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Thèse de doctorat de l’université Paris-Saclay
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Thèse soutenue à Paris-Saclay, le 14 mars 2022, par

Myrto LIMNIOS

Composition du jury

Pascal Massart Président
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Nicolas Vayatis Directeur de thèse
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et de rafiner ma critique scientifique. J’espère garder de nos discussions une ouverture d’esprit et
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1 | Introduction

“All knowledge-beyond that of bare isolated occurrence-
deals with uniformities. Of the latter, [. . . ] the vast
majority are only partial; medicine does not teach that
smallpox is inevitably escaped by vaccination, but that it
is so generally; biology has not shown that all animals
require organic food, but that nearly all do so; in daily
life, a dark sky is no proof that it will rain, but merely a
warning; even in morality, the sole categorical
imperative alleged by Kant was the sinfulness of telling a
lie, and few thinkers since have admitted so much as this
to be valid universally.”

C. Spearman, The Proof and Measurement of
Association Between Two Things.

1.1 Context and motivations

The high-dimensional and nonparametric two-sample problem. In its most general statistical
formulation, the two-sample problem tests the equality of two unknown probability distributions at
a level of risk, when considering two independent i.i.d. random samples X1, . . . , Xn and Y1, . . . , Ym,
valued on the (same) measurable space Z , for instance of Rd , d ≥ 2. While there is long-standing
literature for the univariate setting (see Lehmann and Romano (2005)), this problem remains a re-
search subject for both the multivariate and nonparametric frameworks. Indeed, the increasing abil-
ity to collect large, even massive data, of various structure that is possibly biased due to the col-
lection process, has strongly defied classic modelings, see e.g. Wang et al. (2019). Such types of
data are in particular analyzed in applied fields as in biomedicine (e.g. clinical trials, genomics),
in marketing (e.g. A/B testing, recommendation systems), in economics, etc. The recent methods
for high-dimensional setting usually rely on distance-based statistics. These distances are estim-
ated on empirical versions of the underlying probability measures (or related), such that the more
the distance decreases, the more the two samples can be characterized as homogeneous, see Biau
and Gyorfi (2005); Gretton et al. (2012a). Unfortunately, these formulations often depend on the
intrinsic characterization of the metric, and on the ambient representation of the random observa-
tions. Additionally, they often lack certain important statistical properties regarding, for instance, the
nonasymptotic control of the type-I and/or type-II errors, the computation of the exact null distribu-
tion, or even the stability w.r.t. the dimension of the space Z (e.g. of d). In the high-dimensional
case, most work have considered semiparametric statistical models and focus on the location or a
scale tests, see e.g. Baringhaus and Franz (2004).

1



2 CHAPTER 1. INTRODUCTION

Rank statistics and learning-to-rank methods. Going back to Spearman’s rho test published in
Spearman (1904), rank statistics were introduced as a response to the traditional ’Gaussian assump-
tion’. Precisely, as the observations are solely considered through their relative order, R-statistics
“reduce the “accidental errors”” (page 81, Spearman (1904)). Later, they gained popularity thanks
to their simplicity, fast computation, and being a particular class of permutation statistics. In the
context of two-sample testing, it is among the most competitive class of test statistics under mild con-
ditions on the underlying probability distributions, see e.g. Chernoff and Savage (1958); Hodges and
Lehmann (1956). They are proved to achieve exact distribution-free distribution under the null hypo-
thesis (equality of distributions) while providing high power in the univariate framework, see Chap.
15 in van der Vaart (1998). The simplest version, known as the ranksum or Mann-Whitney-Wilcoxon
test statistic (Mann and Whitney (1947); Wilcoxon (1945)), is celebrated for being asymptotically
uniformly most powerful for the location problem at fixed test size and under logistic distributions,
see Ex.15.15 in van der Vaart (1998). However, the definition of rank statistics is far from being
straightforward for high-dimensional settings due to the lack of natural order in multivariate data.
The literature usually relies on depth or spatial ranks that heavily depend on their intrinsic definition
and are mainly designed for particular (parametric) tests, see e.g. Chakraborty and Chaudhuri (2017);
Hallin and Paindaveine (2008).

In a different context, ranking observations has become fundamental in many data analysis prob-
lems for the past decades, e.g., in information retrieval and computational biology. They are defined
as learning-to-rank methods, and aim to learn an order from a set of observations according to their
relevance/importance/preference to predict the order of any ’new’ data sample. In particular, the
most simple approach for two samples is known to be intimately related to the Mann-Whitney-
Wilcoxon statistic via the Receiver Operating Characteristic (ROC) analysis, see Clémençon and
Vayatis (2009b). A series of fundamental contributions relating learning-to-rank approaches and
ROC analysis are, for instance, Agarwal et al. (2005); Cortes and Mohri (2004). However, and to
the best of our knowledge, only Clémençon et al. (2008, 2009) theoretically leveraged the relation
to classes of some linear rank statistics. The latter direction motivates this work and ideally seeks
algorithmic procedures that are easy-to-use, interpretable, and trackable.

Towards nonasymptotic guarantees. More generally, complex data structures with possibly bias-
ed acquisition conditions require nonparametric and multivariate statistical modeling. In hypothesis
testing, standard multivariate extensions of classic univariate test statistics lack nonparametric ana-
lysis. Valiant (1984) introduced the Probabilistic Approximately Correct (PAC) theory, providing a
framework for quantifying the difficulty of a data analysis problem. Briefly, by considering a proba-
bilistic space (Ω, A , P), PAC bounds formally aim to control, at a certain probability, an event A as
follows:

For fixed probability δ > 0, for any element ω ∈ A(δ ) such that the event A(δ )⊂Ω,
satisfies P{A(δ )} ≥ 1−δ .

Actually, tail bounds could be derived for an estimator ZN based on a sample of size N ∈ N∗, as
finding the threshold tδ ,N > 0 such that P{ZN < tδ ,N} ≥ 1− δ , where A(δ ) = {ZN < tδ ,N}. With
probability 1− δ , it ensures that the random variable does not exceed a certain threshold, incident-
ally interpreted as a (nonasymptotic) confidence interval of the estimator. This type of bounds is
particularly used in statistical learning theory for studying the random fluctuations of the empirical
risk given a model.

Biomedical application: comparison of posturographic data. This thesis is motivated by a bio-
medical project regarding the quantification of human behavior developed in an interdisciplinary
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research team1. In particular, in the context of personalized medicine and elderly prevention, a team
gathering mathematicians, (bio)statisticians, and clinicians from different specialties studies the pos-
tural control of clinical populations. The idea is to be able to collect the evolution of the postural
control through clinical follow-ups to detect a possible deterioration. Specifically, frailty progression
in late adulthood for Parkinsonian patients is at the heart of the project. This population is more
subject to postural instability, implying possible falls at ages for which surgical operations are not
encouraged. A way of measuring the postural control is by using sensorimotor platforms that regis-
ter during a short timescale the temporal variation of the Center of Pressure (CoP) displacement
(statokinesigram) of the patient. The experimental protocol is illustrated in Figure 1.1.

Figure 1.1. Illustration of the statokinesigram acquisition protocol. The patient stands still in (A) to measure
the two-dimensional trajectory of the center of pressure by the force platform. The two timeseries of the
Medio-Lateral and the Antero-Posterior are resp. defined as the x-axis and the y-axis in (B). An example of
statokinesigram in (C). Source: Chen et al. (2021).

In this context, a typical and important problem renders in the comparison of patients having
frail postural control, referred to as Faller, w.r.t. a chosen ’control’ population, referred to as Non
Faller. To better understand the difficulty of this question, Figure 1.2 gathers statokinesigrams meas-
ured from these two populations, for which the visual distinction between the pairs of patients (a
vs. b, and c vs. d) is far from being straightforward. The measurements are of complex structure
(e.g. multiple features, functional nature, small/imbalanced cohorts), for which additional informa-
tion/features about the patients can be added to (e.g. comorbidity, age). In fact, after adequate pre-
processing, many characteristics from the obtained statokinesigrams can be collected for the analysis,
see Quijoux et al. (2021). However, there are strong limitations when using traditional two-sample
testing approaches to such data types. Practitioners face either approach challenging to implement
or univariate and parametric models that are not adequate. We explored typical ones in Bargiotas
et al. (2021) in the context of postural control, and more generally highlighted some scientific facts
raised by the scientific community for the use of statistics in Appendix Chap. C.1. For instance, mul-
tiple testing procedures are usually associated with simple corrections controlling the type-I error for
comparing multivariate observations, see e.g. Hochberg (1988); Hommel (1988). We compared their
ability to discriminate those two populations (Faller/Non Faller) to two multivariate methods: the

1The Centre Borelli is a research laboratory resulting from the recent merger of an applied mathematics labor-
atory (CMLA, Ecole Normale Supérieure Paris-Saclay) and a neuroscience laboratory (COGNAC-G, Université Paris
Descartes), wherein multiple interdisciplinary projects are developed.
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Maximum Mean Discrepancy (MMD), see Gretton et al. (2007), and the proposed generalization of
rank statistics based on Clémençon et al. (2009). Classical procedures failed to reject the null hypo-
thesis, i.e. , concluded that both populations are drawn from the same distribution. On the contrary,
both multivariate methods concluded in a significant difference with very low p-values. We refer to
Chapter 9 for the detailed results, Tables 9.3 and 9.4 therein.

Figure 1.2. Illustration of statokinesigrams for Faller (a,c) and Non-Faller (b,d) patients in the Medio-
Lateral/Antero-Posterior space. Source: Audiffren et al. (2016).

1.2 The high-dimensional two-sample problem

This section formulates the two-sample problem in the multivariate and nonparametric setting. In
particular, state-of-the-art statistical tests are reviewed, while some limitations are subsequently dis-
cussed. We refer to the Appendix section B.2 for its univariate formulation with a review on classical
properties and statistics.

1.2.1 Formulation

Consider two independent random variables X and Y, defined on a probability space and valued in
the (same) multivariate measurable space Z , of unknown continuous distribution functions G and
H. For a fixed level α ∈ (0,1), the two-sample problem corresponds to testing the two hypothesis
below:

H0 : G = H against the alternative H1 : G 6= H . (1.2.1)

Also known as homogeneity testing, many classic statistical problems can be related to. See
Darling (1957) for the univariate goodness-of-fit testing and Friedman (2004) for the multivariate
model, Spearman (1904) for independence testing, and Wilcoxon (1945) for pairwise testing.

In practice, and especially for nonparametric settings, we consider independent copies of the r.v.
as the underlying (classes of) distributions are unknown. Let {X1, . . . , Xn} and {Y1, . . . , Ym}, with
n, m∈N∗, two independent i.i.d. samples drawn from G and H, and valued in the (same) measurable
space Z . Univariate nonparametric statistics, e.g., Kolmogorov-Smirnov statistic (Smirnov (1939)),
rely on empirical estimates of the underlying distributions or related (pseudo)-metrics, see Appendix
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section B.2. The null hypothesis H0 is rejected if obtaining ’large’ values of these statistics, i.e.,
under ’large deviations’ of the two random samples. For multivariate observations, natural empirical
counterparts of their distributions are, for instance,

µ̂n =
1
n

n

∑
i=1

δXi and ν̂m =
1
m

m

∑
j=1

δY j , (1.2.2)

where δx is the Dirac mass at any point x, or empirical versions of the c.d.f. , quantiles, copulas,
depths, etc. Classic (pseudo-)metrics measuring dissimilarity between two probability distributions
are: chi-square distance, Kullback-Leibler divergence, Hellinger distance, Kolmogorov-Smirnov dis-
tance. Refer to Rachev (1991) for a comprehensive review. In minimax testing, the alternative cor-
responds to the underlying distributions being different and separated in a metric sense, see e.g.,
Lam-Weil et al. (2022) for local minimax separation rate defined by L1-norm for discrete distribu-
tions, Carpentier et al. (2018) for L2-norm in sparse linear regression. We refer in particular to Albert
et al. (2021); Berrett et al. (2021) for independence testing, and to Baraud (2002); Ingster and Suslina
(2003, 2000); Lepski and Spokoiny (1999) for goodness-of-fit testing. Lastly, a related problem in
computer science literature refers to the two-sample problem as property testing, see for instance
Goldreich et al. (1998); Rubinfeld and Sudan (1996). The example below formulates a classic stat-
istical test known as the location test.

Example 1. (LOCATION TEST IN Rd ) In (semi)parametric testing, by considering P1, P2 ∈P a
probabilistic model, such that G(t) = P1(t − θ1), H(t) = P2(t − θ2), with parameters θ1, θ2 ∈ Rd ,
with d ∈ N∗, the location problem is formulated as

H0 : θ1 = θ2 vs. H1 : θ1 6= θ2 .

The simplest form is usually presented when supposing P1, P2 known and equal. It recovers the
Hotelling’s T 2-test for the equality of means for Gaussian distributions.

While statistics can be constructed for a particular probabilistic model, e.g. Gaussian, Elliptical
models, this manuscript focuses on nonparametric formulations for which obtaining statistical guar-
antees is possible. Precisely, we are interested in (asymptotic) consistency, (asymptotic) control of
both statistical errors (type-I and type-II), independence of the test statistics null distribution to the
underlying model, independence of the test statistics to the transformations of the model under the
alternative (also known as ancillary statistics Fisher (1925)), unbiasedness of the test statistic. Refer
to Appendix section B.2 for details and definitions. Refer to classic books Gibbons and Chakraborti
(2011); Lehmann and Romano (2005); Sheskin (2011); van der Vaart (1998) for comprehensive re-
views of theory, methodologies and statistics in the field of (nonparametric) hypothesis testing.

1.2.2 State-of-the-art

This section reviews methods developed for the two-sample problem and formulated under nonpara-
metric multivariate assumptions. The large majority is based on estimating a distance between the
underlying probability measures (or related) of the two samples. The heuristic supposes the null
hypothesis H0 to be equivalent to obtaining a zero distance. First, we present some extensions of
classic univariate statistics, then detail new approaches, and finally, set out references for semipara-
metric models or applied to particular data structures. We refer to Section 2.1, in Chap. 2, for
extensive reviews on the following methods.
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Multivariate generalizations of classic univariate statistics. Bickel (1969) proposed a straight-
forward generalization of the Smirnov statistic (see Appendix B.2) and proved its distribution-free
under the null. It seems as the first result to tackle such generic formulation without any additional
sampling or post-analysis techniques. Then, Friedman and Rafsky (1979) obtained a graph-based
generalization of both Wald-Wolfovitz runs statistic and Smirnov statistic (see Eq. (B.2.5), Wald
and Wolfowitz (1940)). They constructed both statistics thanks to the subtree minimizing the total
sum of interpoints distances, defined as the Minimal Spanning Trees (MST). The obtained statistics
highly depend on both the chosen referential and distance, while being independent on the underlying
distributions only when conditioned on the pooled samples.

Later, a series of extended generalizations proved advanced theoretical results using probabil-
ity theory. Empirical processes defined collections of two-sample statistics, indexed by infinite-
dimensional classes of functions of controllable complexity, for applying, e.g., Glivenko-Cantelli
and Donsker theorems. Three subsequent works generalized the Kolmogorov-Smirnov statistic, see
Eq. (B.2.4) (Smirnov (1939)). First, Præstgaard (1995) proposed to map multivariate observations
to the real line thanks to a scoring function, ranging in classes dependent on the sample’s sizes. In
Biau and Gyorfi (2005), the deviation between the two empirical measures is estimated on finite
partitions of the ambient space. Recently, Zhou et al. (2017) introduced an alternative approach if
the marginals are supposed to be independent. It is obtained by linear projections of the observa-
tions on functional decomposition basis. Additionally, Szekely and Rizzo (2004) and Baringhaus
and Franz (2004) studied two versions for the multivariate energy statistic. While the first is straight-
forward, by considering the multivariate Euclidean distance, the second relies on linear projections
on the unit sphere. Lastly, Clémençon et al. (2009) introduced a generalization of Mann-Whitney-
Wilcoxon (MWW) statistic (see Eq. (B.2.3), Wilcoxon (1945)) using a bipartite ranking approach.
This method learns the optimal mapping of the observations to the real line thanks to a scoring func-
tion, to induce a relation order on the feature space. The authors proved the asymptotic consistency
of the procedure and presented promising numerical experiments.

Statistics based on kernel methods. This approach estimates dissimilarity measures in Hilbert
space embeddings, by mapping a probability distribution into a Reproducing Kernel Hilbert Space
(RKHS). The statistics are based on the mapped observations using kernel functions. Formalized
in Gretton et al. (2007) and later in Gretton et al. (2012a), they proposed the Maximum Mean Dis-
crepancy (MMD) statistic measuring the uniform bound in expectations over functions in the unit
ball of a RKHS. In Gretton et al. (2012a), Theorem 5, they proved that if the RKHS is universal
and the unit ball of class of functions is valued on a compact set, then the statistic equals zero iff
the underlying distributions are equal. Considered as a classic approach, many developments have
been published since, e.g., Chwialkowski et al. (2016); Gretton et al. (2009, 2012b); Li et al. (2017);
Schrab et al. (2021). While MMD is a metric in the uniform sense, Bach et al. (2008) considered a
L2-distance, which constructs a statistic generalizing Hotelling’s T 2 test of the estimators based on
kernel methods.

Statistics based on optimal transport distances. Methods relying on optimal transport theory
compare probability measures in metric spaces via transport measures, such as the family of Wasser-
stein distances, see Villani (2009). Notice that the p-Wasserstein distance at power p ∈ [1,∞) is also
known as the Mallow’s distance in the statistical literature. In this line, Ramdas et al. (2015) defined
the test statistic as the estimator minimizing an objective function: by writing the p-Wasserstein dis-
tance as the scalar product of the statistic and the pairwise distances between the two samples to the
power p, penalized by the empirical entropy of the estimator. Recently, an approach at the crossroads
of metric learning and rank statistics has been proposed, yielding to population metric rank maps,
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see in particular Deb and Sen (2019). In Deb et al. (2021), authors extended classic statistics such as
the energy or the T 2-Hotelling ones.

Further readings in semiparametric testing. Extensive and rich literature exists on semipara-
metric models, in particular for the location (Ex. 1) and scale (equality of variances testing) mod-
els under various assumptions w.r.t., for instance, the structure of Z or the family of distributions
(Gaussian, Elliptic, etc.). For completeness, we list additional concepts for the two-sample prob-
lem: nearest-neighbors tests Henze (1988); Schilling (1986), matching/assignment Mukherjee et al.
(2020), permutation tests Hall and Tajvidi (2002), classifier Lopez-Paz and Oquab (2016), random
projections Lopes et al. (2011); Srivastava et al. (2016), random forest Hediger et al. (2021), sparse
mixture model Arias-Castro and Wang (2017), differential privacy Couch et al. (2019); Lam-Weil
et al. (2020); Si et al. (2021). Additionally, Bhattacharya (2019); Lovato et al. (2020) review tests
applied to graph structures or formulated via multivariate data-depths. See also Ingster and Suslina
(2003) for a comprehensive overview of Gaussian models.

1.2.3 Limitations

This section focuses on (non)asymptotic statistical properties and possible associated algorithms to
discuss on the approaches. Refer to Section 2.1, Chap. 2, for greater details.

We first review the results related to the computation or estimation of the null distribution, i.e.,
when the underlying distributions G and H are supposed to be equal. Guarantees on the null dis-
tribution lead to a better control of the null quantile and, hence, of the statistical errors (type-I and
type-II). Deb and Sen (2019) (Lemma 4.3) and Clémençon et al. (2009) (Theorem 2) derive resp. the
exact and the asymptotic null distribution, that are independent of the underlying distributions. For
the other methods, the corresponding test statistics depend on intrinsic unknown parameter(s) related
to G = H, see e.g. Baringhaus and Franz (2004); Gretton et al. (2012a); Szekely and Rizzo (2004);
Zhou et al. (2017). However, the explicit asymptotic distribution is obtained using the central limit
theorem, see e.g. Bach et al. (2008) Theorems 1 and 3. Therefore, the estimation of the null requires
data-driven estimation methods such as: bootstrap sampling, random permutation procedures, and
moment matching methods, see e.g. Gretton et al. (2012a) Section 5. Such additional (sampling)
procedures usually rely on large datasets to ensure sharp estimation. Methods circumvented this dif-
ficulty by modeling the two-sample problem as a classic semiparametric test. These boil down to
testing a (set of) parameter(s). For instance, Zhou et al. (2017) and Baringhaus and Franz (2004)
map the multivariate observations to the real line using a linear projection, leading to shift hypothesis
testing.

The nonasymptotic bias of the proposed statistics is evaluated using concentration inequalities de-
rived under, e.g., boundedness or moment-based, assumptions. In Gretton et al. (2012a), tail bounds
using Hoeffding (1963), depend on the class of bounded kernels (e.g. Th. 7 biased statistic, Th. 10
unbiased statistic, Th. 15 linear statistic). The majority of the statistics depend on the ambient rep-
resentation of the observations or on directional information (e.g. linear projections Baringhaus and
Franz (2004); Zhou et al. (2017)), leading to possibly biased statistics that cannot be ancillary (Basu
(1959)), see e.g. Friedman and Rafsky (1979); Szekely and Rizzo (2004). In the context of complex
data structures, and especially for observations sensitive to the data acquisition process, this is a main
drawback for their use. The majority of the cited approaches guarantees asymptotic consistency of
the tests but lacks advanced analysis to prove refined results, see e.g. Præstgaard (1995), Deb and
Sen (2019) for asymptotic results (Theorems 4.3 and 4.4).

We lastly review computational properties. Either formulated as plug-in approaches or as an
optimization problem, their implementation can be difficult and in particular for high dimensions (e.g.
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large d, if Z ⊂ Rd), also known as the curse of dimensionality phenomenon (i.e. when the required
sample size for obtaining the convergence grows (exponentially) with d), see Devroye et al. (1996)
Section 28.4. We also highlight that fundamental hyperparameters, such as the bandwidth of kernel
functions, can require data-splitting procedures to learn the optimal one before being able to perform
the procedure, see Gretton et al. (2007). This can be quite restrictive in practice, especially for small
data samples. Heuristic choices for the optimal kernel bandwidth propose either using the empirical
median or mean based on the interpoints distances. Gretton et al. (2012a) shows low efficiency in
numerical experiments. Lastly, the computation of the test procedure can require techniques that
are usually neither detailed nor provided in a companion algorithm. Online repositories coded by
external contributors can be found while not maintaining usable versions. These are the significant
limitations for using such advanced multivariate approaches. However, Baringhaus and Franz (2004);
Deb and Sen (2019); Szekely and Rizzo (2004) are available in open access online libraries in the
statistical software environment R.

We conclude by noticing that these a priori distinct families of tests are intimately related in
nature. As studied in Sejdinovic et al. (2013), energy distances and kernel functions of a RKHS
are related thanks to the simple equality D(x,y) = (k(x,x) + k(y,y))/2− k(x,y), (x,y) ∈ Z 2, for a
distance D and a kernel k. Moreover, the metrics induced by these statistics are particular formula-
tions of Wasserstein-based statistics, see Feydy et al. (2018); Ramdas et al. (2015). The methodology
presented in this manuscript is different in nature and is inspired by the work of Clémençon et al.
(2009) wherein the optimal statistic in learnt.

1.3 Rank processes

This section presents the chosen univariate definition of two-sample linear rank statistics. Then,
we review multivariate extensions applied to the two-sample problem and detail their limitations.
We refer to Appendix section B.1 for a comprehensive introduction in the univariate setting and in
particular for classic methods (e.g. Hájek’s projection, Hájek (1968)) and fundamental (asymptotic)
properties under the null and the alternative hypothesis.

1.3.1 Univariate formulation

Historically, rank statistics were considered quite appealing thanks to their simplicity and fast com-
putation for relatively small samples, formally starting with Spearman’s rho test (Spearman (1904))
and later with Wilcoxon’s two-sample test (Wilcoxon (1945)). Spearman motivated his statistic as a
response to the traditional ’Gaussian assumption’, as mainly rank methods “reduce the “accidental
errors”” (page 81, Spearman (1904)), compared to the ones based on the value of the observations
themselves. Indeed, extremes, i.e., observations far from the ’mean’ behavior, do not ’weight’ more
in the computation of the statistic. On the contrary, these rare observations affect statistics which
consider their values.

Let two independent random variables X , Y respectively drawn from G, H and valued in Z ⊂R.
We consider two independent samples as follows. Let X1, . . . ,Xn, with n ∈ N∗, i.i.d. observations
drawn from G, and Y1, . . . ,Ym, with m ∈ N∗, i.i.d. drawn from H, such that n/N → p ∈ (0,1), with
N = n + m. The parameter p is interpreted as the asymptotic proportion of the Xs among the pooled
sample. We define univariate rank statistics based on the pooled sample of asymptotic mixture dis-
tribution equal to F = pG + (1− p)H. Under general assumptions on the underlying distributions,
allowing for possible ties, we choose the definition of upranks (see van der Vaart (1998), page 173),
as follows



1.3. RANK PROCESSES 9

Rank(t) =
n

∑
i=1

I{Xi ≤ t}+
m

∑
j=1

I{Yj ≤ t}, for all t ∈Z . (1.3.1)

The ranks based on the pooled sample are, therefore, proportional to the empirical mixture
distribution of F . By considering the empirical versions of the c.d.f. G and H, i.e. , Ĝn(t) =
(1/n)∑i≤n I{Xi ≤ t} and Ĥm(t) = (1/m)∑ j≤m I{Yj ≤ t}, for all t ∈ Z , its estimator is given by
F̂N(t) = (n/N)Ĝn(t)+(m/N)Ĥm(t), since n/N→ p as N tends to infinity. We obtain

Rank(t) = NF̂N(t), for all t ∈Z .

More generally, this definition allows for the use of empirical quantiles, copulas, etc. Two-sample
linear R-statistics are constructed as a generic formulation encompassing various types of statistical
tests. Solely the ranks of the Xs among the pooled samples are considered and tailored/weighted
using a score-generating function φ : [0,1] −→ R, formally defined as one of the possible repres-
entations of the scores induced by the ranks, see Def. (B.1.3) and (B.1.4) for the main generating
concepts.

Definition 2. (TWO-SAMPLE LINEAR RANK STATISTICS) Let φ : [0,1]→ R be a nondecreasing
function. The two-sample linear rank statistics with ’score-generating function’ φ(u) based on the
random samples {X1, . . . , Xn} and {Y1, . . . , Ym} is given by

Ŵ φ
n,m =

n

∑
i=1

φ

(
Rank(Xi)

N + 1

)
. (1.3.2)

Fundamental results on two-sample R-statistics have been obtained thanks to H. Chernoff and
I.R. Savage, and on the generalized version by J. Hájek. Chernoff and Savage (1958) provides an
asymptotic analysis by writing the statistics as empirical measures using von Mises methods. Hájek
and Sidák (1967) formalizes essential properties and examples of R-statistics. Dwass (1956) pro-
posed for two-sample linear R-statistics a formulation thanks to unbiased (U-)statistics. He proved
the asymptotic Gaussian distribution when all variables are identically distributed and, in particular,
the study of the asymptotic power of the location test (Example 95). These results provide the found-
ations for studying linear rank statistics (Eq. (1.3.2)). In the context of two-sample testing, their
fundamental property is their independence w.r.t. the underlying distributions under the null, see
Appendix B, Lemma 87-(ii). It allows for the exact computation of critical values without any regu-
larity assumptions on the underlying probabilities of the observations. We refer to Appendix section
B for fundamental properties of such univariate statistics, both under the assumption of equality in
distributions and under alternatives. Below, Figure 1.3 gathers some choices of φ leading to classic
two-sample tests, which are in particular detailed in Appendix section B.

1.3.2 Multivariate extensions of R-statistics for the two-sample problem

This section introduces recent advances on multivariate generalizations of R-statistics applying to the
two-sample problem. When considering the feature space Z to be measurable and high-dimensional,
defining rank statistics is far from straightforward due to the lack of natural order on Z . Even when
considering Z a subspace of Rd , with d ≥ 2, the adequate definition of these statistics is not clear.
Hence, numerous methods motivated by the two-sample problem explored new concepts of ranks to
circumvent this problem. They either rely on depth-based or spatial ranks or are usually designed
for particular versions of the two-sample testing, or both, leading to (semi)parametric approaches.
Lastly, Z is supposed to be included in Rd , with d ≥ 2, and the references below are not exhaustive.
We refer to the corpus of works led by M. Hallin for rank statistics applied to models for time series,
see e.g. Hallin and Puri (1988, 1991); Hallin et al. (2020).
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Figure 1.3. Curves of two-sample score-generating functions with the associated statistical test: Logistic test
φlog(u) = 2

√
3(u−1/2) in blue, Logrank test φlrk(u) =− log(1− x) in purple, Mann- Whitney-Wilcoxon test

φmww(u) = u in red, Median test φmed(u) = sgn(u− 1/2) in orange, Van der Waerden test φvdw(u) = Φ−1(u)
in green, Φ being the normal quantile function.

Component-wise ranks. The former multivariate extension of ranks can be related to component-
wise orderings, introduced by Hodges (1955) for bivariate signs and later studied in Puri and Sen
(1993). Briefly, a univariate statistic is estimated based on the d-variate vector of the coordinate-wise
ranks. The results are generally obtained under the independence of the coordinates, such that the
vector of ranks is related to the d (univariate) marginals. Alternatively, some approaches considered
semiparametric tests, such as the location one in Lung-Yut-Fong et al. (2015).

Data depth ranks. A more recent concept, inspired by results on probabilistic measure transporta-
tion, defines ranks via orderings induced by either center-outward distributions, quantile functions, or
for instance, thanks to Monge-Kantorovitch ranks. These methods fall into the concept of statistical
depth, see Mosler (2013). A depth function is a bounded measurable mapping from Z to R+ relative
to a probability measure. It aims at defining a preorder for multivariate points of Z . Also, it induces
a notion of ’centrality’ of the observations, such that the more the points are near the ’center’ of the
mass, and the more the depth function takes high values. Originally introduced in the seminal con-
tribution of Tukey (1975), many alternatives have been developed since, e.g. Beirlant et al. (2020);
Chaudhuri (1996); Chernozhukov et al. (2017); Deb and Sen (2019); Koshevoy and Mosler (1997);
Liu (1990, 1995); Oja (1983); Vardi and Zhang (2000) and refer to Zuo and Serfling (2000) for a
unified review on statistical depths. Liu and Singh (1993) proposed an extension of two-sample rank
tests by two steps as follows. For a chosen depth, estimate the data-depth on a subset of the largest
sample, then perform the univariate two-sample test on the values of the observations obtained by the
empirical data-depth (of the first step). We finally refer to Hallin et al. (2021) for a comprehensive
understanding of tests based on center-outward distributions.

Distance-based ranks. A rich literature was developed regarding (semi)parametric ranks, and in-
terdirections based on the Mahalanobis statistical distance, from the one to the k-sample when consid-
ering elliptical distributions, see e.g. Hallin and Paindaveine (2002a,b, 2008) and for interdirections
Um and Randles (1998). These were successfully applied to multiple types of homogeneity tests,
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such as location, scale, and principal component analysis. Jurečková et al. (2010) introduced two
definitions of ranks based on distances for the semiparametric location test, i.e., under no assump-
tions on the probability class of distributions. They studied the ranks related to the distance of the
observations to the origin and of the interpoint distances. Recently, and as already introduced in
Section 1.2.2), an extension of rank statistics is obtained via optimal transport theory. The latter
leads to learning population metric rank maps by optimizing the measure transportation from the
unknown underlying distributions defined on the feature space to a reference distribution (usually the
d-dimensional Halton sequence), see Deb and Sen (2019); Deb et al. (2021).

A particular corpus: the multivariate location model by H. Koul. The seminal works led by
H. Koul and J. Jurečková provide an in-depth analysis of linear rank statistics for the multivariate
location problem, under mild conditions regarding the score-generating function and the underlying
distributions, see e.g. Gutenbrunner and Jurečková (1992); Koul (1970, 2002). These works present
a straightforward multivariate extension of the semiparametric location model. The R-statistics are
intimately linked to the linear regression as being computed on the corresponding regression error of
one sample w.r.t. the other. In particular, R-statistics are studied in their most generic form w.r.t. the
definition of the generalization of the scores (i.e. of φ(u)), see Appendix B.1. Uniform asymptotic
results on the location parameter and the score-generating function φ are provided under very mild
conditions on the distributions. Moreover, these works studied the notion of contiguity for such
multivariate generalizations.

1.3.3 Limitations

This section discusses on the properties of multivariate generalization concepts of rank statistics.
Univariate rank statistics have fundamental properties, making them essential to the statistical liter-
ature. For instance, ranks lead to unbiased test statistics, achieving exact type-I error independent on
the underlying distributions (Lemma 13.1, van der Vaart (1998)), and maximizing the power (uni-
form most powerful location test with Mann-Whitney-Wilcoxon statistic, see Rem. 14 and Lehmann
and Romano (2005), Chapter 6.9), more details in B.1, B.2. Therefore, multivariate extensions are
expected to guarantee similar properties. However, either typical asymptotic guarantees are obtained
under mild conditions on the distributions, or refined results are proved at the price of parametric
models, see Jurečková et al. (2010); Oja (2010). For instance, many fundamental contributions are
obtained in semiparametric models, while deriving local analysis, particularly for families of ellipt-
ical distributions, see e.g. Hallin and Paindaveine (2002a,b, 2008).

Also, many generalization concepts rely on the ambient or local representations of the observa-
tions, or assume directional information. In particular, component-wise ranks are built on the chosen
referential, see e.g. Hodges (1955). The corresponding assumptions being restrictive w.r.t. the under-
lying model, generic results thus lack and statistics are not distribution-free under both hypothesis.
Similarly, depth-based ranks are inherent to the definition of the statistical depth itself, see Liu and
Singh (1993). These tests are generally asymptotically distribution-free w.r.t. the null but fail in the
sense of Basu (1959) (i.e. essential maximal ancillary). On the contrary, Chakraborty and Chaudhuri
(2017); Chaudhuri (1996); Möttönen et al. (1997), i.e. spatial ranks, obtain statistics that are not
distribution-free but are essential maximal ancillary.

As for the two-sample problem (Section 1.2), some concepts are implementable but at high
computational costs. For instance, spatial ranks and, in particular, Oja medians face this difficulty.
Ronkainen et al. (2003) proposed some deterministic and stochastic algorithms to reduce this com-
plexity, resp. obtaining O(dNd log(N)) and O(5dε−2) where ε is the radius of the confidence L∞-
ball. Later, Oja (2010) gathered methods for computing multivariate ranks in the statistical software
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environment R. Deb and Sen (2019) can use assignment algorithms for computing the rank maps, that
are at worst of order O(N3). Clémençon et al. (2009) rely on bipartite ranking algorithms, that will
be detailed in the next section. Also, few approaches are accompanied with numerical simulations,
see e.g. Chakraborty and Chaudhuri (2017); Deb and Sen (2019), and incidentally rarely provided
with accessible online code to reproduce the experiments.

To conclude, these concepts require a high level of statistical theory, and interesting properties
are proved in the series of works. However, and to the best of our knowledge, none of the listed tests
inherit from all the univariate properties (see section B.2), under mild conditions on the underlying
probabilistic model. Most of the cited approaches rely on assumptions on the probabilistic model,
often leading to its parametrization.

