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Abstract

The Southern Ocean is central to the global oceanic circulation and climate. This region
is however on the frontline of human-induced climate change, through intense uptake of an-
thropogenic heat and carbon. Consequently, the Southern Ocean has experienced important
changes in its hydrography and circulation over the last decades. Its subpolar part, south of
the Antarctic Circumpolar Current, hosts large circulation systems of importance for the pro-
duction of water masses and their associate heat and carbon content, for ocean interactions
with sea-ice and ice-shelves, and consequently for global mean sea level. Observations are still
sparse in that region, particularly in wintertime when it is covered by sea ice. Thus, the regional
response of the subpolar Southern Ocean hydrography and circulation to interactions with the
atmosphere, cryosphere, and background circulation at various spatial and time scales is still
under active research.

In this thesis, I contribute to observing the variability and long-term changes of the hydro-
graphy and circulation of the subpolar Southern Ocean, and to unveil the mechanisms driving
their variability. I first observe the long-term temperature changes in the upper layer of the
Southern Ocean, from repeated ship-based measurement transects over 25 years. Besides pre-
viously documented trends, I refine the monitoring on the still poorly observed warming and
shallowing of the warm subsurface water of the Southern Ocean. The long term warming is
stronger than interannual variability, and the shallowing rate is 3 to 9 times the previously esti-
mated one. In a second part, I develop and exploit an ocean topography dataset, spanning six
years of measurements over the whole Southern Ocean south of 50°S. This dataset allows me
to explore the variability of the subpolar Southern Ocean circulation, particularly the seasonal
cycle of the large-scale circulation and the mesoscale variability under sea ice. At the seasonal
scale, the circulation of the Weddell and Ross gyres, and the Antarctic Slope Current are mainly
dictated by three modes of variability, principally linked to the surface stress of the wind on the
surface of the ocean and its modulation by the sea ice. The mesoscale variability is weak out-
side the energetic Antarctic slope current in the pack ice, while the marginal ice zone seems to
be a region with enhanced cyclonic eddies generation. The implications of these results on the
physical processes of the Southern Ocean and its long-term changes are discussed.

Keywords : Southern Ocean, Subpolar circulation, temperature trends, long term changes,
satellite altimetry, seasonal variability, mesoscale variability, ocean-atmosphere-cryosphere in-
teractions.
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Résumé

L’océan Austral est une région centrale pour la circulation océanique globale et le climat.
Il est cependant également en première ligne du changement climatique, notamment par son
absorption importante de chaleur et de carbone anthropique. Par conséquent, l’océan Austral
a connu de grands changements dans sa structure hydrographique et sa circulation dans les
dernières décennies.

Sa région subpolaire, au sud du courant circumpolaire Antarctique, abrite une circulation
grande échelle importante pour la production des masses d’eau et leur contenu de chaleur et
de carbone, pour les interactions océaniques avec la banquise et les plateformes glaciaires, avec
des conséquences sur l’élévation du niveau de la mer. C’est également une région très peu ob-
servée, en particulier en hiver lorsque celle-ci est couverte par la banquise. Par conséquent, la
réponse locale de la circulation et de la structure hydrographique de l’océan Austral subpolaire
à des interactions avec l’atmosphère, la cryosphère et la grande échelle est toujours sujette à de
nombreuses recherches.

Dans cette thèse, je contribue à observer la variabilité et les changements à long terme de
l’hydrographie et de la circulation de l’océan Austral subpolaire, et à documenter les méca-
nismes qui contrôlent leur variabilité. J’observe d’abord les changements à long terme de la
température de la couche supérieure de l’océan Austral, à partir de transects répétés par bateau
pendant 25 années. En plus des changements déjà bien documentés, je montre le réchauffe-
ment et la remontée des eaux chaudes de subsurface, à une vitesse plus importante qu’estimée
auparavant et de façon plus forte que la variabilité interannuelle. Je présente ensuite un jeu de
données de hauteur de mer, qui consiste en six années de mesures sur l’ensemble de l’océan
Austral au sud de 50°S. Ce jeu de données me permet d’explorer la variabilité de la circulation de
l’océan Austral subpolaire, et notamment sur le cycle saisonnier de la circulation grande échelle
et de l’activité méso-échelle sous la glace. À l’échelle saisonnière, la circulation des gyres de
Weddell, de Ross et le courant de pente Antarctique sont principalement dictés par trois modes
de variabilités, reliés à la tension de vent en surface et sa modulation par la glace de mer. La
circulation de méso-échelle est faible sous la banquise hors du courant de pente Antarctique,
alors que la zone marginale de glace semble favoriser la génération de tourbillons cycloniques.
Les implications de ces résultats pour les mécanismes physiques de l’océan Austral et ses chan-
gements à long terme sont discutées.

Mots-clés : Océan Austral, circulation subpolaire, tendances de température, changements
à long terme, altimétrie satellitaire, variabilité saisonière, variabilité méso-échelle, interactions
océan-atmosphère-cryosphère.
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GENERAL INTRODUCTION

1 Preamble

Ocean circulation plays a central role in regulating climate and supporting marine life by

transporting heat, carbon, oxygen, and nutrients throughout the world’s ocean. By absorbing

heat and carbon from the atmosphere, the ocean also helps to mitigate human-induced climate

change. From 1971 to 2010, around 91% of Earth’s excess energy was converted into warming

the oceans (Masson-Delmotte et al., 2021).

The Southern Ocean is at the heart of the global oceanic circulation (Figure .1). It links the

three main oceanic basins (Pacific, Atlantic, and Indian) and exchanges salt and heat between

basins through the global overturning circulation. The Southern Ocean allows the ventilation of

the deep water in its southern part, and the subduction of surface waters at intermediate depths

in its northern part. For these reasons, it has taken up to 43% of anthropogenic carbon and 75%

of anthropogenic heat that has been absorbed by the world ocean since the 1860s (Frölicher

et al., 2015). As a consequence, strong and rapid changes of the Southern Ocean properties

have been observed in the past decades (Meredith et al., 2019).

From strong warming observed in the north of the Southern Ocean (Gao et al., 2018; Häkki-

nen et al., 2016) to a slight surface cooling in the south (Rye et al., 2020; Haumann et al., 2020),

important multidecadal temperature changes have been observed. Both of these trends are as-

sociated with atmospheric changes and intimately linked with changes in the cryosphere, ha-

ving an important impact on global sea level rise (Meredith et al., 2019). However, the complex

feedback mechanisms between the ocean, atmosphere, and cryosphere in the Southern Ocean

remain poorly understood (Meredith et al., 2019; Masson-Delmotte et al., 2021), and ocean ob-

servational coverage in many areas remains extremely limited.

The Southern Ocean is one of Earth’s least observed regions. Its remoteness and harsh cli-

matic conditions make ship observations difficult. Sea ice, which covers millions of square ki-

lometers of the ocean each winter, prevents ocean observation from satellites and makes it

difficult for scientific ships to reach the subpolar Southern Ocean. Despite the development

of innovative observation methods (e.g. instrumented marine mammals, ice-capable autono-

mous assets), significant gaps in the observation system still remain, and in particular in the

sea ice-covered regions and at depths lower than 2000 meters (Newman et al., 2019).

My approach in this Ph.D. is that more can be extracted from existing observations. In par-

ticular, in this thesis, I propose to revisit a long time series of repeated in situ ship-transects ob-

servations to investigate if observed temperature changes in the upper ocean actually emerge

over interannual variability. I also revisit existing remote sensing satellite altimetry observations

of the sea ice-covered Southern Ocean to propose a new estimate of sea level anomaly of the

region, at unprecedented spatial and temporal coverage. From this set of observations, I aim

to investigate some of the processes governing the changes and driving the dynamics of the

subpolar Southern Ocean.
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1. Preamble

In this general introduction, I first present the dynamics and variability of the Southern

Ocean at various spatial scales. I then outline the ocean and cryosphere changes that have oc-

curred in the past decades. Finally, I introduce the observation methods of the Southern Ocean,

with a specific focus on XBT measurements and satellite altimetry observations that are used in

this thesis.
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FIGURE .1: Idealised Meridional Overturning Circulation, from Marshall and Speer (2012). Denser waters
are indicated by cooler colors, ranging from bottom water in blue to surface and thermocline water in
red.

2 The Southern Ocean circulation and water-masses

From the basin-wide circulation features to the smaller mesoscale eddies, the Southern

Ocean circulation results from a variety of processes across a large range of spatial and temporal

scales. All these processes are interacting together to transport physical, chemical, or biological

properties and create the Southern Ocean circulation structure.

2.1) Large, basin-scale circulation

Horizontal circulation and transport in the Southern Ocean

From the Antarctic Circumpolar Current in its northern part to the gyres, coastal, and slope

currents in its subpolar part, the Southern Ocean has a complex dynamical structure dictated

by bathymetry, as well as mechanical and buoyancy forcings. In this section, I describe these

Southern Ocean dynamical structures, from north to south.

The Southern Ocean has a singular topography strongly the regional atmospheric and ocean

circulation system. From 55°S to 65°S, there is no continental barrier, which allows the establish-

ment of a strong energetic current flowing circumpolarly around Antarctica (Figure .1) called

the Antarctic Circumpolar Current (ACC). The ACC is the most powerful oceanic currents of the

planet (Hodel et al., 2021), with a transport estimated at 173 ± 8.7 Sv (1 Sv = 106 m3s−1) at the

Drake Passage between the South American and Antarctic continents (Donohue et al., 2016). It

transports water mass properties zonally around the Antarctic Continent, across the main ocea-

nic basins (Pacific, Indian and Atlantic, Figure .1 Rintoul et al., 2001). The ACC is composed of
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2. The Southern Ocean circulation and water-masses

a series of jets (Sokolov and Rintoul, 2009a,b). These jets coincide with the presence of oceanic

fronts, which are sharp separations between water masses with different hydrographic proper-

ties. The main fronts are, from north to south, the SubTropical Front (STF), the SubAntarctic

Front (SAF), and the Polar Front (PF), and the Southern Antarctic Circumpolar Front (SACCF). A

schematic of the positions of the southern fronts is shown in Figure .2 (Orsi et al., 1995; Thomp-

son et al., 2018). While circumpolar contours have been used as a convenient proxy to define

Southern Ocean fronts in past studies (Sallée et al., 2008; Sokolov and Rintoul, 2009a,b), Sou-

thern Ocean fronts are actually complex small-scale jets interacting with each other and the

bathymetry, and evolving rapidly (Hughes and Ash, 2001; Chapman et al., 2020). There is there-

fore no single definition of Southern Ocean fronts, and their characterisation is still a subject of

active debate (Chapman et al., 2020).

Variations in the ACC transport and position have long been described to mainly respond to

winds variations (Allison et al., 2010). Its northern part was thought to follow northern annual

wind stress curl variations, while its southern part was linked to both semi-annual and annual

cycles of the amplitude of cyclonic subpolar gyres (Peterson, 1988). Later, the influence of wind

on the ACC transport and position was found to be weaker than expected (Gille, 2014). In fact,

buoyancy only has an impact on ACC transport variations rather than wind stress (Hogg, 2010),

through the bottom or deep water production in the Southern Ocean (Gent et al., 2001) or in the

northern hemisphere through interhemispheric influence (Fučkar and Vallis, 2007). The role of

eddies in the ACC transport and its change will be discussed later in this general introduction.

Some parts of the ACC may have a strong or a growing influence on the Antarctic ice shelves.

In some regions, the ACC can be localized only hundreds of kilometers away from the ice

shelves, directly impacting the rates of regional ice melt (Gille et al., 2016). South of the ACC,

the subpolar ocean circulation has even more direct links to Antarctica’s cryosphere. This part

of the Southern Ocean is seasonally ice-covered and contains several dynamical structures (Fi-

gure .2), such as cyclonic gyres and coastal and slope currents.

The subpolar Southern Ocean contains three cyclonic gyres : The Weddell Gyre, located

at the eastern side of the Antarctic Peninsula, the Ross Gyre, in the Pacific sector, and the

Australian-Antarctic gyre in East Antarctica.

The largest of these circulation features is the Weddell gyre. It is located in the Atlantic sector

of the Southern Ocean (Figure .2). The Weddell Gyre is constrained south by the continental

slope, west by the Antarctic Peninsula at 60°W, and north by the ACC (Deacon, 1979). Its eastern

boundary is not clearly identified. It was first evaluated to be roughly around 30°E (Deacon,

1979), then 57°E (Park et al., 2001) or even at 70°E in Vernet et al. (2019). Its transport has been

evaluated to be 45 ± 7 Sv in its northern branch, and 56 ± 8 Sv in its southern branch (Klatt

et al., 2005), with a zonal gyre strengh away from the ice shelf edge of 32 ± 5 Sv (Reeve et al.

). The structure of the Weddell Gyre is maintained by the cyclonic wind field over the Weddell

basin and the bathymetry of the sector (Armitage et al., 2018), but also by buoyancy forcings

(Colin de Verdière, 1989). There are still lots of uncertainties with the physical mechanisms that

control the Weddell gyre. Vernet et al. (2019) listed multiple research priorities to investigate in

the coming years, such as the connections to the rest of the Southern Ocean, the cross-shelf

processes, or the variability of the Antarctic Slope Front (ASF).
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FIGURE .2: Schematic circulation of the Antarctic margins. The Antarctic Slope Current (ASC), in ref,
is depicted as a near-circumpolar, anticyclonic (westward) feature appearing at the shelf break in East
Antarctica and the Weddell Sea. Uncertainty regarding the initiation of the ASC is indicated by the dashed
line in the Bellingshausen and Amundsen Seas (BS, AS) in West Antarctica, as well as the western Ross
Sea. Along the West Antarctic Peninsula (WAP), a slope current flows eastward, along with the southern
boundary of the Antarctic Circumpolar Current (ACC). Interactions with the Weddell (orange) and Ross
(yellow) Gyres, as well as the southern fronts of the ACC (white), are highlighted by their proximity to the
ASC in various locations around the Antarctic margins, (e.g., east of the Cosmonauts Sea, CS). The color
gives the topography : depth for the open ocean and elevation for ice shelves and ice sheets (Schaffer
et al., 2016). Positions of the ACC fronts are based on Orsi et al. (1995) ; gyre circulations are based on
Armitage et al. (2018) ; the ASC is plotted along the 1000-m isobath. Figure and caption from Thompson
et al. (2018).

The Ross Gyre, while being smaller than the Weddell Gyre, is still one of the main current

systems of the Southern Ocean transporting from 17 Sv in the Summer to 30 Sv in the winter

(Dotto et al., 2018). It is located between longitudes 170°E and 215°E (Figure .2), with a meri-

dional extent going from the Antarctic continent to 55°S (Dotto et al., 2018). As for the Weddell

Gyre, it is highly influenced by the interannual variability of the winds (Armitage et al., 2018),

which are mainly linked to the Antarctic Oscillation and the Amundsen Sea Low (Dotto et al.,

2018).
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2. The Southern Ocean circulation and water-masses

Lastly, the Australian Antarctic gyre is not often represented in Southern Ocean circulation

schematics (Figure .2), but has a substantial westward flow of 76 ± 26 Sv in its southern branch,

with a position located from 80°E to 150°E, from the Antarctic continental shelf to up to 55°S

for its northern branch (McCartney and Donohue, 2007). This gyre is in fact a combination of

multiple subgyres, bounded by the local bathymetry (Yamazaki et al., 2020).

In the southern branch of these gyres and in most regions around the Antarctic continent,

the Antarctic Slope Front (ASF) separates relatively warm waters north of the continental slope

from cold water on the continental shelf (Figure .2). It is therefore associated with a strong me-

ridional gradient in physical and chemical properties (Jacobs, 1991; Whitworth et al., 1985). The

cross-slope density gradient, maintained by the wind regime over the continental shelf, is as-

sociated with a westward, surface-identified flow, located on the continental slope, named the

Antarctic Slope Current (ASC). Its velocity varies between 10 and 30 cm.s−1 (Thompson et al.,

2018). The ASC is thus forced by the winds influence on the ASF, but also regionally by tides and

eddies (Stewart et al., 2019).

The variability of the subpolar ocean circulation systems is poorly known. Yet, the increasing

amount of wintertime observations is slowly shedding light on subpolar ocean circulation va-

riability, especially on a seasonal timescale. Over the entire subpolar Southern Ocean, Garabato

et al. (2019) presented two dynamical responses to the seasonal cycles of the winds and sea ice

forcings. Direct sea-level signals show an exchange of mass between the continental shelf and

the offshore part of the Southern Ocean, and a 2-month delayed transfer of mass between the

offshore subpolar Southern Ocean and the subtropics to the north. The former leads to strong

seasonal signals in the dynamics of the subpolar Southern Ocean, with maximum westward

velocity anomalies reaching 1 cm.s−1 in the ASC in May-July, and 0.3 cm.s−1 eastward velocity

anomalies north of the subpolar Southern Ocean. Such ASC seasonal mode is consistent with

other modelling studies (Mathiot et al., 2011) and analyses using satellite altimetry (Armitage

et al., 2018). From moorings, Núñez-Riboni and Fahrbach (2009) found a slight delay between

ASC speed seasonal increase north of the slope and on the shelf, with a maximum velocity rea-

ched in May on the shelf, and June offshore. The details of the seasonality of the ASC are still

under debate, but it is already known that this seasonality has important consequences on re-

gional climate and the ice-shelves (Silvano et al., 2019). The variability of the Weddell and Ross

gyres is phased with the seasonality of the ASC, with a larger seasonal cycle in the Weddell gyre

(Armitage et al., 2018) and a specific semi-annual intensification in the Ross Gyre (Dotto et al.,

2018).

The continental shelf and slope circulation variability are also associated with the Sou-

thern Mode, which corresponds to rapid propagating waves along the continental shelf break all

around Antarctica (Kusahara and Ohshima, 2009). This Southern Mode is responsible for pro-

pagating the SSH response to localized wind forcing all around Antarctica (Spence et al., 2017)

. For instance, there is a large response in the western Antarctic peninsula to wind changes lo-

calized in East Antarctica. SSH anomalies are transported by coastal Kelvin waves and induce a

change in the barotropic current even thousands of kilometers away from the initial perturba-

tion (Spence et al., 2017).
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FIGURE .3: Zonally averaged Southern Meridional Overturning Ciruclation main paths, from (Gent,
2016), adapted from Speer et al. (2000).

All of these horizontal ocean circulation systems are part of the wider tridimensional circu-

lation of the Southern Ocean.

Large scale tridimensional circulation

The Southern Ocean hosts a Southern Meridional Overturning Circulation (SMOC) asso-

ciated with water-mass formation, transformation, and export. In this section, I present the

meridional and vertical transport associated with the SMOC. I then list the main water masses

and their properties and associated processes. Finally, I display the main meridional structures

of the Antarctic continental shelf.

The meridional hydrographic structure of the Southern Ocean reflects the SMOC, associa-

ted with the upwelling, sinking, and poleward or equatorward transport of Southern Ocean

water masses (Figure .3 ; Gent, 2016). It is an important part of the global Meridional Over-

turning Circulation (MOC), organized as a tridimensional circulation system, which globally

redistributes physical and biogeochemical ocean properties (Orsi et al., 1995; Rintoul and Na-

veira Garabato, 2013; Naveira Garabato et al., 2014). The SMOC is associated with large water

mass formation. It has been estimated that 55% of the total global ocean’s volume has been for-

med in the Southern Ocean (DeVries and Primeau, 2011), therefore playing an essential role in

ventilating the global ocean.

The SMOC is organized in two circulation cells, converting deep water into either lighter

surface water, or heavier bottom water (Figure .3 ; Speer et al., 2000; Marshall and Speer, 2012;

Pellichero et al., 2018).
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In the subsurface Southern Ocean, warm and saline Circumpolar Deep Water (CDW) co-

ming from the northern hemisphere is transported southward (Speer and Marshall, 2012). It

spirals southeastward and upward through the ACC, and reaches the mixed layer south of the

ACC (Orsi et al., 1995; Tamsitt et al., 2017), due to the southward decrease in zonal wind stress

(Speer and Marshall, 2012). In the subpolar Southern Ocean, Circumpolar Deep Water (CDW)

is warmer than the surface layer and is the main heat source of the region (Orsi et al., 1995;

Stewart et al., 2018).

The upper cell is associated with the upwelling and northward transport of the deep water.

When reaching the surface, the upper branch of the CDW interacts with the atmosphere and

sea ice which transforms them into lighter water (Meijers et al., 2010; Pellichero et al., 2017a;

Abernathey et al., 2016). There, the fresh and cold surface water is advected northward by the

strong westerlies through Ekman transport and subducted on the northern side of the ACC

into SubAntarctic Modal Water (SAMW) and Antarctic Intermediate Water (AAIW) (Sallée et al.,

2012).

The lower cell is associated with the deeper layer of the CDW that is deeper than 2000m

depth under the ACC. This water mass reaches the surface close to the continental slope (Gor-

don and Huber, 1990; Thompson et al., 2018). There, sea ice forms, which rejects salt brines in

the surface layer. The strong increase in the salinity of the surface layer drives the densification

of the surface water that sinks, entrains the CDW and flows in the seabed along the continental

shelf slope as Antarctic Abyssal Water (AABW) (Orsi, 2010; Drucker et al., 2011; Ohshima et al.,

2013; Akhoudas et al., 2021). It is then transported northward and ventilates the abyss of the

world’s oceans (Orsi et al., 1999; Johnson, 2008).

The meridional cells that have been described hide a heterogeneous meridional structure.

For example, for the lower cell, close to the Antarctic continent, Thompson et al. (2018) listed

three main regimes at the continental shelf break, associated with the ASF strength and shape.

They are influenced by the wind regime, heat, and freshwater fluxes, and impact the ASC velo-

city. They are represented in figure .4 :

— The Fresh shelf regime (Figure .4ad) is the most common and is dominant in East An-

tarctica. On a Fresh shelf, strong coastal easterly winds induce a positive Sea Surface

Height (SSH) toward the continent, and a strong westward flowing ASC. The ASC velo-

city is high enough to hamper cross-slope exchanges, separating the cold shelf waters

with the warm CDW (Meijers et al., 2010; Thompson et al., 2018). Fresh shelves are not

associated with dense or bottom water formation.

— The dense shelf regime (Figure .4be) relates to the regions associated with bottom water

production, which are located in the Weddell sea (Meredith et al., 2014), Ross sea (Ass-

mann and Timmermann, 2005), the Somov and Adélie seas (Williams et al., 2008), and in

the Cosmonaut sea (Ohshima et al., 2013). In these regions, the export of cold and salty

bottom water creates "V-shaped" cross slope isopycnals, associated with a local ASC on

the slope (Meijers et al., 2010; Ohshima et al., 2013).
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— Lastly, the Warm shelf regime (Figure .4cf) is mostly found in the Amundsen-

Bellingshausen seas and is associated with weaker easterlies or even westerlies at the

continental slope, no or weak ASF (Pauthenet et al., 2021), and intrusions of warm CDW

on the continental shelf (Wåhlin et al., 2010; Nakayama et al., 2014).

These hydrographic structures are associated with the zonal circulation of the ASC, but they

also control the amount of cross slope transport from direct advection or eddies. This supply of

relatively warm CDW on the shelf is key in the ice shelves basal melt and important for modu-

lating the formation and export of dense water on the shelf (Nicholls et al., 2009; Hattermann

et al., 2014; Morrison et al., 2020), which influences the tridimensional circulation of the Sou-

thern Ocean.

2.2) Mesoscale dynamics

Generalities

The ocean is a turbulent system, therefore favorable for mesoscale instabilities to develop

(Morrow and Le Traon, 2012). Mesoscale variability stands for eddies, meandering currents or

fronts, and filaments of spatial scales from tens to several hundreds of kilometers, and temporal

scales of tens to hundreds of days. In this thesis, I focus on the eddies, which are coherent vortex,

often with different physical properties than their surrounding areas (Bonaduce et al., 2021),

ubiquitous in the open ocean (Ducet et al., 2000) and present in the sea ice regions. Mesoscale

eddies have strong impacts on the thermodynamics of the oceans, due to their ability to mix,

diffuse and trap ocean contents (McWilliams, 1985; Chelton et al., 2011; Morrow and Le Traon,

2012). They play a role in the energy budget of the ocean as well, by converting potential energy

stored by the oceans to kinetic energy and transferring it at spatial scales (Visbeck et al., 1997;

Stammer, 1998). Eddies not only impact the large-scale circulation of the ocean, but they also

influence on the wind field, clouds, and precipitation (Chelton, 2013).

Most of the studies I cited to introduce the mesoscale eddies have been conducted from sa-

tellite altimetry data (Ducet et al., 2000; Chelton et al., 2007, 2011; Morrow and Le Traon, 2012),

one of the preferred ways to investigate those eddies in large regions. On high-resolution Abso-

lute Dynamic Topography datasets, their signature is either positive (anticyclonic) or negative

(cyclonic eddies) closed contours of ocean topography (Chelton et al., 2007). Automatic detec-

tion and tracking are great tools to investigate those features (Mason et al., 2014), and may be

complemented by in-situ measurements such as from the Argo network to establish the various

kind of eddies of a circulation system (Pegliasco et al., 2015) or evaluate the integrated global

zonal mass transport by eddies (30-40 Sv ; Zhang et al., 2014).

As addressed in the previous sections, the dynamics and fronts of the Southern Ocean are

essentially zonal. That means that eddies are necessary for the cross-frontal transport in both

the ACC and the subpolar part of the basin, and are expected to play a major role in the dyna-

mics of the region.
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2. The Southern Ocean circulation and water-masses

FIGURE .4: Antarctic Slope Current (ASC) regimes : (a–c) Key water masses, along- and across-slope flows
and supporting mechanisms in the (a) Fresh shelf, (b) Dense shelf, and (c) Warm shelf Antarctic Slope
Current (ASC) regimes defined in this article. (d–f) Measurements of conservative temperature (colors)
and neutral density (black contours) across the ASC in locations corresponding to each ASC regime : (d)
the eastern Weddell Sea (Heywood and King, 2002), (e) the western Weddell Sea (Thompson and Hey-
wood, 2008),and (f) the Bellingshausen Sea (Orsi and Whitworth, 2005). Section locations are shown in
Figure 6, and white dashed lines indicate locations at which hydrographic casts were taken. The fol-
lowing water masses are identified : Antarctic Surface Water (AASW), Circumpolar Deep Water (CDW),
Dense Shelf Water (DSW). Figure and caption from Thompson et al. (2018).

Eddies in the Antarctic Circumpolar Current

In the ACC, the eddy field is very energetic and plays a central role in the Southern Ocean dy-

namics and water transport (Speer et al., 2000; Rintoul, 2018). Both eddies and the ACC depend

on each other : steep isopycnals within the ACC are important reservoirs of potential energy for

eddies to develop (Hogg et al., 2017), and in turn, eddies set the ACC momentum balance bet-

ween the surface winds and the bottom (Gille, 1997; Rintoul et al., 2001; Ivchenko et al., 2008).
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Southward eddy heat flux crosses the ACC and balances high latitude heat loss (Rintoul, 2018).

More broadly, eddies crossing the ACC jets allow the establishment of a meridional transport of

water masses (Speer et al., 2000; Marshall, 2003; Ivchenko et al., 2008). In the acc system, eddies

are rather concentrated in eddy hot spots, in the lee of the main bathymetric features (Chelton

et al., 2007; Thompson and Sallee, 2012; Mashayek et al., 2017). There, mesoscale eddies are

an essential component of the Southern Meridional Overturning Circulation (SMOC) through

their ability to link the surface layer with water masses at depth (Speer et al., 2000; Rintoul et al.,

2001), or to allow the upwelling of water masses within the ACC system (Tamsitt et al., 2017).

The observed properties of the eddies in the ACC are not uniform but follow the distribution

of the main jets : local maxima in mean amplitude and radius are in the most energetic parts of

the ACC (Chelton et al., 2011). In the rest of the ACC and northern part of the Southern Ocean,

the global distribution of the eddy radius decreases with latitude, consistent with the Rossby

radius (Chelton et al., 1998, 2011).

Eddies in the subpolar Southern Ocean

The properties of the eddies and their impact on the subpolar Southern Ocean system are

still largely unknown due to the few observations available. Yet, modelling studies estimate that

they are an important part of the processes governing the regional circulation of heat and fre-

shwater transport (Nøst et al., 2011; Stewart and Thompson, 2015; Stewart et al., 2018). As in

the ACC, the eddies are intimately linked to the local circulation. One of the main circulation

features of the subpolar Southern Ocean is the ASC. Locally, the ASC is driven by the mesos-

cale eddies (along with coastal winds, sea ice and tides ; Stewart et al., 2019). The ASC and the

associated ASF, represent dynamic and hydrographic barriers preventing intrusions of warmer

off-shelf waters on the continental shelf break (Jacobs, 1991). Yet in the subpolar basin too, the

eddies contribute to the southward, cross-front, or cross-shelf transport of the warm interme-

diate layers (Thompson et al., 2014). In fact, while the shoreward surface transport is due to

winds, the eddies might be an efficient mechanism to bring heat on the continental shelf (Ste-

wart and Thompson, 2015), at hotspots regions of warm water intrusions with large bathymetry

features (Nakayama et al., 2014) or in dense water formation regions (Stewart and Thompson,

2015). Eddy stirring is also a contributor to this cross-shelf heat transport (Stewart et al., 2018).

In the end, the eddy activity was observed to impact the reservoirs of heat and salt on the shelf

(Foppert et al., 2019) and drive the local ice shelves basal rates (Nøst et al., 2011).

The issue of having rather few observational studies on eddies on the subpolar Southern

Ocean also affects the Arctic but to a lesser extent. In that context, results drawn from studies in

the Arctic may transfer to the subpolar Southern Ocean to some degree. There, several studies

focused on the effect of the sea ice on mesoscale eddies. Within the sea ice region, Meneghello

et al. (2020), pointed at a quasi-deletion of surface eddy kinetic energy at the surface in winter,

caused by a strong dissipation of eddies by the overlying sea ice. At depth, however, they obser-

ved an intense year-long eddy activity in the halocline as well, in a study combining modelling

and observations Meneghello et al. (2020). Consistently, Timmermans et al. (2008); Zhao et al.

(2014, 2016) detected numerous anticyclonic eddies in the Arctic halocline between 50 and 250

meters depth, mostly cold-core anticyclones. These were observed from Ice Tethered Profilers,
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FIGURE .5: Eddies signature on drifting ice, observed in the marginal ice zone on ALOS2 Palsar2 images,
from Kozlov et al. (2019)

in both Canadian and Eurasian basins. They have been observed far from their generation re-

gion and their radius is of the order of 10-20 km (Timmermans et al., 2008; Zhao et al., 2014,

2016). Those eddies may be generated at surface oceanic fronts (Manucharyan and Timmer-

mans, 2013), making the Marginal Ice Zone (MIZ) one of the best candidates for generating

these anticyclonic eddies. Indeed, at the floe edges, melting sea ice drives horizontal density

gradients that create instabilities (Horvat et al., 2016; Manucharyan and Thompson, 2017). The

ice-induced surface stress pattern and interactions with the local ice edge jet may enhance the

instabilities as well (Häkkinen, 1986; Thomas, 2008; Lu et al., 2015). Eddies at the marginal ice

zone can be observed by satellite imagery (Figure .5 Kozlov et al., 2019), as the cyclonic features

may trap and advect sea ice outside of the sea ice zone (Manucharyan and Thompson, 2017).

This link between sea ice and eddies was also investigated using dedicated modelling. In the

leads, which are open water channels in the sea ice regions, local refreezing produces salt fluxes

that create sharp fronts, favorable for instabilities and genesis of oceanic eddies (Cohanim et al.,

2021). The resulting eddies are dependent on the lead width and duration, and the magnitude

of the buoyancy forcing (Smith et al., 2002). They contain most of the salt rejected by the ice

formation, are mostly anticyclonic, and can survive in the subsurface up to one month after

the closure of the lead (Matsumura and Hasumi, 2008). While most of these modelling studies

were set up with conditions specific to the Arctic, Cohanim et al. (2021) modeled the effect

of thermohaline fluxes in the leads in Antarctic conditions. Consistently with previous results

in the Arctic, the instabilities generated in the leads show a dominance of anticyclonic eddies

(Cohanim et al., 2021). In this case, the modeled anticyclones were growing in size reaching

from 10 to 20km after 50 days, and contributed to populate the halocline. Therefore, the ice

covered halocline may be a preferred location for the eddies generated in the MIZ and in the

leads.

27



GENERAL INTRODUCTION

FIGURE .6: Southern Ocean forcings. (a) Mean zonal wind stress at the surface of the ocean for the period
1980-2000. Subantarctic and polar fronts are marked in orange. The winter ice edge is marked by the
black line and the 27.6 kg .m−3 outcrop by the white line. From Marshall and Speer (2012). (b) Mean
February and (c) September Sea Ice Concentration from 1979-2010 data, from Parkinson and Cavalieri
(2012).

2.3) Main forcings of the Southern Ocean Circulation

In this section, I briefly introduce the main forcings of the circulation at each of the Southern

Ocean interfaces, from wind mechanical forcing to the Antarctic ice shelves, and via sea ice and

air-sea heat and freshwater fluxes.
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Air-sea heat and freshwater fluxes

Through precipitation, evaporation, and heating, the atmosphere impacts the properties of

the surface of the Southern Ocean. The properties may propagate in the subsurface and impact

its hydrography.

The atmospheric contribution to freshwater fluxes at the ocean surface results from the

combination of precipitation and evaporation (hereafter, P-E flux). In the Southern Ocean, the

sparse observation of precipitation and evaporation limit our ability to monitor these fluxes.

Atmospheric reanalysis can be used to estimate these fluxes and their change but such reanaly-

sis is poorly constrained so large discrepancies exist between the different reanalysis products

(Bromwich et al., 2011; Trenberth, 2011). However, the large-scale spatial distribution of the cli-

matology of the P-E fluxes is generally robust across different data sources, and displays overall

larger precipitation over evaporation in the northern part of the Southern Ocean, north of the

ACC, and larger evaporation over precipitation south of the ACC (Akhoudas, 2019).

As for freshwater fluxes, the lack of observation hinders the monitoring of air-sea heat fluxes

in the Southern Ocean, especially in autumn and winter, or in the seasonally ice-covered re-

gions (Swart et al., 2019). This results in strong disparities between heat fluxes reanalysis, illus-

trated by (Swart et al., 2019), but with an overall pattern showing intense heating in the vicinity

of the ACC (≈ 80 0W.m−2), lower in the gyres (≈ 20 0W.m−2), and heat loss at the coast of An-

tarctica (≈ -20 0W.m−2).

Winds

Southern Hemisphere winds organize in a zonally banded structure, with peak westerlies at

mid-latitude around 40-60◦S, and peak easterlies along the Antarctic continental shelf (Figure

.6a ; Marshall and Speer, 2012). Winds are a strong forcing of ocean circulation by transferring

momentum at the ocean surface through wind stress (Trenberth et al., 1990). In the ACC, the

momentum acquired at the ocean surface provides energy to the current, which is partially re-

leased by baroclinic instability and bottom stress after being transferred at depth by mesoscale

eddies (Rintoul et al., 2001). North and south of the ACC, the large wind-stress curls are thought

to drive subtropical and subpolar gyres (Sverdrup, 1947; Pedlosky, 2013; Armitage et al., 2018).

The zonal structure and strength of wind stress and associated curl has also a large impact

on the meridional overturning circulation of the Southern Ocean (Gent, 2016). In the region of

the ACC, westerly winds drive a net northward Ekman transport in the surface layer of the Sou-

thern Ocean (Speer et al., 2000). South of the ACC, the curl created by the mid-latitude westerlies

and high latitude easterlies induces an Ekman divergence and associated upwelling (Marshall

and Speer, 2012) of CDW. Over the Antarctic continental slope, winds help to maintain a strong

density gradient over the slope and to sustain the Antarctic Slope Current (Thompson et al.,

2018).

The dominant mode of variability of surface winds in the Southern Hemisphere is associa-

ted with the so-called Southern Annular Mode (SAM) of variability (Thompson and Wallace,

2000). The SAM index is associated with marked variability in atmospheric Sea Level Pres-

sure (SLP), surface temperature, and winds variability (Marshall, 2003; Thompson and Wal-

29



GENERAL INTRODUCTION

lace, 2000). It is defined as the pressure difference between 40°S and 65°S. When the SAM is

positive, SLP gradient between 40°S and 65°S is increased (more negative than average), which

results in a strengthening and poleward shift of the westerlies (Hall and Visbeck, 2002). Other

climate modes also have a great regional influence on the Southern Ocean atmospheric sur-

face pressure and winds : e.g. the Amundsen Sea low (ASL) or El Niño – Southern oscillation

(ENSO)(Karoly, 1989; Turner et al., 2013; Dotto et al., 2018; Li et al., 2021).

