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  Living organisms thrive in complex environments in which they need to adapt and survive. 

Long-term adaptations rely on genetic expression flexibility and promote survival over 

generations (e.g. genetic adaptation to fairly slow environmental changes like climate 

change[1]. Individuals showing advantageous traits is able to produce more offspring carrying 

its genetic heritage while disadvantaged beings will produce fewer offspring and so on. This 

concept is called selection. That way, organisms may evolve beneficial features as in the case 

of fiddler crabs, a classic example of sexual selection where males show enlarged claws that 

provide a significant advantage during fights with male conspecifics and courtship[2]. 

 

Beyond these rather anatomical adaptations, animals may also show internally coordinated 

responses (including actions but also inactions) to internal or external stimuli, which involve 

observable features. These responses are defined as behaviour[3], the study of which is the 

cornerstone of ethology. By studying the mechanisms underlying behaviour, along with their 

development and adaptative functions, Nikolaas Tinbergen work showed that a large fraction 

of behaviours can occur without any prior experience. These behaviours, called innate, are 

shaped over long periods of time, the same way as anatomical adaptations: through selection. 

Muscular reflexes, taxis (a form of directed movement elicited by external stimuli) and Fixed 

Action Patterns (which are sequences of coordinated movements involved in various activities 

such as prey hunting[4]) are all examples of innate behaviours. However, the environments in 

which animals live also involves short-term challenges that require swift adaptations. A food 

source might be depleted. A previously safe location might be crowded with predators. 
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Therefore, behaviours also need to be flexible. The ability to change a behaviour following 

experience is called learning.  

 

The gradual construction of the tenets of learning processes 

 

  Learning results from plasticity at cellular level allowing hard-wired stereotyped behaviours 

to be reshaped according to experiences. For example, a food related odour usually triggers 

an innate seeking behaviour. But if this particular odour is encountered in a harmful context, 

the animal can learn to avoid it instead. Importantly, learning can also lead to the inhibition 

of specific behaviours. For instance, a dog can be trained not to bark at bystanders. In this 

case, the absence of the initially displayed response constitutes an alternative, learnt 

behaviour. The common element of many (although not all) types of learning is the presence 

of a stimulus of biological relevance (food, pain…) that elicits an innate behaviour.  

  As many scientific concepts (including behaviour, for which the definition has been discussed 

and shaped over the years, learning was not explicitly defined at once, but was rather built 

from the work of several pioneers. Following their discovery, we will now retrace the building 

of a major learning conceptual framework. 

  Interestingly, In the early 20th century, the term of behaviour integrated both innate (then 

called reflex) and acquired responses. The general study of behaviour based on measurable 

responses was called behaviourism and was opposed, in a way, to more theoretical 

approaches (such as Freudian psychoanalysis) or other experimental approaches such as 

ethology and naturalism. In fact, behaviourism was grounded in the idea (since contradicted) 

that there is no such thing as inherited behaviour, the way an individual acts being 

determined by their overall experiences[5].  

 

Reinforcement and conditioning – The emergence of an experimental 

framework for the study of learning 

 

  Behaviourist theory was founded by John Watson and supported by human-focused 

experiments. To demonstrate that behaviour was an acquired process, Watson showed that 
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he was able to reliably train infants to respond to a given stimulus in a different way from 

what their response was before training, a method called conditioning. His most famous 

demonstration was a child named Albert, who was trained to express fear at the sight of a 

white rat, whereas his spontaneous response before conditioning was petting it. Interestingly, 

Albert’s conditioned response was not only elicited by rats but was also triggered by various 

white and fuzzy objects, a phenomenon known as generalisation that is critical in our work 

(see the Discrimination Vs Generalisation part and the chapter III). Overall, Watson approach 

of psychology represented a significant milestone in the field. Indeed, at a time when 

concepts like cognition, emotions and mind were mainly explored through philosophical and 

human based approaches, he chose to emphasise experimental methods to analyse 

observable behaviour. Although this school of thought was formulated by Watson, many of 

its inherent concepts came from his deep interest in the work of his contemporaries, one of 

which gave his name to a major type of learning : Ivan Pavlov[6]. 

 

An exploration of learning through physiological processes: How Pavlov’s work 

was a decisive turning point for the field 

 

 

  Interestingly, in the beginning, Pavlov was not a trained psychologist, which may have 

contributed to his innovative approach of cognition. Indeed, as Pavlov was initially working 

on digestion[7], he had specialized in measuring physiological parameters, mainly 

gastrointestinal secretions. Among them, salivary secretion was the easiest to quantify and 

offered the advantage of being completely unvoluntary, therefore defined as a reflex (or 
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innate behaviour) elicited by a biologically relevant stimulus: a food source. Pavlov thus called 

the salivary secretion an Unconditional Reflex (UR), as it was innately elicited by food 

perception, therefore called Unconditional Stimulus (US).  

  Pavlov discovered that repeated association between a neutral stimulus and the US 

presentation led the subject to subsequently start responding to the neutral stimulus as if it 

was the US. Eventually, the initially neutral stimulus alone elicited a salivary secretion 

response and was thus described as a Conditional Stimulus (CS) in contrast with the US. 

Similarly, the learnt response was described as a Conditional Reflex (CR).  

  Incidentally, as this terminology is still used today, the innate reflex boundary has been 

extended, the “R” in UR and CR standing now for “Response” to encompass non-reflexive 

behaviours as well.  

  Interestingly, if the CS was subsequently presented repeatedly without any following US, the 

CR gradually faded until it didn’t elicit any response anymore. This phenomenon, known as 

“Extinction”, already highlighted a remarkable behavioural plasticity. 

Figure 1 Schematic representation of the different steps leading to a conditioned response. 1) Before conditioning, the 

Unconditioned Stimulus (US) elicits an innate response, which is termed “Unconditioned Response” (UR). 2) In contrast, the 

neutral stimulus does not elicit the innate response. 3) During conditioning, the neutral stimulus and the US are systematically 

presented together. The subject displays an UR. 4) After conditioning, the previously neutral stimulus is now a Conditioned 

Stimulus (CS) and elicits a Conditioned Response (CR) of the same kind of the UR.  

  Following this discovery, Pavlov proceeded to break-down the basic mechanisms of this form 

of learning by testing numerous stimuli, timings and protocols. One of them consisted in 

presenting a first stimulus consistently associated with an US while a second stimulus was 

always applied without US. The subject learned to respond to the first stimulus but not to the 
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second, a paradigm known as Differential Conditioning. The goal in adopting such approach 

is to ensure that the tested subject learns to respond specifically to the reinforced stimulus 

(called CS+) and not to the non-reinforced ones (called CS-) in a systematic way. Differential 

conditioning has been since used to explore discrimination abilities in numerous species 

(including Drosophila), as will be described later (see the Discrimination Vs Generalisation 

part). 

  His work is amongst the most important contributions to the learning field and the study of 

behaviour. He developed an innovative way to study cognition by focusing on physiological 

measures as proxies for nervous activity and his core experiment, now referred to as classical 

(or Pavlovian) conditioning is still widely used in modern projects. Interestingly, the fact that 

Pavlov’s greatest discovery was collateral to his main research emphasises the importance of 

general curiosity and flexibility in basic research. While a comprehensive description of 

Pavlov’s work would be of great interest, we shall instead attempt to show how he influenced 

decades of behavioural science through the description of the work of his successors. 

 

Edward Thorndike and the puzzle boxes 

 

  Classical conditioning trademark is the passive nature of learning, as subjects develop 

conditioned responses unconsciously. However, from the perspective of many psychologists, 

learning was viewed as an active process, requiring the conscious involvement of the learner, 

where conditioning would thus be a lesser form of adaptation.  

Incidentally, as biology research has always been plagued by an entrenched 

anthropocentrism, the psychology field was especially reluctant to endow animals with any 

form of intelligence, for rather philosophical and theological reasons and despite the fact that 

Darwin’s work was putting humans and animals on equal terms. E. L. Thorndike was no 

exception, but he was opposed to any form of dogma, seeking instead for objective evidence. 

That is why he was arguably the first trained psychologist (in contrast with Pavlov) to bring 

non-human animals in the laboratory to assess their learning ability experimentally[8]. 

Thorndike was investigating whether animals could learn to solve puzzle tasks by acquiring 

appropriate behaviour. To do so, he designed puzzle boxes that required the restrained 
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animal to perform a specific response to be opened (e.g., pull a lever, push a button…). 

(Figure2) 

 

Figure 2 Thorndike's puzzle box. The cat is trapped in the box and motivated by the presence of food. In order to reach the 

food, the cat has to exit the box by performing a specific action (in this example, actioning the red lever). At first, the cat’s 

actions are uncertain but over the course of trials, the one action always leading to the opening of the box is reliably learnt 

and repeated, every time with a shorter latency. 

The subject was motivated by the presence of food within sight and had to figure out how to 

reach it. Thorndike observed that the subject first performed various random actions, trying 

to escape the box. Eventually, one of these actions incidentally led to the unlocking of the 

box, allowing the animal to get out and access food. Interestingly, when put again several 

times in the same situation, the time it took to get out gradually shortened. By recording the 

time for each trial, Thorndike was able to establish a learning curve, demonstrating that 

rather than an “insight” mechanism where the animal would suddenly find the solution to the 

problem[9], the puzzle box is solved rather gradually through a trial and error process[10] where 

the successful moves will be reproduced while the unsuccessful ones will not. 

 

  Based on these results, Thorndike was able to identify fundamental properties of learning, 

among which the fact that it gradually acquired in the same way by all animals (although 

depending on the task and the animal, the learning curve may be slightly different), through 

repetition. He called this principle “law of exercise”. More importantly, he defined the law of 

effect which stated that responses that produce a satisfying effect (e.g., unlocks the puzzle 
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box) are more likely to occur again while responses leading to discomfort become less likely 

to occur again. Moreover, he suggested that this reinforcement of behaviour reflected a 

reinforcement in associated brain connections, an approach called “connectionism”. This 

fundamental principle was taken up and expanded years later, supported by actual brain data, 

ultimately leading to the well-known Hebbian theory[11] (i.e. if one neuron stimulates another 

neuron repeatedly, the strength of the connection between the two neurons will be 

increased).  

  In the shorter term, Thorndike’s findings fitted very well within the behaviourism 

framework, as it once again highlighted the limitations of introspective approaches while 

laying the groundwork for a more objective way of describing behaviour. That is why he and 

Watson are often considered as the fathers of this intellectual current. However, it took 

another scientist to finally establish a conceptual framework assembling the principles of 

pavlovian conditioning and learning under the same roof: B.F. Skinner[12]. 

 

The emergence of the associative learning conceptual framework: insights from 

the work of B.F Skinner 

 

  Indeed, Pavlov and Thorndike’s work led to the establishment of fundamental properties of 

learning, but they were regarded as distinct conceptual models. Skinner, on the other hand, 

developed the central idea that they were two sides of the same coin. Moreover, he took up 

Thorndike’s experimental paradigm by designing a variation of his puzzle box, which allowed 

him to push the concept of “law of effect” further and bring it together with conditioning 

principles. These boxes were equipped with levers that could be operated by the subject. The 

whole box was surrounded with stimuli generators, some neutral (sound, light…) others 

carrying a biological value (electric grid, food dispenser). That way, in contrast to Thorndike’s 

puzzle box, he was able to test the law of effect by associating specific behaviours with 

significant, controlled outcomes. In addition to another validation of the law of effect, he 

developed the fundamental concept of reinforcement. Indeed, when an animal pressed the 

lever and was rewarded with a food pellet in return, it was more likely to repeat that 

behaviour (which was thus reinforced). In contrast, if the lever activation was followed by an 

electrical shock (a punishment), the behaviour was decreased. Skinner also discovered that a 
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behaviour leading to the removal of an aversive stimulus produced the same kind of 

reinforcement as adding a pleasant stimulus and vice versa. These experiments led to the 

conceptualization of the reinforcement theory shown in Figure 3, a practical working 

framework that is still widely used in experimental work, educational psychology and animal 

training. 

 

Figure 3 The reinforcement concepts as theorized by B.F. Skinner. 

Skinner’s experiments were both influenced by Thorndike’s paradigm and Pavlov’s 

conditioned reflexes, as the animal was involved in the process through its actions, yet 

because in that case the reinforcement was controlled and applied very similarly to animals 

subjected to classical conditioning, he called this procedure “operant conditioning”, 

producing operant behaviours. Much like Pavlov, he was able to finely characterize the base 

mechanisms of operant conditioning. For instance, he found that learning was highly sensitive 

to timing. He showed that for a reward or punishment to affect a given behaviour, it had to 

be applied right after the behaviour was performed. One of the most elegant experiments he 

conceived is known as the “superstitious pigeon”, during which he fed the animal on 

continuous intervals while measuring its behaviour. He showed that the pigeon tended to 

repeat the actions he was doing right before receiving food, even though these had nothing 

to do with the reward. Interestingly, the subject had learned causal relationship between 

these unrelated actions and the reward, something Skinner called superstition, as he 

interpreted their behaviour as a misguided belief that their actions influenced subsequent 

events. 
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Clark Hull, the concept of motivation and modelling inception 

 

Interestingly, Unconditional Stimuli all share a fundamental feature: they are directly linked to physiological 

needs, such as avoiding pain or danger, finding sexual partners and so on. Looking back at physiology, in principle 

a hungry animal will show a stronger response to food presentation than a satiated one, which might also affect 

associative learning processes. Based on that postulate, Clark Hull introduced the concept of motivation as 

another driving factor of associative learning, for which he also provided experimental evidence[13]. He called 

this factor “Drive”, now better known as “Motivation”  

  Interestingly, Hull was not entirely satisfied with the methods used to measure learning and showed a strong 

interest in quantification. As he also had a strong background in mathematics, this led him to be one of the first 

if not the first to develop a mathematical formulation of learning acquisition in collaboration with his student, 

Kenneth Spence (see the “Discriminative vs Generalisation” chapter). Then, he spent most of his career refining 

his learning equation by designing experiments specifically meant to test its validity and correct it. This 

methodology is still widely used today using both mathematical models and computational simulations, which 

are part of the approaches we develop in our work (see chapter II).   

 

  Skinner tested discriminative abilities similarly to Pavlov’s experiments, using the 

surrounding stimuli the boxes were equipped with. For example, pressing the lever only led 

to a reward if a green light was lit. Moreover, he engaged in a systematic characterization of 

what he called the “Schedules of reinforcement”, testing various reinforcement intervals and 

ratios. Most notably, he investigated variable, sometimes pseudo-random schedules, 

showing that depending on the quality and strength of the reinforcement, animals do not 

necessarily need to be rewarded or punished at every trial to learn a given association. These 

experiments are the source of numerous following studies on gambling and addiction[14].   

Furthermore, Skinner coined the concept of shaping, which is used to train animals by 

reinforcing successive approximations of a target behaviour. For instance, he was able to train 

pigeons to orient to and strike a target in a box by reinforcing each building block of the sought 

response (turning in the right direction, moving toward the target, raising the head and finally 

striking the target). Thus, the term “shaping” suggests a step-by-step process refining and 

building up new behaviours that would be very unlikely to be shown by a naïve animal. 
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Figure 4 Schematic representation of the Skinner box. The animal is trapped in a box equipped with easily distinguishable 

features (levers, lights, food dispenser). The skinner box allows tightly controlled operant conditioning experiments. 

  Beyond his remarkable experimental work, Skinner greatly contributed to the growth of 

experimental psychology and behaviourism, of that he developed a radical approach 

throughout his career. As a prolific author, he generalized and completed the concepts 

developed by his predecessors, and extended them through potential applications in 

numerous fields, such as education, economics and behavioural therapy. He eventually faced 

intense criticism for extending operant conditioning concepts to every cognitive process, 

ultimately leading to quite extremist ideas. Nevertheless, his influence enabled the 

generalisation of experimental approaches to behaviour and psychology. 

 

  To sum up, the conceptual framework in which our work takes place was built from the idea 

that brain functions such as learning can be studied experimentally using paradigms meant 

to measure their outward manifestations. In other terms, learning abilities may be assessed 

by looking at changes in behaviour.  Animals exhibit various innate behaviours in relation to 

biologically significant stimuli (US), such as shelters, food sources, predators or preys. 

Throughout their lives, they also learn which cues are reliable predictors of said stimuli and 

which are not.  
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 Eventually, animals start responding to these cues in anticipation of the associated outcome, 

for example by avoiding a location often associated with the presence of a predator. That is 

why this aptitude is called associative learning. 

 

Associative vs non associative learning 

 

  In the most basic forms of learning, only one stimulus is required and its presentation, by itself, can modulate 

future behaviour. These forms of learning are therefore called “non-associative”. Repeated exposure to a 

stimulus may result in a gradual inhibition (a process termed “habituation”) or amplification (termed 

sensitization) of the initial behaviour exhibited by a subject toward it. These phenomena are well depicted in 

the classical case of the Aplysia gill and siphon withdrawal reflex carried by Eric Kandel[15](Figure 5). 

 

Figure 5 Short-term habituation of the gill withdrawal reflex of the marine snail Aplysia - Cellular Mechanisms of Implicit 

Memory Storage and the Biological Basis of Individuality. The initial behaviour of the Alysia upon mechanical stimulation is 

the gill and siphon withdrawal, underlain by mechanoreceptor neurons projecting onto motor neurons. Repeated stimulation 

reduces synaptic transmission from the sensory neuron to the downstream motor neuron, inducing an inhibition of the 

withdrawal behaviour. 

 Interestingly, non-associative learning cases have been described in numerous species, vertebrate[16][17] and 

invertebrates[18] alike, and even, more recently, in single-celled organisms[19]. Non-associative learning allows 

swift behavioural adaptation, reducing one’s response (and thus allocated resources) to inconsequential stimuli 

while enhancing responsiveness to meaningful ones. Thus, cellular plasticity, whether at the level of a cell or an 

entire neural network, modulates pre-existing behaviour. 

 

 

  In most above-mentioned experiments, laboratory conditions enabled reproducible 

association with simple, unequivocal stimuli, at least in theory. However, in every situation, 

experimenters were interested in the specificity of the conditioned response: as described 

before, Watson’s little Albert did not only learn to fear rats but any white and fuzzy object (he 

mentioned testing unrelated items such as a Santa Claus mask with fake beard that triggered 
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Albert’s response). Similarly, Pavlov conducted alternative studies where he conditioned dogs 

by pairing food presence with a tactile stimulation (a leg rub). He observed that trained dogs 

not only responded to the leg rub but also to various tactile stimulations (such as scratching 

instead of rubbing). Thus, the question of stimuli perception quickly became a prolific topic 

in the behaviourist community. 

 

Discrimination vs Generalisation 

 

  Looking at conditioning from the learner point of view, how the world is perceived is indeed 

a critical issue to better understand the mechanisms underlying associative learning. At this 

point, of course, modern neuroscience techniques were not yet available. Thus, one could 

almost only rely on behavioural observations, which might have inspired a lot of researchers 

in establishing crafty behavioural experiments. Following Watson observations about Albert 

reacting to stimuli carrying similar features to the one he was conditioned with, one of his 

students, Karl Lashley hypothesized that animals show a generalisation response to a given 

stimulus when they are not able to distinguish it from a previously reinforced one. In other 

words, generalisation and discrimination are both opposing and complementary concepts.  

 

  In theory, the more similar two stimuli are, the more likely they are to be mistaken for each 

other. If an animal was conditioned to respond to green circles, it might also respond to 

various shades of green or other geometrical figures filled with green. Kenneth Spence was 

particularly interested in quantifying generalisation. Based on previous experiments 

combined with his own observations on primates, Spence developed a theoretical framework 

encompassing learning acquisition and generalisation process[20]. The principle was to focus 

on one sensory modality in order to operate on one dimension measurement scale. Typically, 

sounds can be measured in frequency, colours in wavelengths, etc. That way he was able to 

compare perceived similarity with physical similarities. He hypothesised that upon 

conditioning, animals do not learn in a discrete but rather continuous way. If an animal is 

taught to respond to a 2000 Hz sound, it will learn to respond to an interval of frequencies 

centred on 2000 Hz. The closer to 2000 Hz the sound will get, the more likely to respond the 

animal will be. By recording the behavioural response to a panel of sounds (e.g., how many 
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times the animal responds to a 1500 Hz sound compared to a 1200 Hz sound), it would be 

possible to draw response probability curves that he called “generalisation gradients”. 

Incidentally, there would be excitatory and inhibitory gradients depending on positive and 

negative reinforcement. Spence theory was remarkably accurate as numerous behavioural 

studies successfully showed the presence of generalisation gradients in various species 

(example provided Figure 7). The variability in response depends on the animal acuity for the 

sensory modality of interest, as an animal able to distinguish very similar shades of colours 

should be able to respond with more accuracy than an animal with limited colour vision.  

 

Classical approaches in Neuroscience and correlation / causality bias 

 

  After his theoretical work on discrimination, Lashley focused on finding brain regions involved in memory 

storage. Although memory is not our main topic, his approach is worth mentioning. Indeed, like other famous 

scientists such as Paul Broca, Lashley believed in the cerebral localization theory, suggesting that particular brain 

areas were dedicated to specific functions, including memory. That is why his experiments consisted in training 

rats to solve mazes, before inducing brain lesions in different areas in the hope of finding the one involved in 

memory, which he called the “engram”. Although he was unable to find a unique region specifically involved in 

memory, the approach based on impairing specific brain regions while measuring learning (or memory) 

performances in a controlled behavioural task was reliably implemented as a classical methodology in 

neuroscience.  

 

 

 

Such approaches have been described in numerous species using, inter alia, surgical lesions, pharmacological 

agents, mutagenic treatments. In any case, the assumption is that if a brain region is involved in learning, its 

impairment should lead to a learning performances loss. This is the first step in deciphering neural networks 

underlying learning, the next step always involves a battery of controls for all the factors previously described 

that affect learning, such as motivation or perception. Indeed, gouging the eyes of an animal impairs visual 

learning but not the brain circuitry of learning itself. Similarly, when working on appetitive learning, altering the 

brain circuits involved in food consumption may alter learning performances as well. 
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  Moreover, Spence’s model predicted a crucial collateral effect of generalisation gradients: If 

we consider the visual environment of an animal as a continuum along which each 

wavelength is associated with a response probability, Spence postulated that each learning 

event that includes a given wavelength would modify its associated response probability. In 

other terms, he suggested that excitatory and inhibitory strengths associated with 

conditioning trials are additive. Thus, the behavioural output displayed by a trained animal 

would be driven by the resultant sum of its past experiences. In the example shown below, 

an animal is trained with a positive reinforcement associated with a visual stimulus at 500 nm 

(shown in red), while being trained with a negative reinforcement associated with a stimulus 

at 540 nm (shown in blue). The resulting behavioural responses of the trained animal are 

displayed in green. Interestingly, although the animal was trained to respond to 500 nm 

stimuli (and thus is expected to show a maximum response rate at 500 nm), the actual 

maximum response rate (or peak response) is shifted toward 480 nm instead, as the response 

probability associated with 500 nm stimuli has been inhibited by the previous negative 

reinforcement associated with the 540 nm stimuli. Spence called this phenomenon “Peak 

Shift”.  

 

 

Figure 6 Illustration of the peak shift concept (adapted from: [21]) 
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  Peak shift is an ideal scenario, as it is a clear-cut emerging property of the model that can 

be easily tested in vivo in order to verify or invalidate Spence’s theory. Years later, Spence’s 

peak shift was effectively reported for the first time in pigeons[22], but also later in insects 

such as bumblebees[23] and honeybees[24], all of which using visual (pigeon and bumblebees) 

and olfactory (honeybee) modalities. The concept of peak-shift is particularly relevant in the 

scope of our work as it formalizes how the interaction of similar stimuli representation from 

the same sensory modality shapes resulting learnt response. 

 

  Along with his mentor Clark Hull, Spence was a pioneer in learning formalisation and 

modelling, demonstrating that it is possible to build a mathematical framework based on 

already existing data in order to drive the emergence of unforeseen predictions. By isolating 

testable properties of such a model, it is then quite straightforward to set the limits of what 

it can explain and what is still missing. Incidentally, as the experimental psychology field was 

growing, the mathematical approaches aimed at modelling associative learning phenomena 

followed closely. In operant conditioning case, the most prominent one is the Bush & 

Mosteller model[25], which is often considered as the ancestor of its counterpart in pavlovian 

conditioning : The Rescorla & Wagner model, on which we will focus as our work is entirely 

based on pavlovian conditioning. 
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Figure 7 experimental validation of Spence generalisation gradients[26]. Here pigeons were conditioned to respond to a circle 

with a vertical bar in it by giving them food whenever this stimulus was presented while showing them a hollow circle without 

reinforcement as control. Afterwards, different stimuli presented on the x axis were presented and pigeons responses 

(attempts to peck) were measured (termed “line positive”). A second group was trained not to respond to the vertical bar by 

reinforcing the hollow circle while presenting the vertical bar without reinforcement (termed “line negative”). Animals in the 

line positive group showed a maximum response rate for the actual previously reinforced stimulus, but also responded 

strongly to slightly tilted lines, then showed a lower response to more tilted lines and displayed the lowest response rate to 

horizontal lines. Similarly, animals in the line negative group showed a maximum inhibition for the vertical line, with gradually 

decreased inhibition as the line approach the horizontal position.  
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Classical models of associative learning: How to put numbers on 

learnt associations? 

 

Elemental & Non-Elemental learning (Rescorla & Wagner) 

 

  In the previous chapters, we defined the CS/US association as the heart of associative 

learning. It is not surprising then that a large part of the research about associative learning 

focused on the relationship between CS and US. In the 1960’s most of the conducted 

experiments focused on the training repetition, based on the assumption that the more the 

conditioning procedure was repeated, the better the association between CS and US would 

be. In contrast, Robert Rescorla focused on the consistency of the CS/US association, already 

suggesting that rather than absolute, intrinsic links, the CS/US association was a matter of 

likelihood for the CS to predict the US (e.g., the likelihood for a given visual cue to predict the 

presence of food). In 1968, Rescorla tested this theory, that he called contingency theory, by 

conducting an experiment known as the “truly random control”. During this experiment, rats 

were exposed to electric shocks associated with the presentation of tones. While in a first 

experimental group tone and shocks were always presented together, in a second group the 

tone was followed by shocks only half of the time. In other terms, the probability for the rats 

to receive a shock after a tone was 50%. Importantly, the overall number of stimulations was 

consistent, so that only the contingency between CS and US varied. Rescorla showed that 

while the rats in the first group easily learnt the association between CS and US, the rats in 

the second group were unable to learn it, suggesting that from the perspective of the rats, 

the tone was not a predictor of shocks[27].  

  Later, Rescorla became associated with another experimental psychologist, Allan Wagner, 

who happened to be a former student of Kenneth Spence (see the “Peak Shift” part above).  

Together, they built a conceptual model of associative learning aiming at merging the already 

known aspects underlying its acquisition. Based on their respective work combined with 

previous models[13,25], the Rescorla & Wagner (RW) model integrated stimuli salience, a 

maximum value of associative strength (that is, a theoretical situation where the CS would 

perfectly predict the US and thus would trigger the appropriate behavioural response with 

the same efficiency as an US presentation. Last but not least, Rescorla & Wagner expressed 
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learning acquisition as a variation of associative strength over the course of trials driven by 

the discrepancy between what is expected and what occurs, a concept known as “prediction 

error”.  

  Formally expressed, the model can be described as two assumptions:  

 

Where ∆"!
"#$ is the change in the associative strength (V) between the CS X and the US on 

trial n+1, ∝ is the associability of the CS X, that is, how well the CS is associated with US (which 

depends on numerous factors, including the CS intensity, its perception, etc., and ranges from 

0 to 1). Conversely, $ is the associability of the US. % is the maximum associative strength that 

the US may drive. "
%&%'(

"  is the total amount of associative strengths of all CS present on trial 

n+1. The second equation simply states that the associative strength of the CS X after trial 

n+1 is the associative strength before trial n+1 summed with the change in associative 

strength of the CS during the trial n+1 as computed in equation 1.  

 

  As stated before, the central principle driving associative learning according to Rescorla & 

Wagner is concept of prediction error, that can be reworded as the effect of surprise. At first, 

the CS is completely unrelated to the US and shouldn’t elicit any US related behaviour. The 

first explicit association between CS and US is therefore unexpected which maximize learning 

acquisition. Over the course of trials, the animal is increasingly aware of the CS-US 

relationship and is able to predict the US event from the CS perception alone, which 

diminishes the impact of subsequent learning trials on the association. In other terms, the 

animals learning state matches his experiences and does not need to be updated. Eventually, 

associative strength between CS and US reaches a plateau, as the CS/US predictive link 

reaches 100%. The resulting learning curve takes a logarithmic form: 
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Figure 8 Associative learning acquisition curve according to the Rescorla & Wagner model. 