1.4 Learning-to-rank methods

Learning-to-rank methods are data-driven ranking approaches. The aim is to learn a relation order
from a given set of observations according to their relevance/importance/preference, to predict the
rank of any new set of instances. The learning task is formulated as a ranking one in a un/semi/-
supervised setting. It finds interest in many research areas such as in Information Retrieval, Data
Mining but also in recommendation systems (web search, mailing preference lists, etc.) and search
engines. We first outline the broad context of ranking methods. Then, we detail the probabilistic
formulation of pairwise models, known as bipartite ranking. State-of-the-art approaches for bipartite
ranking are reviewed, as it is an essential model for the manuscript. Additionally, we highlight its
dedicated section in Chap. 2 for a detailed review.

1.4.1 Context and formulation

In its most generic approach, the goal is to learn how to rank a set of observations, given a collection
of queries, to minimize a statistical risk. It boils down to learning a scoring function s(z) defined on
a multidimensional feature space Z and valued in R, such that one can rank any pair of instances:
a 4 b iff s(a) < s(b) where < is the classic relation order in R. For instance, in document retrieval,
the goal is to learn an order for a set of documents w.r.t. their relevance, given a set of fields (quer-
ies). Importantly, these optimization problems consider the observations only through their rank, in
the sense of the order statistics (Section 1.3). The fundamental question of such models is how to
compare multivariate observations.

Multiple ranking methods exist to model various data structures. On the one hand, pointwise
learning-to-rank methods address the problem of ranking w.r.t. the relevance of each labeled item.
The loss function then evaluates the quality of the learned scoring function by comparing the predic-
tion of each instance w.r.t. the ground truth. Ranking can therefore be modeled via classification,
regression, or ordinal regression. On the other hand, pairwise and more broadly listwise methods,
aim at formulating the loss function based on pair/list-wise comparison of items. The loss function
measures the accuracy of the predicted pairs/lists of instances by a scoring function w.r.t. the ground
truth. The associated algorithms are more complex, as they rely on at least pairwise relative compar-
ison valued at all instances. We refer to Liu (2009) for a review of the models applied to Information
Retrieval.

This manuscript focuses on a binary approach formulated as a pairwise learning-to-rank model
with only one query, and known as bipartite ranking models. The observations are labeled with a bin-
ary variable, defined either as ’positive’ or ’negative’. The goal is to learn their univariate mappings
obtained thanks to an optimal scoring function s(z). This function induces an order minimizing the
bipartite ranking statistical loss. It recently has found interest in anomaly/novelty detection, where
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the ranking is learned as to order the instances by the degree of their abnormality, see Clémençon
and Jakubowicz (2013); Clémençon and Thomas (2018); Frery et al. (2017); Müller et al. (2013). We
refer to Section 2.3, Chap. 2, for a review on those methods.

Probabilistic formulation of the bipartite ranking problem. Consider the input variable Z defined
on the probability space (Ω, A , P) and valued in the multivariate feature space Z , associated to
its binary label ζ valued in {−1, +1}. The heuristics of bipartite ranking can be reformulated
as the comparison of two pairs of random variables (Z,ζ ) and (Z′,ζ ′) conditionally on the event
{ζ = 1, ζ ′ = −1} thanks to their value obtained by a scoring function. The optimal function s∗ is
learned from a class of candidates S = {s : Z →R∪{+∞}, s measurable}, such that it minimizes
the bipartite ranking risk defined by

L(s) = E[I{s(Z′) > s(Z)} | ζ ′ =−1, ζ = 1] +
1
2
P{s(Z′) = s(Z) | ζ ′ =−1, ζ = 1} , (1.4.1)

where the ties are broken at random. Hence, s∗ is defined by L(s∗) = infS L =: L∗. By considering
the posterior probability η(z) =P{ζ = 1 |Z = z}, it has been proved (Clémençon and Vayatis (2008),
Proposition 2) that the set of optimal elements is given by

S ∗ =
{

s ∈S s.t. for all z, z′ in Z : η(z) < η(z′)⇒ s∗(z) < s∗(z′)
}
. (1.4.2)

We refer to Clémençon and Vayatis (2008) for related optimality results. The explicit bipartite rank-
ing excess of risk for a scoring function s(z) equals to

L(s)−L∗ = E[|η(Z′)−η(Z)|I{(s(Z)− s(Z′))(η(Z)−η(Z′)) < 0}] , (1.4.3)

see Example 1 in Clémençon et al. (2008). This is the key for understanding many state-of-the-art
methods as it will be discussed in the next section. In practice, the underlying distribution being un-
known, we consider the statistical formulation based on i.i.d. random observations {(Zi,ζi)i≤N},
with N ∈ N∗. The goal of bipartite ranking is therefore to learn how to score any new sample
ZN+1, . . . , ZN+k of unknown label, such that it minimizes the empirical counterpart of the expected
loss function L(s) when based on the training sample, defined by

L̂(s) =
1

nm ∑
{i, ζi=+1}

∑
{ j, ζ j=−1}

(
I{s(Z j) > s(Zi)}+

1
2
I{s(Z j) = s(Zi)}

)
, (1.4.4)

where n = ∑i≤N I{ζi = +1} and m = ∑i≤N I{ζi = −1}. Ideally, the optimal scoring function repro-
duces the order induced by η and maximizes the scores of the ’positive’ observations w.r.t. ’neg-
ative’ ones. Refer to Menon and Williamson (2016) for a comprehensive review of the theoretical
approaches to bipartite ranking and state-of-the-art algorithms.

1.4.2 Pairwise state-of-the-art approaches

This paragraph presents existing methods that aim at minimizing the empirical loss (Eq. (1.4.4)), or
related formulations. We refer to Sections 2.2 and 2.3 for a detailed review on the approaches below.

A theoretical approach via Receiver Operating Characteristic (ROC) analysis. Formally intro-
duced by Egan (1975), the ROC curve is a graph known as a gold standard tool for quantifying the
dissimilarity between two populations. It is a Probability-Probability (P-P) plot of the True Positive
Rate (TPR) w.r.t. the False Positive Rate (FPR) at all levels, see the Appendix section B.3 for its
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properties related to univariate distribution functions. Therefore, it provides an excellent functional
quality measure on the class S to discriminate between the scored ’positive’ and ’negative’ variables.
More generally, the Area Under the ROC Curve, defined as the AUC, is intimately related to bipart-
ite ranking as it exactly equals one minus the risk. We refer to Agarwal et al. (2005); Clémençon
and Vayatis (2009b); Clémençon et al. (2008); Freund et al. (2003); Rudin (2006). Extensions to
multipartite ranking are considered in Clémençon and Robbiano (2015); Clémençon et al. (2013b).
In this sense, a series of works introduced different cost-sensitive functions to emphasize different
manners of summarizing the ROC curve. First, a method extending tree-based methods was pro-
posed by Clémençon and Vayatis (2009b); Clémençon et al. (2011), named TreeRank. Järvelin and
Kekäläinen (2000) weighted the loss by the scores, defined as Discounted Cumulative Gain (DCG)
factor. Boyd et al. (2012); Clémençon and Vayatis (2007) focused on only to the best instances, i.e.,
those falling in the quantile of the whole mapped sample. Lastly, Agarwal (2011); Rudin (2006) pro-
posed a smooth loss function named p/infinite-norm push, with p > 0, that ’pushes’ the ’negative’
instances far from the ’positive’ ones. We incidentally highlight that ROC analysis is intimately re-
lated to rank statistics, as the empirical AUC is linearly proportional to the Mann-Whitney-Wilcoxon
statistic.

Bipartite ranking risk as a pairwise classification loss. Most of learning-to-rank algorithms are
built by transferring the pairwise loss of Eq. (1.4.1) to a univariate loss defined on pairs of r.v.. Briefly,
letting rs : Z ×Z →{−1,1} a bivariate ranking rule depending on the scoring function s, such that
rs(z,z′) = 1 iff s(z)≥ s(z′), for all (z, z′)∈Z 2, yields to considering the r.v. ((Z,Z′),(ζ −ζ ′)/2),
as formulated in Clémençon et al. (2008) (Eq. (1.4.3)). Standard algorithms rely on this ’trick’
and all the more on its extensions via surrogate margin losses. For instance, RankBoost (Freund
et al. (2003)) is an extension of the AdaBoost (Freund and Schapire (1997)) leading to a bivariate
exponential loss, that selects the weak ranker implying the largest decrease in the loss function. In
Joachims (2006); Rakotomamonjy (2004), Support Vector Machines (SVM) are adapted to RankSVM,
by minimizing the bipartite risk with surrogate hinge loss. Also, RankNet and LambdaRankNet,
introduced by Burges et al. (2005), are adaptations of Neural Nets (NN) by optimizing the binary
cross entropy loss with a modification of the backpropagation step. See also Narasimhan and Agarwal
(2017) for SVM-based algorithm optimizing the partial AUC (defined in Appendix section B.3).

Bipartite ranking risk as a univariate loss. A series of works showed promising empirical res-
ults regarding the minimization of the bipartite ranking loss, obtained by using classic algorithms
to minimize univariate losses (e.g. logistic, hinge, exponential losses). For instance, solutions of
AdaBoost, logistic regression and even SVMs, show good empirical ranking performance, see e.g.
Cortes and Mohri (2004); Rakotomamonjy (2004); Rudin and Schapire (2009). The heuristic relies
on the class of optimal elements for both methods: in fact, they estimate the same oracle probability
η , see Eq. (1.4.2). Hence, there are specific probabilistic frameworks for which optimal elements of
univariate losses estimating class probabilities can be used as scoring functions for bipartite ranking.
For theoretical analysis, we refer to the works of Agarwal (2014); Clémençon and Robbiano (2011);
Narasimhan and Agarwal (2013); W. Kotlowski (2011).

Plug-in methods. As foreshadowed by Eq. (1.4.2), finding an optimal scoring function boils down
to estimating the posterior probability or equivalently to the likelihood ratio. In fact, this corresponds
to the so-called plug-in methods. Hence, if a good estimator of η is obtained, it suffices to use it as
a scoring rule to map the observations, see Devore and Lorentz (1993). We refer to Clémencon and
Vayatis (2009); Guedj and Robbiano (2018); Li et al. (2013) for approaches to ranking.
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1.4.3 Limitations

This section details the significant computational limitations related to bipartite ranking and learning-
to-rank methods. Refer to Section 2.2 for extensive details.

The minimization of the pairwise misranking error, or related surrogate forms, suffers from large
scale implementation procedures (of order O(N2)), see Eq. (1.4.4). The nondifferentiability of
the pairwise loss (indicator function) requires advanced analysis to guarantee that the (global/local)
optimization is well defined. Techniques using alternative versions of the risk thanks to surrogate
margin losses are detailed in Menon and Williamson (2016). This method led to fundamental results
in binary classification, see e.g. Bartlett et al. (2006).

Pairwise classification models are at the heart of state-of-the-art ranking algorithms as an altern-
ative formulation. While many interesting models have theoretical guarantees, we discuss on their
construction. Indeed, it implicitly relies on the (strong) formulation of rs(z,z′) = fs(z− z′), where
fs : Z →R, see Eq. (1.4.3). When the feature space is Z ⊂Rd , with d≥ 2, all algorithms suppose S
parametric and composed of linear forms z∈Z 7→ 〈θ ,z〉, θ ∈Θ⊂Rd . Optimizing on S boils down
to learning the optimal linear separation parameter θ and to univariate state-of-the-art algorithms,
see e.g. RankSVM, RankNN, RankBoost. This drastically simplifies their implementation. Ailon and
Mohri (2008) proposed algorithmic tricks to reduce the complexity for pairwise classification loss,
from O(N2) to O(N log(N)) (O(k log(N + k)) if top-k� N instances considered). The complexity
of linear RankSVM with L1-loss reduced the quadratic complexity to at least O(Nñ + N log(N)), with
ñ the average number of non-zero features per observation, plus a loglinear term depending on the
optimization algorithm, see e.g. Joachims (2006).

Despite such restrictive probabilistic frameworks and the remaining high complexity, those al-
gorithms are empirically efficient, see e.g. Freund et al. (2003); Joachims (2006); Rakotomamonjy
(2004). It leads to transferring ranking problems to classification or class probability estimation
models. The main theorem of Balcan et al. (2007) proved that, given a binary classification loss, the
obtained AUC (1−L) is at most multiplied by 2. Narasimhan and Agarwal (2013) proved equival-
ence relations of the corresponding statistical risks under constraints, implying data-driven proced-
ures (hence not distribution-free), see Diagram 2.2, Section 2.2. Agarwal (2014) formulated losses
using strongly proper surrogate functions, e.g., logistic and exponential losses.

Lastly, plug-in methods suffer from the curse of dimensionality due to the possible complex
structure of Z , see Section 1.2.3. Approaches may require, for instance, sparsity assumptions on the
data or independence of the marginals of the conditional distributions, see e.g. Guedj and Robbiano
(2018); Li et al. (2013). Finally, few methods gain leverage by providing grounded interpretability
thanks to ROC analysis and incidentally to rank statistics, see e.g. Clémençon and Vayatis (2009b).

1.5 Contributions

This thesis aims to provide a generic framework for high-dimensional and nonparametric two-sample
problems by studying linear rank processes. The main theoretical contributions are summarized in
the first section, followed by two applications of such statistics in learning-to-rank problems, namely
in bipartite and anomaly ranking. The last section, motivated by interdisciplinary research, outlines
contributions on analyzing, modeling, and estimating the human postural control.

1.5.1 Towards a generic formulation for R-processes

Consider two independent r.v. X and Y resp. drawn from G and H, defined on a probability space
(Ω, A , P) and valued in the multivariate feature space Z . Similarly to the univariate modeling and
in the context of nonparametric statistics, let p ∈ (0,1) and N ≥ 1/p such that we sample n = bpNc
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and m = d(1− p)Ne= N−n two independent i.i.d. samples {X1, . . . ,Xn} and {Y1, . . . ,Ym}, valued
in Z resp. from G and H.

As detailed in Section 1.3, defining rank statistics in high-dimensional spaces is far from straight-
forward. We propose a generalization of rank statistics based on bipartite ranking approaches for the
whole manuscript. Precisely, by considering a class S = {s : Z → R∪{+∞}, s measurable} of
scoring functions, the multivariate observations are analyzed through their univariate value obtained
by a given s(z). Two-sample upranks are defined by

Rank(t) =
n

∑
i=1

I{s(Xi)≤ t}+
m

∑
j=1

I{s(Y j)≤ t} , for all t ∈ R , (1.5.1)

where the subscript s is omitted for notation simplicity. This thesis studies theoretical properties of
classes of the multivariate generalization of two-sample linear R-statistics (Eq. (2)), indexed on S
and defined by

Ŵ φ
n,m(s) =

n

∑
i=1

φ

(
Rank(s(Xi))

N + 1

)
. (1.5.2)

This new definition allows for a generic form of the space Z and provides interpretable ranks as
they are valued in R, inheriting the latter’s statistical properties. This framework extends the works
of S. Clémençon and N. Vayatis on ranking methods and rank-based estimators, see Clémençon
and Vayatis (2007); Clémençon et al. (2008, 2009). Notice that choosing φ(u) = u recovers Mann-
Whitney-Wilcoxon statistic, also know to be positively proportional to the Area Under the ROC
Curve (AUC). Importantly, throughout this thesis we detail how this class of statistics can be inter-
preted as scalar performance criteria of learning-to-rank problems for learning the optimal s(z). We
show its relation to ROC analysis and how it reveals different characteristics of the underlying model
depending on φ .

R-processes under scrutiny via PAC learning theory. The heart of this thesis lies in the theoretical
study of the collection of R-statistics as defined by Eq. (1.5.2), to provide guarantees for related
applications. Importantly, finding the optimal scoring function such that the statistic converges to its
continuous counterpart is analyzed thanks to PAC inequalities. For a given scoring function s ∈S ,
let Fs is the mixture c.d.f. of the two r.v. s(X)∼ Gs and s(Y)∼ Hs defined by Fs = pGs +(1− p)Hs.
We define the Wφ -ranking performance criterion by

Wφ (s) = E[(φ ◦Fs)(s(X))] , (1.5.3)

The contributions focus on nonasymptotic analysis of the random and uniform fluctuations of
{(1/n)Ŵ φ

n,m(s)−Wφ (s)}s∈S0 , where S0 ⊂S . In particular, we are interested in guarantees on max-
imizers of the statistic over possibly infinite classes S0, i.e.,

ŝ ∈ argmax
s∈S0

Ŵ φ
n,m(s) . (1.5.4)

However formulated as a typical Empirical Risk Minimization (ERM) problem, none of the clas-
sic tools can be directly applied, insofar as R-statistics are composed of sums of tailored non-i.i.d.
correlated sums. It is essential to decompose and linearize the R-process due to its complex structure,
to obtain a sum of empirical processes with nonasymptotic control of the error. Under polynomial
control of the complexity of S0 (typically Vapnik-Chervonenkis (VC)-class), Proposition 3 below
states this decomposition, for which the assumptions are detailed in Chapter 5.
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Proposition 3 (Informal Proposition 53, Chapter 5). Suppose some assumptions on S0 ⊂ S , φ

and on the distributions of the two r.v. X, Y. The two-sample linear rank process (5.3.5) can be
linearized/decomposed as follows. For all s ∈S0,

Ŵ φ
n,m(s) = nŴφ (s)+

(
V̂ X

n (s)−E
[
V̂ X

n (s)
])

+
(

V̂Y
m (s)−E

[
V̂Y

m (s)
])

+Rn,m(s) , (1.5.5)

where

Ŵφ (s) =
1
n

n

∑
i=1

(φ ◦Fs)(s(Xi)) ,

V̂ X
n (s) =

n−1
N + 1

n

∑
i=1

∫ +∞

s(Xi)
(φ
′ ◦Fs)(u)dGs(u) ,

V̂Y
m (s) =

n
N + 1

m

∑
j=1

∫ +∞

s(Y j)
(φ
′ ◦Fs)(u)dGs(u) .

For any δ ∈ (0,1),

P

{
sup
s∈S0

|Rn,m(s)|< t

}
≥ 1−δ , (1.5.6)

where t is of order log(1/δ ) and holds true for a particular range depending on p, φ , S0.

This fundamental result is the key for all the following analysis. It is based on multiple tech-
niques, ranging from stochastic processes, such as U-processes, to chaining and decoupling methods
for non-i.i.d. statistics, under minimal assumptions on the underlying probability distributions of the
two samples, on the class S and on the function φ . Importantly, it required a new concentration uni-
form bound for U-processes based on two samples, that is stated and proved at length in its dedicated
Chapter 4, Lemma 45 therein. It is now possible to guarantee nonasymptotic probability bounds of
the quality of an empirical maximizer ŝ (Eq. (1.5.4)) learnt within a class S0 ⊂S , yielding to the
following generalization bound and proved in Corollary 56, Chapter 5 therein.

Corollary 4 (Informal Corollary 56, Chapter 5). Let ŝ be an empirical maximizer of the Wφ -ranking
performance over the class S0. Under the assumptions of Proposition 3, for any δ ∈ (0,1), we have
with probability at least 1−δ :

W ∗φ −Wφ (ŝ)≤ 2C2

√
log(C1/δ )

pN
+

(
W ∗φ − sup

s∈S0

Wφ (s)

)
, (1.5.7)

where W ∗
φ

is the oracle measure, valued at scoring functions of strictly increasing transforms of the
likelihood ratio dG/dH. The inequality holds true for a particular range of δ depending on p, where
the constants C1, C2 depend on φ , S0.

The result above establishes that the maximizers ŝ (Eq. (1.5.4)) achieve classic learning rate
bound of order OP(1/

√
N) when based on training datasets of size N, just like in standard classifica-

tion, see e.g. Devroye et al. (1996). Additional contributions are detailed in the main corpus, related
to guarantees on model selection procedures penalized by the class complexity, for which generaliz-
ation bound are stated in Corollary 57 Chapter 5. Lastly, a smoothed counterpart is introduced using
kernel density estimation methods to ensure the local concavity and differentiability of the statistic.
It results to similar guarantees of Corollary 4 with an additional term due to the regularization, see
Proposition 58 Chapter 5.
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1.5.2 R-processes applied to two-sample homogeneity testing

Consider the framework introduced previously. We propose a generic two-stage method applied to
the high-dimensional two-sample problem (Section 1.2) using the R-statistics Ŵ φ

n,m, when indexed
by a class of scoring functions S (see Eq. (1.5.2)). As foreshadowed in Eq. (1.5.1), for a given
s : Z →R∪{+∞}, we define two-sample ranks by comparing the mapped values of the observations
by s(z). The obtained univariate random samples are s(X1), . . . , s(Xn) and s(Y1), . . . , s(Ym). At
level of test α ∈ (0,1), for a given score-generating function φ(u) and a scoring function s(z), the
test statistic based on the two samples Dn,m = {X1, . . . , Xn}∪{Y1, . . . , Ym} is defined by

Φ
φ

α(Dn,m(s)) = I
{

Ŵ φ
n,m(s) > qφ

n, m(α)
}
, (1.5.8)

where qφ
n, m(α) is the (1−α)-quantile of the null distribution of the statistic Ŵ φ

n,m for fixed sample
sizes n, m. Notice that it is independent of s. The two-sample problem is reformulated as follows

H0 : W ∗φ =
∫ 1

0
φ(u)du versus H1 : W ∗φ >

∫ 1

0
φ(u)du , (1.5.9)

where W ∗
φ

is obtained when valued at the oracle class S ∗ of strictly nondecreasing transforms of the
likelihood ratio dG/dH.

In this line, a two-stage procedure is based on: 1. bipartite ranking: to learn the optimal scoring
function on the first half of each sample, and 2. two-sample homogeneity test: using the optimal
scoring function obtained at 1. to map the second halves, perform the hypothesis test of (1.5.9) using
the test statistic (1.5.8). Fig. 1.4 summarizes the procedure.

Theoretical guarantees of Step 1. This relies on the intrinsic relation between the minimization of
bipartite ranking loss formulations and the maximization of R-statistics as scalar criteria for the class
of scoring functions. In fact, under regularity conditions, Step 1 aims to learn strictly monotonous
transforms of the likelihood ratio of the underlying distributions, guaranteed thanks to Chapter 5.
Hence it ignores the curse of dimensionality and possible model bias issues while satisfying the rank
statistics-related properties. It is asymptotically consistent and also achieves competitive generaliza-
tion bounds of order OP(N−1/2).

Theoretical guarantees of Step 2. As outlined in Section 1.2, few state-of-the-art methods are able
to derive proper theoretical guarantees on multivariate statistics, and especially nonasymptotic ones.
We first prove nonasymptotic distribution-free control of the R-statistics, by means of concentra-
tion bounds under both hypothesis, gathered in Proposition 5. The asymptotic distributions are also
detailed.

Proposition 5 (Informal Propositions 71 and 72, Chapter 6). Suppose some assumptions on φ , G, H
and consider s ∈S0 fixed, e.g. the optimal element of the first step of the procedure. Then under H1,
for all t > 0, N ≥ 2:

PH1

{
|Ŵ φ

n,m(s)− Wφ (s)|> t
}
≤ 20e−CNt2/8 , (1.5.11)

where C depends on φ , p, and for a particular range on t depending on p, φ , N. Under the null
hypothesis H0, the following inequality holds true for all t > 0:

PH0

{
|Ŵ φ

n,m− W 0
φ |> t

}
≤ 2e−2pN(t−∆N)2

, (1.5.12)

where ∆N = |(1/N)∑i≤N φ(i/(N + 1))− W 0
φ
| and W 0

φ
=
∫ 1

0 φ .
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RANKING-BASED TWO-SAMPLE RANK TESTS

Input. Two independent and i.i.d. samples {X1, . . . , Xn} and {Y1, . . . , Ym} of sizes n, m≥
2 and valued in Z - subsample sizes n′ < n and m′ < m - bipartite ranking A algorithm
operating on the class S0 of scoring functions on Z - univariate two-sample rank test Φα of
level α ∈ (0,1).

Two-split trick. Divide each of the original samples into two subsamples:

{X1, . . . , Xn′}∪{X1+n′ , . . . , Xn} and {Y1, . . . , Ym′}∪{Y1+m′ , . . . , Ym}

1. Bipartite ranking. Learn the maximizer ŝ by A , based on training data
{X1, . . . , Xn′}, {Y1, . . . , Ym′}.

2. Univariate rank test. Form the univariate samples

{ŝ(X1+n′), . . . , ŝ(Xn)} and {ŝ(Y1+m′), . . . , ŝ(Ym)} .

Compute the α-level test statistic

Φ
φ

α ({ŝ(X1+n′), . . . , ŝ(Xn)}∪{ŝ(Y1+m′), . . . , ŝ(Ym)}) , (1.5.10)

depending on {Rank(ŝ(X1+n′), . . . , Rank(ŝ(Xn))}, where Rank(t) = ∑
n
i=1+n′ I{ŝ(Xi)≤ t}+

∑
m
i=1+m′ I{ŝ(Y j)≤ t)}.

Figure 1.4. Ranking-based two-sample rank test procedure.

The proofs rely on classic concentration inequalities as well as the ones obtained in Chapter
4, applied to the terms inherited by the decomposition of Proposition 3 (see Prop. 53, Chapter 5).
Additionally, an estimator of the power is provided based on a Monte-Carlo sampling scheme. The
asymptotic distributions of the (studentized) statistics are stated in Propositions 73, 74 (under H1)
and 75, 76 (under H0), Chapter 6. Importantly, the null distribution depends only on φ and p. Lastly,
in order to leverage on the score-generating function, we propose a practical procedure, as to choose
the optimal φ in a minimax sense.

Numerical experiments. A series of numerical experiments are conducted for multiple probabil-
istic models, testing a range of state-of-the-art bipartite ranking algorithms as listed in Section 1.4.2.
Additionally, comparisons to state-of-the-art multivariate tests are automatically presented, in par-
ticular to Friedman and Rafsky (1979); Gretton et al. (2012a); Szekely and Rizzo (2004). They
are gathered in Chapter 7 and are accompanied with open access online Python codes available at
https://github.com/MyrtoLimnios.

1.5.3 R-processes applied to learning-to-rank problems

The generic framework for two-sample linear R-processes is applied to two models inherited from the
machine learning community: bipartite ranking and anomaly detection problems. Indeed, the con-
tinuous counterpart Wφ is interpreted as scalar performance criterion, that summarizes fundamental
functional losses in ranking problems. For both topics, we provide an algorithmic procedure.

https://github.com/MyrtoLimnios
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Bipartite ranking. Based on a multivariate i.i.d. sample with random binary labels, the goal is
to learn a scoring function such that one can rank any new observation of unknown label and with
minimum ranking error. We justify the almost equivalence to the two-sample formulation in Section
2.2 (Chap. 2), to be able to consider the proposed R-statistic (1.5.2). The smooth version of the
R-statistic proposed in Chapter 5 allows, in particular, to implement a deterministic gradient ascent
algorithm. The goal is to maximize an empirical version of the smoothed statistic by introducing a
second-order Parzen-Rosenblatt kernel, K of bandwidth h, such that

Ŵ φ

n,m,h(s) =
n

∑
i=1

(φ ◦ F̂s,N,h)(s(Xi)) , (1.5.13)

where F̂s,N,h is the empirical mixture distribution of the pooled sample, regularized with the kernel
K of bandwidth h. The procedure is summarized in Algorithm 1, where the class S0 = {sθ : Z →
R, θ ∈ Θ} is supposed parametric w.r.t. Θ ⊂ Rd , and numerical results are gathered in Chapter 7
that rely on the guarantees of Chapter 5. The algorithm is coded in Python and is accessible at the
open access online repository at https://github.com/MyrtoLimnios.

Algorithm 1: Gradient Ascent for W -ranking performance maximization
Data: Independent i.i.d. samples {Xi}i≤n and {Y j} j≤m.
Input: Score-generating function φ , kernel K, bandwidth h > 0, number of iterations T ≥ 1,

step size η > 0.
Result: Scoring rule s

θ̂n,m
(z).

1 Choose the initial point θ (0) in Θ;
2 for t = 0, . . . , T −1 do
3 compute the gradient estimate ∇θ

(
Ŵ φ

n,m,h(s
θ (t))
)

;

4 update the parameter θ (t+1) = θ (t) + η∇θ

(
Ŵ φ

n,m,h(s
θ (t))
)

;

5 end
6 Set θ̂n,m = θ (T ).

Anomaly ranking. We propose a ranking approach to anomaly detection, where R-statistics are
used as scalar criteria to learn a scoring rule for ordering the instances by degree of abnormality.
This method aims to bridge the gap between one-sample unsupervised anomaly detection and two-
sample rank-based discrepancy measure of probability distributions. This formulation is theoretically
interesting as it is framed for discriminating between two a priori different distributions independ-
ently on the shape of the perturbation. However, traditional methods are based on criteria minimizing
a local/global spatial risk function, which can lead to ranking the observations based on an accuracy
index independent of a ranking criterion.

The statistical learning framework slightly differs from previously. Let p∈ (0,1), we assume that
N ≥ 2 observations are available: n = bpNc ’normal’ i.i.d. observations X1, . . . ,Xn taking their values
in [0,1]d for simplicity drawn from F(dx) = f (x)λ (dx). Let m = N−n, the i.i.d. sample U1, . . . ,Um

drawn from the uniform distribution Ud on the hypercube [0,1]d , independent from the X’s. Hence, p
represents the ’theoretical’ proportion of ’normal’ observations among the pooled sample. Similarly
to bipartite ranking, the goal is to estimate the optimal scoring function s, such that the empirical
Wφ -ranking criterion is maximized. In fact, the latter is shown to be intimately related to a functional
criterion introduced in Clémençon and Jakubowicz (2013), known as Mass-Volume (MV) curves.

https://github.com/MyrtoLimnios
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The MV curve of a scoring function s ∈S0 ⊂S can be defined as the parametric curve

MVs : t ∈ R 7→ (1−Fs(t),1−λs(t)) ∈ [0,1]2 ,

where Fs(t) = P{s(Z)≤ t} and λs(t) = λ ({z ∈Z , s(z)≤ t}), for all t ∈ R. A two-stage procedure
is proposed and summarized in Fig. 1.5, based on: 1. maximization of the empirical Wφ -ranking
performance criterion based on {X1, . . . ,Xn} and {U1, . . . ,Um}; 2. ranking the anomalies of a new
sample {X t

1, . . . , X t
nt
}. Numerical experiments are provided in Chapter 8, where the algorithm ap-

proximates Step 1. It is based on a Neural Network with a binary cross entropy loss, penalized by the
Wφ -criterion.

ANOMALY RANKING PROCEDURE

Input. Consider the ’normal’ i.i.d. random sample {X1, . . . , Xn} of unknown probability
probability function F(dt) defined on Z ⊂ [0,1]d , d ≥ 2 - new random sample {X t

1, . . . , X t
nt
}

a priori drawn from F(dt), nt ∈ N∗, independent of the X’s - bipartite ranking A algorithm
operating on the class S0 of scoring functions on Z - φ a score-generating function. Set
nlowest ∈ N∗.

1. Maximizing the Wφ -ranking performance criterion.

(i) Generate a i.i.d. random sample {U1, . . . ,Um} from Ud([0,1]d), independent of
{X1, . . . , Xn},

(ii) Output the optimal empirical scoring rule ŝn,m = argmaxs∈S0
Ŵ φ

n,m(s) based on the two
samples {X1, . . . , Xn} and {U1, . . . ,Um}.

2. Ranking anomalies.

(i) Compute the empirical scores of the test sample {ŝn,m(X t
1), . . . , ŝn,m(X t

nt
)},

(ii) Define as anomalous the nlowest observations of lowest empirical scores among the
sequence ŝn,m(X t

i ), i≤ nt .

Result. Output the set of anomalous observations with their corresponding ranks.

Figure 1.5. Two-stage procedure for learning to rank anomalies.

1.5.4 Analyzing, modeling and estimating the postural control

We present two main contributions related to biomedical studies and in particular to the analysis
of the postural control, introduced in Section 1.1. Briefly, postural control is usually measured us-
ing sensorimotor platforms, registering the temporal variation of the Center of Pressure (CoP) dis-
placement (statokinesigram) of the patient during a short timescale. The obtained measurements
are longitudinal and two-dimensional in space, refer to Figures 1.1 (protocol) and 1.2 (examples of
statokinesigrams).

An interpretable algorithm for the two-sample problem applied to biomedical studies. We
explore an easy-to-use interpretable algorithm for performing the two-sample problem on clinical
populations. Precisely, the observations are retrieved from real measurements of statokinesigrams for
two classes of patients: Fallers (frail population) and non Fallers (’control’ population). The obtained
observations are of complex structures that are difficultly processed and analyzed by classic methods.
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For the statistical comparison of two cohorts, the proposed method is inherited from Chapter 6 but
with different learning procedure of Fig. 1.4. Biomedical studies are typically characterized by
few patients, i.e., small sample sizes. Thus, procedures based on data-splitting do not necessarily
converge. We propose a cross-validation sampling procedure, associated with a learning algorithm
in Step 1 based on a random forest combined with an out-of-bag algorithm (leave-one-out). For Step
2., we choose φ(u) = u, leading to Mann-Whitney-Wilcoxon test statistic.

Interesting empirical results are obtained, competing as well state-of-the-art methods. In partic-
ular, it shows similar results to the classic Maximum Mean Discrepancy (MMD) test, see Gretton
et al. (2012a). This method also provides a nice interpretation that is valuable for the biomedical
community, such as feature importance extraction, robustness w.r.t. small sample sizes and imbal-
anced samples. Lastly, it reveals findings (similarly to the MMD) that were not obtained when using
classic multiple testing procedures with corrections, known to control the type-I error (e.g. Bonfer-
roni, Holmes, Sidàk corrections, see Hochberg (1988); Hommel (1988)). It is, therefore, a first step
towards communicating the importance of using accurate multivariate methods for such complex
data.

A stochastic model to understand postural control. This second contribution provides a gen-
erative model for predicting the temporal evolution of the CoP. Precisely, we introduce the Local
Recall model, where the CoP is assumed to be the solution of a modified Langevin stochastic dif-
ferential equation (SDE), ruled by the trajectory of the Center of Mass (CoM). This is quite a new
formulation in this class of models, wherein CoP and CoM are temporally correlated. A signific-
ant difficulty is to settle/choose the discretization paradigm related to the continuous SDE model.
Indeed, it explores mathematical SDE tools ensuring the stability of the system, as well as various
biomechanical interpretations of such choices. The procedure obtained is two-fold: (i) based on
the recorded statokinesigrams, estimate the parameters of the discrete system, and (ii), generate the
learned trajectories for the CoP using the estimated parameters. A series of numerical experiments
are provided, for which empirical results show a low statistical error of the generated trajectories in
the sense of the least square error measure.

1.6 Additional information

1.6.1 Manuscript organization

The manuscript is composed of three parts that are briefly described in the sequel with, eventually,
the associated publication(s).

Existing two-sample problems and mathematical background. This part gathers and formulates
the main concepts of the thesis. It is divided into two chapters:

• Chapter 2: Two-sample problems. First, the multivariate and nonparametric two-sample prob-
lem is reviewed. Then, two learning-to-rank models are detailed, namely the bipartite and
anomaly ranking problems. All are formulated in their generic form, while reviewing in de-
tails the main results and state-of-the-art methods.

• Chapter 3: Some concentration results. Motivated by Empirical Risk Minimization, the con-
struction of classical concentration inequalities are outlined. This leads to bounding statistics
and more importantly collection of them, referred-to as empirical processes (if of order 1),
U-processes (of greater order).
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Contributions related to R-processes. This second part gathers the core of the thesis, rendering
the analysis of the generalized version of R-processes and its application to the two-sample problem.
The numerical experiments on synthetic data are gathered in the last Chapter.

