization 

• Concurrent Eng. 

• Economy  

D1-D4, D7-D11 V1-8 

4 
Embodiment 
Design 

Preliminary Des. 
Development 

X X D1-D4, D7-D11-12 V1-8 

5 Detailed Design 
Detailed. Des 
Development 

X X D1-D4, D7-D11-12 V1-8. V12,  

6 Analysis Analysis X X X D2-D5, D13 V6, V13 

7 Optimization Optimization X X X D1-D4, D7-D11 V1, V6 

8 Testing Testing X X X D2, D6 V6, V9 

9 Document.   X X X D5, D6 V10 

10 Implementation 
Integration 
Construction 
Production 

X X X X 

X 

Implementation 

• Simulation 

• Management  

• Control  

D4, D12 V13 

11 Delivery 
Deployment 
Qualification 
Validation  

X X X  D6 V6, V12 

12 
Marketing & 
Communication 

   X  D10 V1 

13 Operations 
Operations 
Refinement 
Maintenance 

 X X X D11 V8, V11, V13 

14 Decommission 
Phase-out 
Retirement 

 X X  D11 V5, V2 

15 Recycling    X  D11 V1 
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Table 14. This table presents relationships across engineering design and systems engineering lifecycle phases. 

 System Engineering Methods Literature Review 

This section starts with the assessment of theories, models, tools, languages, and frameworks regarding the practice 
of SE towards the definition of complex systems. Systems engineer roles are not part of the scope of this research. The 
definition of ‘system’ and ‘system architecture’ has been already established in section 1.8. 

3.2.4.1. Theories and Standards 

Historically, the beginnings of generic systems engineering as a concept is identified by many authors as a memo 
created by Bell Telephone Laboratories in 1948 (Buede, 2009), with also some initial books about this discipline appearing 
during the late 1950s and 60s. The RAND corporation introduced the concept of system analysis in the 1940s (Liu, 2015). 
Arthur David Hall established in 1962 that SE presented 5 phases (Buede, 2009; Hall, 1962): [1] systems and program 
planning, [2] exploration planning, [3] development planning, [4] development, and [5] current engineering (with an 
operational system).  

Further developments in the practice and approach towards this emergent discipline were accomplished by 
government institutions such as DoD and NAVY for the development of complex weapons systems. The NAVY program for 
evaluation and review technique (PERT, 1958) was a manufacturing scheduling method based on activities, optimum costs, 
and other schedule criteria (Liu, 2015) setting a historical heritage for all SE methodologies.  

With the influence of commercial practices such as Hughes Aerospace, NASA’s Apollo program started the 
development of SE at the largest scale (Liu, 2015; NASA, 2007). Under NASA’s perspective SE and project control 
techniques were connected with an approach based upon: [1] SE processes, [2] technical management processes, and [3] 
product realization through a series of well-defined linear phases across formulation and implementation (Figure 48). 
Stakeholder expectations, cost, system validation, and verification are key aspect of the NASA SE flow. Such SE practice 
aimed historically towards a baseline design (NASA, 2007) that is performed within a hybrid waterfall networked process as 
Figure 49 shows. This is based on key aspects such as: [a] mission objectives, [b] operational objectives, [c] mission success 

Figure 48. Conceptualization of NASA project life-cycle process and phases (NASA SE Handbook, 2007) 
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criteria, [d] general requirements, [e] decomposition constraints(functional, logical, behavioral, design), [f] trade studies, [g] 
design studies, [h] product breakdown structure, [i] derived and allocated requirements, and [j] con-ops (Hitchins, 2008).  

Lifecycle and role-based approaches such as those developed by INCOSE (INCOSE, 2015) since 1990s influenced 
both the practice and education of SE practices. INCOSE (Liu, 2015) has developed an evidence-based SE competency 
framework (SECF) based on several key groups, such as: [1] SE management, [2] professional development, [3] core SE 
principles, [4] integration, and [5] technical competencies. They present multiple proficiency levels, as well as an organized 
competency description including areas, descriptions, purposes, and roles. This theoretical framework allows individuals and 
organizations to apply a systematic practice of SE. The INCOSE framework also covers the systems engineering 
management plan (SEMP), which is a document covering process planning, requirement analysis, functional analysis, 
synthesis, systems analysis, and control analysis. Furthermore, it also addresses key technologies and risks, while it also 
describes the integration of systems engineering efforts, activities, schedule, and metrics for the process. 

The increasing complexity of systems across industries brings the notion of SE management in the context of SoS 
(Badiru, 2019). Systems of systems engineering (SoSE) is still a field under development but a few key domains are 
recognized in the literature review (Boardman and Sauser, 2006; Luzeaux et al., 2013) such as: autonomy, belonging, 
connectivity, diversity, emergence, resilience, and fluidity. Among relevant authors, the idea of an open system approach 
(Jamshidi, 2011) is critical emphasizing synergism, self-government, reconfiguration, symbiosis, and modularity. The 
concept of SoSE brings closer the notion of biological guiding principles (Sauser et al., 2010) in the current cutting-edge 
practice of systems engineering. 

Within such practice of SE the creation of SE standards has also been notoriously relevant. In the 1990s the 
ANSI/EIA-632 protocol (Badiru, 2019) was based on a work breakdown structure (WBS) approach with potential 
consequences for some fundamental processes such as: [1] acquisition, [2] technical management, [3] system design, [4] 
product realization, and [5] technical evaluation. Among other historical SE standards (INCOSE, 2015) we can identify these: 

• MIL-STD 499 (1969). 

• IEEE 1220 (1999). 

• ISO/IEC/IEEE 15288 (2002) tackles systems engineering, software engineering, and SE lifecycle among many other 
standards within ISO/IEC/IEEE such as 24765, 29148, 42010, 15289, 15939, 16085, 16326, 24748-4. 

• ISO 31000 for risk management. 

Figure 49. NASA system engineering design process (NASA SE Handbook, 2007). 



  
Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

73 

 

• ANSI/AIAA G-043A-2012e for operational concept documents. 

• XMI (metadata interchange) is an OMG metamodeling standard for exchange information via XML (OMG, 2015). 

• MOF (meta-object facility) is an OMG model-driven engineering standard for CORBA architecture (OMG, 2019). 

The constructive systems engineering cost model (COSYSMO) was developed upon the basic five ANSI/EIA-632 
principles extending them to another 33 activities. The COSYSMO standard was developed by Ricardo Valerdi at USC 
(Valerdi et al., 2003) to tackle life cycle phases, processes, and system models. Basic steps described by this standard are 
(Figure 50) the following: [1] conceptualize, [2] development, [3] operational test and evaluation, [4] transition to evaluation, 
[5] operations, maintenance, enhancement, and finally [6] system replacement and dismantling.  

The capability maturity model integration (CMMI) developed by ISACA was release in 2002 under version 1.1 as a 
process-based improvement protocol for software development. CMMI identifies a series of maturity levels for general 
processes such as: [1] initial, [2] managed, [3] defined, [4] quantitatively managed, and [5] optimizing as Figure 51 shows 
(Godfrey, 2008). Under this approach there are three areas being addressed as both product and service, such as [a] 
development (CMMI-DEV), [b] establishment and management (CMMI-SVC), and [c] acquisition (CMMI-ACQ), (CMMI 
Product Team, 2018). Core processes of this approach tackle configuration, planning, risks, and system analysis among 
many more.  In this context the capability maturity model (CMM) also relates to the level of formality, detail, and optimization 
of the process. 

In the current age of information, the modern practice of SE beyond professional protocols is based on a constantly 
evolving body of knowledge and practice which is defined by challenges and technical capabilities. Modern theories 
(Kossiakoff et al., 2020) are based on systems lifecycle and a series of functional system elements such as [1] signals, [2] 
data, [3] materials, and [4] energy. This contemporary lifecycle presents the following steps: [a] concept development, [b] 
engineering development, and [c] post-development. Thus, DoD, ISO, IEC, and NASA standards present the bases for an 
elaborated decision and SE development process as Figure 52 shows (Kossiakoff et al., 2020; Lapham et al., 2014).  

Figure 50. COSYSMO standard phases (after Badiru, 2019). 

Figure 51. CMMI maturity levels (Godfrey, 2008). 
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At the same time, computer capabilities developed during the last decades enable the idea of system thinking (Senge, 
2010) as a way to look at the SE practice from a “deep” analysis standpoint (INCOSE, 2015). This line of thought includes 
aspects, such as [a] system dynamics (e.g., multidisciplinary simulation languages), [b] action research and soft systems 
(e.g., attitudes, procedures, etc.), and finally [c] pattern discovery (e.g., taxonomics, standards, templates, etc.). 

 

3.2.4.2. Models and Processes 

The study of SE models and processes from a traditional and document-based standpoint highlights several key 
processes in the systems engineering practice (Kamrani and Nasr, 2010; Martin, 1996) that can be summarized as the 
following documents. They are related to multiple systems engineering phases: 

• Systems engineering management plan (SEMP) is a document describing SE planning activities after the concept 
design phase. It reviews and assigns updates and functions: configuration, requirement definition, verification etc.  

• Systems engineering master schedule (SEMS) includes event-based milestones, relationships, and criteria.  

• Systems engineering detailed schedule (SEDS) is a detailed task-oriented document complementing SEMS. 

• Work breakdown structure (WBS) is a classic multidisciplinary document based on a Gantt that captures aspects 
such as services, data, resources (e.g., hardware, software, infrastructure), workforce, cost, and work effort control.   

• Technical performance measurement (TPM) is a progress assessment document used in risk mitigation. 

• Requirement documents (RD) are capturing documents (often driven by corporate or sector cultures) that define 
systems objectives and thresholds, such as: [1] request for proposal (RPF) that captures stated requirements by the 
customer, [2] requirement analysis (RA), [3] affinity diagrams (AD) for large volumes, and [4] house of quality (HOQ) 
diagrams which allows as a tool to turn requirements into design and user specifications (Liu, 2015).  

• Functional flow block diagram (FFBD) is a multilevel and step-by-step graphical document that shows the functional 
operational structure of a system (Badiru, 2019) as a sequence of operations. As Figure 53 shows (Defense 
Acquisition University, 2005; Manske, 2008) this document includes the following elements: [1] functional graphic 

Figure 52. Right. Acquisition management system of DoD, after Kossiakoff (Kossiakoff et al., 2020; Lapham et al., 2014).  
Left. ISO/IEC lifecycle after INCOSE (INCOSE, 2015). 
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block, [2] function number, [3] functional connection, [4] functional flow directions, [5] numbering changes, [6] stopping 
criteria. This principles are broadly used in business process mapping (BPM) as a SE practice to define structure, 
responsibility, and products (Darwish, 2011) for enterprises and business.  

However, the practice of SE since the 1950s has provided a series of workflow models as a set of processes and 
frameworks to develop a system from a lifecycle-based perspective. The historical top-down systems engineering (TDSE) 
process starts with a deep meta-system analysis of the system and its context including other related or interconnected 
systems (Buede, 2009). Such analysis then leads to the definition of the system and all its parts or components as 
configuration items (CI). Figure 54 shows how the definition of the system is linked to a verification effort at each level 
between design and testing, and across all steps within this traditional approach.  

 

 

Figure 54. Historical top-down systems engineering (TTDSE) process (Buede, 2009). 

Figure 53. Functional Flow Block Diagram, after Manske (Defense Acquisition University, 2005; Manske, 2008). 
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This traditional approach can also be identified in other lifecycle-based SE models such as the Vee model (Buede, 
2009; INCOSE, 2015; Liu, 2015) that Figure 56 shows. This one is an evolution of the simplified waterfall model presented 
in Figure 58 (Forsberg and Mooz, 2003, 1992; MDD, 2007). In a Vee model, the left side refers to the definition, design, and 
development phase of a system. This side includes all CIs. The left side includes general requirements, design requirements, 
and other design development topics. The bottom of the Vee represents all implementation requirements and the beginning 
of the implementation process. Thus, the left side presents a full definition of the system while the right side is about 
fabrication, integration, testing, and verification. There are many variations in the literature about this approach 
(Aughenbaugh and Paredis, 2004; Buede, 2009; Fairley and Forsberg, 2020; Forsberg and Mooz, 1992; INCOSE, 2015), 
however its basic advancements, structure, and limitations remain. This model is strongly related to software driven projects. 
It also provides a context for product definition, as well as workflows within the context of project lifecycles, stakeholders, 
standards, and activities. Nevertheless, some aspects of the lifecycle are not covered such as decommission, services, and 
other support activities. While this model presents a rigid iterative approach some of its variations allow to increase its 
adaptability, such as: [1] incremental and iterative development (IID) and [2] the evolutionary approach (see section 3.3). 
These techniques (Figure 55) present multiple iterative cycles of design and delivery to obtain a faster SOI (Forsberg, 2020; 

Figure 56. Systems engineering V-Model (Buede, 2009). 

Figure 55. Incremental and iterative development (IID) derived and based on Forsberg et al. (2005) on (INCOSE, 2015). 
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Forsberg et al., 2005; INCOSE, 2015; Larman, 2004) that addresses SE process agility, adaptability, and management.  

 In the 1970s the waterfall model was introduced by authors like Boehm (Buede, 2009; Liu, 2015) as an iterative 
linear process where different phases interact among them and under a continuous flow (Figure 58). As Liu describes, this 
model presents advantages (Liu, 2015) such as simplicity, frugality, and clarity in terms of structure and implementation.  

Figure 58. Waterfall systems engineering model (Buede, 2009). 

Figure 57. Spiral systems engineering model (Liu 2015). 
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However, connections among phases are not simple in practice 
and often they happen across non-immediate phases 
(Haberfellner et al., 2019). Thus, a variation from this approach 
is the spiral model (Kamrani and Nasr, 2010) that speeds up 
the SE process (Figure 57) with roots in software engineering. 
This approach is based on four corners: [1] objectives, [2] 
evaluation, [3] development, and [4] next phase planning. 
These covered clockwise a spiral path that defines a new 
iteration cycle per each pass. This SE model brings flexibility 
and agility, but it is still based on a linear approach just like the 
waterfall model. Similarly to the Vee, the spiral model also 
presents an incremental commitment variation (ISCM) 
developed by Boehm (INCOSE, 2015). This approach enables 
a faster risk-driven process that tackles concurrent systems 
engineering efforts. This method tackles both product and 
processes (Boehm et al., 2012) allowing a stakeholder value-
based approach for any complex system development. The 
SIMILAR process (Bahill and Madni, 2016) is related to this 
approach, presenting a networked approach (Figure 60) based 
on the interconnected phases, such as: [1] problem statement, 
[2] alternatives, [3] system model, [4] integration, [5] system 
launch, [6] performance, and finally [7] re-evaluation. 

The walking skeleton model (Badiru, 2019) is also an 
incremental model. The first step within this approach is a very basic but functional system model with only key elements 
acting as the ‘bones’ of the system. Subsequent steps add ‘muscles and skin’, meaning higher levels of fidelity, new features, 
and complementary system models. While it started as a software technique, this approach can also be applied to hardware-
based systems. A key aspect within this technique is that every phase allows in the next one to work faster by applying 
lessons learned. This approach presents the following steps: [1] information gathering and methodology workshop based on 
previous experiences, [2] reflection workshop tackling needs and methods, [3] blitz planning addressing tasks, cost, and 
assignments, [3] Delphi estimation by experts, [4] daily stand-ups as short efficient meetings, [5] agile interaction design as 
a fast-paced approach to deliver software products, [6] process miniaturization to reduce cost and learning time, [7] side-by-
side programming to provide faster and more reliable results among multiple people working together, and finally [8] burn 

charts to assess the work that has been done.  

The prototyping approach (Haberfellner et al., 2019) can 
also be considered as a very similar technique using four types 
of prototypes, such as: [1] proof-of-principle, [2] forms study, [3] 
visual, and [4] functional prototypes. These prototypes help the 
design process dramatically as Haberfellner et al. presented.  

The DEJI SE model (Badiru, 2019) has also four main 
phases including: [1] design addressing agility, end goal, and 
stakeholders engagement, [2] evaluation including feasibility, 
metrics, evidence gathering, and utility assessment, [3] 
justification involving implementation, desirability and 
conclusions, and finally [4] integration including affordability, 
sustainability, and practicality  (Figure 61). Under these 
frameworks, multiple tools and toolsets are incorporated (Badiru, 
2019) while the model also includes quality assessment. 

Figure 59. House of Quality or HOQ (Liu 2005).  

Figure 60. SIMILAR networked process, after Bahil et al. (2016).  
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Considering all design phases, concurrent engineering (CE) brings a new approach capable of accelerating the 
design process by running multiple processes in parallel so newer products can get to the market faster (Haberfellner et al., 
2019). Once a concept is defined, its development is divided into simultaneous and partial phases determined by the 
disciplines involved in the process. This approach requires a holistic method to compress the design cycle (Salomone, 2019) 
which also allows a faster infusion of new technologies. This approach is not only based on models but also collaboration, 
behavioral dynamics, and process design tools. The goal is to follow a horizonal vee approach, where all efforts converge 
quickly into a product or a process. In general, CEs enable faster, cheaper, and better valued products for the customer.  

Also agile and lean SE processes are some 
of the first cross-cutting models driven by planning 
goals. These are used in software development 
because to have faster, cheaper, and leaner 
development processes (Haberfellner et al., 2019).  

These are variations of the spiral model, 
including among others the incremental iterative 
development (IID), SCRUM, adaptive software, and 
extreme programming (XP) techniques (Douglass, 
2016), among others. Based on the agile manifesto 
a set of key principles organize these SE 
processes. Among some of the most relevant 
characteristics are the following: [1] individuals and 
interactions are more important than tools and 
processes, [2] the customer collaborates, [3] it is 
about responding to change not to follow a plan, 
and [4] self-organization leads to better 
architectures. This process relates as much to 
techniques as they do to workforce and team 
participation (Larman, 2004). Evolutionary process 
will be tackled in detail in section 3.3, however as a 
transition from non-agile system it is worth 
mentioning these hybrid SE lifecycle processes 
(Douglass, 2016) as Figure 62 shows. Here, 
multiple design cycles are continuously running, 
often within each other, to provide faster an 
outcome with better quality.  

Figure 61. DEJI systems engineering model (Badiru, 2015).  

Figure 62. Hybrid SE lifecycle per Douglas (Douglass, 2016). 
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Holistic methodologies and models within this category bring approaches such as system thinking (Boardman and 
Sauser, 2008) that understands the system as the synergy among all its parts. This field includes areas such as game theory, 
pattern formation, and behavioral science. Such approach presents multiple fields of application, and based on the 
determination of structures, boundaries, frameworks, and emergence among other key aspects leads to the creation of maps 
(Boardman and Sauser, 2013) and models known as systemigrams (Squires et al., 2010). However, while this approach 
captures the definition of a complex system, does not necessarily defines the process for its development.  

Within the group of cross-cutting SE methods we can find several approaches building upon these models. The 
object-oriented system engineering process (OOSEM) is based on a series of basic objects or elements that need to be 
integrated into the system. This approach is characterized by [1] inheritance, so the object gets specialized by inheriting 
properties of the objects (Buede, 2009), and [2] information hiding, so each object works as ‘black-box’ that does not know 
how others objects work. These processes include: [1] architecture development, [2] behavior specification, [3] codesign 
process and transformation, [4] synthesis, and [5] product development (Morris et al., 2012). 

The object-oriented analysis and design (OOAD) is another agile approach that embraces change across the lifecycle 
of a project (Badiru, 2019). This model groups data, processes, and systems that are turned into objects being managed by 
one executive person. Each system engineer manages and perfects each object, while a systems manager puts everything 
together to create the final system solution. This is a people-driven process relaying on the excellence of the workforce. 
However, managing control within this approach in complicated for larger teams and complex efforts.  

Function-based system engineering (FBSE) focuses on system architecture functions including activities, actions, 
tasks, etc. (INCOSE, 2015). This approach is about what needs to be done instead of the process to enable it. Thus, it 
creates a functional map of system. Then, those functions are performed by multiple elements (e.g., hardware, software, 
people, etc.). There are several steps in this iterative networked method including: [1] setting top-level functions and 
performance requirements, [2] definition of lower-level functions, [3] necessity-based evaluation of lower-level functions, [4] 
cycle iteration, [5] division of functions into sub-functions, [6] decomposition of requirements, [7] evaluation of alternative 
decompositions, and [8] identification of all interfaces. This process produces: [1] diagrams such as input-process-output, 
behavior, control flow, data flow, entity relationship, and functional flow block, [2] models, and [3] simulation results. Tools 
used by this approach include analysis, modeling, simulation, prototyping, and requirement traceability (INCOSE, 2015). 

Similarly, integrated product 
development (IDP) is a process-oriented 
approach that considers the full system 
lifecycle. It creates a continuous integration 
of the team through requirements, 
manufacturing, verification, and support 
(INCOSE, 2015) using integrated product 
development teams (IPDTs) as Figure 63 
shows. In essence, this approach is based 
on: [1] decentralization of the process, [2] a 
better connection between the beginning and 
the end (manufacturing) of the process, [3] 
interface control, and [4] a concurrent 
engineering approach. This approach tackles 
both design and manufacturing processes to 
implement the system. Within this approach, 
cross-functional teams are created to tackle 
all products and services used in a system 
quickly and independently through systems 
engineering and integration teams (SEIT), 
product integration teams (PIT), and product 
development teams (PDT). The key aspect of 

Figure 63. Integrated product development (IDP), after INCOSE (2015). 
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this approach is to use all disciplines and engage all teams from the very beginning, while system-level requirements are 
passed down to all subsystems and components.  Regarding those teams there are several steps involved such as [1] define 
IPDT, [2] delegate responsibilities, [3] staffing, [4] team operating system, [5] planning and start point, [6] training, [7] team 
vision and definition, [8] job expansion, [9] routine process and continuous improvement, [10] progress monitoring, [11] team 
evolution through the project, and finally [12] documentation.  

Model-based systems engineering (MBSE) methods use models to create a methodology and a framework (set of 
models) tackling all lifecycle phases of a system development (Badiru, 2019). These methods include system requirements, 
design, analysis, verification, and validation (INCOSE, 2015). This approach differs from a document-based approach 
significantly since it uses active models rather than passive documents. These models consists of requirements, design 
concepts, test cases, verification plans, trade studies, and relationships between them (Haberfellner et al., 2019). Therefore, 
they present a multidisciplinary standpoint that is applicable to any agile method. Some authors define this as a flexible 
“thought” process (Long and Scott, 2011) bringing adaptability, efficiency, agility, and single-source-of-truth into the SE 
process (Douglass, 2016).  

The use of models allows to have a common language for different information sources enabling a comprehensible 
solution that can be verified and an effort that can be reuse. These sources are captured within models as well as any 
complex relationship among them. There are multiple frameworks and methodologies within MBSE, but they all layer the 
effort into subsequent cycles of definition which are detailed by the domain. Any change at the domain level ripples 
throughout the whole model. These models [1] ensure rigor and repeatability, [2] promote quality, [3] reduce risk, and [4] 
finally enhance communications and synchronization across disciplines, people, efforts, and models (Borky and Bradley, 
2018). The MBSE approach is connected to vee models sharing how the approach to tackle the system lifecycle. In general, 
this methodology includes the following steps: [1] concept development and analysis, [2] requirement capture, analysis, 
allocation, and traceability, [3] detail design (non-geometrical), [4] integration and test, [5] verification and validation, and 
finally [6] operations and support. The MBSE approach allows to create a template from any work effort formalizing the SE 
practice and expanding its reach across all system development activities and its complexity management (Badiru, 2019). 
The next sections review and study multiple MBSE framework and languages.  

Similarly, dynamic and fuzzy systems introduce decision support systems or DSS (Badiru, 2019) capable of dealing 
with uncertainty and fuzziness. This is based upon probabilistic techniques such as fuzzy-stochastic methods and other 
related toolsets (Pedrycz and Gomide, 2007). The need for extreme complexity management as well as the emergence of 
artificial intelligence (AI) and machine learning techniques presents a new context full of potential opportunities for ruled-
based SE and other process control methodologies (Nedjah and Mourelle, 2005a). Table 15 presents a detailed summary 
of tools, languages, and frameworks. The next sections also elaborate the overarching characteristics of these SE techniques 
from a high-level standpoint since they are used throughout some of the previous theories, process, and methods.  

Figure 64. Example of a MBSE diagram (Long and Scott, 2011). 
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3.2.4.3. Tools 

Basic tools used in the practice of system engineering can be organized in the following categories: 

• Documents. The use of physical documents (e.g., notebooks, notes, files, etc.) and lately digital files (e.g., Excel, 
text edited, etc.) has become the backbone of the SE practice. These documents mainly capture quantifiable 
parameters (e.g., requirements) using text, formulas, and tables that can be edited. However, these documents are 
not necessarily interconnected so relationships among them might not be captured. This technique requires a system 
document strategy to be implemented upfront (Grady, 1995; Wasson, 2005), especially for complex systems. 
Examples of these are: requirement documents, interface control documents, SEMP, SEMS, SEDS, WBS, TMS, etc.   

• Diagrams. The application of diagrams as a graphical description capable of capturing parameters and relationships 
has been critical as well. The use of these not only become the base for system descriptions, but they also enable 
effective descriptions of workflows and schedules. Among some relevant diagrams we can identify:  

• Block diagrams (Figure 66) are used to represent system 
functions or parts across many disciplines (Karayanakis, 1995).   

• Flowcharts illustrate processes and workflows, presenting both 
elements and relationships.  These are at the core of many SE 
practices, tools, and languages. These are also defined by 
standards such as ANSI, ISO, MIL, etc. (Nakatsu, 2010) 

• Signal-flow graphs (SFG) are used to represent variables 
(nodes) and connectors or branches (equations, functions, etc.) 
among multiple system components (Levine, 1996). 

• Functional flow block diagrams (FFBD) are classical SE tools 
since the 1950s (Figure 53), which illustrate functional operational 
and system structures, sequences, inputs, outputs, and 
relationships (Liu, 2015; Mdd, 2008). These diagrams allow to 
create logical symbols (Booleans) and contextual references.  

• Data-flows diagram (BDFD, 70s) is a diagram that represents 
how data flows through a process or a system, capturing both 
inputs and outputs. These diagrams are developed by systems 
engineers after questioning stakeholders, users, and other 
systems description efforts (Shelly and Rosenblatt, 2009).  

• Reliability block diagram (RBB) is a diagram method created to 
assess component reliability, dependencies, and redundancy 
(Birolini, 2007) within complex systems across multiple fields.  

• Process flow diagram (PFD) shown in Figure 67 (Ohare, 2015), 
is used within SE processes and other physics and chemistry-
based engineering system descriptions (Turton et al., 2008). 

• N2 chart (Figure 69) is a matrix-shaped diagram addressing 
functions and interfaces among systems (Batson, 1986).  

• GANTT chart (Figure 68) represents a project schedule with 
milestones, tasks, and dependencies against time (2010s). This is 
a classic tool used today in project management (DuBrin, 2011; 
Malyszkz, 2011) across multiple industries and industrial fields. 

• Event chain diagram is a complementary Gantt chart allowing to 
visualize relationships among events. These are also relevant 
tools in risk assessment and system analysis (Hulett, 2016).  

• Control flow diagram (CFD) is used to describe control flow and signals involved in multiple processes as part 
of a classic SE approach. They are applied to change, configuration, process, performance, and quality flows 
within a system, among others areas  (Hatley et al., 2013). 

Figure 65. Function block. After FAA (Mdd, 2008) 

Figure 68. Gantt chart, after Malyszkz (2011). 

Figure 66. Block diagram, after Karayanakis (1995). 

Figure 67. Process flow diagram, after Ohare (2015). 
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• Program evaluation and review technique (PERT) shown 
in Figure 70 is a statistical diagram developed during the 
2010s. It is used to evaluate and design multiple tasks within 
a project under the measurement of time. These diagrams 
express relationships, time, and milestones. They are also 
often used in conjunction with critical path methods (CPM) 
techniques (Nicholas, 2004). 

• Use case diagrams (Figure 71) are critical for some SE 
languages. They represent an activity performed by a system 
in response or by request of a user (Satzinger et al., 2008). 
These diagrams also imply the use of definitions such as 
scenario, exceptions, actors, trigger events, stakeholders, as 
well as preconditions and post conditions, among others.  

• Sequence diagrams (Figure 72) show similarly interaction 
among systems under a timeline (Windle and Abreo, 2003). 
Vertical lifelines present sequences, horizontal lines describe 
coexistent elements, and arrows represent communication 
between elements. These last two diagrams are the base of 
some SE languages such as UML, which will be explained 
more in details in the next section. 

  

Figure 69. N2 Diagram, after Batson (1986).  

Figure 70. PERT diagram, after Kemp (2015). 

Figure 71. Use case diagram, after Satzinger (2008).  Figure 72. Sequence diagram, after Windle (2003). 
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• Matrixes. These have been another classic tool in the historical toolset of SE. The use of tables has multiple 
applications.  They are capable to tackle both qualifiable and quantifiable parameters. These can be physical (paper) 
or digital. Software tools like spreadsheet packages are widely used in SE and are purely based on matrix 
spreadsheet operations. Beyond their generic use there are a few relevant types in the practice of SE, such as:  

• Design structure matrix (DSM) also known as dependency structure 
matrix was developed in the 1960s. It is a table-based representation 
of system components and dependencies (Madani et al., 2014).  

• Pugh matrix, coupling matrix, or decision-matrix method (PM) 
allows to compare multiple candidates based on specific criteria to 
select the most optimum solution (Burge, 2009; INCOSE, 2015). This 
method also allows to weight multiple options and find the best 
alternative as the example in Figure 74 (Muller et al., 2011) shows. 

• House of Quality (HOQ) is a part of the quality function development 
method (QFD). It was created in Japan to transform qualitative needs 
into quantitative parameters with multiple application across industrial 
and business sectors (Madu, 2006). Relationships between rows and 
columns are codded with symbols (strong, moderate, weak, and very 
weak). It works as a SE communication device (Liu, 2015) allowing also 
to turn user desires into requirements (Figure 76, Cask05, 2006). 

• Requirement verification and traceability matrix (RVTM) is used to 
trace requirements across the lifecycle of a system as well as during 
testing (Phillips, 2004; Wasson, 2005). The use of codes allows to trace 
back the Vee model. Other aspects of the process can also be tracked 
such as accountability, analyses, inspections, etc. (Figure 75). 

• Risk assessment matrix is a standard tool to assess risk in multiple 
SE environments such as NASA, ISO, DoD (Figure 77). While this 
approach can present challenges in terms of resolution and allocations, 
is widely used across industries (Popov et al., 2016). 

Besides these classic tools there are other general toolset techniques:  

• Graphs showing mathematical and statistical information.  

• Codes used to run scripts and other data management tools.  

• Maps are used for information illustration and decision-making processes such as mind maps and systemigrams. 

• Analyses of different nature are also a key SE tool to study regression, reliability, feasibility, FEM, risk, etc.  

• Simulations also used for testing (quantification) and demonstrations (qualification) purposes (INCOSE, 2015). 

Figure 73. DSM Example, after Madani et al. 
(2014). 

Figure 74. Pugh matrix example, after Miller 
et al. (2011).  

Figure 75. Requirement verification and traceability matrix (RVTM), after Wasson (2005).  
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Figure 76. House of quality, after Cask (2006).  

Figure 77. Risk assessment matrix 
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3.2.4.4. Systems Engineering Languages  

Complementing the use of previous tools there are a series of SE modeling languages, which can be understood as 
a series of graphical, mathematical, and procedural structured codes. These languages enable to analyze, design, and 
implement systems through multiple SE workflows. Their origins are found in multiple fields going from software to 
mathematics. Today, there is a growing infusion of these practices which is changing the SE practice and creating new 
possibilities to explore components, parameters, and interrelationships, as well as to broaden them with data-driven 
perspectives. Several categories can be identified across the vast number of techniques and languages including: 

• Modeling languages. Objected and function-oriented SE practices, as well as object modeling techniques (OMT) 
present the foundation for the use of modeling languages as an evolution of classical FFBDs. These present some 
common capabilities (Borky and Bradley, 2018) such as: [1] abstraction to work with common characteristics among 
elements, [2] encapsulation to compartmentalize systems, subsystems, and architectures, [3] modularity to reuse 
elements, [4] generalization and inheritance to create instantiations with a hierarchical structure, [5] aggregation and 
composition to build new elements upon previous solutions, [6] interfaces, and [7] polymorphism. Thus, an element 
can perform differently depending on its uses and needs. These languages provide the means to have a single source 
of truth (Douglass, 2016) and an easier integration of multiple data sources, easier maintenance, management, and 
verification. Among the most relevant languages supporting MBSE and SE practice we could find: 

• Structured analysis and design technique (SADT) evolved 
from the FFBS approach (Ramos et al., 2012) as a graphical 
language to describe hierarchically systems and functions.  

• Integration definition for functional modeling (IDEF) is a 
family of systems and software modeling languages, including 
IDEF0 (functional), IDEF1(information), IDEF1X (data), IDEF3 
(processes), IDEF4 (object-oriented design), and IDEF5 
(ontologies) (Haberfellner et al., 2019; Mayer, 2009). Here, the 
function node represents inputs, outputs, control, and 
mechanism calls (Williams et al., 2010) as a support tool for 
function-driven SE practices and workflows (Buede, 2009). 

• Universal systems language (USL) was developed after the 
NASA Apollo program (Hamilton technologies). It is based on 
axioms and includes a heavy inherent error-testing approach 
and an ontology (Hamilton and Hackler, 2009). It is based upon 
principles to look at the system from an asynchronous, 
distributed, and event-driven perspective. This language uses 
among others functions maps (FMaps), type maps (TMaps), 
and control applications as part of the workflow.  

• Unified modeling language (UML) is a multi-purpose 
modeling language oriented towards software engineering. It 
uses graphic diagrams and specified data objects, program 
entities, attributes, and relationships (Haberfellner et al., 
2019). UML presents three types of diagrams (Buede, 2009): 
[1] structural that includes class, components, composite 
structure, deployment, objects, package, and profile, [2] 
behavioral activity, state machine, and use case, and finally 
[3] interaction including collaboration-communication, 
interaction overview, sequence, and timing.  

• Lifecycle modeling language (LML) is an open-standard 
and user-friendly SE modeling language (Hettema, 2013). It 
covers the full lifecycle including concept, use, support, and 

Figure 79. UML class diagram, after Borky and 
Bradley (2018). 

Figure 78. IDEF Methods, after Mayer (2009). 
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retirement phases. It is based on classes (entities), relations 
(relationships), and properties (attributes), which are called 
ERA. It also includes risk, cost, schedule, and performance 
(form, function, metric, interface) as basic ontology aspects.   

• Systems modeling language (SysML) is a standardized 
graphical systems engineering modeling language based upon 
UML (Haberfellner et al., 2019), see Figure 80. The system 
model presents the following families of elements / diagrams 
(Friedenthal et al., 2008; GFAB, 2010): [1] structure (block 
definition, internal block, package), [2] requirements, [3] 
behavior (activity, sequence, state machine, use case), [4] 
parametrics. This subset of the UML language is more oriented 
towards systems, and includes more flexible semantics, better 
allocation tables, and management principles and tools. The 
model becomes the single-source-of-truth (Estefan, 2008). 
There are multiple releases such as the OMG SysML™. 

• Drakon is a visual programing modeling language developed 
in Russia in the 1990s. DRAKON 27 flowcharts are understood 
as letters which can be used to graphically create words and 
sentences using a syntax. Then, this graphics syntax can be 
customized using textual syntaxes from other languages such 
as C+, ASM, Java, etc. see Figure 81 (Ivannikov, 1995). 

• Mathematical and coding languages provide nowadays systems 
engineering, programming, and MBSE support enabling the 
capability to run scripts, analysis, and study tools that complement 
more traditional workflows. We can identify several of them:  

• Algebraic modeling languages (AML) is a family of high-level 
mathematical languages allowing to solve complex large-scale 
mathematical problems (Kallrath, 2004). This include AMPL, 
GAMS, AIMMS, etc. The AML approach allows to manage 
multiple solvers (algorithms) tackling different aspect of the 
problem-solving workflow.  

• MATLAB™ is a multi-paradigm and object-oriented functional 
language developed in the 1970s. It is widely distributed among 
multiple engineering practices worldwide (Dukkipati, 2008). 

• Wolfram Mathematica™ is a language supporting for machine learning, image processing, geometry, data 
science, statistical analysis, and neural networks, among other traditional engineering fields (Magrab, 2014). 

• Other languages include Maple, GNU Octave, Scilab, FreeMAT, Julia, etc.     

• Coding languages. Generic coding languages are also widely distributed today outside purely computer programing 
workflows. These include object-oriented, imperative, declarative, concurrent, visual, multimedia-based, web-based, 
event-based, and integrative languages (Bansal, 2013). Good examples among some of these languages supporting 
SE practices are the following: 

• Visual Basic for general applications (Badiru, 2013) (Alves et al., 2009). 

• C++ is used for trade studies, telecommunications SE, etc. (Thompson, 2020). 

• Python infusion and use is growing (e.g., operations, trade studies, and engineering optimization) (Allbee, 2018). 

• SQL is used among other fields in data management (Baba et al., 2001). 

• PHP is applied to enterprise SE (SeE) among other areas (Gorod et al., 2014). 

• JavaScript has information SE and blockchain applications among others (Matulevičius and Dijkman, 2018).  

Figure 80. SysML diagrams, after GFAB (2010).  

Figure 81 DRAKON-C example, after Ivannikov 
(1995). 
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3.2.4.5. Systems Engineering Frameworks and Methodologies 

The combination of dedicated tools and languages within a technical context constitutes a SE framework within this 
literature review. These frameworks not only present a series of integrated tools and languages within a software suite or 
tool collection, but they also imply a specific set of methodologies and sometimes even entire fields of application. The 
following groups of SE tool frameworks are identified as key categories:  

• Software systems engineering development frameworks: 

• Computer-aided software engineering (CASE) is a 
set of tools developed by IBM from the 1960s to the 
1990s to support the multiple phases of system 
development lifecycle (SDLC). There are (Valacich et 
al., 2017) the following: [1] project identification and 
selection (diagrams and matrix tools), [2] project start 
and planning (repository), [3] analysis (diagrams), [4] 
logical and physical design (document generators), [5] 
implementation (code generators), and [6] 
maintenance. This framework includes and integrates 
workbenches, environments (language centered 
processes), and tools. (Berdonosov and Redkolis, 
2010; Shelly and Rosenblatt, 2009). 

• Rational unified process (RUP) is an iterative object-
oriented software development framework, which was also created by IBM Rational software (Valacich et al., 
2017).  It presets four stages: [1] inception, [2] elaboration, [3] construction, and [4] construction (Figure 82). 
Some areas of best practices include iterative development, requirement management, components use, visual 
modeling, quality verification, and change control (Kruchten, 2004, Dutchguilder, 2007), among many others.  

• Systems engineering architecture frameworks present a reference environment to standardize system definitions, 
as well as to provide support for enterprise architectures. These frameworks are used worldwide and they include 
among others (Friedenthal et al., 2008; INCOSE, 2015) the following:  

• The open group architecture framework or TOGAF (INCOSE, 2015) includes supporting tools for information 
technology enterprise architectures, becoming the industry standard its main goal (Dickerson and Mavris, 2016). 

• Federal enterprise architecture framework (FEAF) is a federal enterprise reference architecture to integrate 
businesses and technologies (Kappelman, 2009). Figure 83 shows the full suite of tools under FEAF with the 
consolidated reference model (CRM) at its core (CIO Council, 2013). 

  

Figure 82. RUP Iterative development, after Dutchguilder 
(2007). 

Figure 83. FEAF Consolidated reference model, after CIO (2003). 
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• Department of defense architecture network (DoDAF) is a foundational visualization framework for large SE 
developments (Liu, 2015). Furthermore, it also provides a model-driven analysis and simulation framework for 
systems engineering practices across many technical fields (Mittal and Martín, 2018). 

• MoDAF is the British ministry of defense architecture framework (Dickerson and Mavris, 2016) that includes 
seven key areas: technical standards, strategic, operations, service, system, and acquisition (Babers, 2015). 

• Zachman Framework is an enterprise ontology based on identification, definition, representation, specification, 
configuration, and instantiation. It presents a set of rules (Zachman, 1987) that are simplified in Figure 85 (Zuech, 
2002) with the key objective of providing an organizational scheme for artifacts and systems.  

• MBSE. There are several SE frameworks within MBSE state-of-the-art practice, including these ones:  

• Harmony SE (IBM Telelogic). It is a model-driven development environment. It uses Vee models, OMG 
SysML™, and a basic flow including: [1] requirements analysis, [2] system function analysis (identification, 
states, modes, physical architecture), and [3] architecture design and synthesis (Estefan, 2008; Ramos et al., 
2012). Telelogic Tau and Telelogic Rhapsody are the main support tools for this framework.  

Figure 84. Modeling, simulation, and systems engineering within DoDAF, after Mittal (2018).  

Figure 85. Simplification Zachman Enterprise Framework, after Zuech (2002).  
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• OOSEM (INCOSE) presents an object and 
scenario-driven Vee environment, using 
SysML™ and OMG tools (Ramos et al., 2012). 
Its development process (Figure 86) includes: 
[1] stakeholder need analysis, [2] system 
requirement analysis, [3] logical architecture 
definition, and [4] physical architecture 
synthesis of candidates  (INCOSE, 2015). 

• RUP SE (IBM Rational) is a model-driven ICSM 
systems development framework for SE 
(INCOSE, 2015). This approach is based on 
object-oriented spiral models and it uses both 
UML and SysML™ (Ramos et al., 2012), while 
it emphasizes the business model side (Brusa 
et al., 2017). Its lifecycle approach presents four stages: [1] inception, [2] elaboration, [3] construction, and [4] 
transition. However, new roles, workflows, and artifacts are introduced within this MBSE approach when 
compared to the purely software-driven RUP approach (Estefan, 2008). 

• Architecture analysis and design integrated approach (ARCADIA) is an MBSE development framework for 
software and hardware architectures developed by Thales. It is based on three activities: [1] need analysis and 
modeling, [2] architecture and validation, and [3] requirements engineering (Brusa et al., 2017). 

• Alstom advanced system architecture program (ASAP) is a top-down SE application with multiple views: [1] 
operational, [2] functional, and [3] constructional. This approach includes an evolution of the system (Fanmuy et 
al., 2016) since the object of information can be duplicated and manage more easily.   

• Vtech MBSE (Vtech corporation) uses Vtech CORE™ environment as a SE design repository across 
stakeholders and domains. These include: [1] requirements analysis, [2] behavior/functional analysis, [3] 
architecture synthesis, and [4] verification and validation (Brusa et al., 2017). Figure 87 shows more details. It 
also uses the system definition language (SDL), which is based on elements, relationships, structure, entities, 
attribute of relationships, and attributes using a patented ‘onion’ SE model. Multiple layers in the framework this 
approach enable SE activities to increase concurrently and incrementally all levels of definition (Estefan, 2008). 

  

Figure 86. OOSEM Activities and artifacts, after Stefan (2008).  

Figure 87. Vitech MBSE domains and activities, after Stefan (2008).  
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• Object process methodology (OPM) was developed by Professor Dov Dori as a holistic modeling language 
and methodology based on an ontology of objects (things that exists) and related processes transforming 
patterns of those objects. This method is used for natural and artificial systems based on: [1] function (what they 
do), [2] structure (how they are constructed), and [3] behavior (how they change over time) (Dori, 2016). This 
approach defines the system development, lifecycle, and evolution including maintenance and usage based 
upon: [1] requirement specification, [2] analysis and development, and [3] implementation (Brusa et al., 2017). 
The OPM uses simple graphics or OPD (object-process diagrams) as well as natural languages sentences or 
OPL (object-process language) (Dori, 2016). OPM uses OPCAT software tools (Ramos et al., 2012). See Figure 
88 for a simple example of both OPD and OPL (Estefan, 2008). 

• Architecture and engineering tools. Within these disciplines, certain families of tools present specific workflows, 
which while they are not fully SE in nature. These can be used in the practice of SE as well as in the development of 
complex system development lifecycles. Among the most widely used toolsets are the following ones:   

• Building information modeling (BIM) provides a framework to plan, create, manage, and modify digital 
representations of buildings tackling functions, properties, phases, and designs across the lifecycle of 
construction. This tool integrates requirements analysis, design, construction, operations, cost, sustainability, 
and recycling (Smith and Tardif, 2009). This is especially relevant in the creation of system definitions and 
documentation delivery that including manuals, model views, etc. (Eastman et al., 2011). BIM creates a digital 
representation of the building in a 3D environment, including multiple discipline perspectives into the model (e.g., 
architecture design, structures, HVAC, plumbing, etc.). There are expansions of this workflow into SE and MBSE 
realms (Polit Casillas and Howe, 2013) such as: [1] 4D BIM (connecting 3D components with scheduling), [2] 5D 
BIM (adding cost information), and [3] 6D BIM (adding the dimension of operations, and maintenance). 

• Product lifecycle management (PLM) aims towards connecting all information with regards of products and 
enterprises questions (Elangovan, 2020) such as documents, workforce, and relationships with enterprise 
resource planning (ERP). PLM serves multiple phases and steps across the lifecycle of a system such as: [1] 
systems engineering (requirements, variations, reliability), [2] product portfolio, [3] product design, [4] 
manufacturing, and [5] product data management (Tyulin and Chursin, 2020). Figure 89 shows the PLM lifecycle. 

• Rational dynamic object-oriented requirements system (DOORS™) is a requirement system developed by 
IBM Telelogic. It was created aiming requirement optimization, communications, verification and collaboration 
(Stjepandić et al., 2015). This allows the use and generation of UML models linking requirements and enabling 
a collaborative platform between all stakeholders such as system engineers, vendors, analysts, etc.  

• Microsoft Office Suite is also widely distributed across the SE and general engineering practice. Spreadsheets, 
schedules, databases, etc. are used by individuals and organizations across the world, both discreetly and using 
interconnected models to address requirements, reliability, trade-space studies, cost, etc. (Badiru, 2013). 

Figure 88. Example of simple OPD and OPL modeling examples in OPM, after Stefan (2008).  
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3.2.4.6. Systems Engineering Literature Review Matrix 

Table 15 presents a similar summary to the one in section 3.1.3.3 regarding state-of-the-art practice systems 
engineering approaches that were elaborated in previous points. Key characteristics addressed by this study include: 

• Foundation. This is a short summary description or keywords of basic principles and characteristics.  

• Main function or task. Does the systems engineering approach concentrate on analysis (ANSY), design (DES), 
implementation (IMP), or all of them at once? 

• System design phase. What lifecycle phases are addressed by this approach? Basic design phases are numbered 
as it follow: [1] planning, [2] problem study, [3] concept design, [4] embodiment design, [5] detailed design, [6] 
analysis,  [7] optimization, [8] testing and validation, [9] documentation, [10] implementation, [11] delivery, [12] 
marketing,  [13] operations,  [14] decommission, and [15] recycling of products and processes (Seider et al., 2016) 
(Haik et al., 2010). See Figure 45 for color codes, detail level, and structure.  

• Geometrical or abstract information. This refers to the capability of the SE method to [1] manage, author, and edit 
geometrical information (GEO) such as volumes, shapes, sections, tolerances, and other graphical constructs, [2] 
handle abstract information (ABS) such as analytical parameters, and finally [3] address system interfaces (INT). 

• Qualitative / quantitative (Qt./Ql.). Can the method be used to quantify and qualify multiple parameters?  

• Scope. Can the SE method handle only point-design solutions (PDS), families of point-design solutions (FDPS), 
development process (DEV), continuous designs (CONT), or a combination (COMB) of all of them?  

• Adaptability. This addresses if the SE method is flexible (FLE), networked (NET), strict linear (LI), iterative (ITE), 
waterfall (WA), or used spiral (SPI) methodologies. Figure 46 shows graphically these types of methods. 

• Perspective. Is the SE method based upon discrete disciplinary standpoints (DD) or synergetic multidisciplinary 
approaches (SA)? In other words, is the method based on a ‘divide-and-conquer’ approach discretizing disciplines 
and subsystems? Or on the hand, can it tackle multidisciplinary perspectives?   

• Optimization. Does the approach allow a parametric optimization of the system or just its parameters? 

• Tool platform. What type of tool or technique does the SE approach enable or support? This can include: [1] 
mathematical models, [2] drawings, [3] CAD/PLM, [4] graphs, [5] Eng. models, [5] documents/text, and [6] schedule. 

• Reference. This is a summary list of relevant technical references and professional practice inputs reviewed during 
this research and thesis dissertation.  

Figure 89. PLM use across the system and product lifecycle, after Tyulin and Chursin (2020). 
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Theory/Method/Tool Foundation Function Phase Geo. Qt./Ql. Scope Adapt. Pers. Opt. Tools References 

SE1 - System Engineering Theories and Standards 

SE1-1 General Historical SE techniques and theories.   1-15         

NAVY PERT 

(1958) Evaluation program for evaluation 
and review technique for manufacturing 
scheduling method based on: [1] activity, [2] 
costs, and [3] time.  

ANSY 
IMP 

1,6,7,1
0,11 

ABS QT 
PDS 

FPDS 
DEV 

ITE DD Yes 
Math 
Graphs 

(Liu, 2015) 

Hall’s  

(1962) This is a SE method with 5 phases: 
[1] systems and program planning, [2] 
exploration planning, [3] development 
planning, [4] development, & [5] current Eng.  

ANSY 
DES 

1-6, 
10, 13 

ABS QT PDS N/A DD No Math 
(Liu, 2015) 
(Buede, 2009) 

NASA SE 

(1960-20s) It is based on: [a] mission, [b] 
operations objectives, [c] mission success, 
[d] requirements, [e] constraints (functional, 
logical, behavioral & design), [f] trade 
studies, [g] design studies, and [h] product 
breakdown structure. 

ANSY 
DES 
IMP 

1-15 ABS QT 
PDS 
DEV 

COMB 

ITE 
NET 

DD Yes 
Math 
Graphs 
Models 

(Johnson, 2006) 
(NASA, 2007) 
(Hitchins, 2008) 

Contemporary SE 

Complex system engineering based on 
signal, data, materials, and energy. Three 
phases: [a] concept development, [b] 
engineering development, and [c] post-
development (DoD, ISO, NASA, IEC) 

ANSY 
DES 
IMP 

1-15 ABS QT 
PDS 
DEV 

COMB 

ITE 
NET 

DD Yes 
Math 
Graphs 
Models 

(Kossiakoff et al., 
2020) 
(Lapham et al., 
2014) 

Systems Thinking 
SE based on deep analysis: [a] system 
dynamics, [b] action research & soft 
systems, and [c] pattern discovery. 

ANSY 
DES 
IMP 

1-
10,13 

ABS QT 
PDS 
DEV 

COMB 

ITE 
NET 

DD Yes 
Math 
Graphs 
Models 

(Senge, 2010) 
(INCOSE, 2015) 

SoSE 

It is a system of systems engineering 
methods for extreme complex systems. Keys 
include synergism, self-government, 
reconfiguration, symbiosis, and modularity. 
Potential biological guiding principles.  

ANSY 
DES 
IMP 

1-15 ABS QT 
FPDS 
DEV 

NET 
FLEX 

DD Yes 
Math 
Graphs 
Models 

(Badiru, 2019) 
(Jamshidi, 2011) 
(Sauser et al., 
2010) 

SE1-2 Standards Systems engineering standards and models  1-14        (Badiru, 2019) 

MIL-STD 499B 

(70s) It is a SE standard based on: [1] 
system performance parameters (operational 
needs), [2] technical efforts (development, 
manufacturing, verification, deployments, 
operations), [3] system configuration, [4] 
WBS (cost, schedule), and [5] information. 

ANSY 
DES 
IMP 

1-12 ABS QT 
PDS 
DEV 

ITE DD Yes 
Math 
Graphs 
Models 

(Buede, 2009) 
(Liu, 2015) 

ANSI/EIA-632 

(90s) It addresses potential consequences of 
fundamental processes such as: [1] 
acquisition, [2] technical management, [3] 
system design, [4] product realization, and 
[5] technical evaluation.  

ANSY 
DES 
IMP 

1-13 ABS QT 
PDS 
DEV 

COMB 
ITE DD Yes 

Math 
Graphs 
Models 

(Buede, 2009) 
(Valerdi and 
Wheaton, 2015) 

ISO/IEC/IEEE 

(2002) ISO/IEC/IEEE 15288 includes 
systems engineering, software engineering, 
and systems lifecycle (24765, 29148, 42010, 
15289, 15939, 16085, 24748-4, etc.) 

ANSY 
DES 
IMP 

1-13 ABS QT 
PDS 
DEV 

COMB 
ITE DD Yes 

Math 
Graphs 
Models 

(INCOSE, 2015) 
(Buede, 2009) 

COSYSMO 

(2003) It includes SE lifecycle phases, 
processes, and models: [1] conceptualize, 
[2] development, [3] operational test and 
evaluation, [4] transition to evaluation, [5] 
operations, maintenance, enhancement, and 
[6] replacement and dismantling.  

ANSY 
DES 
IMP 

1-14 ABS QT 
PDS 
DEV 

 
ITE DD Yes 

Math 
Graphs 
Models 

(Valerdi et al., 
2003) 
(Badiru, 2019) 

CMMI 

(2002) It is a process-based protocol, using 
process maturity levels such as: [1] initial, [2] 
managed, [3] defined, [4] quantitatively 
managed, and [5] optimizing.  

ANSY 
IMP 

1-10 ABS QT DEV ITE DD Yes Models 

(CMMI Product 
Team, 2018) 
(Humphrey, 1988) 
(Kamrani and 
Nasr, 2010) 

XMI 
Metadata interchange is an OMG 
metamodeling standard for exchange 
information via XML. 

ANSY 
DES 
IMP 

1-14 ABS QT DEV NET DD No Models (OMG, 2015) 
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MOF 
Meta-object facility is an OMG model-driven 
engineering standard for CORBA 
architectures. 

ANSY 
DES 
IMP 

1-14 ABS QT DEV NET DD No Models 
(OMG, 2019) 
(Gaševic et al., 
2006) 

SE2 - System Engineering Models and Paradigms 

SE2-1  
Document-based  

Document-based models and techniques  1-10         

SEMP 

SE management plan includes process 
planning, requirement analysis, functional 
analysis, synthesis, control analysis, 
technologies, risks, integration efforts, 
activities, schedule, and metrics. 

IMP 1-2, 10 ABS QT DEV ITE DD No 
Document 
Schedule 
Workflow 

(Martin, 1996) 
(Kamrani and 
Nasr, 2010) 
(Liu, 2015) 
(INCOSE, 2015) 

SEMS 
SE master schedule is an event-based 
document based on milestones, 
relationships, and selected criteria. 

IMP 
1-2, 

10-11 
ABS QT DEV ITE DD No 

Document 
Schedule 

(Liu, 2015) 
(Martin, 1996) 
(Kamrani and 
Nasr, 2010) 

SEDS 
Systems engineering detailed schedule. 
Calendar-based task schedule.  

IMP 1-2, 10 ABS QT DEV ITE DD No 
Document 
Schedule 

(Martin, 1996) 
(Kamrani and 
Nasr, 2010) 

WBS 

Work breakdown structure allows to 
schedule and track efforts, tasks, resources 
(hardware, software, data, infrastructure), 
items and services. It is Gantt chart based.  

IMP 1-2, 10 ABS QT DEV ITE DD No 
Document 
Schedule 

(Martin, 1996) 
(Kamrani and 
Nasr, 2010) 

Requirements Doc. 
These are capturing document addressing 
systems objectives and thresholds.   

ANSY 
DES 

1-4 ABS QT 
PDS 

FPDS 
LIN DD No Document (Martin, 1996) 

TPM 
Technical performance measurement is a 
progress assessment document. It is used 
for risk mitigation.  

IMP 8-10 ABS QT DEV ITE DD No Document 
(Martin, 1996) 
(Kamrani and 
Nasr, 2010) 

FFBD 

Functional flow block diagram is a multilevel, 
step-by-step graphical document showing 
the sequence of operations. Elements: 
functional graphic block, function 
(identification, connection, and flow) 
directions, changes, and stopping criteria. 

ANSY 
IMP 

1-11 ABS QT DEV Net DD No 
Document 
Diagram 

(Badiru, 2019) 
(Liu, 2015) 
(Defense 
Acquisition 
University, 2005) 

INCOSE SEFT 

(1990s) It is an evidence-based SE 
competency framework: [1] management, [2] 
professional, [3] core principles, [4] technical 
competencies. It presents individual and 
organizational applications.  

ANSY 
IMP 

1-11 ABS QT/QL DEV N/A DD N/A Models 

(Liu, 2015) 
(Badiru, 2019) 
(INCOSE, 2015) 
(Buede, 2009) 

SE2-2 
Lifecycle-based 

Lifecycle-based SE methodologies   1-15         

TDSE 
It is a top-down SE (multiple levels) including 
analysis, definition, and verification. 

ANSY 
DES 
IMP 

2-8 ABS QT 
PDS 
DEV 

ITE DD No 
Workflow 
Models 

(Buede, 2009) 

Vee 

It has several sides: [right side] design 
(requirements), [bottom] implementation, and 
[left side] fabrication. There are variations:  
incremental and iterative development (IID), 
Vee model XT (extreme tailoring), etc. 

ANSY 
DES 
IMP 

1-11 ABS QT 
PDS 
DEV 

COMB 
ITE DD Yes 

Workflow 
Models 

(Forsberg and 
Mooz, 1992) 
(Fairley and 
Forsberg, 2020) 
(INCOSE, 2015) 
(Aughenbaugh & 
Paredis, 2004) 

Waterfall 
It is an iterative sequential process with 
loops between subsequent design phases. It 
is simple, frugal, and not very adaptable.  

ANSY 
DES 
IMP 

1-15 ABS QT 
PDS 
DEV 

COMB 
WA DD No 

Workflow 
Models 

(Liu, 2015) 
(INCOSE, 2015) 
(Buede, 2009) 
(Haberfellner et 
al., 2019) 

Spiral 
It is based on [1] objectives, [2] evaluation, 
[3] development, and [4] planning of next 
phase, covered with subsequent passes.  

ANSY 
DES 
IMP 

1-14 ABS QT 
PDS 

FPDS 
SPI DD No 

Workflow 
Models 

(Liu, 2015) 
(INCOSE, 2015) 
(Buede, 2009) 
(Kamrani and 
Azimi, 2010) 
(Boehm, 1988) 

ICSM Incremental commitment spiral model is a ANSY 1-14 ABS QT PDS SPI DD No 
Workflow 
Models 

(INCOSE, 2015) 
(Haberfellner et al., 



  
Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

95 

 

valued-based, concurrent, and fast methods 
based on IID tackling product & processes. 

DES 
IMP 

DEV 
COMB 

2019) 
(Boehm et al., 2014) 

SIMILAR 

It is wheel-structured with networked steps: 
[1] problem statement, [2] alternatives, [3] 
system model, [4] integration, [5] system 
launch, [6] performance, [7] re-evaluation.  

ANSY 
DES 
IMP 

1-14 ABS QT 
PDS 
DEV 

COMB 
NET DD No 

Workflow 
Models 

(Haberfellner et al., 
2019) 
(Bahill and Madni, 
2017) 

DEJI 
It includes [1] design, [2] evaluation, [3] 
justification, and [4] integration. It also 
addresses quality system integration.  

ANSY 
DES 
IMP 

1-15 ABS QT/QL 
PDS 

FPDS 
FLEX DD No 

Document 
Workflow 
Models 

(Badiru, 2019) 

Walking Skeleton 

It is based on [1] information gathering, [2] 
reflection workshop, [3] blitz planning, [3] 
delphi estimation, [4] daily stand-ups, [5] 
agile design, [6] process miniature, [7] side-
by-side programming, [8] burn charts.  

DES 
IMP 

1-14 ABS QT 
PDS 

FPDS 
COMB 

ITE 
NET 
FLEX 

DD Yes 

Code 
Workflow 
Models 
CAD 

(Badiru, 2019) 

Concurrent SE 
It is a simultaneous and past-pace SE 
process that is based on parallel and 
incremental partial design cycles.  

ANSY 
DES 
IMP 

1-15 
ABS 
GEO 

QT/QL 
PDS 

FPDS 
DEV 

NET SA Yes 

Document 
Workflow 
Models 
CAD 

(Backhouse and 
Brookes, 1996b) 
(Salomone, 2019) 
(Haberfellner et al., 
2019) 

SE2-3 
Cross-cutting  

Multidisciplinary methodologies and models  1-5         

Agile SE 

This includes simultaneous fast-paced and 
method-based SE techniques with 
interconnected cycle under the agile 
manifesto. Many tools and techniques: XP, 
SCRUM, FDD, etc. 

ANSY 
DES 
IMP 

1-15 
ABS 
GEO 

QT/QL 
PDS 

FPDS 
DEV 

NET SA Yes 

Document 
Workflow 
Models 
CAD 

(Haberfellner et al., 
2019) 
(Douglass, 2016) 
(Larman, 2004) 
(Huang et al., 2012) 

System Thinking  
It is a complex system description based 
upon multidisciplinary synergies. Presents a 
graphical representation of relationships.  

ANSY 
DES 

1-7, 
12-13 

ABS QT/QL 

PDS 
FPDS 
DEV 

COMB 

FLEX 
NET 

SA No 
Document 
Models 

(Boardman and 
Sauser, 2013) 
(Boardman and 
Sauser, 2008) 

OOSE 

Object-oriented SE. Basic elements are 
integrated into a system. Specialization is 
based on inheritance and ‘black-box’ models 
and components. 

ANSY 
DES 
IMP 

1-11 ABS QT 

PDS 
FPDS 
DEV 

COMB 

FLEX 
NET 

DD No 
Document 
Workflow 
Models 

(Buede, 2009) 
(INCOSE, 2015) 
(Morris et al., 2012) 

OOAD 

Object-oriented analysis and design. Agile 
SE model. Data, processes, and systems 
are turned into objects, and managed by one 
person. System manager puts everything 
together. People-driven. Small teams. 

ANSY 
DES 
IMP 

1-11 ABS QT 

PDS 
FPDS 
DEV 

 

NET DD No 
Document 
Workflow 
Models 

(Badiru, 2019) 
(Ramnath and 
Dathan, 2010) 

FBSE 

Function-oriented SE includes: [1] top-level 
functions & performance requirements, [2] 
lower-level function definition, [3] lower-level 
function evaluation, [4] iterations, [5] sub-
functions, [6] sub-requirements, [7] 
alternatives, and [8] interfaces. 

ANSY 
DES 
IMP 

1-11 ABS QT 
PDS 

FPDS 
DEV 

FLEX 
NET 

DD Yes 
Diagram 
Simul. 
Models 

(INCOSE, 2015) 

IDP 

Integrated product development (IDP) is a 
process-oriented full lifecycle approach. It is 
based on a continuous integration of cross-
functional teams. Its characteristics include: 
[1] decentralized, [2] design-to-
manufacturing integration, [3] interface 
control, [4] concurrent, [5] fast-pace agile, 
and [6] multidisciplinary. 

ANSY 
DES 
IMP 

1-15 ABS QT 

PDS 
FPDS 
DEV 

COMB 

FLEX 
NET 

SA No 
Document 
Workflow 
Models 

(INCOSE, 2015) 

MBSE 

Model-based SE is a multidisciplinary, full-
lifecycle, and agile methods. It is based on 
interconnected elements (e.g., requirements, 
concepts, test cases, verification plans, trade 
studies, etc.). It enables multiple 
improvements: [1] better rigor and 
repeatability, [2] more quality, [3] risk 
reduction, and [4] enhanced communications 
across disciplines and people. It has multiple 
workflows, tools, and methodologies.  

ANSY 
DES 
IMP 

1-15 ABS QT 

PDS 
FPDS 
DEV 

COMB 

FLEX 
NET 

DD Yes 
Docu. 
Workflow 
Models 

(INCOSE, 2015) 
(Haberfellner et al., 
2019) 
(Badiru, 2019) 
(Friedenthal et al., 
2008) 
(Fernandez and 
Hernandez, 2019) 
(Borky & Bradley, 
2018) 
(Long & Scott, 2011) 
(Ramos et al., 2012) 
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Fuzzy SE 
This is a ruled-based SE method based on 
fussy probabilistic logic for process control.  

ANSY 
DES 
IMP 

1-10 ABS QT 
PDS 
DEV 

FLEX DD Yes 
Math 
Model 
Graph 

(Pedrycz and 
Gomide, 2007) 
(Badiru, 2019) 
(Nedjah and 
Mourelle, 2005a) 

SE3 - System Engineering Tools 

Documents 

These are text-based documents (physical & 
digital) containing parameters, relationships, 
and components. Documents can be 
reviewed and edited but they are not linked.  

ANSY 
DES 
IMP 

1-15 ABS QT 
PDS 
DEV 

LIN SA No N/A 
(Grady, 1995) 
(Wasson, 2005) 
(Liu, 2015) 

Diagrams 

They are graphics-based representation 
describing: [1] system components and 
actors, [2] relationships, [3] flows, [4] 
functions, and [5] timelines. They can be 
physical or digital. They are complemented 
with alphanumeric parameters. Among some 
of the most relevant are block diagrams, 
flowcharts, SFG, FFBD, BFFB, RBB, PFD, 
N2, GANTT, event chain diagrams, CFD, 
PERT, use case diagrams, sequence 
diagrams, etc. 

ANSY 
DES 
IMP 

1-15 ABS QT/QL 
PDS 
DEV 

LIN DD No N/A 

(Karayanakis, 1995) 
(Nakatsu, 2010) 
(Levine, 1982) 
(Liu, 2015) 
(Shelly and 
Rosenblatt, 2009) 
(Turton et al., 2008) 
(Nicholas, 2004) 
(Hatley et al., 2013) 
(Satzinger et al., 
2008) 
(Windle and Abreo, 
2003) 

Matrixes 

They tackle quantifiable and qualifiable 
parameters. They are digital or physical. 
There are many standard techniques and 
custom applications, such as: DSM, PM, 
HOQ, RVTM, risk assessment, etc.  

ANSY 
DES 
IMP 

1-15 ABS QT/QL 
FPDS 
DEV 

N/A SA Yes N/A 

(Madani et al., 2014) 
(Burge, 2009) 
(Muller et al., 2011) 
(Madu, 2006) 
(Liu, 2015) 
(Popov et al., 2016) 

Graphs 
These are graphical mathematical and 
statistical tools. 

ANSY 
DES 
IMP 

1-15 ABS QT/QL 
FPDS 
DEV 

N/A SA Yes N/A (  

Codes 
These include scripts, data management 
techniques, and tools. 

ANSY 
DES 
IMP 

1-8, 
13-15 

ABS QT 
FPDS 
DEV 

LIN DD Yes N/A 
(Parnell et al., 2011) 
(INCOSE, 2015) 

Maps 
They include information illustrations, 
communication, decision making, etc. 
Examples are mind maps and systemigrams.   

ANSY 
DES 

1-8, 
13-15 

ABS QL 
PDS 
DEV 

LIN SA No N/A 
(Haberfellner et al., 
2019) 
(Squires et al., 2010) 

Analysis 
These are mathematical, physics, or multi-
physics in nature. Applications include 
regression, feasibility, FEM, FEA, risk, etc. 

ANSY 
DES 
IMP 

1-8, 
13-15 

ABS QT 
PDS 
DEV 

LIN DD Yes N/A (Badiru, 2019) 

Simulations 
Testing (parameter quantification) and 
demonstrations (result qualification). 

ANSY 
DES 

2-15 ABS QT 
FPDS 
DEV 

LIN DD Yes N/A (INCOSE, 2015) 

SE4 - System Engineering Languages 

IDEF 

Integration definition for functional modeling 
is modeling family of languages, including: 
IDEF0 (functional), IDEF1(information), 
IDEF1X (data), IDEF3 (processes), IDEF4 
(object-oriented dee.), & IDEF5 (ontologies). 

DES 
IMP 

1-15 ABS QT DEV NET DD No N/A 
(Buede, 2009) 
(Haberfellner et al., 
2019) 

USL 

Universal systems language is based on 
axioms, error-testing principles ontologies. It 
presents functions maps (FMaps) and type 
maps (TMaps). It has control applications.  

ANSY 
DES 
IMP 

1-15 ABS QT DEV NET DD No N/A 
(Hamilton and 
Hackler, 2009) 

UML 

Unified modeling language is a multi-
purpose graphic modeling language. It has 
three types of diagrams: [1] structural, [2] 
behavioral, and [3] interaction.  

ANSY 
DES 

1-15 ABS QT DEV NET DD No N/A 

(Haberfellner et al., 
2019) 
(Borky & Bradley, 
2018) 

LML 

Lifecycle modeling language is an open-
standard user-friendly SE modeling 
language. Full lifecycle: concept, use, 
support, and retirement. ERA: Classes 
(entity), relations (relationship), and 
properties (attribute). It includes risk, cost, 

ANSY 
DES 
IMP 

1-15 
ABS 
GEO 
INT 

QT DEV NET DD No N/A (Hettema, 2013) 
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schedule, and performance (form, function, 
metric, and interface) in its ontology. 

SysML 

Systems modeling language is a 
standardized graphical SE modeling 
language based upon UML. Elements / 
diagrams include: [1] structure (block 
definition, internal block, package), [2] 
requirements, [3] behavior (activity, 
sequence, state machine, use case), and [4] 
parametrics. Release by OMG SysML™. 

ANSY 
DES 
IMP 

 
1-

11,13 
ABS QT DEV NET DD No N/A 

(Friedenthal et al., 
2008) 
(Buede, 2009) 
(Estefan, 2008) 
(INCOSE, 2015) 

Drakon 

It is a visual programing modeling language 
using flowcharts as letters, which can be 
used to graphically create words and 
sentences using a syntax. Textual syntaxes 
from other languages can be added.  

ANSY 
DES 
IMP 

1-
11,13 

ABS QT DEV 
NET 
LIN 

DD No N/A 
(Ivannikov, 1995) 
(Schwarzbach et al., 
2015) 

Math Languages 

Mathematical coding languages provide SE 
and MBSE support to run scripts, provide 
analysis tools, etc. Examples of them are 
AML, MATLAB™, Mathematica™, etc.  

ANSY 
DES 

1-
11,13 

ABS QT DEV NET DD Yes N/A 
(Kallrath, 2004) 
(Magrab, 2014) 

Coding Languages 

Generic coding languages are used for SE 
and MBSE purposes. These include object-
oriented, imperative, declarative, concurrent, 
visual, multimedia-based, web-based, event-
based, and integrative languages. 

ANSY 
DES 
IMP 

1-15 ABS QT DEV NET DD Yes N/A 
(Bansal, 2013) 
(Friedman and Wand, 
2008) 

SE5 - System Engineering Frameworks 

CASE 

Software. It is a computer-aided toolset for 
SDLC including: [1] project identification and 
selection, [2] project start and planning, [3] 
analysis, [4] logical and physical design, [5] 
implementation, and [6] maintenance.  

ANSY 
DES 
IMP 

1-
11,13 

ABS QT DEV 
NET 
PDS 

DD No N/A 

(Valacich et al., 
2017) 
(Berdonosov and 
Redkolis, 2010) 
(Shelly and 
Rosenblatt, 2009) 

RUP 

Software. Rational unified process is an 
iterative object-oriented software Dev. 
framework covering [1] inception, [2] 
elaboration, [3] construction, [4] construction.  

ANSY 
DES 
IMP 

1-
11,13 

ABS QT DEV 
NET 
PDS 

DD No N/A 
(Kruchten, 2004) 
(Valacich et al., 
2017) 

TOGAF 
Enterprise Framework. The open group 
architecture framework includes tools for 
information technology enterprise Arch. 

ANSY 
DES 
IMP 

1-6, 9-
11, 13 

ABS QT DEV NET DD No N/A 
(INCOSE, 2015) 
(Dickerson and 
Mavris, 2016) 

FEAF 
Enterprise FW. Federal enterprise 
architecture framework is for business and 
technology integration. 

ANSY 
DES 
IMP 

1-6, 9-
11, 13 

ABS QT DEV NET DD No N/A 
(Kappelman, 
2009) 

DoDAF 

Enterprise FW. Department of defense 
architecture network is a large SE 
visualization framework and model-driven 
analysis and simulation framework. 

ANSY 
DES 
IMP 

1-6, 9-
11, 13 

ABS QT DEV NET DD No N/A 
(Mittal and Martín, 
2018) 
(Liu, 2015) 

MoDAF 

Enterprise FW. British ministry of defense 
architecture framework, includes seven key 
views: technical standards, strategic, 
operations, service, system, and acquisition. 

ANSY 
DES 
IMP 

1-6, 9-
11, 13 

ABS QT DEV NET DD No N/A 
(Dickerson and 
Mavris, 2016) 
(Babers, 2015) 

Zachman FW 
Enterprise FW. Enterprise ontology is based 
on identification, definition, representation, 
specification, configuration, and instantiation.  

ANSY 
DES 
IMP 

1-6, 9-
11, 13 

ABS QT DEV NET DD No N/A 
(Zachman, 1987) 
(Zuech, 2002) 

Harmony SE 

SE. This model-driven development 
environment is based on: [1] requirements 
analysis, [2] system function analysis 
(identification, states, modes, physical arch.), 
and [3] architecture design and synthesis.  

ANSY 
DES 
IMP 

1-10, 
13 

ABS QT DEV NET DD No N/A 
(Ramos et al., 
2012) 
(Estefan, 2008) 

OOSEM 

SE. Object and scenario-driven is a Vee 
environment process based on: [1] 
Stakeholder needs analysis, [2] system 
requirement analysis, [3] logical architecture 

ANSY 
DES 
IMP 

1-10, 
13 

ABS QT DEV NET DD No N/A 
(Ramos et al., 
2012) 
(INCOSE, 2015) 
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definition, [4] physical architecture synthesis.  

RUP SE  

SE. (IBM Rational) It is a Model-driven ICSM 
system development framework based on an 
spiral model. Its lifecycle presents four 
stages: [1] inception, [2] elaboration, [3] 
construction, and [4] transition. 

ANSY 
DES 
IMP 

1-10, 
13 

ABS QT DEV NET DD No N/A 

(Ramos et al., 
2012) 
(INCOSE, 2015) 
(Estefan, 2008) 

ARCADIA 

SE. Architecture analysis and design 
integrated approach is a SE development 
framework for software and hardware. It is 
based on three activities: [1] need analysis 
and modeling, [2] architecture and validation, 
[3] requirements engineering. 

ANSY 
DES 
IMP 

1-10, 
13 

ABS QT DEV NET DD No N/A 
(Brusa et al., 
2017) 

Alstom ASAP 

SE. Advanced system architecture program 
is a top-down SE application with multiple 
views including: [1] operational, [2] 
functional, and [3] constructional.  

ANSY 
DES 
IMP 

1-10, 
13 

ABS QT DEV NET DD No N/A 
(Fanmuy et al., 
2016) 

Vtech MBSE 

Vtech corporation concurrent environment 
tackles [1] requirements analysis, [2] 
behavior/functional analysis, [3] architecture 
synthesis, and [4] verification and validation. 
It is based on elements, relationships, 
structure, entities, attribute of relationships, 
and attributes, using an ‘onion’ SE model.  

ANSY 
DES 
IMP 

1-10, 
13 

ABS QT DEV NET DD No N/A 
(Estefan, 2008) 
(Brusa et al., 
2017) 

OPM 

SE. This is a holistic modeling language and 
methodology based on objects and 
processes for natural and artificial systems. 
It is based on: [1] function (what they do), [2] 
structure (how they are constructing), and [3] 
behavior (how the change over time). OPM 
tackles: [1] requirement specification, [2] 
analysis & development, and  [3] 
implementation using OPD (object-process 
diagrams) & OPL (object-process language). 

ANSY 
DES 
IMP 

1-14 ABS QT DEV NET DD No N/A 

(Dori, 2016) 
(Estefan, 2008) 
(Brusa et al., 
2017) 

BIM 

Arch. Building information modeling provides 
a framework to plan, create, manage, and 
modify digital representation of buildings 
tackling functions, properties, phases, and 
designs across the lifecycle. There are 
several levels: [1] 4D BIM (3D components + 
scheduling), [2] 5D BIM (adding cost related 
information) and [3] 6D BIM (adding the 
dimension of operations, maintenance, etc.) 
It also tackles sustainability and recycling. 

ANSY 
DES 
IMP 

1-15 
ABS 
GEO 

QT 
QL 

FPDS 
PDS 
DEV 

COMB 

NET SA Yes N/A 

(Eastman et al., 
2011) 
(Smith and Tardif, 
2009) 

PLM 

Eng. Product lifecycle management 
connects information about people and the 
lifecycle of a product or an enterprise. PLM 
serves multiple phases across the system: 
[1] systems engineering (requirements, 
variations, reliability), [2] product portfolio, [3] 
product design, [4] manufacturing, and [5] 
product data management. 

ANSY 
DES 
IMP 

1-10 
ABS 
GEO 

QT 
QL 

FPDS 
PDS 
DEV 

COMB 

NET SA Yes N/A 
(Elangovan, 2020) 
(Tyulin and 
Chursin, 2020) 

DOORS 

Eng. Dynamic object-oriented requirements 
system is a requirement system developed 
for requirement optimization, 
communications, verification, and 
collaboration. It links requirements and 
stakeholders collaboratively.  

ANSY 
DES 

1-9 ABS QT 

FPDS 
PDS 
DEV 

COMB 

NET DD No N/A 
(Stjepandić et al., 
2015) 

Microsoft Office 

It is widely distributed. Spreadsheets, 
schedules, databases, etc. are used by 
individuals and organizations across the 
world, both discreetly and interconnected. 

ANSY 
DES 
IMP 

 ABS QT 

FPDS 
PDS 
DEV 

COMB 

NET DD No N/A (Badiru, 2013) 

Table 15. Systems engineering methods, theories, and tools.   



  
Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

99 

 

 Conclusion 

Based on this literature review of state-of-the-art systems engineering theories, standards, models, languages, and 
frameworks several conclusions and gaps can be drawn from the perspective of hardware-based systems development: 

• Geometry. While SE methodologies are developed to handle complex systems, they do not have a clear way to deal 
with geometrical information or to connect with non-SE geometrical design tools such as CAD or BIM. Managing 
abstract analytic information is at the core of many of these approaches since they evolved from software 
development techniques, but they do not handle physical relationships natively. Frameworks such as BIM, PLM, and 
concurrent CAD present platforms capable of handling analytical parameters, but do not handle complex relationships 
among them. Concurrent (Salomone, 2019) and agile SE (Douglass, 2016) approaches tackle the management of 
geometrical information but do not present a specific framework or toolset to represent them. On the other hand, LML 
(Hettema, 2013) tackles some geometrical aspects in the language approach, but it does not seem to present a clear 
workflow or interface either with complex geometry-driven frameworks. The development of complex hardware-based 
system architectures needs a multidisciplinary combination of quantifiable (analytical) and qualifiable parameters 
(including geometry), as well as relationships among them that evolve over time during multiple design cycles.  

• Continuity. Most of all addressed methods present quite a compartmentalized approach between phases and steps 
across the lifecycle of a system or enterprise. The development of complex systems often requires multiple and 
iterative design cycles. Among all these methods two approaches present a unique approach tackling the SE 
development as a continuous process: [1] the skeleton SE method (Badiru, 2019) and [2] IID approaches such as 
ICSM (INCOSE, 2015). However, both approaches do tackle specifically geometrical information.  SE techniques 
tend to specifically disregard whether the scope of the method is a single-point solution or families of solutions beyond 
a single instantiation of key parameters. Among them, OPM (Dori, 2016) does take into account the evolution of the 
system from the beginning, enabling the use of adaptable language and diagrams that describe such system change.    

• True full cycle. Similarly, most SE methodologies do not consider some phases of the lifecycle such as 
communication, marketing, recycling, and decommission. SE practices consider more design and analysis aspects 
than implementation topics. They address implementation management, but not necessarily detailed areas such as 
manufacturing, testing, analysis, etc. While languages and tools can be used in principle across the full lifecycle of a 
system, model, theory, and framework they need to include these last phases as part of their teleology, otherwise 
they would not be really integrated in their workflow. Thus, closing the design loop is key so an SE process could be 
reinforced, feedbacked, and improved with the information coming from the last phases of a project development.   