    This model, although quite simple, is still one of the most efficient attempts to account for 

many observed learning-related behaviours : First, the logarithmic acquisition curve fits very 

well with the observed acquisition of conditioned response, shown for instance in rats and 

rabbits[28]. Second, the model also accounts for the extinction phenomenon first described by 

Pavlov[6]: indeed, should the CS presentation not be followed by the US anymore, it would 

constitute a discrepancy with previously learnt information and lead to gradual extinction of 

the acquired learning. The extinction principle implies that learning acquisition goes both 

ways, taking on a positive value when the experience reinforces the measured behaviour and 

a negative value when it suppresses it. Formally, when the CS is not reinforced, the l 

parameters is not the maximum associative strength anymore but the minimum associative 

strength, 0, which is why the (l - "
%&%'(

" ) term takes on a negative value. In addition, extinction 

is a fairly slower process than acquisition, and the $extinction parameter is thus smaller than its 

‘acquisition’ counterpart.  

  Based on the central tenet that associative strength is additive, Rescorla and his 

collaborators developed the concept of elements to explain more elaborate forms of learning, 

involving several stimuli. Indeed, outside of laboratory conditions, in principle animals are not 

exposed to isolated stimuli but rather to complex sceneries. According to the RW model, each 
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stimulus should thus become individually associated with the US and the total acquired 

learning strength would be the linear sum of the components’ associative strength. Formally, 

"
%&%'(

"  encompass every stimulus involved. Let A, B and C be the stimuli involved; A, B and C 

are considered as elements, which is why this model of learning is called elemental learning. 

In that case, the RW model states that 	"
%&%'(

" =	")
" + "*

" + "+
"  . 

Figure 9 Illustration of the most commonly used behavioural paradigms in associative learning. Red shadowing indicates that 

the stimulus is reinforced. 

  Interestingly, Rescorla and Wagner used this characteristic to explain generalization, 

assuming that any CS could be broken down in smaller elements and suggesting that two 

similar stimuli shared common elements. For instance, let X be a learnt stimulus and Y  

another one that elicits a generalization response; the RW model suggests that X and Y could 

be translated into X=AB and Y=BC. When reinforcing X, both the A and B elements are 

reinforced, and because B is also a part of Y, the trained animal would also respond to Y. An 

interesting prediction resulting from this interpretation states that reinforcing X, which means 
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reinforcing AB will eventually lead to "
%&%'(

" =	")
" + "*

" = 	%. In principle, the associative 

strength has reached the asymptote and cannot be further improved. However, if A (or B) is 

isolated and reinforced on its own, it should overcome the aforementioned limitation 

because ")
" < 	%. Rescorla later provided experimental confirmation of this characteristic[29]. 

Moreover, although purely theoretical at this point, the possibility of breaking down stimuli 

perception into smaller elements proved surprisingly accurate, fitting well with the neural 

architecture of perceptual regions in various animal models (including Drosophila, as 

discussed later).  

  In a discrimination task, if Y is now presented without reinforcement (making it the CS-, in 

contrast to X, the CS+), A and B would be reinforced through X, while B and C would be 

inhibited through Y, leading to an overall better discriminability between X and Y. Because 

the reinforcement is generally stronger than inhibition through lack of reinforcement, the RW 

model expects an initial rise of associative strength (and thus behavioural response) for both 

X and Y, followed by a gradual decrease in response to Y, which here again closely match 

experimental data[30].   

 

Figure 10 Theoretical acquisition curve during a discriminative learning involving stimuli sharing an element[31] 
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How to define complex?  

 

  Learning tasks are often classified in terms of complexity. In fact, one of the first versions of this Thesis work 

was called “complex learning in Drosophila”. However, how complexity is defined, hence its relevance as 

qualifier is not a trivial matter. It is indeed not enough that a behavioural task has been designed to be complex 

to be able to objectively assert that it is complex from the perspective of the animal. A task could be defined as 

complex depending on the proportion of animals able to solve it. For instance, while non-associative  learning 

has been found in numerous species (see the “non associative-learning box), insight learning has only be found 

in few species, mainly birds[32] and primates[33]. But this definition is inevitably flawed, as it is impossible to 

formally prove the nonexistence of something. Indeed, in the case of Insight, experimental paradigms designed 

to test for it mainly rely on tool use, which is challenging to implement in many models.  

  Some behavioural tasks are considered complex because subjects need more trial to solve them successfully. 

Negative Patterning has been shown to require more time than typical differential conditioning to be learnt[34].       

Whether the task of interest takes more trials to be learnt or is only learnt by some species, it raises the central 

question of the underlying neural mechanisms, which constitute another way to define complexity. Indeed, one 

can make the assumption that the more complex a task is, the more processing needs to be achieved to solve 

it, thus involving additional neural functions. This idea is supported by experimental evidence, both in mammals 

and insect, as non-linear discriminations requires brain regions that are not essential for linear forms of learning 

in both cases[35,36].  

  Finally, all of the above stances are focused on the animal perspective. However, an alternative, interesting 

stance would be to focus on the stimulus itself. Indeed, regardless of how complex the experimenter wants a 

stimulus to be, particular attention should be paid to the question of which physical features of the stimulus are 

truly significant, in relation to the animal perceptual system. Apparently complex stimuli might be ‘reduced’ to 

simple features by the perceptual system, whereas a seemingly simple stimulus, for instance an image, might 

be very difficult to decipher for an animal used to live in a 3D world. 

  In a review article on this very subject, J.G Fetterman wrote: “Everyone is familiar with technological advances 

that have afforded ever more realistic depictions of the world. Renaissance painters created more realistic works 

once they gained knowledge of perspective and principles such as shading, haze, and relative size. The motion 

picture industry has changed from black and white silent films, to Technicolor, to wide-screen colour films with 

surround sound, making the movie experience more realistic. […] These advances have come about from 

increased knowledge of the relevant stimuli, not from internally generated changes in perception.”[37] Indeed, 

the physical features of stimuli and what parts of it are relevant for the animal perceptual system constitute a 

fascinating research field, in which the researcher would benefit from an approach similar to that used by 

painters and filmmakers to make the spectator feel immersed in the story. 
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  A consequence of the elemental learning is that two stimuli may be discriminated if – and 

only if – they present distinct elements that can be differentially reinforced (or suppressed). 

That is why, while exploring the potential limits of the RW model, its authors became 

interested in behavioural tasks in which the stimuli to distinguish share all their elements. 

Interestingly, the idea that learning is additive was already brought up in anterior work[38] 

where a behavioural task designed to conflict with this principle was developed: The Negative 

Patterning (NP). During a NP task, two stimuli, A and B are individually reinforced. In parallel, 

they are presented to the subject as a compound AB without reinforcement. Interestingly, 

the task is considered as learnt if the animal responds mostly to A and B but not to AB. 

According to the RW model, 	"
%&%'(

" =	")
" + "*

" − ")*
"  which can be translated as 	"

%&%'(

" =

	")
" + "*

" − ")
", − "*

"′ where ")
", and "*

",are inhibitory associative strength resulting from 

the presentation of AB without reinforcement. The model states that ")
" < ")

", and "*
" <

"*
",. When presented with A, B, and AB, the RW model thus predicts that the subject should 

respond mostly to AB compared to A and B that contains only a part of the overall associative 

strength. In that case, the model and experimental evidence diverge, as in latter animals are 

able to learn the task and respond to the single elements rather than to the compound. The 

RW model in its original form was thus inconsistent with Negative Patterning solving (along 

with other tasks like Biconditional discrimination where no distinct element enables an 

elemental solving[39]). To sort out this discrepancy, two parallel theoretical explanations were 

developed for these tasks, henceforth referred to as “non-elemental”. 

 

The unique cue theory 

 

  To explain non-elemental task solving, Rescorla & Wagner sticked to the initial idea that 

every stimulus may be broken down in elements, suggesting that somehow the compound 

AB was not only composed of its constituents A and B, but also generated an additional 

compound-specific element that he called “unique cue”. In that case, 	"
%&%'(

" =	")
" + "*

" +

"-
" . By gradually supressing their response to u while reinforcing their response to A and B, 

animals should in principle be able to solve the Negative Patterning task. Rescorla provided 

experimental evidence supporting this explanation[40]. To do so, the authors conceived an 

elegant experiment using another interesting feature of associative learning first 
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demonstrated by Pavlov[6]: Once a CS has been reliably learnt as predictor of a given US (thus 

becoming a CS+), it is able to act as a US by itself when presented jointly with another CS. Let 

A be the initially learnt CS, upon repeated association with X, a CS that was never explicitly 

paired with the US, X gain some of A’s associative strength. This mechanism is called ‘second 

order conditioning’. In their experiments, Rescorla et al. first conditioned pigeons with a 

Negative Patterning protocol (A+ B+ AB-). Then, they paired A with another stimulus, X using 

a second order conditioning procedure. They also paired B with Y and tested the pigeons’ 

response to X, Y and XY. They showed that not only pigeons responded to X and Y as if it was 

A and B, but they also responded to XY as it if was AB and not A+B.  They concluded that XY 

was generating the unique cue u the same way AB did, which was an experimental 

demonstration that beyond the physical properties of stimuli, joint representation of AB or 

their respective associates could generate a specific, learning-related stimulus. 

 

The configural theory 

   

  However, there were still experimental data that could not be explained by the unique cue 

theory. An alternative explanation, steering away from the initial additive model was also 

developed[41,42]. Although there are earlier evidence of similar theories[43], Pearce benefited 

from a vast panel of experimental data to fully develop his model, including Rescorla & 

Wagner experiments. As stated before, the RW model dominant feature is that performances 

in any form of discrimination are determined by the algebraic summation of all the individual 

associative strengths of the stimuli coming into play (whether they are explicitly involved in 

the process or emerging from joint stimuli presentation such as the unique cue). Not unlike 

Clarke Hull, Pearce was interested in generalization events, arguing that in natural settings, 

learning restitution was rarely occurring in the exact same conditions as learning acquisition 

took place. Thus, generalization is an essential ingredient for animals to be able to adapt to 

the inevitable fluctuating settings they encounter. Fluctuations also arise from the interaction 

of encountered stimuli with each other; for instance, Pavlov described a procedure called 

‘Overshadowing’ in which he showed that animals response elicited by a stimulus B is reduced 

if B was presented in a compound AB during conditioning compared to a more conventional 

situation where B would be presented alone. Hence the term ‘Overshadowing’ of the B 
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associative strength by the compound. Interestingly, the RW model account for 

overshadowing events, but requires multiple learning trials to be detected. In contrast, 

experimental data show that overshadowing already occurs at the first trial[44]. Another 

example of stimuli interaction is the Positive Featuring (PF) case. During a Positive Featuring 

procedure, AB is reinforced while A alone is not. At first, animals respond both to AB and A, 

but gradually learn to respond only to AB. B is never explicitly presented outside of the 

compound and is thus regarded as a ‘feature’. Interestingly, in a set of experiments using a 

Positive Featuring conditioning, authors found that B elicited a very weak response by itself, 

compared to the response elicited by the compound AB[45]. According to the RW model 

though, because animals do not respond to A anymore, response to AB should rely on B (in 

other terms,	")
" = 0	and "*

" = 	% ). In that case, the observed results may be interpreted 

given a unique cue produced by the joint presentation of A and B, although it is does not 

explain why B would elicit a weak response while being repeatedly reinforced unless it is 

overshadowed, which comes back to the overshadowing problem aforementioned. Lastly, 

another mechanism involved in stimuli interaction was described in anterior work called 

‘external inhibition’[6] or ‘blocking’[46]. In that case, A is reinforced alone as a pretraining 

before being reinforced in the compound AB. Subsequently, B is found to elicit a weaker 

response than when the pretraining is omitted.  

Figure 11 Pearce's account for Negative Featuring learning acquisition[41] 
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  These results can be interpreted suggesting that by reinforcing A during the pretraining, its 

relative significance compared to B is augmented. In any case, the idea that adding a neutral 

stimulus may inhibit the observed response is inconsistent with the RW model where 

associative strengths are summed and addition of a neutral stimulus should not impact the 

animal response. Instead, Pearce presented an alternative model, a configural theory 

suggesting that the CS being associated to the US by a trained animal is in fact the entire set 

of perceived stimuli as a whole. Any change to the scenery would lead in principle to a new 

CS-US association. Pearce introduced a “s” parameter, standing for “similarity”. In his model, 

s ∈ ]0;1]. The close s is to 1, the more similar the compared CS are. Interestingly, s is never 0 

because every sensory perception is taken into account in the CS definition, including the 

experimental setting (the testing box, light conditions, temperature, etc.,) which brings a base 

level of similarity. The s parameter is used to determine to what extent the effects of a 

conditioning on a CS1 will generalize to a CS2. In Pearce’s configural model though, the 

amount of information an animal can store during a conditioning event is limited and each 

stimulus will be associated with a relative significance depending on their perceived intensity 

compared to the total perceived intensity. This feature explains well overshadowing and 

blocking occurrences as the way an animal is trained may reorder the salience of each 

stimulus relative to the others. For instance, if A is pretrained in an external inhibition 

protocol, its significance will be enhanced. Afterwards, when reinforced as a compound AB, 

AB will most likely elicit a representation that is closer to A than it would be without 

pretraining, which will also block out the representation associated with B. Formally, as for 

the RW model, two equations describe the evolution of associative strength for a given CS A 

that is reinforced : 

 

  In the first equation, ") is the net associative strength mobilized by A. It depends on .) and 

/) which are respectively the direct excitatory and inhibitory strength acquired by A through 

conditioning but also 0) and 1) which are the indirect excitatory and inhibitory strength 

acquired by A through generalization. 0) and 1) are computed as the sum of every other 
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stimulus’ associative strength weighted by the s parameter. The second equation is very 

similar to the RW model. It states that the increment in excitatory associative strength, ∆.)  

depends on $ which is a learning rate parameter taking a value between 0 and 1 depending 

on the nature of the reinforcer. % is the maximum associative strength that can be acquired. 

The (% − ")) integrates the RW concept of gradual prediction error.  

 

  Interestingly, over time both theories accurately predict a significant proportion of situations 

encountered during behavioural experiments, while being actually supported by behavioural 

data. For instance, blocking has been shown to require more than one training trial to be 

observed[47], but was also measured with one-trial in other experiments[48]. 

  Overall, the R-W unique cue theory and the Pearce theory are both good models of non-

elemental learning, actually very similar in their description of learning acquisition. The main 

distinction lies in how stimuli are defined and their modularity. However, behavioural 

experiments alone are insufficient to identify their relative validity in relation to animal 

cognition. Indeed, understanding how learning is actually implemented in animals’ brains is 

crucial to characterize how they solve Negative patterning discriminations. 

 

Non elemental learning in vertebrates  

 

  In mammal brains, hippocampus is the subject of numerous experiments. Many functions 

have been associated to this region, including memory (following the study of the notorious 

‘patient H.M’[49]).  Over the years, hippocampus has arguably become one of the most if not 

the most studied region in mammal brain, including a very rich literature on rodent learning 

and memory. As described in the “part on Lashley and cerebral localization theory”, the most 

frequently used methodology was to cause lesions to the hippocampal region and test 

animals’ abilities to solve various behavioural paradigms. Of course, non-elemental tasks 

resolution was amongst the tasks of interest and several papers proposed that hippocampus 

was involved in various non-elemental forms of learning despite being dispensable for 

elemental learning[35,50,51]. Interestingly, tasks described in the cited papers are multi-faceted 

but they all have one common feature: all involve multiple stimuli that need to be learnt in 

relation to each other. For instance, in the Place-Learning paradigm, animals need to rely on 
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a set of distal-cues to retrieve a previously reinforced target. In the Morris pool paradigm, 

one form of Place-learning, the tested animal has to swim its way to the location of a 

previously placed rescue platform. With no proximal cue available and an everchanging 

starting location, the animal can only rely on distal cue, which require to be able to 

extrapolate current location based on the relative position of said cues. Place-learning has 

been shown to be dependent on hippocampus function[52]. 

   During a contextual fear conditioning, the animal is placed in a box and receives an electric-

shock paired with an auditory cue. Interestingly, it has been shown that the animal not only 

learns the “CS/US” association but also the context (unrelated perceived stimuli) in which the 

association occurred[51]. Additional work on contextual fear conditioning suggests that much 

like place-learning, it requires a conjunctive representation of surrounding stimuli to be 

learnt[53]. Hippocampus has already been shown to be necessary for Negative Featuring 

learning Finally, stimulus ambiguity may also come from temporal discrepancy, as is the case 

in the Reversal-Learning task. Animals are trained in a differential conditioning fashion, with 

a A stimulus associated with US and B stimulus presented without reinforcement. Afterwards, 

B is associated with the US and A is not anymore. The animal has to update its learnt 

information to reverse its conditioned response. Here again, the task has been shown to rely 

on hippocampus[54]. The fact that according to this theory, hippocampus role goes beyond 

sensory modalities or temporal associations is remarkable. Rather, the theory suggests that 

Hippocampus is necessary to link events together into a coherent scenery.  

  This concept implies a very important assumption for our work: non-elemental learning 

should not only rely on discrimination abilities. Indeed, in the case of contextual fear 

conditioning for instance, two contexts are easy to discriminate but the obstacle in the task 

is the fact that a specific cue has been reliably associated with an US and is present in both 

contexts. It is thus a matter of which stimuli (reinforced or not) are relevant clues for the 

animal to solve the task, that is, cues that allows reliable predictions. 
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Figure 12 Schematic representation of Pattern separation and Pattern completion concepts. 

   Incidentally, because many aforementioned experiments include both contextual and non-

contextual, multi-sensory stimuli, rodent literature is strongly oriented towards Pearce’s 

configural account of non-elemental learning where the animals whole surrounding 

environment is taken into account to acquire associative learning. Configural learning in 

rodent is still an active topic, with an emphasis on how elemental association may enter in 

association with each other to form configural representations[55]. Indeed, current theories 

suggest that every distinguishable element in a given scenery is learnt individually upon 

reinforcement and linked to each other within the hippocampus. Interestingly, this implies 

the existence of two antagonistic phenomena: Pattern completion and Pattern separation. 

Pattern completion concept suggests that presenting one salient element of a given learnt 

scenery may lead to the response associated with the entire scenery. In contrast, pattern 

separation suggests that two overlapping reinforced sceneries may be distinctly encoded in 

order to be distinguished[56] . The latter is very similar to Negative Patterning events, where 

A, B and AB are overlapping but need to be learnt as different sceneries. What about other 

animal models? 

 

The case of insects in behaviour and neuroscience 

 

  As previously mentioned, non-elemental learning is regarded as a “high-level” cognitive task, 

although very little is known about the underlying neural mechanisms and while involved 

neural regions can be identified in mammals, said regions often remain black boxes as the 
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kind of computation they perform is unclear. This issue has much to do with mammals’ brain 

architectural complexity (making it tricky to model it).  

  On the other hand, insect models also show remarkable behavioural abilities. Thus, Jean-

Henri Fabre, often considered as the father of entomology, unveiled the exceptional 

proficiency displayed by male giant peacock moth (Saturnia pyri) as he observed it finding its 

way to its female counterpart[57]. As he put it:  

   

  “What are the organs of information that direct the rutting Moth on its nightly pilgrimage? 

[…] One suspects the antennae, which, in the males, do in fact seem to be questioning space 

with their spreading tufts of feathers. […] Are there, in point of fact, effluvia similar to what 

we call odour, effluvia of extreme subtlety, absolutely imperceptible to ourselves and yet 

capable of impressing a sense of smell better endowed than ours?” 

 

  Indeed, his work highlighted both insects’ olfaction and communication capacities. Years 

later, biochemist Peter Karlson demonstrated that the effluvia Fabre suspected were indeed 

elaborate communication substances he called pheromones[58].  

 

  In a rather anthropocentric mindset, the idea  that such small creature would display such 

incredible aptitudes was puzzling. Even more baffling was the fact that insects performed 

complex behaviours while carrying a fairly small amount of processing power.  

 

  Interestingly, Charles Darwin was among Fabre’s collaborators and was also interested in 

insect behaviour. Indeed, he produced extensive reports on experiments he carried out with 

honeybees. For instance, Darwin studied how bees were able to build perfect hexagonal 

prisms, a challenge that puzzled even human geometers. Indeed, while honeycombs 

remarkable structure was often thought to be an expression of God’s plan, Darwin suggested 

that it was instead the product of thousands of years of evolutionary shaping. He also emitted 

the hypothesis that honeycomb structure could be the result of the cooperation and 

coordination of hundreds of bees, each performing simple, repeated actions eventually 

leading to complex structures. His theory was supported by similar observations in various 

species, like spiders building their webs or birds building their nests. Darwin’s hypothesis was 

further reinforced by the work of Pierre-Paul Grassé who developed the concept and coined 
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the term “stigmergy”, showing that rather than being the result of “blueprints” of the 

honeycombs each bee would have stored, hives emerged from the independent work of bees 

following simple reflexive rules based on the IFTTT (If This Then This) pattern. Each worker 

would produce precise responses according to their perception, gradually building the 

honeycombs. Darwin also initiated the fascinating field of insect navigation as he observed 

how bees always followed the same foraging route when looking for flower patches. Thus, 

insects challenged our way of tackling cognition, looking for arguably simple explanations for 

complex behaviours instead of sticking to the brain size hypothesis[59,60].  

 

  Whether or not it was regarded as a true form of learning, Pavlov’s conditioned reflexes 

gripped a worldwide attention. It Is therefore not surprising that early entomologist looked 

for evidence of conditioned reflexes in insects. Charles Henry Turner, who was the first to 

show that insect (moths in his case) could perceive airborne sounds, also observed that they 

were able to associate specific sounds to an aversive treatment (rough handling), thus 

providing one of the first evidences of classical conditioning in insect[61]. Modification of 

innate behaviour through reinforcement was also shown in cockroaches, using an apparatus 

very similar to the fear conditioning protocols in mice[62]. Such apparatus is composed of a 

light and a dark compartment ; the naïve animal tends to seek the safety of darkness, but this 

innate behaviour can be reversed by associating the dark compartment with a punishment 

(electric shocks).  

  What about more elaborate forms of learning? In 1957, Kuwabara presented a way to 

perform classical conditioning on tethered honeybees: the proboscis extension reflex (PER) 

conditioning[63]. Bees, as other insects use their antennae to probe their environment, looking 

for food sources such as flowers nectar. Upon sensing sugar, they show an innate response, 

the PER (illustrated in the “The wondrous abilities of honeybees” panel). If an experimenter 

systematically presents an initially neutral odour followed by sugar, the bee rapidly learns the 

association and starts extending its proboscis at the smell of the conditioned odour, even 

when there is no more sugar presentation. These tightly controlled experimental conditions 

allowed to test for various learning and memory abilities. For instance, in differential 

conditioning protocols, one odour is reliably associated with a sugar reward while another is 

not. Thus, the bee learns to respond specifically to the reinforced odour. 

 



 42 

The wondrous abilities of honeybees 

 

Honeybee (Apis mellifera) holds a special position within the insect cognition field, as it enabled some of the 

most astonishing discoveries in insect’s cognition. Indeed, Karl Von Frisch paved the way to decades of fruitful 

experiments when he demonstrated that bees were endowed with color vision, along with the ability to 

perceive UV and polarized light[64]. Using this sensory information, bees are able to navigate in search of good 

quality flower patches, establish and memorize foraging routes between their nest and the patches, and even 

communicate patches’ locations to their conspecifics through an elaborate dance communication. Once 

brought to the lab, bees exhibit remarkable learning and memory abilities that can be measured using PER 

protocols(Left picture), which also allows the use of neuroscience tools to unveil neural correlates of both 

elemental and non-elemental forms of learning[36,65,66].  Finally, ingenious free flight experiments were 

developed, combining controlled conditions with animals behaving in semi-natural conditions. Using this 

paradigm, pioneer works demonstrated bees ability in social learning, concept learning and even 

numerosity[67,68]. For instance, in the right picture is displayed a typical “delayed matching-to-sample” task 

(from: [69]) ; bees enter a Y-maze through a door ornated with a sample. Within the Y-Maze, two choices are 

possible, each ornated with a different sample. The bee is rewarded when choosing the arm associated with 

the same sample found at the entrance, regardless of any other feature. In other terms, the bee has to always 

chose “the same” sample it saw when entering the maze. After the conditioning, the bee is subjected to a 

transfer test where it has to perform the same tasks with completely unrelated stimuli. Thus, bees are able to 

learn abstract rules such as “always choose what you encountered upon arrival” or “always choose what you 

didn’t encounter upon arrival”. 

 

  Using this procedure, pioneer work identified non-elemental learning abilities in bees[70]. 

Intriguingly, while various forms of non-elemental learning were also identified in other 

insects[71–74], bee is the only insect model where negative patterning abilities were 

demonstrated so far. Following the path of vertebrate neuroscientists, bee researchers 

subsequently proceeded to identify neural correlates of elemental and non-elemental 
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learning in bees by altering brain regions, either using physical (cold shock) or 

pharmacological (injections) procedures[36,65,66].  

  Because the insect brain is arguably simpler in terms of architecture, researchers were able 

to follow the olfactory pathways to identify potential regions involved in associative learning. 

That is how they identified the Mushroom Bodies (MB) as a major brain region involved in 

learning and memory, especially for non-elemental forms of learning. Indeed, injections of 

local anesthetics (Procaine) showed that functional MB are necessary both for negative 

patterning[36] and reversal learning[75], which establish striking similarities with vertebrates 

hippocampus.  

  Thus, honeybee is a key model in insect neuroscience, showing remarkable cognitive abilities 

while being the source of numerous discoveries about how such small animals are able to 

learn arguably very complex tasks (see “The wondrous abilities of honeybees” insert). 

However, bees research comes with its share of shortcomings. Bees are raised in hives, which 

makes it challenging to control the environment of the subjects (genetic background, 

nutrition, weather-impact…). Moreover, access to the brain is restricted to pharmacological 

approaches, although recent breakthroughs based on CRISPR protocols might significantly 

broaden the panel of available tools to explore bees neural networks[76,77]. Developing a 

reliable negative patterning paradigm in an insect model more easily handled in lab conditions 

is therefore of high interest, especially if it enables access to powerful tools to dissect the 

underlying neural mechanisms.  

 

Learning and memory in Drosophila 

 

  Fruit flies (Drosophila melanogaster) is one of the most extensively used models in biology, 

along with mice (Mus musculus) and worms (Caenorhabditis elegans). It occupies a sweet 

spot, exhibiting a remarkable behavioural repertoire and benefiting from decades of research 

in genetics. Indeed, Drosophila history as a model organism took its rise with the pioneer work 

of Thomas Hunt Morgan. Indeed, looking to reproduce Mendel results on beans genetics in 

animals, Morgan looked for an affordable model, easily handled in the lab and that shows 

rapid generation rate. Following the footsteps of colleagues such as Charles William 

Woodworth and William Ernest Castle, Morgan started working on Drosophila and eventually 
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discovered and studied the first white-eyed mutants. By careful breeding and phenotypic 

observations, Morgan established the chromosome theory of heredity. Indeed, he showed 

that identifiable hereditary traits are not transmitted separately. Rather, they form physically 

distinguishable cluster that are almost always transmitted together to the offspring. His life 

work laid the foundations of modern genetics and as basically every aspect of an organism 

functioning is somehow influenced by genetically encoded mechanisms, Morgan’s finding 

were also applied in numerous fields, such as developmental biology, physiology, behaviour 

and neuroscience[78].   

 

Seymour Benzer and the first learning mutants 

 

  Neurosciences is a particularly rich field as it brings together many disciplines, such as 

molecular and cellular biology, physics, behaviour and even, as mentioned above, genetics.  

Seymour Benzer embodied this diversity; coming from a physics background, he first got 

interested in bacteriophage genetics where his contributions were many[79]. Building on this 

experience, Benzer then moved on to behaviour where he pioneered the field of behavioural 

genetics. 

  However, at this point animal behaviour (especially human wise) was believed to stand 

beyond genetics, suggesting that single-gene mechanisms were too low-level to actually 

direct complex behaviours. That perspective was driven by another influential scientist, Jerry 

Hirsch. Interestingly, this ideological opposition was extremely healthy as it led to distinct but 

complementary approaches in the study of behaviour.  

  Both approaches, focused on Drosophila, required to isolate behaviours of interest. On the 

one hand, Hirsch then proceeded on artificial selection of animals displaying the behaviour of 

interest over many generations. On the other hand, Benzer proceeded to mutagenesis 

screens to produce mutants for said behaviour. For each behaviour of interest, Benzer had to 

develop experimental devices designed to quantify and compare animals’ response (e.g., 

phototaxis measurement device, Figure 13-Top Left). Then, flies were exposed to mutagenic 

agents (in this case, exposure to ethyl methanesulfonate) and selected according to their 

displayed behaviour. For instance, vision mutants could be isolated by selecting flies that 

displayed altered phototactic behaviour after being exposed to mutagenic agents (for 
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instance, it is the case of the non-phototactic flies, carrying a mutation of the eye absent (eya) 

gene[80,81]).   