• Chapter 4: A concentration inequality for U-processes. This introductory chapter provides a
new concentration bound for a particular degenerate two-sample U-process, when indexed by
a class of kernels of ’controllable’ complexity. It is a new result in the literature that is required
for the following chapter and hence was published as part of the article [1].

• Chapter 5: Concentration inequalities for two-sample R-processes. Results on R-processes
are proved and motivated by the bipartite ranking modeling. It corresponds to the publication
[1].

• Chapter 6: Two-sample homogeneity testing. A generic formulation for the two-sample prob-
lem based on R-statistics is proposed, optimized thanks to learning-to-rank algorithms. We
state a two-stage procedure with proved theoretical guarantees. This is still a working paper.

• Chapter 7: Numerical experiments. This section gathers numerical experiments based on syn-
thetic data in order to test our proposed rank-based criteria in two contexts: bipartite ranking
and two-sample testing. All the details on the codes are additionally detailed. It gathers the nu-
merical results of [1] (Chapter 6) and [2] (Chapter 8). The algorithms are coded in Python and
are accessible at the open access online repository at https://github.com/MyrtoLimnios.

Applications. This last part focuses on three applied contributions. While the first is related to
a learning-to-rank model, the following two result from the interdisciplinary research at the Centre
Borelli and related to the analysis and modeling of the postural control.

• Chapter 8: Learning to rank anomalies with two-sample linear R-statistics. We derive a meth-
odology for learning to rank observations by their degree of abnormality. The associated pub-
lication is [3].

• Chapter 9: Two-sample testing applied to biomedical studies. A two-sample homogeneity
testing method for biomedical applications is detailed, fitted to maximize a particular version
of the proposed R-statistics. This algorithm is applied to the statistical comparison of two clin-
ical populations, composed of measurements retrieved from statokinesigrams. The associated
publications/communications are [4-5].

• Chapter 10: A generative model for the postural control. A model is proposed to generate the
temporal evolution of the center of pressure when modeled to be temporally correlated to the
center of mass. It is based on the stochastic Langevin model. The associated publication is [6].

Appendix. The Appendix gathers three chapters as follows.

• Appendix A: Generalized two-sample R-processes and efficient two-sample tests. This section
is related to the study of R-statistics when indexed by a class of score-generating functions φ .
In the continuity of Chapter 5 and inspired by the work of H. Koul (see Section 1.3.2), we study
of R-processes under mild assumptions on the score-generating function. Then, for the two-
sample problem, an additional procedure is proposed, wherein Step 1. of Fig. 1.4 is replaced
by the exact maximization of the R-statistic. We use the Algorithm 1 and some numerical
experiments are provided. Also, a adaptive approach for choosing the ’best’ score-generating
function is detailed.

https://github.com/MyrtoLimnios
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• Appendix B: Univariate framework and state-of-the-art. This section develops fundamental
results and examples on the following univariate problems: two-sample rank statistics, the
two-sample problem and ROC analysis.

• Appendix C: Additional material. Some facts on scientific research based on statistics are
raised, especially for replicable research. Lastly, the general introduction in French is outlined.

1.6.2 References and online material

The following list gathers the publications and a working paper that are considered in this manu-
script. The majority of articles were published in scientific journals, whereas the remaining two in a
conference and a workshop.

[1 ] Concentration inequalities for two-sample rank processes with application to bipartite rank-
ing. S. Clémençon, M. Limnios∗, N. Vayatis. Electronic Journal of Statistics, 15(2):4659 –
4717, Sep. 2021. ∗ Corresponding author

[2 ] A bipartite approach to the two-sample problem S. Clémençon, M. Limnios∗, N. Vayatis.
Working paper. ∗ Corresponding author

[3 ] Learning to rank anomalies: scalar performance criteria and maximization of two-sample
rank statistics. M. Limnios, N. Noiry, S. Clémençon. In Proceedings of the Third International
Workshop on Learning with Imbalanced Domains: Theory and Applications, volume 154 of
Proceedings of Machine Learning Research, pp. 63–75, Sep. 2021.

[4 ] Revealing posturographic features associated with the risk of falling in patients with Parkin-
sonian syndromes via machine learning. I. Bargiotas, A. Kalogeratos, M. Limnios, P-P. Vidal,
D. Ricard, N. Vayatis. PLOS ONE 16(2): e0246790, Feb. 2021.

[5 ] Multivariate two-sample hypothesis testing through AUC maximization for biomedical ap-
plications. I. Bargiotas, A. Kalogeratos, M. Limnios, P-P. Vidal, D. Ricard, N. Vayatis. SETN
2020: 11th Hellenic Conference on Artificial Intelligence, pp 56–59, Sep. 2020.

[6 ] A Langevin-based model with moving posturographic target to quantify postural control. A.
Nicolai, M. Limnios, A. Trouve, J. Audiffren. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 29, pp. 478-487, Feb. 2021.

Additionally, during the outset of the pandemic outbreak, I was mainly involved in a research
project mapping published propagation models of the epidemic. It led to a project of collecting
and reviewing mainly epidemiological articles. We gathered our results into an open and online
repository that includes a tabular sheet, a Kibana interface and a markdown document. The aim
is to facilitate the identification of models by proposing a cartography of the approaches proposed
from February to May 2020. Moreover, the joint pre-print [7] was published that focuses on: (i)
the epidemic propagation models, (ii) the modeling of intervention strategies, (iii) the models and
estimation procedures of the epidemic parameters and (iv) the characteristics of the data used.

[7 ] Epidemic models for COVID-19 during the first wave from February to May 2020: a method-
ological review, M. Garin*, M. Limnios*, A. Nicolai*, I. Bargiotas, O. Boulant, S. E. Chick,
A. Dib, M. Fekom, A. Kalogeratos, C. Labourdette, A. Ovchinnikov, R. Porcher, C. Pouchol,
T. Evgeniou, N. Vayatis. Preprint, arXiv:2109.01450, 27 pages, Sep 2021. ∗ Equal contribution
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Lastly, as we believe in the importance of replicable, easy-to-use and open-access tools, the
respective algorithms of the aforementioned projects are gathered into the github repository https:

//github.com/MyrtoLimnios. Therefore, the Python codes used in the articles and the online
repository joint to the review [7] are easily accessible.

https://github.com/MyrtoLimnios
https://github.com/MyrtoLimnios
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2 | Two-sample Problems

Abstract. This preliminary chapter outlines three two-sample problems studied in the
manuscript. The first section presents the multivariate and nonparametric homogeneity
hypothesis testing, known as the two-sample problem. Precisely, state-of-the-art meth-
ods for the nonparametric statistical comparison of two independent random samples are
outlined when supposed to be valued in a multivariate space. The following sections aim
to provide an insight into ranking problems. These are formulated as optimization mod-
els wherein the observations resulting from an experiment are considered solely through
their ranks (in the sense of the order statistics), either in a supervised setting or in a un-
supervised one. In particular, the focus is on two problems: (i) the bipartite ranking and
(ii) the anomaly ranking. While the former gathers rich literature for the past decades,
the latter is a recent formulation in anomaly/novelty detection. For multivariate observa-
tions, the definition of the ranks is not unique. We present one of the existing modelings
that introduces a scoring function inducing an order by mapping the observations from
the feature space to the real line. In particular, Receiver Operating Characteristic (ROC)
analysis is introduced, insofar as it induces a quality criterion for the scoring functions,
that is either functional (if considering the ROC curve) or scalar (else summaries of the
ROC curve). Additionally, we present their two-sample formulation that will be con-
sidered throughout the manuscript.

29
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2.1 Homogeneity testing

This section highlights recent methods developed for the two-sample problem in nonparametric and
multivariate frameworks. While a rich literature for generalizing (semi)-parametric tests exists, par-
ticularly for the location and scale tests, few works propose a generic nonparametric approach. The
majority of the proposed approaches estimate a metric between the underlying distributions of the two
samples. Statistics are usually modeled in particular settings, e.g., for precise data structures or fam-
ilies of distributions. We refer to alternative models based on: nearest-neighbors tests Henze (1988);
Schilling (1986), matching/assignment Mukherjee et al. (2020), permutation tests Hall and Tajvidi
(2002), classifier Lopez-Paz and Oquab (2016), random projections Lopes et al. (2011); Srivastava
et al. (2016), random forest Hediger et al. (2021), sparse mixture model Arias-Castro and Wang
(2017), differential privacy Couch et al. (2019); Lam-Weil et al. (2020); Si et al. (2021). We refer to
the review of Bhattacharya (2019); Lovato et al. (2020) for tests applied to graph structures or for-
mulated via multivariate data-depths. Lastly, a related problem in computer science literature refers
to two-sample problem as property testing, see for instance Goldreich et al. (1998); Rubinfeld and
Sudan (1996).

First, we recall the generic formulation of the two-sample problem. We then review generaliza-
tions of classic univariate statistics and metric-based approaches, estimating a distance between the
probability measures (or related) of the two samples. The heuristic is that the null hypothesis H0 is
equivalent to obtaining the chosen distance equal to zero. We additionally point the main properties
and limitations.

2.1.1 Formulation

Consider two independent random variables X and Y, defined on a probability space and valued in
the (same) multivariate measurable space Z , of unknown continuous distribution functions G and
H. For a fixed level α ∈ (0,1), the two-sample problem corresponds to testing the two hypothesis
below:

H0 : G = H against the alternative H1 : G 6= H . (2.1.1)

Also known as homogeneity testing, many classic statistical problems can be related to this generic
formulation. See Darling (1957) for the univariate goodness-of-fit testing and Friedman (2004) for
the multivariate model, Spearman (1904) for independence testing, and Wilcoxon (1945) for pairwise
testing. In practice, and especially for nonparametric settings, we consider independent copies of the



2.1. HOMOGENEITY TESTING 31

r.v. as the underlying (classes of) distributions are unknown. Let {X1, . . . , Xn} and {Y1, . . . , Ym},
with n, m ∈ N∗, two independent i.i.d. samples drawn from G and H and valued in the (same) meas-
urable space Z . Univariate nonparametric statistics, e.g., Kolmogorov-Smirnov statistic (Smirnov
(1939)), rely on empirical estimates of the underlying distributions or related (pseudo)-metrics, see
Appendix section B.2. The null hypothesis H0 is rejected if obtaining ’large’ values of these statist-
ics, i.e., under ’large deviations’ of the two random samples. For multivariate observations, natural
empirical counterparts of their distributions are for instance

µ̂n =
1
n

n

∑
i=1

δXi and ν̂m =
1
m

m

∑
j=1

δY j , (2.1.2)

where δx is the Dirac mass at any point x, or empirical versions of the c.d.f. , quantiles, copulas,
depths, etc. Various classic (pseudo-)metrics measuring dissimilarity between two probability dis-
tributions are: chi-square distance, Kullback-Leibler divergence, Hellinger distance, Kolmogorov-
Smirnov distance. Refer to Rachev (1991) for a comprehensive review. In minimax testing formu-
lations, the alternative corresponds to the underlying distributions being different and separated in a
metric sense, see e.g., Lam-Weil et al. (2022) for local minimax separation rate defined by L1-norm
for discrete distributions, Carpentier et al. (2018) for L2-norm in sparse linear regression. We refer in
particular to Albert et al. (2021); Berrett et al. (2021) for independence testing and to Baraud (2002);
Ingster and Suslina (2000); Lepski and Spokoiny (1999) for goodness-of-fit testing. See in particular
Ingster and Suslina (2003) for a comprehensive overview regarding Gaussian models. The example
below formulates a typical statistical test known as the location/shift.

Example 6. (LOCATION TEST IN Rd ) In (semi)parametric testing, by considering P1, P2 ∈P a
probabilistic model, such that G(t) = P1(t − θ1), H(t) = P2(t − θ2), with parameters θ1, θ2 ∈ Rd ,
with d ∈ N∗, the location problem is formulated as

H0 : θ1 = θ2 vs. H1 : θ1 6= θ2 .

The simplest form is usually presented when supposing P1, P2 known and equal. It recovers the
Hotelling’s T 2-test for the equality of means for Gaussian distributions.

While statistics can be constructed for a particular probabilistic model, e.g. Gaussian, Ellipt-
ical models, this manuscript focuses on nonparametric formulations for which obtaining statistical
guarantees is possible. Precisely, we are interested in (asymptotic) consistency, (asymptotic) con-
trol of both statistical errors (type-I and type-II), independence of the statistics null distribution to
the underlying model, independence of the test statistics to the transformations of the model under
the alternative (also known as ancillary statistics Fisher (1925)), unbiasedness of the test statistic.
Refer to Appendix section B.2 for details. Refer to classic books Gibbons and Chakraborti (2011);
Lehmann and Romano (2005); Sheskin (2011); van der Vaart (1998) for comprehensive reviews of
theory, methodologies and statistics in the field of (nonparametric) hypothesis testing.

2.1.2 Multivariate generalizations of classic statistics

The statistics gathered in this section are multivariate extensions of typical univariate statistics that
are recalled in the Appendix section B.

A generalization of the Wald-Wolfowitz runs statistic: Friedman and Rafsky (1979). This
article is one of the first that published a nonparametric generalization. It modeled the two samples
through graphs structures that are constructed as follows. A weighted graph is formed by merging
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the two samples, where the nodes represent the observations and the edges are weighted by the
Euclidean distance, or by a generalized dissimilarity, between the two related points. The statistic
relies on considering the Minimal Spanning Tree (MST), that can be formulated as a subgraph passing
through all the points while minimizing the total weight, without any cycle. It is unique if there are
no ties. The Wald-Wolfowitz runs (WW) statistic R is hence generalized by considering the total
number of subtrees obtained when constructing the two-sample MST and removing all the edges
linking two observations from different samples, see Eq. (B.2.5) for the univariate definition in the
Appendix. The null H0 is rejected for a small number of obtained runs. In fact, R can be interpreted
as a correlation coefficient between the interpoints distances and the sample identities, allowing to
prove its asymptotic normality. Additionally, the null distribution is shown to be independent on
the sample’s distribution if it is conditioned by the r.v. corresponding to the number of edge pairs
having common nodes. While performing poorly for small dimensions on (log)normal location and
scale distributions, it is shown to have a competitive power for the location when the dimension of
the data increases. However, the obtained statistic relies on the coordinate representations of the
points and therefore depends on their scaling choices. Hence, the distribution of the statistic under
the alternative is biased relatively to these changes, leading to various power performances.

A generalization of the Kolmogorov-Smirnov statistic: Præstgaard (1995). The Kolmogorov-
Smirnov (KS) statistic is valued on the univariate mapped observations by means of a scoring func-
tions f , see Appendix (B.2.4) for the formal definition. Consider a sequence of classes FN ⊂F ,
of measurable functions mapping Z to R. Suppose FN ’converges’ to F0 ⊂F as N → ∞. The
generalized statistic indexed by FN is given by

Dn,m = sup
f∈FN

∣∣∣∣∣1n n

∑
i=1

f (Xi)−
1
m

m

∑
j=1

f (Y j)

∣∣∣∣∣ . (2.1.3)

The author proved the asymptotic consistency of both the permutation and bootstrap tests under
fixed and local alternatives as soon as: (i) assumptions on F are satisfied such that convergence
theorems for the obtained empirical processes hold (see Section 1 and van der Vaart (1998)), (ii) the
sup norm over F0 of (1/n)∑i≤n f (Xi)− (1/m)∑ j≤m f (Y j) is not null.

A smooth generalization of the Neyman test: Zhou et al. (2017). Assume the marginals of both
random variables X and Y are independent, the proposed statistic learns the optimal linear direction
to project the variables. This statistic is based on the KS statistic. Let Ψ = (ψk)k≤d a d-variate
orthonormal function such that the coordinates satisfy

∫ 1
0 ψk(x)ψ`(x)dx = δk,`, for all k, `≤ d, then

Tn,m(d′) =

√
nm

n + m
sup

a∈S d−1
Ψ̂a(d′) , (2.1.4)

where Ψ̂a(d′) = maxk≤d′ |(1/m)∑ j≤m ψk(Ĝa
n(aTYj))| with Ĝa

n is the empirical distribution of the uni-
variate sample {aT X1, . . . ,aT Xn}, for all a ∈S d−1 i.e. in the unit sphere, and where d′ ≤ d allows
possible truncation. A bootstrap procedure is derived, weighting the d′ coordinates by a i.i.d. stand-
ard Gaussian sequence that is independent on the two samples. For the smoothed counterpart of the
statistic, the asymptotic consistency is guaranteed. Numerical results show high power in detect-
ing local features or high-frequency components in comparison with Baringhaus and Franz (2004).
However, these asymptotic results rely on strong assumptions on the probabilistic model.

A L1-based test statistic: Biau and Gyorfi (2005). The authors introduce the statistic based on
the L1-distance between the two empirical distributions restricted to a partition of the feature space,
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in the case of balanced samples (i.e. n = m). Consider a finite partition Pn = {An1, . . . ,Anpn} of Rd

supposed to increase with n, with pn ∈ N∗. The statistic is defined as follows

Tn =
pn

∑
i=1
|µ̂n(Ani)− ν̂n(Ani)| , (2.1.5)

where the empirical measures are defined according to the empirical maps (2.1.2). Under the al-
ternative, the authors provide large deviation bounds à la Chernoff, independent on the underlying
distributions, and prove strong consistency1. The asymptotic null distribution is not distribution-free
and shows a smaller critical value for the test to be asymptotically consistent.

A multivariate extension of the energy statistic: Szekely and Rizzo (2004). The authors propose
a straightforward extension of the univariate energy statistic by means of the Euclidean distance in
Z ⊂ Rd ,

En,m =
mn

m + n

(
2

nm ∑
i, j≤n,m

‖Xi−Y j‖−
1
n2 ∑

i, j≤n
‖Xi−X j‖−

1
m2 ∑

i, j≤m
‖Yi−Y j‖

)
, (2.1.6)

where ‖ · ‖ is the Euclidean norm in Rd . If the r.v. X and Y have finite variance, the statistic (2.1.6)
is consistent in power against fixed alternatives. The asymptotic null distribution is also derived
and depends on the kernel of the statistic. This contribution is accompanied with a package named
energy, implemented in the statistical software environment R.

A modified energy test statistic based on projections: Baringhaus and Franz (2004). The stat-
istic introduced is based on the L2-distance between the distribution functions, once the multivariate
variables are projected on the unit sphere. Its empirical counterpart is defined by

Tn,m = γd
mn

m + n

∫
S d−1

∫
R

(Ĝa
n(t)− Ĥa

m(t))2dtdλ (a) , (2.1.7)

for all a ∈S d−1, where Ĝa
n and Ĥa

m are the empirical distributions of the samples {aT X1, . . . , aT Xn}
and {aT Y1, . . . ,aT Ym}, and γd =

√
π(d− 1)Γ((d− 1)/2)/2Γ(d/2) the normalizing constant such

that: ‖x‖ = γd
∫
S d−1 |aT x|dxdλ (a) with λ the uniform measure on the sphere. The asymptotic null

distribution is obtained in Th. 2.2. It is the continuous equivalent to the energy statistic, see Szekely
(2003). The statistic is consistent and invariant to orthogonal linear transformations. For the location
problem, numerical experiments show high power for the Gaussian setting but sensitivity to general
distributions, as well as low power for detecting local features or high-frequency components. This
contribution is accompanied with a package named cramer is implemented in the statistical software
environment R.

A generalization of Mann-Whitney-Wilcoxon: Clémençon et al. (2009). The R-statistic is gen-
eralized by a bipartite ranking approach, for which a scoring function s is learnt as to map the mul-
tivariate observations to R. By considering a class S = {s : Z →R∪{+∞}, s measurable}, MWW
is generalized thanks to

Ŵn,m(s) =
n

∑
i=1

Rank(s(Xi)) , (2.1.8)

1A strong consistent test is consistent for all the points in the null hypothesis for the acceptance and in the alternative
for the rejection, with probability one.



34 CHAPTER 2. TWO-SAMPLE PROBLEMS

where Rank(t) = ∑
n
i=1 I{s(Xi) ≤ t}+ ∑

m
j=1 I{s(Y j) ≤ t} for all t ∈ R. This approach is motivated

by the univariate relation of MWW to the Area Under the ROC Curve (AUC). Hence, once the
optimal scoring function is learnt on a subsample of the whole dataset s.t. it maximizes the AUC, it
is then used to rank the remaining samples of observations in order to compute the univariate MWW
hypothesis test. Asymptotic consistency and Gaussian null distribution of the test statistic are proved
(Th. 2). The procedure is accompanied by promising numerical results showing high power.

2.1.3 Statistics based on kernel methods

Both statistics in the sequel are based on dissimilarity measures in Hilbert space embeddings, map-
ping a probability distribution into a Reproducing Kernel Hilbert Space (RKHS). Typical kernel
methods are applied on the mapped distributions. Briefly, this method extends the Euclidean inner
product in Z to high-dimensional spaces by means of a kernel function k(·, ·)2 related to the map-
ping P 7→ µP =

∫
Z k(z, ·)dP(z), where P is a distribution. In particular, it allows to represent the

expectation as an inner product EZ∼P[ f (Z)] = 〈 f ,µP〉, by the reproducing property of the space, see
e.g. Berlinet and Thomas-Agnan (2004); Schölkopf and Smola (2002); Schölkopf et al. (2003) for
further references. In the following, we denote by (F ,〈·, ·〉F ) a RKHS.

Maximum Mean Discrepancy statistic (MMD): Gretton et al. (2007, 2012a). The MMD two-
sample statistic is defined as the uniform bound in expectations over functions in the unit ball of
an RKHS space. Denote it by F that is associated to the Mercer kernel k(·, ·). This classic test
has gained popularity thanks to its simple definition, its possible implementation for various data
structures, as well as its adaptability to other two-sample statistical tests. The functional definition is

MMD(G,H) = sup
f∈F
|E[ f (X)]−E[ f (Y)]| , (2.1.9)

where the kernels are supposed to be characteristic, e.g. Gaussian, Laplace, such that the equivalence
holds: MMD(G,H) = 0 iff G = H, see Theorem 5. From this definition, both a biased and an unbiased
empirical counterparts of the square statistic have been studied. The squared counterpart can be
viewed as a L2 distance-based statistic between kernel density estimators. The results are mainly
on consistency and large deviation bounds with fixed kernels where the constants in the bounds are
independent of the underlying distributions. The third test is based on the asymptotic distribution of
the unbiased estimate. Although the bounds are distribution-free, the null distribution is not and its
estimation requires data-driven procedures, here for instance thanks to the Pearson curves ( Section
5) i.e. estimating the moments of the statistic, see Johnson et al. (1994) Section 18.8. Additionally,
empirical results show the sensitivity of the statistics w.r.t. the kernel’s bandwidth especially for
small sample sizes, requiring data-splitting in order to optimize it and then to perform the testing
procedure. Alternatively, the heuristic choice is the median inter-sample distance, but empirically
shows low power while not being theoretically proved, see Gretton et al. (2012a). Lastly, in order to
achieve low algorithmic complexity, the authors propose a linear time test (O(n + m)) thanks to the
unbiased version. The central limit theorem applied to the linear and to the unbiased statistics, proves
Gaussian asymptotic laws, where the variances depend on the unknown distributions G and H (Cor.
16). Tail bounds using Hoeffding (1963) depend on the class of bounded kernels (e.g. Th. 7 biased
statistic, Th. 10 unbiased statistic, Th. 15 linear statistic). Hence five test statistics are available for
implementation: the biased (Cor. 9) and four unbiased counterparts with sequentially the thresholds
computed via Hoeffing’s deviation bound (Cor. 11), bootstrap sampling, moment matching Pearson

2If k supposed positive definite, there exists a unique map (not necessarily known) ψ : Z → Z̃ , such that k(x,y) =
〈ψ(x),ψ(y)〉, see Aronszajn (1950).
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curves (Section 5) and lastly the linear time statistic (Cor. 16). We refer to Chwialkowski et al.
(2016); Gretton et al. (2009, 2012b); Li et al. (2017); Schrab et al. (2021) for extensions of the
MMD-based statistic.

Maximum Kernel Fisher ratio statistic: Bach et al. (2008). Following the MMD, the proposed
statistic is based on L2-distance between kernel estimators, weighted by the covariance structure of
the samples. Precisely, the estimator of the operators: Σ̂W the pooled/within-class covariance and Σ̂B

the between-class covariance, are based on the covariance of each sample ΣX ,ΣY . The statistic is the
normalized version of

Tn,m = N max
f∈F

〈 f , Σ̂B f 〉F
〈 f ,(Σ̂W + γNId) f 〉F

, (2.1.10)

with N = n+m, where Id the identity matrix and {γi}i≤N a sequence in R∗+, typically converging to 0.
The ’normalization’ of Tn,m aims to enhance the power: for instance setting γn = 0 and choosing linear
kernel yields to the T 2-Hotelling statistic, see Lehmann and Romano (2005). Classic asymptotic
results are proved for two modelings of the sequence γN : (i) constant γN = γ and (ii) depending on
ΣX ,ΣY . The limit distribution under H0 is proved to be Gaussian: for (i) the parameters depend on
ΣW and on γ (Theorem 1), for (ii) it is standard normal (Theorem 3). The consistency in power is
proved for fixed alternative as well as for local ones3 to speed the convergence rate, for both (i, ii)
(Th. 5). Here the sequence of alternatives are defined by the convergence to 0 of the χ2-divergence
between the probability laws (Prop. 4). Notice that although the results under (ii) are appealing,
conditions are necessary w.r.t. the decay rate of γN , that depends on the underlying distributions of
the samples.

Remark 1. (ENERGY DISTANCE AND KERNELS) As pointed out Ramdas et al. (2015), energy
distances and kernels are closely related by a simple relation D(x,y) = (k(x,x)+k(y,y))/2−k(x,y),
for a distance D and a kernel k, see the comprehensive study in Sejdinovic et al. (2013).

2.1.4 Statistics based on optimal transport distances

Methods introduced in hypothesis testing using optimal transport theory are based on the comparison
of probability measures in metric spaces via transport measures, such as the family of Wasserstein
distances, see Villani (2009). In particular, the p-Wasserstein distance at power p≥ 1, also defined as
the Mallow’s distance in the statistical literature, is the optimum of the transportation problem, where
it has a linear objective w.r.t. a polyhedral feasible set. These tests can be seen as generalizations of
kernel and energy based tests, see for instance Feydy et al. (2018); Ramdas et al. (2015). Although
they rely on a similar concept, this extension allows for broader analysis and interpretation as the
Wasserstein distance is considered instead of the Euclidean one.

Smooth Wasserstein statistic: Ramdas et al. (2015). Consider Z = Rd and suppose the distri-
butions G and H have finite p-moments, for p ∈ [1,∞). The authors introduced a statistic based
on the Wasserstein distance with an additional entropy penalty/regularization as the solution of the
following problem

Tλ = argmin
T∈Un,m

λ 〈T,MXY 〉−E(T ) , (2.1.11)

3See Lehmann and Romano (2005). Local alternatives are defined as a sequence of alternatives tending to the null as
N→ ∞. The rate is such that the limit r.v. is nondegenerate.



36 CHAPTER 2. TWO-SAMPLE PROBLEMS

where λ > 0 and Un,m is defined as the polytope of nonnegative matrices s.t. their row (resp. columns)
equal to 1n/n (resp. 1m/m), 1n being the unit n-dimensional vector. The pairwise distances of X and
Y at power p is MXY = (‖Xi−Y j‖p)i, j≤n,m. The entropy of T is defined as a discrete joint probability
distribution: E(T ) =−∑i, j≤n,m Ti j log(Ti j). In fact, the p-Wasserstein distance between the empirical
distributions is Wp(Ĝn, Ĥm) = minT∈Un,m〈T,MXY 〉. This formulation is strongly convex, hence admits
a unique solution, such that the optimal statistic is dependent on λ and is a diagonal scaling of e−MXY .
This objective function balances both the energy-based and transport-based statistics, by tailoring the
weight of the penalty. The authors do not study classic properties related to the test statistic.

Rank-based statistic with measure transportation: Deb and Sen (2019). The class of statistics
introduced relies on an extension of the ordered rank variables thanks to optimal transport, result-
ing to a population multivariate rank map. Suppose the measures µ, ν are absolutely continuous
w.r.t. the Lebesgue measure in Rd , and consider a pre-specified reference measure Λ. The rank map
is the unique solution of the Monge transportation problem, where this map is the push-forward of
the mixture measure of the two samples to the reference measure Λ. It therefore depends on the
studied hypothesis. As both underlying distributions are unknown, the empirical rank map R̂n,m is
the optimal mapping from the empirical mixture measures (see (2.1.2)) to the chosen Λ. This mul-
tivariate rank map allows for various choices of Λ, such as Gaussian, Uniform in [0,1]d , see Section
D.2 therein for other examples. For instance, it is chosen as the d-dimensional Halton sequence of
same size of the sample. The proposed method relies on using the optimal map as a plug-in variable
for multivariate tests such as Szekely (2003); Székely et al. (2007). In particular, the rank energy
statistic of Eq. (2.1.6) is defined as

RE n,m =
mn

m + n
(

2
nm ∑

i, j≤n,m
‖R̂n,m(Xi)− R̂n,m(Y j)‖

− 1
n2 ∑

i, j≤n
‖R̂n,m(Xi)− R̂n,m(X j)‖−

1
m2 ∑

i, j≤m
‖R̂n,m(Yi)− R̂n,m(Y j)‖) . (2.1.12)

This method yields to exact distribution-free tests i.e. for all sample sizes (Lemma 4.3), explicit
asymptotic distributions under the alternative (Theorem 4.3) and are consistent to fixed alternatives
(Theorem 4.4), as it inherits of the attractive properties of rank statistics. Also, the optimization of
the rank map can be linearly formulated, resulting in a computationally feasible procedure. This
method of multivariate rank map was also extended to the T 2-Hotelling test in Deb et al. (2021).

2.2 Bipartite ranking

Bipartite ranking has gained popularity in the Machine Learning community thanks to its adaptability
to numerous application fields, ranging for instance from information retrieval, recommendation
systems, to biomedical studies. As a particular case of ranking problems, the goal is to learn an
optimal scoring function, such that univariate mapping of the observations obtained by this function
induces an ordering minimizing a statistical loss. Precisely, the observations are considered to have
a binary label, referred to as either ’positive’ or ’negative’, yielding a comparison of each instance
from one class to another. The resulting pairwise loss corresponds to the probability of misranking
pairs of observations by a scoring function, drawn at random from each label. In fact, it is intimately
related to Receiver Operating Characteristic (ROC) analysis as it provides a quality measure on the
class of scoring functions. The bipartite ranking risk is known to be equal to one minus the Area
Under the (ROC) Curve (AUC). This is the direction we chose for the chapter and more generally



2.2. BIPARTITE RANKING 37

for the works gathered in this manuscript. We refer for extensions to multipartite ranking (i.e. when
the number of different labels under study is larger than 3) to the works of Clémençon and Robbiano
(2015); Clémençon et al. (2013b). In this section, the probabilistic framework will be presented with
its intrinsic relation to the ROC analysis. Optimization formulations are next detailed and finally the
state-of-the-art algorithms are reviewed.

2.2.1 Probabilistic formulation

In its generic formulation, consider the input variable Z defined on the probability space (Ω, A , P)
and valued in the input/feature space Z , associated to its binary label ζ valued in {−1, +1}. A
common and fundamental choice for Z is a subset of the Euclidean space Rd , with d ≥ 2. Refor-
mulating the heuristic of ranking leads to the comparison of the variables Z and Z′ of resp. labels
ζ = 1 and ζ ′ = −1. Notice that by considering the posterior probability η(z) = P{ζ = 1 | Z = z},
the problem is completely defined by the couple (F, η), where F(dz) is the marginal of the r.v. Z.
We suppose that the probability of the positive label is p = P{ζ = 1} ∈ (0,1). With this setup at
hand, the goal is to learn the optimal scoring function s from a class of candidates S = {s : Z →
R∪{+∞}, s measurable}, such that it minimizes the bipartite ranking risk defined as follows.

Definition 7. The bipartite ranking risk/error of a scoring function s(z) w.r.t. the distributions of
s(Z′) | {ζ =−1} and s(Z) | {ζ = 1}, associated to the 0−1/binary loss, is defined by:

L(s) = E[I{s(Z′) > s(Z)} | ζ ′ =−1, ζ = 1] +
1
2
P{s(Z′) = s(Z) | ζ ′ =−1, ζ = 1} (2.2.1)

where the tights are broken at random. The optimal scoring function minimizing the risk s∗ is defined
such that L(s∗) = infS L =: L∗.

This definition highlights the importance of the induced order obtained by the image of the ob-
servations by a scoring function, instead of the value of the score itself. The ideal scoring aims to
attribute the higher ranks to the positive labels with high probability. The following Proposition states
that the posterior probability η achives the minimum bipartite ranking error, see Clémençon et al.
(2008).

Proposition 8 (Example 1, Clémençon et al. (2008)). Consider s ∈S and η(z) = P{ζ = 1 | Z = z}.
The bipartite ranking excess of risk of the scoring function s equals to:

L(s)−L∗ = E[|η(Z′)−η(Z)|I{(s(Z)− s(Z′))(η(Z)−η(Z′)) < 0}] , (2.2.2)

where the Bayes risk is defined by L∗ = E[min(η(Z′),η(Z))]−E[η(Z)]2 and the r.v. Z′ and Z are
i.i.d. drawn from F.

In the following paragraph, the statistical risk as defined in (2.2.1) is shown to be intimately
related to ROC analysis as it equals to one minus the corresponding AUC. Precisely, the goal is to
highlight how to measure the quality of a scoring function thanks to the obtained ROC criterion. This
approach has become a traditional modeling for the study of bipartite ranking problems, leading to
maximizing empirical versions of the AUC criterion, see e.g. Agarwal et al. (2005) or Clémençon
et al. (2008). We refer to the Appendix section B.3 for the univariate introduction.

Bipartite ranking optimization and optimal elements via the ROC analysis. The scoring func-
tion can be seen as a natural way of defining a total preorder4 on Z by mapping it with the natural

4A preorder 4 on a set Z is a reflexive and transitive binary relation on Z . It is said to be total, when either z4 z′ or
else z′ 4 z holds true, for all (z,z′) ∈Z 2.
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order on R∪{+∞}. The ability of a given s(z) to discriminate between a ’positive’ and a ’negative’
variables, can be evaluated through the Probability-Probability (P-P) plot defined as the functional
criterion depending on s, namely the ROC curve.

Definition 9 (Definition 4, Clémençon and Vayatis (2009b)). The Receiver Operating Characteristic
(ROC) curve of a scoring function s(z) is the parametric curve:

ROCs : t ∈ R 7→ (1−Hs(t),1−Gs(t)) ,

valued in [0,1]2, where for all t ∈ R,

Gs(t) = P{s(Z)≤ t | ζ = 1}
Hs(t) = P{s(Z)≤ t | ζ =−1} .

The function t 7→ 1−Gs(t) is defined as the True Positive Rate (TPR) while t 7→ 1−Hs(t) is
defined as the False Positive Rate (FPR). Moreover, by the univariate definition Eq. (B.3.2) (see
Appendix section B), the ROC curve can be parametrized as follows

ROC(s, ·) : α ∈ (0,1) 7→ 1−Gs ◦H−1
s (1−α) =: ROCHs,Gs(α) . (2.2.3)

As for the univariate definition, we consider the possible jumps of the curve connected by line seg-
ments at the degenerate points of the functions Gs and Hs, such that the considered ROC curve is
always continuous, see Clémençon and Vayatis (2009b). Inherited by the definition of the bipartite
ranking risk (Eq. (2.2.1)), a good scoring rule s(z) can be interpreted as such that the distribution
Gs is ’as stochastically larger as possible’5 than Hs. It is graphically understood as the more the
ROC(s, ·) curve is close to the point of coordinates (0,1), the better the scorer s(z). Figure 2.1 il-
lustrates how the concept of ROC curve offers a visual tool to examine the differences between two
distributions in a pivotal manner.

a. Probability distributions b. ROC curves

Figure 2.1. Examples of pairs of distributions and their related ROC curves. The distribution H is represented
in blue and three examples of G distributions are in purple, orange and green, like the associated ROC curves.