Sea Ice

Large parts of the Southern Ocean are covered by a thin sea ice layer (about 1 meter on ave-

rage) floating over the ocean (Parkinson and Cavalieri, 2012). Several parameters describe the

sea ice state, such as its thickness or freeboard above the flotation line. The Sea Ice Concen-

tration (SIC) is defined as the percentage of ice-covered ocean within a defined geographical

domain. Sea ice coverage can be expressed by its extent or area (SIE or SIA). The SIE is conven-

tionally defined as the sum of the area of the grid cells with a SIC higher than 15%, while the

SIA is the sum of the cells with a SIC higher than 15% times the SIC of the corresponding cell

(Parkinson and Cavalieri, 2012).

In the Southern Ocean, the sea ice extent is associated with a large seasonal cycle ranging

from 3.1106km2 in February to 18.5106km2 in September (Figure .6bc, Parkinson and Cava-

lieri, 2012). Sea ice mostly forms close to the continental shelves, where the wind and currents

generate an ice divergence, allowing the apparition of latent heat polynyas (Morales Maqueda

et al., 2004). Polynyas are ice-free coastal regions that allow a greater ice formation by enabling

direct exchanges between the cold atmosphere and the sea surface. Ice formed in the coastal

polynyas is then advected northward by the winds, where it melts at lower latitude (Holland

and Kwok, 2012) in summer. From both its role in acting as a barrier damping the momentum

transfer from the wind toward the surface of the ocean (Tsamados et al., 2014; Martin et al.,

2016) and modifying heat and freshwater fluxes (Pellichero et al., 2017a), sea ice is one of the

main forcings of the Southern Ocean circulation.

By modulating the surface stress induced by winds, sea ice directly impacts the dynami-

cal forcing of the subpolar Southern Ocean. When the ocean is ice-covered, the momentum

applied to the surface is controlled by winds, ocean currents, and sea ice shape, velocity, and

concentration. These interactions are extremely complex, and their representation in models is

still a matter of active research (Tsamados et al., 2014; Martin et al., 2016). Computing such ice-

covered ocean surface stress from atmospheric reanalysis and ocean and sea ice observations

is also a challenge in the absence of large-scale observations of top and bottom sea ice surface

roughness (Martin et al., 2016). To first order, observation-based analyses suggest that conside-

ring the contribution of sea ice to the surface stress allows a better description of the subpolar

Southern Ocean seasonal variability (Garabato et al., 2019; Núñez-Riboni and Fahrbach, 2009).

Sea ice has also a large impact on ocean circulation through its thermodynamic forcing at

the surface ocean interface. More precisely, the freshwater fluxes associated to sea ice have a

much larger impact than the heat flux, with a ratio estimated between 2 to 5 higher for the

freshwater contribution (Pellichero et al., 2018). When sea ice melts, it releases freshwater (or

water with very low salinity compared to the ocean salinity) into the ocean surface layer (Aa-
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gaard and Carmack, 1989). In contrast, when sea ice forms in winter, there is a rejection of salt

brines in the surface layer also associated with large density flux, triggering intense convection

(Allison, 1981). sea ice melt and formation are therefore associated with a large seasonal cycle of

the density of the mixed-layer and associated vertical structure of the ocean (Chaigneau et al.,

2004; Pellichero et al., 2017a). But maybe more importantly, because sea ice forms and melts in

different locations (predominantly forms at high latitude, and melts at lower latitude), the sea

ice seasonal cycle creates a meridional gradient of density flux at the ocean surface, which is a

central piece of water-mass formation and transformation associated with the meridional over-

turning circulation of the Southern Ocean (Pellichero et al., 2018; Abernathey et al., 2016). This

seasonality has a large impact on the Southern Ocean dynamics and hydrography (Chaigneau

et al., 2004; Hattermann, 2018).

The sea ice is not a continuous surface, but is rather composed of ice platforms, the flows.

Divergence in the drift of the flows may create openings in the sea ice, which are the leads

(Smith IV and Morison, 1993). I already presented their impact on the mesoscale dynamics in

the "Eddies Under Sea Ice" section, but sea ice leads can also impact the hydrography of the

water column under the sea ice, from their ability to act as small polynyas. Sea ice leads are

also important in the observability of the ocean conditions in the sea ice regions, as it will be

presented in the last part of this general introduction.

Antarctic Ice Shelves

The Antarctic Ice Shelves are ice platforms attached to the Antarctic land on the one side, but

floating over the ocean for its largest part, bounded by an ice cliff with a height between 2 and

50 meters on its seaward side (Jackson, 2005). These shelves create cavities over the continental

shelf, where their bottom side is in contact with the ocean and exchanges heat and freshwater

fluxes with the underlying water masses (Fahrbach et al., 1994). Meltwater fluxes may enhance

sea ice production, by accumulating relatively low density, cold, and fresh water in the surface

layer (Price et al., 2008; Bintanja et al., 2013). But meltwater fluxes may also suppress the bot-

tom water formation, by compensating the salt fluxes from ice formation, with salinity values

reaching levels not high enough for the bottom water production (Fahrbach et al., 1994).

3 Long term changes in the Southern Ocean

The Southern Ocean has an important role in mitigating human-induced climate change. It

is estimated that the Southern Ocean has absorbed 75% of the excess of heat in the atmosphere

that has been caused by anthropogenic forcing in the past 160 years (Frölicher et al., 2015). In

parallel, it is also acting as one of the main anthropogenic carbon sinks of the global oceans

(Frölicher et al., 2015). These carbon and heat uptakes have an important influence on global

mean surface temperature (Winton et al., 2013). In counterpart, the Southern Ocean circulation

and water-masses (hydrography and chemical properties) are rapidly changing (Gille, 2002,

2008; Schmidtko et al., 2014), which has indirect impact on sea ice and ice shelves (Bintanja
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et al., 2013; Eayrs et al., 2021). Other changes such as modifications in the atmospheric regime

due to ozone depletion and increasing greenhouse gasses concentration also drive long-term

changes in the Southern Ocean system (Swart et al., 2018).

This section aims at summarizing some of the main long-term changes that have been ob-

served over the past decades in the atmospheric surface winds, in the Southern Ocean circula-

tion and hydrography, and in the cryosphere.

3.1) Change in surface winds, heat fluxes, precipitation, and evaporation

The Southern Hemisphere storm tracks and associated westerly winds have migrated po-

lewards over recent decades, especially in the austral summer and autumn, associated with a

trend towards more positive phases of the Southern Annular Mode (SAM) over the instrumental

period and particularly since the 1970s (Gulev et al., 2021; Lee et al., 2021). Stratospheric ozone

depletion and increase in GreenHouse Gases (GHGs) in the atmosphere have been identified

as the two main causes for this positive SAM trend (Thompson et al., 2011; Abram et al., 2014).

ChloroFluoroCarbons have been responsible for ozone loss since the 1970s, itself inducing a

cooling of the Antarctic lower stratosphere and directly impacting the SAM index (Thompson

and Wallace, 2000; Marshall, 2003). While the onset of Antarctic ozone hole recovery has been

observed in past years as a response to the lowering of CFCs emissions (internationally agreed

as part of the Montreal Protocol ; (Banerjee et al., 2020)), increasing greenhouse gas concen-

trations are now dominating the positive SAM trend (Swart et al., 2018). In the 21st century,

under high emission scenario, the last IPCC report assessed likely that Southern Hemisphere

mid-latitude jet would continue strengthening and shifting poleward (Lee et al., 2021). Howe-

ver, strong future mitigation scenarios are associated with relative stability of the mid-latitude

jet (Bracegirdle et al., 2020).

Direct observation of changes in the heat fluxes is made extremely difficult due to the lack of

direct measurements (Swart et al., 2019). However, the Southern Ocean absorbed a tremendous

part of the human-induced excess of heat in the atmosphere : 75 ± 22 % of the anthropogenic of

the excess of heat absorbed by the world oceans was absorbed in the Southern Ocean (estima-

ted from a modelling study ; Frölicher et al., 2015). The Southern Ocean heat content increases

rapidly, with a rate that has increased in the last decade compared to previous decades (Mere-

dith et al., 2019).

Last decade changes in freshwater fluxes of the Southern Ocean are consistent with an in-

tensification of the global hydrological cycle (Held and Soden, 2006). Thus, precipitation is

thought to have increased in regions where it was already dominating over evaporation, and

evaporation is thought to have increased where it was already dominating over precipitation

(Trenberth, 2011). Consequently, P-E tends to decrease in the northern part of the Southern

Ocean and to increase ACC, but which is however not found by all the available reanalyses

(Bromwich et al., 2011). These changes are not well observed but are consistent with the basin-

scale observed change in surface salinity (Durack et al., 2012). At a more local scale, a direct

relationship between change in surface salinity and P-E flux is more difficult to assess. While

Aoki et al. (2013) proposed that increase in precipitation fluxes have contributed to a freshe-

ning of the surface layer off Adélie Land, Morrow and Kestenare (2014, 2017) found in the same
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region no correlation between the long term trends of precipitations and surface salinity. Ins-

tead, a significant correlation with sea ice interannual variability was established (Morrow and

Kestenare, 2014). At high latitude, intricate feedbacks between surface salinity, sea ice, and pre-

cipitation make it difficult to disentangle processes at play. For instance, an increase in precipi-

tation can have an impact on sea ice, as it was modelled to increase the sea ice cover along with

the surface freshening (Purich et al., 2018).

3.2) Hydrographic and circulation changes

Circulation changes

In contrast to observed changes in atmospheric westerlies, the ACC has not shown any si-

gnificant transport or position change in the past decades (Chidichimo et al., 2014; Gille, 2014;

Donohue et al., 2016; Gille et al., 2016). Instead of changing the mean current, increase in winds

seem cause an increased eddy-activity (Meredith and Hogg, 2006; Hogg et al., 2015; Martí-

nez Moreno et al., 2020). The response of the Southern Ocean to wind stress change has been

discussed within the framework of two concepts called eddy saturation and eddy compensation

(Rintoul, 2018), which respectively relate to change in ACC transport and in the MOC strength.

In an eddy saturation regime, an increase in wind stress which tends to steepen southern

ocean isopycnals in the , is counterbalanced by an enhanced eddy activity releasing the added

potential energy into eddy kinetic energy (Meredith and Hogg, 2006; Patara et al., 2016). As a re-

sult, the ACC transport does not increase. From in situ observations, Böning et al. (2008a) found

no steepening of the isopycnals that would be associated with an increase in ACC transport,

while the wind stress was strengthening in the previous decades due to the positive trend in the

SAM. From satellite altimeters, Meredith and Hogg (2006) showed that increasing winds were

associated with a 2-3 year delayed increase of the Southern Ocean eddy activity, consistent with

an ACC in eddy saturation states. Numerical models have been instrumental to refine our un-

derstanding of ACC response to winds (Hallberg and Gnanadesikan, 2006; Farneti et al., 2010;

Dufour et al., 2012). From not eddy-resolving models, the response of the ACC to increasing

wind stress is an intense acceleration of the flow (Hallberg and Gnanadesikan, 2006). When

improving the resolution of eddies, they act to counteract the effects of the increasing winds,

so that the ACC transport increase is more subtle (Hallberg and Gnanadesikan, 2006). This in-

crease in eddy activity due to stronger winds is not uniform around the Southern Ocean, as the

response seems to be more consistent with the wind changes in the Pacific and Indian sectors

(Patara et al., 2016; Meredith, 2016).

In an eddy compensation regime, strengthening winds tend to accelerate the wind-driven

overturning circulation. But the increase in eddy activity discussed above also enhances the

eddy-induced overturning circulation, which compensates the wind-driven overturning inten-

sification (Abernathey et al., 2011; Gent, 2016; Rintoul, 2018). The compensation is however

only partial, and not over the same depth range, so the increase in winds is thought to be as-

sociated with a changing upper cell of the Southern Ocean MOC (Farneti et al., 2010; Dufour

et al., 2012; Hogg et al., 2017). This upper cell acceleration as a response to wind strengthening is

consistent with observation-based estimates of change in water-mass age (Waugh et al., 2019).
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Observation-based estimates of mode water subduction in the past decade tend to concur with

an increased upper cell of the SMOC over this period (Gao et al., 2018). In the future, these

changes are expected to continue as winds continue increasing and shifting southward (for all

future emission scenarios except strong mitigation scenario ; Meredith et al., 2019; Fox-Kemper

et al., 2021). By modelling the response of the water masses’ ideal age under strengthening and

shifting winds, Waugh et al. (2019) show that SAMW ideal age decrease linearly with increasing

and shifting winds.

But other drivers than winds may have an influence on the changes in the ACC transport. In

fact, changes in surface buoyancy from intensification of the global hydrological cycle and hea-

ting (Trenberth, 2011; Frölicher et al., 2015) may drive the acceleration of the ACC, by increasing

the density gradient across the ACC (Shi et al., 2020).

In the lower cell of the SMOC, the main change in the tridimensional circulation is a decline

of the volume and a warming of the dense Antarctic Abyssal Water (AABW) (Purkey and John-

son, 2012), suggestive of a lowering of the cell and a slowdown of the bottom limb (Desbruyères

et al., 2016). This trend has been observed in all the major bottom water production sites, such

as the Weddell Gyre (Jullion et al., 2013; Abrahamsen et al., 2019), in the Ross sea (Jacobs and

Giulivi, 2010), or in Adélie Land (Aoki et al., 2005; Rintoul, 2007). Several source of numerical

evidence have shown that this change is consistent with increased glacial meltwater flux in the

high latitude ocean, which would reduce the density of bottom waters, and will eventually reach

a point where shelf water of all sectors of the Southern Ocean will become too light to sink in

the abyss (Bronselaer et al., 2018; Golledge et al., 2019; Lago and England, 2019; Moorman et al.,

2020). However, a number of new observation-based studies have recently reported possible re-

covery of the Antarctic Abyssal Water (AABW) in a few sectors of Southern Ocean (Abrahamsen

et al., 2019; Castagno et al., 2019; Gordon et al., 2020; Silvano et al., 2020). In the future, the IPCC

AR6 concludes with medium confidence that the lower cell will continue decreasing in the 21st

century as a result of increased basal melt from the Antarctic Ice Sheet.

Past decades and future change in the horizontal circulation of the subpolar ocean remains

unclear due to observational and numerical challenges in this part of the ocean. The circulation

response to an idealized southward shift of the winds might be a decrease in Ekman southward

transport close to Antarctica and a reduction of the downward Ekman pumping at the coast

Spence et al. (2014). This would also lead to a weakened ASF associated with slower coastal

currents Spence et al. (2014). But it remains unclear whether coastal easterlies are projected to

shift consistently with the mid-latitude westerlies (Bracegirdle et al., 2020).

Temperature and salinity changes

Significant temperature changes have been observed in different parts of the Southern

Ocean over the last decades, from ship-based observations, floats, and bathythermographs

(Gille, 2002, 2008; Sallée, 2018). These trends reflect that the Southern Ocean accounted for

35–43% of the total heat gain in the upper 2000 m global ocean between 1970 and 2017, with a

share that has increased to 45–62% between 2005 and 2017 (Meredith et al., 2019). A schematic

of the distribution of the temperature trends in the Southern Ocean is shown on the left part of

Figure .7.
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FIGURE .7: Schematic showing temperature and salinity trends in different layers of the Southern Ocean.
The layers are defined as main water masses of the Southern Ocean : subtropical water (TW), mode water
(MW), intermediate water (IW), circumpolar deep water (CDW), and bottom water (BW). Black arrows
show the main overturning pathways in the basin, and the dashed black contours show a vertical slice of
the deep-reaching Antarctic Circumpolar Current circulating clockwise around the Antarctic continent.
Adapted from (Sallée, 2018), Figure and caption from Palmer et al. (2019).

The major part of the excess of heat stored in the SO is concentrated north of the ACC, in the

latitude band 30–50°S. In this sector, in the upper 2000 m, the SAMW and the Antarctic Inter-

mediate Water (AAIW) have experienced strong warming and thickening over the past decades

(Sprintall, 2008; Giglio and Johnson, 2017; Gao et al., 2018; Swart et al., 2018). These trends are

consistent with increasing surface heat flux and local wind stress curl increasing the downwel-

ling north of the ACC. South of the ACC, in the surface layer, the ocean has experienced a slight

cooling trend over the past decades. Its cause is still under debate. This summertime cooling

might be driven by summertime wind anomalies associated with the SAM trends, transferring

heat from the surface layer downward (Doddridge et al., 2021). Other studies associated this

cooling with changes in freshwater fluxes. While Haumann et al. (2020) present changes in the

sea ice dynamics as the main driver of this cooling, Rye et al. (2020) concludes that an increased

meltwater discharge primarily drives it. Both of these studies argue that increased freshwater
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flux would have stratified the ocean (Sallée et al., 2021), which would tend to isolate the surface

layer from the warmer CDW, reducing heat transfer toward the mixed-layer. The upper layer

of the CDW has experienced slight warming and shallowing close to the Antarctic continent,

representing a potential threat for the stability of Antarctic ice shelves (Schmidtko et al., 2014).

This warming is consistent with the increased stratification of the upper Southern Ocean and

the surface cooling.

Salinity trends over the last decades have been driven mostly by surface forcing from cryos-

phere (Rye et al., 2020; Haumann et al., 2016) and air-sea freshwater fluxes changes (Held and

Soden, 2006) inducing the observed freshening of the surface layer (Aoki et al., 2013; Morrow

and Kestenare, 2014). Salinity anomalies are then transported by the mean flow, inducing a re-

freshed subsurface (Durack and Wijffels, 2010). At the Antarctic continental shelf, the shelf wa-

ters in bottom water formation regions have been freshening (Jacobs and Giulivi, 2010; Jullion

et al., 2013; Meredith et al., 2014; Palmer et al., 2019). This freshening is associated with a war-

ming trend, consistent with the changes in the water freezing point (Jacobs and Giulivi, 2010).

Consequently, the abysses of the Southern Ocean are warming and freshening (Rintoul, 2007;

Shimada et al., 2012; Purkey and Johnson, 2013). While a rebound of the shelf water salinities

has been reported in the Ross sea (Castagno et al., 2019), the latest projections show that the

freshening and decrease in the volume of bottom water formation will continue in the future

(Fox-Kemper et al., 2021).

Freshening at the surface has also been propagated northward, dominating a large part of

the Southern Ocean south of 45°S (Swart et al., 2018), and can also be found in the subsurface

waters such as the samw and AAIW (Durack and Wijffels, 2010) due to the subduction of the

subsurface anomalies (Figure .7 ; Palmer et al., 2019).

3.3) Cryosphere changes

Sea Ice

In contrast to the dramatic sea ice decline that has been observed in the last decades in the

Arctic (Comiso et al., 2017), the Antarctic sea ice area has not experienced statistically signifi-

cant change (Fox-Kemper et al., 2021). This overall weak change actually hides a much more

pronounced and regionally contrasted change in sea ice cover. Regional sea ice trends are lar-

ger but are heterogeneous circumpolarly (Figure .8cd. ; Eayrs et al., 2021) and differ according

to the time period of observation.

From 1979 to 2015, there was a SIC gain in most parts of the subpolar basin, except in

Amundsen-Bellingshausen seas and east of the Weddell Sea (Figure .8ac. ; Eayrs et al., 2021).

This regional pattern may result from regional wind variability associated with climate modes

variability (Holland and Kwok, 2012; Sigmond and Fyfe, 2014; Haumann et al., 2014). Overall,

Antarctic sea ice extent has been slightly increasing from 1979 to 2014 (Figure .8a.). Using a

model forced with atmospheric reanalyses, Holland (2014) estimated that the Antarctic sea ice

volume has been increasing with a rate of 0.4% per year over 1992-2010, with sea ice thick-

ness trends regional distribution consistent with the SIC trends. These trends may result from

changes in the Southern Ocean winds, but also from spring changes of mid-latitude westerlies,
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FIGURE .8: Variability in Sea Ice Concentration (SIC) and Sea Ice Concentration (SIC) from passive micro-
wave remote sensing. (a) Monthly mean SIE anomalies since 1979 with respect to the 1979–2018 climato-
logy (blue line) ; trend lines (orange ; dashed orange) calculated through the monthly anomalies. Orange
shading shows the IPO and grey shading shows the AMO+. Blue shading shows months with weakened
westerlies (SAM-). (b) Mean annual SIC 1979-2018. (c) Mean annual SIC changes from 1979 to 2015. (d)
Mean annual SIC changes from 2015 to 2018. Figure and caption from Eayrs et al. (2021).

allowing an increased advection of atmospheric heat in the subpolar Southern Ocean (Eayrs

et al., 2021). However, wind and atmospheric heat changes are not the only forcings responsible

for modifications in sea ice distribution and volume. From the 1970s, a surface freshening of the

Southern ocean has been highlighted by several studies (Durack et al., 2012; de Lavergne et al.,

2014). From a model with preindustrial conditions and no wind trends, Purich et al. (2018) was

able to accurately reproduce the observed regional sea ice trends, only by adding freshwater at

the ocean surface calling for a reconsideration of the main drivers of the sea ice changes.

From 2014 onward and for the first time in 30 years, Antarctic sea ice extent experienced a

strong and abrupt decrease (Figure .8ad. ; Turner et al., 2017; Meehl et al., 2019; Eayrs et al.,

2021). Reasons for this drop in sea ice cover and extent remain unclear, but several plausible

explanations have been put forward. On the one hand, Meehl et al. (2019) highlight a warm

temperature anomaly in the southern ocean due to teleconnections with the Indian and wes-

tern Pacific oceans, which might have caused unprecedented melting of the sea ice. On the

other hand, Wang et al. (2019) bring out the role of the combination of the most negative SAM
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since the 1960s in November 2016 with an anomalously deep ASL (Turner et al., 2017). These

extremely low sea ice anomalies continued in 2017, reaching another minimum in sea ice and

staying extremely low in 2018 (Figure .8a ; Parkinson, 2019; Eayrs et al., 2021).

Continental Ice

Antarctic mass loss has been accelerating over the last decades, reaching 252±26 Gt per year

over 2009-2017, more than 6 times the mass loss trend over 1979-1990 (Figure .9 : Rignot et al.,

2019). This increasing mass loss is primarily caused by CDW inflow on the continental shelf,

bringing relatively warm water toward the ice shelves and accelerating the basal melt (Cook

et al., 2016).

As for sea ice extent change, ice shelves mass trends are regional. The most important mass

loss are located in the Amundsen-Bellingshausen seas (Milillo et al., 2019), the Wilkes Land

(Shen et al., 2018), and West and Northeast Antarctic Peninsula (Wouters et al., 2015; Cook et al.,

2016). In the Amundsen and Bellingshausen seas, ice shelf basal melt has been increasing dra-

matically and is accelerating (Paolo et al., 2015).Indeed, changing ocean currents bring warmer

CDW to the west Antarctica continental shelf, subsequently melting the ice shelves from below

(Nakayama et al., 2018). It is estimated that between 0.3 and 0.4 Sv of CDW enters the continen-

tal shelf through a localised bathymetry channel (Wåhlin et al., 2010).

While other parts of the Antarctic have not experienced such large changes in recent years,

some of them may possibly experience increasing melting rates in the 21st century in response

to climate change. For instance, in the Weddell sea, changes in the ASC caused by modifications

in sea ice cover can be responsible for introducing a larger amount of warm water under the

Filchner-Ronne ice shelf (Darelius et al., 2016), that would dramatically increase melt rate of

this large ice-shelf (Hellmer et al., 2012).

Since 1971, Antarctic mass loss has contributed to 6.8 (66% probability range : -3.9 to

17.5 mm) to the sea level rise (Fox-Kemper et al., 2021). In the future, continuing ice shelves

and glaciers melting might eventually threaten the Antarctic ice cap stability, inducing an in-

crease in ice discharge in the ocean (Mouginot et al., 2014). While many uncertainties remain

on the future of the Antarctic Ice Sheet (Edwards et al., 2021), some long-term simulations have

shown that Antarctica ice loss may contribute up to 14 centimeters to sea level rise by 2100 in

a high greenhouse gas emission scenario (Golledge et al., 2019). Part of the future Antarctic Ice

Sheet depends on the still unclear positive feedback between increasing mass loss rates and

subsurface ocean warming (Bronselaer et al., 2018).

4 In situ and satellite ocean observation in the seasonally

ice-covered Southern Ocean

Coordinated international efforts to monitor Antarctic climate began in the International

Geophysical Year of 1957/58 (Jones et al., 2016). Since then, the ever-increasing ocean observing

capacities of the Southern Ocean has remained, but has not been homogeneous. While the

number of both in-situ measurements and remote sensing capacities has dramatically risen
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FIGURE .9: Ice mass balance of Antarctica using the component method (SMB, on grounded ice mi-
nus ice discharge, D, at the grounding line) for (a) 1979–1990, (b) 1989–2000, (c) 1999–2009, and (d)
2009–2017. The size of the circle is proportional to the absolute magnitude of the anomaly in D (dD =
SMB1979−2008D) or SMB (dSMB = SMBSMB1979−2008). The color of the circle indicates loss in dD (dark
red) or dSMB (light red) versus gain in dD (dark blue) or dSMB (light blue) in billions of tons (1012 kg)
per year. Dark color refers to dD ; light color refers to dSMB. Plots show totals for Antarctica, Antarctic
Peninsula, West Antarctica, and East Antarctica. Background is the total mass balance spread into the
drainage basins color-coded from red (loss) to blue (gain). Figure and caption from Rignot et al. (2019)

over the ACC and more generally over the ice-free ocean, observation coverage remains poor in

the seasonally ice-covered region (Newman et al., 2019). This lack of observation remains one

of the main limits for our understanding of the subpolar Southern Ocean processes. The lack

of observation arguably results from a compound of specific characteristics of the Southern
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Ocean that makes its observation challenging : (i) it is a very vast ocean, and remote for most

of the inhabited region ; (ii) its hostile climate conditions makes any expedition a challenge in

itself ; (iii) the presence of sea ice required technology to be specifically adapted : autonomous

assets (all type of gliders, buoy, or floats) that have helped observe a large part of the global

ocean cannot be readily deployed ; ocean observing satellite are blocked by the presence of sea

ice ; ship expeditions require ice-breaker and are both costly and challenging.

In this section, I present the various types of observation capacities for measuring the Sou-

thern Ocean water-mass properties and circulation, both at short and long timescales. In a large

part of my thesis, I propose to revisit radar altimetry treatment to recover observations and

physical understanding of the Southern Ocean in sea ice-covered regions. Then, I introduce the

basics of the radar altimetry technique and its application in both open ocean and ice-covered

oceans.

4.1) In situ measurements

Ship-based observations

Most of the in-situ temperature and salinity profile observations available in the subsur-

face Southern Ocean before 2004 were sampled from ship platforms. Ship-based observations

remain the gold standard in terms of in situ data quality, so it represents a key part of the ob-

serving system if one aims to investigate long-term changes of the hydrography. However, ship

observations remain very sparse in the Southern Ocean (especially when considering its vast

area). That makes it difficult to evaluate long-term change, and in particular, Southern Hemis-

phere heat content and temperature changes over the decades prevailing the autonomous float

measurements (Gille, 2008). Ship observations of the Southern Ocean hydrography are made

mainly from three types of instruments : eXpandables BathyThermographs (XBTs), bottle data

(OSD), and Conductivity Temperature Depth (CTD) probes.

One of the key programs that have contributed to increasing Southern Ocean observations

is the World Ocean Circulation Experiment (WOCE) program. The WOCE program consisted of

repeated hydrographic sections sampling temperature, salinity, and chemical properties in the

whole Earth oceans, including multiple sections in the Southern Ocean. From repeated tran-

sects crossing the whole Southern ocean in the 1990s, it allowed the monitoring of long term

subsurface temperature changes (Chaigneau et al., 2004; Gille, 2002, 2008) or ACC transport

(Cunningham et al., 2003) over various parts of the Southern Ocean. The WOCE program has

since been continued by the GO-SHIP international program (Sloyan et al., 2019). From these

international programs, both the hydrography structure and the tridimensional circulation of

the Southern Ocean has been examined (e.g. Sloyan and Rintoul, 2001; Talley, 2003; Naveira Ga-

rabato et al., 2014), including specific estimates of bottom water production (e.g. Orsi et al.,

1999; Shimada et al., 2012).

A myriad of other in situ observations programs has also helped sample the Southern Ocean

with specific process-understanding strategies (rather than long-term monitoring). I would not

be able to cite all of them, but such programs helped in particular to observe large parts of the

Antarctic continental shelf and slope with various instruments and strategies.
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Moorings

Moorings are devices that sample ocean properties for an extended period, from an ins-

trument attached to a line moored to the seafloor. They consist of an anchor positioned at a

defined location, and a cable linked to a float higher in the water column. Instruments are po-

sitioned along this cable and sample dynamics, physics, and/or chemistry at various depths.

Transects of moorings can be established across the Southern Ocean main currents, to esti-

mate their transport. In the Drake passage, moorings were used to compute the mean volume

transport of the ACC and its evolution, by combining with satellite altimetry (Koenig et al., 2014)

or with Bottom Pressure Recorders (Chidichimo et al., 2014).

Moorings measurements provide very valuable observations to study the ice-covered

oceans. They can be deployed in the summer, and sample the subpolar Southern Ocean in win-

ter even when it is ice-covered. For instance, from hydrographic and CTD moorings deployed

on the Antarctic Peninsula in 2009-2010 and 2012-2013, Flexas et al. (2015) established the role

of the tides on the ASF and ASC. Mooring observation were also used to first uncover seasonal

variability and its forcing of the ASF in the Weddell Sector (Núñez-Riboni and Fahrbach, 2009;

Chavanne et al., 2010).

Floats

Autonomous profiling floats are extensively used to measure the hydrography, dynamics,

or chemistry of the global oceans. Floats drift with the oceanic currents and sample the ocean

from the surface to a prescribed depth by changing its buoyancy. When reaching the surface,

they communicate their measurements by satellite which allows real-time observation of the

global oceanic properties at depth.

The Argo program is a broad-scale array of autonomous floats sampling the global ocean

(Roemmich and Gilson, 2009) and marks a strong step for a transition from an opportunistic

observation system of the upper layer of the Ocean to a dedicated observation system. Deploy-

ment of the floats started in 1999, with 3000 floats sampling the global ocean in 2007 (Johnson

et al., 2022).

In the Southern Ocean, Argo floats measurements were a huge step forward towards a better

coverage of the first 2000 meters of the ocean. In one year in the Southern Ocean, the Argo

dataset provided more profiles than acquired in the preceding 100 years (Riser et al., 2016).

Outcomes of the Argo program in the Southern Ocean were numerous. In the northern part

of the Southern Ocean, it to documented the increasing heat storage between latitudes 40°S-

60°S (Llovel and Terray, 2016; Böning et al., 2008b; Giglio and Johnson, 2017; Gao et al., 2018),

decrease in salinity (Giglio and Johnson, 2017),and the position of the ACC fronts (Sokolov and

Rintoul, 2009a).

Autonomous floats are riskier to use in the subpolar Southern Ocean. As they need to reach

the surface to transmit their data to satellites, the sea ice represents an important issue to their

deployment and transmission. Several programs worked to unlock this main constraint so that
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now, autonomous floats routinely sample the ice-covered Southern Ocean (Klatt et al., 2007).

But because of the risk and the added technological complexity, the observation density re-

mains much lower than in the open ocean regions.

Others

Other in-situ measurements dedicated to the Southern Ocean have been developed. One

of them is the increasing number of instrumented marine mammals, with the MEOP program

(Treasure et al., 2017), generating a large number of hydrographic profiles in the polar oceans.

Instrumented elephant seal data exists since 2004, and reaches depths of 2000 meters (Roquet

et al., 2014) and have been used for instance to describe the seasonal variations of the Antarctic

Slope Front (Pauthenet et al., 2021).

Ice-capable profiling gliders or Autonomous Underwater Vehicle (AUV) have also sampled

the ice-covered ocean, some at very high latitude, and in ice cavities (Dowdeswell et al., 2008;

Barker and Whitcomb, 2016; Heywood et al., 2014). Profiling gliders are autonomous vehicles

that can be commanded remotely and use multiple sensors to measure ocean properties and

dynamics (Eriksen et al., 2001). AUV are similar to gliders but are propelled and can carry a

larger pack of sensors (Wynn et al., 2014). Both are increasingly used in ice-covered regions to

investigate ocean-ice interactions.

4.2) Radar altimetry technique and its application to polar oceans

Radar altimetry principle

Satellite altimetry has proved to be a very successful solution to observe the solid earth and

the surface ocean geostrophic dynamics. Over the ocean, satellite radar altimetry consists in

retrieving the ocean topography by measuring the orbit of the satellite from a reference surface

(H) and the distance between the satellite and the surface of the ocean (D). The Sea Surface

Height (SSH) is then computed as

SSH = H–D. (4.1)

Orbit determination lies on the Precise Orbit Determination (POD) system, which lies on

the combination of an orbit modelling, onboard sensors, and an earth reference (Stammer and

Cazenave, 2018). The distance between the satellite and the sea surface is retrieved from an

onboard radar instrument. The instrument emits a radar wave at the nadir (local vertical be-

low the instrument) toward the sea surface. The wave travels through the atmosphere and is

backscattered toward the satellite. The two-way travel time between the emission and the re-

ception, which is corrected from the atmosphere effects on the wave and the ocean state, allows

retrieving the distance between the satellite and the sea surface.

Historically, while the method has been investigated since the 1970s, it reached its scien-

tific maturity in the early 1990’s, with the launch of ERS-1 (1991 Sandwell and Smith, 1997)

and TOPEX-POSEIDON (1992 ; Fu et al., 1994). The satellite constellation has been constantly

improving, with GEOSAT Follow-On (1998-2008), the Jason series (3 satellites from 2001 to no-

wadays), and others such as Envisat or AltiKa. Throughout these years, great progress has been

42



4. In situ and satellite ocean observation in the seasonally ice-covered Southern Ocean

FIGURE .10: Satellite radar altimetry measurement principle : The main sensor used to compute the dis-
tance between the satellite and the targeted surface is a radar ; however, to obtain the appropriate measu-
rement accuracy, one needs a radiometer to measure the quantity of water that impacts the atmospheric
propagation of the radar signal. To compute the altitude of the satellite with respect to an in situ network
that constitutes the Earth reference, sensors onboard the satellite are used in combination with model-
ling of satellite trajectory to perform the Precise Orbit Determination (POD) of the spacecraft. Figure and
caption from Stammer and Cazenave (2018)

made on the accuracy and spatial resolution of satellite measurements. New instruments have

also been developed to increase the capacities of satellite altimeters. Cryosat-2 (2010-) is car-

rying a Synthetic Aperture Radar Altimeter (SRAL), including a Delay-Doppler mode (or SAR

mode, Synthetic Aperture Radar mode) over the sea ice regions, allowing a better along-track re-

solution (Wingham et al., 2006). It also includes a SAR-In (SAR-Interferometric) that improves

the across-track resolution. SAR altimeters are increasingly more used on new satellites, and

classic Low Resolution Mode (LRM) altimeters are expected to disappear in the future. Other

great improvements will be undoubtedly made by the interferometric Radar and its even hi-

gher resolution, such as onboard the soon launched SWOT satellite (Biancamaria et al., 2016;

Morrow et al., 2019).

Determination of geostrophic currents

The flow of geophysical fluids is described by the Navier-Stokes equation, describing the

equilibrium of a Newtonian, incompressible fluid (Pedlosky, 2013). The Navier Stokes equation

can be written as :

ρ
∂(u)

∂t
+ρu.∇u =−∇p +µ∇2u+F, (4.2)
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where u is the velocity vector of the fluid, ρ is its density, p is its pressure, µ is the viscosity of the

fluid, and F are the external forces applied to the fluid. The terms of this equation (Eq. 4.2) refer,

from left to right, to the acceleration of the fluid, the advection term, the pressure gradient, the

viscosity and the other forces applied to the fluid.

Estimating ocean current from gridded Sea Level Anomalies requires the use of the geostro-

phic approximation. In this approximation, it is considered that the horizontal pressure gra-

dient and the Coriolis force balance each other (Pedlosky, 2013). This approximation is possible

for large features with Rossby number well below unity :

Ro = v

f .Lc
<< 1, (4.3)

with v the speed of the fluid, Lc the spatial scale of the dynamical feature, and f the Coriolis

parameter ( f = 2Ω sinΦ, withΩ the Earth rotation speed andΦ the latitude).

Under the geostrophic approximation, and from the Navier-Stokes equation, the geostro-

phic balance writes as :

vg = 1

f ρ
px , (4.4)

ug =− 1

f ρ
py , (4.5)

where ug and vg are respectively the zonal and meridional components of the geostrophic cur-

rents. This last set of equation can be rewritten by introducing η, the dynamic topography of

the ocean, as :

vg = g

f
ηx , (4.6)

ug =−g

f
ηy . (4.7)

From these equations, it appears that only the slope of the dynamic topography is needed

to compute the ocean currents under the geostrophic approximation. Therefore, geostrophic

currents can be computed from satellite altimetry observations.