• Synergy. Besides generic SE frameworks such as BIM and reviewed toolsets (documents, matrixes, graphs), all 
system engineering methodologies present a very discipline-oriented approach. The type of challenges and problems 
these methods tackled are multidisciplinary in nature, but their approach tends to divide the problem by discipline. 
Concurrent and agile techniques are closer to a more multidisciplinary and holistic approach than the rest since 
multiple disciplinary problems are addressed faster, and in more detail, than other techniques. Along those lines, the 
Vtech MBSE framework presents an ‘onion’ model similar to the walking skeleton and IID methods. Among these, 
multiple design and SE cycles occur much faster to subsequently increase the level of definition. A fast-paced 
approach increases interactions and brings a more synergetic approach just by temporal proximity in the lifecycle.  

• Optimization. While SE techniques can be used in optimization activities and efforts, these methods and theories do 
not necessarily embrace the optimization as a specific part of the theoretical workflow. Optimization is often perceived 
as a task, rather than a part of the development lifecycle process itself. As a result, optimization tends to be addressed 
during the design phase only providing feedback to reassess or modify analysis and implementation later on.  

• Flexibility. Finally, there is a gap that connects all previous points. All these methods present a clear and defined 
workflow that tackles analysis, design, and implementation separately. While the practice of SE and DE often requires 
multiple in-between steps across phases, such theoretical frameworks present a significantly rigid structure. However, 
all these methods do allow to have more flexible workflows while the use of related toolsets also enable a more 
flexible utilization. As such, all of them with the exception of some design framework such as BIM, tackle efficiently 
quantifiable and non-geometrical parameters. 
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 Evolutionary Principles: Nature, Engineering, and Design 

 Approach 

The concept of evolution as well as subsequent evolutionary mechanisms have outgrown the purely biological realm 
and influenced already many technical fields such as software design, bio-engineering, and system engineering, among 
other disciplines (Hingston et al., 2008). While this is indeed a growing and under-development field, this literature review 
section addresses concepts, mechanism, principles, and applications that not only are a foundational base for this research. 
Furthermore, these also highlight key gaps along this new paradigm especially regarding hardware-based system 
architectures. Biological evolution is one of nature’s mechanisms to deal with change and entropy, and it is also the approach 
behind how complexity emerges within biological systems in general (Ray, 1994).  

In physics, evolution is the approach of a system to its thermodynamic equilibrium defined by an increase in entropy 
(second law of thermodynamic). On the other hand, from a biological perspective it means an increase in the complexity of 
its structure and internal connections. This contradiction is reconciled by the scale at which this is applied while it also brings 
the notion of stability (Chakrabarti and Ghosh, 2011). In essence, evolution is the engine of complexity (Mayfield, 2013) and 
mastering its methodology has served of inspiration in multiple technical fields, such as software development to increase, 
manage, and harness the inherent complexity of a system. As Braha, Minai, and Bar-Yam exposed is their complex 
engineered systems book, when it comes to complex systems current paradigms of goal-oriented reductionist analysis and 
centralized control are not capable of handling very large or very complex systems (Braha et al., 2007). At the same time, 
evolution-driven principles of adaptability, self-organization, resilience, and scalability, among others serve very well 
upcoming systems engineering and design challenges in an era of increasing complexity and more global scarcity.  

Section 3.3.2 presents an organized literature review of all these topics across multiple technical fields. This is based 
on a series of key overarching evolutionary principles (EVPs) as shown in Table 16. Furthermore, Table 17 presents a 
detailed summary of each method, principle, and technique addressed in the literature review. This last table also presents 
the same format and scale than the DE and SE review tables to make any further comparison and reference easier.  

 ID Code Field of study 

T
h

eo
ri

es
 

P
ri

n
ci

p
le

s
 

M
o

d
el

s 

C
o

n
ce

p
ts

 

A
p

p
lic

at
io

n
s

 

Description Driven by Applied Domain 

Evo1 
Natural 
Evolution 

X X    
This includes modern biology theories, 
evolutive mechanisms, and principles. 

Nature Biology 

Evo2 
Computer 
Science 

  X X  

This is about methodologies and theories 
based on the previous point and applied to 
a modern use of computer science tackling 
complex engineering challenges.   

Data Optimization 

Evo3 Software Design   X  X 
It is a subset within the previous computer 
science point that is applied to fast-paced 
software development techniques. 

Process Agility 

Evo4 
Systems 
Engineering 

  X  X 
This field includes all the above points to 
tackle more efficient systems engineering 
methods across the system lifecycle. 

Workflow Efficiency 

Evo5 
Hardware 
Design 

   X  
Examples and concepts using this 
approach are included in this category. 

Object Optimization 

Table 16. Fields and scope of evolutionary methods.  
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 Literature Review Summary 

These sections elaborate and summarize some of the most relevant principles across key fields, as well as their 
relevance towards their application, usage, and relationship to hardware-based system design engineering.   

3.3.2.1. Biological Evolution (Evo1) 

Within the scientific study of natural evolution, several key principles and concepts could be understood as very 
relevant in the context of this research, independently of their biological nature. They provide approaches validated by nature 
which have inspired multiple new methodologies specially in the computer science and software domain. Among some of 
the most relevant principles in this realm we could find the following: 

• Natural selection is a key evolutionary mechanism, based on how 
certain phenotypes (physical observable characteristics of an organism) 
increase their statistical survival above other less fitted traits, ensuring 
their reproduction and continuation as Drawing and Wallace described 
(Herron and Freeman, 2013). But selection is also an organized route in 
itself against complexity (Bell, 1996). While entropy at large continues to 
increase, evolution tends towards a greater level and order. Evolution 
only happens through natural selection if there are enough genetic 
variations. At the most basic level, natural selection is based on inherited 
variations within species that allow them to have a survival advantage 
(Zeigler, 2014). This mechanism also considers destructive processes 
such as predation, competition for resources, climate changes, and 
diseases, among others. Figure 90 presents a graphical representation 
of this process (Wykis, 2007).  This basic evolution mechanism describes 
and predicts life evolution on Earth (Dobzhansky, 1973) and it was later 
connected to genetics by the modern synthesis theory. Relevance. 
Natural selection raises two concepts that relate to both DE and SE such 
as [1] the optimization of the solution is performed by multiple variations 
that are being tested against environmental requirements, and [2] 
previous solutions serve as leverage towards a new generation that 
become heritage. Application. This principle today is relevant at different 
levels because the evolution of products and services can be understood 
as small trending variations among multiple brands and customer 
feedback evolving towards an established design within their business 
ecosystem. In broader terms and with some caveats the concept of 
evolution also applies to technology development as Ziman pointed out 
(Ziman, 2003). Furthermore, the concept of finding more fitted solutions 
(or approximations) based on modifications within a given context is in 
essence the foundational principle of genetic algorithms developed in the 
1990s for software programing (Forrest, 1993; Koza, 1994).  

• Evolutionary developmental biology (‘evo-devo’) deep homology and pleiotropy. Evolution is about 
descendants with modifications and represents changes at both genetic and organism levels, enabling permanent 
changes in all species (phylogeny). On the other hand, development is about how an organism is produced 
(ontogeny) within its own individual time scale (Hall, 2012a). The evo-devo approach studies and compares those 
ontogeny processes to infer phylogenetic relationships (Arthur, 2002). In essence, ontogeny produces phylogenetic 
change and evo-devo studies how embryonic changes during one generation relate to evolutionary changes at the 
species level, and in any stage of the life cycle (Hall, 2012b). With the development of molecular genetics, evo-devo 
also studies the relationship between physical traits (phenotype) and genetics (genotype). Among many mechanisms 
discovered within this approach, deep homology describes how certain genes (hox genes) control the development 

Figure 90. Natural selection applied to antibiotic 
resistance, after Wykis (2007).  
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process (growth and differentiation) within a species, and across many species (Hall and Olson, 2003). Figure 91 
show this concept graphically (Hueber et al., 2010). Eco-eco-devo incorporates the notion of ecology into this retro-
alimented cycle. Furthermore, across the smaller portion of genes controlling the development, one gene affects 
multiple and unrelatedly phenotypic characteristics. This process is called pleiotropy (Miglani, 2010). Relevance. At 
a high level, this approach brings a couple of important points in the development of any complex system, such as 
[1] the development of the system affects the system itself and possible futures generations and [2] a small control 
mechanism guiding the development process affects multiple subsystems. Regardless of the biological origin of this 
approach, these principles can apply to both system design and systems engineering developments. The notion that 
the process intrinsically affects point designs as well as whole families of designs, provides a much broader and 
richer perspective with multiple design consequences. Application. Evo-devo principles are being explored for 
software and hardware developments especially toward optimization and computer generation of solutions without 
human involvement, with applications in urbanism and architecture for instance (Richards et al., 2012). 

 

• Speciation. In such evolutionary path, one species could evolve into multiple 
other species over time (speciation), thus becoming the common ancestor of 
those (Dieckmann et al., 2004). Populations that are isolated from each other 
can evolved into new species driven by adaptive mechanisms such 
ecological, reproductive (Dieckmann et al., 2004), and artificial divergence. 
These mechanisms include: [1] geographical separation, [2] small population 
entering an isolated niche, [3] entering a new connected niche, [4] and a 
population going through genetic changes (Butlin et al., 2009; Karonen, 
2006). Relevance. While implications of this simple concept have multiple 
consequences and theories in the literature, the essence is that the creation 
of diversity (and therefore all ties between individuals) is part of the 
evolutionary process.  Application. Software techniques such as digital 
forensics explore these principles (Cooper, 2005). 

Figure 91. Hox genes across species after Hueber et al. (2010). 

Figure 92. Speciation mechanisms after 
Karonen (2006). 
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• Mutations are changes in DNA molecules leading to the genetic variation of species. These genetic changes may 
lead to phenotype changes, and these to an evolutionary advantage in the natural selection process (Nei, 2013). 
Relevance. Change is at the core of evolution, and nature show us that smaller variations lead over time to greater 
complexity and more efficiency in any environmental context. Regardless of the biological or artificial nature of a 
system, this mechanism applies to the notion of continuity and the approach towards what design methodologies are 
aimed. Application. This principle can be found across software testing techniques (King and Offutt, 1991), structural 
design optimization (Burns, 2002), and genetic algorithms (Srinivas and Patnaik, 1994), among others.  

• Coevolution happens when two or more (guild) species affect 
each other evolution through natural selection (Thompson, 
2005), and it is one of the most powerful mechanism on the 
Earth ecosystem. Multiple paths lead to coevolution including 
predator-prey, host-parasite, or mutualism (e.g., flowers and 
insects), and they imply some specialization of species 
involved (Thompson, 2009) while bringing a geographical 
standpoint. Relevance. Coevolution goes beyond biology, 
affecting from systems engineering and computer science to 
culture and human diversity (Durham, 1991). The notion that 
unrelated systems can help, support, and thrive upon each 
other, is at the core of any complex system as well as it could 
be within systems engineering efforts. Thus, the duality of specialization and co-evolution applies to all kinds of 
systems, natural or otherwise. Application. This mechanism is found across many technical fields such as: [1] 
computer science to develop coevolutionary algorithms for artificial intelligence and machine learning (Potter and 
Jong, 2000), [2] cosmology and astronomy (Ho, 2004), [3] manufacturing, applied for instance to the coordinated 
development of products, processes, and production systems (Tolio et al., 2010), [4] architecture design, for instance 
within biomimetic architecture (Mazzoleni, 2013), [5] management such as the coevolutionary NKCS model (Allen et 
al., 2011), [6] sociology (Durham, 1991), and [7] technology (Lee, 2020), among others.  

• Adaptation. Furthermore, the aforementioned dynamic evolutionary process leads consequently organisms to 
become more fitted within their environment and potentially evolve as species if phenotypic changes become 
hereditary. Adaptation and biological fitness are therefore related, since the last one relates to the genotype and the 
ability of an organism to pass genes they carry (Werf et al., 2008). Relevance. Physical self-organization and 
evolutionary adaptation are also interconnected (Vijver et al., 2013a) since a higher level of evolutionary adaptability 
(based on variations and selection) requires a higher level of self-organization among components and their 
interactions. In general and beyond biology, the adaptation of a system is related to its capability to react against 
environmental changes influencing the designer to forecast such situations (Levi and Kernbach, 2010). These 
changes could happen because: [1] a new situation, [2] a new functionality need, [3] a modified behavior, and [4] an 
optimization of system parameters. Application. This principle is widely used across multiple fields within design 
principles and an optimization strategy such as: [1] robotics (Levi and Kernbach, 2010), [2] architecture (Košir, 2019), 
and [3] artificial intelligence (Holland et al., 1992), among others. 

• Evolvability is the capacity of a developmental system for its adaptive evolution (Minelli, 2018). The key is to provide 
phenotypic (physical) variations that become heritable, so they are maintained over time leading to the evolution of 
the specie through natural selection. This concept is also related to the robustness of an organism and the persistence 
of certain traits under external perturbations (Wagner, 2013). Robustness against mutation is therefore as important 
as the capacity of the system to evolve. Thus, biological systems are capable of changing and tolerating change at 
multiple levels. Relevance. This is a critical aspect to understand how complicated systems can withstand a lot of 
change (Wagner, 2013), and it can be key to understand heritage as an unchanged but proven solution or species 
trait. Application. As well as previous concepts shown, this principle is used in multiple fields such as [1] robotics, 
optimizing towards arbitrary behavior and creating novel system functions (Long et al., 2018), and [2] system 
architecture, reducing cost in large systems by managing changes in smaller parts through defeaturing, abstraction, 
duplication reduction, etc. (America et al., 2010). 

Figure 93. Co-evolution paradigm after Tolio et al. (2010). 
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• Self-organization is the principle by which natural systems become structured 
through their own internal processes and unlike technological systems which 
achieve such state through external commands (Yates, 2012). These internal 
processes lead to patterns at a system-level (Schweisguth and Corson, 2019; 
Schweitzer, 1997), because of interactions at lower system levels. This requires 
enough available energy although they appear not to have a clear directive 
sometimes. Mechanisms leading to self-organization include: [1] positive and 
negative feedbacks increasing or reducing the magnitude of a perturbance in the 
system, [2] exploitation and exploration, [3] multiple interactions, and [4] energy 
versus entropy or disorder (Camazine et al., 2003). A key aspect of this 
mechanism is the access to information, since organization arises from 
interactions among individuals that include signals and cues obtained from each 
other as a work in progress or stigmergy. Self-organized systems are dynamic, 
flexible, and they present emergent properties through local interactions within a 
more global order. They are also non-linear, with an organizational hierarchy, and 
inherently complex, while staying far from the thermodynamic equilibrium. 
Multiple theories are also behind this principle such as: [1] dissipative structure 
theories based on a matter/energy exchange balance, [2] synergetic principles based on the coordination or synergy 
of mechanism between internal components, and [3] catastrophe theories based upon “the long-run and stable 
equilibrium that can be identified with the minimum of a smooth well-defined function”. In other words, it is a transition 
towards a steady state through unsteady states. Relevance. However self-organization not only applies at the 
organism level, but also at molecular, mineralogy, thermodynamic, behavioral, social, economic, urban, information 
science, and cultural (Vijver et al., 2013a; Yates, 2012) levels. As Ashby defined in its “Principles of the self-organizing 
system”, any deterministic dynamic system will evolve towards an equilibrium state (attractor), leaving all non-attractor 
states behind so its evolution will constrain it into the attractor itself (Ashby, 1991; Zhang, 2015). In essence, the 
multiple literature about self-organization reinforces the idea of an intrinsic self-order for any complex system within 
a contextual environment. Application. Self-organization principles and theories are used and applied across 
multiple fields such as: [1] biology (Camazine et al., 2003), [2] chemistry (e.g., molecular self-assembly Whitesides 
et al., 1991), [3] systems control (Gershenson, 2007) , [4] cybernetics (Ashby, 1991), [5] thermodynamics (Nagarajan 
and Ruckenstein, 1991), [6] computer science (Winfree, 2006), [7] socio-economics (Witt, 1997), and [8] linguistics 
(Zhang and Park, 2008), to name a few. 

• Evolutionary ecology is in between ecology and evolutionary biology (Mayhew, 2006) perspectives. This field 
studies variations (genotype differences) “within individuals, among individuals, among populations, and among 
species” (Fox et al., 2001), considering the relationship with the physical environment and the effects of performance, 
behavior, longevity, and fertility. Thus, this implies that is key to understand when a phenotype trait within an organism 
is caused by its genotype and how much this will drive 
its natural selection. This approach requires a 
perspective that takes into account simultaneously time 
scale, complexity, size, and space (see Figure 95, 
Pianka, 2011), as well as the complex interactions 
among species, populations, and individuals. The term 
system ecology refers to both massive complexity and 
subtle interactions. However, the limitation in predicting 
such responses with models that are limited by state-
conditioned data is based on the difficulty of inferring 
new behaviors in any new state going beyond any 
available data (Pianka, 2011). Relevance. This field 
provides a unique perspective regarding complexity 
because not only it addresses subtle and complex 

Figure 94. Emergence of self-
organization after Schweitzer (1997). 

Figure 95. Time-scale scaling of biological phenomena after 
Pianka (2011). 
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interactions between all components of an ecology, but also relates to different scales within such ecology. 
Independently of the biological origin, such perspective could also be very applicable to the development of very 
complex artificial ecosystems, such aerospace, energy, etc. Application. Again there are multiple fields where this 
approach is being used or based upon, such as: [1] biology, [2] social sciences (Smith, 2017), [3] information 
processing (Dukas, 1998), [4] technology (Solée et al., 2013), and [5] urbanism (Rivkin et al., 2019).  

• Biological network. Biological systems at multiple scales (e.g. 
protein-protein interactions, between-species interactions, food webs, 
etc.) are better captured by network representations as Figure 96 
(Kepes, 2007) shows. In essence, modeling processes in bioscience 
can be summarized by the following phases: [1] conceptualization, [2] 
mathematical formalization, and [3] management or optimization 
(Marin-Sanguino et al., 2019) as seen in Figure 97. Bioinformatics turn 
such complex systems into building blocks or nodes that interact 
among them while representing biological units based on graph theory 
such as genes, molecules, cells, and organisms (Proulx et al., 2005). 
At the core of this mathematical approach there are several 
parameters, which are critical to understand the network topology such 
as: [1] degree distribution or variation in the connectivity to the nearest 
neighbors P(k) (Kepes, 2007), [2] clustering coefficient representing 
the ratio of connections or small-world properties of a graphs, [3] 
assortativity coefficient as a measure of how many edges in a network 
tend to connect similar nodes (Boccaletti, 2010), [4] eigenvector (Guzzi 
and Roy, 2020) that measures the influence of a node in a network, [5] 
hierarchy, [6] motifs, and [7] betweenness centrality that defines how 
central a graph is based on the shortest possible path (Freeman, 
1977). Relevance. This approach applies beyond biological studies 
and presents a unique way to look at complex systems as networked 
elements under multiple inherent relationships that are defined by their nature. Complexity of natural systems does 
not reside only in the number of components (e.g., cells) but also key relationships among them and at multiple levels. 
Application. This approach is used across multiple fields in biosciences tackling scales such as molecule and protein 
interactions, systems (e.g., immune, or neural systems), and ecologies (e.g., system of systems).  

Figure 96. Graphics presentation of three networks models after Kepes (2007).  

Figure 97. Modeling in biosciences after Marin-
Sanguine et al. (2019).  
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3.3.2.2. Evolutionary Computer Science (Evo2) 

The use of evolutionary computational (EC) principles inspired by these biological mechanisms has been widely used 
since the 1960s across multiple technical fields, with an emphasis in both optimization and artificial intelligence (Jong, 2006). 
The width of these fields is very extensive and is out of the scope of this research, however it is key to understand some 
basic principles behind. This subset of computer science is based upon algorithms, models, programming, and strategies 
(Dumitrescu et al., 2000) with many potential applications to planning, design, simulation, optimization, identification, control, 
machine learning, scheduling, strategy acquisition, and classification, among others within this realm (Baeck et al., 2018; 
Bentley, 1999). Evolution is a good problem solver, and has many commonalities with human design (Bentley, 1999). 

Interactive evolutionary computation (IEC) is a subset of EC 
that optimizes a system based upon a subjective human evaluation 
(Figure 99, Takagi, 2001) with multiple applications in animation, 3D 
computer graphics, industrial design, speech processing, etc. This 
approach merges the quantifiable parameter space with the qualifiable 
psychological space. Similarly, human-based evolutionary 
computation (HBEC) relies on humans to manage candidate solutions 
either through a centralized approach (e.g., web server) or a 
distributed way (e.g., information sharing among people) (Ohnishi et 
al., 2017; Tan et al., 2017). These could be applied to both selection 
and evolutionary methods across multiple technical fields.  

These methods address evolution as an optimization process (Baeck et al., 2018).  Generally, they are based upon 
producing multiple initial solutions which are iteratively and stochastically refined through every following generation until a 
fitted solution is obtained. This is based upon natural selection principles (Eiben and Smith, 2007). EC is about searching 
within a space of possible solutions using evolutionary algorithms that combine several techniques (Ashlock, 2006).  

Evolutionary algorithms (EA) are a subset of EC, and in general they are all based in the natural selection principle. 
A preliminary algorithmic population is genetically created using a collective learning process for such population, then 
through a fitness function a parent group is selected to breed a new descendant population that based on multiple 
randomized processes (Baeck et al., 2018) until the solution is approximated well enough. Among the most relevant EA are 
genetic algorithms (GA), which were developed by John Holland in 1962 (Dumitrescu et al., 2000). These are also based 
on the survival of the fittest principle with the purpose of designing robust adaptive systems. This metaheuristic process 
presents an evolution of candidate solutions (chromosomes or fixed-length binary strings) through different search operations 
such as crossover, mutations, and inversion. Figure 100 shows an example of a genetic algorithm. Within this context, 
genotypes can be understood as solutions seeds, which map phenotypes or solutions. Figure 102 also presents the general 
architecture of GA algorithms (Bentley, 1999) that can be summarized in three basic steps: [1] generation of an initial 
population, [2] selection of a portion of that population to seed the next generation, and [3] development of a next generation 
from that portion through crossover (recombination of parental genetic information to create a new offspring) and mutation 
(changing some algorithm chromosomes). In general, the GA method needs a genetic representation of the solution and a 
fitness function to evaluate it. Advanced genetic algorithms include among others (Bentley, 1999): [1] steady-state (offspring 

Figure 98. Generation of evolving house designs (population of 4) after Bentley (1999).  

Figure 99. IEC basic scheme, after Takagi (2001).  
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replaced after generation according to fitness), [2] parallel (multiple processes in parallel), [3] distributed, [4] niching & 
speciation (segregating population into different species), [5] messy, [6] hybrid (GAs combined with search algorithms), [7] 
structured, [8] ‘genetic engineering’, and [9] multi-objective (Takahashi et al., 2011), among many others.  

GA are heuristic in nature, so within an optimization problem they are designed to find a ‘good-enough’ solution (Vose, 
1999).  Nevertheless the GA method presents limitations when compared to other methods (Sivanandam and Deepa, 2007) 
such as: [1] identification of a proper fitness functions, [2] premature convergence, [3] parameter selection, [4] gradients are 
not possible, [5] local optimization is complicated, [6] they required a coupled search technique, [7] dynamic data sets are 
complicated to tackle, [8] the criteria to terminate the process is often not clear, and [9] scalability to deal with more complexity 
if often complicated as well, among many others others. 

Adaptive genetic algorithms (AGA) present a variation of AGs where key parameters such as population and 
mutation change at the same time the algorithm is running allowing changes ‘on-the-fly’ (Pearson et al., 2012). These 
variations present the following steps (Sivanandam and Deepa, 2007): [1] initialization, [2] genetic operators (selection, 
crossover, mutation), [3] local search (iterative), [4] heuristic for adaptive regulation, and [5] stop conditions.  

Other related evolutionary computing techniques include meta-heuristic optimization techniques based upon 
search methods in the decision space to find optimal solutions (Bozorg-Haddad et al., 2017). These techniques can be 
summarized in both trial-and-error and sampling, which could be grid, random, and targeted. Among multiple examples these 
AGAs are highlighted: [1] ant-colony optimization that uses graphs and artificial ants behaviors as a solver mechanism for 
optimization (Dorigo et al., 2004), [2] cultural algorithms 
expanding generic GAs with a domain-specific belief space that 
conditions the search space as shown in Figure 101 (Reynolds, 
2018), [3] memetic algorithms (MA) extending GA with domain-
specific local search (individual) capabilities (Neri et al., 2011), 
[4] stochastic optimization using random search variables such 
as Monte Carlo (Schneider and Kirkpatrick, 2007), [5] particle 
swarm optimization (PSO) that iteratively improves 
convergence candidates (continuous non-linear functions) by 
using participles, coordinates, and speed within a solution 
space (Clerc, 2013; Erdogmus, 2018), [6] grammatical 
evolution (GE) that evolves solutions based on a user-driven 
grammar (O’Neill and Ryan, 2012), [7] dual-phase evolution 
(DPE) that promotes self-organization in large scale systems 
using both graphs and networks (Green et al., 2013). The 
system goes through multiple phases globally and locally 
processes affecting connections and components in each 

Figure 100.Example of a genetic algorithm after Bentley (1999).  

Figure 101. Cultural algorithms components after Reynolds 
(2018). 
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phase for both natural and artificial systems, and finally [8] differential evolution (DE) that uses differences among individuals 
as a fast linear operator (Feoktistov, 2007).  

On the other hand, evolutionary programming (EP) simulates evolution through behavioral relationships instead of 
a genetic descendance (Fogel and Fogel, 1995). Intelligent behavior is simulated within EP methods through symbols. The 
machine creates an output symbol, which is the prediction of what the next input symbol will be. Then a payoff function 
evaluates the quality of the prediction (Dumitrescu et al., 2000). Applications of this technique can be found in medicine, 
geology, and economics, among many more fields.  

Evolutionary strategies (ES) or evolutionstrategie is an optimization technique created by Bienert, Rechenberg and 
Schwefel (Bentley, 1999) to tackle hardware systems at first (e.g., pipe bent optimization). In ES methods, there is also no 
distinction between phenotype and genotype. The child solution is created by randomly mutating parameters of the parent 
(Rechenberg, 1989). Then it is evaluated by its fitness, leading to another solution until the objective is met. This 1+1 
approach presents a problem of stagnation at the local answer (Beyer, 2013) and also a slow convergence to a solution.   

Figure 102. General architecture of evolutionary algorithms after Bentley (1999). 
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3.3.2.3. Evolutionary Software Design (Evo3) 

The use of evolutionary techniques has influenced computer science and its application like software design. With 
goals such as efficiency, speed, and complexity several techniques can be highlighted as examples of evolutionary principles 
that are applied to the development of this field. 

Genetic Programming (GP) was developed by Koza in the 
1990s as a software development technique (see 3.3.2.3). GP is 
based on the same natural evolution principles as GA, and applies 
them to find the fittest computer program (Koza, 1994). Figure 103 
shows a flowchart representation of the genetic programming. 
Computer programs are then genetically programmed, and through 
genetic recombination (crossover) there are mated in a Darwinian 
process to obtain the fittest solution or its best approximation. Unlike 
GA, this approach does not make a difference between search space 
and solution space, so genotypes and phenotypes are the same 
(Bentley, 1999) altering the solutions directly. The GP method uses 
hierarchical tree representations to show operations.   

Agile techniques were introduced within SE practices and 
originally developed for software developments in the beginning of 
the century. These are based on self-organization principles, bringing 
speed and flexibility towards changing requirements (Eckstein, 2013). 
Thus, these methods present an adaptive approach, prioritizing code 
(“genotype”) over documentation or product (“phenotype’) and always 
with a goal-oriented path. These techniques can be applied to large 
projects (Stober and Hansmann, 2009).  Several key characteristics 
summarize some basic relationship with EC practices such as: [1] 
agile software projects are meant to grow and evolve constantly until 
certain size (complexity) makes them not viable any longer, [2] 
practices are tailored or fitted to specific problems by teams, and [3] 
the practice is defined by a bottoms-up approach filling gaps within 
workforce teams and techniques. Among some of the most relevant 
agile software techniques are the following: 

• Scrum is an agile practice and software framework development with its origins in product development. It presents  
a heavy emphasis in both processes and small teams management (Ockerman and Reindl, 2019). Scrum methods 
are based on: [1] transparency (every team member is aware of all aspects and goal-oriented), [2] inspection (short 
and frequent meetings – scrums - are used for updates and reviews), and [3] adaptation (fast inspection allows to 
quickly change strategy, plans, and behaviors in order to achieve goals efficiently and with more quality) (Cohn, 2010; 
Ockerman and Reindl, 2019). Figure 105 (Mitchell, 2015) shows the scrum cycle using multiple fast sprints. 

• Extreme programming (XP) is oriented towards quality improvement and customer needs adaptability. This is based 
on both coding and testing, while integrating customers in the process. It encourages simplicity, feedbacks (system, 
clients, team), and embraces change (Beck and Andres, 2004). XP presents a process with fast small releases and 
a continuous integration (teams are always synced) using feedback techniques such as pair programming where two 
programmers work in the same code simultaneously to reduce errors and increase speed (Zannier et al., 2004). 

• Test driven development (TDD) is also based on very short redevelopment cycles with requirements being validated 
through tests cases (Astels, 2003; Beck, 2003). TDD presents a rapid cycle of testing, coding, and refactoring (Shore 
et al., 2008) that provides proven code every few minutes. Adding features is done in pairs as well and in small 
increments, reducing defects and improving resilience. Thus, TDD follows an incremental evolutionary approach.  

• Lean software development (Lean SD) evolved from lean manufacturing and presents a solid framework based upon 
some key principles such as: [1] eliminate waste, [2] amplify learning (set-based development), [3] decide as late as 

Figure 103. Flowchart of the GP approach after Koza (1994).  



  
Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

110 

 

possible (concurrent development), [4] deliver as fast as possible (pull systems), [5] empower the team, and [6] a 
holistic optimization of the whole (Poppendieck and Poppendieck, 2003). Lean SD also involves short iterations and 
automation (Hibbs et al., 2009) with a continuous approach towards the integration and development of the product.  

• Adaptive software development (ASD) is a change-driven 
technique (Highsmith and Highsmith, 2002)  that embraces 
uncertainty within both process and technical ecosystems. This 
approach intertwines concepts, developments, and 
management models (Highsmith, 2013) for the development of 
a complex adaptive system (CAS) presenting high speed, high 
change, and high uncertainty. ASD sees the project team of an 
organization as a living organism and applies concepts to it 
inspired by nature, for a much faster approach than waterfall 
and other evolutionary engineering paradigms. The adaptability 
in this method is based upon leadership and collaborations 
rather than control and command. At the core of this approach 
is the principle that a ‘complex behavior’ implies ‘simple rules and rich relationships’ (Highsmith, 2013). ASD is 
presented as an iterative design lifecycle (plan, build, and revise) approach, as well as iterative development lifecycle 
(learn, collaborate, and speculate). ASD has three critical mission artifacts: [1] the project vision (charter), describing 
objectives, specifications, etc., [2] the project data sheet which is as single page summary used to focus team 
members, managers, and customers, and finally [3] the product specification outline that presents features, functions, 
data, and operations, among others high-level product definition documents. This adaptive approach also influences 
project management by addressing the core question of how to proceed when the solution is not known either partially 
or completely (Wysocki, 2010). Thus, ASD and adaptive project framework (APF) are centered around the goal but 
not the solution, so they can accommodate change as a continuous aspect towards developing products and services 
(Yu et al., 2019). APF manages the ‘scope triangle’ (time, cost, and resource availability) through multiple cycles until 
the goal is fulfilled. It is also a client-driven approach that enables and uses continuous increments and questioning.   
Finally, evolutionary software architecture (Ford et al., 2017) is a set of tools and frameworks to create incremental 

and guided software developments. This approach presents three phases: [1] incremental change, [2] fitness functions, and 
[3] appropriate coupling. Like other techniques, the evolutionary approach involves finding a fitted system for an ever-
changing environment. This method emphasizes the overall adaptability of the system beyond its components.    

Figure 104. Differences between adaptive and 
traditional models, after 2013.   

Figure 105. Scrum framework process after Mitchell (2015).  
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3.3.2.4. Evolutionary Systems and Computer Engineering (Evo5) 

The notion of evolutionary-based systems engineering methods was already introduced in section 3.2. However, this 
section presents details regarding several of these general methodologies, as well as their connection to natural evolution 
principles. Among some of the most relevant evolutionary systems engineering methods are the following:  

• Evolutionary system architecture (Jamshidi, 2011) tackles dynamic and not fully formed system of systems (SoS).  
Within this approach, the evolution of a SoS is developed through mechanisms such as [1] self-evolution, when sub-
systems interfaces change, [2] joint evolution, when multiple integrated systems take part on the effort, and [3] 
emergent evolution, when a new system excesses the capabilities of its subsystems. ES architecture considers 
several aspects such as [1] business, [2] operations, [3] technology, and [4] interfaces, among others. These are all 
within structured layers and evolution environments addressing the system complexity (Chen and Han, 2002). This 
approach follows these steps (Jamshidi, 2011): [1] identify evolution requirements, [2] identify technology options, [3] 
generate an architecture to fill gaps, and [4] evolve such generated architecture though an architecting process. 
According to Jamshidi, this approach presents a unique framework to be reinforced by artificial intelligence and other 
EC techniques including multimethodology analysis capabilities (Grösser, 2012) to obtain better solutions. 

• Incremental and iterative development (IID) was already presented in section 3.2. Nevertheless, it can be applied 
to both SE and software development domains (Blokdyk, 2017; Larman and Basili, 2003). As previously stated, IID 
is based upon multiple iterative cycles that provide incremental and smaller improvements until the goal is fulfilled 
(Isaias and Issa, 2014). Each cycle serves as feedback input for the next cycle, allowing revisions and improvements 
at each step. Once more, this approach presents a layer-structured framework taking into account perspectives from 
team members, customers, and managers (Bittner and Spence, 2006). 

• Evolutionary development (ED) is common in research and development (R&D) environments (Forsberg, 2020). 
Each cycle is used as input for the next one and its output can present an unknown nature. This approach includes 
the user perspective in the development framework and prototypes as way to validate and collect information for the 
decision process (Hirschheim et al., 1995). This method involves both software and hardware, and implies a 
collaborative and experimental learning capability using prototypes in the context of ED.   

• Evolutionary System Development Prototyping (Budde et al., 2012) is an approach based on the evolutionary 
development of software systems and it involves the production of multiple early working versions as an 
experimentation source. It was developed by Reinhard Budde, Karlheinz Kautz, and others. This approach brings a 
rapid engineering standpoint to the process, as well as to other development activities such as project start, 
information system modeling, software design, software construction, installation, and organizational integration. This 
approach also includes verification and validation of models through prototyping across the full system lifecycle.     

• Evolutionary System Model (ESM) is a layered approach for evolutionary complex computation systems, especially 
for business environments (Henderson, 2012). There are six layers within this approach: [1] technology (e.g., 
including hardware, networks, operative systems, etc.), [2] domain machine (e.g., computer services), [3] domains 
(e.g., ontology) as fixed points of an evolutionary system, [4] enterprise (e.g., business practices and organizational 
structures), [5] process (e.g., individual process and functions), and [6] executive (e.g., human interface).  

• Evolutionary systems engineering (ESE) presents a systems engineering process in three phases (Hitchins, 
2003): [1] basic capabilities including operations and system familiarization, [2] additional capabilities, and [3] delivery. 
This is especially relevant for lean volume supply productions as well as acquisition and procurement efforts. It 
presents a very different approach that other systems methods for mass development and production.  

• Evolutionary SoS development (Rainey and Tolk, 2015) is a systems engineering method where a SoS is never 
fully formed or complete. Furthermore time, structure, function, and purpose are also developed through evolutionary 
methods. SoS emerges from existing systems and its evolution implies changes over time (e.g., Arpanet).  

• Feature-driven development (FDD) is an agile system engineering method made of collections of workflows and 
techniques that us based on features and roles with an added value such as chief architect (Haberfellner et al., 2019). 
This method presents a two-weeks fast-paced five steps including: [1] overall model development, [2] feature list 
considering actions, results, and objectives, [3] feature planning, [4] feature design, and [5] feature construction.  

• Complex adaptive systems (CAS)  is a method based on the notion that complex natural and social systems present 
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stable states outside an equilibrium (Carmichael and Hadžikadić, 2019) with multiple and correlated feedbacks among 
all agents within such systems. The CAS is often not addressed at the system-level and requires the study of the 
agent behavior. Thus, as a SE framework, CAS is an agent-based approach (Miller and Page, 2009) that presents: 
[1] multiple levels of feedback among agents and components of such complex systems, [2] emergent properties and 
self-organization, and [3] non-linear dynamic behaviors (Miller and Page, 2009) similarly to those of natural organism. 
Feedbacks within CAS imply ‘that the output of a system at a time t has influenced the input of a system at a time 
t+1’. Intelligent complex adaptive systems (Ang and Yin, 2008) applies a multidisciplinary approach towards the 
simulation of multi-agent systems and organizational studies to understand the behavior of synergetic complex 
systems. In summary, this approach presents a perspective that looks at a system as a: [1] complex construct due to 
dynamic behavioral interactions among parts and components, and an [2] adaptable element since a system that can 
evolve and self-organize itself is based on events within its environment. Applications of this approach are used in 
economics, agent-based modeling (ABM), strategic management, etc. (Yin and Ang, 2008). Adaptive systems extract 
and give energy to their environment (Gros, 2015) reflecting the importance within this approach to consider 
contextual relationships. Thus, CAS systems learn and adapt as they interact (Holland et al., 1992).  

3.3.2.5. Evolutionary Hardware Design (Evo4) 

Finally, evolutionary techniques have been proposed and keep being applied to a growing number of hardware design 
topics and design theories towards physical systems. Among some of the most relevant techniques are the following:  

Evolutionary design combines evolutionary biology techniques 
such as biomimetics and comparative studies, computer science (EC), and 
design (CAD) since the 1990s (Bentley, 1999). Real examples exist in 
multiple fields, as Figure 111 shows. There are four pillars in this approach: 

• Evolutionary design optimization uses EC to optimize existing 
hardware designs making use of parametrics and adaptive CAD 
(Holland et al., 1992), but it does not generate a brand new design 
(Kalyanmoy, 2008). Related approaches involve concept design, 
detail design, evaluation, and iterative redesign (Bentley and 
Wakefield, 1996). See Figure 108a for a visual example.  

• Creative evolutionary design is based upon the creation of 
evolutionary designs starting from scratch using two perspectives:  

• Conceptual evolutionary design provides a high-level design 
framework with simpler representations showing basic building 
blocks (Figure 108b) for the system.  In this phase, basic 
genetic algorithms are used to assess system phenotypes.      

• Generative evolutionary design (genetic design) uses 
computer methods based upon GA to create 3D 
representations of phenotypes. As Figure 108c shows, this 
approach goes from unshaped components to detailed and 
valid designs based on genotype generations and fitting 
evaluations of the system.   

• Evolutionary art involves the generation of images using EC (e.g., 
digital trees, vegetation, moving crowds, etc.) with great success in 
the fields of animation, design, etc. (McCormack, 2008). 

• Evolutionary artificial life form is a method based upon the creation 
of artificial behaviors, problem solving approaches, and 
communication strategies, among other tools using EC techniques. 
In essence, this has the objective to simulate natural and complex 
behaviors virtually within a digital environment and in combination 

Figure 108a. Evo. optimization of a table (Bentley, 1999). 

Figure 108c. Generative evolutive design of a table  
(Bentley, 1999). 

Figure 108b. Conceptual evo. design (Bentley, 1999). 
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of a series of fitness functions to validate multiple complex facets. 

• Induction design is a method of evolutionary design 
applied to architecture and urban development 
(Watanabe, 2002). This approach reinforces the need 
of diversity towards system design resilience.  

• Multi-agent system (Shen, 2019) tackles multiple 
aspects of systems implementation from an agent-
based standpoint. This integrates collaborative, 
concurrent, planning, and other advanced manufacturing techniques, such as holonic manufacturing across 
engineering fields. Agent based models (ABMs) are computer models simulating the interaction between agents with 
design consequences to the overarching system. Ants are a good natural example of the inspiration behind agent-
based models (Wilensky and Rand, 2015). Multiagent systems 
bring a similar approach considering intelligent agents (Weiss, 
1999). Holonic manufacturing systems or HMS (Gräßler and 
Pöhler, 2017) within this multi-agent approach use “autonomous 
and cooperative building blocks of manufacturing systems to 
transform, transport, store, and validate physical objects” (Shen, 
2019). The agents within this method include specialists, sensors, 
action agents (e.g., robots), and interactive agents with humans 
(e.g., assistants). Figure 109 shows a general agent diagram. 
These agents process information (messages), make decisions, 
execute, and record information transactions as part of the 
methodology. Thus, this method [1] studies learning mechanisms 
among agents, [2] establishes architectures accordingly to 
optimize their implementation, [3] tackles other phases and 
challenges such as coordination, concurrency, allocation, conflict 
resolution, and knowledge ontologies (Monostori et al., 2006).  

• Evolutionary robotics (ER) uses EC to develop and optimize both hardware designs and controllers for autonomous 
robotics (Nolfi et al., 2000).  Under this method, the control system of a robot becomes an artificial chromosome, so 
EC techniques are used to improve its fitness. This applies as well to 
the body morphology (structure), sensors, motor properties, and 
design layouts (Vargas et al., 2014). ER is based on the fitness of the 
robot behavior which is generated from genomes. Here genetic 
operators are used like in other EC techniques to select and produce 
the next system generation. This method is applied to hardware and 
robotic systems allowing to explore new and unconventional designs 
based on large numbers of variables, tune parameters, design 
optimizations, and system robustness through its fitness (Vargas et 
al., 2014). Besides the fitness-based evolution, another approach 
within ER is a novelty-based evolution (Silva et al., 2016). Such 
approach is an evolution based on behavioral diversity, that avoids 
early convergence issues and enables an open-ended system 
evolution addressing both hardware and system behavior (Evans and 
Back, 2011) simultaneously.  

• Evolutionary machine design (Nedjah and Mourelle, 2005b) 
exemplifies a growing trend addressing how evolvable hardware and 
genetic programming can be combined to improve and optimize both 
hardware designs and behavioral capabilities of hardware-based 
systems. Applications of this can be found in adaptable circuits (Koza 

Figure 109. Different agents after Shen (2019). 

Figure 110. Holon after Gräßler, et al. (2017).  

Figure 111. ST5 antenna designed using GA 
techniques (NASA, 2006 - public domain). 
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et al., 2005), neural network controlled robots (Bekey and Goldberg, 2012), and SOA hardware systems across fields.  

3.3.2.6. Evolutionary Principles and Models Review Matrix 

Table 17 presents a summarized review of evolutionary key principles (EVP) across different fields of study. A brief 
description and basic characteristics regarding their approach and use are also provided, while an evaluation of critical 
aspects related to the design of hardware-based complex system architectures is considered based upon these points: 

• Foundation. This is a summary description of the evolutionary principle (EVP) and its characteristics. The following 
prefixes describe the category as [1] theory (TH), [2] principle (PRI), [3] technique (TEC), [4] model (MOD), [5] method 
(MET), and [6] mechanism (MECH). 

• Main function or task. Is the EVP approach concentrated on analysis (ANSY), design (DES), implementation (IMP), 
or development (DVP)? 

• System design phase. What phases are addressed by this approach? Basic design phases are numbered as it 
follows: [1] planning, [2] problem study, [3] concept design, [4] embodiment design, [5] detailed design, [6] analysis,  
[7] optimization, [8] testing and validation, [9] documentation, [10] implementation, [11] delivery, [12] marketing,  [13] 
operations,  [14] decommission, [15] recycling of products and processes (Seider et al., 2016) (Haik et al., 2010). See 
Figure 45 to identify color codes and structure level.  

• Information type. Does the EVP tackle geometrical information (GEO), such as volumes, shapes, sections, 
tolerances, and other graphical constructs)? Can it handle abstract information (ABS) such as analytical or genetic 
parameters? Can it handle interfaces (INT)?   

• Qualitative / quantitative (Qt./Ql.). Does the EVP tackle qualification and quantification parameters?  

• Scope. Can the SE method handle point-design solutions (PDS), families of point-design solutions (FDPS), 
development process (DEV), continuous designs (CONT), or a combination (COMB) of all of them?  

• Adaptability. Does the EVP present an approach that is considered flexible (FLE), networked (NET), strict linear (LI), 
iterative (ITE), waterfall (WA), spiral (SPI) or natural (NAT) methodologies (see Figure 46)?  

• Perspective. Is the EVP based upon a discrete disciplinary standpoint (DD) or a synergetic multidisciplinary approach 
(SA)? This question studies again whether it is based on a ‘divide-and-conquer’ approach discretizing disciplines and 
subsystems, or on the hand it can tackle multidisciplinary perspectives all at once.    

• Optimization. Does the approach allow any optimization of the system, solution, or process? 

• Tool platform. What type of tool and technique does the EVP enable or support? This could include: [1] computer 
models, [2] drawings, [3] CAD, [4] graphs, [5] physical prototypes, [6] documents, [7] schedules, and [8] math models. 

• Reference. This is a summary list of relevant technical references and professional practice inputs reviewed during 
this research.  
  

EVP Foundation / Application Function Phase Geo. Qt./Ql. Scope Adapt. Pers. Opt. Tools References 

Evo1 - Biological Evolution  

Driving Principles  Function Phase Geo. Qt./Ql. Scope Adapt. Pers. Opt. Tools  

Natural Selection 

MECH. It is based on the survival of the 
fittest phenotype principle. This mechanism 
increases system complexity and provides 
an adaption approach against Env. changes. 
Application: genetic algorithms 

DES 
IMP 

1-15 
ABS 
GEO 

QT 
QL 

FPDS NAT SA Yes N/A 

(Bell, 1996) 
(Herron and 
Freeman, 2013) 
(Zeigler, 2014) 
(Forrest, 1993) 
(Koza, 1994) 

Evo-Devo  
Deep Homology 

and Pleiotropy 

MECH. The development of an individual 
(ontogeny) produces changes at the species 
level (phylogeny). Deep homology describes 
how certain genes (hox genes) control the 
development of an individual as well as 
across species. The development of a 
natural system affects species and control 
mechanisms of its development including 
multiple subsystems.  
Application: software and hardware 

ANSY 
DES 
IMP 

1,5-
7,10 

ABS 
GEO 

QT 
QL 

FPDS 
DEV 

NAT SA Yes N/A 

(Arthur, 2002) 
(Hall, 2012b) 
(Hall and Olson, 
2003) 
(Richards et al., 
2012) 
(Miglani, 2010) 
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computer optimization. 

Speciation 

MECH.  Species could evolve into other 
species over time (speciation) becoming the 
common ancestor (descent). Its mechanisms 
include: [1] geographical separation, [2] 
small population entering an isolated niche, 
[3] entering a new connected niche, [4] and a 
population going through genetic changes. 
The creation of diversity is part of the 
evolutionary process.  
Application: software. 

ANSY 
DES 
IMP 

1,5-
7,10 

ABS 
GEO 

QT 
QL 

FPDS 
DEV 

NAT SA Yes N/A 

(Dieckmann et al., 
2004) 
(Butlin et al., 2009) 
(Cooper, 2005) 
 

Mutations 

MECH. Mutations are changes in DNA 
molecules leading to phenotype changes 
and the genetic variation of species. Smaller 
variations on system components lead to 
more complexity and efficiency in the 
environmental context over time. 
Application: software testing, structural 
optimization, genetic algorithms, etc. 

ANSY 
DES 
IMP 

1,5-
7,10 

ABS 
GEO 

QT 
QL 

FPDS 
DEV 

NAT SA Yes N/A 

(Nei, 2013) 
techniques (King 
and Offutt, 1991) 
(Burns, 2002) 
(Srinivas and 
Patnaik, 1994) 

Coevolution 

MECH. Two or more (guild) species affect 
each other evolution through natural 
selection. Related paths include predator-
prey, host-parasite, or mutualism. Thus, 
unrelated systems can help, support, and 
thrive upon each other.  
Applications: computer science, cosmology 
and astronomy, manufacturing, architecture, 
management, sociology, technology. 

ANSY 
DES 
IMP 

1,5-
7,10 

ABS 
GEO 

QT 
QL 

FPDS 
DEV 

NAT SA Yes N/A 

(Thompson, 2009) 
(Thompson, 2005) 
(Durham, 1991) 
(Potter and Jong, 
2000) 
(Ho, 2004) 
(Tolio et al., 2010) 
(Mazzoleni, 2013) 
(Allen et al., 2011) 
(Durham, 1991) 
(Lee, 2020) 

Adaptation 

PRIN. The dynamic evolutionary process 
leads for an organism to become fitter to its 
environment and potentially evolve as 
species if phenotypic changes become 
hereditary. Adaptation and biological fitness 
are related. A higher level of evolutionary 
adaptability requires a higher level of self-
organization among components and their 
interactions. These happen because of [1] 
new situations, [2] new functionality needs, 
[3] a modified behavior, and [4] an 
optimization of system parameters. 
Applications: robotics, architecture, artificial 
intelligence, machine leaning, etc. 

ANSY 
DES 
IMP 

2,4-
7,10 

ABS 
QT 
QL 

FPDS 
DEV 

NAT SA Yes N/A 

(Werf et al., 2008) 
(Levi and 
Kernbach, 2010) 
(Košir, 2019) 
(Holland et al., 
1992) 

Evolvability 

PRIN. It is the capacity for adaptive evolution 
of a developmental system. This is related to 
the robustness of an organism, and the 
persistence of certain traits under 
perturbations. This is a critical aspect to 
understand how complicated systems can 
withstand a lot of change. 
Application: robotics, systems architecture, 
design, etc. 

ANSY 
IMP 

2,6, 
7,10 

ABS 
QT 
QL 

FPDS 
DEV 

NAT SA Yes N/A 

(Minelli, 2018) 
(Wagner, 2013) 
(Long et al., 2018) 
(America et al., 
2010) 

Self-organization 

PRIN. Self-organization is the principle by 
which natural systems become structured 
through their own internal processes, and 
without external commands. Self-
organization mechanisms include: [1] 
positive and negative feedback, [2] 
exploitation and exploration, [3] multiple 
interactions, and [4] energy versus entropy 
or disorder. A key aspect is the access to 
information (e.g., interactions).  
Application: biology, chemistry, systems 
control, cybernetics, thermodynamics, 

ANSY 
IMP 

2,6, 
7,10 

ABS 
QT 
QL 

FPDS 
DEV 

NAT SA Yes N/A 

(Yates, 2012) 
(Schweisguth and 
Corson, 2019) 
(Camazine et al., 
2003) 
(Ashby, 1991) 
(Zhang, 2015) 
(Whitesides et al., 
1991) 
(Gershenson, 
2007) 
(Nagarajan and 
Ruckenstein, 
1991) 



  
Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

116 

 

computer science, socioeconomics, 
linguistics, etc. 

(Winfree, 2006) 
(Witt, 1997) 
(Zhang & Park, 
2008) 
(Vijver et al., 
2013a) 

Evolutionary 
Ecology 

MOD. It studies the variation (genotype 
differences) within individuals and among 
individuals, populations, and species. It 
considers the effects of the physical 
environment. It is based upon the scale of 
time, complexity, size, space, and 
interactions between species, populations, 
and individuals.  
Application: biology, social sciences, 
information processing, technology, 
urbanism, etc. 

ANSY 
IMP 

2,6,7,1
0 

ABS 
QT 
QL 

FPDS 
DEV 

NAT SA Yes N/A 

(Fox et al., 2001) 
(Pianka, 2011) 
(Smith, 2017) 
(Dukas, 1998) 
(Solée et al., 
2013) 
(Rivkin et al., 
2019) 

Biological Network 

PRIN. Biological systems at multiple scales 
are captured by network representations 
using nodes for different biological entities 
(e.g., cells, molecules, organism). This 
approach looks at complex systems as 
networked elements with relationships 
among parts.  
Application: biosciences, genetics, ecology...  

ANSY 
DES 
IMP 

1,5-
7,10 

ABS 
GEO 

QT 
QL 

FPDS 
DEV 

NAT SA Yes N/A 

(Kepes, 2007) 
(Marin-Sanguino 
et al., 2019) 
(Proulx et al., 
2005) 
(Boccaletti, 2010) 
(Guzzi and Roy, 
2020) 
(Freeman, 1977) 

Evo2 - Computer Science 

Methods  Function Phase Geo. Qt./Ql. Scope Adapt. Pers. Opt. Tools  

Genetic 
 Algorithms 

 (GA) 

MET. Genetic algorithms are a metaheuristic 
process. A preliminary algorithmic population 
is genetically created, then through a fitness 
function a parent group is selected to breed 
a new descendant population based on 
multiple randomized processes until the 
solution is approximated enough. Basic 
steps are: [1] generation of initial population, 
[2] seed selection, [3] next generation by 
crossover (recombination of parental genetic 
information) and mutation (changing 
algorithm chromosomes). Types of GA are: 
[1] steady state, [2] parallel, [3] distributed, 
[4] niching & speciation, [5] messy, [6] 
hybrid, [7] structured, [8] genetic 
engineering, [9] multi-objective, etc.  
GA limitations include proper fitness 
function, premature convergence, parameter 
selection, gradients, local optimization, and 
scalability, among others. 

ANSY 
DES 

2-4, 
6,7 

ABS QT 
FPDS 
DEV 

NET DD Yes Model 

(Baeck et al., 
2018) 
(Dumitrescu et al., 
2000) 
(Holland, 1962) 
(Bentley, 1999) 
(Takahashi et al., 
2011) 
(Vose, 1999) 
(Sivanandam and 
Deepa, 2007) 

Adaptive  
Genetic 

 Algorithms 
 (AGA) 

MET. Adaptive genetic algorithms present a 
variation of AG where key parameters (e.g., 
population, mutation, etc.) change at the 
same time the algorithm is running, which 
allows changes ‘on-the-fly’. Key steps are: 
[1] initialization, [2] genetic operators 
(selection, crossover, mutation), [3] local 
search (iterative), [4] heuristic for adaptive 
regulation, [5] stop conditions. 

ANSY 
DES 

2-4, 
6,7 

ABS QT 
FPDS 
DEV 

NET 
DD 
SA 

Yes Model 

(Pearson et al., 
2012) 
(Sivanandam and 
Deepa, 2007) 

Evolutionary 
Programming  

(EP) 

MET. Evolutionary programming (EP) 
simulates evolution through behavioral 
relationships instead of genetic 
descendance. Intelligent behavior is 
simulated within EP through symbols. Payoff 
functions evaluates the prediction.  
Applications: medicine, geology, and 

ANSY 
DES 

2-4, 
6,7 

ABS QT 
FPDS 
DEV 

NET DD Yes Model 

(Dumitrescu et al., 
2000) 
(Fogel and Fogel, 
1995) 
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economics, among many others 

Evolutionary 
Strategies  

(ES) 

MET. It is a system optimization with no 
distinction between phenotype and 
genotype. Child solutions are created by 
randomly mutating parental parameters, 
evaluating by its fitness, and enabling the 
next child solution until objectives are met.  

ANSY 
DES 

2-4, 
6,7 

ABS QT 
FPDS 
DEV 

NET DD Yes Model 

(Bentley, 1999) 
(Rechenberg, 
1989) 
(Beyer, 2013) 

Evo3 - Software Design 

Techniques  Function Phase Geo. Qt./Ql. Scope Adapt. Pers. Opt. Tools  

Genetic 
Programming  

(GP) 

MET. It is based on the same natural 
evolution principles as GA. Computer 
program are genetically programmed, and 
through genetic recombination (crossover) 
they are mated in a Darwinian process to 
obtain the fittest solution (or approximation). 
This approach does not make a difference 
between search space and solution space, 
so genotypes and phenotypes are the same. 

ANSY 
DES 

2-4,6,7 ABS QT 
FPDS 
DEV 

NET DD Yes 
Model 
Math 

(Koza, 1994) 
(Bentley, 1999) 

Scrum 

TEC. It is an agile practice and software 
framework development done in multiple 
iterative fast-paced cycles. Its principles are 
transparency, inspection, and adaptation. 

ANSY 
DES 
IMP 

2-4, 
6, 

7-11 
ABS QT 

PDS 
DEV 

NET DD Yes 
Model 
Math 

(Ockerman and 
Reindl, 2019) 
(Cohn, 2010) 

Extreme 
Programming 

 (XP) 

TEC. It is oriented towards quality 
improvement and adaptability to customer 
needs based on both coding and testing, 
while integrating customers in the process. 
XP uses small releases, continuous 
integration (team members are always sync) 
and feedback methods (pair programming). 

ANSY 
DES 
IMP 

2-4, 
6, 

7-11 
ABS QT 

PDS 
DEV 

NET DD Yes 
Model 
Math 

(Beck and Andres, 
2004) 
(Zannier et al., 
2004) 

Test Driven 
Development 

(TDD) 

TEC. It is based on very short 
redevelopment cycles, with requirements 
being validated through tests cases. TDD 
presents a rapid cycle of testing, coding, and 
refactoring. Adding features is done in pairs 
as well and in small increments. 

ANSY 
DES 
IMP 

2-4, 
6, 

7-11 
ABS QT 

FPDS 
DEV 

NET DD Yes 
Model 
Math 

(Astels, 2003) 
(Shore et al., 
2008) 

Lean Software 
Development 

(Lean SD) 

TEC. It is a framework based upon: [1] 
eliminate waste, [2] amplify learning (set-
based development), [3] decide as late as 
possible (concurrent development), [4] 
deliver as fast as possible (pull systems), [5] 
empower the team, and [6] holistic 
optimization of the whole. It uses continuous 
short iterations and automation. 

ANSY 
DES 
IMP 

2-4, 
6, 

7-11 
ABS QT 

FPDS 
DEV 

NET SA Yes 
Model 
Math 

(Poppendieck and 
Poppendieck, 
2003) 
(Hibbs et al., 
2009) 

Adaptive  
Software 

Development 
 (ASD) 

TEC. It is a change-driven technique that 
intertwines concept, development, and 
management models for the development of 
complex adaptive systems (CAS). ASD 
presents an iterative life cycle (plan, build, 
revise) and an iterative development life 
cycle (learn, collaborate, speculate). It has 
three key artifacts: [1] project vision, [2] 
project data sheet, [3] product specification. 
The adaptive project framework (APF) within 
it manages the ‘scope triangle’ (time, cost, 
and resource availability) through multiple 
client-driven cycles until the goal is fulfilled. 

ANSY 
DES 
IMP 

2-4, 
6, 

7-11 
ABS QT 

FPDS 
DEV 

NET DD Yes 
Model 
Math 

(Highsmith and 
Highsmith, 2002) 
(Koza et al., 2005) 
(Wysocki, 2010) 
(Yu et al., 2019) 

Evolutionary 
Software 

Architectures 

TEC. It is a set of tools and frameworks to 
create incremental software developments. It 
has 3 phases [1] incremental change, [2] 
fitness functions, and [3] appropriate 
coupling. This involves finding a fitted 
system for an ever-changing environment, 

ANSY 
DES 
IMP 

2-4, 
6, 

7-11 
ABS QT 

FPDS 
DEV 

NET SA Yes 
Model 
Math 

(Ford et al., 2017) 
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emphasizing the system adaptability. 
 

Evo 4 - Systems Engineering 

Techniques  Function Phase Geo. Qt./Ql. Scope Adapt. Pers. Opt. Tools  

Evolutionary 
System  

Architecture 
(ES Arch) 

TEC. It tackles dynamic and not fully formed 
system of system (SoS) in three ways: [1] 
self-evolution (sub-systems interfaces 
change), [2] joint evolution (multiple 
integrated systems take part on it), and [3] 
emergent evolution (the new system excess 
the capabilities of its subsystems). Key steps 
are: [1] identified evolution requirements, [2] 
identify technology options, [3] generate 
architecture to fill the gaps, [4] evolutionary 
architecting process based on generated 
architecture. 

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 
FPDS 
DEV 
CONT 

NET SA Yes 
Model 
Docu. 
CAD 

(Jamshidi, 2011) 
(Chen & Han, 
2002) 
(Grösser, 2012) 

Incremental  
Iterative 

Development 
(IID) 

TEC. It is applied to both SE and software 
development. It is based upon multiple 
iterative cycle, providing incremental and 
smaller improvements until the goal is 
fulfilled. Each cycle serves as feedback input 
for the next cycle, allowing for revisions and 
improvements at each step. It is layer-
structured framework considering 
perspectives from team members, 
customers, and management. 

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 
ABS QT 

FPDS 
DEV 

NET SA Yes Model 

(Blokdyk, 2017) 
(Larman and 
Basili, 2003) 
(Isaias & Issa, 
2014) 
(Bittner and 
Spence, 2006) 

Evolutionary  
System 

Development 
Prototyping 

(ESDP) 

TEC. It is based on evolutionary software 
systems development producing multiple 
early working versions. It uses a rapid 
engineering process including verification, 
validation, and prototyping. 

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 

PDS 
FPDS 
DEV 
CONT 

NET SA Yes 

Model 
Docu. 
CAD 
Proto. 

(Budde et al., 
2012) 

Evolutionary  
System  

Model 
(ESM) 

TEC. It is a layered approach for 
evolutionary complex computation systems, 
used in business environments. It presents 
six layers such as [1] technology, [2] domain 
machine (computer services), [3] domain 
(ontology), [4] enterprise (business practices 
and organizational structures), [5] process 
(individual process and functions), and [6] 
executive (human interface).  

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 

PDS 
FPDS 
DEV 
CONT 

NET SA Yes 

Model 
Docu. 
CAD 
Proto. 

(Henderson, 2012) 

Evolutionary 
Systems 

Engineering 
(ESE) 

TEC. ESE presents 3 phases: [1] basic 
capabilities (operations and system 
familiarization), [2] additional capabilities, 
and [3] delivery.  

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 

PDS 
FPDS 
DEV 
CONT 

NET SA Yes 

Model 
Docu. 
CAD 
Proto. 

(Hitchins, 2003) 

Evolutionary  
SoS 

Development 

TEC. It presents a SE approach where a 
SoS is never complete, so time, structure, 
function, and purpose are developed through 
evolutionary methods. SoS emerges from 
existing systems and their evolution implies 
changes over time. 

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 

PDS 
FPDS 
DEV 
CONT 

NET SA Yes 

Model 
Docu. 
CAD 
Proto. 

(Rainey and Tolk, 
2015) 

Feature-driven 
Development 

(FDD) 

TEC. It is an agile SE method with five fast-
paced steps done in two weeks: [1] overall 
model development, [2] feature list 
considering actions, results, and objectives, 
[3] feature planning, [4] feature design, and 
[5] feature construction. 

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 

PDS 
FPDS 
DEV 
CONT 

NET SA Yes 

Model 
Docu. 
CAD 
Proto. 

(Haberfellner et 
al., 2019) 

Complex 
Adaptive 
Systems 

(CAS) 

TEC. CAS is based on the notion that 
complex natural and social systems present 
stable states outside an equilibrium, with 
multiple and correlated feedbacks among 
agents within such systems.  

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 

PDS 
FPDS 
DEV 
CONT 

NET SA Yes 

Model 
Docu. 
CAD 
Proto. 

(Carmichael and 
Hadžikadić, 2019) 
(Miller & Page, 
2009) 
(Yin and  Ang, 
2008) 
(Gros, 2015) 
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(Holland et al., 
1992) 

Evolutionary 
Development 

(ED) 

TEC. In ED each cycle is used as input for 
the next one, and the output is unknown. It 
includes a user perspective in the 
development framework, and it uses 
prototypes to validate and collect information 
in the decision process. It involves software 
and hardware and involves a collaborative 
and experimental learning approach using 
prototypes across the lifecycle. 

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 

PDS 
FPDS 
DEV 
CONT 

NET SA Yes 

Model 
Docu. 
CAD 
Proto. 

(Forsberg, 2020) 

Evo 5 - Hardware Design 

Methods & Theories  Function Phase Geo. Qt./Ql. Scope Adapt. Pers. Opt. Tools  

Evolutionary  
Design 

(ED) 

TH. ED combines evolutionary biology, 
computer science (EC), and design (CAD). It 
presents four areas such as [1] design 
optimization, [2] creative evolutionary design, 
and [3] evolutionary art, and [4] evolutionary 
artificial life forms. 

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 

PDS 
FPDS 
DEV 
CONT 

NET SA Yes 

Model 
Docu. 
CAD 
Proto. 

(Bentley, 1999) 
(Kalyanmoy, 2008) 
(Bentley and 
Wakefield, 1996) 
(McCormack, 
2008) 

Induction Design 

MET. This is a method of evolutionary 
design applied to architecture and urban 
development. This approach reinforces the 
need of diversity for design resilience. 

ANSY 
DES 
IMP 

2-4, 
6, 

7-11 
ABS QT 

FPDS 
CONT 

NET SA Yes 
Model 
Docu. 
CAD 

(Watanabe, 2002) 

Multi-Agent 
System 

(ABM) 

MOD. It tackles multiple aspects of a system 
implementation from an agent-based 
standpoint such as collaborative work, 
concurrent, planning, advanced 
manufacturing, holonic manufacturing across 
engineering fields. Agent-based models 
(ABMs) are computer models simulating 
interactions among agents including 
specialists, sensors, action agents (e.g., 
robots), and interactive agents for humans 
(e.g., assistants). These agents process 
information (messages), make decisions, 
execute, and record information 
transactions. 

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 

PDS 
FPDS 
DEV 
CONT 

NET SA Yes 

Model 
Docu. 
CAD 
Proto. 

(Shen, 2019) 
(Wilensky and 
Rand, 2015) 
(Weiss, 1999) 
(Gräßler and 
Pöhler, 2017) 
(Shen, 2019) 
(Monostori et al., 
2006) 

Evolutionary 
Robotics 

(ER) 

MET. ER uses EC to develop and optimize 
controllers and hardware for autonomous 
robotics (body morphology, sensor, motor 
properties, and layout). It is based on [1] the 
fitness of the robot behavior (genomes) and 
[2] genetic operators to select and breed the 
next generation. This method allows to: [1] 
explore unconventional designs, [2] tune 
parameters, [3] optimize designs, and [4] 
improve system robustness through its 
fitness. ER presents both fitness-based and 
novelty-based evolution. 

ANSY 
DES 
IMP 
INT 

2-4, 
6, 

7-11 

ABS 
GEO 

QT 

PDS 
FPDS 
DEV 
CONT 

NET SA Yes 

Model 
Docu. 
CAD 
Proto. 

(Vargas et al., 
2014) 
(Nolfi et al., 2000) 
(Silva et al., 2016) 
(Evans and Back, 
2011) 

Evolutionary 
Machine  

Design 

MET. It combines evolvable hardware and 
genetic programming to improve and 
optimize both hardware design and 
behavioral capabilities of hardware-based 
systems.  
Applications: adaptable circuits, neural 
network-controlled robots, etc. 

ANSY 
DES 
IMP 

2-4, 
6, 

7-11 
ABS QT 

FPDS 
DEV 

NET SA Yes N/A 

(Nedjah and 
Mourelle, 2005b) 
(Koza et al., 2005) 
(Bekey and 
Goldberg, 2012) 

Agile Hardware 
This involves agile software techniques, 
MBSE methods, and rapid prototyping to 
delay design freezes. 

ANSY 
DES 
IMP 

2-4, 
6, 

7-11 
ABS QT FPDS NET SA Yes N/A 

(Huang et al., 
2012) 

Table 17. Evolutionary concepts, methods, and techniques across multiple fields.  
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 Evolutionary Methods Conclusions and Gaps 

Across all these multiple topics and methods that evolve from the study of natural systems, there are some 
overarching principles and critical gaps relevant to this research. These gaps and conclusions regarding evolutionary 
domains are summarized in Table 18, including key foundational aspects towards evolutive systems design methods.  

 Family Conclusion Points Gaps Foundation Points 

Evo1 
Natural 
Evolution 
Process 

• Natural evolution allows continuously to 
increase complexity and validate 
solutions against multiple 
environmental changes. 

• Each former generation (parental 
heritage) is a validated entry for a new 
generation. However the new 
generation is and can be very different.   

• Evo-devo. The development process of 
a new organism (system) is as critical 
as its genotype (design). Such process 
affect organs (subsystems) in the short 
term and also the whole species 
(product family) in the long-term.  

• Diversity is key for survival. 

• Co-evolution. Evolution is complex and 
involves relationships among species, 
individuals, and multiple environmental 
responses as well. 

• Evolution leads to adaptation through 
self-organization in response to its 
environment context and conditions. 

• Evolutive changes bring robustness to 
the individual, but they need to be 
heritable and successful to improve a 
species permanently (evolvability). 

• Self-organization works at a 
multidisciplinary and multifaceted level.  

• Ecology-level interactions (individuals, 
species, population, and environment) 
affect natural evolution processes. 

• Networks provide a model to study and 
represent such complex relationships, 
mechanisms, and systems.  

• The application of 
evolutionary 
principles to other 
technical fields has 
been mainly 
monodisciplinary and 
limited in the scope 
of its process. For 
instance, addressing 
directly only numeric 
parameters when 
using evolutionary-
based methods is a 
good example.  

• Natural evolution 
involves both 
phenotype, which 
can be understood 
as hardware, and 
genotype that can 
also be understood 
as software. 
However, not many 
techniques and 
methods apply 
methodologies 
embracing both 
simultaneously.  

• This mechanism 
presents a multi-
complex nature. 

• The management 
of complexity is a 
secondary effect of 
this mechanism.  

• The refinement of 
the solution is done 
through multiple 
small and self-
directed variations.  

• Both the product 
(system or 
organism) and the 
process are 
adaptable in nature 
when following 
such natural 
mechanism.  

Evo2 
Evolutionary 
Computer 
Science 

• Evolutionary algorithms in general and 
genetic algorithms-driven techniques in 
particular have been very successful 
approaches towards system design, 
optimization, and efficiency. 

• EC techniques are often inspired by 
hardware or natural systems, but they 
tackle mostly genotype or data-driven 
aspects of the system. 

• These methods only 
tackle software and 
data-driven systems, 
but not hardware.  

• Evolutionary 
computational 
techniques do not 
handle geometry 
directly. They rather 

• Optimization of 
both system and 
process is done 
synergistically and 
simultaneously.   
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• EC techniques enable both optimization 
and complexity management.  

address only abstract 
analytical data.  

• These methods 
apply across all 
design and system 
development 
lifecycle phases.  

Evo3 
Evolutionary 
Software 
Design 

• These techniques are an applied 
subset of evolutionary computing.  

• Agile techniques are inspired by EC 
methods. They use iterative 
methodologies for faster, smaller, and 
more adaptable design cycles.  

• These methods do not tackle 
necessarily the type of coding but the 
process and workflow by which 
software programs are created more 
efficient, faster, and with better-quality.  

• These methods embrace constant 
change under a fast-paced and highly 
adaptable approach. 

• These techniques do 
not handle well non-
analytical data. 

• These are mainly 
software and data 
driven methods.  

• There is no explicit 
reference to the use 
of technical heritage 
solutions.   

 
 

• Methods within 
this category 
tackle the design 
workflow as part of 
their approach.  

 

Evo4 
Evolutionary 
Systems 
Engineering 

• These methods address the evolution 
of complex system of systems (SoS) 
considering the full lifecycle process 
that includes all technology options.  

• Prototyping is a key tool and method 
within this process. 

• Models include multiple aspects 
regarding operations, roles, domains, 
validation, and verification towards the 
implementation of the system.  

• These approaches address both design 
and development of complex adaptive 
systems (CAS).  

• These do not present 
hardware-based 
considerations. 

• Non-geometrical 
processes are not 
addressed by these 
techniques.  

• Multiple lifecycle 
phases could be 
addressed by 
these methods. 

• Prototyping 
becomes a key 
tool within many of 
these approaches.  

 

Evo5 
Evolutionary 
Hardware 
Design 

• These methods present a path to 
optimize hardware-based designs 
based on EC principles and algorithms.  

• They tackle geometrical information 
considering multiple scales, interfaces, 
and configurations.  

• Agent-based models are based upon 
key interactions within this approach.  

• Machine learning and robotic designs 
have embraced these techniques.   

• These methodologies present a more 
applied approach towards physical 
design and systems implementation. 

• Lifecycle phases are 
considered across 
methods and multiple 
specialized areas.  

• Multidisciplinarity is 
characteristic of 
these methods with 
limited application. 

• These tackle non-
complex assemblies. 

• There is a lack of a 
full and integrated 
method and theory. 

• Geometrical 
information is 
handled by 
addressing 
interfaces and 
basic shapes.  

 

Table 18. Summary of conclusions and gaps regarding evolutionary theories and methods.   
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 Overall Literature Review Gaps and Conclusions 

The study of techniques and state-of-the-art practices in the fields of design engineering (DE) and systems 
engineering (SE) theories leads to several overarching conclusions that are summarized in this section. Furthermore, this 
literature review of general evolutionary principles and applications also provides several key conclusive and foundational 
points for this research directly aiming at the domain of hardware-based system architecture designs.  

Design engineering theories and methodologies studied in section 3.1 present a general ‘divide-and-conquer’ 
approach. This implies that subsystems and especially disciplines, tend to be tackled independently from each other following 
a sequential aggregation process across the design lifecycle. Thus, disciplines are in essence tackled one after the next one 
and sometimes partially in parallel.  On the other hand, very solid design methodologies such as prescriptive design embrace 
both analysis and synthesis from a scientific standpoint presenting in general two tendencies. They can be more on the [1] 
highly creative side (e.g., innovative design) with huge capabilities towards addressing complex problems but less powerful 
than mote detailed design techniques, or [2] they could be more rigid such as method-driven techniques (e.g., axiomatic) but 
with a powerful foundation towards computer-driven workflows making them less capable towards more innovative solutions 
with no heritage. Similarly, tools and workflows described in section 3.1 present both a foundation and a practice approach 
around those two opposed tendencies. Computer developments and data-driven techniques have made possible to bring 
analysis and design simultaneously into the design and development process, however this is still done mainly from a 
parametric and facilitated standpoint. In essence, design engineering in the 21st century presents a gap towards reconciliating 
the characteristic multidisciplinary synergy of simpler (and older) techniques such as those created in the dawn of 
architecture practice, with new analytical and process-driven capabilities that are nowadays enhanced by artificial intelligence 
and machine learning techniques. Thus, adaptability is the missing link between those apparently opposed paths.   

Nevertheless, complex large systems had increasingly required tackling non-geometrical aspects since the 1950s. 
Systems engineering of complex challenges became a third and very solid branch in addition to those design approaches 
previously described. A close study of the literature review and leading practices conducted in section 3.2 has shown that a 
very fast development of this field in the last half century has led to multiple approaches, theories, workflows, and techniques. 
In general, from document-based beginnings to current state-of-the-art Model-based techniques, SE has looked at the 
system as an abstract construct (model), but there have been challenges regarding how to bring geometry into the SE 
process. In general, most of these reviewed techniques present a rigid methodology (partially paired with DE methods) 
except for iterative (IID), OPM language, and skeleton methodologies that exercise a more continuous system design 
approach. Furthermore, SE methods do not tend to fully recognize the full lifecycle of complex systems today ignoring often 
phases such as recycling, repurposing, and decommission to name a few. However, there is not a clear integration among 
theories and their practice. In parallel, the workflow associated to these practices tends to be rigid as well presenting not 
much synergy among disciplines that are tackled by SE activities or with other design processes as exposed in section 3.2.  

The flexibility of workflows and methods when dealing with complex and highly adaptable system is the common 
denominator between design and systems engineering sides within a joint effort. This has been the starting point for previous 
evolutionary techniques addressed in section 3.3. Nature-inspired techniques dealing with complex design while increasing 
system efficiency and quality have been developed mainly in the computer science area (e.g., genetic algorithms) with some 
applications towards systems engineering as well.  

Evolutionary computational methods (EC) are very capable and often fast-paced techniques for system 
optimization in data-driven processes. Although, these present relevant gaps towards a full methodology capable of creating 
hardware-based complex systems. Some of these techniques such as evolutionary design techniques and robotic application 
present effective approaches manage and integrate geometrical information as well. The literature review reveals that they 
are quantifiable evolutionary methods, but there is gap when it comes to methods capable of qualifiable evolutionary 
workflows using a multidisciplinary standpoint with implementation and development purposes.    

Finally, the study of basic natural principles behind natural-evolution-driven EC brings the inspiration towards 
mechanisms capable of embracing continuity, flexibility, and heritage not only from a data or information 
perspective, but also from a hardware design standpoint. Section 3.3 presents the potential and importance of 
embracing of development processes in the creation of a complex and efficient system (e.g., evo-devo).  
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EVOLUTIVE ARCHITECTURES 
Literature Review 

CHAPTER 4 

 
“It is not the strongest of the species that survives,  

nor the most intelligent,  
but the one most responsive to change.” 

Charles Darwin, 1809 
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4. Evolutive System Architectures  
The context presented in section 2 defines a series of key characteristics affecting the present and future practice of 

both design engineering and systems engineering disciplines. Beyond such practice, system architectures as solutions are 
also influenced by the consequences of scarcity, agility, complexity, and heritage. This is especially critical towards the 
design of high-performance hardware-based systems due to the inherent system complexity (CHS), the level of performance 
often associated with them, as well as their multidisciplinary nature. Thus, this research is focused on two areas: 

• Evolutive system architectures (eSAR) as a class of systems within such contexts.  

• Evolutive system architecture design (eSARD) as a practical design methodology to model such architectures. 

This evolutive design approach can certainly be applied to any system design architecture development, 
independently from the field of application, and it is presented as a theoretical framework. The overall objective of this is to 
increase system performance and efficiency beyond any existing heritage, while using an agile and system-level perspective.  

The following section tackles several definitory subjects such as: [1] overall evolutive approach (section 4.1), [2] key 
evolutive system characteristics (section 4.2), [3] design constraints and drivers (section 4.3), [4] eSAR definition and 
methodology (section 4.4), [5] complexity as evolutive integration (section 0), and [6] overall conclusion (section 4.6). 

 Evolutive Approach: Inspired by Evolution and Driven by Adaptability 

If general context stressors define both practice and systems outcomes, to determine the characteristics of an 
evolutive system it is necessary to study an approach capable of handling such influences. Those characteristics will lead to 
a final definition of eSARs, and subsequently to the foundation for a design methodology towards their development (chapter 
5).  

Any complex system, for instance an organism, is also defined by its environment. Such context, as we have seen in 
previous section is critical. However, such context not only affects the system itself, but also the process used to develop it. 
Such context for the practice of system design engineering combines both design engineering and systems engineering 
approaches among other perspectives when dealing with highly complex and/or large systems. Section 2 provided such 
context for this research and highlighted a series of key stressors that any complex system endeavor should consider from 
both the product and the process standpoints. Hence, these are the most relevant stressors: 

• Complexity could be understood as the number of parts, features, and relationships among subcomponents or 
system behaviors. Figure 13 shows how the efficiency of a complex system could be understood as the number of 
resources required to enable all functions required for its completion. The origin of that complexity includes 
environmental, multidisciplinarity, and other sources affecting product and processes from design to implementation. 

• Heritage brings pressure, influence, and opportunity in risk assessment, decision making process, and design 
principles behind any complex system design and implementation. This stressor opens a door towards mechanisms 
capable of making the most with previous versions, solutions, or technologies across technical fields.  

• Cultural Disruption. New methodologies (Figure 16) and solutions do stress established methods in any given 
organization. They affect risk perception and influence outcomes based on environmental and cultural changes.  

• Performance. Similarly, the need for higher performance is driven by previous points, affecting the efficiency and 
technical capability of a system, as well the development methodology required for its implementation.   

• Interconnection. Complex system architectures are not only are becoming smarter nowadays but also more 
connected among their components and systems, as well as with their environments and frameworks of operation.  

• Innovation. The constant need or drive towards new solutions and methods ripples through both design and 
development processes. This inckudes multiple cultural postures such as conservative, incremental, and radical. 

• Scarcity. External factors such as climate, population growth, economy, competitiveness, CO2 emissions, and energy 
availability become stressors in the development of a complex system, driving the necessity of serving more needs 
with less resources (Figure 7). The scarcity factor depends on both the lack of resources available as well as the 
uncertainty given by practices used in the process. As a result, there is a growing trend for systems to use less 
resources (frugal) and processes to be more adaptable so they can compensate for any uncertainty.  
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• Multidisciplinarity. One of the consequences of the inherent complexity of some systems is the need to tackle 
multiple disciplinary standpoints to provide feasible, reliable, competitive, and efficient solutions. However, this can 
also be a source of efficiency for the system, and efficiency of the process.  

• Agility is related to the speed and leanness in the use of resources towards addressing constraints brought by 
previous points, as well as the system flexibility increasingly needed due to environmental changes. This is key in 
any present and future system design engineering efforts in highly competitive environments.  