5Given two distribution functions H(dt) and G(dt) on R∪{+∞}, it is said that G(dt) is stochastically larger than
H(dt) iff for any t ∈ R, we have G(t) ≤ H(t). We then write: H ≤sto G. Classically, a necessary and sufficient condition
for G to be stochastically larger than H is the existence of a coupling (X, Y) of (G,H), i.e. a pair of random variables
defined on the same probability space with first and second marginals equal to H and G respectively, such that X≤Y with
probability one.
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Definition 10. A scoring function is optimal in the sense of the minimization of the bipartite risk
error, denoted by s∗ : Z 7→ R∪{+∞}, if it induces the same order as the function z 7→ η(z), i.e. :

∀(z,z′) ∈Z 2 (η(z) < η(z′) or Ψ(z) < Ψ(z′)) =⇒ s∗(z) < s∗(z′) , (2.2.4)

where Ψ(z) = (p/(1− p))η(z)/(1−η(z)) is the likelihood ratio.

When interpreting the ROC curve as the power graph of the hypothesis test: H0 : ζ = 1 v.s.
H1 : ζ = −1 based on Z, the Neyman-Pearson Lemma (e.g. Lehmann and Romano (2005)) states
that likelihood ratio test Ψ(Z) is the uniformly most powerful test among all the tests based on Z.
The characterization of the set of optimal elements is therefore defined as follows.

Proposition 11 (Proposition 2, Clémençon and Vayatis (2008)). The class of optimal scoring func-
tions is defined as the set:

S ∗ =
{

s ∈S s.t. for all z, z′ in Z : η(z) < η(z′)⇒ s∗(z) < s∗(z′)
}
. (2.2.5)

Consequently, for an optimal scoring function, there exists a strictly increasing map defined by
T : Im(s)→ R, such that s∗ = T ◦η , where Im(s)⊂R is the image set induced by s. A generic form
of the optimal bounded scoring function is obtained in the same article.

Proposition 12 (Proposition 3, Clémençon and Vayatis (2008)). A bounded scoring function s∗ is
optimal iff there exists a nonnegative integrable function w and a continous r.v. V valued in (0,1)
such that, for all t ∈Z :

s∗(t) = inf
Z

s∗+E[w(V )I{η(t) >V}] . (2.2.6)

The function w is related to the scale of the scoring function i.e. to Im(s), while V to the in-
verse of the function T . With these optimality characterizations at hand, and by recalling that the
ROC curve is invariant by any strictly increasing transform, we have that the ROC curve is invariant
for all optimal scoring functions in S ∗. Hence, for all s∗ ∈ S ∗, the optimal ROC curve is equal
to ROC(s∗, ·) = ROC(η , ·) =: ROC∗(·). It is non-decreasing, concave and hence always above
the main diagonal of the unit square. Importantly, the ROC curve induces a partial preorder on the
set of all scoring functions. For all pairs (s1, s2), one can define s2 as more accurate than s1 if
ROC(s1,α) ≤ ROC(s2,α) for all α ∈ [0,1]. We refer to Clémençon and Vayatis (2009b) for addi-
tional basic properties of ROC curves. The sup norm is usually used to measure the distance between
two ROC curves and in particular, of the deviation for a given scoring function s(z) w.r.t. the optimal
one.

d∞(s,s∗) = sup
α∈(0,1)

|ROC(s,α)−ROC∗(α)| . (2.2.7)

We highlight that this distance is measured in the ROC space and not directly between the scoring
functions. However in practice, ROC∗ is unknown and there is no statistical counterpart of the
functional loss (2.2.7). In Clémençon and Vayatis (2009b, 2010), bipartite ranking was shown similar
to a superposition of cost-sensitive classification problems being ’discretized’ through adaptive steps.
This allows for applying empirical risk minimization with statistical guarantees in the d∞-sense, at
the price of an additional bias term inherent to the approximation step. Alternatively, the performance
of a scoring rule s can be measured by means of the L1-norm in the ROC space. Observing that, in
this case, the loss can be decomposed as follows

d1(s,s∗) =
∫ 1

0
|ROC(s,α)−ROC∗(α)|dα =

∫ 1

0
ROC∗(α)dα−

∫ 1

0
ROC(s,α)dα , (2.2.8)

minimizing the L1-distance to the optimal ROC curve boils down to maximizing the area under the
curve ROC(s, .), defined below.
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Definition 13. Let s(z) be a scoring function, the Area Under the ROC Curve (AUC) is defined as:

AUC(s) =
∫ 1

0
ROCHs,Gs(α)dα =: AUCHs,Gs . (2.2.9)

We denote AUC∗ = AUC(s∗), with s∗ ∈S ∗.

In fact, it completely recovers the equation (2.2.1) as follows

AUC(s) = P{s(Z′) < s(Z) | ζ = 1,ζ ′ =−1}+
1
2
P{s(Z′) = s(Z) | ζ = 1,ζ ′ =−1}(2.2.10)

= 1−L(s) . (2.2.11)

The scalar performance criterion AUC(s) defines a total preorder on S and its maximal value
is attained on the set S ∗ of optimal value AUC∗. Hence, when considering the binary loss, the
functional ROC curve, or the AUC as a scalar summary, are goldstandard measures for the quality of
a scoring function s(z) in the context of bipartite ranking.

A statistical formulation. Based on independent random copies {(Zi,ζi)i≤N}, with N ∈ N∗, the
goal of bipartite ranking is to learn how to score any new sample ZN+1, . . . , ZN+k, such that it
minimizes the empirical counterpart of the expected loss function L(s), or equivalently to maximize
the empirical AUC(s). Notice that the new instances can be either ’positive’ or ’negative’ when
assuming no prior knowledge. Indeed, as in practice the distribution of the pair (Z, ζ ) is unknown,
one has only access to random i.i.d. copies. The empirical counterpart of the AUC (equivalently of
the bipartite ranking risk) for a scoring function s is given by

ÂUC(s) =
1

nm ∑
{i, ζi=+1}

∑
{ j, ζ j=−1}

(
I{s(Z j) < s(Zi)}+

1
2
I{s(Z j) = s(Zi)}

)
(2.2.12)

= 1− L̂(s) , (2.2.13)

where n = ∑i≤N I{ζi = +1} and m = ∑i≤N I{ζi =−1}.

Hence, assumptions are necessary to ensure that the estimator converges to the expected criterion
and, in particular, the subject of study is to be able to control the (uniform) fluctuations of L̂(s)−L(s),
when indexed by S . Incidentally, this empirical formulation reveals the difficulty of such model-
ing: the pairwise comparison induces non-i.i.d. sums that do not allow for traditional optimization
tools, e.g., of empirical risk minimization, and takes the form of higher-order statistics such as U-
statistics. Chapter 3 introduces these unbiased statistics. We define U-processes as collections of
such statistics when indexed by the class of scoring functions S . In the following section, computa-
tional approaches for optimizing the objective counterpart (and related) are detailed, particularly for
leveraging pairwise empirical losses.

2.2.2 Optimization and state-of-the-art algorithms

This section briefly introduces extensions of the bipartite ranking risk by choosing the loss function
to find an optimal global scoring element. The associated main algorithms are also presented, par-
ticularly those considered state-of-the-art for ranking problems. Broadly, three main approaches are
proposed for learning the global optimal scoring function, either through (i) plug-in procedures, (ii)
the minimization of the empirical risk or related estimators, or by (iii) transferring solutions of uni-
variate binary classification (BC) or class probability estimation (CPE) models, to bipartite ranking.
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Plug-in methods. The optimal result recalled in Proposition 11 motivates the direct statistical es-
timation of the likelihood ratio/posterior probability. This estimation is used as a scoring rule, see
Devore and Lorentz (1993). For instance, plug-in rules based on partitioning the feature space are
derived in Clémencon and Vayatis (2009), were defined as piecewise constant functions that max-
imize the AUC on each cell in the L1-sense. This direction, however, quickly finds limitations in
general contexts. It often requires a parametrization of the model and could provide estimators that
are not consistent in the L∞-sense. More generally, such approaches can suffer from the curse of
dimensionality due to the possible complex structure of Z , see e.g. Devroye et al. (1996) Section
28.4. The convergence rate has been shown to depend on (and to decrease with) the dimension d, if
Z ⊂ Rd . Hence, possible approaches require sparsity assumptions or stronger assumptions like the
independence of the marginals of the conditional distributions, see e.g. Guedj and Robbiano (2018);
Li et al. (2013).

Minimization of the risk: How to bridge the gap to pairwise classification losses. Most of the
bipartite ranking algorithms model the learning task through pairwise classification. By considering
all the combinations of pairs (Z, Z′), these algorithms are of quadratic complexity. Formally, we
recall the formulation studied in Clémençon et al. (2008) (page 846) that writes the bipartite ranking
risk in its equivalent form

L(s) = P{(ζ −ζ
′)(s(Z)− s(Z′)) < 0} . (2.2.14)

Let a bivariate ranking rule rs : Z ×Z → {−1,1} depending on the scoring function s defined by
the equivalence

rs(z,z′) = 1 iff s(z)≥ s(z′) , (2.2.15)

and supposing the absence of ties or else rs(z,z) = 0. By considering the label ζ̃ = (ζ − ζ ′)/2 for
a given pair (Z,Z′), the bipartite ranking risk can be formulated as a pairwise classification loss
Lr(s) = P{ζ̃ × rs(Z,Z′) < 0}. The optimal ranking error is proved to be

L∗r =
1

2p(1− p)
E[min(η(Z)(1−η(Z′)),η(Z′)(1−η(Z)))] , (2.2.16)

while the excess of risk to

Lr(s)−L∗r = E[|η(Z)−η(Z′)|× I{rs(Z,Z′)× (η(Z)−η(Z′)) < 0}] , (2.2.17)

see Clémençon et al. (2008) for additional results on uniform error bounds and fast rates guarantees.
This construction is at the heart of state-of-the-art algorithms related to learning-to-rank problems,
as will be detailed in the sequel. The basic idea is to treat each of all possible pairs formed as a
single variable. Nevertheless, this is insufficient to reduce the algorithmic complexity as it remains
quadratic in the number of pairs. Algorithmic procedures were proposed to attempt a reduction
in complexity. Ailon and Mohri (2008) proposed algorithmic tricks to reduce the complexity for
pairwise classification loss, from O(N2) to O(N log(N)) (O(k log(N + k)) if top-k� N instances
considered).

Another possibility, largely and implicitly followed in the literature, is using computational tricks
or learning the discriminant function among simple classes, e.g., linear forms. However, when look-
ing at classic methods related to univariate losses, for instance in classification, sate-of-the-art al-
gorithms imply convex surrogate loss functions (e.g. boosting, support vector machines). Apart from
inheriting powerful results from the convex optimization theory, it occurs to be a very useful trick,
circumventing the high complexity of simple problems. Indeed, as argued by Devroye et al. (1996)
Section 4.6, the minimization related to the 0− 1 loss can quickly become NP hard. This typical
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method aims to obtain an objective function admitting at least one minimum and intrinsically accel-
erating the order of convergence; fundamental examples are gathered in Table 2.1.

Loss Formula
binary `(s,z′,z) = I{z′ > z}+(1/2)I{z′ = z}

squared `(s,z′,z) = (1− s(z′)+ s(z))2

logistic `(s,z′,z) = log(1 + es(z′)−s(z))

exponential `(s,z′,z) = es(z′)−s(z)

hinge `(s,z′,z) = max(0,1− (s(z′)− s(z)))

Table 2.1. Bivariate margin losses associated to the bipartite ranking risk.

The classic algorithms applied to bipartite ranking and more broadly to learning-to-rank methods
are based on this approach. For instance, RankBoost (Freund et al. (2003)) is an extension of the
AdaBoost (Freund and Schapire (1997)) leading to a bivariate exponential loss, selecting the weak
ranker corresponding to the largest decrease in the loss function. In Joachims (2006); Rakotoma-
monjy (2004), Support Vector Machines (SVM) are adapted to RankSVM, minimizing the bipartite
risk with surrogate hinge loss. Also, RankNet and LambdaRankNet, introduced by Burges et al.
(2005), are adaptation of Neural Nets (NN) by optimizing the binary cross entropy loss with a modi-
fication of the backpropagation step. See also Narasimhan and Agarwal (2017) for SVM-based al-
gorithm optimizing the partial AUC (defined in Appendix section B). However, these algorithms are
implicitly derived to rely on linear scoring functions, such that rs(z,z′) = fs(z− z′), where fs is a uni-
variate loss function, thus drastically simplifying their implementation. For instance, the complexity
of linear RankSVM with L1-loss reduced the quadratic complexity to at least O(Nñ + N log(N)), with
ñ the average number of non-zero features per observation, plus a loglinear term depending on the
optimization algorithm, see e.g. Joachims (2006). More generally, we refer to Menon and Williamson
(2016) for a comprehensive review on the bipartite ranking problem and all its related formulations.

Optimizing in the ROC space. Another perspective that motivates this manuscript, is inherited
by relation (2.2.11) where the order induced by a given scoring function is analyzed thanks to the
ROC curve. This approach leads to more interpretable versions of the risk, as the AUC sums the
number of pairs for which the positive instances are ranked higher than the negative ones. In this
sense, many alternative loss functions exist, while the aforementioned algorithms aim to minimize a
related version to the empirical AUC. First, a method extending tree-based methods was proposed
by Clémençon and Vayatis (2009b); Clémençon et al. (2011), named TreeRank. Formulated to
maximize the AUC at each step (greedy), it learns an optimal piecewise constant scoring function
by approximating the ROC curve at each step using the ’temporary’ optimal scoring function. In
particular (applied) problems, misranking a ’positive’ instance with a low score do not have the
same interpretation/impact as a high score. In this sense, many works have introduced different cost-
sensitive functions that emphasize the observations with higher ranks. In Järvelin and Kekäläinen
(2000), authors introduced the discounted cumulative gain (DCG) factor, where the loss is weighted
by the scores, whereas Boyd et al. (2012); Clémençon and Vayatis (2007) focused on only to the
best instances, i.e., those falling in the quantile of the whole mapped sample. Rudin (2006) and
later Agarwal (2011) proposed a smooth loss function named p/infinite-norm push, with p > 0, that
flattens the effect of the low ranks by ’pushing’ the ’negative’ instances far from the ’positive’ ones.
It was related to a generalization of RankBoost in those works. Lastly, cost-sensitive functions can
recover the 0−1 loss functions for particular choices of parameters (cost and threshold), as studied
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in Krzanowski and Hand (2009). These alternatives will be detailed in Chapters 5 and 6.

Relating bipartite ranking to univariate binary models. However these two directions, the com-
plexity remains high for pairwise algorithms (of order O(N2)) as the obtained statistics are non-i.i.d.
sums of highly correlated terms. We discuss on a series of works bridging the gap to univariate for-
mulations and, more precisely, by looking into the relation between optimal elements when writing
the bipartite ranking loss as univariate functional. Promising empirical results using binary classifi-
ers as ranking classifiers are obtained, when compared to bipartite ranking rules for state-of-the-art
algorithms. For instance, Rudin and Schapire (2009) compared ranking performances of RankBoost
and AdaBoost, both algorithms were shown to be equivalent, when one chooses the exponential loss,
see Theorem 10. In particular, they proved that if the constant scoring function is included in the set
of the weak learners of AdaBoost, then it converges precisely to the same AUC as RankBoost, un-
der explicit necessary conditions. However, their relation is far from being straightforward. Simple
examples can show that there is not necessarily equivalence between a good bipartite ranking and a
good binary classification in the sense of the minimization of the risk.

These experiments motivated fundamental contributions and formalization relating bipartite rank-
ing models to binary classification (BC) model, learning the binary label, and to class probability
estimation (CPE) model, learning the probability of an observation to belong to a class. The pur-
pose is to explicit the necessary conditions to bound the corresponding losses when transferring one
model to another. In particular, the comparison of their excess of risk allows such transfers, which is
particularly studied in Agarwal (2014); Clémençon and Robbiano (2011); Ertekin and Rudin (2011);
Narasimhan and Agarwal (2013); W. Kotlowski (2011). Figure 2.2 summarizes these results by sup-
plementing the work of Narasimhan and Agarwal (2013). The optimal element/solution of a model
can be used as classifier/scorer for another. It largely democratizes bipartite ranking problems by
drastically reducing their computational difficulty. We qualify a weak (W) model transfer if the map-
ping depends on the underlying probability distribution of the problem, thus implying a data-driven
procedure in practice. On the contrary, strong (S) model transfer asserts that one only needs to
threshold to 0.5. For both types/characterizations, if a statistically consistent estimator is obtained
for one problem then it is for the other one.

Figure 2.2. Equivalence relations for bipartite ranking to binary class probability estimation and to binary
classification. W refers to weak model transfer, S refers to strong model transfer.

First, one obtains a consistent ranking rule with a consistent CPE estimator that approximates the
prior probability η(z), as it incidentally corresponds to a plug-in estimator. This result was formal-
ized in Clémençon and Robbiano (2011), Proposition 4 therein. Then, transferring from BR to CPE
model requires selecting a threshold minimizing the corresponding expected error (depending on the
distribution) or its empirical counterpart (depending on the random sample). Hence, the reciprocal is
relatively straightforward by simply transforming the rank to a probability via introducing a mono-
tone map minimizing the binary CPE error on the sample.
Also, transferring the optimal scorer in the sense of BR for using it as a classifier for a cost-sensitive
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0− 1 loss is proved by Narasimhan and Agarwal (2013), Theorem 6 therein, for which a sketch
of a possible two-stage transfer procedure is proposed, see Remark 7. First, the observations are
ranked/ordered. Then, the threshold that determines if a positive or negative label is attributed to an
instance is learned based on the sample.
Transferring BC to BR has a high impact on a large number of theoretical guarantees and algorithms
that have been established in the literature. An optimal binary classifier w.r.t. the 0− 1 loss cannot
achieve good ranking performance. However, for balanced cost-sensitive losses, its excess of risk
upperbounds the one of the BR model, see W. Kotlowski (2011). Nevertheless, it requires a prior
estimate of P{ζ} i.e. of the distribution of the labels to derive the balanced empirical risk. Fortu-
nately, they also obtained similar results for two classic margin surrogates, such as exponential and
logistic ones. Later, Agarwal (2014) generalized it to strongly proper (composite) losses, see Defin-
ition 7 and characterizations in Section 4. Briefly, this class includes typical examples such as the
ones gathered in Table 2.1 (except for the binary loss), but also to (canonical) spherical and squared
losses.The main theorem of Balcan et al. (2007) proves that, given a binary classification loss, the
obtained bipartite ranking loss (1−AUC) is at most multiplied by 2.

2.2.3 An almost equivalent two-sample formulation

As argued in Section 2.2.1, the problem is completely defined by the knowledge of (F, η), where
in particular, the sample (Z, ζ ) is considered conditioned on the r.v. ζ for the bipartite risk error.
In fact, a two-sample formulation can be equivalently defined w.r.t. the latter risk as follows. Let
G (resp. H) the marginal distribution of Z | {ζ = 1} (resp. Z | {ζ = −1} ) and p = P{ζ = 1}.
The likelihood ratio boils down to Ψ(z) = dG/dH(z) and one can consider the triplet (G, H, p)
to completely define the probabilistic problem. This formulation corresponds to the case where the
labels are deterministic. In this new setting, F is defined as the mixture c.d.f. of the two independent
r.v. X∼ G and Y∼ H, with p being the ’theoretical’ proportion of the Xs among the pooled sample,
yielding to F = pG + (1− p)H. In particular, for a given scoring function s ∈S , the c.d.f. of s(X)
(resp. s(Y)) is defined by Gs (resp. Hs), refer to Definition 9. The expected loss of Definition 7
simply is

L(s) = P{s(X) > s(Y)}+
1
2
P{s(Y) = s(X)}=: 1−AUCHs,Gs(s) . (2.2.18)

As the expected risk written in (2.2.1) is the integral of the risk w.r.t. the conditional law on the
labels, it is equivalent to the two-sample formulation (2.2.18) above. However the equivalence in
expectation, the statistical version needs a precise procedure as follows. Chung and Romano (2013)
introduced a coupling procedure, relating both modelings, in the more general setting of k-samples
permutation statistical tests. Intuitively, the two models are not exactly equivalent as the vector of
instances, say {X1, . . . ,Xn,Y1, . . . ,Ym}, with n,m ∈ N∗ is not invariant by permutation, whereas
{(Z1,ζ1), . . . , (Zn+m,ζn+m)} is. Precisely, the reciprocal formulation relies in the introduction of an
auxiliary independent Bernoulli r.v. of parameter p, that determines at random the labels to attribute.
We adapt it to our framework in Algorithm 2 below.

The output sample of Algorithm 2 does not necessarily contain all the observations from the
initial samples, and the number of ’new’ observations is random. While being practical, theoretical
guarantees are established when applied to permutation tests in Chung and Romano (2013), proving
that the asymptotic distribution of the new sample is asymptotically equal to the pooled sample from
the Xis, Y js, if p−m/N = O(N−1/2).
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Algorithm 2: Coupling Argument: From the two-sample to the binary framework
Data: Independent i.i.d. samples {Xi}i≤n drawn from G and {Y j} j≤m drawn from H.
Input: Theoretical proportion p, Bernoulli r.v. ε of parameter p.
Result: A i.i.d. sample {Z1, . . . ,ZN} of distribution F = pG +(1− p)H.

1 Set i, j = 0,0;
2 Step 1.
3 while i≤ n or j ≤ m do
4 Draw ε ∼B(p) ;
5 if ε = 1 then
6 Set Zi+ j = Xi and i + = 1;
7 else
8 Set Zi+ j = Y j and j + = 1;
9 end

10 end
11 Step 2.
12 if i = n then
13 Do Step 1: if ε = 1 sample from G until i + j = N;
14 end
15 else if j = m then
16 Do Step 1: if ε = 0 sample from H until i + j = N;
17 end
18 Reorder the constructed sample by merging X1, . . . ,Xi,Y1, . . . ,Y j with the sample at Step 2.

A statistical approach to the two-sample loss function. Define n = bpNc and m = N− p, s.t.
n/N → p ∈ (0,1), when N → +∞. The statistical version of the AUC can be estimated on the
independent i.i.d. two samples {X1, . . . ,Xn} and {Y1, . . . ,Ym}, resp. drawn from G and H. First,
define the empirical c.d.f. by Ĝs,n(t) = (1/n)∑

n
i=1 I{s(Xi)≤ t}, Ĥs,m(t) = (1/m)∑

m
j=1 I{s(Y j)≤ t},

the empirical mixture distribution is incidentally

F̂s,N(t) = (n/N)Ĝs,n(t)+(m/N)Ĥs,m(t) . (2.2.19)

Hence, the empirical AUC based on these samples yields

AUCĤm,Ĝn
(s) =

1
nm

n

∑
i=1

m

∑
j=1

(
I{s(Yj) < s(Xi)}+

1
2
I{s(Yj) = s(Xi)}

)
. (2.2.20)

This two-sample formulation will be studied at length throughout the manuscript (from Chap. 5
until 9), and we will show how the proposed generalization of R-statistics are scalar summaries of
the ROC curve, just like the AUC(s) (2.2.20) as a particular case.

2.3 Anomaly ranking

This section introduces methods addressing the problem of detecting and ranking anomalies, known
as anomaly ranking. While detecting anomalies has longstanding literature, ranking them is still a
question at its early stage, and in particular if it is by means of ranking-based methods. Briefly,
anomaly detection aims to identify from a set of observations, the ones that are qualified as abnor-
mal, outliers, novelties, i.e., that often correspond to rare occurrences. It is of particular interest in
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applied fields such as in fraud and fault detection, network intrusion, monitoring systems in various
organizations (health care for instance), and more generally for data processing purposes. Therefore,
there is a plethora of articles, reviews, characterizations on such techniques, that can depend on the
field of application. The following paragraphs provide an insight into particular concepts and aim
to motivate the use of ranking methods, as proposed in Chap. 8. However, we do not provide a
comprehensive review on anomaly detection methods as it goes beyond the scope of the manuscript.
Frameworks range from supervised to semi/un-supervised, depending on whether both ’normal’ and
’abnormal’ data can be labeled. By definition, the major difficulty of detecting anomalies is based on
their intrinsic structure: they represent only a very small proportion of the overall dataset, and hence
are very sparse in the ambient space. This leads to highly imbalanced samples, for which learning a
detector can naturally imply statistical bias or overfitting, or both, regardless of the approach. From
now on, we place ourselves in point outlier detection, built to detect instances that are ’abnormal’
with respect to the rest of the dataset.

Anomaly detection methods. The first statistical models considered that the underlying probab-
ility law of the ’normal’ sample was known, usually set to Gaussian or Uniform if parametric, and
defined anomalous the instances taking values ’far’ from the distribution, i.e. greater than a threshold
or lying in a quantile of fixed order. In other words, it aimed to determine how well the suspicious
observations fitted the distribution. While being very natural, a major drawback is that this definition
remains quite restrictive when facing high-dimensional real samples having unknown structure, refer
for instance to the classic book of Barnett and Lewis (1994). In the late 90s, a great deal of approaches
were inherited by data mining motivations, yielding to ’model-free’ procedures. In particular, these
relied on clustering models, where the abnormal instances are defined as those falling outside from
the data-driven clusters, see e.g. Agrawal et al. (1998); Ester et al. (1996); Hinneburg and Keim
(1998); Ng and Han (1994). Unfortunately, these methods are dependent on the method/algorithm
and on the parameters of the clusters. Also, they yield to a binary notion of abnormality. Notice also
that these algorithms aim to optimize the clusters, while ignoring the possible anomalies, whereas
here the objective is to optimize the detection of anomalies.

Later, density-based approaches and algorithms refined the notion of abnormality that lead to ’or-
dering’ the anomalies through either (i) a local characterization, supposing the ’outlier’ to be within
the global range but far from its neighbors; or (ii) a global one, where the ’outlier’ is ’far’ from the
overall range. For the former, we refer to the recent review of Alghushairy et al. (2021) gathering
such local methods for anomaly detection. In particular, Breunig et al. (2000) introduced the Local
Outlier Factor (LOF) as degree of abnormality for each instance. Also, Wang et al. (2018) extended
this notion through the Connectivity-based Outlier Factor (COF). Lastly, interesting algorithms lead
for instance to: (i) peeling methods such as the Isolation Forest Liu et al. (2008), (ii) classification
methods, see Bergman and Hoshen (2020) for semi-supervised modeling, Schölkopf et al. (1999)
for one-class SVM, Steinwart et al. (2005) for plug-in techniques to binary classification unsuper-
vised learning based on the estimation of the density level sets and using SVM. Ultimately, popular
methods either model the anomaly detection problem as a one-class learning, or via two (highly)
imbalanced domains/classes.

Anomaly ranking methods. We review anomaly ranking models rely on ranking-based learning
techniques. Usually, the proposed methods are twofold: first an algorithm is performed to predict
a nonbinary label for the studied sample, then a ranking criterion is used to order them by degree
of abnormality. This can provide a way of interpreting these anomalies depending on the field of
application. For instance, Dang et al. (2013) introduced a technique based on local dimensionality
reduction via spatial projections. Müller et al. (2012) proposed a subspace clustering method such
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that the ranking of the anomalies are fed by the multiple views through the subspaces. Also Müller
et al. (2013) adapted to graph-based structures where the method ranks the nodes by they degree of
deviation.

It is only recently, with the enthusiasm regarding the results of learning-to-rank algorithms and
the gain in popularity of the ROC curves/analysis, that ranking methods are applied to anomaly
detection, incidentally yielding to an intrinsic ordering of anomalies. This approach finds interest
especially in industrial applications, where the ability to rank operations by degree of abnormality
and prioritizing them can be highly time-consuming. Their motivations are twofold as they allow
for: (i) nonparametric methods with possible high-dimensional complex data structure, (ii) explicit
degree of abnormality through the concept of ranks. Hence, this approach provides a nonbinary
inlier/outlier global characterization of the observations. In this sense, this category of methods are
of particular interest for semi/un-supervised problems.

First, the bipartite ranking approach provides a very interesting framework for detecting the ab-
normal instances. Indeed, one can formulate this as building a scoring function s : Z →]−∞,∞],
such that a good/optimal one induces an ordering outlying a quality on Z : the smaller the score is,
the more probable the observation is anomalous and the lower its rank is. We briefly describe articles
proposing different objective functions.

A simple application of ranking algorithms as described in the previous section, showed how to
empirically interpret learned scores with pairwise loss functions in the context of bipartite ranking,
see Carvalho et al. (2008). Following the classic ranking measures, a series of articles adapted
learning-to-rank algorithms to anomaly ranking purposes. For instance, Frery et al. (2017) formulates
the supervised anomaly ranking problem as to maximize the True Positive Rate among the top ranked
instances, also known as average precision rate. It is an alternative approach to that of differentiating
between normal and abnormal instances, for which the learning algorithm is based on stochastic
gradient boosting optimization. Extensions have been studied, such as Lamba and Akoglu (2019) for
online anomaly ranking model.

A closely related notion is inherited by the works of Einmahl and Mason (1992); Polonik (1997)
that developed the concept of minimum volume set, defining the threshold to split the spatial regions
wherein a multivariate random variable Z of distribution F valued in the measurable space Z ⊂ Rd ,
with d ≥ 1, takes values with low or high probability. The idea is to define the quality of a sample,
through its sparsity (e.g. its spread) in the feature space. This probability level is fixed and defines
the threshold for considering a region as abnormal. The aim is to find the optimal set Ω∗(α) of mass
at least α ∈ (0,1) such that

min
Ω⊂Z

λ (Ω) s.t. P{Z ∈Ω} ≥ α , (2.3.1)

where λ is the Lebesgue measure on Z and Ω measurable subset of Z . In fact, Mass Volume (MV)
curves extend this definition by plotting all the possible thresholds in (0,1) as a Probability-Measure
plot, when redefining the problem w.r.t. the class of scoring functions as follows.

Definition 14 (Definition 2, Clémençon and Jakubowicz (2013)). Let a class of scoring functions
S = {s : Z →R ∪ {+∞}, s measurable}. The Mass Volume (MV) curve of a scoring function s is
the parametric curve:

MVs : t ∈ R 7→ (1−Fs(t),1−λs(t)) ,

valued in [0,1]2, where for all t ∈ R,

Fs(t) = P{s(Z)≤ t}
λs(t) = λ ({z ∈Z , s(z)≤ t}) .
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The problem is to find the optimal function s∗ such that at fixed level α , Ωs = {z ∈Z , s(z)≥ t}
is solution of (2.3.1) over the class of scoring functions, for which the optimal elements are shown to
satisfy the following result.

Proposition 15 (Proposition 3, Clémençon and Jakubowicz (2013)). Let Z absolute continuous of
bounded d.f. f (z), such that f has no flat parts a.e. The class of optimal scoring functions is defined
as the set:

S ∗ =
{

s ∈S s.t. for all z, z′ in Z : f (z) < f (z′)⇒ s∗(z) < s∗(z′)
}
. (2.3.2)

And for all s∗ ∈S ∗, the optimal MV curve satisfies:

MV∗(α)≤MVs(α), ∀α ∈ (0,1) , (2.3.3)

where in particular MV∗ = MVf.

In particular, by mimicking the density function f , an optimal scoring function thus induces an
ordering for the observations depending on their quality: the smaller the score of an observation is,
the more probable it is anomalous. Therefore the MV curve is a functional criterion for measuring
the quality of a scoring function in the sense of the minimization of the mass volume set of (2.3.1),
for all fixed levels α , as illustrated in Fig. 2.3.

a. Probability distributions b. Corresponding MVf curves

Figure 2.3. Examples of distributions and their related MV curves.

This approach leads to a series of works, with in-depth theoretical analysis, formulated at first as
unsupervised one-class framework (see Clémençon and Jakubowicz (2013)) and related to statistical
analysis of extreme regions (see Goix et al. (2015); Thomas et al. (2017)), resulting to its generic
formulation in Clémençon and Thomas (2018); Thomas et al. (2017). The generalization perform-
ance of the optimal elements are derived at length as well as the estimation of confidence region,
accompanied with a smooth consistent bootstrap procedure. In addition, one can notice its intimate
relation to ROC analysis, and in particular in supervised frameworks, see Clémençon and Robbiano
(2014).

Lastly, neighbor ranking approaches are developed, aiming to estimate a local outlier rank-based
criterion, that learns to rank the instances w.r.t. its proximity degree to its neighbors, see for instance
Huang et al. (2013) for a Rank based Detecting Algorithm (RBDA), but also Bhattacharya et al.
(2015); Huang et al. (2011); Qian et al. (2014). Finally, Perini et al. (2020) introduced a ranking
method to measure the robustness of anomaly detection measures.



3 | Some Concentration Results

Abstract. This chapter outlines fundamental concepts at the crossroads of probab-
ility theory in Banach spaces and mathematical statistics, particularly for the (non)-
asymptotic analysis of semi/non-parametric models. As foreshadowed in the previous
chapter, while constructing a risk functional for a given model can be natural, choosing
the best class of functions over which to optimize the loss, or at least the one having
good properties, is of great difficulty. Indeed, in practice, the algorithm should output
an empirical solution that converges to the oracle to minimize the risk among a class
of test functions. This chapter provides probabilistic tools that allow for nonasymptotic
concentration bounds, of mainly exponential form, to analyze the fluctuations of the em-
pirical measure w.r.t. the true one. In particular, good properties of a possibly infinite
class of functions will be detailed, and referred to as its complexity. More generally,
if uniform deviation bounds are proved, it is possible to control the excess of risk of
the chosen model, and generalization guarantees for the empirical solution are obtained.
While motivating these results with the Empirical Risk Minimization (ERM) theory,
such (uniform) inequalities will be recalled, especially when it is possible to quantify
the complexity (e.g. entropy measures, combinatorial counting, etc.) of the class of func-
tions on which it is indexed. In the last part, similar results for higher-order statistics,
known as U-statistics, will be adapted to the current setting of the manuscript. Incident-
ally, fundamental decomposition techniques leveraging these statistics will be detailed.
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3.1 Motivation: an introduction to Empirical Risk Minimization

Learning theory “is posed as a problem of function estimation” with either local or global solutions,
as introduced by Vapnik (1992). This chapter details results on global solutions through the clas-
sic framework of Empirical Risk Minimization (ERM) as a particular formulation of M-estimation,
which are key for understanding the analysis of infinite collections of R-statistics. When based
on random samples of independent observations, we provide results for controlling the nonasymp-
totic efficiency of non/semi-parametric models, thanks to concentration inequalities. These establish
bounds on the fluctuations of functionals of independent random variables around their expecta-
tion/mean. Also, they generalize confidence bounds and establish relations between the intrinsic
parameters to the model and the size of the samples.