Radar Altimetry application in the open ocean

Since 1992, satellite altimetry has been used to map global ocean geostrophic circulation

through high precision sea level measurements, thereby allowing a big step forward in our un-

derstanding of the ocean circulation, its variability, and its response to climate change (Mor-

row and Le Traon, 2012). The number of satellites sampling the ocean is now larger than ever,

creating new possibilities in terms of combination and sea level mapping resolution (Taburet

et al., 2019). Daily and global multi-mission products such as the Data Unification and Altime-

ter Combination System (DUACS ; Taburet et al., 2019) reach a horizontal resolution of 100 km

at high latitude (Ballarotta et al., 2019). However, these products do not include the seasonally

ice-covered regions of the global oceans (Figure .11a), even though conventional satellite alti-

metry can help to understand the open ocean parts of the polar oceans (Prandi et al., 2012).
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FIGURE .11: Snapshots of existing SLA products over the Southern Ocean. a. SLA snapshot from the
DUACS global product in the open ocean (Taburet et al., 2019). b. SLA snapshot from Armitage et al.
(2018) monthly product constructed from Cryosat-2.

Dedicated processing needs to be used over ice-covered areas : one of the aims of my thesis

is to explore the impact of new dedicated processing in the seasonally ice-covered area of the

Southern Ocean.

Sea Surface height determination in the ice-covered oceans

The radar altimetry technique has long been considered as a potential way to observe ocean

dynamics under sea ice. Drinkwater et al. (1991) found that it was possible to identify the leads

from the floes in the ice-covered regions with no other information than the waveform trans-

mitted back to the altimeter. It led to numerous studies both in the Arctic and the Southern

Ocean (See Chapter II). However, despite the high number of satellites sampling the Southern

Ocean in the last decades, all studies conducted in the past years have used only one satel-

lite (Armitage et al., 2018; Dotto et al., 2018). This results in relatively low spatial and temporal

resolution of the currently existing products (Figure .11b), but also in lower accuracy as more

satellites provide more calibration methods between each other. Methods for merging multiple

satellites into one product exist (Taburet et al., 2019), but none dedicated to the Southern Ocean

have been implemented yet.
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5 Main scientific questions

In this introduction, I attempted to present the state of the art of our knowledge in the mean

Southern Ocean physical state, and in its variability across various temporal and spatial scales :

from the large-scale oceanic features down to the mesoscale. While processes at various scales

and their forcings have been presented separately in this introduction, they in fact interact with

each other over the whole spectra. These interactions shape the Southern Ocean circulation

as we know it, and have a determining role in the global and regional climate. I also introdu-

ced some of the changes occuring in the Southern Ocean. These changes are highly coupled to

changes in the atmosphere and in the cryosphere. The understanding of these couplings and

feedbacks remains incomplete and hinders the understanding of how the Southern Ocean sys-

tem will continue to change in the future (Meredith et al., 2019; Fox-Kemper et al., 2021). One

important caveat for our progress is the availability of observations in the Southern Ocean in

general, but particularly, at great depth and in the seasonally ice-covered regions.

Vernet et al. (2019) recently reviewed the remaining barriers to an improved understanding

of the Weddell sea mechanisms. Those are in many ways relevant to the wider subpolar Sou-

thern Ocean. Among the processes that may be given priority of study : the connections of the

subpolar gyre with the rest of the Southern Ocean ; the changes in air-sea-ice interactions ; the

cross-continental shelf processes ; and the subpolar water masses variability and export. Most

of these areas of study are limited by the scarce wintertime observations and our lack of unders-

tanding of ocean-cryosphere coupling. For instance, the ocean-ice shelf coupling represents a

key obstacle to understanding and projecting future ice shelves melt and ice sheet mass loss. We

also remain unable to fully describe the processes controlling CDW intrusions on Antarctica’s

continental shelf. Several processes that require improved description for a better understan-

ding of the Antarctic Slope Current (ASC) variability have been listed in Thompson et al. (2018).

They include the link between the interior density changes and remotely observed variability ;

the connectivity of the ASC with the ice shelves ; or the response of abrupt changes in warm

CDW inflows on the continental shelf. Thompson et al. (2018) also emphasized the need for a

better theoretical understanding of the links between ASC, winds, buoyancy forcings, eddies,

and tides, but also the need for more observation and higher modelling capacities able to mo-

del accurately the full circumpolar ASC. Finally, several obstacles remain for accurate modelling

of the future changes of the ASC, such as the understanding of the decadal internal variability

of the temperature changes of the water masses, the changes in surface forcings, but also the

potential feedback mechanisms between the cryosphere, the winds, the warm water intrusions

and the along slope and cross-slope dynamics of the ASC.

While this thesis is motivated by these knowledge gaps, I certainly do not have the (unrea-

listic) ambition to resolve and document all of these processes. The objective I set for my thesis

is to deepen the observation of the changes affecting the Southern Ocean, and to explore the

variability of the large-scale and mesoscale processes and their role in regulating the circulation

system of the Southern Ocean and driving its changes. I also aim at examining the forcings of

these variabilities and changes. I focus on three distinct scales of importance, from the larger to
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the smaller : long-term multi-decadal and basin-scale change ; seasonal variability of the main

horizontal circulation features, i.e. mostly focusing on gyres and slope current ; and mesoscale

activity in the subpolar ice-covered region.

This thesis is motivated by the following scientific questions :

How have the circulation and hydrography of the Southern Ocean changed over the past

several decades and are documented changes a significant departure compared to interan-

nual variability ?

In this general introduction, I emphasized the importance of the Southern Ocean in the glo-

bal oceanic circulation system, and how this region is impacted by climate change. Understan-

ding the changes at stake goes through their accurate description. Yet, despite the increasing

capacities of the observation system of the Southern Ocean, the monitoring of its changes is

constrained by the limited long-term measurements. This is particularly true in the subpolar

region of the Southern Ocean. As documented above in the Introduction, many changes of the

Southern Ocean have been described in past studies, but it remains unclear how much of the

described changes are significant departures from interannual variability, and whether they are

caused by internal variability, or long-term forced climate change.

What mechanisms drive the variability and changes of Southern Ocean circulation and

hydrography ?

Arguably at least as important as describing the change themselves, understanding the pro-

cesses governing Southern Ocean variability and changes is central to our understanding of the

Southern Ocean system. Processes may depend on time scales of interest (long term, decadal,

interannual, seasonal, monthly, daily) and may probably involve interactions between multiple

elements of the climate. Today, we are only starting to understand the seasonal variability of

the subpolar ocean and its importance for setting large-scale circulation. Additional work de-

velopment of more diverse observational and methodological frameworks remains required to

progress our understanding of processes dominating seasonal, interannual, and long-term va-

riability of the Southern Ocean.

How do we expect the Southern Ocean circulation and hydrography to change in the fu-

ture ?

Lack of understanding of past change and governing processes hinders our understanding

of future change of the Southern Ocean system. In this regard, the recent IPCC reports are

unambiguous and assessed that almost all future Southern Ocean changes are known with low

confidence (e.g. Meredith et al., 2019; Fox-Kemper et al., 2021). This thesis does not enter the

realm of future Southern Ocean climate change as simulated by climate models. It is, however,

motivated by furthering our understanding of plausible futures from improved process unders-

tanding. Given the current lack of understanding of governing Southern Ocean processes, and

given the known limitations of climate models in simulating the Southern Ocean, identifying

main order processes may allow to first, better evaluate current climate models, second, to dis-

cuss potential change of individual processes.

To these aims, I attempt to use the best-fitted observations for each purpose. Identifying

fit-for-purpose observation-based datasets represent the initial founding step of my thesis. I

propose to base my work on two essential datasets that I contributed to revamp and better
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reprocess for the specific aim of my thesis : a 25-year long repeated temperature observation

at one choke-point across the Southern Ocean basin ; a 6-year set of gridded observations from

three satellites that have sampled the subpolar Southern Ocean. In consequence, a side (but

important) objective of this thesis is to recover these existing measurements in the Southern

Ocean, and to propose new processing to obtain original and valuable sources of information

freely distributed as a service to the community.

In Chapter I, I present the temperature trends in the upper 800 meters of the Southern

Ocean from a 25-year transect between Hobart (Tasmania) and Dumont d’Urville (Adelie Land).

This results from the integration of thousands of XBT profiles, processed specifically to retrieve

these trends. Some of the observed trends were found to overcome interannual variability. I

also find that some subsurface warming and warm water shallowing trends have been underes-

timated in the past, with potential threats for the downstream ice shelves. There are however

two main limitations for drawing conclusions on this study. First, it lacks spatial context : it is

difficult to know how this transect integrates into the larger Southern Ocean. Second, the pro-

cesses driving the Southern Ocean variability at various scales are still hardly known. Therefore,

we still don’t know their contribution to the response of the Southern Ocean system to climate

change.

The following parts of this thesis rely on a newly developed satellite altimetry dataset. This

product may be one of the best tools currently available to tackle both of these issues, as it co-

vers the whole Southern Ocean and may be able to detect large-scale to mesoscale signals at

the surface of the ocean. We have produced a new ocean surface topography dataset from sa-

tellite altimetry in the Southern Ocean in the context of this thesis. This dataset is described in

Chapter II. We also present the dedicated processing needed to convert raw along-track wave-

forms into a gridded high-resolution ocean topography dataset. The dataset is then validated

with independent data sources and the range of error is estimated. In Chapter III, I use this

new product to document the seasonal cycle of the zonal geostrophic currents in the subpolar

Southern Ocean. The dynamics of the Weddell Gyre, Ross Gyre, and Antarctic Slope Current are

investigated and linked with the potential drivers of the variability. In Chapter IV, this same

product is further explored to investigate mesoscale activity from an eddy identification and

tracking procedure applied to the ice-covered Southern Ocean. Eddy properties are investiga-

ted, described, and the impacts of the drivers of the variability found in Chapter III on the

eddies are explored. I conclude and discuss my results in the last chapter of this manuscript,

including a discussion of potential future change.
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I. SOUTHERN OCEAN IN-SITU TEMPERATURE TRENDS OVER 25 YEARS EMERGE FROM

INTERANNUAL VARIABILITY

1 Preamble

In the general introduction, I presented the Southern Ocean, its circulation, properties, and

changes. The amplitude and the multiplicity of Southern Ocean long-term changes are relati-

vely well established. However, due to observation limitations, it remains unclear how much

long-term change estimates are impacted by interannual to decadal variability. In that context,

I aim in this chapter to revisit temperature change in the Southern Ocean, while trying to deli-

neate long-term change and interannual variability.

Up to now, long term temperature change in the Southern Ocean has been assessed from

multiple evidences, including analyses of Argo and ship-based CTD profiles (e.g. Schmidtko

et al., 2014; Gao et al., 2018; Aoki et al., 2005; Gille, 2008; Sprintall, 2008) or CMIP models (e.g.

Armour et al., 2016; Frölicher et al., 2015; Swart et al., 2018). Argo and model results are howe-

ver limited by the low spatial resolution of the dataset used, the widely spread locations of the

measurements, or the limits of modelling in the polar regions. The ship-based studies, on the

other hand, can also be sensitive to irregular sampling throughout the years and seasons.

Still, these studies allowed the establishment of several temperature trends among various

regions and water masses of the Southern Ocean. A strong warming trend north of the ACC was

associated with the positive SAM index trends (Gille, 2008; Giglio and Johnson, 2017; Gao et al.,

2018; Swart et al., 2018). At the same time, the increase in wind forcing, potentially associated

with a sea ice and ice shelves induced increase of freshwater fluxes caused a surface cooling

in the subpolar Southern Ocean (Schmidtko et al., 2014; Haumann et al., 2020; Rye et al., 2020;

Doddridge et al., 2021; Armour et al., 2016). Under the surface, the CDW have been found to be

warming and rising toward the surface at a slow rate (Schmidtko et al., 2014).

In this chapter, I evaluate the emergence of temperature trends of the upper layer of the

Southern Ocean from interannual variability. This is done using in situ measurements, from

25-years of eXpandables BathyThermographs (XBTs) sampling across the Southern Ocean bet-

ween 1992 and 2017, between Hobart (Tasmania) and Dumont d’Urville (Antarctica). This da-

taset covers the entire meridional extent of the Southern Ocean 6 times a year for 25 years. It

represents a unique opportunity for revisiting observation of temperature trends and allows for

the first time to estimate how the computed trends compare to interannual variability. It also

allows to properly remove the impact of the seasonal cycle on the observed Southern Ocean

trends.
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Southern Ocean in-situ temperature trends over
25 years emerge from interannual variability
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Despite playing a major role in global ocean heat storage, the Southern Ocean remains the

most sparsely measured region of the global ocean. Here, a unique 25-year temperature

time-series of the upper 800m, repeated several times a year across the Southern Ocean,

allows us to document the long-term change within water-masses and how it compares to

the interannual variability. Three regions stand out as having strong trends that dominate

over interannual variability: warming of the subantarctic waters (0.29 ± 0.09 °C per decade);

cooling of the near-surface subpolar waters (−0.07 ± 0.04 °C per decade); and warming of

the subsurface subpolar deep waters (0.04 ± 0.01 °C per decade). Although this subsurface

warming of subpolar deep waters is small, it is the most robust long-term trend of our

section, being in a region with weak interannual variability. This robust warming is associated

with a large shoaling of the maximum temperature core in the subpolar deep water (39 ±

09m per decade), which has been significantly underestimated by a factor of 3 to 10 in past

studies. We find temperature changes of comparable magnitude to those reported in

Amundsen–Bellingshausen Seas, which calls for a reconsideration of current ocean changes

with important consequences for our understanding of future Antarctic ice-sheet mass loss.
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The Southern Ocean has been rapidly changing over the past
decades with widespread consequences for the global cli-
mate. It has stored an outsized amount of heat associated

with climate change that has been extracted from the atmosphere
and stored in its subsurface water-masses1,2. The Southern Ocean
alone has stored 35–43% of the global upper 2000m ocean heat
gain from 1970 to 2017, and an even greater proportion in recent
years, with an estimate of 45–62% from 2005 to 20172. This heat
storage, as well as concomitant change in its vertical stability due
to change in surface salinity3–5, translates into significant warming
of subsurface water-masses6. The overall water-mass warming
since 1970 is composed of significant warming north of, and
within, the eastward flowing Antarctic Circumpolar Current7–9

(ACC), and slight cooling observed in the surface subpolar
waters10. Some regions show slight warming and uplifting of the
subpolar Upper Circumpolar Deep Waters (that lie directly off-
shore the Antarctic continental shelf), threatening to invade onto
the continental shelves with drastic potential consequences for the
melt of Antarctic Ice Shelves and subsequent global sea level rise11.

Despite those emerging results, there are inherent limitations
in our past and current observation system that pose a strong
limitation in our confidence of any of these climate-scale changes
that occurred in the Southern Ocean12,13. For most changes in the
Southern Hemisphere, it remains unclear whether the natural and
interannual variability can cause the observed change or over-
whelms the forced response13. A recent study based on numerical
simulations suggests that warming north of the Antarctic Cir-
cumpolar Current is largely human induced and overwhelms the
natural variability14. But this remains one study using one single
climate model, and our limited confidence in the representation
of subpolar Southern Ocean processes in climate models drasti-
cally hampers our confidence at higher latitude2. Observations are
needed, more than in any other region, to shed more light on
long-term ocean trends and understand how they compare to
natural and interannual variability.

In this paper, we unlock these limitations by presenting an
observation dataset of the most frequently repeated and longest
time-series of a temperature section across the Southern Ocean in
the upper 800 m, from its northern boundary to Antarctica. The
temperature section, referred to as Section IX28, is the longest of
the three long-term high-resolution repeat upper ocean XBT
temperature monitoring lines that have made observations of the
seasonal heating cycle across the Southern Ocean15. IX28 has
been repeated several times a year since 1992 at 140°E, from
Hobart, Tasmania to Antarctica (Fig. 1a), providing us with a
unique 25-year temperature time-series to robustly estimate
summer temperature changes consistently across an entire mer-
idional section, and document from observations how tempera-
ture changes compare to typical interannual variability.

Results
25-year Climatological state and long-term change. Based on
the 148 repeats of the same section, we construct a summer
temperature climatological mean over the 25 years (since
November 1992), which shows the main Southern Ocean water-
masses and the fingerprints of the main fronts associated with the
Antarctic Circumpolar Current (Fig. 1b; see “Methods”). The
warmest water-masses on the section, the Subtropical Water
(STW) and SubAntarctic Mode Water (SAMW) are located in the
northern part of the transects. Their southern extent is limited by
the Subtropical Front (11 °C at 150 m16) and the Subantarctic
Front (strongest temperature gradient between 3 and 8 °C at
300 m depth17), respectively. SAMW is found down to 600 m
depth, beneath the summer mixed layer, consistent with previous
studies18,19. Antarctic Surface Waters (AASW) are located in the

upper 250 meters of the Southern Ocean and south of the Polar
Front (most northern extent of the subsurface 2 °C water20).
AASWs are composed of a remnant subsurface tongue of cold
water produced in winter21,22 (Winter Water), and warmer sur-
face waters produced in summer23,24. Below the Winter Water
tongue lies the less-dense Upper Circumpolar Deep Water
(UCDW), then the denser Lower Circumpolar Deep Water
(LCDW), that rises beneath the WW layer south of the Antarctic
Divergence around 63°S. These Circumpolar Deep Waters are
advected at depth around the Southern Ocean, and partly origi-
nate from North Atlantic Deep Waters25.

We are interested in how this temperature structure is
changing over time on a multi-decadal timescale. Over the past
decades, the temperature has been warming overall across the
section, but with a structure showing marked patterns, which are
related to the different water-masses of the region. The largest
warming reaching 0.4–0.8 °C per decade is observed on the
northern end of the section, north and within the ACC (region A
in Fig. 2b) in the subtropical waters and subantarctic Mode
Waters. In contrast, on the southern end of the section, a cooling
trend of 0.1–0.3 °C per decade is observed in the coolest water-
mass of the region (region B in Fig. 2b), extending from the
surface to about 200 m, in a region where the interannual
variability has similar magnitude. Hints of cooling trends are also
apparent in the surface layer further north, but the trends are
dominated by interannual variability north of ~61°S in the surface
layer. Deeper in the water column, the Upper Circumpolar Deep
Water layer (region C in Fig. 2b) shows subtle warming trends of
around 0.05 °C per decade from 62.5°S to 52°S, but here, the
interannual variability is weak.

The temperature change structure shown across the section
concurs well with past studies that have investigated long-term
temperature trends in the Southern Ocean (ref. 6, and references
therein). Here, we however bring an important step forward in
our understanding of past changes by showing that Southern
Ocean water-mass temperature trends is robust over a 25-year
period. But more importantly, we are able to estimate the typical
interannual variability (referred to here as noise) to better
interpret the observed trends over a 25-year period (referred to
here as signal; see Methods). In other words, from observations in
the Southern Ocean, we are able to estimate whether the signal of
temperature change has emerged above the interannual variability
noise. A latitude-vertical section of this trend signal-to-noise ratio
is shown in Fig. 2c. The three regions highlighted above clearly
stand out, experiencing temperature changes that emerge above
the background interannual variability over the past 25 years.
Counter-intuitively, it is in the Upper Circumpolar Deep Water
layer, where the long-term change amplitude is the lowest of the
section, that the signal-to-noise ratio is the largest because
interannual variability is actually very weak. This clearly pinpoints
that, while subtle, the observed temperature increase in the Upper
Circumpolar Deep Water represents a radical deviation from its
mean state. In other water-masses with a more recent surface
connection, the 25-year trends are weaker compared to the typical
interannual variability. A signal-to-noise ratio lower than one does
not mean trends are insignificant; rather it remains unclear
whether the measured long-term change reflects a robust change
departing from its typical interannual variability. A robust long-
term trend might be hidden behind a low signal-to-noise ratio, but
one would have to accumulate more years of repeat observations
to observe its emergence above the interannual noise.

Water-mass temperature time-series and forcing. We next
compute time-series and associated trends, averaged over the
three regions identified above where trends overcome both their
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standard error, and the typical interannual variability: in the
subantarctic and subtropical region north of 52.5°S (region A); in
the near-surface subpolar region, in the upper 200 m, south of
61°S (region B); and in the subsurface Upper Circumpolar Deep
Water, deeper than 250 m, and between 62.5°S-55°S (region C).

When averaged over the entire Subantarctic and Subtropical
Mode Water region (region A), the temperature has increased
significantly by 0.29 ± 0.09 °C per decade, with a 25-year signal to
noise ratio of 2.40, indicating a trend much greater than the
estimated interannual noise (Fig. 3a). Locally the trend can be as
high as 0.8 °C per decade (Fig. 2b), with the strongest warming
organized in deep-reaching localized vertical bands. These
structures may be related to more prevalent warm-core eddies

or small meanders towards the end of the time series. We note
that the computed warming is similar when analyzed in
streamwise coordinates following altimetric-derived meanders
or in geographical coordinates26.

Based on a shorter 13-yr time-series, Morrow et al.27 proposed
that this warming was due to the southward movement of both
the STF and the SAF, reflecting the consensus when the study was
published that ACC fronts were shifting southward. After a
decade of scientific debate, a new consensus emerges that on a
circumpolar average, the SAF has been shown to be stable and
not moving meridionally in the last decades2,28 and that the
warming might instead be due to increased heat uptake from the
ocean surface19,29. While the warming trend is relatively constant

Fig. 1 SURVOSTRAL program transects and summer mean temperature section. a SURVOSTRAL observations over 25 years between Hobart and
Dumont D’Urville (DDU), and bathymetry of the region. The mean trajectory is in dashed black. Data used in this study are in gray. A schematic circulation
is represented. White, black, and red arrows are respectively the Antarctic Circumpolar Current, the Antarctic Slope Current and Australian-Antarctic Basin
gyre, and the East Australian Current. b 25-year average of the summer (NDJF) temperature sections. Average position of the fronts (SB: Southern
Boundary, S-SACCF: Southern Branch of the Southern Antarctic Circumpolar Current Front, N-SACCF: Northern Branch of the Southern Antarctic
Circumpolar Current Front, PF-S and PF-N are the Southern and Northern branches of the Polar Front, SAF: SubAntarctic Front, STF: SubTropical Front) and
principal water-masses positions are indicated (LCDW: Lower Circumpolar Deep Water, UCDW: Upper Circumpolar Deep Water, AASW: Antarctic
Surface Water, SAMW: SubAntarctic Modal Water, STW: SubTropical Water). Black contours show the mean isotherms.
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over the 25-year period, there are periods of distinct cooling, for
example, in 1996 and 2005, and stronger warming in 2001–2002
and in 2014–2016. Similar interannual variability is also evident
in the sea-surface temperature fields, with a correlation of 0.63
between SST and the Region A temperature time series, and a
slightly lower 25-yr trend of 0.15 ± 0.09 °C per decade, consistent

with the trend distribution within the zone (Fig. 2b). Part of the
observed interannual variability might be due to intermittent
incursions of subtropical waters carried by the Tasman Sea
extension south of Tasmania, impacting the extent of STW, as
well as local eddy activity around the SAF30–32 (See Supplemen-
tary Fig. 1).

a

b

c

[B]

[C]

[A]

[B]

[C]

[A]

Fig. 2 Temperature trend section and its ratio with interannual variability. a Summer Reynolds SST Trends (°C/dec) from 1993 to 2017 (NDJF). Black
box indicated the region of SURVOSTRAL transects. b Temperature trends (°C/dec) from SURVOSTRAL XBT data. Hatched data represent zones where
abs(Trends*ΔT)/STD < 1, ΔT being the length of the record; i.e., where the trends are smaller than the interannual variability over the 25 years of
measurements. c Ratio between the trend signal and interannual variability. Position of zones [A], [B], and [C] discussed in this study is represented by the
dotted boxes in (b, c).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20781-1

4 NATURE COMMUNICATIONS |          (2021) 12:514 | https://doi.org/10.1038/s41467-020-20781-1 | www.nature.com/naturecommunications

2. Southern Ocean In-Situ Temperature Trends Over 25 Years Emerge from Interannual
Variability

55



The overall cooling in the surface subpolar waters close to
Antarctica, from the surface to 200 m and from 66°S to 61°S
(region B), has a non-significant trend of −0.07 ± 0.04 °C per
decade (Fig. 3b, p-value 0.07), with a signal-to-noise ratio of 1.16.
The cooling appears mostly associated with the coolest waters in
the regions (Fig. 2b); Figs. 1b and 2b, c both show water-mass
cooler than 0 °C as standing out at the southern edge of our
section, with consistent long-term change. When subjectively
isolating only data points cooler than 0 °C, the cooling is
significant and slightly more marked (−0.09 ± 0.05 °C per decade,
signal-to-noise ratio of 1.49; Fig. 4a). This cooling of subpolar
waters is also accompanied by a freshening of the surface waters
over the same period, as well as an increase in sea-ice cover5.
Region B has a lower signal-to-noise, and the interannual
variability in temperature, SSS and sea-ice is impacted by local
coastal circulation changes and increased ice flow from 2011
onwards, following the Mertz Glacier calving just upstream33–35.
Such high-latitude cooling over the upper 200m in region B is
also consistent with local sea surface cooling observed from
satellite SST observations (Fig. 3b, correlation r= 0.80), and more
generally with the surface cooling of a large part of the Southern
Ocean that have been observed from observations in the subpolar
waters over the past three decades10,13,36. This cooling has been
explained by the increased stratification associated with freshen-
ing of the surface layer which would tend to reduce mixing with
the slightly warmer underlying Lower and Upper Circumpolar
Deep Water4,10,37–39. Indeed, a trend in surface water freshening

has been observed over the same period near 140°E5. This has
been linked to increased sea-ice cover, particularly after the Mertz
Glacier calving in 2010 and enhanced by a large-scale northward
shift of the zero-zonal wind position from 1999 onwards, that
increased the Ekman-driven sea-ice convergence near the coast5.

Interestingly the winter water tongue extending further north
does not show a similar cooling. Small pockets of cooling exist but
the WW trend signals are dominated by interannual variability
(0.22 signal to noise ratio). Even when focusing only on the
temperature of the core of the Winter Water layer, defined as the
layer with temperature colder than 2 °C between 55°S and 61.5°S,
the large interannual variations overwhelm any long-term
change, with peak-to peak temperature ranging from 0.40 to
0.65 °C (Fig. 4b). These temperature variations within the Winter
Water core are positively correlated (r= 0.70) with the sea surface
temperature of the previous winter further upstream in the
subpolar Australian-Antarctic basin (120–145°E; 57–61°S)
(Fig. 4b), where the Winter Waters were modified at the surface
(see Supplementary Note 1).

The upper layer of the Upper Circumpolar Deep Water from
61°S to 55°S, and over 250–450 m depth (region C) exhibits a
small but significant overall warming trend of 0.04 ± 0.01 °C per
decade (significant, Fig. 3c), associated with a high signal to noise
ratio of 2.58. Consistently, the time-series show relatively weak
interannual variability, but a steady warming of the layer. The
maximum temperature increase sits directly below the seasonally
variable surface layer, in the upper and warmer part of the

Fig. 3 Temperature anomalies time-series and trend per sector. a–c Show the evolution (black line) and trend (red line) of the temperature anomalies
within zones [A], [B], and [C], respectively. Green line is the NDJF SST Reynolds anomalies interpolated onto the SURVOSTRAL line for each zone. Errors
bars are the standard deviation of the mean anomalies for each grid point within the zone.
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water-mass around 300–550 m (Fig. 2b). When the temperature
time-series is computed in this core of temperature maximum,
the warming trend is even greater, reaching 0.06 ± 0.02 °C per
decade, with a signal to noise ratio of 2.44 (when excluding 2012
which appears as a clear warm outlier, the trend is the same as in
the full region C, being 0.04 °C ± 0.01 °C per decade, but with a
higher signal to noise ratio of 3.79). Previous authors have
suggested the warming of the Upper Circumpolar Deep Water
might be driven by increased stratification at the base of the
Winter Water layer due to freshening, which would reduce
mixing between the two layers and heat removal from the Upper
Circumpolar Deep Water to the atmosphere10,40,41. Since we have
only temperature profiles, the role of the salinity stratification
cannot be verified directly. However, in accordance with this
hypothesis, we observe larger warming in the upper part of the

layer, directly underlying a near-surface water mostly affected by
interannual variability (Fig. 4b) but with a few hints of local
cooling (Fig. 2b). In addition to the warming of Upper
Circumpolar Deep Water, the depth of the core of maximum
temperature is observed to shoal at a significant rate of 39 ± 9m
per decade (Fig. 4d), three to ten times higher than previously
reported (5–10 m per decade11), and within the error envelope of
the rate observed in West Antarctica (50 ± 18m per decade11).
The cause of the shoaling of the maximum temperature layer
remains unclear. It could be related to long-term changes in
Ekman pumping11, but using the atmospheric reanalysis ERA-5,
we find only a very subtle long-term trend in local upward Ekman
pumping, which is not statistically significant. Other potential
mechanisms, e.g., associated with turbulence-driven shoaling of
the surface layer, remain to be tested in a future study.

Fig. 4 Time-series of temperature and characteristics of specific water mases. a Zone [B] anomalies, restricted to the gridpoints where the 25 years-
mean temperature transect <0. b Black line is the WW temperature anomalies from SURVOSTRAL XBTs between 54 and 61.5°S, restricted to the Tmin
gridpoints where the 25 year-mean temperature transect is less than 2 °C. Yellow line is the MJJA SST anomalies upstream of SURVOSTRAL WW,
between (120–145°E and 57–61°S). c CDW maximum temperature evolution (see “Methods”). Red dots are the years the linear trend is computed on; i.e.,
years when there is at least 2 months with data on average for each grid point for NDJF months. d CDW maximum temperature depth (see “Methods”).
Errors bars are the standard deviation of the mean temperature anomalies (depth for panel d) for each grid point within the zone.
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Discussion
Our findings carry important implications for our understanding
of Southern Ocean temperature change, a region of the world that
remains poorly observed and understood, though with a pivotal
role in global climate. Using a unique observation time-series
repeated several-times per year over the past 25 years across the
Southern Ocean, we document the temperature trend over the
upper 800 m, and shed light on three main regions where the
temperature change dominates over typical interannual varia-
bility. Interestingly, only the subtropical region, north of the
Antarctic Circumpolar Current (region A) has been shown to be
associated with a human-induced forced signal that emerges over
natural variability14, though recent work suggests that forced
warming in the sub-surface subpolar ocean does emerge over
natural variability by the end of the 20th century or early decade
of the 21st42. We note that these studies are based on climate
models with significant limitations in their representation of the
Southern Ocean2, hence it is important to provide robust
observational targets for future improvement.

The repeat meridional temperature sections used in this study
cross a Southern Ocean region of inter-ocean exchange, where
waters from the Pacific can flow south of Tasmania into the
Indian Ocean30,43. The northern part of the IX28 section exhibits
strong interannual variations in the temperature data, impacted by
ENSO/SAM climate modes and eddy movements across 140°E44.
Despite this, our 25-year trend calculations have a strong signal-
to-noise, with the upper ocean warming trend exceeding the
interannual variations. The warming of 0.29 ± 0.09 °C per decade
north of the ACC is in accordance with previous studies7–9 and
with other parts of the Southern Ocean45; Southern Ocean cir-
culation being essentially zonal, subsurface trends are expected to
be zonally consistent all-around Antarctica. Close to the Antarctic
continent, during the austral summer heating cycle, our tem-
perature profiles confirm that the widespread surface cooling
around Antarctica observed with satellite SST data extends to
around 200 m depth at 140°E.

One of the most important results of our study is the large
warming and shoaling of the subsurface temperature maximum
in the subpolar Southern Ocean, in the Upper Circumpolar Deep
Water. This water-mass sits directly below the surface layer and
mostly flows eastward, feeding the Pacific basin, where major
increase of basal melt has long been identified further down-
stream in the Amundsen–Bellingshausen sector46. In addition, we
note that some of the water-masses at the southern end of the
section, though probably south of the maximum Upper Cir-
cumpolar Deep Water warming we observe, might be part of a
cyclonic Australian-Antarctic gyre47, with direct influence on the
Wilkes basins that has recently been shown to be associated with
important mass loss of many glaciers of this region46,48–50. Our
25-year study confirms two major threats (significant warming
and shoaling of Upper Circumpolar Deep Water) that may
enhance the ice-shelf melting downstream, with potential dra-
matic impacts for future global sea-level. Both of these changes
that we observed at 140°E have been substantially underestimated
in this part of the Southern Ocean until now and must
imperatively be taken into account in future ice-sheet modeling
predictions51, and more generally when developing future
climate change narratives. Our observational study provides a
basis for validating such models and contributing toward these
developments.

Methods
SURVOSTRAL Program. The dataset of temperature used in this study consists of
25 years (November 1992 to February 2017) of XBT profiles on a section from
Hobart (Tasmania, 42.9°S, 147.3°E) to Dumont d’Urville (Adelie Land, 66.6°S,
140.0°E), as part of the SURVOSTRAL project (Fig. 1a, https://doi.org/10.18142/

172). Measurements are taken from the French Antarctic resupply vessel L’As-
trolabe, with about six transects per year between late October and early March.
Depending on ice and weather conditions, XBT measurements are sampled every
35 km, with 18 km sampling across the energetic polar frontal region. Temperature
profiles extend down to 900 meters depth with a vertical resolution of about
0.7 meters. The XBT temperature profile accuracy is +0.1 °C. XBT profiles over the
entire series have been corrected for temperature and depth biases depending on
the probe type, following refs. 52,53. Corrected XBT measurements are available
here: http://thredds.aodn.org.au/thredds/catalog/IMOS/SOOP/SOOP-XBT/
PRODUCTS/BiasCorrectedData_ChengEtAl_2014/Line_IX28_Dumont-d-Urville-
Hobart/catalog.html.

Gridding process. In order to compute anomalies and trends, 10238 XBT profiles
are interpolated onto a regular line from North to South, following the mean path
of the Astrolabe’s transect, with 0.5° resolution in latitude (increasing to 0.25° in
the polar frontal zone from 49 to 54°S), with 2 m depth resolution down to 800 m
depth. Results are robust when changing the vertical resolution and interpolation
type. XBT profiles sampled further than 3° in longitude from the mean path of the
Astrolabe are removed from the analysis. In the following sections, we will discuss
three types of products on this regular grid.

1. Climatological monthly mean temperature sections are calculated for each
month during the austral summer ONDJFM period and averaged over 25
years. Since the sections are not evenly distributed within a given month,
each monthly temperature section is assigned to the median sampling day of
all profiles in the month. These values are then linearly interpolated onto
daily values before calculating temperature anomalies.

2. Temperature anomaly profiles are constructed by subtracting the corre-
sponding climatological daily value at each latitude and depth from each
measurement. These anomalies allow us to construct a gridded section of
interannual temperature anomalies and the temperature anomaly trends for
the 25-year observation period.

3. Annual austral summer (NDJF) mean temperature sections are constructed
for each year from 1993 to 2017 (Supplementary Fig. 2). This product is
only used in this study to locate the CDW temperature maximum zone.

The data distribution and the main data processing techniques for these three
products are provided in the supplementary information. The monthly mean
temperature sections from October to March (Supplementary Fig. 3) calculated
from the 25-year time series are consistent with those calculated by ref. 23 based on
only 8-years of SURVOSTRAL data. This highlights that the seasonal warming
cycle is quite stable in this region on a long-term average. The water-masses with
the strongest seasonal changes are at the surface: the Antarctic Surface Waters
(AASW) south of the Polar Front show the largest monthly mean variations over
the summer warming cycle with coolest waters observed in sampled months closest
to winter, late Oct–Nov. In the north of the section, there is a seasonal southward
and deepening expansion of Subtropical waters throughout the summer season.
We note that even if measurements are sampled only in summertime, computed
trends can be considered as annual trends. Indeed, the main seasonal variations are
in the surface layer, and XBT temperature profiles’ surface values are consistent
with satellite SST values. Finally, SST trends computed on NDJF months are
coherent with SST trends computed on full year. This shows that for the surface
layer, there are no wintertime trends that are counteracting the summer trends, and
observed trends are consistent for the whole year for the full time series.

Trend section and zone trends. The temperature trend latitude-depth section is
constructed by computing a linear trend using the anomalies available at each grid
point. Each profile is associated with one latitude in the grid and is interpolated
onto the depth grid. No interpolation was made in latitude to avoid interpolation of
anomalies over large data gaps (e.g., during storms), so trends are robust to varying
data distribution. The yearly anomalies are weighted by 1/std of all of the anomalies
obtained during the corresponding season. The number of measurements used to
compute the 25-year trends for each grid point is represented on Supplementary
Fig. 4. Each grid point is sampled by between 3 and 10 profiles per year. With an
XBT accuracy of 0.1 °C, it translates into a standard error from the mean of
~0.03–0.06 °C, allowing us to resolve changes over 25 years of 0.001–0.002 °C per
year, or 0.01–0.02 °C per decade. This value is lower when computing trends over
larger regions A, B, and C. Surface trends are consistent with SST Reynolds54

product trends on summer NDJF periods (Fig. 2a, r= 0.70), and SST Reynolds54

full year trends (r= 0.70). Trends averaged over zones [A], [B], and [C] are
computed in the same way, but all anomalies available in each zone are averaged
for each season. The trend significance is computed using a Mann-Kendall test.
Trends with p-value lower than 0.05 are considered significant, and their con-
fidence interval is computed as their standard error.