On the other hand, if a future system needs to address such environmental and contextual topics, the process of 
designing, optimizing, and implementing such a system should do it too. Consequently, the literature review in section 3 
detailed three areas such as [1] design engineering, since a system need to be envisioned, [2] systems engineering since a 
system needs to be defined and described, and [3] evolutionary principles as a potential pool of techniques and inspirations 
towards tackling such constraints. While sections 3.1.4, 3.2.5, 3.3.3, and 3.4 provided conclusions with regards to the review, 
there are some key overarching gaps and areas of interest across domains, fields, and techniques worth highlighting. 

• Synergy. Often design and systems engineering methods tackle challenges from a multidisciplinary standpoint at a 
high level, and from a discreet disciplinary standpoint at a lower or more detailed level.  

• Continuity. System design methodologies tend to be driven by point-design or discreet solutions. These often do not 
allow fast, easy, or flexible changes to the process or the system solution.   

• Qualification. While the quantification of parameters is widely distributed across techniques and fields, tackling non-
quantifiable parameters, variables, and topics is certainly more complex and less developed. This is even more 
relevant when it is key for the process to handle both quantifiable and qualifiable aspects.  

• Geometry. Systems engineering methodologies do not tackle geometrical information well, especially when handling 
large complex systems. They rely on partial unidirectional ‘bridges’ to CAD and BIM models for instance. Furthermore, 
systems design processes often struggle to pair complex geometries to complex system definitions or models.  

• Full cycle. Key stressors in the context of these practices require having a fully integrated set across the complete 
lifecycle of a system. This includes and reinforces both initial design and final recycling or decommission phases.  

• Flexibility. Design and systems engineering methodologies need to provide an increasing level of flexibility especially 
when dealing with design and context stressors. This is critical in complex systems regardless of the field.  

• Disruption relates to the capability of the process and the needs of the solution in bringing new designs and concepts 
into fruition with a high-level of detail, and a remarkable differentiation with other heritage solutions at any level.  

• Fast paced. Currently, agility and resource leanness are key traits in a system design process, not only as a response 
to the previous context stressors, but also because of the business and finance constraints such as time-to-market.    

• Connectivity. Complex systems are becoming more networked in nature across subsystems, components, users, 
and environments. Thus, design techniques need to respond to such increasing core characteristics.   

All these points are in essence interconnected from multiple perspectives, thus a feasible response towards tackling 
them completely requires a holistic and overarching approach. The evolutive outlook developed on this thesis addresses 
such response, and it has a compound nature based on both evolutionary principles and adaptive concepts.  

 Evolutionary Approach 

The literature review in section 3.3 highlighted and summarized some of the most basic mechanisms and principles 
behind the implementation and development of natural and artificial evolutionary systems. Such processes include natural 
selection, self-organization, co-evolution, adaptation, optimization, speciation, evo-devo, eco-evo-devo, mutation, agile 
methods, and genetic computational techniques, among others. The natural selection process finds and develops fitted 
solutions for each context where a system or organism exists. Each successful solution (parent) in such an environment, 
provides the building code to a better solution (progeny), which will be better adapted to such changing environment. 
Evolution is therefore nature’s solution to deal with change and therefore entropy. 

Evolution is multidimensional because it works at a physical level, through the phenotype of the organism (hardware), 
which has been created from successfully transmitted genotypes (software code) at the information level in such process. It 
is also multidisciplinary as multiple and often highly complex factors such as environmental, biological, and even cultural 
among others affect the survival and adaptation capabilities of the organism. Thus, a self-organization principle is at the core 
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of such process, leading a complex system to gradually find its optimum state of equilibrium among the multiple influential 
design factors, environmental stressors, and opposing design forces.   

Within any evolutionary process there is not just a final and singular solution, as each system is part of a species that 
is in constant evolution to deal with such environmental changes and stressors. Therefore, adaptation is a consequence 
along with the shared co-evolution of species, to reduce these effects and increase the efficiency (effort-energy ratio) as a 
response to the environment. Thus, both natural and artificially evolved systems, can optimize in this way their responses 
towards changing conditions. It is important to highlight that in evolutionary processes previous solutions or generations 
could be considered as heritage and are indeed validated solutions that serve as a foundation for the next generation. Hence, 
heritage is it not a limiting factor, but rather a solid foundation towards new and possibly disruptive solutions.  

A key part of this natural process is the development of the system itself or, in other words, how different components 
should grow and become integrated from the early beginning of the organism (evo-devo). Such evolutionary development 
also considers other ecological aspects (eco-evo-devo) becoming a critical phase in the development of any complex system. 
When this is translated into creating artificial or man-made systems, this applies to the ideation, prototyping, and early-stage 
development phases. These phases are often disconnected from the end results in many design methodologies, unlike the 
case with natural systems where they become the initial instruction for the creation and development of any organism. 
Furthermore, complex systems present a networked attribute defined by the interactions between components, subsystems 
(organs), environment, users, and even other types of systems (species). Connectivity is therefore both a key characteristic 
and a strength that implements and substantiates self-organization and optimization principles within such systems.   

Natural evolution addresses and manages complexity, making system optimization simple, efficient, and agile. In the 
1990s early genetic algorithmic practices (3.3.2.2) were influenced by this mechanism and it is the inspiration for this research 
towards hardware design, implementation, and optimization. Key aspects of an evolutionary approach (overall figures of 
merit) and the evolution mechanism relating to the previously mentioned stressors and are summarized in Table 19.  

 

EVOLUTIONARY APPROACH - PRINCIPLES 

 Evolutionary 
Principle 

Description 
Context  
Stressors 

Figures of 
Merit 

Natural 
Evolution Tool 

E1 Continuous 
Solutions are always under continuous development, 
so any point design becomes an instantiation.  

Complexity Functions Natural selection 

E2 
Multidimensional 
Multidisciplinary 

Hardware, software, and algorithms are foundational 
aspects for both systems and processes. Interrelated 
disciplines are combined and validated. 

Complexity 
Multidisciplinary 

Functions 
Smartness 

Phenotype and 
genotype 
Self-organization 

E3 Agile Solutions are obtained fast and with less resources. Agility Resources Self-organization 

E4 Adaptable 
System capability to adapt to changing requirements, 
constraints, and needs, as well as its associated cost. 

Scarcity 
Functions 
Resources 

Evolvability 
Adaption 

E5 Evolvable 
It is the ratio between resources and functions 
integrated within systems and processes that are used 
to obtain optimized solutions continuously.    

Performance Resources Mutation 

E6 Networked 
Systems are defined by interactions between 
components, subsystems (organs), environment, 
users, and even others system types (species). 

Interconnection 
Functions 
Smartness 

Self-organization 
Evo-Devo 
Bio. Network 

E7 Heritage-driven  
Advancements or slow-downs due to previous 
successful solutions and cultural traits.  

Heritage  
Innovation 

Functions 
Speciation 
Natural selection 

E8 
Environment-
driven 

Context characteristics influence, constrain, and foster 
integrated processes, products, and services. 

Scarcity 
Culture Disrupt.  

Resources Co-evolution  

E9 
Development-
driven 

Early-stage design, prototyping, and growth phases 
influence the final system output and design process.  

Innovation Smartness Eco-evo-devo 

Table 19. Key foundational characteristics of evolutionary processes.   
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 Adaptive Approach 

On the other hand, the complexity of the context described in section 2 highlights one key characteristic needed 
above all in the practice and implementation of systems design engineering, adaptability. This concept connects all general 
stressors, while encompassing both needs and gaps in the practice of design and systems engineering as identified in 
sections 3.1 and 3.2. These include continuity, synergy, qualification, geometry, full cycle method, and finally flexibility. 
Furthermore, this concept also links needs among disciplines, practices, techniques, and complex systems themselves with 
independence of the field of application. To this end, tools certainly condition how we can approach a problem.  

The concept of adaptability can be traced back to those gaps though the design and implementation of an adaptive 
system design. This is a way to build upon some key characteristics of a complex system, link gaps between design and 
system engineering processes, and tackle previous stressors. In essence, the question the is how we look at the design 
process if adaptability becomes the main objective for both products and processes.  

An adaptive design approach looks at the system from a continuous standpoint, so new designs or new requirements 
could be tackled easily ‘on-the-fly’, with a process that is not discreet. Multiple methods participate from this perspective: [1] 
process-driven design engineering techniques (DE10, Table 11), [2] some lifecycle-based SE (SE2-2, Table 15) such as 
concurrent, agile, skeleton (Badiru, 2019), IID (INCOSE, 2015), OPM (Dori, 2016), [3] cross-cutting SE methods (e.g., 
MBSE). All these also present an approach allowing and enabling the use of models, parametrics (Kimura, 2001), and 
constructs to this purpose (sections 3.1 and 3.2). Similarly, SE frameworks (SE5, Table 15) such as Harmony SE (Ramos 
et al., 2012), RUP (Valacich et al., 2017), and BIM (Smith and Tardif, 2009), among others also present similar capabilities.  

Adaptability is also about synergy, or in other words multidisciplinarity, involving the combination of multiple disciplines 
to address feasibility, performance, and complexity often simultaneously. Similarly, some SOA techniques handle 
adaptability mostly through analytical parameters that can shared or combined such as SE cross-cutting methodologies 
(SE2-3, Table 15) and process-driven DE techniques (DE10, Table 12). Relevant to the second these are very relevant: 
axiomatic (Farid and Suh, 2016), MPM (Chakrabarti and Blessing, 2014), Set-based (Singer et al., 2009), FORFLOW 
(Rodenacker, 2013), and MPM. Furthermore, integrative DE approaches (e.g., Generative - Keane, 2018) combine such 
parameters with geometry, while evolutionary DE (Braha et al., 2007) addresses system optimization from an adaptable and 
multidisciplinary standpoint. Nevertheless, an adaptive approach needs to tackle this from both analytical and geometrical 
standpoints. Hence, this is a gap in most design engineering techniques, as well as systems engineering techniques where 
both geometrical and analytical information play a key part on the process for complex hardware-based systems (Section 
3). The influence of geometry is certainly foundational in DE techniques as section 3.1 presented, but it becomes a gap in 
SE approaches. On the other hand, frameworks such as BIM combine both with great success and space to grow.  

At the same time, an adaptive solution should consider both quantitative and qualitative aspects of system design. 
While quantitative analytical parameters are easier to compute, qualifiable aspect are difficult to measure and thus to be 
computed, shared, and compared. However, some of these parameters are key in certain hardware-based systems which 
are heavily influenced by aesthetics, user experience, or environment interaction among other complex characteristics. This 
specifically means that an adaptive design process needs to be able to tune solutions based on complex relationships 
brought by both qualifiable and quantifiable characteristic. In essence, the design process needs to handle complexity, which 
can be understood as multiple internal and external relationships of different nature. Thus, for such process to embrace 
adaptability the capability to handle, update, upgrade, and change connections is key. This is very important especially when 
these connections are not always considered when approaching complex systems. Often those relationships, which present 
a networked nature, only become evident when the design process dives deeply and broadly (full cycle) enough. 
Furthermore, they set connections among components (e.g., subsystems), behaviors, and values (e.g., cultural) to name a 
few, and they are driven by ‘qual-quant’ principles.  Innovative DE (DE8, Table 12) due to their broad perspective and 
evolutionary DSE methods that can handle complexity by addressing large numbers of key relationships (Evo4, Table 17) 
have an adaptive nature.  

But adaptability is also about considering all different steps in the lifecycle of system development, otherwise the 
possibility of handling changes from both requirement and implementation sides becomes very limited. An adaptive approach 
implies bringing connections between those phases early in the process, and across all phases. This has a foundation with 
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lifecycle-based SE methods (SE2.2, Table 15) such as TDSE (Buede, 2009), Spiral (Liu, 2015) ICSM, and DEJI (Badiru, 
2019), among others. These tackle development challenges from a phase perspective as well, becoming models for 
workflows, strategies, etc. This highlights that within such processes, adaptivity is also about efficiency and therefore speed. 
So, an adaptive method promptly tackles with promptness complex architectures based upon all previous characteristics. In 
a way adaptability is about making the most with all available resources (including time), as well as aiming for a better system 
performance. Time is one of these key resources especially when considering design global stressors. Furthermore, an 
adaptive approach needs to deal with uncertainty, thus it must be flexible towards requirements, resources, results, and 
changing relationships. DE techniques such innovative methods (DE8, Table 12) present a high level of flexibility in both 
processes and results, while evolutionary SE and hardware design (HD) also handle flexibility during design phases.  

Innovation is also a critical aspect since the unknown is one of the most difficult aspects to handle by a design 
approach. When heritage solutions are not really a proper starting point for a design process, due to the novelty of the design, 
the need for systems and implementation performance, as well as flexibility for a new system architecture becomes critical 
from technical, management, and business reasons. Innovative DE are a good and broad foundation (DE8, Table 12). 

Overall, an adaptive design approach allows embracing constant changes, such as changing design requirements 
and environmental conditions. Indirectly, this also brings efficiency, agility, and resilience to the design effort. Adaptability is 
strongly coupled to evolution, and it is the essence of how to do better with less, answering to constraints that are driven by 
scarcity or complexity.  Table 20 presents a summary of the adaptive approach though foundation axioms and its relationship 
with general context and design stressors, figures of merit, and mechanism derived from state-of-the-art techniques.  
 

ADAPTIVE APPROACH - AXIOMS 

 Foundational 
Axiom 

Description 
Methodology 
Gaps 

Figures of 
Merit 

Related DE / SE 
Techniques  

A1 End-to-end 
Method covers the full cycle including ideation, 
development, implementation, and recycling.  

Full cycle Resources Lifecycle-based SE 

A2 Multidisciplinary 
Multiple parameters, discipline perspectives, and 
relationships are tackled simultaneously.  

Sinergy 
Functions 
Smartness 

Process-driven DE 
Cross-cutting SE 

A3 Promptness 
The more adaptability a process or system 
presents, the more reactivity and thus speed brings 
towards any changes across the lifecycle.  

Fast-Pace 
Functions 
Resources 

Innovative DE 
Evolutionary SE 
Evolutionary HD 

A4 ‘Qual-quant’ 
Both analytical quantifiable parameters and 
qualifiable aspects are considered simultaneously.   

Qualification Smartness 
Innovative DE 
Evolutionary DE 
Evolutionary SE  

A5 Geometry-driven 
Beyond analytical design parameters describing 
the system, geometry is created, managed, and 
assessed across the process.  

Geometry Functions 
SE Frameworks 
Descriptive DE 

A6 Network 

Adaptability is about relationships among 
components (e.g., subsystems), behaviors, and 
values (e.g., cultural) within complex systems 
driven by ‘qual-quant’ principles.   

Connectivity 
Functions 
Smartness 

Innovative DE 
Evolutionary DE 
Evolutionary SE 

A7 Continuous  
Design efforts are continuous so modifications, 
detailed descriptions, and variations could happen 
effortlessly ‘on-the-fly’ as part of the approach.  

Continuity Functions 

Process-driven DE 
Integrative DE 
Lifecycle SE  
Cross-cutting SE 

A8 Adaptable 
Changes in requirements, implementation, design 
needs, and available resources can happen without 
restarting the design and considering heritage.  

Flexibility 
Resources 
Smartness 

Innovative DE 
Evolutionary SE 
Evolutionary HD 

A9 
Innovation-
driven 

Systems design processes are open to infuse new 
and disruptive approaches that could be validated 
and reinforced by heritage solutions.  

Disruption 
Functions 
Smartness 
Resources 

Innovative DE 

Table 20. Key foundational characteristics of an adaptive design approach.  
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 Evolutive = Evolutionary + Adaptive 

The concept of evolutive process and system is developed within the context of this research similarly to how the 
term is created, as a contraction or composition between evolutionary and adaptive principles.   

Such an evolutionary approach behind natural and artificial systems addresses adaptability, change, and complexity 
with proven, powerful, and potentially ‘simple’ mechanisms. Furthermore, it effectively tackles all global stressors described 
in section 2 affecting both the design and implementation of complex systems, through a combination of evolutionary 
principles (Table 19). In essence, the evolutionary approach represents the nature of a system and its development process. 
On the other hand, an adaptive approach addresses through a series of axioms (Table 20) many gaps in both design and 
systems engineering methodologies (section 3). Thus, critical goals such as improvements in systems performance, process 
efficiency, and agile workflows become the foundation of this new design approach.  

The evolutive workflow and perspective integrates evolutionary principles and applies adaptive axioms towards a 
design and systems engineering methodology (DSE) that develops full or partial evolutionary hardware-based system 
architectures (section 1.7.1). Furthermore, this approach also complements and fills gaps across state-of-the-art SE and DE 
techniques while also being used to infuse key evolutive principles into any new system design efforts. This approach is 
inclusive by nature, and presents a foundation based on adaptability to design upon. Therefore, upcoming sections will 
present characteristics and fundaments of an evolutive architecture (section 4.2) as the ultimate objective, the associated 
system design methodology (section 5), as well as an example of such an approach (section 6).  

However, combining adaptability and evolution presents deeper consequences in the process and conceptualization 
of such systems. Their inherent complexity intertwines both processes (designs) and outcomes (products) very closely. Thus, 
before addressing all key system characteristics and subsequent methodologies it is critical to define fundamental keystones 
that are created by such contractions and connections. The combined evolutive approach is based on three keystones: 

• Adaptability. An evolutive architecture system is adaptive in nature from both geometrical and analytical standpoints, 
in response to changes driven by requirements, design, and implementation. Thus, a system design is understood 
as an instantiation within a continuous design process, rather than a final static solution. Such design is always 
conceived with potential changes in mind, allowing variations in subsystems, manufacturing techniques, and 
materials, among other environmental or conceptual changes. Techniques, designs, concepts, and materials among 
others ‘genetic’ inputs of the future system include both quantifiable and qualifiable variables. Evolutive thinking then 
works with the same principles behind them and enables not only disruptive methods to be infused into the process 
but also easier alternative solutions or selections across the full lifecycle. Therefore, adaptability brings a broader 
spectrum of functions, and the more functions with less components a system architecture achieves, the more 
efficient it will be. Within such process, heritage solutions are validated as parent inputs for an evolutionary process. 
This keystone addressed these three context stressors with the following characteristics (in italic): 

• Complexity. Both qualifiable and quantifiable variables are used on a continuous system design workflow, and 
are integrated within a geometry-inclusive system design framework.  

• Heritage. Heritage solutions are non-limiting foundations for adaptive solutions across the full systems lifecycle.  

• Cultural disruption. New methods can be infused into an evolutive design workflow, enabling subsequent 
feasible alternatives in response to environment or design changes. 

• Process: This point relates especially to geometrical aspects of the design process.  

• Functionality (measurement): Number of functions per geometry for a given set of interactions and resources.  

• Range (Figure 128, Y): Unadaptable (less functions, more parts) to evolutive (more functions, less components) 

• Reactivity. Complex and simple solutions can present different levels of interaction with the environment, as well as 
interaction capabilities as a function of their inherent smartness. An evolutive approach addresses the adaptability of 
system also from its interactive potential. The more capability of the system to interact, the higher success it can have 
against environmental changes, increasing its evolvability. This also leads to less resistance towards new solutions, 
since the systems can be more easily upgraded. At the same time, complex and interactive systems, such as 
organisms have a higher level of networked interconnections between subsystems and their behavioral functions. 
Natural evolutionary methods are based on deep connections between subsystems as well as with internal 
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development processes. This connection can be traced back to the very genetic information used to drive the creation 
of a phenotype, which also presents complex multidisciplinary interconnections. Thus, reactivity encompasses and 
responds to three general design stressors with the following characteristics (in italic): 

• Performance. The less resources a system uses in response to design requirements or environment (context) 
changes the more efficient the system would be.   

• Interconnection. Subsystems and behaviors present networked connections among them within evolutive 
systems. This key stressor becomes a strong advantage regardless the level of complexity.  

• Innovation. Evolutive solutions and processes facilitate new and disruptive solutions to be integrated, and a 
networked approach ensures feasible solutions are always possible backups. Similarly, heritage inputs are a 
validated baseline towards developing, infusing, and advancing new solutions.  

• Process: This point relates especially to behavioral aspects of the design process.  

• Interaction (measurement): Number of reactions per system behavior, for a given set of functions and resources. 

• Range (Figure 128, Z): Passive (less interaction, less smartness) to reactive (more interaction, more smartness) 

Regeneration. The utilization of resources either for the design process, or by the system itself during its lifetime is 
key in an evolutive system and its design approach. This keystone is highly related to the other two, and directly 
responds to remaining global design stressors with these characteristics (in italic): 

• Scarcity. An evolutive system should adapt to both the need for optimization and the lack of resources from a 
continuous perspective. The relationship between the system and its environment will change over its lifecycle 
and operational cycles. This is a foundational part of a system architecture that considers different phases.  

• Multidisciplinarity. Complex systems depend on a multidisciplinary perspective to achieve higher levels of 
performance, through design, analysis, operational optimization, or all of them at once.  

• Agility. The evolutive methodology is designed to provide promptness into the design process as well as into 
further modifications or generations of a system architecture.  

• Process: This point relates especially to substance and material aspects of the design process.  

• Resource utilization (measurement): Resource utilization across design process and system operations. 

• Range (Figure 128, X): Depleting (only consuming resources) to regenerative (replenish resources).   

 

  

Figure 112. Evolutive tetrahedron of system design.   



  
Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

131 

 

These three keystones are interconnected and present the foundational scheme for an evolutive design methodology, 
described by the evolutive tetrahedron (Figure 112). Furthermore Table 21 presents correlations between general 
stressors, methodology gaps, evolutionary principles, adaptive axioms, and finally these evolutive keystones.  

EVOLUTIVE APPROACH 

 Context  
Stressors 

Challenge Needs 
And Responses  

DE / SE 
Gaps 

Evolutionary  
Principle 

Adaptive 
Axiom 

Evolutive 
Keystone 

Ev1 Complexity 

This is the capability to manage large 
amounts of components, features, 
relationships (quantifiable and 
qualifiable), subcomponents, and 
behaviors that can change over time.   

Geometry 
Qualification 
Sinergy 

Continuous (E1) 
‘Qual-quant’ (A4) 
Geometry-driven (A5) 

Adaptability 
Reactivity 

Ev2 Heritage 

This is the influence of past proven 
solutions in risk assessment, decision 
making process, and design features 
behind complex systems, as well as 
related design, implementation, and 
operations processes 

Continuity 
Sinergy 

Heritage-driven (E7) End-to-end (A1) Adaptability 

Ev3 
Cultural 
Disruption 

It is related to the easiness to infuse 
new methodologies and approaches 
that stress and disrupt established 
cultures and design inertia towards 
new system designs and workflows. 

Full cycle 
Sinergy 
Continuity 

Environment-driven (E8) Adaptable (A8) 
Adaptability 
Reactivity 

Ev4 Performance 

It is about a better ratio between 
required resources, and system 
functions that are being served across 
the system lifecycle. This applies to 
both system architectures and 
development methodologies. 

Full cycle 
Sinergy 

Evolvable (E5) Adaptable (A8) 
Reactivity 
Regeneration 
Adaptability 

Ev5 Interconnection 

Complex system architectures are 
becoming smarter and more 
connected among subcomponents, 
other systems, environments, and 
frameworks of operations. 

Network Networked (E6) 
End-to-end (A1) 
Network (A6) 

Reactivity 
Adaptability 

Ev6 Innovation 

The constant need or drive towards 
new solutions and methods ripples 
through both design and development 
processes. There are multiple cultural 
postures such as conservative, 
incremental, and radical. 

Disruption 
Sinergy 

Development-driven (E9) Innovation-driven (A9) 
Reactivity 
Adaptability 

Ev7 Scarcity 

This is the capability to continuously 
address the availability, uncertainty, 
and variability of all resources 
required for a feasible system 
architecture, across the full system 
lifecycle and from every perspective. 

Continuity 
Sinergy 
Full cycle 

Adaptable (E4) 
End-to-end (A1) 
Continuous (A7) 

Regeneration 
Adaptability 

Ev8 Multidisciplinarity 

This concept reflects the 
simultaneous capability to tackle both 
multiple and discrete disciplinary 
standpoints providing feasible, 
reliable, competitive, and efficient 
system architectures and subsequent 
design processes.  

Sinergy 
Geometry 
Qualification 

Multidimensional 
Multidisciplinary (E2) 

End-to-end (A1) 
Multidisciplinary (A2) 
‘Qual-quant’ (A4) 

Regeneration 
Adaptability 
Reactivity 

Ev9 Agility 

Finally, this relates to the speed and 
leanness in the use of resources 
addressing flexible constraints due to 
changes in context, requirements, or 
design parameters.  

Fast Pace 
Flexibility 
Sinergy 
Continuity 

Agile (E3) Promptness (A3) 
Regeneration 
Adaptability 

Table 21. Correlations between general stressors, methodology gaps, evolutionary principles, adaptive axioms, and evolutive keystones.   
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 Evolutive System Keystones  

 Adaptability  

Adaptability is a keystone of the evolutive tetrahedron that highlights 
geometry aspects and design activity (Figure 113). As it was previously 
presented, this evolutive design keystone is connected to all context stressors, 
but it is especially related to complexity, heritage, and cultural disruption.  

Furthermore, this keystone can also be understood as being directly 
related to the concept of continuous heritage. Any design under the evolutive 
approach can be partially based on previously proven solutions (heritage), but it 
is also always an instance in a continuous design process that keeps adapting to 
new changes.  

Therefore, adaptability in the end addresses the capability of a system to 
respond to environmental, cultural, and design changes. The more changes its 
contextual environmental requires, the more design changes need to happen to 
enable new system functions as a response. Adaptability of a system design can 
then be measured by its relative design functionality. This is how many 

functions a system geometry can perform given a specific interaction capability and a resource utilization level. Within this 
paradigm the goal is therefore to do better with less. Thus, the more and better functions a system can perform, the with 
less resources needs and the more adaptable it is. Furthermore, under this standpoint the geometry of the system, including 
shape, assembly elements, etc. is critically related to both its functions (behaviors) and the resources used (substance) by 
it. In this case, the concept of behavior refers to the system itself, not to the design process as it could be understood under 
Gero’s FBS framework (Gero and Kannengiesser, 2004).  

An evolutive system architecture is aimed to be highly adaptable at both system and subsystem levels. This happens 
by design and from both hardware and software standpoints. It is also enabled by the nature of a continuum evolutionary 
design process as it has been introduced before. Thus, multiple instances can be created simultaneously as an outcome 
when modifying key system variables that define its most relevant characteristics. For instance, designing a clothing piece 
such as a firefighter jacket (Figure 114) under this approach would tackle multiple color and materials but also subsequent 
thermal and weather protection capabilities. When that jacket is designed, a baseline is created, and it can be easily be 
tweaked so patterns can address multiple sizes (e.g., small, medium, large) and different materials (e.g., color, texture, 
properties, reflective, etc.). This way the design can respond to different chemical and thermal situations, as well as 
alterations attend updates, upgrades (e.g., chemical resistance, thermal protection, etc.) and especial solutions such as 
identification, lighting conditions, etc. (Watkins and Dunne, 2015). Thus, the system itself is a one-off product, but it belongs 

to a species (collection) that includes systems with similar characteristics 
and multiple variations. However, even if the system itself does not 
require variations, the infusion of this perspective brings enormous 
benefits later regarding upgrades, work repurposing, and ultimately 
system efficiency. Designing for adaptability tackles implementation 
constraints and functional drivers upfront in the design process, 
benefiting both the overall relative cost of the design process (e.g., time, 
resources, workforce), as well as the system performance itself. If this 
approach is broadly infused within the culture of an organization, all initial 
efforts required to bring this process online, to outweighed by bringing 
new levels of adaptability across product lines, teams, and projects too.  

Such design effort to create one unit is distributed over multiple 
instantiations of that architecture species and addresses multiple design 
variables represented by a networked framework of characteristics and 
variables, rather than a linear list or even a matrix of requirements. The 

Figure 114. Firefighter protective jacket has a complex 
design architecure with multiple variations.  

Figure 113. Adaptability within the evolutive 
tetrahedron of system architecture design. 
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final product is a result of weighing these needs which are often interrelated or even opposed among themselves (Figure 
115). In other words, under this evolutive perspective those relationships among variables are not necessarily constant and 
they could vary over time due to changes in the external context (e.g., design stressors). If such open-design and adaptable 
approach could be streamlined, even when tackling just a one-off solution (with heritage or not), then not only variations and 
upgrades of such solutions would be easier and cheaper to make, but they could be included as useful heritage inputs 
towards newer or even unrelated solutions. So, capturing and validating such relationships becomes in many ways part of 
the genetic material of both the system as well as the process. Thus, under this approach such system architecture could 
be defined from the perspective of an evolutive framework, as an adaptable network of interconnected variables that evolves 
continuously (Figure 115), rather than a static hierarchical structure (Figure 116). The system architecture then is defined by 
connections among most relevant variables, and adaptability means handling change in selected network nodes (blue lines) 
within a changing framework. The more fluid such a network is, the bigger the need is for an adaptable system architecture 
to reduce cost and to improve the efficiency and capability of any system design. 

However, from this framework perspective the adaptability of the system can be pushed further away to: [1] stress 
the design for more efficient solutions that use less resources, as well as [2] to turn the uncertainty inherent to the design, 
implementation, and operations phases into an advantage. In essence, the more areas within the network that a system 
architecture can address with less resources, the more efficient it becomes and the more uncertainty it can handle without 
increasing its re-design, upgrade, or interconnection design effort or cost. Furthermore, the earlier this is done in the design 
effort, the more efficient the process becomes as well and more likely the system is to be optimized.  

Regarding such efficiency the initial design for the firefighter jacket could require it to be strategically redesigned or 
enhanced, by adding conditions such as detachable sleeves, integrated smart technology (e.g., sensors, heaters, etc.), as 
well as other more complex cultural fashion variables. Those parameters were nor part of the initial design, and therefore 
not included in the initial adaptability requirements and evaluation. However, these conditions are driven by future 
foreseeable uses, manufacturing constraints, and market changes pushing the limits towards a future system. If that 
architecture has been designed with adaptability in mind (evolutive), then part of its requirement definition (blue lines) would 
include also open ‘nodes’, or areas for possible or uncertain future variables. For instance, a new sewing technique could 

Figure 115. Visual representation of an architecture definition based on an evolutive network of variables.  



  
Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

134 

 

allow to easily add zipper lines to fixed sleeves so sleeves can be removed. 
While this would apply to the architecture itself, it would also affect the 
design method. Considering this early in its implementation can help 
discard too unique, and therefore not adaptable solutions. This of course, 
would seem highly inefficient and perhaps an unnecessary source of 
complexity. However, if curated properly it can be the key towards feasible 
quantum leaps in performance. The cost of including general open nodes 
(green), if done properly, is minimal in comparison with the benefits of 
reusing such design effort for later changes. Similar to what nature does 
with evolution, openness, and randomness in the system definition 
(genetics) opens the path towards adaptability due to the uncertainty in the 
reality. In other words, the more potential adaptability is infused early in the 

design the better the risk management (Costikyan, 2013) and less costly the system will be in the mid- and long-term. 

Under this approach of evolutive adaptability, stressing the system is also a strategy towards achieving system 
reliability and resilience as well. If many or all of the multiple relationships describing the system architecture within such 
framework are addressed by a system, its design addresses known and most likely also known requirements. The more a 
system design is being pushed against all design paths, the more that design ‘kills’ efficiently the challenge or problem that 
system is aiming for. Thus, the more adaptable a system is towards addressing changes though a better with less approach, 
the more capable such system is to address uncertainties and more resilient it becomes. Furthermore, even if this approach 
is partially implemented, it still provides a solid foundation towards future design trade-space options and expansions.  

However, the integration and addition of requirements can also lead to a hyper-integration making difficult future 
changes upgrades, repairs, or updates. We cannot forget that while an initial increase in complexity, means a greater effort 
and more variables (and requirements), in the ends it means much more efficient design efforts and less use of available 
resources. In essence this is what nature does, since the reference point is not design effort towards a point-design or a 
one-off architecture, but of the system (organism) as an instantiated part of a continuous evolution (species).  

Then, pushing the limits of a system architecture towards higher levels of performance and adaptability is done 
through a careful process that builds upon [1] the balance between needs and resources, and [2] a synergetic connection 
among subsystems and disciplines within a requirements network. Chapter 5 will describe this process in detail. Furthermore, 
infusing a high level of adaptability in the design also has the benefit of better dealing with uncertainty. Within an evolutive 
architecture, the system is considered as an open solution, that is a family of solutions rather than a locked point design, 
which ripples across multiple levels such as subsystems, components, parts, and even strategies (e.g., manufacturing, 
marketing, etc.). Thus, design uncertainty is built up in the system as the likelihood, feasibility, and availably of statistical 
parameters that need to be captured, tracked, and used for subsequent optimizations. 

The range of this critical keystone, varies incrementally across a range defined by these levels: 

• Unadaptable (no adaptability). These system designs present the minimum number of functions with the maximum 
number of elements. These cannot handle high levels of design uncertainty efficiently, and they tend to gravitate 
towards rigid and often limited point-design single solutions. 

• Adaptable (balanced adaptability). Systems designs in this category present a balance between the number of 
functions and their constitutive elements. They lean towards short series and limited customizable solutions.  

• Evolutive (highest adaptability). On the other extreme of the spectrum these designs present the maximum number 
of functions with the minimum number of elements and components. They handle high levels of design uncertainty 
efficiently and they gravitate towards open solutions or families of solutions addressing open requirements very well.  

The concept of evolutive adaptability could be applied to any system architecture design regardless of whether it is 
physical, digital, or virtual. However, this is especially relevant for complex and smart hardware-based system architectures. 
The especial nature of these complex systems integrating complex physical geometries, actuator-driven functions, and data-
driven operations certainly highlights multiple intertwined aspects of the evolutive approach as the next chapter will present. 

Figure 116. Example of static variable framework. 
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 Reactivity 

Reactivity is the second keystone within the evolutive tetrahedron of 
system design (Figure 117). Similarly, this one tackles all context stressors that 
were summarized in section 4.1. However, this concept is especially related to 
interconnection, system performance, and innovation.  

From the evolutive standpoint, a system architecture is dynamic, and it 
presents a multidisciplinary nature to deliver high-performance characteristics. 
For instance, a mechanical evolutive system could be competition race car that 
optimizes thermal performance and mass reduction. Furthermore, a physical 
and adaptable configuration responds to changing design requirements, with 
key control and management functions associated with it. In this mechanical 
example, the management of electro-mechanical actuators in the assembly, 
could allow improvements and adjustments over the different phases of the race 
to improve performance, as well as upgrades based on data collected over time. 
Therefore, physical design, actuator controls, and data-driven decisions are 
combined within a complex adaptable evolutive architecture to react against 

environmental or design changes. In this case, reactivity is essential to address the dynamic holistic synergy of the system 
components, as well as its capability to manage its adaptability across the multiple realities of a system (physical, digital, 
virtual, databased, etc.). Reactivity is also related to the transient nature of the evolutive system complexity, as the continuous 
development between the system and its environment. Hardware (geometry), software (behavior), and resources 
(substance) are all integrated within the capability of the system to interact with external and internal integrative changes.  

Therefore, transient system interaction is the measurement behind the reactivity of the system and is defined as 
the number (and complexity) of reactions the behaviors of the system can provide given a specific system geometry and 
utilization of resources. The more interactions with the environment a system architecture is capable of, the more reactive it 
is. The less interactions the system requires to handle external changes, or in other words the smarter and more adaptable 
it gets, the more efficient the system architecture becomes. In essence, the main goal brought by this principle is for the 
system to become smarter (more reactive) with less.  

Nowadays, modern complex system architectures across fields are becoming more and more robotic in nature. This  
means they increasingly combine software, hardware and data, through some type of intelligent management, assessment, 
and control (Chen et al., 2018).  For instance, a modern car today has several million lines of code (Desjardins and 
McCandless, 2017), which is a growing tendency as autonomy starts becoming a standard capability of any car in the future 
(Towns  end, 2020). The same happens with apps or software, as well as phones, vehicles, appliances, and many other 
objects around us today. At the same time, the amount of information used within our systems keeps increasing, so another 
growing technology trend brings connectivity among all those systems such as the internet of things (IoT). All this portrays 
a near-term world of interconnected devices and sensors all over (Soro et al., 2019). Thus, the growing infusion of software-
based behaviors and control in any hardware system is evolving into a ubiquitous and increasing smart capability (Figure 
118) for every one of these systems. As such, intrinsic design rules for any hardware or robotic-driven hardware of the 
system will change.  For instance, under this approach a house would manage its own lighting or energy consumption based 
on user interaction, while a car will drive itself changing speed, suspension profiles, and torque depending on the road 
conditions and the environmental stimuli. Our human-built world is becoming smarter, and suddenly thermal performance, 
mechanical fatigue, or system longevity will be driven by such inherent capability. Thus, an approach like this will bring great 
opportunities in that balance between scarcity of resources and complexity of the system.  

These smart systems need an equally smart design effort to harness, improve, and upgrade the reactivity capability 
itself, but also a way to match hardware adaptability, system efficiency, and interactivity across systems. In other words, an 
evolutionary approach implies the capability to prepare and design for a constant flow of information and interactions among 
systems, components, and their environment. These growing evolutionary approaches will change business and industry 
models (Kranz, 2017), affecting how we design, build, manufacture, and use objects around us.   

Figure 117. Reactivity within the evolutive 
tetrahedron of system architecture design. 
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As previous sections referenced, organisms (systems) in nature are not isolated. They are in constant interaction with 
their environment, with other organisms, and with themselves, regardless of the volume of information and the vehicle for 
such exchange or survey. That interaction with the environment drives: [1] system design efforts including definition networks 
like Figure 118 shows, as well as [2] interaction processes enabling the system to react and adapt. Figure 119 shows 
graphically how this concurrent flow affects each process. In general, the operation of an interactive system in the 
environment allows it to both send and gather data, which is used to perform variations and changes. These depend on the 
capabilities of the system (e.g., moving parts), which again enable the best reaction towards those stimuli. However, this 
process also has consequences towards the definition of the system and its subsequent design efforts, enabling also 
changes in the design that could improve its performance based on each new situation (continuous heritage). As this small 
summary presents, the system architecture needs then to be designed to enable such process, having reactivity and 
adaptability at the core of its definition. Beyond these, manufacturing and operations constraints need to be integrated as 
well. Currently, highly reactive system architectures, such as autonomous cars, present a different level of autonomy and 
data-driven induced behaviors as part of the design process. Hence the design process itself should be changed, optimized, 
and evolved based on the information management inherent to this key characteristic. Under this approach, the more a 
system architecture with an intelligent baseline is used, the more the design process would change based on such feedback 
data loop. This becomes feasible by an integrated and concurrent data-hardware architecture (Figure 119).  

Figure 118. Millions of lines of code across different systems - multiple sources (Desjardins and McCandless, 2017) 

Figure 119. Evolutive reactivity, system design, and system interaction concurrent flow. 
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The range of this critical keystone, varies incrementally across a range defined by these key points: 

• Passive (no reactivity). These system designs present the minimum capability of interaction with the maximum 
number of functional elements and resource utilization. They cannot handle many external or unexpected 
changes, and they tend to gravitate towards low-tech and simple solutions.  

• Active (balanced interaction). Systems here present a balance among the system interactivity and complexity 
and resources required across their lifecycles. Programable, modular, and upgradable systems belong here.  

• Reactive (full reactivity). These systems present the maximum capability of interaction with the minimum number 
of functional elements and resource utilization. They are highly smart systems such as advanced robotics, AI-
driven architectures, autonomous systems, etc. They can handle many external and unexpected changes 
efficiently with highly interactivity. They gravitate towards high-tech, biological, and software-based solutions. 

This evolutive keystone does not only apply to very complex and high-tech systems, but it can also be identified in 
designs as simple an adventure jacket. Such an evolutive jacket could simply have sleeves that can be removed, and 
openings or pockets that could tweaked by hand for thermal management reasons. This evolutive principle of reactivity is 
applicable to all technical and creative sectors. While this approach is emphasized towards hardware-based system 
architectures, it can also be applied to software or virtual architectures requiring both interactions and adaptability.  

 Regeneration: Resource Performance and Sustainability 

Finally, regeneration is the last keystone of an evolutive system 
architecture. Similarly, this tackles all general stressors mentioned in section 4.1 
as the last foundation for the evolutive tetrahedron. Among them, regeneration 
is especially connected to resource scarcity, agility, and multidisciplinarity.  

Regeneration is about the utilization, management, and restoration of 
resources across the full lifecycle, whatever they may be. These could include 
energy, building materials, computing code, mechanical components, or 
workforce availability, among many more. Resources do not need to be physical, 
and they do not need to be man-made either, however they all include 
substance. This is understood as what the system architecture is made of or 
what resource is required for its operations. So, this concept relates to the 
resource lifecycle optimization of a system within a given external 
environment. The sources used to make the system and their management are 
part of an evolutive design process. Resource considerations should be done 
across the full lifecycle from generation to recycling, including: [1] energy, [2] 
materials, [3] people or workforce, [4] data, and [5] coding or programming. 

Therefore, a key measurement behind this constitutive concept of an evolutive system architecture is the consumption 
and utilization of resources for a given system geometry and reactivity capability. In other words, this is the concept of 
resource utilization within this context. This addresses the consumption of resources by the system across the lifecycle 
from design to decommission. Furthermore, it considers both all resources used to design the system, to develop it (evo-
devo), used by the system itself, and by the relationships with its environment be it physical, digital, or both (eco-evo-devo).  

From this perspective, an evolutive system is aimed not only to be sustainable but to become resource positive (e.g., 
producing more energy that it consumes) or regenerative (Lyle, 1996). The first has clear implications on a cradle-to-cradle 
approach, and it is not just about pollution or scarcity, but about efficiency  across design, implementation, operations, and 
all the way to decommission (Bhamra and Lofthouse, 2016). This consideration of resources could be negative (the system 
only consumes), neutral (the system is sustainable), or positive (the system replenishes resources). There could also be 
multiple grades across these which are applied at system level as well as at a component or sub-system levels.  

Hence, the management of resources within an evolutive system is related to the concept of eco-evo-devo-lifecycle. 
This is an evo-devo approach that looks the development process of the system itself by considering the environmental 
ecosystem and the lifecycle of the system from a resources standpoint (Figure 121). Under this perspective, concepts such 
as sustainable recycling (Bhamra and Lofthouse, 2016) and cradle-to-cradle  (McDonough and Braungart, 2010) are 

Figure 120. Regeneration within the evolutive 
tetrahedron of system architecture design. 



  
Ch4 Description - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

138 

 

integrated into the understanding and optimization of  resource utilization across multiple phases:  

• Design in this phase is about considering both [1] all resources required to create the design (e.g., workforce, tools, 
computing powers, paper, etc.), and [2] resources required by the system to function. 

• Implementation. Physical and digital manufacturing of a system architecture require both direct and indirect 
resources such materials, tooling, and coding. In this phase it is critical to consider especially all losses due to 
inefficiencies and other intermediary steps. This phase should also address integration, transport, and installation.  

• Operations. This phase addresses all resources required to operate, maintain, and even upgrade the system. Also, 
system operations are critical in this phase from both active and passive standpoints since it affects all the other 
phases in the lifecycle. Among other resources, workforce management and coding are tracked here.  

• Decommission. Finally, this last phase considers resources regarding the repurposing, recycling, or reusing of 
systems at the end of their life span. This critical phase goes beyond the sustainability of the system at any level of 
resource utilization and connects the end of the lifecycle with the initial design process.    

From this perspective and across the lifecycle of an evolutive system, the relationship between the system and its 
environment is always considered as a design constitutive, regardless of any given design requirements. This relationship 
drives the sustainability of the system, the design posture towards resource scarcity (section 2.1), and its implementation 
cost. It also conditions and stresses both system design and design methodology to deliver better performances. For 
instance, if the design allows to infuse, use, or swap materials and energy sources among other constraints, it will increase 
the system design adaptability and potentially the system performance in the long run. Similarly to the eco-evo-devo 
approach, the study and design of the system is always done under the light of its relationship with its changing environment. 
Any system is therefore defined by the design of system and its context. This context could be the assembly in which 
resides (e.g., mechanical part), the natural environment (e.g., building), its software framework (e.g., app), etc.  

Thus, this third keystone is a key characteristic for any system architecture, but it is especially relevant for evolutive 
architectures under scarcity-driven environments. As stated previously, energy scarcity is a general global constraint for 

Figure 121. Full evolutive resources lifecycle within the evolutive systems design process.  
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humanity, and energy efficiency is particularly critical for longer and even more affordable operations. The use of energy is 
related to the use of natural resources, including material extraction, processing, prototyping, manufacturing, and all the way 
to recycling (Johnson and Gibson, 2014). This always needs to be considered for scarcity, cost, and reliability reasons as it 
is critical across all general, design, and even cultural stressors (chapter 2). 

 For instance, cellulose-based recyclable materials that are available in the area are key to create an evolutive 
approach towards printing products such as a magazine as seen in Figure 122. Regularly, the final selection of material and 
vendor for the printing will come at the end of the design process. But an evolutive approach considers such key details this 
early in the process, and includes local sources, alternatives, recycling schemes, and manufacturing constraints. 
Furthermore, the approach should consider how the publishing can replenish trees and energy used during its design, 
printing, and delivery. This leads to managing inks, formats, vendors, and transport, as well as marketing approaches, 
environmental aspects, and other social constraints. All these aspects are considered towards making the final product 
richer, more adaptable, and more tuned to its context. Such an approach requires an extra effort for both the designer and 
the design process, and it could certainly become overwhelming. However, the key is assessing which one of those variables 
and connections in such system-environment interaction are critical. Chapter 5 will present this process and its method.  

Aiming for a surplus in the system provides several benefits from a design standpoint since [1] it stresses design 
requirements enabling more adaptability, [2] it creates performance margins, and [3] it implements key environmental 
principles with key economic, social, and conservational consequences. Therefore, an evolutive system architecture could 
often present key design trades that both enable and use these principles. Such principles include among others: 
multifunctional system architecture, repurposing, easiness in its upgradability, recyclability, mass reduction, cost reduction, 
return of investment increase, etc. In essence, the design principle behind this keystone is about doing more with less from 
the standpoint of resources. The range of regeneration, varies incrementally across a range defined by: 

• Depleting (net negative resource consumption, consumer). These system designs present the maximum 
consumption of resources and no replenishment strategy. They tend to present lower levels of performance, less 
adaptability, and less reactivity. They also gravitate towards non-recyclable, disposable, and unsustainable solutions. 
An example of this area could be thermomechanical systems with a high carbon manufacturing footprint. 

• Sustainable (neutral resource consumption). System designs in this category present a balance between resource 
consumption and replenishment. These include sustainable systems and carbon neutral solutions.  

• Regenerative (net positive resource consumption, prosumer). On the opposite side these designs have a minimum 
consumption of resources and a full replenishment strategy. Thus, they also have the highest levels of performance, 
with more adaptability and higher system reactivity. These systems gravitate towards net positive and regenerative 
solutions such as and CO2-sequestration-based electromechanical systems.  

The concept of regeneration as a keystone of an evolutive system could be applied and observed across many 
domains including thermomechanical, digital, computational, and biological, among others. Therefore, under this approach 

Figure 122. Resource regeneration during the design cycle considering both system context and system design. 
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energy, matter, and information (data) are multiple faces of the same reality as the substance of complex systems. This is a 
fundamentally a holistic way of looking at any system architecture, independently of its complexity or scale.  

Examples of sustainable design that aspire to be integrated with nature can increasingly be seen in multiple sectors 
such as clothing, consumer products, and houses (Kwinter, 2017), among many more. Nevertheless, designing and 
producing for the abundance of resources, rather than the rationing of available resources (McDonough and Braungart, 
2013) is what regeneration opposes. This in essence means [1] to design for either a system architecture that produces 
more resources than it consumes (Mang et al., 2016), or [2] to have an integrated close-loop functional scheme so the 
system restores, renews, and transforms any used energy and resources (Burke, 1999, Colozza and Maloney, 2003). This 
is especially applicable towards the development of energy production systems, large-size projects, and infrastructure-
oriented architectures (Hemenway, 2015). Among other smaller scale examples, we could identify sustainable buildings, 
regenerative energy systems (Alotaibi et al., 2020), or plant-based food production systems to name just a few. So, this 
approach is a growing trend due to the scarcity stressors and the increasing complexity of systems.  

 Evolutive Design Drivers  

Previous sections have presented the evolutive system architecture approach in response to global design stressors 
and methodology gaps. These fundamental keystones characterize any evolutive systems among the large category of 
general complex systems. Figure 123 summarizes this graphically highlighting the three keystones at the base of the 
evolutive design tetrahedron: adaptability, reactivity, and regeneration. However, it is necessary to fully define an evolutive 
system to address more specific design drivers behind these overarching keystones principles.  

  

Figure 123. System design drivers as faces within the evolutive tetrahedron. 
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These keystones are partially based on ancestral basic architectural components for any building, which were 
described by Vitruvius during the Roman Empire (Vitruvius, 2012). There are structure (firmitas), function (utilitas), and 
perception (venustas). But these principles need to be adapted to current times. It is relevant to highlight that unlike other 
modern interpretations such as the FVS model by Gero (Gero and Kannengiesser, 2014), these principles and subsequent 
design drivers relate to the system itself and not to the design development process behind it since it is a practical approach.  

From the described base of the evolutive tetrahedron, three faces or planes represent these design driver groups: [1] 
geometry, [2] behavior, and [3] substance. Each one of these planes is opposed to its more direct keystone (adaptability, 
reactivity, and regeneration), which are the vectors in between these planes. Understanding these drivers while considering 
both known and unknown relationships among them is key for designers and design processes to produce good complex 
architectures. The following sections elaborate in detail these design drivers for any given evolutive system architecture.  

The following descriptions are based on [1] the study of general needs regarding complex systems, [2] design and 
systems engineering gaps identified in section 3, [3] key characteristics of evolutionary, adaptive, and evolutive systems, 
and finally [2] almost two decades of practice designing complex systems across multiple technical fields.  

 Geometrical Complexity 

In response to design requirements and context stressors, the development of an evolutive system architecture 
design involves a continuous cycle that creates a geometry. This activity includes among others the definition and 
development of volumes, shapes, component three dimensional assemblies, interfaces, mechanical properties (e.g., center 
of gravity), mass estimates, material design constraints, packaging studies, deployment studies, integration feasibility 
studies, etc. This geometrical complexity is always in constant state of change within an evolutive process. Such geometrical 
continuity could be implemented using advance computational systems (e.g., generative design tools), as well as low-tech 
techniques (e.g., pen and paper) just by keeping design trades open.  

Practically this means that the multiple aforementioned trades are flexible and subject to an overall architecture design 
strategy. Thus, under this approach both designer and the design workflow always maintain the design as unfinished and 
keep floating new foreseeable design needs in the trade space of design solutions. This is not because the component 
requires that particular need to be addressed right away, but because it enhances the adaptability of the current solution 
which improves ultimately both performance and efficiency.  

The geometry face of the tetrahedron is: [1] define by the edges of reactivity and regeneration, [2] limited by the 
behavior and substance faces. This means that for a specific system architecture design seed, the geometrical aspects of 
the design are bound by the materiality of the design and the functional behavior. In other words, multiple designs exist in 
planes perpendicular to the adaptability axis. These axes hold the geometrical drivers, while the associated face (yellow 
face, Figure 123), is bound by eight key design drivers that are interrelated among themselves and with the other faces 
(Figure 124). A three-dimensional body is selected because those complex connections happen metaphorically within the 
internal volume. Surfaces and edges define specific parameters and approaches, while system connections occur 
multidimensionally underneath. Geometrical drivers include among others:  

4.3.1.1. Aesthetics (perception) 

A complex evolutionary architecture does not only mean it is only technical solution for a machine or component only 
driven by its functions. Such complex architectures could be designed for human use and interaction. Indeed, under this light 
the perception of such a solution from an aesthetical standpoint is a crucial and very complicated. Styles, cultural references, 
political notions, and even social nuances along with many more are part of a design process. Often, the management of 
this complexity relies on the capability and experience of the designer, as well as the cultural and heritage trades of the 
institution or field of practice. Thus, perception of the system from the user-center or culture-centered perspectives needs to 
be addressed, captured, and balanced within the development of many evolutive systems. 

The goal of this research is not to describe such complexities, but rather to emphasize they are a reality of the system, 
with quantifiable and quantifiable variables and parameters. An evolutive system architecture will not be complete if this area 
has not been addressed and certainty its subsequent design workflow would be incomplete if it cannot handle it. At the same 
time and beyond perceptual aspects, aesthetics could also be used within an evolutive approach to assess and manage 
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other secondary relationships across design drivers. This not only addresses often the ‘technical’ intuition of the designer 
about the performance of the system, but it also establishes a comparative reference across solutions. For instance, the 
components in the design of a suspension system in a race car, are going to provide a more extreme, more lightweight, and 
lower profile of the car, presenting a very different aesthetics than a similar suspension system now applied to a compact 
utility car. Cost, optimization (e.g., mass), etc. could be related and tracked by different aesthetics as and styles not only as 
a design driver, but as a foundational principle for a development process.  

For instance, the use of certainty materials, a practical manual craftmanship process, or a design allowing multiple 
modular solutions by an increased the number of interfaces would change the perception, user experience, and style of the 
system. As an individual design driver this one presents the following general characteristics: 

• Direction: It tends to be a set driver thus it is basically unidirectional, affecting other drivers.   

• Criticality: medium to high depending on the other drivers.  

• Complexity: It is non-quantifiable driver for products mostly, but it could be also quantifiable (e.g., material quality).  

• Range: this mainly affects product (prod) or system architecture, but it could influence the process indirectly too. 

4.3.1.2. Design for Uncertainty 

When designing a geometry that is the shape and material organization of a system section 3.1 presented the key 
differences between descriptive and prescriptive methodologies. In the first one, an initial concept (synthesis) is created as 
the starting point of the process. In the second a set of axiomatic rules and analysis are used to develop the concept. Both 
approaches are iterative in nature, enabling other approaches such as design thinking, integrative, etc. However, in a 
complex system and especially under the continuous evolutive approach uncertainty in the design is a critical drive in the 
process. Since the system architecture needs and it is forced to respond to environmental, design, and context changes, the 
unknown is critical. This means that system needs to allow design margins to enable new adaptability schemes, as well as 
to integrate current design changes and future design traits. These design drivers could be present across fields, systems, 
and practices. Examples of this can be found in the ultimate changes driven by packaging constraints, numbers of user, or 
final range of the system, among others. Uncertainty as an individual design driver presents these general characteristics: 

• Direction: this is a bidirectional driver across the design space.   

• Criticality: low to medium. Because it is not specified it not considered as high.  

• Complexity: it could be both quantifiable and quantifiable. 

• Range: this driver affects both product (prod) and process (proc). 

4.3.1.3. System and Component Interfaces 

A key design driver within any complex system, especially for a an evolutive system architecture, is the interfaces 
among components, subsystems, and other adjacent systems. It is crucial to identity, manage, and describe the number, 
nature, and interrelation of these interfaces between the integrated components of a complex system. These interfaces 
certainly affect both processes and products. Beyond the traditional system engineering approach, they require considering 
geometry, materials, and data. Good examples of this can be seen in modular system architectures as well as those requiring 
updates and upgrades frequently. This driver presents the following general characteristics: 

• Direction: it is also a bidirectional driver. 

• Criticality: is medium to high within evolutive systems.  

• Complexity: it is both quantifiable and quantifiable as a driver.  

• Range: it affects both products (prod) and processes (proc). 

4.3.1.4. Design for Optimization 

Under the paradigm of continuous design and with the overarching objective of achieving higher performance levels, 
optimization becomes a critical design driver. This not only makes a difference in reducing resources consumption and 
improving multifunctionality among other goals, but it is also about approaching the system’s design from an adaptable 
perspective. The evolutive process is about a constant design workflow and a new generation that both adapts to new 
conditions and surpass previous heritage solutions by integrating them.  
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Finding the better balance between system characteristics and design drivers is constantly present under an evolutive 
approach. Examples of this are mass reduction, energy efficiency, the reduction of the number of assembly components, or 
manufacturing cost reduction, among many more. This driver has some general characteristics such as: 

• Direction: it is always bidirectional.    

• Criticality: is high within high performance evolutive systems. 

• Complexity: It is a quantifiable driver. 

• Range: mainly this affects the product (prod) or system architecture. 
 

 Functional System Behavior 

The second big group of design drivers emphasize the response to the overarching principle of reactivity, while also 
addressing adaptability and regeneration aspects. As previously mentioned, this category relates to the characteristics of 
the system architecture itself and not to the design process per se. Given the adaptable nature of an evolutive system, the 
design process needs to address the management and optimization of such changes. As section 4.2 developed, reactivity 
classifies systems from passive to highly reactive both against their context environment and within their subcomponents.  

Thus, designing towards those interactions involves going beyond the continuity of the process, to study the system 
from a functional standpoint. Such functions will always be intrinsically related to the geometrical adaptability of the system, 
as well all available resources used or needed, both of which are related to the other two faces and edges of the tetrahedron.  

These behavioral design principles include governing forces that enable the adaptability of the system and materialize 
its reactivity. For instance, any complex system needs energy to work and to be manufactured. However, a very efficient 
energy management can be executed if the system is highly reactive, allowing a higher level of adaptation to different power 
needs. So, all these principles and drivers describe a highly circular and networked approach that enables the complexity of 
a system through the interconnection of multiple design variables and principles. Among the multiple design drivers related 
to the behavior of a complex reactive system the following are initially highlighted within the evolutive approach.  

4.3.2.1. Energy 

Energy is universally a critical design driver which is connected to every intrinsic aspect of the system architecture, 
functions, and related design processes. Firstly, addressing energy from an evolutive design driver standpoint implies to 
considering the use, consumption, and production of it across the full lifecycle of the system. Within such a design 
consideration there are three levels to be studied: [1] the cultural context and operative environment of the system, [2] all 
energy needs across the system lifecycle including consumption, regeneration, and overall efficiency, and finally [3] key 
operational modes and functions of the system that have direct consequences towards the other two points. Given a specific 
design, this is essentially about where the system operates, what it needs, and how it could improve its efficiency through 
reactivity and adaptability. As a design driver and a tool, this presents the following overall characteristics:  

• Direction is always bidirectional, but usually there is preferred one.  

• Criticality. This driver always has a high criticality within high performance evolutive systems and processes. 

• Complexity. It is a quantifiable driver, but it can also have multiple associated qualifiable drivers.  

• Range. Energy considerations affect the design of both products (prod) and processes (proc). 

4.3.2.2. Time and Schedule 

Complexity often means more time and more demanding schedules with consequences that ripple across the system. 
This limits the number of resources available to a company or a designer and greatly constrains the possibility of a better 
design. The more complexity that is required, the heavier the influence of heritage and subcontracted tasks become. The 
evolutive approach specifically tackles these challenges from multiple and complementary perspectives such as: 

• Simplification. The design of the system should reduce as many manufacturing steps and the number of parts as 
much as possible. This increases the multifunctional aspect of its components, subsystems, and overall architecture.  

• Multitasking. The design of the system and its related process should enable all possible a synergy among 
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components, agents, efforts, and resources.   

• Continuity. Making design requirements much more thorough and broader allows creating better solutions in the 
short terms, and easier upgrades and new systems in the long term. Like an athlete, the more the design workflow 
and the system is ‘trained’ to address current requirement needs, the easier it is to get to the next the level.  

Among the most relevant characteristics of this design driver, these are critical: 

• Direction. It is mainly a bidirectional driver.  

• Criticality. This driver has always high criticality within complex systems. 

• Complexity. It is a quantifiable driver with multiple associated qualifiable drivers. 

• Range. It strongly relates to both products (prod) and processes (proc). 

4.3.2.3. Multidisciplinary Synergy  

A key aspect of the evolutionary approach developed in chapter 5 will develop is the fact that the system architecture 
is built upon synergies across disciplines and subsystems. This design driver also has consequences across all the other 
drivers and dramatically influences any further evolutive process. Rather than looking at the system from a serial disciplinary 
standpoint, as chapter 2.9 presented, the system could be studied from within the connections among those disciplines. For 
instance, rather than looking at it from a purely mechanical and then a thermal standpoint, an evolutive design architecture 
handles synergetic thermomechanical requirements and questions simultaneously affecting and enabling both.  Addressing 
synergy within the design is also addresses opposing forces that have physical, cultural, heritage, and business 
backgrounds. Outcomes of this are: [1] multifunctional architecture designs, [2] integrated implementation steps, [3] simpler 
schedules, [4] increased sustainability, [5] improved efficiency, [6] lower cost, etc. This multifaceted driver could be 
characterized as: 

• Direction. It is always bidirectional, and it has preference nature as well.  

• Criticality regarding the system design requirements goes from medium to high.  

• Complexity is both a quantifiable and qualifiable driver here.  

• Range varies from products (prod) to processes (proc). 

4.3.2.4. Algorithm 

An evolutive system is by nature a smart system, meaning it is highly interactive. This also means that its behavior in 
terms of operative functions is driven by programming and data, so the behavior of the system has an algorithmic nature. 
Furthermore, the design itself can also be algorithmic since its geometry, reactivity, and even regeneration scheme could be 
based totally or partially on algorithmic models. Examples could be found in 3D printed generative components, autonomous 
self-driving cars, and interactive robotics. This algorithmic nature coexists with other designer-driven and design-workflow-
driven decisions, models, and guides. Nevertheless, an evolutive system or process along with their subsequent 
development processes need to address both. This specific driver presents the following characteristic traits: 

• Direction. This driver is mostly bidirectional.  

• Criticality goes from low to high. It is high on reactive evolutive systems and processes. 

• Complexity is a quantifiable driver, but it can have associated qualifiable drivers. 

• Range. This driver also affects product designs (prod) and process designs (proc).  

 Material and Data: Substance 

Finally, the last group of design drivers under behavioral functions relates to the implementation of the system and 
the resources used in such processes. These systems could be physical (e.g., metal alloys used in the structure) or digital 
(e.g., programming language, GUIs, and datasets). Geometry and design provide the rules to implement and forge the 
system, while behavior drivers tackle how it performs. However, all three groups are intimately related among each other. 
Within this collection of drivers there a few critical ones that are elaborated upon in the following sections.  

Given a specific context and framework, or in other words an ecology, we could look at the design process from a 
resource standpoint that including energy. The utilization of resources (from less to more), the capability to restore them 
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(from depleting to regenerative, Mang and Reed, 2017), and finally any achieved functionality (from better to worse) provide 
us with a three dimensional reference system (Figure 125).  

In such a framework the complexity of the system architecture becomes the curve connecting system solution 
extremes. An evolutive architecture is defined by such coordinates, as is the design process. Thus, the goal is to be efficient, 
meaning more complexity and more functionality, with less resources and more regenerative capabilities. The more this is 
achieved, the more resilient the system will be within a scarcity context. Regeneration of course, is key for an evolutive 
architecture design, since any given complex system requires full design definition, development, and optimization among 
its parts and its context (e.g., environmental, commercial, social, economic). With this, complex design here is always 
continuous, contextual, and evolutionary in nature, as well as the result of a specific process including the following drivers. 

4.3.3.1. Implementation 

A given system design, behavior, and selection of resources must have a feasible way to be implemented. Within an 
evolutive architecture, such development and implementation are part of the system itself (evo-devo). So, this driver is about 
the manufacturability on the physical side, as well as its programmability on the digital side, among others. In other words, it 
is about the feasibility of the system across the full design and lifecycle phases. For instance, a specific design geometry 
could have multiple ways to be implemented with multiple consequences and dependences across all other design drivers. 
Chapter 5 and 6 will elaborate more about this driver, which present the fowling overall characteristics:  

• Direction is bidirectional in nature with multiple caveats depending on the nature of the system.   

• Criticality across systems and processes goes from low to high. 

• Complexity here is a quantifiable driver, but it can also have multiple qualifiable drivers associated to it.  

• Range varies from products (prod) to processes (proc) like the other drivers.  

4.3.3.2. Relative Cost 

Cost is both a driver and a consequence. As a driver for an evolutive system, it is about the relative balance across 
options. These options could be resources, workforce, energy, as well as associated monetary values, among others. Its 
consideration is not more special in an evolutive system than in any other approach. However, its approach is broader in the 
sense that cost is not only monetary but also related to decisions made over the continuous development of the system.   

Heritage solutions and standards do have a critical influence within this driver since they often drive the decision tree 
behind any development or design of a complex system. It is important though to remember that relative cost is constantly 
changing, therefore it is more of probabilistic driver than an absolute constraint. Part of the rationale behind the evolutive 
approach could be summarized in managing this driver, which presents the following characteristics:  

• Direction has a directional nature, but it could drive other alternatives bidirectionally.  

• Criticality always present a high criticality for this driver. 

• Complexity is mainly quantifiable driver. 

• Range goes both products (prod) and processes (proc) simultaneously. 

4.3.3.3. Efficiency 

Finding balanced solutions among opposing forces is often the most complicated aspect of a system design task. 
Common examples of this are for instance the balance between [1] mass and power, [2] mass and thermal performance, 
and [3] volume and complexity, among many more. This balance could be tuned by the efficiency of the system, which is 
often related to a system optimization based on synergy and refined algorithms. Chapter 5 will elaborate this in more in 
detail.  Therefore, efficiency here is an everlasting search among opposites with the following characteristics: 

• Direction is mostly bidirectional unless it assessed as a design requirement or constraint.  

• Criticality goes from low to high. 

• Complexity is a quantifiable driver here.  

• Range affects the design of both products (prod) and processes (proc). 

4.3.3.4. Recyclability 
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An evolutive use of resources addresses the full lifecycle considering: [1] origin, energy, and cost, [2] reduction along 
the system life span, and [3] recycling and or repurposing. Bringing this consideration upfront not only tunes solutions to 
global stressors (e.g., scarcity), but it also enables a more robust and reliable system. This is characterized by: 

• Direction is mostly bidirectional if trade options are possible.  

• Criticality is high for sustainable or regenerative evolutive systems and processes. 

• Complexity is both a quantifiable and qualifiable driver.  

• Range also affects the design of both products (prod) and processes (proc). 

  Interrelationships Among Design Drivers 

These multiple drivers are organized across the three upper faces of the evolutive design tetrahedron, representing 
geometry, behavior, and substance. Among them we could see internal relationships summarized in Figure 124. These 
relationships within an evolutive architecture are not fixed and they should be understood under both statistical and ad-hoc 
perspectives following the continuous nature of this approach. These graphics shows the relationship between them. The 
arrow shows if the relationship is bidirectional or mainly one way, and the point from the main driver to the subject driver. 
The reading order is from right to left. The relationship could be only quantifiable (quant), qualifiable (qual), or both (qual / 
quant). The criticality of such relationship could be low (purple), medium (orange), or high (red). These initial relationships 
among design drivers should be considered as adaptable tools to help the development process, and most importantly to 
enable better system solutions from a holistic, feasible, detailed, and evolutive perspectives.   

Figure 124. Relationship across evolutive design drivers from a geometry, behavior, and substance standpoint. 
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 Complexity as Integration  

As previous sections have elaborated, an evolutive system architecture presents three major principles addressing 
context, design, and environmental stressors which are adaptability, reactivity, and regeneration as previous sections 
elaborated. While these have multiple design drivers connecting them at multiple levels, they also provide a three-
dimensional coordinate system for complexity in the context of both evolutive and complex systems. Under that reference, 
complexity could be understood as the integration of all three providing a map towards design objectives and methodologies, 
as well as a performance measurement towards comparisons. Figure 125 exemplifies this reference system presenting two 
extremes from the worst to the best evolutive system where A is an unadaptable, passive, and depleting system, and B is a 
highly evolutive, reactive, and regenerative system. The curve between both extremes exists within a 3D surface created by 
all possible solutions. This curve or line represents the inherent complexity of the system and a direction for a system 
evolutive optimization. For instance, a solid and passive brick could require large amount of energy to be manufactured, 
with very low-tech, and a limited adaptability beyond its spatial positioning. On the other extreme, we could envision a 
multifunctional construction block with many configuration options that manages air and hygroscopic flow, uses recyclable 
materials with very low energy consumption, reduces mass, and collects solar power through integrated external photovoltaic 
cells. Both are valid solutions, but how to make the second a more capable solution that is easier to design, implement, and 
manage is the objective of this research.    

Figure 125. Evolutive three dimensional reference framework with adaptability, reactivity, and regeneration as coordinates. 
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 Conclusion 

In response to chapter 2, section 4.1 presented new stressors affecting the practice of systems design engineering 
in the upcoming decades, and the subsequent needs to manage more complexity in such endeavors. Studying the drivers 
behind this new reality, as well as deeply reviewing the state-of-the-art techniques from both engineering design and systems 
engineering, there are several gaps that define a new and growing subset of complex systems by themselves. They are: [1] 
the relevance of geometry as the common ground between disciplines which condition the capability of the system, [2] the 
consideration of fundamental functions or basic ‘behaviors’ of the system at hand that is no longer static or incapable of 
adaptations, and [3] the importance of addressing the need and use of all the resources required to produce, use, manage, 
and repurpose the system. These gaps not only constrain the system outcome but also the methodology itself. In other 
words, new needs required new methods and new standards. This is the starting point of the evolutive approach, addressing 
the need of adaptability in the system design, as well as the complementary and evolutionary nature of nature-inspired 
methods that help these challenges from a fast-paced, data-driven, self-organized, and multidisciplinary approach.  

These points are often found and combined throughout the intuition and gut feeling of talented architects and chief 
engineers across multiple technical and artistic fields. Thus, this research aims to create a baseline approach to explore the 
full potential of such approaches to enable quantification, qualification, and more importantly optimization of new 
architectures, especially those hardware-based ones without heritage or previous generations. 

This involves firstly studying first the special nature and characteristics of evolutive system architectures within the 
context of complex hardware-based architecture systems, and secondly how to develop a methodology to enable such 
system and compensate for current state-of-the-art techniques gaps.   

Upon those increasingly present general stressors within scarcity scenarios described in chapter 2, and gaps in 
design methodologies the evolutive approach presents three constitutive keystones of basic principles: adaptability, 
reactivity, and regeneration. These were described in detail in section  4.2. They both characterize evolutive system 
architectures while also providing the foundation towards the subsequent design methodology. These keystones are 
intertwined (section 4.4) through a series of synergetic design drivers that map the full cycle of systems capable of reacting 
and adapting to any changes within their context and among components. These were described and grouped in section 4.3 
around those three main principles. Furthermore, these drivers also address the use and management of all resources 
across all the design phases and lifecycle of the system. While this will be developed more in detailed in chapter 5, section 
4.4 graphically presents in detail relationships across these drives within a three-dimensional reference system. Such a 
reference system is based on measuring functions, the use of resources, and interactions of the systems, in response to the 
three evolutive keystones, as well as those three areas describing any general system within this context: geometry, behavior 
and substance. Evolutive system architectures are physical, digital, virtual, or a combination of all of them. In essence they 
are highly adaptable, reactive, and sustainable or regenerative systems, as we could find among some robotic, architecture, 
aerospace, and organic systems.  

In essence, evolutive systems are inspired by nature and they aim towards having the same level of performance, 
efficiency, and adaptation. Furthermore, the way this new class of architectures is conceived infuses basic principles proven 
through millennia of natural evolution on the planet. Simple but very powerful forces describe both system (product) and 
technique (methods) such as: [1] genetic and heritage information driving adaptability and selection, [2] multifunctional 
optimized implementations and designs, [3] a continuous approach towards the system always in constant change, [4] the 
relevance of the context or environment for the system design including cultural, technical, physical, digital virtual, etc. These  

After this introductory description of evolutive system architectures, the following sections will elaborate on this 
research regarding techniques and methodologies that enable them (chapter 5), as well as a simplified example (chapter 6) 
that showcases both. While a key step in a networked process of development is the design phase, optimization and 
implementation phases are intimately related and will also be briefly introduced as perspectives behind this new way of 
looking a hardware-based system shadowing the ultimate system design, natural life. 
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EVOLUTIVE SYSTEMS DESIGN 
Evolutive System Architecture Methodology 

CHAPTER 5 

 
“Computers are useless. They can only give you answers.” 

Pablo Picasso 
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5. Evolutive System Architecture Design Methodology 

Evolutive system architectures as described previously in chapter 4 are a subset of complex systems responding to 
multiple external design stressors based upon the key principles of adaptability, reactivity, and regeneration. Those 
principles are founded on adaptive and evolutionary approaches, and they map some key gaps in current state-of-the-art 
systems engineering and system design techniques. In essence, the tool conditions the outcome and the way to tackle a 
challenge. However, to make the most of those gaps (sections 3.4, and 4.1), as well as to provide a more efficient way to 
develop evolutive architectures, a subsequent methodology needs to be created. This chapter will present an approach 
towards such a process developed within this research, the evolutive system architecture design (eSARD).  

This method is neither closed nor rigid. It introduces a foundational path that could and should be expanded and 
tuned for any especial needs required by designers, teams, machines, workflows, sectors, and industrial fields, among many 
others.  Thus, an evolutive design approach should be applicable to any system design architecture development, 
independently from the field of application. This method presents the following general and interrelated goals: 

• To develop an effective design engineering method that delivers mature evolutive system architectures without 
heritage, covers the full design lifecycle, optimizes time and resources, and enables the possibility for quantum-leap 
solutions. In other words, it aims at a leaner way for ground-breaking solutions with no heritage. 

• To draft the foundation for a SE system approach that serves also as design methodology (DSE), and towards 
further infusions of computer-aid methodologies enhanced by data-driven methods (e.g., AI workflows). 

• To also create the foundation for an organizational and managerial scheme, serving both DE and SE approaches 
to handle schedule, resources, and workforce, as well as any required technology and machine support.  

The next sections will present in detail the development of this method through its objectives, principles, foundation, 
workflows, tools, and environments. However, this research is concentrated on the design and systems engineering 
foundational part. Thus, it only presents basic pointers towards the optimization and implementation aspects of SE 
applications, and other organizational and managerial portions within the full evolutive methodology ecosystem.  

 Applied Evolutionary Process  

While the universe tends towards chaos (increasing entropy), natural evolution tends towards a greater self-order 
(decreasing entropy). Therefore in that process evolution increases and manages complexity (Brooks et al., 1988). Under 
this perspective, a living organism could be understood as a complex system architecture. As such, it is a member of a 
species, so it is part of a continuous series of similar architectures (Figure 126) as section 3.3 presented. Its adaptation is 
provided by a range of mechanisms leading to the survivability of such system, and it includes genetic changes that provide 
advantages (and disadvantages) against changes, development 
aspects, and external environmental factors.  

Those evolutionary changes are based on proven solutions, in 
the sense that any previous generation was capable of reproduction 
up to that point. So, a heritage solution is a proven solution that paves 
the ground for a new generation. But this parental base also enables 
modifications in the offspring capable of developing quantum leaps in 
terms of adaptability from an evolutive standpoint  (Gennaro et al., 
2011). This is also a key hypothesis for an evolutive approach as 
previous chapters presented (section 4.1), which following nature 
enables something new based upon validated solutions and paves the 
way towards reaching much better system performances organically. 
This has been developed in algorithmic and data science methods for 
dynamic systems (Dempsey et al., 2009) , complex systems 
engineering (Braha et al., 2006), self-organization methodologies 
(Vijver et al., 2013b) and optimization techniques (Zhang and 
Sanderson, 2009), such as differential evolution (DE).  

Figure 126. Species characteristics. Engraving in ‘Voyage 
of the Beagle (Darwin, 1845). 
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However, natural biological evolution is also about ‘hardware’ since the end process is a physical biological system. 
There have been several applications of evolutionary computing methodologies to new manufacturing techniques, such as 
fabrication of advanced FPGA (Fernández et al., 2004) and topology optimized geometries (Chen and Hwang, 2009), among 
many more as presented in section 3.3. Nevertheless, most evolutionary methodologies are applied to the systems 
engineering side of a product design such as form assessment (Shieh et al., 2018), structure optimization (Ma et al., 2020), 
and control development systems engineering (Yan et al., 2011). However, these techniques always concentrate on specific 
SE or manufacturing aspects, highlighting an application gap towards a more system-level and holistic thinking towards 
complex system architectures. Similar multidisciplinary approaches are used in the architecture practice.  

The evolutive methodology addresses that gap. It starts developing a foundational workflow towards a system-level 
thinking that considers the full cycle (design-implementation-operations) of a complex multidisciplinary architecture 
development, while being agnostic of tools, modeling techniques, and fields of application. Design principles, methodology 
steps, and overall phases are defined in the coming paragraphs and chapters through process definition and practical 
examples. Evolutive methodology is a system design engineering (DSE) approach born from an evolutionary methodology, 
adaptive principles, and architecture design mindset.  

Within the broad spectrum of tools developed over the last decades with advancements in computer science, there 
is an area of special interest in software development, intelligent design (ID) and evolutionary computation (Ford et al., 2017). 
Instead of assuming that a preconceived code would address all possible scenarios, evolutive algorithmic techniques allow 
for the code to change and evolve, similarly to Nature’s genetic evolution. An evolutionary approach assumes constant 
change, and with an integrated evaluation scheme, concepts, and solutions can be evolved or optimized (EO). Suddenly 
there are more than one valid solution, however this comes with the cost of a much more interrelated workflow, and the 
requirement of a much deeper knowledge of such algorithmic developments (Hingston et al., 2008). In essence, more 
flexibility in the process comes with more management challenges. However, the current software development ecosystem 
worldwide makes coding efforts a lot easier than decades ago. The same approach applies towards the study of complex 
adaptive systems (CAS) and self-organization (Georgiev et al., 2019) across many technical and scientific fields. 

But what happens if such an evolutionary approach is applied towards hardware-based and software-enhanced 
system architecture designs? What kind of process would enable and streamline evolutive designs? Such process should 
address design engineering as well as systems engineering topics from an evolutionary engineering approach (Norman and 
Kuras on Braha et al., 2006), applying adaptive principles as described in section 4.1 to an open development process. This 
process would aim at complex systems, and especially at those in need of modernizing their design or requiring the infusion 
of new technologies. Complexity brings failures, delays, and budget overruns, among others because of the inherent nature 
of both such systems, but also because of the complexity of the multiple development processes required in that endeavor.  

Under an applied evolutionary approach, rather than dividing a complex overarching system into smaller and 
manageable subsystems, the goal would be to improve the efficiency of the process by looking at the system holistically. 
The next step in such a process would be to address the design of the hardware-based architecture itself, even if it is the 
first of a kind and its requirements go beyond anything produced before. A design path that includes and combines 
implementation and optimization represents a gap in current methodologies as chapter 3 explored, and it is the objective of 
this research activity.   

Nevertheless, a design project could become a never-ending story. The more complex the challenge becomes, the 
more difficult is to define when something is good enough, as experienced, and passionate designers know well. From a 
requirements standpoint on the other end it could be easier to assess if thresholds are met or not. However, along the way 
the discrete nature of requirements can miss the discovery of critical designs and optimization strategies based on 
connections and synergies between them. Nature does indeed manage synergy very well, as the ultimate efficiency tool.  

This is especially relevant when the design process tackles something that has never been done before. Deepening 
in the design problematic, often reveals hidden connections and synergies that were not explored or known before. However, 
a fast process based in synergies could offer a better platform from which to make the most of inevitable iterative design 
phases. Certainly, the main characteristics of an evolutive architecture such as adaptability, reactivity, and regeneration are 
among those requiring interconnection among design variables and system design, as well changing complexity 
management.  



  
Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

152 

 

 Design Process Approach 

The development of the eSARD approach starts with the evolutive design tetrahedron characterizing the evolutive 
architecture system (Figure 127). In addition to other general characteristics for complex systems, evolutive system 
architectures present three major characteristic principles or keystones as elaborated in chapter 4: adaptability, 
regeneration, and reactivity (ARR). However, those overall principles only describe high level architecture characteristics, 
so a design process needs to address all three system descriptive areas, such as geometry, behavior, and substance 
(GBS). Finally, as a practical method eSARD also tackles the scale of all design, implementation, and operations (DIO) 
system details.   

As previous points have introduced, the development of complex systems architectures in the beginning of this 
century is conditioned by the potential growing scarcity of resources due to multiple factors and increasing levels of systems 
complexity. The balance between needs and resources is currently changing, often demanding the infusion and integration 
of new and disruptive toolsets that complement more traditional methods. From the standpoint of a near 4th industrial 
revolution (Machado and Davim, 2020)  to new human-machine collaborative workflows (Daugherty and Wilson, 2018), 
everything points towards a change in the paradigm. Such transitions have been happening at much faster rates in the fields 
of software and computer systems than in hardware implementation developments (chapter 3). This is the context of this 
system design engineering research, which among others is addressing two critical gaps in the design of complex hardware-
based architectures:  

• How can we design more efficiently towards optimization and the implementation of better performance 
architectures presenting evolutive characteristics? 