 

Figure 13 Up-Left: Benzer's phototaxis measurement device. Flies are placed in the device and left to distribute freely within 

the two tubes exposed to different lighting conditions. After 1 min, tubes are separated and the resulting fractions of flies are 

subjected to the same procedure again. Procedure Is repeated 15 times and ensures selection of flies based on their 

phototactic behaviour. 

Up-Right: Olfactory conditioning device: This device is very similar to the phototaxis device but in that case, the enlightened 

compartment is covered in copper and flies entering said compartment associate any encountered features (odours, colours, 

etc.) with electric shocks. A fluorescent lamp is used to lure flies inside the reinforcement compartment. Tube 1 is a rest tube, 

2 and 3 are used for training, during which odour A or B is reinforced while the other is not. Tubes 4 and 5 are test tubes 

where post-training responses are recorded. Learning performances is assessed by counting how many flies avoided A and B 

despite the attraction provided by the fluorescent lamp. 

Bottom: T-Maze for training and testing flies in a differential conditioning assay. A group of flies is placed in the training tube 

(a) that is coated with an electrifiable grid. Two odours (d) are subsequently supplied using a vacuum system, one of which is 

associated with electric shocks (CS+) while the other not (CS-). After training, flies are transferred to a choice point (b) via an 

elevator (c), where both odours are presented simultaneously. Each fly can move freely between the two odourants and 

learning performances are computed as the relative proportion of flies found in the tube filled with CS- compared with CS+. 
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  Similarly, Benzer got interested in associative learning abilities of Drosophila. First, he used 

a modified version of the phototaxis device (Figure 13 up-right) and demonstrated that flies 

were indeed able to avoid an odour that was previously associated with electric shocks[82]. In 

that seminal work, he also showed extinction and reversal learning, along with evidence of 

memory of the learning events. Importantly, this first paradigm was an operant procedure, 

as flies were freely moving in the apparatus. In contrast, Benzer’s former collaborators next 

conceived a device to quantify associative learning based on a Pavlovian conditioning 

procedure : The T-Maze (Figure 13-Bottom)[83]. This conditioning apparatus is designed for 

differential conditioning experiments involving two odourants that are to be discriminated in 

a binary choice manner (detailed procedure is described in the Methods part). 

  

Individual vs. group performances 

 

 In the original work of Benzer’s team, as in most of subsequent studies using T-Mazes, flies are tested in large 

groups, ensuring a robust statistical assessment of learning performances[82,83]. However, associative learning is 

often regarded as an individual process, and as such, cannot be reduced to the performance of a group of 

animals. In addition, the classical method assesses learning based on a single snapshot of flies’ location after a 

1 to 3 min test, which blinds the observer to behavioural variations during test phase. Incidentally, flies are 

gregarious animals whose behaviour can be modulated by conspecifics. That is why Claridge-Chang’s team 

proposed an alternative test, where olfactory preference was measured by the time a fly spent in each arm of 

the T-maze[84]. This continuous measure allowed fine observations of individual flies and constitute a robust 

alternative to the classical procedure. In addition, Drosophila is well suited to procedure automation and 

animal’s time spent in each arm of the T-Maze can be objectively assessed using video-tracking. 

 

  Although that kind of paradigm is inevitably an oversimplification of actual learning events 

encountered by animals, it enables a wide variety of tightly controlled parameters to be 

tested in perfectly controlled conditions, which is why it remains a major associative learning 

paradigm in Drosophila. In addition to the proof of concept that T-Mazes provide a reliable 

associative learning paradigm in Drosophila, Tully & Quinn also finely characterized learning 

dynamics related to various parameters that were directly linked to the Rescorla & Wagner 

model : US strength was modulated by varying applied voltage, CS salience was modulated 

by varying odour intensity, and learning acquisition was measured over multiple CS-US 

associations, leading to learning curves nicely matching the R&W predictions. Moreover, 
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diverse temporal CS-US pairing timings and even non-associative protocols were tested, 

leading to an extremely robust experimental framework for subsequent investigations. Next, 

Benzer’s procedure already used for the screening of vision mutants was adopted by several 

teams and applied using the T-Maze protocol to identify associative learning mutants, that is, 

mutant that would not display the characteristic learnt avoidance of previously punished 

odours. The most notorious learning mutants include dunce, rutabaga and amnesiac mutants, 

which all show defect either in associative learning acquisition or retention[83]. Following 

mutants’ identifications, the next step of such procedure is to understand why these mutants 

show learning defects. For instance, the gene responsible for rutabaga mutants phenotype 

was shown to encode a CA2+ Calmodulin-responsive Adenylate Cyclase (CAM) later shown to 

be involved in coincidence detection between the perceived odour (CS) and the 

reinforcement (US) within the Mushroom Bodies[85–90]. In conclusion, to this day, Tully & 

Quinn’s T-Maze remains one of the most widely used protocol to study Drosophila’s learning 

and memory, and while various alternative protocols have been proposed since[91,92], it is the 

one we used in our study. Moreover, as Benzer’s pioneer work was performed using olfactory 

learning, and because insects heavily rely on olfaction on a daily basis, a crushing majority of 

literature on associative learning in Drosophila is focused on olfactory learning. This is why 

we will focus on olfactory associative learning, even if remarkable examples of associative 

learning involving visual[93], mechanosensory[94] modalities and even combinations of sensory 

modalities[95]. 

 

Drosophila and the genetic toolbox 

 

  Flies rapid generation rate and convenient rearing conditions already make them an 

interesting research model. However, in the 90s, the Drosophila field reached a whole new 

level with the work of Andrea Brand and Norbert Perrimon. In 1988, two studies show how a 

yeast transcription factor called Gal4 is able to also activate transcription in mammal cells 

through its binding with a genetic region called UAS[96,97]. The interesting idea that a foreign 

transcription factor can be expressed in a model organism and specifically activates a region 

that is almost never found in wild-type animals makes it a remarkable tool for targeted gene 

expression. Brand and Perrimon adapted this concept in flies by producing so-called “Gal4 
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lines” expressing Gal4 in small cell subsets. In parallel, they constructed a version of the 

development gene “even-skipped” under the control of an UAS promoter. Thus, they were 

able to target even-skipped expression in specific cell subsets such as photoreceptor cells[98]. 

Thus, the UAS/Gal4 system was conceived, reproduced and adapted for a huge array of 

experiments, as it allows to basically express any gene in any type of cell, provided the 

appropriate Gal4 and UAS lines are constructed. Beyond normally expressed genes, the 

UAS/Gal4 system enables the expression of tools such as Green Fluorescent Protein (GFP) in 

the Gal4-targeted cells, making them visible with a fluorescence microscope[99], or, more 

recently, channelrhodopsin, an ion channel that can be activated with light and be expressed 

in subsets of neurons in order to activate them using a light beam[100], a technique called 

optogenetic. In the last decades, entire institutions dedicated to the construction of stock 

centres collecting and maintaining numerous Gal4 and UAS fly lines (among others), used in 

almost every Drosophila research area (e.g., The Bloomington Drosophila Stock Centre 

(BDSC)).  

 

Figure 14 Illustration of the UAS/Gal4 system for targeted expression of genes of interest (adapted from: [101]) 

  In addition to the cell-specificity brought by the Gal4 targeted expression, its combination 

with a thermo-sensitive repressor, Gal80ts, also allows temporal-specificity, as Gal4 

expression is repressed at permissive temperature (25°c)[102]. Here, the designer authors 

exploited the ectothermic nature of insects, so that when placed at 30°c (the restrictive 

temperature), flies’ body temperature is also shifted to 30°c leading to the inactivation of 

Gal80ts and the expression of Gal4. Such mechanism allows to avoid any development effect 

of a given UAS/Gal4 construct. 
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  In sum, besides the already attractive characteristics of flies, the UAS/Gal4 system makes 

them a unique research model, especially in behaviour and neuroscience, where they display 

complex behaviour that can be finely manipulated using genetically encoded tools controlled 

in space and time. That is why Drosophila constitute an ideal model for the study of neural 

networks underlying behavioural processes. Moreover, flies’ brain displays a fairly simple 

architecture compared to mammal brains. Thus, systematic mapping of regions involved in 

various behaviour, including learning and memory has been a fruitful field of research over 

the last decades, which provided a robust background to select specific candidate neurons 

that might be necessary for non-elemental learning. 

 

Neural Pathways supporting olfactory learning in Drosophila 

 

  Olfactory associative learning involves two main steps: the subject has to properly perceive 

the stimulus to learn and the reinforcement. Then, association between the odour (CS) and 

the reinforcement (US) has to be encoded (and sustainably stored, which is what is called 

memory and won’t be specifically addressed in this study as we focused solely on learning). 

Using classical neuroscience tools such as pharmacological treatments and electrophysiology, 

along with Drosophila-specific tools involving genetic targeting of neural subsets, the main 

brain regions and neurons involved in simple olfactory learning in flies have been gradually 

described and characterized.  

 

Olfactory perception: the sensilla, primary sensory organ in insects 

 

  Olfaction relies on the perception of airborne chemical compounds through specialized 

receptors. In Drosophila, these olfactory receptors are located at the level of antennae and 

maxillary palps (see figure 15, left), where they are expressed at the surface of sensory 

neurons called Olfactory Receptor Neurons (ORNs), which are embedded within functional 

units called sensilla (Figure 15, right). Basically, sensilla contain the dendrites of ORN 

surrounded by liquid lymph called sensillar fluid that helps the capture of odour molecules. 

ORN come in ~50 different subtypes[103] based on the olfactory receptors they express[104]  as 

in principle, each ORN expresses only one type of odorant receptor[105]. Apart from the  
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Figure 15 Left: Olfactory organs location in Drosophila (adapted from J. Scott, 2006) Right: Schematic organization of 

Drosophila olfactory unit, the sensilla (source: [106]) 

olfactory receptors that vary from one neuron to the other, all ORNs share remarkably 

common molecular mechanisms, to such an extent that swapping receptors between two 

ORNs neatly swaps the corresponding odour responses[107]. Interestingly, ORNs show 

spontaneous, basal activity[108,109], which can be raised or inhibited dynamically upon 

odour/receptor binding in a concentration-dependent manner[110]. OR signal relies on 

ionotropic transduction[111] and may be broadly tuned, narrowly tuned or in between. Thus, 

each ORN type usually respond to multiple odours that do not necessarily share structural 

similarities[112], but some are also specialized in the detection of biologically significant cues 

such as pheromones[113,114]. Finally, ORN responses are fast and dynamic. Upon activation, a 

peak of response (i.e. spike rate) is usually observed in 30 ms (for comparison, in vertebrates, 

the time to reach a response peak is around 400 ms[115]), and decreases rapidly after odour 

offset[110]. In sum, binding of an odourant results in the selective opening of a subset of 

olfactory receptors which cause a shift in the corresponding ORNs spike frequency. That way, 

the perception of an odour is translated into nervous signal.  
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Figure 16 Schematic anatomy of the Drosophila olfactory system (from: [116]) 

Combinatorial odour code in the Antennal Lobes 

 

  Once an odourant has been detected, elicited olfactory signal is carried to a second encoding 

region called Antennal Lobes (AL). While ORN of the same subtype are generally scattered 

across the surface of flies’ sensory organs, their projections within the ALs are regrouped in 

functional units called Glomeruli. As there are roughly 50 subtypes of ORN, ~50 glomeruli are 

characterized in the ALs[103]. Interestingly, each odour produces a specific glomerular activity 

pattern that is also conserved across individuals[117]. Thus, it is possible to establish an odour 

map for each olfactory stimulus. In fact, some researchers in the Drosophila field created a 

“Database Of Odorant Responses” (DoOR) where anyone in possession of glomerular 

recording associated with specific odourant(s) may upload the recording results[118]. This 

crowd effort led to an ever-growing library of odour responses which can be accessed here: 

[119]. As an illustration, two of the odours we used in the present study are represented as 

glomerular patterns in Figure 16. Importantly, olfactory signal does not only depend on ORN 

activity, as glomeruli are also composed of lateral inhibitory interneurons that produce a 

normalization activity scaled with the total activity of the ORNs[120]. In other terms, glomerular 

interneurons act as a filter, dynamically modulating ORN responses, which leads to a more 

uniform and reliable odour code[121]. Animals may encounter a vast range of concentrations 

of the same odourant throughout their life. Interneurons inhibition has also been shown to 
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ensure proper response scaling across various odour concentrations[122]. In our study, we 

focus on behavioural paradigms involving odour mixtures. How are such compound stimuli 

encoded in the ALs? Compelling evidence shows that mixtures of two odourants are encoded 

as the sum of their components on which normalization is applied[123]. Thus, mixtures display 

strong similarities with their components, but compound-specific glomerular activity also 

arises from the normalization process, which is consistent with observations in honey 

bees[124]. How two odours are discriminated within the ALs? Previous studies showed that 

given two odourants, their behavioural similarity may be computed as their distance (or lack 

thereof) at the level of glomerular patterns[125,126].  

 

Figure 17 Glomerular pattern elicited by two odourants used in our experiments, 3-Octanol and Benzaldehyde. Each image is 

a layer of the glomerulus, responses are normalized and may be excitatory or inhibitory. Images were generated on the DoOR 

database. 

  In other terms, odour similarity is correlated with how many glomeruli are activated by both 

odourants compared to how many are specifically activated by one odourant or the other[127]. 

Interestingly, such similarity at the perceptual level is a close match with generalization 

experiments presented in previous chapters. In addition, discrimination / generalization 

seems to be two extrema of a continuous scale, which depends on the distance between 

odours. This was emphasized in a study where odour distance was artificially reduced by 

genetically silencing subsets of neurons within the AL[127]. Resulting behaviour was shifted 
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toward generalization behaviour. The more similar odour pairs were before silencing, the 

more dramatic the effect of AL neurons silencing on odour discriminability (Figure 17). 

 

 

Figure 18 Schematic representation of the relationship between distance between odours representations and 

discriminability, adapted from: [128]. Odours A, B and C elicit differential naive preference in wild-type flies. Each coloured 

dot represents an odour pair (of which only A Vs B and A Vs C are represented left and right. Upon artificially increasing their 

similarity, flies show impaired naïve discrimination, as shown by the arrows. Data are represented as the differential activity 

displayed toward one odourant compared to the other in terms of spikes/second. Behavioural preference was assessed using 

a modified T-Maze as presented in a previous study[84].  

  Thus, the AL constitutes the first olfactory integration centre. Each odour is encoded as a 

specific chemotopic pattern. Filtering operation occurring within the AL already provide 

significant information about odour perception and part of insects’ discrimination abilities. 

Interestingly, glomerular organization seems to be a general architecture for olfactory 

systems, as numerous insects display the same structure and Drosophila AL show remarkable 

similarities with the vertebrate olfactory bulb[129,130]. Nonetheless, in a sense, AL is a relay 

region, as glomeruli are located at the synapses between ORNs and AL output neurons called 

Projection Neurons (PN). Indeed, each glomerulus activity is transmitted to the next brain 

regions through an average of 3 PNs[131]. PNs then project onto two main regions, the Lateral 

Horn (LH), mainly involved in innate behaviour (which is why we won’t further discuss its 

function in this study) and the Mushroom Body (MB), mainly involved in learnt response 

(although it is important to stress the fact that the distinction may not be so absolute, as 

highlighted by recent studies[132–135] ). In any case, in the next chapters we will focus on MB, 

as this region is deeply involved in learnt processes as already mentioned in the chapter 

describing honeybee non-elemental learning abilities, and learning mutants in Drosophila. 
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The Mushroom Bodies as integrative centres of associative learning 

Mushroom Bodies anatomy and first ties with olfactory learning in Drosophila 

  

  In 1850, Felix Dujardin describes for the first time an hymenopteran brain region that he 

compares to mushroom-like structures (corpora pedunculata)[136]. He postulates that these 

structures, currently known as Mushroom Bodies (MB) are the site of intelligence. Although 

that assumption would eventually be proven to be an overstatement, the characterization of 

MBs constituted a major discovery as they have been demonstrated to be involved in 

numerous processes, such as associative memory in bees[137], cocoon spinning[138], 

navigation[139] and even courtship memory[140]. MBs are composed of functional units called 

Kenyon Cells (KC, named after their discoverer[141]), which differ in number depending on the 

species (in cockroaches, MBs contain approximately 200 000 KCs while flies MBs contain 

~2000 KC in each hemisphere). MBs show a specific anatomy with an input region called the 

Calyx that contains KCs’ cell bodies which project axons through the pedunculus and 

branching into three regions, called the lobes that are disposed in a horizontal and vertical 

fashion, as shown in Figure 18.  

 

 

Figure 19 Schematic representation of the Mushroom Bodies (adapted from: [142]). A) General organization of the MB. 

Antennal Lobes (AL) are shown in green where glomeruli are visible, along with the lateral inhibitory neurons (IN). Olfactory 

information is conveyed from the AL to the MB through Projection Neurons (PN) which show a bifurcation and also project 

onto the Lateral Horn (LH). Kenyon Cells are represented as MBN (MB neurons). Their cell body is located in the Calyx (C) and 

their axon are projected through the Pedunculus (P) as MB lobes, which are classically divided in 5 subsets, a a’ b b’ g .  

B) Representation of input and output neurons showing direct connectivity with the MB. Here are represented the DPM 

neurons in red, the APL neurons in magenta, the Dopaminergic Neurons (DA) in orange. 
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  In 1985, Martin Heisenberg explored the role of MBs in associative learning in Drosophila[143]. 

To do so, he retrieved specific MB mutants obtained using the very same methodology used 

by Seymour Benzer (Mutagenic treatment), but instead of selecting the lines based on their 

learning abilities, he selected them based on highly localized MB defects (for instance, the 

mushroom body miniature mutant displays only small Calyx and almost non-existent MB 

lobes in female flies). Then, flies were tested in various learning paradigm, including the T-

Maze protocol but also other associative learning like the arena paradigm described Figure 

19. Heisenberg showed that MB impaired flies showed a deficit in olfactory learning, which 

could not be attributed to non-specific defects as mutant flies showed normal US (electrical 

shocks and sucrose) sensing, and CS (odourants) perception[144]. From this discovery onwards, 

MB and their direct neural partners have been thoroughly studied, in learning and memory, 

both appetitive and aversive.  

 

Figure 20 Schematic representation of the arena paradigm. two conditioning arenas are displayed left and right, each 

associated with a specific odourant. On one of these arenas, flies are exposed to a sugar reward, while in the other arena flies 

are left unrewarded. After the conditioning phase, flies are placed in the middle arena where they may navigate across 8 

quadrants, alternatively displaying either the odourant previously encountered in the rewarded arena or the one that was 

never associated to a reward. Flies’ time spent on each quadrant is recorded and compared between the two odourants to 

compute a learning index[143]. 
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Kenyon Cells as convergence point between CS and US pathways 

 

  After a first processing in the ALs, olfactory signal is transmitted to the MB KCs via the PNs. 

Therefore, as each odourant may be characterized as a specific glomerular pattern within the 

ALs, it may also be characterized as a KC activity pattern within the MB. Importantly, whereas 

ORNs connectivity within the AL is deterministic and thus conserved across individuals, PN to 

KCs connectivity is suggested to be random[145]. This way, while odour representation in the 

MB is conserved within the same individual, it varies, in contrast, across individuals.  

  For any associative learning to occur, coincidence between CS and US must be detected. 

What mediates US transmission within the MBs?  In seminal work, aversive and appetitive 

learning were shown to depend on two distinct neurotransmitters, Dopamine and 

Octopamine respectively. Indeed, selective knockdown of Tyramineb-Hydroxylase, an 

enzyme required for Octopamine synthesis, resulted in impaired appetitive but not aversive 

learning performances while silencing of Dopaminergic neurons (DANs) impaired aversive but 

not appetitive learning[146]. However, more recent studies showed that octopamine signalling 

is also involved in aversive learning[147], while appetitive reinforcement is also eventually 

mediated by DANs[148]. Indeed, MBs are surrounded by several subsets of DANs. One of these 

subsets, belonging to the PPL1 neurons cluster, has been demonstrated to mediate aversive 

reinforcement signalling to the MBs, while another subset, the PAM neurons, has been shown 

to mediate appetitive reinforcement signalling[149]. Thus, during olfactory associative 

learning, CS information is processed and mediated by the ORN, AL and produces a specific 

cell activity pattern within the MB. In parallel, US information is transmitted to the MB 

through subsets of DANs. 
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About the not-so-powerful neurogenetical tools of fly scientists 

 

The discovery of dopaminergic neurons as US transmission pathways provides a good example of the limits and 

caveats associated with Drosophila neuroscience. Why Dopamine was not shown to be involved in appetitive 

learning in the first place? In the first study mentioned[146], Dopaminergic neurons were targeted using a Gal4 

line called “TH-Gal4”. While TH-Gal4 marks a vast proportion of Dopaminergic neurons, its expression pattern 

does not include the PAM neurons. Thus, the authors concluded that dopamine was not involved in appetitive 

learning, without actually investigating the neurons required for appetitive reinforcement. While neurogenetical 

tools provide an unmatched precision in the exploration of neural circuits, one should always keep in mind that 

they are not perfect and few Gal4 lines target only the structures of interest (although this problem has largely 

been addressed with the conception of the “Split” gal4 lines[150]).  

 

Rutabaga, the molecular coincidence detector of CS / US association 

 

  In a previous chapter, we mentioned one of the first discovered associative learning 

mutants, rutabaga. We also brought up the idea that Rutabaga was, in fact, encoding a Ca2+ 

Calmodulin-responsive Adenylate Cyclase (CAM) within the MBs. Interestingly, the rutabaga 

encoded CAM (or Rut AC), has been shown to be sensitive both to CS and US stimulation: The 

CS pathway leads to an increase of intracellular CA2+, which induces Rut AC stimulation 

through a calmodulin-dependent signalling[85,89,90]. In contrast, the US pathway mediates Rut 

AC stimulation via the activation of G-protein coupled with Dopamine receptors[86]. Upon CS 

or US exposure alone, Rut AC is mildly stimulated. However, CS and US joint presentation 

causes a synergistic activation of Rut AC which secures associative learning.  

  What are the effects of Rut AC recruitment? First, as an adenylate cyclase, Rut AC produces 

cyclic Adenosine MonoPhosphate (cAMP), a well-known cellular messenger (in fact, Rut AC 

activity is measured by the amount of cAMP generated in response to its stimulation). cAMP 

is generally involved in plasticity related processes along with its target, the Protein Kinase A 

(PKA), both in vertebrates and invertebrates[152], as highlighted by the remarkable work of 

Eric Kandel, which we already briefly mentioned in the box dedicated to non-associative 

learning. More specifically, cAMP/PKA pathway is involved in the modulation of synaptic 

connectivity, either strengthening them (a process called Long-Term-Potentiation, LTP) or 

weakening them (a process called Long-Term Depression, LTD).  
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Figure 21 Schematic representation of CS + US synergistic activation of Rut AC through Calmodulin and G-protein 

stimulation (here shown in the case of aversive conditioning), adapted from: [151]. 

In a way, LTP and LTD may be seen as the molecular expression of the Hebbian rule. Back in 

Drosophila, once KCs associated with the CS+ have been reinforced, their synaptic 

connectivity has been modulated, which allows for a conditioned response even without the 

US. 

 

The Mushroom Body Output Neurons and the approach/avoidance balance 

 

Figure 22 Integration of parallel and opposing memories during an extinction experiment. Figure from: [153] 
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  Which synapses are modulated by olfactory learning? KCs axons project onto a small subset 

of neurons (34 neurons identified, classified in 21 types) called Mushroom Body Output 

Neurons (MBONs). MBONs have been shown to encode valence, as their optogenetic 

activation elicits either avoidance or approach[154]. Moreover, olfactory learning has been 

shown to induce synaptic plasticity at the KC-MBON synapses[155]. Interestingly, in a 

somewhat counterintuitive way, aversive learning do not drive synaptic potentiation of KC 

synapses with aversive MBONs, but rather leads to a depression of KC synapses with 

attractive MBONs[156,157]. Thus, MBONs collectively drive behaviour: naive flies show no learnt 

response as attractive and appetitive MBON activities are initially balanced. However, upon 

associative learning, MBON activity balance is skewed which leads to a learnt behavioural 

bias[158]. In a particularly inspiring work, authors nicely emphasize the parallel nature of 

Drosophila learning by training flies in an aversive learning paradigm (thus depressing 

approach MBONs and producing an aversive memory), which is followed by an extinction 

experiment (repeated presentation of the previously reinforced stimulus without 

reinforcement). Their results show that rather than erasing the previously formed memory, 

extinction leads to the formation of a parallel, opposing memory by depressing avoidance 

MBONS through the activation of reward DANs[153]. An illustration of this mechanism is 

displayed in Figure 21. 

 

Consolidated memories in Drosophila   

 

Upon conditioning trials repetitions, an initially labile association may be consolidated through complex and 

interacting cellular processes. Interestingly, distinct MB compartments are involved in different phases of 

memory consolidation. For instance, early memory traces are detected in the MB αʹ/βʹ lobes[159]. In contrast, 

long-lasting memory is shown to be rather located within the α/β lobes[160]. In addition, distinct forms of memory 

are elicited depending on the conditioning paradigm applied. Training without breaks forms a memory called 

“Anesthesia Resistant Memory” (ARM) while training including 15 min breaks forms “Long Term Memory” 

(LTM)[161]. Interestingly, these distinct forms of memory have been demonstrated to be mutually exclusive[162]. 

ARM and LTM also depend on distinct characteristics. For instance, as LTM requires de novo protein synthesis, 

its formation is linked to sugar consumption[163]. Incidentally, ARM has been shown to be better retrieved when 

flies are tested in large groups, which is referred to as “social facilitation of memory”[164].  

Finally, recent studies show that, similarly to learning processes, memory involves parallel and opposing valence 

memories enabling flies to store previously learnt information both about the CS+ and the CS- over fairly long 

periods of time[165,166]. 
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The APL neurons: A major actor in complex forms of learning? 

 

  Beside the DANs involved in reinforcement coding and the MBONs steering behaviour based 

on learning events, the MB are also contacted by other neural populations involved in MB 

Input/Output interactions. For instance, the Dorsal Paired Median (DPM) neurons are 

required for memory consolidation[167], and were recently found to be involved in the social 

facilitation of memory[168]. 

 

  In 2009, Liu & Davis identified another important subset of MB Input/Output neurons called 

the Anterior Paired Lateral (APL) neurons, which are found in only one copy per hemisphere, 

much like DPM neurons (Figure 18). APL were found to be GABAergic and showed an 

antagonist relationship with KCs. More specifically, Liu & Davis demonstrated that reducing 

GABA transmission from the APL to the KCs induced learning facilitation and in return, they 

showed that olfactory learning suppressed APL activity[169]. More recently, APL activity 

suppression was shown to be mediated by the DAN involved in aversive reinforcement 

signalling (PPL1) through D2-receptors located at APL membrane[170]. 

  Moreover, another team published a fundamental study showing that APL neurons provide 

an inhibitory feedback to the KCs, which leads to a normalization process not unlike what has 

been described regarding the lateral Inhibitory Neurons in the ALs[171]. Upon KCs activation 

by an odourant, APL neurons (which take input at the MB lobes) apply a graded GABAergic 

inhibition at the level of the calyx. As a result, only an average of the 8,4% most activated KCs 

remain active. This function is called “Sparse coding”, as each odourant is represented by a 

small subset of KCs. Hence, referring to how odours are discriminated (see the chapter on 

combinatorial odour code in the ALs), sparse coding increases the distance between odour 

representations at the level of KCs, ensuring a minimal overlapping of the KCs activation 

patterns associated with discriminated odours. The authors provided an experimental 

demonstration of this by silencing APL neurons during differential conditioning involving 

either similar or dissimilar odours. They showed that while APL silencing does not prevent 

discrimination of dissimilar odours, it does impair flies’ ability to discriminate similar odours 

(Figure 22).  
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Figure 23 Effect of APL silencing on odour representation in the MB, their distance and associated discriminability (adapted 

from: [171]. Top: Imaging of KC activity patterns elicited by the presentation of two odour, A and B. Activity has been 

measured using calcium imaging (see methods for more details). Inter-odour correlation has been computed (which is 

inversely related to the distance between odour patterns). Bottom: Flies learning performances computed as the relative time 

spent in the CS- T-Maze arm compared to the time spent in the CS+ arm. Performances using dissimilar and similar odours 

were compared as well as data with functional and silenced APL neurons. 