CDW maximum temperature values and their depths are computed by selecting
the warmest 10% temperature grid points on each austral summer temperature
section within zone [C]. The mean depth of these selected grid points is then the
depth of maximum CDW temperature, and the mean anomalies of these selected
grid points gives the evolution of the temperature maximum. CDW maximum
temperature value and depth trend is computed only on the years when there is at
least 2 out of 4 months with measurements on average for the summer NDJF mean
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for all the subset grid points. Missing data in 1993 occurs since data is available in
less than 10% of the grid subset.

Trend (signal) to interannual variability (noise) ratio. The amplitude of the
trend compared to the strength of the interannual variability is evaluated for each
zone and grid point, by computing the signal to noise ratio. Our signal is the
temperature evolution following the linear trend over the 25 years, and our noise is
the standard deviation of the error between the trend and the measured
temperature:

If T is the temperature evolution throughout the ny= 25 years, and ax+ b its
linear regression, the signal to noise ratio S is computed as:

S ¼ ny � a
STD ax � Tð Þ ð1Þ

S represents the ratio between the trend and the interannual signal: if S > 1, the
trend signal is dominant compared to the interannual variation.

External data. We use NOAA monthly optimum interpolation (OI) satellite and
in-situ54 surface temperature data to verify the consistency of our XBT observa-
tions to surface changes in temperature.

ECMWF ERA5 monthly surface turbulent wind stress product is used to
investigate the effect of the wind on the temperature trends and variations (DOI:
10.24381/cds.f17050d7).

Data availability
Corrected XBT measurements are available here: http://thredds.aodn.org.au/thredds/
catalog/IMOS/SOOP/SOOP-XBT/PRODUCTS/BiasCorrectedData_ChengEtAl_2014/
Line_IX28_Dumont-d-Urville-Hobart/catalog.html. The datasets generated during the
current study are available with the DOI: 10.6096/11.
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Supplementary Note 1: Definition of Winter Water Upstream Zone:    

In our study, Winter Water is defined as the water-mass with a temperature lower than 2°C 

between 54°S and 61.5°S. To find the winter origin of this Winter Water along the mean 

SURVOSTRAL line near 140°E, we used backward-flowing Lagrangian trajectories derived 

from surface altimetric currents on the first day of November, December, January and 

February between 1993 and 2003. We found that 90% of SURVOSTRAL WW particles at 

140°E could be located within the surface mixed layer upstream in the previous winter (May 

to August) in the region centered at 57 - 61°S and 119°E and 146°E.  

 

Supplementary Note 2:  Zone A Interannual variations in SST and Subtropical water 

extent 

Supplementary Figure 1b shows how the extent of subtropical waters crossing our section 

(waters warmer than 11°C) varies in direct relation to the interannual upper ocean temperature 

changes in Zone A (correlation r=0.58).  

Cool anomalies in the Subantarctic zone were noted in SURVOSTRAL data during 1994-

1995, due to the persistence of cold-core eddies near 140°E separated from the SAF (Morrow 

et al., 2004), whereas the 1996 cool anomalies are influenced by a weaker input of STW from 

the Tasman Sea (Supplementary Figure 1b; Morrow and Kestenare 2014). Stronger warming 

events in 2001-2002 and in 2014-2016 have anomalously warm SST (Supplementary Figure 

1a). These years may be influenced by incursions of subtropical waters carried by the Tasman 

Sea extension south of Tasmania following large La Nina events, impacting the extent of 

STW crossing 140°E, as well as more warm-core eddies propagating through the region (Pilo 

et al., 2015; Morrow and Kestenare, 2014). 
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Supplementary Figure 1: Interannual variations in Sea Surface Temperature and 

Subtropical water extent. a. NDJF Mean sea surface anomalies on the SURVOSTRAL line 

within zone A bounds. b. Subtropical Water area within the transect. 

 

Supplementary Note 3: Austral summer mean temperature sections 

Mean temperature sections are calculated for each austral summer, from November to 

February (NDJF). A monthly mean section is calculated for each month and for each year, 

and the four monthly values of NDJF are then averaged to obtain the austral summer 

temperature section. This reconstruction was chosen since there are certain years with more 

missing data in one month than another (Supplementary Figure 5). The available profiles for 

each year are impacted by the distinct seasonal changes seen in Supplementary Figure 3.  For 

example, a simple austral summer average of all available profiles but with points missing in 

November would show an annual warming compared to the average NDJF conditions. To 

reduce the effects of this sampling bias, we replace the missing values at each point in the 

monthly section with the 25-yr monthly mean value. Note that this step is not applied for the 

anomalies. 
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Supplementary Figure 2 shows the austral summer mean temperature sections for each year 

from 1993 to 2017. Black regions have no data available for the entire austral summer, which 

occurred during the early voyages in 1992-1993 as the XBT system was being established, 

and south of 66°S. Hatched regions have only 2 out of 4 months with good observations, and 

the other months are filled with the 25-year mean monthly value. 
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Supplementary Figure 2: Austral summer mean temperature transects. Austral summer 

mean temperature structure from 1993 to 2017 based on SURVOSTRAL profiles from the 

months NDJF. Hatched areas are where climatological monthly mean had to be added at least 
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twice to compute the summer mean. Black contours show the mean isotherms of 0, 2, 5, 8 and 

11°C. 

Supplementary Note 4: Calculating monthly mean temperature sections 

Monthly mean XBT temperature sections are computed between October and March from the 

25 years of Austral Summer data (Supplementary Figure 3), following a similar method to 

that used in Morrow et al. (2008). XBT profiles are associated to a latitude box and 

interpolated linearly on the depth range of the study grid (see Methods), then all profiles 

available each month are averaged within a latitude-depth grid box. 

I. SOUTHERN OCEAN IN-SITU TEMPERATURE TRENDS OVER 25 YEARS EMERGE FROM

INTERANNUAL VARIABILITY

66



 

2. Southern Ocean In-Situ Temperature Trends Over 25 Years Emerge from Interannual
Variability

67



Supplementary Figure 3: Monthly temperature climatology. October to March monthly 

mean values based on SURVOSTRAL data from 1993 to 2017. Black contours show the 

mean isotherms of 0, 2, 5, 8 and 11°C. 

 

Supplementary Note 5: Number of measurements for each grid point 

The distribution of the number of measurements per grid box over the 25-years 

(Supplementary Figure 4) highlights the larger number of observations in the Northern part of 

the section; seasonal sea-ice is present in the region south of 62°S, particularly in October and 

November. 

 

Supplementary Figure 4: Number of measurements per grid point for the 25 years of 

SURVOSTRAL XBT data. Black dots on the x-axis shows the size of the grid points. The 

increase of resolution in the polar frontal zone between 49°S and 54°S is compensated by an 

increase in XBT sampling frequency in this zone. 

 

 

Supplementary Note 6: Temporal and Spatial repartition of XBT profiles 

Supplementary Figure 5 shows the number of XBT profiles used in the analysis over the 25-

year period, with valid data reaching at least 200 m (Note our analysis is based on 
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measurements up to 800m). The number of profiles varies by month (Supplementary Figure 5, 

left). Profiles are collected every 2h during the ship’s route (roughly 35 km separation), 

doubling to 1h sampling in the polar frontal zone (18 km separation) from 49-54°S. 

 

 

Supplementary Figure 5. Temporal and Spatial repartition of XBT profiles. For each 

sampling season: a. Number of days with at least one profile sampled within each month. b. 

Repartition of XBT profiles by latitude band. 
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Supplementary Note 7: Gridding and measurement error estimation 

The measurement error estimation is made by computing the standard deviation 

(Supplementary Figure 6) of multiple profiles from the same transect occurring within the 

same latitude-depth box. A standard deviation is computed only when there are at least 3 data 

points within the same grid point for each transect. This standard deviation is averaged over 

all transects on the full grid, in order to represent the gridding and measurement error 

estimation. 

 

 Supplementary Figure 6. Gridding and measurement error estimation.  Mean standard 

deviation of measurements sampled on the same grid point for one transect, based on all 

transects 

 

Supplementary Note 8: XBT data processing and selection along the SURVOSTRAL 

line 

XBT profiles were processed twice : 1) using the official UNESCO fall-rate processing 

(Hanawa et al 1995 55) available on the IMOS website 

(http://thredds.aodn.org.au/thredds/catalog/IMOS/SOOP/SOOP-

XBT/DELAYED/Line_IX28_Dumont-d-Urville-Hobart/catalog.html. ) and 2) with the more 

recent fall rate and depth correction (Cheng et al 2014 52) as recommended by the SOOP XBT 

panel ( http://thredds.aodn.org.au/thredds/catalog/IMOS/SOOP/SOOP-
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XBT/PRODUCTS/BiasCorrectedData_ChengEtAl_2014/Line_IX28_Dumont-d-Urville-

Hobart/catalog.html). Our trend results over the last 25-years across the Southern Ocean are 

similar when using either fall-rate correction. This reprocessing allowed us to show the 

stability and robustness of our results. 

 

XBT profiles with the most recent processing52 are selected based on their distance to the 

mean path of the transect. In order to avoid sampling regions with different dynamics, we 

remove profiles located more than 3° longitude away from the mean path, or samples east of 

142°E and south of 65.5°S. Over the 10238 vertical profile sampled, 614 have been discarded 

due to their location.  

 

SURVOSTRAL campaigns have DOI : 10.18142/172;  
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I. SOUTHERN OCEAN IN-SITU TEMPERATURE TRENDS OVER 25 YEARS EMERGE FROM

INTERANNUAL VARIABILITY

3 Conclusion of the chapter

In this chapter, I show that between 1992 and 2017, three distinct regions associated with

various water masses stand out as having significant temperature trends when compared to

interannual variability.

SAMW have experienced the most intense warming of the meridional section. The tempera-

ture change from the surface to 800 meters depth (the depth extent of the XBT measurements)

is 0.29±0.09 °C per decade, which is consistent with previous studies (Giglio and Johnson, 2017;

Gao et al., 2018). The temperature change was found to be 2.40 times higher than the magnitude

of interannual variability, showing the significance of this long-term trend.

During the same period,a surface cooling is observed in the southernmost part of the me-

ridional section, evaluated at −0.07±0.04 °C per decade, also consistent with previous studies

(Schmidtko et al., 2014; Haumann et al., 2020; Rye et al., 2020). The amplitude of the observed

change over 25 years is similar to the amplitude of typical interannual variability. This surface

cooling reaches 200m depth and was found to be even higher for the coolest water masses,

reaching −0.09±0.05 °C per decade, and 1.5 times the magnitude of interannual variability.

The upper layer of the CDW experienced a smaller but consistent warming, with a 0.04±0.01

°C warming trend from 200 to 450m. This relatively slight warming is actually drastic when com-

pared to typical interannual variability (3.79 larger). By tracking the CDW temperature maxi-

mum over the 25 years, we also found it to be shallowing with a trend of 38.5±9.4 meters per

decade, an amplitude 3 to 10 times higher than previously found in other studies (Schmidtko

et al., 2014).

One important challenge faced in producing this study was to properly remove the effects

of the seasonal cycle of the hydrographic structure of the upper layer. Getting rid of the seaso-

nal cycle of the temperature structure was made possible thanks to the high number of profiles

collected each summer month between 1992 and 2017. From all these profiles, a daily summer

climatology over the 25 years was constructed and removed from each individual profile to ob-

tain anomalies from this climatology. The supplementary material of the paper presented in

the preceding section allows appreciating the irregularity of the measurements between years

(Figures S2, S5a-b), between locations in the transect (Figures S2, S4, S5b).

The results presented in this chapter demonstrate that the Southern Ocean system is cur-

rently changing significantly, with an amplitude overpassing typical interannual variability.

These changes are due to various mechanisms depending on regions and depths. The dataset

used in this study is not sufficient to dig into the details of each process. In the subpolar sector,

the effects of freshwater fluxes and their changes on how they drive subpolar overturning cir-

culation, upper ocean stratification, and how they can impact temperature change have been

put forward in recent analysis (Schmidtko et al., 2014; Haumann et al., 2020; Rye et al., 2020;

Sallée et al., 2021; Pellichero et al., 2017b). In the northern region, the effect of winds, increa-

sing heat fluxes, and change in horizontal circulation have been discussed over the yearsSwart

et al. (2018); Gao et al. (2018); Gille (2008). In comparison, much less is known about the impact

of the subpolar ocean horizontal circulation on temperature change ; similarly, the lack of un-

derstanding of the subpolar ocean horizontal circulation prevent us to discuss which regions
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3. Conclusion of the chapter

of the Southern Ocean continental shelf might be impacted by the large subsurface warming

of CDW observed here. This motivates the remainder of my thesis, where I strive to improve

our understanding of the horizontal circulation of the subpolar Southern Ocean from satellite

altimetry.
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II. SOUTHERN OCEAN SEA LEVEL ANOMALY IN THE SEA ICE COVERED SECTOR FROM

MULTIMISSION SATELLITE OBSERVATIONS

1 Preamble

In the previous chapter, I used in-situ measurements to document the temperature changes

in the Southern Ocean. I then discussed how a satellite altimetry-derived dataset may allow us a

better understanding of the context of these changes and the mechanisms driving them. Here,

I exploit the opportunity of the recent improvements in the processing of satellite altimetry in

the ice-covered regions (Quartly et al., 2019) and complete them by using the data merging and

mapping techniques intensively used in the open ocean for the operational ocean topography

datasets (Taburet et al., 2019).

To date, there are only two gridded sea surface topography products in the ice-covered

oceans (Armitage et al., 2018; Dotto et al., 2018). These datasets are based on Cryosat-2 along-

track measurements and are both mapped the same way on monthly grids. The two products

are therefore very similar. Despite their relatively low spatial and temporal resolution they allo-

wed bringing new insights into the ice-covered Southern Ocean variability and dynamics. Ho-

wever, we believe that these products can be improved. Since their publication, much progress

has been made in the processing of radar altimeter measurements in the ice-covered oceans

(Quartly et al., 2019). Also, more satellites sample the Southern Ocean up to the coast of Antarc-

tica, and global SLA products such as DUACS (Taburet et al., 2019) demonstrate the strength

of merging along-track measurements from multiple altimeters into a unique high-resolution

gridded dataset. Using existing state-of-the-art processing techniques, along with including

other satellites in the computation may allow a dramatic increase of the capacities of the da-

tasets. I took this challenge as part of my thesis, with the goal to improve the existing SLA da-

tasets of the subpolar Southern Ocean. My main motivation here is to be able to observe more

accurately the large-scale processes governing the Southern Ocean variability, including its ice-

covered parts, and to allow the observation of smaller-scale processes to determine their role in

the Southern Ocean system.

To describe the dataset that has been developed in the context of this thesis, I first present

the technology of satellite altimetry, and the details of the processing steps and corrections nee-

ded to compute SLA from the waveform obtained at each measurement point. Satellite alti-

metry is a well-proven but complex technique allowing the retrieval of the ocean surface to-

pography. The distance between the sea surface and the satellite is computed using the two

time-travel duration of the radar wave, emitted from the satellite to the sea surface, and scat-

tered back to the satellite. This time travel is then corrected from instrumental, environmental,

and geophysical effects. The sea surface height is then computed by subtracting the distance

between the sea surface and the satellite to its orbit.

I then present the specificities of this technique when applied in sea ice regions, for the re-

covery of the ocean topography in the leads. Measurements obtained in the leads must first be

identified. Echoes retrieved from the leads are very distinct from the ones retrieved on other

oceanic surfaces. These measurements are obtained in sea ice regions, and the sea ice echoes

must be discarded for the computation of ocean surface topography. This identification is cal-

led the waveform classification. The distinction between the open ocean and leads waveforms

76



1. Preamble

also induces issues with the retracking step, that is the step of deducing from the waveform

the two time-travel of the radar wave between the satellite and the sea surface. Indeed, specific

retracking methods have to be used for the leads.

The next important step is the mapping of the along-track measurements. I introduce the

mapping process and how it was adapted from the open ocean product (Taburet et al., 2019) to

this Southern Ocean regional dataset.

Lastly, based on the previously presented methods and considering the specificities of high

latitude processings, I present the Southern Ocean Sea Level Anomaly product developed in the

context of this thesis, its validation, and error estimation.
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2 Radar Altimetry in the ice-covered Southern Ocean

2.1) Radar Altimetry Principle

In the general introduction, I presented the principle of the satellite altimetry technique

and its evolution over time. Here, I introduce the technical aspects of the satellite altimetry

technique for the retrieval of ocean topography. This introduction is more an overview of the

techniques involved in the satellite altimetry processing, rather than a fine and exhaustive des-

cription of the system.

Satellite altimetry is a technique able to measure the sea surface topography, from radar

waves emitted by a satellite. The satellite emits between 20 to 40 radar waves per second at the

nadir along its track. The wave propagates in the atmosphere and is backscattered toward the

satellite at the sea surface. The time travel of the radar wave is then used to compute the dis-

tance between the satellite and the sea surface. The orbit of the satellite being known thanks

to the Precise Orbit Determination (POD) system, by correcting the bias induced by the at-

mosphere and the sea state, it is possible to compute the Sea Surface Height (SSH) from the

ellipsoid.

2.2) Along-Track processing

Radar measurement principle

Radar measurement consists of the emission of a radar pulse toward the sea surface and

the reception of the backscattered signal. These pulses are emitted at the Pulse Repetition Fre-

quency (PRF) frequency at the nadir of the satellite (18kHz for Ku band satellites, 36kHz for

Ka band satellites). The returned echo consists of the time evolution of the received power of

the backscattered signal (Stammer and Cazenave, 2018), called "waveform". They are averaged

over frequencies between 20 and 40Hz. These waveforms are used to compute the epoch (time

delay of the return of the echo in the recieving window) and therefore to deduce the range (dis-

tance between the altimeter and the sea surface). But various geophysical parameters can also

be extracted from the waveforms, such as the wind amplitude (chelton 1985, monaldo) or the

Significant Wave Height (SWH) (monaldo). The extraction of information from the waveform

is called retracking. Open ocean echoes, usually called “Brownian echoes”, are represented in

Figure II.1 (yellow pannels Stammer and Cazenave, 2018). The emitted signal has a spherical

shape toward the sea surface. While no signal reaches the sea surface, the backscattered ampli-

tude is zero. Then when the tip of the sphere meets the sea surface, a small part of the signal is

backscattered, depending on the significant wave height (Figure II.1b). Then, from Figure II.1b

to Figure II.1c, there is a step of increasing amplitude with time. This part of the waveform is

called the leading edge of the echo. The amplitude then reaches its maximum as a bigger part

of the signal reaches the sea surface at the same time. It then decreases according to the shape

of the antenna gain and the wind amplitude (Figure II.1d). This decreasing part of the echo is

called the trailing edge.
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FIGURE II.1: From Stammer and Cazenave (2018) : Altimeter echoes : This figure depicts the time evo-
lution of radar altimeter signal reflection on the sea surface. The upper panel provides a side view,
while the middle panel provides a top view of the phenomenon. The lower panel provides the am-
plitude of the backscattered received signal as a function of time (referred to as waveform). The red
part of the waveform curve corresponds to the echo reflection depicted in the upper panels. (From
http ://www.altimetry.info.)

The computation of the range, is derived from the epoch and relies on the retracking tech-

nique. This retracker fits a waveform model to each echo. There are a lot of different retracking

algorithms, estimating various parameters and for multiple purposes. For a Brownian echo,

most of the retrackers estimate between 3 and 5 parameters which can be time, significant wave

height, power, slope of the trailing edge of the waveform, skewness or mean square slope (Stam-

mer and Cazenave, 2018).

Geophysical corrections

Once the theoretical range is computed, several corrections must be applied. These correc-

tions consist of atmospheric and sea state corrections.

The atmospherical corrections allow considering the effects of the atmosphere on the pro-

pagation of the radar wave toward and from the sea surface. They include wet and dry tropos-

pheric corrections and ionospheric correction.

The wet tropospheric correction lies for the atmospheric humidity, mostly contained in the

troposphere, that strongly affects the signal emitted from the altimeter. The error induced by

this humidity on open ocean signals is evaluated thanks to a radiometer, which is a dedicated

instrument onboard of the satellite (Desportes et al., 2006). This multifrequency microwave ra-
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diometer measures the tropospheric water vapor content simultaneously with altimetric mea-

surements (Ubelmann et al., 2014). Over the ocean, the wet tropospheric correction varies from

a few millimeters at high latitudes to up to 40 cm at the Intertropical Convergence Zone (ITCZ).

The dry tropospheric correction represents the correction due to the dry gases in the tropos-

phere. This correction is the largest applied among all the geophysical corrections, with a mean

value of about 2.3 m, but with low temporal variations (Black and Eisner, 1984). This correction

is usually retrieved from ERA European Center for Medium-range Weather Forecast (ECMWF)

re-analysis.

The last atmospheric component of the geophysical corrections is the ionospheric correc-

tion. Indeed, the ionosphere induces dispersion of altimetric signals due to the presence of free

electrons which bias the signal (Stammer and Cazenave, 2018). This correction values can reach

up to 4cm (Callahan, 1984). As the ionosphere is directly affected by solar radiation, the bias va-

ries in time with the solar cycle.

Ocean corrections must also be applied to the signal, and are grouped under the name of Sea

State Bias (SSB). They consist of an electromagnetic bias, a skewness bias, and an instrument

tracker bias, and a bias induced by the backscattering difference between troughs and crests

of ocean waves. While it was originally corrected using a percentage of the Significant Wave

Height (SWH), recent corrections have been computed with a model, estimating the bias from

wind speed, radar cross-section, and SWH (Cheng et al., 2019).

Orbit Determination

Once the range of the satellite is computed and corrected, it must be substracted to the orbit

of the satellite to obtain the sea surface height over the Earth ellipsoid (Figure .10. The orbit is

determined by combining orbit modelling to direct observations.

Direct observations are retrieved through Doppler Orbitography and Radio-positioning In-

tegrated by Satellite (DORIS) and Global Navigation Satellite System (GNSS) systems. DORIS is

an uplink Doppler radio system, consisting in the emission of radio-frequencies signals from

ground-based orbit-determination beacons to on-board receivers (Auriol and Tourain, 2010).

The phase of the signal received onboard by the DORIS receiver allows a high precision deter-

mination of the altitude of the satellite, with only a few millimeters of error (Stammer and Ca-

zenave, 2018). About 50 transmitters are distributed on the whole surface of the globe, allowing

continuous monitoring of the satellite’s orbit. GNSS systems also consist in phase measure-

ments, but from GNSS satellites, also used for positioning of ground mobiles. Both techniques

require the estimation of unknown parameters, such as clock biases or atmospheric propaga-

tion parameters Stammer and Cazenave (2018).

However, direct observations are not sufficient and need a first estimation to reach suffi-

cient accuracy. This first estimation is obtained through a parametric model, combining obser-

vations and an optimization process of the tracking parameters, such as the orbital characteris-

tics, the satellite position, and velocity, or atmospheric parameters. The latest orbit estimation

models (POE-E) have an error of up to 8 mm (Taburet et al., 2019).
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The orbit determination has a direct implication on the error budget of the final SSH esti-

mation, as the orbit is one of the two distances needed for the computation of the ocean topo-

graphy. Therefore, errors in the orbit will be directly translated to the SSH estimation. A precise

estimation of the satellite altitude is thus essential.

Reference surface

The Sea Level Anomaly (SLA) is the time-varying component of the sea surface height that

is only dependent on the ocean circulation. SLA is computed by removing a Mean Sea Surface

(MSS) to the Sea Surface Height (SSH). MSS is therefore the mean sea surface height over the re-

ference ellipsoid. To retrieve the ocean circulation from the sea surface height, the time-varying

component, the SLA, must be added to the mean sea surface height over the geoid, the Mean

Dynamic Topography (MDT). Added together, the ADT and the MDT are the Absolute Dyna-

mic Topography (ADT), which is the full time-varying sea surface height related to geostrophic

circulation of the ocean.

Corrections needed for geostrophic currents computation

Before obtaining the SLA component relative to the circulation of the ocean, one must re-

move the direct effect of the dynamics of the atmosphere and the tides.

The effect of the dynamics of the atmosphere on the SLA is corrected by two components,

representing two distinct mechanisms. First, the effects of the low-frequency dynamics of the

atmosphere are corrected. They are related to sea level pressure variations of periods longer

than 20 days and are related to the response of the ocean to changing atmospheric pressure.

To correct this component, the inverse barometer is computed, which is the direct hydrostatic

response of the SLP on the SLA (FU 1995). This effect is evaluated at about a 1 cm decrease of

the sea surface for a 1 hPa increase of the atmospheric pressure and is computed directly from

European Center for Medium-range Weather Forecast (ECMWF) operational model Gaussian

grids. Second, the correction on the high-frequency atmospheric dynamics must be obtained.

It consists of a correction that considers high-frequency ocean response to high-frequency at-

mospheric pressure changes, but also the direct effect of the wind on the sea surface. This cor-

rection is evaluated by dedicated models (MOG2D ; Carrère and Lyard, 2003).

Several types of tide influence the topography of the ocean, and that must be corrected for

the SLA to account only for the geostrophic circulation. Among them are the ocean tides, the

solid earth tide, and the pole tide.

Ocean tides include the classic ocean tide, but also the displacement of the bottom of the

ocean due to the loading by the water column associated with ocean tides (Vignudelli et al.,

2011). Ocean tides corrections are computed by dedicated tide models (FES2014 ; Lyard et al.,

2021), and accounts for the effect of all the diurnal, semi-diurnal and mixed tide waves on the

sea surface. Solid Earth tide correction must be removed as well. As the oceanic tide, the solid

Earth tide is due to the gravitational forces of the Moon and the Sun, but this time applied

to the solid part of the earth instead of the hydrosphere. The solid Earth tide correction has

an amplitude of up to 20cm (Vignudelli et al., 2011). Finally, the pole tide effects must also be
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removed. The pole tide relates to the variation of the axis of rotation of the Earth from the pole,

as changes in the centrifugal forces induced by this variation produce a signal in the sea surface

height (Desai et al., 2015). The amplitude of this error is about 20 millimeters.

2.3) High latitude processing

All the previously presented processing steps allow the computation of the along-track sea

level anomaly from a waveform retrieved on an open ocean surface. However, using the satellite

altimetry technique in a high latitude environment induces several specificities. The presence

of sea ice on the top of the ocean surface forces the use of dedicated processing techniques

to retrieve a representative sea surface height signal while mitigating the errors (Quartly et al.,

2019).

Waveform Classification

The main dedicated processing for the sea ice regions is the classification of the waveforms.

While most of the open ocean echoes have the characteristic open ocean Brown-like waveform,

the waveforms retrieved from sea ice environments differ drastically from this classical model.

As their surface is much more irregular than the open ocean and the leads, sea ice floes mea-

surements can be identified and discarded from the computation of ocean topography in the

ice-covered ocean (Longépé et al., 2019). In the leads, however, the free surface is protected

from the winds by the neighboring sea ice. The surface stress being very low, the surface rough-

ness drops compared to an open-ocean configuration. In the leads, the surface is considered

quasi-specular, meaning that it reflects directly the incoming wave back to the satellite. The re-

sulting waveform is a powerful peak, with a very sharp trailing edge characteristic of a sea ice

lead. These lead measurements must be identified for dedicated processing to compute the sea

surface height in the ice-covered regions (Longépé et al., 2019).

From the shape of the returning echo, it is possible to determine the type of surface that was

sampled by the altimeter. To construct a sea surface height product covering both open ocean

and ice-covered ocean, Brownian and specular echoes must be identified and isolated from the

other measurements. This is the principle of the classification step. The classification is realized

by a dedicated algorithm.

Retracking

The difference in the waveforms used to differentiate the echoes from the leads and the

open ocean actually leads to specific issues for the retracking step of the waveforms (Quartly

et al., 2019). As presented in the along-track processing part, open ocean measurements are re-

tracked by fitting a modelled waveform to the retrieved echo. In this case, the retracking used

is physical, as it models the waveform and allows the computation of Significant Wave Height

(SWH), wind speed, and range. However, the classical open ocean retrackers are not able to

model the leads waveforms, as they are too specular to consistently fit the model. As a result, in

most of the studies, a specific retracking algorithm is used, called the Threshold First-Maximum
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FIGURE II.2: From Quartly et al. (2019) : The effect of zero-padding upon the rendition of a CryoSat-2
waveform over a lead within the sea ice : (a) Without zero-padding, the specular waveform is heavily
under-sampled (only one range sample within the main peak). (b) With zero-padding (enabling the FFT
to produce more frequent samples within the waveform shape), the peak is better represented, showing
the asymmetry in the echo. This allows more precise estimation of the timing associated with the 50%
or other thresholds, reducing the jitter noise in the determination of the range. (In both cases, the full
waveform corresponds to bins 1 to 128, with the panels being focused on showing the details of the
specular peak.)

Retracker Algorithm (TFMRA ; Peacock and Laxon, 2004). This retracker relies on the empiri-

cal result that the retracking point is fixed at a specific threshold on the leading edge of the

waveform (usually 50% or 60%). This is the retracker that has been used for sea ice echoes in

Armitage et al. (2018); Dotto et al. (2018) products.

However, for SAR altimeters, the leads waveforms are even peakier than LRM altimeters.

This sometimes leads to an undersampling of the part of the waveform containing the signal,

as it is sampled on too few bins (Figure II.2a Quartly et al., 2019). To overcome this issue, zero-

padding processing is used. It allows sampling the waveform on more bins, therefore having

a better representation of the waveform and allowing for a more precise determination of the

retracking threshold. An example of the application of the zero-padding processing on a wa-

veform is shown in Figure II.2b (Quartly et al., 2019). This pre-processing is necessary when

using SAR measurements in the leads. Moreover, other processings such as Hamming windows

allow improving the representation of specular waveforms. These processings are not applied

on all of the SAR products within the sea ice, it is thus a condition for choosing the along-track

waveforms products used for the gridded dataset.

The waveforms from LRM altimeters are less peaky than the SAR ones. It allowed the recent

development of physical retrackers able to model the waveforms both in the open ocean and in

the leads. One of them has been developed at CLS and is called the "adaptive" retracker (Poisson

et al., 2018), and I was able to use it for one of the satellite exploited in my dataset. In the case of

a physical retracker, it is possible to use the same algorithm for both surfaces, allowing the re-

trieval of a continuous SLA in the open ocean and the ice-covered regions. This is a tremendous

progress as using two different retrackers for both surfaces leads to offsets between the SLA of

the two regions that are extremely difficult to correct accurately. As an example Armitage et al.

(2018) corrects the offset between the open ocean, retracked with a classic physical retracker,
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and the ice-covered ocean, retracked with a TFMRA retracker, by computing the monthly mean

offset at the sea ice edge, in the gridpoints where there are both open ocean and leads echos.

This technique has been found to potentially create a spurious seasonal cycle on the SLA pro-

ducts (Prandi, 2020). Having a continuous surface even at least for one altimeter is therefore a

strong asset for a newly developed SLA product.

2.4) Optimal Interpolation (OI) and Mapping

Once all the echoes have been properly selected, retracked, and corrected, they are mer-

ged into a gridded interpolated SLA product. To convert an along-track SLA (L3) product into

a gridded (L4) product, a mapping and interpolation method is needed. In the previously pu-

blished regional products (Armitage et al., 2018; Dotto et al., 2018), along-track measurements

were averaged monthly on 1° grid cells. This is the simplest way to map along-track measure-

ments on a regular grid. However, when mapping measurements from multiple missions into

one gridded product, this method does not stand as it does not consider the different proper-

ties of the satellites. In the reference product for SLA in the global ocean (DUACS ; Taburet et al.,

2019), an optimal interpolation method is used to interpolate and map L3 products of multiple

satellites into a unique daily, high-resolution SLA product. I used the same algorithm for develo-

ping the regional dataset, but I adapted some parameters to suit high latitude processing. This

mapping technique is based on an optimal interpolation derived from Le Traon et al. (1998);

Ducet et al. (2000); Le Traon et al. (2003), and is described in Pujol et al. (2016), Appendix B. For

each estimation point, it considers all the measurements located within the defined correlation

scales around the estimation. Then, the best estimate of the Sea surface height is computed

through an inversion of the covariance matrix, based on the expected variance of the signal,

the error associated with the instrument of each measurement, based on methods from Bre-

therton et al. (1976); Colin de Verdière (1989). The estimation of one gridpoint is illustrated in

Figure II.3. The input parameters, which are the correlation scales, the expected variance of the

signal, or the instrumental errors are defined as compromises between the number and quality

of measurements, and the physical ocean topography signal.

I had to recompute or adapt all three of them for this regional Sea Level Anomaly dataset.

The processes I applied on the along-track waveforms to construct the gridded dataset are de-

tailed in the following data descriptor.
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FIGURE II.3: Illustration of the computation of one gridpoint by the Optimal Interpolation process. Colo-
red points are the observation measurements, and the center of the figure is the position of the estima-
tion point. Light grey points are the other points of the grid.
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3 Southern Ocean Sea Level Anomaly in the Sea Ice Covered

Sector From Multimission Satellite Observations

This section includes a paper submitted as a data descriptor in Scientific Data, which I

reformatted here for the purpose of this manuscript. The reference is Auger, M., Prandi,

P., Sallée, J.B., Southern Ocean Sea Level Anomaly in the Sea Ice Covered Sector From

Multimission Satellite Observations, Submitted at Scientific Data.

Abstract

Despite its central role in the global climate, the Southern Ocean circulation is still one

of the least understood ocean circulation systems of the planet. One major constraint to our

understanding of this region is the challenge of observing ocean circulation in the seaso-

nally sea ice sector of the Southern Ocean. Here, we present a new Sea Level Anomaly (SLA)

product, focusing on the subpolar Southern Ocean and including its sea ice covered parts

from 2013 to 2019. Combining observations from multiple satellites, including Cryosat-2,

Sentinel-3A, and AltiKa, processed with state-of-the-art algorithms, allows an improvement

in spatial and temporal resolution compared with previous products. Validation is made by

comparing our estimate with existing SLA products, cross-comparing estimates from indi-

vidual satellites in the sea ice zones, and comparing the time series of the product with a

Bottom Pressure Recorder in the Drake Passage.

3.1) Background & Summary

The Southern Ocean is a central element of the climate system, yet it is very poorly obser-

ved, understood, and not well represented in climate models (Meredith et al., 2019). The Sou-

thern Ocean is the main anthropogenic heat and carbon sink of the world’s oceans (Frölicher

et al., 2014; Meredith et al., 2019), and acts as a major hub distributing physical and biogeo-

chemical properties around the globe (Rintoul et al., 2001; Sarmiento et al., 2004). Despite this

importance, the Southern Ocean, and particularly its seasonally ice-covered subpolar region,

remains poorly sampled, which impedes long-term monitoring of its change and limits pro-

gress in its representation in climate models (Newman et al., 2019; Meredith et al., 2019). In

particular, very little is known about the drivers of ocean circulation in the subpolar seas and

how they are affected by current global climate change (Thompson et al., 2018; Meredith et al.,

2019).

In this paper, we revisit the processing of satellite altimeter observations developed over

the past decades to produce a new and unprecedented observational dataset of sea-level ano-

malies (SLA) and geostrophic velocity anomalies in the Southern Ocean subpolar seas from

a multi-satellite approach. Since 1992, satellite altimetry has helped to map the global ocean

geostrophic circulation through high precision sea level measurements while allowing a better

understanding of the Earth’s climate variability and response to climate change (Morrow and
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Le Traon, 2012). The number of satellites sampling the ocean is now larger than ever, creating

new possibilities in terms of combination and sea level mapping resolution. Daily and global

multi-mission products such as the Data Unification and Altimeter Combination System (Tabu-

ret et al., 2019) (DUACS) reach a horizontal resolution of 100 km at high latitude (Ballarotta et al.,

2019). However, these products do not include the ice-covered regions of the global oceans,

even though conventional satellite altimetry can help to understand the open ocean parts of

the polar oceans (Prandi et al., 2012). Dedicated processing needs to be used over ice-covered

areas.

Since the early years of altimetry, many studies have been conducted to understand how

to process and obtain valuable ocean observations in sea ice zones. Specular reflectors such as

leads or calm open water polynyas were first detected in the altimeter footprint by using an air-

borne radar altimeter and comparing with large-format aerial photography (Drinkwater et al.,

1991). Later, a first ocean / sea ice classification technique was developed using ERS-1 satellite

altimeter along with a new threshold retracking algorithm for sea ice, taking into account the

fact that conventional models were not able to retrack powerful specular sea ice echoes (Laxon,

1994). The first mean sea surface and sea surface height variability product in the ice-covered

Arctic was released using ERS altimeters (Peacock and Laxon, 2004). Using a very similar pro-

cessing scheme but different satellites, various datasets such as sea ice thickness (Tilling et al.,

2018), mean sea level trends (Giles et al., 2012) and sea surface height studies (Bulczak et al.,

2015; Kwok and Morison, 2016; Mizobata et al., 2016; Armitage et al., 2016) were released in

the Arctic and helped uncover its changes and variability. The first sea surface height variability

maps in the subpolar Southern Ocean were limited to its ice-covered parts (Kwok and Morison,

2016). Based on Cryosat-2 observations from 2012 to 2016, the first monthly sea surface height

product of the whole Southern Ocean was produced (Armitage et al., 2018; Dotto et al., 2018),

allowing to document the seasonal climatology of the subpolar sea surface height, interannual

variability and forcings (Garabato et al., 2019). In the present study, we extend this effort by

combining observations from multiple satellites, thereby allowing for higher spatial and tem-

poral resolution than previously done. We also leverage recent radar altimetry signal processing

advances : a neural network based waveform classification for lead detection and a physical re-

tracker algorithm that alleviates the need for ad-hoc bias correction between the open ocean

and sea ice sectors.