• How to tackle the lack of heritage and increasing multidisciplinarity complexity in such processes?  

An evolutive system design approach starts with a full-cycle perspective, which tackles design, implementation, and 
operations simultaneously to enable higher system performance and more efficient system-level architectures by 
building upon synergistic connections among disciplines and subsystems (Figure 128). This evolutive methodology 
is especially useful when designing under a significant lack of heritage (first-of-a-kind), time constraints, as well as a broad 
spectrum of feasible and yet new subsystems or technologies that must be infused for the first time. 

Figure 127. Evolutive design tetrahedron defining key methodology phases such as design, implementation, and operations.  
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While chapter 3 identified critical gaps in current state-of-the-art DE and SE techniques, chapter 4 highlighted and 
presented in detail the characterization of evolutive architecture systems. Thus, this thesis tackles gaps and characteristics 
showcased by those architecture design principles (the what), while it develops a methodology around it (the how). Inspired 
by nature design methodology (Kliman, 2016) and the more holistic or multidisciplinary practice of architecture (Jarzombek 
and Prakash, 2011), this approach applies proven and even ancient methods to new implementation fields 

From a methods standpoint, this approach applied some aspects of evolutionary systems engineering (Braha et al., 
2006) in computer science to the realm of hardware-based implementations. As such, rather than linear and monodisciplinary 
or even parallel methods, this approach has a network-driven scheme, embracing and combining both concurrent and 
collaborative engineering practices to the extreme. Furthermore, this methodology is not only about quantifiable 
disciplines (e.g., mechanical design) supported by analytic parameters, but also only-qualifiable subjects (e.g., aesthetics) 
based on geometrical design, as well as open or changing requirements workflows.  

Under this light, an evolutive approach (eSARD) does not concentrate on single point-design solutions. Rather it 
tackles the system architecture development from a continuous solution scheme, while addressing further optimization, 
implementation (including management), and operations from a geometry, behavioral (functions), and substance 
(resources) perspectives (GBS). This is agnostic of both applications and tools, and the approach also aims to infuse 
higher levels of adaptability in the methodology itself from both design (geometry) and SE (abstract) perspectives. 

From a product, artifact, and system architecture perspective, an evolutive system design process aims in the end to 
produce an implementable evolutive system architecture. This presents several complementary characteristics when 
compared to more traditional hardware-based systems such as: [1] high system adaptability, [2] an intelligent reactive 
baseline, and [3] a regenerative or sustainable resources strategy. From concept to implementation, the evolutive 
approach tackles maturity gaps within the system and its parts. Then it builds upon commonalities and synergies among 
disciplines, subsystems, and stakeholders. The feasibility and functional capability of the architecture at hand drive the 
approach, while always keeping in mind the overall efficiency in terms of resources, agility, and adaptability.  

This methodology fills the gaps in currently applied design engineering (Pahl et al., 2007), and systems engineering 
(INCOSE, 2020b) techniques for physical and hardware-based systems. In essence, it also enables a novel theoretical 
foundation to do better with less as its key design philosophy principle. Hence, the development of this process is based 
upon: [1] extensive literature reviews, [2] research, prototyping, and hands-on activity, and finally [3] several decades of 
validated professional experience as an architect and system architect across multiple industrial fields worldwide, including 
almost a decade of practice at the NASA Jet Propulsion Laboratory developing complex system architectures. Nevertheless, 
this approach is developed from a fundamental research perspective, so it is completely agnostic of tools, the field of 
applications, and any specific technology. In summary this aims to be a universal approach towards system design (DSE).   

Figure 128. eSARD evolutive design and systems engineering approach scheme. 
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The development of an external add-on part for the body of an existing car design could be a good example of this 
approach. For instance, this could be for instance a luggage support add-on for the trunk (Figure 129). The part itself does 
not have much heritage since is quite unique and not a part of the original design. However, it requires to increase its 
performance when compared to previous solutions due to increases in speed tolerance, comfort standards, and 
environmental protection. Furthermore, an evolutive approach applied to this problem would consider the following points:  

• Adaptability (geometry). The component should adapt to different driving parameters, environmental conditions, and 
mechanical interfaces passively. Multiple finishing and material options would be part of the trade space.  

• Reactivity (behavior). This aspect could enable lighting and active aerodynamical control.  It should also be trackable 
with GPS if gets lost, stolen, or falls off the car. Thus, batteries, sensors, and active components are integrated. 

• Regeneration (substance). Both manufacturing and system complete lifecycle should fully sustainable.  

The company developing this part could only be interested in addressing requirements for a specific model. However, 
when an evolutive approach is applied, both designer and design workflow should adapt for more. Thus, rather than its 
design being solely applicable to a single case, it is done considering many other likely or feasible possible constraints to 
find more synergetic and optimized solutions. It is not about over-constraining; it is about stressing towards a better solution.    

 ARR Development Areas 

An eSARD process tackles all three ARR areas (adaptability, reactivity, and 
regeneration) from a networked perspective by addressing in detail design, 
implementation, and operations (DIO) of any system, as Figure 130 shows.  

The following sections will elaborate the overall design approach of this 
methodology, which is the main objective of this research. Furthermore, sections 
5.3.2 and 5.3.3 present the general perspectives for complementary optimization and 
implementation efforts (including management) that are also required. These 
considerations happen concurrently to the design activity, and as soon as possible 
in the process. However, the complexity and depth required for their full development 
will be part of future research activities and publications. All these aspects have been 
researched and tested by the author on different professional practices.  

Figure 129. Examples of eSARD approach applied to an add-on component for an existing car design.  

Figure 130. eSARD networked process. 
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 eSARD System Design (Geometry) 

A critical node within the eSARD evolutive design process is to 
create an initial reference system or seed architecture, so an iterative and 
concurrent design process can be developed around it. In the case of 
hardware-based system architectures, that seed system description also 
includes a descriptive geometry, or in other words a volumetric, 
morphological, and conceptual description. Such a geometrical definition 
often starts with a sketch and evolves to a fully detailed CAD/CAM model 
including parametrized design variables, and sensitivity studies, and among 
other aspects an applied e-design paradigm (Chang, 2015).  

However, in this continuous evolutive process such drawings or 
models are not static since they constantly change both conceptually and 
functionally. Regardless the tool being used, in the mind of the designer and 
at the core of workflow this representation should be considered more of an 
animated cartoon or a video, rather than a static picture or CAD model. 
Thus, such conceptual representation is always a snapshot in time which 
gradually gains more details and definitions of key data points from other 
activity nodes in the design network such as optimization and 
implementation (Figure 131). This design seed will always change. 

There is not a beginning or end within this approach since a complete 
system architecture requires all nodes to be defined enough to be complete 
and feasible. The design process conceptually never ends, and it is meant 
to be capable of continuing. However, such a process considers the 
evolution and adaptability of the system, therefore its behavior and 
implementation are also areas for optimization, scalability, and 
upgradeability even if they are not initial requirements. This design 
development process presents several key features such as: 

• Fast. By default, this is a fast-paced process to make an efficient use 
of time and other valuable resources, as well as to improve easiness.   

• Easy. This process should enable seamless synergistic efforts 
among disciplines, workforce, infrastructure, and schedules 
considering multiple phases in the lifecycle (including prototyping). 

• Disruptive. The ultimate goal of eSARD processes is to go beyond 
previous solutions performance and capabilities (if they exist).  

• Stressing. It is critical in this approach to stress the design process 
by scouting connections among initial requirements and disciplines, 
while considering other complementary ones across phases. 

The geometrical aspect does not necessarily mean the system needs to be physical. Logical and non-geometrical 
systems (e.g., software-based) can be addressed within this approach as well. In that case, geometry refers to the 
conceptualization and logical structure of the system. For instance this could be a system model diagram (Friedenthal et al., 
2008) such as data flow, which offers a non-geometrical view of the model created for a system. This initial seed geometrical 
design (Figure 131) will continue through a process of refinement and detailing, which addresses other foundational aspects 
related to the behavior and implementation of the system. In other words, we need to know what we draw/model and why.  

In a networked process, this all happens concurrently, so all methods should be allowed to explore, capture, and 
share any knowledge or experience. This aspect is critical as enabling a good communication among all actors in the 
process, human or otherwise, leads to faster, better, and more efficient efforts in creating this seed geometry.  

  

Figure 131.System architecture geometrical 
seed, presented as a captured instance within 
an evolutive design process example.   
© 2021 Raul Polit Casillas  
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5.3.1.1. Inputs 

There are multiple inputs required for this design node within an eSARD process. Table 22 presents a summary of 
inputs, processes, and outputs. Among some of the principal inputs are the following:  

• Requirements. These could be only quantifiable, qualifiable, or both. They could also be open in nature (e.g., as 
light weight as possible) or closed (specific value). While there are key design requirements a system architecture 
design must meet, there are also priorities based on importance and criticality. Thus, requirements could be essential, 
or desirable, and it is critical for the design process to study and strategize them accordingly. Furthermore, an eSARD 
process will developed secondary requirements during the process to stress the design, to better explore the trade 
space of options better, and to address complementary implementation and operations needs that might not be 
foreseen or included at the start.   

• Constraints. These limit the design process unless countermeasures can be taken. They include limitations from the 
standpoint of product, process, and operations. Their nature varies and includes topics such as design, interfaces, 
assembly, heritage, culture, manufacturing, budget, schedule, and maturity needs, among many other limitations.   

• Drivers. These are not really an input per se, but rather inherent characteristics of the design process that could 
influence both designers and workflows. Some of the most relevant were described in section 4.3 (system) and will 
be elaborated further in sections 5.4 and 5.5. 

5.3.1.2. Processes 

This design process will be developed in detail in the following sections. From section 5.7 and on, all details regarding 
phases, steps, and techniques used within this research will be laid out. Chapter 6 presents a simplified example as well.  

5.3.1.3. Outputs 

The product of this initial process is a system architecture seed, a fundamental geometrical and system definition of 
the system being developed. This [1] addresses the most important gaps at both system and subsystem levels, [2] considers 
design, implementation, and operations, and finally [3] becomes the foundation for subsequent iterative cycles to bring more 
details and evaluate alternatives. Such an evolutive seed not only entails a system visualization but also capturing all 
associated knowledge used to identify architecture maturity gaps (AMGs) and develop systems engineering modeling. These 
will be elaborated in detail in section 5.9. These outputs could then be digital, virtual, physical, and data based.  

Exploring any design challenge at hand through a series of facilitated questions allows one to identify hidden 
relationships between subsystems and discipline requirements. AMGs are the most critical of the key relationships defining 
both feasibility and system performance. Upon such gaps, the design (geometry) and system modeling (abstract) processes 
develop the foundation for further cycles that will increase the maturity and complete the system design. Following points 
will elaborate and exemplified this phase in the evolutive methodology that is summarized in the following table. 

INPUTS Description PROCESSES Description OUTPUTS 

ARR Drivers Driving Process / Product • eADQN, eAMG, eASG  

• Geometry sketches & 
refinement processes 

• Volumetry & packaging 

• System definition  

• Rapid analysis  

• SE modeling 

• DE modeling 

• Styling & customization 

• PR modeling 

• Feasibility  

• CAD/FEA/CAM/BIM 

• Rapid prototyping 

• Visualization 

Digital, physical, virtual Geometry 

 Adaptability-driven (design)  Diagrams, sketches, 3D 
models, 4D models 

 Reactivity-driven (system) Digital, logical Systems Description 

 Regeneration-driven (resources) Logical, digital Basic Analysis 

Requirements Driving product Logical New requirements 

 Quantifiable, qualifiable, both Digital, physical, virtual Interfaces 

 Primary (client-driven) Digital, physical, virtual Styles  

 Secondary (eSARD-driven) Logical Equipment lists 

Constraints Multiple types Digital, physical, virtual Visualizations 

 Product outcome, design process, 
operations 

Digital, physical, virtual Rapid Prototypes 

Table 22. eSARD system design development inputs, process, and outputs.  
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 eSARD Operative Optimization (Behavior) 

Understanding design needs and the complexity behind the system 
architecture leads to a feasible design path and an evolutive seed 
geometry. However, this is not enough to complete the maturation of such 
system. Behavioral considerations are also key complement, becoming 
the base for the second node within this process, operative optimization 
(Figure 132). Although this process might not start necessarily by creating 
a geometry, this helps as an initial input in the process. System behavior 
aspects are maturity gaps being addressed within this node. Like in any 
other system architecture, (Pollio, 2018) geometry (design), behavior 
(performance), and substance (resources) are both related and needed. 
This operative node depends heavily on the reactivity of the system, and 
it is more prone towards systems engineering and analysis within the 
development process while addressing two main areas such as: 

• Operations. Any system is designed to be used and operated  
affecting every aspect from system performance to supply chain 
(Mahadevan, 2010). Understanding operational needs and bring 
them upfront in the design process (networked workflow) is critical 
for an evolutive system architecture that addresses the 
sustainability of resources, the system adaptability, and other 
subsequent smart management topics. This area includes among 
other ops-con studies, system functional behaviors, prototyping, 
functional analysis, model refinement and analysis, etc.  

• Optimization. The operative side of a system development, as 
well as its multidisciplinarity requirements bring the need to 
optimize such system architecture from that perspective. This 
optimization can happen at many levels such as discreet (e.g., 
topology optimization to lightweight an structure), multi-objective 
(Abraham et al., 2005), and multi-criterion (Takahashi et al., 2011) 
using evolutionary data science techniques. Within this node, 
optimization parameters are driven by system operations, which 
include all behaviors and functions the system architecture is 
capable to perform. Thus, this activity is based on the system 
design, adaptability, resources management (regeneration).  

As previously described in section 5.3.1 the foundation of this operations node within an eSARD process presents a 
series of basic inputs, processes, and outputs. The following sections briefly develop all these areas.  

5.3.2.1. Inputs 

Inputs for this operational node come bidirectionally from both design and implementation activities within an eSARD 
process. All three are needed almost in all cases, so no input is more important than the other. Such inputs evolve and get 
more defined along the maturation process. Therefore, these are some of the most critical inputs in this phase:  

• Systems behavior and performance requirements (ARR). These include descriptions, variables, models, and 
measurements related to areas such as, system performance levels, scenario characteristic, autonomy requirements, 
interactivity, environmental constraints, performance curves, validation codes, protocols, regulatory limitations, etc. 

• Overall behavior constraints. Among others these include power limitations, software restrictions, coding 
limitations, heritage, culture constraints, translation limitations, sensor capability, onboard computing, etc.  

• General eSAR architecture design and eSARD process drivers. See section 4.3, 4.4, 5.4, and 5.5.    

Figure 132. Operative optimization design node 
within the evolutive design methodology.  
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5.3.2.2. Processes 

Following a similar approach to the design node, the operative optimization node requires a series of 
interconnected steps and products, which are linked to both design and implementation activities. These steps integrate 
critical areas such as system behaviors, operations, and ARR aspects. These include among others the following: 

• System and Operations Modeling. The seed geometry within an evolutive architecture represents and includes all 
volumes, interfaces, styles, and adaptability considerations. The concept of adaptability is directly connected to the 
reaction of the system, which requires the modeling of complementary systems reflecting non-geometrical 
characteristics such as behavioral ops-con, structural analysis, analytic requirements, and parametrics, among many 
more. Such system modeling can be done using multiple tools and methods (e.g., SysML™, UML, manual diagrams, 
etc.). However, under an evolutive paradigm this process will continuously be changing based on the feedback from 
both design and implementation nodes. Furthermore, this evolutive design seed model is centered in synergetic 
connections across requirements, subsystems, and disciplinary analysis, which are also multidisciplinary in nature. 
The more gaps are studied and connected; the better modeling of the system can be done. This point includes key 
operational areas such as autonomy, data architecture, sensor architectures, ops-con studies, regulations, coding, 
and programing considerations, among others. So, from this perspective, a network approach can make a difference 
connecting cross-cutting areas across the lifecycle. Connection between design and operations become crucial 
affecting requirements, configuration, interfaces, design, analysis, verification, risk management, optimization, 
manufacturing, testing, integration, data and knowledge management, planning, reutilization, and decommission.  

• Optimization. Once key primary requirements have been studied, and secondary requirements identified, 
subsequent design iterations can explore feasible design strategies, where both geometry and systems behavior are 
defined properly. This is critical towards improving system performance and assessing solutions beyond existing 
heritage. This is also the starting point for an optimization process that will continue during the evolutive process. 
Such process is directly linked to an initial analysis and evaluation of the system activity within its context. There are 
two objectives within this step: [1] to find better and more optimum solutions that consider key synergetic connections 
highlighted by the eSARD process, and [2] to provide an assessment of the system performance and closeness. If a 
system is fully defined by an initial and feasible solution assessing all ARR areas, it can be evaluated and redone.  

• Prototyping. There are aspects of a system architecture, especially when complexity is high, that cannot be modelled 
or predicted.  Thus, prototyping is as critical as other system functional demonstrations such as behaviors, 
interactions, and other complex functional topics. This is not only a concurrent tool towards the validation of the 
system, but also a design tool to discover critical maturation gaps that are not possible to identify otherwise. 
Prototyping under this approach also becomes a quality control tool for the whole process affecting design, 
operations, and management. This activity can be physical (e.g., 3d printing, bread boards, COTS - Macdonald et 
al., 2014), virtual (e.g., computer simulations - Cooper, 2001), behavioral (e.g., user study case), or a hybrid of them.  

• Validation. The system operational approach and related design paths are continuously detailed and assessed upon 
the optimization and development process. As a continuation of all prototyping activities, this step has multiple 
implementation paths. Assessing the validation of the system not only considers subsystem feasibility and other 
general assumptions, but its whole from a design, operative, and implementation standpoints. Maturity levels are then 
used to assess system completeness, similarly to aerospace concept maturity levels (CML, Wessen et al., 2013) and 
technology readiness levels (TRL, NASA, 2016). However, within an eSARD approach, this point also addresses 
other critical areas across the system lifecycle that are linked to both design and implementation topics.  

5.3.2.3. Outputs 

Within such networked and concurrent eSARD process, all outputs of the operative node are interconnected with 
other areas of the process. Furthermore, data coming from instrumented real systems is integrated to optimize future outputs 
and system optimizations under some design trends. In essence, future systems design and operational optimizations are 
data-based. New tools such as physics based visualizations (Plowman, 2019) are also changing the way operations and 
system behaviors can be studied. Table 23 presents a summary including inputs, processes, and outputs for this critical 
eSARD node that tackles basically all system functional behaviors and optimizations.   
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INPUTS Description PROCESSES Description OUTPUTS 

ARR Drivers Driving process / Product 

• eADQN, eAMG, eASG 

• eASMs  

• Operation analysis 

• Ops-con 

• Ops. architecture  

• System definition 

• Analysis 

• Simulations 

• Functional prototyping 

• Process visualization 

• Others 

Digital, logical, virtual Sys. Behavior  

 Reactivity-driven (system)  Diagrams, timetables… 

 Adaptability-driven (design) Digital, physical, virtual Ops. Architecture 

 Regeneration-driven (resources) Logical Data Architecture 

Requirements Driving product Digital, physical, virtual Ops. Visualizations 

 System behavior-driven Digital, logical, physical, 
virtual 

Functional prototypes 

 Ops-con-driven Digital, logical, virtual Virtual studies 

 Regulatory / culture-driven   

 Primary (client-driven)   

 Secondary (eSARD-driven)   

Constraints Multiple types, limiting:   

 System functions 
Heritage / culture  
Design process 
Operational architecture 

  

Table 23. eSARD operative optimization development inputs, process, and outputs. 

 eSARD Implementation (Substance) 

Designing, optimizing, and prototyping is not enough for a complete 
system architecture design. Thus, the implementation of the system is part of 
an eSARD approach. This design node is directly related to the regeneration 
principle pointing towards the use and management of resources (substance). 
Thus, it entails materialization, manufacturing, resource management, and 
resource optimization including recycling, repurposing, and regeneration (see 
Figure 133). The evolutive approach towards systems engineering tackles both 
method and products, thus it considers system feasibility and resources 
management of (e.g., workforce, time, tools, etc.) towards implementation, 
operations, and design of the system. It also includes managerial and 
programmatic aspects, which are also required to set up an evolutive design 
workflows and obtain evolutive system architecture designs more efficiently. 
This implementation node (Figure 130) goes beyond fabrication and includes 
systems integration and delivery as well. The objective of defining, designing, 
analyzing, and modeling a system has been already addressed on previous 
chapters, however implementing such system architecture, and managing all 
required resources must be part of the development process too. Therefore, 
this concurrent part of the method is about the substance of the system, a 
concept that includes materials, workforce, coding, computing power, energy, 
and other natural, human, and technical resources. Hence, this is about 
managing, optimizing, and improving the use of those resources [1] across the 
system lifecycle, [2] its development process, and [3] all system operations 
within organizations (new, seasoned, or virtual), teams, and professionals.  

This node is especially important when resource scarcity, system 
performance, and heritage are key design stressors for the evolutive system 
architecture. This effort is also critical when the need of a quantum leap from 
any previous heritage solution forces to rethink the approach affecting all the 
way to how the manufacturing of the system is done (Leondes, 2019).  

Figure 133. Implementation node within the 
evolutive system design methodology.   
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5.3.3.1. Inputs 

The outputs of the design and operative nodes are the inputs for this node. These also include all relevant information 
regarding resource utilization, optimization, management, utilization, and implementation techniques (e.g., building, 
manufacturing, programming, coding, fabrication, etc.) regardless of their human-driven or machine-driven nature.  

5.3.3.2. Processes 

Multiple interconnected steps and fields are part of this evolutive node tackling adaptability, reactivity, and especially 
resource regeneration and management (ARR). Among others these processes include the following:  

• Materialization. Implementing a physical system requires materials, the same way an algorithm-based system needs 
coding and data. Hence, this point refers to all resources required to turn a system architecture into a physical, logical, 
or virtual reality. The selection of the right substance is critical and influences manufacturing feasibility, as well as 
energy assessment, thermal properties, design effort, and analysis, among many more. Similarly, the selection of 
coding languages and data architectures directly affects cost, schedule, service (workforce), speed, etc. 

• Manufacturing. If system design and materialization are defined, the next step in the use of those resources is to 
fabricate, manufacture, build, integrate, produce, code, and release such system architecture. This presents huge 
implications affecting workforce (Waldeck, 2014), cost, schedule, automation constraints (Wang et al., 2016), 
technology infusion, and system integration. The increasing infusion of disruptive techniques, such as additive 
manufacturing (Killi, 2017) is a good example, since their use can greatly conditioned both system design and 
optimization. Just like material and code aspects, the infusion of manufacturing constraints, requirements, and options 
from the very beginning not only presents a huge advantage for a concurrent cost, risk, and delivery schedule 
assessments, but also for future system upgrades and developments as part of family of solutions (species). For 
instance, once the design of a high-performance window is done, this step will ensure that future modifications can 
easily be implemented, allowing the repurpose of work and thus lowering the cost. On the other hand, if new 
manufacturing capabilities are available, it would also be easier to reassess the system architecture accordingly.  

• Resources management refers to multiple managerial aspects regarding the use of resources during the design, 
operations, and implementation of the system. For instance, assessing a system implementation from an energy 
standpoint evaluates the energy: [1] required for system operations, [2] used to produce the system, and [3] utilized 
to design and optimize the system (e.g., computing power and workforce). This step is directly related to the 3C 
framework created for this networked activity and is critical towards introducing this methodology in any organization. 
Both traditional frameworks that are more driven by heritage (slow pace) and innovative clusters being developed 
along the way (fast pace) could use this methodology if done properly. The management of resources is a 
foundational characteristic of an evolutive regenerative architecture development.  

• Sustainability (reuse / replenishment / recycling / decommission). Finally, as a close-cycle economy effort, the 
evolutive approach tackles the sustainability of a system architecture within its context, as well as other related design 
methodology efforts. This area is connected to the regenerative evolutive principle within the ARR approach. This is 
especially relevant under current tendencies of product and service-driven systems (Ceschin, 2013) that require  more 
innovative solutions faster, while influencing their corporate organizations in the process (Kao, 2010). Here several 
areas are tackled simultaneously including energy, natural resources, environmental footprints, workforce 
capabilities, knowledge management, data management, system repurposing, and recycling strategy, among many 
more. In essence, this step is organized in three large areas affecting both systems and processes, such as [1] 
reusing or repurposing systems, components, and work efforts, [2] replenishing directly or indirectly all used resources 
by the system, [3] recycling resources, system components, and data, and lastly [3] full system decommission. 
Certainly, these topics also relate to the operative side of the system, affecting its optimization across its lifecycle.  

5.3.3.3. Outputs 

This phase presents multiple outputs that require further development. In general, these serve as inputs for other 
nodes while they tackle all key implementation areas of physical, logical, digital, and virtual systems including trade studies, 
utilization schemes, implementation plans, tests procedures, cost studies, and organizational schemes, among many more. 
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The products of this node could be organized across design, development, and system operations around these areas: 

• Using resources. This includes all necessary products and processes managing the implementing of a system, such 
as material studies, manufacturing studies, equipment trade-offs, programming schedules, etc.  

• Managing resources. These include products related to all system operations aspects.  

• Regenerating resources. From system recycling studies to replenishing resources, these products tackle the full 
spectrum of analysis, schemes, and design to achieve feasible regenerative and sustainable systems. 

Table 23 presents a summary of some inputs, process tools, and output products of this node. The goal is not 
necessarily to create a full development plan, but to enable a good system design that considers key characteristics for its 
future development, mass production, or even one-off production implementation plans.  

INPUTS Description PROCESSES Description OUTPUTS 

ARR Drivers Driving process / Product • eADQN, eAMG, eASG, 
eASMs  

• SE modeling 

• DE modeling 

• Feasibility  

• Trade studies 

• Analysis  

• Simulations 

• CAM 

• Coding / Development 

• Prototyping 

• Sustainability studies 

• Recycling studies 

• Others 

Digital, physical, logical Resource schemes 

 Regeneration-driven (resources) Digital, physical, logical Mfg. Schemes 

 Reactivity-driven (system) Digital, physical Mfg. Tests 

 Adaptability-driven (design) Digital, physical, logical Dev. Schemes 

Requirements Driving product / Process Digital, physical Dev. Tests 

 Quantifiable, qualifiable, both Digital, physical, logical Org. Schemes 

 Primary (client-driven) Logical Cost analysis 

 Secondary (eSARD-driven)   

Constraints Multiple types, limiting:   

 Mfg. Techniques 
Digital technologies 
Resource availability 

  

Table 24. eSARD implementation and resource utilization optimization (substance).  

 eSARD Overall Foundations and Uniqueness for ARR 

This method tackles many especial design characteristics of evolutive systems (ARR) from a holistic and concurrent 
approach. Thus, eSARD builds upon other DE, SE, and evolutionary techniques altogether, as Table 25 shows. The evolutive 
standpoint rises from [1] acknowledging a series of environment conditions and needs for this subset of complex system 
architectures, and [2] the inspiration of natural evolution mechanism applied to complex engineering design and systems 
engineering efforts. Therefore, the process associated to the development of these architectures (eSAR) shares those 
foundational points and builds upon the gaps (section 3.4 and 4.1) and strengths (chapter 3) of state-of-the-art design 
engineering and systems engineering practices. Furthermore, it also includes unique features and modifications developed 
during the research activity in support this thesis and an easier applied practice of the method. 

Table 25 presents an organized summary of these inputs for a technique capable of addressing multiple ARR needs. 
However, this classification is not rigid, and these foundational inputs and comparisons are based on the extensive literature 
review in chapter 3. All these techniques have important impacts across all eSARD phases. They are organized in two areas: 
[1] those already present in other methods or with a very similar implementation (red) and [2] those unique to eSARD 
processes (purple). However, these two groups can present multiple connections among them. The ARR classification also 
relates to the influence of the method over all DOI sectors (design, operations, and implementation).  

 Technique Domain Class Foundational for eSARD Similar / Unique to eSARD References 

 

Vitruvius’s DE Classical Strength + utility + beauty Evolutive GBS (Roth, 1994) 

Descriptive Design DE 
Descriptive 
Design 

Vision-driven Includes system definition  Table 12, DE5 

Asimow DE Descriptive D. Geometry + Sketch Includes logical parameters  (Asimov, 1976) 

Spiral DE Descriptive D. Design loops Full-cycled and networked (Evans, 1959) 

Prescriptive Design DE Prescriptive Synthesis-driven + Analysis Geometry as a multidisciplinary Table 12, DE6 
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Design starting point (Dym, 2013) 

Pugh DE Prescriptive D. Decision matrix Dynamic questioning (eEADQ) (Pugh, 1986) 

Cross DE Prescriptive D. Concept-to-detail Includes resources lifecycle  (Cross, 2008) 

Pahl & Beitz DE Prescriptive D. Interrelationship-driven Similar (Pahl et al., 2007) 

Eggert DE Prescriptive D. Optimization Similar (Eggert, 2005) 

Design thinking DE Design Thinking Non-analytical factors Detail-driven 
Table 12, DE7 
(Curedale, 2013) 

DTM DE Design Thinking Co-evolution 
Co-evolution within systems & 
assemblies 

(Brown, 2009) 

Human-centered DE Design Thinking Human perspective Considering team dynamics (Rosenbrock, 1989) 

User-centered DE Design thinking 
Includes the context of the 
system 

Addressing global design 
stressors 

(Norman & Draper, 2018) 

Innovative Design DE Innovative D. Idea-driven Implementation is included Table 12, DE8 

TRIZ DE Innovative D. Driven by design principles  Adaptable principles (eAMG) (Altshuller, 1984) 

OSTM-TRIZ DE Innovative D. Network of problems (NoP) Network of connections (Fiorineschi et al., 2015) 

C-K Theory DE Innovative D. Domain-independent Maturation space  (Hatchuel et al., 2004) 

Morphology DE Innovative D. Consistency-driven Maturation-driven (Ritchey, 2002) 

Method-driven D. DE MDD  Methodology-driven System-driven Table 12, DE9 

Axiomatic DE MDD Divide & conquer complexity Sinergy to tackle complexity (Farid and Suh, 2016) 

DRM DE MDD Research methodology  Similar (Blessing and Chakrabarti, 2009) 

Process-Driven D. DE Process-Driven Outcome defined by process Outcome-driven process Table 12, DE10 

FBS DE Process-Driven Ontology-driven theory System-driven method DBS  (Gero & Kannengiesser, 2004) 

MPM DE Process-Driven Multidisciplinary method Similar (Chakrabarti and Blessing, 2014) 

FORFLOW DE Process-Driven Product-design-driven System & architecture-driven  (Rodenacker, 2013) 

Concurrent DE Process-Driven Simultaneous activity Similar (Eastman, 2012) 

Set-based DE Process-Driven 
Open designs and 
simultaneous efforts 

Keep the design process open 
for as long as possible 

(Singer et al., 2009) 

Integrative Design DE Integrative D.  Design + Analysis Similar Table 12, DE11 

IP2D2 DE Integrative D.  Concurrently data-driven Similar (Magrab and Magrab, 2010) 

Generative DE Integrative D. Algorithm-driven Enhanced by algorithm (Shea et al., 2005) 

Design Tools DE Design Tool Influence over workflows Tool agnostic Table 12, To1-4 

Concept words DE DT Concept storytelling Included (Lees-Maffei, 2013) 

Concept sketch DE DT Fast concept communication Included (Ullman et al., 1990) 

Technical drawing DE DT Complex 1-4D views Included (Ullman, 2009) 

CAD/CAM  DE DT Complex assembly & analysis Included (Rao, 2004) 

BIM/BEM DE/SE DT Complex assembly & analysis Included 
(Deutsch, 2011) 
(Clarke, 2007) 

Parametrics DE/SE DT Multiple variations  Included and qualifiable too (Kimura, 2001) 

MBSE Design DE/SE DT MBSE design enhancement Included & enhanced by MBSE 
(Fernandez & Hernandez, 2019) 
(Dori, 2016) 

Evolutionary DE EvoDE Evolutionary methods Included (Braha et al., 2006) 

Evolutionary 
Computer Science 

DE EvoDE Applied computer science  Inspired by it and for hardware Table 18, Evo2 

Adaptive Genetic 
 Algorithms (AGA) 

DE/SE EvoDE / SE 
Both parameters & algorithms 
change concurrently 

Fully adaptable approach  
(Sivanandam & Deepa, 
2007) 

Evolutionary 
Strategies (ES) 

DE/SE EvoDE / SE 
Phenotype and genotype are 
optimized jointly 

Each system becomes heritage 
for new designs and efforts 

(Bentley, 1999) 
(Rechenberg, 1989) 
(Beyer, 2013) 

SCRUM DE EvoDE Agile practice with multiple Similar (Ockerman and Reindl, 
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iterative spring cycles.  2019) 
(Cohn, 2010) 

Evolutionary System 
Architecture  

(ES Arch) 
SE EvoSE 

Not fully formed SoS includes 
self-evolution, joint evolution, 
and emergent evolution 

Subsequent design cycles 
using evolutive approach   

(Jamshidi, 2011) 
(Chen and Han, 2002) 
(Grösser, 2012) 

Incremental Iterative 
Development (IID) 

SE EvoSE 
Multiple iterative cycles of 
incremental improvements 

Similar 
(Blokdyk, 2017) 
(Larman and Basili, 
2003)(Isaias 7&Issa, 2014) 

Complex Adaptive 
Systems (CAS) 

DE EvoDE 
Based upon stable states 
outside the equilibrium of 
complex systems 

Applied to hardware-based 
systems as well 

(Yin and Ang, 2008) 
(Gros, 2015) 
(Holland et al., 1992) 

Evolutionary  
Design (ED) 

DE EvoDE 
Evolutionary biology + 
computer science + design 
(CAD) to create 3D using GAs  

Enhancements done by adding 
SE and non-quantifiable 
parameters  

(Bentley, 1999) 
(Kalyanmoy, 2008) 
(Bentley & Wakefield, 1996) 
(McCormack, 2008) 

Agile Hardware EvoHR Hardware Evo 
Agile software techniques + 
MBSE + rapid prototyping to 
delay design freezes 

Similar (Huang et al., 2012) 

eSARD DE/SE Evolutive N/A 

Based upon synergy gaps 
Multidisciplinary  
ARR-oriented 
DOI-centered 
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C&C2-A DE Integrative D.  Function-based design  System function is key (Albers & Wintergerst, 2014) 

SE Theories / standard  SE SE Standard SE practices SE for design is foundational  Table 15, SE1-1 

Contemporary SE SE SE Standard 
Signal, data, materials, and 
energy-based practice 

Geometry, functions, and 
substance for ARR systems 

(Kossiakoff et al., 2020) 
(Lapham et al., 2014) 
(INCOSE, 2015) 

SoSE SE SE Standard 

System of SE for extreme 
complexity (synergism, self-
government, reconfiguration, 
symbiosis, and modularity)  

Synergy-based of hardware 
design system definition 

(Badiru, 2019) 

SE Models SE SE Model SE methods of practice  Included or inspired by Table 15, SE2 

FFBD SE SE Model Functional flow block diagram  Similar 
(Badiru, 2019) 
(Liu, 2015) 

Spiral SE SE Model Concentric development 3D Dimensional 
(Kamrani and Azimi, 2010) 
(Boehm, 1988) 

ICSM SE/DE SE / DE Model 
Wheel structured and 
networked development 

Similar & applied to hardware 
(Boehm et al., 2012) 
(INCOSE, 2015) 
(Haberfellner et al., 2019) 

Walking Skeleton SE SE Model 
Rapid development through 
unfinished solutions 

Similar & applied to hardware (Badiru, 2019) 

Agile SE SE SE Model 
Simultaneous fast-paced SE 
by interconnected cycles 

Similar & applied to hardware 
(Haberfellner et al., 2019) 
(Douglass, 2016) 

OOAD SE SE Model 
Agile object-oriented analysis 
and design with small teams 

Similar and inspired by it 
(Badiru, 2019) 
(Ramnath & Dathan, 2010) 

FBSE SE SE Model Function-oriented SE Similar and inspired by it 
(INCOSE, 2015) 
 

MBSE SE SET 

Multidisciplinary and full-
lifecycle Model-based SE 
Workflows based on 
interconnected elements 

Included & enhanced by 
(INCOSE, 2015) 
(Haberfellner et al., 2019) 
(Badiru, 2019) 

Code-based tools DE DT Programing and scripting Included (Barr & Massa, 2006) 

Digital twin DE DT 
Digital replicas of real 
systems  

Enhanced by  (Jones et al., 2020) 

Rapid prototyping DE DT Fast working models Included (Cooper, 2001) 
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Evo. Software D. EVO DE EvoDE Multiple techniques Similar and inspired by it Table 18, Evo3 

Evolutionary SE EVO SE EvoDE Multiple techniques Similar and inspired by it Table 18, Evo4 

Evo. System Dev. 
Prototyping (ESDP) 

SE EvoSE 

Rapid engineering and 
evolutionary development of 
software through multiple 
early working versions 

Similar and inspired by it (Budde et al., 2012) 

Incremental Iterative 
Development (IID) 

SE EvoSE 
Iterative and incremental 
cycles for SE and software 
development 

Similar and applied to 
hardware 

(Blokdyk, 2017) 
(Larman and Basili, 2003) 
(Bittner and Spence, 2006) 

 

Math driven tools DE DT Multiple tools Included (Wolfram & Illinois, 1999) 

WBS SE SE Model 
Work breakdown structure for 
schedule, efforts, and tasks 

Similar and inspired by it 
(Martin, 1996) 
(Kamrani and Nasr, 2010) 

SEMP SE SE Model 
SE management plan 
including functional analysis  

Similar and inspired by it 
(Martin, 1996) 
(Kamrani and Nasr, 2010) 

INCOSE SEFT SE SE Model 
Evidence-based SE 
Competency framework  

Similar and inspired by it 
(Liu, 2015) 
(Badiru, 2019) 

Vee SE SE Model 
[Right] Design (requirements) 
[Bottom] Implementation 
[Left] fabrication 

Similar. It includes multiple 
networked Vees. 

Forsberg and Mooz, 1992) 

Integrated Product 
Development (IDP) 

SE SE Model 

Process-oriented full lifecycle 
approach based on 
continuous integration and 
design-to-manufacturing. 

Similar and inspired by it (INCOSE, 2015) 

SE Tools  SE SE Tool Influence over workflow  Tool agnostic Table 15, SE3 

Diagrams SE SET Various tools Included (Karayanakis, 1995) 

Matrixes SE SET Various tools Included (Burge, 2009) 

Codes SE SET Various tools Included (INCOSE, 2015) 

Analysis SE SET Various tools Included (Badiru, 2019) 

Simulations SE SET Various tools Included (INCOSE, 2015) 

SE Languages SE SEL Multiple languages Language agnostic Table 15, SE4 

SE Frameworks SE SEF Multiple frameworks Framework agnostic Table 15, SE5 

Test Driven 
Development (TDD) 

DE evoDE 
Rapid cycle of testing, coding, 
and refactoring with small 
delivery increments  

Similar. It is applied to 
hardware. 

(Astels, 2003) 
(Shore et al., 2008) 

Adaptive Software 
Development (ASD) 

DE evoDE 

Change-driven approach 
intertwining concept, 
development, and 
management for CAS.  

Similar. It is applied to 
hardware. 

(Highsmith & Highsmith, 
2002) 
(Koza et al., 2005) 
(Yu et al., 2019) 

EVO Hardware EvoHR Hardware Evo Influence over workflow  Tool agnostic Table 18, Evo5 

Multi-Agent 
System (ABM) 

Evo HR HR Evo 

Agent-based implementation 
methods include 
collaborative, concurrent, 
planning, advanced 
manufacturing, and holonic 
manufacturing systems. 

Similar. It is applied to 
hardware. 

(Weiss, 1999) 
(Gräßler and Pöhler, 2017) 
(Shen, 2019) 
(Monostori et al., 2006) 

Evolutionary 
Machine Design 

Evo HR HR Evo 

Evolvable hardware and 
genetic programming are 
used to improve and optimize 
hardware and behavioral 
system capabilities. 

Similar and includes full cycle 
design and implementation 

(Nedjah & Mourelle, 2005b) 
(Koza et al., 2005) 
(Bekey & Goldberg, 2012) 

Table 25. Summary table regarding the comparison between traditional DE-SE techniques and DSE eSARD methodologies.   
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 Design Objectives 

The process to design and develop any new system architecture, independently of the field, must deal with many 
barriers based upon previously described stressors (chapter 2) as well as key specific system characteristics. This is even 
more relevant when the process also considers as much of the system lifecycle as possible including manufacturing and 
operation considerations. The main objective here is to increase system performance and efficiency beyond any existing 
heritage and from a system-level perspective. This is especially critical when dealing with changing and complex eSARs.  

To develop the design process section 0 (Figure 125) provided a three-dimensional coordinate system that describes 
the complexity of an eSAR across three evolutive keystones, such as adaptability, reactivity, and regeneration (ARR). The 
overall goal of an eSARD process is to either evolve a system design from situation A to B (Figure 125), as well as to 
efficiently create new systems as close as possible to situation B. While relationships among design drivers within those 
coordinates can be very complex (section 4.4, Figure 124), such framework provides a great reference towards organizing 
and assessing objectives. Looking closely at such relationships across that simplified framework (Figure 134) allows to 
create the following approach: [1] any given family of design solutions (e.g., adaptable solutions enabling multiple functions) 
could be contained on a plane (yellow) perpendicular to the adaptability axis, [2] such plane is defined by both regeneration 
and reactivity axes, [3] within that plane multiple relationships can be studied, such as driving forces (e.g., resource use vs 
interactivity), risk postures, and other related driver analysis (section 4.3). Similarly, other dihedral studies could be done for 
any specific resource strategy or system performance design within the other two planes.  

In summary, a complex three-dimensional relationship challenge can be simplified to study, assess, and develop key 
design objectives and approaches within the eSARD process. This helps to guide highly interactive and changing design 
paths. Thus, within a design effort this method looks at the current family of solutions or design path by addressing potential 
solution from both three-dimensional and bidimensional studies. Table 26 summarizes these relationships within the 
evolutive design tetrahedron that pursue the following general objectives within an eSARD design effort: 

Figure 134. eSARD evolutive design reference framework addressing balances, process objectives, and design principles.  



  
Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

166 

 

• Best design path (3D). A foundational objective within eSARD is to find the best path towards a design family that 
offers the most adaptable, reactive, and less resource intensive solution. Such objective is a three-dimensional 
assessment within the evolutive framework. For instance, in Figure 135 a design path connecting multiple solutions 
(purple) should tend towards B enabling solutions with more functions, more interactions, and less resources. 

• Balanced synergy (2D). Within each reference plane (geometry, resources, behavior) any solution can be studied 
and optimized based on variables that exist on both axes defining the plane. This 2D study also allows to optimize a 
solution given a specific family of geometries, system performances, or resource allocations.  

• Optimized design driver (1D). Within each axis multiple drivers can also be individually addressed and optimized.  

The next sections elaborate these objectives and relationships to be used both as a guidance approach for eSARD 
processes, as well as a foundation to implement design principles towards both systems and processes. 

Objective Key Axis D. Family  View Measurement Plane Counter force Studies 

Disruption Adaptability Geometry Architecture Functions YZ 
(yellow) 

Heritage Trades 
Optimization 
Feasibility 
Style 

Smartness Reactivity Behavior System 
Performance 

Interactions XY  
(blue) 

Passiveness Trades 
Optimization 
Reliability 

Efficacy Regeneration Substance Resource Use 
Science 

Resource 
Utilization 

XZ 
(green) 

Cost Trades 
Optimization 
Efficiency 

Table 26. Key coordinates and elements within the eSARD simplified design reference framework.  

Figure 135. Assessment of design solutions and paths within the eSARD evolutive design reference framework. 
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 Adaptable Design: Disruption vs Heritage 

For a given family of designs in the geometry plane, the balance between system interaction and resource 
optimization of such solution can be addressed. Figure 136 shows those solutions within the ZY plane of the reference 
framework. The balance between reactivity and regeneration of the system design presents several key zones:  

• Zone 1 - Smarter systems are capable of more interactions. The black line separates high-performance active 
solutions from those more passive solutions. 

• Zone 2 - Balanced architectures with a good ratio between reactivity and resource use optimization.  

• Zone 3 - Greener area includes more sustainable and efficient solutions from a resource utilization perspective. The 
red line delimits low-performance passive systems.  

• Zone 4 - Technology limitation, natural laws, and design requirements limit feasible and efficient solutions within a 
family of system architectures. This area presents systems that cannot keep evolving efficiently.  

Furthermore, when studying this graph from a risk and cost perspective it brings the notion that more interactions 
mean smarter systems, but also more possible failures and thus a higher risk. Similarly, a more efficient use of resources 
such as recycling, repurposing, and even regeneration can potentially reduce cost too. Risk and cost here are indicators of 
complex relationships behind these solutions, as well as critical subjects in many process and solution assessments. 

An eSARD methodology should drive the design process towards zone 2 to reduce risk and improve cost 
effectiveness. Although, the goal in such endeavor is not to reduce complexity but to manage it. Just like happens in natural 
mechanisms, complexity here is also a source of efficiency if systems are designed and managed properly and consequently.  

At the same time, designing future systems tends to be conditioned by heritage either as a reference that should be 
surpassed, or as a measurement to its validation regarding feasibility, risk, and cost. Yet agile approaches (Huang et al., 
2012) have barely tried to infuse software methods into hardware workflows. Thus, heritage is both an enabler and a barrier 
in the context of new SE and DE developments. Such past influence runs deep in multiple technical, artistic, and social 
structures. These condition from Hollywood movie remakes to public space agencies funding allocations. An evolutive 
approach builds upon system synergies and includes heritage too. This becomes both a process driver and a validation tool, 
but it should not be a constraint for design, implementation, and system operations. Therefore, if a design disruption is a 
goal for the process to improve and surpass previous solutions, heritage is its counter force. Of course, these do not only 
apply to geometrical design drivers and associated variables, but to other evolutive principles and keystones as well.  

Figure 136. Interaction (reactivity) vs. resource optimization (regeneration) within the geometry plane (design).  
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 Reactive Performance: Smartness vs Passiveness  

The same design or family of designs can be studied in such 3D reference framework by addressing the balance 
between functions and resource optimization for any given smart performance scheme. In essence, a family of system 
solutions presents a series of features that allow them to manage their interactions (hardware, software, or both). Figure 137 
presents this perspective from the YX plane where these areas can be assessed as it follows:  

• Zone 1’ - Greener systems capable of better resource utilization. The black line defines regenerative solutions.  

• Zone 2’ - Balanced architectures with a good ratio between adaptability and resource use optimization.  

• Zone 3’ - More adaptable systems area delimits more adaptable solutions capable of performing more functions.   
The red line defines low-performance and depleting systems from the standpoint of resources utilization. 

• Zone 4’ - Technology limitation, natural laws, and design requirements limit feasible and efficient solutions within 
a family of system architectures. Similarly, this area delimits systems that cannot keep evolving efficiently.  

From a risk and cost perspective, the more functions a system design is addressing, the more evolutive it could be. 
Following that rational, the more evolutive the system is, the higher its potential risk could be from a systems standpoint 
(since it can have more elements) and thus it might require better design efforts to avoid failure. However, from an interaction 
and purpose standpoints, the risk of failure is lower since the system could handle more environmental, design, and use 
changes (adaptability). Also, a better use of resources from a recycling and repurposing standpoint also means a potential 
cost reduction, at least in the long term. Risk and cost are still indicators of complex relationships across all evolutive drivers 
behind these systems. An eSARD process drives the system design towards zone 2 to reduce risk and improve cost 
effectiveness. Once more the goal here is to manage and optimize complexity as a cost reduction tool. 

Nowadays system architectures tend to be more adaptable and reactive due to the addition of sensors that digitalize 
their use, as well as data-driven design approaches that can improved and updated over time based on their interaction with 
the environment. Both these tendencies are software-based and apply to many fields, such as smart cars, home appliances, 
health devices (Krohn and Metcalf, 2020), etc. The internet of things (IoT) is a good example of this growing new paradigm 
(Lee and Lee, 2015). Furthermore, highly technical areas such as drones, off-road vehicles, and advanced robotics (Merten 
and Gross, 2008), among others also embrace this approach from a hardware-based perspective that allows them to 
physically change their geometry. In other words, complex systems are becoming smarter and physically evolvable (Haddow 
and Tyrrell, 2011), thus design methodologies need to embrace it by enabling less passive and limited solutions.   

Figure 137. Resource optimization (regeneration) vs. functions (adaptiblity) within the behavior plane (performance).  
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 Regenerative Resource Utilization: Efficacy vs Cost 

Finally, the last objective in an eSARD process is about resource utilization schemes and the science approach 
behind them. Looking at any given family of resource regeneration and management solutions in the ZX plane we can also 
study key relationships between reactivity and adaptability (Figure 138). Generally, these areas can be identified: 

• Zone 1” - Smarter systems capable of better reactivity while enabling more adaptability and resource optimization. 
The black curve delimits systems with higher reactivity (smarter systems) but a slower growth towards adaptability.  

• Zone 2” - Balanced system in between reactivity and adaptability for a given resource utilization scheme.   

• Zone 3” - More adaptable systems area limits solutions capable of performing more functions with less interactions. 
In essence, these are evolutive and adaptable systems with a more passive design philosophy. The red line bounds 
low-performance systems from an adaptability standpoint.  

• Zone 4” – Technology, cost, and risk limited area defines unfeasible, unreliable, and unaffordable solutions.  This 
area encompasses systems that cannot provide feasible evolutionary alternatives efficiently.  

As it was elaborated in the previous section, the more functions a solution can entail in terms of design, analysis, and 
implementation cost, the more such system can potentially improve the return on investment due to a higher adaptability, 
easier upgrades, and part repurposing. Similarly, more interactivity in the system involves more complexity during the design 
effort, regardless of this becoming the ultimate benefit towards the system adaptability in the longer term.   

An eSARD process should again drive the design effort towards zone 2, to find balanced solutions among reactivity, 
adaptability, cost, risk, and feasibility limitations. The scheme behind resources utilization during the lifecycle of the system 
and its development process (eco-devo) presents multiple economical, sociological, and cultural complementary aspects.  

Analyzing the projection of a design solution over the resources plane (XZ) in the evolutive framework (Figure 138) 
reflects the overall balance between efficacy and cost as opposing forces. Often, an efficacy paradigm addressing the use 
of resources requires initially more costly design efforts, which can be distributed over the lifetime of the system, as well as 
multiple customers and production elements. However, as chapter 2 presented we are facing times were the use and 
application of resources will require further and deeper studies due to multiple reasons beyond scarcity. Thus, such balance 
must be embraced by an eSARD method with the same evolutive principles that characterized a system architecture 
evolution over time. This is even more relevant when not only the system sustainability, but some level of resource 
regeneration is the ultimate objective of the process.  

Figure 138. Interaction (reactitivy) vs. functions (adaptiblity) within the substance plane (resource science).  
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 Overall Conclusions  

One of the overall objectives of an eSARD process is to 
obtain more efficiently a better system performance under 
multiple external and design stressors as chapter 4 presented. 
However, while managing such process to go from situation A to 
B (Figure 125) is the goal, there is an associated cost and risk 
based upon knowledge, required effort, heritage, and even 
cultural constraints that include previous heritage, uncertainty, 
and unknowns. Design (system architecture), implementation 
(resources utilization), and operations (system performance) 
represent three main sources of the total cost, which could be 
identified as a fraction of the area under the graph in Figure 139.  

From an overall perspective, we can study the 
development process of a system architecture by considering its 
relative cost and ARR capabilities (adaptability, reactivity, and 
regeneration) over the full system lifecycle (from design to 
operations). Thus, Figure 139 shows that architectures with 
higher ARR capability (blue plot) can do better with less, addressing more system needs (requirements) with less resources.  
However, they also require more resources for its development, especially if there is no previous heritage. Moreover, these 
architectures also involve more risk since they mean more complexity. Nevertheless, they also potentially reduce the need 
for resources during implementation and operation phases. In essence, these systems present a smarter approach in the 
use of resources but require more complex designs to implement them.  

On the other end, system architectures presenting lower ARR capabilities, and more heritage influence can have 
lower design costs. However, these might need more resources during implementation and operations since the system is 
less capable as well. In conclusion, increasing ARR system capabilities can lead to reduce the overall relative cost. The 
eSARD process enables and fosters those objectives by following this development points of an evolutive system:  

• Address and minimize the cost of development (design), manufacturing (implementation), and use (operations) by 
enabling alternative design solutions faster, while comparing and validating simultaneously against heritage.  

• Address cultural influence. The design culture of an organization and even an individual can become rigid because 
of the relative influence of both heritage and success, especially when it comes to system performance or design 
tradition. Thus, constraints related to supply chain and institutionalized methods can [1] obstruct new system 
architectures, [2] conditioned the workforce upon organizational heritage, and [3] increase the general development 
cost. For instance, an established fossil-fuel-based car manufacturer can become rigid and stagnated without 
adopting new electric power trains, which affects dramatically future productions and design requirements. If 
complexity and adaptability are rising needs, the more adaptable product and process are, the better it gets to reduce 
cost, improve times to market, and increase both customer and workforce engagements, among other challenges. 

• Allow multiple design paths. An evolutive architecture system architecture is not just a point-design, but rather a 
family of solutions that can be understood as a system design species. Modern computational-driven design tools 
such as generative design already allow us to address them as such. For instance, multiple structural solutions 
simultaneously can be generated based on loads, interfaces, and keep-out design volumes. And the tendency is to 
enable more disciplines within such design processes, allowing us to look at a point-design as a part of a continuous 
spectrum of solutions where multiple variables are addressed simultaneously. In other words, an AI or computational 
network generates thousands of solutions based on many permutations of key variables, so any obtained solution is 
just an instantiation among many. The eSARD approach embraces this approach, while allowing less technology-
dependent paths to keep designs as open as possible, for as long as possible (Huang et al., 2012). 

• The process should enable enough details and enough context, so any solution can be compared properly. Thus, 
it must tackle both full systems as well as discreet subcomponent topics requiring more design maturation. 

Figure 139. Relative cost and evaluation of system capabilities 
among different types of eSARD strategies. 
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 Design Principles  

Once the approach and general objectives towards an eSARD process have been established, the next step is to 
address all design principles driving an evolutive architecture that such eSARD workflow enables. Next sections describe 
6these principles based upon all key evolutive keystones (ARR) that eSARD methods embrace, develop, and enhance. 

 Better with less - Kill the Problem by Design (Adaptability) 

Any complex system architecture is going most likely 
to operate at multiple levels simultaneously, including 
mechanical, logical, thermal, and electronic, among others. 
For instance, the architecture of an automobile must handle 
mechanically both power transmission and suspension, 
manage thermally combustion and electrical subassemblies, 
while running multiple lines of code to manage infotainment 
and sensor arrays. Within such context of complexity, a 
known efficiency approach and efficacy principle has been 
to do ‘more with less’. Architecture design principles such as 
‘less is more’ by Mies Van Der Rohe (Benevolo, 1977), 
topology optimization structural techniques, and the creation 
of meta-material (Wadley, 2006) are good examples of 
removing unnecessary components and concepts, while accomplishing more functions with less elements. This presents 
implications that ripple through the full cycle of design, implementation, and operations. Even from a management and 
business perspective, the concept of frugality (Radjou and Prabhu, 2014) has been embraced during the last decade due to 
the increasing level of complexity in products and processes, as well as other challenges related to resources scarcity. 

Doing better with less leads to consider multifunctionality from both system and subsystem standpoints. If a sub-
system or a simplified assembly can perform more tasks with less components, then there will be implications affecting from 
manufacturing costs to integration easiness. Moreover, there is a correlation between the number of functions being 
performed by the system, and the number of disciplines involved in the description and development of such system. For 
instance, the structure of a building that supports the natural convective airflow must be defined and understood from both 
structural, thermal, and bioclimatic standpoints. The rise of new manufacturing techniques such as additive manufacturing 
has enabled in the last decade the conception of very complex geometries at much lower cost. An example of this is the 
published metal 3D printed fabric (Figure 140) developed by the author (JPL NASA / Caltech, 2017) and capable of 
performing multiple functions such as thermal management, energy reflection, structural resistance, and foldability. Under 
these standpoints, any structure can be designed not only to manage mechanical loads, but to perform other functions such 
installation allocation or thermal management as well. In essence, under this perspective a system architecture will be 
capable of doing better with less. While this path could rise the risk of hyper-integration, making for instance repairs and 
upgrades more complicated, the reality is that when we look to nature almost all systems are multifunctional (and therefore 
multidisciplinary) and highly integrated. Bones in our bodies serve both as structure and blood cells production system, the 
skin serves as a sensor while it provides thermal control and protection, the trunk of a tree provides supports and enables 
nutrient transport, etc. All these examples of highly efficient systems follow the evolutive principle of better with less.  

Therefore, an eSARD process needs to address and be driven by such principle as well. This is possible by tackling 
synergies among functions and subsystems, which allows to concentrate design efforts on those disciplinary gaps among 
them. Traditional divide-and-conquer design methods split a larger problem into smaller problems that become components, 
sub-systems, and disciplinary questions, which are later assembled into a system architecture. At the same time, multiple 
disciplines tackle such subdivided items in parallel as multiple techniques showed (chapter 3) across DE and SE domains.   

However, the geometry, behavior, and substance of a system are linked among multiple disciplinary perspectives 
such as thermal, mechanical, and architectural design, among many more. If such relationships and interdependencies 
among such functions are understood, then both product outcomes and methods can substantially become much more 
efficient and faster to be obtained. Figure 141 compares graphically both traditional and evolutive approaches. So, to develop 

Figure 140. Multifunctional 3D printed fabric developed by the author, 
after JPL NASA / Caltech (2017). 



  
Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

172 

 

system A multiple disciplinary topics must be addressed. These topics will evolve and increase definition over time by using 
more analysis, design evaluations, more variables, and more technical details. In a traditional approach as section 2.9 
explained, these steps mostly run in parallel, and their iteration becomes the design scheme behind the process. However, 
within an eSARD approach connections and links among those disciplines are first identified. For instance, mechanical and 
thermal performances are directly related, so they directly influence the final geometrical design of the system. These links 
are shown in Figure 141 through blue circled in between disciplines.  These links become eSARD starting points since they 
allow to both optimize the system and to discover new paths within the trade space. The system is defined by finding enough 
and adequate connections, especially those regarding key questions that ensure the feasibility of the system. Then the 
objective is to reduce all design loops among disciplines, while getting faster and better system solutions that address those 
multidisciplinary questions simultaneously. This is a mindset for the architect and a workflow rule driving tools and models.  

Designing towards doing ‘better with less’, means to find a way to ‘kill the problem by design’ from a process 
standpoint. This principle builds upon all previous general objectives of efficiency and aims to the system efficacy. When 
designing any system architecture, constraints and requirements set up objectives and barriers for such system. However, 
if the challenge is too complex this often implies a trade-off among those constraints and an identification of the margins in 
the system that the design aims to optimize. Thus, such approach affects both system design and design processes.  

The goal though is always to find a solution capable of conquering constraints, as well as to infuse enough adaptability 
into the system towards future changes or new paths. For instance, if the objective is to design a mobility train for an off-
road lightweight vehicle, such design must meet specific terrain specs and the process should also push for solution capable 
of working in any terrain. This is done under this principle even if it is not needed right away. However, this does not mean 
that extending efforts and increasing cost of such design process regardless of whether the customer requires it or not. It 
means that stressing the initial design effort by considering more constraints (e.g., other terrain constraints) will help in finding 
better and more resilient solutions. In other words, the system will be fully designed to meet certain terrain specs, but other 
terrain and mobility needs will also be considered during the early design phase. This will help to identify better design 
strategies or paths, by enabling the discovery of key disciplinary connection (blue circles) that could remained unknown 
otherwise. In essence, this mechanism pushes the limits beyond all initial specifications, and expands the boundaries of the 
foreseeable trade space from the beginning of the design process. Even if all objectives are not met, the new direction being 
infused in the process ensures a better result by pushing any system design pre-conception systematically. Such results 
affect multiple design areas by enabling the following improvement in both product and process: 

• Better system designs with more ARR capability (adaptability, reactivity, and regeneration). 

• Easier upgrades and better system adaptability due to those extra design considerations. 

• More reliable implementation methodologies since tougher requirements imply more research and analysis.  

• Faster and more resilient design cycles that are driven by over constraining the effort to push for more efficacy.   

Figure 141. Multidisciplanry and concurrent eSARD cycles versus traditional parallel design approaches. 
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 Smarter with less - Continuous Solutions and Operations (Reactivity) 

The second principle behind an eSARD methods relates to the evolutionary principle of continuity, as well as the 
consideration that any system is a temporal instantiation within a continuous evolving process. This applies at three levels: 

• System. Any system architecture could present variations, upgrades, and updates while it becomes new heritage for 
upcoming solutions. As such, any design process needs to address the system architecture design, as well as other 
implementation and development aspects. For instance, this is not about how a motorbike will perform (e.g., power, 
mass, design, and style), but how is going to be made (e.g., manufacturing steps, quality control, vendors, etc.). 

• Process. If the solution can change during or after its development, an evolutive design methodology should also be 
adaptable enough to enable a better exploration of the trade space, and any required change in the design strategy.  

• Operations. Finally, how the system is going to operate or be operated is part of any eSARD approach.  

As previously explained, an evolutive approach considers that any given point solution is not only an instantiation, 
but also a member of a family or species of solutions. Thus, as a design process, is not only about the geometry, behavior, 
and substance that needs to be considered, but also all parametric variables, relationship algorithms, and variables, among 
other components. In essence, an evolutive system architecture is both hardware (phenotype) and information (genotype).   

For instance, the design process for a prefabricated and lightweight balcony structure could start with the requirement 
of being as compactable as possible for a cheaper and easier transport. This leads to multiple structural solutions and 
multiple materials being considered over the design development.  Furthermore, as the previous point presented, this type 
of design processes then considers other design stressors to reinforce solutions and find better alternatives, beyond all initial 
requirements. Such extra constrains include interface considerations, integration easiness, morphology, etc. In the end, the 
final decision could be driven by cost and material availability for instance. However, the same design process can be 
replicated for a different solution as a template if done properly, which will help both present and future endeavors by reducing 
design cost to create new products and offer new services. So, if the system architecture development has followed this 
principle, the final design will allow to integrate customized details, new complementary solutions, and changes in dimensions 
easily. The pressure to be able to add, update, and upgrade solutions in any part of the process, conditions the system 
architecture and all its disciplinary standpoints. In essence, considering more allows to design better with less.  

Figure 142 represents graphically a continuous eSARD process approach with a series of concentric cycles that 
address multiple disciplines (black paths), as well as design parameters, variables, and aspects (red dots) used by those 
disciplines. As previous section described, the solution of the system architecture is in essence a network of those 
parameters, and the design process to achieve it needs to explore those networks to assess both the full system design and 
all related operations at every design cycle. In the process, some of those disciplines will be fused, becoming a single track 
as section 5.4.1 presented. Across multiple cycles, this process could be visually summarized as a three-dimensional helix 
with a spline axis advancing towards the most refined and better solution.   

Figure 142. Consecutive design cycle within an eSARD process addressing multiple networked solutions. 
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 More with less - Resource Utilization Lifecycle and Optimization (Regeneration) 

Finally, addressing the utilization of resources across the full system lifecycle leads to the last overall design principle 
behind an eSARD method, to do ‘more with less’. This also applies directly to the utilization and optimization of resources 
across the development process that include among others the following areas: 

• Workforce. This includes number, expertise, and compatibility of people required in the design effort.  

• Computing power. More complexity in terms of operations and design leads to assess the capability and scalability 
of any available computing power today. This not only addresses variables like the number of operations per time, 
but also the effort and feasibility to use such power including access, protocols, programming, technicians, etc.  

• Energy is a critical resource that applies to products, processes, and system operations. Often this is an area that is 
not addressed completely (Cody, 2017) across the full lifecycle, but it drives dramatically the feasibility of a solution, 
especially under current or future conditions defined by the scarcity of resources.  

• Time/Schedule. Project and market schedules are a very relevant aspect of a design process that go beyond 
technical considerations. Furthermore, life span and time operational constraints must be considered as well.  

• Upgradability. If any evolutive solution is an instance within a continuous process, the capability of the system to be 
updated and upgraded over time needs to be addressed too. From future system interfaces to changes in use, this 
resource is critical to obtain good solutions in the present that enable and simplify future developments.  

• In situ resources utilization (ISRU). The use and management of available resources that can be physical (e.g., 
materials, space, air, vegetation, solar energy, etc.), logical (e.g., open-source code, communication infrastructure 
and protocols, etc.), and digital (e.g., web infrastructures, telecommunication networks, etc.).  

Thus, cost is a relative consequence of these points, and it must be addressed from technical, human resources, 
ecological, programmatic, and monetary standpoints. However, it is not a resource by itself within this approach. Therefore, 
a design process aiming to develop an evolutive solution needs to consider these resources over all phases in the design 
lifecycle. This affects both the future system performance and its relative cost across these three areas:  

• Design includes all resources being used in the research, conceptualization, and design processes. 

• Implementation includes resources for the construction, manufacturing, fabrication, and development of the system. 

• Operations considers all resources required to both operate and use the system over its lifecycle. 

Thus, the objective here is not only to minimize the consumption of resources, but to maximize their output. For 
instance, the sustainability of an electric boat must consider all energy and resources used during [1] the design effort, [2] 
its implementation, [3] its lifetime, and all the way to its [3] decommission and recycling. Figure 143 shows graphically this 
point. For a given system architecture (red dot) there are multiple resources utilization and management ARR aspects. 

Figure 143. Resource utilization lifecycle within an eSARD development for an instance design (A1). 
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 Evolutive Design Helix Model  

Chapter 4 laid out both rational and foundational principles regarding the definition of an evolutive system architecture 
or eSAR. Moreover, chapter 3 identified gaps across state-of-the-art SE and DE techniques, including those applying 
evolutionary principles. And finally, the previous section presented what the subsequent evolutive design methodology must 
pursue in terms of objectives and principles from a combined DE and SE perspective.  

The next step then is to develop the eSARD process, which presents a networked nature addressing all three key 
activity nodes such as [1] system design, [2] system operative optimization, and [1] system implementation (DOI). The 
first node in such method represents the main objective of this research, but all of them are intimately intertwined since they 
must be developed concurrently. This section defines specific details of the eSARD workflow, including framework, 
milestones, tools, dynamics, and routines for highly adaptable design system engineering (DSE) methodology.  

Figure 144 presents a graphical description of the eSARD helix model (eSARD_he) where three sectors (triangles) 
are distributed over a spiral scheme describing different design gates (milestones), routines (tools), and paths used to cover 
all three ARR areas of a system (adaptability, reactivity, and regeneration). The representation of a single system at any 
given time is presented by the spiral in Figure 145. ARR vectors (red arrows) create the structure defining DOI sectors, 
phases, milestones, etc. for any given system. Multiple iterations within the same system are represented by translations in 
the sector similarly to incremental SE techniques or IID (section 3.3).  

Figure 144. Evolutive system design networked process, presenting all three ARR activity nodes addressing design, operations, and implementation.   
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Considering these continuous changes in multiple instances within a common species (evolutive continuous design), 
the evolution of the system could be represented as a three-dimensional helix as Figure 145 shows. Such helix can also be 
referenced within the evolutive framework described in section 5.4 (Figure 134). Within such framework, any point design 
(e.g., purple B) represents a family of instances or solutions. The eSARD 2D spiral (Figure 144) process can be applied to 
each one those points, with the objective to describe, develop, and manage a new solution that is referenced in this 
coordinate system. Thus, the 2D spiral graph represents the process at the solution level, while the 3D helix represents the 
work at the species level, and both scales can be compared and connected within such evolutive framework. 2D and 3D 
spirals are networked processes, so within them all related variables, milestones, routines, and tools are linked across their 
workflow. For instance, manufacturing validations at the implementation sector can also condition design maturity gaps and 
vice versa. Since everything happens simultaneously, having correct data is key. The flow of milestones helps guiding and 
validating the process, while enabling traditional methods and tools to be infused in more heritage-driven organizations.  

The iterative nature of more traditional design approaches (Johnson and Gibson, 2014) is also part the activity in 
each of these sectors, as well as all interactions among them. However, this method includes other aspects of the lifecycle 
such as sustainability or decommission. ARR keystones (adaptability, interactivity, and regeneration) are directly related to 
the three sectors describing an evolutive system architecture: geometry, behavior, and substance (GBS). The method 
behind this approach is related to other design theories as section 4.1 presented based on chapter 3 conclusions. These 
include SE and DE techniques such as systematic DE (energy, material, signal - Pahl et al., 2007), FBS (function, behavior, 
and structure - Gero and Kannengiesser, 2004), and other evolutionary methods shown in Table 17. Nevertheless, this 
approach is not about creating just a general design process, but rather about creating a holistic and adaptable method that 
addresses all the special characteristics of hardware-based evolutive system architectures across its full lifecycle.   

Within this workflow, relevant heritage inputs also become an essential aspect serving as validation, context, and 
comparison for new systems. Although, such inputs can never limit any design effort. So, heritage is independently assessed 
since the objective of an eSARD method is to develop an evolutive architecture solution that most likely exceeds previous 
system performance while often becoming the first of a kind. The next section elaborates in detail these design steps.     

Figure 145. eSARD helix model of design species sharing a common design path within an evolutive framework.  
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 eSARD_he components 

Among the most relevant and critical elements within an eSARD 2D spiral (Figure 146) are the following: 

• SARR vector (red arrow). There are three red arrows distributed around the central triangle. These represent the 
three ARR areas (adaptability, reactivity, and regeneration) which are base edges of an evolutive tetrahedron. Each 
vector relates to key design drivers associated with ARR principles (Figure 124).  

• System core (red central triangle). This central core is graphically defined by vertices such as SFR (DDR), CDR, 
and SVR critical milestones. These define system geometry, substance, and behavior (full cycle) milestones. 

• Sector (teal triangle). Each triangular DOI sector (design, operations, and implementation) is defined by the primary 
and the secondary edge. At the vertex of each sector are critical and regular milestones. Each sector starts from the 
system core (base of the evolutive tetrahedron). These sectors represent a series of paired activities and tools 
following the direction of the arrows. Such tools increase the maturity and feasibility of the system architecture. For 
instance, the system design sector is defined by design (DE) and systems (SE) edges, which are defined by the SFR, 
PDR, and CDR vertices. Each vertex is a tipping point providing a change of direction. Sectors can move towards the 
right at any DOI sector in response to incremental changes (e.g., PDR+1, PDR+2, etc.) or new system versions. 

• Sector primary edge (red arrow within a DOI sector). This is the first edge that coincides with the ARR vector on 
each sector. It starts at the system core from one of the critical milestones. This often holds primary (but not sufficient) 
tools (e.g., routines, activities, models) regarding the first family of processes. For instance, in the system design 
sector this edge holds system engineering (DE) tools that are complemented by those on the secondary edge.  

• Sector secondary edge (black arrow within a DOI sector). This one starts from the vertex milestone similarly to the 
bottom vertex within a classic Vee model. The nature of the tools in this second edge is complementary to the primary 
edge. For instance, this would be the SE edge complementing the primary design edge (DE) in the design sector.  

• DOI vee (three DOI triangles). These are defined by primary and secondary edges across design and system 
lifecycles. Unlike the classic vee model, here there are three interconnected vees representing: [1] geometry (design 
+ systems), [2] substance (implementation + testing), and [3] operative optimization (optimization + operations).  

Figure 146. Elements of the eSARD_he scheme within the 2D evolutive spiral. 
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• GBS face (blue angled pattern triangle). These are defined by the surface area of each sector triangle representing 
a face of the evolutive tetrahedron. They incorporate all relationships among GBS design drivers and tools.   

• Vertex milestone (small black dot). This is the tipping point between primary and secondary edges of each sector. 
It represents the middle maturation level between the initial and final milestones of the sector. For each sector we 
could identified the following vertex milestones: 

• Design, PDR (Preliminary Design Review). This is the transition from system design (DE) that starts with SFR 
(concept & requirements) to systems engineering definition (DE) ending with CDR (implementation readiness).  

• Implementation, TRR (Test Readiness Review). This marks a transition from systems implementation (e.g., 
manufacturing) starting with CDR, to system testing and verification ending with ORR (operations & optimization). 

• Operations, ORR (Operations Readiness Review). This marks the transition from system implementation (e.g., 
OPT) starting with SVR, to system operations (e.g., OPS-CON) ending with DRR (system recycling). 

• Critical milestones (large and small black dots). These represent all mayor system maturation level milestones 
across the full lifecycle shown in the eSARD-he system definition process. The most relevant are these: 

• SFR (System Functional Review): includes requirements, constraints, and functions. 

• PDR (Preliminary Design Review): SFR + System design with basic analysis and implementation. 

• CDR (Critical Design Review): PDR + Full system and implementation definition (geometry). 

• TRR (Test Readiness Review): CDR + All implementation details, trades, and disciplinary studies. 

• SVR (System Verification Review): TRR + Including all tests and verification activities (geometry & substance). 

• ORR (Operations Readiness Review): SVR + All functional operations tools. 

• OPRR (Optimization Readiness Review): ORR + System optimization + recycling (GBS). 

• Projected milestones (yellow dots). These are the projection of vertex milestones upon the core triangle. These 
provide a summary of the full system definition across all the ARR areas.  

• Tools (white dots). The eSARD_he graphic is a way to visualize and check all efforts required to mature a complex 
evolutive system architecture. Such efforts involve a series of tools or activities. Such routines include dynamic 
questioning (eADQN), maturity gaps (eAMG), system architecture seed geometries (eASG), and implementation 
paths (eAIP), among others. The next section will elaborate each one of them in detail.  

• Link (purple arrow). In between any given milestone or tool there can be links or connections among them. Practically 
this means the outcome or the parameters of one is strongly interconnected and often bidirectionally conditioned by 
each other. Beyond such connections among models and tools (networked process), these links highlight critical 
connections that are tightly coupled with other system design efforts at hand.  

• Increment (black dash line). Variations, improvements, and changes in the initial conditions can affect both system 
design and outcome objectives, which leads to the need for new and distinctive design cycles. Hence, new sectors 
are created and displaced towards the right to represent such new operations within each sector.  

• Heritage input (orange arrow). Heritage within an evolutive approach is used to compare against a validated solution, 
as well as a building block for the new system at hand (e.g., specific technology and precious subsystems). 

• Verification loop (green line triangle). In developing and maturing the system, this process follows the direction 
established by multiple edges within all sector vees. However, before the system has achieved enough maturation 
for the next critical milestone within such process, there must be a verification process among tools on both sides of 
the vee. This is in essence a quality and design objective control process.  

• Intersector verification loop (yellow dotted triangle). Similarly, this loop checks values, status, milestone 
development, and other critical activities, among multiple different sectors and edges (at least three or more).  

• DOI sector area (colored circular sector). This represents the activity area that is more related towards tackling 
system design, operations, and implementation, respectively. Conceptually extra operations happen here.  

• Sector directionality (circled dotted arrow). Quick visual aid that references the direction in which the design activity 
on multiple sectors is happening. It could clockwise, counterclockwise, or bidirectional (network). 

• Color code (yellow, green, blue). The use of colors helps transmitting information faster, using for instance yellow 
for design (geometry), green for implementation (substance), and blue for operations (behavior). 
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 System Design (Geometry) – eSARD_he 

Within the eSARD helix model, the design sector is usually the first one to be tackled and the one this research is 
concentrated on, so this diagram describes multiple steps and tools used within it. However, as previous sections already 
explained, design, implementation, and operative optimization (DOI) happen concurrently. This is being implemented 
differently depending on all the design resources available. Two concurrent workflows can summarize them: 

• Fully concurrent. Available design capabilities in terms of workforce (people), computer power (connected 
computer/s, cloud computing, linked tools), etc. allow concurrent DOI processes using connected tools. This is 
possible individually or in teams but requires a previously set up infrastructure. Concurrent design facilities are 
common today (Shen, 2019), however in an evolutive approach these need to allow the infusion of new models and 
variables. Hence, a closed, concurrent, and static loop that impedes new variables and models does not work.  

• Discreetly concurrent. In this case, the limitation of resources can force to split a network process into a series of 
interconnected and discreet design cycles, which later would feed each other sequentially. Under this approach, the 
design sector happens first, and its outputs serves as inputs for the implementation sector. Consequently, 
implementation and design activities feed the operation sector. There can also be inputs in the process that come 
from pre-activities in any of those sectors. These are the purple dots in Figure 147. In essence, while conducting the 
design development there could be breaks in which critical aspects of implementation and operations are addressed. 
This is still a networked process, but the schedule is delayed and segmented across all nodes. This approach allows 
for a single person to use the eSARD approach even without the support of advanced computational capabilities.  

Therefore, within a fully concurrent workflow the goal is to speed up the process. These next key objectives for the 
design eSARD helix sector support this acceleration and they can be summarized as it follows: 

• Definition. The objective is to mature a system concept so implementation and operations can be feasible. This 
means going from a system functional review (SFR) that establishes primary system requirements (as well as some 
preliminary eSARD secondary requirements), to achieve enough maturation so the system architecture is ready for 
a critical design review (CDR) level, including the full development and assessment of critical design parameters.  

  

Figure 147. System design sector within the eSARD helix diagram based on the ARR evolutive tetrahedron. 
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• Adaptability. This process should be able to make corrections and changes at any given time. Thus, while the sector 
might look like a very strict path it can be a very flexible model. The objective is to achieve gradually more system 
maturation, while using an adaptable and networked process to address feasibility from all DOI views.   

• Robustness. The final system design should be robust enough against primary requirements, which are provided by 
the customer or defined by the challenge at hand. This should also be reinforced by secondary requirements as a 
product of the eSARD process itself. These allow to explore more refined solutions within the trade space, enable 
future upgrades much easier, reduce cost, and overcome operations and implementation constraints later on. 

• Feasibility. Such designs must be feasible when considering all ARR design drivers and DOI technical details.   

Next sections will explain in detail the set of milestones integrated within this methodology, while they also provide 
details regarding key tools (e.g., eADQNs) that will be further elaborated in section 5.7 and beyond.  

5.6.2.1. Foundation - System Functional Review (SFR)  

Adaptability, reactivity, and regeneration principles and drivers 
(ARR) must be assessed to define all DOI areas of an evolutive 
system architecture. This mean that technical details and key 
requirements defining its geometry, substance, and behavior (GBS) 
need to be collected, studied, and developed.  

Thus, understanding client requirements, needs, wishes, and 
constraints is a critical first step. This will be done through a series of 
questioning techniques (eADQNs) which allow not only to identify and 
challenge primary requirements, but most importantly to find 
synergies among those requirements, subsystems, and discipline 
constraints (section 5.3) leading to new secondary requirements.   

This initial networked and less structured activity is 
represented in Figure 148 by the triangle at the core of the diagram. The main objective of these dynamic questioning 
activities is to discover most critical gaps within the system, which the design process should tackle to provide feasible 
solutions. Often this process might require multiple iterations. For instance, rather than mass reduction it could be that the 
packaging scheme is what makes the system design feasible, bringing a much higher level of performance against other 
solutions. The outcome of this step allows the process to be ready for a systems functional review or SFR (NASA, 2007) 
among other things. Nevertheless, this is just used as a milestone within more traditional and detailed SE and DE 
methodologies (Martin, 1996). The real objective of this process would be to increase the maturation level of the system.  

5.6.2.2. Design - SFR to PDR 

Questioning tools such as eADQNs (section 5.7) allow to 
identify where the design process should concentrate upon. This is 
done by identifying and defining maturations gaps (eAMG). Among 
all gaps in a system architecture requiring new solutions and 
developments, AMGs are the most critical ones. They are 
synergetic in nature, and the eSARD method uses them to speed 
up design processes (section 5.5.1). SE techniques such as 
walking skeleton (Table 15) and rapid prototyping (Table 12) 
techniques use this approach in similar ways. However, the 
approach of building fast upon critical points is applied to the 
maturation of the concept. These gaps become the focus of the 
design activity including among others: [1] definition (e.g., 
geometrical, and logical), [2] preliminary evaluation (e.g., basic 
analysis), [3] feasibility, [4] open options (e.g., trade space of 

alternative design paths), [5] DOI open questions, and [6] key technical topics (e.g., manufacturability constraints). Thus, the 
main goal of this part of the process is to quickly produce a concept that is mature enough to address all DOI questions and 

Figure 148. Foundation and eADQNs for SFR  

Figure 149. Milestones and tools from SRF to PDR (eSARD)  
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ARR topics at the level of a product design review (PDR). The final tool used on this first branch is the creation of seed 
geometries (eASGs). These are representations of the system with combined geometrical and logical information that are 
not fully finished but represent most relevant and critical characteristics of the new system architecture. These three-
dimensional representations are one of the most critical tools of the eSARD since they combine many SE and DE topics 
within a common space and time reference framework. This means that at the PDR point there are no fundamental laws of 
physics, economy, and style, among other critical topics that must be addressed. While the system still requires a lot more 
maturation it already presents a solid foundation for a further development. Similarly to a SE V-model (INCOSE, 2015), the 
PCR milestone is at the vertex of this section where the first edge of the triangle relates to system design fundamentals. 
Although this side of the V here also tackles key related DE aspects, so at a PDR level the system is defined and feasible. 
The design branch tackles both quantifiable and qualifiable variables.  