3.1.1 Problem formulation

Consider two input/output r.v. (Z, ζ ), defined on the probability space (Ω, A , P) and taking their
values in a measurable space Z ×Ξ, where the probability distribution P is unknown. A learning
algorithm aims to estimate the dependence relation between the input and output variables that is
modeled by a function f : Z → Ξ of a class F . The risk/error committed is quantified by means of
a loss function, say ` : Ξ×Ξ→R, averaged w.r.t. the underlying distribution defined as the functional

R`( f ) = E[`( f (Z), ζ )] , (3.1.1)

for all f ∈F . The optimal function f ∗ is defined as the minimizer of the risk such that R`( f ∗) =
inf f∈F R`( f ) =: R∗` .

Example 16. (BINARY CLASSIFICATION) One of the most studied models is the binary classifica-
tion, aiming to learn the classifier f that labels the observations by 0 or 1 (or equivalently by −1
or +1). For instance, when associated to the binary loss (or known as the 0− 1 loss), defined as
`01 : (x,y) ∈Z ×{0,1} = I{ f (x) 6= y} ∈ {0,1}, the expected risk corresponds to the probability of
mislabeling an observation given a function f . It equals to R01( f ) = P{ f (Z) 6= ζ} and is minimized
by the classifier f ∗(z) = I{η(z) > 1/2}, based on the posterior probability η(z) = P{ζ = 1 | Z = z}.

Solving this optimization problem requires the knowledge of P, leading to considering its empir-
ical counterpart instead. Suppose a random sequence (Z1, ζ1), . . . ,(ZN , ζN) is observed, of N ∈ N∗
independent copies drawn from P. Therefore, the associated empirical minimizer of the expected
risk is defined by
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f̂N ∈ argmin
f∈F

R̂`
N( f ) = argmin

f∈F

1
N

N

∑
i=1

`( f (Zi), ζi) . (3.1.2)

The definition of the expected risk and all the more of its empirical counterpart highlight the import-
ance of the choice of F w.r.t. the law P. Indeed, the whole class F , that includes the oracle function
f ∗ if it exists, is unknown in practice and usually a subset in considered, say F0 ⊂F (in the sense
that F is the universe/perfect knowledge). One can only hope that f ∗ yields or can be approximated
in the chosen subclass. Based on the statistical sample, the quality of a predictor f can be defined via
its performance measure through the excess of risk

E`( f ) = R`( f )−R`( f ∗) . (3.1.3)

However, in the most generic formulation, one can consider the minimizer h∗F0
on the chosen subclass

such that the decomposition holds

E`( f̂N) = R`( f̂N)−R`(h∗F0
)︸ ︷︷ ︸

estimation error

+R`(h∗F0
)−R`( f ∗)︸ ︷︷ ︸

approximation error

. (3.1.4)

In fact, the estimation error can be upperbounded as follows, revealing the deviation of the empirical
risk w.r.t. its mean that need to be controlled and analyzed.

Lemma 17. Let F0 ⊂ F . The estimation error related to the loss function ` and based on the
random i.i.d. sample (Z1, ζ1), . . . ,(ZN , ζN) is bounded by:

E`( f̂N)≤ 2 sup
f∈F0

|R`( f )− R̂`
N( f ) |+R`(h∗F0

)−R`( f ∗) . (3.1.5)

PROOF.

R`( f̂N)−R`( f ∗) = R`( f̂N)− R̂`
N( f̂N)+ R̂`

N( f̂N)− R̂`
N( f ∗)+ R̂`

N( f ∗)−R`( f ∗)

≤ 2 sup
f∈F0

|R`( f )− R̂`
N( f ) |

�

Lemma 17 highlights that the suboptimality of f̂N , in the sense of the excess of risk, is controlled
by the uniform fluctuations of (R`− R̂`

N) over the possible infinite class F0. Secondly, it bounds
the error when estimating the expected risk R`( f̂N) by its statistical version R̂`

N( f̂N). The following
example illustrates a model where it is straightforward to bound the expected risk of the empirical
estimator, under very restrictive assumptions.

Example 18. (BINARY CLASSIFICATION) Considering Ex. (16), if both distributions of the obser-
vations conditionally on the labels are separable for an element of F0 and F0 is supposed finite,
then, one can show by the union bound that, for all ε > 0:

P{R01( f̂N) > ε} ≤ |F0|e−Nε ,

where f̂N is the empirical minimizer of the empirical risk defined in Eq. (3.1.2).

In the following, for a fixed loss function `, the collection of estimators (R`− R̂`
N) indexed by

the class of functions F0, is defined as an empirical process. Precisely, when its uniform bound
over F0 is measurable, we aim to control its fluctuations at a fixed level of probability, depending
on the complexity of the class F0. In order to obtain these type of results, we will first walk trough
concentration tail bounds for a fixed test function f , that are key to extend to the uniform norm over
the whole class F0.
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3.1.2 First concentration inequalities

In this section, mathematical tools are recalled as to bound in probability the fluctuation of (R`−R̂`
N)

for fixed loss ` and test f functions, depending on the sample size N. The first stated concentration
inequality is from Hoeffding, considered the most elegant and simple way to control the sums of
bounded random variables, with the only assumption of their mutual independence. Of course, re-
fined inequalities can incorporate information on the moments of the r.v., such as Bennett’s (see
Bennett (1962)) and Bernstein’s (see Bernstein (1946)) inequalities.

Theorem 19 (Hoeffding tail inequality, Hoeffding (1963)). Let X1, . . . ,XN , a sequence of N ∈ N∗
independent r.v., s.t. ai ≤ Xi ≤ bi a.s., with (ai,bi) ∈ R2, for all i≤ N. Then, for all t > 0,

P

{∣∣∣∣∣ N

∑
i=1

(Xi−E[Xi])

∣∣∣∣∣≥ t

}
≤ 2e−2t2/∑

N
i=1(bi−ai)

2
. (3.1.6)

To better understand what it encompasses, define δ = 2e−2t2/∑
N
i=1(bi−ai)

2
. Then with probability

at least 1− δ , it is possible to control almost surely the deviation of the sample mean w.r.t. its
expectation by inverting Eq. (3.1.6) as follows

1
N

∣∣∣∣∣ N

∑
i=1

(Xi−E[Xi])

∣∣∣∣∣≤
√

N

∑
i=1

(bi−ai)2 log(2/δ )

2N2 . (3.1.7)

This bound expresses the importance of the spread effect for obtaining a good estimation of the
expectation. It also provides an explicit bound, independent on the distribution of the sample, for
which it is possible to exactly determine the sample size N required for the probabilistic control of
the empirical bias.

Example 20. (BINARY CLASSIFICATION) Considering the binary loss, and choosing Xi = I{g(Zi) 6=
ζi}, yields with probability at least 1−δ∣∣∣∣∣ 1

N

N

∑
i=1

(Xi−E[Xi])

∣∣∣∣∣≤
√

log(2/δ )

2N
. (3.1.8)

The tail bound à la PAC is of order OP(N−1/2) that is classic for empirical estimators and processes,
as will be shown is this manuscript.

In fact, Theorem 19 is a simple consequence of the following Hoeffding’s inequality recalled be-
low in Lemma 21, combined with Chernoff’s bound illustrated in the subsequent proof, see Chernoff
(1952). It is used in particular for the result Lemma 16 in Clémençon et al. (2021), proved in Chapter
4, Lemma 45 therein.

Lemma 21 (Hoeffding inequality, Hoeffding (1963)). Let X a random variable s.t. E[X ] = 0 and
a≤ X ≤ b, a,b ∈ R. Then, for all s > 0

E[esX ]≤ es2(b−a)2/8 . (3.1.9)

PROOF. Let t > 0, λ > 0 and consider the centered r.v. Z = ∑
N
i=1 Xi−∑

N
i=1E[Xi], with N ∈N∗. Then,

using sequentially Chernoff’s bound, Hoeffding’s Lemma and the independence of the Xis, one has
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P{Z ≥ t} = P
{

eλZ ≥ eλ t
}

≤ e−λ tE[eλZ]

≤ e−λ t
∏
i≤N

E[eλ (Xi−E[Xi])]

≤ exp

{
−λ t + λ

2t2
N

∑
i=1

(bi−ai)
2/8

}

≤ inf
λ>0

exp

{
−λ t + λ

2t2
N

∑
i=1

(bi−ai)
2/8

}
.

The bound is obtained with the optimal parameter λ ∗ = 4t/∑
N
i=1(bi−ai)

2. �

Since these results, improvements for exponential bounds have been obtained for independent
functions of random variables, first thanks to martingales methods (see McDiarmid (1989, 1998)),
then to information-theoretic methods (see Ledoux (2001), Chapter 6) and also to induction methods
(see Talagrand (1996a, 1995, 1996b)). We refer to Boucheron et al. (2005) for a thorough study
of these methods and applications. Nevertheless, we present McDiarmid’s bounded difference in-
equality for its great adaptability to statistics and processes that will be used in the proofs of Chapter
5.

Definition 22. Let X a set and f : X N → R a measurable function of N variables. The function f
satisfies the bounded difference inequality, if for the real constants c1, . . . ,cN and for all i ≤ N, we
have

sup
x1,...,xN ,x′i∈X

| f (x1, . . . ,xN)− f (x1, . . . ,x′i, . . . ,xN)| ≤ ci . (3.1.10)

Given such a function f , McDiarmid proved the following exponential tail bound, see McDiarmid
(1989, 1998).

Lemma 23 (McDiarmid bounded difference inequality, McDiarmid (1989, 1998)). Let
X1, . . . ,XN a sequence of independent r.v. valued in X . Consider a function f satisfying the bounded
difference inequality, with constants c1, . . . ,cN ∈ R. Define Z = f (X1, . . . ,XN), then for all t > 0

P{|Z−E[Z]| ≥ t} ≤ 2e−2t2/C , (3.1.11)

where C = ∑
N
i=1 c2

i .

These fundamental concentration tools are essential to understanding the quantification of the
quality of an estimator when analyzing its fluctuations w.r.t. its mean. But also, it is necessary as
to analyze its uniform fluctuations over possibly infinite classes of functions. The following section
develops techniques for this last point.

3.2 Empirical processes

This section focuses on constructing concentration inequalities for uniform bounds of empirical pro-
cesses, i.e. , for collections of statistics indexed by infinite classes of functions. Typically, it is of
particular interest in ERM as it allows for bounding in probability the fluctuations of

sup
f∈F
|R`( f )− R̂`

N( f ) | .
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Two key concepts for measuring the complexity of functional classes are presented: the uniform
covering numbers and the Vapnik-Chervonenkis (VC)-dimension. Historically, the former was in-
troduced by A. Kolmogorov in the 1950s, in the context of new metric approaches for mathematical
analysis with the development of covering numbers, entropy metrics, etc. Whereas the latter results
from combinatorial theory, proposed by Vapnik and Chervonenkis (2015) (in fact in 1968). This new
method defined the complexity of collections of subsets. It led to a characterization of the complex-
ity of an infinite class of functions when associated with the Empirical Process theory. In fact, both
characterizations are intimately related. In particular, these notions are essential to the control of
uniform deviations of such processes called uniform generalization bounds. Notice that recently, the
works of Bartlett and Mendelson (2003); Koltchinskii and Panchenko (2000) provided fundamental
advances, which introduced a Gaussian complexity to the continuous models named Rademacher
complexity. It allows for an alternative concept for measuring the risk associated with infinite classes
of functions.However, this manuscript only considers combinatorial and entropy approaches.

Notation. Throughout this section, F is a class of measurable functions f : X → R, ‖µ‖F =
sup f∈F |µ( f )| the sup norm of F w.r.t. a measure µ of (Ω,A ,P).

3.2.1 Measuring the complexity of classes of functions

Given a sequence of i.i.d. r.v. X1, . . . ,XN , with N ∈ N∗, defined on (Ω,A ,P) and valued in X , the
empirical measure µN based on the sample is classically defined by

µN(A) =
1
N

N

∑
i=1

δi(A) , (3.2.1)

where δi(A) = I{Xi ∈ A}, for all A ∈ A . From a statistical point of view, the empirical measure is
the average of observations from a fixed sample that are valued in A. We first consider the uniform
deviations of the empirical measure w.r.t. its expectation µ(A) = P{X ∈ A}, by

ZN = sup
A∈A
|µN(A)−µ(A)| . (3.2.2)

We say that A is a uniform Glivenko-Cantelli class, if limN→∞E[ZN ] = 0. It follows that the map
induced by µN on F is simply

f 7→ µN f =
∫

X
f (x)µN(dx) . (3.2.3)

Under appropriate assumptions and for a fixed f , fundamental asymptotic/convergence properties
can be applied to empirical processes, for instance, thanks to the law of large numbers and the central
limit theorem, see the works Donsker (1952); Dudley (1999) and for a book reference Shorack and
Wellner (2009) (initially published in 1986). We define below the centered and normalized empirical
process related to the map (3.2.3).

Definition 24. The centered and normalized empirical process indexed by F , based on the i.i.d.
sample {X1, . . . ,XN}, with N ∈ N∗, is defined by the mapping:

f ∈F 7→ 1√
N

N

∑
i=1

( f (Xi)−E[ f (X)]) . (3.2.4)

Example 25. (KOLMOGOROV-SMIRNOV TESTS.) The statistics used for the Kolmogorov-Smirnov
tests: either (1/

√
n)(µN−µ) or

√
nm/
√

n + m(µn−νm), N = n+m, are empirical processes defined
on the class of sets of the intervals of R, i.e. ]−∞,a], a < ∞. They are related resp. to goodness-of-fit
and to two-sample univariate testing.
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Complexity of classes. In this manuscript and more generally in empirical process theory, we are
interested in finding/defining a good class F , so that such properties of uniform convergence over
the whole class still hold. In particular, being able to characterize the complexity of a measurable
function class w.r.t. empirical measure µN is a central point of this theory. The seminal example
of classes composed of half-spaces of R (see Ex. 25) yields the empirical process related to the
empirical distribution of X . Therefore, to extend these convergence properties over the whole class
F , we first present a natural way of measuring its complexity using the entropy numbers.

Definition 26. Let ε > 0. The ε-entropy of a subset of normed space (F ,‖ · ‖), is the logarithm of
the minimal number of balls of size ε i.e. {g, ‖g− f‖ ≤ ε}, depending on the norm, to cover the
whole class F . The ε-covering number is defined by N(F ,‖ ·‖,ε) and the uniform entropy numbers
as:

sup
f∈F

logN(F ,‖ · ‖,εLF ) ,

with LF = ‖F‖ where F is the envelope function satisfying: ∀x ∈X , ∀ f ∈F , | f (x)| ≤ F(x).

Notice, that usually F is a subset of Lp, with p ≥ 1, w.r.t. a measure Q. Also, although the
sequence of center functions need not belong to the class, they necessarily have a finite norm. Al-
ternatively, the theory developed in Vapnik and Chervonenkis (2015) proposes a characterization
of these types of classes and, in particular, of their complexity through a notion of combinatorial
size/dimension.

Definition 27. Let a collection B of subsets of a set Ω. A set A ∈ Ω is said to be shattered by B, if
the cardinality of A∩B = {B ∈B,A∩B} equals to 2card(A) i.e. if it picks out all the elements of A.
The VC-index of B is the smallest n ∈ N for which no set of size/cardinality n is shattered by B.

For instance, by considering a n-sample {x1, . . . ,xn}, B shatters the n-tuple if each of the 2n

subsets i.e. expressed as B∩{x1, . . . ,xn}, with B ∈B, can be picked. In particular, if the VC-index,
V > 0, is finite then B is a VC-class of sets and Sauer’s Lemma (see van der Vaart and Wellner
(1996), Chapter 2.6) stated that the maximal number of subsets of a n-tuple picked out by a VC-
class B, is upperbounded by ∑i≤V

(n
i

)
. Hence, a class of sets picks out no more than 2n, for V ≤ n.

The following definition extends this combinatorial approach to classes of measurable functions by
considering their subgraphs.

Definition 28. Let F a class of measurable functions f : X → R, the subgraph of f is the subset
of X ×R defined by {(x, t) ∈X ×R, f (x) > t}. If the class F is characterized by one of the two
definitions below, it has finite VC-dimension V .

1. F is a VC-subgraph class (or VC-class) if the collection of all subgraphs of the functions of
F forms a VC-class of sets (in X ×R).

2. F is a VC-major class if the sets {x : f (x) > t}, with f , t ranging in F ×R.

Example 29. (BINARY CLASSIFICATION) If the collection of classifiers F are binary i.e. valued
in {0,1} (see Ex. 16), then the class of subsets of a n-sample of observations picked out by F , is
included in {0,1}n. Hence, if the VC-dimension V of F is finite, it is possible to shatter at most a
sample of cardinality 2V .

The two concepts defined in 26 and 28 are to some extent intrinsically related, where for a
given class, the uniform bound overall measures of its covering number can be upperbounded by a
polynomial of the radius decreasing with V . In this line, the following characterization is considered
for a general definition of bounded VC-type classes.
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Definition 30. A class F of real-valued functions defined on a measurable space X is a bounded
VC-type class with parameters (A,V )∈ (0, +∞)2 and constant envelope LF > 0 if for all ε ∈ (0,1):

sup
Q

N(F ,L2(Q),εLF )≤
(

A
ε

)V

, (3.2.5)

where the supremum is taken over all probability measures Q on X and the smallest number of
L2(Q)-balls of radius less than ε required to cover class F (i.e. covering number) is meant by
N(F ,L2(Q),ε) and LF is the L2-norm of the envelope function of the class F .

Lastly, if F is a bounded VC-class with VC-dimension V < +∞, the Eq. (3.2.5) is fulfilled with
V = 2(V −1) and A = (cV (16e)V )1/(2(V−1)), where c is a universal constant, see e.g. Theorem 2.6.7
in van der Vaart and Wellner (1996).

Permanence properties. In van der Vaart and Wellner (1996), Chapter 2.6 gathers many typical
examples of such classes. However, simple operations can extend those characterizations, guaranteed
by permanence properties and gathered in Lemma 31 below.

Lemma 31 (Permanence properties, Lemmas 2.6.17-18, van der Vaart and Wellner (1996)). Let F
and G two VC-classes of functions on a set X , g : X →R, φ : R→R monotone, then the following
classes are VC-subgraphs:

(i) F + g = { f + g, ∀ f ∈F}

(ii) F ·g = { f g, ∀ f ∈F}

(iii) φ ◦F

Also, if a collection of sets B is VC-class, then the collection of indicators of sets in B is a VC-class
of same index.

Example 32. By considering G a class of functions g : Z ⊂ Rd →X ⊂ R, with d ≥ 1, the class of
indicator functions F = {x 7→ I{g(x)≥ 0}, g ∈ G } has a VC-dimension V ≤ d.

3.2.2 Uniform generalization bounds

This section briefly recalls classical contributions on exponential tail bounds for the uniform devi-
ation between the empirical distribution and the true distribution function, starting with Dvoretzky-
Kiefer-Wolfowitz inequality, see Dvoretzky et al. (1956).

Theorem 33 (Dvoretzky-Kiefer-Wolfowitz inequality, Dvoretzky et al. (1956)). Consider X ⊂ R.
Let F be the class indicator functions F = { f : x ∈X 7→ I{x ≤ t}, t ∈ R}, let {X1, . . . ,XN} a n-
sample drawn from F and of empirical distribution FN valued in X . Then, there exists a universal
constant C, such that:

P
{√

N‖µN−µ‖∞ ≥ t
}
≤Ce−2t2

.

Later, Massart (1990) proved that the universal constant could be chosen equal to C = 2. Also,
when considering broader classes of functions, Talagrand (1994, 1996b) presented significant devel-
opments of exponential tail bounds for the empirical measure, where F is of VC-type.
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Theorem 34 (Talagrand inequality, Talagrand (1994)). Let F a VC-type class of measurable func-
tions defined on X and of constants (A,V ). Suppose E[sup f∈F (1/N)∑i≤N f 2(Xi)]≤ v and
sup f∈F ‖ f‖∞ ≤U, with v, U < ∞. Then there exists a universal constant K > 0, s.t. for all t > 0:

P{|‖µN‖F −E[‖µN‖F ]| ≥ t} ≤ K exp
{
− Nt

KU
log
(

1 +
tU
v

)}
.

Later, Giné and Guillou (2002) proposed a bound for the expectation of the uniform empirical
measure, s.t. if combined with Talagrand’s, a sharp exponential bound is obtained that will be used
in some proofs of Chapter 5.

Theorem 35 (Giné and Guillou (2002)). Let F a VC-type class of measurable functions defined on
X , and of constants (A,V ). Suppose E[sup f∈F (1/N)∑i≤N f 2(Xi)]≤ v and sup f∈F ‖ f‖∞ ≤U, with
v, U < ∞. Then:

P{‖µN−µ‖F ≥ t} ≤ K exp

{
− Nt

KU
log

(
1 +

tU

K(
√

Nσ +U
√

log(AU/σ))2

)}
,

as soon as

t ≥ C
N

(
U log(

AU
σ

)+
√

Nσ

√
log(

AU
σ

)

)
.

3.3 U-processes

In the previous sections, the studied collections of statistics had the form of i.i.d.-sums of r.v.. This
section extends those results to estimators taking the form of U-statistics, for which the theory goes
back to the fundamental works of Halmos (1946) and Hoeffding (1948). As classic examples of
high order statistics, the U-statistics are of particular interest as they encompass many nonparamet-
ric statistics. After introducing two forms of U-statistics, , we recall concentration results on their
collections when indexed by classes of functions. While there is a rich literature on general forms of
one-sample U-processes, in-depth results for multiple samples still lack.

3.3.1 U-statistics

Introduced by Halmos (1946) as the unique solution among the unbiased estimators of minimal
variance, and by Hoeffding (1948) as tools for fundamental asymptotic theorems, the U-statistics are
essential to the analysis and decomposition of R-statistics. To understand how they are built, P. R.
Halmos proved that the U-statistics are solutions to the following generic problem, in the sense of
the Minimum-Variance Unbiased Estimator (MVUE) class rendered, for instance, by the Theorem
of Lehmann-Scheffé. Let θ be a functional defined on a set F of distribution functions of R, such
that

θ : F ∈F 7→ θ(F) .

Based on a i.i.d. sample X1, . . . ,XN drawn from an unknown distribution F , the goal is to estimate the
function θ(F). In its most generic formulation, the symmetric U-statistic solution of P.R. Halmos’
problem is given by

Un(ψ) =

(
n
q

)−1

∑
σ∈Sn

ψ(Xσ(1), . . . ,Xσ(q)) , (3.3.1)
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where Sn is the set of all permutations of {1, . . . ,n}, the function ψ is the kernel of the statistic
and q its degree. Of course, symmetrical kernels are defined based on a measurable kernel ψ̃ by:
ψ(x1, . . . ,xq) = (q!)−1

∑σ∈Sq ψ̃(xσ(1), . . . ,xσ(q)). Two fundamental references gather results on U-
statistics. Lee (1990) is the first comprehensive monograph on classic probability asymptotic theory
and applications to statistical models. Korolyuk and Borovskich (1994), generalizes the results by
relating/decomposing the U-statistics to/in reverse martingales valued in different types of spaces
(Banach and Hilbert spaces). Additional references on U-statistics and extensions are e.g. Serfling
(1980); Stute (1991).

Example 36. Basic examples for estimating the parameters of a i.i.d. random sample X1, . . . ,Xn,
under some basic moment-based assumptions, and with X , X ′ i.i.d.∼ F, are as follows:

1. mean: θ(F) = EX∼F [X ], then Un = (1/n)∑i≤n Xi

2. variance: θ(F) = Var[X ], then Un =
(n

2

)−1
∑1≤i< j≤n(Xi−X j)

2

3. covariance: θ(F) = Cov[X ,X ′], then Un =
(n

2

)−1
(1/2)∑1≤i< j≤n(Xi−X j)(X ′i −X ′j)

Definition (3.3.1) highlights the knowledge that lies in this class of statistics thanks to the sum
of correlated terms. Hence, the analysis developed for empirical processes is not applicable as such.
A major contribution of Hoeffding is the decomposing of (3.3.1) in uncorrelated terms of variance
with decreasing order, also known as the H-decomposition, see Hoeffding (1961). If the variables
are square-integrable, the geometric interpretation generalizes the Hajek’s projection, see Appendix
section B.1 Lemma 92 therein. In particular, for q = 2, the first term of the decomposition equals to
the projection statistic of Hájek’s method.

Theorem 37 (Hoeffding decomposition, Theorem 1.6.1, Chapter 1, Lee (1990)). Consider the U-
statistic as defined in Eq. (3.3.1). For j ∈ {2, . . . ,q}, let ψ j(x1, . . . ,x j) = E[ψ(x1, . . . ,xq) | X1 =
x1, . . . ,X j = x j], such that the kernels are recursively defined:

h(1)(x1) = ψ1(x1)−θ ,

h( j)(x1, . . . ,x j) = ψ j(x1, . . . ,x j)−
j−1

∑
c=1

∑
σ∈Sc

h(c)(xσ(1), . . . ,xσ(c))−θ , ∀ j ∈ {2, . . . ,q} .

Then the U-statistic of degree q is decomposed as

Un(ψ) = θ +
q

∑
j=1

(
q
j

)
U ( j)

n (h( j)), (3.3.2)

where the U ( j)
n are the U-statistics based on kernel h( j) of degree j.

An important characterization of the kernels is their order of degeneracy (also related to the rank
of the statistic). Indeed, a U-statistic is said to be degenerate or order c w.r.t. a probability measure, if
the first c terms of the decomposition equal to zero a.s.. Its variance is of order n−(c+1). In particular,
the order of degeneracy controls the limit distribution of the statistic, see e.g. Serfling (1980). The
sequence U ( j)

n , for j ≤ q is of respective rank j such that the Theorem below holds true.

Theorem 38 (Theorem 1.6.2, Chapter 1, Lee (1990)). Consider the result of Theorem 37. Then, for
all j ≤ q and c≤ j−1,

E[h( j)(X1, . . . ,X j) | X1, . . . ,Xc] = 0 (3.3.3)

and the kernels E[h( j)(X1, . . . ,X j)] = 0.
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For clarity purposes the generic version of U-statistic was based on a unique i.i.d. sample. It is
possible to define on r-samples, r ≥ 2, of respective degree (q1, . . . ,qr) with similar decomposition
and known as generalized statistics, see Lee (1990) Chapter 2 therein. Nevertheless, in the context of
two-sample R-statistics, solely nonsymmetric one-sample U-statistics of degree (2) and two-sample
ones of degree (1,1) are considered. We define these in the sequel with the same notations that will
be used in Chapters 4, 5 and 6.

Definition 39 (One-sample U-statistics of degree 2). Let n≥ 2. Consider a i.i.d. sequence X1, . . . , Xn

drawn from a probability distribution µ on a measurable space X and k : X 2→ R a square integ-
rable function w.r.t. µ ⊗ µ . The one-sample U-statistic of degree 2 and kernel function k based on
the Xi’s is defined as:

Un(k) =
1

n(n−1) ∑
1≤i 6= j≤n

k(Xi,X j) . (3.3.4)

As detailed, the statistic Un(k) is the MVUE of the parameter defined by θ(µ) =
∫

k(x1, x2)µ(dx1)
µ(dx2). In order exhibit the linear part of the statistic, the first term of its Hoeffding decomposition
of Un(k) yields

Ûn(k) =
1
n

n

∑
i=1

k1(Xi) , (3.3.5)

with k1 = k1,1 + k1,2 and for all x ∈X{
k1,1(x) = E[k(X1, x)]−θ(µ)
k1,2(x) = E[k(x, X2)]−θ(µ) ,

while the degenerate part trivially equals to U (2)
n = Un(k)−θ(µ)−Ûn(k) and is of order OP(1/n).

Notice that Ûn(k) corresponds to the Hájek projection of Un(k)−θ(µ) onto the space of all random
variables ∑

n
i=1 gi(Xi) with

∫
g2

i (x)µ(dx)<+∞, with the sequence g of measurable functions, as stated
in Lemma 92, Appendix section B.1. In a same manner, we define below a two-sample U-statistics
of degree (1,1).

Definition 40 (Two-sample U-statistics of degree (1,1)). Let n, m in N∗. Consider two independent
i.i.d. sequences X1, . . . , Xn and Y1, . . . , Ym respectively drawn from the probability distributions µ

and ν on the measurable spaces X and Y . Let ` : X ×Y → R be a square integrable function
w.r.t. µ⊗ν . The two-sample U-statistic of degree (1,1), with kernel function ` and based on the Xi’s
and the Yj’s is defined as:

Un,m(`) =
1

nm

n

∑
i=1

m

∑
j=1

`(Xi,Yj) . (3.3.6)

Similarly, Un,m(`) is the MVUE of θ(µ,ν) =
∫
`(x, y)µ(dx)µ(dy) and we exhibit the linear part

of its Hoeffding decomposition, as follows

Ûn,m(`) =
1
n

n

∑
i=1

`1,1(Xi)+
1
m

m

∑
j=1

`1,2(Yj) ,

where for all (x,y) ∈X ×Y , one has{
`1,1(x) = E[`(x, Y1)]−θ(µ,ν)
`1,2(y) = E[`(X1, y)]−θ(µ,ν) ,

while the degenerate part equals to U (2)
n,m(`) = Un,m(`)−θ(µ,ν)−Ûn,m(`) and is of order OP(1/n)+

OP(1/m). The Hájek projection of (3.3.6) is obtained by computing the orthogonal projection
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of the recentered r.v. Un,m(`)− θ(µ,ν) onto the subpace of L2 composed of all random variables
∑

n
i=1 gi(Xi)+ ∑

m
j=1 f j(Yj) with

∫
g2

i (x)µ(dx) < +∞ and
∫

f 2
j (y)ν(dy) < +∞.

Example 41. A classic example of two-sample U-statistic of degree (1,1) is the Mann-Whitney stat-
istic, of kernel `(x,y) = I{y < x}+ (1/2)I{y = x} on R2. It is a natural (unbiased) estimator of
the AUC: when computed from univariate samples X1, . . . , Xn and Y1, . . . , Ym with distributions G
and H on R, it is equal to AUCĤm,Ĝn

with the notations of Subsection B.3 and can be thus viewed
as an affine transform of the rank-sum Wilcoxon statistic (2). The Hoeffding decomposition of the
empirical AUC yields

AUCĤm,Ĝn
= P{X≥ Y}+

1
n ∑

i≤n
(Ĥm(Xi)−E[H(X)])− 1

m ∑
j≤m

(Ĝn(Yj)−E[G(Y)])+ oPG,H(1) .

(3.3.7)

The Hoeffding decomposition is the key to extend (limit) results known for i.i.d. averages (e.g.
SLLN, CLT, LIL) to statistics of the type (3.3.6). In the technical analysis that are presented in
Chapters 4 and 5, nonasymptotic uniform results are required for U-processes, namely collections of
U-statistics indexed by classes of kernels. By means of the Hoeffding decomposition, concentration
bounds for U-processes can be obtained by combining classic concentration bounds for empirical
processes and concentration bounds for degenerate U-processes, such as the following section.

3.3.2 Concentration inequalities for degenerate one-sample U-processes

Similar to concentration bounds for empirical processes, this section encompasses concentration
bounds for U-processes defined as collections of U-statistics indexed by classes of kernels. As
formerly developed, the Hoeffding decomposition is key towards establishing various types of bounds.
The study of a general U-statistic boils down to analyzing each uncorrelated term recursively on their
degree, and particularly leads to degenerate statistics. Hence, a rich literature studies nonasymptotic
guarantees of degenerate one-sample U-statistics. Remarkable results are, for instance, obtained by
Arcones and Giné (1994) for exponential uniform bounds and asymptotic laws for the iterated log-
arithm law and the bootstrap, when indexed by VC-type classes of kernels. Major (2006) improves
these results, for which we present one version in this section. In Clémençon et al. (2008), authors
established moment inequalities based on Rademacher chaos, and similar types of results can be
found by Adamczak (2006); Giné et al. (2000); Houdré and Reynaud-Bouret (2003). Refer to the
monograph De la Pena and Giné (1999) for comprehensive analysis of U-processes. The most recent
results are especially interested in applying U-statistics to bootstrap estimators and when applied e.g.
to censored data. However, the results are mainly obtained for one-sample statistics based on i.i.d.
random observations, even if the assumptions can imply very advanced techniques.

We consider U-processes defined as follows, with the previously introduced notations. Let K a
class of kernel functions of order (2), U-processes based on a i.i.d. sample {X1, . . . ,Xn} are referred
to as the mapping

k ∈K 7→Un(k) =
1

n(n−1) ∑
1≤i6= j≤n

k(Xi,X j) (3.3.8)

and similarly to empirical process, the goal is to control the uniform deviations of {Un(k)−θ(k)}k∈K .
The selected results give insight into the control of such random object, depending on the type of
class of kernels and on the measurability assumption for the uniform bound. Similarly, we refer
to U-processes of degree (1,1), based on the two i.i.d. and independent samples {X1, . . . , Xn} and
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{Y1, . . . , Ym}, indexed by a class of kernels L the collection {Un,m(`)}`∈L .

We start with a maximal inequality proved by Nolan and Pollard (1987) for degenerate U-
processes of degree 2 for general classes of symmetric kernels, later extended to two-sample de-
generate U-processes of degree (1,1) by Neumeyer (2004). The results are stated in the articles for
euclidean classes of kernels, and we express below for VC-type bounded kernels, using respectively
for the results Lemma 16 in Nolan and Pollard (1987) and inequality page 83 in Neumeyer (2004),
to simplify the bounds of the original Theorems.

Lemma 42 (Consequence of Theorem 6, Nolan and Pollard (1987)). Let n ≥ 2 and X1, . . . , Xn

be i.i.d. random variables drawn from a probability distribution µ on a measurable space X . Let
K be a class of measurable kernels k : X 2 → R such that supx,x′∈X 2 |k(x,x′)| ≤ D < +∞ and∫
X 2 k2(x,x′)µ(dx)µ(dx′) ≤ σ2 ≤ D2, that defines a degenerate one-sample U-process of degree 2,

based on the Xi’s: {Un(k) k ∈ K }. Suppose in addition that the class K is of VC-type with
parameters (A,V ). There exists a constant C > 0, such that:

E
[

sup
k∈K
|Un(k)|

]
≤ 2σC

n−1

(
1
4

+V log(A)

)
. (3.3.9)

Lemma 43 (Consequence of Lemma 2.4, Neumeyer (2004)). Let (n, m) ∈ N∗. Consider two in-
dependent i.i.d. random samples X1, . . . ,Xn and Y1, . . . ,Ym respectively drawn from the probability
distributions µ and ν on the measurable spaces X and Y . Let L be a class of degenerate non-
symmetrical kernels ` : X ×Y → R such that sup(x,y)∈X ×Y |`(x,y)| ≤ L < +∞ and∫
X ×Y `2(x,y)µ(dx)ν(dy) ≤ σ2 ≤ L2, that defines a degenerate two-sample U-process of degree

(1,1), based on the Xi,Yj’s: {Un,m(`), ` ∈L }. Suppose in addition that the class L is of VC-type
with parameters (A,V ). There exists a constant C > 0, such that:

E
[

sup
`∈L
|Un,m(`)|

]
≤ 2σC√

nm

(
1
4

+V log(A)

)
. (3.3.10)

In Major (2006) (see Theorem 2 therein), a concentration bound for one-sample degenerate U-
processes of arbitrary degree indexed by L2-dense classes of non-symmetric kernels is established.
The lemma below is a formulation of the latter in the specific case of degenerate U-processes of
degree 2 indexed by VC-type bounded classes of non-symmetric kernels.