3.2) Methods

Data Source

Satellite Altimeters

We use observations from three satellite altimeters : Cryosat-2, Sentinel-3A, and SARAL/Al-

tiKa, which we present below in turn (see also Table II.1).

Cryosat-2 is an ESA mission, which was launched in April 2010. Its SIRAL instrument is a Ku-

band (i.e. frequency range from 13 to 17 GHz) radar altimeter working in three different modes :

Low Resolution Mode (LRM) over most of the ocean, SARM (Synthetic Aperture Radar Mode) on

the sea ice, and SARInM (Synthetic Aperture Interferometric Mode) on the ice-sheets margins
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TABLE II.1: Altimeters characteristics

Altimeter Launch Date Mode Sampling Frequency Inclination
SARAL/AltiKa 2013/02 LRM 40Hz 99

Cryosat-2 (sea ice) 2010/04 SAR 20Hz 92
Sentinel - 3A 2016/02 SAR 20Hz 99

and temperate land-ice (Wingham et al., 2006). Only the ESA Cryosat-2 ICE SAR Baseline-C L1b

dataset was used for this study. This dataset includes the sea ice zones within Cryosat-2 SARM

mask. SARM allows a better along-track resolution via the use of the Delay Doppler pocessing,

reaching about 400 m of effective resolution compared to the 8 km resolution of conventional

altimeters (Scagliola et al., 2013).

Sentinel-3A carries the dual-frequency Synthetic Aperture Radar Altimeter (SRAL) instru-

ment, which was launched in 2016 (Donlon et al., 2012). Sentinel 3A CNES Processing Protocol

(S3PP) data are used as they include the Zero-Padding and Hamming processings, which are

necessary for SAR data in sea ice zones (Quartly et al., 2019).

SARAL/AltiKa is a CNES-ISRO (Centre National d’Etudes Spatiales, Indian Space Research

Organisation) satellite, which was launched in February 2013. It carries a conventional (pulse

limited) Ka-band (i.e. 35.75 GHz) radar altimeter, which allows a smaller footprint than a Ku-

band radar (4 km versus 15 km for an identical orbit) and a higher sampling frequency (40 Hz

versus 20 Hz). The primary objective of this high-resolution ocean topography satellite is the

observation of ocean mesoscale circulation (Verron et al., 2015).

Data Processing

Combining multiple missions into a single product requires care to adequately take into

account differences between instruments. In our study, we must take into account the dif-

ference between AltiKa pulse limited altimeter, and Cryosat-2 and Sentinel-3 SAR altimeters.

Low-resolution mode altimeters are historically considered as the conventional instruments.

Their resolution is limited by the length and width of the pulse. SAR altimeters allow a better

along-track resolution due to the multi-look of the target along the path of the satellite (Quartly

et al., 2019). The resulting waveforms are narrower and therefore dedicated processing is requi-

red. We present below the processing that was organised in five main steps : (i) classification,

(ii) retracking, (iii) geophysical corrections, (iv) bias correction, and (v) mapping.

Classification

The SLA field is built using open ocean and lead echoes. Data points located on the conti-

nent, continental ice, or sea ice are discarded. For that we use a neural network waveform classi-

fication algorithm (Poisson et al., 2018) validated using SAR images (Longépé et al., 2019). Each

echo is affiliated to one of 12 classes representing various waveform shapes and surface types.

This classification is complemented with the traditional multiple criteria approach, conside-

ring backscattered power and pulse peakiness (Peacock and Laxon, 2004; Bulczak et al., 2015).

Open ocean and leads data are selected and processed separately. Radar returns are very dif-

88



3. Southern Ocean Sea Level Anomaly in the Sea Ice Covered Sector From Multimission
Satellite Observations

SARAL/AltiKa Cryosat-2 Sentinel-3A
Orbit POE-E (Ollivier et al.)

Ocean Tide FES14 (Carrere et al., 2015)
Polar Tide From Desai et al. (2015) From C2 Product From Desai et al. (2015)
Earth Tide Elastic response to tidal potential

(Cartwright and Tayler, 1971)
Dry Tropospheric Correction Model from ECMWF gaussian grids
Wet Tropospheric Correction Model from ECMWF gaussian grids

Ionospheric Correction GIM (Iijima et al., 1999)
Sea State Bias Non-Parametric (Tran et al., 2012)

Dynamic Atmospheric Correction MOG2D high frequencies (open ocean)
and inverse barometer forced with
atmospheric ECMWF pressure and
wind field (Carrère and Lyard, 2003)

Mean Sea Suface CNESCLS15 (Pujol et al., 2018)

TABLE II.2: Geophysical Corrections applied to each altimeters

a b

Po
w
er

Bins

FIGURE II.4: Examples of waveforms from AltiKa altimeter (a) Brownian echo from open ocean. (b) Peaky
(specular) echo from a lead.

ferent in terms of specularity and backscattering depending on the surface type and roughness.

In the open ocean, the wind on the free surface creates a high surface roughness, leading to

the reception of a Brownian type of waveform (Quartly et al., 2019) (Figure II.4a). In the sea ice

areas, specular echoes (Figure II.4b) are mostly representative of reflection from the leads, their

free surface being protected from the wind by the neighboring floes (Peacock and Laxon, 2004).

Thus, the waveform is peakier and more powerful than in the open ocean. We do not investigate

for differences between melt ponds and leads in the classification, as they are mostly specific to

Arctic sea ice surface melt in summer, and less of an issue in the Antarctic (Maksym, 2016).

Retracking
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Waveforms represent the power backscattered from multiple facets over the surface in the

altimeter footprint, which are located at different ranges from the altimeter. The retracking pro-

cess allows the retrieval of the geophysical parameters from these waveforms (Quartly et al.,

2019). Retrackers can be either physical or empirical. Physical retrackers, such as SAMOSA SAR

for Sentinel-3A (Dinardo et al., 2015), fit an analytical model to the waveform to estimate quan-

tities such as epoch, Significant Wave Height (SWH), and radar backscatter. Physical retrackers

are commonly used in the open ocean but most of them are not able to retrack specular wa-

veforms from sea ice. Sea ice echoes are commonly retracked using empirical retrackers such

as the TFMRA (Helm et al., 2014) (Threshold First Maximum Retracker Algorithm). In this case,

geophysical parameters are estimated by empirical criteria (Laxon, 1994).

Commonly-used physical retrackers are not able to process open water or specular wave-

forms in the same way (Quartly et al., 2019). In previous studies combining sea ice and open

ocean sea-level observations (Dotto et al., 2018; Armitage et al., 2018), Cryosat-2 L1b data were

processed using a physical retracker in the open ocean and an empirical (TFMRA) retracker

over sea ice, and the bias between the two retrackers was corrected empirically. In these stu-

dies, the bias between both zones was corrected by computing SLA differences along the sea

ice margins, on grid points where it is possible to find both peaky and Brownian waveforms for

each month, or at the transition from open ocean to sea ice along a satellite track. Such bias

estimates are based on a limited number of measurements and are therefore highly uncertain.

They can also create artifacts in the resulting sea-level anomaly product (Prandi, 2020) that are

difficult to distinguish from genuine ocean variability. To try to alleviate this bias, here, we use a

new retracker that has been developed for Pulse Limited altimeters, by modifying the conven-

tional physical retracker for the Brownian echoes, making it flexible enough to retrack specular

waveforms from the leads (Poisson et al., 2018). This unique ‘adaptive’ retracking for both open

ocean and sea ice echoes was made possible by considering the variation of backscattering po-

wer with incidence angle, allowing a processing continuity between the two surfaces for the

same altimeter.

The new retracker applies to open ocean and sea ice echoes consistently, allowing to retrieve

consistent sea level anomaly maps without empirical bias correction at the sea ice edge, but it

is currently only available for AltiKa. For Cryosat-2 and Sentinel-3A in the sea ice zones, we

process observations with the TFMRA retracker, but we reference Cryosat-2 and Sentinel-3A to

the AltiKa observations (see section "bias correction" below).

Another advantage of using a physical retracker in the leads is that the algorithm models the

full waveform, allowing the consideration of residual winds for the retracking. In comparison,

the TFMRA algorithm works with the assumption of zero wind in the leads, potentially leaving

part of the signal uncorrected.

Geophysical Corrections.

Geophysical corrections are listed in Table II.2. Satellite orbit estimation is computed using

POE-E algorithm (Ollivier et al.). Once the range is computed, geophysical corrections are ap-

plied to remove the tidal and atmospherical components of the range and to compute the sea

surface height. The same corrections are used for each mission when possible for homogeneity.
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As in previous studies (Armitage et al., 2018), we do not apply the high frequency dynamic at-

mospheric correction in the sea ice zone under the assumption that the impact of the wind on

the free surface in the leads is limited.

Ocean tide is corrected using FES2014 model (Carrere et al., 2015). Ocean tide errors

are estimated by computing the standard deviation of the difference between one year of

FES2014 and GOT4V10 (Ray, 2013) tide signal on a 1° grid covering the whole Southern

Ocean. Errors obtained are of the order of 1 cm in the open ocean, 2 cm in the seaso-

nally ice-covered ocean, and about 8 cm in the permanently ice-covered Southern Ocean.

This error is partially corrected using the long-wavelengths correction (see section "Map-

ping", below). The Global Ionosphere Maps (GIM) ionospheric correction is applied (Iijima

et al., 1999), with a residual signal that can reach 5 mm (Pujol et al., 2016). Wet and dry

tropospheric corrections, along with MOG2D high-frequency (Carrère and Lyard, 2003) and

inverse barometer low frequency dynamic atmospheric corrections are taken from ECMWF

(European Centre for Medium-Range Weather Forecasts) operational model Gaussian grids

(https ://www.ecmwf.int/en/forecasts/dataset/operational-archive).

An objective analysis (OA) mapping method is used to convert along-track measurements

(Level 2) into a gridded product (Level 4). The OA method requires that time-mean is removed

from the data to be mapped (Bretherton et al., 1976). Here, the time-mean that is removed from

the along-track observations before mapping is the Mean Sea Surface (MSS) CNESCLS15, which

is based on open ocean measurements. Seasonally ice-covered regions of the MSS represent

therefore a mean state of the ice-free time of the year, and permanently ice-covered regions are

extrapolated (Pujol et al., 2018). As an alternative method which would not use the MSS with

potential errors in sea ice covered region, one could instead reference the observations to the

geoid, and then grid them, but this alternative method would downgrade the final resolution

product, because the geoid is not known at short scales (typically less than 100 km ; Stammer

and Cazenave, 2018).

Editing is performed once the fully corrected SLA is estimated. It uses empirical thresholds

based on sea ice concentration, peakiness and backscatter coefficient of the echoes to discard

possible errors. In the open ocean, the remaining outliers are removed using an iterative editing

method. This method consists in applying a 124-points low-pass Lanczos filter on the along-

track data, and removing outliers identified as each measurement such as |SL A−SL A f i l ter ed | >
3∗ std(SL A−SL A f i l ter ed ). This editing step is conducted multiple times until less than 0.1% of

the measurements are edited. The iterative editing step is not performed in the sea ice regions,

as the sampling is too irregular for applying such along-track filters.

Bias Correction

There are evidences that correcting a monthly bias between retrackers at the sea ice mar-

gins as in previously available SLA products (Armitage et al., 2018; Dotto et al., 2018), does not

properly correct for the retracking bias in the entire sea ice zone (Prandi, 2020). AltiKa ‘adaptive’

retracking allows a continuous and consistent SLA computation in the open ocean and under

sea ice, without the need of a bias correction. We therefore use AltiKa as our reference mission

to properly correct bias between open ocean and sea ice sectors of other missions. Monthly SLA

maps at a horizontal resolution of 1x1 degree are therefore constructed with AltiKa observation
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FIGURE II.5: Correlation scales of Sea Level Anomaly computed on GLORYS12 model outputs. (a) Zonal
correlation scales. (b) Meridional correlation scales. (c) Temporal correlation scales.

only, as well as maps computed independently for Cryosat-2 lead observations, Sentinel-3A

lead observations, and Sentinel-3A open ocean observations. Median biases between the Al-

tiKa map and every other map are computed and used to correct each mission and surface

each month. This allows us to estimate inter-mission biases which are representative of all the

data coverage of the mission and retracker, and not only at the sea ice margins.

Mapping

The combination of all along-track observations from each mission into a gridded dataset

is done by adapting the latest DUACS-DT2018 mapping procedure (Taburet et al., 2019) to our

region of interest. It is based on an optimal interpolation (OI) (Le Traon et al., 1998; Le Traon and

Ogor, 1998; Ducet et al., 2000; Le Traon et al., 2003). This OI method uses an a priori statistical

knowledge on the covariance functions of the sea level anomalies and the data noise (Le Traon

et al., 1998). A selection of observations within a space-time subdomain around a gridpoint and

a date of interest is used for the interpolation. We therefore need to define a subdomain around

each gridpoint, the expected variance of sea-level, and data noise.

A subdomain is computed for every point of the grid, and its size depends on the correlation

scales of the sea level anomaly at that given gridpoint. Only the input files are modified from the

DUACS-DT2018 (Taburet et al., 2019) mapping procedure. The correlation scales are computed

from 2016 daily outputs of a global ocean model at 1/12° resolution, which assimilates obser-

vations (GLORYS12 (Brachet et al., 2004) ; Figure II.5). Minimal temporal correlation scale has

been set to 10 days, and the largest values reach 35 days in the most stable meanders of the ACC.

Spatial correlation scales range from 150 to 300 km.

The expected variance of the signal is investigated from the DUACS-DT2018 variance. We

find however that in our region of interest, south of the ACC, DUACS-DT2018 has very low va-

riance (Figure II.6a), much lower than SLA variance from Armitage et al. (2018) SLA product.

Therefore, we here chose to compute the expected variance from our own observations rather

than using DUACS-DT2018. We use a recursive method working on one arbitrary chosen year

from March 2018 to March 2019. The recursive method starts by producing SLA maps for the

given year, by using a large expected variance. We then compute the variance from this series
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FIGURE II.6: Expected variance input for the Optimal Interpolation method, (a) for DUACS-DT2018 Ta-
buret et al. (2019) product, (b) recomputed for the Southern Ocean regional product.

of maps and recompute a series of maps, but now using the revised variance estimate. And we

continue to repeat the procedure until the variance converges toward a stable map. This pro-

cess converges at the fourth iteration, with a reduction of less than 3% of the variance between

the last two iterations. This newly produced variance has the same order of amplitude as the

one in DUACS DT2018 in the open ocean, but without the large drop in variance in seasonally

ice-covered areas that was present in DUACS DT2018 (see Figure II.6b).

The expected noise is computed by adding MSS CNES-CLS15 error (Pujol et al., 2018) to the

instrumental errors (same as applied in DUACS) with a factor that depends on the measure-

ment frequency : the noise from data acquired at a frequency freq is
√

f r eq times higher than

when acquired at 1Hz. Thus, as the SARAL instrument from the AltiKa mission is sampling at

40Hz, the noise applied to this mission for the mapping will be
p

2 higher than Cryosat-2 and

Sentinel-3A altimeters sampling at 20Hz.

We apply a long-wavelength error correction during the mapping to remove along-track cor-

related signals (Le Traon and Ogor, 1998; Le Traon et al., 1998). Such signals can arise from re-

sidual orbit, tide, or dynamic atmospheric correction errors and produce ’stripes’ on SLA maps

when not accounted for.

Finally, once the product is corrected, we remove the temporal mean of the SLA for a better

concordance and comparison with previously published products. Our SLA product represents

therefore anomalies from the 2013-2019 mean sea level.
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3.3) Data Records

The Southern Ocean SLA and geostrophic currents product is distributed as a single NetCDF

file dt_antarctic_multimission_sea_level_uv_20130401_20190731.nc. It contains daily Sea Level

Anomalies, associated geostrophic currents anomalies, and mapping formal error from April

2013 to July 2019. Individual fields are described in Table III.1. All fields are mapped daily on a

25km EASE2 grid (Brodzik et al., 2014) south of 50°S. Daily grids are dated using the number of

days since 1950/01/01.

Field Description
longitude Longitude (°)
latitude Latitude (°)
time Days since 1950/01/01
sla Sea Level Anomaly (m)
U Zonal Geostrophic Current Anomaly (m/s)
V Meridional Geostrophic Current Anomaly (m/s)
formal_err Formal Error (m)

TABLE II.3: Fields of the Sea Level Anomaly product dt_antarctic_multimission_sea_level_uv_20130401_20190731.nc

Technical Validation & Orbit Pattern Mitigation

Validation

Validation is performed by comparing the mapping outputs with other data sources. Pear-

son correlation is used to compare time series. Significance is evaluated using the local tem-

poral correlation scale (Figure II.5) as the interval between two independent measurements.

Correlation significance is assessed at the 99% confidence level.

Concordance with DUACS DT2018 in the open ocean

The first validation of our new product is obtained for the open ocean region, where we

compare our results to the daily DUACS DT2018 product (Taburet et al., 2019), which has been

extensively used and validated in various regions of the global open ocean. Between 2014 and

2018, 85% of total ice-free grid points (grid points that never reach a 1% SIC within the 4 years)

have a significant correlation with the DUACS product greater than 0.80. The remaining discre-

pancies can come from differences in the mapping parameters as well as in the sampling, as

the number of satellites used in each product is different.

In-situ validation

Validation in the sea ice zones is limited by the poor number of in situ time series relevant for

sea-level anomaly validation in the Southern Ocean. For instance, tide gauges are very sparse

along the Antarctic coast, and their sampling period is often not overlapping with our time se-

ries. Most of the Permanent Service for Mean Sea Level (PSMSL) dataset ends before 2013 (for

instance at Casey or Cape Roberts tide gauge). For the few stations where there is a time over-

lap with our product, their coastal and landlocked locations (for instance, Scott Base, Rothera,

Argentine islands) make comparisons extremely difficult with satellite altimetry. There would
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FIGURE II.7: (a) Sea Level Anomaly (SLA) validation in the drake Passage. Black line is sea surface height
from the Drake Passage Bottom Pressure Recorder, red line is the SLA from altimetry. Red dot on the map
is the location of the Bottom Pressure Recorder (b) Sea Level Anomaly snapshots mapped from the three
altimeters in the sea ice zone. Each SLA snapshot is mapped independently from each altimeter.

be a strong need for coastal tide gauges in regions more representative of the open ocean (i.e.

less landlocked) around Antarctica, corrected for tides and atmospheric pressure, in order to

robustly validate future subpolar Southern Ocean products. Here, we nevertheless attempt to

validate using a bottom pressure recorder (BPR) time-series in the open ocean, and second by

comparing sea-level anomaly maps produced independently by single altimeters.

Bottom pressure observation obtained at 60.8◦S, -54.7◦E

(https ://www.psmsl.org/data/bottom_pressure/locations/1608.php) is converted in sea

level anomaly and filtered with a 15-day running mean. This bottom pressure recorder covers

2012 to the end of 2013, so comparison with our product is only possible from March 2013 to

December 2013. BPR time series is compared with ∼300 km filtered SLA product at the same

grid point. Both time series are shown in Figure II.7a. The agreement between the two time
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series is good both during the ice-free and ice-covered seasons, with an overall significant

correlation r = 0.61 over 232 days. We note however that some variations differ within a month,

and might depend on the altimetry sampling frequency at the location of the bottom pressure

recorder. In particular, the correlation improves when averaging multiple grid points around

the BPR, reaching 0.81 when averaging over a radius of 150 km around the BPR. In summary,

the agreement with the bottom pressure recorder is good, but a longer and less sparse bottom

pressure observation would be needed for a more extensive and statistically robust validation.

Consistency between altimeters in the sea ice regions

One alternative validation for our product is performed by comparing maps produced by

the different individual altimeters. Although AltiKa serves as a reference, since the other satel-

lite records are corrected using monthly median offsets, the spatial patterns within the sea ice

zone indicate local daily differences. It is also a way to evaluate the error induced by sampling

differences and disparities within the various altimeter properties. All daily maps are filtered

with a ∼150 km Gaussian filter to filter out mesoscales which would be sampled differently by

altimeter depending on their exact path and time of observation.

Concordance between the maps derived from each altimeter is estimated daily with the

standard deviation of the height bias between the maps. From July 2016 to June 2018, the stan-

dard deviation ranges from 3 to 6 cm, with a median standard deviation of 4 cm for all altime-

ters, and a slightly better agreement (lower standard deviation) between C2 and S3A. A snapshot

of SLA maps in the sea ice zones from each altimeter is shown Figure II.7b.

Error estimation from independent along-track measurements

To evaluate the precision of the product in a 2-altimeter configuration, we compare the

mapped product from AltiKa and Cryosat-2 from July 2016 to July 2018 with the along-track SLA

from Sentinel-3. The median zonal and meridional correlation scale south of 50°S is 107 km (Fi-

gure II.5a,b). Therefore, Sentinel-3 along-track data is filtered with a ∼107 km running mean

filter. Error is defined as |SL Aal ong _tr ack_S3A −SL AC 2_AL|. The root mean square error (RMSE)

is computed each month on a 1x1° grid. Figure II.8 shows the RMSE averaged over July, August,

and September (JAS) from 2016 to 2017. RMSE values are different within various regions of the

Southern Ocean. In the open ocean, the RMSE ranges from 4 to 10 cm in the most energetic jets

of the ACC. In the sea ice zones, the RMSE is higher in the permanently ice-coverered regions

of the Subpolar southern Ocean, reaching 10 cm regionally. In the seasonally ice-covered sou-

thern ocean, the standard deviation of the error ranges from 3 to 5 cm. Over 2 years, the median

value of the RMSE in the permanently ice-covered Southern Ocean is 5.8 cm. In the seasonally

ice-covered Southern Ocean and in the open ocean, the median RMSE are respectively 3.7 and

4.0 cm.

Cryosat-2 induced pattern mitigation

Several SLA products for the subpolar Southern Ocean have been previously developed (Ar-

mitage et al., 2018; Dotto et al., 2018). The observation-based product presented in this paper

introduces several processing differences, among them a physical retracker for lead echoes,

a long-wavelength error correction, and the multimission combination. Consequently, diffe-

rences between our product and previous product are expected. The most notable difference
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FIGURE II.8: Standard deviation of the error between along track S3A (filtered with a 107-km running
mean) and interpolated product constructed only with AltiKa and Cryosat-2. This standard deviation
was computed on the July-August-September months of 2016 and 2017. Black solid line is the mean 3%
sea ice concentration contour for the July-August-September months of 2016 and 2017. Dotted line is
the 3% contour of the minimum sea ice concentration over the years 2013-2019.

when comparing monthly maps between our product and Armitage et al.’s product(Armitage

et al., 2018; Dotto et al., 2018) is that our product significantly reduces unphysical meridional

stripes in SLA anomalies (Figure II.9). Previous products were based solely on Cryosat-2 obser-

vations, which orbit does not allow for an optimal temporal sampling over the ocean : neigh-

boring regions are sampled with a time step of one month. Such a relatively long gap in time

between the sampling of two neighboring regions, combined with the fact that SLA variability
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FIGURE II.9: a. Snapshot of Armitage SLA on 2016/09, showing a meridional pattern due to the orbit of
Cryosat-2. b. Snapshot of the Southern Ocean SLA product on 2016/09/15, showing a mitigation of this
signal from the use of multiple altimeters.

is large over one month, leads to such stripes when the product is interpolated and gridded

(Figure II.9a). Our methodology that combines Cryosat-2 observations with observations from

other satellites allows a strong mitigation of such source of error (Figure II.9b).

3.4) Usage Notes

Dataset is publicly available on SEANOE (Auger et al., 2021b) with the doi : 10.17882/81032.

4 Conclusion of the chapter

In this chapter, I presented a newly developed Southern Ocean Sea Level Anomaly product.

We worked specifically to improve the spatial and temporal resolution of the dataset, as well as

to improve the multiple processing steps compared to already existing products in the subpolar

Southern Ocean.

SLA was gridded as monthly maps from Cryosat-2 observations in Armitage et al. (2018) and

Dotto et al. (2018). Here, up to three satellites are used at the same time to increase the spatial

and temporal resolution. This results in a daily product on a 25 km grid, allowing to observe

smaller scale variability than what was possible before. Along-track measurements are mapped

using the DUACS DT-2018 Optimal Interpolation (OI) method (Taburet et al., 2019), adapted for

the specificities of the region.
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Others improvements on the processing steps of the along-track measurements were made.

In Armitage et al. (2018) and Dotto et al. (2018), the selection of lead measurements in the sea

ice regions was done using empirical criteria. Their retracking steps are done entirely indepen-

dently between the open ocean and the leads, or between SAR and LRM regions. In the sea ice

region, an empirical retracking was used based on a threshold on the leading edge of the wa-

veform. This led to bias that need to be empirically corrected between the different altimeter

modes and surfaces types, with the risk of creating spurious seasonal cycle signal correspon-

ding to bias when the sea ice cover advance or retreat. Here, a neural network classification of

the echoes is used, selecting objectively the waveforms retrieved from the leads (Poisson et al.,

2018). I also use the same retracker for leads and open ocean for AltiKa, allowing to construct a

continuous reference surface and limiting the ad-hoc corrections of the bias between surfaces

and altimeter types.

The validation of the dataset is difficult, as the number of in-situ measurements in the Sou-

thern Ocean, and particularly in its ice-covered parts, are extremely limited. I estimate the er-

rors of the product in a 2-altimeters configuration by computing the standard error from along-

track independent Sentinel-3A measurements. Three zones stand out with different error beha-

viour. In the open ocean, the error is small, except in the regions with the higher dynamics, as

the amplitude of the signal is stronger. The error is slightly higher in the seasonally ice-covered

sector, and more homogeneous within the region. Lastly, the error is highest in the permanently

ice-covered regions, probably due to high errors in the Mean Sea Surface (MSS) product used

to correct the along with track measurements. This error estimation has however limitations, as

the along-track Sentinel-3A data may itself contain errors, potentially increasing the resulting

error estimates.

There are several ways this product may be improved in the future. First, the use of physical

retrackers for all the satellites will reduce even more the need of correcting bias between the

ocean and sea ice regions, which can be a large source of errors (Prandi, 2020). Second, adding

the other satellite altimeters available will also be a strong asset for improving resolution and

accuracy. Jason 3, Sentinel-3B, or HY-2A and B are available now but have not been added to

the product yet. Other satellites will also allow having a longer time series. Adding Envisat will

dramatically improve the possibilities for exploitation of the product as it will span from 2002

to 2019.

Future satellites altimeters represent opportunities to keep track of the ice-covered ocean

topography. Among them, Sentinel-3C and D, the rest of the HY-2 constellation, and CRISTAL.

The latter mission will be launched in 2027, will occupy the same orbit as Cryosat-2, and will

carry a dual-frequency altimeter. While the main objective of this dual-frequency is to measure

both the ice thickness and the ice depth, it will be interesting to directly compare the effect of

the emission band on the ocean topography signal. Moreover, other missions with potential be-

nefit for the polar observation of the sea surface topography have been launched or are planned

in the close future. First, the NASA ICESAT-2 satellite has been launched in September 2018, and

carries a Lidar instrument onboard allowing to retrieve the topography of the ice and the ocean
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with an unprecedented resolution. Second, the SWOT satellite that will be launched in 2022,

uses an interferometric altimeter, which will have an interesting application for observing the

sea surface in the leads (Morrow et al., 2019).

In the context of this thesis, this dataset will open the door for understanding better the va-

riability of the Southern Ocean in regions that still lack observations, such as its seasonally ice-

covered part. We expect that this dataset will bring important insights that may simultaneously

improve understanding the mean state, the daily to interannual variability as a prerequisite be-

fore future investigations of long-term changes.
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1 Preamble

In Chapter II, I introduced the new ocean topography product that I developed, which in-

cludes both the ice-free and ice-covered Southern Ocean. In the present chapter, I leverage this

new tool to analyze the mechanisms driving the mean and seasonal cycle of the Southern Ocean

horizontal geostrophic circulation. I focus on the analysis of the subpolar sector of the Southern

Ocean, south of the ACC, as that is the sector where the new observation-based product brings

the largest advances.

The main features of the subpolar Southern Ocean circulation are two large gyres, the Wed-

dell Gyre and the Ross Gyre, as well as the Antarctic Slope Current (ASC). These systems of cur-

rents transport large volumes of water eastward at the northern extent of the gyres, and west-

ward along the Antarctic continental slope. They also have an important role in the meridio-

nal heat transport, acting as a series of dynamic barriers preventing southward heat intrusions

close to the Antarctic coast (Thompson et al., 2018). Despite the importance of these large scales

features, their extent and seasonal variability remain poorly described at large scale.

Major obstacles remain today in the understanding of the Southern Ocean and its changes

due to the poor observation coverage of the winter subpolar sector (e.g. Newman et al., 2019;

Vernet et al., 2019). In this chapter, I aim to shed light on the seasonal cycle of its horizontal

circulation and how it is shaped by physical drivers, like winds, sea ice, and buoyancy forcings

(Thompson et al., 2018). I rely on past studies that have paved the way in this direction, ei-

ther from satellite altimetry (Armitage et al., 2018; Dotto et al., 2018; Garabato et al., 2019) or

from mooring observations (Núñez-Riboni and Fahrbach, 2009; Chavanne et al., 2010), and

propose to go further using the higher resolution SLA product presented in Chapter II, along

with a method based on an Empirical Orthogonal Function (EOF) decomposition restricted to

the subpolar region. The mode decomposition highlights very distinct mechanisms driving va-

rious dynamics in the region, and allow to identify a suite of potential key drivers of the seasonal

variability.
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2 Southern Ocean Seasonal Variability in the Sea Ice-Covered

Sector From Multi-mission Satellite Observations of Sea

Level Anomaly

This section includes a paper and its supplementary material submitted in Journal of

Geophysical Research : Oceans, which I reformatted here for the purpose of this manus-

cript. The reference is Auger, M., Sallée, J.B., Prandi, P., and Naveira Garabato, A. C., Sou-

thern Ocean Seasonal Variability in the Sea Ice-Covered Sector From Multi-mission Sa-

tellite Observations of Sea Level Anomaly. Submitted at Journal of Geophysical Research :

Oceans

Abstract

A novel multi-satellite product is used to shed light on the sea surface height seasonal

cycle and associated geostrophic circulation in the subpolar Southern Ocean. We find three

main modes of variability governing the SLA seasonal cycle, all of them primarily governed

by wind forcing. The main mode of seasonal variability is associated with the seasonality of

the main subpolar gyres governed by large-scale wind stress curl, qualitatively consistent

with Sverdrup dynamics. The second seasonal mode is related to the Antarctic Slope Current

(ASC), governed by the coastal easterlies, with a rapid circumpolar propagation of anoma-

lous sea-level along the continental slope that is dynamically consistent with the so-called

Southern Mode. The first two modes induce an acceleration of the gyre and the ASC in win-

ter. The third seasonal mode appears to be driven by sea ice-modulated surface stress, and

induces an offshore extension of the ASC from autumn to winter.

Plain Language Summary

The Southern Ocean circulation has a strong impact on the global climate. Yet, it is very

poorly known due to the large sea ice cover, especially in winter. Here, we benefit from new

satellite measurements, enabling us to measure ocean circulation in both the ice-covered and

open regions of the Southern Ocean. These measurements are used to describe the seasonal

cycle of the ocean circulation in the subpolar Southern Ocean, south of the Antarctic Circum-

polar Current. Three processes are identified as being the main drivers of the seasonal variation

of the circulation : the large scale wind variations over the whole subpolar Southern Ocean,

the seasonal changes in the amplitude of the coastal winds around Antarctica, and the seaso-

nal cycle of the sea ice, modifying locally the wind influence on the ocean surface. This study

identifies the effect of these three drivers on the seasonal cycle of the subpolar Southern Ocean

circulation, by highlighting their distinct seasonal variations and the regions where they are

dominant.
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2.1) Introduction

The Southern Ocean plays a central climatic role, and has provided a major service for hu-

mankind in recent decades by absorbing up to 75% of all the heat and 40% of all the carbon

taken up by the world ocean, thus contributing to regulating global climate change (Frölicher

et al., 2015; Sallée, 2018; Meredith et al., 2019). This key climatic role results from the tridimen-

sional Southern Ocean overturning circulation and associated water-mass transformations,

which ventilate the deep ocean and lead to the establishment of a global ocean circulation

connecting all ocean basins (Talley, 2013; Naveira Garabato et al., 2014).

The horizontal circulation of the Southern Ocean is organized around two prominent fea-

tures : an eastward-flowing Antarctic Circumpolar Current (ACC) in the latitude band around

40-50◦S, and a westward-flowing Antarctic Slope Current (ASC) over the Antarctic continental

slope. In between these circumpolar current systems, the subpolar Southern Ocean is spanned

by large-scale regional gyres in the Weddell and Ross Seas. These subpolar gyres host key water-

mass transformations that fuel the global overturning circulation (Abernathey et al., 2016; Pel-

lichero et al., 2017a), and form the main gateway for the exchange of water masses between the

global ocean and the Antarctic margins. In particular, the subpolar gyres mediate the equator-

ward export of the global ocean’s densest water masses, formed in the Antarctic margins (Orsi

et al., 1999), as well as the deep oceanic heat transport that regulates the melting of Antarctic

ice shelves (Thompson et al., 2018). Despite this important role in global ocean circulation and

climate, our knowledge of the circulation of the subpolar Southern Ocean remains sparse and

incomplete, in part due to major observational constraints (Newman et al., 2019).

We know today that the subpolar Southern Ocean experiences a strong seasonality (Vernet

et al., 2019), as suggested by a number of recent studies based on different lines of evidence.

Using two moorings deployed from 1996 to 2006 in the Fimbul ice shelf region, Núñez-Riboni

and Fahrbach (2009) documented the ASC’s seasonal cycle and its associated forcing, and pro-

posed a decomposition of the cycle into barotropic and baroclinic components. The ASC was

found to be most intense at the end of the austral autumn, and weakest in the austral summer.

Using six years of monthly maps of the geostrophic circulation constructed from Cryosat-2 al-

timetric observations in sea ice leads, Armitage et al. (2018) reached the same conclusion, but

with a much wider view on the circumpolar footprint of the seasonal signal. From a similar da-

taset, Dotto et al. (2018) presented a semi-annual intensification of the Ross Gyre in April-May

and in November, while Garabato et al. (2019) showed the seasonal cycle of the geostrophic cir-

culation over the entire subpolar Southern Ocean and linked such variations to surface winds

modulated by sea ice.

In all these observational studies, wind forcing was found to be the main driver of the sea-

sonal cycle of the ASC and subpolar gyre circulation, consistent with an analysis of numerical

models (Mathiot et al., 2011). For the ASC, local wind stress was found to be the dominant for-

cing of the seasonal cycle, from both moorings (Núñez-Riboni and Fahrbach, 2009) and remote

sensing observations (Armitage et al., 2018). However, while Armitage et al. (2018) highlighted

the contribution of large-scale wind-stress curl for both Weddell and Ross gyre variability, Dotto
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et al. (2018) and Garabato et al. (2019) additionally emphasised the importance of taking into

account the role of sea ice in modulating the wind-stress curl, to understand how changes in

the subpolar Southern Ocean circulation are driven.

In this study, we complement and expand preceding descriptions of the seasonal variability

of the subpolar Southern Ocean circulation by using a novel satellite altimetry product inclu-

ding measurements in the ice-covered regions. We use the product described in Auger et al.

[submitted], which is a new multi-mission Sea Level Anomaly (SLA) dataset over the Southern

Ocean spanning from 2013 to 2019. This product exploits recent advances in radar altimetry

processing to improve measurement selection and correction. Compared to similar previous

products (Armitage et al., 2018; Dotto et al., 2018), the data set used here processes observa-

tions from three satellites instead of only one, enabling higher spatial and temporal resolutions

than before ; and benefits from a novel neural network bias correction that alleviates the need

for ad hoc bias correction between the open-ocean and sea ice sectors, which can introduce

spurious seasonal cycle (Auger et al., submitted). Here we analyse this 7-year high-resolution

SLA product to address the remaining gaps in our knowledge of the seasonal cycle of the sub-

polar Southern Ocean. Our aim is to unravel the multiple responses of the subpolar Southern

Ocean to atmospheric forcing at seasonal time scales. In particular, our product allows us to se-

parate the governing dynamics on and off the continental shelf (which can arguably be subject

to different dynamical regimes), as well as to explore the effects of coastal winds, large-scale

Sverdrup gyral circulations and sea ice, and the distinct seasonal variabilities of the on- and

off-shelf sectors.

To achieve this, we apply a method based on Empirical Orthogonal Functions (EOF) decom-

position only in the subpolar region, allowing to go further into the previous analyses of the SLA

seasonal cycle. This mode decomposition highlights very distinct mechanisms driving different

dynamics in the region, and allow to identify regional disparities in the geostrophic circulation

links with the forcings.