The input of heritage solutions is a very useful and fundamental part of this workflow. This is especially relevant in 
the beginning of the process and when critical elements such as the infusion of new technologies or the integration of critical 
subsystem are needed. This works as a design data point, a comparison tool, and validation input that could be utilized 
across the whole process. This method allows to assess the feasibility of both system foundation and performance. 

5.6.2.3. Systems - PDR to CDR 

The other side of the design triangle after the PCR milestone 
is about systems modeling and validation. Similarly, to the 
development of seed geometries, a seed model (eASM) is also 
created and related to a three-dimensional model while capturing 
more complex logical and analytical relationships. These two 
complement each other working as basic tools addressing multiple 
solutions (e.g., parametrically, or generatively) and bringing more 
detail into the design process. See Figure 150 for reference.  

Then, the next step is to assess the level of maturity (eAML), 
which is a working milestone (not a review) that keeps evolving, 
while enabling other comparison and quality control processes. 
During the design modeling steps, key analysis can be happening 

concurrently and ideally with a multiple disciplinary standpoint. This allows for the system solution to be initially validated, 
becoming the last stop towards a critical design review level (CDR). This last part completes the sector addressing the 
geometry of the system and its connections to the other DOI sectors. While the overall diagram shows a flow of natural 
steps, in reality all these steps happen under a networked paradigm of multiple connections among them. Such links respond 
to quantifiable and quantifiable requirements, as well as parameters affecting both system and process needs.  

5.6.2.4. Continuous design - Multiple CDRs 

Once the evolution of the system is aiming towards the 
required maturity level for a CDR based on requirements, new 
discoveries and secondary requirements made through the 
eSARD process could challenge these initial assumptions. As a 
networked process this can also happen due to bidirectional inputs 
coming from the implementation and operative sectors.  

In the case of an initial system design evolving into a 
different version (Dori, 2011), the previous CDR level system 
definition (vertex of the sector) shifts to the right repeating the 
same process towards PDR+1, PDR+2, etc. This is similar to 
incremental SE methodologies such as IID (Forsberg, 2020) and 
walking skeleton (Badiru, 2013). This does not mean that all 
previous work must be redone. In fact, the development of 

evolutive models and designs assumes this will always happen so incorporating parametric and reusable methods to 

Figure 150. Milestones and tools from PDR to CDR (eSARD) 

Figure 151. Milestones and tools for multiple CDR (eSARD) 
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repurpose previous work is part of this process. This is a critical point in the way of thinking required for an eSARD. Thus, it 
is not only about achieving the best system design but to perform such work assuming sudden changes at any time, so 
methods and results must be adapted accordingly and efficiently. This continuous design workflow not only happens on this 
sector addressing geometrical consideration, but simultaneously and sequentially on the other sectors. This translation 
towards the right, must preferably happen when at least the system definition already includes both seed geometry (eASG) 
and basic system modeling (eAMG). 

5.6.2.5. Towards Implementation - CDR to TRR 

The final step within this sector is to prepare the transition 
towards both implementation (resource-driven) and operation 
sectors. In the beginning of these sector processes, specific 
heritage inputs for these sectors must also be considered. They are 
a great quality control tool to check the feasibility of the system 
design as well the influence of inputs coming from other sectors.  

Along these lines, it is also relevant to highlight that links 
across the design network process can be presented at any point 
since they relate to any other step across the design effort. This 
process has a direction flow but inputs and links among tools and 
steps are concurrent and networked in nature. These links are 
shown with purple connections (Figure 152) representing 
connections among steps and milestones. 

Even if this is a networked process, iterative cycles are still critical to obtain better and more refined solutions, as well 
as to enable more detailed designs by diving deeper into multiple disciplines. Concurrently and sequentially, these design 
cycles not only enable more refinements, but also a better exploration of trade, design, and maturation spaces. Thus, the 
more links are created the more efficient and capable the process can be. The eSARD methodology builds upon systems 
synergies while matures designs by using multidisciplinary connections and checks. In essence, this is what the natural 
evolution mechanism does when many small variations (mutations) of an organism lead to a more fitted system that is 
continuously been tested against the environment. However, such iterations might not happen equally across all steps and 
milestones. The end of a sector is the beginning on the next one, so in this case CDR efforts include implementation aspects 
that lead to the beginning of such sector and the test readiness review (TRR). Thus, DRR and SFR are the end of a design 
sector and potentially the beginning of a new design effort. The next section will elaborate a bit more these other sectors. 

5.6.2.6. Overall methodology 

eSARD merges DE and SE efforts into one and relates to multiple gaps referenced in section 3.4 and 4.1, such as: 

• Sinergy. This method is based on synergetic gaps (eADQNs and eAMGs) among solutions, components, and 
processes rather than discreet (‘divide-and-conquer’) traditional disciplinary methods (section 2.9 and 3.4).  

• Continuity is enabled through a networked approach, synergies, heritage inputs, and continuous design cycles.  

• Qualification can be tackled since this design framework allows both geometry and logical parameters.  

• Full cycle. From design to decommission the eSARD process not only can address all phases of a project but it also 
encourages it by tackling gaps and links across the full lifecycle to develop a more robust design.  

• Flexibility. Design and systems engineering methodologies are combined within a highly adaptable workflow that is 
tuned to the needs at hand. Constant changes are expected and even encouraged for concept validation.  

• Disruption. Easier paths for new solutions are enabled through better connections among discreet disciplines 
(eAMG), geometrical-logical frameworks, heritage inputs, and the easiness to quickly change paths (Figure 145).   

• Fast pace. To speed up this method, synergetic multidisciplinary topics (eADQNs + eAMGs) are used as starting 
points for the process, tackling retrospectively and concurrently more disciplines for a more complete system design.  

• Connectivity. Not only the system design is being addressed within this networked and linked approach, but also its 
context, external stressors, environment constraints, and key interactions with other systems.   

Figure 152. Milestones and tools from CDR to TRR (eSARD). 



  
Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

183 

 

 Implementation (Material) 

The next networked sector within the eSARD tackles implementation, which refers to physical systems 
(manufacturing, construction, fabrication), logical system (coding, programming, development), or both. This research is 
mainly centered in the overall eSARD process and the system design sector. However, as an introduction there are a several 
relevant generic constructs within this sector that influence other DOI sectors and the overall process. 

The main objective of this sector is to address the ‘substance’ of the system, which is how the solution goes from a 
thought concept to an implemented reality (physical or otherwise). For instance, how the system goes from a three-
dimensional CAD model that only exists digitally, to a physical part made of steel or plastic is the real foundation here. While 
this approach could apply as well to software-based systems, its ultimate objective is to address complex hardware-based 
evolutive system architecture that also require software (coding) to address system behaviors, achieve more system 
adaptability, and enable better capabilities. This implementation sector deals with details such as vendor constraints, material 
tolerances, manufacturing tests, code troubleshooting, programming verification, UX testing, among many more areas. 
These tasks happen regularly, however by integrating them into the overall development process not only better and faster 
solutions could be obtained, but they can be better optimized in terms of cost, capabilities, and time to market.  

Chapter 3 concluded that most DE and SE techniques do not tend to consider both design and systems engineering 
simultaneously. Within such scenario, development workflows, workforce efforts, and tools are combined so a final product 
can be implemented. But if such level of connection and detail is infused from the very beginning into the design process, 
the final system can be optimized better and faster. The evolutive approach and its ARR principles are based upon such 
early connection similarly to natural mechanisms. Any species is constantly getting tested against the environmental 

Figure 153. Implementation sector within the eSARD helix diagram based on ARR tetrahedron. 
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conditions, and any change or improvement in its adaptability can only be assessed when the system (organism) validates 
itself against the environment. As Table 25 introduced early, the objective of this methodology in general is to bridge areas 
of development (DOI) that often are not really connected in the design process. SE methods might tackle implementation 
aspects regarding product developments, but the reaction speed and the system capability to provoke and embrace critical 
change while avoiding expensive implementation issues early in the design phase, is often very limited. For instance, if cost 
and lead time constraints of a manufactured metal part in the system are infused early in the design process, production 
cost issues could be avoided more easily, and they can even improve the system design with a more robust approach. Here 
this is addressed by considering all disciplines at once.  

This sector tackles multiple implementation steps and other detailed processes such as manufacturing, testing, Q&A, 
etc. Paths, tools, and milestones are identified in Figure 153. Among some of them these are the most critical:  

• CDR (Critical Design Review) is the initial milestone. The beginning of the implementation sector is the delivery of 
the design and systems sector within this networked process that is defined by a spiral flow. Previously, both 
implementation and operation constraints were only considered at a high level with eADQNs. Thus, the feasibility and 
likelihood of methods, materials, and data structure among other aspects were not fully addressed yet, but now this 
type of details are key. Reviews only state the level of maturation that the system design needs to obtain.  

• Implementation edge (CDR to TRR). From the CDR, the primary edge is implementation, so all tools used in the 
process are focused on making the system design real (physically, digitally, and virtually) including these ones: 

• eAIG (Implementation gaps). Overall design efforts often consider subjects such material selection, 
manufacturing techniques, and overall cost estimation, to name a few. But there are more key details that must 
be addressed and validated. eAIG tools prioritize gaps among them in this implementation path for the system. 

• eAIP (Implementation paths). Once key gaps have been identified, then an implementation strategy must be 
developed to address them. This could lead to changes in many other steps within the design sector (network).  

• TRR (Testing Readiness Review). This is a vertex milestone pointing towards a level of maturation in which the 
system design is fully developed, and all implementation and development studies (e.g., materials, cost, workforce, 
feasibility, etc.) have been done. This process prepares testing and verification aspects of the final solution.  

• Testing edge (TRR to SVR). The secondary edge on this sector (substance) includes these tools among others: 

• eAVVP (Verification and validation paths). The path towards the final verification and validation of the system 
addresses key gaps in these areas. At this point, this should be detailed enough from both geometry and 
substance standpoints. Along the way multiple eAVVP and eAVVL are be created and linked with other tools. 

Figure 155. eSARD verification loop (implementation sector). Figure 154. eSARD incremental versions and heritage inputs. 
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• eAVVL (Verification and validation levels). Just like with the maturity gaps, this is a tool that assesses the 
feasibility of the system, while it compares among systems, processes, and solutions. This tool implies gradual 
improvements in the validation and verification strategy as middle steps towards the SVR milestone.  

• SVR (System Verification Review) is the final and critical milestone in this sector. Here the system architecture 
solution includes design, systems, implementation, and verification at the highest maturity level.    

Regarding the eSARD helix workflow within this sector, there are six basic maneuvers, that could be summarized as it follows: 

• Sector path (Error! Reference source not found.). The workflow in this sector starts with the CDR and tackles first i
mplementation aspects (increasing details), while it prepares testing. TRR is the vertex milestone and here the 
eSARD approach addresses the verification of the system including testing, consumer studies, and many other 
validation tools.  

• Heritage (Error! Reference source not found., orange arrow). While at any given point the infusion and assessment o
f heritage solutions is be very useful, this is especially important in the beginning of workflow to assess feasibility at 
the smallest scale. 

• Links (Figure 156, purple arrows) allow to make connections among sectors, routines, tools, and milestones. They 
allow through different level of maturation along the process. The spiral scheme (triple vee) presents here a guide to 
follow and organize such processes, but these links make a critical difference in within this networked approach.  

• Verification loop (Error! Reference source not found., green triangle). This allows to check correlations among i
mplementation aspects and verification tools, milestones, and levels of development at any given time in the 
development process.  

• Increment translation (Error! Reference source not found., grey dash lines). As previously described, different d
esign strategies lead ultimately to changes in these milestones. This means that different and incremental cycles 
within any sector are represented by sequentially translated sectors moving towards the right side of the primary 
edge. Each one represents a critical variation in the sector, while tools and milestones within it could also be linked.  

• External input loops (Figure 156, green dotted circle). Implementation processes and techniques (e.g., 
programming and coding) can be very complex, including many external open and close inputs. Thus, operations 
such as assessing manufacturing cost require independent cycles, which are summarized graphically by these loops.  

After this high-level introduction to the structure, tools, and milestones of the implementation sector, there are several 
conclusions with regards to this sector and its influence upon the overall eSARD process such as:  

• Organization. The eSARD approach is not only about 
addressing the full design process of a system, but 
also about tackling the culture of the organization 
behind it. Since the goal of this process is to enable 
disruption, higher system performance, and overall 
efficiency the ‘how’ is as relevant as the ‘what’, hence 
the adaptability of this workflow.  

• Early failure. One goal of the eSARD process is to 
enable fast failures at both system design and detail 
level. This allows to find faster and more efficiently a 
successful and more robust system architecture 
design. By addressing both overall architecture trades 
and detailed studies simultaneously it is easier to 
identify most relevant gaps. Thus, this also allows to 
ensure the feasibility, adaptability, and robustness of 
a family of solutions and many of their possible future 
outcomes. 

• Qualification. The processes to verify and validate 
single projects, as well as these families of solutions Figure 156. eSARD external input loop (implementation sector). 
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(qualification) can be very complex, especially with one-off designs and the infusion new technologies.  

• Disruptions are enabled by the networked nature of this approach, using three interconnected sectors (vees) that 
are constantly being updated and linked among them. Incremental changes are addressed by more traditional design 
cycles (sector translations), as well as interconnection loops among all of them.  

 Operative Optimization (Behavior) 

The last sector to be explored in this networked spiral eSARD is related to the behavior of the system and tackles 
directly both operations and general system optimization. An evolutive system architecture is ideally a highly adaptable 
system, thus its behaviors condition not only its design but the use of resources. The eSARD_he presents a network 
approach because all these aspects are intertwined. The operations edge of this sector addresses the following topics:  

• System functions and capabilities. From highly reactive to passive systems, an evolutive system presents some 
level of integrated adaptability and smartness leading to a system that behaves or functions in a certain manner. 
Examples of this are the physical adaptability of a system architecture (e.g., rear active spoiler on a sport car), data 
created by sensors and other integrated electronics (e.g., smartwatch readings), and the interaction between systems 
and environment (e.g., robotic mobility platform that adapts to the terrain). So, regardless is this a fully autonomous 
system, a manned operated device, or highly a passive object there is an operations scheme behind the system that 
must be considered since affects design constraints, requirements, planning, and cost across the full lifecycle. 

• Environmental interaction. Such operative mode is also driven by relationships between the system and its 
environment, which are defined by both direct interaction with it, as well as indirectly by all resources required in the 
process. This point affect both system operations and optimization directly and is at the core of this sector.  

• Design stressors. As chapter 2 presented, the practice of designing complex systems must address more and more 
a series of key stressors affecting the nature and capability of a future system architecture (e.g., resource scarcity). 
This again affects how the system is operated, and furthermore it conditions its overall optimization.  

• System timeline and lifecycle. This sector addresses all these points across the full lifecycle of the system and 
among all sectors simultaneously. Nevertheless, it is crucial to understand the system timeline as it relates to its 
behavior and capabilities, as well as the most relevant needs and challenges specifics to its lifecycle. Such temporal 
evolution needs to consider as well multiple system alternatives, heritage possibilities (species), and link among tools.  

• Optimization. This is a very broad topic out of the scope and length of this research. But it is important to highlight 
that the optimization of the system touches all aspects and steps in the development of a complex system. However, 
this point is partially implemented across the process (e.g., eADQNs) from each step perspective, and later is 
completed as whole in the last edge of this sector. All ARR general characters and specific GBS details are tackled 
here across all DOI sectors. System optimization here is also continuously changing due to external conditions.  

At this point, all key trades, details, and development work regarding ARR principles and DOI areas have been 
addressed. Geometry, substance, and behavior defining aspects of the system have also been addressed. Therefore, the 
next complementary step in this continuous cycle is the optimization of all three areas altogether. Such system optimization 
activity is related to other design studies which are often performed independently around the eSARD.  

The operative optimization sector is in essence about how the system is going to perform over time and throughout 
different situations during its lifetime. This opens the path not only to system improvements (optimization), but also to enable 
a better design process that considers direct feedback during system operations. Evolutive architectures in particular and 
smart systems in general, are not anymore about how the system was designed when they are ‘unboxed’. They are really 
about the data they will generate over their use and how data can be used for the system improvement and evolution. 
Therefore, design processes such eSARD need to incorporate this feedback into the workflow. This helps both the system 
design at hand, while it closes the loop to future ecosystems, system upgrades, and overall discreet improvements based 
on data. Within this sector that tackles operations and optimization, several critical tools and milestones can be identified as 
Figure 157 presents. Among some of the most relevant elements and milestones in this sector these are critical: 

• SVR (System Verification Review) is the initial milestone of this sector process. At this level of maturation design, 
implementation and validation details have been addressed concurrently in other sectors too.  

• Operations edge (SVR to ORR) reflects activities and tools assessing behaviors that are system functions enabled 
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by both design and substance schemes. For example, a robotic arm will move depending on the mechanism design, 
energy schemes, and environmental conditions. Thus, the system behavior determines the capability of its geometry 
to adapt to its environment under different tasks. This edge includes among others the following tools: 

• eAOG (Operations gaps). These tools study where system maturations are required from operations and support 
architecture standpoints. This also includes external workforce aspects required to assemble the system on site.  

• eAOP (Operations paths) complement the previous point by creating solution paths and alternatives to assess and 
‘kill those gaps’ by the operation scheme design. In essence, they are the solution approach for each eAOG. 

• ORR (Operation Readiness Review). This vertex milestone sets the maturity level by which all operation aspects are 
defined, while they complement design and implementation schemes concurrently addressed in other DOI sectors. 

• Optimization edge (ORR to OPRR). This edge relates to all optimization tools tackling operations, implementation 
schemes, and designs since the three of them are interconnected across the final system definition. The goal here is 
to assess and implement both system-level and detail-oriented optimization schemes for the system at hand. There 
are two main families of tools within this sector that are aligned to ARR design drivers (section 4.3):  

• eAOPG (System optimization gaps) highlight where the system can be optimized from a full DOI perspective. This 
requires external activities to assess solutions under different environmental conditions, changing constraints, etc.  

• eAOPP (System optimization paths). Similarly, these develop a solution scheme to address each eAOPG.  

• OPRR (Optimization Readiness Review). Final milestones within this sector establish a level of maturity and 
optimization where the system has been stressed to the maximum. This is also directly related to the very first 
milestone (SVR) since they both close the full cycle of the system. As such, OPRR can be understood as a direct 
input for new SVRs towards future systems or variations within the same family of solutions.  

Within this sector, possible workflow maneuvers are the same as those described in the previous section. Among 
others these include (Figure 157) heritage inputs (orange arrow), input loops (blue dotted circle), verifications loops (blue 
triangle), and increment translations (grey dash lines). These last ones could be related as well to major changes in the 
system design due to external factors and system behaviors across different chronological phases in the lifecycle.   

Finally, this last sector brings up several key conclusions about the eSARD process in general. These are specific to 
this sector and unique to the evolutive design methodology (eSARD_he) approach, including the following one: 

• Connectivity. When assessing operations, evolutive solutions may present a higher level of connectivity with their 
environment. This includes the use of sensors, data structures, communications protocols, etc. In essence, the 
external environment influences the system design, its behavior and performance.   

• Reactivity. An evolutive solution is 
dynamic, thus the process should 
implement the same level of 
flexibility towards its functions and 
other aspects across all DOI 
areas. 

• Evolutive ARR. All these activities 
happen simultaneously. Moreover, 
they all reference each other while 
advancing the development of 
their specific maturation. So, even 
if the graphic presents a 2D 
diagram, this process follows a 
three-dimensional spiral when all 
multiple solutions, situations, and 
levels of maturation are 
considered within the eSARD 
process.   Figure 157. Operative sector within the eSARD helix diagram based on the ARR tetrahedron. 



  
Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

188 

 

 Design Verification Loops  

Verification loops presented in Figure 158 showcase the rationale behind all 
connections among tools (design activities) and milestones (maturation levels). At any 
given time, multiple of these links can be referenced to check parameters, 
relationships, constraints, etc. This graphical representation means that models such 
as DE, SE, Implementation, Ops-Con, etc. will share data and interact among them 
to accommodate key design changes. At the end of a full iteration cycle, all milestones 
(both critical and vertex) describe the maturation level of the system (Figure 159) from 
a DOI perspective, while they define the solution towards all ARR needs. This helix 
scheme tackles the complexity of an evolutive system, while it also offers a platform 
to further the design, detailing, and scope of such initial connections.   

Figure 158. Multiple verification loops within the eSARD_he representation of an evolutive system design activity.  

Figure 159. Summary of key ARR system 
design milestones in the eSARD process. 
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 eSARD_he 3C Framework (Concurrent, Collaborative, Communicative) 

Communication is one the most critical aspects within an evolutive design methodology. Following a communication 
theory approach (Sekhar, 2005), information is transferred among people, tools, and models using a process that is often 
driven by a disciplinary perspective. In that regard, it is crucial that the right amount of information at the right speed can be 
transferred properly and bidirectionally, even more if the process being served has a networked nature. Thus, the eSARD 
process not only tackles how tools should talk to each other, but how professionals and teams visualize, share, and interact 
among each other regarding critical design topics. Therefore, this is not only about the data rate, but its quality and the 
facilitation process that is also required. An evolutive methodology (Figure 160) can have virtual, physical, and hybrid 
workflows and workspaces. This requires an information infrastructure based on three main practice points (3C) such as: 

• Concurrent. Any model (mathematical, conceptual, etc.) and discipline activity (e.g., thermal design, mechanism 
definition, architecture layout, etc.) need to be developed concurrently and bidirectionally, exchanging at least key 
parameters with regards to most relevant figures of merit for the system at hand. This applies to both computer 
models (e.g., data-driven analytic models such as databases, excel, etc.) as well as to professionals sharing a 
common source of information truth. Multiple techniques have been developed over the years for product design, 
aerospace, etc. (Eastman, 2012). In an analogy to the music industry, these are multiple instruments sharing a 
common but also constantly under development score. In Figure 160 this is shown as grey bidirectional lines, between 
multiples disciplines and agents (e.g., D1), as well as common in-development scores (black line boxes). This is also 
done traditionally in concurrent engineering where key parameters and figures of merit are captured in a general 
model that is later shared among interconnected agents. Thus, critical data must be captured, transferred, and 
shared, in a way that can be curated and utilized. The starting point of this method begins with a system architecture 
sketch underlying basic geometry, subsystems, and even initial system behaviors. This will be tackled in detail in 
following points, but it requires a clear and potentially evolvable framework to capture and define objectives, goals, 
constraints, requirements, and designs, among others critical topics.  

• Collaborative. Not only models need to be connected among them, but the design process itself is being co-authored 
as well. This means that all activities and disciplines involved, should advance the design or development in parallel 
while they relate to each other in the process. Collaborative methodologies are a growing tendency in advance design 
nowadays (Safavi, 2016), because in combination with other approaches they can be very powerful. Following the 
music analog, besides a common score, a live and constant revision of the activity of other musicians is needed as 
well, just like a jazz jam session uses instant feedback among players. Constant changes, interactions, and directions 
need to have a media to be captured as well. In Figure 160 these are represented by red dotted lines.  

• Communicative. Connecting models and sharing information is critical. However, sue to the potential complexity of 
the system architecture at hand there must be a curated and facilitated guidance toward what to communicate and 
how to do it. This also includes the design path within a full trade space. In previous examples, if models and people 
are like instruments in an orchestra using a live and changing scored while becoming aware of the interaction among 
musicians, there must be also one or several orchestra directors guiding the process. The goal of this last point is in 
essence to provide a mechanism to reject non valid paths quickly, create new ones, and validate ‘on-the-fly’ other 
alternatives. In other words, this is about communicating properly to fail fast and thus achieve better results faster. 
The system architecture keeps evolving and changing quickly based upon such dialog, which is a tension between 
discipline inputs and a facilitated guidance. However, the solution is neither unique nor static. In Figure 160 this is 
conceptually represented by a meandering yellow line with multiple dots that represent different evolutive states of 
the system. Among other goals, this approach aims to quickly obtain a good solution within a family of solutions. 

Beyond these pillars there are other critical aspects that need to be developed for a successful eSARD environment. 
However, these are outside the scope of this research and part of an ongoing research. These are the summary highlights: 

• Workforce team dynamics. How teams, personalities, and backgrounds interact is critical for the success. 

• Tool agnostic approach. The eSARD approach is independent from any tools or technique, software or otherwise.  

• Multiagent. This 3D framework connects designer, team, and machine-oriented hybrid environments.  

• Scalability. This process is designed to be scalable and adaptable to both new design objectives and capabilities.  

• Culture. A part of the associated field of research is about how to infuse and merge new techniques.  
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 Evolutive System Design Workflow in Detail  

During the first part of this chapter principles, objectives, and general procedures for an eSARD method have been 
introduced and defined. The goal of this methodology is to support the development of complex system architectures in 
general, and specifically address all special ARR characteristics of an evolutive hardware-based system (chapter 4).  

The rest of the chapter is dedicated to study in detail some these tools that were highlighted in the eSARD approach. 
Since the objective of this research is to concentrate on system design aspects, next sections only develop in detail those 
tools directly related to such sector, although the approach is quite similar in other sectors. The evolutive design process 
has a networked nature, and all tools and maturation activities within each sector must happen concurrently while sharing 
bidirectionally information among them. Once more, the goal here is to efficiently create a system that addresses a balance 
among all GBS details, tackles all DOI areas, and considers all ARR principles of a complex evolutive system architecture 
and all its subsystems and components.  

As section 5.6 described, within the system design sector the maturation of the system architecture goes through 
different milestones, reflecting incremental levels of detail, feasibility, and overall evolution of the system such as SFR, PDR, 
and CDR. These milestones also serve as a reference to assess how much of the system definition needs to be developed, 
but they are not a design tool by themselves. In the context of an eSARD process, these do not necessarily mean they are 
a formal review, but rather a checklist of sorts. Section 5.6 described a series of specific tools, routines, activities, and 
exercises created for an eSARD approach, which are shared with other SE, DE, and DSE methods. These tools can help 
designers, teams, design workflows to achieve those milestones more efficiently, but they are never static in this context.  

Within the system design sector (yellow) there are several groups of tools that allow the following actions and goals: 

• Design objectives. To design efficiently the eSARD approach is based upon making the right question to achieve 
better solutions faster thought synergetic connections among requirements, disciplinary studies, subsystems, etc. 
Identifying seed questions that make a system architecture feasible is therefore the goal of these tools: 

• Evolutive Architecture Dynamic Questioning Network (eADQNs) identify key gaps in the design process. 

• Evolutive Architecture Maturity Gaps (eAMGs) establish the design starting point due its criticality. 

Figure 160. Workflow within the eSARD 3C framework including disicipline inputs, workforce activity, and eSAR develeopment paths. 
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• System design. This is the actual detailed design including all DOI necessary elements. Evolutive seed architecture 
geometry (eASG) is the first and most important tool in this phase complementing other DE techniques. 

• Evolutive architecture seed model (eASM) is a logical modeling of the system complementing eASGs by pairing 
SE models with geometry under different DOI perspectives. This also complements other DE techniques. 

• Evolutive architecture maturity levels (eAML). Previous tools are engaged in multiple 3C cycles while interacting 
with each other under such networked perspective. Thus, either manually or using automated workflows, the definition 
of the system follows different DOI views that will keep increasing. Maturation and design progress allow assessing, 
managing, comparing, and directing all design efforts from both technical and managerial perspectives. 

• Inputs. As section 5.6 described there are multiple inputs within an eSARD design process including the following: 

• Requirements and constraints (primary) are present in any design process. They can be open or close (fixed).  

• Heritage inputs include previously validated solutions, methodologies, technologies, components, etc.  

• External inputs are specific to the system architecture or the field of development (e.g., workforce topics).   

• Implementation inputs include previous or concurrent topics of this sector that can precondition the design.  

• Validation, verification, and testing. Similarly, V&V & tests need to include user experience, special technical 
needs, risk mitigation strategies, and redundancy approaches, among many other topics. 

• Operations critical inputs include all inputs from the DOI sector that can or will affect the system design.  

• Optimization. This set of activities in the design process is directly related to all other aspects across the system 
GBS. The goal is finding a balance among opposing design forces, prioritizing attributes (e.g., performance), 
identifying hidden figures of merit, reducing risk, and managing complexity, among others. These require a 
dedicated chapter outside of the scope of this thesis, but chapters 5 and 6 will address some basic foundations.  

Table 27 shows below a summary of such tools, groups, and steps within the DOI design sector that next sections 
elaborate in detail. These are steps within the eSARD model that serve as a general design platform towards evolutive 
design methodologies and other future developments in general.   

 eSARD - Evolutive System Architecture Design Methodology 

 eADQN eAMG eASG eASM eAML 

 Evolutive Architecture 
Dynamic Questioning 
Network 

Evolutive Architecture 
Maturity Gaps 

Evolutive Architecture 
Seed Geometry 

Evolutive Architecture  
Seed Model   

Evolutive Architecture 
Maturity Level 

Objectives Requirements 
Assessments 
Heritage  
Trade space 
Design space 
Gap identification 
Design paths 

Feasibility 
System closure 
Comparison 
Optimization 
Foundation 
 

Maturation space 
Geometrical 
relationships 
Optimization 
foundation 
Compatibility 

Non-geometrical 
relations 
Parametrics 
Compatibility 
Optimization 
Multiphysics  

Evaluation 
Comparison 
Management 
Organization 
 

Tool 
Types 

Pen & paper 
Mind-maps 
WIKI 
Discussion Capt.  
Other 

WIKI 
Knowledge Mgmt. 
System models 
Databases 
Other 

Hand sketch 
Evolutive sketch 
Parametric CAD 
Generative CAD 
Other 

Adaptable SE  
MBSE 
Data bases 
Other 

WIKI  
Visuals 
Knowledge Mgmt. 
Other 

Product Design objectives 
New design 
requirements 

System geometry 
design & develop. 

System model 
design & develop. 

Assessment 
Validation 

      

Base for eAMG eASG eASM eAML Design Cycle 

      

Table 27. Summary of most relevant eSARD tools and models within the DOI system design sector. 
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 Dynamic Questioning Networks (eADQN), Exploration and Foundation  

Understanding critical initial needs and requirements of a system architecture is a necessary step in any design 
methodology. Customers and technical efforts provide requirements and stakeholder expectations at different levels. 
However, as detailed as those might be, within an evolutive process they should always be considered as open in nature, 
since this methodology is based upon underlaying DOI interconnections among them. Under this light, it is assumed that 
each complex system has a series of key attributes and technical characteristics at the core of any feasibility and maturation 
activity. Such links can be upgraded or improved at any time by newer connections, complementary heritage solutions, or 
new disruptive design paths. These are technical design principles, often multidisciplinary in nature, that enable and fulfill 
the system architecture teleology. Here are some simplified examples used as an introduction towards what an evolutive 
design approach is addressing to maturate a complex hardware-based system architecture: 

• At the core of a radical new architecture for a formula one car trying to achieve a better system performance next 
season, it might be the mass reduction of joint components using topology optimization techniques. It might seem 
the key question here is to reduce the mass of every component, using such new technique. However, it could also 
be that the combination of a simplification in the number of components, the easiness of integration, the 
manufacturing response, and the structural stiffness is what really holds the key. Achieving this solution then does 
not respond only to a mass reduction approach, sparking new feasible solutions that require to bound the research 
differently. So, the question is now how such disruptive solutions can be done with a practical design workflow. 

• For an emergency shelter on a desertic area to be self-sustainable it must improve its energy management. However, 
rather than just carrying solar panels, ac-units, and batteries because portable insulation capabilities are limited, the 
answer could be about finding a design approach that improves thermal inertia and passive energy management with 
less components. Such system architecture is enabled by a multidisciplinary technical approach that drives all system 
design efforts. However, proven heritage solutions are not clear unless they come from other fields. Thus, one 
question here is how to handle the lack of heritage when creating a validated ultra-performance new system design.  

The exploration of gaps and the generation of design knowledge related to the system architecture at hand is the first 
step towards developing a feasible and complete evolutive design strategy. eADQNs are at the core of it.  

 Nature and Definition 

Evolutive architecture dynamic questioning networks (eADQNs) are a series of inquiries regarding requirements, 
expectations, heritage, and preliminary design paths among other topics to understand key gaps in the multidisciplinary 
maturation of a system architecture. These questions poke at architecture ARR needs considering design, behaviors, and 
substance areas at a system, subsystem, and component level. Such needs are required to have a complete, mature, and 
feasible system solution. But these do not provide design solutions, they rather identify gaps the design process must 
developed later. This first construct within an evolutive system design process (eSARD) has the following characteristics: 

• Driven by disciplinary gaps (DOI). These inquiries start from a disciplinary standpoint addressing design needs 
and gaps in the system. For instance, how does the system manage heat? What type of structure would it have?    

• Networked nature. These gaps are interrelated in the context of a system architecture design, as previous sections 
explained. The deeper those gaps are, the more detailed those questions are, and the more multidisciplinary they 
become. For instance, manufacturing techniques affect the design process directly, which also affect the number of 
components and condition the integration of such system. These details affect all GBS fields and topics.  

• Broad spectrum. eADQNs tackle all ARR areas affecting an evolutive system architecture and all DOI topics. 

• Structured. These inquiries are organized around the three GBS pillars describing any complex system architecture. 

• Geometry (descriptive principles) includes questions addressing structure, volume, size of subsystems, design 
principles, configuration, etc. For instance, what subsystems does it need? How small can they be? What type 
and shape of structure does it need? How compact is the system while being stowed? 

• Behavior (operative principles) relates to inquires addressing how the system works and what it needs to do so. 
For instance, what function does it perform? How does it identify the target? What is the control approach?  

• Substance (component nature) finally addresses the materialization of the system. Questions such as these are 
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key: what materials is it made of? What coding language will be used? What kind of manufacturing technique is 
used? How does this affect the integration? Does it provide enough chemical compatibility?  

• Dynamic. None of these questions are static nor constant in time or importance. During the design process and the 
creation of this inquiring network some gaps will be solved or addressed, giving less priority to all associated 
questions. At the same time, the more in depth the design process goes, the more connections will appear defining 
new questions and sub-questions consequently.  

• Variable depth. All inquiries with an eADQN will refine details through derived sub-questions and refinements of the 
question itself. For instance, the first round of questions might address general manufacturing techniques while at 
the end of this network process (DOI sectors) they could only tackle specific alloys, post-production methods, etc.  

• Variable nature.  The type of connection between questions might also vary over time. For instance, an initial 
structural relationship addressed by questions might evolved into a thermal-driven approach. Furthermore, these 
inquiries can address requirements that are quantifiable, qualifiable, or both. These do not have to be purely 
alphanumeric in nature, including other sources such as graphics, images, videos, 3D models, etc. 

Therefore, such inquiries are meant to question the system architecture design as the objective of an evolutive design 
process. They do not provide solutions, they are used to point out through multiple design cycles, the most critical gaps 
among all topics required for the system solution to be feasible and implementable. These mark the beginning of the design 
process, considering the following areas: 

• Stakeholder expectations include needs, wishes, non-technical constraints, etc. (NASA, 2007). 

• Requirements at any level should be considered as open (primary and secondary) within the design process, since 
one of the objectives of an evolutive approach is to exceed them in terms of performance or heritage.    

• Heritage includes direct heritage (e.g., older versions or generations of architectures with similar purposes) and 
indirect heritage (e.g., subsystems used in other designs), as previous sections already presented.  

• Preliminary design paths. While the process should not be bias towards a specific approach, high-performance 
organizations and individuals might quickly form initial ideas about the path to follow, which can be problematic.  

All these points could be used to question system requirements as well as to identify key DOI areas.   

 Objectives 

Thus, the objective of eADQNs is to explore concept, trade, and maturation spaces with a network of interrelated 
inquiries. These are oriented towards finding critical gaps in the feasibility of a system architecture. Specifically, such 
objective can be summarized as a combination of the following functions:  

• Identifying critical synergetic links across disciplines. The evolutive methodology is based in finding links among 
multidisciplinary gaps driving the feasibility of a system design and its concept. Instead of a ‘divide-and-conquer’ 
approach the goal within this research is to find the most critical connections, which within a complex system are 
always multidisciplinary in nature. eADQNs allow to constantly map the context where the design effort takes place, 
as well as to focalize the beginning of a design networked process. Therefore, this function is about finding gaps and 
links between gaps through questions without considering any design solutions yet.  

• Establishing problem limits and metrics. These inquiries allow to characterize design challenges and initial 
solutions based on all identified gaps. They also provide the bases for new metrics behind the system performance. 
The more critical these inquiries are, the more a design effort is defined, and the easier it is to evaluate a solution 
against requirements, expectations, and heritage. Nevertheless, to simplify the process these metrics are set up 
against key figures of merit, which are derived from the study and exploration of the design challenge at hand.  

• Prioritizing eAMGs. Since these inquiries address subsystems, components, and system characteristics that are 
interrelated among them, they also allow to understand which maturity gaps are more critical. Ideally, at the deepest 
level of system description, one or more critical gaps represent the difference between being able to obtain a working 
and feasible system architecture against requirements or not. Creating a design strategy that offers feasible solutions 
to such critical gap most likely will have a ripple and multiplying effect through systems, subsystems, and components. 

• Promoting disruption. A feasible system-level architecture is indeed the end goal of the process. While the evolutive 
approach is based on synergies, the objective of questioning networks is to identify gaps where those synergies could 
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make the biggest impact. At the same time, looking into conceptual subsystems or parts for the system architecture 
allows for newer and disruptive ideas to be infused more easily. Such new components can also be validated more 
easily by using indirect heritage solutions and technologies coming from other fields.  

• Developing an open framework. Finally, there are no strict rules to create these questions networks, neither what 
specific tools must be used. The objective is not the network itself, but the exploration of the system idiosyncrasy 
considering quantifiable and non-quantifiable aspects, which is influenced by the type of system and its context. 

Thus, the main objective of eADQNs is not to provide solutions, not to map all the subsystems and requirements, but 
rather to identify critical gaps from multidisciplinary and holistic standpoints. Furthermore, this approach allows to enable 
new design paths by looking at synergies among the idiosyncrasy and morphology of the system architecture and its concept.  

 Foundation 
Key design methodologies towards the innovation 

of complex systems include TRIZ theory (Terninko et al., 
1998), which was developed by Russian engineer Genrikh  
Saulovich Altshuller (Altshuller, 1984). This method is 
based on the identification of 40 systematic system 
principles (Figure 161) and some balanced contradiction 
principles among them (Altshuller, 2002). Furthermore, 
system evolution laws addressing key elements, energy 
transmission, and component rhythms  (Zouaoua et al., 
2015) are critical as well. However, such approaches also 
present limitations when parametric and multidisciplinary 
connection must be considered (Fiorineschi et al., 2015), 
even is OSTM-TRIZ methods are used. This last one uses 
networks of problems (NoP) to map problems, solutions, 
and contradictions based on TRIZ principles, which are 
used to divide a complex problem into parts. This 
approach also presents limitations towards considering 
heritage needs as well as enabling new disruptive 
connections.  This is relevant to mark the evolution of this 
approach towards addressing efficiency, as new methods 
like TRIZEE show (Sheng and Kok-Soo, 2010). 

Similarly, systematic inventive thinking or SIT 
approaches problem solving and idea generation with a 
method that pursues easier and less complex techniques 
(Horowitz, 1999) by focusing on a close-world condition. If 
all components required for the new concept to be created 
are identified, the final process under this approach 
becomes a matter of putting the puzzle together. The 
development of eADQNs follow a similar principle by 
poking at both the maturation space and all required gaps 
for a feasible new disruptive architecture, however this is 
not a close approach so the infusion of new ideas and 
changes at any time is enabled and encouraged.  

The foundation of the C-K theory (Hatchuel and Weil, 2002) is more flexible than TRIZ and presents a new dialog 
between concept and knowledge spaces enabling ‘crazy concepts’. In other words, it allows to bring new knowledge into the 
process through conjunctions (Hatchuel et al., 2004). This is successfully applied to product design. In this context eADQNs 
point out towards both c->K and K->C operations within this theory. However, in the evolutive approach both questions 
themselves and all connections between them point out to both C-K operations, while the rest of the methodology allows to 

Figure 161. 40 principles of the TRIZ method. (FotoSceptyk, CCA 3.0, 
2016)  
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tackle and provide solutions at any multidisciplinary level to deliver a working system at the end of the process.   

At the same time, axiomatic design methods (Farid and Suh, 2016) could be applied to the definition and exploration 
of such descriptive questions towards more simplicity and reliability in the system design. However, there are fundamental 
differences between these two methods. Questioning networks within an eSARD approach are developed to find synergetic 
connections among any type of requirements, even if they are independent from each other. Axiomatic methods specifically 
present complications to study non quantifiable requirements as well as to find alternative solutions for complex systems 
designs. This is the same case for other statistical methods such as Taguchi Methods (Nair et al., 1992) and Six Sigma 
(Pande and Holpp, 2001), which can be used to complement the creation of questions as well as to refine requirements.  

In many ways, the evolutive design approach uses similar design research methodology methods (Blessing and 
Chakrabarti, 2009) to DRM, since eADQNs provide a framework for the design activity that helps focusing the effort. While 
the evolutive framework remains open towards the infusion of all these multiple techniques, the purpose of eADQNs is not 
to define success itself (requirement) but to address what is missing for the system architecture to ‘close’. Nevertheless, 
success factors are connected to maturation gaps, and so are the network of questions to the evolutive reference model 
since they are all tools to achieve system maturation. Thus, these are processes in DRM terms applied to evolutive hardware-
based systems. DRM is a recommended approach especially toward the refinement of requirements and figures of merit 
behind any complex architecture, but this is not part of the scope of this research.  

The evolutive approach is similarly to Zwicky’s morphological design, but it is not reductionist method. Thus, it is not 
trying to break something complex into parts, but rather embrace the complexity of the system by looking at its relationships. 
Cross-consistency assessments (CCA) could be used in order to address non-quantifiable relationship (Ritchey, 2002) 
among  inquiries that address subsystems, requirements, and figures of merit eliminating illogical combinations. However, 
the evolutive approach provides a structured framework, which is especially designed towards a given architecture and 
allows to use geometrical descriptive questions, as well as numerical, alphanumerical, and even graphical descriptions.  

This approach is tool agnostic, and Model-based system engineering (MBSE) techniques are an ideal complement 
to capture the logical model behind such dynamic questioning. This is especially relevant if both quantifiable and qualifiable 
variables must be captured. Languages such as SysML™ (Friedenthal et al., 2008) among others, allow to capture both 
types of requirements, as well as structural, behavioral, and other parametric aspects of these questions. However, these 
tools tend to be complicated to apply when geometry (quantifiable) and aesthetics (qualifiable) are also involved.  

The development of eADQNs, just like the rest of the evolutive approach, provides an open methodology that can 
partially integrate other design research methodologies within it. The following points elaborate this method in detail. 

 Trade, Concept, Knowledge, and Maturation Spaces 

Multiple design engineering methods encapsulate the design process into a dialog between concept and knowledge 
space (e.g., C-K theory, Hatchuel et al., 2004), or between the expected, external, and interpreted world (e.g., FBS ontology 
design methods, Gero and Kannengiesser, 2004) to name a few. In essence, the framework for the design process is defined 
in between what we would like to accomplish, and we can do. In other words, it is in between what we can describe and 
what we can measure. The goal of this evolutive approach is not necessary to provide a universal design methodology, nor 
a description for ontological quantitative design protocols (Kan and Gero, 2017), but rather to provide a highly adaptable and 
fast-paced design framework that is especially oriented towards hardware-based systems [1] driven by ARR principles, with 
[2] little heritage, and [3] pursuing much higher system performance levels. This approach as previous sections described is 
based upon synergetic multidisciplinary gaps within a framework to conduct such activity. Therefore, several operative and 
conceptual spaces could be identified in the design of a complex system using this method such as: 

• Concept space / Expected world. This is the area where ideas exist and the realm within the designer’s mind. It is 
made of logical fixed parameters and predominantly non-quantifiable variables. This is the function field within Gero’s 
FBS approach (Gero and Kannengiesser, 2004) and the system teleology. This space is about what it could be.  

• Knowledge space / Interpreted world. This is the area of quantifiable parameters with different sources truth and 
rules derived from design efforts. It is the behavior realm within FBS models, and the space of what has been done.  

• Trade space encompasses all likely design possibilities for a complex system architecture, which are balanced 
among a selection of critical characteristics that often are in contradiction with each other (e.g., TRIZ). This is the 
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area explored by brainstorming activities (De Bono, 1993) and 
being studied by systems engineering methods across many 
technical fields (NASA, 2007) worldwide. This is the world of 
trade-off options and possibilities. 

• Real space / External world. This area represents reality, 
which is outside both concept (designer vision) and 
knowledge spaces. This area is highly connected to the trade 
space through proven heritage solutions. This is the world of 
what it is, as well as the realm of the empirical and proven 
heritage across all scales related to the system architecture.  

However, there is another area in between concept and 
knowledge space, which is reinforced by the real space and balanced 
by the trade space. This is the maturation space proposed by this 
research (Figure 162) where the evolutive method takes place.  

Maturation space is the fluid junction between all the above 
spaces. This is the area where all gaps serve as a foundation to turn 
a system architecture into knowledge, and all visions, trades, and heritage solutions that are used to complete them coexist 
together. Therefore, maturation space is the realm of uncomplete, statistical, disruptive, and innovative elements. In this 
space where the designer balances vision with options (often unexpected), and the design process addresses both 
quantifiable and quantifiable variables. eADQNs and maturity gaps (eAMGs) reside within this space. These are variable 
and less permanent from a more classical design engineering perspective. Thus, maturation space is chaotic and adaptable 
by nature. Hence, a design effort within this space is not about completeness, on the contrary it is about finding design 
keystones necessary for the system concept to mature. This ensures system feasibility in the real world with the backup of 
heritage solutions (if they do exist) and trade-off explorations, following a vision based on system architecture objectives.  

The development of eADQNs is addressed on a maturation 
space where eAMGs exist. Hardware-based system architectures 
without heritage and pursuing dramatic improvement in system 
performance require new approaches to address critical technical 
gaps. Thus, the goal of design inquiring efforts is not to have a fully 
defined system, but rather to find critical system gaps in a fluid way.  

It is also important to remind that an evolutive approach has 
three main nodes within a networked approach: design, optimization, 
and implementation (DOI). These can influence initial assumptions or 
deign paths, so they are key in a transitional environment.  

The current increase in data volume and new types of 
information is also important towards the consideration of such space. 
Nowadays information affects both designer decisions and driving 
algorithms through quantifiable data, images, videos, sketches, 
technical descriptions, CAD models, and MBSE models among many 
more sources and concurrent efforts. However, many tools and 
frameworks today can jeopardize any approach that is not adaptable 
enough (Figure 163), since the speed at which digital information and 
workflows advance is quite high. Furthermore, since agility is a design 
stressor addressed by this evolutive approach, it is often not possible 
to format and normalize such sources of data and information. 
Therefore, the fluidity of the design framework is critical when it comes 
to data sources. This is something that eventually will be automated, 
yet it remains tool agnostic from a methodology perspective.    

Figure 162. Evolutive maturation space. 

Figure 163. Maturation space as a multisource 
information and design framework.  
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 Questioning Approach 

The approach towards developing initial eADQNs within a maturation space 
can be summarized though the following points (Figure 164). A more detailed 
example is provided in chapter 6 for a more extensive explanation.  

5.8.5.1. Challenge 

The first step is understanding objectives, goals, and initial challenges for 
a design effort. This requires interactions among customers, representatives, 
stakeholders, and designers. It is also crucial to address initial maturity points that 
must be captured initially. This conditions all next steps in the process and enables 
the methodology to be properly addressed under ARR precepts.  

5.8.5.2. Requirements, Expectations, and Heritage  

Design requirements, customer expectations, available heritage information, 
and initial design paths are the beginning of this methodology, but it is not part of the 
scope of this research to define them. Plenty of publicly available bibliography 
explains how to address them, for instance the NASA SE handbook (NASA, 2007). 
Nevertheless, it is important to note a series of key points to be delivered and properly 
captured within an eSARD approach such as:  

• Requirements could be quantifiable, qualifiable, or both. Thus, any approach 
must consider that not only analytical answers are going to be managed, since 
requirements for a complex system architecture need to address all major 
disciplines involved in the process. As a reference Table 28 shows some basic 
areas requiring further definition for a generic electromechanical system. Not 
all of these may be known or even available when dealing with radical new architectures, hence the objective of 
eADQNs is to find initial gaps within them as a preparation for future events. Any requirement provided within an 
evolutive effort must be considered as open since it may vary along with the advancement of the design process. For 
instance, initial power consumption can be eventually surpassed by a new and more efficient design path.   

• Stakeholder expectations must be considered many times as non-quantifiable variables, which can also tune any 
provided requirement. These are critical to understand the context of a system architecture, therefore without them 
such solution cannot be successful (Eder and Hosnedl, 2010). The main goal of an evolutive process if to achieve 
system feasibility, hence expectations such as the concept of operations, initial technical expectations, product 
support strategies, and measurements of effectiveness and success, among others are critical in this endeavor.  

• Preliminary design paths can be considered as well as a subset of any system expectations by either the customer 
or the designer. While the activity in the design sector of the eSARD process starts once initial gaps are identified, it 
is important to see their relative value. An experienced designer familiar with the topic and a strong technical culture 
within an organization most likely might have some preliminary ideas about how to proceed. Under this approach 
these must be used to question such initial thoughts and find missing gaps among them in the maturation space. 

• Heritage inputs can be critical, but they are never a restrictive component in an evolutive process. Heritage provides 
validation points that help addressing gaps and feasibility at both system and subsystem levels. However, radical, or 
disruptive architectures might not necessarily have direct and useful heritage as a building block for a new system 
design. There are two types of heritage being considered within the evolutive approach such as: 

• Direct heritage relates to the full system architecture by either scope or behavior. This means there is a 
possibility to measure system effectiveness. For instance, a combustion engine car can be considered as direct 
heritage for an electric vehicle, since it provides a useful power mobility reference.  

• Indirect heritage relates to subsystems and component levels independently. For instance, this can be a type 
of valve used in the oil industry that has a similar application towards developing a hydroponic food farm.  

Figure 164. eADQNs workflow within the 
eSARD evolutive design node. 
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 REQUIREMENTS EXPECTATIONS HERITAGE 

 GEOMETRY (G) BEHAVIOR (B) SUBTANCE (S) Stakeholders Direct/Indirect 

Architecture-based 
Layout 
[qual] 

Modes 
[qual/quant] 

Exterior materials 
[qual/quant] 

Style 
[qual/quant] 

UX 
[qual/quant] 

 Shape [qual]    Design [qual] 

 
Volume 
[quant] 

Deployment 
[qual/quant] 

Interior materials 
[qual/quant] 

  

 
Configuration 
[qual/quant] 

Packaging factor 
[qual/quant] 

   

Mechanical-based 
Mechanism design 
[qual/quant] 

Deployment 
[qual/quant] 

   

 
CT Regime 
[quant] 

Interfaces 
[qual/quant] 

   

Thermal-based 
Conduction path 
[quant] 

Thermal cycle 
[quant] 

Material insulation 
[quant] 

Policy and support 
[qual/quant] 

Passive systems 
[qual/quant] 

 
Coating 
[qual/quant] 

User comfort 
[qual/quant] 

   

 
Energy gains 
[quant] 

 Thermal inertia 
[quant] 

  

Power-based 
Solar array surface  
[quant] 

Actuators  
[qual/quant] 

Energy sources 
[qual/quant] 

Outreach 
[qual/quant] 

 

 
 Power Modes 

[qual/quant] 
   

Mechatronics 
Packaging 
[qual/quant] 

Functions 
[qual/quant] 

 Local vendors 
[qual/quant] 

Types of motors 
[qual/quant] 

Physics-based 
Structure strength 
[qual/quant] 

Tribology 
[quant] 

   

Chemistry-based 
Exposed area 
[qual/quant] 

Decontamination 
[quant] 

Corrosion 
[qual/quant] 

 Material catalog 
[qual/quant] 

Electronics-based 
 Modes  

[qual/quant] 
Waterproof 
[quant] 

 Components 
[qual/quant] 

 
 Programming 

[qual/quant] 
   

Data-based 
 Data flow 

[qual/quant] 
Data architecture  
[qual/quant] 

Tool compatibility 
[qual/quant] 

 

 
 Coding 

[quant] 
 Open source 

[quant] 
 

Implementation-
based 

Manufacturing Integration 
[qual/quant] 

Post processing 
[qual/quant] 

 Proven technique 
[qual/quant] 

 
 Reparability 

[qual/quant] 
   

Operations 
Assembly size 
[qual/quant] 

Autonomy 
[qual/quant] 

Recyclability 
[qual/quant] 

Governance 
[qual/quant] 

 

User-based 
Simplicity 
[qual/quant] 

Easiness 
[qual/quant] 

Aspect 
[qual/quant] 

  

Workforce 
 Disciplines 

[qual/quant] 
 Diversity 

[qual/quant] 
 

Optimization 
Mass reduction 
[qual/quant] 

Function reduction 
[qual/quant] 

  Previous studies 
[quant] 

Table 28. Some system-level types of requirements organized by discipline for a generic hardware-based system architecture.  
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5.8.5.3. Figures of Merit as Questioning Drivers 

All previous inputs up to this point are studied to provide an initial set of figures of merit. These are critical as 
overarching metrics to evaluate the progress and success of a future system architecture design. While they might change 
over time, they are foundational to start the inquiry process (eADQN) since they provide guidance about what the starting 
point should be. In essence, these are questioning drivers and a very powerful tool to address where the most important 
gaps (eAMGs) are found. For instance, the total mass of the system, the energy required for the system to work, its final 
volume, or the style ensuring acceptance can be examples of these figures of merit. They are both quantifiable and qualifiable 
figures that represent initial objectives for the design process, and they are obtained through an assessment of both 
requirements and expectations (DOI). After each design cycle, the system architecture (ARR) gets more detailed, and its 
performance is closer to achieve those figures of merit or even to surpass them. However, the evolutive design process 
(eSARD) concentrates on identified eAMGs which also provide internal connections among tools, milestones, subsystems, 
and figures of merit (unknown or otherwise). Thus, these are also temporary like anything else on an evolutive process. 

These figures of merit also serve as a quick quality control tool for the design outcome and its path. If the design 
strategy being explored does not provide solutions closer to these drivers, then changes need to be made. This allows to 
make decisions even when the full system design is not finished, providing a great research opportunity for data-driven 
methods to both optimize solutions as well as to predict future issues. Within the eSARD method the objective is to fail fast.  

 These figures of merit should map 
three key GBS pillars describing any complex 
system: geometry, behavior, and substance. 
The first is related to all drivers that are applied 
to the descriptive principles behind a system 
architecture (section 4.3). For instance, the 
volume of the final configuration refers to 
system compatibility, thermal performance, and 
mechanism complexity. Behavioral figures of 
merit are related to functional aspect of the 

system architecture, including data-rates, functional power modes, autonomy topics, etc. Finally, substance figures of merit 
are about materials, manufacturing variables, coding, and any resource used to implement the system. The initial selection 
of these often depends on the nature of the system, the design experience of the team, the capability of the workflow, and 
the cultural heritage of an organization. Chapter 6 presents a detailed study case, and Figure 165 shows some initial figures 
of merit and their evolution in time regarding the previous captured requirements (Table 28). 

5.8.5.4. Constraints 

Requirements and expectations are also limited by design constraints and stressors (chapter 2, section 4.1). These 
barriers can be provided by the customer or developed during the evolutive process. They are also critical since they limit 
the design effort, and often help enforcing some customer expectations as well. After subsequent design cycles, some of 
these questions might also bring awareness of other constraints which might not have been initially identified.  

5.8.5.5. System Gaps and Questioning Networks 

Developing questioning networks is at the core of this initial phase in the eSARD process. However, here are 
considerations, guidelines, and process descriptions that must be considered. The overall objective here is to identify gaps 
in the system architecture that are necessary for the system to close, so it becomes implementable, fully functional, and thus 
feasible. However, the final goal again is not to create a full system description but to identify major rifts in the completion of 
the system. Components and subsystems among others are also part of the process since they can have feasible known 
solutions (indirect heritage) that do not contribute the other system gaps. 

The development of foundational inquiries is the first step in the eADQNs process. These are mayor questions based 
on design objectives, requirements, and identified drivers, which are meant to start the questioning process around all three 
GBS basic areas. Then, three initial lists are started with a series of questions addressing those major gaps such as:  

Figure 165. Example of evolution of figures of merit over a design process.  
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• Discipline requirements gaps include which requirements are met from a discrete discipline standpoint and how 
that is done, for instance: what is the energy generation system? What kind of structural light weighting is needed?  

• Systems gaps address unsolved (design) or present conflicts (balance), for instance: are there any other unknown 
gaps? Do they represent important heritage conflicts? How deep have SE and DE efforts been advanced?  

• Future gaps. Under all evolutive design principles the system architecture is studied from a continuous standpoint, 
even if the objective is just to create a one-off solution. The more questions are addressing possible upgrades or 
updates (even if they are not required), the better will be the exploration of the design space.   

• Disruptive gaps. Similarly to C-K theory (Hatchuel and Weil, 2002) it is critical in this process that ‘crazy’ or disruptive 
possibilities can be possible. This is done by allowing ‘what-if’ inquiries that could potentially ‘kill the gap by design’ 
while following evolutive principles (section 5.5). The more gaps a design approach can tackle with less components 
the more efficient it becomes, but such disruptions can only be addressed after diving into all design limitations.    

Geometry, behavior, and substance subjects drive the development of these series of questions addressing systems 
gaps. This approach explores from high level issues to all design details that cannot be foreseen beforehand. Thus, such 
approach must consider the following overarching scales in terms of gaps:  

• Highest level gap at any scale, from systems-level topics affecting full architecture to small scale details. 

• Highest level of required innovation to answer design, technology, or process gaps. 

• Highest lack of heritage affecting subsystems, components, structure principles, and methods. 

These questions can be developed by a design facilitator in a group (chief architect), a single designer on its own, or 
by a SE effort using multiple techniques (including automated models). The next section will describe this in detail, but 
general engagement rules for such process are summarized in the following points: 

• There are no limits for the number of questions that can be made.  

• All GBS details should be considered to address all DOI aspects within the system design. 

• Each inquiry needs to be identified, captured, and organized which is critical to create and explore connections. 

• Complementary techniques such as TRIZ can be used to formulate inquiries in any eSARD process.  

• Recording these structures allows to repurpose and reuse them for future upgrades or upcoming efforts. 

• Recording decisions and selections criteria allows tuning future algorithms, training workforce, identify errors, etc. 

• The process is agnostic of any specific toolset to create, capture, and operate eADQNs methods and processes.  

• Gaps can be represented by multiple sources: alphanumeric, analytics, images, sketches, Eng. models, etc. 

• eADQNs can also be used as decision trees capturing the rationale behind a system design path.  

The outcome of this process is a structure set of dynamic questions (eADQN) as Figure 166 shows graphically. These 
questioning networks will present different types of structures depending on the nature of the problem, but this is out of the 
scope of this thesis. This approach was initially designed to be used by low-tech and human-powered workflows (with only 
one or more people involved), as well as to serve as a foundation towards more automated infrastructures such as those 
powered by machine learning frameworks (Herbst and Karagiannis, 2000; Tamke et al., 2018; Xin et al., 2018) and hybrid 
human-machine workflows (Demartini, 2015).  

These structures in general also present interesting training opportunities as well. While these can be captured using 
MBSE tools and other SE techniques, a series of graphical representation principles are provided with the goal of facilitating 
the communication within a 3C evolutive environment, as well as to enhance the study and review of the process at any 
given time before, during, or after the activity. They also help identifying commonalities among studies to model automated 
process later. Figure 166 shows several basic representation rules to develop a three-dimensional descriptive maturation 
space for an eADQN process that include these:  

• Vertical direction (Z) relates to the depth of the detail. The lower the questions the more detailed the inquiry becomes. 

• Each horizontal plane (XY) for every vertical level (Zi) relates to the proximity among concepts and ideas. 

• Size scales the importance of the question, so the bigger it is the more important it is. 

• Links between questions could be done with lines, colors, and symbols, among others while allowing overlaps.  

• Colors can be used to reflect relationship and types as subsystems, disciplines, DOI aspects, GBS topics, heritage 
connections, etc.  
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5.8.5.6. eADQN Generation 

Therefore, the most critical aspect of the eADQN technique is how to efficiently make the right questions to identify 
those critical gaps. Previous sections have explained the process, the context, the rational, main objectives, and even the 
representation of those questing networks. But complex systems in general, and evolutive system in particular (ARR) are 
characterized by several relationships among GBS points. As such, an eADQN model is not just a list of questions, is also 
a network of gaps and relationships. To start creating this network, which will continue evolving and growing over time, the 
eSARD methodology presents a double-level information approach. This means to assess overarching topics based on 
previous gaps, creating links among them, and evaluating their relevance all of which will be constantly changing.  

The first level of information (or system incompleteness in this case) is about addressing the most critical questions 
(nodes) within that network. This means they are tackling key overarching DOI areas as it follows:   

• Missing or undefined elements such as: components, elements, parts, etc.   

• Critical disciplinary knowledge. The feasibility of a system design depends on multiple and concurrent disciplinary 
studies and assessments: which ones are done? Can they be done? Which ones do seem the most critical a priori?  

• Applied or needed technologies including those critical, new, untested, problematic, or presenting key constraints. 

• General DOI topics such as system integration easiness, relative cost, workforce needs, etc.  

The second level of information is about connections among those key question nodes, which follow subsequent 
GBS details for their implementation. In essence, this level questions the most critical gaps and relationships among them. 
Thus, it is about the scope, relevance, and criticality of the connection too. Such criterion is based on these basic principles: 

Figure 166. Example of eADQN created for the discussion regarding a generic electromechanical actuator that includes behavior, 
geometry, and substance topics.   
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• Synergy. Is there a technical, programmatic, or technology connection across inquiries?  

• Complement. Do such inquiries point out to other complementary topics?  

• Dependent. Are there any inquiries presenting dependent or critical relationships?  

• Causality. Does the inquiry relate to gaps with a cause-effect relationship? 

• Areas. Does the link connect gaps among multiple GBS areas? 

• Levels. Does the gap tackle multiple system levels across the system architecture design?  

• Epistemology (optional). Is the question related to probabilistic, counterfactual, or mechanistic links? 

Beyond these selection and exploration principles, there are other overarching principles driven by the environment, 
the culture, and the technical context of the system, which also help identifying and assessing these links such as: 

• Relative Cost. What is the balance between opposed forces? What is the monetary cost?  

• Availability. Is this connection conditioned by the ecosystem of the system? Has it been done before? 

• Applicability. Are different links equally applicable? Does the context or environment condition the link? 

• Feasibility. What is the level of feasibility for this connection? Has this been proven before in the process? 

However, these principles are not the only ones. Just like other links and nodes, these will keep evolving even within 
the same design effort, so these criteria should be adapted. The goal is to dig enough into the details of the concept, that 
the most critical gaps (eAMGs) can be found.  

This questioning network mimics some basics points in the natural evolution process (section 3.3) affecting the 
interconnectivity within the complex system, such as: [1] the importance of small but critical changes in the overall system, 
[2] the balance among species overarching principles. The more critical and fundamental these are, the greater impact they 
can have in terms of efficiency and efficacy for systems and processes.  

Therefore, addressing such gaps will have a ripple effect throughout the system architecture since their impact ratio 
is much higher. Such gaps are often hidden and not obvious because they are not only driven by initial system requirements, 
but also such deepest idiosyncrasies of the solution system. This is like sequencing a specific DNA code, if it can be decoded 
then its essence is understood, and therefore the organism can potentially be fully studied, compared, replicated, and even 
modified. Although, the relationship among such genes and its context requires interaction and more study. 

Since those quintessential links are connecting gaps across sub-systems (e.g., batteries) and disciplines (e.g., 
thermal engineering), they also present a unique opportunity to infuse and evaluate innovative solutions. This is a powerful 
mechanism that can help tackling both extremes of the design spectrum when dealing with [1] new complex systems without 
any heritage, as well as [2] systems requiring upgrades with a very strong and rigid heritage. There are two cases then. 

• New systems (no direct heritage).  If the new system architecture is very innovative and does not have heritage, 
then all critical gaps most likely will be present a higher level. They will have less detail and the infusion of concepts 
or technologies will characterize the effort. For instance, this can be seen during the development of the television 
(Abramson, 2007), when a mechanical approach was first taken due to the lack of heritage. Its failure lead later to a 
completely new type of architecture using analog and then digital electronics instead. How pixels were going to be 
captured, transmitted, and implemented was the core idiosyncrasy of such system architecture, requiring higher levels 
of adaptability and reactivity. Designing for the unknown is complicated, but also quite feasible if multiple options are 
kept open for as long as possible, its context addressed, and enough connections between system gaps, 
requirements, and context explored, captured, and studied in detail. 

• Upgrades (strong direct heritage). On the other hand, if the system at hand is understood as a variation or 
improvement of a system architecture that already presents a solid and proven heritage, then such connections will 
present a lower level of detail, and the infusion and disruption might have less consequences. In this case, indirect 
heritage coming from other fields can be infused more easily. Following a similar example, an upgrade in such system 
could be a new TV architecture that is data-driven (Wi-Fi), so it is a cloud-based solution that only needs an internet 
connection rather than an analog antenna served by physical radio stations. Thus, all operations are done with an 
app, and there is no need for buttons or other physical interfaces. Such design tackles both subsystems as well as 
critical business and programmatic topics. However, these innovations at a subsystem level can also have huge 
effects in the overall performance of the system architecture, even if its fundamental nature is not changed by them.   
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 Maturation Gaps (eAMGs) 

Once the questioning network has been started addressing both system gaps and links, the final step is to rank them, 
since these are the seed for all system maturity gaps that become the starting point of an eSARD. Evolutive architecture 
maturity gaps (eAMGs) are the most critical inconsistencies jeopardizing the feasibility of the system architecture. Thus, the 
objective of this method is to identify and provide criteria towards where the design process should focus to achieve system 
closeness more efficiently and with the right maturity level. All this is driven by feasibility, system performance, and system 
innovation especially with regards to all ARR principles behind the evolutive approach. eAMGs help organizing design efforts 
while providing the biggest impact across the system. So, often this assessment can only be done by diving into the design 
effort and challenging the resilience of the concept through multidisciplinary questioning.  

Therefore, the same ARR principles used to find these gaps are considered to rank them. However, other overarching 
criteria to compare them and most importantly to put them in context. In general, the more points, requirements, and 
disciplines these gaps can address the better starting point they will become. Furthermore, the broader and more detailed 
these connections are, the more efficient and easier to provide disruptive solution the design process will be. These principles 
can be quantified with a matrix to assess and compare them using multiple SE techniques, such as a variation of the house 
of quality or HOQ (Figure 59). In essence the more synergetic and foundational these gaps are the better starting point they 
will be as well. Chapter 6 will present a full example applying all these principles towards the development of a deployment 
subsystem for a portable habitat. 

A summary of this criteria to assess their synergetic potential is presented in the following points and showcased in 
Table 29 presenting both identification and ranking principles. The more influence a gap has on these points the higher it 
will be ranked, and the more critical that gap becomes. Among other assessment points some of the most basic are these: 

• Requirements. This reflects the criticality of the gap towards a system meeting its requirements. The objective of the 
design process conditions both the answer and the process behind it.  

• Constraints. This is about the influence of the gap to both reduce and manage key system constraints. 

• Disciplines. The more disciplines a gap addresses, the more is going to influence the system architecture, which 
means more synergy, complementation, dependency, and causality among standpoints.  

• GBS figures of merit. It is very important to assess the importance of a gap regarding how many GBS areas 
(geometry, behavior, and substance) it tackles directly (section 5.3, 5.4, 5.5), as well as what key variables and 
parameters it affects as well. This influences many areas and applicability principles within the list presented in the 
previous section. This is critical due to the interconnection among design principles and system solutions.  

• Heritage. The lack of heritage could contribute to the importance of the gap since this can condition if there is a 
baseline to compare and validate the system design.  

• Closeness. The relevance of the gap towards the completion and closeness of the system is also critical. This tackles 
account causality, detail levels, and other epistemology principles across all scales and system levels.  

• Programmatic. This point addresses how non-technical aspects are weighted by this gap, such as cost, 
organizational, policies, culture, customer feedback, perception, communication, and marketing, among many more.  

• Unknowns. Does the gap relate or connect to other potential families of solutions that are very complicated to assess 
as feasible, applicable, or available systems? Does the gap highlight too many potential unknows?  

Among all other identified gaps, evolutive architecture maturity gaps (eAMGs) are those being ranked higher 
(Table 29), meaning they are more critical and thus foundational for the system architecture at hand. These gaps do not 
allow for the system design to close, presenting essential disconnections among subsystems or within manufacturing 
uncertainties to name a few. However, at both subsystem and architecture levels these gaps are multidisciplinary in nature 
and most likely will continue changing during the development process. Once those synergetic connections are explored, 
evaluated, and ranked a selection of the most relevant gaps is done. These are multidisciplinary in nature, and their 
development could speed up the design process significantly. Therefore, these become eAMGs and they represent the most 
critical gaps in the feasibility and maturity development of a system architecture. These are also very relevant towards the 
system implementation and optimization. eAMGs are the starting point of the design path to mature the system. Some 
theories and methodologies previously explored in chapter 3 pay attention to the design activity itself (Gero and 
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Kannengiesser, 2004), as well as all underlining principles behind complex systems (Altshuller, 2002). However, within the 
eSARD approach the goal is also to address both from a synergetic standpoint, with the clear objective of producing a 
feasible system architecture in the most efficient, fast, upgradable, and scalable way possible. Therefore, this approach is 
about holistic views across levels, disciplines, and scales.   

However, the nature of the system at hand as well as its cultural and technical context heavily influence these 
questions and connections. This approach relays on being open and flexible to better explore the maturation space while 
assessing missing gaps and topics. By centering the effort on those critical connections, new solutions can be infused, since 
the bias towards the heritage option is removed at the level of the system. Such process is dynamic and allows the designer 
(person) or the workflow (machine) to concentrate the effort on what ‘breaks’ or enables the system design. In other words, 
potentially answering those critical questions with specific but creative solutions closes the system, matures the concept, 
and enables its implementation all together.  

The approach of this research is based on research, observation, proven practice, and some of the state-of-the-art 
design methodologies as a foundation. Nevertheless, it is specifically oriented towards evolutive hardware-based disruptive 
systems architectures with ARR characteristics, such as system adaptability, reactivity, and resources regeneration.  

It is important to remember that an evolutive architecture design (eSARD) methodology can be used to finish a system 
as well as to mature a concept. This approach means that the design effort could be oriented not towards addressing every 
detail of the system architecture, but to develop a strategy or design path only in response to those eAMGs. The alternative 
is trying to identify all identified gaps that could be needed to address requirements, which often cannot be realistic.  

For instance, among the many requirements for a lightweight bike chassis, structure joints and the manufacturing 
technique can drive the feasibility of the architecture. As previously stated, chapter 6 will present a more detailed study case, 
however following the previous example of a generic electromechanical device Table 29 shows an analysis of key gaps used 
to identify eAMGs. On Table 29 the following areas are being addressed:  

• DOI Gaps (top). They are organized by GBS principles. The goal towards identifying eAMGs is to explore and select 
gaps based on GBS details while considering all DOI general aspects of a system architecture. Understanding these 
areas helps a chief architect or facilitator to explore needs and options, going beyond requirements and suggestions 
provided by customer or former practices. The broader and deeper the search can be, the better. A selection of these 
is found at the top part of Table 29 and organized by their tendency towards the GBS area.  

• Selection and refinement criteria for gaps (mid-top left). This presents a summary of different criteria used to 
assess the importance of such gaps towards closing the design and relationship among them. Specific selection 
parameters are later tuned by other refinement aspects (e.g., relative cost) that consider overarching solutions and 
relationships between them. These results are a first high-level assessment of the importance of each gap.  

• Ranking parameters (left). These are applied to specifically assess the relative weight of all gaps into the system 
architecture design. Among some techniques the use of weighted numbers is recommended to assess criticality (e.g., 
1 for lowest and 10 for highest). Once more, all parameters used here can be changed based on the system design.  

• Weighted importance (bottom). The result of ranking these parameters is a number by which gaps are compared. 

• Relative importance (bottom). Beyond such number, selection and raking criteria leave room to finally assess from 
a chief architect’s perspective or a workflow process what the starting point for the process should be. 

• System Importance (left). This provides a nuance to weight the selection parameters based on different criteria.  

• eAMGs (top, red). The final selection of eAMGs on a specific design round are highlighted in red.  

• Legend. This is applicable to Table 29 as it follows: 

• Selection: red (high), orange (medium), purple (low) 

• Ranking: 1 for low criticality and 10 for high criticality 

Nevertheless, none of these parameters and numbers are absolute.  Getting deeper into the development process 
will help identify other eAMGs, as well as to change the relevance of certain gaps that can be addressed and surpassed by 
new design strategies. The more this exploration and maturation process is developed, the more critical eAMGs will be 
found. Therefore, this not only becomes a tool to design, redesign, and upgrade a system architecture, but it is also a tool to 
validate heritage solutions within new contexts or applications.   
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Selection Synergistic  ● ● ●   ●  ●  ●   

 Complementary  ● ● ●  ● ● ● ● ● ● ● ● 

 Dependencies  ● ● ● ● ● ● ● ● ● ●   

 Direct causality  ●  ● ●  ● ● ● ● ●   

 Multiple areas  ● ● ● ● ● ● ● ● ● ● ● ● 

 Many levels   ● ● ● ● ● ● ● ● ● ● ● ● 

Refined Relative Cost ● ● ● ● ●  ● ● ● ● ● ●  

 Availability ● ● ● ● ● ● ● ● ● ● ● ● ● 

 Applicability ● ● ● ● ● ● ● ● ● ● ● ● ● 

 Feasibility ● ● ● ● ● ● ● ● ● ● ● ● ● 

Partial Total  ● ● ● ● ● ● ● ● ● ● ● ● 

Raking  BSG topics  9 1 1 3 2 3 1 8 2 9 1 2 

1 Low | 10 High Requirements  4 4 5 1 7 1 8 7 1 9 2 1 

 Constraints  3 10 4 2 3 8 2 8 2 5 8 3 

 Disciplines   9 2 2 2 1 2 10 10 2 9 3 1 

 Heritage  2 1 1 4 2 1 1 1 3 2 2 4 

 Closeness   9 3 3 5 9 3 1 4 1 10 1 3 

 Programmatic  2 5 1 2 2 1 2 9 3 4 2 4 

 Unknowns  5 2 3 4 1 2 3 7 8 2 1 1 

Weighted Importance  43 28 20 23 27 21 28 54 22 43 28 20 

Relative Importance  ● ● ● ● ● ● ● ● ● ● ● ● 

Table 29. Identification, comparison, and ranking of system design gaps and eAMGs within and eSARD approach. 
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 Design Strategy and Seed Geometries (eASGs) 

The identification of eAMGs as the starting point of the evolutive design process leads to the development of a design 
strategy that tackles those gaps, while it keeps considering other operations, optimization, and implementation aspects. 
Such design strategies address primary and secondary requirements, as well as key synergies among eAMGs that can be 
combined and dismissed over time. Such process is done using a networked flow within a 3C design environment 
(concurrent, collaborative, and communicative) that was presented in section 5.6.6. 

Therefore, the next step within an eSARD design activity is to create a seed concept that addresses those initial 
eAMGs. Such concept will act as a seed to [2] explore multiple design paths synergistically and addressing all DOI related 
topics, and [2] to lead subsequent design cycles to further mature the system and include other aspects such as the use of 
resources. Like any other step within an eSARD approach, these are fluid and will change over time following the evolution 
of the process and the system. This seed concept development often has two parts or tools: 

• Evolutive sketches addressing overall concepts and relationships as a visual starting point for the design.  

• Evolutive geometries provide detail definition at each design cycle while serve as technical documentation too. 

The following sections explain in detail what these tools are based upon, what they can be, how they can be used 
within an evolutive approach, and how they can be complemented by other system design engineering methodologies. 

 Evolutive Seed Sketch (eSSs) 

An evolutive sketch (Figure 168) is a visual concept definition that helps focusing design efforts while addressing one 
or more eAMGs as the starting point of the evolutive process. This graphic and conceptual design tool is fast, facilitated, 
multidisciplinary, it changes continuously, and it uses multiple types of information and graphic techniques. Beyond a pure 
concept sketch approach, an evolutive sketch serves these multiple key objectives:  

• Geometry. Seed evolutive sketches create a geometrical and reference construct, used as a critical common ground 
that tackles GBS details of a system architecture. Geometry here does not mean only shape, volume, or spatial 
relationships, but also logical and temporal aspects. Thus, this objective is critical for multiple disciplines to start 
thinking about the design approach. For instance, until there is a geometry sketch, mechanical, thermal, and 
packaging related disciplines cannot start assessing solutions. This is crucial when dealing with hardware-based 
system architectures. Hence, evolutive sketches facilitate, create, and show information regarding: 

• Volumes and shapes that are presented using and hand drawing, diagrams, pictures, etc.  

• Relationships of any kind addressing GBS details and DOI topics (e.g., block diagrams). 

• Configurations using a very descriptive approach through symbols, colors, diagrams, etc. (Figure 167) 

• Evolutionary states or phases that are snapshots of the system evolution in time. 

• Disciplinary synergies. These sketches develop design paths that start with eAMGs, but they are also used to tackle 
and study those gaps. Along that approach, one of its objectives is to create a framework for all disciplines and 
practices involved in such development, so they start sharing information and interacting among them and to provide 
a seed that serves a starting reference. Such framework includes among others: design approaches, structural 
parameters, logical schemes, space-time references, and procedural flows, among many more.    

• GBS initial details. In addition to synergies and geometrical aspects, these evolutive sketches need to address 
details of the maturation and implementation of the system. Providing a reference and visual a representation of these 
details (e.g., location of sensor, materials, etc.) enable a fast track towards filling or detailing other gaps. 

• Associated DOI processes. Similarly, the sooner topics such as manufacturing or resource utilization are addressed 
within a sketch, the stronger the design path will be. These sketches present a balance between specific GBS details 
and overarching DOI principles in all key questions since both scales are needed to gradually mature the system.  

• Figures of merits. Combining all these points withing eAMGs points out to a series of figures of merit that become 
the most definitory parameters of the system and should be tackled by the sketch. An evolutive sketch will change 
quickly and those figures will do as well. For instance, these could be the total mass of the system, the final volume 
of a compacted assembly, and maximum power require by a system architecture, to name a few.  
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Nevertheless, such sketch is not necessarily handmade, and it can very well be a conceptual computer model capable 
of addressing, capturing, and connecting key points within a design path. Any technique to create such sketch must include 
the integration of multiple types of information (Figure 167) that can be summarized with these points: 

• Media. Sketching the concept should use a media that is easy to share, communicate, and even collaborate upon. 
This media can be physical (e.g., paper), digital (e.g., whiteboard app), and even virtual (e.g., collaborative VR). 
Digital media offers an advantage since it allows easier modifications and updates during and after the design effort. 
This activity will continue for as long as the design needs more and better definitions, so it will be constantly 
addressing changes while details are being redefined from a disciplinary, systems, and DOI perspectives.  

• Facilitation. An evolutive sketching activity is or can be collaborative in nature, but it also requires facilitation to 
prioritize efforts and select the best design paths, while it addresses feasible solutions for initial and subsequent 
eAMGs. This facilitation can be done by a chief architect or a workflow, which could be less efficient. Its objective is 
to enable multiple perspectives (e.g., team members, discipline models, etc.) that focus their attention into the design 
strategy, so they can all assess concurrently the validity of their approach from their different perspectives. 