  Importantly, MBs architecture and random connectivity with the PNs already provide a huge 

coding space for olfactory stimuli, compared to ALs. Indeed, each KC receives, in average, 

input from 7 PN. As there are 2000 KCs, this results in ~ 14 000 PN-KC contacts. As mentioned 

above, APL neurons ensures that each odourant activates ~ 8.4% of all KCs (168 KCs)[172]. The 

range of possible resulting combinations is tremendous. However, assuming that 

discrimination performances are correlated with odour distance, how to reconcile APL sparse 

coding activity and its suppression by olfactory learning? One explanation is that flies 
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displayed behaviour is also correlated with stimulus perceived salience, regardless of the 

animals’ discrimination abilities. In other terms, for a given stimulus, flies response is 

correlated with the number of KCs that will drive the MBONs activity. Thus, optimal learning 

performances requires a delicate balance between producing a robust response to the CS+ 

and being able to distinguish it from the CS- 

 

Figure 24 Illustration of the APL-mediated sensitivity / discriminability balance. A and B stimuli are represented as coloured 

circles. Colour transparency reflect sensitivity while circles overlapping level represents discriminability. Low APL activity leads 

to higher stimulus-elicited KC activity, but stimuli evoked patterns show significant overlapping, preventing discrimination. In 

contrast, high APL activity leads to an optimal discriminability of A and B at the expense of response strength. 

  In the work describing suppression of APL activity by olfactory learning, odours tested are 

significantly dissimilar. One may assume that in that case, inhibiting APL neurons should not 

impair their discriminability while facilitating the resulting stimulation of MBONs through 

higher KC activity. However, little is known about APL activity modulation during a learning 

task involving similar stimuli. We addressed some aspects of it in the chapters II and III of the 

results parts. As already mentioned, when generalization experiments were presented, 

another important part of learning in animals is their ability to display learnt behaviour 

outside the context in which learning occurred. From that perspective, if an animal 

encounters a stimulus that is fairly similar to one already associated with reinforcement, there 

is a fairly high probability that these stimuli are one and the same, with small distance, 

concentration and context variations. Thus, the appropriate response toward this stimulus is 

the generalization response. In that case, excessive discrimination might even be detrimental.  
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  Finally, APL neurons may provide a baseline suppression of associative learning in order to 

prevent the animal from learning irrelevant associations. In that case, APL neurons 

suppression upon actual CS/US pairing would lift the baseline inhibition on the KC and enable 

associative learning. 

 

  APL neurons seem to be a highly-conserved neural structure among insects. In fact, first 

depictions of such neuron occurred in locusts, where it is called “Giant GABAergic Neuron” 

(GGN), referring to the large size of the GGN projections onto the MB[173]. Interestingly the 

GGN has also been shown to be crucial for sparse coding through a GABAergic feedback[174]. 

Moreover, an APL equivalent is also found in honeybee, where it is called “A3v” neurons[175–

177]. Previous studies in the lab showed that A3v neurons are specifically required for non-

elemental tasks learning, as their pharmacological ablation was shown to impair Reversal 

learning (A+ B- => A- B+) and Negative Patterning (A+ B+ AB-) abilities in bees[36,178]. This 

constitutes another similarity with Drosophila, as APL neurons have also been demonstrated 

to be required for reversal learning, both in olfactory and visual modalities[179,180]. APL 

requirement for reversal learning suggests that APL activity might mediate the suppression of 

the first associative learning in order for the animal to learn the new rule, which is consistent 

with previous observations about APL inhibitory activity. Furthermore, as A3v neurons are 

required for Negative Patterning, APL neurons is also suspected to be involved in non-

elemental learning in Drosophila. 

 

En route to the study of non-elemental learning in Drosophila 

 

  The present overview of associative learning and its neural correlates in insect and more 

specifically in fruit flies constitute a good proof that Drosophila is a particularly powerful 

experimental model for the study of learning and memory processes on multiple scales. 

However, in order to explore the neural mechanisms of a given behaviour, said behaviour has 

to be characterized in the model of interest. As mentioned before, so far, Negative Patterning 

in insect had only been identified in honeybee. In contrast, previous attempts at showing 

Negative Patterning in flies were proven unsuccessful[181]. Interestingly the same authors built 

an elegant computational model of non-elemental olfactory learning in Drosophila and 
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showed that, in principle, flies should be able to solve Negative Patterning[182]. Indeed, in their 

model, the compound AB representation closely matches the one described in imaging 

studies[123] and follows a kind of unique cue processing, displaying similar features with its 

components, A and B, but also compound specific patterns. The authors suggest that the 

compound specific patterns, although in minority, could be sufficient for flies to discriminate 

AB from A and B. Are flies able to solve the so-called complex learning task of Negative 

Patterning? 

 

  In this study, we explore the question of non-elemental learning in Drosophila on multiple 

scales, from behaviour to neural networks and molecular correlates. Our work is divided in 

three independent projects, two of which are either published (chapter I) or about to be 

submitted to a peer-reviewed journal (chapter II). 

 

  In a first part, we develop a variation of the classical T-Maze protocol designed to implement 

a reliable Negative Patterning training in flies. Using this protocol, we demonstrate for the 

first time that flies are able to solve Negative Patterning discriminations and proceed to 

explore how flies process the compound during such task and the behavioural specifics 

associated with Negative Patterning (and an alternative paradigm, the Negative Feature 

discrimination).  

 

  In a second part, we build a minimal computational model of olfactory learning in 

Drosophila. Initially based on already established attributes of flies learning circuits, we take 

advantage of the modular nature of our model to test potential neural mechanisms that could 

qualitatively explain the behavioural results obtained on wild-type flies solving ambiguous 

forms of learning tasks. In particular, we explore the possible role of APL neurons in non-

elemental learning acquisition. Next, we manipulate APL activity using neurogenetical tools 

and test the validity of our model’s predictions in vivo. 

 

  In a third part, we explore APL role beyond non-elemental learning, in learning paradigms 

involving stimuli of varying similarities. We discuss the fundamental role of differential 

conditioning in the modulation of stimulus representation, depending on the task at hand. 
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General methodology for the exploration of 

Drosophila learning and memory 
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  As each part of our work is independent and represent a separate project, detailed 

methodology specifically related to each part can be found in a separate Material & Methods 

part in each chapter. Yet, core methodology we use is the same throughout the three projects 

and thus, the basic tenets of the behavioural experiments and neurogenetic tools used are 

described below. 

 

Fly lines stocks holding conditions 

 

  Flies are kept at constant temperature of 25°c and relative humidity of ~60%, under a 12: -

12h light: -dark cycle. Flies are kept in 36x82 mm plastic tubes containing approximately 20mL 

of medium, the composition of which is detailed in Annex4. 

 

  Fly lines used are outcrossed to a Canton-Special (CS) genetical background, so that wild-

type and transgenic flies all share the same background. The principle of outcross is at follows:  

all transgenic fly lines are in a white-eyed genetical CS background. Eye pigments are restored 

by a sequence directly provided by the transgene of interest. That way, it is possible to identify 

flies carrying the transgene based on their eyes colour. One copy of the transgene usually 

(although not always) leads to orange eyes while two copies lead to the wild-type red eyes. 

Newly received transgenic lines are crossed with white-eyed flies that display a CS genetical 

background. That way, the next generation of flies inherit from both the transgene and some 

of the CS genetical background. By crossing again flies carrying the transgene with white CS 

flies multiple times, we generate fly lines of increasing CS genetical background that also carry 

the transgene of interest. That way, we ensure that any measured behavioural variability 

between control and transgenic flies can only be attributed to the transgene. This process is 

illustrated below: 
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Figure 25 schematic of the outcross procedure. Flies phenotypes were generated using the Roote & Prokop open 

package[183]. 

 

High-throughput olfactory conditioning using a semi-automated 

procedure 

 

  All of our experimental work is based on pavlovian conditioning using an aversive modality. 

The goal of our protocol is to lead flies to associate one odour (CS) with an aversive 

reinforcement (US) and test their discrimination ability when given a choice between the 

reinforced odour (now CS+) and another odour that has been consistently presented without 

reinforcement (CS-). One of the benefits of Drosophila is its rapid generation rate, which 

enables a high-rate of experimental data production. However, all experiments have to be 

performed in tightly controlled conditions. That is why we use a barrel-shape device adapted 

from previous studies, which is specifically designed for simultaneous training of up to 6 

groups of animals[184]. 
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Figure 26 Real (left) and illustrated (right) view of the semi-automated conditioning barrels. Left picture: ©Cyril 

FRESILLON/CRCA /CNRS' photo library , right: adapted from: [184]. 

  US are 60V electric shocks applied through copper or gold grids. CS are odours diluted in 

mineral oil. Odour stimulations are continuous, 2L/min air flow delivered using vacuum 

pumps. A conditioning protocol typically includes 1.30min of acclimatation followed by 1min 

of one CS associated with 12 pulses of 1.5s electric shocks every 5s. After 1min break, the 

second CS is presented without shocks for 1 min. The whole procedure is automated using a 

custom generator designed in the lab by P. Arrufat. The same procedure may be adapted for 

an appetitive conditioning by replacing the metallic grids with partly sugar-coated tubes in 

which flies are alternately exposed to and moved away from the food source by stainless steel 

rotating mechanisms (adapted from: [185]). Conditioning cycles may be repeated, and every 

parameter modulated. However, in this study, US and CS exposure durations and intensity 

are always the same. 

 

Learning performances assessment: the T-Maze test 

 

  After conditioning, flies are placed in a T-Maze where they may freely move between two 

compartments filled with air flows of 0.8 L/min of either the CS+ or the CS-. After 1min, flies 

in each compartment are isolated and counted. Learning performances are computed as 

follows:  

 

Flies in CS- compartment – Flies in CS+ compartment 

Total number of flies 
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  Thus, flies Performance Index (PI), ranges from -1 to 1, with a chance level at 0. An example 

of test result is displayed below: 

 

Figure 27 Example of T-maze post-test flies’ distribution and associated Performance Index (PI). 

  Importantly, the statistical robustness of the protocol is ensured by the large number of flies 

tested together. Typically, a group of flies consists of ~30 flies that come from the same 

stocks, in the same tubes, are the same age.  Each group is trained and tested together.  

 

Experimental bias control: Classical vs. Paired/Unpaired procedure 

 

  The procedure described above only enables reliable learning performance assessment 

under a crucial assumption: outside of the scope of an associative learning, flies shouldn’t 

show any preference for one side or the other within the T-Maze. To make sure that is the 

case, all experiments are performed under red light (which flies are not supposed to see) in 

order to avoid phototaxis effects and odour concentrations are balanced so that any innate 

preference is neutralized. Despite these precautions, a perfect balance is almost never 

obtained in everyday conditions. Thus, an additional control is performed to account for this 

experimental bias. 

  In the original procedure, Tully & Quinn controlled for experimental bias by performing half 

the experiments with one of the odours as CS+ (A+B-) and the other half with the second 

odour as CS+ (B+A-). All trained flies were tested in the same conditions so that any bias 

underestimating a learnt avoidance toward A would be balanced by an underestimated learnt 

avoidance toward B[83]. A single PI would be computed as the average PI of two opposing PIs. 

This historical method was subsequently used in a vast majority of olfactory conditioning 

papers. However, that kind of experimental layout can only be considered if A and B are 

analogous (in terms of attraction/repulsion) so that conceptually, learning to avoid one is the 
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same as learning to avoid the other. In contrast, our study is focused on learning paradigms 

such as Negative Patterning which involves non-equivalent stimuli. Indeed, A+B+AB- is not 

equivalent to AB+ A- B-, which is a distinct behavioural paradigm called Positive Patterning 

with different features[186,187]. In addition, while A vs B concentrations are balanced, AB vs A 

or B is not, which justifies even more the need of a bias control. Adjusting AB concentration 

to A and B would be possible as it didn’t seem to change Negative Patterning in bees[70], but 

it would introduce a supplementary and unnecessary variable (odour concentration influence 

on NP resolution constitutes, in fact, a question per se, which is out of the scope of our work). 

Moreover, as explained above, it does not fully prevent experimental bias even in simple 

differential conditioning. This is why we developed an alternative procedure called 

Paired/Unpaired protocol. 

  The first part of this protocol, called the Paired procedure, is the exact same conditioning 

procedure detailed above (A+ B-). In order to assess experimental bias, for each group of flies 

exposed to a Paired procedure, we train another group of flies from the same stocks and lines 

in an Unpaired procedure during which they were exposed to the US and CS, all of which in 

an unsynchronized way to prevent any association between them (+ A- B-). After training, flies 

from Paired and Unpaired procedures are tested sequentially on the same T-mazes in the 

same conditions. This time, each replicate consists of a relative PI computed as the difference 

between a Paired PI and its Unpaired control. Paired and Unpaired procedures are 

summarized below: 

 

 

Figure 28 Typical Paired (left) and Unpaired (right) procedures used throughout this study. Orange and blue boxes are the 

two odours whereas red bars represent electric shocks.  Adapted from: [188]. 

  Paired/Unpaired procedure is specifically designed to quantify the effect of an associative 

learning experience on flies’ behaviour in both balanced and imbalanced settings. While the 

first chapter is focused on behaviour of wild-type flies, we combined this protocol with the 

UAS/Gal4 system described in the Introduction to target subsets of neurons potentially 

involved in ambiguous learning and their molecular machinery in the second and third 
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chapters. Although numerous techniques were developed in drosophila, we will only focus 

on those that are exhibited in this study. 

 

Statistical analysis and representation of learning performances data 

 

  All data are analyzed and represented using R-software (version 4.0.2). All behavioural data 

are represented as boxplots, in which the middle line represents the median, while the upper 

and lower limits of the box are the 25 and 75% quantiles. The whiskers are the maximum and 

minimum values of the data that are, respectively, within 1.5 times the interquartile range 

over the 75th percentile and under the 25th percentile. Raw data are always superimposed as 

jittered dots. Data are plotted using the following packages : ggplot2, ggsignif, ggpubr, 

ggthemes, gridExtra. An example of typical boxplot is represented below :  

 

Figure 29  Relative performance indices of flies trained with a Differential Conditioning paradigm. Red dotted line 

represents chance level. 

  It is important to note that as they are computed as the difference between two 

performance indices, each ranging from -1 to 1, the relative performance indices range from 

-2 to 2, which is why some data points exceed 1. 
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    Datasets are analysed using the following packages: AICmodavg, lme4, Emmeans. Different 

statistical strategies depending on how many groups are compared and what is the statistical 

question. Generally, it is important to stress the fact that we mainly performed parametric 

statistical tests, the validity of which depend on two critical assumptions : the error between 

the computed statistical model and actual data have to follow a normal distribution and 

samples’ variance should be homogeneous (which is called homoscedasticity). It is often 

recommended to formally test these assumptions using, for instance, the Shapiro-Wilkinson’s 

normality test or the Bartlett’s homoscedasticity test. However, this methodology is often 

contested as it is proven ineffective and logically flawed[189,190]. Indeed, inferential statistics 

are built to detect deviations from null hypothesis but not the other way around. In other 

words, failing to find a significant difference between experimental data and a theoretical 

normal distribution does not prove that the data are normally distributed. Thus, in this study, 

we mainly rely on graphical validation of normality and variance assumptions, although we 

also check the output of aforementioned test as an additional precaution. 

 

  One-sample analyses are performed to compare learning performances with chance level 

(0). To do so, data normality is assessed by fitting a normal distribution on experimental data 

distribution. Normality is also check using the Shapiro-Wilkinson’s normality test. 

  Two sample analyses are performed to test for instance the effect of training repetition 

within a given learning paradigm. In that case as well, data normality is tested the same way 

as for one sample analyses. Then data are compared using two-samples two tailed T.tests. In 

addition, potential heteroscedasticity is tested using Bartlett’s test and accounted for, if 

necessary, using a Welch’s adjustment. 

 

  Statistical analysis of more than two samples within the same paradigm are performed to 

test for instance the effect of a given transgene. Indeed, UAS/Gal4 targeted transgenes effects 

are always compared to the effect of the UAS and Gal4 constructs alone, using fly lines, the 

genotype of which includes either UAS, Gal4, or both. which leads to 3 groups to be compared 

together. In that case, we use Analyses of Variance (ANOVA). First, we build several relevant 

statistical models including various explanatory variables we gather during experiments (e.g., 

odorants used) and their interactions. Then these models are compared using the Akaike 

information criterion (AIC) which is an estimator of the relative quality of statistical models 
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based on their goodness of fit with the experimental data and their simplicity. AIC of each 

model are ranked and the best model is the one displaying the lowest AIC. Next, we further 

test the validity of the selected model using diagnostic plots that compare actual and model-

fitted data including distribution and variance. An example of diagnostic plot is displayed 

below.  

 

Figure 30 Typical diagnostic plots for linear models’ validation. 

 For instance, the left plot shows the variance of residuals vs. fitted values. Each series of 

vertically disposed dots represents a statistical group. Here we can check if all groups show 

homogeneous variances. Similarly, normality can be assessed using the right plot, called Q-Q 

plot. Data are considered as normal if there is little deviation between dots representing 

experimental data and a perfect normal distribution represented as the dashed line. In 

addition, Normality and variance may also be tested using Shapiro-Wilkinson’s normality test 

and Bartlett’s tests, respectively. The ANOVA results are checked to identify global effects 

statistics, for instance the effect of genotype. If a significant effect is detected, the next step 

is to investigate which groups differ from which. Two strategies are possible :  

  If all groups are to be compared, the ANOVA results are checked. If a significant effect of 

flies’ genotype is detected, we perform a Tukey Honestly Significant Difference test (or 

Tukey’s HSD), which is a post-hoc test designed to assess pairwise comparisons significance 

between all groups compared. 

  In other cases, some comparisons are irrelevant while other are crucial. Performing a post-

hoc test in such case is not appropriate as adjustments for multiple comparisons come at the 

expense of statistical power. In such situation, relevant comparisons are planned before the 

analysis, which reduces the weight of adjustment needed and mitigates its detrimental effect. 
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  In all cases, a significance level of p<0.05 is set, although p-values along with relevant 

statistics are always reported, for more parsimonious interpretations. 

 

Shibire: a temperature controlled neural inhibitor 

 

  Neuronal chemical signalling through synapses is sharply timed. To ensure that, 

neurotransmitters need to be rapidly released within the synaptic cleft, but also to be 

efficiently cleared after exerting their function. One of the mechanisms responsible for 

neurotransmitters removal is their endocytosis back into the pre-synaptic neuron. In 1991, 

two studies describe the role of a specific Dynamin called Shibire in neurotransmitters 

endocytosis[191,192].  

 

Figure 31 Schematic representation of shibirets mediated manipulation of synaptic neurotransmission, adapted from: [193] 

  Ten years later, Toshihiro Kitamoto develops a methodology using a temperature-sensitive 

variant of Shibire to manipulate synaptic transmission[194]. Indeed, the ectothermic nature of 

flies makes it possible to alter shibirets1 function simply by placing flies at the restrictive 

temperature (in our case, 33°c) for ~10 min (specific timings are detailed in the chapters). 

Importantly, moving flies back at the permissive temperature of 25°c for ~10 min causes 

shibirets1 to recover a normal function. By combining shibirets1 with the UAS/Gal4 system, it is 

possible to selectively inhibit neurotransmission of small subsets of neurons in a time-

controlled and reversible way. 
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Molecular targeted knockdown through RNA interference 

 

  Shibire targeted neural activity inhibition is a powerful way to pinpoint neural subsets 

involved in the behaviour of interest. However, complementary approaches are required for 

the characterization of the underlying molecular pathways, such as which neurotransmitters 

are released, or whether a particular molecular messenger is involved. One possible strategy 

is to induce a selective knockdown of the candidate expression through RNA interference. 

Indeed, proteins are built based on molecular blueprints, the messenger RNA (mRNA) 

sequences directly translated from DNA coding regions. Interestingly, mRNA regulation 

involves, among other, the expression of other RNA molecules that bind to mRNA, triggering 

RNA degradation pathways. Here again, it is possible to take advantage of an existing natural 

molecular machinery to manipulate the expression of a targeted protein. By driving an 

interferent RNA in a subset of neurons using UAS/GAL4 system, the expression of the 

corresponding protein may be knocked-down. In addition, a thermosensitive control may be 

added using Gal80ts already described in introduction in order to restrict the RNAi expression 

to the adult stage and thus, avoid potential developmental effects due to a constitutive knock-

down. It is important to note that Gal80ts has a reduced temporal resolution compared to 

Shibirets, as RNAi induction requires flies to be placed at 30°c for 5 days before the 

experiment.  

 

Figure 32 Illustration of RNA interference mechanism, adapted from: [195] 
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Chapter I: Fruit flies can learn non-elemental 

olfactory discriminations
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Associative learning allows animals to establish links between stimuli based

on their concomitance. In the case of Pavlovian conditioning, a single stimu-

lus A (the conditional stimulus, CS) is reinforced unambiguously with an

unconditional stimulus (US) eliciting an innate response. This conditioning

constitutes an ‘elemental’ association to elicit a learnt response from A+

without US presentation after learning. However, associative learning may

involve a ‘complex’ CS composed of several components. In that case, the

compound may predict a different outcome than the components taken sep-

arately, leading to ambiguity and requiring the animal to perform so-called

non-elemental discrimination. Here, we focus on such a non-elemental task,

the negative patterning (NP) problem, and provide the first evidence of NP

solving in Drosophila. We show that Drosophila learn to discriminate a simple

component (A or B) associated with electric shocks (+) from an odour mix-

ture composed either partly (called ‘feature-negative discrimination’ A+

versus AB−) or entirely (called ‘NP’ A+B+ versus AB−) of the shock-

associated components. Furthermore, we show that conditioning repetition

results in a transition from an elemental to a configural representation of

the mixture required to solve the NP task, highlighting the cognitive

flexibility of Drosophila.

1. Introduction
The ability to form a link between meaningful events is the cornerstone of

associative learning. One of the most studied forms of associative learning is

Pavlovian conditioning, where animals learn a conditional relation between a

conditioned stimulus (CS) and an unconditioned stimulus (US) [1]. Several

protocols can be used to study Pavlovian conditioning. One of them is differen-

tial conditioning (DC), which enables the study of how animals learn to

associate different CSs with different outcomes (e.g. a reinforced stimulus A+

from a non-reinforced stimulus B−) [2]. In this case, each CS is associated

with a distinct US through a simple, non-ambiguous link so that they are

learnt independently of each other. In consequence, this type of learning is

also referred to as ‘elemental learning’ [3,4].

However, stimuli in nature may not appear as isolated, distinct elements.

Usually, they are compounds constituted of multiple elements. For the elemen-

tal learning theory, a compound AB is the linear sum of its elements. In other

words, an animal presented with AB would learn the independent relation of

A and of B with reinforcement. Yet, several compounds with shared elements

and different outcomes could coexist, creating thereby ambiguity at the level

of the single elements. This possibility led to the proposal of the configural

© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
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(non-elemental) theory, which states that a compound is not

learned as the linear sum of its components but as a distinct

configuration in which elements would not be fully recog-

nized [5–7]. The validity of this hypothesis has been

studied using a discrimination task termed ‘negative pattern-

ing’ (NP) in which a subject has to learn to respond to two

single elements reinforced (A+, B+) and to inhibit its response

to their non-reinforced compound (AB−). For the elemental

learning account, solving this task is impossible as animals

reinforced on A and B should respond twice as more to

AB. By contrast, for the configural account, NP learning is

possible as AB would be perceived as a configuration differ-

ent from A and B, thus facilitating differentiation [5]. Other

studies explored alternative explanations for NP solving

and argued that the compound AB would be perceived as

the sum of A and B plus a unique cue specific to the AB com-

pound (therefore termed ‘unique cue theory’) [8]. Within this

framework, joint presentation to the animal may result in per-

ceptual interferences such as overshadowing, which suggests

that in that case, only part of A and B are perceived within

the compound [9]. In either configural or unique cue

theory, animals would learn the NP task by focusing on an

unambiguous compound-specific cue.

Another task that has receivedwide attention among learn-

ing scholars is the ‘feature-negative discrimination’ (NF) in

which subjects learn to respond to a single element reinforced

(A+) but not to a non-reinforced compound AB− [10]. NF is

interesting as it admits both elemental and configural expla-

nations: for the elemental theory, focusing on B (the negative

feature) brings an elemental solution to the problem. As stimu-

lus A has an ambiguous valence, being as often reinforced and

non-reinforced, B alone suffices as a conditioned inhibitor

to respond appropriately. For the non-elemental theory, dis-

crimination is straightforward as the compound AB is a

configuration that is unrelated to its elements [10,11].

Studying if and how animals solve the NP and NF discrimi-

nations is important to access the mechanisms of associative

learning in the animal brain. Given the importance of invert-

ebrates for studies on learning and memory [12,13], research on

lobsters [14] and honeybees [15–17] has focused on the capacity

of these animals to learn these discrimination problems. In

other insect species, other forms of non-elemental learning such

as multimodal NF [18], biconditional discrimination [19,20] or

contextual learning [21] have been described, yet the solving of

NP has remained circumscribed to the honeybee. Attempts to

study these phenomena in the fruit fly Drosophila melanogaster,

an insect model that is used recurrently for studying elemental

learning forms [22,23], have failed [24]. This lack of success is

regrettable as the fruit fly offers a vast spectrum of neurogenetic

tools, which would allow comparing circuits and mechanisms

underlying elemental and non-elemental forms of learning.

This approach has allowed the olfactory pathways and learning

circuitry of the fly to be identified, both from an anatomical (a

full connectome of these circuits has been published recently

[25]) and from a functional perspective [23]. Robust compu-

tational models based on said circuits have been developed and

predict that non-elemental learning should be achievable by

fruit flies, as normalization events at the perceptual level support

the emergence of configural representation of compound stimuli

[26]. Thus, studying non-elemental learning from a mechanistic

perspective in the fly represents an attractive and accessible goal.

Here, we achieved the first demonstration of the fruit fly’s

capacity to solve NP and NF in the olfactory domain, thus

showing that beyond simple discrimination learning, flies can

also solve non-elemental discriminations. In showing this

capacity, we determined the associative strategies used by the

insects and demonstrated that the processing of olfactory com-

pounds moves along a continuum between elemental and

configural processing. Increasing the number of conditioning

trials promoted configural processing, enabling flies to solve

the NP task.

2. Material and methods

(a) Fly rearing
The wild-type line used in this study was a Canton-Special

(Canton-S) strain. Flies were raised on standard medium at

25°C, approximately 60% humidity and a 12:–12 h light:–dark

cycle. The flies were kept in 36 × 82 mm plastic tubes containing

approximately 20 ml of medium.

(b) Olfactory conditioning
Odours were diluted in bottles of mineral oil. Odours used were

3-octanol (termed ‘A’ for the sake of simplicity, 2.27 mM) and

4-methylcyclohexanol (‘B’, 2.62 mM) (figures 1 and 2). Benzal-

dehyde (‘C’, 1.89 mM) was used as a novel odour in some

conditions (figure 2). Isoamyl acetate (D) and ethyl butyrate (E)

were used as alternative odours (electronic supplementary

material, figure S2) to determine if discrimination solving was

independent of the pair of odours used. Odours were delivered

at the same concentration whether as components (A, B, D or

E) or as mixtures (AB or DE). In the case of mixtures, odours

were diluted together in the same bottle of mineral oil. All

odours and the solvent were from Sigma Aldrich (France). The

US consisted of 12 pulses of 1.5 s of 60 V electric shock every

5 s delivered through a metallic grid. Each experiment included

two groups of approximately 30 flies (2–4 days old) and was

performed using a semi-automated device based on a previous

work [27]. In a T-maze, two main phenomena drive the prefer-

ence of flies towards a compartment or another: on the one

hand, the learnt information about the stimuli acquired during

conditioning and on the other hand, the fact that odours are

rarely completely neutral; at the concentrations used in our

work, they are in fact repulsive to naive flies. When two odorants

are opposed in the absence of punishment in the T-maze, repul-

sion balances; yet, if one odorant is opposed to a compound,

which is more repulsive, a bias towards the less repulsive

stimulus is visible. To disentangle learning from non-learning

behavioural components, one of the groups experienced an expli-

cit pairing of CS and US (paired group), while the other group

experienced both stimuli unpaired to prevent their association

(unpaired group).

(c) Training
Each training trial consisted of 90 s of acclimatisation, after which

flies were subjected to their respective conditioning protocol.

Each odour (CS) was presented once for 1 min with an intertrial

interval of 1 min. For the paired group (figure 1a), one or two of

the olfactory stimulus (CS+) was paired with the US, while the

other stimulus (CS−) remained unpunished. In the unpaired

group, flies were exposed to 1 min of either shocks or odours,

separated by an interval of 1 min. This sequence formed one

conditioning cycle.