2.2) Data and Methods

Southern Ocean SLA product

The regional SLA product used in this paper is presented in Auger et al. [submitted]. It is

availale on SEANOE (Auger et al., 2021b) with the doi : 10.17882/81032. It consists of 7 years of

daily SLA grids and associated geostrophic current anomalies between 2013 and 2019 on a 25

km EASE2 grid (Brodzik et al., 2014). It results from the processing and mapping of observations

from three satellites : AltiKa and Sentinel-3A in the open and ice-covered oceans, and Cryosat-2

in the ice-covered regions. As described in Auger et al. [submitted], the new product allow to

retrieve SLA at an increased resolution both in the open and the sea ice-covered oceans, and

exhibits a better delineation between on/off continental shelf regimes, and fewer meridional

stripes, arguably as a result of a denser recovery of observations reducing non-physical fea-

tures linked to the satellite orbit. In addition, the methodological advance reduces the risk of

introducing an artificial seasonal signal phased with the sea ice seasonal that can be difficult to

105



III. SOUTHERN OCEAN SEASONAL VARIABILITY IN THE SEA ICE-COVERED SECTOR FROM

MULTI-MISSION SATELLITE OBSERVATIONS OF SEA LEVEL ANOMALY

distinguish from physical sea-level variability (Auger et al., submitted ; (Prandi, 2020)). The me-

dian Root Mean Square Error (RMSE) is 5.9 cm in the permanently ice-covered regions, 3.7 cm

in the seasonally ice-covered ocean, and 4.0 cm in the more dynamic open ocean.

Mean Dynamic Topography

Mean geostrophic currents can be computed from the Mean Dynamic Topography (MDT),

representing the mean sea surface height above the geoid. There are only a few existing MDT

products. Most of the global high-resolution products do not include observations from leads,

so MDTs are seasonally biased in all regions affected by sea ice cover. Therefore, to estimate

the mean geostrophic currents, we choose to use Armitage et al. (2018) MDT, which has a low

resolution compared to conventional open-ocean MDT products, but does contain six years of

Cryosat-2 observations in sea ice leads (Figure III.1a).

We use this MDT field to define the subpolar region that we will investigate in this study, as

the ocean sector south of the MDT contour -180 cm. This MDT contour is chosen as the best

compromise to include the largest region possible while discarding the ACC from our analysis

(Figure III.1a).

Ocean surface stress

We investigate the effect of the momentum flux at the sea surface on the subpolar Sou-

thern Ocean SLA and dynamics. The main source of large-scale momentum flux at the ocean

surface is wind stress, which we estimate from ECMWF (European Centre for Medium-Range

Weather Forecasts) ERA5 monthly mean output (DOI : 10.24381/cds.f17050d7). When the ocean

is partially covered by sea ice, wind stress is not entirely transferred to the ocean surface, but

the ocean also receives momentum through sea ice stress (Tsamados et al., 2014; Martin et al.,

2016).

There remain many uncertainties on the quantification of ocean surface stress in sea ice

sectors. In this paper, we use two approaches : first we consider the wind stress, ~τao , as if it

was entirely transferred to the ocean surface without interference from sea ice ; and second we

use an approximation of the ocean surface stress,~τocn , modulated by the presence of sea ice,

which we derive from Tsamados et al. (2014) and Martin et al. (2016). Therefore,~τocn takes into

account the sea ice concentration Ai and its velocity ~ui in modulating the surface stress :

~τocn = (1− Ai )~τao + Ai~τi w (2.1)

with :

~τao = ρaCd ao |~ua −~uw |(~ua −~uw ) (2.2)

and :

~τi w = ρwCd w |~ui −~uw |(~ui −~uw ) (2.3)

The wind stress~τao depends on the air density, ρa , the air-ocean drag coefficient, Cd w , and

the wind and current velocities, respectively ~ua and ~uw .
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The sea ice concentration, Ai , is obtained through NCEI (National Centers for Environ-

mental Information ; DOI : 10.7265/N59P2ZTG), as well as the sea ice velocity, ~ui (DOI :

10.5067/O57VAIT2AYYY). Ocean current velocity ~uw is assumed to be the geostrophic velocity,

and is constructed from the MDT to derive the mean velocity, to which we add an anomaly from

the Auger et al. [submitted] product. We use a constant ocean density of ρw = 1,028kg .m−3. For

the ocean-ice drag coefficient, Cd w , we tested two different parameterizations. First we used a

constant ice drag coefficient Cd w = 5.5010−3 (Garabato et al., 2019). Second, we used a variable

sea ice drag, that decomposes into three terms, as in Martin et al. (2016) :

Cd w =Cd wski n +Cd wr i d g e +Cd w f loe (2.4)

where the three terms on the right-hand side are respectively skin, ridge and floe drag coeffi-

cients taken from Martin et al. (2016), Tsamados et al. (2014) and Lüpkes and Birnbaum (2005).

Non-constant Cd w allows us to consider the seasonal changes of sea ice properties, and how

they alter the stress applied from the sea ice to the ocean surface. Both constant and variable

sea ice drag coefficients show very similar results, so in the remainder of the study, we only

present ocean stress computed from the constant drag coefficient parameterization.

Statistical tools

Correlation significance

We use Pearson’s correlation to estimate the degree of similarity between time series. Both

correlation and significance are computed based on a degree of freedom evaluated from the

local temporal correlation scale presented in Auger et al. [submitted], which is assumed to cor-

respond to the time interval between two independent measurements (approximately 15 days

in the subpolar Southern Ocean). Correlation significance is assessed at the 99% confidence

level.

Robustness of the EOF modes

The tridimensional (time series of maps) SLA signal is decomposed into Empirical Orthogo-

nal Functions (EOFs). This entails the decomposition of the signal into several orthogonal basis

functions, sorted in terms of explained variability of the signal. This decomposition allows here

to extract the main modes of variability explaining the largest percentage of variance, to then

investigate each mode’s forcing. We investigated the robustness of the EOF decomposition to

two main sources of uncertainty : the error of the SLA product ; and the choice of years analysed

in the decomposition. We present these sensitivity tests below.

Impacts of SLA product errors

The multi-mission product used in this paper comes with an estimate of the formal error

from the optimal interpolation (Auger et al., submitted). It ranges from 1 to 4 cm in the subpolar

Southern Ocean, and peaks at 7 cm locally in some areas of the continental shelf. To investigate

the potential effect of this error on the EOF decomposition, we masked the SLA product where

the formal error average was greater than 3 cm, and recomputed the EOF decomposition. The

first four EOF modes, which this paper focuses on, were unaffected, with an identical value of

explained variance, and associated spatial patterns and principal components (i.e. time series).
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A specific region identified as potentially high-error is the permanently ice-covered area

(i.e. where sea ice does not melt in summer) of the subpolar Southern Ocean, with an error

ranging from 4 to 10 cm in a 2-altimeter configuration (Auger et al., submitted). As with the

formal error, we computed the SLA modes while masking the permanently ice-covered region,

and found that the first four EOF modes were unaffected, with the same variability explained.

EOFs are also unaffected when masking both large formal error regions and permanently ice-

covered parts of the subpolar Southern Ocean at the same time. We conclude from this analysis

that the EOF mode decomposition presented in this paper is robust to consideration of areas

with the largest SLA error.

Robustness to the choice of years included in the EOF decomposition

One of the simple methods listed by Navara et al. 2010 to evaluate the robustness of the

modes is to apply the decomposition to subsamples of the time series. We here split the time

series in two parts, and recompute the EOF analysis for each of the subsets. From April 2013 to

May 2016, and from June 2016 to September 2019, the first two EOF modes recovered in each

case are identical to the first two EOF modes computed with the full time series (same spatial

patterns and principal components). The third mode computed from the two subsets repre-

sents, however, the fourth EOF mode computed with the full time series, with a temporal cor-

relation of r=0.78 for the first subset (2013-2016) and r=0.79 for the second subset (2016-2019).

This is explained by the fact that in the analysis of the full time series, the third mode primarily

captures interannual variability peaking in 2016. This mode is therefore much less influential

when the full time series is split in two shorter subsets. The seasonal cycle is associated with the

first, second, and fourth modes of the EOF decomposition when computed over the full time

series, which correspond to the first, second and third modes of the EOF decomposition com-

puted from the two subsets. We conclude from this analysis that the EOF mode decomposition

of the seasonal cycle is robust to the choice of years analysed.

2.3) Results

Large-scale SLA variability is investigated by filtering the 2013-2019 daily sea-level product

with a 300 km radius Gaussian filter. The error associated to this large-scale SLA product is com-

puted as in Auger et al. [submitted] by comparing a 2-altimeter product filtered at 300 km, with

the along-track independent observation from Sentinel-3A data filtered with a 300 km running

mean. The error is 5.7 cm in the permanently ice-covered regions, 3.0 cm in seasonally ice-

covered areas, and 3.2 cm in the open ocean. The higher errors in the open ocean than in the

ice-covered regions stem from the open ocean being more dynamic, and therefore having a

wider range of SLA values and higher SLA variability.

We here focus on the signal in the subpolar Southern Ocean, defined as the region south

of the -180 cm MDT contour to exclude the ACC from our analysis (See Method ; Figure III.1a).

The subpolar Southern Ocean is then split into two sectors : the "off-shelf sector", north of the

Antarctic continental shelf, and defined as the region to the north of the 1000 m isobath in the

Antarctic continental slope ; and the "Antarctic continental shelf sector", defined as the region

south of the 1000 m isobath in the Antarctic continental slope (See Method ; Figure III.1a).
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FIGURE III.1: a. Mean Dynamic Topography. The white line is our delimitation of the subpolar Southern
Ocean, taken as the northern MDT (Mean Dynamic Topography) contour at -180cm. Black dotted lines
are MDT contours of 190, 200 and 210 cm within the subpolar Southern Ocean. The white dotted line is
the bathymetry contour at 1000 m and separates on-shelf and off-shelf parts of the subpolar Southern
Ocean.b. In blue, time series of integrated off-shelf monthly SLA in the subpolar Southern Ocean. In-
tegrated wind stress curl and ocean stress curl in the same zone are shown in black and dashed grey,
respectively. c. Same as a, but averaged over the seasonal cycle. d. In blue, time series of integrated on-
shelf monthly SLA in the subpolar Southern Ocean. Integrated zonal wind stress and ocean stress in the
same zone are shown in black and dashed grey, respectively. e. Same as c, but averaged over the seaso-
nal cycle. The blue shading shows an upper bound of the error associated with the mean SLA in each
sector, derived from the seasonal maps of RMSE between the mapped AltiKa and Cryosat-2 product and
independent along-track Sentinel-3A data.
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TABLE III.1: Correlation coefficient between integrated SLA off-shelf and on-shelf, and wind
forcing integrated in the same zones.

Wind Stress Curl Ocean Stress Curl Zonal Wind Stress Zonal Ocean Stress
SLA Offshelf 0.77 0.50 -0.58 -0.62
SLA Onshelf 0.67 0.18 -0.70 -0.44

Subpolar SLA time series and associated forcing

The SLA time series averaged over the subpolar off-shelf sector shows a strong seasonal

cycle, with SLA reaching a maximum in December-January and a minimum from April to Octo-

ber (Figure III.1b,c). The amplitude of the seasonal cycle is ∼4 cm. Interannual variability super-

imposes on top of this seasonal cycle, with higher summer maxima in 2017-2018 and 2018-2019,

associated both with a slightly larger amplitude of the seasonal cycle in 2017-2018, and with an

underlying positive SLA trend from 2013 to 2019.

In contrast, the mean SLA averaged over the Antarctic continental shelf sector shows a stri-

kingly different time series and seasonal cycle (Figure III.1d,e). First, the amplitude of the sea-

sonal cycle is much weaker than that of the interannual variability, and an important part of the

seasonal cycle is in antiphase with the off-shelf seasonal cycle. The sea level on the continental

shelf is maximum in early winter (May-June), and minimum in spring (September). Summer

and autumn show weaker variability, with a local sea level maximum in December-January and

a minimum in March. The time series also displays large interannual variability, with an ampli-

tude of about 8 cm, more than twice as large as the amplitude of the seasonal cycle.

We now compare those time series and their seasonal cycle to the corresponding ocean

surface stress, computed with (~τocn) and without (~τao) the influence of sea ice (respectively

referred to as "ocean stress" and "wind stress" ; see Methods). In both sectors, the correlation of

SLA variability and wind stress variability is striking (Figure III.1b-e ; Table III.1). In particular,

the SLA time series averaged over the off-shelf sector has a correlation of 0.77 (significant at

a 99% confidence level) with the corresponding wind stress curl time series averaged over the

same region (Figure III.1c ; Table III.1). The SLA time series averaged over the continental shelf

sector has an anticorrelation of 0.70 (significant at a 99% confidence level) with the zonal wind

stress time series averaged over the same region (Figure III.1c ; Table III.1). In the two sectors,

the comparison between the mean SLA time series and the wind forcing shows very strong

similarities, both at seasonal and interannual scales (Figure III.1b-c).

Surprisingly, when considering the effect of sea ice on the stress (see Methods), the correla-

tion with the SLA time series dramatically drops (Figure III.1b-c ; Table III.1).

Beyond the statistical correlation, there is a physical link between negative wind stress curl

anomalies of the off-shelf sector and the deepening of the sea surface, through vertical Ekman

pumping inducing an upwelling anomaly. Similarly, on the continental shelf, westward (i.e. ne-

gative) zonal wind stress anomalies are dynamically linked to an increase in SLA, through me-

ridional Ekman transport anomalies.
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From these two opposite seasonal cycles peaking in summer and winter, we can expect a

very similar seasonal cycle for the SLA gradient over the Antarctic continental slope, which is

the frontier between the on-shelf and off-shelf regions. With a winter (summer) SLA maximum

(minimum) on the shelf and a minimum (maximum) north of the shelf, we expect the zonal

current anomaly at the slope to be westward (eastward). Therefore, we anticipate from these

results that the westward ASC and southern branch of the subpolar gyres strengthen in winter

and weaken in summer.

Seasonality of geostrophic circulation in the subpolar Southern Ocean

Geostrophic currents are computed from the SLA maps (Pedlosky, 2013) to investigate the

seasonality of the current strength. We here focus on the seasonal cycle of the zonal geostrophic

current anomaly (Figure III.2). For reference, the mean zonal geostrophic current map in the

subpolar Southern Ocean is shown Supplementary Figure III.8.

In summer (DJF), the Weddell Gyre circulation tends to weaken, as its northern branch

shows a negative (westward) anomaly, while its southern branch exhibits a positive (eastward)

anomaly (Figure III.2a). This southern eastward anomaly actually spans almost the entire cir-

cumpolar extent of the continental shelf, indicating a circumpolar-wide summer weakening of

the ASC. The winter (JJA) conditions tend to be opposite to the summer anomaly, with a winter

intensification of the ASC and Weddell Gyre (Figure III.2c).

The transition from summer to winter anomalies and from winter to summer anomalies

at mid-season displays interesting patterns in East Antarctica, with a meridional northward

spreading of the anomaly from the continental shelf to the open ocean north of the continental

slope (Figure III.2b,d). In fall (MAM), the acceleration of the ASC that continues over winter

is only concentrated over the continental shelf, on the poleward edge of the current (Figure

III.2b), and it is only in winter that the current accelerates over its entire width. Similarly, in

spring (SON), the deceleration of the ASC that continues over summer is only concentrated

over the continental shelf (Figure III.2d), and it is only in summer that the current decelerates

over its entire width.

Figure III.1b-e shows two different seasonal cycle shapes in sea surface height on the conti-

nental shelf and in the off-shelf sectors. However, those two seasonal cycles have extrema in

summer and winter. They might be able to represent the summer-winter contrast in the Weddell

Gyre and ASC zonal current anomalies, but they do not capture the spring and autumn offshore

spreading of anomalies shown in Figure III.2. To gain a deeper understanding of the mecha-

nisms driving the seasonal cycle of geostrophic circulation in the subpolar Southern Ocean, we

next apply a decomposition into Empirical Orthogonal Functions (EOFs) modes.

Spatio-temporal modes of variability in the subpolar SLA

The daily subpolar Southern Ocean SLA product is decomposed into spatial modes of va-

riability using an EOF analysis. The first two modes stand out with respectively 30% and 11%

of explained variance, while higher-order modes explain less than 6% of the total variance. As

a measure of the prominence of the seasonal cycle for each mode, we compute the correlation
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FIGURE III.2: Zonal current anomalies of the subpolar Southern Ocean for each of the four seasons : (a)
summer (December, January, February ; DJF) ; (b) fall (March, April, May ; MAM) ; (c) winter (June, July,
August ; JJA) ; (d) spring (September, October, November ; SON). The dotted line is the 1000 m isobath ;
the black line corresponds to the northern boundary of the subpolar sector as defined in Section 2.2.

TABLE III.2: SLA EOF Modes correlation with their seasonal cycle.

EOF 1 2 3 4 5 6
Correlation with its seasonal cycle 0.78 0.62 0.30 0.72 0.40 0.54

Variance explained 30% 11% 6% 5% 3% 3%

between the time series of each mode and a synthetic time series formed as a repetition of its

mean seasonal cycle (Table III.2). The higher the correlation, the more prominent is the sea-

sonal cycle compared to interannual variability for each mode. Modes 1, 2 and 4 stand out as

having large seasonal cycle components. To investigate the seasonal cycle of SLA in the subpo-

lar Southern Ocean, we will thus concentrate our analysis on these three modes.
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TABLE III.3: Correlation with SLA modes 1 and 2

Offshelf Onshelf Mode 1 Mode 2
WSC ZWS WSC ZWS WSC ZWS WSC ZWS

SLA mode 1 -0.78 0.58 -0.02 0.07 0.78 0.66 0.11 0.40
SLA mode 2 0.10 -0.56 -0.67 -0.72 0.20 0.45 0.49 0.66

A gyre mode

The first EOF mode of SLA (SL A1 ; hereafter Xn refers to the nth mode of variable X) is asso-

ciated with a prominent seasonal cycle and a spatial pattern characterised by anti-correlation

between the off-shelf sector and the continental shelf sector (Figure III.3a). Its principal com-

ponent and in particular its seasonal cycle (Figures III.3c,d) are reminiscent of the SLA time

series averaged over the entire off-shelf sector (Figure III.1b,c). However, the decomposition

into modes of variability offers a more detailed on the associated spatial pattern. SL A1 is asso-

ciated with a winter SLA drop that is largest at the center of the two main gyre systems in the

Ross and Weddell Seas (Figure III.3a), as is particularly evident for the Weddell Gyre. The spatial

pattern of SL A1 stands out as being associated with an intensification of the gyre systems in

winter, with an overall eastward intensification of the geostrophic circulation at the northern

edge of the subpolar sector, and an eastward intensification on this sector’s southern edge over

the Antarctic continental slope (Figure III.3b).

This mode of winter gyre intensification is strongly correlated with both the averaged wind

stress curl over the off-shelf sector and the principal component of the first EOF mode of wind

stress curl (respective correlation coefficients of 0.73 and 0.71, both significant at a 99% confi-

dence level ; Table III.3). Figure III.4 presents the first two EOF modes of the wind stress curl

and the zonal wind stress, computed from a 2013-2018 time series over the subpolar Southern

Ocean. It is insightful to compare the spatial pattern of the first EOF mode of SLA, SL A1, with

the spatial pattern of the first EOF mode of wind stress curl, W SC1 (or alternatively the spatial

regression of the wind stress curl onto the time series of SL A1, see Supplementary Figure III.9).

Despite the very good correlation between the time series of these two modes, the spatial pat-

terns are distinct. SL A1, displays a consistent pattern over the entire subpolar Southern Ocean,

in contrast to W SC1, which exhibits a meridional asymmetry. This indicates that SLA variability

associated with SL A1 does not result from a local response to local wind stress curl anomaly.

Rather, SL A1 appears to be associated with a gyre-scale response to a basin-scale anomaly of

wind stress curl, as expected from classical conceptualisations of a wind-driven gyre in Sver-

drup balance (Pedlosky, 2013).

A slope current mode

The second EOF mode of SLA, SL A2 (Figure III.5), also shows a strong seasonal cycle, though

interannual variability is larger than for SL A1. This mode displays a strong signal on the Antarc-

tic continental shelf, with a consistent circumpolar-wide rise of sea level over the continental

shelf from May to August, and a more stable sea level from September to April (Figure III.5a,c,d).

Both the principal component and associated seasonal cycle of SL A2 are reminiscent of the ave-
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FIGURE III.3: First Sea Level Anomaly (SLA) EOF mode. (a) First SLA EOF mode spatial pattern. The dot-
ted line is the 1000 m isobath ; the black line corresponds to the northern boundary of the subpolar
sector as defined in Section 2.2. Percentage is the part of total SLA variance explained by this mode. (b)
Zonal geostrophic current anomaly associated with SLA mode 1. (c) SLA Mode 1 principal component
(blue), and integrated wind stress curl in off-shelf subpolar Southern ocean (black). (d) Same as (c), but
for seasonal cycle.

raged SLA time series over the continental shelf (Figure III.1d,e). The spatial pattern of SL A2 is

associated with a marked circumpolar intensification of the westward-flowing ASC in winter,

represented by the strong eastward zonal current anomaly at the slope in Figure III.5b.

The time series of SL A2 is highly correlated with both the time series of zonal wind stress

averaged over the entire Antarctic continental shelf region and the time series of the second

EOF mode of zonal wind stress (respective correlation coefficients of 0.74 and 0.64, both signi-

ficant at a 99% confidence level ; TableIII.3). Both the spatial pattern of the second EOF mode

of zonal wind stress (Z W S2) and the regression of the zonal wind stress onto the time series

of SL A2 show that the zonal wind stress pattern associated with SL A2 is a pronounced winter

intensification of the easterlies over the Antarctic continental slope (Figure III.4d ; Supplemen-

tary Figure III.9). However, the spatial pattern of the wind stress (Figure III.4d) has a much grea-

ter degree of circumpolar asymmetry than the marked circumpolar response of SL A2 (Figure

III.5a). In particular, the winter intensification of the easterlies appears confined to the East An-

tarctic region, while SL A2 is associated with a winter circumpolar rise over the continental shelf.

Similar to SL A1, this mismatch of the spatial pattern concomitant with a very good correlation

of the time series suggests that SLA variance associated with SL A2 does not result from a local

response to local wind stress anomaly. Instead, SL A2 describes a circumpolar continental shelf
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FIGURE III.4: Wind Stress Curl (WSC) and Zonal Wind Stress (ZWS) EOF modes 1 and 2. a,b. Wind stress
curl (WSC) EOF modes 1 and 2 spatial patterns. c,d. Zonal wind stress (ZWS) EOF modes 1 and 2 spa-
tial patterns. Percentage is the part of total variable variance explained by this mode. The dotted line on
panels a-d is the 1000 m isobath ; the black line corresponds to the northern boundary of the subpo-
lar sector as defined in Section 2.2. e. Blue, black and red lines are respectively EOF mode 1 principal
components of Sea Level Anomaly (SLA), WSC and ZWS. f. Blue, black and red lines are respectively EOF
mode 2 principal components of SLA, WSC and ZWS.

mode, related to remote wind stress perturbations over the continental shelf, consistent with

a rapid circumpolar propagation of SLA features via the so-called "Southern Mode", described

from observations and numerical models (Aoki, 2002; Hughes et al., 1999, 2003).

Therefore, while the first mode could be described as a subpolar gyre mode, the second

can be described as an ASC mode. Although the spatial patterns of the two first EOF modes of

SLA are different, the two modes consistently describe a winter intensification of the subpolar

ocean circulation in winter (Figure III.2a-d). However, none of these two modes capture the
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FIGURE III.5: Second Sea Level Anomaly (SLA) EOF mode. (a) Second SLA EOF mode spatial pattern. The
dotted line is the 1000 m isobath ; the black line corresponds to the northern boundary of the subpolar
sector as defined in Section 2.2. Percentage is the part of total SLA variance explained by this mode. (b)
Zonal geostrophic current anomaly associated with SLA mode 1. (c) SLA Mode 1 principal component
(blue), and integrated zonal wind stress in the on-shelf subpolar Southern Ocean (black). (d) Same as (c),
but for seasonal cycle.

mid-season current anomaly described in Figure III.2a-d. In order to better grasp the potential

drivers of such mid-season anomalies, we next investigate higher EOF modes of variability. In

particular, we focus on the next mode that has a strong imprint of seasonal signal, the fourth

EOF mode of SLA, SL A4 (See Table III.2). The third SLA mode is not discussed here, as it shows

no strong seasonal cycle but only interannual variability (see Supplementary Figure III.10).

Unphased mode - Modulation by sea ice

SL A4 shows a large seasonal cycle that is not phased with the seasonal cycles of SL A1 and

SL A2 (Figure III.6). While SL A1 and SL A2 are associated with an acceleration of the large-scale

current systems in winter months, SL A4 is instead linked to a circumpolar westward intensifi-

cation of currents over the continental shelf at the end of summer and before winter, between

February and May, which then slows down with a maximum deceleration at the beginning of

winter (Figure III.6b,d). This continental shelf signal is accompanied by an opposite anomaly of

the geostrophic circulation to the north of the continental slope. Thus, SL A4 explains the mid-

season anomalies that stand out in Figure III.2. Having isolated this signal as an EOF mode, we

can now discuss its potential drivers.
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SL A4 is very consistent with the main mode of variability of sea ice concentration (Figure

III.7a,c,d), both in terms of the time series (correlated at 0.74, significant at the 99% confidence

level) and of the spatial pattern (Figures III.7a, III.6a). This striking relationship suggests that

sea ice might have a role in shaping SL A4. Sea ice can have a thermodynamical effect through

steric expansion, but this would have the opposite impact to the one observed, as winter brine

rejection contracts the upper-ocean water column. Alternatively, sea ice can have a mechanical

effect by modulating momentum transfer at the sea surface. Interestingly, the first EOF mode of

the ocean stress curl (see Methods) is well correlated with SL A4 both in terms of the time series

(r = 0.72, significant at a 99% confidence level) and the spatial pattern (Figures III.7b, III.6a). In

autumn, the sea ice cover is small, and along-slope easterlies induce on-shelf Ekman transport.

The divergence between easterlies and westerlies induces negative SLA anomalies just north of

the slope. In winter, sea ice extent expands to hundreds of kilometers north of the slope. This

tends to reduce the wind stress that reaches the ocean surface between the slope and the sea

ice edge. Winter-spring intensified westerlies are still strong north of the ice edge (See Z W S2,

Figure III.4d), inducing southward Ekman transport and convergence between the slope and

the sea ice edge, while divergence is displaced northward. This combination of wind and sea

ice seasonal cycles results into a zonally banded structure of SLA seasonal variations, leading

to two strong SLA gradients at the slope and the sea ice edge and thereby creating two jets with

opposite directions (Figure III.6b).

Overall, this mode leads to a northward spreading of ASC acceleration (deceleration)

from summer (winter) to winter (summer). This northward spreading of the acceleration is

consistent with the mooring observations of (Núñez-Riboni and Fahrbach, 2009) at longitude

0°, which revealed an off-shelf westward maximum in June, one month after the strongest west-

ward maximum was reached earlier over the slope.

2.4) Conclusion and Discussion

A novel satellite-based SLA product fitted to recover SLA in sea ice-covered regions is used

to investigate the seasonal cycle of subpolar Southern Ocean geostrophic currents. The seaso-

nal cycle of SLA in the subpolar Southern Ocean is primarily explained by three main modes of

variability. The first mode corresponds to a winter acceleration of the Weddell and Ross gyres,

consistent with large-scale variability of wind stress curl, through Sverdrup dynamics. The se-

cond mode is associated with a winter intensification of the ASC, forced by easterly wind va-

riability on the continental shelf, with a circumpolarly propagating signal consistent with the

so-called Southern Mode (Hughes et al., 2003). The third mode is a mid-season northward pro-

gression of the ASC acceleration/deceleration that is consistent with a local response to surface

stress modulated by the combination of sea ice and wind stress seasonal cycles.

Our results are in line with those of Armitage et al. (2018), who linked the integrated wind

stress curl with the geostrophic ocean circulation in the Ross and Weddell gyres. We however

propose that in addition to the wind stress at large scales, which drives the two main modes

of seasonal ocean circulation variability, a complete description of the seasonal cycle requires

consideration of the local effects of sea ice modulating the stress received by the ocean. This is

consistent with Garabato et al. (2019), who highlighted the important role of sea ice in modula-
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FIGURE III.6: Fourth Sea Level Anomaly (SLA) EOF mode. (a) Fourth SLA EOF mode spatial pattern. The
dotted line is the 1000 m isobath ; the black line corresponds to the northern boundary of the subpolar
sector as defined in Section 2.2. Percentage is the part of total SLA variance explained by this mode. (b)
Zonal geostrophic current anomaly associated with SLA mode 1. (c) SLA Mode 1 principal component.
(d) Same as (c), but for seasonal cycle.

ting the momentum stress received by the ocean. In addition, our results allow us to delineate

on-shelf and off-shelf dynamics, and to highlight their distinct seasonal cycles, owing to the use

of a multi-satellite product to recover SLA variability at higher spatio-temporal resolution than

previously achievable.

Using moorings, Núñez-Riboni and Fahrbach (2009) described a delay of several months

between on-shelf and off-shelf ASC maxima. Over the 9 years they analysed, they found that

the ASC’s barotropic component reaches a maximum in April on the continental shelf, while

the ASC maximum was only reached two months later directly to the north of the continental

slope. This was explained by the northward displacement of the ice edge in winter seasonally

moving the maximum of momentum transfer. Our ice-related mode and zonal current clima-

tology (Figures III.2 and III.6) are consistent with this result, and provide an overarching vision

of this process all around Antarctica. In East Antarctica and in the Admundsen-Bellingshausen

seas, where the seasonal variation of sea ice extent is weak, the ASC’s response to sea ice modu-

lation of the surface stress is stronger, as the sea ice edge moves northward but stays in regions

of strong westerlies. The impact on the ASC is lower in the Weddell and Ross Gyres as the sea

ice expands northward, for the sea ice edge is displaced too far from the slope to have a strong

impact on the ASC.
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FIGURE III.7: Sea Ice concentration (SIC) and Ocean Stress curl (OSC) first EOF modes. a. SIC EOF mode
1 spatial pattern. Colorbar boundaries are not centered on 0 for a better comparison with Fig. 8. The
dotted line is the 1000 m isobath ; the black line corresponds to the northern boundary of the subpolar
sector as defined in Section 2.2. b.OSC EOF mode 1 spatial pattern. c. In green, SIC mode 1 principal
component. In dashed green, OSC mode 1 principal component. d. Seasonal cycles of both principal
components.

Flexas et al. (2015); Stewart et al. (2019) discussed the important effect of the tides and ed-

dies in maintaining the Antarctic Slope Front and forcing the ASC. These processes were not

considered in this study, as SLA was filtered prior to analysis and large scale seasonal variations

of the circulation were consistent with atmospheric-driven processes. However, Auger et al. [su-

mitted] high resolution product may have the potential for observing some mesoscale features

in the subpolar Southern ocean, including in its ice-covered parts. This could be a perspective

for future research. More generally, future sea surface height products merging even more sa-

tellite observations, or new instrument allowing to observe sea surface topography at higher

resolution (e.g. the NASA/CNES mission SWOT (Biancamaria et al., 2016)), provide promising

avenues to investigate smaller scale processes in sea ice regions.

Our results allow us to identify the forcing of the main features of the subpolar Southern

Ocean current system. While the gyres appear really tied to large-scale wind stress curl, the

slope current responds more to the coastal easterlies. In a context of changing climate, Southern

Hemisphere westerlies are projected to intensify (except for aggressive mitigation scenarios),

but no clear trends are projected for coastal easterlies (Bracegirdle et al., 2020; Goyal et al.). We

can therefore anticipate that while Southern Ocean subpolar gyres are being and will continue

to be spun-up in response to increasing westerlies, the Antarctic Slope Current is and will be
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much less sensitive to such change. However, as sea ice changes regionally or circumpolarly, the

mid-season transitions of the Antarctic Slope Current seasonal cycle are likely to be affected by

local surface stress modulation.

Supplementary Material of the paper : Southern Ocean Seasonal

Variability in the Sea Ice-Covered Sector From Multi-mission Satellite

Observations of Sea Level Anomaly by Auger et al.

The supplementary information presented here provides more insights out the results des-

cribed in the main paper. The mean zonal geostrophic current over the subpolar Southern

Ocean serves as a reference to understand the anomalies zonal current presented in the main

paper. Wind Stress Curl and Zonal Wind Stress regressions on Sea Level Anomaly modes 1 and

2 support our results on sea level anomaly forcings, while the SLA third mode of variability is

displayed to convice the reader that this mode was out of the scope for a description of the

seasonal variability.

b Mean U (cm/s)

FIGURE III.8: Mean zonal geostrophic currents computed from Figure 1a MDT. The black line is the MDT
contour at -180cm.
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FIGURE III.9: a. WSC Regression on SLA EOF mode 1. b. ZWS regression on SLA EOF mode 2. The dotted
line is the 1000 m isobath ; the black line corresponds to the northern boundary of the subpolar sector
as defined in Section 2.2.
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FIGURE III.10: Third Sea Level Anomaly (SLA) EOF mode. (a) Third SLA EOF mode spatial pattern. The
dotted line is the 1000 m isobath ; the black line corresponds to the northern boundary of the subpolar
sector as defined in Section 2.2. Percentage is the part of total SLA variance explained by this mode. (b)
Zonal geostrophic current anomaly associated with SLA mode 1. (c) SLA Mode 1 principal component
(blue). (d) Same as (c), but for seasonal cycle.
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3 Conclusion of the chapter

In this chapter, I exploited the new SLA product I developed and presented in Chapter II. I

was able to identify three main modes of variability in the subpolar Southern Ocean topography

and associated surface geostrophic circulation. I also aimed at documenting some potential

mechanisms driving these main modes of variability.

The mode of variability associated with the largest amount of explained variance of the sub-

polar ocean signal is a gyre mode. It appears strongly correlated with large-scale wind stress

curl, consistently with our physical understanding of the Sverdrup dynamics. The Southern He-

misphere mid-latitude westerlies weaken in Summer and strengthen in Winter, which leads to

a winter increase of wind stress curl over most of the subpolar Southern Ocean basin, which

integrates into a winter intensification of the subpolar gyres. Interestingly the correlation bet-

ween the gyre strength and wind stress curl is much greater for the integrated wind stress curl

over the entire subpolar basin, than with local wind stress curl at each grid cell, which further

points to Sverdrup gyre dynamics.

The second largest mode of variability is a mode where most of the signal is concentrated

around the continental shelf break. It describes a winter intensification of the ASC and is stron-

gly correlated with zonal winds integrated over the continental shelf region. Interestingly, this

mode is circumpolar, with the entire continental shelf varying consistently, and is more corre-

lated with circumpolarly integrated zonal winds than with local zonal winds at each grid cell.

These dynamics are reminiscent of the previously documented Southern Mode (Kusahara and

Ohshima, 2009; Spence et al., 2017), whereby, a local zonal wind anomaly, creates a local SLA

anomaly on the continental shelf, which propagates almost instantly over the entire circumpo-

lar band.

The third largest mode of variability is forced by local winds, with the direct influence of sea

ice concentration in modulating the stress at the surface of the ocean. This mode is therefore

phased with the sea ice seasonal cycle and follows the positions of the sea ice edge throughout

the year. It also induces seasonal changes in the dynamics of the ASC, but with distinct effects

on its shelf and offshelf parts. As a result, the seasonal cycle off the shelf is delayed by a few

months from the onshelf seasonal cycle.

These three modes show three distinct responses to various atmospheric and sea ice sea-

sonal variations. While all of them are somehow related to the seasonal cycle of the wind, each

mechanism is different and drives variability at different locations and phases.

For convenience, I have filtered out the small-scale variations of Sea Level Anomaly in this

study. However, important information coming from the mesoscale signal might be lost, along

with its variations and interactions with the large-scale seasonal cycle we described here. In the

next chapter, I focus specifically on this smaller-scale signal.
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1 Preamble

In Chapter III, I used the dataset presented in Chapter II to investigate the seasonal cycle

of the circulation of the subpolar Southern Ocean, including its ice-covered parts. Those results

come from a spatially filtered version of the Sea Level Anomaly (SLA) dataset, which allows

focusing on the large-scale processes and circulation changes at the seasonal scale. However,

the filtering erases much of the smaller scale variability, whereas one important assets of this

dataset is its resolution. Here, I dig into the smaller scale signal of the dataset to investigate

what can be learned (if anything) from this product on the properties of mesoscale eddies in

the ice-covered Southern Ocean.