• Workflow. Evolutive sketching starts a collaborative and design-focused activity. Such connected activity leads to 
independent assessments and microstudies that are concurrently done with a disciplinary standpoint. For instance, 
after an initial sketch that presents the overall geometry of a device (Figure 168), the thermal team assesses the 
validity of such initial geometry, while manufacturing constraints can be also studied by mechanical representatives.  

• Information. All types of information and data are valid at this initial phase, see Figure 167.Hola 

• Constant revisions. Each sketch can present multiple modifications during the design effort. 

In summary, an evolutive sketch is a powerful tool, especially for facilitated groups or workflows that allow to quickly 
refocus objectives while having all disciplines addressing key eAMGs concurrently and efficiently. Bringing both geometry 
and logical structures together (especially for hardware based ARR architectures) within a fast and highly adaptable 
framework, sparks the creative thinking while it helps increasing efficiency by providing a common reference.   

Figure 167. Examples of concept definition elements used within a fast evolutive sketch (sketch by Raul Polit Casillas, 2009).  

Figure 168. Example of an evolutive sketch used in the design of a fictional and generic small electronic device.  
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 Seed Evolutive Architectures (eASGs) 
The objective of this design methodology is to enable the maturation of the system while addressing its feasibility, 

thus such effort tends towards a more detailed geometrical construct or evolutive architecture seed geometry (eASG). This 
model incorporates evolutive sketches among other inputs. In essence, it is a more detailed design seed that addresses 
GBS details and DOI areas conceptually, while it provides detailed geographical definition through measurements, 
interfaces, computer models, etc. This is not the final graphical and logical documentation that fully describes the system 
because since eASGs still represent and undergoing effort and will keep changing until the full maturation of the design. This 
tool though is very relevant considering that system adaptability is a foundational aspect of all evolutive system architectures 
and subsequent development processes. This multidisciplinary trend keeps impacting multiple areas of the design 
engineering discipline when data-driven and multidisciplinary design techniques coexist (Cavas-Martínez et al., 2020). Some 
of the biggest differences with more traditional geometrical descriptions are summarized here: 

• Adaptability. These eASGs are created to keep changing. In essence these graphics are to traditional sketches to 
what animated cartoons are to a painting. They are dynamic (manual or not) so the use of layers, drag-and-drop 
models, stickers, and other easy to modify techniques is highly recommended.  

• Multisource. The combination of technical geometry, diagrams, figures of merit (alphanumerical data) as well as 
colors, images, 3D models, and symbols is at the core of this bidirectional graphic approach tackling eAMGs.  

A key goal of these eASGs is to continue the development of the system architecture, while helping to manage other 
design efforts supporting eAMGs. Critical objectives of this toils are summarized on these points: 

• Maturity enhancement. eASGs are used to manage, facilitate, and foster increments in the design maturity of a 
system architecture by addressing more connections among other disciplines and DOI areas.    

• More definition. They systemically develop and integrate more details (GBS) on each design cycle.  

• eAMGs design strategy enhancement. eASGs should be used to taunt current eAMGs and find new ones. It is key 
for facilitators or workflows to assess and try new connections and links beyond the current state at every cycle.  

These evolutive tools display, manage, and use the following type of elements in a concurrent and collaborative way: 

• Detailed geometries using multiple views and graphical schemes including hand drawing, CAD, algorithms, etc. 

• Descriptive logical information such as flow-charts, data-visualizations, visual scripts, programming flows, etc. 

• Figures of merit based on alphanumeric data (both qualifiable and quantifiable) that address key parameters. 

Furthermore, at this level of sketch and geometry detail, eASGs workflows present the following characteristics:  

• Tool agnostic. This approach is independent from any specific toolset, and it is based upon their capabilities.   

• Constant change over time (e.g., mechanical dynamics, changing states, upgrades, etc.). Even if the objective of 
the design effort is static (e.g., a chair), the nature of a geometry seed and its process is evolutive in nature, so 
materials, manufacturing considerations, indirect behaviors, or future potential updates, among other aspects are part 
of its design thinking approach and dynamic in nature.  

Figure 169. Example of an evolutive architecture seed geometry (eASGs) for a personal habitat (© 2020 Raul Polit Casillas). 
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 Evolutive Seed Models (eASMs) 

Previous tools have addressed geometry, behavior, and substance topics related to multiple maturity gaps in an 
evolutive system architecture (eAMGs) development. Evolutive geometries continue the design process mainly through a 
facilitated geometrical and systems perspective that considers other procedural, programmatic, and logical aspects at a very 
high level. These previous tools are concentrated on the design edge (design sector, Figure 144), addressing DE aspects 
from such enhanced perspective. Hence, these provided an initial geometry (e.g., shape and logical elements) for the system 
that is critical for any hardware-based effort. However, complex systems in general, and evolutive system architectures in 
particular also require of other logical, parametrical, and relational aspects to be also considered, managed, explored, and 
improved to achieve enough system maturity. This process enables feasible and more holistic solutions. 

Therefore, this is the starting point for evolutive seed models or eASMs. These are a SE-oriented toolset developed 
as a modification of several traditional SE models to address ARR evolutive needs. These can tackle both GBS details and 
DOI general areas, which are especially relevant here. eASMs present the following key objectives: 

• Non-geometrical relationships. eASMs capture and manage all types of logical relationships between systems, 
process, components, and other critical aspects of an evolutive system architecture. This includes multiple GBS 
details that are relevant to the definition and development of the system such as:  

• Geometry enhancements that increase or complement any level of information that is used in geometrical 
frameworks using CAD and BIM (e.g., interfaces, number of components, integration phases, vendor, etc.). 

• Behavioral functions affect the system internally, externally, or both. These include among others machine-
state topics, hierarchies, data-architecture flows, and other functional descriptive models.  

• Substance variables and feedbacks are related to all DOI aspects. These could be simple (e.g., power, mass, 
etc.) or complex presenting secondary relationships (e.g., FEA derived measurements, data feedbacks, etc.) 

• Quantifiable parameters and qualifiable enhancements. Like other SE tools, capturing parameters that can be 
quantified (e.g., mass, dimensions, power) is critical not only to evaluate the system but also to compare among 
alternatives, address changes, etc. eASMs tame the process by addressing other non-quantifiable relationships that 
provide nuances and key perspectives among such connections and parameters.  

• Overall DOI perspectives. Beyond the development of a system from a life cycle standpoint, the evolutive approach 
also tackles design, operations, and implementations aspects simultaneously. Thus, eASMs should be built first 
around all identified and most critical eAMGs.  

eASMs are in essence a family of tools addressing key SE needs in an evolutive development. As part of the design 
vector, these can and must be connected and paired with eASGs. DE and SE practices are merged within the evolutive 
approach, thus these evolutive system models present some key characteristics such as: 

• Feedback loop / open requirements. These need to connect with other evolutive tools allowing multiple iterative 
cycles to improve designs. So, they are designed to capture a constant flow and not to just provide a final answer.  

• Figures of merit. Capturing, highlighting, and increasing the numbers of these key parameters is critical.   

• Optimization paths. These models are a base for further data-driven optimization activities. They should be open 
towards refining, creating, and analyzing new connections among them under a synergic optimization principle. 

• Linking eASGs and eAMGs. The implementation of links and secondary parameters as doors or ports towards 
connecting these tools throughout multiple cycles is vital. These are not individual tools but nodes within a network.  

• Evolutive. These models are multidisciplinary in nature, attending all GBS, DOI and ARR topics.  

• Man-machine. All associated workflows to these models should be both human and machine friendly.   

This toolset of eASMs is based on standard models such as mass equipment list (MEL, Chung et al., 2012), power 
equipment lists (PEL, Ochoa et al., 2009; Pasquier et al., 2019), WBS, SEMP, FFBD, among others (Table 15). There are 
two big families of tools within the ecosystem of eASMs: [1] GBS equipment list (eGBSEL), and [2] evolutive system diagrams 
(eSD). Next sections elaborate a bit more in detail these tools, however the full development of SE tools supporting 
optimization and implementation activities is outside the scope of this research theory and its results.  
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 Evolutive System Diagram (eSD) 

Within the eSARD approach (section 5.6) and based on the design activity in all DOI sectors, the development of 2D 
or 3D evolutive system diagrams (eSD) showcases multiple design subjects in the workflow, such as: 

• Systems relationships among system, subsystems, components, inputs, processes, and connections.  

• Procedural flows (e.g., integration, testing, etc.) addressing resource utilization and implementation steps.  

• Operational and geometrical modes based upon the adaptability of the system. 

• Functional and information schemes addressing the reactivity of the system. 

• Any other relationship and flow among DOI areas and across system scales and levels. 

The use of eSD diagrams for these purposes requires several rules and characteristics summarized as it follows:  

• Expandability. Because the evolutive approach is based on the notion of continuous design, any diagram scheme 
needs to enable such continuity both functionally and dimensionally. Similarly, to how eADQNs are captured on an 
endless 3D environment, these eSDs need to be implemented with an expansion and continuation mindset. 

• Multisource. eSDs should be able to integrate multiple sources of information as a complement to the design 
workflow they show graphically, logically, and systematically.  

• Multiuser. Both framework and workflow established to create such diagrams must embrace all 3C principles, 
allowing multiple agents to collaborate, as well as to easily capture and restart the process at any given time.  

• Machine friendly. Evolutive techniques are not only for human-centered workflows since they can be enhanced by 
data-driven techniques such as Machine learning, AI, genetic programming (section 3.3, Table 17), etc. 

 GBS Equipment List (eGBSEL) 

Among some of the tools used within the eSARD approach, the GBS equipment list or eGBSEL summarizes from a 
foundational standpoint the implementation of evolutive architecture seed models (eASMs) very well. While the goal of this 
research is to address the gap that evolutive architectures address through the eSARD path, it is important to showcase 
some key tools complementing this research. These models reinforce the validity of the methodology and empathize its 
application. However, eGBSEL is not fully developed in this section since only its basics are presented.  

From an application standpoint eGBSELs could be used across the full eSARD workflow. In essence, they are a SE 
complement to a design, implementation, and operations effort. However, they also represent a good foundation towards 
further optimization efforts. This tool presents the following basic characteristics: 

• Multisector. They can be used within any DOI sector. However, they are ideal for the type of activity (e.g., 
implementation) where, tracking, capturing, and management are needed. On each one of these DOI sectors there 
are specific aspects related to geometry, behavior, and substance that an eGBSEL model will capture. Furthermore, 
they address the networked nature of an eSARD process and the complex reality behind evolutive system 
architectures, where multiple areas defining system characteristics, performance, and development are 
interconnected across scales and levels. Therefore, the domain for this models expands across sectors.   

• Data parameters. These capture mostly quantifiable parameters, especially those figures of merit that are 
foundational to address eAMGs by the system solution. For instance, mass or power are traditional figures of merit 
in many technical fields, while the number of operations, data rates, or carbon footprint are key in others. All these 
parameters have ripple effects throughout the system, and they represent the best way to keep track of the evolution 
the system over multiple design cycles. Although if these parameters are quantifiable then multiple mathematical 
operations can be done with them, which paves the way to parametric studies as well as other optimization 
techniques. So, quantifiable rules are applied to both selection criteria and translation values.  

• Data reinforcement. For each data parameter captured in these models there is a complementary and multisource 
information that can help understanding, evaluating, and even predicting patterns and conclusions in any subsequent 
studies. These reinforcements are not only alphanumerical in nature; thus colors, symbols, icons, images, diagrams, 
videos, and other types of information are elements used within this category. Any data parameter and associated 
reinforcement can always be multiple and linked to each other.  

• Links and connections. Any parameter, reinforcement, or topic is not only a value but also a node within an 
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information network within this approach. To improve the visualization of these connections, as well as even to help 
categorizing them eGBSELs show all these connections both graphically and syntactically.  

• Lifecycle / development cycle. Modeling an ever-changing evolutive system needs coordinates for such process. 
These include among others the following: [1] objective of the modeling (e.g., system, sub-system, component, etc.), 
[2] development phase and milestone (e.g., PDR, CDR, ORR, etc.) conditioning the level of detail, density of 
connections, etc., [3] lifecycle phase of the system (e.g., design, analysis, operations, decommission, etc.), and [4] 
temporal print and schedule. This is key since any eGBSEL develop within an eASM effort responds to a continuous 
cycle and will be eventually updated, upgraded, redone, or even finished along such design process.  

• Multidimensional. However, these models are not bidimensional in any way since all connections among them and 
their evolution in time have a multidimensional nature as well. Thus, each parameter could also be understood as a 
vector or a matrix (link) addressing multiple states, generations, and parametric variations within the system. 

eGBSELs operate around key figures of merit that complete, qualify, extend, quantify, and make feasible most 
relevant eAMGs of a system architecture. So, if such gaps are being addressed by seed geometries along design paths, 
these models capture and manage key parameters (figures of merit) and most relevant relationships behind them. For 
instance, in developing the same generic electro-mechanical system from previous examples, the packing factor was 
identified as an eAMG (Table 29). Associated to that gap is the volume of any subsystem that is integrated within such 
device, which becomes a figure of merit and therefore a parameter in the eGBSEL. Then, such parameter can be located 
within the eSARD design sector and the geometrical details of the GBS trifecta. Under such approach, this also relates to 
material properties (e.g., mass) and the selection of manufacturing technique (e.g., availability feasibility, cost). Furthermore, 
there are also links to other DOI areas such as operations (e.g., how the system is deployed), which also conditions how the 
system is integrated (implementation). In essence, this exemplifies the complexity behind an eSAR system and its design 
process. Although, these parameters are not only about measuring cubic meters and other analytical values, but also about 
integration procedures that are better explained through videos, images, etc. There are many other connections, some of 
them are previously known and some others are identified along the process, thus these eGBSELs need to capture a network 
of relationships. Figure 170 shows a simplified eGBSEL where several elements and operations are represented: 

• eGBSEL information (top). This area captures topics such as system architecture, task, study, development phase, 
lifecycle step, timeline stamp, etc. These provide coordinates for all modeling tools, as well as they become a 
reference for other subsequent development efforts. Any variations or new generations can also use them.   

• In / out parameters (left & right columns). These are connection ports for other eGBSELs to create links among 
them, as well as for the tool to provide outputs based on many inputs provided within the concept network.  

• Topic such as system, subsystem, or subject (A#, 2nd left column). This area relates to any point that needs to be 
studied and tracked. They present a hierarchal and relational reference to list and group them at multiple levels.  

• DOI areas (top second row) address all three key sectors in the eSARD methodology including the following: 

• GBS areas (columns below DOI area). Geometry, behavior, and substance overall detailed topics.  

• Parameters (PG#, PB#, PS#, within each GBS column). These are defined by variable identification, unit, 
description, etc. These parameters can have a quantifiable, quantifiable, or hybrid nature.  

• Reinforcements (RG#, RB#, RS#, next to parameter boxes) include images, videos, drawings, etc.  

• Overall links (LA#, next to system column) are ports connecting and managing any input within the eGBSEL. 

eGBSELs serve as a complement or foundation for other more complex data-driven frameworks capable of 
performing more elaborated analysis. Nevertheless, within this layout, multiple operations can be done such as:   

• Listing of parameters, connections, and associated parameters that will grow when more details are addressed. 

• Grouping of those parameters enabling other analysis techniques.  

• Quantification of parameters, mathematical analysis (e.g., total sums, etc.), etc.  

• Qualification of those parameters thought reinforcement, links, color maps, and other methods.  

• Comparison among entries and links, as well as identification of gaps.  

• Ranking based upon multi-criteria and with regards to quantification, qualification, or hybrid principles.   

• Linking between parameters, groups, areas, subtopics, etc.  
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• Comparative analysis based on all the previous points, as well as any other induced criteria.  

• Causality analysis among entries, and especially links within the model.  

• Feasibility analysis based on different criteria to identify gaps, contradictions, oppositions, etc.  

Therefore, eGBSELs present a simple but powerful tool to address not only parameters associated with eAMGs, but 
also connections and links among development areas, system architecture subsystems, and even unknown relationships. 

 Architecture Maturity Levels (eAML)  

While processes and tools are critical to mature any system architecture design, it is also important to assess what 
is the level of system development and maturation required or achieved with the following actions: 

• Evaluate the solution from a maturity and feasibility standpoints.  

• Assess remaining efforts to enable the completion of the system concept. 

• Manage current and future design efforts and resources. 

• Compare a specific solution against design alternatives, system variations, future updates, upgrades, etc.  

• Support system performance evaluations and studies. 

• Determine the importance of eAMGs for a given system architecture (qualification and qualification)  

• Provide a quick reference for designers and workflows to assess the maturity of the system and manage future efforts. 

Historically there have been several scales created to assess these levels in the evolution of a system, as well as 
some of its components as presented in section 3.2. Among others, here is a summary of the most relevant: 

• Technology readiness levels (TRL). These were originally created by NASA in the 1970s to assess how mature a 
specific technology was, so multiple technology options could be evaluated towards a final system development 
(Mankins, 1995). Nowadays, TRLs are used across industries and countries worldwide (Tomaschek et al., 2016). 
There are nine levels addressing all different stages of a technology development lifecycle (Figure 171, NASA, 2014), 
such as: [1] basic principles and technology research, [2] technology concept formulation and feasibility proof, [3] 
demonstration of proof of concept, analytically and/or experimentally, [4] component and/or breadboard validation in 
a laboratory environment, [5] component and/or breadboard validation in a relevant environment, [6] system and 
subsystem model or prototype demonstration in a relevant environment, [7] demonstration of a system prototype, [8] 
system validated in a real environment, [9] actual system proven in real conditions (heritage). While this approach 
can guide the technology development through its lifecycle it does not address areas such as system design, system 
efficiency, and other system implementation topics.  

Figure 170. Simplified version of a generic evolutive geometry, behavior, and substance equipmment list (eGBSEL).   
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• Concept maturity levels (CML). These have also been used in design and 
formulation work across multiple industries such as MedTech or aerospace. 
They are used to assess the maturity of a concept, as well as the capability 
of its development to meet basic requirements through different reviews 
and gates (Wessen et al., 2013). Nevertheless, this approach does not 
tackle in depth other implementation aspects since it only addresses if the 
concept is mature enough for a PDR level.  

• Integration readiness levels (IRL) address the integration of system 
components and data among interfaces and across all different hierarchical 
levels (Jesus and Jr., 2018; Long, 2011). There are seven levels going from 
the interface between technologies (level 1) to the verification and validation 
of integrated technologies (level 7) (Eisner, 2011). 

• System maturity levels (SML). These are based on both TRL and IRLs to 
assess several human subjective aspects in the process of maturing a 
system from a probabilistic standpoint (Tan et al., 2011). 

• Modeling maturity levels (MML). These address modeling phases within 
a software development effort ((Kleppe et al., 2003) with the goal to improve 
processes while evaluating teams and workflows, etc.  

• Capability maturity models (CMM) address the degree of formality, 
development, and optimization within a software project including initial, 
repeatable, defined, capable, and efficient levels (Paulk et al., 1993). 

• Implementation maturity models (IMM) are an evolution of CMMs. It is 
applied to software implementation processes that consider human resources, information access, available means 
or resources, and control techniques, among others (Persse, 2001). 

• Testing maturity models (TML) are based on CMM to assess testing capabilities. There are also five levels going 
from: [1] no testing, [2] definition, [3] integration, [4] management, and [5] optimization (Burnstein et al., 1998). 

• Manufacturing readiness levels (MRL) assess the maturity of multiple manufacturing processes for industry 
assessments, supplier analysis, supply change studies, etc. There are ten MRL levels or threads (Blokdyk, 2019). 

While these approaches assess the system, its components, and the system completion phase from a very 
specialized perspective, such perspective lacks synergy (Gove and Uzdzinski, 2013). For instance, these approaches are 
about [1] assessing maturation without implementation, [2] technology feasibility without addressing concept designs, and 
[3] system design perspective without assessing implementation schemes or solution alternatives. Contrarily, an evolutive 
architecture based on ARR principles is in constant change, and its subsequent evolutive design process (eSARD) considers 
all DOI aspects. Thus, to evaluate the maturity of an evolutive system architecture (eSAR), as well as to help managing 
multiple design efforts a more holistic index is needed based on some aforementioned principles behind these other scales.  

Architecture Maturity Levels (AML) are such holistic reference scale that is used to address multiple maturity 
aspects within the eSARs development process. These levels address all three DOI areas by tackling these areas: 

• Definition. This addresses the full system design, its operative scheme, and the implementation path. There are 
multiple levels and gates (e.g., PDR, CDR, etc.) within the design process. AMLs measure how close the system is 
to reach the level of definition required at each gate. The higher the AML is for a system design, the more definition 
it possesses in any DOI area (design, operations, and implementation). 

• Completeness. AMGs present gaps in the completeness of a system independently from how defined such system 
design or its process could be. AMLs are also a tool to measure such completeness. The higher the number is within 
an AMG scale, the more relevant gap it becomes and the lower an associated AML level becomes (see Table 30). 

• Feasibility. Finally and complementing such system completeness, this scale also considers how feasible a system 
design actually is. This assessment is critical and considers all three DOI areas too. This is especially key with new 
systems, since it measures how feasible the next generation of a system becomes. This also measures indirectly 
system performance and how much the new generation differs from direct or indirect heritage solutions (DOI). The 

Figure 171. TRL levels after NASA (2014). 
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more feasible the system design, its operative mode, and all implementation paths are, the higher the AML is.  

Therefore, the AML scale provides a number from one to nine for each DOI area. The lower the number, the less 
mature the system is in that area. Each DOI area of maturity assessment considers multiple geometry, behavior, and 
substance topics (GBS), as well the importance and severity of their associated AMGs. For instance, an evolutive 
architecture with an AML 354 has a low level three regarding design maturity (geometry), a higher level five of operation 
definition (behavior), and a level four with regards to implementation, feasibility, and description. Those three digits could be 
averaged to provide a single AML level addressing feasibility. In this case the average simplified AML will be four. Table 30 
shows a more detailed description of these compound scale factors, and Figure 172 present a three-dimensional graphical 
representation of AML evaluation levels. AMLs are also a way to assess the importance and number of critical AMGs. 

AMLs are used to plan, manage, and organize design efforts, as well as to create comparison metrics among: [1] 
alternative solutions, [2] system variations within the same design path (continuous design), and [3] alternative solutions 
regarding infusion options and integration. These levels can be applied to system, subsystem, components, and processes. 

Levels Design Operation Implementation Gates Gaps 

1 Research Research Research Requirement Concept / Heritage 

2 Concept  Approach Resources SFR Architectural level 

3 Initial design Scheme Strategy PDR System level 

4 Simulated design Simulation Simulation CDR Subsystem level 

5 Prototyped design  Laboratory Prototype TRR Component level 

6 Tested design Relevant Env. Testing SVR Test level 

7 Refined design  Analog Env.  One-off  ORR Implementation level 

8 Operated design Real Environment Short Series  OPRR Operation level 

9 Proven design Feedback Production  Real system  
Table 30. Evolutive architecture maturity levels (eAMLs) considering system design, operations, and implementation aspects.  

Thus, AML can be used for other purposes during the development of a new system architecture such as:  

• Design assessment and management.  

• Evaluation and comparison among solutions. 

• Assessment between design phases. 

• Management and schedule of resources (e.g.,    
   workforce, computational power, etc.) 

• Results assessment. 

• Heritage validation. 

• Technology infusion, assessment, and roadmaps. 

AMLs also represent a simplified way to address 
the complexity of the process towards developing 
evolutive system architectures based upon ARR 
principles (adaptability, reactivity, and regeneration). 
These levels are not meant to become a rigid scale, but 
rather a flexible approach that can be tuned to the needs 
of the field, challenge, and culture, while providing a 
common ground across disciplines and systems.  

  
Figure 172. AMG levels for system architecture and subsystems. 
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 Refining Design, Fast Synchronous Design Cycles 

Once design flows and working frameworks have been outlined, maturity metrics established, and design principles 
and objectives defined, it is key to understand how this development approach advances towards addressing ARR design 
goals. The eSARD methodology tackles [1] overall architecture (macro scale) aspects, as well as [2] detailed discipline topics 
regarding subsystems (micro scale) simultaneously, to achieve the maturity of a system architecture fast and efficiently.  

The evolutive approach combines systems engineering and design engineering methodologies so any system 
architecture solution is considered an instantiation within such continuous process. Thus, the eSARD approach requires 
multiple design cycles tackling subsequent system maturation phases, alternative design paths, and comparative studies 
among design species. This synchronous process is conducted within the 3C framework tackling simultaneously all DOI 
areas (design, operations, and implementation) and system levels, from multidisciplinary standpoints and across the system 
lifecycle. This synchronicity in the method is achieved by developing and improving the starting point of this process through 
AMGs, since they tackle key synergetic topics while facilitating efforts across teams, machines, and individuals. The eSARD 
process has a universal standpoint, but it is optimized towards complex hardware-based system architecture designs. As a 
workflow this process has a series of six networked phases among all DOI sectors as Table 31 summarizes below.   

Evolutive Fast Synchronous Design Cycles 

 Objectives Inputs Tools Outputs 

Exploration • Explore goals  

• Explore trade space 

• Identify AMG 

• Assess drivers / ARR 

• Requirements 

• Constraints 

• Goals 
 

• eADQNs 
 

• eADQNs 

• eAMGs 

Design • Architecture space 

• Trade space path 

• eAMG strategy 

• eADQNs 

• eAMGs 

• Client inputs 

• eASGs 

• Generative CAD 

• Parametric CAD 

• 3C sessions 

• eASGs 

• eASMs 
 

Validation • Basic analysis 

• Prototyping  

• Parametric studies 

• ASG validation 

• eADQNs 

• eAMGs 

• eASGs 

• eASMs 

• Multidisciplinary 
analysis 

• Prototyping 

• 3C Sessions 

• eAML 

• eASMs 

• V&V path 

• Testing path 

Implementation • Implementation path 
(manufacturing, coding 
fabrication, etc.) 

• V&V strategy 

• Substance path 

• eADQNs 

• eAMGs 

• eASGs 
 

• Impl-eASMs 

• 3C sessions 

• Impl-eASMs 

• Prototype 

• Production 

• Deployment 

Operations • Ops-Con strategy 

• Operative path 

• Operative architecture 

• eADQN 

• eAMG 

• eASG 

• eASM  

• Ops-eASM 

• 3C sessions 

• Ops-eASMs 

• Ops-Con Arch.  
 

Optimization • Optimization path 

• New eASGs 

• Better efficiency 

• Better performance 

• Reuse / eepurpose 

• Feedback 

• eADQN 

• eAMG 

• eASG 

• Analysis AMBS 

• Opt-eASM 

• 3C sessions  

• Opt-eASMs 

• New eASGs 

• New eASMs 
 
 

Table 31. Evolutive fast synchronous design cycles objectives, tools, and processes within the eSARD methodology. 
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 Metrics and Comparison 

The eSARD process developed within this chapter addresses in general the design, development, implementation, 
and use of complex systems across their lifecycle, and specifically the needs of evolutive system architectures (ARR) as 
complex hardware-based systems. However, as important as those principles, approaches, tools, and techniques described 
are the need to assess and measure the process success is also critical. This is needed to evaluate any development effort 
at hand, as well as the management and integration of such methodology within teams, organizational cultures, and personal 
practices. Next sections present some key parameters and overall approaches with these purposes: 

• Evaluating the results of the design effort as well as the utilization of resources.   

• Comparing methods with other DSE methods (traditional or otherwise). 

• Evaluating results and the relative cost of the full process for a given solution.   

Hence, there are five initial areas that provide such initial reference framework for measuring success such as: [1] 
schedule and time, [2] complexity management, [3] system performance, [4] concept robustness, and finally [5] relative cost.  

The eSARD process has been designed to implement several key characteristics that increase the level of success 
in addressing these key areas. Thus, the approach is built upon [1] systems engineering and design engineering state-of-
the-art techniques, [2] key needs and characteristics of evolutive system architectures that are described by ARR principles, 
and finally [3] key gaps in those development techniques that have been addressed using method inspired by natural 
evolution. Among such key characteristics that were described in this section the most relevant are the following: 

• 3C networked approach provides a concurrent, collaborative, and communicative framework enabling faster and 
better communication among agents, and thus a more efficient design environment as previously described.  

• Continuous design has an influence in the system as a product as well as in the methodology, leading towards 
reusing and repurposing. The principle of continuity allows to reduce future work while improving designs at hand. 

• Based on synergetic eAMGs, the eSARD approach starts the design process from the most critical and limiting 
topics (gaps), ensuring better efficiency in developing system feasibility for each design. 

• Heritage becomes a building block to validate and compare solutions, as well as a potential foundation towards new 
concepts. Because each design becomes heritage (parent generation), its process can be inherited as well.  

• SE+DE are combined and interlinked within this DSE approach reducing lead times and improving effort efficiency.   

• ARR objectives not only describe evolutive architecture needs, but they also increase by definition the potential 
efficiency of a system architecture and the subsequent design process (section 4). 

• Full cycle DOI principles address, all three pillars of any system. Since the networked approach includes operations 
and implementation aspects in addition to any design effort, it allows to achieve more efficiency in the process. This 
is done by tackling early in the process potential issues that eventually can appear at the end of the lifecycle.  

• GBS details. This approach is not only about high-level architecture design topics but also about ensuring system 
and sub-systems details are addressed especially if they can condition the closeness of the system (eAMGs).   

Next sections address how these topics contribute to the efficiency and success of the eSARD approach. Table 32 
presents a comparative summary highlighting metrics, main advantages, and differences with other approaches.  

 Schedule  

In the design of complex systems, time is often a key resource due to schedule constraints and the subsequent cost 
of specialized workforce. The faster a design approach provides a feasible solution, the more efficient and therefore 
successful it would become. Thus, these characteristics of the eSARD process contribute to this rational by (see Table 32):  

• Increasing the number and depth of topics being address simultaneously in the design process. 

• Using synergetic points to advance the maturation process faster. 

• Providing a holistic approach that considers both details and high-level architecture trades at the same time.  

• Enabling a modular design process so results, models, and processes can be reused and repurposed. 

• Using less workforce and design resources for the same level of results.  

These differences make this approach especially different when compared with waterfall, spiral, or even linear SE 
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and DE methods (chapter 3). Linear workflows are less efficient and adaptable than networked methods (Figure 16) since 
they need multiple cycles to achieve system completion. Networked methods like eSARD are capable instead of distributing 
resources (including time) upon areas requiring more development. Metrics to assess time efficiency include among others: 

• Number of design topics per unit of time. 

• Number of disciplines simultaneously being address per unit of time. 

• Number of people/seats/agents on a design topic per unit of time. 

 Complexity Management 

Complex systems in general, and those requiring a combination of software and hardware in particular need a design 
approach capable of tackling different scales, perspectives, lifecycles, and disciples from both sides. The eSARD approach 
must address all DOI areas from a hardware and software perspectives. Furthermore, complexity management entails a 
combination of: [1] design scales including components (details), subsystem, and system levels, [2] collaboration of multiple 
disciplines, [3] multiple agents, and [4] multiple versions and generations, etc. The more complexity a process can handle 
with less resources, the more capable and efficient such process becomes. Thus, eSARD characteristics allow: 

• To handle synergy and multidisciplinary knowledge more efficiently. 

• To tackle multiple-level design efforts. 

• To handle continuous design processes at any stage of the system lifecycle. 

As previous sections and chapters already have developed, the overall approach of the eSARD methodology is to 
address ARR system architectures characteristics. So, multiple metrics could be associated with these principles, such as:  

• System scales and system levels addressed by the process. 

• Lifecycles phases tackled within the effort. 

• Number of parameters addressed and managed per design effort. 

 System Performance 

A key goal behind the eSARD approach, and in general of any design effort is to improve or achieve better levels of 
system performance, independently of the field or application. The faster, easier, and with less resources this is done, the 
more efficient and successful a design process will become. Not all design efforts are driven by a certain system performance 
threshold that must be obtained, so the capability of such process to improve designs is still a key characteristic of most 
system design processes. In general, from a metrics perspective eSARD enables an approach oriented towards:  

• The use of heritage solutions as both building blocks and validation inputs across the lifecycle. 

• Tackling a system design by considering its most critical gaps towards system feasibility (eAMGs). 

• A multi-level look at the design process from a system characteristics (ARR) standpoint developing principles (DOI) 
and details (GSB) as much synergistically, simultaneously, and concurrently as possible.  

• Parametric and algorithmic models used in data-driven methods to enhance system performance by finding a balance 
across opposing design forces. For instance, an eSARD approach would tackle the balance between mass, structural 
behavior, thermal performance, and aesthetics through open (secondary) and close (primary) design variables. 

This area is indeed complicated to measure due to the large universe of options. However, there are still some initial 
metrics that could be identified. Like in the previous section, these parameters are just one rather small group of starting 
points that are used to understand the nature of the process. These are some of the most relevant metrics among others:  

• Comparative levels of system performance variables across the full system architecture. 

• Number of performance variables or figures of merit per design or optimization effort. 

• Duration of the design effort to achieve a certain performance level. 

• Number of resources per unit of time to achieve a certain performance level. 

 Robustness  

Beyond performance and complexity the eSARD approach tackles another key metric, the robustness of the system 
design across its concept, model, implementation, and operations. These levels can be addressed together or independently, 
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but in all cases they refer to how the system handles: [1] changes in the environment, [2] GBS challenges, and [3] variations 
of requirements. The more external changes the system can handle the more robust it will become, reducing the potential 
need for new design efforts, while increasing performance and reducing cost. The eSARD methodology responds to this 
principle using the following strategies:  

• The use of heritage within a continuous approach enables to achieve improvements easier across the process.  

• The eSARD approach starts from the weakest and most critical points (eAMG) in the system maturation workflow.  

• All BGS details are addressed synergistically considering design (geometry), systems (functions), and 
implementation (substance) aspects simultaneously across all levels and components.  

• The DOI approach also tackles simultaneously key details in all previous points.  

These are some metrics associated to these principles among others:  

• Number of variations and alternatives per system design.  

• Number of gaps (eAMGs) addressed within a single design effort.  

• Topics, parameters, and figures of merit per system design as well as per design effort.  

 Relative Cost and Use of Resources 

All previous points are directly connected and linked among them when it comes to cost and the use of resources. 
Resources include materials, energy, code, and other aspects under the system substance concept. They also include the 
need of workforce, computational power, and other procedural resources associated with the design workflow itself. In 
general, the more any system architecture embraces key ARR principles of adaptability, reactivity, and regeneration (chapter 
4), the more cost effective will be. Thus, eSARD characteristics allow the following strategies: 

• Reduce the need of resources (e.g., agents) across the whole design process, by enabling more with less.  

• Increase the adaptability of the solution and the design process by doing better with less.  

• Address multiple design strategies and paths simultaneously, which improves the return of the design effort. 

Similarly, from the overarching perspective of the cost factor there are multiple parameters to be studied such as: 

• Number of resources per system design or per design effort.  

• Gaps and figures of merit per resource parameter. 

• Reutilization ratio of previous design efforts or heritage solutions.  

• Cost of design resources per BGS detail or DOI milestone.  

 Metrics Summary 

In conclusion and based on previous sections there are several initial parameters serving as a foundation for a 
success metrics and a comparison framework. These parameters can be studied as relative percentages, making the 
comparison among them easier, while allowing to create an efficiency footprint regarding its success as a process. Figure 
173 shows a summary and a relative comparison with other techniques and methods. The higher the percentage of each 
parameter is, the better it will be. These parameters include among others the following: 

• Number and nature of design topics being tackled simultaneously. This includes the capability to handle both 
qualitative and quantitative variables. This parameter addresses the bandwidth of the process and its capability to 
provide more efficient systems and workflows in terms of schedule, resources, and quality combined.  

• Number of disciplines or disciplinary efforts addressed is a key metric in any design process. The more and the 
deeper that multiple disciplines can be tackled, the more efficient the process will be. In essence this addresses the 
efficacy of the approach since it is not only about disciplinary results, but also the management of such efforts what 
counts as a metric of the workflow. The more disciplines being tackled, the higher the success percentage is.  

• Number of people and agents involved in the process is also critical since it has direct consequences towards cost, 
management, feasibility, liability, etc. This metric is about measuring and applying the evolutive principle of doing 
better with less, while indirectly addressing management and scalability. Design agents in the process include people, 
machines, workflows, and combinations. The smaller number of agents is, the higher the success percentage is.  

• Number of design alternatives considered. The eSARD approach is developed with the need of tackling multiple 



  
Ch5 System Design - Evolutive Architectures - PhD Thesis, Raul Polit Casillas 

 

 

 

219 

 

design paths in mind. An evolutive system is not only one instance, but a family of solutions. This principle has direct 
consequences in such metrics, since it allows to [1] reduce future efforts when upgrades or redesigns are needed, 
as well to [2] reduce impact, time, and cost towards other design efforts that can reuse system or workflow parts.  

• The amount and depth of systems and subsystems measures the capability of the process to address both details 
and overarching architecture topics as part of the design process. This has consequences across the methodology 
as well as the use of resources. The more diverse in scale the workflow can be, the higher the success percentage 
will be too since it would allow to tackle the eSARD methods from deeper and broader perspectives.  

• Relative cost and resources. This metric is related to all the above parameters, and it summarizes the essence of 
the system efficiency in terms of resources as well as the result as a system architecture. As such, this metric needs 
to be tackled from the perspective of all the resources used to run the design process for a given system design and 
a specific system performance. The higher performance the system obtains with less design resources used in the 
effort, the more affordable and efficient will become.  

  

Figure 173. eSARD metrics parameters and relative comparison with other approaches. The higher the number, the better.  
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Graphically, overarching metrics and general comparisons among eSARD and other methods such as sequential 
(linear or waterfall), spiral, and networked (chapter 3) is rendered in Figure 173. Furthermore Table 32 presents a summary 
of all previous points within this section. 

eSARD Characteristics, Success and Metrics   

Charact. / Areas Time Complexity Performance Robustness Cost Parameters 

3C 
• More efficient  

• Faster efforts 

• Easier complexity 

• Less  

• Leaner processes 

• Better performance 

• Better solutions 

• Broader approach 

• Less resources 

• Less agents Agents 
Metrics Designs / time Topics / time Disciplines / design Alternatives / design Design / agent 

Continuous 
• Repurpose 

• Easier upgrades 

• More generations 

• Heritage use  

• Better solutions 

• Heritage enabler 

• Broader views 

• More alternatives 

• Faster cycles 

• More efficiency Alternatives 
Metrics Alternatives / effort Alternatives / design Alternative / F. merit Designs / alternative Resources / agent 

eAMGs 
• Faster efforts 

• Easier changes 

• More complexity 

• More resilience 

• Better performance 

• Better optimization 

• More robust sys. 

• Less risk 

• Less cost  

• Better optimization Disciplines 
Topics 

Metrics Gaps / effort Gaps / design Gaps / F. merit Number of gaps Gaps / agent  

SE+DE 
• Faster efforts 

• Easier mgmt. 

• More standpoints 

• Full optimization 

• Full parametrics 

• More efficiency 

• More options 

• More adaptability 

• More completeness 

• Less resources Systems 
Metrics F. Merit / effort F. Merit / design Figures of merit F. Merit / variations F. Merit / agent 

ARR 
• Evolutive 

• Faster progress 

• More adaptability 

• Better with less 

• Better performance 

• Beyond sustainable 

• More alternatives 

• Better interactions 

• Less resources 

• Evolutive response Alternatives 
Metrics Topics / effort Topics / design Topics / F. merit Topics / variations Topics / resources 

DOI 
• Easier develop. 

• Better progress 

• Real full lifecycle 

• More disciples 

• Full optimization 

• Less resources 

• Lifecycle synergy 

• More connections 

• Less waste 

• Lifecycle opt. Systems 
Metrics Lifecycle phases L. phases / design L. Phases / F. merit L. P. / variations L. P. / agent 

BGS 
• Better implement. 

• Easier progress 

• Full lifecycle details 

• Better feasibility 

• Greater synergy 

• Less resources 

• More details dev. 

• More compatibility 

• More compatibility 

• More recycling Cost 
Metrics Parameters / effort Parameters / design Parameters / gaps Parameters / var. Param. / resource 

Main eSARD 
Advantage 

More efficient and 
faster workflow 

Broader and deeper 
design activities  

More capable and 
synergetic systems 

Better trade and 
design exploration  

Less resources, 
people, and time 

 

Table 32. Summary matrix of eSARD success and comparison metrics. 

  Conclusion 

Current design methodologies are mainly based on a ‘divide-and-conquer’ approach, implementing an ‘in-line’ or 
sequential system design approach. While many of methods consider multiple disciplines, generally those are not developed 
from an integrated standpoint. In response to the special characteristics of evolutive system architectures presented in 
chapter 4 and summarized under the principles of adaptability, reactivity, and regeneration (ARR), the eSARD approach is 
developed to address both the overall process as well as key all principles, objectives, and tools behind its evolutive 
methodology. This method is inspired by evolutionary mechanisms (section 5.1), and some key gaps within stat-of-the-art 
DE and SE techniques (chapter 4) to create a more efficient, faster, and more capable approach that addresses the special 
needs of eSAR system architectures as section 5.2 previously introduced. Furthermore, this methodology integrates tools 
and methods coming from other DES techniques, while creates and modifies existing tools to provide a dynamic and highly 
adaptable workflow tackling the system design process at any level.  

ARR basic principles provide a reference framework for the eSARD method that is based upon the evolutive design 
tetrahedron. Such construct allows to address the design workflow at different levels, including: [1] high level system 
architecture characteristics (ARR) describing the special needs and capabilities of eSAR systems, [2] geometry, behavior, 
and substance (GBS) system details where a hardware-based design workflow defines, conceptualizes, and implements 
any system, and finally [3] the detailed design workflow associated to all these scales considering design, implementation, 
and operations (DOI) system topics required to fully implement any system architecture design. Thus, this method addresses 
a system that is developed across scales and lifecycle phases as section 5.2 in general, and section 5.3 in particular 
presented. The eSARD process introduces a holistic approach that addresses the full design lifecycle process by tackling 
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all system scales concurrently, synergistically, and efficiently. Such approach is also based upon current methods, and new 
toolsets specifically design for evolutive system architectures (Table 25).   

Section 5.4 presented eSARD most critical design objectives within the evolutive reference framework and around 
the areas of adaptable design, reactive system performance, and finally regenerative use of resources. Such objectives lead 
to an overall approach that minimizes cost, addresses cultural influence, enables multiple concurrent design paths 
simultaneously to finally provide enough details to make eSARD a competitive methodology (section 5.4.4).  

Design objectives set the foundation for key design principles (section 5.5) used across the eSARD methodology to 
guide all design efforts and activities. These principles include: [1] ‘doing better with less’, by defeating a problem by design 
(adaptability, section 5.5.1), [2] designing ‘smarter with less’, through continuous solutions and operations (reactivity, section 
5.5.2), and [3] doing ‘more with less’, by addressing the optimization of all resource utilization across the full design and 
system lifecycle (regeneration, section 5.5.3).  

Once all foundational aspects of the eSARD approach have been laid out, this chapter presented the model and 
subsequent diagram used to describe, organize, manage, and implement all multiple steps, activities, milestones, products, 
and tools concurrently used within an eSARD workflow (section 5.6). This is the eSARD helix model or eSARD_he (Figure 
144). Such model provides a simplified two-dimensional representation of a highly networked, concurrent, and in some ways 
three-dimensional design activity and workflow (section 5.6.1). This model is organized around three sectors based upon all 
DOI areas (design, implementation, and operations) that are always happening simultaneously. Each sector is in essence a 
Vee model, with all three sectors integrated around a spiral that describes the full cycle of the system. Such diagram presents 
a series of milestones or design gates in every vertex, which keep increasing the maturity and definition of the system across 
lifecycle phases and development areas (GBS). The edges of those sectors tackle critical and interconnected design areas, 
such as: design, systems engineering, implementation, verification and testing, operations, and full system optimization. 
Within every edge there are a series of tools and activities used to create products needed for critical review and milestones, 
but most importantly to address, study and develop the system architecture design at hand. Section 5.6.1 presents all key 
elements of this diagram, while section 5.6.2 describes in detail the first design sector within the model and the operations 
taking place within it. Finally, sections 5.6.3 and 5.6.4 introduce other topics regarding the implementation and operative 
sector, respectively. Furthermore, this level of interconnection requires tools to evaluate the state of development among 
sectors, which is done through verification loops that were described in section 5.6.5. Finally, an approach like this not only 
requires a model to describe operations, but a workspace framework that enables physically (teams), virtually (collaborative), 
and digitally (data) an efficient use and infusion of the method. This is the 3C evolutive framework (concurrent, collaborative, 
and communicative described in section 5.6.6. 

In the development of the eSARD methodology, this chapter also introduced a description of its subsequent design 
workflow (section 5.7) and presented in detail all key evolutive design tools used in the first sector. This approach is based 
on identifying the most relevant and synergetic gaps within a system design through a series of curated and highly 
multidisciplinary questions or eADQNs (section 5.8). These questions tackle those aspects conditioning feasibility, efficiency, 
and implementation of an evolutive system concept. The most critical among them becomes a system maturation gap or 
eAMG (section 5.9) which sets the starting point of the eSARD design process. From here, first solutions start to form through 
a series of subsequent design models and tools called seed geometries or eASGs (section 5.10). Such designs then lead to 
the creation of system models or eASMs (section 0) using a series of modified SE tools that bring the solution to a certain 
level of maturity and definition which is measured by evolutive maturity levels or eAMLs (section 5.12). Similarly to TRLS, 
and CMLS, these levels allow to organize, compare, and evaluate design solutions that are developed under a series of fast 
and synchronous design cycles (section 0). Finally, this chapter provides a series of metrics and comparison principles to 
assess design progress and compare efforts among techniques, frameworks, and system solution (section 5.14). 

With a multidisciplinary approach, this research activity and associated practice complements current state-of-the-art 
design and system engineering methodology trends while opening a new and complementary path, especially towards 
complex hardware-based system architectures. Nevertheless, this approach is independent from the technical area of 
application and considers links among hardware and software-based perspectives.  
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STUDY CASE 
Evolutive Micro-habitat Architecture 
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“Simplicity is complexity resolved”. 

Constantin Brancusi 
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6. Study Case: Evolutive Micro-Habitat Architecture 
This chapter applies many of the methods and tools explained in previous sections to a generic study case. The 

subject of this study is a hardware-based system, which requires the consideration of several evolutive topics within the 
areas of adaptability, reactivity, and regeneration. The goal of this chapter is not to present a fully detailed solution for the 
design challenge at hand, but rather to showcase key aspects of the eSARD workflow and methodology. Furthermore, the 
chapter emphasizes main differences with other methods, as well as some potential metrics to be used at different phases 
of the process. The eSARD process used here is not a rigid process, thus this research only presents a foundation that can 
be later modified, customized, enhanced, reduced, or complemented by other methodologies depending on the application.  

 The Architecture Field of Micro-Habitats  

Habitat architecture design in general is a complex and potentially highly evolutive field for complex hardware-based 
systems. Among many applications and design practices are buildings, houses, technical habitats, shelters, etc. Among 
them there is a specific subset of system architectures that is very interesting as an example, small scales habitats or micro-
habitats (Horden, 2010). These small buildings include off-grid shelters, research outpost, mountain retreats, viewpoints, 
emergency shelter, treehouses, and playhouses, among others. However, this field is complex, multidisciplinary, and quite 
specialized (Figure 174). It also presents a long heritage over centuries with regards to functionality, implementation, and 
design approaches. Among their many generic characteristics these are quite common across this field: 

• Compact size. These habitats tend to be very small with a modular design and structure.  

• Transportability. Often these architecture systems are portable, transportable, and prefabricated.   

• Advance materials. Due to their especial application, size, and experimental nature these showcase new materials 
and manufacturing techniques that are not often used or considered in other larger size constructions.  

• Lightweight mass. Due to all previous points these tend to be very lightweight since multiple uncommon and high-
tech techniques, such as inflatables, lightweight panels, tensegrities, new structural schemes, etc. are used. 

Hence, all these micro-habitats in general, and specifically those technical shelters requiring off-grid capabilities and 
highly portability related to basic evolutive characteristics (ARR) as the following points summarize: 

• Adaptability. These habitats need to respond to multiple changing weather conditions, different user needs, and 
usage schemes over the system lifetime. Furthermore, such system architectures need to respond to issues with 
construction material availability, workforce knowledge and skills, and transport feasibility, among many more issues. 

• Reactivity. Dwelling systems such as these, even if they are temporary, need to react at the most basic level to all 
environmental conditions. For instance, they need to provide and retain heat in cold weather, provide cooling 
mechanisms in hot climates, manage open and close spaces based on usage conditions, etc.  

• Regeneration. Off-grid sustainable habitats need to create power and manage waste across multiple conditions too. 
While system performance and capability might change, the consequences of this will affect the whole system. 

Furthermore, the field of micro-habitats is part of a broader architectural field in line with all design stressors described 
on chapter 2, such as: climate change, energy needs, complexity, need for better performance, the pressure of heritage, 
and resource scarcity due to population growth, among others. Thus, this field of micro-habitats presents a perfect area of 
study due to its complexity and the context of operations. While these small-size habitats (Richardson, 2009) are 
multidisciplinary in nature and present a long history of heritage (centuries in some cases), however they have not evolved 
much during the last decades. Many disciplines involved in their development are quantifiable such energy use, use of 
material, etc. However, other topics such as aesthetics and user experience are difficult to quantify but very relevant towards 
the qualification and acceptance of any system solution.  So, these highly portable and off-grid habitats require quantum 
loops in terms of system performance and user experience if modern and future standard of comfort need to be achieved. 
Furthermore, energy, structure, and operations performance are also key during the lifetime of the system with a subsequent 
great impact in our everyday life as users worldwide. Within such vast area of design, this field of microarchitecture tackling 
small habitats or as lately described as ‘tiny homes’ (Couto, 2016) presents the ideal candidate for this methodology due to 
all technical hurdles involved in the design process and the limitations in terms of resources, scale, transport, etc. 
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 Heritage 

Within an evolutive design process the study of heritage is very important since not only it provides validation 
schemes, but also enables to assess and create new design paths if used properly. When it comes to micro habitats, there 
have been multiple instantiations and application of the concept of a small habitat over time. Since this is not the objective 
of this research Table 33 only presents a short summary of examples and relevant heritage solutions for small habitats. 

Name Description Period Adaptability Reactivity Regeneration Reference 

   Design Operations Implementation  

Classical       

Tempietto Bramante’s small temple 
at San Pietro in Montorio 
(Rome).  Religious and 
representative use. 

S. XVI New design 
New approach 

Experiencing the 
outside of a small 
building as the key 
feature.  

New construction 
techniques are tested 
and infused. 

(Roth, 1994) 
(Benevolo, 1977) 
(Freiberg, 2014) 
(Markus, 2008) 

Technical       

Shelters Small havens which are 
portable or transportable. 
Technical dwelling and 
survival use.   

S.XIX Low maintenance 
Low design effort 

Construction and 
operations in multiple 
remote areas 

In situ resources 
utilization approaches 

(Beard, 2020) 

Tents  Highly portable 
temporary shelters. 
Survival, technical, and 
recreational use.  

S. I Lightweight structures 
Tensile structures 
Multiple conditions 

Fast manual setup Repurposing (Horning, 2009) 

High-Tech       

Micro-
architecture 

Small temporary, portable, 
and permanent buildings. 
Recreational, research, 
and dwelling use.  

S. XX Multiple locations 
Extreme conditions 

Multiple uses Off-grid capabilities 
Repurposing 

(Horden, 2008) 
(Richardson, 2009) 
(Richardson, 2007) 

Figure 174. Example of micro habitat or microarchitecture in the Netherlands (Reiderwolder Polderdijk, 9688 Drieborg). 

 



Ch6 Conclusion - Evolutive Architectures – PhD Thesis, Raul Polit Casillas 

 

 

 

225 

 

Inflatable 
habitats 

Small temporary 
buildings. Recreational, 
survival, research, and 
dwelling use. 

S. XX Multiple locations 
Extreme conditions 
Highly compactable 

High transportability 
Extreme conditions 

ISRU 
Air as construction 
material 

(Francis, 2019) 

Conceptual       

Mobile Highly portable habitats. 
Recreational, research, 
mobile, and dwelling use. 

S. XX Multiple locations 
Highly portable 
New designs 

Multiple uses 
Limited uses 

Off-grid capabilities 
Repurposing 

(Willemin, 2004) 
(Roke, 2017) 
(Siegal, 2002) 

Trailers Highly portable habitats. 
Recreational, mobile, and 
dwelling use. 

S. XX Multiple locations 
Highly portable 
Vehicle-driven 

Multiple uses 
Limited uses 
 

Off-grid capabilities (Keister, 2008) 
(Wood, 2002) 

Tiny Homes       

Small 
Houses 

Small and temporary 
buildings. Recreational, 
research, emergency, 
and dwelling use. 

S. XXI Multiple locations 
New designs 
 
 

Multiple uses New materials 
Repurposing 

(Couto, 2016) 
(Roke, 2016) 
(Zeiger, 2009) 
(Kahn, 2012) 

Cabins Small and temporary 
secondary dwellings. 
Recreational, research, 
and dwelling use. 

S. XX Multiple locations 
New designs 
 

Multiple uses 
Multiple climates 

Off-grid capabilities (Jodidio, 2018) 

Treehouses Recreational, research, 
play, and dwelling use. 

S. XVIII Multiple locations 
New designs 

Limited uses New materials 
Recycling 

(Jodidio, 2018) 
(Nelson, 2020) 

Table 33. Summary of micro habitats across history, uses, and DOI critical aspects.  

Figure 175. [Left, top] El tempietto in San Pietro in Montorio by Bramante (Markus, 2008) 
[Top, center] Small portable aluminum trailer (Meyers, D.) [Right, top] Micro-architecture 
habitat for warm weather conditions (Samoh, A.) [Left, bottom] Small portable tent for hot 
climates (Hendry, P.) [Right, bottom] Technical outpost in the mountains (Nir, A.) 
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 Study Case Approach 

The general objective of this study case is to address the first steps of an eSARD workflow to design a highly portable 
habitat with many evolutive characteristics and needs. Furthermore, the goal behind this chapter is to apply the evolutive 
design workflow while providing more detailed insights, comparisons, and metrics regarding this research. Since design is 
the highlight of this initial research, this chapter does not provide a complete full eSARD process addressing implementation, 
and operations (DOI). However, such areas will be addressed superficially and links with them highlighted. The example 
selected for this chapter is an evolutive portable habitat (EPH) developed by the author for multiple natural catastrophe and 
dwelling scenarios. EPH features design, manufacturing, and energy challenges across its lifecycle. The author keeps the 
copyright of this design for any use and purpose worldwide. 

 Design Objectives and Requirements 

The main objective is to address the design of a portable habitat capable of quickly deploying an extremely 
compactable living volume (including floor, walls, and ceiling), while serving as a baseline to customize multiple 
environmental protection variations. There are several key areas of ARR requirements for this exercise:  

• Adaptability (geometry). Such habitat should be able to provide a wide geometrical adaptability to address portability, 
deployment, changes in use, as well as other environmental changes. Furthermore, the geometrical solution should 
enable an easy adaptability to multiple designs and customizations later on with a minimum extra cost. The habitat 
must serve both temporary and permanent dwelling situations without compromising transportability.  

• Reactivity (operations). Deployment operations for this habitat should be simple, deterministic, and potentially 
automated. The number of components and parts should be minimized to a maximum. This system architecture 
should be able to function under different weather and environmental conditions. The habitat must be transportable 
within available shipping options and reduce the number of people required for integration, deployment, and transport. 
Any deployed structure must consider aerodynamics to reduce wind loads, as well as water and snow accumulations.   

• Regeneration (energy and material). Any selected design must enable a sufficient energy production capability to 
be fully sustainable under multiple environmental condition. This could be done using solar cells or other energy 
production systems, which means the habitat must deploy enough surface and/or volume for such systems. A low 
energy approach is emphasized for manufacturing, deployment, and operations across the lifecycle. From a materials 
standpoint, the habitat must reduce mass as much as possible, while using recyclable materials with easy repairability 
and manufacturing. Mechanical and material constraints are driven by market availability restraining solutions that 
require exotic materials and very expensive mechanisms that are not commonly available. 

 Heritage and State-of-the-art  

There is not much heritage regarding portable habitats capable of providing enough energy for a full off-grid use. 
Furthermore, highly portable solutions such as tents and other technical shelters (Table 33) tend to be temporary in nature, 
while presenting complicated deployment systems. However, such solutions have a long history of use and present an 
excellent validation path as building blocks(heritage) for a new generation of ARR dwelling systems. Table 33 references 
present state-of-the-art solutions for similar challenges, which are not shown due to succinctness reasons. In summary 
though, this solution would represent a quantum leap in terms of system performance if compared with heritage solutions.  

 Figures of merit 

Figure 176 summarizes objectives and initial figures of merit for this concept design including these ones:  

• Mass. The more lightweight the solution is, the more compatible with ARR principles it will become. Less mass also 
means potentially less cost and less energy during manufacturing, transport, and operations. 

• Deployed Surface. The more surface is deployed, the more volume and energy production can be achieved. 

• Number of parts. This refers indirectly to system complexity and design efficiency considering actuators, 
manufacturing parts, and integration steps, among others. The lower the number, the higher the efficiency of the 
solution will be in the long term.  
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 Approach and Set-Up 

The eSARD approach dives into all design, implementation, and operation aspects as it was described in chapter 5 
by using a networked approach. This means the process expands and contracts sequentially, addressing from higher-level 
constraints (e.g., architecture design decisions), to lower-level details and vice versa. As developed in previous sections and 
shown in Figure 177, multiple milestones and tools are used both sequentially and within a networked model to gradually 
improve the maturity of the system, while addressing its feasibility and efficiency. Next sections will develop this in detail.  

 3C Working Environment 

The first step once a design effort is programmed is to set up a working framework. This applies regardless of being 
a one-person effort, a team activity, or a combination of automated processes (machines) and workforce teams. The following 
table summarizes considerations, tools, and schemes on all different cases regarding an evolutive working context.   

 

 Agents Uses / Applications Tools Connections eSARD Examples 

CONCURRENT Multiple design cycles | Networked tools and activities | All DOI sectors | Facilitated efforts | Scalable | Highly dynamic 

Analytical 
Framework 

Individual 
1. Capturing, analysis, 
exploration, and study of 
quantifiable parameters, 
and/or scaled qualifiable 
parameters.   
2. Process storytelling 
3. Parametric and 
generative studies 

Notebooks 
Mathematical models 
Spreadsheets 

Concepts 
Parameters  
Data  
Models 
Analysis 
Tools 
Designs 
 

Design parameters 
Figures of merit 
eASMs system models 

Team + Databases 
+ Shared models 
+ WIKI-like tools 
+ Algorithms 

+ Interconnected Eng. 
models (CAD, BIM, MBSE) 
+ Data-driven models 

Machine 
+ Generative workflows 
+ AI-driven models 

Geometrical 
Framework 

Individual 
1. Capturing, analysis, 
exploration, and study of 
system geometries.  
2. Process storytelling 
regarding all DOI aspects 
3. Facilitated efforts  

Sketchbooks 
3D computer models 
4D models (movies) 
Mock-ups  

+ Geometries 
+ Models  
+ Heritage  
+ Concepts 
+ Parameters  
+ Data 
+ Analysis 
+ Designs 

Evolutive sketches 
eASGs system gaps 
Interconnected Eng. 
models (CAD, BIM, MBSE) 

Team 
+ Whiteboard efforts 
+ Computer assemblies 
+ Prototypes  

+ Assemblies 
+ Research 

Machine 
+ Visual databases 
+ Inferred designs 
+ Cloud models 

+ Generative workflows 
+ AI-driven models 

Figure 176. Summary of objectives for the eSARD study case and initial figures of merit. © 2020 Raul Polit Casillas (patent pending). 
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COLLABORATIVE Co-authored efforts | Jam design sessions | Constant revisions | Scalable | Highly dynamic 

Discipline 
Dynamics 

Individual 1. Coordinate work by 
multiple seats / disciplines 
2. Identify synergies 
within disciplinary detailed 
work and models 

Disciplines / seats 
Tools and models  DOI sectors 

BGS details  
Parameters (qual / quant) 
Models  

eADQNs 
eAMGs system gaps 

Team 
+ Specialized discipline 
workflows (human) 

Machine 
+ Automated processes 
+ Artificial intelligences 

Agent  
Dynamics 

Individual 1. Coordinate agents, 
seats, and disciplines 
2. Compensate for biases 
3. Manage moods, lack of 
resources, failures, etc.  

Disciplines / Seats 
Tools and models  

+ Agents 
+ Interactions  

eADQNs 
eAMGs system gaps 
eAMLs maturity levels 

Team + Human agents 

Machine 
+ Automated processes 
+ Artificial intelligences 

COMMUNICATIVE Curated and facilitated effort | All hands and all resources on deck approach | Highly dynamic | Organizational culture 

Design 
Exchange 

Individual 1. Foster disruption 
2. Assess heritage 
3. Coordinate design 

Analytical framework 
Geometrical framework 
Requirements  Concepts 

Models 

eADQNs  
eAMGs system gaps 
eAMLs maturity level 
eASGs architectures 
eASMs system models 

Team + Specialized agents 

Machine + Automated processes 

Discipline  
Exchange 

Individual 
1. Foster synergy 
2. Improve info exchange 

Disciplines / seats 
Tools and models  + Details models 

+ Efforts 
+ Protocols  

eADQNs 
eASGs system gaps 
eASMs system models 

Team + Human agents need 

Machine + Automated processes 

Agent  
Exchange 

Individual 

1. Foster synergy 
2. Promote data dialog  
2. Enhanced exchange 

Disciplines / seats 
Customer needs 

+ Agents 
+ Models 
+ Efforts 
+ Moods 
+ Protocols 
+ Cultural customs 
+ Soft skills 

eAMGs system gaps 
eAMLs system levels 

Team 
+ Human agents 
+ Cultural constraints 

Machine + Artificial intelligences 

Table 34. eSARD evolutive 3C working environment set-up and characteristics. 

Regarding the workflow framework there are several relevant metrics to be considered, such as: 

• Time (design efficiency). This addresses the efficacy of the design process. For instance, how long does it take for 
different workflow frameworks (evolutive or not) to achieve the same system maturity?  

• Number of agents. This approach potentially reduces the number of agents involved by increasing overall design 
efficiency. However, the number of agents required for the same results and schedule is a metric to be considered.  

• Results. This is a complex and yet critical metric that can have multiple perspectives. For instance, how does the 
quality of the design efforts compare among different framework and methods? Does it meet all requirements? 

 eSARD Workflow 

Once multiple tools have been selected and the workflow framework has been set-up, the next step is to establish a 
design strategy following the eSARD method. Once more, this process is not rigid, and presents a networked nature so there 
is not a fixed starting point. The goal is to assess, study, fill, connect, and reassess all parts within a given eSARD diagram 
that will keep improving details and broadness with every design cycle. The subsequent design network is made by all those 
models, parameters, sketches, eAMGs, eASGs, and links used among them with a specific concept structure.  

 Figure 177 presents the general eSARD helix diagram considering all three DOI sectors (system design, 
implementation, and operations). The full process must consider all sectors and include optimization efforts as part of the 
evolutive methodology. However, in this study case only the first part of the system design sector will be presented. This 
includes key steps towards milestones 1, 2, and 3. Table 35 presents and elaborates key steps, milestones, and connections 
within the system design effort that was developed within this study case for an evolutive portable habitat architecture and 
all related subsystems.  
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Milestone  Description / Objectives Key Tools Actions / Results Links 

   Design Operations Implementation  

Effort 

1. Assignment assessment 
2. Evaluation of primary 
requirements 
3. Heritage concepts, 
systems, and technologies. 

Client interviews 
Effort assessment 

   
SFR 
DOI 

1. SFR 1. eSARD starting point 
2. Secondary requirements 
3. Constraints 
4. Resources 
4. eADQN 

Data collection 
Client interviews 
Research 
eADQNs 
eAMGs 

1. eAMGs 
(Synergetic GBS 
gaps) 
2. Level of GBS 
3. DOI details 

Overall study Overall study 
PDR 
DOI 

2. PDR Full concept design 

eADQNs 
eAMGs 
eASGs 
Basic analysis 

1. eASGs  
2. DOI gaps.  
3. Basic geometry 
4. Basic system def. 

1. Operational 
constraints 
2. System behavior 
basics 

1. Implementation 
Constraints 
2. System substance 
basics 

CDR 
DOI 

3. CDR Full detailed design 

eAMSs 
eAMLs 
Detailed analysis 
V&V 

1. GBS details 
2. Figures of merit 
3. Detailed geometry 
4. Detail Sys. Def. 
3. Parametrics  

1. System behavior 
details and design 
influences 
2. Operative path  

1. System substance 
details and design 
influences 
2. Operative path 

TRR 
DOI 

TRR Full testing approach     SVR 

Table 35. Phases, tools, and connections within the eSARD design sector for the EPH study case.   

Figure 177. General eSARD diagram showing an emphasis in the system design sector that was developed for this study case.   
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 Requirements, DOI, GBS, and General Design Principles 

In this study case there are several initial aspects to be captured, defined, and assessed as final steps to set up an 
eSARD process. These include at least the following topics presented in Table 36. 

 ID / Description  Goals (general) Objectives (details) Links 

Design Objectives Effort   Feasible EPH architecture Identify key subsystems 
Subsystems design path  

 

Primary Requirements R1 Dwelling volume R1.1 High expansion 
R1.2 Permanent 
R1.3 Temporary 

1- 40 m2 
 

 

 R2 Transportability R2.1 Manual deployment 
R2.2 Automated deploy. 
R2.3 Easy relocation 

Compatible with standard 
shipping system (2.2 x 2.8 
x 6 m) 

 

 R3 Mass reduction R3.1 Low structural mass 
R3.2 Low envelope mass 

Low density solution 
(6000 kg max.) 

 

 R4 Thermal insulation  R4.1 Low-high temp. range  Sustainable materials  

 R5 Structural integrity R5.1 Static loads 
R5.2 Dynamic loads 

Minimum # parts  

 R6 Energy R6.1 Minimize surface   

 R7 Style R7.1 High customization Color, texture, size, details  

2nd Requirements TBD based on eADQNs    

Heritage Table 33 (references) 
+ Mobile habitats 
+ Trailers 
+ Advanced tents 

Assess previous solution Compare baseline design  

 Evolutive Areas Figures of Merit Links 

ARR Adaptability A1 All-weather cond. 
A2 Multiple terrain cond.  

 
TBD 

R1, R2, R3, 
R5, R6, R7 

Reactivity R1 Environment react. 
R2 User reaction 

 
TBD 

R5 

Regeneration Re1 Solar energy  Re1.1 Maximize surface Solar surface R6, R4 

DOI Design D1 Multiple application 
D2 Easy customization 

D1.1 Modularity 
D2.1 3D printing 

Combinations 
 

Operations 
 

O1 Easy manual operation 
O2 Environmental reaction 

O1.1 Minimize actuators 
O2.1 Minimize sensor 

Easiness 
 

Implementation 
 

I1 Recyclable materials 
I2 Customize  

I1.1 Adv. manufacturing Mass 
 

GBS Geometry 
 

TBD TBD Compactability 
 

Behavior 
 

TBD Heritage actuators (if any) Manual ops 
 

Substance 
 

TBD TBD Env. Upgrade 
 

Evo Design Principles Better with less Multifunctionality  

 More with less Minimum number of elements  

 Smarter with less Seamless operations with less elements  

Table 36. Key requirements and parameters defining the Design DOI sector activity.  
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 Evolutive Architecture Dynamic Question Network (1D, eADQNs) 

Once design objectives, initial requirement evaluations, and heritage assessments (if any) have been studied the 
next step in the eSARD design process is to question the design concept itself to find synergetic gaps that will lead all 
subsequent design efforts. Chapter 4 and 5 already presented details about eSAR and eSARD methods. This first one-
dimensional step is very critical and begins with series of questions (Table 36). Next paragraph (Table 37) and Figure 179 
summarize and weight in multiple questions simultaneously. Also Figure 179 graphically summarizes the eADQN process.   

The process starts by studying the summary of design requirements and ARR needs (Table 37) from a DOI 
standpoint. This is led by the chief architect to explore the architecture space. DOI questions lead to address GBS details, 
which are more specific and often present multiple connections and similarities among them. Then, this leads to start 
evaluating figures of merits behind each branch. These synergies are the foundation as well for the maturation space in 
which the eSARD approach operates. Then DOI, GBS, and key figures of merit are evaluated considering its relevance 
toward the feasibility of the system, synergies across disciplines, and all connections being tackled (Table 37). This 
networked process keeps increasing the number of questions, connections, and evaluations until the most basic ones are 
identified. This could be done regardless the number of people on the team or the type of team. Among many questions 
based on requirements for this study there some of the most relevant:  

DOI – Design (Geometry) 

• How can the habitat be easily deployed in any condition and terrain?  

• How does the design minimize the number of components while increasing its overall adaptability? 

• How its design enables an easy customization?  

• What is the most compactable architecture configuration? 

DOI – Implementation (Substance) 

• What is the easiest customization scheme? 

• How does the concept ensure system recyclability for this habitat design?  

• How can the concept reduce manufacturing steps?  

• How is the need of construction materials being reduced?  

DOI – Operations (Behavior) 

• How does the system achieve adaptable environmental protection? 

• How have the number of actuators, signal, and sensors been minimized?   

• What is the strategy to ensure the integration of both manual and automated operations?  

Figure 178. Mind map scheme of some 
initial DOI questions, and GBS details.  
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Selection Synergistic  ● ● ● ● ● ● ● ● ● ● ● ● 

 Complementary  ● ● ● ● ● ● ● ● ● ● ● ● 

 Dependencies  ● ● ● ● ● ● ● ● ● ● ● ● 

 Direct causality  ● ● ● ● ● ● ● ● ● ● ● ● 

 Multiple areas  ● ● ● ● ● ● ● ● ● ● ● ● 

 Many levels   ● ● ● ● ● ● ● ● ● ● ● ● 

Refined Relative Cost ● ● ● ● ● ● ● ● ● ● ● ● ● 

 Availability ● ● ● ● ● ● ● ● ● ● ● ● ● 

 Applicability ● ● ● ● ● ● ● ● ● ● ● ● ● 

 Feasibility ● ● ● ● ● ● ● ● ● ● ● ● ● 

Partial Total  ● ● ● ● ● ● ● ● ● ● ● ● 

Raking  BSG Details  8 7 3 10 3 1 8 5 5 8 6 1 

1 Low | 10 High Requirements  2 3 5 10 1 4 8 2 9 4 3 1 

 Constraints  1 4 3 7 5 6 10 3 7 3 5 1 

 Disciplines   3 8 2 8 3 1 5 1 9 1 4 3 

 Heritage  2 2 1 2 1 4 2 6 7 3 6 2 

 Sys. Closeness   5 2 2 10 4 1 8 3 3 4 3 5 

 Programmatic  4 2 3 5 5 1 5 5 10 1 2 7 

 Unknowns  1 4 1 7 1 1 6 1 2 3 5 3 

Weighted Importance  26 32 20 59 23 19 52 26 52 27 34 23 

Relative Importance  ● ● ● ● ● ● ● ● ● ● ● ● 

Table 37. eADQNs and eAMGs identifcation for the EPH study case.   
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Figure 179. eSARD summary of eADQNs for the EPH development study case. 
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 Conclusion 

After developing the eADQN process, several conclusions arose influencing the rest of design process: 

• Secondary requirements. The study of initial requirements, and the exploration of both architecture space (potential 
design path) and maturation space (key gaps affecting system feasibility) enabled to discover certain new gaps that 
are critical to fulfill key design objectives as these points summarize: 

• Following ARR characteristics, and DOI areas several secondary requirements were identified (Figure 179). 

• The compactability of the system is critical and related to all DOI areas, and GBS details such as:  

• Deployment capability is conditioned by the system compactability. 

• Thermal and environmental protection also need to be compactable and compatible. 

• There is no relevant heritage regarding thermal and environmental protection compactability.  

• The possibility of manual upgrades for environmental protection elements is also critical. 

• Material customization also needs material upgrades and updates based on previous points. 

• Evaluations of eADQNs. Table 37 presents some questions elaborated during eSARD sessions and a study of their 
relevance. Four questions were identified as the most relevant, with the first one being the most critical: 

• How could we achieve a fully compactable architecture (addressing multiple GBS details and disciplines)? 

• How does the design achieve system deployment easiness? 

• How are manual operations enabled? 

• How multiple levels of customization are achieved for new systems? 

• From these key questions three potential eAMGs are identified and elaborated on section 6.6. 

• This facilitated process can be done multiple times to improve and refine these findings. The deeper and more 
synergetic those gaps are, the easier and more efficient the design process will be.    

 Metrics 

There are also multiple metrics by which to assess the eSARD process at this point, such as:  

• Agility. By diving into these synergetic connections and gaps the design effort tackles not only key critical areas but 
also those capable of affecting and conditioning multiple disciplinary studies that are required to mature systems. For 
instance, by addressing the compactability of the design from a thermal, architectural, customization, and structural 
perspective the design process tackles simultaneously multiple gaps and requirements affecting those disciplines. 
The number of topics and disciplines per unit of time, and per design architecture is higher this way.   

• Adaptability. This approach enables to assess what key topics are allowing more system variations as well as the 
influence of heritage solutions upon them. This way more variations per time and design are achieved.  

• Depth. This approach allows to pre-consider GBS details enabling the process to identify showstoppers issues faster.  

 Evolutive Architecture Maturity Gaps (eAMGs) 

Among all design questions without answer, one becomes the most critical as Figure 179 and Table 37 show: how 
the system can achieve a fully compactable architecture that allows both manual handling and easy customization? This is 
the initial eAMG affecting all DOI areas and the initial challenge in which the design activity will concentrate upon. This means 
that all the following points are being tackled simultaneously: 

• Multiple disciplines are considered simultaneously, such as architecture, mechanical, structural, thermal, etc. 

• Geometry. The use, deployment, and environmental protection of the design depends on key geometrical aspects.   

• Behavior also conditions changes, upgrades, and operations manually or otherwise.  

• Substance. This includes system integration, material selection, material availability, relative cost, and workforce.  

• Heritage. Inflatable hybrid deployable habitats showcase a potential heritage technology to be used in this design.  

This process will require multiple iterations (SFR to CDR), questions, and connections that must be reassessed after 
each design cycle. Initial eAMGs are the most efficient and multidimensional (2D) starting points for the design process.   
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 Evolutive Architecture Seed Geometries (eASGs) 

The next step in the eSARD process is to facilitate a design activity or tool that could be done between one or more 
people. The goal is to use eAMGs as an objective, addressing all multiple GBS aspects while keeping an eye on other DOI 
sectors that could be developed simultaneously.  

In this example, the study of a deployment approach for the structure and material solution providing the 
environmental protection (including thermal and other weather elements) is key for the feasibility of the full system. Thus, 
both storage and deployment states need to be addressed considering operation easiness and availability of all materials 
being used. The exploration of multiple design paths within the architecture and maturation space is summarized very briefly 
in Figure 180. As explained in previous chapters colors, views, and details relate to multiple design constraints. Due to the 
scope and limitations of this research only some sketches that were made for the process are shown. It is worth mentioning, 
that considering overall DOI perspectives and BGS details support the agility of process while eAMGs have a ripple effect 
across disciplines. In this study there are two major design paths being explored (Figure 180). 

Once a seed sketch is created, its geometry (DOI design sector) allows the mechanical discipline to assess the 
challenges of mechanism design, the thermal discipline to evaluate surfaces and cross sections properties, while an overall 
architecture approach thinks about customization, user experience, and operation easiness. In essence these initial 
geometries for the system provide a common framework across design perspectives, as well as a reference towards 
operations and implementation standpoints. That synergetic thinking is already a seed in the eAMG and must be maintained 
and expanded during the use of this tool. There are three major related activities within this step: 

• Evolutive sketch (by hand). Following section 5.10 and as presented in Figure 180, these sketches represent 
geometric, operational, and implementation aspects to both explore and create a design paths or strategies. Thus, it 
is not a traditional sketch since starting with ARR characteristics it addresses many DOI aspects, and it is used to 
organize the subsequent development activity. For instance, it allows the mechanical team to start studying actuators 
constraints, while it provides a reference for the thermal effort to balance opposed design forces.  

• Seed architecture (CAD). Hand or computer sketches created by a chief architect (in a group or alone) will keep 
increasing details as in any other design process. Hence, these will keep addressing more and more GBS details 
that drive design specifics within the system being developed. Beyond hand sketches, this approach evolves into 
using fast computer geometrical models that are either created my humans (CAD) or by machines (generative). 
These models not only provide initial dimensions, but also initial geometries for all disciplines to start basic analysis 
as well. This is shown in Figure 180 as CAD plus sketches at the end of each design path.   

Figure 180.Design paths based on eAMGs for a EPH deployment subsystem. © 2020 Raul Polit Casillas (patent pending). 
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• System definition (spreadsheet). These initial but increasingly detailed perspectives not only allow architects and 
engineers to assess other aspects of other solutions early in the process (e.g., implementation and operations), but 
they also enable the initial capture of key figures of merit within an eGBSEL (section 5.11.2). Figure 181 shows a 
capture of an initial eGBSEL in this example. These are a foundation for system models (eASM) being used to fully 
capture the system and enable an analysis of other design alternatives towards a CDR level. This enables enough 
detail and a full exploration of the maturation space. All parameters used here are linked with geometrical models.  

 Heritage 

At each step or level in the evolutive approach, the assessment of heritage allows new options, new technologies, 
and validated elements to be infused into the system design. In this case, heritage is used in two ways: 

• Initial assessment. The evolution of heritage solutions such as tents, container habitats, and trailers, provides a 
reference framework by which to compare against requirements and new solutions. However, these are just inputs, 
and by any means they could restrict new evolutive system solutions. Also, this is used to find inspiration in other 
fields such as protective gear, inflatables, origami structures, etc. 

• Deployment subsystem. Regarding system architecture components the use of heritage brings the capability to 
compare solutions from a performance standpoint, as well as to evaluate others details such as cost, integration, 
manufacturing, etc. Always from a non-restrictive approach, this also allows to bring new technologies or solutions 
on board (as heritage or validation) and to provide a reference framework to assess other DOI details. 

 Metrics  

This approach allows to achieve more reliable designs in less time. While this chapter only presents a summary of 
such process, this method reduces the overall time to CAD in almost a half when compared with other more traditional and 
sequential efforts. It also allowed to have in less than two months a full system (not shown) addressing many DOI areas 
towards a PDR level review using only one person, as opposed to a regular team of four. The end result is a more detailed 
eASG after two cycles (Figure 180). This method makes the most of every minute and every bit of information by keeping 
the tension between a truly broad perspective and multiple system details. In terms of metrics the following points offer a 
summary:  

• More design topics are tackled simultaneously. 

• An increased number of disciplines are addressed simultaneously. 

• Less people and agents are needed in the process to achieve a similar level of maturation.  

• Greater number of design alternatives are considered, and more innovative solutions are obtained.   

• Better system and subsystems definition occur faster due to the eSARD synergetic approach.  

• Less time and computer power are required since the effort is potentially faster and uses less agents.  

 Evolutive Architecture System Models (eASMs) 

Following the identification of eAMGs and the creation of eASGs, the modeling of the system is the next step. Always 
with a networked perspective that interconnects all models, the creation of eASMs (Figure 181) serves many purposes, such 
as parametric studies, evaluation of solutions, technical budgets, tracking of progress, etc. eASMs present a series of key 

Figure 181. Portion of the initial eGBSEL for the EPH design (first design cycle).  
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characteristic that makes them different to others SE tools. Among some pf the most relevant are the following: 

• GBS details / DOI areas. On an eGBSEL each parameter is addressed from the double perspective of DOI processes 
and GBS system details. This enables much deeper system definitions, studies, evaluations, and parameters.   

• Foundational. The previous point enables to create multiple studies with less measurements and parameters, such 
as mass lists, power assessments, etc. The eGBSEL becomes a hub to study, capture, and assess the system 
architecture design holistically.  

• Links. The eSARD approach is networked, which allows to look at the eGBSEL from a hyperlink-driven approach. 
Each parameter is both an analytical value and a conceptual link among other parameters.   
 

 Next Steps and Phases 

To achieve a full CDR level, these steps need to be iterated several times until all figures of merit validate the system 
design or the initial requirements are met with sufficient margin. The identification of secondary requirements as part of the 
process could be used as an imperative to change design path or simply as an advice, however they enable the final system 
feasibility. Therefore, further iterative processes must happen to increase definition, while at the same time other steps 
(sectors) need to be considered. These activities within a networked approach include the following among others: 

• Analysis. On this phase basic analysis are required to study and assess solutions. In this case, geometrical modeling 
of inflatables, structural analysis, and thermal models are created to name a few.  