Flies were subjected to one of three training protocols

(figure 1b): a DC in which they had to learn to discriminate a

punished from a non-punished odour (A+ versus B−), an NF

discrimination in which they had to learn to discriminate a pun-

ished odour from a non-punished odour compound (A+ versus
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AB−) and an NP discrimination in which they had to learn to dis-

criminate two punished odours from a non-punished odour

compound (A+, B+ versus AB−). 3-Octanol was always used as

the CS+ for the DC and NF protocols (with 4-methylcyclohexanol

(DC) and 3-octanol + 4-methylcyclohexanol (NF) as CS−). For the

NP protocol, both 3-octanol and 4-methylcyclohexanol were

used as CS+ when presented alone and as CS− when presented

as a compound. Thus, flies subjected to DC training faced a

pure elemental discrimination. On the contrary, flies trained in

the NP protocol could only solve the problem if they adopted

a non-elemental strategy. Finally, flies subjected to NF training

could solve the problem using either an elemental or a non-

elemental strategy. For each protocol, training consisted

of either one or five cycles, to enable the study of whether the

amount of experience gathered by flies promoted a particular

discriminations strategy.

(d) Test
After training, flies were transferred to a T-maze [28] where they

could choose between the CS+ and the CS− in the absence of

shock during 1 min. In the case of NP, where flies faced two

CS+, half of the tests were performed using one of the CS+

while the other half was performed using the other CS+, both

presented against the CS−. Flies from paired and unpaired proto-

cols were sequentially tested. At the end of the test, flies in each

arm of the T-maze were counted. If paired flies learned the

discrimination, they should be mostly located in the CS arm,
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Figure 1. (a) Schematic of a typical training cycle. Blue and orange boxes show CS presentation, while red bars show US delivery. (b) Schematic of the conditioning

protocols. Clouds represent the CS odorants while lightning bolts indicate the delivery of electric shock during training. A, 3-octanol; B, 4-methylcyclohexanol. (c)

Relative PIs computed as the difference between paired and unpaired scores. Performances were compared within the same protocol (i.e. one cycle versus five cycles)

but not between protocols. Data are plotted as boxplots. The middle line represents the median, while the upper and lower limits of the box are the 25 and 75%

quantiles. The whiskers are the maximum and minimum values of the data that are, respectively, within 1.5 times the interquartile range over the 75th percentile

and under the 25th percentile. Raw data are superimposed as jittered dots. ‘n.s.’ stands for ‘non-significant’, *p < 0.05, **p < 0.01 after a t-test (DC and NF) or after

a two-way ANOVA (NP).
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that is, the arm presenting the odour stimulus that was not

associated with the shocks during the training. A performance

index (PI) was calculated as: (number of flies in the CS− arm –

number of flies in the CS+ arm)/total number of flies. To control

for any experimental bias, each replicate consisted of a ‘paired

group’ PI (reflecting associative learning+bias) from which

an ‘unpaired group’ PI (reflecting bias only) was subtracted

(electronic supplementary material, figure S1).

(e) Statistical analysis
PI data were plotted and analysed using R software (3.5.0 v.).

Group distributions were tested for normality using the Shapiro–

Wilkinson test; homoscedasticity was tested using Bartlett’s test.

All our experiments met the requirements for parametric statistics.

For one or two-sample analyses, we applied one sample or two

samples two-tailed Student’s tests, respectively. For comparisons

involving more than two samples, we used analysis of variance

(ANOVA) followed by Tukey’s (HSD) post hoc tests. A significance

level of p < 0.05 was set for every experiment.

3. Results
Figure 1c (left panel) shows that flies trained in the DC protocol

learned the discrimination and preferred the non-punished

odour B− to the punished odour A+. Comparing their PIs

against 0 by means of a one-sample t-test yielded significant

differences after both one training cycle (t = 9.49, d.f. = 17,

p = 3.33 × 10−8) and five training cycles (t = 10.83, d.f. = 17, p =

4,76× 10−9). Both PIs did not differ from each other (two-

sample t-test: N = 18 and 18, t =−0.87, d.f. = 34, p = 0.39), thus

providing no evidence for an effect of amount of experience

on learned preference.

Flies trained in the NF protocol (figure 1c, middle panel)

also learned the discrimination between the single odour pun-

ished A+ and the non-punished odour compound AB−. Note

that AB is innately more repulsive than A, but the relative PI

shows the expected effect of learning (figure 2b; electronic sup-

plementary material, figure S1). Performance was significantly

different from zero after both one cycle of training (t = 4.13,

d.f. = 16, p = 7.78 × 10−4) or after five cycles (t = 6.69, d.f. = 17,

p = 3.77 × 10−6). In contrast with DC training, performance

improved significantly with the amount of training (N = 17

and 18, t =−2.11, d.f. = 33, p = 0.042). We also tested the flies’

performance after the DC or NF protocols balancing odour

contingencies, i.e. using B as CS+ and A as CS− (electronic

supplementary material, figure S3).

In the case of flies trained in the NP protocol (figure 1c,

right panel), the type of odour used during tests had no sig-

nificant effect on performance (i.e. ‘A versus AB’ or ‘B versus

AB’; two-way ANOVA: F1,69 = 2.72, p = 0.10). Yet, the PI

varied significantly depending on the number of training

cycles (F1,69 = 34.92, p = 1.18 × 10−7). After one training cycle,

the PI was negative, i.e. biased towards the single odours

associated with the shocks during training (A+ or B+)

(t =−2.47, d.f. = 35, p = 0.018). However, after five training

cycles, preference was reversed and flies preferred the non-

punished compound AB− over the single punished odorants

A+, B+ (t = 5.37, d.f. = 35, p = 5.16 × 10−6; figure 1c, right

panel). These findings show that training repetition is crucial

for NP solving as it improved the ability of flies to discrimi-

nate the odours with different outcome. To determine if NP

solving is independent of the pairs of odours used, we

repeated the experiment using different odours (D+, E+

versus DE−; electronic supplementary material, figure S2).

The flies also learned the NP discrimination also in this

case, showing that the type of odour used during the test

phase had no significant effect on performance (i.e. ‘D

versus DE’ or ‘E versus DE’; two-way ANOVA: F1,69 =

3.005, p = 0.088). After one trial, flies were not attracted by
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Figure 2. (a) Schematic of the tests performed after the three conditioning protocols to determine the nature of the CS representation. A, 3-octanol; B, 4-methyl-

cyclohexanol; C, benzaldehyde. (b) Relative PIs computed as the difference between paired and unpaired scores. Performances were compared within the same

protocol (i.e. one cycle versus five cycles) but not between protocols. Data are plotted as boxplots. The middle line represents the median. The upper and

lower limits of the box are the 25 and 75% quantiles. The whiskers are the maximum and minimum values of the data that are, respectively, within 1.5

times the interquartile range over the 75th percentile and under the 25th percentile. Raw data are superimposed as jittered dots. ‘n.s.’ stands for ‘non-significant’,

*p < 0.05 after a t-test. Grey shading indicates performances that were not significantly different from chance level while white filling indicates a significant

difference from chance level (t-test against zero). (Online version in colour.)
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the single odours (t =−0.73, d.f. = 35, p = 0.47). After five

trials, they were able to solve the task and showed a signifi-

cant preference for the compound (t = 5.21, d.f. = 35, p =

8.59 × 10−6). This result demonstrates that the ability to

solve NP is not specific to the type of odour used in the

protocol.

Despite their different complexity, the three protocols

assayed opposed one or two CS+ to a CS−. Under these con-

ditions, an animal may learn to avoid the CS+, to be attracted

to the CS−, or both. To determine the nature of the associ-

ations inculcated by DC, NF and NP, we studied if the CS−

(not reinforced) was learnt as a safe stimulus (inducing attrac-

tion), remained neutral (being indifferent to trained animals)

or in the case of compounds sharing elements with the

reinforced CS+, also gained inhibitory strength, thus eliciting

avoidance. To test these options, flies were first trained under

the DC, NF or NP protocols (figure 2a) and then given a

choice between the CS− and a novel, neutral odour C. Here

again, the preference of trained flies was compared to

preference of flies after an unpaired protocol.

After being trained in the DC protocol (figure 2b, left

panel), flies tested with the non-punished odour B versus

the neutral odour C did not show any preference either

after one training cycle (t = 0.48, d.f. = 26, p = 0.64) or after

five training cycles (t = 0.73, d.f. = 26, p = 0.47). There was no

significant difference between PIs corresponding to these

different training amounts (N = 27 and 27, t =−0.31, d.f. =

52, p = 0.75). This result thus suggests that the non-punished

odour was not perceived as attractive after DC training, and

that the number of training cycles had little impact if at all.

After NF conditioning (figure 2b, middle panel), flies sig-

nificantly preferred the novel odour C to the non-punished

compound AB both after one (t =−3.78, d.f. = 26, p = 8.41 ×

10−4) and five training cycles (t =−4.15, d.f. = 26, p = 3.16 ×

10−4). This preference was maintained despite the increase

in the amount of training (N = 27 and 27, t =−0.03, d.f. = 52,

p = 0.97), thus showing that in learning this discrimination,

flies assigned an aversive valence to the CS− despite the

fact that it was not paired with shocks. This inhibitory

strength must have been acquired via the presence of the

punished element A in the compound AB.

Finally, after NP training (figure 2b, left panel), flies also

significantly preferred the new odour C to the non-punished

compound AB both after one (t =−7.36, d.f. = 29, p = 4.12 ×

10−8) and five training cycles (t =−4.46, d.f. = 29, p = 1.12 ×

10−4). Yet, differently from NF training, the flies’ aversion

for the CS− was reduced after five training cycles (N = 30

and 30, t =−2.74, d.f. = 58, p = 8.10 × 10−3), thus showing

that increasing the amount of experience diminished the

inhibitory strength of the compound. This variation is con-

sistent with a nonlinear processing of the compound, which

became less similar to the two single odour components,

both being inhibitory after having been paired with shocks.

4. Discussion
Our results provide the first evidence of NP solving in an

insect other than the honeybee [15,24]. Our results show

that flies solved both an NF and an NP discrimination and

preferred, in both cases, the odour compound AB that was

unpunished during training. In both cases, the compound

acquired some inhibitory strength as shown by its avoidance

when confronted with a novel stimulus C, a fact that could

reflect an influence of the punished element (A in NF, A

and B in NP) in it. Such an influence would be consistent

with an elemental processing of the compound (AB =A +

B). Yet, in NP, increasing the amount of training diminished

this influence, thus promoting a configural processing

(AB = new odour).

When interpreted in the light of these theories, our results

cannot accommodate a strictly elemental or configural

account. Even after five training cycles in NP, the flies still

exhibited some avoidance of the CS− mixture AB, implying

that AB− still carried some of the inhibitory strength associ-

ated with its constituents, a result that goes against a

purely configural compound representation (figure 2b, right

panel). In other words, the compound remained repulsive,

but was preferred to the ‘more repulsive’ elements taken

alone. This result differs from the response of naive flies,

for which a compound is more repulsive than the single odor-

ants, at the concentrations used (electronic supplementary

material, figure S1). Our result could thus be interpreted as

supporting the ‘unique cue theory’, which is consistent

with observations both in honeybee and Drosophila. In vivo

imaging of the antennal lobes, the primary olfactory centre

in the insect brain, suggests that binary mixtures are not

coded as the linear sum of their constituents but rather

show both similarities and features that are unique to the

compound considered [29–32]. However, the fact that the

flies’ initial choice, which was closer to an elemental rep-

resentation, was reversed (although not entirely) after NP

training shows that increasing training gradually changed

the odour representation.

Our results show that the experience of an individual

modulates the kind of processing adopted. This modulation

is consistent with previous work on honeybees showing, in

both the visual and the olfactory modality, that increasing

the number of training trials promotes a configural stimulus

representation [33,34]. Such a plastic stimulus representation

has also been described in other learning paradigms (in crus-

taceans [14]; larvae [35] and adults Drosophila [21,36]; rabbits

[37]; humans [38]).

How such a change of odour representation could be

implemented in the fly’s brain? Firstly, associative learning

has been shown to modulate neural representation of

odours in the honeybee antennal lobes, a structure involved

in olfactory processing, also present in Drosophila. Over the

course of CS/US associations, odours representation was

modified, amplifying the CS+ representation and reducing

CS+/CS− correlation. This could be a first explanatory mech-

anism for enhanced discrimination abilities necessary for NP

resolution [39]. Moreover, pioneer work in the field identified

the mushroom bodies as critical structures for the encoding of

learnt behaviour in insect brain [40–42]. Interestingly, bees

without functional mushroom bodies learn simple olfactory

discriminations but are unable to solve NP tasks [43]. Such

a failure in NP tasks (as well as in other tasks such as reversal

learning) was related to the pharmacological blockade of a

specific subset of feedback neurons providing GABAergic

signalling to the mushroom bodies [43,44]. The functional

equivalent of these neurons in Drosophila, the anterior

paired lateral (APL) neurons, are equally necessary for rever-

sal learning [45]. Together, this suggests that APL neurons

play a crucial role for the modulation of odour representation,

and thus for NP solving in flies.
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The inhibitory feedback mediated by APL neurons enables

a sparse encoding of sensory information bymaintaining a low

level of activity in the MB, which is needed to discriminate

between similar olfactory stimuli [46]. Previous modelling

work suggested that normalization at the antennal lobes

level is crucial for non-elemental forms of learning as it

leads to inhibition of element-specific features, thus enhancing

compound-specific (unique cue) salience [26]. APL neurons

activity also acts as a gain control mechanism and thus further

enhances discrimination at theMB level, which would confirm

a hypothesis already proposed in a previouswork onNP in the

honeybee [43]. Moreover, by modulating its inhibitory activity

depending on the task, the APL neurons could mediate a shift

along the generalization/discrimination balance as observed

here. Indeed, after one cycle of NP conditioning, flies respond

to AB as if it were A or B, consistent with odour generalization.

Yet, after five cycles, flies change their behaviour and choose

AB, even though the second experiment clearly shows that

they still perceive the A and B constituents as aversive. This

result, in contrast, can be attributed to better discrimination

abilities. Interestingly, dopamine signals originating from

PPL1 neurons (responsible for aversive US transmission) inhi-

bit APL activity through D2-like receptors, thus modulating

olfactory learning [47]. Moreover, APL neurons are activated

differently by the CS+ and CS− [48]. More specifically, the

association between the CS and the US results in a diminished

APL activity (leading to a reduction in inhibition towards the

CS+, facilitating—in principle—its reinforcement). Thus, it is

possible that during trials, a differential activation of APL in

response to the CS+ versus CS− produces a form of pruning,

leading to the unequivocal reinforcement of the KC associated

only with A or B while inhibiting the KC associated both to A/

B (the CS+) and to AB (the CS−). If this process is slow com-

pared to the acquisition of the original CS–US association,

APL activity would gradually modulate stimulus

representation to facilitate the task resolution. In the case of

NP, it would help to segregate the representation of AB from

those of its elements. APL neurons could thus continually

adjust and update representation along a generalization/dis-

crimination continuum based on learning events, besides

their role as regular gain control system. Understanding how

APL activity might modulate non-elemental olfactory learning

constitutes an interesting future research agenda.

So far, olfactory learning in fruit flies was limited to DC

protocols, thus reducing the study of associative learning

and its neural and molecular mechanisms to its most

simple form. Our results thus open new perspectives to

explore these mechanisms for higher-order forms of learning

and determine if the same or different circuits intervene when

different learning strategies are employed.
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Chapter II: How targeted inhibition solves 

ambiguous learning situations in Drosophila 
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Introduction 

 

  Animals’ survival depends on their ability to successfully find their way to beneficial 

resources and away from harmful situations. To do so, they can rely on associative learning, 

that is, link positive or negative experiences (called unconditional stimuli, US) with specific 

features extracted from their surroundings (called conditional stimuli, CS). That way, the CS 

is reinforced and becomes a predictor of the US usual outcome. However, a same CS may be 

associated with different outcomes depending on the context, and its value might change 

over time. For instance, a same odour molecule might be negatively reinforced when 

encountered alone but not when blended with other odours. Similarly, the food source 

associated with a specific scenery may be depleted. Such situations create discrepancies 

between previously learnt information and novel experiences. Animals must therefore be 

able to flexibly update their learnt associations with each learning event. One way to study 

how animal deals with such ambiguities is to use modified versions of Differential 

Conditioning (DC) experiments during which the animal has to discriminate between a 

previously reinforced CS (hence called CS+) and a non-reinforced CS (called CS-). In its simplest 

form, DC is performed using two easily distinguishable stimuli, A and B (the task may be 

summarized as A+ B-, meaning that only A has been reinforced while B has been presented 

without reinforcement). Various protocols are designed to introduce ambiguity in a DC 

paradigm, one of which, called Negative Feature discrimination (NF), consists in reinforcing A 

when presented alone but not when presented as a compound AB (which can be represented 

as A+ AB-). In an even more challenging alternative called Negative Patterning (NP), both A 

and B are reinforced when presented alone, but not when presented together (this task is 

represented as A+ B+ AB-). Interestingly, NP requires the involvement of specific brain 

regions, both in vertebrate and invertebrate, to be solved[36,196]. However, the actual neural 

mechanisms underlying animals’ ability to learn to discriminate AB from its single components 

remain elusive. The fruit fly Drosophila melanogaster is well suited for such an endeavour as 

it offers powerful neurogenetic tools, and has been recently shown to be able to solve 

ambiguous learning tasks such as olfactory NF and NP[188]. Moreover, contrary to classical DC 

tasks, NP learning is not successfully acquired with one single training trial, but requires 
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several training trials to be solved[188]. This seems to be a general feature, as trials repetition 

is also required in other species to solve NP[34,197].  

  Here, we investigate the biological processes explaining why training repetition may mediate 

ambiguous learning tasks acquisition. In the current accepted model of olfactory associative 

learning in Drosophila[198], odours (here the CS) are represented as specific activity patterns 

at the level of glomeruli in the Antennal Lobes, the first olfactory processing centre[117]. 

Odour’s activity patterns are then conveyed via projection neurons onto the Kenyon cells (KC) 

constituting the Mushroom Bodies (MBs), the main centre for olfactory associative learning 

in insects[198]. The US information is conveyed by specialized clusters of Dopaminergic 

Neurons (DANs), the larger protocerebral anterior medial cluster (PAM-DANs) being involved 

in reward learning[199,200], and the protocerebral posterior lateral cluster (PPL1-DANs) being 

involved in aversive learning[84,201], both projecting onto the KCs. Thus, olfactory associative 

learning occurs through the reinforcement of specific subsets of KCs representing the CS via 

DANs activity representing the US.  

  Overall KC activity is integrated in a small subset of Mushroom Body Output Neurons 

(MBONs) that drive avoidance or approach behaviour. In a naive state, both MBONs are 

equally activated by a given odour pattern, which is therefore neutral for the fly (apart from 

possible innate valence, which is mediated by another brain region, the Lateral Horn[202]). 

When an odour is associated with an aversive treatment (odour becomes a CS+), every 

associated KCs’ activity is reinforced, which translates in a depression in synaptic weight 

between these KCs and the approach MBON. That way, the reinforced odour now elicits a 

greater avoidance MBON than approach MBON activity, which results in a behavioural bias 

toward avoidance[158]. In contrast, presentation of a non-reinforced odour (CS-) does not 

induce any plasticity at the MBONs level. Importantly, any of the CS+ KCs’ might also be 

triggered, to some extent, by other odours, including the CS-. Thus, during testing phase 

where flies are simultaneously exposed to the CS+ and the CS-, the resulting behaviour may 

be computed as the relative difference of MBON activation elicited by the CS+ compared to 

the activation elicited by the CS- (termed “DMBON”). The more similar the CS+ and the CS- 

are, the bigger the overlap between CS+ and CS- associated KC is, and the lower the DMBON 

activity (i.e., Learning-related behavioural bias) is. This approach is called the “Distance-

Discrimination Model”[127]. From that perspective, if a stimulus elicits the activation of a large 
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number of KCs, the probability of a significant part of them being also activated by another 

stimulus is higher. On the contrary, a stimulus eliciting the activation of a small number of KCs 

should present less KCs in common also activated by other stimuli. In the drosophila MBs, as 

also found in other insects[203], odours are in fact sparsely encoded by KCs activity, which relies 

on the activity of a GABAergic neuron, the Anterior Paired Lateral neuron (APL)[171]. Sparse 

coding of olfactory stimuli has been shown to be especially crucial for similar stimuli 

discrimination, as APL selective inhibition prevent flies to discriminate similar but not 

dissimilar odours[171]. Interestingly, Honeybee APL homolog, the GABAergic A3v neurons have 

been shown to be required for NP, but not DC learning. Moreover, both APL and A3v neurons 

are necessary for Reversal Learning (RL)[178,179]. RL is a learning task divided in two phases. In 

the first phase a stimulus A is reinforced while another, B, is not. In a second phase, B is 

reinforced but not A (A+ B- => B+ A-). In other terms, RL is also an ambiguous learning task 

but the ambiguity is of temporal nature. Finally, imaging data from a previous work 

demonstrated that odour/shock pairing led to a modulation of APL activity, while at the same 

time APL also inhibit olfactory learning through GABAergic transmission[169]. Taken together, 

these results identify APL neurons as a prime candidate in the search of the neural 

mechanisms underlying NP learning through repetition.  

   In this study, we build a computational model based on the traditional Drosophila olfactory 

learning model presented above. We demonstrate that the modulation of KCs activity 

through training repetition qualitatively explains gradual acquisition of NP, whereas sparse 

coding alone cannot explain observed behavioural data. We characterize APL neurons activity 

as the likely in vivo implementation of KCs activity modulation through repetition as we show 

that APL disruption is detrimental for NF and NP but not DC learning, which we link to APL’s 

GABAergic neurotransmission. Based on previous observations showing that APL activity is 

suppressed by the CS+ but not by the CS-[169], we suggest that upon training repetition, the 

CS- presented without reinforcement leads to an APL inhibitory feedback that lastingly 

reduces the activity of CS- associated KCs, which facilitates NP by training flies to respond less 

to the AB compound than to the A or B components alone. We subsequently demonstrate 

the specific engagement of APL neurons during CS- presentation for NP acquisition and show 

that APL-mediated training repetition effect depends on a dopaminergic modulation of APL. 

Finally, we discuss how differential APL recruitment may generally mediate learning flexibility 

and ambiguity solving. 
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Results and discussion 

A model of targeted KCs activity modulation theoretically explains gradual acquisition of 

Negative Patterning learning 

 

  The MB is a key center for olfactory associative learning in insects, and training repetition is 

required for olfactory associative tasks such as Negative Patterning[188,197]. Therefore, the 

repetition of stimuli presentation during training might provoke neural changes in the MB. 

Indeed, neural recording in honeybees showed that repetition of odour presentation without 

coincident reinforcement leads to a decrease in KCs response, a form of “neural habituation” 

at the level of MBs[204]. Contrastingly, presentation of an odor together with reinforcement 

seems to increase the KC responses to this odor[204]. We therefore resonated that such a ‘KC 

habituation/potentiation’ should happen across repeated presentation of the CS-/CS+, and 

that this effect may be key for flies to solve negative patterning tasks.  

 

  To confirm the viability of this hypothesis, we built a simple computational model of the flies’ 

MB based on the flies’ described anatomical features (figure 1, figure S1), and added this KC 

bidirectional modulation rule: the activity of KCs responding to the odor presented without 

reinforcement (CS-) would decrease across CS- repetition; and activity of KCs responding to 

the odor presented with reinforcement (CS+) would increase across CS+ repetition.  

Remarkably, adding this rule to the model spontaneously enables NP to be solved through 

training repetition (Fig1d-right). No fine-tuned parametrization of the model is needed for 

the demonstration of the qualitative benefit of such a targeted ‘KC modulation’, as the chosen 

speed at which KCs are modulated across trials only impact the speed at which NP score 

improves across repetition. This ‘KC modulation’ seems key, as without it, the model appears 

unable to solve NP (Figure 1), even when we tried to manipulate actual learning rate 

(FigureS1). 
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  Interestingly, the model also spontaneously explains additional observations, such as the 

fact that avoidance to the CS- (AB) is strong after one training cycle but reduced by training 

repetition (FigureS2)[188]. Also, the model explains the observed positive but low scores 

(relative to Standard Conditioning DC) for Negative Featuring (NF) and its improvement 

through cycle repetition[188]. DC performances in the model were also increased by repetition, 

which differed with our experimental observations but can easily be explained by considering 

a ceiling effect. Indeed, if maximum behavioural performances as measured in our T-maze 

are already reached at 1 training cycle, theoretical improvement may not be detected. 

Moreover, a previous study mentioned such ceiling effect when using the same experimental 

paradigm as we did[169]. 

 

  In any case, the importance of such a ‘KC modulation’ through repetition in these ambiguous 

learning paradigms seems to be a viable working hypothesis.  

 

We next resonated that such KCs activity modulation may involves the APL neuron, as 

multiple evidence converges: First, APL is known to inhibit the KCs[169,171,205] and can do so 

differentially across individual KCs[206]. Second, APL activity is itself inhibited given the 

presence of a reinforcer[169,170] so it must act differently on CS+ and CS- during our learning 

paradigm. Third, functioning APL are necessary for the flies to solve complex learning 

paradigm such as Reversal Learning (RL)[179], as is the ‘targeted KC modulation’ in our model 

(FigureS3). Finally, APL’s homolog in honeybee (the A3v neurons) is required for both RL and 

NP acquisition[36,178], as again predicted by the model.  

 

We further challenged the hypothesis that the APL neurons are involved in such a KC 

modulation across repetition by using neuro-genetic tool to test a series of key predictions. 
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APL neurons are required for Negative Patterning learning 

 

  The first and foremost prediction of our model is that APL disruption should considerably 

impact NP but not DC performances. To test experimentally this prediction, we blocked APL 

synaptic transmission by expressing the dominant negative thermosensitive Shibirets protein 

(using UAS-Shits[194]) in APL neurons (using the VT43924-Gal4 driver[207]). In all our 

experiments, APL transmission was specifically blocked during training phase by submitting 

flies to 33°c 15min before conditioning. Right after training, flies were submitted to 25°c and 

animals were tested 15min afterwards. Flies were trained using different protocols (Fig1.a). 

Results are presented Fig2.b. 
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  Flies trained with a Differential Conditioning were not significantly affected by APL 

disruption (ANOVA, F2,33 = 2.58, p = 0.09). Thus, this manipulation did not impact flies’ ability 

to acquire associative learning in a classical context, which controlled for eventual perceptual 

or motor defects.  

  In contrast, when submitted to a Negative Patterning training, APL impaired flies showed 

significantly lowered performances (ANOVA: F2,45 = 5.25, p = 0.0090, Tukey HSD post-hoc test: 

both controls are significantly different from the UAS-Shits/VT43924-Gal4 line (p=0.025, p = 

0.016), but are not different from each other (p=0.98)). Without functional APL neurons 

during the training phase, flies’ performances in NP were not distinguishable from chance 

(One sample T-test against 0, df = 15, t=1.61, p = 0.13).  

 

Improvement through repetition involves APL GABAergic transmission 

   

  Two neurotransmitters have been identified in APL neurotransmission, GABA and 

Octopamine (OA). OA from APL is required for aversive memory consolidation processes[207] 

and seems to facilitate olfactory learning[147]. In contrast, APL’s GABAergic transmission has 

been demonstrated to inhibit KCs[169,171,205]. Moreover, APL’s activity is specifically inhibited 

by the association between the CS+ and the US[169], which suggests that KCs’ inhibition 

through APL activity should rather occur during CS- presentation. Therefore, one way KCs 

activity modulation through repetition could be implemented is through a modulation of 

synaptic weights between APL and KCs, which would occur during CS- presentation. As our 

model predicts an inhibition of the CS- representation, APL’s GABA transmission should be 

crucially involved in KCs activity modulation. To confirm that, we knocked down the 

expression of either glutamic acid decarboxylase (GAD) involved in GABA synthesis, or 

Tyramine-β-hydroxylase (Tβh) mediating tyramine conversion to Octopamine, using RNA 

interference. RNAi knockdown was driven specifically within APL neurons using VT43924-Gal4 

and restricted to adult stage using the GAL80ts repressor. Flies were placed at 30°c 5 days 

before experiments to trigger RNAi knockdown. Subsequently, flies were exposed to a 

Negative Patterning protocol. Training and test were performed at 25°c. As presented in Fig3, 

flies expressing GAD-Rnai under the control of VT43924-gal4 showed impaired NP 

performances (ANOVA : F2,61 = 20.67, p = 1.4 x 10-7, Tukey HSD post hoc test: all genotypes 
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were found to show significantly different performances; Gal4 controls performances were 

significantly higher than UAS controls (p= 0.006) and the UAS-Gal4 groups’ (p= 0.006), while 

UAS controls performances were significantly higher than the UAS-Gal4 groups’ (p = 1.0 x 10^-

7). In contrast, flies expressing Tβh-Rnai did not show significant performances variations 

compared to controls (ANOVA : F2,62 = 2.113, p=0.13). We conclude that KCs modulation 

through repetition crucially involves APL GABAergic transmission, which doesn’t seem to be 

the case with Octopamine transmission. 