Lemma 44 (Theorem 2, Major (2006)). Suppose the conditions of Lemma 42 fulfilled. Then, there
exist constants C1 > 0, C2 ≥ 1 and C3 ≥ 0 depending on (A,V ) such that:

P
{

sup
k∈K
|Un(k)| ≥ t

}
≤C2 exp

{
−C3(n−1)t

σ

}
, (3.3.11)

as soon as C1 log(2D/σ)≤ (n−1)t/σ ≤ nσ2/D2.
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Contributions Related to Rank Processes
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4 | A Concentration Inequality for Two-
sample U-processes

Abstract. This chapter details a new uniform concentration bound obtained for two-
sample degenerate U-processes as a preliminary contribution. It is the key to the analysis
of R-processes pursued in the following chapters, particularly regarding the nonasymp-
totic analysis of the remaining term of its decomposition. This new result combines
methods related to symmetrization, chaining, and complexity control of VC-type bound-
ed classes of kernels. Therefore, we extend a version of Major (2006)’s results when
based on two independent and i.i.d. samples drawn from different distributions, as re-
called in Chapter 3.
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4.1 Introduction

This chapter studies the supremum of classes of degenerate U-statistics based on two independent
samples. Consider their sizes (n, m) ∈ N∗2, such that the two independent i.i.d. random samples
X1, . . . , Xn and Y1, . . . , Ym are respectively drawn from probability distributions µ and ν , and valued
on the measurable spaces X and Y . Let ` : X ×Y →R be a square integrable function w.r.t. µ⊗ν .
The two-sample U-statistic of degree (1,1), with kernel function ` and based on the Xi’s and the Yj’s
is defined by

Un,m(`) =
1

nm

n

∑
i=1

m

∑
j=1

`(Xi,Yj) . (4.1.1)

U-processes refer to collections of U-statistics when indexed by infinite classes of kernels. We con-
sider such a class L composed of kernels ` : X ×Y → R of controlled complexity thanks to uni-
form entropic considerations. The purpose is to provide a concentration bound of the deviations of
sup`∈L |Un,m(`)|. The broad problem of controlling the uniform deviations of U-processes is studied
in the literature. However, the results are mainly based on i.i.d. random observations while allowing
for generalized and various forms of such statistics. We refer, for instance, to Adamczak (2006);
Clémençon et al. (2008); Giné et al. (2000); Houdré and Reynaud-Bouret (2003); Major (2006) and
the monograph De la Pena and Giné (1999) for fundamental contributions.

In fact, the key to analyze generalized U-statistics (of high degree) relies on Hoeffding’s decom-
position, as detailed in Theorem 37 (Chap. 3). It allows for the recursive study of U-statistics on
their degree, composed of uncorrelated terms with a variance of decreasing order. Nevertheless, the
last term needs particular attention as it is of the same order as the initial statistic but known to be
degenerate. In this chapter, Un,m is supposed to be degenerate i.e. centered when integrating w.r.t.
the measure µ and ν . Refer to Chapter 3, Section 3.3 for the required properties. The main result of
this chapter is the fundamental tool for decomposing linear two-sample R-processes with a uniform
control on the remainder process, as will be detailed in the next chapter. We first state the main
assumptions and theorem, then the related proofs and additional results are detailed in the following.

4.2 Main result

Consider two independent i.i.d. random samples X1, . . . ,Xn and Y1, . . . ,Ym respectively drawn from the
probability distributions µ and ν on the measurable spaces X and Y . Let L be a class of degenerate
non-symmetrical kernels ` : X ×Y → R for which the following assumptions are considered.

Assumption 1. Let L a class of measurable functions `, and let µ , ν two measures defined on X , Y ,
such that for all ` ∈L , sup(x,y)∈X ×Y |`(x,y)| ≤ L < +∞ and

∫
X ×Y `2(x,y)µ(dx)ν(dy)≤ σ2 ≤ L2.

Assumption 2. The class L is of VC-type with parameters (A,V ) ∈ (0, +∞)2 and of finite constant
envelope.

The main result is stated below and we refer to Chapter 3 for details on the assumptions.
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Theorem 45 (Lemma 16, Clémençon et al. (2021)). Let (n, m) ∈ N∗. Consider two independent
i.i.d. random samples X1, . . . ,Xn and Y1, . . . ,Ym respectively drawn from the probability distributions
µ and ν on the measurable spaces X and Y . Let L be a class of degenerate non-symmetrical
kernels ` : X ×Y → R such that Assumptions 1 and 2 are fulfilled. Then, for all t > 0, there exists
a universal constant K > 2 such that the U-process of degree (1,1) {Un,m(`), ` ∈L } based on the
Xi,Yj’s, satisfies:

P
{

sup
`∈L
|Un,m(`)| ≥ t

}
≤ K2V (A/L)2V e4/L2

exp
{
−nmt2

ML2

}
, (4.2.1)

for all nmt2 > max(84 log(2)L2V ,(log(2)L2V /2)1+δ ), δ ∈ (1,2) constant and M = 163/2.

Its proof is given in Section 4.3 and is inspired from that of Lemma 2.14.9 in van der Vaart and
Wellner (1996) and of Lemma 3.2 in van de Geer (2000) for empirical processes, and from Lemma
2.4 in Neumeyer (2004) which gives a version in expectation applicable to degenerate two-sample
U-processes of arbitrary degree indexed by Lp-dense classes of kernels.

4.3 Proofs

We shall prove an exponential bound of Hoeffding’s type for the uniformly bounded two-sample
degenerate U-process {Un,m(`) : ` ∈L }, where

Un,m(`) =
1

nm

n

∑
i=1

m

∑
j=1

`(Xi,Yj) . (4.3.1)

In order to apply standard symmetrization arguments, see e.g. section 2.3 in van der Vaart and Wellner
(1996), consider independent Rademacher variables ε1, . . . ,εn and η1, . . . ,ηm and define

Tn,m(`) =
1

nm

n

∑
i=1

m

∑
j=1

εiη j`(Xi,Yj) , (4.3.2)

for all ` in L . We start by proving the following lemmas, involved in the argument.

Lemma 46. Let P and Q be probability distributions on measurable spaces X and Y respectively.
Consider the degenerate two-sample U-statistic of degree (1,1) (4.3.1) with a bounded kernel ` :
X ×Y → R based on the independent i.i.d. random samples X1, . . . , Xn and Y1, . . . , Ym, drawn
from P and Q respectively. Let two sequences of i.i.d. Rademacher variables ε1, . . . ,εn and η1, . . . ,ηm,
independent of the Xi’s and Yj’s, such that the randomized process (4.3.2) is defined. Then, for any
increasing and convex function Φ : R→ R, we have:

E
[

Φ

(
sup
`∈L
|Un,m(`)|

)]
≤ E

[
Φ

(
4 sup
`∈L
|Tn,m(`)|

)]
, (4.3.3)

and

E
[

Φ

(
sup
`∈L

Un,m(`)

)]
≤ E

[
Φ

(
4 sup
`∈L

Tn,m(`)

)]
, (4.3.4)

assuming that the suprema are measurable and that the expectations exist.
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PROOF. We prove the first inequality, the proof of the second one being similar. Using the independ-
ence of the two samples, Fubini’s theorem and the degeneracy property, one gets that

E
[

Φ

(
sup
`∈L
|Un,m(`)|

)]
= E

[
E

[
Φ

(
sup
`∈L

∣∣∣∣∣ 1
nm

n

∑
i=1

(
m

∑
j=1

`(Xi,Yj)

)∣∣∣∣∣
)
| Y1, . . . , Ym

]]

≤ E

[
Φ

(
2 sup
`∈L

∣∣∣∣∣ 1
nm

n

∑
i=1

εi

(
m

∑
j=1

`(Xi,Yj)

))∣∣∣∣∣
]

= E

[
E

[
Φ

(
2 sup
`∈L

∣∣∣∣∣ 1
nm

m

∑
j=1

(
n

∑
i=1

εi`(Xi,Yj)

)∣∣∣∣∣
)
| (X1,ε1), . . . , (Xn,εn)

]]

≤ E

[
Φ

(
4 sup
`∈L

∣∣∣∣∣ 1
nm

m

∑
j=1

η j

(
n

∑
i=1

εi`(Xi,Yj)

)∣∣∣∣∣
)]

= E
[

Φ

(
4 sup
`∈L
|Tn,m(`)|

)]
by applying Lemma 3.5.2 of De la Pena and Giné (1999) twice. Incidentally, notice that we can also
show that

E
[

Φ

(
1
4

sup
`∈L
|Tn,m(`)|

)]
≤ E

[
Φ

(
sup
`∈L
|Un,m(`)|

)]
.

by applying twice the reverse inequality in Lemma 3.5.2 of De la Pena and Giné (1999). �

Next, we prove an exponential bound of Hoeffding’s type for degenerate two-sample U-statistics
with bounded kernels.

Lemma 47. Let P and Q be probability distributions on measurable spaces X and Y respectively.
Consider the degenerate two-sample U-statistic of degree (1,1) (4.3.1) with a bounded kernel ` :
X ×Y → R based on the independent i.i.d. random samples X1, . . . , Xn and Y1, . . . , Ym, drawn
from P and Q respectively. For all t > 0, we then have:

P{Un,m(`)≥ t} ≤ e−nmt2/(32c2
` ), (4.3.5)

where c` = sup(x,y)∈X ×Y |`(x,y)|< +∞.

PROOF. Let t > 0. The proof is based on Chernoff’s method. For all λ > 0, we have

P{Un,m(`)≥ t} ≤ exp(−λ t + log(E[exp(λUn,m(`))]))

≤ exp(−λ t + log(E[exp(4λTn,m(`))])) , (4.3.6)

using (4.3.4) with Φ(t) = exp(λ t). Observe next that we almost-surely

E[exp(4λTn,m(`)) | X1, . . . , Xn, Y1, . . . , Ym] =

n

∏
i=1

m

∏
j=1

e4λ`(Xi,Yj)/(nm) + e−4λ`(Xi,Y j)/(nm)

2

≤
n

∏
i=1

m

∏
j=1

e8λ 2`2(Xi,Y j)/(nm)2 ≤ e8λ 2c2
`/(nm),
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using the fact that (eu +e−u)/2≤ eu2/2 for all u ∈R. Integrating the bound over the Xi’s and Yj’s and
plugging it next into (4.3.6) yields the desired bound when choosing λ = nmt/(16c2

`).
�

Finally, we prove the tail probability version of Lemma 46 stated below.

Lemma 48. Let P and Q be probability distributions on measurable spaces X and Y respectively.
Consider the degenerate two-sample U-statistic of degree (1,1) (4.3.1) with a bounded kernel ` :
X ×Y → R based on the independent i.i.d. random samples X1, . . . , Xn and Y1, . . . , Ym, drawn
from P and Q respectively. Let two sequences of i.i.d. Rademacher variables ε1, . . . ,εn and η1, . . . ,ηm,
independent of the Xis and Y js, such that the randomized process (4.3.2) is defined. Then we have
for all t > 0,

P
{

sup
`∈L
|Un,m(`)| ≥ 16t

}
≤ 16P

{
sup
`∈L
|Tn,m(`)| ≥ t

}
, (4.3.7)

assuming that the suprema are measurable and that the expectations exist.

PROOF. This lemma, bounding the tail probability of sup`∈L |Un,m(`)| to that of sup`∈L |Tn,m(`)|,
generalizes Lemma 2.7 in Giné and Zinn (2004) and Lemma 3.1 in Talagrand (1994) to degenerate
two-sample U-processes. It is proved by applying twice a version of the latter result for independent
but non necessarily identically distributed random variables. Indeed, we have: ∀t > 0,

P
{

sup
`∈L
|Un,m(`)| ≥ 16t

}
= E

[
P

{
sup
`∈L

∣∣∣∣∣1n n

∑
i=1

{
1
m

m

∑
j=1

`(Xi,Yj)

}∣∣∣∣∣≥ 16t | Y1, . . . , Ym

}]

≤ 4E

[
P

{
sup
`∈L

∣∣∣∣∣1n n

∑
i=1

{
1
m

m

∑
j=1

εi`(Xi,Yj)

}∣∣∣∣∣≥ 4t | Y1, . . . , Ym

}]

= 4E

[
P

{
sup
`∈L

∣∣∣∣∣ 1
m

m

∑
j=1

{
1
n

n

∑
i=1

εi`(Xi,Yj)

}∣∣∣∣∣≥ 4t | (X1,ε1) . . . , (Xn, εn)

}]

≤ 16P
{

sup
`∈L
|Tn,m(`)| ≥ t

}
.

�

The proof relies on the chaining method applied to the process Un,m(`) indexed by the class of
kernels L , see e.g. the argument used to establish Lemma 2.14.9 in van der Vaart and Wellner
(1996). Define the random semi-metric on L by

d2
nm(`1, `2) =

1
nm ∑

i≤n
∑
j≤m

(`1(Xi,Yj)− `2(Xi,Yj))
2 (4.3.8)

for all kernels `1 and `2 in L . For all q∈N∗, consider a number kq ≤ (A/εq)V of L2-balls with radius
εq≤L≤ 1 and centers `q,k, 1≤ k≤ kq, w.r.t. the (random) probability measure (1/nm)∑i≤n ∑ j≤m δ(Xi,Y j)

covering the class L . Assume that the sequence εq is decreasing as q increases, so that kq is increas-
ing. Let ` ∈L , q ≥ 1 and ˜̀q be the center of a ball s.t. dnm(`, ˜̀q) ≤ εq. Fixing q0 ≤ q in N∗, the
following decomposition holds
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Un,m(`) = (Un,m(`)−Un,m( ˜̀q))+Un,m( ˜̀q0)+
q

∑
ω=q0+1

(
Un,m( ˜̀

ω)−Un,m( ˜̀
ω−1)

)
.

Observe that, for all ` in L , we almost-surely have

|Un,m(`)−Un,m( ˜̀q)| ≤ dnm(`, ˜̀q)≤ εq .

The triangular inequality yields

‖Un,m(`)‖L ≤ εq + max
1≤k≤kq0

|Un,m(`q0,k)|+
q

∑
ω=q0+1

||Un,m( ˜̀
ω)−Un,m( ˜̀

ω−1)||L ,

where we used the notation ||V ||L = sup`∈L |V (`)| for any real-valued stochastic process V indexed
by L . Considering ηω > 0 and β > 0 constants such that ∑

q
ω=q0+1 ηω + β ≤ 1, we have for any

t > εq:

P{‖Un,m(`)‖L ≥ 16t} ≤
kq0

∑
k=1

P
{
|Un,m(`q0,k))| ≥ 16tβ

}
+ 16

q

∑
ω=q0+1

k2
ωE
[

sup
`∈L

P
{
|Tn,m( ˜̀

ω − ˜̀
ω−1)| ≥ tηω | X1, . . . , Xn, Y1, . . . , Ym

}]
, (4.3.9)

using the union bound, Lemma 48 and observing that the suprema corresponding to the terms of the
series are actually maxima taken over at most kωkω−1 ≤ k2

ω elements. Lemma 47 permits to bound
the first term on the right hand side of (4.3.9):

kq0

∑
k=1

P
{
|Un,m(`q0,k))| ≥ 16tβ

}
≤ 2kq0 exp

{
−8nm(tβ )2

L2

}
. (4.3.10)

Concerning the second term, notice that

dnm( ˜̀
ω , ˜̀

ω−1)≤ dnm(`, ˜̀
ω−1)+ dnm( ˜̀

ω , `)≤ 2εω−1 . (4.3.11)

Re-using the start of the argument proving Lemma 47, we have: ∀λ > 0,

P
{

Tn,m( ˜̀
ω − ˜̀

ω−1)≥ tηω | X1, . . . , Xn, Y1, . . . , Ym
}

≤ exp
(
−λ tηω +E

[
exp(λTn,m( ˜̀

ω − ˜̀
ω−1)) | X1, . . . ,Xn, Y1, . . . , Ym

])
with probability one. Like in Lemma 47’s proof, we almost-surely have

E[exp(λTn,m( ˜̀
ω − ˜̀

ω−1)) | X1, . . . , Xn, Y1, . . . , Ym]≤
n

∏
i=1

m

∏
j=1

eλ 2( ˜̀
ω− ˜̀

ω−1)2(Xi,Yj)/2(nm)2 ≤ e2λ 2ε2
ω−1/(nm) .

Combining the two bounds above with the union bound, it holds with probability one

P
{∣∣Tn,m( ˜̀

ω − ˜̀
ω−1)

∣∣≥ tηω | X1, . . . , Xn, Y1, . . . , Ym
}
≤ 2exp

{
−nm(tηω)2

8ε2
ω−1

}
. (4.3.12)

From (4.3.9), (4.3.10) and (4.3.12), we deduce that
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P{‖Un,m(`)‖L ≥ 16t}

≤ 2kq0 exp
{
−8nm(tβ )2

L2

}
+ 32

q

∑
ω=q0+1

k2
ω exp

{
−nm(tηω)2

8ε2
ω−1

}

≤ 2AV
ε
−V
q0

exp
{
−8nm(tβ )2

L2

}
+ 32A2V

q

∑
ω=q0+1

ε
−2V
ω exp

{
−nm(tηω)2

8ε2
ω−1

}
. (4.3.13)

Following Lemma 3.2 in van de Geer (2000) and choosing εω = 2−ωL, ηω = 2−ω
√

ω/8, so that
ηω+1/εω = (1/16L)

√
ω + 1, we have

ε
−2V
ω exp

{
−nm(tηω)2

8ε2
ω−1

}
= L−2V exp

{
−(−2V log(2)+

nmt2

4×83L2 )ω

}
(4.3.14)

If nmt2 > 84 log(2)L2V , the terms of the series are decreasing w.r.t. ω and we upperbound by
K1L−2V exp

{
−nmt2ω/(4×83L2)

}
. Problem 2.14.3 in van der Vaart and Wellner (1996) applies

for ω ∈ {q0 + 1, . . . ,q} with ψ(ω) = nmt2ω/(4×83L2)

q

∑
ω=q0+1

ε
−2V
ω exp

{
−nm(tηω)2

8ε2
ω−1

}
≤ K1L−2V

ψ
′(q0)−1 exp{−ψ(q0)}

≤ K2L−2(V −1) exp
{
− nmt2

4×83L2 q0

}
(4.3.15)

K1, K2 > 0 constants and nmt2 ≥ 1. For α > 0 large, setting q0 = 2 + b(nmt2)1/(α−1)c yields to
the upperbound K2L−2(V −1) exp

{
−3nmt2/(4×83L2)

}
. For the first tail probability, by setting β =

1/2−1/(2nmt2) we obtain an upperbound of similar form

AV
ε
−V
q0

exp
{
−8nm(tβ )2

L2

}
≤ (A/L)V exp

{
V log(2)(2 +(nmt2)1/(α−1))− 2nmt2

L2 (1−1/(nmt2))2
}

≤ (2A/L)V e4/L2
exp
{

V log(2)(nmt2)1/(α−1)− 2nmt2

L2

}
≤ (2A/L)V e4/L2

exp
{
−2nmt2

L2

}
,

as soon as nmt2 > (log(2)L2V /2)1+δ , δ = 1/(α − 2) ∈ (0,1) for large α . Gathering both upper-
bounds, Eq. (4.3.13) yields

P{‖Un,m(`)‖L ≥ t} ≤ K2V +1(A/L)2V e4/L2
exp
{
− 3nmt2

4×83L2

}
, (4.3.16)

for all nmt2 > max(1,84 log(2)L2V ,(log(2)L2V /2)1+δ ), and K ≥ 1 + 16K2e−4 constant. Checking
lastly that, for all q≥ 1

8
q

∑
ω=q0+1

ηω ≤ 8
q

∑
ω=1

ηω ≤ 1 +
∫

∞

1
2−x√xdx≤ 1 +(π/ log(2))1/2 ≤ 4, (4.3.17)

so that ∑
q
ω=q0+1 ηω + β ≤ 1 as needed.
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Permanence properties for classes of functions. The lemma stated below permits to control the
complexity of the classes of kernels/functions involved in the Hoeffding decompositions of a two-
sample U-process of degree (1,1).

Lemma 49. Let X and Y be two independent random variables, valued in X and Y respectively,
with probability distributions µ and ν . Consider L a VC-type bounded class of kernels ` : X ×
Y →R with parameters (A,V ) and constant envelope LL > 0. Then, the sets of functions {x∈X 7→
E[`(x, Y )] : ` ∈L }, {y ∈ Y 7→ E[`(X , y)] : ` ∈L }, {`(x,y)−E[`(X , y)]−E[`(x, Y )] : ` ∈L }
are also VC-type bounded classes.

Remark 2. Notice that Lemma 49 remains true if one considers two indendepent r.v. X ,X ′ valued in
X = Y and µ = ν . Hence, this will be similarly used for one-sample U-processes of degree 2, as
introduced in Section 3.3 Chapter 3 therein.

PROOF. Consider first the uniformly bounded class L1 composed of functions x ∈X 7→ E[`(x, Y )]
with ` ∈ L . Let ε > 0 and P be any probability measure on X . Define the probability measure
Pν(dx,dy) = P(dx)ν(dy) on X ×Y and consider a ε-covering of the class L with centers `1, . . . , `K

w.r.t. the metric L2(Pν), K ≥ 1. For all ` ∈L , there exists k ≤ K such that:∫
x∈X

∫
y∈Y

(`(x, y)− `k(x, y))2Pν(dx,dy)≤ ε
2 .

By virtue of Jensen’s inequality, we have∫
X

(E[`(x, Y )]−E[`k(x, Y )])2P(dx)≤
∫

X
E[(`(x, Y )− `k(x, Y ))2]P(dx)

=
∫

X

∫
Y

(`(x, y)− `k(x, y))2
ν(dy)P(dx)≤ ε

2 .

Hence, one gets a ε-covering of the class L1 with balls of centers {E[`k(·, Y )] : k = 1, . . . , K} in
L2(P). This proves that

N(L1,L2(P),εLL )≤ N(L ,L2(Pν),εLL ).

As a similar reasoning can be applied to the two other classes of functions, one then gets the desired
result. �



5 | Concentration Inequalities for Two-
sample R-processes

Abstract. This chapter studies a new class of two-sample linear rank statistics for the
multivariate and nonparametric framework. We first motivate this approach by showing
how it encompasses and summarizes empirical criteria of classical two-sample prob-
lems, as detailed in Chapter 2. In particular, we highlight how it is intimately related to
the ROC analysis. Briefly, the ROC curve is the gold standard for measuring the per-
formance of a test/scoring statistic regarding its capacity to discriminate between two
statistical populations in a wide variety of applications, ranging from anomaly detection
in signal processing to information retrieval, through medical diagnosis. Most prac-
tical performance measures used in scoring/ranking applications such as the AUC, the
local AUC, the p-norm push, the DCG and others, can be viewed as summaries of the
ROC curve. Then, concentration inequalities for collections of such random variables,
referred to as two-sample rank processes, are proved, when indexed by VC classes of
scoring functions. Based on these nonasymptotic bounds, the generalization capacity of
empirical maximizers of a wide class of ranking performance criteria is next investigated
from a theoretical perspective. The numerical experiments are gathered in Chapter 7.
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5.1 Introduction

In the context of ranking, a variety of performance measures can be considered. In the simplest
framework of bipartite ranking, where two independent i.i.d. samples X1, . . . , Xn and Y1, . . . , Ym

defined on the same probability space (Ω, F , P), valued in the same space Z , say Rd with d ≥ 1 for
instance, and drawn from probability distributions G and H respectively (referred to as the ’positive
distribution’ and the ’negative distribution’ respectively), the goal pursued is to learn a preorder on
Z defined through a scoring function s : Z → R (which transports the natural order on the real line
onto the feature space Z ) such that, for any random observation Z ∈Z sampled from a distribution
that is equal either to the ’positive distribution’ or to the ’negative one’, the larger the score s(z),
the likelier it is drawn from the ’positive distribution’ G. Though easy to formulate, this simple
framework encompasses many practical problems from the design of search engines in Information
Retrieval (in this case, for a specific request, G is the distribution of the relevant digitized documents,
while H is that of the irrelevant ones) to the elaboration of decision support tools in personalized
medicine for instance. In spite of its simplicity there is not one and only one natural scalar criterion
for evaluating the performance of a scoring rule s(z), but many possible options. The Receiving
Operator Characteric curve (the ROC curve in abbreviated form), i.e. the PP-plot of the false positive
rate vs the true positive rate:

t ∈ R 7→ (P{s(Y) > t}, P{s(X) > t}) ,

denoting by X and Y two generic r.v. with distributions G and H respectively, provides an exhaust-
ive description of the performance of any scoring rule candidate s. However, its functional nature
renders direct optimization strategies rather complex, see e.g. Clémençon and Vayatis (2010). Em-
pirical risk minimization methods (ERM) are thus generally based on summaries of the ROC curve,
which take the form of empirical risk functionals where the averages involved are no longer taken
over i.i.d. sequences. The most popular choice is undoubtedly the AUC criterion (AUC standing
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for Area Under the ROC Curve), see Agarwal et al. (2005) or Clémençon et al. (2008) for instance,
but when focus is on top-ranked instances, various choices can be considered, e.g. the Discounted
Cumulative Gain or DCG (see Cossock and Zhang (2006)), the p-norm push (see Rudin (2006)), the
local AUC (refer to Clémençon and Vayatis (2007)) or other variants such as those recently intro-
duced in Menon and Williamson (2016). The present chapter starts from the simple observation that
most of these summary criteria have a common feature: they belong to the class of two-sample linear
rank statistics. Such statistics have been extensively studied in the mathematical statistics literature
because of their optimality properties in hypothesis testing, see Hájek and Sidák (1967). They are
widely used in order to test whether two samples are drawn from the same distribution against the
alternative stipulating that the distribution of one of the samples is stochastically larger than the other.
For instance, the empirical counterpart of the AUC of a scoring function s(z) corresponds to the pop-
ular Mann-Withney-Wilcoxon statistic based on the two (univariate) samples s(X1), . . . , s(Xn) and
s(Y1), . . . , s(Ym). Other rank statistics can be considered, corresponding to other ways of meas-
uring how the distribution of the ’positive score’ s(X) is (possibly) stochastically larger than that
of the ’negative score’ s(Y). Now, in the statistical learning view, with the importance of excess
risk bounds, the Empirical Risk Minimization paradigm must be revisited and new problems, mainly
related to the uniform control of the fluctuations of collections of two-sample linear rank statistics,
termed rank processes throughout the chapter, and to the measure of the complexity of nonparametric
classes of scoring functions, come up. The arguments required to deal with risk functionals based
on two-sample linear rank statistics have been sketched in Clémençon and Vayatis (2007) in a very
special case.

In the present chapter, we relate two-sample linear rank statistics to performance measures relev-
ant for the ranking problem by showing that the target of ranking algorithms corresponds to optimal
ordering rules in this sense and show that the generic structure of two-sample linear rank statistics as
an orthogonal decomposition after projection onto the space of sums of i.i.d. random variables is the
key to all statistical results related to maximizers of such criteria: consistency, rates of convergence
or model selection. Notice incidentally that the empirical AUC is also a U-statistic and a decomposi-
tion method akin to that considered in this chapter (though much less general) has been used in order
to handle this specific dependence structure in Clémençon et al. (2008). In this chapter, concentra-
tion properties of two-sample rank processes (i.e. collections of two-sample linear rank statistics)
are investigated using the linearization technique aforementioned. While interesting in themselves,
the concentration inequalities established for this class of stochastic processes, when indexed by
Vapnik-Chervonenkis classes (abbreviated with VC-classes) of scoring functions, are next applied to
study the generalization capacity of empirical maximizers of a large collection of performance cri-
teria based on two-sample linear rank statistics. Notice finally that a preliminary version of this work
is briefly outlined in the conference paper Clémençon and Vayatis (2009a). This chapter presents a
much deeper analysis of bipartite ranking via maximization of two-sample linear rank statistics. In
particular, it offers a complete and detailed study of the concentration properties of two-sample rank
processes (in a slightly different framework, stipulating that two independent i.i.d. samples, posit-
ive and negative, are observed, rather than classification data), provides model selection results and,
from a practical perspective, tackles the issue of smoothing the risk functionals under study here with
statistical learning guarantees.

The chapter is organized as follows. In Section 5.2, the main notations are set out, the bipart-
ite ranking problem is formulated as a statistical learning task in a rigorous probabilistic framework
and the concept of two-sample linear rank statistic is briefly recalled. It is also explained that, un-
surprisingly, natural performance criteria in bipartite ranking are of the form of two-sample (linear)
rank statistics. Concentration results for rank processes, are established in Section 5.3. By means of
the latter, performance of optimal scoring functions obtained by maximizing two-sample linear rank
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statistics are investigated in Section 5.4. Proofs, technical details and additional numerical results are
deferred to the Appendix section. Lastly, numerical experiments are gathered in the Chapter 7 for
the bipartite ranking application.

5.2 Motivation and preliminaries

This section motivates the chosen formulation of two-sample rank processes by virtue of the bipartite
ranking problem and its relation to the ROC analysis. Indeed, having introduced the (univariate) ROC
analysis and its relation to bipartite ranking in section 2.2, we show how two-sample linear rank
statistics are empirical scalar summaries of classical related criteria, commonly used as bipartite
ranking .

5.2.1 Two-sample linear rank statistics

In a generic formulation, by considering two univariate distributions G and H, the ROC curve, defined
by ROCH,G, is a functional criterion that examines to which extent G is stochastically larger than H.
A possible parametric definition in [0,1]2 is given by:

t ∈ R 7→ (1−H(t), 1−G(t)) ,

with the convention that possible jumps are connected by line segments, ensuring that the resulting
curve is continuous. With this convention, one may then see the ROC curve related to the pair of
d.f. (H,G) as the graph of a càd-làg (i.e. right-continuous and left-limited) non decreasing mapping
valued in [0,1], defined by:

α ∈ (0,1) 7→ 1−G◦H−1(1−α) ,

at points α such that H ◦H−1(1−α) = 1−α . See Appendix section B.3 for the univariate defini-
tions (B.3.1) and (B.3.2). However, practical decisions are generally made on the basis of the obser-
vations of two univariate independent random i.i.d. samples {X1, . . . , Xn} and {Y1, . . . , Ym}, drawn
from G and H respectively. Computing the empirical cumulative distribution functions Ĥm(t) =
(1/m)∑

m
j=1 I{Yj ≤ t} and Ĝn(t) = (1/n)∑

n
i=1 I{Xi ≤ t} for t ∈ R, one can plot the empirical ROC

curve:
R̂OC = ROCĤm, Ĝn

. (5.2.1)

Observe that the ROC curve (5.2.1) is an increasing broken line connecting (0,0) to (1,1) in the unit
square [0,1]2 and is fully determined by the set of ranks occupied by the positive instances within the
pooled sample {Rank(Xi) : i = 1, . . . , n}, where:

∀i ∈ {1, . . . , n} Rank(Xi) = NF̂N(Xi) , (5.2.2)

with F̂N(t) = (1/N)∑
n
i=1 I{Xi ≤ t}+(1/N)∑

m
j=1 I{Yj ≤ t} and N = n+m. Breakpoints of the piece-

wise linear curve (5.2.1) necessarily belong to the set of gridpoints

{( j/m, i/n) : j ∈ {1, . . . , m−1} and i ∈ {1, . . . , n−1}} .

Denote by X(i) the order statistics related to the sample {X1, . . . , Xn}, i.e. Rank(X(n)) > · · · >
Rank(X(1)), and by Y( j) those related to the sample {Y1, . . . , Ym}. Consider the càd-làg step function:

α ∈ [0,1] 7→
m

∑
j=1

γ̂ j · I{α ∈ [( j−1)/m, j/m[} , (5.2.3)
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where, for all j ∈ {1, . . . , m}, we set:

γ̂ j =
1
n

n

∑
i=1

I{Xi > Y(m− j+1)}=
1
n

n

∑
i=1

I{Rank(X(n−i+1)) > Rank(Y(m− j+1))}

=
1
n

n

∑
i=1

I{ j ≥ N−Rank(X(n−i+1))− i + 2} .

The ROC curve (5.2.1) is the continuous broken line that connects the jump points of the step
curve (5.2.3) and can thus be expressed as a function of the ’positive ranks’ i.e. the Rank(Xi)’s only.
As a consequence, any summary of the empirical ROC curve, is a two-sample rank statistic, that is
a measurable function of the ’positive ranks’. In particular, the empirical AUC, i.e. the AUC of the
empirical ROC curve (5.2.1), also termed the rate of consistent pairs or the Mann-Whitney statistic,
can be easily shown to coincide, up to an affine transform, with the sum of ’positive ranks’, the
well-known rank-sum Wilcoxon statistic Wilcoxon (1945)

Ŵn,m =
n

∑
i=1

Rank(Xi) . (5.2.4)

Indeed, we have

Ŵn,m = nmAUCĤm,Ĝn
+

n(n + 1)

2
. (5.2.5)

However, two-sample rank statistics (i.e. functions of the Rank(Xi)’s) form a very rich collection
of statistics and this is by no means the sole possible choice to summarize the empirical ROC curve.

Definition 50. (TWO-SAMPLE LINEAR RANK STATISTICS) Let φ : [0,1]→ R be a nondecreasing
function. The two-sample linear rank statistics with ’score-generating function’ φ(u) based on the
random samples {X1, . . . , Xn} and {Y1, . . . , Ym} is given by:

Ŵ φ
n,m =

n

∑
i=1

φ

(
Rank(Xi)

N + 1

)
. (5.2.6)

The statistics (8.3.3) defined above are all distribution-free when H = G and are, for this reason,
particularly useful to detect differences between the distributions H and G and widely used to perform
homogeneity tests in the univariate setup. Tabulating their distribution under the null assumption,
they can be used to design unbiased tests at certain levels α in (0,1). The choice of the score-
generating function φ can be guided by the type of difference between the two distributions (e.g. in
scale, in location) one possibly expects, and may then lead to locally most powerful testing proced-
ures, capable of detecting ’small’ deviations from the homogeneous situation. More generally, de-
pending on the statistical test to perform, one may use particular function φ , Figure 5.1 shows classic
score-generating functions broadly used for two-sample statistical tests (refer to Hájek (1962)). One
may refer to Chapter 9 in Serfling (1980) or to Chapter 13 in van der Vaart (1998) for an account of
the (asymptotic) theory of rank statistics.

Alternatively, two-sample linear rank statistics can be used for a very different purpose, as em-
pirical performance measures in bipartite ranking based on two independent multivariate samples
{X1, . . . , Xn} and {Y1, . . . , Ym}. The analysis of the bipartite ranking problem carried out in Sec-
tion 5.4, based on the concentration inequalities established in Section 5.3, shows the relevance of
evaluating the ranking performance of a scoring rule candidate s(z) by computing a two-sample lin-
ear rank statistic based on the univariate samples obtained after scoring {s(X1), . . . , s(Xn)} and
{s(Y1), . . . , s(Ym)} and establishes statistical guarantees for the generalization capacity of scoring
rules built by optimizing such an empirical criterion.
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Figure 5.1. Curves of two-sample score-generating functions with the associated statistical test: Logistic test
φlog(u) = 2

√
3(u−1/2) in blue, Logrank test φlrk(u) =− log(1− x) in purple, Mann- Whitney-Wilcoxon test

φmww(u) = u in red, Median test φmed(u) = sgn(u− 1/2) in orange, Van der Waerden test φvdw(u) = Φ−1(u)
in green, Φ being the normal quantile function.