One of the most energetic scales for the variability of the ocean circulation is the mesoscale

variability (Morrow and Le Traon, 2012). In the general introduction, I presented the essen-

tial role of the mesoscale eddies in the global climate, and particularly in the Southern Ocean

system. I also presented some hints of the knowledge of the sub-ice eddies generation, pro-

perties and behaviour. As it has been documented by observation in the Arctic (Timmermans

et al., 2008; Zhao et al., 2014, 2016) and modeled in the Antarctic (Cohanim et al., 2021), most of

the eddy activity in the sub-ice regions is concentrated in the halocline layer. These eddies are

mostly anticyclonic (Timmermans et al., 2008; Zhao et al., 2014, 2016; Cohanim et al., 2021), and

survive in the halocline as they are shielded from the sea ice-induced dissipation by the strong

stratification (Meneghello et al., 2020). However, very little is known about the surface eddies

in the sea ice regions. In the Arctic, Eddy Kinetic Energy (EKE) observation shows that sea ice

is responsible for a strong dissipation of the eddies in the first 50 meters of the water column,

while preventing the formation of new ones (Meneghello et al., 2020). The same study however

emphasizes the need for better surface measurements, as the Ice Tethered Profilers used in the

ice-covered regions are limited to depths larger than 7 meters, while the surface layer may be

the preferred region for an intense eddy activity.

Here, I use the dataset developed in the context of this study to explore if some information

on surface mesoscale eddies in the ice-covered oceans can be extracted, as a first observation-

based attempt to document mesoscale eddies in the ice-covered subpolar Southern Ocean. To

do that, I use an eddy detection and tracking method extensively used to document the eddies

in ice-free regions (e.g. Chelton et al., 2011; Pegliasco et al., 2015; Mason et al., 2017). The ef-

fect of the sea ice and the background circulation on the detected eddies is investigated, and

the special case of the Marginal Ice Zone (MIZ) is developed. There are very few to no other

observations of eddies in the surface layer of ice-covered oceans to compare our results with.

Moreover, I am conscious of the limitations inherent to the dataset and the detection method.

That is why I try to evaluate the robustness of the results with a sensitivity study. In the following

manuscript, I also assess how these results might be impacted by observational issues. While I

am cautious about the outcomes of this study, it may contribute to a better understanding of

the eddy activity in the subpolar Southern Ocean, and more broadly to the ice-covered oceans.
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2 Southern Ocean ice-covered Eddy properties from satellite

altimetry

This section includes a manuscript and its supplementary material currently in prepara-

tion for submission in the Journal of Geophysical Research : Ocean. The reference is Au-

ger, M., Sallée, J.B., Prandi, P., Pauthenet, E. Mesoscale eddy properties in the ice-covered

Southern Ocean explored from satellite altimetry, In prep.

Abstract

We investigate mesoscale activity and eddy properties in the subpolar, seasonally ice-

covered Southern Ocean. Based on a recent regional Sea Level Anomaly (SLA) satellite al-

timetry dataset, we compute Eddy Kinetic Energy (EKE) of the basin and detect mesoscale

eddies in the ice-covered Southern Ocean. The EKE is spatially consistent with the back-

ground circulation. It is one order of magnitude higher in the northern sector of the sub-

polar basin, close to the southern boundary of the Antarctic Circumpolar Current, and on

the continental slope, than in the middle of the Weddell and Ross gyres. We apply an eddy

detection methodology, which detects around 600 eddies per day. While they are on average

distributed evenly in the subpolar Southern Ocean, their amplitude follows the spatial pat-

tern of EKE. On top of the importance of large currents (Antarctic Circumpolar Current, or

Antarctic Slope Current), sea ice concentration appears as a important drivers of eddy pro-

perties. Eddies have very low amplitude and density in the pack ice, even lower when it is

in the middle of the gyres, where no background circulation favors eddies or instabilities.

In contrast, the northern part of the Marginal Ice Zone (n-MIZ) is very favorable for mesos-

cale eddies, particularly cyclonic. There, mesoscale eddies are stronger and their density is

higher than in any other region of the ice-covered or ice-free subpolar Southern Ocean. This

may be a response to the meltwater front at the sea ice edge or local upwelling generated

from interactions between the wind and the sea ice. These cyclonic eddies may be the sur-

face signature for the generation of the long-living halocline anticyclonic eddies reported in

previous studies. We are conscious that we cannot resolve or detect all the mesoscale eddies

of the Southern Ocean due to the very small Rossby radius, especially at high latitude. Yet, we

believe our results contribute to understanding the interactions between mesoscale eddies,

sea ice, and the background circulation in the subpolar region.

2.1) Introduction

As a turbulent system, the oceanic circulation is dominated by mesoscale instabilities : in

the global oceans, the eddies are ten times more energetic than the mean currents (Morrow

and Le Traon, 2012). Mesoscale eddies are oceanic features forming water vortices, with spatial

scales ranging from tens to hundreds of km, and lifetime from several days to a few months

(Chelton et al., 2011). These structures are essential for ocean dynamics, as they can induce
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mass and tracer transport through the so-called ‘bolus’ velocity and also by trapping water in

their core (McWilliams, 1985; Chelton et al., 2011; Morrow and Le Traon, 2012). They also in-

crease diffusion of tracers through their stirring of the ocean (Garrett, 1983; Gent et al., 1995),

and convert potential energy into kinetic energy, while transferring this energy into various

scales (Visbeck et al., 1997; Stammer, 1998).

Eddies are detectable from surface topography maps derived from satellite altimetry. From

the 2000s, high-resolution SSH products (Ducet et al., 2000) allowed showing the ubiquity of

mesoscale eddies in the global oceans. Chelton (2013) described eddy characteristics in the glo-

bal ocean, by applying eddy detection and tracking algorithms to a high-resolution Sea Surface

Height dataset. Most of the eddies they observed were found to be nonlinear, with their rotation

speed being larger than their translation speed (Chelton et al., 2011). The scale of eddies is inti-

mately linked to the first baroclinic Rossby radius of Deformation (Chelton et al., 1998), which

varies from larger scales (' 250km) at the equator to smaller scales (' 10km) at high latitudes

(Chelton, 2013). While both cyclonic and anticyclonic eddies were found to mainly propagate

toward the west, there is a slight tendency for cyclones (anticyclones) to propagate poleward

(equatorward) on top of their westward propagation (Chelton et al., 2007). Chelton (2013) also

mapped the mean radius, translation, and rotation speed of the eddies allowing a better repre-

sentation of the mesoscale eddies and their disparities between the various oceanic basins of

the globe.

Ocean eddies are particularly important in the Southern Ocean circulation, being the do-

minant mechanisms for meridional heat transport across the Antarctic Circumpolar Current

(ACC) (Jayne and Marotzke, 2002), central for setting the ACC momentum balance (Gille, 1997;

Rintoul et al., 2001; Ivchenko et al., 2008), and key for the Southern Ocean meridional overtur-

ning circulation (Speer et al., 2000; Marshall, 2003; Marshall and Radko, 2003; Ivchenko et al.,

2008). In the context of a changing climate, Southern Ocean eddies are thought to be important

in shaping the response of the ACC and the response of the overturning circulation to change in

westerly winds (Farneti et al., 2010; Dufour et al., 2012; Patara et al., 2016; Gent, 2016; Rintoul,

2018).

In contrast to the ACC region, Southern Ocean eddies in the subpolar region (south of the

ACC) are poorly known due to observational constraints in the presence of sea ice. However,

they are also there thought to be an essential component of the circulation and transport of

water masses. For instance, Thompson et al. (2014) found a fingerprint of eddy transport across

the slope of the Antarctic continental shelf and suggested an important eddy contribution to

the Antarctic overturning circulation through cross-shelf transport of the warm intermediate

layers. Later, (Stewart and Thompson, 2015) confirmed from an eddy-resolving model of the

Antarctic Slope Front (ASF), that eddies were indeed a potentially efficient mechanism for the

shoreward transport of relatively warm Circumpolar Deep Water (CDW) along density surfaces.

This onshore transport is enhanced by bathymetry features such as coastal trough in the conti-

nental shelf of the Bellingshausen sector (Nakayama et al., 2014), or at bottom water formation

sites (Stewart and Thompson, 2015). Eddy stirring was also proposed as one potentially impor-
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tant process transferring heat toward the shelf (Stewart et al., 2018). Finally, eddies were also

found to have a potentially large influence on the intensity of the zonal Antarctic Slope Current

(Stewart et al., 2019).

In spite of such potentially important role of eddies in the subpolar region of the Southern

Ocean, mesoscale activity remains largely unknown in this region from large scale observations

(Vernet et al., 2019). This hinders our advance in understanding their role in polar climates as

well as their interactions with sea ice. Signature of mesoscale eddies in sea ice regions have

been observed from moorings (Meneghello et al., 2020), ice-Tethered profilers (Timmermans

et al., 2008; Zhao et al., 2014, 2016) profiling glider sections (Thompson et al., 2014), acousti-

cally tracked profiling floats (Vignes et al. [submitted]), or satellite-based Synthetic Aperture

Radar (SAR) images (Kozlov et al., 2019). However, none of such methods provide wide spatio-

temporal coverage allowing to robustly describe eddy characteristics, a prerequisite towards

investigating their influence on large-scale circulation. In the Arctic basin, (Meneghello et al.,

2020) combined observations and high-resolution modeling to establish the seasonality of me-

soscale activity as a function of depth and sea ice cover. Surface eddies were found to be highly

damped by sea ice, while eddies in the halocline had a constant activity throughout the year.

(Zhao et al., 2014, 2016) found that these halocline eddies were predominantly cold-core an-

ticyclonic eddies, and were found in higher concentrations close to the topographic margins

and boundaries of the Beaufort gyre. In the subpolar Southern Ocean, large-scale description

of mesoscale eddies and their interaction with sea ice are still entirely lacking.

In this paper, we investigate mesoscale eddy properties by leveraging on a new satellite al-

timeter product (Auger et al., 2021a). One important challenge in doing so is the decreasing

Rossby Radius at high latitude, or the order of 10-20 km in the subpolar gyres, and reaching

only a few kilometers on the continental shelf. In this context, and with the existing gridded

products which today have grid resolution of 25 kilometers at most (Auger et al., 2021a), it is

clear that an exhaustive description of eddy activity remains out of reach. In this paper, we use

such products that do sample eddies, even if arguably aliased in some regions, to propose a first

description of eddy hotspots and characteristics in the subpolar sector of the Southern Ocean.

For doing so, we apply an eddy detection and tracking method, which we describe in Section 2,

and investigate eddy characteristics and how they relate to sea ice cover and the dynamical re-

gime of the subpolar region in section 3. We first describe the spatial variability of the EKE from

the daily Sea Level Anomaly (SLA). We then evaluate the impact of the sea ice concentration

and ocean depth (as a proxy for shelf, slope, and abyssal plains) on the presence and strength of

the detected eddies. Lastly, we focus on the Marginal Ice Zone which stands out as a particular

region with enhanced eddy activity. We discuss the implication and limitations of our approach

in Section 4.

2.2) Data and Methods

Datasets

SLA product
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The regional SLA product used in this paper is presented in Auger et al. (2021a). It is available

on SEANOE with the doi : 10.17882/81032 (Auger et al., 2021b). It consists of seven years of

daily SLA grids and associated geostrophic current anomalies between 2013 and 2019 on a 25

km EASE2 grid (Brodzik et al., 2014). The product is based on the processing and mapping of

observations from three satellites : AltiKa and Sentinel-3A in the open and ice-covered oceans,

and Cryosat-2 in the ice-covered regions. Dataset validation and error estimation have been

estimated in Auger et al. (2021a).

Other datasets

The Mean Dynamic Topography (MDT) represents the mean surface of the ocean relative

to the geoid. To compute the Absolute Dynamic Topography (ADT) needed for the tracking of

the eddies, the time-mean MDT from Armitage et al. (2018), with the daily evolving SLA from

Auger et al. (2021a).

We also use satellite-based sea ice observations : Sea Ice Concentration (Peng et al., 2013;

Meier, 2017) and Sea Ice Drift velocity from the National Centers for Environmental Information

(Tschudi and CO, 2016).

The bathymetry is computed from the GEBCO_2014 dataset (Weatherall et al., 2015).

Methods

Eddy detection and tracking

Eddy detection and tracking methods are derived from Mason et al. (2014). The method

is based on the analysis of ADT in which small-scale closed contours are sought for. The first

step is to remove the large-scale pattern by applying a 600 km high pass Gaussian filter to this

ADT. A high-pass filter with a cutoff of several hundreds of kilometers is needed to remove the

large scale signal from the dataset (Mason et al., 2014; Pegliasco et al., 2021). The spatial scale

of 600 km is arbitrarily chosen here but is not sensitive for our results as far as it is chosen large

enough to make sure the filters do not remove mesoscale features. Then, eddies are identified

by searching for closed contours. Once a closed contour is found, several tests are performed,

as described below, to ensure it does correspond to a mesoscale eddy.

The series of tests applied to detect eddies from the ensemble of SLA closed contours are

listed in (Mason et al., 2014), but are presented here for the convenience of the reader. First,

the contour circularity is checked by computing the ratio between the surface of the identified

eddy and the surface of its circular approximation, which must be lesser than 70%. Then, an

eddy must contain at least 8 pixels in the grid and have an amplitude greater than 1 centimeter.

It must also contain only SLA pixels with values lower than the closed contour for a cyclone, and

higher for an anticyclone, while containing only one local maximum or minimum of SLA. When

a closed contour passes all these tests, it is considered an eddy. It is then possible to compute

its properties such as its rotation speed, radius, center, and amplitude.

The tracking process consists in drawing ellipses of 150 km radius around eddies and deter-

mining the candidates, that are eddies detected the day after, that fall into this ellipse (Chelton

et al., 2011). When there are multiple candidates, the couple is determined by minimizing S : a

dimensionless parameter computed from the distance, radius differences, and amplitude diffe-

rences between the eddies and their candidates. As in (Mason et al., 2014), S is defined for each
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eddy at the date k and candidates k +1 as :

Sk,k+1 =
√

(
∆d

d0
)2 + (

∆a

a0
)2 + (

∆A

A0
)2, (2.1)

where ∆d is the distance between the eddy at the date k and the candidate at the date k+1,

∆a and ∆A are respectively the difference of area and amplitude between the eddy and the

candidate.

In this study, we only consider eddies that have been tracked for 10 days or more. This allows

removing more than 30 000 identifications over the seven years in the subpolar Southern Ocean,

to remove potential noises, and to concentrate on eddies that may have a stronger influence on

the subpolar Southern Ocean water masses and circulation.

Computation of the Eddy Kinetic Energy

The Eddy Kinetic Energy over the Southern Ocean south of 50°S is computed from Auger

et al. (2021a) sea level anomaly and geostrophic current anomalies product. We used the for-

mula

EK E = 1

2
(u′2 + v ′2), (2.2)

with u′ and v ′ respectively the anomalies of zonal and geostrophic current from the dataset.

Definition of sea ice regions

The sea ice cover can be decomposed in various sectors corresponding to different ranges

of sea ice concentrations. At high concentration, typically above 70%, the drifting sea ice co-

ver is referred to as pack ice ; at lower concentration but above 10%, it is commonly referred

as Marginal Ice Zone (MIZ), which itself can be decomposed in a southern part of MIZ called

‘open ice’ for concentration between 40%-70%, and a northern part of MIZ called ‘very open

ice’ for concentration between 10%-40%. In the present paper, we adopt these terms and de-

finitions in agreement with the World Meteorological Organization sea ice nomenclature (Ice,

2009). Thereafter we refer to the 10-40% sea-concentration sector as n-MIZ and the 40-70%

sea-concentration sector as s-MIZ.

Sensitivity of our results

As stated in Auger et al. (2021c), the root mean square error between the two-satellites mer-

ged product and a third satellite along-track signal is around 3.7 centimeters. We attempted to

test how our results could be sensitive to weak eddies, and in particular to the presence of ed-

dies of amplitude of less than 3.7 cm. As such, we repeated the analysis presented in this paper

but removed entirely all eddies that have an amplitude less than 3.7 cm. The sensitivity analysis

is shown in Supplementary Figures IV.8, IV.9, IV.10. All figures and relationships between sea

ice and eddies discussed in this paper remain robust. In order to keep a maximum of eddies

in our statistical description of mesoscale eddies, we chose to keep all detected eddies in the

remainder of this paper.

Influence of the resolution of the altimetry product

Diagnostics derived from eddy identification and tracking may be sensitive to the density of

observation, and so the position of the tracks of the satellites before the mapping of the data-

set (Amores et al., 2018). To assess the sensitivity of the effect of the density of the along-track
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observation on our results, we repeated the main diagnostics of this paper but with a dataset

mapped from subsampled along-track observations. This sensitivity test is shown in Supple-

mentary Figures IV.8, IV.9, IV.10 as well. The main conclusions presented in this paper remain

the same with the original and subsampled dataset.

2.3) Results

Eddy Kinetic Energy (EKE) south of 50°S is computed from the SLA product and shown in

Figure IV.1. Regions permanently ice-covered are hidden as they are the regions with the hi-

ghest product errors (Auger et al., 2021a). The thick black line in Figure IV.1 corresponds to the

Mean Dynamic Topography contour -180 cm, and is used thereafter as the northern extent of

the region we refer to as the subpolar Southern Ocean in this paper (Auger et al., 2021c). North

of this subpolar region the signature of the ACC is visible with EKE values reaching more than

500 cm2.s−2 in hotspots downstream of the major topographic features, consistent with pre-

vious studies (Zhang et al., 2021, e.g.). In contrast, the subpolar ocean is much quieter. Three

distinct regions stand out in the subpolar region. First, the northern boundary of the subpo-

lar region shows relatively large values of EKE, around 100 cm2.s−2, which appears as being a

fingerprint of the southern boundary of the ACC. Second, the regions inside the two main sub-

polar gyres are associated with very low values of EKE of the order of 10 cm2.s−2. Third, the

continental shelf and slope show relatively elevated EKE, but with important disparities depen-

ding on sectors around Antarctica. In general, EKE on the continental slope and shelf reaches

around several 10s to 100 cm2.s−2, but reaches several 100s cm2.s−2 in specific regions such

as the Western Amundsen sea, and East Antarctica. Consistently, these two regions have been

identified as hosting the most intense ASC (Auger et al., 2021c). The West Antarctic Peninsula

and Bellingshausen sea stand out as a region in which peak EKE values are not found on the

continental shelf break (black dashed line) but closer to the Antarctic continent (Figure IV.1),

consistent with the absence of an Antarctic Slope Current (ASC) is this region (Moffat and Me-

redith, 2018), and instead the presence of an active Antarctic Coastal Current (Schubert et al.,

2021; Schulze Chretien et al., 2021).

We now investigate how this spatial structure in EKE estimate compares to estimates of eddy

presence and characteristics. We first investigate overall eddy characteristics in the subpolar

Southern Ocean, then investigate the role of sea ice in modulating eddy occurrence and cha-

racteristics, and finally investigate the difference of eddy characteristics in distinct dynamical

regimes of the subpolar region.

Eddy detection in the subpolar Southern Ocean

More than 1,4 million eddy occurrences are found in the detection analysis applied on the

seven years of daily observations. Figure IV.2a. shows the frequency of eddy occurrence in the

subpolar Southern Ocean. The frequency is about 0.2 (meaning that the pixel is detected in

an eddy for 20% of the full period of observation) in most of the subpolar Southern Ocean.

Surprisingly, the regional pattern of eddy frequency is different from the pattern of EKE. For

instance, there is a clear drop in frequency in the gyres and increase on the continental shelf
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FIGURE IV.1: Eddy Kinetic Energy in the Southern Ocean. Eddy Kinetic Energy was computed as 1
2 (u′2 +

v ′2), with u′ and v ′ respectively the anomalies of zonal and geostrophic current derived from Auger et al.
(2021c). White dashed lines are the -3000m isobath north of the subpolar Southern Ocean. The black
dashed line is the -1000m isobath. The bold black line is the limit of the subpolar Southern Ocean as
defined in this study.

break. While this might be surprising, it is an encouraging indication that EKE patterns are not

shaped by the ability of the altimeter product to sample or miss eddies in the subpolar regions.

Rather, it is clear that EKE is shaped by the intensity of the detected eddy (Figure IV.2b).

While the frequency of eddies detected is relatively homogeneous over the subpolar region

(Figure IV.2a), the detected eddies have much weaker amplitudes in the subpolar gyres, com-

pared to the northern or southern boundaries of the subpolar domain (Figure IV.2b). The mean

amplitude is computed as the mean height of the crest or the bump in ADT associated with

each eddy. The amplitude range from 5-10 cm in most energetics sector of the subpolar region,
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FIGURE IV.2: (a) Eddy frequency per pixel in the subpolar Southern Ocean. (b) Mean eddy amplitude per
0.5° pixel in the subpolar southern ocean. Black dashed line is the -1000m isobath. Bold black line is the
limit of the subpolar Southern Ocean as defined in this study.

to 1-2 cm in the less energetic regions in the middle of the subpolar gyres. Overall, the spatial

patterns of EKE (Figure IV.1) and of the mean amplitude of the detected eddies (Figure IV.2b) are

very similar. This means that the spatial pattern of EKE is not driven by the frequency of eddy

occurrence, but more by the strength of these eddies. It appears clear that while the probability

of detecting an eddy is relatively homogeneous over the subpolar ocean domain, the amplitude

and the energy associated with these eddies are strongly dependent on the local dynamical re-

gime : southern ACC region, subpolar gyre, continental shelf break. We next investigate if, on

top of the dynamical regime, the seasonal presence or absence of overlying sea ice cover im-

pacts eddy frequency and characteristics.

Impact of the sea ice on eddy frequency and amplitude

The area of the ice-free and ice-covered sectors of the subpolar ocean (which are by

construction anti-correlated) undergo a very large seasonal cycle (Figure IV.3a,b). The num-

ber of eddies detected in each of these sectors follows closely the seasonal evolution of the area

of each sector (black lines in Figure IV.3c,d), so that the density of the eddies per unit area is

relatively constant seasonally (black lines in Figure IV.3e,f). The eddy density reaches a mini-

mum at the time of the year when the corresponding surface is minimum in both sectors. We

note that there are slightly more eddies per unit area in the ice-free regions (3.8 ± 0.2 eddies per

100,000 km2) than in the ice-covered region (3.2 ± 0.3 eddies per 100,000 km2), which might be

an indication that sea ice dampens the presence of eddies. For both ice-free and ice-covered

sectors, more cyclones (blue lines) are detected than anticyclones (red lines). This difference in
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FIGURE IV.3: (a)(b) Surfaces, (c)(d) number of daily eddies detected, and (e)(f) density the eddies in the
respectively ice-free and ice-covered region. The density is computed as the number of eddies per 100
000km². Plain lines are for the ice-free regions, dashed lines are for the ice-covered regions. Black lines
in (c)(d)(e)(f) are the number and density of all the eddies, while the blue and red curves are respectively
the number and density of cyclones and anticyclones.

the number of cyclones/anticyclones is consistent throughout the year. Interestingly, the do-

minance of cyclones over anticyclones is consistent with what was described in global ocean

analysis (e.g. Chelton, 2013).

Figure IV.4 brings more details to the relation between the density of the eddies and the sea

ice cover. By computing the number of eddies and calculating the surface of the corresponding

region in 10% bins of sea ice concentration, we computed the relationship between the density

of eddies and the sea ice concentration (Figure IV.4a). For the Anticyclones, the density of ed-

dies is rather constant around 1.6 anticyclonic eddies per 100,000 km2. In contrast, the density

of cyclonic eddies seems to be much more impacted by the overlying sea ice concentration than

the density of anticyclonic eddies. In the n-MIZ 10 and 40% of SIC values, the density of cyclonic

eddies reaches values up to 2.6 cyclones per 100,000 km2, which is higher than the density of cy-

clones in the ice-free ocean (about 2.1 cyclones per 100,000 km2 Figure IV.3e). Thus, the n-MIZ

seems to be a favorable region for cyclonic eddies. The density lowers in higher SIC, reaching

about 1.6 cyclones per 100,000 km2 between 60 and 90% of sea ice concentration and is mini-

mum for sea ice concentration of 90-100% with a density of about 1.4 eddies per 100,000 km2.

The variation in the density of eddies as a function of sea ice concentration (fewer eddies

with more sea ice) could be an indication that valid sea-level observations in higher sea ice

concentrations are scarcer which could affect our ability to observe eddies. However, if it was

indeed our methodology that was sensitive to the presence of sea ice, it would affect indepen-
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FIGURE IV.4: Density and amplitude of the detected eddies as a function of Sea Ice Concentration (SIC).
(a) Density of all the eddies (black), cyclonic eddies (blue), and anticyclonic eddies (red) as a function
of the sea ice cover. The density is computed as the number of eddies per 100 000km² within each SIC
bin. The shaded interval around the density of all the eddies is the standard deviation of this distribution
computed for each year of the analysis (2013-2018). (b) Median amplitude of all the eddies (black), cy-
clonic eddies (blue), and anticyclonic eddies (red) as a function of the sea ice cover. The shaded interval
around the median amplitude of all the eddies is the standard deviation of this distribution computed
for each year of the analysis (2013-2018).

dently observations of cyclones and anticyclones. The robust difference observed here between

cyclones and anticyclones is an indication of the robustness of our result that the concentration

of sea ice does have an impact on the presence of eddies.

Similar to eddy density, the amplitude of eddies varies with sea ice concentrations (Figure

IV.4b). The shape of the relationship is however slightly different. Eddy amplitude maximize

in regions of lower sea ice concentration, with amplitude around 3 cm, and minimize in the

regions of higher sea ice concentration, with amplitude around 2 cm. This general tendency is

observed for both cyclones and anticyclones, but we find that cyclones are on average 40-70%

larger than anticyclones with a maximum difference in absolute amplitude reaching 1 cm in

the n-MIZ. We saw in Figure IV.2b that the amplitude of eddies also strongly varies regionally

depending on the local dynamical regime : southern ACC region, gyres, and continental shelf

break. We next attempt to investigate how the effect of sea ice on eddy amplitude differs in the

subpolar gyres and at the continental shelf break.
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Figure IV.5b shows the amplitude of eddies binned as a function of overlying sea ice concen-

tration bins and underlying bathymetry contours. The associated bathymetry of the subpolar

Southern Ocean is shown IV.5a. Subpolar gyres are typically associated with abyssal plains dee-

per than 3000-4000 m, while the continental shelf break is typically associated with bathymetry

contours of 500-2000 m. It is striking that the overall behavior of larger eddy amplitude in lower

sea ice concentration holds for all bathymetry contours. However, there is also a clear a distinct

shape to the reduction of amplitude with a sea ice concentration in these two sectors : sea ice

concentration dampen eddy amplitude more efficiently in abyssal plains compared to the shelf

break (Figure IV.5b). This is illustrated by the ratio between the median eddy amplitudes in the

n-MIZ and the pack ice (Figure IV.5b). This ratio is the strongest in the low bathymetry regions,

where the amplitude of the eddies in the n-MIZ is twice as high as in the pack ice. This ratio then

decreases with the depth of the water column, reaching 1.2 at the shelf. This is consistent with

the presence of the energetic ASC over most of the continental shelf break that might counter-

balance eddy dampening by sea ice due to a sustained input of energy from the ASC. We also

note that over bathymetry contours corresponding to the continental shelf break, the decrease

in eddy amplitude with sea ice concentration stops around 80%, and increase again for lar-

ger sea ice concentration bins. This might result from seasonal variability of the ASC strengths,

which substantially increases in winter (Armitage et al., 2018; Auger et al., 2021a) when sea ice

concentration is at its maximum.

Eddies in the northern Marginal Ice Zone

Most of the diagnostics presented above about the relationship between the sea ice and

the presence and amplitude of eddies point to the n-MIZ as a particular region. The n-MIZ

stands out as a region associated with larger eddy density, larger eddy amplitude, and a clear

dominance of cyclones over anticyclones. In this section, we investigate some possible reasons

for this behaviour in the n-MIZ.

Both Arctic and Antarctic MIZ have been identified as hotspots for eddy-like features in past

studies (Lu et al., 2015; Manucharyan and Thompson, 2017). Both mechanical and thermody-

namical effects have been put forward as potential explanations. In the following, we investi-

gate, in turn, if mechanical or thermodynamical forcing would be qualitatively consistent with

our results.

The n-MIZ is a region favorable for large Ekman pumping due to large gradients in me-

chanical stress : the presence of sea ice dampens the transfer of momentum from the winds,

creating a large stress curl in the n-MIZ region. In consequence, the n-MIZ is associated with

intense upwelling or downwelling, which may create an n-MIZ jet favorable for instabilities

(Häkkinen, 1986). In the Southern Hemisphere, the strong mid-latitude westerlies are very ef-

ficient at creating in complicity with sea ice a large upwelling at the ice edge and in the n-MIZ

(Figure IV.6a ; upwelling corresponds to negative ocean stress curl). These Ekman-driven up-

wellings have been described to have the potential to locally increase eddy activity due to both

lateral buoyancy gradients and the creation of a local jet following the sea ice edge (Häkkinen,

1986). The easterlies interacting with this local jet may trigger an eddy response as well, as these

type of conditions enhance the formation of intra-pycnocline eddies (Thomas, 2008; Lu et al.,
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FIGURE IV.5: (a) Bathymetry of the subpolar Southern Ocean. (b) Median amplitude of the eddies tracked
in the subpolar Southern Ocean as a function of the local bathymetry and the Sea Ice Concentration. Red
lines delimitate the frontiers of the northern MIZ (n-MIZ) and the Pack Ice. (c) Ratio between the median
amplitude of the n-MIZ and the median amplitude of the pack ice values as a function of bathymetry.
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FIGURE IV.6: (a) Mean Ocean Stress Curl in June in the Southern Ocean, between 2013 and 2019. (b)
Number of eddies detected in 1° pixel in the sea ice zone in June. The black dashed, dotted and plain
lines are respectively the contours of 10%, 40% and 70% of Sea Ice Concentration.

2015). This is consistent with our observation of a collocated increase in eddy density (Figure

IV.6b). On the specific months (June) displayed in Figure IV.6b, it is striking that we detect more

eddies in the northern part of the MIZ (Figure IV.6b), consistent with the location of the largest

Ekman-driven upwelling (Figure IV.6b).

On top of mechanical impact, the n-MIZ is also prone to thermodynamical instabilities at

the sea ice edge meltwater front (Lu et al., 2015; Manucharyan and Thompson, 2017). Sea ice in

the n-MIZ provides an important source of freshwater, which when melting, generates a large

meridional buoyancy gradient that would enhance instabilities (Lu et al., 2015). Consistent, the

largest eddy density of the n-MIZ is found during the melting season (Figure IV.7). Sea ice mel-

ting is associated with any pixels in which sea ice concentration has locally decreased in the

preceding 30 days. The largest eddy density and the largest difference between cyclonic and an-

ticyclonic eddy densities are found in pixels where the sea ice concentration reduced by 0-30%

in one month. We note however that our proxy for the melting season has important limita-

tions, as in particular, it assumes that local decrease in sea ice concentration is associated with

a melting event, while it could be due to sea ice advection. Analysis of colocated temperature-

salinity profile might be needed in the future to better grasp the main fording associated with

cyclones in the MIZ.
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FIGURE IV.7: Presence of eddies within the northern Marginal Ice Zone (n-MIZ). Mean eddy density over
the full observation period as a function of the temporal gradient of SIC. Here, this gradient is defined as
δt SIC = SICt −SICt−30d ay s . Blue, red and black curves are respectively the density of cyclones, anticy-
clones, and all eddies. Dashed (plain) lines are the density of eddies in the melting (formation) season.

2.4) Conclusion and Discussion

We used a new satellite altimetry product covering both the ice-free and ice-covered Sou-

thern Ocean to investigate eddy activity in the subpolar sector of the Southern Ocean. To this

end, we document the EKE, the number of eddies per unit area, and the eddy amplitude. We

are particularly interested in documenting the influence of the presence of a sea ice cover on

these quantities. The EKE shows a spatial distribution consistent with the location of the main

circulation system of the Southern Ocean. High EKE hotspots are found in the ACC downstream

of the major topographic features, and more generally follow the path of the ACC and ASC. We
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show that these regions are associated with larger amplitude closed-core eddies. We find that

with higher sea ice concentration the number of eddies observed per unit area as well as their

amplitude decreases. While these results might reflect a methodological bias, by which the pre-

sence of sea ice decreases the valid observations points in a pixel and therefore our ability to

observe eddies, we believe that it is a robust result. Indeed, if it was resulting from a metho-

dological bias, both cyclones and anticyclones would be affected in the same way. In contrast,

we find that the sea ice cover mostly affects cyclones, with the northern MIZ being a hotspot

of strong cyclonic eddies. There, both freshwater fluxes from sea ice melting and sea ice edge-

driven upwelling may contribute to enhance eddy activity.

While we believe that our results shed unprecedented light on under-ice eddies in the Sou-

thern Ocean, they are also associated with important remaining limitations. First and foremost,

the satellite altimetry product we used (Auger et al., 2021a), while being at the highest resolu-

tion altimetry product we are aware of in this region, is gridded at a 25 km resolution, i.e. larger

than the Rossby radius in most of the subpolar sector. The grid is actually much coarser than

the density of observation coverage, which is, in the worst cases in the high concentration of sea

ice, around 10 observations per grid cell. We also note that there are no strong disparities in the

number of observations despite varying sea ice concentration, potentially due to the tightened

satellite tracks when going southward compensating for fewer leads available. Many small-scale

eddies must be missed or smoothed out in our altimetry product. Future altimetry missions will

certainly fill an important gap in this direction in the future. While it is very difficult to assess

the impact of such limitation on our results, we did test the robustness of our results to a coarse-

ned observation-based product. Namely, we repeated the same analysis, but from an altimetry

dataset produced with subsampled along-track observations before we mapped it. Only weak

sensitivity to both amplitude or density of detected eddies was found (Supplementary Material

Figures S1, S2, and S3).

The methodology for detecting and tracking eddies based on satellite-derived sea surface

topography has also limitations. For instance, the noise in the ocean topography dataset may

create spurious small eddies. We tested the sensitivity of our result to this limitation by remo-

ving from our analysis all eddies with amplitude smaller than an upper bound of the evaluated

error of the product. This analysis can be found in Supplementary Material S1, S2 and S3, and

shows that our results are robust to this test.

Our results are hardly comparable to other studies observing the eddies in the sea ice re-

gions, as the observation methods and the nature of observations are radically different. Most

of the eddies previously observed in the sea ice region have been observed in the halocline, bet-

ween 50 and 250 meters depths, from in-situ measurements (Timmermans et al., 2008; Zhao

et al., 2014, 2016; Meneghello et al., 2020). Those eddies are mostly anticyclonic (Zhao et al.,

2014, 2016), and do not seem to be impacted by the overlying sea ice as they may have lifetimes

lasting more than 6 months (Timmermans et al., 2008). Here, we observe a dominance of cyclo-

nic eddies over cyclonic eddies in both the ice-free and ice-covered subpolar Southern Ocean.

Except close to the main features of the background circulation, eddies seem to be sensitive

to the presence of sea ice. This is consistent with the winter dampening of surface eddy kine-

tic energy that was discussed in (Meneghello et al., 2020). Our results show that the northern
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part of the MIZ is a region very favorable for eddies, particularly cyclonic. Multiple studies al-

ready demonstrated the MIZ to be a region with an intense eddy activity, due to its meltwater

front (Lu et al., 2015; Manucharyan and Thompson, 2017) or the local wind-driven upwellings

or downwelling at the ice edge (Häkkinen, 1986) and subsequent jet (Thomas, 2008). But the

dominance of cyclonic eddies in this study may in fact reflect the structure of the response of

eddies in the MIZ. Taking inspiration from the fronts at Arctic sea ice edges, (Manucharyan and

Timmermans, 2013) demonstrated that eddies generated at surface fronts are often formed as

dipoles, with surface cyclones and weaker subsurface anticyclones. Those anticyclones then

travel in the halocline of the sub-ice regions far from their formation regions (Timmermans

et al., 2008; Manucharyan and Timmermans, 2013) where they have been observed by multiple

studies (Timmermans et al., 2008; Zhang et al., 2014; Zhao et al., 2016). Consequently, the ob-

served dominance of cyclones in the n-MIZ may be the surface signature of the generation of

halocline anticyclones. In any case, they demonstrate the intense eddy generation occurring at

the ice edge.

Supplementary Material of the paper : Southern Ocean ice-covered

Eddy properties from satellite altimetry by Auger et al.

The supplementary information presented here provides more insights into the results des-

cribed in the main paper. We are conscious that there are many unknowns on the capacities of

the observation dataset for the observation of mesoscale eddies under sea ice, even more consi-

dering the small Rossby radius of the region (Chelton et al., 2011). This supporting information

provides more insights into the robustness of the results presented here and into the spatial

scales resolved by the dataset.

2.5) Sensitivity study

As stated in the paper, we have been concerned by both the effects of the possible artifacts

of the dataset and the along track resolution of the source data. We decided to tackle these

issues by reproducing some of the diagnostics of the paper, either by selecting only the eddies

with an amplitude larger than the error estimated in the seasonally ice-covered regions or by

subsampling the along-track measurements upstream of the mapping of the Sea Level Anomaly

dataset and the eddy detection process. We therefore define two experimental cases :

— The "All" case is the original case. We kept all the eddies and all the along-track measu-

rements before the mapping.

— The "Amp" case. In this case, we remove all the eddies with amplitudes lower than the

mean error of the ice-covered regions (Auger et al., 2021c, i.e. 3.7cm).