 

 

APL neurons inhibition is specifically required during repeated CS- but not CS+ presentations 

 

  When comparing models without and with KCs activity modulation, simulated learning 

performances obtained after 1 cycle with KCs activity modulation are similar to performances 

obtained without KCs activity modulation. In other terms, learning enhancement induced by 

KCs activity modulation is predicted to only occur during conditioning repetition. In a previous 

study, we showed that 1 training cycle was not sufficient for flies to learn NP (Durrieu et al, 

2020). In contrast, flies were able to learn a NF with 1 training cycle, although measured 

performances were significantly increased by training repetition. Therefore, NF is an 

interesting middle ground as KCs activity modulation is predicted to improve NF 

performances, but  its absence shouldn’t affect 1 cycle NF performances. In other terms, if 

KCs activity modulation is implemented by APL activity, APL inhibition during training should 
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decrease 5 cycles but not 1 cycle NF performances. To test this assumption, we expressed 

UAS-Shits1 in APL neurons using VT43924-Gal4 and silenced APL neurons transmission during 

training by increasing temperature submitted to flies to 33°c 15 min before conditioning. Flies 

were trained with 1 or 5 cycles NF (Fig4a). After training, temperature submitted to flies was 

lowered back to 25°c and animals were tested 15min afterwards. Flies with silenced APL 

transmission showed no significant difference with the genetic controls after 1 cycle NF 

(ANOVA: F2,33 = 0.037, p = 0.96), as opposed to flies submitted to a 5 cycles NF (ANOVA: F2,48 

= 7.71, p = 0.0012, Tukey HSD post hoc test : both controls are significantly different from the 

UAS-Shits/VT43924-Gal4 line (p=0.0011, p = 0.025), but are not different from each other 

(p=0.51)). We formally validated the interaction of training repetition on APL disruption using 

a linear model (F1,77=6.57, p=0.012). Thus, we conclude APL neurons are engaged specifically 

during training repetition.  

 

  Moreover, as APL role in NP has been demonstrated to be mediated by inhibitory GABA 

transmission, KCs activity modulation should be inversely related to APL activity. In other 

terms, APL activation should be necessary during CS- presentation to negatively modulate KCs 

activity. In contrast, APL should be inhibited during CS+ presentation to positively modulate 

KCs activity, as suggested in a previous study[169]. Therefore, APL inhibition specifically during 

CS+ presentation should have no effect on NP gradual acquisition, whereas APL inhibition 

during CS- presentation should prevent the negative modulation of KCs activity and impair NP 

acquisition. We tested this prediction by  conceiving a protocol with extended breaks 

between CS+ and CS- presentation in order to enable Shibire mediated silencing specifically 

during either CS+ or CS- presentation (See Fig4b for detailed procedure). 

  Using this procedure, we trained flies expressing UAS-Shits under the control of VT43924-

Gal4 with a NP protocol. Flies were placed at 33°c either during the CS+ or the CS- phases, 

while being placed at 25°c for the rest of the training phase. Flies were subsequently tested 

at 25°c. Results are presented Fig4c. Animals with silenced APL specifically during CS- 

presentation showed impaired NP performances. (ANOVA: F2,33 = 6.52, p = 0.004 ; Tukey’s 

HSD post hoc test : both controls are significantly different from the UAS-Shits/VT43924-Gal4 

line (p=0.03, p = 0.004), but are not different from each other (p=0.69)). In contrast, flies with 

silenced APL during CS+ presentation showed homogeneous performances with that 

observed for controls groups (ANOVA: F2,33 = 0.21, p = 0.81). Furthermore, we compared 
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performances across conditions through a linear model and confirmed a significant contrast 

of APL silencing during CS- presentation compared to APL silencing during CS+ presentation 

(F5,67= 5.7, p=0.020).  
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APL neurons activity modulation through a D2 dependent pathway facilitates ambiguous 

learning  

 

  The core mechanism developed in this study relies on a differential APL activity depending 

on whether the presented stimulus is associated with a reinforcement (CS+) or not (CS-). 

Interestingly, previous studies showed that APL neurons express an inhibitory D2 dopamine 

receptor type[208]. APL D2 receptors have been shown to be responsible for the suppression 

of APL activity during odour/shock pairing via the activity of Dopaminergic subsets of neurons 

involved in reinforcement encoding[170]. Thus, D2-mediated APL modulation could mediate 

gradual learning enhancement through KCs activity modulation. To test this hypothesis, we 

expressed two distinct D2-RNAi lines (See method part for lines stocks detail) in APL neurons 

(VT43924-Gal4). Flies were trained using a Negative Feature discrimination protocol of either 

1 or 5 training cycles. Data were analyzed through a linear model and are presented in Fig5. 

Within this model, the overall effect of training repetition was found to significantly enhance 

performances (F1,136 = 23.3, p=3.6 x 10-6). Moreover, no effect of genotype was found (F3,136 

=0.94, p=0.42) which allowed to compare pooled data including all control situations and both 

Rnai lines. Then, we used planned contrasts with a Tukey’s adjustment to compare all relevant 

groups, that is, which shared at least one feature (for instance, controls were compared 

across 1 vs 5 cycles, and controls and mutants were compared within 1 cycle or 5 cycles but 

we didn’t compare 5 cycle mutants with 1 cycle controls). Within these comparisons, training 

repetition enhanced control (p=7 x 10-4) but not D2 knocked-down flies (p=0.42). Moreover, 

we didn’t find any difference between 1 cycle controls vs D2knocked-down flies (p=0.95) 

whereas 5 cycle controls were found significantly different from D2 knocked-down flies 

(p=0.01). Together, these results suggest that D2 receptors knockdown does not impair 1 

cycle performances but prevents flies learning enhancement through repetition. 

 

  Taken together, our experimental results all verify the model’s prediction which strongly 

support a D2-mediated differential APL neurons recruitment during CS+ vs CS- presentation 

as the likely mechanism to implement KCs activity modulation leading to ambiguous learning 

resolution.  
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APL neurons are not required for Positive Patterning 

 

  In order to further test our model validity, we verified additional predictions arising from KCs 

activity modulation.  

  NP experiments are often complemented with Positive Patterning (PP) experiments, in 

which animals are exposed to the compound AB with reinforcement while both A and B are 

presented without reinforcement (AB+ A- B-). Interestingly, PP generally leads to better 

learning performances than NP, as shown in past studies both on rodents and humans[186,187]. 

By simulating PP with KCs activity modulation, we found that PP training led to robust 

simulated learning performances with only small improvement over training cycles (SuppFig4 
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a). We also tested Positive Feature discrimination (AB+ A-), as a mirror from the NF 

experiment. In that case, simulated performances were overall better than NF performances, 

although we did predict an improvement over training cycles. We verified APL neurons 

involvement in these tasks by inhibiting their activity using Shibirets in the same procedures 

as used in Fig1 (SuppFig4b). As predicted, APL neurons inhibition did not affect PP 

performances after 5 cycles (ANOVA, F2,38 =1.33, p = 0.28). We obtained mixed results 

regarding PF, where one control group was different from the APL inhibited flies while the 

other was not (ANOVA, F2,44 = 5.37, p = 0.008, Tukey HSD post hoc test : Only one control is 

significantly different from the UAS-Shits/VT43924-Gal4 (p = 0.59, p = 0.007), while controls 

are not different from each other (p=0.08)). In any case, PP, and, to a lesser extent PF were 

shown to elicit robust performances and be less affected by APL inhibition than what was 

observed with their negative counterparts, consistently with the model predictions.  

 

A sparse coding-independent mechanism 

 

  APL neurons, and their locust counterpart, the GGNs, also have a notorious sparse-coding 

function, ensuring that each stimulus is represented by few KCs, making their discriminability 

easier[171,203]. How to dissociate sparse-coding and KC’s activity modulation repetition to 

account for the flies NP abilities? First, sparse-coding is especially prominent for 

discrimination. In the case of a classical associative learning paradigm, discrimination occurs 

during test phase as CS+ and CS- are presented simultaneously. In contrast, during training, 

CS+ and CS- are presented sequentially, which is why sparse-coding may not be as important 

during training than it is during test. Moreover, a recent study showed that APL activity is of 

two kind[209]. APL provide a global feedback inhibition of the whole population of KCs and a 

local lateral inhibition which might mediate a finely tuned inhibition. Global inhibition is likely 

to generate sparse coding whereas local inhibition could support KCs activity modulation 

through repetition.  In any case, it is important to stress the fact that sparse coding alone is a 

gain control mechanism and cannot explain a gradual improvement of NP. We verified this by 

simulating learning with different combinations involving (or not) sparse coding, KC’s activity 

modulation or both (SuppFig5). The results show that without APL activity, DC and NF are still 

learnt although without any improvement over trials. However, NP is not solved. Rather, the 
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compound elicits a significant level of repulsion, which is expected as the compound 

representation is almost entirely nested in the representation of its reinforced components. 

Interestingly, sparse coding alone improves discrimination and thus reduces the repulsion 

elicited by the compound during NP. However, APL inhibition during CS+ leads to overall 

decreased performances in all paradigms when only sparse coding is implemented, which is 

opposed to behavioural data and further confirms that sparse coding alone is insufficient to 

explain observed learning performances in vivo. Adding KC’s activity modulation to the model 

introduces training repetition effects that can be separated in two categories: If APL are 

always fully activated, which leads to an inhibition of KC’s activity during both CS+ and CS- 

presentation, all simulated performances tend to 0, which is expected as repeated inhibition 

of all odours' representations should lead to a decrease of behavioural responses altogether. 

Yet if APL are inhibited during CS+, performances are gradually improved over learning cycles 

and the condition where both KC’s activity modulation and sparse coding are implemented in 

addition with APL inhibition during CS+ represents the best fit with overall behavioural data. 

 

An alternative model involving parallel and opposing learning 

 

  How else could NP learning be explained? Recent publications present incremental evidence 

that the presentation of a non-reinforced stimulus might, in fact, elicit associative learning of 

opposing valence compared to the reinforced stimulus. Indeed, one study focused on 

extinction, a learning paradigm during which an initially reinforced stimulus is subsequently 

repeatedly presented without reinforcement, leading the animal’s conditioned response to 

fade. The authors showed that the initial learning trace was not erased during extinction. 

Rather, a parallel learning trace of opposite valence was formed[153]. One recent study shows 

that aversive long-term memory is actually composed of two additive constituents, an 

aversive memory for the CS+ and an attractive memory for the CS-[165]. Could NP gradual 

acquisition be explained by the formation of an opposing memory for the compound over the 

course of cycles ? We tested this hypothesis by simulating training cycles during which CS- 

presentation led to a gradual depression of the synapses between the CS- KCs and the 

aversive MBON (while CS+ presentation led to a rapid depression of the synapses between 

the CS+ KCs and the appetitive MBON, as always). Data are presented in SuppFig6a. 
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Interestingly, this model also explains gradual acquisition of the NP and fits with most of our 

experimental data with normal APL activity. However, simulated APL inhibition during CS+ 

decreases learning performances in all training tasks (SuppFig6c) while APL inhibition during 

CS- does not impair NP acquisition (SuppFig4d), which is in exact opposition with behavioural 

results. Thus, the formation of opposing learning traces during training repetition cannot 

explain APL role in it. 

 

General discussion  

 

  To summarize, APL neuron’s role in associative learning is not limited to gain control through 

their sparse coding function. Here we demonstrate the key role of APL inhibitory action on 

the KCs over the course of repeated learning events. Through this function, flies’ 

representation of the world is constantly updated and refined based both on associative (CS+ 

reinforcement) and non-associative (CS alone) events. A straightforward implementation of 

APL differential inhibition of the KCs is through the modulation of the APL-KC synaptic 

weights, which could happen simply by coincidence detection between the APL and the KC 

firing, following a form of Hebbian rule. Coincidence detection between the APL and an 

individual KC could yield a potentiation of their synaptic strengths; and conversely, the firing 

of a KC without the APL would decrease the strength of their connection. Because APL is 

inhibited during US presentation[169,170], only the KC responding to the CS-, but not CS+, should 

see their connection to the APL reinforced across repetitions.    

  Alternatively, potentiation of KCs’ responses for the CS+ could be achieved either by 

octopaminergic signal released in the calyx during US presentation (as shown in bees[210] and 

flies[147]), or through depression of APL-KC firing synapse. Interestingly, multiple evidence in 

honeybee shows that CS+ representation is also reinforced upstream at the level of Antennal 

Lobes, which could participate in optimizing the contrast between CS+ and CS-[211–214]. In any 

case, the inhibition of the APL by the US is key to prevent simultaneous opposite effect on 

synaptic strength. 

 

  Interestingly, we describe a kind of habituation which, in contrast with the classical definition 

(i.e., a non-associative process through which naïve response is lowered), enables flies to 
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solve both configural and temporal ambiguities (e.g., negative patterning and reversal 

learning tasks, respectively)) by inhibiting the expression of maladaptive learnt responses. We 

demonstrate that Dopamine pathways play a critical role in the modulation of APL activity, 

explaining why APL inhibition of KC activity occurs specifically during the CS- but not the CS+ 

presentation. Previous studies showed that PPL1 neurons, involved in aversive US encoding, 

likely project onto APL neurons and inhibit their activity via D2 receptors[170]. Incidentally, 

studies showed that APL’s honeybee homolog, the A3v neuron is also involved in both 

appetitive Negative and Positive Patterning[36]. Thus, it is possible that Dopaminergic neurons 

encoding appetitive US (e.g., neurons in the PAM subset[148]) also project on and inhibit APL 

activity upon appetitive reinforcement. 

 

  Until now, the main source of learning and memory engrams was thought to lie in the 

synapses between KCSs and MBONs. In this study, we suggest that engrams may also be 

located at the synapses between APL and KCs, the molecular bases of which are yet to be 

discovered. Whether such plasticity arise from coincidence detection, as classically shown in 

the Mushroom Bodies[198] or through other, yet uncharacterized mechanisms hints at exciting 

future research prospects.  A recent review highlighted the importance of inhibitory engrams 

(i.e., learning and memory traces in synaptic connectivity) in the formation of associative 

learning and memory[215]. Indeed, not responding to irrelevant stimuli is as important as 

correctly responding to appropriate stimuli. Because in ambiguous forms of training like NP, 

CS+ and CS- are intertwined, inhibitory pathways should be especially involved in learning the 

stimuli that the animal should or shouldn’t respond to.  
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Material & Methods  

 

Fly stocks 

Drosophila melanogaster flies were reared in 25°c incubators under a 12: -12h light: -dark 

cycle. Flies were kept in 36x82 mm plastic tubes containing approximately 20mL of medium. 

Transgenic fly lines were outcrossed to a Canton-Special (CS) genetical background. Trained 

flies were 2-4 days old. 

Fly lines 

UAS transgenes expression was driven specifically in APL neurons using the VT43924 gal4 

line[207].  Conditional neuronal disruption was achieved using flies harbouring a double 

insertion of UAS-shibirets1 [194]. Dopamine receptor D2 knockdown was performed using 

Bloomington’s 26001 and 50621 RNAi lines. To induce Gad and Tβh knockdown, we used the 

VT32344 and the VT51667 lines, respectively. In addition, in the case of Gad and Tβh, 

conditional knockdown was ensured by crossing these lines with tubGal80ts; VT43924 lines. 

 

Olfactory conditioning  

  Discriminatory olfactory aversive conditioning was performed according to a previously 

described protocol[188]. All procedures were performed using a semi-automated conditioning 

device[188] adapted from a previous study[184]. Odours used were 3-Octanol (termed ‘A’, 2.27 

mM) and Benzaldehyde (‘B’, 1.89 mM) diluted in bottles of mineral oil. Odours were always 

delivered at the same concentration, but could either be presented as single components or 

diluted together in the same bottle, thus forming mixtures (e.g., ‘AB’). Training trials consisted 

of 90s of acclimatisation, followed by one of the conditioning protocols described Fig1a. 

Odours were delivered as 2L/min air flows for 1 min. Reinforced olfactory stimuli (CS+) were 

paired with the US, which consisted of 12 pulses of 1.5s of 60 V electric shocks every 5s 

delivered through a metallic grid. The non-reinforced stimuli (CS-) were subsequently 

presented without US with an intertrial interval of 1 min. This sequence, considered as one 

conditioning cycle, was repeated either 1 or 5 times. The whole procedure was called “Paired” 

because of the explicit pairing of the CS+ with the US. Importantly, each paired replicate was 

complemented with an “Unpaired” procedure performed in parallel on another group of flies. 
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In that case, animals were exposed to the same stimuli used in the paired procedure, but the 

presentation of the US and CS+ were decorrelated. The unpaired procedure hence served as 

a control for experimental bias. For each experiment, flies whose performances were 

compared according to genotype were trained in parallel using the same experimental 

devices. 

 

Test 

Following conditioning, flies were transferred to a T-maze where they could move freely 

between two compartments where previously learnt CS+ and CS- were delivered as 0.8L/min 

air flows for 1min without US. In the case of patterning protocols, as there are more than two 

trained odours, half of the tests were performed using one CS+/CS- combination (e.g., A vs 

AB), while the other half was performed using the alternative CS+/CS- combination (e.g., B vs 

AB). Flies exposed to paired and unpaired protocols were sequentially tested. After 1 min, 

flies in each arm of the T-Maze were isolated and counted. Performance Index (PI) was 

computed as (number of flies in the CS- arm – number of flies in the CS+ arm) / total number 

of flies). One Relative PI consisted of a ‘paired group’ PI from which the associated ‘unpaired 

group’ PI was subtracted[188].  

 

Conditional neuronal manipulation using thermal treatments 

  In order to disrupt neurotransmission specifically during conditioning phase, flies were 

placed at 33°c 15 min before and during conditioning. Afterwards, flies were placed at 25°c 

for 15 min before and during test. To restrict Shibire disruption to the CS+ or CS- phase, we 

used a previously described time course[216], also described in Fig4a. For conditional RNAi 

knockdown mediated by TubGal80ts, flies were placed at 30°c 5 days before conditioning. 

Training and test were performed at 25°c. 

 

Statistical analysis 

  Statistical analyses were performed using R software (4.0.2 v.). Data were plotted using the 

following packages: ggplot2, ggsignif, ggpubr, ggthemes, gridExtra, cowplot, magrittr. Data 

were plotted as boxplots. Raw data were superimposed as jittered dots and when different 

odour pairs were involved, tested odours were identified by dots shape and colour. Statistical 
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analyses were performed using the following packages: AICcmodavg, Emmeans. One-sample 

tests against chance level were performed using one sample two-tailed Student’s tests. To 

compare relative performances of flies carrying both the UAS regulated transgene and the 

Gal4 regulator with controls carrying only UAS or Gal4 construct, we used analysis of variance 

(ANOVA) followed by Tukey’s (HSD) post hoc tests. In each analysis, several statistical models 

were built taking into account all potential sources of variability such as experimental device, 

day of experiment, odours used and their interactions. Best matching model was selected 

using the Akaike Information Criterion (AIc) and tested for normality and homoscedasticity. 

Multi-factor analyses were performed using linear models. Here again, several possible 

models were built and best match with experimental data was selected using the AIc indicator 

and checked for normality and homoscedasticity. When appropriate, pairwise planned 

comparisons were performed with a Tukey’s adjustment afterwards. A significance level of 

p<0.05 was set for every experiment. 

 

Computational model description 

 

  Virtual olfactory stimuli are generated as random glomerular binary patterns with a fixed 

0.69 proportion of glomeruli activated, based on electrophysiological recordings of antennal 

lobes[217]. Because olfactory stimuli are integrated in ~49 glomeruli[103], each odour is defined 

as a list of 49 zeros and ones, which is a fairly accurate approximation of odour combinatorial 

code in Drosophila brain[218]. For each simulated glomerulus, its attributed value is generated 

from a Bernoulli trial with a probability of 0.69 to be 1 and a probability of 1-0.69 to be 0. 

Compound stimuli are generated as the normalized sum of the glomerular patterns of both 

components, as already described in a previous model[182]. Each activated glomerulus then 

transmits a signal to the KCs through an average of 3 PNs[131]. Therefore, the initially 

generated list of 49 values becomes a list of 147 values. PN to KC connectivity is assumed to 

be random and each KC receives the input from an average of 6.5 PN[145]. In other terms, 

among the 294 000 (2000 x 147) potential PN/KC synapses, an average of 13 000 are actually 

formed. Thus, KCs activities are modeled as a list of 2000 values corresponding to the KCs 

number in a MB hemisphere[219], and PN to KC connectivity is modeled as a matrix of 0 and 1 

with a 0.044 (13 000 / 294 000) probability for each PN/KC synapse to happen. 
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In a way, each connectivity matrix may be regarded as a unique individual. Finally, the 

resulting activated KC population is sparsened by the inhibitory activity of the APL neuron 

which provides global inhibition scaled on the overall KC activity, eventually applying a 

threshold that only leaves an average of 8,4 % of the KC activated[172]. Here, we modeled APL 

inhibition by dividing each single KC activity by an empirically estimated value so that between 

5 and 10% KC remain active after inhibition.  

  Thus, each odour is identified by a pattern of approximately 168 KC (0.084 x 2000). 

Moreover, similarity between 2 odours may be computed as the Hamming distance between 

their activity pattern[125], which is the ratio between the amount of commonly activated cells 

and either the amount of cells activated by the two odours combined (absolute similarity) or 

the amount of cells activated by one odour in average (relative similarity). Finally, all KC are 

matched with 2 MBONS, one driving avoidance while the other mediates approach. Each 

MBON is modelled as its synaptic weights with each KC. Thus, MBON are initialized with every 

synapse at 1. Upon an aversive associative learning, synaptic weight between the CS+ 

associated KCs and the approach MBON are depressed, switching their synaptic weights 

down, while leaving the avoidance MBON untouched. In contrast, when the CS- is presented 

without reinforcement, no change occurs in synaptic weights. Approach or avoidance 

behaviour toward each stimulus is computed as the difference of activity between avoidance 

and approach MBONS (DMBON) elicited by the activation of the stimulus associated KCs. 

During test, the DMBON associated with the CS+ is compared with the DMBON associated 

with the CS- and a simulated learning index is computed as the relative DMBON between CS+ 

and CS-. Model’s architecture is displayed in Fig1b, along with an example of learning event 

Fig1c-left. 

 

  We simulated DMBON activity for 100 random odour pairs and their compound in 3 different 

behavioural tasks with increasing ambiguity, including a typical Differential Conditioning (DC), 

Negative Feature discriminations (NF) and Negative Patterning (NP). Learning paradigms are 

summarized in Fig1a. Each conditioning protocol was repeated up to five times (i.e., 5 

conditioning cycles). Generated Learning Indexes (LI), computed as the relative DMBON 

between CS+ and CS- are displayed Figure1d-left. 
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Supplementary Material 

 

Supplemental figure1 : Classical model simulations with gradual learning rates 

 

Supplemental figure2 : CS- elicited avoidance after repeated KC’s activity modulation 
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Supplemental Figure3: Reversal learning simulation with and without KC’s activity modulation 
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Supplemental Figure4: Simulated and measured Positive Featuring and Positive Patterning 
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Supplemental Figure5: Relative involvement of Sparse coding and KC’s activity modulation on 

associative learning acquisition 
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Supplemental Figure6: Alternative model of parallel opposing learning traces 
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Chapter III: Modulation of the discrimination-

generalization trade-off through Differential 

Conditioning 
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Introduction 

 

Associative learning’s purpose is to establish robust predictive links between environmental 

cues. However, outside of the laboratory, perceived features previously involved in an 

associative learning event are almost never encountered again in the exact same conditions 

they were originally met with. Therefore, animals need to be able to apply previously learnt 

associations in similar but not identical contexts, an ability called Generalization. In other 

situations, perceived stimuli may be associated with distinct outcomes, which also requires 

the capacity to respond differently to similarly perceived cues, an ability called discrimination. 

Generalization and discrimination have an intricated relationship, which can be referred to as 

a trade-off, as an increase in one lead to a decrease of the other. Learning the association 

between a stimulus and a reinforcement spontaneously produces a ‘response gradient’ 

around the stimulus, which means that similar stimuli will also elicit a response, the 

magnitude of which is correlated to the degree of similarity with the originally presented 

stimulus[26,220]. Thus, part of the generalization / discrimination trade-off is learning-

independent and directly related to perceptual aspects. Interestingly though, the 

generalization/discrimination trade-off may also be modulated by associative learning 

events. Multiple learning experiences have been shown to additively modulate the response 

gradients of previous associations[20]. Moreover, conspicuous stimuli are more likely to be 

associated with reinforcements and tend to conceal less noticeable ones, a phenomenon 

referred to as Overshadowing[221]. In the brain, stimuli are generally encoded as patterns of 

cerebral activity scattered across neural units. The degree of overlap between two stimuli-

associated activity patterns is directly related to their perceived similarity[127,222]. Previous 

works showed that associative learning may modulate learnt stimuli-associated activity 

patterns enhancing discriminability[211,212,223,224]. However, the elucidation of the molecular 

and cellular mechanisms underlying the modulation of stimulus representation is still an open 

question. Here we explored how associative learning events may optimize the generalization/ 

discrimination trade-off based on past experiences. 

 

  Fruit flies are gifted with a fine olfaction. As such, they constitute a robust model for 

olfactory discriminative learning, the neural correlates of which can be addressed using state-
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of-the-art genetically encoded tools.  Flies show remarkable discrimination abilities arising, in 

part from a sparse spatio-temporal encoding of olfactory stimuli within the Mushroom Bodies 

(MB), a major associative learning brain structure in insects[128]. Each olfactory stimulus is 

encoded by a small subset of Kenyon Cells (KCs), which are the building blocks of the 

MBs[172,219]. Upon association with a reinforcement, the activity of every KC associated with 

the stimulus is strengthened[151]. Importantly, the reinforced (CS+) and the non-reinforced 

(CS-) stimuli may share commonly associated KCs, which means that the CS+ reinforcement 

may lead flies to respond, to some extent, to the CS- as well. Therefore, the perceived 

similarity between CS+ and CS- and hence, flies’ ability to specifically respond to the CS+ 

depends on how many KCs are activated by the CS+ only, compared to how many are 

activated by both the CS+ and the CS-.  

 

  Flies’ discrimination abilities do not depend solely on the reinforcement of the CS+. In fact, 

the explicit presentation of a CS- during training generates conditioned inhibition which 

increases the contrast (and thus the discriminability) between CS+ and CS-[225]. A single pair 

of inhibitory neurons, the Anterior Paired Lateral (APL) neurons, was demonstrated to be key 

in the sparse encoding of odours within the MBs, minimizing CS+ and CS- representations 

overlap[171]. Moreover, APL’s disruption impairs similar but not dissimilar stimuli 

discrimination[171]. APL were also demonstrated to be involved in conditioned modulation of 

odour representation during associative learning[169], which was shown to be crucial for 

complex forms of learning such as Reversal Learning[179] and Negative Patterning (Durrieu et 

al., 2021, in prep). Interestingly, training repetition gradually reduces the degree of 

generalization displayed by trained flies[188]. Drawing on this set of evidence, we investigated 

how associative processes differentially elicited by the CS+ and CS- presentation and their 

representation’s modulation by APL neurons may modulate the discrimination/generalization 

trade-off. 
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Material & Methods  

 

Fly stocks 

Drosophila melanogaster flies were reared at 25°c under a 12: -12h light: -dark cycle. Flies 

were kept in 36x82 mm plastic tubes containing approximately 20mL of medium. Wild-type 

flies were Canton-Special (CS) strains. In order to disrupt neuronal transmission in APL 

neurons, transgenic flies were generated by crossing flies carrying a double insertion of UAS-

shibirets1 [194] with flies expressing VT-43924-gal4[207]. Both lines were outcrossed to a (CS) 

genetical background. All tests were performed with 2-4 days old flies. 

 

Olfactory conditioning  

  Discriminatory olfactory aversive conditioning was performed according to a previously 

described protocol[188]. All procedures were performed using a semi-automated conditioning 

device adapted from a previous study[184]. 3-Octanol (termed ‘A’, 2.27 mM) and 1-Octen-3-ol 

(termed ‘A’ ‘, 1.97 mM) were used as similar odorants along with Benzaldehyde (‘B’, 1.89 mM) 

as dissimilar control. 4-Methylcyclohexanol (termed ‘C’, 2.62 mM) was used as a novel 

odorant. All odorants were diluted in bottles of mineral oil. For experiments involving graded 

ratios, A and B at concentrations stated above were mixed together as performed in previous 

studies[171,211] with 3 conditions: 90:10 vs 10:90 A:B, 80:20 vs 20:80 A:B or 70:30 A:B vs 30:70 

A:B.  