5.2.2 Bipartite ranking as maximization of two-sample rank statistics

Going back to the multivariate setup, where H and G are probability distributions on Z , say Z =
Rd with arbitrary dimension d ≥ 1, the goal pursued in bipartite ranking can be phrased as that of
building a scoring rule s(z) such that the (univariate) distribution Gs of s(X) is ’as stochastically larger
as possible’ than the distribution Hs of s(Y). Hence, the capacity of a candidate s(z) to discriminate
between the positive and negative statistical populations can be evaluated by plotting the ROC curve
α ∈ (0,1) 7→ ROC(s,α) = ROCHs,Gs(α): the closer to the left upper corner of the unit square the
curve ROC(s, .), the better the scoring rule s. Therefore, the ROC curve conveys a partial preorder
on the set of all scoring functions: for all pairs of scoring functions s1 and s2, one says that s2 is more
accurate than s1 when ROC(s1,α)≤ ROC(s2,α) for all α ∈ [0,1].

It follows from a standard Neyman-Pearson argument that the most accurate scoring rules are
increasing transforms of the likelihood ratio Ψ(z) = dG/dH(z). Precisely, it is shown in Clémençon
and Vayatis (2009b) (see Proposition 2 therein) that the optimal scoring rules are the elements of the
set:

S ∗ =
{

s ∈S s.t. for all z, z′ in Rd : Ψ(z) < Ψ(z′)⇒ s∗(z) < s∗(z′)
}
. (5.2.7)

We denote by ROC∗(.) = ROC(Ψ, .) and recall incidentally that this optimal curve is non-decreasing
and concave and thus always above the main diagonal of the unit square. The bipartite ranking
task can be reformulated in a more quantitative manner: the objective pursued is to build a scoring
function s(z), based on the training examples {X1, . . . , Xn} and {Y1, . . . , Ym}, with a ROC curve
as close as possible to ROC∗. Refer to section 2.2 for additional properties.

Therefore, as foreshadowed above, empirical performance measures in bipartite ranking should
be unsurprisingly based on ranks. We propose to evaluate empirically the ranking performance of
any scoring function candidate s(z) in S by means of statistics based on the training examples
{X1, . . . , Xn} and {Y1, . . . , Ym}, of the type:

Ŵ φ
n,m(s) =

n

∑
i=1

φ

(
Rank(s(Xi))

N + 1

)
, (5.2.8)
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where N = n + m, φ : [0,1]→ R is some Borelian nondecreasing function. This quantity is a two-
sample linear rank statistic (see Definition 81) related to the score-generating function φ(u) and
the samples {s(X1), . . . , s(Xn)} and {s(Y1), . . . , s(Ym)}. This statistic is invariant by increasing
transform of the scoring function s, just like the (empirical) ROC curve and, as recalled in the pre-
vious section, it is a natural and common choice to quantify differences in distribution between the
univariate samples {s(X1), . . . , s(Xn)} and {s(Y1), . . . , s(Ym)}, to evaluate to which extent the dis-
tribution of the first sample is stochastically larger than that of the second sample in particular. It
consequently appears as legitimate to learn a scoring function s by maximizing the criterion (5.2.8).
Whereas rigorous arguments are developed in Section 5.4, we highlight here that, for specific choices
of the score-generating function φ , many relevant criteria considered in the ranking literature can be
accurately approximated by statistics of this form:

• φ(u) = u. The obtained statistic is the famous Wilcoxon-Mann-Whitney ranksum statistic,
incidentally related to the empirical AUC, see Eq. (5.2.5).

• φ(u) = uI{u ≥ u0}, with u0 ∈ (0,1). It corresponds to the local AUC criterion, introduced in
Clémençon and Vayatis (2007), considering the ’best’ instances defined as the ones having the
higher ranks.

• φ(u) = uq, with q > 0. Introduced in Rudin (2006) as the q-norm push, it is related to an
alternative definition of the rank. This originally considers the rank of the positive instances
among the negative ones, instead of the pooled sample. The study of such criterion is much
simpler thanks to the independence property between the two samples, but has an increasing
variance.

• φ(u) = φN(u) = c((N + 1)u)I{u≥ k/(N + 1)}. This function is related to the DCG criterion,
introduced in Cossock and Zhang (2006), and considered as a ’gold standard’ quality measure
in information retrieval, when grades are binary. The weights c(i) define the discount factors
and measure the importance of the ith rank. The integer k defines the number of top-ranked
(best) instances to consider, corresponding to the higher ranks. Also, in the present context,
the sequence {c(i)}i≤N should be chosen increasing.

Depending on the choice of the score-generating function φ , some specific patterns of the pre-
order induced by a scoring function s(z) can be either enhanced by the criterion (5.2.8) or else com-
pletely disappear: for instance, the value of (5.2.8) is essentially determined by the possible presence
of positive instances among top-ranked observations, when considering a score generating function
φ that rapidly vanishes near 0 and takes much higher values near 1.

Investigating the performance of maximizers of the criterion (5.2.8) from a nonasymptotic per-
spective is however far from straightforward, due to the complexity of the latter (i.e. a sum of
strongly dependent random variables). It requires in particular to prove concentration inequalities for
collections of two-sample linear rank statistics, indexed by classes of scoring functions of controlled
complexity (i.e. of VC-type), referred to as two-sample rank processes throughout the chapter. It is
the purpose of the next section to establish such results.

5.3 Concentration inequalities for two-sample rank processes

This section is devoted to prove concentration bounds for collections of two-sample linear rank stat-
istics (5.2.8), indexed by classes S0 ⊂S of scoring functions. In order to study the fluctuations of
(5.2.8) as the full sample size N increases, it is of course required to control the fraction of ’pos-
itive’/’negative’ observations in the pooled dataset. Let p ∈ (0,1) be the ’theoretical’ fraction of
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positive instances. For N ≥ 1/p, we suppose that n = bpNc and m = d(1− p)Ne = N− n. Define
the mixture probability distribution F = pG + (1− p)H. For any s ∈ S , the distribution of s(X)
(i.e. the image of G by s) is denoted by Gs, that of s(Y) (i.e. the image of H by s) by Hs. We
also denote by Fs the image of distribution F by s. For simplicity, the same notations are used
to mean the related cumulative distribution functions. We also introduce their statistical versions
Ĝs,n(t) = (1/n)∑

n
i=1 I{s(Xi)≤ t} and Ĥs,m(t) = (1/m)∑

m
j=1 I{s(Y j)≤ t} and define:

F̂s,N(t) = (n/N)Ĝs,n(t)+(m/N)Ĥs,m(t) . (5.3.1)

Since n/N → p as N tends to infinity, the quantity above is a natural estimator of the c.d.f. Fs.
Equipped with these notations, we can write:

1
n

Ŵ φ
n,m(s) =

1
n

n

∑
i=1

φ

(
N

N + 1
F̂s,N(s(Xi))

)
. (5.3.2)

Hence, the statistic (5.3.2) can be naturally seen as an empirical version of the quantity defined
below, around which it fluctuates.

Definition 51. For a given score-generating function φ , the functional

Wφ (s) = E[(φ ◦Fs)(s(X))] , (5.3.3)

is referred to as the ”Wφ -ranking performance measure”.

Indeed, replacing F̂s,N(s(Xi)) in (5.3.2) by Fs(s(Xi)) and taking next the expectation permits to
recover (A.1.2). Observe in addition that, for φ(u) = u, the quantity (A.1.2) is equal to AUC(s) Def.
13 a soon as the distribution Fs is continuous. The next lemma reveals that the criterion (A.1.2) can
be viewed as a scalar summary of the ROC curve.

Lemma 52. Let φ be a score-generating function. We have, for all s in S ,

Wφ (s) =
1
p

∫ 1

0
φ(u)du− 1− p

p

∫ 1

0
φ (p(1−ROC(s,α))+(1−p)(1−α)) dα . (5.3.4)

PROOF. Using the decomposition Fs = pGs +(1− p)Hs, we are led to the following expression:

pWφ (s) =
∫ 1

0
φ(u) du− (1− p)E[(φ ◦Fs)(s(Y))] .

Then, using a change of variable, we get:

E[(φ ◦Fs)(s(Y))] =
∫ 1

0
φ(p(1−ROC(s,α))+(1−p)(1−α)) dα .

�
As revealed by Eq. (5.3.4), a score-generating function φ that takes much higher values near 1 than
near 0 defines a criterion (A.1.2) that mainly summarizes the behavior of the ROC curve near the
origin, i.e. the preorder on the set of instances with highest scores.

Below, we investigate the concentration properties of the process:{
1
n

Ŵ φ
n,m(s)−Wφ (s)

}
s∈S0

. (5.3.5)
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As a first go, we prove, by means of linearization techniques, that two-sample linear rank statistics
can be uniformly approximated by much simpler quantities, involving i.i.d. averages and two-sample
U-statistics. This will be key to establish probability bounds for the maximal deviation:

sup
s∈S0

∣∣∣∣1nŴ φ
n,m(s)−Wφ (s)

∣∣∣∣ , (5.3.6)

under adequate complexity assumptions for the class S0 of scoring functions considered and to study
next the generalization ability of maximizers of the empirical criterion (5.3.2) in terms of Wφ -ranking
performance. Throughout the chapter, all the suprema considered, such as (5.3.6), are assumed to be
measurable and we refer to Chapter 2.3 in van der Vaart and Wellner (1996) for more details on the
formulation in terms of outer measure/expectation that guarantees measurability.

Uniform approximation of two-sample linear rank statistics. Whereas statistical guarantees for
Empirical Risk Minimization in the context of classification or regression can be directly obtained
by means of classic concentration results for empirical processes (i.e. averages of i.i.d. random
variables), the study of the fluctuations of the process (5.3.5) is far from straightforward, insofar as
the terms averaged in (5.3.2) are not independent. For averages of non-i.i.d. random variables, the
underlying statistical structure can be revealed by orthogonal projections onto the space of sums of
i.i.d. random variables in many situations. This projection argument was the key for the study of
empirical AUC maximization or that of within cluster point scatter, which involved U-processes,
see Clémençon et al. (2008) and Clémençon (2014). In the case of U-statistics, this orthogonal
decomposition is known as the Hoeffding decomposition and the remainder may be expressed as a
degenerate U-statistic, see Hoeffding (1948). For rank statistics, a similar though more complex
decomposition can be considered. We refer to Hájek (1968) for a systematic use of the projection
method for investigating the asymptotic properties of general statistics. From the perspective of
ERM in statistical learning theory, through the projection method, well-known concentration results
for standard empirical processes and U-processes may carry over to more complex collections of
random variables such as two-sample linear rank processes, as revealed by the approximation result
stated below. It holds true under the following technical assumptions.

Assumption 3. Let M > 0. For all s ∈S0, the random variables s(X) and s(Y) are continuous, with
density functions that are twice differentiable and have Sobolev W 2,∞-norms1 bounded by M < +∞.

Assumption 4. The score-generating function φ : [0,1] 7→R, is nondecreasing and twice continuously
differentiable.

Assumption 5. The class of scoring functions S0 is a VC class of finite VC dimension V < +∞.

For the definition of VC classes of functions, one may refer to e.g. van der Vaart and Wellner
(1996), see section 2.6.2 therein, and also recalled in Chapter 3, Section 3.2. By means of the
proposition below, the study of the fluctuations of the two-sample linear rank process (5.3.5) boils
down to that of basic empirical processes.

Proposition 53. Suppose that Assumptions 3-5 are fulfilled. The two-sample linear rank process
(5.3.5) can be linearized/decomposed as follows. For all s ∈S0,

1Recall that the Sobolev space W 2,∞ is the space of all Borelian functions h : R→ R such that h and its first and
second order weak derivatives h′ and h′′ are bounded almost-everywhere. Denoting by ||.||∞ the norm of the Lebesgue
space L∞ of Borelian and essentially bounded functions, W 2,∞ is a Banach space when equipped with the norm ||h||2,∞ =
max{||h||∞, ||h′||∞, ||h′′||∞}.



82 CHAPTER 5. TWO-SAMPLE RANK PROCESSES

Ŵ φ
n,m(s) = nŴφ (s)+

(
V̂ X

n (s)−E
[
V̂ X

n (s)
])

+
(

V̂Y
m (s)−E

[
V̂Y

m (s)
])

+Rn,m(s) , (5.3.7)

where

Ŵφ (s) =
1
n

n

∑
i=1

(φ ◦Fs)(s(Xi)) ,

V̂ X
n (s) =

n−1
N + 1

n

∑
i=1

∫ +∞

s(Xi)
(φ
′ ◦Fs)(u)dGs(u) ,

V̂Y
m (s) =

n
N + 1

m

∑
j=1

∫ +∞

s(Y j)
(φ
′ ◦Fs)(u)dGs(u) .

For any δ ∈ (0,1), there exist constants c1, c3 > 0, c2 ≥ 1, c4 > 6, c5 > 3, depending on φ and V ,
such that

P

{
sup
s∈S0

|Rn,m(s)|< t

}
≥ 1−δ , (5.3.8)

where t = c1 + c2 log(c4/δ ) as soon as N ≥ (c3/p) log(c5/δ ).

The proof of this linearization result is detailed in the Appendix section 5.6.1 (refer to it for a
description of the constants involved in the bound stated above). Its main argument consists in de-
composing (5.3.2) by means of a Taylor expansion at order two of the score generating function φ(u)
and applying next the Hájek orthogonal projection technique (recalled at length in the Introduction
Lemma B.1 for completeness) to the component corresponding to the first order term. The quantity
Rn,m(s) is then formed by bringing together the remainder of the Hájek projection and the component
corresponding to the second order term of the Taylor expansion, while the probabilistic control of its
order of magnitude is established by means of concentration results for (degenerate) one/two-sample
U-processes (see the Appendix section 3.3.2 for more details). It follows from decomposition (6.6.1)
combined with triangular inequality that:

sup
s∈S0

∣∣∣∣1nŴ φ
n,m(s)−Wφ (s)

∣∣∣∣≤ sup
s∈S0

∣∣∣Ŵφ (s)−Wφ (s)
∣∣∣

+ sup
s∈S0

1
n

∣∣∣V̂ X
n (s)−E

[
V̂ X

n (s)
]∣∣∣+ sup

s∈S0

1
n

∣∣∣V̂Y
m (s)−E

[
V̂Y

m (s)
]∣∣∣

+ sup
s∈S0

1
n
|Rn,m(s)| . (5.3.9)

Hence, nonasymptotic bounds for the maximal deviation of the process (5.3.5) can be deduced from
concentration inequalities for standard empirical processes, as shall be seen below. Before this, a few
comments are in order.

Remark 3. (ON THE COMPLEXITY ASSUMPTION) We point out that alternative complexity meas-
ures could be naturally considered, such as those based on Rademacher averages, see e.g. Koltch-
inskii (2006). However, as different types of stochastic process (i.e. empirical process, degenerate
one-sample U-process and degenerate two-sample U-process) are involved in the present nonasymp-
totic study, different types of Rademacher complexities (see e.g. Clémençon et al. (2008)) should be
introduced to control their fluctuations as well. For the sake of simplicity, the concept of VC-type
class of functions is used here.
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Remark 4. (SMOOTH SCORE-GENERATING FUNCTIONS) The subsequent analysis is restricted to
the case of smooth score-generating functions for simplification purposes. We nevertheless point out
that, although one may always build smooth approximants of irregular score generating functions,
the theoretical results established below can be directly extended to non-smooth situations, at the
price of a significantly greater technical complexity.

The theorem below provides a concentration bound for the two-sample rank process (5.3.5). The
proof is based on the uniform approximation result precedingly established, refer to the Appendix
section 5.6.3 for technical details.

Theorem 54. Suppose that the assumptions of Proposition 53 are fulfilled. Then, there exist constants
C1, C3 > 0, C2 ≥ 24, depending on φ , V and C4 ≥C1 depending on φ , such that:

P

{
sup
s∈S0

∣∣∣∣1nŴ φ
n,m(s)−Wφ (s)

∣∣∣∣> t

}
≤C2e−pC3Nt2

, (5.3.10)

as soon as C1/
√

pN ≤ t ≤C4 min(p,1− p).

The concentration inequalities stated above are extensively used in the next section to study the
ranking bipartite learning problem, when formulated as Wφ -ranking performance maximization.

5.4 Performance of maximizers of two-sample rank statistics in bipartite
ranking

This section provides a theoretical analysis of bipartite ranking methods, based on maximization of
the empirical ranking performance measure (5.2.8). While the concentration inequalities established
in the previous section are the key technical tools to derive nonasymptotic bounds for the deficit of
Wφ -ranking performance measure of empirical maximizers, we start by showing that the criterion
(A.1.2) is relevant to measure ranking performance, whatever the score generating function φ is
chosen, beyond the examples listed in Subsection 5.2.2.

Optimal elements. The next result states that optimal scoring functions do maximize the Wφ -ranking
performance and form a collection that coincides with the set S ∗

φ
of maximizers of (A.1.2), provided

that the score-generating function φ is strictly increasing on (0,1).

Proposition 55. Let φ be a score-generating function. The assertions below hold true.

(i) For all (s, s∗) ∈S ×S ∗, we have Wφ (s)≤Wφ (s∗) = W ∗
φ

, where W ∗
φ

de f
= Wφ (Ψ).

(ii) Assuming in addition that the score-generating function φ is strictly increasing on (0,1), we
have: S ∗

φ
= S ∗.

The proof immediately results from (5.3.4) combined with the fact that the ROC curve of increas-
ing transforms of the likelihood ratio Ψ(z) dominates everywhere any other ROC curve, as recalled
in Sections 5.2.2 and 2.2: ∀(s, s∗) ∈S ×S ∗, ∀α ∈ (0, 1), ROC(s,α) ≤ ROC(s∗,α) = ROC∗(α).
Details are left to the reader.

Remark 5. (ON PLUG-IN RANKING RULES) Theoretically, a possible approach to bipartite ranking
is the plug-in method (Devroye et al. (1996)), which consists of using an estimate Ψ̂ of the likelihood
function as a scoring function. As shown by the subsequent bound, when φ is differentiable with a
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bounded derivative, when Ψ̂ is close to Ψ in the L1-sense, it leads to a nearly optimal ordering in
terms of W-ranking criterion:

W ∗φ −Wφ

(
Ψ̂

)
≤ (1− p)||φ ′||∞E[|Ψ̂(X)−Ψ(X)|] .

However, the bound above may be loose and the plug-in approach faces computational difficulties
when dealing with high-dimensional data, see Györfi et al. (2002), which provide the motivation for
exploring algorithms based on Wφ -ranking performance maximization.

Remark 6. (ALTERNATIVE PROBABILISTIC FRAMEWORK) We point out that the present analysis
can be extended to the alternative setup, where, rather than assuming that two samples of sizes n
and m, ’positive’ and ’negative’, are available for the learning tasks considered in this chapter, the
i.i.d. observations Z are supposed to come with a random label Y either equal to +1 or else to −1,
indicating whether Z is distributed according to G or H. If p denotes the probability that the label
Y is equal to 1, the number n of positive observations among a training sample of size N is then
random, distributed as a binomial of size N with parameter p.

Consider any maximizer of the empirical Wφ -ranking performance measure over a class S0 ⊂S
of scoring rules:

ŝ ∈ argmax
s∈S0

Ŵ φ
n,m(s) . (5.4.1)

Since we obviously have:

W ∗φ −Wφ (ŝ)≤ 2 sup
s∈S0

∣∣∣∣1nŴ φ
n,m(s)−Wφ (s)

∣∣∣∣+
(

W ∗φ − sup
s∈S0

Wφ (s)

)
, (5.4.2)

the control of deficit of W -ranking performance of empirical maximizers of (5.3.2) can be deduced
from the concentration properties of the process (5.3.5).

5.4.1 Generalization error bounds and model selection

The corollary below describes the generalization capacity of scoring rules based on empirical maxim-
ization of Wφ -ranking performance criteria. It straightforwardly results from Theorem 54 combined
with the bound (5.4.2).

Corollary 56. Let ŝ be an empirical Wφ -ranking performance maximizer over the class S0, i.e.
ŝ ∈ argmaxs∈S0

Ŵ φ
n,m(s). Under the assumptions of Proposition 53, for any δ ∈ (0,1), we have with

probability at least 1−δ :

W ∗φ −Wφ (ŝ)≤ 2C3

√
log(C2/δ )

pN
+

(
W ∗φ − sup

s∈S0

Wφ (s)

)
, (5.4.3)

as soon as N ≥ c/(pmin(p,1− p)2) log(C2/δ ) and δ ≤C2e−(C1/C3)2
with c > 0 depending on φ , V ,

and where the constants Ci, i≤ 3, being the same as those involved in Theorem 54.

The result above establishes that maximizers of the empirical criterion (5.2.8) achieve a classic
learning rate bound of order OP(1/

√
N) when based on a training data set of size N, just like in

standard classification, see e.g. Devroye et al. (1996). Refer to the Appendix section 5.6.4 for
the proof of an additional result, that provides a bound in expectation for the deficit of Wφ -ranking
performance measure, similar to that established in the subsequent analysis, devoted to the model
selection issue.
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Model selection by complexity penalization. We have investigated the issue of approximately
recovering the best scoring rule in a given class S0 in the sense of the Wφ -ranking performance
measure (A.1.2), which is satisfactory only when the minimum achieved over S0 is close to W ∗

φ
of

course. We now address the problem of model selection, that is the problem of selecting a good
scoring function from one of a collection of VC classes Sk, k ≥ 1. A model selection method is a
data-based procedure that aims at achieving a trade-off regarding two contradictory objectives, i.e. at
finding a class Sk rich enough to include a reasonable approximant of an element of S ∗, while being
not too complex so that the performance of the empirical minimizer over it ŝk = argmaxs∈Sk

Ŵ φ
n,m(s)

can be statistically guaranteed. We suppose that all class candidates Sk, k≥ 1, fulfill the assumptions
of Proposition 53 and denote by Vk the VC dimension of the class Sk. Various model selection
techniques, based on (re-)sampling or data-splitting procedures, could be naturally considered for
this purpose. Here, in order to avoid overfitting, we focus on a complexity regularization approach,
of which study can be directly derived from the rate bound analysis previously carried out, that
consists in substracting to the empirical ranking performance measure the penalty term (increasing
with Vk) given by:

pen(N,k) = B1

√
Vk

pN
+

√
2C logk

p2N
, (5.4.4)

for pN ≥ B2Vk where the constants B1 and B2 are those involved in Proposition 63 and C = 6(‖φ‖2
∞ +

9‖φ ′‖2
∞ + 9||φ ′′||2∞). The scoring function selected maximizes the penalized empirical ranking per-

formance measure, it is ŝk̂(z) where:

k̂ = argmax
k≥1

{
1
n

Ŵ φ
n,m(s)−pen(N,k)

}
. (5.4.5)

The result below shows that the scoring rule ŝk̂ nearly achieves the expected deficit of Wφ -ranking
performance that would have been attained with the help of an oracle, revealing the model minimizing
W ∗

φ
−E[Wφ (ŝk)].

Proposition 57. Suppose that the assumptions of Proposition 53 are fulfilled for any class Sk with
k ≥ 1 and that supk≥1 Vk < +∞. Then, we have:

W ∗φ −E
[
Wφ (ŝk̂)

]
≤min

k≥1

{
2pen(N,k)+

(
W ∗φ − sup

s∈Sk

Wφ (s)

)}
+ 2

√
C

p2N
, (5.4.6)

as soon as pN ≥ B2 supk≥1 Vk, where the constant B2 > 0 is the same as that involved in Proposition
63 and C = 6(‖φ‖2

∞ + 9‖φ ′‖2
∞ + 9||φ ′′||2∞).

Refer to the Appendix section 5.6.5 for the technical proof.

5.4.2 Kernel regularization for ranking performance maximization

Many successful algorithmic approaches to statistical learning (e.g. boosting, support vector ma-
chines, neural networks) consist in smoothing the empirical risk/performance functional to be op-
timized, so as to use computationally feasible techniques based on gradient descent/ascent methods.
Concerning the empirical criterion (5.2.8), although one may choose a regular score generating func-
tion φ (cf Remark 4), smoothness issues arise when replacing Fs in (A.1.2) by the raw empirical
c.d.f. (A.1.1). A classic remedy involves using a kernel-smoothed version of the empirical c.d.f. in-
stead. Let K : R→R be a second-order Parzen-Rosenblatt kernel i.e. a Borelian symmetric function,
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integrable w.r.t. the Lebesgue measure such that
∫

K(t)dt = 1 and
∫

t2K(t)dt < +∞. Precisely, for
any h > 0 and all t ∈ R, define the smoothed approximation of the c.d.f. Fs(t):

F̃s,h(t) =
∫
R

κ

(
t−u

h

)
Fs(du) , (5.4.7)

where κ(t) =
∫ t
−∞

K(u)du and h > 0 is the bandwidth that determines the degree of smoothing, see
e.g. Nadaraya (1964). The uniform integrated error sups∈S0

∫
|F̃s,h(t)−Fs(t)|dt is shown to be of

order O(h2) under the assumptions recalled below, see Jones (1990).

Assumption 6. Let R > 0. For all s in S0, the cumulative distribution function Fs is differentiable
with derivative fs such that

∫
( f ′s(t))

2dt ≤ R.

Assumption 7. The kernel function K is of the form K1 ◦K2, where K1 is a function of bounded
variation and K2 is a polynomial.

Notice that Assumption 6 is fulfilled as soon as Assumption 3 is satisfied with R ≥ M. The
statistical counterpart of (5.4.7) is then:

F̂s,N,h(t) =
1
N

n

∑
i=1

κ

(
t− s(Xi)

h

)
+

1
N

m

∑
j=1

κ

(
t− s(Y j)

h

)
. (5.4.8)

A smooth version of the theoretical criterion (A.1.2) is given by:

W̃φ ,h(s) = E[(φ ◦ F̃s,h)(s(X))] , (5.4.9)

for all s ∈S and an empirical version of the latter is Ŵ φ

n,m,h(s)/n, where:

Ŵ φ

n,m,h(s) =
n

∑
i=1

(φ ◦ F̂s,N,h)(s(Xi)) . (5.4.10)

For any maximizer s̃ of (5.4.10) over the class S0 of scoring function candidates, we almost-surely
have:

W ∗φ −Wφ (s̃)≤ 2 sup
s∈S0

∣∣∣∣1nŴ φ

n,m,h(s)−W̃φ ,h(s)
∣∣∣∣+ sup

s∈S0

∣∣∣W̃φ ,h(s)−Wφ (s)
∣∣∣

+

{
W ∗φ − sup

s∈S0

Wφ (s)

}
. (5.4.11)

This decomposition is similar to that obtained in (5.4.2) for maximizers of the criterion (5.2.8), apart
from the additional bias term. Since the latter can be shown to be of order O(h2) under appropriate
regularity conditions and the first term on the right hand side of the equation above can be controlled
like in Theorem 54, one may bound the deficit of Wφ -ranking performance measure of s̃ as follows.

Proposition 58. Suppose that the assumptions of Proposition 53 are fulfilled, as well as Assumptions
6 and 7. Let s̃ be any maximizer of the smoothed criterion (5.4.10) over the class S0. Then, for any
δ ∈ (0,1), there exist constants C1, C3 > 0, C2 ≥ 24 depending on φ , K, R, V and C4 > 0 is a con-
stant depending on φ , K and R, such that we have with probability at least 1−δ :

W ∗φ −Wφ (s̃)≤ 2C3

√
log(C2/δ )

pN
+C4h2 +

{
W ∗φ − sup

s∈S0

Wφ (s)

}
, (5.4.12)

as soon as N ≥ (C1/p2c) log(C2/δ ) and δ ≤C2e−(C1/C3)2
with c > 0 depending on φ , K, R, V .

The proof is detailed in the Appendix section 5.6.6.
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5.5 Conclusion

This chapter argues that two-sample linear rank statistics provide a very flexible and natural class
of empirical performance measures for bipartite ranking. We have showed that it encompasses in
particular well-known criteria used in medical diagnosis and information retrieval and proved that, in
expectation, these criteria are maximized by optimal scoring functions and put the emphasis on spe-
cific parts of their ROC curves, depending on the score generating function involved in the criterion
considered. We have established concentration results for collections of such statistics, referred to
as two-sample rank processes here, under general assumptions and have deduced from them statist-
ical learning guarantees for the maximizers of such ranking criteria in the form of a generalization
bound of order OP(1/

√
N), where N means the size of the pooled training sample. Algorithmic is-

sues concerning practical maximization have also been investigated and we display numerical results
supporting the theoretical analysis carried out in Chapter 7.

5.6 Proofs

The proofs of the results stated in the main corpus are detailed below.

5.6.1 Proof of Proposition 53

Let θ0 ∈ (0,1). Since φ(u) ∈ C 2([0,1],R) by virtue of Assumption 4, a Taylor expansion of order
two yields: for all θ ∈ (0,1)

φ(θ) = φ(θ0)+(θ −θ0)φ
′(θ0)+

∫
θ

θ0

(θ −u)φ
′′(u)du . (5.6.1)

Let s ∈S0. For all t ∈ R, we have

φ

(
NF̂s,N(t)

N + 1

)
= φ ◦Fs(t)+

(
NF̂s,N(t)

N + 1
−Fs(t)

)
φ
′ ◦Fs(t)

+
∫ NF̂s,N(t)/(N+1)

Fs(t)

(
NF̂s,N(t)

N + 1
−u

)
φ
′′(u)du , (5.6.2)

with probability one. Let i≤ n, for t = s(Xi), (5.6.2) writes:

φ

(
NF̂s,N(s(Xi))

N + 1

)
= φ ◦Fs(s(Xi))

+

(
NF̂s,N(s(Xi))

N + 1
−Fs(s(Xi))

)
φ
′ ◦Fs(s(Xi))+ ti(s) a.s. , (5.6.3)

where
|ti(s)| ≤ (‖φ ′′‖∞/2)

(
N/(N + 1)F̂s,N(s(Xi))−Fs(s(Xi))

)2
.

Hence, by summing over i ∈ {1, . . . , n}, one gets that the approximation of Ŵn,m(s) stated below
holds true almost-surely:

Ŵn,m(s) = nŴφ (s)+ Bn,m(s)+ T̂n,m(s) , (5.6.4)
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where

Bn,m(s) =
n

∑
i=1

(
NF̂s,N(s(Xi))

N + 1
−Fs(s(Xi))

)
φ
′ ◦Fs(s(Xi)), (5.6.5)

|T̂n,m(s)| =
n

∑
i=1
|ti(s)| ≤ ‖φ

′′‖∞

2

n

∑
i=1

(
NF̂s,N(s(Xi))

N + 1
−Fs(s(Xi))

)2

. (5.6.6)

Linearization of Bn,m(·). First, observe that

Bn,m(s) =
1

N + 1

n

∑
i=1

n

∑
j 6=i

I{s(X j)≤ s(Xi)}φ ′ ◦Fs(s(Xi))

+
1

N + 1

n

∑
i=1

m

∑
j=1

I{s(Y j)≤ s(Xi)}φ ′ ◦Fs(s(Xi))

+
n

∑
i=1

(
1

N + 1
−Fs(s(Xi))

)
φ
′ ◦Fs(s(Xi)) . (5.6.7)

Notice that the first two terms are U-processes indexed by S0, cf Chap. Section 3.3, while the last
term is an empirical process. Indeed, one may write

Bn,m(s) =
n(n−1)

N + 1
Un(ks)+

nm
N + 1

Un,m(`s)+ K̂n,m(s) , (5.6.8)

where

Un(ks) =
1

n(n−1)

n

∑
i=1

n

∑
j 6=i

I{s(X j)≤ s(Xi)}φ ′ ◦Fs(s(Xi)) (5.6.9)

is a (nondegenerate) 1-sample U-process of degree 2 based on the random sample {X1, . . . , Xn}with
nonsymmetric kernel ks(x,x′) = I{s(x′)≤ s(x)}φ ′ ◦Fs(s(x)) on X ×X ,

Un,m(`s) =
1

nm

n

∑
i=1

m

∑
j=1

I{s(Y j)≤ s(Xi)}φ ′ ◦Fs(s(Xi)) (5.6.10)

is a (nondegenerate) two-sample U-process of degree (1,1) based on the samples {X1, . . . , Xn} and
{Y1, . . . , Ym} with kernel `s(x,y) = I{s(y)≤ s(x)}φ ′ ◦Fs(s(x)) on X ×Y , and

K̂n,m(s) =
n

∑
i=1

(
1

N + 1
−Fs(s(Xi))

)
φ
′ ◦Fs(s(Xi))

is an empirical process based on the Xi’s. In order to write Bn,m as an empirical process plus a
(negligible) remainder term, the Hoeffding decomposition is applied to the U-processes above, cf
Appendix 3.3.1:

Un(ks) = E[Un(ks)]+Ûn(ks)+Rn(ks) , (5.6.11)

Un,m(`s) = E[Un,m(`s)]+Ûn,m(`s)+Rn,m(`s) , (5.6.12)

where

Ûn(ks) =
1
n

n

∑
i=1

ks,1,1(Xi)+
1
n

n

∑
i=1

ks,1,2(Xi) , (5.6.13)
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with ks,1,1(x) = E[ks(x,X)]−E[Un(ks)] and ks,1,2(x) = E[ks(X,x)]−E[Un(ks)], and

Ûn,m(`s) =
1
m

m

∑
j=1

`s,1,1(Y j)+
1
n

n

∑
i=1

`s,1,2(Xi) , (5.6.14)

with `s,1,1(y) = E[`s(X,y)]−E[Un,m(`s)] and `s,1,2(x) = E[`s(x,Y)]−E[Un,m(`s)].
Consequently, the Hájek projection of the process Bn,m(s) is given by

B̂n,m(s)−E[B̂n,m(s)] =
n(n−1)

N + 1
Ûn(ks)+

nm
N + 1

Ûn,m(`s)+ K̂n,m(s)−E[K̂n,m(s)] . (5.6.15)

The following result provides an approximation of (5.6.15) and is proved in Appendix 5.6.2.

Lemma 59. Under Assumptions 3-5, the Hájek projection of the stochastic process Bn,m(·), denoted
by B̂n,m(·) and indexed by S0, onto the subspace generated by the random variables X1, . . . , Xn and
Y1, . . . , Ym can be approximated as follows: for all s ∈S0,

B̂n,m(s)−E
[
B̂n,m(s)

]
= V̂ X

n (s)+V̂Y
m (s)+ R̂n,m(s) , (5.6.16)

where

V̂ X
n (s) =

n−1
N + 1

n

∑
i=1

ks,1,1(Xi), V̂Y
m (s) =

n
N + 1

m

∑
j=1

`s,1,1(Y j) .

Let δ > 0, there exist constants A1,A3 > 0, A2 ≥ 1 depending on φ and V and for all A4 ≥ A1, such
that

P

{
sup
s∈S0

∣∣∣∣R̂n,m(s)
∣∣∣∣> t

}
≤ A2 exp

{
−A3Nt2

pσ2

}
, (5.6.17)

as soon as A1σ
√

p log(2‖φ ′‖∞/σ)/N ≤ t ≤ 2pA4‖φ ′‖∞, with σ2 =
∫

[0,1] φ
′2.

The last step relies on all previous decompositions, so as to approximate Bn,m(·) by the sum of two
empirical processes V̂ X

n (·) and V̂Y
n (·), with a uniform control of the error. All residual terms, R̂n,m(s)

(Lemma 59) plus the remainders of the U-processes, are the components of the process RB
n,m(s) , see

the following Lemma 60.

Lemma 60. Suppose that Assumptions 3-5 are fulfilled. The stochastic process Bn,m(.) can be ap-
proximated as follows: for all s ∈S0,

Bn,m(s)−E [Bn,m(s)] = V̂ X
n (s)+V̂Y

m (s)+RB
n,m(s) . (5.6.18)

Let δ > 0. There exist D1 > 0 universal constant, and constants D3, D4 > 0, D2 ≥ 1, d1, d2 > 3
depending on φ and V , such that with probability at least 1−δ :

sup
s∈S0

|RB
n,m(s)| ≤ ‖φ ′‖∞

√
p(1− p)D1 log(d1/δ )+(p‖φ ′‖∞D4) log(d2/δ ) , (5.6.19)

as soon as N ≥ (pD3)−1 log(D2/δ ).