• Validation. In parallel to this activity, the second edge of the DOI design sector addresses how to validate such 
analysis and models. Thus, critical models must be created to study, scale, and tweak subsequent designs.  

• Testing. Similarly, during the DOI design phase a testing concept plan needs to be created and started.  

• Operations (DOI). Independently from the DOI operative sector, it is important to consider and introduce key 
operational aspects within each phase. Here, this includes manual operation details, user experience, and actuators. 

• Implementation (DOI). This happens as well with implementation aspects such as integration, material selection, 
and manufacturing. These are included in all design considerations early in the process, and while they will also be 
fully developed in detail within the implementation sector. Both basics topics and links are integrated in this phase.   

• Optimization. Each parameter can be used as part of an optimization strategy within a hyperconnected approach 
such as this. However and most importantly, any design strategy or path must consider where such optimization 
presents enough design margins and how to use them afterwards for new system variations or even new efforts.  

 Conclusion 

The example selected for this study showed the need for many of the key characteristics that define an evolutive 
system architecture (eSAR). This was done after a first look through the perspective of an eSARD approach. From the 
beginning key ARR system areas (adaptability, reactivity, and regeneration) were initially addressed since they required 
design and analysis for a successful system solution. However, such approach also highlighted the need to assess other 
direct and indirect heritage solutions, as well as the benefits of exploring all initial requirements more in depth.    

Thus, the first step in this example was to set up a 3C evolutive environment, addressing collaborative, 
communicative, and concurrent subjects that included tools, agents, and preliminary connections, among other models. This 
not only set up the tone for the design process workflow, but it also speeded up all subsequent work activities. So, both tools 
and the environment in which they operate required some design beyond the system solution itself, and this made a big 
difference. This is a relevant aspect of the eSARD approach that differs from other methods. The analysis of heritage 
solutions from a systems, component, and technology level perspective, created a very useful pool of information to be used 
later on during any design activity across all multiple phases and sectors of the process.    

The eSARD approach (section 6.4.2) addressed the design activity in this example from a combined perspective 
involving all DOI areas (design, operations, and implementation). While this example only tackled the first one, Table 35 
presented the full workflow of the activity. Once the environment and heritage studies were studied, the eSARD process 
presented several phases providing key conclusions that are summarized in the following points:  
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• Requirements, DOI and GBS principles (section 6.4.3). The study of these topics under the eSARD approach 
brings a very holistic and interconnected perspective to assess a design challenge (Table 36). This led to the creation 
of secondary requirements evolving from this study, which were not initially provided by the customer but became 
critical to find a feasible solution. The solution been considered here is not just for one single EPH, but rather a family 
of EPHs considering possible future upgrades and changes. Applying such design stressor made possible to simplify 
solutions and discover design paths that will reduce manufacturing step, costs, and mass later.  

• Dynamic questioning techniques using eADQNs (section 6.5) allow to find the most critical DOI question 
conditioning the system feasibility and the design workflow in general (Figure 178). In this case system compactability, 
manual operations, and possible environmental upgrades turned out to be the most critical aspects for this endeavor. 
These tools allowed to assess and reinforce how critical was the adaptability of the system for its success.   

• Maturity gaps (eAMG). The use of eAMG techniques (section 6.6) allowed to identify the most critical gap for this 
design, which is also the most relevant topic integrating key disciplines, such as mechanical engineering 
(mechanisms), thermal management, and user experience topics conditioning style and interior design. Thus, the 
compactability of the habitat geometry was a key maturation gap (Table 37) and more important than mass reduction 
or cost. Without answering this gap, the solution is not feasible, but at the same time solving this problem from such 
multidisciplinary standpoint automatically allows to have three major disciplines tackled. So, one synergetic topic 
integrates multiple views, so focusing on it allows to find a better and more well-rounded solutions much faster.  

• Evolutive seed geometries (eASG). Such gap in the design effort (Section 0) enabled to form a concept geometry 
(Figure 180) addressing multiple design paths and disciplinary questions simultaneously. These geometries 
considered mechanical topics, thermal performance, manufacturing techniques, SE topics, and style, among others.  

• Evolutive system models (eASM). Finally, the last step within the DOI design sector is the creation of an initial 
system model that captures quantifiable and qualifiable parameters, while creating links to eASG models (section 
6.8). In this case, the tool selected to capture the system was an evolutive eGBSEL. This spreadsheet-based model 
is reinforced with hyperlinks and covers all ARR and GBS system development areas, allowing to create a much 
broader and detailed view of the eSAR at hand. This will be the foundation for subsequent parametric studies.   

In essence, the use of an eSARD methodology allowed to find a solution very efficiently in terms of schedule (time), 
tools, and agents (section 6.7.2). However, the key is that this approach allowed to better tackle the design activity from a 
conceptual, logical, practical, and programmatic standpoint. While next steps and phases (section 6.9) will certainly bring 
the full power of this approach to other DOI areas such as implementation and operations, all the enhancements and 
efficiencies provided by this technique are showcased by both product and process.  
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EVOLUTIVE PATHS 
Discussion and Final Conclusion 

CHAPTER 7 

 
“A good question is never answered. It is not a bolt to be tightened into 

place but a seed to be planted and to bear more seed toward the hope of 
greening the landscape of idea.” 

John Ciardi 
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7. Conclusion: Evolutive Architecture System Design Paths 
To conclude this thesis and summarize the research activity that was conducted there are several key points 

elaborated across the following sections. They finalize this dissertation creating a starting point towards new developments.  

 Discussion  

The starting point for this research were complex hardware-based systems (CHS) in general, and a subset of these 
defined as evolutive system architectures (eSAR). Furthermore, design and system engineering methodologies enabling 
such systems were part of the research goals. Previous chapters elaborated the path used along this dissertation to address 
all three initial research questions. Answers and discussions to these questions are summarized in the following points.  

• What new characteristics and complementary design needs do these ultra-complex systems present within 
resource-scarce environments?   

• A holistic analysis of world trends in chapter 2 showed that several design stressors are influencing the practice 
of SE and DE to develop complex systems (CHS). These affect the basic balance between systems needs and 
available resources (Figure 6) and keep forcing the need for adaptability in any robust approach that tackles 
them. Thus, new situations require new approaches. Some of the most relevant stressors are the following.  

• Resource scarcity such as energy, materials, and even workforce are driven by climate, economy, and 
competitiveness among other reasons, forcing systems to become more efficient and use less resources. 

• System complexity is increasing, especially when hardware systems (CHS) keep being enhanced with 
software, data, and other interactive capabilities (e.g., robotics applied to consumer products). 

• Better system performance needs to be achieved at faster speeds due to market constraints.  

• Increasing multidisciplinarity of system designs and their management must be considered nowadays.  

• Process agility of the system and the capability of the work effort to be reused are critical towards cost. 

• Complex systems (CHS) are increasingly more networked presenting more links among subsystems and 
their own contextual environment regardless of being physical, digital, virtual, or any combination of these. 

• Technical design heritage gradually influences the balance between new solutions and the risk posture. 

• Innovation in new systems keeps evolving towards disruption rather than partial or incremental changes.  

• Cultural disruption, new tools, and workflows affect design activities at both product and process levels.  

• Within such changing context, evolutive system architectures are identified as a subset of hardware-based 
systems (CHS) in response to current and future design stressors (chapter 4). These highly complex and field-
independent systems are driven by previous stressors and new design needs. They have three major keystone 
characteristics or ARR, which also become the foundation towards a subsequent design methodology.  

• Adaptability. Any system architecture is conceived as a continuous evolutionary process where both 
geometrical and analytical system definitions (quantifiable or otherwise) keep changing and evolving. Any 
previous solution (heritage) could become a validated building block. Overall, the system geometry is always 
completed by functional system capabilities and implementation schemes addressing the use of resources.  

• Reactivity. An evolutive system is not passive and interacts with its environmental context and its 
components. Thus, besides the system geometry its functional and logical descriptions are critical for the 
behavioral completeness of the system (reactions), as it is towards its adaptability and associated processes.  

• Regeneration. The use, recycling, repurpose, and regeneration of all resources used by the system and its 
design process are also part of its development process pushing the limits of its sustainability.  

• New and changing situations define new needs for upcoming systems and methods. Complex systems require 
more and more the combination of both design engineering and systems engineering practices, which presents 
an answer to this question under the light of ARR evolutive principles. This is also a beginning for others research 
questions, especially when considering hardware and software interactions, and their virtual combinations.  
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• What principles could enhance traditionally sequential design and systems engineering workflows to 
achieve faster, better, and more efficiently such multidisciplinary complex systems? 

• A thorough literature review presented key relevant and linked gaps within DE and SE methods towards 
developing CHS when studied from a geometrical and analytical standpoint (chapter 3), such as: 

• Synergy. DSE methods tend to tackle multiple disciplines 
sequentially or in parallel. 

• Continuity. DSE methods are driven by point-design or 
discreet solutions rather than families of solutions (species). 

• Qualification of parameters is widely distributed among them 
but qualifiable aspects are challenging or impossible.  

• Geometry. SE methodologies do not tackle geometrical 
information well, and SE processes struggle with complex 
system definitions that could be customized or enhanced.  

• Truly full system lifecycle is often missing across methods.  

• Flexibility in DSE methods if often very complex or missing. 
Tools tend to re-work solutions often due to cultural reason.  

• Disruption is often not fostered by the method itself.  

• Fast-paced workflows are often challenging across efforts. 

• System connectivity links tend to be missing in DSE efforts.   

• Some of these gaps have been addressed by evolutionary techniques (section 3.3) since the early 1950s. 
These were inspired by nature and mainly applied to computer science instead of CHS and other hardware-
driven applications. Among key principles and contributions (section 4.1.1) several can be highlighted since 
evolutionary solutions are [1] continuous (species), [2] multidimensional and multidisciplinary. Their design 
approach is [3] agile, [4] evolvable, [5] networked, [6] heritage-driven (genetics), [7] environment-driven (co-
evolution), and [8] they address the full development process (eco-evo-devo) of the system (organism).  

• Thus, the evolutive approach unites adaptive and evolutionary principles (chapter 4). This fill and creates 
synergies among DE and SE identified gaps through axioms and principles that address ARR characteristics.  

• The characteristics of evolutive system architectures (eSARs) were addressed in chapter 4. The associated 
design process developed or eSARD (Chapter 5) directly tackled this question. This was summarized with the 
evolutive design tetrahedron (Figure 182) that us based upon three basic system levels (GBS) such as: 

• Geometry (adaptability) includes geometrical aspects, aesthetics, uncertainty, interfaces, and optimization. 

• Behavior (reactivity) considers functional aspects such as energy, schedule, synergy, and algorithms. 

• Substance (regeneration) considers implementation topics of multiple natures (physical, digital, virtual, or a 
combinations), as well as manufacturability, efficiency, recyclability, and relative cost topics.  

• Upon these points, the eSARD method enables a complete developing cycle for evolutive system architectures 
that is based on three network keystones or system principles such as design, operations, and 
implementation (DOI). The goal of this approach is to create a design method that achieves more efficiently 
evolutive, reactive, and regenerative system architectures, handling and addressing global stressors. This is 
mainly based on a synergetic perspective that tackles each lifecycle phase and every design challenge from 
within synergies among disciplines and components, rather than the classical ‘divide-and-conquer’ approach. 
These principles handle relationships among complex design drivers faster and more efficiently (Figure 124).  

• Gaps among state-of-the-art DE and SE methodologies are intertwined and complemented by eSARD principles 
as an answer to this research question. These principles are derived from both global environmental stressors 
and new system needs. They expand more traditional perspectives to address all key ARR needs of an eSAR, 
while opening further research opportunities towards the application of the evolutive approach to other 
technical, design, and development fields.  

Figure 182. Evolutive design tetrahedron. 
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• How could a design method that considers previous questions be used to develop more efficiently complex 
systems within such environment, when there is no direct heritage and ultra-system performance is a must? 

• Developing evolutive architectures efficiently requires of a full-cycle, synergetic, and networked design method. 
This means a highly adaptable workflow that handles continuous designs efforts, addresses multiple links across 
tools and milestones, and infuses heritage inputs along the process. The eASRD method (Figure 183) is 
developed upon three universal and interconnected development areas within this thesis: 

• Design (geometry) addresses organizational, design, systems, esthetics, and validation aspects.  

• Implementation (substance) tackles from manufacturing or coding to validation, verification, and testing.  

• Operative optimization (behavior) includes system operations and overall system optimization.  

• eSARD methods pursues disruption (adaptability), smartness (reactivity) and efficacy (resource regeneration) 
upon the system (section 5.4) and within a measurable reference framework (Figure 135). This also responds to 
the need of designing better, smarter, and broader, while achieving more with less (resources, parts, cost).  

• Consequently, an eSARD workflow should be designed to increase ARR capability in the system (Figure 139) 
from an individual, team, machine, or hybrid perspective while making the most of current SOA methods, 
evolutive principles, and ARR system characteristics. Thus, such process is organized around a helix presenting: 

• Three continuous, replicable, and networked DOI sectors that tackle all development areas and tools.   

• Milestones and verification steps across the full life cycle: SFR, PDR, CDR, TRR, SVR, ORR, and OPRR.  

• Tools allowing to dynamically identify synergetic gaps (eADQNs) for a better system capability (eAMGs). 
These also enable a broader look at the design process (eASGs) and the system definition (eASMs). The 
result is faster design times, better relative heritage use, and better system performance with same metrics.  

• By challenging the inquiring nature of the design process and the links across all traditional phases, this research 
question finds a new path that is enabled by new tools using current capabilities. This also paves the way to a 
more fluid but manageable approach in the design of hardware-based complex system architectures (eSAR).  

Figure 183. Evolutive system design networked process (eSARD) addressing design, operations, and implementation sectors.  
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 Applications and Limitations 

The scope and objective of this research was to tackle in general the development of hardware-based system 
architectures that could be enhanced by software, virtual, and robotic perspectives. More specifically, the design portion of 
the workflow was developed in detail while connections to other areas of the evolutive process have been only highlighted.  

The goal of this dissertation was to address key principles regarding how evolutive system architectures should be 
tackled, as well as to evaluate and develop drivers, methods, and tools to develop them. This not only applies to evolutive 
systems but presents a foundation towards developing any complex system participating of ARR principles. From a 
hardware-based standpoint the eSARD approach tackles three different levels of development, as follows. 

• Architecture evolutive characteristics (ARR). These are high-level evolutive oriented characteristics regarding 
CHS design and implementation under global stressors such as the scarcity of resources. 

• System and process development phases (DOI). These applied to generic steps so the system can be developed, 
operated, and improved. They complement and connect SOA techniques and well-known milestones within current 
SE and DE practices across the world and among multiple industrial and technical sectors.   

• System details (GBS). Finally, these are universal details that need to be addressed towards implementing any 
complex system, but especially those with an evolutive nature, including shape, interfaces, functions, behaviors, data-
structures, materials, coding needs, recyclable schemes, or decommission strategies, among many more. These are 
not driven by the process itself such other referenced works, but rather the implementation of the system.  

This effort has not addressed in detail the implication of this approach towards other non-hardware efforts tackling 
portions of the evolutive approach, however it presents a feasible foundation for these due its synergetic and flexible nature. 
These other applications include digital and virtual systems (e.g., software), as well as hybrids (e.g., robotics). 

 

 Conclusion  

The world is always in constant change, but perhaps nowadays more than ever due to greater climate, economical, 
and social reasons happening simultaneously at a global scale. The practice of complex systems design is affected by such 
growing new context stressors as chapter 2 introduced. Today, systems and services need an increase in their capabilities 
due to common stressor such as competitiveness, speed-to-market, and competitiveness, among others. However, there 
are also an increasing number of other global stressors with great influence over these design activities. These include 
among others: [1] the growing scarcity of resources, [2] the widespread need for better system performances across technical 
fields, [3] the influence of cultural heritage over workforce and workflows, and [4] the infusion of data-driven techniques, 
among many other technology disruptions with a direct influence over hardware-based complex systems (CHS).  

Three research questions (section 1.2 ) bounded the initial hypothesis for this dissertation, how design mechanisms 
inspired by natural evolution are applied to the design and physical implementation of complex systems to enable more 
efficient development processes and substantiate more adaptable complex system architectures (CHS). Nevertheless, this 
thesis is based upon years of research, extensive literature reviews, practical experience among many technical fields, and 
a deep knowledge of the stat-of-the-art design engineering (DE) and systems engineering (SE) techniques.  

Therefore, these design stressors emphasize upcoming changes in the ratio between systems needs and available 
resources (section 2.3). Furthermore, this also means that future complex systems and their associated design 
methodologies will have to adapt. This is especially meaningful towards the development of complex hardware-based 
systems due to the increasing need of multidisciplinary requirements and the influence of disruptive technologies changing 
how we could design, implement, and even operate such systems.  

Under this light, this doctoral thesis and associated research is based on years of practice started by studying such 
new needs, as well as key gaps identified within current state-of-the-art design engineering and systems engineering 
techniques (chapter 3). The need to correlate complex geometrical definitions with more advanced and networked system 
descriptions highlighted that such gaps among them tend to be complementary and lack adaptability towards a new reality 
based on change, uncertainty, and fast-paced developments.  
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This thorough study of needs, gaps, and capabilities led to the development of the evolutive perspective as a hybrid 
standpoint between the application of adaptable principles to system products and evolutionary methods to their 
development processes. Evolutionary principles extracted from nature were studied (section 3.3), as well their initial 
applications mainly to computer science since the 50s through genetic algorithms and evolutionary programming techniques. 
The result is a subset of CHS with some especial characteristics and a subsequent system development method.  

Evolutive systems architectures (eSARs) are a type of CHS in response to previous general stressors (chapter 4) 
and due to the application of evolutive principles to the system design. Specifically, these present three key characteristics. 

• Adaptability, which is related to the capability of the system to change and adapt both geometry and behavior. Under 
this approach these systems are dynamic, and their development is continuous in nature. This system characteristic 
relates to both geometrical aspects of the system and the evaluation of system functions.  

• Reactivity. These systems are smart and interact with the environment, thus their operational nature and scheme 
needs to be addressed from the very beginning. This principle relates to system interactions primarily.    

• Regeneration. Finally, it is not just about the system but its implementation (physical, digital, hybrid). Hence, system 
substance, resources utilization, recyclability, and sustainability are considered at all levels.    

The evolutive approach towards complex systems is founded on a series of key design drivers associated to these 
characteristics. There are integrated within a three-dimensional design reference framework or evolutive tetrahedron 
(Figure 182) providing coordinates to define such systems. Within this space, two levels of development such as design 
principles (DOI), and systems details (GBS) are interconnected from the networked standpoint of this approach. 

The eSARD method is created in response to such unique system characteristics requiring a development approach 
that embraces those foundational principles. This approach is based upon [1] finding synergetic gaps and links among 
requirements, technologies, subsystems, and heritage solutions, among others, [2] the study of the system from multiple 
ARR standpoints under a networked perspective, and [3] specific design objectives and principles to develop better complex 
eSAR systems faster, easier, cheaper, and more efficiently. The eSARD method is multilevel, multidisciplinary, and highly 
adaptable in nature.  

Figure 184. Evolutive reference framework for complex evolutive system architecures (eSAR) based upon ARR principles.  
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Furthermore, its design approach (chapter 5) allows to tackle many more relevant topics towards the feasibility and 
integrity of the system, while addressing simultaneously more disciplines. This method embraces new technologies and 
techniques, complementing other traditional tools and approaches that can be used by individuals, teams, machines, and 
hybrid workflows. The core of this approach is about finding proper questions, by intensifying both depth and range of any 
initial questioning. This allows to find from a truly multidisciplinary standpoint all real showstoppers for any system design. 
Finally, the eSARD methods brings enough flexibility to the process to quickly change, evolve, and vary the scale and level 
of the effort covering from high-level areas to system details towards feasible and high-performance system designs.  

Hence, this process (section 5.7) enhances traditional methods with a series of evolution-inspired tools and 
techniques that enable a more efficient and measurable methodology. Among the most relevant tools within this method, 
evolutive questioning networks (eADQNs) described in section 5.8 allow to find critical maturity gaps or eAMGs (section 
5.9) which become the multidisciplinary and multilevel starting point of the design process. These gaps are critical because 
they allow to find most synergetic design topics that condition the feasibility of the system, as well as the efficiency of the 
development process since their multidisciplinary nature helps tackling multiple perspectives all at once.    

An eSARD workflow continuously assesses all different facets of designing, implementing, and operating (DOI) 
both systems and system families (species). This enables a very holistic yet practical approach towards any DSE activity. 
The beginning of the process is tackled by interconnected evolutive seed geometries or eASGs (section 5.10) that lead to 
evolutive system models (eASMs) that describe and define the system. Tools within these models include evolutive 
system sketches (eSD, section 0) and GBS equipment lists (eGBSELs, section 5.11.2) which are evolutive enhancements 
of classic tools that substantiate a more open, adaptable, and reliable method. Such approach is supported by connections 
and links among all development sectors as described in the eSARD helix diagram (section 5.6 ) and the subsequent 
assessment and infusion of heritage inputs.   

This evolutive approach also presents a way to measure and evaluate the development of a system with the use of 
architecture maturity levels (eAMLs) as described in section 5.12. Hence, fast pace, facilitated, and curated design cycles 
can be managed and effectively conducted within this design framework. The eSARD approach infuses a collaborative, 
concurrent, and collaborative (3C) framework to its practice ensuring its adaptability towards new tools, capabilities, and 
design agents in the future. In essence, this approach presents a universal method for CHSs which is customized for eSARs.   

 

 Research Contributions 

In summary, key research contribution in previous sections could be summarized as follows. 

• A holistic analysis of global design stressors influencing the balance between system needs, method capabilities, 
and available resources across the process (chapter 2), as well as their influence in all general design efforts.  

• A thorough literature review and joint analysis of gaps and links among design engineering (DE), systems 
engineering (SE), and evolutionary driven techniques addressing the efficient design of complex hardware-based 
systems (CHS) and eSAR. Chapter 3 presents several tables addressing those areas from these perspectives: 

• Technique, lifecycle design phases, drivers, and barriers.  

• Capability of addressing geometrical, analytical, qualitative, and quantitative information.   

• Field of study, scope, domain, type of products, inherent adaptability, and perspective. 

• Associated tools, frameworks, workflows, and platforms. 

• A novel definition and classification of evolutive system architectures (eSARs) as a subset of generic complex 
hardware-based systems that are driven by adaptability, regeneration, and reactivity (chapter 4). This includes:  

• General approach and evolutive principles in relationship with global stressors. 

• Evolutive system keystones and general characteristics. 

• Evolutive drivers, interrelations, and evolutive design reference framework.   

• A new design approach and associated development method (eSARD) in chapter 5 tackling all aspect of 
hardware-based system development from a multidisciplinary, full-cycle, and detail-inclusive perspective. This also 
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integrates design engineering and systems engineering practices with evolutionary-inspired approaches including:  

• Links among state-of-the-art system design methodologies and evolutive system needs.  

• Evolutive design tetrahedron, ARR areas, evolutive design objectives, drivers, and principles. 

• eSARD_he helix model for system design engineering based on DOI areas and GBS details. 

• Evolutive design workflow and evolutive design tools including among others the following: 

• Dynamic system and evolutive design questioning (eADQNs) 

• Synergetic design gaps (eAMGs) and derived workflows.  

• Evolutive seed geometries (eASGs) and evolutive sketches. 

• Evolutive System model (eASMs) and GBS equipment lists (eGBSEL). 

• Architecture maturity levels (eAML), metrics, and comparisons. 
 

 Future Work 

The eSARD approach tackles the full cycle of hardware-based complex system development. This dissertation has 
addressed key characteristics of such systems, and some operational aspects. However, since the emphasis has been 
placed mainly on design tools, milestones, and workflows there is a series of topics and potential research activities for future 
research and development work such as:   

• eSARD workflows, tools, milestones, and perspectives regarding system implementation. 

• eSARD workflows, tools, milestones, and perspectives regarding system operations and control.  

• eSARD optimization perspectives, techniques, and workflows with other data-driven methods.  

Furthermore, the implications towards using evolutive principles and eSARD methods on virtual and digital systems 
such as data-based software projects, AI-power techniques, and VR/AR-based designs is another research path to be 
developed upon this dissertation. The evolutive architecture design approach is a synergetic design platform built upon the 
shoulder of many giants. This approach brings and applies the power of dynamic questioning, evolutive connections, and 
continuous adaptable design across subsystems and lifecycles. Furthermore, it also creates the foundation for an adaptable 
platform ensuring a better pairing between upcoming system needs and new toolset capabilities using the most effective 
approach to handle change and entropy, evolution. 
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EVOLUTIVE ARCHITECURES 
Résumé en français  

CHAPTER 8 

 
“Il n’est rien de réel que le rêve et l’amour.” 

Anna de Noailles  
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8. Résumé en français 
L'activité humaine sur Terre a été motivée par le besoin d'innover pour progresser. Les besoins de survie, l'avantage 

concurrentiel et la curiosité intellectuelle, entre autres, nous ont incités à aller au-delà, et souvent contre l'éternelle difficulté 
de trouver des ressources ou du soutien. Au cours de la deuxième décennie du siècle, la complexité, le patrimoine et la 
rareté des ressources, entre autres, influencent de plus en plus les architectures complexes en termes de conception, 
d'optimisation et de mise en œuvre. Basée sur des synergies critiques entre des domaines tels que l'ingénierie des systèmes, 
l'architecture et la conception technique, cette thèse présente des résultats, des approches et des contributions à une 
nouvelle méthodologie d’ingénierie de systèmes.  

De nos jours, les systèmes complexes tels que les voitures, les ordinateurs, les systèmes robotiques, les plates-
formes virtuelles, les bâtiments intelligents et autres dispositifs électromécaniques montrent un besoin croissant de faire des 
bonds en avant en termes de performance des systèmes, qui sont souvent au-delà des limites de toute connaissance 
existante. Par exemple, les produits de consommation sont de plus en plus sophistiqués et nécessitent une meilleure 
intégration du matériel et des logiciels, ainsi que la prise en compte d'autres exigences sociales et culturelles pour être 
compétitifs. Il y a quelques décennies, des systèmes étaient purement mécaniques, alors qu’aujourd’hui des systèmes 
comme une automobile, comprennent des centaines de milliers de lignes de code et font appel à d'autres techniques de 
fabrication disruptives (par exemple, la fabrication additive) pour offrir une meilleure qualité, et une personnalisation plus 
facile à un prix plus bas. Au-delà de la compétitivité d'un produit sur les marchés mondiaux, la demande de meilleures 
performances des systèmes (par exemple, des maisons durables consommant moins d'énergie), et l'adaptabilité des 
systèmes (par exemple, des systèmes modulaires) est une tendance croissante. En effet, de nos jours, les entreprises de 
télécommunications ne se contentent plus de transmettre des données sur de grandes distances, mais doivent également 
tenir compte des tendances sociales, de la connectivité des sous-systèmes et des expériences des utilisateurs. En 
substance, cette nouvelle complexité inhérente est considérée dans cette recherche comme une réalité multidisciplinaire en 
réseau plutôt que comme un défi unidimensionnel. Notre monde devient rapidement plus complexe, nos méthodes de 
conception doivent donc évoluer en parallèle.  

Dans le même temps, nous entrons dans une toute nouvelle phase en termes de disponibilité des ressources en 
raison de l'incertitude climatique et de la croissance démographique, ainsi que d'autres facteurs socio-économiques. Par 
conséquent, l'équilibre entre le besoin de complexité et la disponibilité des ressources (par exemple, l'énergie, la main-
d'œuvre, les matériaux de construction, etc.) entre dans un nouveau paradigme, qui est le point de départ de cette recherche. 
Quel que soit le domaine d'activité (architecture, construction automobile, finance, conception de produits, médecine, 
aérospatiale, etc.), la nécessité d'aller au-delà en termes de performance, de nouveauté, d'efficacité, d'unicité et 
d'adaptabilité du système devient une force majeure dans la conception de tout système technique complexe. Les marchés, 
les clients ne cesseront d'exiger davantage de l'architecture des systèmes, ce qui aura une incidence sur leur nature en tant 
que système (artefact) et sur la manière dont ils sont développés (méthode) au cours des multiples phases de 
développement, telles que la conception, l'optimisation, le prototypage, la mise en œuvre, la gestion et la durabilité. Ainsi, 
compte tenu des contraintes patrimoniales et de la rareté des ressources, comment pourrions-nous atteindre de bien 
meilleurs niveaux de performance et de capacité des systèmes lors du développement de nouveaux systèmes complexes ?  

Cette thèse présente les bases théoriques, les analyses documentaires, les lacunes de la pratique, les méthodologies 
et les cas d'étude d'une approche technique nouvelle, rapide et synergique de l'ingénierie des systèmes de conception des 
architectures de systèmes complexes. Inspirée par des principes évolutifs, des principes adaptatifs et des techniques de 
pointe éprouvées, cette approche de l'architecture évolutive s'attaque à la conception, à l'optimisation et à la mise en œuvre 
de systèmes complexes sous des contraintes strictes, tout en se concentrant sur des connexions multiples entre les 
disciplines. L'objectif primordial de cette approche est de surmonter rapidement les obstacles à la conception qui sont 
motivés par les connaissances existantes, la performance et l'unicité, de la même manière que la nature le fait, en tant que 
processus continu et efficace reposant sur des synergies plutôt que sur des divisions entre disciplines et sous-systèmes.  

Cette thèse est structurée et centrée sur la définition d’une méthodologie tout en soulignant d'autres phases telles 
que la mise en œuvre et les opérations. Pour illustrer cette méthodologie, un système d'habitat portable intelligent est utilisé 
comme cas d'étude.  
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Après un chapitre introductif, une deuxième partie présente le contexte et la raison d'être de cette méthode 
synergique en abordant les facteurs de stress, les obstacles, les facteurs favorables et les lacunes. La nécessité de 
concevoir mieux et plus efficacement implique également de le faire plus rapidement et à moindre coût. Cette nécessité est 
fondée sur les incertitudes climatiques, socio-économiques et techniques à venir, qui entraînent de nouveaux équilibres 
entre les besoins, les ressources et le patrimoine du système. Les besoins techniques, scientifiques et commerciaux sont 
en concurrence pour obtenir des performances meilleures et plus rapides, ce qui conduit à des systèmes de plus en plus 
complexes. À long terme, cela met non seulement à l'épreuve les capacités de conception actuelles, mais rend également 
plus difficile l'adoption de nouvelles solutions, en particulier pour les secteurs et organisations riches en patrimoine et peu 
enclins à prendre des risques. En outre, une telle méthode basée sur l'évolution devrait offrir une adaptabilité, une évolutivité 
et une efficacité face à toute amélioration spectaculaire permise par les solutions actuelles de pointe. Le troisième chapitre 
présente donc une analyse bibliographique approfondie des méthodes de conception, des théories et des approches 
d'ingénierie des systèmes. Les tendances de conception frugale, sociale et low-tech, parmi beaucoup d'autres, proposent 
de multiples options pour faire "plus avec moins", mais cette approche évolutive aborde la question de faire "mieux avec 
moins" dans le contexte des conceptions "high-tech" inspirées de la nature et des domaines de l'ingénierie des systèmes. 
Les méthodes évolutives sont axées sur le changement systématique, radical et perturbateur plutôt que sur l'innovation 
incrémentale.  

Dans ce contexte général, le quatrième chapitre met l'accent sur une série de caractéristiques clés des architectures 
de systèmes basés sur le matériel, qui deviennent de plus en plus critiques en raison des multiples sources de pénurie de 
ressources, ainsi que de la nécessité de gérer une complexité de système beaucoup plus grande, à la fois en tant que 
produit et dans le cadre du processus de développement. Les architectures évolutives se définissent par une approche 
régénératrice de l'utilisation des ressources, une adaptabilité de haut niveau du système et un mode opérationnel axé sur 
la réactivité.  

Dans la perspective évolutive, tout système complexe peut être décrit par sa géométrie (principes descriptifs), son 
comportement (principes fonctionnels) et sa substance (nature des composants). Le chapitre suivant expose donc la 
méthodologie de conception de systèmes évolutifs dans ce contexte. Le chapitre 6 présente un cas d'étude qui illustre les 
principes, les étapes, les outils et les critères évolutifs utilisés pour obtenir rapidement et efficacement des solutions de 
conception réalisables et ultra-performantes, tout en étant agnostique vis-à-vis des outils. Cet exemple fournit la base de 
référence pour répondre à toutes les questions de recherche ainsi que pour obtenir des conclusions pour les multiples 
contributions développées et présentées dans cette thèse de doctorat.  

Le fondement de cette recherche repose sur près de 20 ans d'expérience professionnelle dans la conception de 
systèmes complexes. Cette thèse est complétée par d'autres exemples de recherche fondamentale du domaine public qui 
ont également été publiés par l'auteur au cours de son activité au Jet Propulsion Laboratory de la NASA-Caltech pendant 
près d'une décennie. Ainsi, les lignes directrices et les résultats présentés dans cette thèse développent une base théorique, 
applicable à la conception, l'optimisation et la mise en œuvre de toute conception d'architecture de système complexe 
(évolutive ou non) dans de multiples domaines techniques. Faire "mieux avec moins" est essentiel pour faire face à la rareté 
des ressources, répondre au besoin d'agilité de la conception, et augmenter l'adaptabilité aux exigences de systèmes plus 
complexes au-delà de toute solution patrimoniale. En outre, il est également essentiel d'aborder cet objectif dans une 
perspective holistique, comme le fait la nature, tout en tirant le meilleur parti des techniques de conception et de fabrication 
actuelles. Ainsi, cette approche crée une base pour l'infusion des méthodes d'automatisation à venir, et d'autres techniques 
perturbatrices concernant à la fois la conception et la mise en œuvre. Dans un monde confronté à des facteurs de stress 
croissants et changeants tels que le changement climatique, la croissance démographique, la complexité des systèmes et 
les pressions constantes du marché, nous proposons un moyen plus efficace d'obtenir des solutions meilleures et plus 
globales, afin de pouvoir continuer à relever de nouveaux défis. 
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 Introduction (chapitre 1) 

 Motivation, contexte et énoncé du problème 

De nos jours, la pratique de la conception de systèmes multidisciplinaires dans les domaines techniques est de plus 
en plus complexe en raison d'un nombre croissant de facteurs de stress mondiaux tels que la rareté des ressources, la 
disponibilité de la main-d'œuvre et l'influence du patrimoine culturel et technique, entre autres. Cette accélération de la 
situation est particulièrement pertinente pour les architectures de systèmes complexes basées sur le matériel, car non 
seulement elles deviennent un mélange de matériel, de logiciel, de données et d'interaction avec l'utilisateur, mais elles 
exigent également de nouvelles capacités dans un monde où la révolution basée sur les données atteint notre réalité 
physique. Souvent, ces nouveaux systèmes n'ont pas beaucoup de patrimoine (au sens de connaissances capitalisées) 
pertinent, pourtant ils visent des défis exigeant des niveaux de performance beaucoup plus élevés.  

L'objectif principal de cette thèse est de fournir une méthodologie de conception fondamentale pour permettre ces 
systèmes complexes à base de matériel (CHS) qui évoluent rapidement. Plus précisément, l'objectif est de structurer 
comment évoluer efficacement d'une solution système [A] non adaptable, passive et épuisant les ressources, vers une 
architecture système [B] hautement adaptable, réactive et régénérative (Figure 1). Cet énoncé du problème implique 
également l'évaluation de nouveaux contextes, de nouvelles pratiques et de nouvelles caractéristiques du système en tant 
qu'éléments clés pour l'élaboration d'une nouvelle approche de conception de système adaptable et résiliente. Basée sur 
des techniques de pointe dans de multiples domaines et inspirée par la nature, cette recherche sur la conception du système 
est également associée aux flux de travail opérationnels, de mise en œuvre et d'optimisation requis dans un processus de 
développement de système comme celui-ci. 

 Questions de recherche 

Dans un contexte aussi complexe, cette thèse s'articule autour de plusieurs questions de recherche entrelacées : 

1. Quelles sont les nouvelles caractéristiques et les besoins de conception complémentaires que présentent ces 
systèmes ultra-complexes dans des environnements où les ressources sont limitées ? 

2. Quels principes pourraient améliorer les processus plus traditionnels de conception et d'ingénierie des systèmes 
afin de réaliser plus rapidement, mieux et plus efficacement de tels systèmes complexes multidisciplinaires ?  

3. Comment une méthode de conception qui tient compte des questions précédentes pourrait-elle être utilisée pour 
développer plus efficacement des systèmes complexes dans un tel environnement, lorsqu'il n'y a pas d'héritage direct et 
que la performance du système est une nécessité ?  

Figure 185. Représentation tridimensionnelle des coordonnées du design évolutif (adaptabilité, régénération et réactivité).   
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 Contexte de pénurie : Besoins et ressources (chapitre 2) 

En tant qu'espèce, nous avons été guidés par le besoin de faire plus. L'envie de trouver, de découvrir ou d'atteindre 
de nouveaux progrès a stimulé l'innovation au cours des millénaires, s'attaquant souvent à ce que nous faisons et à la façon 
dont nous le faisons. Nous avons même classé des périodes de notre histoire (par exemple, l'âge du bronze) en fonction 
des capacités de conception et de fabrication que nous avons développées (Harari, 2018). Les besoins de survie, l'avantage 
concurrentiel et la curiosité intellectuelle, entre autres, nous ont incités à repousser toutes les limites, souvent à l'encontre 
des idées préconçues culturelles, des peurs personnelles et de l'éternel tracas de trouver suffisamment de ressources pour 
lancer de telles nouvelles entreprises. 

Au cours de la deuxième décennie de ce siècle, la nécessité de faire face à des niveaux de complexité croissants en 
termes de conception, de mise en œuvre et de gestion continue de croître (Kravtsov et Kadtke, 1996), car nous exigeons 
toujours plus de nos architectures, indépendamment du domaine d'application. L'évolution des capacités, et donc de la 
complexité, des systèmes de communication au cours du siècle dernier en est un bon exemple (voir Figure 186). Dans le 
contexte de cette recherche, comme présenté en section 1.8.1, le terme architecture (système) fait référence à la définition 
au plus haut niveau d'un artefact complexe basé sur un sous-système (matériel, logiciel, ou les deux). Par exemple, un 
bâtiment, une voiture et un produit de consommation électromécanique sont de bons exemples d'architectures génériques 
parmi beaucoup d'autres. En outre, les données montrent que nous sommes confrontés à une phase à venir en termes de 
disponibilité des ressources en raison de l'incertitude climatique (OMM, 2020) et de la croissance démographique (Nations 
unies et al., 2019), tandis qu'un nombre croissant de technologies nouvelles et perturbatrices (Buchholz et al., 2020) 
pourraient devenir essentielles pour relever ces défis. Par conséquent, l'équilibre entre "ce dont nous avons besoin" 
(exigences) et "ce que nous pouvons faire" (ressources / capacités), devient un champ d'exploration ouvert de nos jours. 
Cela s'inscrit très bien dans un nouveau paradigme pour la conception et la mise en œuvre de systèmes complexes. Ainsi, 
aborder la relation entre les besoins (exigences) et les ressources (contraintes), à travers la perspective de la théorie de 
l'offre-demande (Sloman et al., 2018) nous permet de comprendre la complexité du développement de l'architecture d'un 
système (Figure 6) comme un équilibre entre ces forces. Plus les besoins ou exigences sont couverts avec moins de 
ressources, plus un système devient efficace. Ainsi, la pente de cette courbe pourrait être comprise comme la complexité 
d'une telle architecture. Suivre une courbe de complexité efficace (ligne bleue) est souvent compliqué, car les contraintes 
économiques, humaines, culturelles et techniques ont tendance à aplatir cette courbe. Par conséquent, des besoins 
similaires pourraient être couverts avec une utilisation plus efficace des ressources. Cependant, un saut dans cette efficacité 
n'est souvent possible que par le biais de nouvelles voies systématiques ou de technologies perturbatrices. Permettre et 
structurer un tel saut est l'objectif d'un processus de conception évolutif développé dans cette thèse.  

Quel que soit le domaine de travail (par exemple, l'architecture, la construction automobile, la finance, la conception 
de produits, la médecine, etc.), le besoin d'aller au-delà en termes de performance, de nouveauté, d'efficacité, d'unicité et 
d'adaptabilité devient une force majeure dans tout effort de conception technique complexe. Dans le contexte actuel de 
l'ingénierie de conception et des pratiques d'ingénierie des systèmes, de multiples facteurs influencent cet équilibre des 
forces, et ils seront étudiés dans les sections suivantes. Ces facteurs sont à la base de nouvelles approches des systèmes 
d'architecture complexes et des méthodes de conception qui leur sont associées.  

Figure 186. Évolution du type d'informations transmises par les dispositifs de communication du XIXe siècle aux années 2020. 
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Les conséquences de la rareté des ressources et de la volonté humaine d'aller plus loin poussent les nouveaux 
efforts et méthodes de conception à faire plus avec moins (Radjou et Prabhu, 2014), ce qui pousse essentiellement ces 
efforts vers la partie supérieure gauche de la courbe besoins-ressources présentée à la Error! Reference source not 
found.. Les marchés, les clients et les exigences exigent davantage de toute architecture de système, ce qui a une incidence 
sur ce qu'elle est en tant que système et sur la manière dont elle est développée en tant que méthode. Cette pression se 
répercute sur toutes les multiples phases de développement du cycle de vie d'une conception, telles que la conception, 
l'optimisation, le prototypage, la mise en œuvre, la gestion et la durabilité (Pahl et al., 2007).  

Au fil du temps, des tendances et des pratiques, il existe de multiples façons d'aborder l'équilibre entre les tendances 
représenté dans la figure 6. Alors que la section 3 présentera une revue de la littérature élaborée et détaillée dans les 
domaines de l'ingénierie de conception, de l'ingénierie des systèmes et des principes d'évolution, il est utile de mentionner 
certaines approches générales pour clarifier le contexte de cette recherche. L'équilibre entre les exigences et l'utilisation des 
ressources peut également être compris comme l'équilibre entre la technologie, l'utilisateur, la complexité et le coût. De ce 
point de vue, nous pouvons identifier plusieurs tendances telles que :  

• La low-tech qui aborde les problèmes complexes avec un design et une technologie simple (Hirsch-Kreinsen et 
Jacobson, 2008), répondant au manque de ressources ainsi qu'aux besoins humains associés (Philippe, 2020). Cette 
tendance a eu une grande influence dans les années 70 avec l'approche "do-it-yourself" (DIY) (Wolf et Mcquitty, 
2011). Sous cette tendance, nous pourrions également inclure les termes small-tech, no-tech, slow-tech et design 
passif, entre autres variations de principes connexes.  

• Le design social aborde la complexité en plaçant les besoins sociaux et humains au centre de ce processus (Margolin 
et Margolin, 2002). L'utilisation et le niveau de la technologie ne sont pas aussi importants que la responsabilité qui 
la sous-tend. Cette approche a des applications dans tous les domaines, touchant des domaines complexes tels que 
l'urbanisme et l'architecture (Michael et Lin, 2018). 

• La conception frugale telle que décrite dans cette intro consiste à faire plus avec moins (Radjou et Prabhu, 2014) 
tout en apportant la notion de contrôle et d'équité dans cet équilibre grâce à l'innovation (Micaëlli et al., 2016). La clé 
est l'efficacité de l'approche, et elle est applicable à différents niveaux de technologie ainsi qu'à différents types 
d'équilibres.  

• La haute technologie, la deep-tech ou la frontier-tech, au contraire, répondent à ces batailles critiques en s'appuyant 
fortement sur des solutions techniques de pointe qui ne reflètent pas nécessairement d'autres aspects sociaux et 
d'innovation (Steenhuis et Bruijn, 2006). L'influence de cette perspective peut être observée dans les solutions 
d'architecture (Macdonald, 2019), les projets de technologie de l'information (Cortright et Mayer, 2001), les nouveaux 
développements de l'IA (Malach-Pines et Özbilgin, 2010), etc. 

Néanmoins, cette recherche embrasse tout ce spectre avec une perspective large en étant agnostique quant au 
niveau de technologie utilisé dans cet équilibre, ainsi que d'autres aspects tels que l'innovation ou les approches sociales. 
L'objectif est toutefois de s'intéresser d'abord à la capacité du système, puis à la méthode de conception. Tout autre domaine 
de cette activité affectant la complexité de ce défi pourrait et devrait être abordé indépendamment de la position adoptée. 
En d'autres termes, d'un point de vue vraiment général, il s'agit d'obtenir le meilleur et le plus optimisé des résultats du 
système.  

Ainsi, l'objectif principal de cette recherche est de savoir comment nous pourrions atteindre plus efficacement de 
meilleures performances et capacités de système lors du développement de nouveaux systèmes complexes qui n'ont pas 
d'héritage antérieur. En outre, la rareté inhérente des ressources souligne également la nécessité d'une approche de 
conception et d'ingénierie système suffisamment adaptable aux changements à court et à long terme concernant les 
exigences, les contraintes, les méthodes, etc. En d'autres termes, l'objectif de ce cadre théorique (validé par des années 
d'expérience pratique dans différents secteurs) est de déterminer comment concevoir plus rapidement et plus intelligemment 
en faisant non seulement plus mais mieux avec moins. Il est toujours nécessaire de s'attaquer aux principaux facteurs de 
stress qui affectent l'équilibre dans le développement de toute architecture complexe, mais cela est particulièrement pertinent 
dans les conditions de pénurie prévisibles qui affecteront la pratique technique de l'architecture et de l'ingénierie dans les 
prochaines décennies. Ainsi, les sections suivantes abordent les facteurs de stress liés à la conception de contextes 
multiples. 
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La conception de systèmes complexes basés sur du matériel doit aujourd'hui faire face à une série de facteurs de 
stress dus à des changements croissants dans le contexte de nombreuses pratiques techniques. Ces facteurs de stress, 
que les sections précédentes ont résumé, influencent actuellement toute pratique de conception de systèmes, mais ils 
constituent également une tendance croissante. L'absence d'héritage réel pour un nouveau système, l'augmentation de la 
rareté des ressources et l'influence culturelle d'une façon établie de faire des affaires soulèvent une question qui affecte à 
la fois le résultat du produit et le processus de conception qui le sous-tend : Comment rendre un processus de conception 
multidisciplinaire suffisamment efficace (Rowan, 2019) lorsqu'un défi est relevé pour la première fois alors que les résultats 
potentiels exigent une approche radicalement nouvelle et que de nouvelles méthodologies sont très probablement 
nécessaires ?   

Compte tenu de la complexité inhérente derrière de telles architectures de système dans tous les domaines, l'objectif 
de la réponse à cette question pourrait être davantage de créer une base solide, universelle et adaptable qui permet une 
telle nouvelle conception, plutôt qu'une approche statique qui pourrait facilement devenir trop adaptée à un domaine 
spécifique ou à un contexte déterministe donné. La nature même de ces facteurs de stress rend nécessaire l'adaptabilité de 
toute approche qui les aborde de manière robuste. Une méthode permettant de trouver des architectures de système plus 
rapides et plus matures offre une plateforme puissante pour réduire l'utilisation des ressources (par exemple, la main-
d'œuvre, les calculs, etc.) tout au long du cycle de vie du système, de l'exploration et de l'idéation à la mise en œuvre et aux 
opérations. 

Le monde d'aujourd'hui évolue de façon spectaculaire, sous de multiples angles à la fois. Tout processus visant à 
concevoir, développer et mettre en œuvre des systèmes actuels et futurs doit tenir compte de ces conditions changeantes. 
En outre, ces systèmes eux-mêmes doivent être capables de faire face à des conditions qui évoluent rapidement, de réduire 
l'utilisation des ressources et d'adopter toutes les capacités perturbatrices que les nouvelles méthodologies de conception 
et de mise en œuvre peuvent permettre.      

 

 Conception, systèmes et évolution : Revue de la littérature (chapitre 3) 

Ce chapitre traite de l'héritage, de l'état de l'art et des lacunes liées aux théories, outils et méthodologies appliquées 
en conception, et en architecture de systèmes complexes. Ces approches et pratiques proviennent des domaines de 
l'ingénierie, de la biologie et de l'informatique, et elles représentent la base du développement d'une approche nouvelle et 
complémentaire de conception de systèmes évolutifs. Ainsi, ce chapitre est structuré en quatre parties. 

Les trois premières parties traitent des méthodologies dans ces domaines :  

• Ingénierie de la conception (3.1). Cette section passe en revue les méthodologies et les théories de conception à 
travers l'histoire de l'humanité d'un point de vue multidisciplinaire vers les architectures de systèmes et les systèmes 
complexes.  

• L'ingénierie des systèmes (3.2). 

• Théories et conception évolutives (3.3). Cette section comprend des principes, des méthodes et des applications 
dans différents domaines et disciplines. Cette section est tout à fait fondamentale puisqu'elle aborde à la fois une 
vue d'ensemble des principes de l'évolution naturelle, ainsi que leur application aux techniques actuelles de calcul 
évolutionnaire et autres techniques d'ingénierie.  

Cet état de l'art des méthodes est effectué dans la perspective de conception d’architectures de systèmes physiques. 
L'objectif principal est d'aborder les méthodologies de conception en tenant compte de contraintes telles que la complexité, 
l'héritage, la rareté et l'agilité, entre autres. Alors que chaque section présente les conclusions et les lacunes à la lumière de 
cette recherche, la dernière section 3.4 introduit une conclusion générale comme clé de voûte de cette thèse.  

De multiples raisons sont à l'origine de cette revue de littérature à travers les domaines. Elles sont résumées dans 
les points suivants :  

• Concevoir pour la complexité. Aborder le processus de conception et la gestion du processus de conception d'une 
architecture de système complexe a été une pratique en évolution depuis les débuts de la civilisation. Au cours des 
dernières décennies, la notion de conception a été appliquée non seulement au système physique, mais aussi aux 
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logiciels et autres services. Il est donc essentiel de comprendre et d'identifier les principales lacunes dans l'ensemble 
du spectre de cette activité, en tenant compte des éléments suivants [1] le temps, [2] le cycle de vie, [3] le domaine, 
[4] les capacités logicielles et matérielles, [5] l'efficacité et [6] la vitesse, entre autres. Dans le domaine des systèmes 
physiques, ce point aborde la définition géométrique et la gestion des pièces, composants, assemblages et autres 
visualisations techniques.  

• L'autre aspect de ce processus consiste à gérer les aspects non géométriques d'une architecture de système 
complexe, y compris la documentation, le développement, la définition, les bases d'optimisation, etc. C'est le 
domaine de l'ingénierie des systèmes (SE) et, par conséquent, cette littérature passe en revue les tendances 
théoriques et pratiques dans ce domaine. Néanmoins, dans le vaste domaine de l'ingénierie des systèmes, cette 
recherche s'intéresse particulièrement aux méthodologies orientées vers une manière plus efficace d'aborder les 
grands systèmes complexes, indépendamment de leur nature logicielle ou matérielle.  

• Au cours des dernières décennies, la complexité et l'efficacité ont souvent été abordées dans des domaines 
techniques avec des méthodologies inspirées de la nature. La biologie en général, et la sélection naturelle en 
particulier, sont en effet devenues deux domaines critiques dans cette approche. Par exemple, les techniques de 
calcul évolutives telles que les algorithmes génétiques ont donné naissance, dans les années 90, à une nouvelle 
approche de la programmation et de l'optimisation des systèmes. Il est donc essentiel de passer en revue toute la 
littérature disponible sur les points suivants : [1] les principes naturels fondamentaux utilisés par ces techniques, [2] 
les applications pratiques du point de vue de la conception des systèmes, des calculs, des logiciels et du matériel.  

 

Bien que ces domaines puissent sembler sans lien entre eux, la réalité est qu'ils sont étroitement liés à la conception 
et à l'optimisation de la conception de tout système complexe. D'un autre côté, une perspective aussi large pourrait 
également présenter de multiples lacunes potentielles entre ces domaines et, surtout, entre les connexions et les synergies 
clés entre eux. Une méthode pour aborder un problème multidisciplinaire nécessite une base multidisciplinaire. Les sections 
suivantes présentent les résultats et les examens de ces techniques de pointe, ainsi que les lacunes critiques en matière de 
conception.  

La section 1.8 a déjà présenté les multiples définitions utilisées dans le cadre de cette recherche. Néanmoins, les 
domaines de la conception technique et de l'ingénierie des systèmes pourraient être imbriqués dans certaines de ces 
méthodologies et techniques. Par exemple, les concepts de la pensée conceptuelle et de la pensée systémique en ingénierie 
se chevauchent (Greene et al., 2017). Par conséquent, dans ces cas, il convient de noter ces liens, et leur approche ne sera 
étudiée que dans l'une des sections.  

L'étude des techniques et des pratiques de pointe dans les domaines de l'ingénierie de conception (DE) et de 
l'ingénierie des systèmes (SE) conduit à plusieurs conclusions générales qui sont résumées dans cette section. De plus, 
cette revue de la littérature sur les principes généraux d'évolution et leurs applications fournit également plusieurs points 
clés concluants et fondateurs pour cette recherche visant directement le domaine de la conception d'architectures de 
systèmes basés sur le matériel.  

Les théories et méthodologies d'ingénierie de conception étudiées dans la section 3.1 présentent une approche 
générale de "diviser pour mieux régner". Cela implique que les sous-systèmes, et en particulier les disciplines, ont tendance 
à être abordés indépendamment les uns des autres en suivant un processus d'agrégation séquentiel tout au long du cycle 
de vie de la conception. Ainsi, les disciplines sont essentiellement abordées l'une après l'autre et parfois partiellement en 
parallèle.  D'autre part, des méthodologies de conception très solides, telles que la conception prescriptive, englobent à la 
fois l'analyse et la synthèse d'un point de vue scientifique, présentant en général deux tendances. Elles peuvent être plus 
[1] créatives (par exemple, la conception innovante) avec d'énormes capacités pour résoudre des problèmes complexes, 
mais moins puissantes que les techniques de conception détaillée, ou [2] plus rigides, comme les techniques axées sur les 
méthodes (par exemple, axiomatiques), mais avec une base puissante pour les flux de travail informatisés, ce qui les rend 
moins capables de trouver des solutions plus innovantes sans héritage.  

De même, les outils et les flux de travail décrits à la section 3.1 présentent à la fois une base et une approche pratique 
autour de ces deux tendances opposées. Les développements informatiques et les techniques axées sur les données ont 
permis d'intégrer simultanément l'analyse et la conception dans le processus de conception et de développement, mais cela 
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se fait encore principalement d'un point de vue paramétrique. En substance, l'ingénierie de la conception au 21e siècle 
présente un écart entre la conciliation de la synergie multidisciplinaire caractéristique de techniques plus simples (et plus 
anciennes) telles que celles créées à l'aube de la pratique de l'architecture, et les nouvelles capacités analytiques et axées 
sur les processus qui sont aujourd'hui renforcées par l'intelligence artificielle et les techniques d'apprentissage automatique. 
Ainsi, l'adaptabilité est le chaînon manquant entre ces voies apparemment opposées.   

Néanmoins, depuis les années 1950, les grands systèmes complexes nécessitent de plus en plus d'aborder des 
aspects non géométriques. L'ingénierie des systèmes complexes est devenue une troisième branche très solide, en plus 
des approches de conception décrites précédemment. Une étude approfondie de la revue de la littérature et des pratiques 
de pointe réalisée dans la section 3.2 a montré que le développement très rapide de ce domaine au cours du dernier demi-
siècle a donné lieu à de multiples approches, théories, flux de travail et techniques. En général, depuis les débuts basés sur 
les documents jusqu'aux techniques de pointe actuelles basées sur les modèles, l'IS a considéré le système comme une 
construction abstraite (modèle), mais il y a eu des défis concernant la façon d'intégrer la géométrie dans le processus d'IS.  

En général, la plupart de ces techniques examinées présentent une méthodologie rigide (partiellement associée à 
des méthodes DE), à l'exception des méthodologies itératives (IID), du langage OPM et du squelette qui exercent une 
approche de conception de système plus continue. En outre, les méthodes d'ES n'ont pas tendance à reconnaître pleinement 
le cycle de vie complet des systèmes complexes, ignorant souvent des phases telles que le recyclage, la réaffectation et le 
déclassement, pour n'en citer que quelques-unes. Cependant, il n'y a pas d'intégration claire entre les théories et leur 
pratique. Parallèlement, le flux de travail associé à ces pratiques tend à être rigide et ne présente pas beaucoup de synergie 
entre les disciplines qui sont abordées par les activités de SE ou avec d'autres processus de conception, comme exposé 
dans la section 3.2.  

La flexibilité des flux de travail et des méthodes lorsqu'il s'agit de systèmes complexes et hautement adaptables est 
le dénominateur commun entre la conception et l'ingénierie des systèmes dans le cadre d'un effort conjoint. Les techniques 
inspirées de la nature qui traitent de la conception complexe tout en augmentant l'efficacité et la qualité des systèmes ont 
été développées principalement dans le domaine de l'informatique (par exemple, les algorithmes génétiques), mais aussi 
dans celui de l'ingénierie des systèmes.  

Les méthodes de calcul évolutif (EC) sont des techniques très performantes et souvent rapides pour l'optimisation 
des systèmes dans les processus axés sur les données. Cependant, elles présentent des lacunes importantes par rapport 
à une méthodologie complète capable de créer des systèmes complexes basés sur le matériel. Certaines de ces techniques, 
telles que les techniques de conception évolutive et les applications robotiques, constituent des approches efficaces pour 
gérer et intégrer les informations géométriques. L'examen de la littérature révèle qu'il s'agit de méthodes évolutionnistes 
quantifiables, mais qu'il existe des lacunes en ce qui concerne les méthodes capables de produire des flux de travail 
évolutionnistes qualifiables en utilisant un point de vue multidisciplinaire à des fins de mise en œuvre et de développement.    

Enfin, l'étude des principes naturels de base qui sous-tendent l'EC basée sur l'évolution naturelle inspire des 
mécanismes capables d'embrasser la continuité, la flexibilité et l'héritage non seulement du point de vue des données ou 
de l'information, mais aussi du point de vue de la conception du matériel. La section 3.3 présente le potentiel et l'importance 
de la prise en compte des processus de développement dans la création d'un système complexe et efficace (par exemple, 
l'évodévo). 

 

 Architectures de systèmes évolutifs (chapitre 4) 

Le contexte présenté dans la section 2 définit une série de caractéristiques clés affectant la pratique actuelle et future 
des disciplines de l'ingénierie de conception et de l'ingénierie des systèmes. Au-delà de ces pratiques, les architectures de 
systèmes en tant que solutions sont également influencées par les effets de la rareté, de l'agilité, de la complexité et de 
l'héritage. Ceci est particulièrement critique pour la conception de systèmes matériels à haute performance en raison de la 
complexité inhérente des systèmes (CHS), du niveau de performance qui leur est souvent associé, ainsi que de leur nature 
multidisciplinaire. Ainsi, cette recherche se concentre sur deux domaines : 

• Les architectures de systèmes évolutifs (eSAR) comme une classe de systèmes dans de tels contextes.  
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• La conception d'architectures de systèmes évolutifs (eSARD) comme une méthodologie de conception pratique 
pour modéliser de telles architectures. 

Cette approche de conception évolutive peut certainement être appliquée à tout développement d'architecture de 
système, indépendamment du domaine d'application, et elle est présentée comme un cadre théorique. L'objectif global est 
d'augmenter les performances et l'efficacité des systèmes au-delà de tout héritage existant, tout en utilisant une perspective 
agile et au niveau du système.  

La section suivante aborde plusieurs sujets définitifs tels que : [1] l'approche évolutive globale (section 4.1), [2] les 
caractéristiques clés des systèmes évolutifs (section 4.2), [3] les contraintes et les facteurs de conception (section 4.3), [4] 
la définition et la méthodologie eSAR (section 4.4), [5] la complexité en tant qu'intégration évolutive (section 0), et [6] la 
conclusion générale (section 4.6). 

 Les clés de voûte du système évolutif  

8.4.1.1. Adaptabilité 

L'adaptabilité est une clé de voûte du tétraèdre évolutif qui met en 
évidence les aspects géométriques et l'activité de conception (Figure 187Error! 
Reference source not found.). Comme cela a été présenté précédemment, 
cette clé de voûte de la conception évolutive est liée à tous les facteurs de stress 
du contexte, mais elle est particulièrement liée à la complexité, au patrimoine et 
à la perturbation culturelle.  

En outre, cette clé de voûte peut également être comprise comme étant 
directement liée au concept de patrimoine continu. Toute conception dans le 
cadre de l'approche évolutive peut être partiellement basée sur des solutions 
précédemment éprouvées (patrimoine), mais elle est aussi toujours une instance 
dans un processus de conception continu qui s'adapte constamment aux 
nouveaux changements.  

Par conséquent, l'adaptabilité concerne en fin de compte la capacité d'un 
système à répondre aux changements environnementaux, culturels et de 
conception. Plus son environnement contextuel exige de changements, plus la 
conception doit être modifiée pour permettre de nouvelles fonctions du système 

en réponse. L'adaptabilité de la conception d'un système peut alors être mesurée par sa fonctionnalité de conception relative. 
Il s'agit du nombre de fonctions qu'une géométrie de système peut exécuter compte tenu d'une capacité d'interaction 
spécifique et d'un niveau d'utilisation des ressources. Dans ce paradigme, l'objectif est donc de faire mieux avec moins. 
Ainsi, plus les fonctions qu'un système peut exécuter sont nombreuses et de qualité, moins il a besoin de ressources et plus 
il est adaptable. De plus, dans cette optique, la géométrie du système, y compris la forme, les éléments d'assemblage, etc., 
est liée de manière critique à la fois à ses fonctions (comportements) et aux ressources qu'il utilise (substance). Dans ce 
cas, le concept de comportement se réfère au système lui-même, et non au processus de conception tel qu'il pourrait être 
compris dans le cadre du FBS de Gero (Gero et Kannengiesser, 2004).  

L'architecture d'un système évolutif vise à être hautement adaptable au niveau du système et des sous-systèmes. 
Cela se produit par conception, tant du point de vue matériel que logiciel. Elle est également rendue possible par la nature 
d'un processus de conception évolutif continu tel qu'il a été présenté précédemment. Ainsi, de multiples instances peuvent 
être créées simultanément en tant que résultat de la modification des variables clés du système qui définissent ses 
caractéristiques les plus pertinentes. Par exemple, la conception d'une pièce d'habillement telle qu'une veste de pompier 
(figure 114) dans le cadre de cette approche porterait sur plusieurs couleurs et matériaux, mais aussi sur les capacités 
ultérieures de protection thermique et contre les intempéries. Lorsque cette veste est conçue, une base de référence est 
créée, et elle peut facilement être modifiée pour que les modèles puissent prendre en compte plusieurs tailles (par exemple, 
petite, moyenne, grande) et différents matériaux (par exemple, couleur, texture, propriétés, réfléchissants, etc.). De cette 
façon, la conception peut répondre à différentes situations chimiques et thermiques, ainsi qu'à des modifications, des mises 

Figure 187. Adaptabilité dans le tétraèdre 
évolutif de la conception de l'architecture du 
système. 



Ch8 Résumé en français - Evolutive Architectures – PhD Thesis, Raul Polit Casillas 

 

 

 

257 

 

à jour, des améliorations (p. ex. résistance chimique, protection thermique, etc.) et des solutions spéciales comme 
l'identification, les conditions d'éclairage, etc. (Watkins et Dunne, 2015). Ainsi, le système lui-même est un produit unique, 
mais il appartient à une collection qui comprend des systèmes aux caractéristiques similaires et aux multiples variations. 
Cependant, même si le système lui-même ne nécessite pas de variations, cette perspective apporte d'énormes avantages 
ultérieurs concernant les mises à niveau, la réaffectation du travail et, en fin de compte, l'efficacité du système. La conception 
de l'adaptabilité s'attaque aux contraintes de mise en œuvre et aux facteurs fonctionnels dès le début du processus de 
conception, ce qui permet de réduire le coût relatif global du processus de conception (temps, ressources, main-d'œuvre, 
etc.) et d'améliorer les performances du système lui-même. Si cette approche est largement diffusée dans la culture d'une 
organisation, tous les efforts initiaux nécessaires pour mettre ce processus en ligne seront compensés par l'apport de 
nouveaux niveaux d'adaptabilité dans les lignes de produits, les équipes et les projets.  

Un tel effort de conception pour créer une unité est réparti sur de multiples instanciations de cette espèce 
d'architecture et porte sur de multiples variables de conception représentées par un cadre en réseau de caractéristiques et 
de variables, plutôt que par une liste linéaire ou même une matrice d'exigences. Le produit final est le résultat de la 
pondération de ces besoins qui sont souvent interdépendants ou même opposés entre eux (figure 115). En d'autres termes, 
dans cette perspective évolutive, les relations entre les variables ne sont pas nécessairement constantes et elles peuvent 
varier dans le temps en raison de changements dans le contexte externe (par exemple, les facteurs de stress de la 
conception). Si cette approche ouverte et adaptable pouvait être rationalisée, même lorsqu'il s'agit d'une solution unique 
(avec ou sans patrimoine), alors non seulement les variations et les mises à niveau de ces solutions seraient plus faciles et 
moins coûteuses à réaliser, mais elles pourraient être incluses comme des apports patrimoniaux utiles pour des solutions 
plus récentes ou même sans rapport. Ainsi, la capture et la validation de ces relations font à bien des égards partie du 
matériel génétique du système et du processus. Ainsi, dans le cadre de cette approche, l'architecture d'un tel système 
pourrait être définie du point de vue d'un cadre évolutif, comme un réseau adaptable de variables interconnectées qui évolue 
en permanence (figure 115), plutôt que comme une structure hiérarchique statique (figure 116). L'architecture du système 
est alors définie par les connexions entre les variables les plus pertinentes, et l'adaptabilité consiste à gérer les changements 
dans les nœuds sélectionnés du réseau (lignes bleues) dans un cadre évolutif. Plus un tel réseau est fluide, plus le besoin 
d'une architecture de système adaptable est important pour réduire les coûts et améliorer l'efficacité et la capacité de toute 
conception de système. 

Toutefois, dans la perspective de ce cadre, l'adaptabilité du système peut être repoussée plus loin pour [1] mettre 
l'accent sur la conception de solutions plus efficaces qui utilisent moins de ressources, ainsi que [2] transformer l'incertitude 
inhérente aux phases de conception, de mise en œuvre et d'exploitation en un avantage. En substance, plus l'architecture 
d'un système peut traiter de zones du réseau avec moins de ressources, plus elle devient efficace et plus elle peut gérer 
d'incertitudes sans augmenter ses efforts ou ses coûts de reconception, de mise à niveau ou d'interconnexion. En outre, 
plus cette opération est effectuée tôt dans l'effort de conception, plus le processus devient efficace et plus le système a de 
chances d'être optimisé.  

En ce qui concerne cette efficacité, la conception initiale de la veste de pompier pourrait exiger qu'elle soit 
stratégiquement redessinée ou améliorée, en ajoutant des conditions telles que des manches détachables, une technologie 
intelligente intégrée (par exemple, des capteurs, des chauffages, etc.), ainsi que d'autres variables de mode culturel plus 
complexes. Ces paramètres ne faisaient pas partie de la conception initiale et n'étaient donc pas inclus dans les exigences 
et l'évaluation initiales de l'adaptabilité. Cependant, ces conditions sont déterminées par les utilisations futures prévisibles, 
les contraintes de fabrication et les changements du marché qui repoussent les limites d'un système futur. Si cette 
architecture a été conçue avec l'adaptabilité en tête (évolutive), alors une partie de la définition de ses exigences (lignes 
bleues) inclura également des "nœuds" ouverts, ou des zones pour des variables futures possibles ou incertaines. 

Par exemple, une nouvelle technique de couture pourrait permettre d'ajouter facilement des lignes de fermeture à 
glissière aux manches fixes afin que les manches puissent être retirées. Si cela s'applique à l'architecture elle-même, cela 
affecte également la méthode de conception. Envisager cet aspect dès le début de la mise en œuvre peut permettre d'écarter 
des solutions trop uniques, et donc non adaptables. Bien sûr, cela peut sembler très inefficace et peut-être une source de 
complexité inutile. Cependant, si elle est bien gérée, elle peut être la clé de sa réussite et permettre de faire des bonds en 
avant dans les performances. Le coût de l'inclusion de nœuds ouverts généraux (en vert), s'il est effectué correctement, est 
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minime par rapport aux avantages de la réutilisation de cet effort de conception pour des modifications ultérieures. À l'instar 
de ce que fait la nature avec l'évolution, l'ouverture et le caractère aléatoire de la définition du système (génétique) ouvrent 
la voie à l'adaptabilité en raison de l'incertitude de la réalité. En d'autres termes, plus le potentiel d'adaptabilité est insufflé 
tôt dans la conception, meilleure sera la gestion des risques (Costikyan, 2013) et moins le système sera coûteux à moyen 
et long terme. 

Dans le cadre de cette approche de l'adaptabilité évolutive, la sollicitation du système est également une stratégie 
visant à atteindre la fiabilité et la résilience du système. Si une grande partie ou la totalité des multiples relations décrivant 
l'architecture du système dans ce cadre sont prises en compte par un système, sa conception répond à des exigences 
connues et très probablement aussi connues. Plus un système est adaptable aux changements par le biais d'une approche 
"mieux avec moins", plus ce système est capable de faire face aux incertitudes et plus il devient résilient. En outre, même 
si cette approche est partiellement mise en œuvre, elle fournit une base solide pour de futures options et extensions de 
l'espace commercial de la conception.  

Cependant, l'intégration et l'ajout d'exigences peuvent également conduire à une hyper-intégration rendant difficiles 
les mises à niveau, réparations ou mises à jour futures. Il ne faut pas oublier que si une augmentation initiale de la complexité 
implique un plus grand effort et davantage de variables (et d'exigences), elle se traduit en fin de compte par des efforts de 
conception beaucoup plus efficaces et une utilisation moindre des ressources disponibles. C'est essentiellement ce que fait 
la nature, puisque le point de référence n'est pas l'effort de conception vers une conception ponctuelle ou une architecture 
unique, mais le système (organisme) en tant que partie instanciée d'une évolution continue (espèce).  

Ensuite, pour repousser les limites de l'architecture d'un système vers des niveaux plus élevés de performance et 
d'adaptabilité, il faut suivre un processus minutieux qui repose sur [1] l'équilibre entre les besoins et les ressources, et [2] 
une connexion synergique entre les sous-systèmes et les disciplines au sein d'un réseau d'exigences. Le chapitre 5 décrira 
ce processus en détail. En outre, l'introduction d'un haut niveau d'adaptabilité dans la conception a également l'avantage de 
mieux gérer l'incertitude. Dans une architecture évolutive, le système est considéré comme une solution ouverte, c'est-à-
dire une famille de solutions plutôt qu'un point de conception verrouillé, qui se répercute sur plusieurs niveaux tels que les 
sous-systèmes, les composants, les pièces et même les stratégies (par exemple, la fabrication, le marketing, etc.). Ainsi, 
l'incertitude de conception s'accumule dans le système sous forme de probabilité, de faisabilité et de disponibilité de 

Figure 188. Représentation visuelle de la définition d'une architecture basée sur un réseau évolutif de variables.  
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paramètres statistiques qui doivent être saisis, suivis et utilisés pour des optimisations ultérieures. 

La portée de cette clé de voûte critique varie sur une plage définie par ces niveaux : 

• Inadaptable (aucune adaptabilité). Ces conceptions de systèmes présentent le nombre minimum de fonctions avec 
le nombre maximum d'éléments. Elles ne peuvent pas gérer efficacement des niveaux élevés d'incertitude de 
conception, et elles ont tendance à graviter vers des solutions uniques de conception ponctuelle, rigides et souvent 
limitées. 

• Adaptable (adaptabilité équilibrée). Les conceptions de systèmes de cette catégorie présentent un équilibre entre 
le nombre de fonctions et leurs éléments constitutifs. Elles tendent vers des séries courtes et des solutions 
personnalisables limitées.  

• Évolutif (adaptabilité maximale). À l'autre extrémité du spectre, ces conceptions présentent un nombre maximal 
de fonctions avec un nombre minimal d'éléments et de composants. Elles gèrent efficacement des niveaux élevés 
d'incertitude de conception et gravitent vers des solutions ouvertes ou des familles de solutions répondant très bien 
à des exigences ouvertes.  

Le concept d'adaptabilité évolutive peut être appliqué à toute conception d'architecture de système, qu'il soit 
physique, numérique ou virtuel. Cependant, il est particulièrement pertinent pour les architectures de systèmes complexes 
et intelligents basés sur le matériel. La nature particulière de ces systèmes complexes qui intègrent des géométries 
physiques complexes, des fonctions commandées par des actionneurs et des opérations commandées par des données 
met certainement en évidence de multiples aspects imbriqués de l'approche évolutive, comme le présentera le chapitre 
suivant. 

8.4.1.2. Réactivité 
La réactivité est la deuxième clé de voûte du tétraèdre évolutif de la 

conception du système (Error! Reference source not found.). Ce concept est 
particulièrement lié à l'interconnexion, à la performance du système et à 
l'innovation.  

Du point de vue de l'évolution, l'architecture d'un système est dynamique 
et présente une nature multidisciplinaire pour offrir des caractéristiques de haute 
performance. Par exemple, un système mécanique évolutif pourrait être une 
voiture de course qui optimise les performances thermiques et la réduction de la 
masse. En outre, une configuration physique et adaptable répond à l'évolution 
des exigences de conception, avec des fonctions clés de contrôle et de gestion 
associées. Dans cet exemple mécanique, la gestion des actionneurs 
électromécaniques dans l'ensemble, pourrait permettre des améliorations et des 
ajustements au cours des différentes phases de la course pour améliorer les 
performances, ainsi que des mises à niveau basées sur les données recueillies 
au fil du temps. Par conséquent, la conception physique, les commandes des 
actionneurs et les décisions fondées sur les données sont combinées au sein 
d'une architecture évolutive adaptable complexe pour réagir aux changements 

environnementaux ou de conception. Dans ce cas, la réactivité est essentielle pour tenir compte de la synergie dynamique 
des composants du système, ainsi que de sa capacité à gérer son adaptabilité à travers les multiples réalités d'un système 
(physique, numérique, virtuelle, basée sur des données, etc.) La réactivité est également liée à la nature transitoire de la 
complexité évolutive du système, en tant que développement continu entre le système et son environnement. Le matériel 
(géométrie), le logiciel (comportement) et les ressources (substance) sont tous intégrés dans la capacité du système à 
interagir avec les changements intégratifs externes et internes.  

Par conséquent, l'interaction transitoire du système est la mesure de la réactivité du système et est définie comme 
le nombre (et la complexité) des réactions que les comportements du système peuvent fournir compte tenu d'une géométrie 
spécifique du système et de l'utilisation des ressources. Plus l'architecture d'un système est capable d'interactions avec 
l'environnement, plus elle est réactive. Moins le système a besoin d'interactions pour gérer les changements externes, ou 

Figure 189. La réactivité dans le tétraèdre 
évolutif de la conception de l'architecture du 
système. 
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en d'autres termes, plus il est intelligent et adaptable, plus l'architecture du système est efficace. En substance, l'objectif 
principal de ce principe est de rendre le système plus intelligent (plus réactif) avec moins.  

De nos jours, les architectures de systèmes complexes modernes dans tous les domaines sont de plus en plus 
robotisées par nature. Cela signifie qu'elles combinent de plus en plus de logiciels, de matériel et de données, par le biais 
d'un certain type de gestion, d'évaluation et de contrôle intelligents (Chen et al., 2018).  Par exemple, une voiture moderne 
compte aujourd'hui plusieurs millions de lignes de code (Desjardins et McCandless, 2017), ce qui est une tendance 
croissante alors que l'autonomie commence à devenir une capacité standard de toute voiture à l'avenir (Towns end, 2020). 
Il en va de même pour les apps ou les logiciels, ainsi que pour les téléphones, les véhicules, les appareils électroménagers 
et de nombreux autres objets qui nous entourent aujourd'hui. Dans le même temps, la quantité d'informations utilisées dans 
nos systèmes ne cesse d'augmenter, de sorte qu'une autre tendance technologique croissante apporte la connectivité entre 
tous ces systèmes, comme l'internet des objets (IoT). Tout cela dépeint un monde à court terme de dispositifs et de capteurs 
interconnectés partout (Soro et al., 2019). Ainsi, l'infusion croissante de comportements et de contrôles logiciels dans tout 
système matériel évolue vers une capacité intelligente omniprésente et croissante (figure 118) pour chacun de ces systèmes. 
En tant que telles, les règles de conception intrinsèques de tout matériel ou matériel piloté par des robots du système vont 
changer.  Par exemple, dans le cadre de cette approche, une maison gèrera elle-même son éclairage ou sa consommation 
d'énergie en fonction de l'interaction de l'utilisateur, tandis qu'une voiture se conduira toute seule en modifiant sa vitesse, 
les profils de sa suspension et son couple en fonction de l'état de la route et des stimuli environnementaux. Notre monde 
construit par l'homme devient plus intelligent et, soudain, la performance thermique, la fatigue mécanique ou la longévité du 
système seront déterminées par cette capacité inhérente. Ainsi, une approche comme celle-ci offrira de grandes 
opportunités dans cet équilibre entre la rareté des ressources et la complexité du système.  

Ces systèmes intelligents nécessitent un effort de conception tout aussi intelligent pour exploiter, améliorer et mettre 
à niveau la capacité de réactivité elle-même, mais aussi un moyen de faire correspondre l'adaptabilité du matériel, l'efficacité 
du système et l'interactivité entre les systèmes. En d'autres termes, une approche évolutive implique la capacité de préparer 
et de concevoir un flux constant d'informations et d'interactions entre les systèmes, les composants et leur environnement. 
Ces approches évolutives croissantes vont modifier les modèles commerciaux et industriels (Kranz, 2017), en affectant la 
manière dont nous concevons, construisons, fabriquons et utilisons les objets qui nous entourent.   

Comme les sections précédentes l'ont mentionné, les organismes (systèmes) dans la nature ne sont pas isolés. Ils 
sont en interaction constante avec leur environnement, avec d'autres organismes et avec eux-mêmes, quel que soit le 
volume d'informations et le véhicule de cet échange ou de cette étude. Cette interaction avec l'environnement entraîne : [1] 
les efforts de conception du système, y compris les réseaux de définition comme le montre la figure 118, ainsi que [2] les 
processus d'interaction permettant au système de réagir et de s'adapter.  

Figure 190. Réactivité évolutive, conception de systèmes et flux simultané d'interactions entre systèmes. 
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La Figure 190 montre graphiquement comment ce flux simultané affecte chaque processus. En général, le 
fonctionnement d'un système interactif dans l'environnement lui permet à la fois d'envoyer et de recueillir des données, qui 
sont utilisées pour effectuer des variations et des changements. Ceux-ci dépendent des capacités du système (par exemple, 
des pièces mobiles), ce qui permet de réagir au mieux à ces stimuli. Cependant, ce processus a également des 
conséquences sur la définition du système et sur ses efforts de conception ultérieurs, permettant également des 
changements dans la conception qui pourraient améliorer ses performances en fonction de chaque nouvelle situation 
(héritage continu). Comme le présente ce petit résumé, l'architecture du système doit alors être conçue pour permettre ce 
processus, en plaçant la réactivité et l'adaptabilité au cœur de sa définition.  

Au-delà, les contraintes de fabrication et d'exploitation doivent également être intégrées. Actuellement, les 
architectures de systèmes hautement réactifs, comme les voitures autonomes, présentent un niveau différent d'autonomie 
et de comportements induits par les données dans le cadre du processus de conception. Le processus de conception lui-
même doit donc être modifié, optimisé et évolué en fonction de la gestion de l'information inhérente à cette caractéristique 
clé. Dans le cadre de cette approche, plus une architecture de système avec une base intelligente est utilisée, plus le 
processus de conception changera en fonction de cette boucle de données de retour. Cela devient possible grâce à une 
architecture de données-matériel intégrée et simultanée (figure 119). 

La portée de cette clé de voûte critique varie progressivement sur une plage définie par ces points clés : 

• Passif (pas de réactivité). Ces systèmes présentent une capacité d'interaction minimale avec un nombre maximal 
d'éléments fonctionnels et d'utilisation des ressources. Ils ne peuvent pas faire face à de nombreux changements 
externes ou inattendus, et ont tendance à s'orienter vers des solutions simples et de faible technicité.  

• Actif (interaction équilibrée). Les systèmes présentent ici un équilibre entre l'interactivité et la complexité du 
système et les ressources requises tout au long de leur cycle de vie. Les systèmes programmables, modulaires et 
évolutifs ont leur place ici.  