  The aversive reinforcement (US) consisted of 12 pulses of 1.5s 60V electric shocks every 5s 

delivered through a metallic grid. For each experiment, flies whose performances were 

compared according to genotype were trained the same days using the same experimental 

devices. 

 

Training 

Training trials consisted of 90 s of acclimatisation, after which odours were sequentially 

delivered as 2L/min air flows for 1 min with a 1 min break between each odour presentation.   

Reinforced olfactory stimuli (CS+) were paired with the US, while the non-reinforced stimuli 

(CS-) were presented without US. This protocol is called “Paired procedure”. In parallel, 

distinct groups were conditioned using an alternative Unpaired procedure in which flies were 



 120 

exposed to the US alone for 1 min, followed by 1 min presentation of each odour alone, 

separated by 1 min breaks. In both cases, this sequence, considered as one conditioning cycle, 

was repeated 1 or 5 times. For absolute conditioning experiments, CS- was replaced with 

bottles only filled with solvent. 

  For experiments involving Shibire-induced synaptic transmission disruption, flies were 

placed at 33°c 15 min before training or test and the whole conditioning procedure was also 

performed at 33°c. If synaptic transmission disruption was performed during training, flies 

were placed at 25°c for 15 min before testing their learning performances. 

 

Test 

Following conditioning, flies were transferred to a T-maze where they could move freely 

between two compartments presenting either the CS+ vs. the previously encountered CS- 

(differential conditioning); or presenting the CS+ vs. a novel odorant (absolute conditioning). 

Odours in the T-Maze were delivered as 0.8L/min air flows for 1min without US. Flies exposed 

to paired and unpaired protocols were sequentially tested. After 1 min, flies in each arm of 

the T-Maze were isolated and counted. Performance Indices (PI) were computed as (number 

of flies in the CS- arm – number of flies in the CS+ arm) / total number of flies). One Relative 

PI consisted of a ‘paired group’ PI from which an ‘unpaired group’ PI was subtracted to 

account for experimental bias.  

 

Glomerular activity patterns similarity computation 

  We extracted the glomerular activation patterns in the Antennal Lobes associated with 3-

Octanol (A), 1-Octen-3-Ol (A’), Benzaldehyde (B) and the 3-Octanol/Benzaldehyde compound 

(AB) used in Negative Patterning experiments (Durrieu et al., 2021, in prep) using the DoOR 

database[118]. AB glomerular pattern was calculated as the normalized sum of A and B, 

following known characteristics of mixture processing in Antennal Lobes[123]. The distance 

between A and B, A and A’, A and AB, B and AB associated glomerular patterns was computed 

as the ratio between the number of commonly activated glomeruli (A ⋂ B) and either the 

sum of the glomeruli activated by the two odours ((A ⋂ B)/ (A⋃B); absolute similarity) or the 

average number of glomeruli activated by these odours ((A ⋂ B)/ ((A+B)/2); relative 
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similarity), all of which weighed by the average glomerular activity measured across all 

glomeruli. 

Odour pair Absolute similarity Relative similarity 

A vs B 0.21 0.35 

A vs A’ 0.48 0.65 

A vs AB 0.57 0.73 

B vs AB 0.43 0.60 

 

  A and B have a low level of similarity (absolute and relative). In contrast, A vs A’ present 

twice the absolute and almost twice the relative similarity observed with A and B, which 

confirms their proximity. A vs AB show an even higher level of similarity, while B vs AB displays 

a similarity consistent with A and A’. 

 

Statistical analysis 

  All statistical analysis were performed using R software (4.0.2 v.). Data were plotted using 

the following packages: ggplot2, ggsignif, ggpubr, ggthemes, magrittr. Data were plotted as 

boxplots on which raw data were superimposed as jittered dots. Statistical analyses were 

performed using the following packages: AICcmodavg, emmeans. One-sample tests against 

chance level were performed using one sample two-tailed Student’s tests. To compare 

relative performances of flies carrying both the UAS regulated transgene and the Gal4 

regulator with controls carrying only UAS or Gal4 construct, we used analysis of variance 

(ANOVA) followed by Tukey’s (HSD) post hoc tests. In each analysis, several statistical models 

were built taking into account all potential sources of variability such as experimental device, 

day of experiment, odours used and their interactions. Best matching model was selected 

using the Akaike Information Criterion (AIC) and tested for normality and homoscedasticity. 

Learning performances comparisons of flies trained using odours mix with varying ratios were 

performed using a linear model followed by multiple planned comparisons, for which a 

Tukey’s correction was applied. A significance level of p<0.05 was set for every experiment. 
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Results 

 

The following parts are three independent experiments where we investigate the role of the 

non-reinforced stimulus presentation in the modulation of the generalization/discrimination 

trade-off using complementary approaches. 

 

Differential conditioning suppresses acquired generalization 

 

  In a first approach, we selected two odorants previously shown to share a significant degree 

of similarity, 3-Octanol(A) and 1-Octen-3-ol (A’)[225] and verified that these odorants were, 

indeed, similar for the flies. In other terms, we tested whether the association of one with an 

aversive reinforcement could elicit an avoidance response toward the other and vice versa 

through a generalization process. To do so, we trained flies with a single odour using an 

absolute conditioning procedure (details in Fig1 a) where flies were exposed to either one of 

the similar odours (A or A’) or to a dissimilar odour (Benzaldehyde, B) associated with shocks. 

Subsequent flies’ choices were tested in 3 conditions where flies were exposed either to the 

same odour they were trained with or to one of the two other odours they weren’t exposed 

to. In all cases, the tested odour was presented along with a novel odorant (C) in order to 

balance the innate flies’ behaviour. Data are presented Fig1 b). our results show that in both 

cases where flies were trained with one of the similar odours (A or A’), a robust generalization 

response toward the other (A’ or A, respectively) was measured. Regardless of which one was 

reinforced, avoidance toward both odours was similar, but significantly higher than avoidance 

toward the dissimilar odour (For flies trained with A+ : ANOVA: F2,33 = 11.43, p= 1.7 x 10-4; a 

Tukey’s HSD post-hoc test detected a significant difference between avoidance toward A vs B 

(p= 1.1 x 10-4), A’ vs B (p= 0.024), but not A vs A’ (p= 0.13); For flies trained with A’+, ANOVA: 

F2,33 = 30.02, p= 3.7 x 10-8; a Tukey’s HSD post-hoc test detected a significant difference 

between avoidance toward A vs B (p= 5.6 x 10-6), A’ vs B (p= 1 x 10-7), but not A vs A’ (p= 

0.26)). In addition, flies trained with the dissimilar odour B showed a strong avoidance toward 

B but no generalization response toward A or A’ (ANOVA: F2,33 = 19.98, p= 2.1 x 10-6; a Tukey’s 

HSD post-hoc test detected a significant difference between avoidance toward A vs B (p= 2.1 

x 10-4), A’ vs B (p= 2.3 x 10-6), but not A vs A’ (p= 0.29)). We concluded that A and A’ could 
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be considered as presenting a perceptual similarity for the fly, thus confirming previously 

published data[225]. In a second approach, we exposed flies to a differential conditioning 

protocol where A was reinforced (A+) while B was presented without reinforcement (B-). 

Subsequently, flies were tested for their choice between A and B or A’ and B to quantify any 

generalization response. In addition, flies’ choice between B and a novel odourant C was 

tested as a negative control. Results are presented in Figure 1c). Strikingly, flies’ avoidance 

toward A’ was now analogous to their avoidance toward B, and both were significantly 

different from flies’ avoidance toward A. (ANOVA: F2,39 = 16.14, p= 7.8 x 10-6; a Tukey’s HSD 

post-hoc test detected a significant difference between avoidance toward A vs A’ (p= 2.8 x 

10-4), A vs B (p= 9.0 x 10-7) but not A’ vs B (p= 0.77). We also verified that flies exposed to a 

differential conditioning involving A’ instead of A vs B- also elicited a suppressed 

generalization response, which was the case (SuppFig1).  

  Here again, our results are in line with previous data showing that Differential Conditioning 

enhances olfactory acuity[225]. Importantly, whereas the presentation of a CS+ followed by a 

CS- has been demonstrated to elicit a better discrimination between the same CS+ and CS-

[225], our experiment  suggests that generally, presenting a non-reinforced odour after a 

reinforced one enhances the discrimination of the reinforced odour vs. any other odour. 
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APL neurons are required during a discrimination test but not during Differential Conditioning 

involving similar odours 

 

  CS- presentation has been shown to elicit an inhibitory memory trace[204,225], which was 

suggested to be implemented by APL neurons and enable ambiguous forms of learning 

through odour representation modulation (Durrieu et al. 2021, in prep). Moreover, 

differential conditioning leads to a decorrelation of odour representations at the level of the 
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Mushroom Bodies’ Kenyon Cells[225]. As the APL neurons are key in such decorrelation through 

their inhibitory activity, in a second experiment we tested APL involvement in a differential 

conditioning task involving A and A’. 

 

  We trained flies with a Differential Conditioning protocol using A as CS+ and A’ as CS-. APL 

neurons activity was inhibited by driving the expression of UAS-Shibirets with VT43924-Gal4. 

Inhibition of the APL was restricted either to the training or the test phase by placing flies at 

33°c during the phase of interest (Fig1a). Flies with inhibited APL neurons during the training 

phase showed similar performances than controls (ANOVA: F2,33 = 1.407, p=0.259), which 

indicates that APL function is not required to learn this task. In contrast, inhibition of APL 

neurons during the test phase had a significant effect on flies’ learnt performances (ANOVA: 

F2,33 = 14.85, p=2.51 x 10-5; Tukey’ HSD test: Flies carrying both UAS and Gal4 constructs 

showed significantly decreased performances compared to both UAS and Gal4 controls (p= 

3.6 x 10-4 & p= 5.03 x 10-5, respectively), but no difference was found between controls 

(p=0.78)). Moreover, APL disruption during test prevented flies to discriminate A from A’ (1 

sample t.test did not show any difference with chance level (0): t=-1.08, df = 11, p=0.30). 

When comparing flies’ performances across the two conditions, we confirmed an interaction 

effect between the condition (APL inhibited during training or test) and flies’ genotype (2 

ways ANOVA: F1,68 = 7.261, p=8.9 x10-3). As a control, we inhibited APL activity during test 

phase of a Differential Conditioning task involving dissimilar stimuli (A vs 4-

Methylcyclohexanol, C, SuppFig2) and found no learning performances impairment in that 

case (ANOVA: F2,15 = 1.41, p=0.28).  

 

   This shows that APL inhibition during the discrimination test impairs flies ability to 

distinguish similar but not dissimilar odours (Fig2b, SuppFig2), which confirms previous 

results[171]. In contrast, APL are not required during the training phase even though the stimuli 

involved are perceptually similar.  
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APL neurons engagement is non-linearly correlated with stimuli similarity level.  

 

  Why would APL neurons be required for learning odour mixture discrimination such as A vs 

AB (Durrieu et al., 2021, in prep), but not for the discrimination of chemically close molecules 

(A vs A’)? To answer this question, we first looked at the activity patterns triggered by these 

odours in the Antennal Lobes using experimental data uploaded on the DoOR database (see 

Material & Method for detailed procedure). Interestingly, odour mixtures show higher 

similarity than chemically close molecules. Thus, in a third and last experiment, we used odour 

mixtures to explore how APL involvement correlates with the degree of similarity shared by 

the CS+ and CS-. We argued that APL requirement during training might be determined by 

the degree of similarity between the CS+ and the CS-. In order to generate a controlled 

gradient of similarity, we mixed two dissimilar odorants with varying proportions. For 

instance, a A: B mixture with 90:10 respective proportions were used as CS+ and a A: B 

mixture with 10:90 proportions served as CS-. Similarly, 80:20 vs 20:80 and 70:30 vs 30:70 

ratios were used. A 100:0 vs 0:100 condition was used as control. Here again, flies expressing 

UAS-Shits under the VT43924-Gal4 driver were exposed to 5 trials differential conditioning 

procedure, during which the training phase was performed at 33°c in order to reversibly 

disrupt APL activity. During test phase, APL neurons were always functional. Results are 

presented in Figure3. Learning performances were compared using a two-ways ANOVA taking 

into account the mix ratio and the condition (functional or inhibited APL neurons). 

Importantly, UAS-only and Gal4-only controls were pooled in order to avoid statistical power 

loss due to an excessive number of irrelevant comparisons. We checked the validity of this 

approach by testing the genotype effect in the ANOVA, which was shown to be non-significant 

(F1,210 =0.563, p= 0.454). Following the ANOVA, data were compared following a planned 

contrasts procedure. We focused our analysis specifically on orthogonal contrasts, that is, 

comparisons between groups sharing at least one common level. For instance, all groups 

displaying functional APL were compared across the range of mix ratios, whereas in each mix 

ratio category, functional and inhibited APL groups were compared. However, groups that did 

not share a common level (e.g., Functional APL in the 100:0 category vs inhibited APL in the 

90:10 category) were not compared. All comparisons and associated p-values are summarized 

in Figure2b. First, we found a significant effect of mix ratios on flies’ performances with 

functional APL neurons. Indeed, 100:0 and 90:10 groups showed significantly higher 
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performances than 80:20 and 70:30 groups. Moreover, flies’ performances generally seemed 

to decrease as the mix ratio converged towards 50:50, that is, became more similar across 

CS- and CS+. This result validated the mix ratios as a relevant model of incremental perceived 

similarity. Upon APL inhibition, flies exposed to dissimilar stimuli did not show any difference 

with the functional APL group. In contrast, when exposed to a differential conditioning 

involving 90:10 ratios, flies with inhibited APL neurons showed significantly reduced 

performances, that were lower than the dissimilar stimuli group but not different from the 

80:20 and 70:30 groups.  Surprisingly, we did not find any effect of APL inhibition on the 80:20 

and 70:30 groups, for which we expected a greater engagement of APL neurons as they 

represented high-similarity groups. In sum, training flies with odour mixes of increasing 

similarity highlighted once more the impressive olfaction of flies as their behaviour was 

characterized by a smooth discrimination/generalization gradient nicely correlated with 

odours similarity. We expected APL neurons to be incrementally involved in differential 

learning as odours similarity increased. Instead, we found that APL inhibition specifically 

impacted a condition where odours displayed only a slight degree of perceived similarity for 

the fly. In fact, APL impaired flies displayed a stepped behaviour, showing robust 

discrimination when odours were not mixed, but, as soon as odours were even moderately 

mixed, flies’ performances dropped and remained at the same level for every other degree of 

perceived similarity tested.  
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Conclusion 

 

  In this study, we demonstrate that the presentation of any non-reinforced odour during a 

differential conditioning seems to increase flies’ discrimination abilities.   What mechanisms 

could underlie this effect? Similarly to our results, a recent study on mouse fear conditioning 

showed that the presentation of a salient safety stimulus in addition to the punished one, 

enhanced mice discrimination abilities of the punished stimulus vs. any other one[226]. The 

authors suggest that such an effect could be linked to attentional processes. Indeed, absolute 

aversive conditioning of one stimulus could lead animals to exhibit exaggerated attention to 

the threatening stimulus, leading to an increased generalization. But if a second stimulus is 

also presented without reinforcement during the conditioning procedure, the attention bias 

associated with the CS+ could be counterbalanced, thus minimizing generalization. Such 

phenomenon has been extensively studied in vertebrates[227] and was also discussed in a 

honeybee study involving visual discrimination[228]. Thus, an interesting perspective would be 

to explore attention-like processes in Drosophila olfactory discrimination. Attention in 

Drosophila has been extensively studied in visual learning paradigms, as it is possible to 

measure objective features of attention-like processes like optomotor responsiveness[229]. In 

contrast, little is known about how attention might guide olfactory responses. Yet, classical 

memory mutants like rutabaga and dunce seem to affect attention-like processes which hints 

at shared circuitry between olfactory and visual sensory modalities[230]. What could be the 

neural correlates of attention-bias in Drosophila olfaction? Previous studies on rodent 

showed that auditory associative learning reshaped receptive fields in the auditory cortex 

through cholinergic modulation[231,232]. Similarly, a recent study on ALs modulation identified 

muscarinic cholinergic receptors as modulators of AL’s local interneurons, as their 

manipulation shaped odour representation and flies’ associated behaviour[233].  An interesting 

experiment would thus be to selectively inhibit AL’s local interneurons’ activity specifically 

during training phase but not test phase, by expressing Shibirets under the control of GH298-

Gal4. We expect to prevent differential conditioning involving similar but not dissimilar stimuli 

which would confirm the importance of odour representation shaping at the level of AL’s 

during associative learning.  Moreover, attention-based modulation of olfactory perception 

could also be imaged using fluorescent calcium probes. 
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  The fact that APL neurons’ activity is dispensable during training involving similar stimuli was 

unforeseen, as they were shown to be involved during Negative Patterning and Negative 

Feature discriminations, two tasks involving similar stimuli (Durrieu et al., 2021, in prep). This 

observation may be explained by the existence of complementary mechanisms for odour 

representation modulation. Interestingly, Antennal Lobes (AL), which are the first integration 

centres of olfactory information, were classically thought to be mainly involved in stimulus 

pre-processing before learning. However, a growing set of evidence suggest that AL activity 

may also be modulated by associative learning[234]. In particular, several articles on  honeybee 

demonstrate that olfactory conditioning increases odours discriminability at the level of AL 

by increasing the distance between CS+ and CS- representations[211,213], especially in the case 

of similar stimuli such as odour mixtures[212,214]. Moreover, AL local interneurons inhibition 

impaired flies’ ability to distinguish similar stimuli[225]. Together, these results hint again at a 

key role of ALs in the modulation of discrimination and generalization processes in insects.  

 

  Given more ambiguous situations, which seems to be consistently the case when mixtures 

are involved, AL’s processing seems not to be sufficient and APL activity might be required to 

further enhance the contrast between CS+ and CS-. Indeed, A vs AB higher similarity supports 

our assumption that APL could be increasingly engaged with higher levels of similarity, as 

tasks involving A vs AB discrimination (Negative Patterning, Negative Feature discriminations) 

require functional APL neurons (Durrieu et al., 2021, in prep). Interestingly, B vs AB shows less 

similarity than A vs AB at the level of ALs, that is consistent with similarity observed between 

A and A’. Thus, an interesting experiment would be to test APL requirement for Negative 

Feature discrimination involving B and AB, in which case we would expect APL not to be 

necessary. Moreover, in this study we show that APL neurons are critically required to 

discriminate mixes of the same odours, even if these mixes are shown in very different 

concentration. This result suggests that even 90/10 A:B ratios are more similar for the fly that 

A and A’. In conditions involving mixtures, APL inhibitory activity could supress overlapping 

representations and reduce generalization. The more similar odours become, the more 

relevant a generalization response is, which might explain why APL seem to have a lesser 

effect on ratios converging toward 50/50. In any case, an important next step would be to 

assess how similar odour mixtures with varying ratios used in this experiment really are, using 
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calcium imaging techniques. Then, a follow-up experiment would be to assess the ratio up to 

which APL are required, using for instance 95/5 and 97.5/2.5 ratios. As our previous study 

highlighted APL crucial role during CS- presentation (Durrieu et al., 2021, in prep), the same 

could be tested in the ratios protocol, where we would expect that inhibiting APL activity 

during CS- but not CS+ would produce the stepped behaviour observed in Figure3. Finally, 

flies were always able to solve the task as shown by relative performance indices above 

chance level (which was validated using 1 sample t.tests), which shows that APL neurons 

activity enhance CS+/CS- contrast but are not required to solve the task. These results are 

consistent with data on Negative Feature discriminations where APL were shown to be 

involved but not necessary. Moreover, following this logic, it is possible that ratios producing 

even greater levels of similarity could match results obtained with Negative Patterning, that 

is, control experiments would show a training repetition requirement for discrimination 

acquisition, and APL silencing would prevent flies from learning the task. Therefore, a future 

research agenda would include testing 65/45, 60/40 and 55/45 ratios as well.  

 

  Another way to further test the relationship between perceived similarity and APL 

requirement would be to inhibit APL activity during differential conditioning involving more 

or less similar odour pairs, the similarity of which could be first assessed using the DoOR 

database, then directly inferred from flies generalization behaviour, as demonstrated in a 

previous work on Drosophila larvae[235]. 

 

 

Importantly, while APL could be required for high similarity discrimination, processing at the 

level of ALs and MBs seem to be jointly contributing to the modulation of odours 

representation along the generalization/discrimination trade-off, as AL’s local interneurons 

silencing impairs similar odours discriminations even with fully functional APL neurons, and 

substantial evidence disclosed the existence of a MB to AL feedback[236]. In conclusion, the 

interaction between ALs and Mushroom Bodies and how complementary modulation of 

odour representation in both regions participate to insect associative learning is a promising 

topic for future experiments.  
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Supplementary figure 2 
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General Discussion
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  In this work we investigate ambiguous learning abilities and some of its neural correlates 

using a combination of approaches. First, we demonstrate that Drosophila can solve a non-

elemental form of associative learning, the Negative Patterning, for which there wasn’t 

former evidence in other insects than honeybee, let alone flies. Next, we characterize 

behavioural features associated with Negative Patterning resolution, two of which seem 

particularly prominent: Negative Patterning is acquired over multiple training trials, which is 

associated with a gradual shift in reinforced vs non-reinforced odours representation (chapter 

I). In the second part of our project, we focus on understanding how training repetition might 

modulate odour representation. To do so, we start from the traditional reinforcement 

model[198] and build a simple computational model based on already known neural 

mechanisms. The model successfully reproduces the training repetition effect on Negative 

Patterning by a gradual and differential modulation of reinforced vs non-reinforced stimuli 

representation at the level of Mushroom Bodies. We test this model validity back in flies using 

neurogenetically encoded tools and identify the inhibitory APL neurons activity as a plausible 

in vivo implementation of stimuli representation modulation.  

 

 On the benefits of modelling approaches 

  Importantly, flies’ behavioural output is the result of a complex interaction of numerous cerebral functions, a 

significant part of which remains elusive and unaccounted for. One way to explore how each brain region 

contributes to associative learning is to selectively impair these regions and measure the resulting effect on the 

behaviour of interest. Once a particular region is demonstrated to be required for associative learning, a careful 

characterization of this region’s activity allows to speculate on its function. This can be seen as a top-down 

approach. In a sense, modelling constitute a complementary approach, where these discovered functions can 

be assembled to understand how associative learning is implemented. In that case, all functions involved are 

known and the question is whether the already discovered mechanisms are sufficient to reproduce the 

behaviour of interest. This can be seen as a bottom-up approach. As neural mechanisms are intricated and often 

lead to non-linear computations, predicting the model’s output can be challenging. This is where computational 

approaches become essential. In the scope of our work, computational simulations were used to test potential 

explanatory mechanisms in plausible conditions using a set of functions already described in insect brains. It 

allowed us to separate which mechanisms were likely to explain training repetition effect on negative 

patterning, and which mechanisms, although promising at first, were proven irrelevant. Moreover, the model 

exploration showed unforeseen effects that allowed us to make clear predictions which could be tested using 

neuro-genetically encoded tools. Lastly, almost anything is possible using flies’ tools, but modelling approaches 

are also useful to select which experiments should be prioritized to test a given working hypothesis. 
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Paired / Unpaired procedure as an alternative learning and memory 

procedure 

 

  In order to measure behavioural changes specifically related to an associative learning event, 

it is crucial to control for non-associative factors that could also drive flies’ behaviour. During 

a Paired/Unpaired procedure, one group of flies is trained using a paired conditioning 

protocol where the CS+ is temporally paired with the US while the CS- isn’t. In that case, flies’ 

behavioural output reflects both associative learning-related behaviour and non-associative 

effects, such as naive preference and experimental bias. To disentangle associative and non-

associative behavioural components, another group of flies is trained in parallel using an 

unpaired conditioning protocol where CS+, CS- and US are all presented in a decorrelated 

way. As the CS+ and the US are never explicitly paired, the resulting flies’ behaviour only 

reflects non-associative effects. That way, it is possible to isolate the specific influence of 

associative learning on flies’ behaviour by comparing Paired and Unpaired flies’ response.   

Interestingly, the Paired/Unpaired procedure is almost non-existent in Drosophila learning 

and memory literature. Some articles presenting imaging data use the procedure to quantify 

learning related changes in neural activity[168,216], yet a staggering majority of associative 

learning publications rely on the reciprocal method described in introduction[82,83]. 

Nonetheless, we argue that the Paired/Unpaired procedure could be an interesting 

alternative to the reciprocal method, as it presents key benefits. One of the main assumptions 

on which relies the reciprocal procedure is the symmetry between learning performances 

elicited by A+ B- and B+ A- which allows to compute the final performance index as the 

average between the performances elicited by each reciprocal procedure. However, 

depending on the odours used, symmetry between the reciprocal training performances is 

not manifest as odour-elicited activity patterns are not identical and sometimes nested in 

each other, which leads to differential performances depending on the odour reinforced[225]. 

Moreover, while in principle stimuli used as CS should be initially neutral, it is actually rarely 

the case, at least in Drosophila olfactory learning. Incidentally, the concentrations used vary 

across studies, which modulates both learning performances and innate preference. For 

instance, in our study 3-octanol, Benzaldehyde and 4-Methylcyclohexanol are slightly aversive 

for naïve flies whereas other studies showed innate attraction for the same odourants when 
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diluted with different concentrations[225]. The Paired/Unpaired procedure enables the 

quantification of learning performances elicited by one particular odourant and controls for 

any naïve bias through the unpaired performance indices. In addition, learning tasks involving 

a CS+ and CS- of differing nature, which is typically the case when compounds are involved, 

cannot be performed using a reciprocal procedure as described in the first chapter. In a 

previous study focused on elemental and non-elemental learning in Drosophila, authors used 

only a paired conditioning procedure to quantify associative learning and balanced odour 

concentrations using naïve flies behaviour as a control of experimental bias[181]. We already 

discussed why balancing odour concentrations might lead to challenging interpretations 

(chapter I) and in any case, it was not sufficient to detect any Negative Patterning ability in 

flies. In contrast, the Paired/Unpaired procedure led to robust and reliable performance 

indices, both in elemental and non-elemental paradigms.  Also, our work shows that it is 

particularly insightful to explore flies’ behavioural choice between a novel odourant and the 

CS+, the CS- or a stimulus that is similar to the CS+ (Chapters I and III). In addition, such 

procedure also ensured that in the case of a classical Differential Conditioning, the unpaired 

procedure did not elicit any behavioural bias. Indeed, odour presentation alone has been 

shown to elicit associative conditioning when associated with a reinforcement, even when 

the reinforcement is delayed up to 45 seconds after the odour presentation (which is called 

“Trace conditioning”). That is why we always applied >1 min breaks between the CS- 

presentation of a previous conditioning cycle and the US presentation of the following cycle. 

Comparing flies’ behaviour toward the CS- and a novel odourant in a Differential Conditioning 

procedure confirmed that the unpaired procedure did not elicit any trace conditioning 

(Chapter I, Fig2).  

  Importantly, a critical criterion to assess the robustness of a Drosophila learning paradigm is 

the possibility to generate long-lasting memory with it. To further validate the 

Paired/Unpaired procedure as a general alternative to the reciprocal procedure, we explored 

memory retention of wild-type flies after 1h, 3h and 24h and a spaced conditioning which is 

known to elicit Long-Term Memory (LTM). The results presented in Figure32a show robust 

LTM performances at 24h. Thus, the Paired/unpaired procedure may be used in future 

experiments on memory in Drosophila. 
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Figure 33: Differential Conditioning (a) and Negative Feature (b) learning performances of flies trained using either 5 trials 

massed (0, 1h, 3) or spaced (24h) conditioning and tested for short-term (1h), middle-term (3h) and long-term (24h) 

memory. Relative performance indices (PI) are computed as the difference between paired and unpaired indices. 

 

  Nevertheless, our results shed light on how non-associative processes such as the 

presentation of a non-reinforced odour (CS-) modulates stimulus representation. It is 

therefore important to stress that unpaired procedure is likely to induce non-associative 

learning which would be interesting to investigate. In chapter II we described how repeated 

CS- presentation may promote a lasting inhibition of its associated KCs responses through the 

activity of APL neurons. The unpaired procedure is basically the presentation of two CS-, 

therefore, this procedure may mediate such lasting KC inhibition through APL activity. 