— The "Samp" case. In this case, the along-track measurements have been subsampled be-

fore the mapping of the product presented in Auger et al. (2021a). We sampled the AltiKa

and Sentinel-3A to reach 1 Hz measurements in the ice-free ocean. In the ice-covered

measurements, we only kept 1 valid point out of 3 for Sentinel-3A and Crysosat-2, and

1 out of 6 for AltiKa, as it is emitting twice more measurements compared to the for-
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mers. These values were chosen arbitrarily to find a compromise between downgrading

the dataset and not flattening all the signal. Other sampling frequencies were not tested

as the computation of a new dataset requires lots of time and computing power. After

this subsampling, we constructed the dataset the same way as its unsampled, original

version. We then applied the detection and tracking method.

FIGURE IV.8: Sensitivity study of the maps of mean amplitudes and frequency. The first line (a-c) shows
the map of the mean amplitude of the tracked eddy for each sensitivity study. The second line (d-f) shows
the map of the frequency of the days the pixels are located into an eddy. The first row (a,d) is the case
presented in this study containing all the eddies (ALL case). The second row (b,e) is the case for which
only the eddies with an amplitude larger than 3.7 centimeters are included in the calculation (Amp case).
The last row (c,f) is the case for which the along-track data was subsampled before the mapping of the
Sea Level Anomaly product (Samp). The black dashed line is the -1000m isobath. The bold black line is
the limit of the subpolar Southern Ocean as defined in this study.

Supplementary Figure IV.8 shows the maps of the mean eddy amplitudes and frequencies.

The spatial pattern of eddy amplitude is rather consistent between all the cases. The ampli-

tudes are distributed the same way for all the cases (Supplementary Figure IV.8a-c), but with

unsurprisingly stronger amplitudes in the Amp case. The amplitude in the Samp case is a little

lower than in the All case, showing a slight flattening effect of having fewer measurements. One

point of the paper is the uniform distribution of the eddies in the subpolar basin. Supplemen-

tary Figure IV.8d-e shows how this changes between the various cases. The eddy frequency in

the Amp case is twice as small as the All case. This shows that a large part of the eddies detected

has an amplitude lower than the estimated error of the dataset. In the Amp case, the density is
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less uniform as there are stronger eddies in the northern extent of the subpolar region, where

the mesoscale activity is enhanced by the neighboring ACC. In the Samp case, the frequency

is uniform and higher than in the All case. Amores et al. (2018) pointed that lower resolution

along-track measurements upstream of the mapping of ocean topography may induce larger

eddies, as the interpolation would spread the signal further. In this study, we decided to not fo-

cus on the radius as it is one of the eddy properties the most impacted by varying resolution of

the input dataset. In this case, the higher frequency may be explained by larger eddies covering

more pixels, thus increasing the chances for a gridpoint to be contained into an eddy.
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FIGURE IV.9: Sensitivity study of the density of the eddies as a function of the Sea Ice Concentration
(SIC). The black curve is the density of all the eddies, the blue one is the density of the cyclonic eddies
and the red one is the density of the anticyclonic eddies (red) as a function of the sea ice cover. (a) is the
case presented in this study containing all the eddies (ALL case). Panel (b) is the case for which only the
eddies with an amplitude larger than 3.7 centimeters are included in the calculation (Amp case). Panel(c)
is the case for which the along-track data was subsampled before the mapping of the Sea Level Anomaly
product (Samp).

Supplementary Figure IV.9 shows the sensitivity of the density of the eddies as a function of

sea ice concentration. The distributions of the three cases are similar and show higher densities

in the northern-MIZ, but with lower densities for both experimental cases. In the Amp case, the

dominance of cyclones over and anticyclonic eddies is even larger than the ALL case, with cy-

clones density reaching twice the one of anticyclones in SIC between 20 and 30%. Interestingly,
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the overall dominance of the eddy density in the n-MIZ is smaller in the Samp case, as the di-

minishing number of cyclones is compensated by a growing number of anticyclones. We do not

have explanations for this growing density of cyclones with SIC when subsampling the dataset.

FIGURE IV.10: Sensitivity study of the amplitude of the eddies as a function of the Sea Ice Concentration
(SIC). The black curve is the median amplitude of all the eddies, the blue one is the median amplitude of
the cyclonic eddies and the red one is the median amplitude of the anticyclonic eddies (red) as a function
of the sea ice cover. (a) is the case presented in this study containing all the eddies (ALL case). Panel (b)
is the case for which only the eddies with an amplitude larger than 3.7 centimeters are included in the
calculation (Amp case). Panel (c) is the case for which the along-track data was subsampled before the
mapping of the Sea Level Anomaly product (Samp).

Supllementary Figure IV.10 shows the distribution of the median density of the eddies as a

function of sea ice concentration for all the cases. Once again the distribution is similar, with

larger eddies in the MIZ than in the pack ice. However, when selecting only the strongest eddies

(Amp), the maximum density is found in both the southern and northern MIZ, between 20 and
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50 % of SIC, and cyclonic eddies at their maximum amplitude even up to 60% of SIC. This does

not change the conclusions of our study. Figures S1, S2, and S3 show that our results are robust

to the impact of the small eddies and to the resolution of the measurements used.
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3 Conclusion of the chapter

In this chapter, I investigated the presence and properties of the mesoscale eddies in the

subpolar Southern Ocean. To undertake this, I used the Sea Level Anomaly (SLA) dataset pre-

sented in Chapter II and used an eddy detection and tracking method derived from Mason et al.

(2014).

The sea ice unsurprisingly dictates the presence and strength of the eddies, along with the

background circulation.

In the pack ice, the density of eddies and their amplitude is lower than anywhere else in the

subpolar Southern Ocean. There, surface friction with the surface might dissipate the existing

eddies and prevent their generation (Meneghello et al., 2020). This is more true in the middle of

the gyres than in the large-scale features of the background circulation, such as the ACC or the

ASC. There, the energetic currents might compensate in generating stronger eddies that are not

directly dissipated by the sea ice.

The Marginal Ice Zone (MIZ) shows the highest density of detected mesoscale eddies and

hosts the strongest eddies of the ice-covered regions. The largest part of these MIZ eddies is

detected in its northern part, defined here with Sea Ice Concentration values between 10 and

40%. These eddies are mostly cyclonic and do not seem to propagate in other regions. In the

middle of the gyres, their amplitude can reach as high as twice the amplitude of the eddies de-

tected in the same region in pack ice conditions. The generation of these northern-MIZ eddies

is consistent with an intense wind and sea ice-induced upwelling at the sea ice edge (Häkki-

nen, 1986; Lu et al., 2015). It is also consistent with the ice edge associated meltwater front,

which may enhance instabilities due to strong meridional gradients of salinity (Lu et al., 2015;

Manucharyan and Thompson, 2017). While the lack of joined observation prevents us from dra-

wing definitive conclusions, these cyclonic eddies may be the surface signature of the halocline

anticyclonic eddies presented in previous studies (Timmermans et al., 2008; Zhao et al., 2014,

2016). Dedicated modelling studies may be one of the best ways to document these processes.

It would indeed therefore be interesting to observe the signature of the MIZ dipoles modeled in

Manucharyan and Timmermans (2013) on the ocean topography.

While my results seem to be robust, documenting the signal close to its maximal capacity

may enhance the errors. The lack of independent datasets for cross-comparison forces us to

develop our analysis with careful consideration for the limitations of the SLA product developed

in the context of this thesis. Future improvements in in-situ and remote sensing observation will

allow documenting further the interaction between the sea ice and the mesoscale eddies in the

Southern Ocean. Until then, the outcomes presented here must be taken with caution.
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My thesis focuses on the study of the variability and changes of the subpolar Southern

Ocean circulation and hydrography. In particular, I aimed at strengthening the observation of

the changes affecting the Southern Ocean and exploring the variability of the large-scale and

mesoscale circulation. Over the course of my Ph.D., I chose to focus on three distinct spatio-

temporal scales : long-term multi-decadal and basin-scale change ; seasonal, and mesoscale

variabilities, and try to connect the circulation systems to winds, buoyancy forcings, and sea

ice.

In this chapter, I propose a general conclusion structured around the main scientific ques-

tions that motivate my thesis, which I listed in my introduction ; I then address the limitations

and caveats of the studies I developed ; I next discuss some implications of my results ; I finish

by providing perspectives for future work.

1 Conclusion and Discussion

As discussed in the Introduction, my thesis is motivated and structured around three main

questions. In the following, I come back to these questions to attempt a conclusion and discus-

sion of the results of the different chapters.

How have the circulation and hydrography of the Southern Ocean changed over the past

several decades and are documented changes a significant departure compared to interan-

nual variability ?

Observational coverage of Southern Ocean hydrography and Southern Ocean circulation

remains relatively short compared to other oceanic basins. Yet, important long-term changes

have been inferred from observation in many parts and aspects of the Southern Ocean (Mere-

dith et al., 2019). While some of these changes have been attributed to human-induced climate

change (especially hydrographic changes in the northern part of the basin ; Swart et al., 2018;

Hobbs et al., 2021), several studies have pinpointed the potentially important role of decadal

variability in Southern Ocean circulation and associated temperature/salinity changes (DeVries

and Primeau, 2011; Abrahamsen et al., 2019; Silvano et al., 2020; Zika et al., 2021).

In this context, one of the aims of my thesis was to revamp observation datasets to investi-

gate long-term time series with a fresh eye. In Chapter I, I investigated the long-term changes

in the upper layer of the Southern Ocean using a 25-year time series of high-resolution tem-

perature transects. This is one of the longest XBT time-series of the Southern Ocean (especially

with such a resolution of the seasonal cycle, with up to 6 repeats of the section per year, between

October and March), acquired over the years by the LEGOS/IPEV SURVOSTRAL program (and

I must say I am particularly happy to be currently in quarantine at Hobart as I write these lines,

in preparation for leading the sampling of the next XBT section). The analysis of temperature

trends is consistent with past work, but the new aspect I was able to bring is to compare these

changes to interannual variability, as well as ensure that the seasonal cycle (sometimes large)

is properly removed. I uncover that only three regions have long-term trends with an ampli-
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tude that is stronger than the interannual variability. First, the region that is associated with the

largest warming of the section, north of the Southern Ocean in the SubAntarctic Modal Water

(SAMW) layer. Second, the only region of the section that is cooling, found in the cold near-

surface waters close to Antarctica. Third, the southern and upper part of the Circumpolar Deep

Water (CDW), directly below the winter mixed layer, that warms relatively slowly but steadily,

and actually corresponds to the largest magnitude of warming when compared to interannual

variability. A shallowing of the maximum temperature of the CDW has also been found, an or-

der of magnitude larger than what was described in previous studies, with potential impact to

consider on nearby continental shelves and ice shelves.

Possible reasons for these long-term changes were discussed based on previous studies, but

demonstrations were limited as having only temperature observations available does not al-

low to dig into circulation or density stratification. This led me to seek ways to better grasp

long-term changes of the circulation, especially in the sector seasonally covered by the sea ice.

I believe that satellite altimetry is a promising avenue toward this goal. While I tried to pave the

way toward investigating long-term circulation change from satellite altimetry in seasonally sea

ice-covered regions of the Southern Ocean, the task was too large to fit in the time-scale of my

thesis. The first steps toward this goal, which constitutes part of my thesis include : building a

robust framework for multi-satellite analysis of altimetry in sea ice-covered regions ; and inves-

tigating the long-term mean, seasonal, and shorter timescale variability of the circulation to be

able to properly remove from the long-term analysis. Long-term analysis now needs to build on

this framework to include more satellites, which involves significant treatment of the dataset to

make sure to not include spurious change across the long time series.

What mechanisms drive the variability and changes of Southern Ocean circulation and

hydrography ?

At least as important as documenting long-term change, I believe that process-

understanding of underlying drivers is key for our comprehension of the Southern Ocean sys-

tem. As mentioned above, I was not able to precisely attribute long-term temperature changes

evidenced in Chapter I to specific drivers. Instead, I relied on previous studies to provide hints

on the causes of the long-term trends. Investigating drivers of the mesoscale and large scale

seasonal variability was however one of the main objectives of Chapters III and IV.

From the results in Chapters III and IV, winds appear as one central driver of the Southern

Ocean circulation variability at seasonal time-scale and higher frequency. The westerlies drive

part of the Southern Ocean circulation variability at both large and smaller spatial scales. At

large scale, the mid-latitude westerlies contribute to the wind stress curl over the subpolar ba-

sin, impacting the strength of the Weddell and Ross gyres and their winter intensification. The

higher-latitude easterlies also have a strong impact on the horizontal subpolar circulation va-

riability at seasonal scale. They modulate wind stress curl over the gyres and trigger circumpo-

lar sea level anomalies, from the propagation of wind-induced kelvin waves at the continental

slope, directly impacting the seasonal cycle of the ASC, and higher frequency variability.
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The sea ice is unsurprisingly another important driver of the Southern Ocean variability.

Its effect may be either mechanical or thermodynamical. The mechanical effect of the sea ice

points to its role in damping the local surface stress and momentum transfer from the winds

to the ocean surface. Specifically, Chapters III and IV show that the interaction between the

sea ice and the westerlies may create a local upwelling at the sea ice edge, driving enhanced

instabilities and cyclonic eddies generation, or a winter spreading of the ASC in East Antarctica.

But the sea ice is also associated with intense seasonal freshwater fluxes. At the sea ice edge,

fronts formed by local meltwater supply are highly unstable, with the density of cyclonic eddies

being 2 to 3 times higher than in the rest of the subpolar Southern Ocean.

Lastly, the large-scale circulation is itself a driver of the mesoscale variability. When focusing

on the subpolar Southern Ocean, I find stronger eddies in the boundary of the ACC and the

continental shelf and slope region close to the ASC.

How do we expect the Southern Ocean circulation and hydrography to change in the fu-

ture ?

While this thesis does not tackle future projections, identifying first order processes that

drive the circulation can be used to discuss potential future circulation change. A way to do this

is investigating how individual processes may change in the future as response to greenhouse

gas emissions. While this kind of exercise which develop plausible narrative of future change

might be interesting, it is also of course limited, as not all processes have been identified, and

some might be associated with complex feedback. Moreover, some processes that happen at

specific temporal scales may not transfer to long-term changes. Despite these limitations, I try

here to combine the main climate projections of the changes by the end of the century with

the results presented here. To do that, I discuss the response of the Southern Ocean system

to projected changes of what I identified as the main drivers of the subpolar Southern Ocean

circulation and hydrography : namely the winds and the cryosphere.

In both Chapters III and IV, zonal winds have been identified as drivers of the variability

of the circulation at weekly to seasonal time scales. In the Southern Ocean, the two main com-

ponents of the zonal winds are the mid-latitude westerlies blowing over the ACC and higher

latitude easterlies blowing over the continental shelf break. These two wind components are

not projected to change the same way in the 21st century, under increased radiative forcing.

The projection on the westerlies is associated with projections of the Southern Annular

Mode (SAM). Under high emission scenarios, the positive trend in the SAM is expected to conti-

nue, leading to an even stronger jet and the displacement of the westerlies belt (Lee et al., 2021).

This intensification of the westerlies is expected to continue at least until 2100, except strong

mitigation scenario (SSP1-2.6) for which the trend stabilizes around 2040 (Bracegirdle et al.,

2020). In the context of strengthening westerlies, several mechanisms described in this thesis

might occur. The large-scale negative wind stress curl over the subpolar basin might strengthen

due to the acceleration of its northern component, driving further upwelling and spinning up

the subpolar gyres. The long-term consequences of an intensification of these gyres are not es-
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tablished yet, as the gyre systems could either reach a new equilibrium or change linearly or ex-

ponentially (Vernet et al., 2019). In any case, an intensification of the gyres is expected to have

consequences on all the Southern Ocean system, through changes in its circulation, geoche-

mistry, sea ice, interactions with the atmosphere or water mass formation (Vernet et al., 2019).

Another consequence of the enhanced upwelling of the subpolar Southern Ocean may be the

increased shallowing of the warm CDW. Indeed, Chapter I shows that these warm waters have

been shallowing at a strong rate of 39 ± 9 meters per decade in the East Antarctic sector. In that

study, I was not able to demonstrate the contribution to a wind stress curl trend on this shal-

lowing trend. However, future intensification of the negative wind stress may increase it, with

important consequences on sea ice, warm intrusions on the continental shelf, and stability of

the Antarctic ice cap.

These increasing westerlies might as well impact the local wind stress curl anomaly at the

sea ice edge. In a projection of strengthened winds, the negative ocean stress curl at the ice edge

and over the MIZ would be even stronger, enhanced by the meridional gradient of zonal surface

stress. In that case, the winter intensification of the northward spreading of the ASC might be

even stronger. This may also enhance the winter generation of cyclonic eddies in the northern

MIZ, through an intensified upwelling at the ice edge. Those cyclonic eddies can trap sea ice

and advect it northward where it melts (Manucharyan and Thompson, 2017). Therefore, inten-

sified winter upwelling at the ice edge may enhance sea ice melting. As hypothesized in Chapter

IV, those cyclonic eddies may be the surface signature of the generation of anticyclonic, under

ice, halocline eddies. If this is the case, strengthened winds at the ice shelf may generate even

more anticyclonic eddies, advecting more physical and biogeochemical properties to the inter-

ior of the ice-covered subpolar basin. The projections of both the intensification of the ASC and

the enhancement of the eddy generation in the MIZ as a response to strengthened westerlies

might be only possible in winter conditions. Indeed they result from the interactions between

westerlies and sea ice : in summer, the sea ice may be located too south for these processes to

occur.

To my knowledge, there has been no clear observed trend on the position or strength of the

easterlies at the Eastern Coast of Antarctica. In the future, while the 21st century changes in the

westerlies stand out for the projection of all CMIP6 models, the same models do not show any

consistent projected changes for the easterlies (Bracegirdle et al., 2020).

Future changes in sea ice will have important implications on the results presented here.

While many uncertainty remain, change in sea ice has been linked to surface cooling and sub-

surface warming described in Chapter I. In addition, the position of the ice edge has been

shown to drive strong instabilities in the MIZ when colocalized with the westerlies (Chapter IV),

while impacting part of the variability of the ASC (Chapter III). There are already projections

for a larger MIZ in the Arctic (Strong and Rigor, 2013). If this happens in the Southern Ocean, it

may generate even more instabilities, with cyclonic eddies enhancing the sea ice melt by north-

ward advection (Manucharyan and Thompson, 2017). However, projections of the future of the

Antarctic sea ice in the 21st century remains uncertain. CMIP6 models poorly represent past
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changes in sea ice cover (Roach et al., 2020). The poor agreement of these models for future

21st century projections makes us having only low confidence in the future of antarctic sea ice

(Fox-Kemper et al., 2021).

While I did not discuss the ice shelves meltwater impacts in my results, they may keep on

spreading the surface cooling observed in Chapter I, and enhance the surface mixed layer stra-

tification through a freshening of the surface layer. This may lead to less mixing at the interface

between the mixed layer and the CDW, and thus to further warming of the upper layer of the

CDW (Haumann et al., 2020; Sallée et al., 2021). In fact, the warming and shallowing of the CDW

documented in Chapter I may feedback in more meltwater from the shelves, causing more stra-

tification, causing warming and shallowing of the CDW (Golledge et al., 2019; Sadai et al., 2020).

In some regions, it has also been shown to potentially convert current fresh shelves into warm

shelves in the future (Hellmer et al., 2012, 2017; Naughten et al., 2018).

I know the outcomes of the various chapters do not necessarily extend to the longer-term

changes. I here discuss what could be the future changes, but with strong assumptions. I think

nonetheless that linking the past changes and the shorter-term variability to implications for

our understanding of future Southern Ocean system is an interesting exercise.

Further implications of the thesis : carbon cycle

The subpolar part of the Southern Ocean has major importance in basin carbon cycle (Frö-

licher et al., 2015), as it is where the nutrient and carbon-rich CDW are upwelled and allow large

outgassing of natural carbon (Gray et al., 2018), and a spreading of the nutrients, fertilizing the

biological production of the global oceans (Sarmiento et al., 2004). The upwelling driven carbon

outgassing is locally partly counterbalanced by high-latitude dense water formation and export,

and biological pump (Vernet et al., 2019). Recent studies have pointed the role of the horizontal

circulation and the biogeochemical processes in the offshore subpolar Southern Ocean (Hop-

pema et al., 2015; MacGilchrist et al., 2019), previously underestimated compared to the carbon

fluxes related to the meridional overturning circulation.

I discussed above that there are good reasons to think that subpolar gyres might inten-

sify in the future as a response to strengthening mid-latitude westerlies. This intensification

of the cyclonic gyres may enhance the upwelling of carbon and nutrient-rich waters (Hoppema

et al., 2015). An increase in surface nutrients has actually already been described in the Wed-

dell Gyre (Hoppema et al., 2015). While nutrient increases are unlikely to increase CO2 uptake

in this region which is already characterized as a high nutrient, low chlorophyll region, the in-

creased carbon upwelling at the surface would increase natural carbon outgassing in the gyres

(Le Quéré et al., 2007). Other processes may intervene in the case of the intensification of the

cyclonic gyres, such as the enhancement of the biological activity in the northern part of the

subpolar Southern Ocean and in the ACC. Indeed, the Weddell gyre and the variability of its cir-

culation is directly related to the productivity of remote ACC regions (Youngs et al., 2015). The

southern branch of the gyre transports iron and krill over the shelf and export them to the Scotia

sea (Thorpe et al., 2004), allowing biological productivity in the drake passage (Thompson and

Youngs, 2013). An intensification of the Weddell gyre may enhance this transport of iron and

krill, allowing further biogeochemical productivity and contributing further to the oceanic car-
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bon sink. Future changes on the shelf are still unclear, but if CDW intrusion increases, it might

increase nutrient supply on the continental shelf with higher nutrient content water-masses

reaching closer to the surface, and it might also increase iron supply on the continental shelf,

through increase influx of iron-rich ice-shelf meltwater.

Many uncertainties reside in these speculations, and one should not put too much weight

on them. They are however useful to understand the important implications that variability and

change of the subpolar Southern Ocean system may have on the carbon cycle.

2 Limitations and Caveats

This thesis draws on observations of the physics of the Southern Ocean from multiple

means of observation. The various observation techniques used rely on several approxima-

tions and uncertainties. The analysis methods and scientific approaches may have limitations

as well. Here, I try to enumerate and evaluate the limitations inherent to this thesis. I hope that

it may help individuals that consider using similar techniques or methods to have an overview

of their possibilities and constraints.

In Chapter I, I used a dataset of more than 10,000 eXpandables BathyThermograph profiles

sampled over 25 years across the Southern Ocean to investigate long term temperature trends

in its upper layer. However, both the construction of the product and the scientific conclusions

have several limitations. First, there is an impact of the spatial and temporal sampling variability

between each year. This impact is very difficult to evaluate. A few precautions were set up to

mitigate the possible errors induced by this kind of heterogeneity. The profiles sampled too

far away from the mean path of the vessel were deleted. While the circulation of the Southern

Ocean is mainly circumpolar, the goal was to be independent of the zonal variations of the

positions of the fronts. To dig deeper into the effects of the fronts and eddies on the trends,

I colocated each path of the vessel and the position of meanders and eddies detected from

satellite altimetry. Some profiles were indeed found inside eddies or meanders, but removing

or keeping them in the calculation did not change the obtained trends. Moreover, the frontal

regions are regions with intense interannual variability, often stronger than long-term trends,

and were therefore not the focus of my study. To get rid of the temporal sampling variability, and

remove potential temperature bias coming from the hydrographic seasonal cycle, I computed a

daily seasonal cycle climatology over the sampling season. This climatology was then removed

from each profile before computing the trends. There might be however spatial or temporal

variability signals that have not been corrected, and that can hardly be evaluated.

Creating a SLA product as part of this thesis (Chapter II) was a great opportunity to explore

an original dataset and to investigate the Southern Ocean variability in a new and innovative

way (Chapters III and IV). However, the numerous processing steps, the amount of input data,

in the sea ice regions make the development very challenging. There are therefore several limi-

tations impacting the product and the subsequent studies that us or will use it.
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After several decades of activity, the satellite altimetry technique can be considered a mature

technology. However, its application in the ice-covered oceans, while being studied for a long

time, is still young in terms of the number of datasets developed in these regions. It means that

there is no precise protocol to apply and several approximations or assumptions that may or

may not be used.

I list here most of the approximation I used in the development of the satellite altimetry

dataset, and explain further the main one. Among the approximations are the use of a model

to estimate the correlation scales for the mapping or the use of a reference satellite to correct

the offset between various instruments or surfaces. The latter offeset was computed in previous

studies at the sea ice edge, by colocating leads and open ocean echoes (Armitage et al., 2018;

Dotto et al., 2018). However, considering the processes happening at the sea ice edge as evi-

denced in Chapters III and IV, I have low confidence in this method. Rather, I propose to use

AltiKa as the reference mission, as it benefits from a continuous retracker between leads and the

open ocean. Nevertheless, while I believe this method is an improvement compared to previous

studies, it relies on a comparison between satellites with different instruments and orbits.

This product also draws on several assumptions. Among them, the assumption that it is pos-

sible to compute the expected variance for the mapping method recursively, or the assumption

that there is 0-wind or waves in the leads. The latter assumption is common in the studies using

radar measurements in the leads. However, in low sea ice concentrations, strong winds, or large

leads, this may not be true. This assumption is necessary for the commonly used TFMRA retra-

cker, which is a simple threshold retracking algorithm and does not allow the retrieval of winds

and waves from the waveform. This is what I used for Sentinel-3 and Cryosat-2 missions. One

improvement though is the physical retracker developed for AltiKa, which allows to retrack the

signal while computing the effect of residual winds in the leads. This may be used to compute

a sea state bias correction and enhance the accuracy in the sea ice regions. In any case for both

retrackers, the criteria used for the selection of the echoes in the leads should not allow wa-

veforms too impacted by the wind and waves. For this reason, I do not expect a strong error

induced by this approximation in the dataset. In the end, it is extremely hard to evaluate the

impact of these approximations on the SLA product due to the small or nonexistent amount of

external data available to validate the measurements.

As it is explained in Chapter II, most of the tide gauges are in landlocked locations, badly po-

sitioned for comparison with satellite altimetry. Moreover, only few tide data is available during

the SLA product 2013-2019 time period. Precise error estimate is therefore difficult. I propo-

sed a validation by an independent altimeter, which was conducted for 2 years by comparing

Sentinel-3A along track measurements with the gridded SLA product constructed using AltiKa

and Cryosat-2. This validation gives an overview of the errors of the product. However, Sentinel-

3A measurements may have errors as well. Thus, using data with noise as the validation refe-

rence may have enhanced the estimated errors values, therefore decreasing confidence in the

applications of these products for signals with an amplitude weaker than the estimated error.

Despite the methodology which I tried to construct as the optimal way to bring answers to

my scientific questions, conclusions and results may have been limited by several factors.

154



3. Perspectives

In Chapter I, the interpretation of the temperature trends was limited due to the lack of

simultaneous salinity measurements. In the subpolar Southern Ocean, the density is mostly

dictated by freshwater. Changes in the structure of the water column of the Southern Ocean

may have a stronger signature in salinity than in temperature. Therefore, I could only make

assumptions on the drivers of the temperature trends, instead of discussing density changes

and associated with circulation and thermodynamic forcing changes.

One of the main limitations concerning Chapters II, III, and IV is the length of the time se-

ries. The final SLA product published in the context of this Ph.D. thesis spans 2013-2019, starting

with the launch of the AltiKa satellite. The simplest way to extend the time series is by adding

Envisat to the constellation of satellites used. Envisat was a Low Resolution Mode conventio-

nal satellite that measured the topography of the oceans, with a latitudinal extent high enough

to entirely cover the Southern Ocean. This satellite was launched in 2002 and stopped its acti-

vity in 2012. Integrating Envisat would would have made the dataset monomission for several

years, inducing a heterogeneous resolution, but would have allowed long-term and interannual

variability analyses. However, and despite months working on this issue, I was not able to inte-

grate Envisat into the final product. The reason for this is that the physical retracker algorithm

I was using was found to induce a bias between the open ocean and the leads echoes. This re-

tracker will need further development in the coming years by CLS, which will be too late for the

integration of Envisat in this thesis.

Lastly, the spatial and temporal resolution of the product is not defined, as it depends on the

position of the leads and the satellite tracks. This limitation has been mitigated for applications

in Chapter II, as the filtering and seasonal averaging may have reduced the heterogeneity of the

resolution. Still, a higher and homogeneous resolution may have allowed evaluating the impact

of the tides and eddies on the circulation modes presented in this chapter. For eddy detection

tracking in Chapter III, this represents an important limitation. Indeed high-latitudes are as-

sociated with a low Rossby Radius, implying eddies with spatial scales of the order of 10km

(Chelton et al., 1998). The position of the satellite tracks may also impact the results for mesos-

cale eddies, which is why I conducted a sensitivity analysis on results, which will need further

development. This issue may be overcome by a proper evaluation of the effective resolution of

the dataset, as in Ballarotta et al. (2019), which I will conduct in the near future before finalising

the paper presented in Chapter IV.

3 Perspectives

Despite my efforts to not spread myself too thinly, I thought about several prospects I did

not have the time or could not set up during those three years working on this Ph.D. thesis.

These perspectives relate to both technical and scientific parts of this thesis and are classified

per main themes.
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In-situ observations. In this thesis, I relied on in-situ observations to evaluate the tempera-

ture trends in the Southern Ocean. However, no in-situ measurements were used for the evalua-

tion of large-scale and mesoscale variability. I actually tried to complement the eddy detection

and tracking with Temperature and Salinity (T/S) profiles taken from a database merging ob-

servation from ships, moorings, Argo, and marine mammals. I also used the T/S climatology

from Pauthenet et al. (2021) to transform these profiles into anomalies, colocated them with

eddy observations, and tested several statistical approaches (such as a Hierarchic Ascending

Classification technique) to evaluate the signature eddies detected from altimetry on the wa-

ter column (as previous studies in the ice-free ocean : e.g. Pegliasco et al., 2015). While the

results were promising, they were not mature enough to be presented among the diagnostics

of the ice-covered eddies presented in Chapter IV. In the future, with more under-ice observa-

tion and more satellites integrated in regional Southern Ocean products, this kind of study will

probably lead to important improvements in the ability to infer anomalies in the water column

from remote observation. Combining the eddies detected from altimetry with the ones detec-

ted in situ like in Zhao et al. (2014, 2016) studies in the Arctic would allow the validation both

datasets while allowing them to complement in order to go deeper into the physical analysis.

Satellite Altimetry. In the future, ocean topography datasets tracing back the early years of

altimetry will be of great asset to document the long-term changes of the subpolar Southern

Ocean. There are some possibilities of adding satellites such as Envisat, ERS-1, and ERS-2. Even

if the precision of former satellites is lower, long-term monitoring of the large-scale geostro-

phic current will allow getting a direct view of the Southern Ocean circulation response to the

atmospheric, cryospheric, and global oceanic circulation changes. One of satellite altimetry im-

portant asset is to monitor the full region continuously for decades. Another way to improve

the dataset is to add more satellites before the interpolation of the along-track measurements.

The satellite constellation is now larger than ever, and it is technically possible to implement

recently launched altimeters in the multimission product. Satellites such as Jason-3, Sentinel

3-B, or Cristal should be added in the future. This will be great for improving the resolution

and the observability of smaller-scale variability. This however represents a very large amount

of work in the acquisition, processing, and merging of all the satellites and might not be done

before several years. Both expanding the length of the time series and adding satellites for a bet-

ter resolution have been set as future goals of the CNES (Centre National des Etudes Spatiales)

and CLS (Collecte Localisation Satellite), and I might be involved indirectly in such work in the

future. In the long run, ice-covered sea level topography products may be integrated into the

global operational products, which would be great to have a quasi-instantaneous large-scale

view of the Southern Ocean dynamics at any time. It might be also a great asset for oceanogra-

phic campaigns in these regions, to spot eddies or interesting circulation features at the time of

the expedition.
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Long term trends in the Southern Ocean. The results of the Chapter I of this manuscript

show long-term temperature trends of several regions of the Southern Ocean, and how they

compare to interannual variability. One easy perspective of this work is to continue to sample

and monitor the temperature trends from that specific section. The longer the observation last,

the easier it will be to extract the long-term changes from the shorter variability. Other perspec-

tives regarding the Southern Ocean long-term trends are related to the satellite observations.

As stated in the technical part of this Perspectives section, I would have loved to look at lon-

ger trends in the ocean topography and geostrophic circulation, but was unable to do so due

to the shortness of the satellite product time series. This would have allowed not only to infer

processes that may happen in a changing climate but to observe them directly. Future develop-

ment of such datasets may lead to this opportunity. In particular, with SURVOSTRAL, and other

long-term repeated sections of Southern Ocean, having these datasets covering similar periods

than satellite altimetry will be an incredible chance to combine surface and in-depth ocean,

hydrography, and dynamics. This would allow observing the interactions between the structure

of the ocean and changes in its dynamics, with applications on the monitoring of the Southern

Ocean meridional overturning circulation, heat transport at the shelf or within the gyres.

Ice-Ocean interactions. One of the main angle of my PhD is to better understand the role

of the cryosphere on the circulation and hydrography of the subpolar Southern Ocean.

There might be processes discussed in this thesis that my of interest to better understand

the ocean - sea ice interactions. On the mechanical processes first, about how the sea ice im-

pacts the momentum transfer between the winds and the ocean surface, and also inputs mo-

mentum itself when drifting. The way this is implemented in the climate models and when

computing that process is rather simple and has been used several times in this thesis as the

Ocean Stress Curl (Chapters III and IV). While a more accurate implementation of that pro-

cess requires more observation of sea ice shape and properties (Tsamados et al., 2014; Martin

et al., 2016), improved observations of ocean circulation response to wind and sea ice mecha-

nical forcing may help uncovering further this process. As for its importance in the circulation

processes, better representing the sea ice contribution of momentum input and modulation

of the wind-induced surface stress might lead to strong improvements of the climate models.

Other further perspectives on the ocean - sea ice interactions would be the to further explore

the feedbacks between the sea ice-induced heat and freshwater fluxes and the ocean circula-

tion and hydrography. These processes may be addressed in various ways, such as better un-

derstanding the effect of the circulation of large polynyas openings (Campbell et al., 2019) and

their feedbacks on ocean circulation (de Lavergne et al., 2014). Following the framework of this

thesis, the ocean - sea ice interactions might be explored at the seasonal time scale as well, by

exploring for example the north-south asymetry of the salt and freshwater fluxes during melt

and formation seasons (Abernathey et al., 2016; Pellichero et al., 2018). This has been studied

in specific regions (Hattermann, 2018), but not at the whole subpolar basin scale.

As I focused on the zonal dynamics in Chapter III, I may have pursued in looking at the me-

ridional dynamics, and particularly at the cross-shelf transport. The ocean topography dataset

might allow looking at both direct advective and eddy-mediated cross-shelf transport. In fact,
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the whole regional circulation may have strong impact on the ice shelves, directly impacting

their melting rates and the stability of the Antarctic ice cap. I was actually involved in the work

of Julius Lauber et al., who used the dataset I developed to show that the remote sea level forcing

and wind, along with local wind as well, contributes inflow of warm water below the Fimbuli-

sen ice shelf (paper in prep.). The mechanism is the same as the second mode presented in

Chapter III, with remote winds forcing the SLA, resulting in an ASC anomaly. This contributes

to a weaker ASC in the three last years of the record, bringing warm offshore water closer to

the sill, where it may be pushed over the edge of the cavity by local winds. These inflows were

directly linked to the melting rate of the ice shelf, impacting the meltwater fluxes as well and

the regional ocean circulation and hydrography. I think it would be very interesting to conduct

similar studies on other cavities, to further identify the mechanisms bringing heat toward the

ice shelves.

More broadly, in the work presented here, I considered the subpolar Southern Ocean the

same way all around Antarctica, with only few consideration for regional processes. This me-

thodological choice comes from the wish to start from the large scale and very general pro-

cesses, to then tighten the focus on smaller and more regional processes. In this thesis, I only

had the time to reach the mesoscale processes. But the logical follow up to this would be to look

at more regional processes, such as ASC local variations over specific regions and implications

on warm water intrusions, or polynya events.

4 General Comments

The Southern Ocean is a fascinating region. Its remoteness from inhabited regions, harsh

climatic conditions, and outstanding biodiversity close to Antarctica raise curiosity, and some-

times make people dream. This is the case for me, and as I am writing these lines, I will be in

a few days boarding on l’Astrolabe to finally meet in real life the ocean I spent more than three

years studying. But working on the Southern Ocean was also very exciting for its physics, with

complex processes still largely unknown, but having considerable importance on the global cli-

mate. I feel grateful for having the opportunity to work on this region of the world, and even

more in this context of climate change, as better understanding the system and projecting its

changes may help raise awareness about the issue and fight it. I now look forward to witnes-

sing what the climate science community will achieve in the future, and I hope that I will have

the opportunity to continue being involved in the progress toward a better knowledge of the

Southern Ocean.
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