• Réactif (réactivité totale). Ces systèmes présentent une capacité d'interaction maximale avec un nombre minimal 
d'éléments fonctionnels et d'utilisation des ressources. Il s'agit de systèmes hautement intelligents tels que la 
robotique avancée, les architectures pilotées par l'IA, les systèmes autonomes, etc. Ils peuvent gérer efficacement 
de nombreux changements externes et inattendus avec une grande interactivité. Ils gravitent autour de solutions 
high-tech, biologiques et logicielles. 

Cette clé de voûte évolutive ne s'applique pas seulement aux systèmes très complexes et de haute technologie, mais 
elle peut également être identifiée dans des conceptions aussi simples qu'une veste d'aventure. Une telle veste évolutive 
pourrait simplement avoir des manches amovibles et des ouvertures ou des poches qui pourraient être ajustées à la main 
pour des raisons de gestion thermique. Ce principe évolutif de réactivité est applicable à tous les secteurs techniques et 
créatifs. Bien que cette approche soit axée sur les architectures de systèmes basés sur le matériel, elle peut également être 
appliquée aux architectures logicielles ou virtuelles nécessitant à la fois des interactions et une adaptabilité. 

8.4.1.3. Régénération : Performance et durabilité des ressources 

Enfin, la régénération est la dernière clé de voûte d'une architecture de système évolutive (Figure 191). De même, 
elle s'attaque à tous les facteurs de stress généraux mentionnés dans la section 4.1 en tant que dernier fondement du 
tétraèdre évolutif. Parmi eux, la régénération est particulièrement liée à la rareté des ressources, à l'agilité et à la 
multidisciplinarité.  

La régénération concerne l'utilisation, la gestion et la restauration des ressources tout au long de leur cycle de vie, 
quelles qu'elles soient. Il peut s'agir de l'énergie, des matériaux de construction, du code informatique, des composants 
mécaniques ou de la disponibilité de la main-d'œuvre, entre autres. Les ressources ne doivent pas nécessairement être 
physiques et ne doivent pas non plus être créées par l'homme, mais elles ont toutes une substance. On entend par substance 
ce dont est constituée l'architecture du système ou la ressource nécessaire à son fonctionnement. Ce concept concerne 
donc l'optimisation du cycle de vie des ressources d'un système dans un environnement externe donné. Les sources utilisées 
pour fabriquer le système et leur gestion font partie d'un processus de conception évolutif. La prise en compte des ressources 
doit se faire sur l'ensemble du cycle de vie, de la production au recyclage, y compris : [1] l'énergie, [2] les matériaux, [3] les 
personnes ou la main-d'œuvre, [4] les données et [5] le codage ou la programmation. 
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Par conséquent, une mesure clé derrière ce concept constitutif d'une 
architecture de système évolutive est la consommation et l'utilisation des 
ressources pour une géométrie de système et une capacité de réactivité données. 
En d'autres termes, il s'agit du concept d'utilisation des ressources dans ce 
contexte. Il s'agit de la consommation de ressources par le système tout au long 
de son cycle de vie, de la conception au déclassement. En outre, elle prend en 
compte à la fois toutes les ressources utilisées pour concevoir le système, pour le 
développer (évo-devo), utilisées par le système lui-même, et par les relations avec 
son environnement, qu'il soit physique, numérique, ou les deux (éco-évo-devo).  

Dans cette perspective, un système évolutif vise non seulement à être 
durable mais aussi à devenir positif en termes de ressources (par exemple, en 
produisant plus d'énergie qu'il n'en consomme) ou régénérateur (Lyle, 1996). La 
première a des implications évidentes sur une approche du berceau au berceau, 
et il ne s'agit pas seulement de pollution ou de pénurie, mais d'efficacité à travers 
la conception, la mise en œuvre, les opérations, et jusqu'au déclassement 
(Bhamra et Lofthouse, 2016). Cette prise en compte des ressources peut être 
négative (le système ne fait que consommer), neutre (le système est durable) ou 
positive (le système reconstitue les ressources). Il peut également y avoir plusieurs niveaux parmi ceux-ci, qui sont appliqués 
au niveau du système ainsi qu'au niveau d'un composant ou d'un sous-système.  

Ainsi, la gestion des ressources dans un système évolutif est liée au concept d'éco-évo-évo-cycle de vie. Il s'agit 
d'une approche d'évo-devo qui examine le processus de développement du système lui-même en considérant l'écosystème 
environnemental et le cycle de vie du système du point de vue des ressources (Error! Reference source not found.). Dans 
cette perspective, des concepts tels que le recyclage durable (Bhamra et Lofthouse, 2016) et le cradle-to-cradle (McDonough 
et Braungart, 2010) sont intégrés dans la compréhension et l'optimisation de l'utilisation des ressources à travers plusieurs 
phases :  

• Dans cette phase, la conception consiste à prendre en compte à la fois [1] toutes les ressources nécessaires pour 
créer la conception (par exemple, la main-d'œuvre, les outils, les puissances de calcul, le papier, etc.), et [2] les 
ressources nécessaires au fonctionnement du système. 

• Mise en œuvre. La fabrication physique et numérique de l'architecture d'un système nécessite des ressources 
directes et indirectes telles que les matériaux, l'outillage et le codage. Dans cette phase, il est essentiel de prendre 
en compte toutes les pertes dues aux inefficacités et autres étapes intermédiaires. Cette phase doit également 
aborder l'intégration, le transport et l'installation.  

• Opérations. Cette phase concerne toutes les ressources nécessaires pour exploiter, maintenir et même mettre à 
niveau le système. De plus, l'exploitation du système est essentielle dans cette phase, tant du point de vue actif que 
passif, car elle affecte toutes les autres phases du cycle de vie. Entre autres ressources, la gestion de la main-
d'œuvre et le codage sont suivis ici.  

• Mise hors service. Enfin, cette dernière phase prend en compte les ressources concernant la réaffectation, le 
recyclage ou la réutilisation des systèmes à la fin de leur durée de vie. Cette phase critique va au-delà de la durabilité 
du système à tout niveau d'utilisation des ressources et relie la fin du cycle de vie au processus de conception initial.  

Dans cette perspective et tout au long du cycle de vie d'un système évolutif, la relation entre le système et son 
environnement est toujours considérée comme un élément constitutif de la conception, indépendamment de toute exigence 
de conception donnée. Cette relation détermine la durabilité du système, la position de la conception vis-à-vis de la rareté 
des ressources (section 2.1) et son coût de mise en œuvre. Elle conditionne et sollicite également la conception du système 
et la méthodologie de conception pour obtenir de meilleures performances. Par exemple, si la conception permet d'infuser, 
d'utiliser ou d'échanger des matériaux et des sources d'énergie parmi d'autres contraintes, cela augmentera l'adaptabilité 
de la conception du système et potentiellement les performances du système à long terme.  

De même que dans l'approche éco-évo, l'étude et la conception du système se font toujours à la lumière de sa 
relation avec son environnement changeant. Tout système est donc défini par la conception du système et son contexte. Ce 

Figure 191. La régénération dans le tétraèdre 
évolutif de la conception de l'architecture du 
système. 
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contexte peut être l'ensemble dans lequel il réside (par exemple, une pièce mécanique), l'environnement naturel (par 
exemple, un bâtiment), son cadre logiciel (par exemple, une application), etc.  

Ainsi, cette troisième clé de voûte est une caractéristique essentielle pour toute architecture de système, mais elle 
est particulièrement pertinente pour les architectures évolutives dans des environnements axés sur la rareté. Comme indiqué 
précédemment, la rareté de l'énergie est une contrainte globale générale pour l'humanité, et l'efficacité énergétique est 
particulièrement critique pour des opérations plus longues et encore plus abordables. L'utilisation de l'énergie est liée à 
l'utilisation des ressources naturelles, y compris l'extraction des matériaux, le traitement, le prototypage, la fabrication et 
jusqu'au recyclage (Johnson et Gibson, 2014). Il faut toujours en tenir compte pour des raisons de rareté, de coût et de 
fiabilité, car elle est essentielle pour tous les facteurs de stress généraux, de conception et même culturels (chapitre 2). 

 Par exemple, les matériaux recyclables à base de cellulose qui sont disponibles dans la région sont essentiels pour 
créer une approche évolutive vers l'impression de produits tels qu'un magazine, comme le montre la figure 122. 
Habituellement, la sélection finale du matériau et du fournisseur pour l'impression intervient à la fin du processus de 
conception. Mais une approche évolutive prend en compte ces détails clés dès le début du processus, et inclut les sources 
locales, les alternatives, les schémas de recyclage et les contraintes de fabrication. En outre, l'approche doit tenir compte 
de la manière dont l'édition peut reconstituer les arbres et l'énergie utilisés pendant sa conception, son impression et sa 
livraison. Cela conduit à gérer les encres, les formats, les fournisseurs et le transport, ainsi que les approches marketing, 
les aspects environnementaux et les autres contraintes sociales.  

Tous ces aspects sont pris en compte pour rendre le produit final plus riche, plus adaptable et mieux adapté à son 
contexte. Une telle approche exige un effort supplémentaire à la fois pour le concepteur et pour le processus de conception, 
et elle peut certainement devenir écrasante. Cependant, la clé consiste à évaluer laquelle de ces variables et connexions 
dans une telle interaction système-environnement est critique. Le chapitre 5 présentera ce processus et sa méthode.  

Viser un surplus dans le système offre plusieurs avantages du point de vue de la conception, car [1] cela met l'accent 
sur les exigences de conception permettant une plus grande adaptabilité, [2] cela crée des marges de performance et [3] 
cela met en œuvre des principes environnementaux clés ayant des conséquences économiques, sociales et de conservation 
importante. Par conséquent, une architecture de système évolutive pourrait souvent présenter des métiers de conception 

Figure 192. Cycle de vie complet des ressources évolutives dans le cadre du processus de conception des systèmes évolutifs.  
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clés qui permettent et utilisent ces principes. Ces principes comprennent notamment : une architecture de système 
multifonctionnelle, la réutilisation, la facilité de mise à niveau, la recyclabilité, la réduction de la masse, la réduction des 
coûts, l'augmentation du retour sur investissement, etc. En substance, le principe de conception qui sous-tend cette clé de 
voûte consiste à faire plus avec moins du point de vue des ressources. La gamme de régénération varie progressivement 
dans une fourchette définie par : 

• Épuisement (consommation nette négative de ressources, consommateur). Ces conceptions de système 
présentent la consommation maximale de ressources et aucune stratégie de réapprovisionnement. Ils ont tendance 
à présenter des niveaux de performance inférieurs, une moindre adaptabilité et une moindre réactivité. Ils s'orientent 
également vers des solutions non recyclables, jetables et non durables. Un exemple de ce domaine pourrait être les 
systèmes thermomécaniques dont l'empreinte carbone de fabrication est élevée. 

• Durable (consommation de ressources neutre). Les conceptions de systèmes de cette catégorie présentent un 
équilibre entre la consommation et la reconstitution des ressources. Il s'agit notamment des systèmes durables et 
des solutions neutres en carbone.  

• Régénérateur (consommation de ressources positive nette, pro-sommateur). À l'opposé, ces conceptions ont 
une consommation minimale de ressources et une stratégie de réapprovisionnement complet. Ainsi, ils présentent 
également les niveaux de performance les plus élevés, avec une plus grande adaptabilité et une plus grande 
réactivité du système. Ces systèmes gravitent vers des solutions nettes positives et régénératives telles que les 
systèmes électromécaniques basés sur la séquestration du CO2.  

Le concept de régénération en tant que clé de voûte d'un système évolutif pourrait être appliqué et observé dans de 
nombreux domaines, notamment thermomécanique, numérique, informatique et biologique, entre autres. Par conséquent, 
dans le cadre de cette approche, l'énergie, la matière et l'information (données) sont les multiples facettes de la même réalité 
en tant que substance des systèmes complexes. Il s'agit d'une manière fondamentalement holistique d'envisager toute 
architecture de système, indépendamment de sa complexité ou de son échelle.  

Des exemples de conception durable qui aspirent à être intégrés à la nature sont de plus en plus visibles dans de 
multiples secteurs tels que l'habillement, les produits de consommation et les maisons (Kwinter, 2017), parmi beaucoup 
d'autres. Néanmoins, concevoir et produire pour l'abondance des ressources, plutôt que pour le rationnement des 
ressources disponibles (McDonough et Braungart, 2013) est ce à quoi s'oppose la régénération. Cela signifie 
essentiellement [1] de concevoir une architecture de système qui produit plus de ressources qu'elle n'en consomme (Mang 
et al., 2016), ou [2] d'avoir un schéma fonctionnel intégré en boucle fermée afin que le système restaure, renouvelle et 
transforme toute énergie et ressource utilisée (Burke, 1999, Colozza et Maloney, 2003). Ceci est particulièrement applicable 
au développement de systèmes de production d'énergie, de projets de grande envergure et d'architectures orientées vers 
les infrastructures (Hemenway, 2015). Parmi d'autres exemples à plus petite échelle, nous pourrions identifier les bâtiments 
durables, les systèmes énergétiques régénératifs (Alotaibi et al., 2020), ou les systèmes de production alimentaire à base 
de plantes, pour n'en citer que quelques-uns. Cette approche est donc une tendance croissante en raison des facteurs de 
stress liés à la rareté et de la complexité croissante des systèmes.  

8.4.1.4. Facteurs de conception évolutive  

Les sections précédentes ont présenté l'approche de l'architecture des systèmes évolutifs en réponse aux facteurs 
de stress de la conception globale et aux lacunes méthodologiques. Ces clés de voûte fondamentales caractérisent tout 
système évolutif dans la grande catégorie des systèmes complexes généraux. La figure 123 résume cette approche en 
mettant en évidence les trois clés de voûte à la base du tétraèdre de la conception évolutive : adaptabilité, réactivité et 
régénération. Cependant, il est nécessaire de définir pleinement un système évolutif afin d'aborder des facteurs de 
conception plus spécifiques derrière ces principes clés de voûte. 

Ces clés de voûte reposent en partie sur les composantes architecturales de base ancestrales de tout bâtiment, qui 
ont été décrites par Vitruve sous l'Empire romain (Vitruvius, 2012). Il s'agit de la structure (firmitas), de la fonction (utilitas) 
et de la perception (venustas). Mais ces principes doivent être adaptés à l'époque actuelle. Il est pertinent de souligner que, 
contrairement à d'autres interprétations modernes telles que le modèle FVS de Gero (Gero et Kannengiesser, 2014), ces 
principes et les moteurs de conception ultérieurs se rapportent au système lui-même et non au processus de développement 
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de la conception qui le sous-tend, car il s'agit d'une approche pratique.  

À partir de la base décrite du tétraèdre évolutif, trois faces ou plans représentent ces groupes de moteurs de 
conception : [1] géométrie, [2] comportement, et [3] substance. Chacun de ces plans est opposé à sa clé de voûte plus 
directe (adaptabilité, réactivité et régénération), qui sont les vecteurs entre ces plans. Comprendre ces vecteurs tout en 
tenant compte des relations connues et inconnues entre eux est essentiel pour les concepteurs et les processus de 
conception afin de produire de bonnes architectures complexes. Les sections suivantes décrivent en détail ces facteurs de 
conception pour toute architecture de système évolutif donnée.  

Les descriptions suivantes sont basées sur [1] l'étude des besoins généraux concernant les systèmes complexes, 
[2] les lacunes en matière de conception et d'ingénierie des systèmes identifiées dans la section 3, [3] les caractéristiques 
clés des systèmes évolutifs, adaptatifs et évolutifs, et enfin [2] près de deux décennies de pratique de la conception de 
systèmes complexes dans de multiples domaines techniques. 

8.4.1.5. Conclusion 

En réponse au chapitre 2, la section 4.1 a présenté les nouveaux facteurs de stress qui affecteront la pratique de 
l'ingénierie de conception de systèmes au cours des prochaines décennies, ainsi que les besoins subséquents de gérer une 
plus grande complexité dans ces efforts. L'étude des facteurs qui sous-tendent cette nouvelle réalité, ainsi que l'examen 
approfondi des techniques de pointe de l'ingénierie de conception et de l'ingénierie des systèmes, font apparaître plusieurs 
lacunes qui définissent en elles-mêmes un nouveau sous-ensemble croissant de systèmes complexes. Ces lacunes sont 

Figure 193. Les moteurs de la conception du système comme faces du tétraèdre évolutif. 
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les suivantes [1] la pertinence de la géométrie comme terrain d'entente entre les disciplines qui conditionnent la capacité du 
système, [2] la prise en compte des fonctions fondamentales ou des "comportements" de base du système en question qui 
n'est plus statique ou incapable de s'adapter, et [3] l'importance d'aborder le besoin et l'utilisation de toutes les ressources 
nécessaires pour produire, utiliser, gérer et réaffecter le système. Ces lacunes limitent non seulement le résultat du système 
mais aussi la méthodologie elle-même. En d'autres termes, les nouveaux besoins nécessitent de nouvelles méthodes et de 
nouvelles normes. C'est le point de départ de l'approche évolutive, qui répond au besoin d'adaptabilité dans la conception 
du système, ainsi qu'à la nature complémentaire et évolutive des méthodes inspirées de la nature qui permettent de relever 
ces défis à partir d'une approche rapide, axée sur les données, autoorganisée et multidisciplinaire.  

Ces points sont souvent trouvés et combinés à travers l'intuition et l'instinct d'architectes et d'ingénieurs en chef 
talentueux dans de multiples domaines techniques et artistiques. Ainsi, cette recherche vise à créer une approche de base 
pour explorer le plein potentiel de ces approches afin de permettre la quantification, la qualification et, plus important encore, 
l'optimisation de nouvelles architectures, en particulier celles basées sur le matériel sans héritage ou générations 
précédentes. 

Cela implique tout d'abord d'étudier la nature et les caractéristiques particulières des architectures de systèmes 
évolutifs dans le contexte des systèmes d'architectures complexes basées sur le matériel, et ensuite de développer une 
méthodologie pour permettre de tels systèmes et compenser les lacunes des techniques actuelles de pointe.   

Sur la base des facteurs de stress généraux de plus en plus présents dans les scénarios de pénurie décrits au 
chapitre 2, et des lacunes dans les méthodologies de conception, l'approche évolutive présente trois clés de voûte 
constitutives des principes de base : adaptabilité, réactivité et régénération. Ces principes ont été décrits en détail dans la 
section 4.2. Ils caractérisent les architectures de systèmes évolutifs tout en fournissant les fondements de la méthodologie 
de conception ultérieure. Ces clés de voûte sont entrelacées (section 4.4) par une série de moteurs de conception 
synergiques qui cartographient le cycle complet des systèmes capables de réagir et de s'adapter à tout changement dans 
leur contexte et entre les composants. Ils ont été décrits et regroupés dans la section 4.3 autour de ces trois grands principes. 
En outre, ces moteurs traitent également de l'utilisation et de la gestion de toutes les ressources tout au long des phases de 
conception et du cycle de vie du système.  

Bien que cela soit développé plus en détail au chapitre 5, la section 4.4 présente graphiquement en détail les relations 
entre ces moteurs dans un système de référence tridimensionnel. Un tel système de référence est basé sur la mesure des 
fonctions, l'utilisation des ressources et les interactions des systèmes, en réponse aux trois clés de voûte évolutives, ainsi 
qu'aux trois domaines décrivant tout système général dans ce contexte : géométrie, comportement et substance. Les 
architectures de systèmes évolutifs sont physiques, numériques, virtuelles, ou une combinaison de tous ces éléments. Il 
s'agit essentiellement de systèmes hautement adaptables, réactifs et durables ou régénératifs, comme on peut en trouver 
dans certains systèmes robotiques, architecturaux, aérospatiaux et organiques.  

Par essence, les systèmes évolutifs s'inspirent de la nature et visent à atteindre le même niveau de performance, 
d'efficacité et d'adaptation. De plus, la façon dont cette nouvelle classe d'architectures est conçue infuse des principes de 
base éprouvés par des millénaires d'évolution naturelle sur la planète. Des forces simples mais très puissantes décrivent à 
la fois le système (produit) et la technique (méthodes), telles que : [1] les informations génétiques et patrimoniales qui 
déterminent l'adaptabilité et la sélection, [2] les mises en œuvre et les conceptions multifonctionnelles optimisées, [3] une 
approche continue du système en constante évolution, [4] la pertinence du contexte ou de l'environnement pour la 
conception du système, y compris les aspects culturels, techniques, physiques, numériques et virtuels, etc. Ces  

Après cette description introductive des architectures de systèmes évolutifs, les sections suivantes développeront 
cette recherche en ce qui concerne les techniques et les méthodologies qui les permettent (chapitre 5), ainsi qu'un exemple 
simplifié (chapitre 6) qui les illustre. Bien que la phase de conception soit une étape clé dans un processus de développement 
en réseau, les phases d'optimisation et de mise en œuvre sont intimement liées et seront également brièvement présentées 
comme des perspectives à l'origine de cette nouvelle façon de voir un système basé sur le matériel, à l'ombre de la 
conception ultime du système, la vie naturelle. 
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 Méthodologie de conception d'une architecture de système évolutive 
(chapitre 5) 

Les architectures de systèmes évolutifs, telles que décrites précédemment au chapitre 4, sont un sous-ensemble de 
systèmes complexes réagissant à de multiples facteurs de stress externes sur la base des principes clés d'adaptabilité, de 
réactivité et de régénération. Ces principes sont fondés sur des approches adaptatives et évolutives, et ils comblent certaines 
lacunes importantes dans les techniques actuelles d'ingénierie et de conception de systèmes. En substance, l'outil 
conditionne le résultat et la manière de relever un défi. Cependant, pour tirer le meilleur parti de ces lacunes (sections 3.4 
et 4.1), ainsi que pour fournir un moyen plus efficace de développer des architectures évolutives, une méthodologie ultérieure 
doit être créée. Ce chapitre présentera une approche vers un tel processus développée dans le cadre de cette recherche, 
la conception d'architecture de système évolutive (eSARD).  

Cette méthode n'est ni fermée ni rigide. Elle présente une voie fondamentale qui pourrait et devrait être étendue et 
adaptée à tout besoin particulier requis par les concepteurs, les équipes, les machines, les flux de travail, les secteurs et les 
domaines industriels, parmi beaucoup d'autres.  Ainsi, une approche de conception évolutive devrait être applicable à tout 
développement d'architecture de conception de système, indépendamment du domaine d'application. Cette méthode 
présente les objectifs généraux et interdépendants suivants : 

• Développer une méthode d'ingénierie de conception efficace qui fournit des architectures de système évolutives 
matures sans héritage, qui couvre l'ensemble du cycle de vie de la conception, qui optimise le temps et les 
ressources, et qui permet la possibilité de solutions à pas de géant. En d'autres termes, il s'agit d'une méthode 
allégée permettant de trouver des solutions novatrices sans héritage. 

• Jeter les bases d'une approche systémique de l'ES qui sert également de méthodologie de conception (ESD), et vers 
de nouvelles infusions de méthodologies d'aide informatique renforcées par des méthodes axées sur les données 
(par exemple, des flux de travail d'IA). 

• Créer également les bases d'un schéma organisationnel et managérial, servant à la fois les approches DE et SE 
pour gérer le calendrier, les ressources et la main d'œuvre, ainsi que toute technologie et support machines 
nécessaires.  

Les sections suivantes présenteront en détail le développement de cette méthode à travers ses objectifs, ses 
principes, sa base, ses flux de travail, ses outils et ses environnements. Cependant, cette recherche se concentre sur la 
partie fondamentale de la conception et de l'ingénierie des systèmes. Elle ne présente donc que des indications de base sur 
les aspects d'optimisation et de mise en œuvre des applications SE, ainsi que sur d'autres aspects organisationnels et 
managériaux de l'écosystème complet de la méthodologie évolutive.  

 Approche du processus de conception 

Le développement de l'approche eSARD commence par le tétraèdre de conception évolutive qui caractérise le 
système d'architecture évolutive (Figure 127). En plus d'autres caractéristiques générales des systèmes complexes, les 
architectures de systèmes évolutifs présentent trois principes caractéristiques majeurs ou clés de voûte, comme expliqué 
au chapitre 4 : adaptabilité, régénération et réactivité (ARR). Cependant, ces principes généraux ne décrivent que des 
caractéristiques d'architecture de haut niveau, de sorte qu'un processus de conception doit aborder les trois domaines 
descriptifs du système, tels que la géométrie, le comportement et la substance (GBS). Enfin, en tant que méthode pratique, 
eSARD s'attaque également à l'échelle de tous les détails du système de conception, de mise en œuvre et d'exploitation 
(DIO).   

Comme les points précédents l'ont présenté, le développement d'architectures de systèmes complexes en ce début 
de siècle est conditionné par la pénurie croissante potentielle de ressources due à de multiples facteurs et à des niveaux 
croissants de complexité des systèmes. L'équilibre entre les besoins et les ressources est en train de changer, exigeant 
souvent l'infusion et l'intégration d'outils nouveaux et perturbateurs qui complètent les méthodes plus traditionnelles. Du 
point de vue d’un quasi 4e révolution industrielle (Machado et Davim, 2020) aux nouveaux flux de travail collaboratifs 
homme-machine (Daugherty et Wilson, 2018), tout indique un changement de paradigme. De telles transitions se sont 
produites à un rythme beaucoup plus rapide dans les domaines des logiciels et des systèmes informatiques que dans les 
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développements de mise en œuvre matérielle (chapitre 3). C'est dans ce contexte que s'inscrit la présente recherche sur 
l'ingénierie de conception de systèmes, qui vise notamment à combler deux lacunes critiques dans la conception 
d'architectures complexes basées sur le matériel :  

• Comment concevoir plus efficacement vers l'optimisation et la mise en œuvre d'architectures plus performantes 
présentant des caractéristiques évolutives ? 

• Comment faire face au manque d'héritage et à la complexité croissante de la multidisciplinarité dans de tels 
processus ?  

Une approche de conception de systèmes évolutifs commence par une perspective de cycle complet, qui aborde 
simultanément la conception, la mise en œuvre et les opérations afin de permettre des performances de système plus 
élevées et des architectures de niveau système plus efficaces en s'appuyant sur des connexions synergiques entre les 
disciplines et les sous-systèmes (figure 128). Cette méthodologie évolutive est particulièrement utile lorsque la conception 
est soumise à un manque important d'héritage (first-of-a-kind), à des contraintes de temps, ainsi qu'à un large éventail de 
sous-systèmes ou de technologies réalisables et pourtant nouveaux qui doivent être infusés pour la première fois. 

Alors que le chapitre 3 a identifié les lacunes critiques dans l'état de l'art actuel des techniques DE et SE, le chapitre 
4 a souligné et présenté en détail la caractérisation des systèmes d'architecture évolutive. Ainsi, cette thèse s'attaque aux 
lacunes et aux caractéristiques présentées par ces principes de conception d'architecture (le quoi), tandis qu'elle développe 
une méthodologie autour d'elle (le comment). Inspirée par la méthodologie de conception de la nature (Kliman, 2016) et la 
pratique plus holistique ou multidisciplinaire de l'architecture (Jarzombek et Prakash, 2011), cette approche applique des 
méthodes éprouvées, voire anciennes, à de nouveaux domaines de mise en œuvre. 

Du point de vue des méthodes, cette approche a appliqué certains aspects de l'ingénierie des systèmes évolutifs 
(Braha et al., 2006) en informatique au domaine des implémentations matérielles. En tant que telle, plutôt que des méthodes 
linéaires et monodisciplinaires ou même parallèles, cette approche a un schéma axé sur le réseau, embrassant et combinant 

Figure 194. Tétraèdre de conception évolutive définissant les phases clés de la méthodologie. 
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à l'extrême les pratiques d'ingénierie simultanée et collaborative. En outre, cette méthodologie ne concerne pas seulement 
des disciplines quantifiables (par exemple, la conception mécanique) soutenues par des paramètres analytiques, mais aussi 
des sujets uniquement qualifiables (par exemple, l'esthétique) basés sur la conception géométrique, ainsi que des flux de 
travail d'exigences ouvertes ou changeantes.  

Dans ce contexte, une approche évolutive (eSARD) ne se concentre pas sur des solutions de conception en un point 
unique. Elle aborde plutôt le développement de l'architecture du système à partir d'un schéma de solution continu, tout en 
traitant l'optimisation, la mise en œuvre (y compris la gestion) et les opérations ultérieures du point de vue de la géométrie, 
du comportement (fonctions) et de la substance (ressources) (GBS). Cette approche est agnostique par rapport aux 
applications et aux outils, et vise également à insuffler des niveaux plus élevés d'adaptabilité dans la méthodologie elle-
même, tant du point de vue de la conception (géométrie) que des SE (abstraction). 

Du point de vue du produit, de l'artefact et de l'architecture du système, un processus de conception de système 
évolutif vise à produire une architecture de système évolutive pouvant être mise en œuvre. Celle-ci présente plusieurs 
caractéristiques complémentaires par rapport aux systèmes plus traditionnels basés sur le matériel, telles que : [1] une 
grande adaptabilité du système, [2] une base réactive intelligente, et [3] une stratégie de ressources régénératrices ou 
durables. Du concept à la mise en œuvre, l'approche évolutive s'attaque aux écarts de maturité du système et de ses parties. 
Elle s'appuie ensuite sur les points communs et les synergies entre les disciplines, les sous-systèmes et les parties 
prenantes. La faisabilité et la capacité fonctionnelle de l'architecture en question déterminent l'approche, tout en gardant à 
l'esprit l'efficacité globale en termes de ressources, d'agilité et d'adaptabilité.  

Cette méthodologie comble les lacunes des techniques d'ingénierie de conception (Pahl et al., 2007) et d'ingénierie 
des systèmes (INCOSE, 2020b) actuellement appliquées aux systèmes physiques et matériels. En substance, elle permet 
également d'établir une nouvelle base théorique pour faire mieux avec moins comme principe clé de la philosophie de 
conception. Par conséquent, le développement de ce processus est basé sur : [1] des analyses documentaires approfondies, 
[2] des recherches, des prototypes et des activités pratiques, et enfin [3] plusieurs décennies d'expérience professionnelle 
validée en tant qu'architecte et architecte système dans de multiples domaines industriels à travers le monde, dont près 
d'une décennie de pratique au Jet Propulsion Laboratory de la NASA pour le développement d'architectures de systèmes 
complexes. Néanmoins, cette approche est développée à partir d'une perspective de recherche fondamentale, elle est donc 
complètement agnostique par rapport aux outils, au domaine d'application et à toute technologie spécifique. En résumé, il 
s'agit d'une approche universelle de la conception de systèmes (DSE).   

Figure 195. Exemples de l'approche eSARD appliquée à un composant additionnel pour une conception de voiture existante. 
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Le développement d'une pièce complémentaire externe pour la carrosserie d'un modèle de voiture existant pourrait 
être un bon exemple de cette approche. Il pourrait s'agir, par exemple, d'un support de bagage supplémentaire pour le coffre 
(figure 129). La pièce elle-même n'a pas beaucoup d'héritage puisqu'elle est assez unique et ne fait pas partie de la 
conception originale. Cependant, elle nécessite d'accroître ses performances par rapport aux solutions précédentes en 
raison de l'augmentation de la tolérance à la vitesse, des normes de confort et de la protection de l'environnement. En outre, 
une approche évolutive appliquée à ce problème prendrait en compte les points suivants :  

• Adaptabilité (géométrie). Le composant doit s'adapter passivement à différents paramètres de conduite, conditions 
environnementales et interfaces mécaniques. De multiples options de finition et de matériaux feraient partie de 
l'espace commercial.  

• Réactivité (comportement). Cet aspect pourrait permettre l'éclairage et le contrôle aérodynamique actif.  Il devrait 
également pouvoir être suivi par GPS en cas de perte, de vol ou de chute de la voiture. Ainsi, les batteries, les 
capteurs et les composants actifs sont intégrés. 

• Régénération (substance). La fabrication et le cycle de vie complet du système doivent être entièrement durables.  

L'entreprise qui développe cette pièce pourrait ne vouloir répondre qu'aux exigences d'un modèle spécifique. 
Toutefois, lorsqu'une approche évolutive est appliquée, le concepteur et le flux de travail de conception doivent s'adapter à 
davantage de choses. Ainsi, au lieu que la conception soit uniquement applicable à un seul cas, elle est réalisée en tenant 
compte de nombreuses autres contraintes possibles probables ou réalisables afin de trouver des solutions plus synergiques 
et optimisées. Il ne s'agit pas d'une contrainte excessive, mais d'un effort pour trouver une meilleure solution.    

 Modèle de l'hélice de conception évolutive  

Le chapitre 4 a exposé des principes rationnels et fondamentaux concernant la définition d'une architecture de 
système évolutive ou eSAR. En outre, le chapitre 3 a identifié les lacunes des techniques de pointe en matière de SE et de 
DE, y compris celles qui appliquent des principes évolutifs. Enfin, le chapitre précédent a présenté ce que la méthodologie 
de conception évolutive doit poursuivre en termes d'objectifs et de principes dans une perspective combinée d'ED et de SE.  

L'étape suivante consiste donc à développer le processus eSARD, qui présente une nature en réseau abordant les 
trois nœuds d'activité clés tels que [1] la conception du système, [2] l'optimisation opérationnelle du système et [1] la mise 
en œuvre du système (DOI). Le premier nœud de cette méthode représente l'objectif principal de cette recherche, mais tous 
les nœuds sont intimement liés puisqu'ils doivent être développés simultanément. Cette section définit les détails spécifiques 
du flux de travail eSARD, y compris le cadre, les jalons, les outils, la dynamique et les routines pour une méthodologie 
d'ingénierie des systèmes de conception (DSE) hautement adaptable.  

La figure 144 présente une description graphique du modèle hélicoïdal eSARD (eSARD_he) où trois secteurs 
(triangles) sont répartis sur un schéma en spirale décrivant différentes portes de conception (jalons), routines (outils) et 
chemins utilisés pour couvrir les trois domaines ARR d'un système (adaptabilité, réactivité et régénération). La 
représentation d'un système unique à un moment donné est présentée par la spirale de la figure 145. Les vecteurs ARR 
(flèches rouges) créent la structure définissant les secteurs DOI, les phases, les jalons, etc. pour tout système donné. Les 
itérations multiples au sein d'un même système sont représentées par des translations dans le secteur, de manière similaire 
aux techniques SE incrémentales ou IID (section 0).  

Si l'on considère ces changements continus dans de multiples instances au sein d'une espèce commune (conception 
continue évolutive), l'évolution du système pourrait être représentée comme une hélice tridimensionnelle, comme le montre 
la figure 145. Cette hélice peut également être référencée dans le cadre évolutif décrit à la section 5.4 (figure 134). Dans ce 
cadre, toute conception ponctuelle (par exemple, le violet B) représente une famille d'instances ou de solutions. Le processus 
de la spirale 2D d'eSARD (Figure 144) peut être appliqué à chacun de ces points, avec pour objectif de décrire, développer 
et gérer une nouvelle solution qui est référencée dans ce système de coordonnées. Ainsi, le graphique en spirale 2D 
représente le processus au niveau de la solution, tandis que l'hélice 3D représente le travail au niveau de l'espèce, et les 
deux échelles peuvent être comparées et connectées dans ce cadre évolutif. Les spirales 2D et 3D sont des processus en 
réseau, de sorte qu'à l'intérieur de ceux-ci, toutes les variables, étapes, routines et outils connexes sont liés tout au long de 
leur flux de travail. Par exemple, les validations de la fabrication au niveau de la mise en œuvre peuvent également 
conditionner les écarts de maturité de la conception et vice versa. Comme tout se passe simultanément, il est essentiel de 
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disposer de données correctes. Le flux de jalons aide à guider et à valider le processus, tout en permettant l'infusion de 
méthodes et d'outils traditionnels dans des organisations plus axées sur le patrimoine.  

La nature itérative des approches de conception plus traditionnelles (Johnson et Gibson, 2014) fait également partie 
de l'activité dans chacun de ces secteurs, ainsi que de toutes les interactions entre eux. Cependant, cette méthode inclut 
d'autres aspects du cycle de vie tels que la durabilité ou le déclassement. Les clés de voûte de l'ARR (adaptabilité, 
interactivité et régénération) sont directement liées aux trois secteurs décrivant une architecture de système évolutive : 
géométrie, comportement et substance (GBS). La méthode qui sous-tend cette approche est liée à d'autres théories de 
conception, comme le présente la section 4.1 sur la base des conclusions du chapitre 3. Il s'agit notamment des techniques 
SE et DE telles que le DE systématique (énergie, matériau, signal - Pahl et al., 2007), le FBS (fonction, comportement et 
structure - Gero et Kannengiesser, 2004), et d'autres méthodes évolutives présentées dans le tableau 17. Néanmoins, cette 
approche ne vise pas à créer un simple processus de conception général, mais plutôt à créer une méthode holistique et 
adaptable qui aborde toutes les caractéristiques particulières des architectures de systèmes évolutifs basés sur le matériel 
tout au long de leur cycle de vie.   

Dans le cadre de ce flux de travail, les données patrimoniales pertinentes deviennent également un aspect essentiel 
servant de validation, de contexte et de comparaison pour les nouveaux systèmes. Toutefois, ces données ne peuvent 
jamais limiter les efforts de conception. Ainsi, le patrimoine est évalué de manière indépendante puisque l'objectif d'une 
méthode eSARD est de développer une solution d'architecture évolutive qui dépasse très probablement les performances 
des systèmes précédents tout en devenant souvent la première du genre. La section suivante présente en détail ces étapes 
de conception.    

Figure 196. Processus évolutif de conception de systèmes en réseau, présentant les trois nœuds d'activité ARR traitant de la 
conception, des opérations et de la mise en œuvre.   
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 Conclusion (chapitre 5) 

Les méthodologies de conception actuelles sont principalement basées sur une approche "diviser pour mieux 
régner", mettant en œuvre une approche de conception de système "en ligne" ou séquentielle. Bien que de nombreuses 
méthodes prennent en compte plusieurs disciplines, elles ne sont généralement pas développées d'un point de vue intégré. 
En réponse aux caractéristiques particulières des architectures de systèmes évolutifs présentées au chapitre 4 et résumées 
sous les principes d'adaptabilité, de réactivité et de régénération (ARR), l'approche eSARD est développée pour aborder à 
la fois le processus global et les principes, objectifs et outils clés qui sous-tendent sa méthodologie évolutive. Cette méthode 
s'inspire des mécanismes évolutifs (section 5.1) et de certaines lacunes des techniques de pointe en matière d'ED et de SE 
(chapitre 4) pour créer une approche plus efficace, plus rapide et plus performante qui répond aux besoins spécifiques des 
architectures de systèmes eSAR (section 5.2). En outre, cette méthodologie intègre des outils et des méthodes provenant 
d'autres techniques de DES, tout en créant et en modifiant des outils existants pour fournir un flux de travail dynamique et 
hautement adaptable abordant le processus de conception du système à tous les niveaux.  

Les principes de base de l'ARR fournissent un cadre de référence pour la méthode eSARD qui est basée sur le 
tétraèdre de conception évolutive. Cette construction permet d'aborder le flux de travail de conception à différents niveaux, 
notamment [1] les caractéristiques de haut niveau de l'architecture du système (ARR) décrivant les besoins et les capacités 
spécifiques des systèmes eSAR, [2] les détails du système de géométrie, de comportement et de substance (GBS) où un 
flux de travail de conception basé sur le matériel définit, conceptualise et met en œuvre tout système, et enfin [3] le flux de 
travail de conception détaillé associé à toutes ces échelles en considérant les sujets du système de conception, de mise en 
œuvre et d'exploitation (DOI) nécessaires pour mettre en œuvre complètement toute conception de l'architecture du 
système. Ainsi, cette méthode s'adresse à un système qui est développé à travers les échelles et les phases du cycle de 
vie comme le présentent la section 5.2 en général et la section 5.3 en particulier. Le processus eSARD introduit une approche 
holistique qui aborde le processus complet du cycle de vie de la conception en traitant toutes les échelles du système de 
manière simultanée, synergique et efficace. Cette approche est également basée sur les méthodes actuelles et sur de 
nouveaux outils spécifiquement conçus pour les architectures de systèmes évolutifs (tableau 25).   

La section 5.4 a présenté les objectifs de conception les plus critiques d'eSARD dans le cadre de référence évolutif 
et autour des domaines de la conception adaptable, de la performance des systèmes réactifs et enfin de l'utilisation 
régénérative des ressources. Ces objectifs conduisent à une approche globale qui minimise les coûts, prend en compte 
l'influence culturelle, permet de multiples voies de conception simultanées pour finalement fournir suffisamment de détails 
pour faire d'eSARD une méthodologie compétitive (section 5.4.4).  

Les objectifs de conception constituent la base des principes de conception clés (section 5.5) utilisés dans l'ensemble 
de la méthodologie eSARD pour guider tous les efforts et activités de conception. Ces principes sont les suivants [1] "faire 
mieux avec moins", en résolvant un problème par la conception (adaptabilité, section 5.5.1), [2] concevoir "plus 
intelligemment avec moins", par des solutions et des opérations continues (réactivité, section -), et [3] faire "plus avec moins", 
en optimisant l'utilisation de toutes les ressources tout au long du cycle de vie de la conception et du système (régénération, 
section 5.5.3).  

Une fois que tous les aspects fondamentaux de l'approche eSARD ont été exposés, ce chapitre a présenté le modèle 
et le diagramme subséquent utilisés pour décrire, organiser, gérer et mettre en œuvre toutes les multiples étapes, activités, 
jalons, produits et outils utilisés simultanément dans un flux de travail eSARD (section 5.6). Il s'agit du modèle d'hélice 
eSARD ou eSARD_he (Figure 144). Ce modèle fournit une représentation simplifiée en deux dimensions d'une activité et 
d'un flux de travail de conception fortement mis en réseau, simultané et, à certains égards, tridimensionnel (section 5.6.1). 
Ce modèle est organisé autour de trois secteurs basés sur tous les domaines de la DOI (conception, mise en œuvre et 
opérations) qui se déroulent toujours simultanément. Chaque secteur est par essence un modèle Vee, les trois secteurs 
étant intégrés autour d'une spirale qui décrit le cycle complet du système. Ce diagramme présente une série de jalons ou 
de portes de conception dans chaque sommet, qui ne cessent d'accroître la maturité et la définition du système à travers 
les phases du cycle de vie et les secteurs de développement (GBS). Les bords de ces secteurs abordent des domaines de 
conception critiques et interconnectés, tels que : la conception, l'ingénierie des systèmes, la mise en œuvre, la vérification 
et les tests, les opérations et l'optimisation complète du système. Dans chaque secteur, il existe une série d'outils et 
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d'activités utilisés pour créer les produits nécessaires à l'examen critique et aux étapes clés, mais surtout pour aborder, 
étudier et développer la conception de l'architecture du système en question. La section 5.6.1 présente tous les éléments 
clés de ce diagramme, tandis que la section 5.6.2 décrit en détail le premier secteur de conception du modèle et les 
opérations qui s'y déroulent. Enfin, les sections 5.6.3 et 5.6.4 présentent d'autres sujets concernant le secteur de la mise en 
œuvre et le secteur opérationnel, respectivement. En outre, ce niveau d'interconnexion nécessite des outils pour évaluer 
l'état de développement entre les secteurs, ce qui est fait par le biais de boucles de vérification qui ont été décrites dans la 
section 5.6.5. Enfin, une telle approche nécessite non seulement un modèle pour décrire les opérations, mais aussi un cadre 
d'espace de travail qui permet une utilisation et une infusion efficaces de la méthode sur le plan physique (équipes), virtuel 
(collaboration) et numérique (données). C'est le cadre évolutif 3C (concurrent, collaboratif et communicatif) décrit dans la 
section 5.6.6. 

Dans le cadre du développement de la méthodologie eSARD, ce chapitre a également introduit une description de 
son flux de conception ultérieur (section 5.7) et a présenté en détail tous les outils clés de conception évolutive utilisés dans 
le premier secteur. Cette approche est basée sur l'identification des lacunes les plus pertinentes et les plus synergiques 
dans la conception d'un système par le biais d'une série de questions ou eADQNs (section 5.8) sélectionnées et hautement 
multidisciplinaires. Ces questions portent sur les aspects qui conditionnent la faisabilité, l'efficacité et la mise en œuvre d'un 
concept de système évolutif. La plus critique d'entre elles devient une lacune de maturation du système ou eAMG (section 
5.9) qui définit le point de départ du processus de conception eSARD. À partir de là, les premières solutions commencent à 
se former grâce à une série de modèles et d'outils de conception ultérieurs appelés géométries d'amorçage ou eASG 
(section 5.10). Ces conceptions conduisent ensuite à la création de modèles de système ou eASM (section 0) à l'aide d'une 
série d'outils SE modifiés qui amènent la solution à un certain niveau de maturité et de définition, mesuré par des niveaux 
de maturité évolutifs ou eAML (section 5.12). Comme pour le TRLS et le CMLS, ces niveaux permettent d'organiser, de 
comparer et d'évaluer les solutions de conception qui sont développées dans le cadre d'une série de cycles de conception 
rapides et synchrones (section 0). Enfin, ce chapitre fournit une série de mesures et de principes de comparaison pour 
évaluer l'avancement de la conception et comparer les efforts entre les techniques, les cadres et la solution système (section 
5.14). 

Grâce à une approche multidisciplinaire, cette activité de recherche et la pratique associée complètent les tendances 
actuelles de l'état de l'art en matière de méthodologie de conception et d'ingénierie des systèmes tout en ouvrant une voie 
nouvelle et complémentaire, notamment vers les architectures de systèmes complexes basés sur le matériel. Néanmoins, 
cette approche est indépendante du domaine technique d'application et considère les liens entre les perspectives basées 
sur le matériel et le logiciel.  

 

 Cas d'étude : Architecture évolutive de micro-habitat (chapitre 6) 

Ce chapitre applique plusieurs des méthodes et outils expliqués dans les sections précédentes à un cas d'étude 
générique. Le sujet de cette étude est un système matériel, qui nécessite la prise en compte de plusieurs sujets évolutifs 
dans les domaines de l'adaptabilité, de la réactivité et de la régénération. L'objectif de ce chapitre n'est pas de présenter 
une solution entièrement détaillée pour le défi de conception en question, mais plutôt de présenter les aspects clés du flux 
de travail et de la méthodologie eSARD. En outre, le chapitre souligne les principales différences avec d'autres méthodes, 
ainsi que certaines mesures potentielles à utiliser à différentes phases du processus. Le processus eSARD utilisé ici n'est 
pas un processus rigide, cette recherche ne présente donc qu'une base qui peut être ultérieurement modifiée, personnalisée, 
améliorée, réduite ou complétée par d'autres méthodologies en fonction de l'application.  

 Le domaine de l'architecture des micro-habitats  

La conception de l'architecture des habitats en général est un domaine complexe et potentiellement très évolutif pour 
les systèmes complexes basés sur le matériel. Parmi les nombreuses applications et pratiques de conception figurent les 
bâtiments, les maisons, les habitats techniques, les abris, etc. Parmi eux, il existe un sous-ensemble spécifique 
d'architectures de systèmes qui est très intéressant à titre d'exemple, les habitats à petite échelle ou micro-habitats (Horden, 
2010). Ces petits bâtiments comprennent des abris hors réseau, des avant-postes de recherche, des retraites en montagne, 



Ch8 Résumé en français - Evolutive Architectures – PhD Thesis, Raul Polit Casillas 

 

 

 

274 

 

des points de vue, des abris d'urgence, des cabanes dans les arbres et des maisons de jeux, entre autres. Toutefois, ce 
domaine est complexe, multidisciplinaire et assez spécialisé (figure 174). Il présente également un long héritage au fil des 
siècles en ce qui concerne la fonctionnalité, la mise en œuvre et les approches de conception. Parmi leurs nombreuses 
caractéristiques génériques, les suivantes sont assez communes dans ce domaine : 

• Taille compacte. Ces habitats ont tendance à être très petits, avec une conception et une structure modulaire.  

• Transportabilité. Ces systèmes d'architecture sont souvent portables, transportables et préfabriqués.   

• Matériaux avancés. En raison de leur application particulière, de leur taille et de leur nature expérimentale, ces 
habitats présentent de nouveaux matériaux et de nouvelles techniques de fabrication qui ne sont pas souvent utilisés 
ou envisagés dans d'autres constructions de plus grande taille.  

• Masse légère. En raison de tous les points précédents, ces constructions ont tendance à être très légères, car elles 
font appel à de multiples techniques peu communes et de haute technologie, telles que les structures gonflables, les 
panneaux légers, les tensegrities, les nouveaux schémas structurels, etc. 

Par conséquent, tous ces micro-habitats en général, et plus particulièrement ces abris techniques nécessitant des 
capacités hors réseau et une grande portabilité, sont liés à des caractéristiques évolutives de base (ARR), comme le 
résument les points suivants : 

• Adaptabilité. Ces habitats doivent pouvoir s'adapter aux multiples changements de conditions météorologiques, aux 
différents besoins des utilisateurs et aux schémas d'utilisation pendant toute la durée de vie du système. En outre, 
les architectures de ces systèmes doivent répondre aux problèmes de disponibilité des matériaux de construction, 
de connaissances et de compétences de la main-d'œuvre, de faisabilité du transport, et bien d'autres problèmes 
encore. 

• Réactivité. Les systèmes d'habitation de ce type, même s'ils sont temporaires, doivent réagir au niveau le plus 
élémentaire à toutes les conditions environnementales. Par exemple, ils doivent fournir et conserver la chaleur par 
temps froid, fournir des mécanismes de refroidissement dans les climats chauds, gérer les espaces ouverts et fermés 
en fonction des conditions d'utilisation, etc.  

• Régénération. Les habitats durables hors réseau doivent également produire de l'énergie et gérer les déchets dans 
de multiples conditions. Si les performances et les capacités du système sont susceptibles de changer, les 
conséquences de ces changements affecteront l'ensemble du système. 

En outre, le domaine des micro-habitats fait partie d'un domaine architectural plus large, celui des systèmes 
d'architecture d'habitation, qui est en phase avec tous les facteurs de stress de la conception décrits au chapitre 2, tels que 
: le changement climatique, les besoins énergétiques, la complexité, la nécessité d'améliorer les performances, la pression 
du patrimoine et la raréfaction des ressources due à la croissance démographique, entre autres. Ainsi, ce domaine des 
micro-habitats constitue un parfait terrain d'étude en raison de la complexité de sa nature et de son contexte d'exploitation.  

 Conclusion (chapitre 6) 

L'exemple choisi pour cette étude a montré le besoin de plusieurs des caractéristiques clés qui définissent une 
architecture de système évolutive (eSAR). Ceci a été fait après un premier regard à travers la perspective d'une approche 
eSARD. Dès le début, les domaines clés du système ARR (adaptabilité, réactivité et régénération) ont été abordés car ils 
nécessitaient une conception et une analyse pour une solution système réussie. Cependant, cette approche a également 
mis en évidence la nécessité d'évaluer d'autres solutions patrimoniales directes et indirectes, ainsi que les avantages d'une 
exploration plus approfondie de toutes les exigences initiales.    

Ainsi, la première étape dans cet exemple a consisté à mettre en place un environnement évolutif 3C, abordant des 
sujets collaboratifs, communicatifs et simultanés qui comprenaient des outils, des agents et des connexions préliminaires, 
entre autres modèles. Cela a non seulement donné le ton au flux de travail du processus de conception, mais a également 
accéléré toutes les activités de travail ultérieures. Ainsi, tant les outils que l'environnement dans lequel ils fonctionnent ont 
nécessité une certaine conception au-delà de la solution système elle-même, ce qui a fait une grande différence. C'est un 
aspect pertinent de l'approche eSARD qui diffère des autres méthodes. L'analyse des solutions patrimoniales d'un point de 
vue des systèmes, des composants et des technologies a permis de créer un ensemble d'informations très utiles à utiliser 
ultérieurement lors de toute activité de conception dans les multiples phases et secteurs du processus.    
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L'approche eSARD (section 6.4.2) a abordé l'activité de conception dans cet exemple d'un point de vue combiné 
impliquant tous les domaines du DOI (conception, opérations et mise en œuvre). Bien que cet exemple n'ait abordé que le 
premier, le tableau 35 présente le déroulement complet de l'activité. Une fois l'environnement et les études patrimoniales 
étudiés, le processus eSARD a présenté plusieurs phases fournissant des conclusions clés qui sont résumées dans les 
points suivants :  

• Exigences, DOI et principes GBS (section 6.4.3). L'étude de ces sujets dans le cadre de l'approche eSARD apporte 
une perspective très holistique et interconnectée pour évaluer un défi de conception (Tableau 36). Cela a conduit à 
la création d'exigences secondaires issues de cette étude, qui n'étaient pas initialement fournies par le client mais 
qui sont devenues critiques pour trouver une solution réalisable. La solution envisagée ici n'est pas destinée à un 
seul EPH, mais plutôt à une famille d'EPH en tenant compte d'éventuelles mises à niveau et modifications futures. 
L'application d'une telle contrainte de conception a permis de simplifier les solutions et de découvrir des voies de 
conception qui réduiront les étapes de fabrication, les coûts et la masse ultérieurement.  

• Les techniques de questionnement dynamique utilisant les eADQN (section 6.5) permettent de trouver la 
question DOI la plus critique conditionnant la faisabilité du système et le flux de travail de conception en général 
(figure 178). Dans ce cas, la compacité du système, les opérations manuelles et les améliorations environnementales 
possibles se sont avérées être les aspects les plus critiques pour cette entreprise. Ces outils ont permis d'évaluer et 
de renforcer l'importance de l'adaptabilité du système pour sa réussite.   

• Écarts de maturité (eAMG). L'utilisation des techniques eAMG (section 6.6) a permis d'identifier l'écart le plus 
critique pour cette conception, qui est également le sujet le plus pertinent intégrant des disciplines clés, telles que 
l'ingénierie mécanique (mécanismes), la gestion thermique, et les sujets de l'expérience utilisateur : le style de 
conditionnement et l'aménagement intérieur. Ainsi, la compactibilité de la géométrie de l'habitat était un écart de 
maturation clé (tableau 37) et plus important que la réduction de la masse ou le coût. Sans réponse à cette lacune, 
la solution n'est pas réalisable, mais en même temps, résoudre ce problème d'un point de vue multidisciplinaire 
permet automatiquement d'aborder trois disciplines majeures. Ainsi, un sujet synergique intègre de multiples points 
de vue, et se concentrer sur lui permet de trouver des solutions meilleures et plus complètes beaucoup plus 
rapidement.  

• Géométries de semences évolutives (eASG). Un tel écart dans l'effort de conception (section 0) a permis de former 
une géométrie conceptuelle (figure 180) abordant simultanément plusieurs voies de conception et questions 
disciplinaires. Ces géométries ont pris en compte des sujets mécaniques, la performance thermique, les techniques 
de fabrication, les sujets SE et le style, entre autres.  

• Modèles de systèmes évolutifs (eASM). Enfin, la dernière étape dans le secteur de la conception DOI est la 
création d'un modèle de système initial qui capture les paramètres quantifiables et qualifiables, tout en créant des 
liens avec les modèles eASG (section 6.8). Dans ce cas, l'outil choisi pour capturer le système était un eGBSEL 
évolutif. Ce modèle basé sur un tableur est renforcé par des hyperliens et couvre tous les domaines de 
développement du système ARR et GBS, permettant de créer une vue beaucoup plus large et détaillée de l'eSAR 
en question. Il servira de base aux études paramétriques ultérieures.   

En substance, l'utilisation d'une méthodologie eSARD a permis de trouver une solution très efficace en termes de 
calendrier (temps), d'outils et d'agents (section 6.7.2). Cependant, l'essentiel est que cette approche a permis de mieux 
aborder l'activité de conception d'un point de vue conceptuel, logique, pratique et programmatique. Alors que les prochaines 
étapes et phases (section 6.9) apporteront certainement toute la puissance de cette approche à d'autres domaines du DOI 
tels que la mise en œuvre et les opérations, toutes les améliorations et les efficacités fournies par cette technique sont mises 
en évidence par le produit et le processus.  
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 Conclusion : Pistes de conception de systèmes d'architecture évolutive 
(chapitre 7) 

 Discussion 

Le point de départ de cette recherche était les systèmes complexes basés sur le matériel (CHS) en général, et un 
sous-ensemble de ceux-ci définis comme des architectures de systèmes évolutifs (eSAR). En outre, les méthodologies de 
conception et d'ingénierie des systèmes permettant de tels systèmes faisaient partie des objectifs de la recherche. Les 
chapitres précédents ont élaboré le chemin utilisé tout au long de cette thèse pour répondre aux trois questions de recherche 
initiales. Les réponses et les discussions à ces questions sont résumées dans les points suivants.  

• Quelles sont les nouvelles caractéristiques et les besoins de conception complémentaires que présentent 
ces systèmes ultra-complexes dans des environnements où les ressources sont limitées ?   

• L'analyse globale des tendances mondiales présentée au chapitre 2 a montré que plusieurs facteurs de stress 
liés à la conception influencent la pratique des SE et de l'ED pour développer des systèmes complexes (SHC). 
Ces facteurs affectent l'équilibre de base entre les besoins des systèmes et les ressources disponibles (figure 
6) et ne cessent d'imposer le besoin d'adaptabilité dans toute approche robuste qui s'y attaque. Ainsi, de 
nouvelles situations exigent de nouvelles approches. Les facteurs de stress les plus importants sont les suivants.  

• La rareté des ressources, telles que l'énergie, les matériaux et même la main-d'œuvre, est déterminée par 
le climat, l'économie et la compétitivité, entre autres raisons, ce qui oblige les systèmes à devenir plus 
efficaces et à utiliser moins de ressources. 

• La complexité des systèmes s'accroît, en particulier lorsque les systèmes matériels (CHS) continuent d'être 
enrichis de logiciels, de données et d'autres capacités interactives (par exemple, la robotique appliquée aux 
produits de consommation). 

• De meilleures performances des systèmes doivent être obtenues à des vitesses plus rapides en raison des 
contraintes du marché.  

• La multidisciplinarité croissante de la conception des systèmes et de leur gestion doit être prise en compte 
de nos jours.  

• L'agilité des processus du système et la capacité de réutilisation de l'effort de travail sont des facteurs 
critiques pour le coût. 

• Les systèmes complexes (SHC) sont de plus en plus en réseau et présentent davantage de liens entre les 
sous-systèmes et leur propre environnement contextuel, qu'il soit physique, numérique, virtuel ou une 
combinaison de ces éléments. 

• L'héritage de la conception technique influence progressivement l'équilibre entre les nouvelles solutions et 
la posture de risque. 

• L'innovation dans les nouveaux systèmes évolue vers la perturbation plutôt que vers des changements 
partiels ou incrémentaux.  

• Les perturbations culturelles, les nouveaux outils et les flux de travail affectent les activités de conception 
tant au niveau des produits que des processus.  

• Dans ce contexte changeant, les architectures de systèmes évolutifs sont identifiées comme un sous-ensemble 
de systèmes basés sur le matériel (CHS) en réponse aux facteurs de stress actuels et futurs de la conception 
(chapitre 4). Ces systèmes hautement complexes et indépendants du terrain sont déterminés par les facteurs 
de stress précédents et les nouveaux besoins de conception. Ils présentent trois caractéristiques clés ou ARR, 
qui deviennent également le fondement d'une méthodologie de conception ultérieure.  

• Adaptabilité. Toute architecture de système est conçue comme un processus évolutif continu dans lequel 
les définitions géométriques et analytiques du système (quantifiables ou non) ne cessent de changer et 
d'évoluer. Toute solution antérieure (héritage) peut devenir un élément de construction validé. Globalement, 
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la géométrie du système est toujours complétée par des capacités fonctionnelles du système et des schémas 
de mise en œuvre concernant l'utilisation des ressources.  

• Réactivité. Un système évolutif n'est pas passif et interagit avec son contexte environnemental et ses 
composants. Ainsi, outre la géométrie du système, ses descriptions fonctionnelles et logiques sont 
essentielles pour la complétude comportementale du système (réactions), tout comme pour son adaptabilité 
et les processus associés.  

• Régénération. L'utilisation, le recyclage, la réaffectation et la régénération de toutes les ressources utilisées 
par le système et son processus de conception font également partie de son processus de développement 
qui repousse les limites de sa durabilité.  

• Des situations nouvelles et changeantes définissent de nouveaux besoins pour les systèmes et méthodes à 
venir. Les systèmes complexes exigent de plus en plus la combinaison des pratiques de l'ingénierie de 
conception et de l'ingénierie des systèmes, ce qui apporte une réponse à cette question à la lumière des 
principes évolutifs de l'ARR. Il s'agit également d'un début pour d'autres questions de recherche, notamment en 
ce qui concerne les interactions entre le matériel et les logiciels, et leurs combinaisons virtuelles.  

• Quels principes pourraient améliorer les processus de conception et d'ingénierie des systèmes 
traditionnellement séquentiels afin de réaliser plus rapidement, mieux et plus efficacement de tels systèmes 
complexes multidisciplinaires ? 

• Un examen approfondi de la littérature a présenté les principales lacunes pertinentes et liées entre elles dans 
les méthodes de DE et de SE pour le développement de SHC lorsqu'elles sont étudiées d'un point de vue 
géométrique et analytique (chapitre 3), telles que : 

• La synergie. Les méthodes d'ED ont tendance à aborder plusieurs disciplines de manière séquentielle ou 
parallèle. 

• Continuité. Les méthodes DSE sont axées sur la conception de points ou de solutions discrètes plutôt que 
sur des familles de solutions (espèces). 

• La qualification des paramètres est largement répartie entre elles mais les aspects qualifiables sont difficiles 
ou impossibles.  

• Géométrie. Les méthodologies SE ne traitent pas bien les informations géométriques, et les processus SE 
se débattent avec des définitions de systèmes complexes qui pourraient être personnalisés ou améliorés.  

• Le cycle de vie complet du système est souvent absent des méthodes.  

• La flexibilité des méthodes d'ESD est souvent très complexe ou absente. Les outils ont tendance à retravailler 
les solutions, souvent pour des raisons culturelles.  

• Les perturbations ne sont souvent pas encouragées par la méthode elle-même.  

• Les flux de travail rapides sont souvent un défi pour tous les efforts. 

• Les liens de connectivité du système ont tendance à manquer dans les efforts de l'ESD.   

• Certaines de ces lacunes ont été comblées par les techniques évolutionnistes (section 0) depuis le début des 
années 1950. Celles-ci étaient inspirées par la nature et principalement appliquées à l'informatique plutôt qu'au 
SHC et à d'autres applications axées sur le matériel. Parmi les principes et contributions clés (section 4.1.1), 
plusieurs peuvent être mis en évidence, car les solutions évolutionnaires sont [1] continues (espèces), [2] 
multidimensionnelles et multidisciplinaires. Leur approche de la conception est [3] agile, [4] évolutive, [5] en 
réseau, [6] axée sur l'héritage (génétique), [7] axée sur l'environnement (coévolution), et [8] elle tient compte du 
processus de développement complet (éco-évo-devo) du système (organisme).  

• Ainsi, l'approche évolutive unit les principes adaptatifs et évolutifs (chapitre 4). Cela permet de combler et de 
créer des synergies entre les lacunes identifiées de l'ED et de l'ES grâce à des axiomes et des principes qui 
traitent des caractéristiques de l'ARR.  

• Les caractéristiques des architectures de systèmes évolutives (eSAR) ont été abordées au chapitre 4. Le 
processus de conception associé développé ou eSARD (chapitre 5) a directement abordé cette question. Il a 
été résumé par le tétraèdre de conception évolutive (Figure 182) qui repose sur trois niveaux de base du système 
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(GBS), à savoir : 

• La géométrie (adaptabilité) comprend les aspects géométriques, l'esthétique, l'incertitude, les interfaces et 
l'optimisation. 

• Le comportement (réactivité) considère les aspects fonctionnels tels que l'énergie, le calendrier, la synergie 
et les algorithmes. 

• La substance (régénération) prend en compte les sujets de mise en œuvre de natures multiples (physique, 
numérique, virtuelle ou une combinaison des deux), ainsi que les sujets de fabricabilité, d'efficacité, de 
recyclabilité et de coût relatif.  

• Sur ces points, la méthode eSARD permet un cycle de développement complet pour les architectures de 
systèmes évolutifs qui est basé sur trois clés de voûte du réseau ou principes de système tels que la conception, 
les opérations et la mise en œuvre (DOI). L'objectif de cette approche est de créer une méthode de conception 
qui permet de réaliser plus efficacement des architectures de système évolutives, réactives et régénératives, en 
traitant et en abordant les facteurs de stress mondiaux. Elle repose principalement sur une perspective 
synergique qui aborde chaque phase du cycle de vie et chaque défi de conception à partir des synergies entre 
les disciplines et les composants, plutôt que sur l'approche classique "diviser pour mieux régner". Ces principes 
permettent de gérer plus rapidement et plus efficacement les relations entre les facteurs de conception 
complexes (figure 124).  

• Les lacunes des méthodologies DE et SE les plus récentes sont entrelacées et complétées par les principes 
eSARD en réponse à cette question de recherche. Ces principes sont dérivés à la fois des facteurs de stress 
environnementaux mondiaux et des nouveaux besoins des systèmes. Ils élargissent les perspectives plus 
traditionnelles pour répondre à tous les besoins clés d'un eSAR, tout en ouvrant de nouvelles possibilités de 
recherche vers l'application de l'approche évolutive à d'autres domaines techniques, de conception et de 
développement.  

• Comment une méthode de conception qui prend en compte les questions précédentes pourrait-elle être 
utilisée pour développer plus efficacement des systèmes complexes dans un tel environnement, lorsqu'il n'y 
a pas d'héritage direct et que la performance du système est une nécessité ? 

• Le développement efficace d'architectures évolutives nécessite une méthode de conception à cycle complet, 
synergique et en réseau. Cela signifie un flux de travail hautement adaptable qui gère des efforts de conception 
continus, qui tient compte des liens multiples entre les outils et les étapes, et qui intègre des éléments du 
patrimoine tout au long du processus. La méthode eASRD (Figure 183) est développée à partir de trois domaines 
de développement universels et interconnectés dans le cadre de cette thèse : 

• La conception (géométrie) aborde les aspects organisationnels, de conception, de systèmes, d'esthétique et 
de validation.  

• La mise en œuvre (substance) s'attaque à la fabrication ou au codage, à la validation, à la vérification et aux 
essais.  

• L'optimisation opérationnelle (comportement) comprend les opérations du système et l'optimisation globale 
du système.  

• Les méthodes eSARD visent la perturbation (adaptabilité), l'intelligence (réactivité) et l'efficacité (régénération 
des ressources) du système (section 5.4) et dans un cadre de référence mesurable (figure 135). Cela répond 
également à la nécessité de concevoir mieux, plus intelligemment et plus largement, tout en obtenant plus avec 
moins (ressources, pièces, coût).  

• Par conséquent, un flux de travail eSARD devrait être conçu pour augmenter la capacité ARR du système (Figure 
139) du point de vue de l'individu, de l'équipe, de la machine ou d'un système hybride, tout en tirant le meilleur 
parti des méthodes SOA actuelles, des principes évolutifs et des caractéristiques du système ARR. Ainsi, ce 
processus est organisé autour d'une hélice qui se présente : 

• Trois secteurs DOI continus, reproductibles et en réseau qui abordent tous les domaines et outils de 
développement.   
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• Des jalons et des étapes de vérification tout au long du cycle de vie : SFR, PDR, CDR, TRR, SVR, ORR, et 
OPRR.  

• Outils permettant d'identifier dynamiquement les lacunes synergiques (eADQN) pour une meilleure capacité 
du système (eAMGs). Ils permettent également d'avoir une vision plus large du processus de conception 
(eASGs) et de la définition du système (eASMs). Il en résulte des délais de conception plus courts, une 
meilleure utilisation du patrimoine relatif et de meilleures performances du système avec les mêmes 
paramètres.  

• En remettant en question la nature interrogative du processus de conception et les liens entre toutes les phases 
traditionnelles, cette question de recherche trouve une nouvelle voie qui est rendue possible par de nouveaux 
outils utilisant les capacités actuelles. Cela ouvre également la voie à une approche plus fluide mais gérable de 
la conception d'architectures de systèmes complexes basés sur le matériel (eSAR). 

 Conclusion (chapitre 7) 

Le monde est en perpétuel changement, mais peut-être aujourd'hui plus que jamais en raison de raisons climatiques, 
économiques et sociales plus importantes qui se produisent simultanément à l'échelle mondiale. La pratique de la conception 
de systèmes complexes est affectée par ces nouveaux facteurs de stress contextuels croissants, comme l'a présenté le 
chapitre 2. Aujourd'hui, les systèmes et les services ont besoin d'une augmentation de leurs capacités en raison de facteurs 
de stress communs tels que la compétitivité, la rapidité de mise sur le marché et la compétitivité, entre autres. Cependant, 
il existe également un nombre croissant d'autres facteurs de stress mondiaux ayant une grande influence sur ces activités 
de conception. Il s'agit notamment de : [1] la rareté croissante des ressources, [2] le besoin généralisé de meilleures 
performances des systèmes dans tous les domaines techniques, [3] l'influence de l'héritage culturel sur la main-d'œuvre et 

Figure 197. Cadre de référence évolutif pour les architectures de systèmes évolutifs complexes (eSAR) basé sur les principes ARR. 
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les flux de travail, et [4] l'infusion de techniques axées sur les données, parmi de nombreuses autres perturbations 
technologiques ayant une influence directe sur les systèmes complexes basés sur le matériel (CHS).  

Trois questions de recherche (section 1.2) ont délimité l'hypothèse initiale de cette thèse, à savoir comment les 
mécanismes de conception inspirés de l'évolution naturelle sont appliqués à la conception et à la mise en œuvre physique 
de systèmes complexes pour permettre des processus de développement plus efficaces et justifier des architectures de 
systèmes complexes (SHC) plus adaptables. Néanmoins, cette thèse est fondée sur des années de recherche, des analyses 
documentaires approfondies, une expérience pratique dans de nombreux domaines techniques et une connaissance 
approfondie des techniques de pointe en matière d'ingénierie de conception (EC) et d'ingénierie des systèmes (IS).  

Par conséquent, ces facteurs de stress de conception soulignent les changements à venir dans le rapport entre les 
besoins des systèmes et les ressources disponibles (section 2.3). En outre, cela signifie également que les futurs systèmes 
complexes et leurs méthodologies de conception associées devront s'adapter. Ceci est particulièrement significatif pour le 
développement de systèmes complexes basés sur le matériel, en raison du besoin croissant d'exigences multidisciplinaires 
et de l'influence des technologies perturbatrices qui changent la façon dont nous pouvons concevoir, mettre en œuvre et 
même exploiter ces systèmes.  

Dans ce contexte, cette thèse de doctorat et la recherche associée sont basées sur des années de pratique qui ont 
débuté par l'étude de ces nouveaux besoins, ainsi que sur les principales lacunes identifiées dans l'état actuel de l'ingénierie 
de conception et des techniques d'ingénierie des systèmes (chapitre 3). La nécessité de corréler des définitions 
géométriques complexes avec des descriptions de systèmes plus avancés et en réseau a mis en évidence que ces lacunes 
entre elles ont tendance à être complémentaires et manquent d'adaptabilité face à une nouvelle réalité basée sur le 
changement, l'incertitude et les développements rapides.  

Cette étude approfondie des besoins, des lacunes et des capacités a conduit au développement de la perspective 
évolutive en tant que point de vue hybride entre l'application de principes adaptables aux produits du système et les 
méthodes évolutives à leurs processus de développement. Les principes évolutifs extraits de la nature ont été étudiés 
(section 0), ainsi que leurs applications initiales, principalement en informatique depuis les années 50, par le biais des 
algorithmes génétiques et des techniques de programmation évolutive. Le résultat est un sous-ensemble de SHC avec 
certaines caractéristiques particulières et une méthode de développement de système subséquente.  

Les architectures de systèmes évolutifs (eSAR) constituent un type de SCH en réponse aux facteurs de stress 
généraux précédents (chapitre 4) et en raison de l'application de principes évolutifs à la conception du système. Plus 
précisément, elles présentent trois caractéristiques essentielles. 

• L'adaptabilité, qui est liée à la capacité du système à changer et à adapter à la fois sa géométrie et son 
comportement. Selon cette approche, ces systèmes sont dynamiques et leur développement est continu par nature. 
Cette caractéristique du système concerne à la fois les aspects géométriques du système et l'évaluation des fonctions 
du système.  

• Réactivité. Ces systèmes sont intelligents et interagissent avec l'environnement, leur nature et leur schéma 
opérationnels doivent donc être abordés dès le début. Ce principe concerne principalement les interactions entre les 
systèmes.    

• Régénération. Enfin, il ne s'agit pas seulement du système mais de sa mise en œuvre (physique, numérique, 
hybride). Ainsi, la substance du système, l'utilisation des ressources, la recyclabilité et la durabilité sont prises en 
compte à tous les niveaux.    

L'approche évolutive des systèmes complexes est fondée sur une série de facteurs de conception clés associés à 
ces caractéristiques. Ceux-ci sont intégrés dans un cadre de référence de conception tridimensionnel ou tétraèdre évolutif 
(figure 182) fournissant des coordonnées pour définir ces systèmes. Dans cet espace, deux niveaux de développement tels 
que les principes de conception (DOI) et les détails des systèmes (GBS) sont interconnectés du point de vue du réseau de 
cette approche. 

La méthode eSARD a été créée en réponse à ces caractéristiques uniques de système qui nécessitent une approche 
de développement qui englobe ces principes fondamentaux. Cette approche est basée sur [1] la recherche de lacunes et 
de liens synergiques entre les exigences, les technologies, les sous-systèmes et les solutions patrimoniales, entre autres, 
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[2] l'étude du système à partir de plusieurs points de vue RAR dans une perspective en réseau, et [3] des objectifs et des 
principes de conception spécifiques pour développer de meilleurs systèmes eSAR complexes plus rapidement, plus 
facilement, plus économiquement et plus efficacement. La méthode eSARD est multi-niveaux, multidisciplinaire, et 
hautement efficace. L'approche évolutive des systèmes complexes est fondée sur une série de facteurs de conception clés 
associés à ces caractéristiques. Ils sont intégrés dans un cadre de référence de conception tridimensionnel ou tétraèdre 
évolutif (figure 182) qui fournit des coordonnées pour définir ces systèmes. Dans cet espace, deux niveaux de 
développement tels que les principes de conception (DOI) et les détails des systèmes (GBS) sont interconnectés du point 
de vue du réseau de cette approche. 

La méthode eSARD a été créée en réponse à ces caractéristiques uniques de système qui nécessitent une approche 
de développement qui englobe ces principes fondamentaux. Cette approche est basée sur [1] la recherche de lacunes et 
de liens synergiques entre les exigences, les technologies, les sous-systèmes et les solutions patrimoniales, entre autres, 
[2] l'étude du système à partir de plusieurs points de vue RAR dans une perspective en réseau, et [3] des objectifs et des 
principes de conception spécifiques pour développer de meilleurs systèmes eSAR complexes plus rapidement, plus 
facilement, plus économiquement et plus efficacement. La méthode eSARD est multi-niveaux, multidisciplinaire et 
hautement adaptable par nature. 

En outre, son approche de la conception (chapitre 5) permet d'aborder beaucoup plus de sujets pertinents pour la 
faisabilité et l'intégrité du système, tout en traitant simultanément plus de disciplines. Cette méthode englobe les nouvelles 
technologies et techniques, en complément d'autres outils et approches traditionnels qui peuvent être utilisés par des 
individus, des équipes, des machines et des flux de travail hybrides. Le cœur de cette approche consiste à trouver les 
bonnes questions, en intensifiant à la fois la profondeur et la portée de tout questionnement initial. Cela permet de trouver, 
d'un point de vue véritablement multidisciplinaire, tous les obstacles réels à la conception de tout système. Enfin, les 
méthodes eSARD apportent suffisamment de flexibilité au processus pour changer, évoluer et varier rapidement l'échelle et 
le niveau de l'effort, depuis les domaines de haut niveau jusqu'aux détails du système, afin d'obtenir des conceptions de 
systèmes réalisables et performantes. Par conséquent, ce processus (section 5.7) améliore les méthodes traditionnelles 
avec une série d'outils et de techniques inspirés de l'évolution qui permettent une méthodologie plus efficace et mesurable. 
Parmi les outils les plus pertinents de cette méthode, les réseaux de questionnement évolutifs (eADQNs) décrits dans la 
section 5.8 permettent de trouver les écarts de maturité critiques ou eAMGs (section 5.9) qui deviennent le point de départ 
multidisciplinaire et multiniveau du processus de conception. Ces écarts sont critiques car ils permettent de trouver les sujets 
de conception les plus synergiques qui conditionnent la faisabilité du système, ainsi que l'efficacité du processus de 
développement puisque leur nature multidisciplinaire permet d'aborder plusieurs perspectives à la fois.    

Un flux de travail eSARD évalue en permanence toutes les différentes facettes de la conception, de la mise en œuvre 
et de l'exploitation (DOI) des systèmes et des familles de systèmes (espèces). Cela permet d'adopter une approche à la fois 
holistique et pratique de toute activité d'ESD. Le début du processus est abordé par des géométries d'amorçage évolutives 
interconnectées ou eASG (section 5.10) qui conduisent à des modèles de systèmes évolutifs (eASM) qui décrivent et 
définissent le système. Parmi les outils de ces modèles figurent les croquis de systèmes évolutifs (eSD, section 0) et les 
listes d'équipements GBS (eGBSEL, section 5.11.2), qui sont des améliorations évolutives des outils classiques et 
constituent une méthode plus ouverte, plus adaptable et plus fiable. Cette approche est soutenue par des connexions et des 
liens entre tous les secteurs de développement, comme le décrit le diagramme en hélice d'eSARD (section 5.6), et par 
l'évaluation et l'infusion ultérieures d'apports patrimoniaux.   

Cette approche évolutive présente également un moyen de mesurer et d'évaluer le développement d'un système 
grâce à l'utilisation des niveaux de maturité de l'architecture (eAML), comme décrit dans la section 5.12. Ainsi, des cycles 
de conception rapides, facilités et contrôlés peuvent être gérés et menés efficacement dans ce cadre de conception. 
L'approche eSARD intègre un cadre de collaboration, de concordance et de collaboration (3C) à sa pratique, ce qui garantit 
son adaptabilité aux nouveaux outils, capacités et agents de conception à l'avenir. En substance, cette approche présente 
une méthode universelle pour les SHC qui est adaptée aux eSAR.   
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“Haz las preguntas correctas si quieres encontrar las respuestas correctas”. 
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Conception d'architectures évolutives de systèmes : 
Pour des systèmes complexes adaptables, régénératifs 

et intelligents à l'ère du changement climatique. 

Evolutive System Architecture Design: Enabling 
Adaptable, Regenerative, and Smart-Driven Complex 

Systems in the Era of Climate Scarcity. 

 

Résumé 

Cette thèse explore les nouveaux besoins de conception d'ingénierie des systèmes pour les 
architectures de système évolutives (eSAR), qui sont un sous-ensemble d'une nouvelle 
génération de systèmes matériels complexes, dans un contexte défini par des facteurs de stress 
de conception globaux tels que la rareté des ressources et la complexité. Ces systèmes évolutifs 
sont hautement adaptables, visant la régénération des ressources et présentant une base de 
référence très intelligente. Sur la base d'une vaste revue de la littérature mettant en évidence les 
principales lacunes dans les techniques d'ingénierie de conception et d'ingénierie système de 
pointe, une méthodologie de développement évolutif à cycle complet (eSARD) est présentée, 
inspirée des mécanismes d'évolution naturelle tout en abordant le patrimoine et de meilleures 
performances du système. La méthode holistique eSARD aborde la conception, la mise en œuvre, 
les opérations système et l'optimisation globale du système d'un eSAR. 
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Résumé en anglais 

This thesis explores new systems engineering design needs for evolutive system architectures 
(eSAR), which are a subset of a new generation of complex hardware-based systems, within a 
context defined by global design stressors such as resource scarcity, and complexity. These 
evolutive system are highly adaptable, aiming towards resource regeneration, and presenting a 
highly intelligent baseline. Based upon an extensive literature review highlighting key gaps on 
state-of-the-art design engineering and system engineering techniques, a full cycle evolutive 
development methodology (eSARD) is presented inspired by natural evolution mechanisms while 
addressing heritage, and better system performances. The holistic eSARD method tackles design, 
implementation, system operations, and overall system optimization of an eSAR. 
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