However, as no reinforcement is applied and because all KCs should be modulated the same 

way, our model predicts no change in flies’ choices after an unpaired training, regardless of 

APL state. We verified this by comparing flies unpaired performance indices in Negative 

Patterning with functional and inhibited APL (Figure33) and found no significant difference. 

Moreover, naïve bias for which the unpaired protocol controls is likely to be mediated by the 
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Lateral Horn, a region specialized in innate behaviour and, as far as we know, does not receive 

any APL input[202]. Taken together, we conclude that the Paired/Unpaired procedure is a 

robust alternative to perform olfactory conditioning with a T-Maze procedure. 

 

Figure 34 Effect of APL inhibition during training on Unpaired performances. Unpaired performance indices (PI) of flies 

trained either with a Differential Conditioning, Negative Feature discrimination or Negative Patterning. Data were 

compared across genotypes. ” n.s” stands for “non-significant”. Statistical tests are presented in Annex1. 
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Alternative protocols for the study of Negative Patterning 

 

  In this study, we adapted the T-maze procedure to investigate Negative Patterning. As 

mentioned, one of the particularities of NP is that 3 distinct stimuli are involved, A, B and AB, 

whereas flies’ performances are tested in a binary choice situation (either A vs AB or B vs AB). 

Because flies are the same age, same genetic background, trained and tested simultaneously 

and in large groups, it is possible to collect representative amounts of data for A vs AB and B 

vs AB, which can then be statistically compared. In every case, we showed that flies can both 

discriminate A from AB and B from AB after a NP protocol (chapter I). However, the traditional 

criterion for NP success is the ability of the same animal to perform both discriminations, 

which cannot be tested with our experimental setup. It would thus be interesting to conceive 

an alternative testing protocol where the same animals could be exposed to the two 

discrimination tests subsequently. One way to achieve it could be by testing flies for one 

discrimination, then keep flies from each T-Maze arm separately and test them again in the 

second discrimination. Of course, half of the flies would be exposed to A vs AB first and B vs 

AB next, while the other would be exposed to B vs AB then A vs AB in order to control for 

potential habituation effects.  As a complement, flies could be tested alone and the time spent 

in each arm recorded as in previous experiments in order to access a more continuous 

measure of learning as opposed to a discrete position for each fly after 1 min[171]. Indeed, as 

flies exposed to ambiguous stimuli would in principle respond both to the CS+ and to the CS- 

(to some extent), we would expect them to behave accordingly. For instance, flies should 

spend more time in the CS+ arm when odours involved are similar and their position within 

the T-Maze should be closer to the middle instead of substantially biased toward the CS- 

compartment as would be expected for dissimilar odours. One problem with such protocol is 

that the fly may change its representation during the first test, where the CS+ is experienced 

without reinforcement, which would be challenging to measure as it would be dependent on 

the time spent by each fly in the CS+ and CS- T-maze compartments. Finally, a recent study 

highlighted 3D printed Y-mazes as a robust alternative to traditional T-maze[92]. It would be 

possible to adapt the Y-maze and test flies for their choice between three odours 

simultaneously. An example of thee-ways Y-maze setup is represented in figure 34. 
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Figure 35 Double Y-Maze alternative for Negative Patterning testing 

How neural networks computations relate to elemental and non-

elemental theories 

 

  In the first part of our work, we explore Negative Patterning acquisition in flies and show 

that reinforcement of A and B alone leads to an avoidance toward their compound, which is 

modulated by training repetition. Interestingly, each theory developed to account for non-

elemental learning (elemental, configural, unique-cue, developed in introduction) contains 

complementary concepts to explain the observed behaviour. First, the Rescorla & Wagner 

(R&W) elemental model predicts that learning events are additive and each trial contributes 

to the final trained response. This is also what we observe with flies’ behaviour. Indeed, 

training repetition effect is explained by the modulation of stimuli value at each trial. 

Moreover, in the second chapter, we develop how the CS- presentation modulates animals’ 

response through an inhibitory learning trace, which is consistent with the R&W model.  

  The learning equation developed by R&W also relies on the crucial concept of prediction 

error. At each step of the learning process, learnt information is compared with the current 

experience and animals’ behaviour is shaped accordingly. In flies’ brain, the implementation 

of prediction error requires the comparison between the CS prediction (i.e., the MBON 

activity) and the US (i.e., the DAN activity). This could be achieved by a MBON/DAN interplay, 

where the presentation of a learnt CS+ would lead to the inhibition of the US DAN response 

through the MBON activity. That way, if both learnt CS+ and US are presented together, DANs 

activity would be neutralized. However, if a previously reinforced CS+ were to be presented 
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without US, associated MBON activity would lead to a ‘negative’ DAN activation, triggering 

learning in the opposite direction[153,156]. In chapter II, R&W prediction error is adapted in our 

computational model to drive synaptic plasticity in a biologically plausible way. Another 

important concept developed in the R&W model is the idea that every stimulus can be broken 

down in smaller elements that are individually associated with the US and contribute to the 

trained response. Remarkably, this concept is also verified in the neural architecture of flies’ 

(and other animals, both insects and vertebrates) brains. A given olfactory stimulus can be 

broken down in a pattern of glomerular activities, which, in the case of insects, translates into 

a pattern of Kenyon Cells activity, which participate individually to the trained response by 

differentially driving the Mushroom Body Output Neurons activity. 

  To account for non-elemental learning, two theories are developed, the unique cue and the 

configural theory. In introduction we discussed how their most recent versions are very 

similar to one another and explain a significant portion of behavioural data. Indeed, our 

experimental data showing that A and B reinforcement leads to AB avoidance may be 

explained by a unique cue processing (AB = A + B + u), where part of AB would be the sum of 

A and B. However, configural theory (AB = X) also predict similar results if the configuration X 

generated by AB exhibits perceptual similarities with A and B (in a sense, this could be 

translated into AB = X = A’ + B’ + u). Both accounts are consistent with how odours are 

processed In the flies’ Antennal Lobes, as odour mixtures representation is largely predicted 

by their components representations, on which a normalization effects provided by inhibitory 

interneurons is applied, which leads to compound-specific features[123]. Moreover, as training 

repetition reduces flies’ avoidance toward the compound in our Negative Patterning protocol 

(Chapter I), we propose that Elemental and Configural representations could be two virtual 

extremes of a continuum along which stimuli representation is shaped by learning 

experiences. This idea explains why depending on the task learned, the same stimuli 

representation may be modulated and is explain by different learning theories, which is 

highlighted in our work and in previous studies[188,237,238]. 
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Multiple complementary mechanisms modulating olfactory 

discrimination 

 

  In the first chapter, we demonstrate that Negative Patterning training repetition leads to a 

representation shift of AB away from the representation of its constituents. In the second 

chapter, we describe the modulation of Kenyon Cells activity by APL neurons as a plausible 

mechanism for non-elemental learning acquisition. Interestingly, KCs activity modulation 

reproduce the representation shift of AB over the course of training cycles. Thus, 

representation modulation at the level of KCs is one way to increase discrimination abilities 

related to a particular ambiguous task. Importantly, in our model each KC is modulated 

independently which contributes to an overall representation shift. Therefore, in a 

supplementary experiment, we asked whether the modulation of only part of AB associated 

KCs through the presentation of B alone could also increase A vs AB discrimination. To do so, 

we trained flies with different conditioning paradigms, only presenting A paired with a 

reinforcement (A+) or presenting A+ followed by either B or AB as CS-. Results, presented in 

figure 35, suggest that presenting B alone without reinforcement could modulate AB 

representation and improve discrimination between A and AB, which is in line with our 

model’s predictions. However, presenting AB without reinforcement seems to slightly better 

enhance A vs AB discrimination which once again suggests that AB carries unique but marginal 

features that are unrelated to either A or B and also contribute to the gradual acquisition of 

robust discrimination. However, in the chapter III, we also show that generally, the 

presentation of a non-reinforced stimulus during a classical conditioning experiment 

enhances the CS+ discriminability. Thus, the result we observe here should be compared with 

another experiment where A+ would be followed by C- before testing A vs AB discrimination. 

Moreover, AB representation shift through KCs activity modulation is APL dependent whereas 

differential conditioning effect on CS+ discriminability does not seem to be. Thus, it would be 

also interesting to inhibit APL activity specifically during the partial CS- presentation in order 

to determine the requirement of APL in that case. Nevertheless, our work hints at two 

potential sources of olfactory discrimination: one at the level of KCs that could modulate 

learnt odours representation, and another one at the level of Antennal Lobes which could 

modulate overall odours perception (although this remains to be tested). 
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Figure 36 Partial CS- effect on compound discrimination. Relative performance indices (PI) of flies trained with three 

different conditioning paradigms, computed as the difference between paired and unpaired indices.  

 “*” indicates p < 0.05, “**” indicates p < 0.01. Statistical tests are presented in Annex2. 

 

Distributed memory traces encoding valence and 

discrimination/generalization 

 

  Our findings suggest the existence of plasticity at the level of the KC/APL synapses, the 

molecular mechanisms of which may be similar to those classically found for KC to MBON 

synapses[155,158]. That means that the KC’s activity modulation, which we suggest is critical for 

ambiguous learning acquisition, could also be consolidated and stored over extended periods 

of time. Should that be the case, KC/APL and KC/MBON synapses would thus form two distinct 

memory traces that might be characterized by different dynamics. For instance, one memory 

could be extinguished while the other would endure, which would be measurable. Indeed, 

upon decay of KC/APL but not KC/MBON plasticity, animals would still show conditioned 

responses but their ability to discriminate ambiguous stimuli would decrease. Interestingly, 

the idea of distinct memory traces for valence on the one hand and 

discrimination/generalization on the other hand fits with various studies on vertebrates. 

Generalization modulation was observed in rodents, where time either increased[239] or 

decreased[240]  generalization depending on the task tested. Indeed, generalization of learnt 

associations to new encountered situations has been shown to be crucial in knowledge 
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acquisition in humans[241]. Moreover, several disorders specifically impact discrimination and 

generalization abilities. For instance, children diagnosed with autism are notoriously known 

to be overselective and lack generalization skills[242], whereas PTSD patients profile is often 

characterized by an overgeneralization of conditioned fear response[243]. The existence of a 

form of discrimination/generalization memory could also support the pattern 

separation/pattern completion concepts described in introduction. Indeed, heterosynaptic 

depression, which could be compared with the KCs’ activity modulation we described, has 

been shown to be key in these processes[244]. Thus, it would be interesting to investigate 

memory consolidation and retention in ambiguous paradigms. It is important to stress the 

fact that although in our model only 2 MBONs were simulated, flies’ actually exhibit 21 types 

of MBONS which are probably involved in different consolidated memories[245]. Thus, in 

combination with the APL/KC modulation, different MBON populations could encode 

different degrees of generalization. Preliminary experiments showed that NF discrimination 

can be measured after up to 3h, while 24h memory of NF was not ascertained (Figure32b).  

 

Differential participation of Mushroom Body compartments to 

ambiguous learning 

 

  As mentioned in introduction, Mushroom Bodies are not entirely homogeneous structures, 

and while they are entirely composed of Kenyon Cells, they are subdivided in lobes which 

mediated different functions. Importantly, recent studies showed that APL inhibition on KC’s 

is not homogeneous either, as some regions receive more APL’s feedback than others[209]. In 

particular, a’b’ KCs receive more APL feedback and show higher sensitivity and 

discriminability. These results were complemented by another study showing that APL 

activity is localized and that activation of small subsets of KCs elicits local APL’s feedback[206]. 

Therefore, a logical next step in the study of neural correlates of ambiguous learning will be 

to dissect the relative contribution of each Mushroom Body lobes in their acquisition, 

especially the a’b’ lobes. Interestingly, these lobes exhibit early memory traces, along with 

early learning traces both in Projection Neurons and APL’s[142]. Yet, ala mutants, that lack 

either aa’ or bb’ lobes show normal short-term memory performances[184], although a’b’ 

lobes inhibition during training was shown to disrupt 3h memory[246]. Taken together, these 
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data suggest that a’b’ lobes may be required for ambiguous learning and thus, ala mutants 

might show normal Differential conditioning but impaired Negative Patterning performances. 

Moreover, disrupting a’b’ lobes during training might differentially impact immediate 

learning performances of Differential Conditioning and Negative Patterning while impairing 

both after 3h.  

 

A possible interplay between APL neurons and DPM neurons through 

gap junctions 

 

  Overall, we showed that APL neurons play a key role in the modulation of odours 

representation over the course of learning events. Interestingly, APL are engaged in a 

reciprocal connectivity with another pair of neurons called DPM (Dorsal Paired Median) 

through gap-junctions. APL-DPM connectivity has been proven necessary for memory 

formation but not for associative learning [247]. Could DPM neurons be involved in ambiguous 

learning? We provide a first answer in Figure36 where we show that Shibirets targeted 

inhibition of DPM activity during a NF conditioning had no visible effect on flies’ 

performances. However, Shibirets manipulation only impairs DPM synaptic transmission 

whereas DPM-APL connectivity relies on gap-junctions. Therefore, we cannot rule out an 

involvement of DPM neurons in the process of ambiguous learning. To formally test this, 

innexins that form the gap junctions between APL and DPM, Inx7 and Inx6, should be 

knocked-down in each neuron, respectively. Moreover, DPM neurons have recently been 

highlighted in a study where we demonstrated their involvement in the social facilitation of a 

form of long-lasting memory[168]. Interestingly, imaging data showed that exposition to the 

social signal (CO2) led to an increasingly differentiated response of DPM to the CS+ compared 

to the CS- in previously trained flies, which was suggested to improve CS+/CS discriminability 

through a diminution of the CS- representation, not unlike APL’s modulation of KC’ activities. 

Incidentally, problem solving may be better achieved in groups[248,249], which could be verified 

in the case of ambiguous olfactory learning if flies in groups perform better than alone. DPM’s 

role in a potential social facilitation of ambiguous learning could then be investigated. 



 149 

 

Figure 37 Effect of DPM inhibition on Negative Feature discrimination. Relative performance indices (PI) of flies trained with 

a 5 cycles NF are computed as the difference between paired and unpaired indices. Data were compared across genotypes. 

” n.s” stands for “non-significant”. Statistical analyses are presented in annex3. 

 

Gradual KC’s activity modulation through repeated associative learning 

events 

 

  At this point, we provide indirect evidence supporting the model of KC’s activity modulation 

through training repetition. One way to further test the model’s validity is to record KC’s 

response to odours over the course of conditioning cycles repetition. The Gcamp fluorescent 

calcium reporter is a powerful way of quantifying neuronal activity in awake flies (Figure37a). 

Combining Gcamp with the UAS/Gal4 targeting system, it is possible to record fluorescence 

variations associated with KC’s activity. Using 2-photon microscopy, KC’s activity patterns 

could be recorded for each odour used in a given paradigm with high-resolution, as shown in 

previous publications[171,209]. Moreover, we recently developed a custom conditioning device 

designed to perform odour/shock associations under the microscope (Figure37b). Thus, the 

next step is to perform Differential Conditioning, Negative Feature and Negative Patterning 

protocols using flies expressing Gcamp in the KCs and record the gradual modulation of A, B 

and AB patterns of activation in the KCs over the course of training cycles., which would 

provide a direct proof of the KC’s activity modulation mechanism. Alternately, Gcamp may 

also be expressed in the APL neurons, where we would expect a modulation of activity 

inversely correlated with KC’s activity modulation. 
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Figure 38 a) Schematic representation of the Gcamp fluorescent reporter. Upon binding with calcium, Gcamp conformation 

is shifted leading to a fluorescence increase[250]. B) Top: Illustration of a head-fixed fly under a microscope lens[251]. Bottom: 

Custom conditioning and Imaging device. The device consists of a base structure designed to be secured under the microscope. 

The main structure is equipped with an air-channels enabling the presentation of odours and an actionable platform covered 

with a metallic grid which enables the presentation of electric shocks. 3D design was conceived using Autodesk Fusion 360 

and is meant to be printed using SLA 3D printer systems. 

 

Ambiguous learning beyond aversive olfactory modalities 

 

  Although we focused on olfaction using aversive reinforcement, we expect that the 

mechanisms unveiled in our work could be, to some extent, applied to other sensory 

modalities. First, APL neurons have been shown to be involved in visual reversal learning[180]. 

Thus, it would be interesting to test APL role in visual Negative Patterning. Moreover, a 

significant part of the honeybee work on associative learning in general and ambiguous 

learning in particular has been performed using appetitive reinforcement. Importantly, the 

APL’s honeybee homolog is required for appetitive Negative Patterning[36]. Yet in contrast 

with our experiments, in the honeybee case, APL’s homolog is also involved in Positive 
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Patterning.  An appetitive version of the semi-automated procedure we used in this work is 

available and could be used to test APL requirement in appetitive ambiguous learning. 

Importantly, while appetitive and aversive memory consolidation exhibits differing 

dynamics[185], appetitive and aversive learning display a remarkable circuits symmetry[252]. 

Together, this suggests that appetitive ambiguous learning should also depend on KC’s 

activity modulation.  

  It is important to consider the way odour blends are processed at the level of Antennal 

Lobes. Indeed, binary odour mixtures generally share significant similarities with their 

components[123]. Yet, local interneurons activity also leads to normalization effects which 

modulate compound representation. In contrast, a discrimination task involving two distinct 

sensory modalities would prevent that kind of interaction between compound components. 

An interesting perspective would be to replace one of the stimuli involved in the Negative 

Patterning with a visual stimulus (e.g., a colour dot). In that case, discrimination per se would 

be irrelevant as each stimulus would be easily distinguished from the other. Yet, it is still 

possible that some sort of pattern separation occurs for flies to learn to discriminate A and B 

alone from AB. Indeed, while Mushroom Bodies involvement in visual learning was debated 

for a long time due to mixed evidence[91,253], recent studies suggested that olfactory and visual 

stimuli share common circuitry within the MB[254,255], which was also observed in honeybee 

and ants[256,257]. If olfactory and visual learning traces are carried by the same cells, it is very 

likely that here again, representation modulation, possibly through APL activity, would be 

instrumental in ambiguous learning acquisition.  

 

Mushroom Bodies don’t do it all: a potential role of Antennal Lobes in 

ambiguous learning 

 

  In the chapter III, we show that flies don’t need APL neurons to learn a Differential 

Conditioning, even involving similar stimuli. APL rather seem to be involved in a fine 

modulation of the Discrimination / Generalization trade-off, when odours display a high-level 

of perceived similarity. One part overlooked in our work is the plausible implication of 

Antennal Lobes in the learning process. Increasing evidence in honeybee point toward a key 

role of ALs in early odour processing which shows learning-related plasticity[211,212,234]. Even 
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though the AL of flies is somewhat smaller than the bees[258], the type of computation 

happening there seems conserved across insects, and thus we should not rule out the 

possibility that flies’ ALs could equally show learning-related plasticity. Furthermore, MB to 

AL projections have also been reported[236], which predicts a potential effect of learnt 

information on AL activity, although the underlying mechanisms are still unclear. In sum, 

beyond the role of Mushroom-Bodies related process, an important future research agenda 

consists of an extensive description of associative plasticity at the level of ALs, which could 

contribute to flies’ discrimination abilities and co-operate with KC’s activity modulation to 

further separate reinforced stimuli from non-reinforced ones.  

 

Concluding remarks 

 

  In this study, we provide yet another example of the remarkable behavioural flexibility of 

insects. Indeed, we demonstrate that the Fruit fly, Drosophila Melanogaster is able to solve a 

task of Negative Patterning, which requires flies to differentially respond to the same stimuli 

depending on whether they are presented alone or together. We show that fly’s gradual 

acquisition of Negative Patterning relies on a shift in stimuli representations over the course 

learning trials. Based on extensive data resulting from decades of research on associative 

learning in insect, we build a model successfully explaining not only Negative Patterning, but 

also various ambiguous tasks resolution through a differential modulation of reinforced vs 

non-reinforced stimuli representation in the fly brain. Using genetically encoded tools, we 

validate the model’s predictions and identify the APL neurons activity as a plausible in vivo 

implementation of stimuli representation modulation, which enables flies to separate highly 

similar stimuli and learn complex tasks. Our work provides an example of how implementing 

additional but likely naturally encountered challenges leads to the discovery of mechanisms 

that are not visible in simpler forms of learning tasks. Strikingly, our results are consistent 

with observations in Honeybee which suggests that despite their significant differences in 

ecological terms, flies and bees may rely on similar neural functions to overcome their 

respective challenges. Thus, in future research projects, ambiguous learning may be studied 

using a combination of approaches in both models. For instance, Bees may be studied in more 

ecological contexts in free flying experiments, while flies’ benefit from powerful genetic tools 
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and extensive databases such as the recently published connectome of learning and memory 

centres. Finally, both flies and bees’ brain functions may be explored using in vivo imaging 

and electrophysiology techniques in order to better understand how neural activity translates 

into behaviour. Taken together, the possibility of combined approaches such as the one 

developed in our work should lead to an increasing understanding of how apparently complex 

problems can be solved by remarkably simple mechanisms in the insect brain. 
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Annexes 

Annex 1:  APL inhibition effect on unpaired performance indices 

 

  Here we compared flies Unpaired performances indices when exposed to either a 

Differential Conditioning (DC), Negative Feature discrimination (NF) or Negative Patterning 

(NP), with functional or inhibited APL. No significant effect of APL inhibition was detected.  

DC: ANOVA: F2,33 = 0.66, p = 0.52 

NF: ANOVA: F2,48 = 1.82, p = 0.17 

NP: ANOVA: F2,45 = 1.56, p = 0.22 

 

Annex 2 : Partial CS- effect on compound discrimination 

 

  Here data were compared across the three experimental conditions using an ANOVA:  

F2,51 = 6.97, p = 0.002. Pairwise comparisons were subsequently computed using a Tukey’s 

HSD post hoc test.  

A+ vs A+B- : p = 0.03 

A+ vs A+AB- : p = 0.002 

A+B- vs A+AB- : p = 0.65 

 

Annex 3: Effect of DPM neurons inhibition on ambiguous learning 

acquisition 

 

  Here we inhibited DPM neurons activity during NF conditioning and compared associated 

learning performances with genetic controls.  

ANOVA: F2,46 = 0.007, p = 0.99 
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Annex 4: Flies’ feeding medium 

 

Target 

quantity (L) 

Water 

(L) 

Agar 

(g) 

Flour 

(g) 

Yeast 

(g) 

Tegosept 

(g/mL) 

Propionic 

acid 

(g/mL) 

Vitamin 

mix 

(g/mL) 

Ethanol 

(mL) 

1 1 9 70 70 0.5 0.15 0.0125 20 

 

Note: blue shading indicates that these elements are diluted in water whereas red shading 

indicates a dilution in ethanol. 
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Résumé 

  Extraire les liens prédictifs au sein d’un environnement permet d’appréhender la structure 

logique du monde. Ceci constitue la base des phénomènes d’apprentissage qui permettent 

d’établir des liens associatifs entre des évènements de notre entourage. Tout environnement 

naturel englobe une grande diversité de stimuli composés (i.e. intégrant plusieurs éléments). 

La façon dont ces stimuli composés sont appréhendés et associés à un renforcement éventuel 

(i.e. évènement plaisant ou aversif) est un thème fondamental de l’apprentissage associatif. 

Théoriquement, un stimulus composé AB peut être appris comme la somme de ses 

composants (A+B), un traitement dit élémentaire, comme un stimulus à part entière 

(traitement configural, AB=X) ou encore comme une entité comportant à la fois certaines 

caractéristiques de ses composants ainsi que des propriétés uniques (ou Indice Unique, AB = 

A+B+u). Ces deux dernières théories permettent notamment d’expliquer la résolution de 

problèmes ambigus tels que le Negative Patterning (NP) au cours duquel les composants du 

stimulus AB sont renforcés lorsque présentés seuls mais pas lorsqu’ils sont présentés en tant 

que composé. Bien que les réseaux neuronaux impliqués dans l’apprentissage associatif 

élémentaire soient bien connus, les mécanismes permettant la résolution d’apprentissages 

non élémentaires sont encore peu compris.   

 

  Dans cette étude, nous démontrons pour la première fois que la Drosophile est capable 

d’apprentissage non-élémentaire de type NP. L’étude comportementale de la résolution du 

NP par les mouches montre qu’il passe par la répétition de cycles de conditionnement 

conduisant à un changement de représentation du mélange AB, s’éloignant peu à peu de la 

représentation de ses composants A et B. Nous développons ensuite un modèle 

computationnel à partir de données in vivo sur l’architecture et le fonctionnement des 

réseaux neuronaux de l’apprentissage olfactif chez la Drosophile, ce qui nous permet de 

proposer un mécanisme théorique permettant d’expliquer l’apprentissage du NP et dont la 

validité peut être testée grâce à des outils neurogénétiques. Lors d’un apprentissage de NP, 

les mouches acquièrent tout d’abord un premier lien associatif entre les composants A et B 

associés au renforcement, créant par la même occasion une ambiguïté avec leur mélange AB, 

présenté sans renforcement. Au cours des cycles de conditionnement, les représentations de 

A et B vis-à-vis de AB sont modulées de façon différentielle, inhibant progressivement la 

réponse neuronale au stimulus non renforcé tout en renforçant la réponse aux stimuli 

renforcés. Cette modulation augmente le contraste entre A, B et AB et permet aux 

drosophiles de résoudre la tâche de NP. Nous identifions les neurones APL (Anterior Paired 

Lateral) comme implémentation plausible de ce mécanisme, car l’engagement de leur activité 

inhibitrice spécifiquement durant la présentation de AB est nécessaire pour acquérir le NP 

sans altérer leurs capacités d’apprentissage dans des tâches non-ambiguës. Nous explorons 

ensuite l’implication des neurones APL dans un contexte plus général de résolution 

d’apprentissages ambigus. 

 

   Pour conclure, notre travail établit la Drosophile comme modèle d’étude d’apprentissage 

non élémentaire, en proposant une première exploration des réseaux neuronaux sous-

jacents à l’aide d’outils uniques à ce modèle. Il ouvre la voie à de nombreux projets dédiés à 

la compréhension des mécanismes neuronaux permettant aux animaux d’extraire des liens 

associatifs robustes dans un environnement complexe. 



  

Abstract 

  Animals’ survival heavily relies on their ability to establish causal relationships within their 

environment. That is made possible through learning experiences during which animals build 

associative links between the events they are exposed to. Most of the encountered stimuli 

are actually compounds, the constituents of which may have been reinforced (i.e., associated 

with a pleasant or unpleasant stimulus) in a different, sometimes opposed way. How 

compounds are perceived and processed is a central topic in the field of associative learning. 

In theory, a given compound AB may be learnt as the sum of its components (A+B), which is 

referred to as “Elemental learning”, but it may also be learnt as a distinct stimulus (which Is 

called “Configural learning”). Finally, AB may bear both constituent-related and compound-

specific features called “Unique Cues” (AB = A+B+u). Configural and unique cue processing 

enable the resolution of ambiguous tasks such as Negative Patterning (NP), during which A 

and B are reinforced when presented alone but not in a compound AB. Although neural 

correlates of simple associative learning are well described, those involved in non-elemental 

learning remain unclear.  

 

  In this project, we rework a typical olfactory conditioning protocol based on semi-automated 

olfactory/electric shocks association, allowing us to demonstrate for the first time that 

Drosophila is able to solve NP tasks. Behavioural study of NP solving shows that its resolution 

relies on training repetition leading to a gradual change in the compound AB representation, 

shifting away from its constituents and thus becoming easier to distinguish. 

  Next, we develop a computational model of olfactory associative learning in drosophila 

based on structural and functional in vivo data. Exploratory simulations of the model allow us 

to identify a theoretical mechanism enabling NP acquisition, the validity of which can be 

tested in vivo using neurogenetical tools only available in Drosophila. We propose that during 

a NP training, flies first acquire associative links between A, B and their reinforcement, which 

induces an ambiguity as the compound AB is presented without reinforcement. However, 

over the course of training cycles, non-reinforced stimuli representation is inhibited while the 

reinforced stimuli representation is consolidated. This differential modulation eventually 

leads to a shift in odours representation allowing flies to better distinguish between the 

constituents and their compound thus facilitating NP resolution. We identify APL (Anterior 

Paired Lateral) neurons as a plausible implementation of this theoretical mechanism, as APL 

inhibitory activity is specifically engaged during the non-reinforced stimulus presentation, 

which is necessary for NP acquisition but dispensable for non-ambiguous forms of learning. 

Lastly, we explore APL role in a broader context of ambiguity resolution. 

 

  In conclusion, our work validates Drosophila as a robust model to investigate non-

elementary learning, and present a promising model of the underlying neural mechanisms 

using a combination of behaviour, modelling and neurogenetical tools. We believe this opens 

the way to numerous interesting projects focused on understanding how animals extract 

robust associations in a complex world. 