Refer to Appendix 5.6.2 for the detailed proof.
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A uniform bound for T̂n,m(·). By virtue of (5.6.5), we have:

sup
s∈S0

|T̂n,m(s)| ≤ n‖φ ′′‖∞

(
sup

(s,t)∈S0×R

(
F̂s,N(t)−Fs(t)

)2
+

1
(N + 1)2

)
. (5.6.20)

Observe also that

sup
(s,t)∈S0×R

|F̂s,N(t)−Fs(t)| ≤ p sup
(s,t)∈S0×R

|Ĝs,n(t)−Gs(t)|

+(1− p) sup
(s,t)∈S0×R

|Ĥs,m(t)−Hs(t)|+
2
N

. (5.6.21)

A classic concentration bound for empirical processes based on the VC inequality (see e.g. Theorems
3.2 and 3.4 in Boucheron et al. (2005)) shows that, for any δ ∈ (0,1), we have with probability at
least 1−δ :

sup
(s,t)∈S0×R

|Ĝs,n(t)−Gs(t)| ≤ c

√
V

n
+

√
2log(1/δ )

n
,

where c > 0 is a universal constant. In a similar fashion, we have, with probability larger than 1−δ ,

sup
(s,t)∈S0×R

|Ĥs,m(t)−Hs(t)| ≤ c

√
V

m
+

√
2log(1/δ )

m
.

Combining the bounds above with the union bound, (5.6.21) and (5.6.20) we obtain that, for any
δ ∈ (0,1), we have with probability larger than 1−δ :

sup
s∈S0

|T̂n,m(s)| ≤ n||φ ′′||∞
(

12
(

c2V + log(2/δ )

N
+

1
N2

)
+

1
(N + 1)2

)
≤ B1 + B2 log(2/δ ) , (5.6.22)

where B1 (resp. B2) is a constant that only depends on φ and V (resp. on φ ).
To end the proof, it suffices to observe that the remainder process is the sum of RB

n,m(s) and T̂n,m(s).
Combining bounds (5.6.19) and (5.6.22), we get that, with probability at least 1−δ ,

sup
s∈S0

|Rn,m(s)|= sup
s∈S0

|RB
n,m(s)+ T̂n,m(s)| ≤ B1 +‖φ ′‖∞κpD log(2d/δ )+ B2 log(4/δ ) (5.6.23)

as soon as N≥ (pD3)−1 log(D2/δ ), with D = max(
√

D1,D4), d = max(d1,d2), κp = max(
√

p(1− p), p).
As B2 > 1 , d ≥ 3, and for small δ , we obtain the upperbound B1 +(‖φ ′‖∞κpD + B2) log(2d/δ ).

5.6.2 Intermediary results

The intermediary results involved in Section 5.6.1 are now established.

Permanence Properties

The lemmas below claim that the collections of kernels/functions involved in the decomposition
obtained in Appendix 5.6.1 are of VC-type and uniformly bounded.
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Lemma 61. Suppose that Assumptions 4 and 5 are fulfilled. Then, the collections of kernels {ks(x,x′) :
s ∈S0} and {`s(x,y) : s ∈S0} and are bounded VC-type classes of functions with parameters fully
determined by V and φ .

PROOF. Recall that: ∀(x,x′) ∈X 2,

ks(x,x′) = I{s(x′)≤ s(x)}
(
φ
′ ◦Fs

)
(s(x)).

Hence, we have sup(x,x′)∈X 2 |ks(x,x′)| ≤ ||φ ′||∞ for all s ∈ S0. In additions, since the collections
{(x,x′) ∈ X 2 7→ s(x) : s ∈ S0} and {(x,x′) ∈ X 2 7→ s(x′) : s ∈ S0} are VC classes of func-
tions, classic permanence properties of VC classes of functions (see e.g. Lemma 2.6.18) shows
that {(x,x′) ∈ X 2 7→ s(x)− s(x′) : s ∈ S0} is also a VC class, as well as the class of indicator
functions {(x,x′) ∈ X 2 7→ I{s(x′) ≤ s(x)} : s ∈ S0}. Consequently, the argument of Lemma
49’s proof permits to see easily that {(x,x′) ∈ X 2 7→ Fs(s(x)) = E[I{s(X) ≤ s(x)}] : s ∈ S0}
is of VC type, just like {(x,x′) ∈ X 2 7→ (φ ′ ◦ Fs)(s(x)) : s ∈ S0} using the Lipschitz property
of φ ′, cf Assumption 4. Finally, being composed of products of a function in the bounded VC-
type class {(x,x′) ∈X 2 7→ I{s(x′) ≤ s(x)} : s ∈S0} by a function in the bounded VC-type class
{(x,x′) ∈X 2 7→ (φ ′ ◦Fs)(s(x)) : s ∈S0}, the collection {ks : s ∈S0} is still a bounded VC-type
class of functions. A similar reasoning can be applied to show that {`s : s ∈S0} is a bounded VC-
type class of kernels on X ×Y . �

The following result is straightforwardly deduced from the lemma above combined with Lemma 49.

Lemma 62. Suppose that Assumptions 4 and 5 are fulfilled. Then, the collections of functions/kernels
{ks,1,1(x) : s ∈S0}, {ks,1,2(x) : s ∈S0}, {ks(x,x′)− ks,1,1(x)− ks,1,2(x′) : s ∈S0}, {`s,1,1(y) : s ∈
S0}, {`s,1,2(x) : s ∈S0} and {`s(x,y)− `s,1,1(y)− `s,1,2(x) : s ∈S0} are bounded VC-type classes
with parameters fully determined by V and φ .

Proof of Lemma 59

For s ∈S0, by adding the diagonal term, the empirical process can be written

R̂n,m(s) =

(
n

N + 1
− p
) n

∑
i=1

ks,1,2(Xi)+

(
m

N + 1
− (1− p)

) n

∑
i=1

`s,1,2(Xi) . (5.6.24)

We uniformly bound all three empirical processes in probability using classic concentration
bounds, see e.g. Theorem 2.1 in Giné and Guillou (2002), as follows. Assuming Assumptions
4-5, Lemma 62 states that each class of functions {ks,1,2 : s ∈ S0}, {`s,1,2 : s ∈ S0} is uniformly
bounded and VC-type of parameters depending only on φ and on the VC dimension V . For the
class {x 7→ φ ′ ◦Fs(s(x)) : s ∈S0}, the arguments are exposed in the proof of Lemma 61. The vari-
ance of the kernels can be bounded for all s ∈ S0, by σ2 =

∫
[0,1] φ

′2 and σ2 ≤ ||φ ′||2∞ and notice
that |n/(N + 1)− p| ≤ 1/N and |m/(N + 1)− (1− p)| ≤ 1/N. Let t > 0, there exist a sequence of
constants A1,i > 0,A2,i ≥ 1,A3,i > 0 depending on φ and V , i ∈ {1,2}, such that for all A4,i ≥ A1,i,
the following inequalities hold.

P

{
1
N

sup
s∈S0

∣∣∣∣ n

∑
i=1

ks,1,2(Xi)

∣∣∣∣> t

}
≤ A2,1 exp

{
−A3,1Nt2

pσ2

}
, (5.6.25)
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as soon as A1,1σ
√

p log(2‖φ ′‖∞/σ)/N ≤ t ≤ pA4,1‖φ ′‖∞,

P

{
1
N

sup
s∈S0

∣∣∣∣ n

∑
i=1

`s,1,2(Xi)

∣∣∣∣> t

}
≤ A2,2 exp

{
−A3,2Nt2

pσ2

}
, (5.6.26)

as soon as A1,2σ
√

p log(2‖φ ′‖∞/σ)/N ≤ t ≤ pA4,2‖φ ′‖∞. The union bound with threshold t/2 yields

P

{
sup
s∈S0

∣∣∣∣R̂n,m(s)
∣∣∣∣> t

}
≤ A2 exp

{
−A3Nt2

pσ2

}
, (5.6.27)

as soon as A1σ
√

p log(2‖φ ′‖∞/σ)/N≤ t ≤ 2pA4‖φ ′‖∞, with A1 = 2max(A1,1,A1,2), A2 = 2max(A2,1,A2,2),
A3 = min(A3,1,A3,2)/4, A4 = min(A4,1,A4,2) such that A4 ≥ A1.

Proof of Lemma 60

The remainder of the decomposition (60) is obtained by combining Eq. (5.6.8), (5.6.15) and yields,
for all s ∈S0 ∣∣RB

n,m(s)
∣∣≤ |R̂n,m(s)|+ p2N|Rn(ks)|+ p(1− p)N|Rn,m(`s)| .

Suppose Assumptions 4-5 are fulfilled. The first process can be uniformly bounded on S0 as proved
in Lemma 59. For the two others, we apply the results of Lemmas 44 and 45 as follows. The process
Rn(ks) (resp. Rn,m(`s)) is the residual term obtained by decomposing the U-process Un(ks) (Eq.
(5.6.11), resp. (5.6.12))), for all s ∈S0. By Lemma 62, its class of degenerate kernels {(x,x′) 7→
ks(x,x′)− ks,1,1(x)− ks,1,2(x′) : s ∈ S0} (resp. {(x,y) 7→ `s(x,y)− `s,1,1(y)− `s,1,2(x) : s ∈ S0})
is uniformly bounded and VC-type of parameters depending only on φ and on the VC dimension
V . Notice that the three classes of functions have variances and envelopes which can be similarly
bounded by σ2 =

∫
[0,1] φ

′2 ≤ ||φ ′||2∞, up to a multiplicative constant for both residuals. Let δ > 0,
there exist constants A1,B1 > 0,A2,B2 ≥ 1,A3,B3 > 0 depending on φ and V s.t. with probability at
least 1−δ

sup
s∈S0

∣∣∣∣R̂n,m(s)
∣∣∣∣≤ ‖φ ′‖∞

√
p log(A2/δ )

A3N
, (5.6.28)

as soon as N ≥ (4pA3)−1 log(A2/δ ). Also by Lemma 44

p2N sup
s∈S0

|Rn(ks)| ≤ (p‖φ ′‖∞/B3) log(B2/δ ) , (5.6.29)

when N ≥ (pB3)−1 log(B2/δ ). And, by Lemma 45, there exist constants C1 > 0, C2 > 1 depending
on V , φ and a universal constant C3 > 0 such that

p(1− p)N sup
s∈S0

|Rn,m(`s)| ≤ ‖φ ′‖∞

√
p(1− p)C3 log(C2/δ ) , (5.6.30)

for log(C2/δ ) ≥ C1(‖φ ′‖2
∞C3)−1. The union bound concludes by considering constants such that

with probability at least 1−δ

sup
s∈S0

|RB
n,m(s)| ≤ ‖φ ′‖∞

√
p(1− p)C3 log(3C2/δ )+(p‖φ ′‖∞/B3) log(3B2/δ ) , (5.6.31)

as soon as N ≥ (pD3)−1 log(D2/δ ), where D2 = 3max(A2,B2) and D3 = min(4A3,B3).
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5.6.3 Proof of Theorem 54

Observe, by virtue of Proposition 53 and for all s ∈S0

∣∣∣∣1nŴ φ
n,m(s)−Wφ (s)

∣∣∣∣≤ 1
n

∣∣∣∣ n

∑
i=1

φ ◦Fs(s(Xi))−E[φ ◦Fs(s(X))]

∣∣∣∣
+

1
N

∣∣∣∣ n

∑
i=1

ks,1,1(Xi)

∣∣∣∣+ 1
N

∣∣∣∣ m

∑
j=1

`s,1,1(Y j)

∣∣∣∣+ 1
n

∣∣∣∣Rn,m(s)
∣∣∣∣ .

Under Assumptions 4-5, we sequentially provide uniform bounds in probability for all processes.
The classes of kernels {x 7→ ks,1,1(x) : s ∈ S0} and {y 7→ `s,1,1(y) : s ∈ S0}, by Lemma 62, are
bounded and VC-type of parameters depending on φ and on the VC dimension V of S0. Their
variance can be bounded, for all s∈S0, by σ2 =

∫
[0,1] φ

′2 and σ2 ≤ ||φ ′||2∞. As well for the collection
{x 7→ φ ◦Fs(s(x)) : s ∈S0} where the arguments are detailed in Lemma 61 and of variance bounded
by, for all s ∈S0, by Σ2 =

∫
[0,1] φ

2 and Σ2 ≤ ||φ ||2∞. Similarly to Lemma 59, we apply Theorem 2.1
in Giné and Guillou (2002) to the empirical processes Ŵφ (s), V̂ X

n (s) and V̂Y
m (s) as follows.

Let t > 0. There exist a sequence of constants C1,i > 0,C2,i ≥ 1,C3,i > 0 depending on φ and V , such
that for all C4,i ≥C1,i, i ∈ {1,2,3}, the following inequalities hold true.

P

{
sup
s∈S0

∣∣∣∣Ŵφ (s)−Wφ (s)
∣∣∣∣> t

}
≤C2,1 exp

{
−C3,1 pNt2

Σ2

}
, (5.6.32)

as soon as C1,1‖φ‖∞

√
(1/pN) log(2‖φ‖∞/Σ)≤ t ≤C4,1‖φ‖∞.

P

{
1
N

sup
s∈S0

∣∣∣∣ n

∑
i=1

ks,1,1(Xi)

∣∣∣∣> t

}
≤C2,2 exp

{
−C3,2Nt2

pσ2

}
, (5.6.33)

as soon as C1,2||φ ′||∞
√

(p/N) log(2‖φ ′‖∞/σ)≤ t ≤ pC4,2||φ ′||∞.

P

{
1
N

sup
s∈S0

∣∣∣∣ m

∑
j=1

`s,1,1(Y j)

∣∣∣∣> t

}
≤C2,3 exp

{
− C3,3Nt2

(1− p)σ2

}
, (5.6.34)

as soon as C1,3||φ ′||∞
√

((1− p)/N) log(2‖φ ′‖∞/σ)≤ t ≤ (1− p)C4,3||φ ′||∞. Proposition 53 provides
the existence of constants C > 6, D > 0 and c3 > 0, c5 > 3 depending on φ and V , such that

P

{
1
n

sup
s∈S0

|Rn,m(s)|> t

}
≤C exp

{
− pNt

(‖φ ′‖∞κpD + B2)

}
, (5.6.35)

as soon as N ≥ (c3/p) log(c5/δ ). The remainder process is negligible with respect to the empirical
processes and we gather the four bounds to get

P

{
sup
s∈S0

∣∣∣∣1nŴ φ
n,m(s)−Wφ (s)

∣∣∣∣> t

}
≤C2e−C3Nt2

, (5.6.36)

where C2 = 4max({C2,i, i≤ 3},C), C3 = (1/9)min(C3,1 p/Σ2,C3,2/(pσ2),C3,3/((1− p)σ2)), as soon
as (5.6.35) is satisfied and C1/

√
pN ≤ t ≤ C4 min(p,1− p), C1 > 0 depending on φ , V and C4 ≥

max(C1,i, i≤ 3) depending on φ .
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5.6.4 A generalization bound in expectation

For the sake of completeness, we state and prove a version in expectation of the generalization result
formulated in Corollary 56.

Proposition 63. Under the assumptions of Proposition 53, the expected risk bound is derived as
follows:

E
[
W ∗φ −Wφ (ŝ)

]
≤ B1

√
V

pN
+W ∗φ −E

[
sup
s∈S0

Wφ (s)

]
, (5.6.37)

for pN ≥ B2V with constants B1,B2 > 0 depending on φ , V .

PROOF. Following the decomposition (5.3.9), we bound in expectation each process recalling that
they are indexed by uniformly bounded VC-type classes, refer to Proof 5.6.3 for the details on the-
oretical guarantees concerning the permanence properties. For the empirical processes Ŵφ , V̂ X

n and
V̂Y

m , we use Theorem 2.1 in Giné and Guillou (2002), whereas for the remainder process, we require
the following result that is proved subsequently.

Lemma 64. Under the assumptions of Proposition 53, the remainder process can be uniformly
bounded in expectation as follows:

E

[
sup
s∈S0

|Rn,m(s)|
]
≤ D1(1 + 1/p + 1/

√
p(1− p)) , (5.6.38)

for pN ≥ D2V with constants D1 > 0 depending on φ , V and D2 > 0 on φ .

By means of Giné and Guillou (2002), there exist universal constants Bi > 0, and bi > 0, i ∈
{1, 2, 3}, depending on φ , V such that the inequalities below hold true.

E

[
sup
s∈S0

∣∣∣∣Ŵφ (s)−Wφ (s)
∣∣∣∣
]
≤ B1

(
b1

V ‖φ‖∞

pN
+‖φ‖∞

√
b1

V

pN

)
, (5.6.39)

and

E

[
1
n

sup
s∈S0

∣∣∣V̂ X
n (s)−E

[
V̂ X

n (s)
]∣∣∣]≤ B2

(
b2

V ‖φ ′‖∞

pN
+‖φ ′‖∞

√
b2

V

pN

)
, (5.6.40)

as well as

E

[
1
n

sup
s∈S0

∣∣∣V̂Y
m (s)−E

[
V̂Y

m (s)
]∣∣∣]≤ B3

(
b3

V ‖φ ′‖∞

pN
+‖φ ′‖∞

√
b3

V

pN

)
, (5.6.41)

observing that
∫

[0,1] φ
2 ≤ ‖φ‖2

∞ and
∫

[0,1] φ
′2 ≤ ||φ ′||2∞. The remainder process being of higher order,

we conclude

E

[
sup
s∈S0

∣∣∣∣1nŴ φ
n,m(s)−Wφ (s)

∣∣∣∣
]
≤ B

√
b

V

pN
, (5.6.42)

for pN ≥max(b,D2)V with constants B > 0 depending on φ and b > 0 depending on φ , V .
�
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PROOF. For all s ∈S0

|Rn,m(s)| ≤ |R̂n,m(s)|+ N|Rn(ks)|+ N|Rn,m(`s)|+ |T̂n,m(s)| . (5.6.43)

The process appearing first in the remainder induced by the Hájek projection method (Lemma 59), is
composed of sums of empirical processes, hence applying Theorem 2.1 in Giné and Guillou (2002)
to each process of (6.6.7) yields

E

[
sup
s∈S0

∣∣∣R̂n,m(s)
∣∣∣]≤ D1

(
d
V ‖φ ′‖∞

N
+‖φ ′‖∞

√
d

pV

N

)
, (5.6.44)

with constants D1 > 0 depending on φ and d > 0 on φ , V .The stochastic processes Rn(ks) and
Rn,m(`s) being both degenerate U-processes, respectively one-sample of degree 2 and two-sample of
degree (1,1), we apply results in Nolan and Pollard (1987) (see Theorem 6 therein) and Neumeyer
(2004) (see Lemma 2.4 therein) so as to get

E

[
sup
s∈S0

|Rn(ks)|
]
≤ D2V

pN
, (5.6.45)

and

E

[
sup
s∈S0

|Rn,m(`s)|
]
≤ D3V√

p(1− p)N
, (5.6.46)

D2, D3 > 0 constants of φ ,V . For T̂n,m(s), the concentration inequality proved in Eq. (5.6.22) holds
true for all δ ∈ (0,1). Hence, we have

E

[
sup
s∈S0

∣∣∣T̂n,m(s)
∣∣∣] ≤ u +

∫
∞

u
P

{
sup
s∈S0

∣∣∣T̂n,m(s)
∣∣∣≥ x

}
dx = u + 2B2e−(u−B1)/B2 . (5.6.47)

Minimizing the bound above w.r.t. u > 0, we obtain the point B1 +B2 log(2) and the upperbound then
writes B1 +B2(1+ log(2)), where B1 (resp. B2) is a constant that only depends on φ and V (resp. on
φ ). Combining all bounds together permits to conclude: for N ≥ V log(d), we have

E

[
sup
s∈S0

|Rn,m(s)|
]
≤ D1‖φ ′‖∞ +

D2V

p
+

D3V√
p(1− p)

+ B1 + B2(1 + log(2))

≤ D(1 + 1/p + 1/
√

p(1− p)) , (5.6.48)

where D > 0 constant depending on φ , V .�

5.6.5 Proof of Proposition 57

We first prove the following lemma.

Lemma 65. Let S0 ⊂S and suppose that Assumptions 3-5 are fulfilled. For all t > 0, we have:

P

{
sup
s∈S0

∣∣∣Wφ (s)−Ŵ φ
n,m(s)/n

∣∣∣≥ E

[
sup
s∈S0

∣∣∣Wφ (s)−Ŵ φ
n,m(s)/n

∣∣∣]+ t

}

≤ exp
{
− p2Nt2

6(‖φ‖2
∞ + 9‖φ ′‖2

∞ + 9||φ ′′||2∞)

}
. (5.6.49)
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PROOF. Recall the decomposition of Ŵ φ
n,m(s), for all s ∈S0, proved in Proposition 53

Ŵn,m(s) = nŴφ (s)+ Bn,m(s)+ T̂n,m(s) . (5.6.50)

Considering that sups∈S0

∣∣∣Wφ (s)−Ŵ φ
n,m(s)/n

∣∣∣ is a function of the N independent random variables
X1, . . . , Xn, Y1, . . . , Ym, observe that changing the value of any of the Xi’s while keeping all the
others fixed changes the value of the supremum by at most

2||φ ||∞ + 2||φ ′||∞
(

1 +
m + 2(n−1)

N + 1

)
+ 2||φ ′′||∞

1 + 2m
N2 ,

taking into account the jumps of each of the three terms involved in (5.6.50), see Eq. (5.6.7) and
(5.6.20). In a similar way, changing the value of any of the Y j’s changes the value of the supremum
by at most

2||φ ′||∞
n

N + 1
+ 2||φ ′′||∞

1 + 2n
N2 .

When taking the squares, both can be upperbounded by 12(‖φ‖2
∞ + 9‖φ ′‖2

∞ + 9||φ ′′||2∞). The desired
bound stated then straightforwardly results from the application of the bounded difference inequality,
see McDiarmid (1989). �

Let ε > 0, using Proposition 63 and Lemma 65, we have, for any k ≥ 1,

P

{
Ŵ φ

n,m(ŝk)−B1

√
Vk

pN
−Wφ (ŝk) > ε

}

≤ P

{
sup
s∈Sk

∣∣∣Wφ (s)−Ŵ φ
n,m(s)/n

∣∣∣> E

[
sup
s∈Sk

∣∣∣Wφ (s)−Ŵ φ
n,m(s)/n

∣∣∣]+ ε

}

≤ exp
{
− p2Nε2

C

}
, (5.6.51)

as soon as pN ≥ B2Vk and where C = 6(‖φ‖2
∞ + 9‖φ ′‖2

∞ + 9||φ ′′||2∞). For each k ≥ 1, denote the
penalized empirical ranking performance measure by

Ŵ φ ,k
n,m (ŝk)/n = Ŵ φ

n,m(ŝk)/n−B1

√
Vk

pN
−

√
2C logk

p2N
. (5.6.52)

For any ε > 0, we have, as soon as pN ≥ B2 supk≥1 Vk,

P
{

Ŵ φ ,k̂
n,m (ŝk̂)/n−Wφ (ŝk̂)≥ ε

}
≤ ∑

k≥1
P
{

Ŵ φ ,k
n,m (ŝk)/n−Wφ (ŝk)≥ ε

}
≤ ∑

k≥1
P

{
Ŵ φ

n,m(ŝk)/n−B1

√
Vk

pN
−Wφ (ŝk) > ε +

√
2C logk

p2N

}

≤ ∑
k≥1

exp

− p2N
C

(
ε +

√
2C logk

p2N

)2
≤ exp

(
− p2Nε2

C

)
∑
k≥1

k−2 < 2exp
{
− p2Nε2

C

}
. (5.6.53)
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For all k ≥ 1, W ∗k = sups∈Sk
Wφ (s) = Wφ (s∗k) and consider the decomposition

W ∗k −Wφ (ŝk̂) =
(

W ∗k −Ŵ φ ,k̂
n,m (ŝk̂)/n

)
+
(

Ŵ φ ,k̂
n,m (ŝk̂)/n−Wφ (ŝk̂)

)
.

The expectation of the second term of the right hand side of the equation above can be bounded by
means of the tail bound (5.6.53)

E
[
Ŵ φ ,k̂

n,m (ŝk̂)/n−Wφ (ŝk̂)
]
≤ 2

√
C

p2N
. (5.6.54)

for any k ≥ 1, as soon as pN ≥ B2 supk≥1 Vk. Concerning the expectation of the first term, observe
that

E
[
W ∗k −Ŵ φ ,k̂

n,m (ŝk̂)/n
]
≤ E

[
W ∗k −Ŵ φ ,k

n,m (s∗k)
]

≤ E
[
Wφ (s∗k)−Ŵ φ

n,m(s∗k)
]

+ pen(N,k)≤ B1

√
Vk

pN
+ pen(N,k) ,

for any k ≥ 1, as soon as pN ≥ B2 supk≥1 Vk. Summing the bound obtained and that in (5.6.54) gives
the desired result.

5.6.6 Proof of Proposition 58

The proof consists in combining the two results stated below with the decomposition (5.4.11) of the
Wφ -ranking performance deficit of the maximizer. The first result is the analogue of Theorem 54 for
the smoothed criterion.

Theorem 66. Suppose that the assumptions of Proposition 53 are fulfilled. Then, for any δ ∈ (0,1),
there exist constants C1, C3 > 0, C2 ≥ 24, depending on φ , K, R, V such that with probability larger
than 1−δ :

sup
s∈S0

∣∣∣Ŵ φ

n,m,h(s)/n−W̃φ ,h(s)
∣∣∣≤C3

√
log(C2/δ )

pN
, (5.6.55)

as soon as N ≥ c/(pmin(p,1− p)2) log(C2/δ ) and δ ≤ C2e−(C1/C3)2
with c > 0 depending on

φ , K, R, V .

The proof being quite similar to that of Theorem 54, it is omitted. Assumption 7 ensuring that
the class {K((·− t)/h); , t ∈ Rq, h > 0} (q = 1 here) is bounded VC-type (see e.g. Lemma 22(ii) in
Nolan and Pollard (1987) and Giné et al. (2004)), classic permanence properties can be used to check
that all the classes of functions over which uniform bounds are taken are of finite VC dimension. The
second result provides a uniform bound for the additional bias error made when approximating Wφ (s)
by W̃φ ,h(s) for s ∈S0.

Lemma 67. Suppose that Assumptions 6 is satisfied. Then, for all h > 0, we have:

sup
s∈S0

∣∣∣W̃φ ,h(s)−Wφ (s)
∣∣∣≤C4h2, (5.6.56)

where C4 > 0 is a constant depending on φ , K and R only.

Details are left to the reader, the proof is straightforward under Assumption 6, using the regularity of
the score generating function and the uniform integrated error bound obtained in Jones (1990).





6 | Two-sample Homogeneity Testing

Abstract. In the continuity of Chapter 5, we apply the multivariate generalization of
R-statistics to the two-sample problem. This leads to a generic two-stage test procedure
for which theoretical guarantees are proved. The approach is composed of: (i) Bipartite
ranking: a bipartite ranking algorithm learns the optimal scoring function in the sense
of Chap. 5 on the first half of each sample, (ii) Univariate two-sample homogeneity
test: the chosen rank test is performed on the remaining univariate observations for a
given testing level, mapped with the optimal function of step (i). In fact, under regular-
ity conditions ensured by the results of Chapter 5, (i) aims to learn strictly monotonous
transforms of the likelihood ratio between the multivariate distribution functions, ignor-
ing the curse of dimensionality and possible sampling bias issues while satisfying the
rank-related properties. Regarding (ii), we establish (non)asymptotic guarantees for the
bias of the R-statistics under the null and the alternative distributions when valued at the
solution of the first step. The proposed class of statistics is shown to be distribution-free
insofar it inherits from important univariate properties. We also present a procedure for
choosing the optimal score-generating function in a minimax testing sense. Chapter 7
gathers the related numerical experiments.
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6.1 Introduction

The nonparametric statistical hypothesis testing problem referred to as the two-sample problem is of
central importance in statistics and machine-learning, as defined in Chapter 2, Section 2.1. Easy to
formulate, this generic problem is ubiquitous. It finds applications in many areas, in particular in
clinical trials, in order to determine whether the fluctuations of a collection of measurements per-
formed over two statistical populations subject to different treatments are simply due to the sampling
phenomenon or else to the effect of the treatment. It may also be used in the context of multimodal
data fusion to decide whether two datasets can be pooled or not. Indeed, selection/sampling bias
issues are also a major concern in machine learning now. As recently highlighted by theoretical and
empirical works (see e.g. Bertail et al. (2021) or Wang et al. (2019)), a poor control on the acquis-
ition process of training data, even massive, can significantly jeopardize the generalization ability
of the learned predictive rules. Various dedicated approaches have been introduced in the statistical
literature, see e.g. section 6.9 in Lehmann and Romano (2005) or Chapter 3.7 in van der Vaart and
Wellner (1996). Many of them consist in computing first nonparametric estimators Ĝn and Ĥm of the
underlying distributions (possibly smoothed versions). Next, by evaluating a distance or information-
theoretic pseudo-metric D(Ĝn, Ĥm) between the latter in order to measure their dissimilarity (e.g. the
two-sample Kolmogorov-Smirnov statistic), the null hypothesis is rejected for ’large’ values of the
statistic D(Ĝn, Ĥm), see Biau and Gyorfi (2005) or Gretton et al. (2012a) for instance. Beyond com-
putational difficulties and the necessity of identifying a proper standardization in order to make the
statistic asymptotically pivotal, i.e. its limit distribution is parameter free (this generally requires
in practice the use of resampling/bootstrap techniques), the major issue one faces when trying to
implement such plug-in procedures is related to the curse of dimensionality. Indeed, such plug-in
procedures involve the consistent estimation of distributions on a feature space of possibly very large
dimension d ∈ N∗. We refer to the Section 2.1 for an account of state-of-the-art methods are their
properties.
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The approach promoted and analyzed in this chapter is very different and is inspired from rank
tests in the univariate case, see Appendix section B.1. The rationale behind the use of two-sample
rank statistics for univariate two-sample problems, naturally lies in the fact that they are distribution-
free under the null hypothesis and are unbiased. Also, for an appropriate choice of φ , the related
rank test is know to have asymptotic power with optimal properties, describing its capacity to detect
alternatives close to the null assumption, see e.g. Hájek and Sidák (1967) or Chapter 15 in van der
Vaart (1998). For instance, the popular Mann-Withney-Wilcoxon ’ranksum’ statistic, widely used to
test whether a distribution is stochastically larger than another one, corresponds to the case φ(u) = u
and is optimal to detect asymptotically small shifts. The methodology we propose here to extend
these techniques to the multivariate setup starts from the observation that, in the univariate case, two-
sample rank statistics are summaries of the statistical version of the ROC curve relative to the pair
of probability measures (H, G). Under H0, the ROC curve coincides with the diagonal of the unit
square [0,1]2. In particular, up to an affine transform, the ranksum statistic is nothing else than the
AUC. The method uses the 2-split trick and is implemented in two steps. First, a bipartite ranking
algorithm is performed on the first half of the samples, in order to learn the optimal scoring function
s : Z →R as to rank multivariate observations. Next, a univariate rank test is applied to the other half
observations that are mapped thanks to the optimal scoring function. Incidentally, we will interpret
the homogeneity step as testing whether the empirical ROC curve obtained significantly deviates
from the diagonal, the nature of the deviation being determined by the score generating function
φ used in the rank test. By means of concentration results for two-sample linear rank processes
(Chap. 5), the two-stage testing procedure is analyzed from a nonasymptotic perspective. We prove
bounds for the bias of tests based on a scoring function s maximizing a statistical counterpart of a
bipartite ranking performance criterion, taking the form of a two-sample linear rank statistic. Also, a
procedure for choosing the optimal score-generating function in a minimax testing sense is proposed
and the asymptotic distributions of the (studentized) statistics are proved.

Lastly, all numerical experiments are gathered in the next Chapter 7. In particular, the capacity
of the two-stage method proposed to detect ’small’ deviations from the null assumption, preserved
even in very high dimension to a certain extent, is investigated from an empirical angle. An extensive
experimental study is presented, comparing the performance of the ranking-based tests to that of al-
ternative nonparametric methods documented in the literature. Notice finally that a very preliminary
version of the two-stage testing method, limited to AUC optimization and ’ranksum’ test statistics,
has been previously outlined in the conference paper Clémençon et al. (2009).

The chapter is organized as follows. In section 6.2, the main notations are set out, the statistical
framework of the two-sample problem is recalled, rank tests in the univariate case and their relation
to bipartite ranking are briefly reviewed. The novel testing procedure is described in section 6.3.1.
Section 6.4 details the theoretical guarantees. We consider the framework and notation of Chapter 5.

6.2 Background and preliminaries

This section introduces the main notation and the nonparametric two-sample problem. The existing
methods are briefly reviewed, with particular attention to rank tests in the 1−d case and their inter-
pretation through ROC analysis. Concepts and results related to the bipartite ranking task, viewed
as the problem of optimizing (summaries of) the ROC curve, are also briefly recalled, insofar as the
methodology proposed and analyzed in the subsequent section is based on the latter. We refer to
Chapter 2 for detailed reviews on state-of-the-art methods.



102 CHAPTER 6. TWO-SAMPLE HOMOGENEITY TESTING

6.2.1 The two-sample problem

Let {X1, . . . , Xn} and {Y1, . . . , Ym} be independent i.i.d. samples drawn from probability distribu-
tions G and H on a measurable space Z . In the most general version of the two-sample problem, one
makes no assumption about the distributions H and G and the goal pursued is to test the composite
hypothesis:

H0 : H = G against the alternative H1 : H 6= G , (6.2.1)

based on the two samples. As detailed in Chapter 2, section 2.1, state-of-the-art approaches are typ-
ically based on estimating a (pseudo)-metric, based on the two empirical measures or related, see Eq.
(2.1.2). Beyond computational difficulties and the necessity of identifying a proper standardization
to make asymptotically pivotal (i.e. its limit distribution is parameter free, see MMD test statistic Eq.
(2.1.9)) and determining an appropriate critical threshold (this generally requires in practice the use
of bootstrap techniques), the major issue one faces when trying to implement such plug-in procedures
is related to the curse of dimensionality. Indeed, such plug-in procedures involve the consistent es-
timation of distributions on a feature space of possibly very large dimension d ∈ N∗. This difficulty
can however be circumvented to a certain extent when a unit ball of a reproducing kernel Hilbert
space H is chosen for F in order to allow for efficient computation of the MMD supremum, see
Gretton et al. (2007) and Bach et al. (2008). The methodology promoted in the present chapter for
the two-sample problem is very different in nature and is inspired from traditional techniques in the
particular one-dimensional case.

6.2.2 The univariate case - rank tests and ROC analysis

A classic approach to the two-sample problem in the one-dimensional setup consists in ranking the
observed data using the natural order on the real line, and taking the decision depending on the ranks
of the positive instances among the pooled sample:

∀i ∈ {1, . . . , n}, Rank(Xi) = NF̂N(Xi) ,

where F̂N(t) = (1/N)(∑
n
i=1 I{Xi ≤ t}+ ∑

m
j=1 I{Yj ≤ t}) and N = n + m. Assuming that the distribu-

tions G and H are continuous for simplicity (the probability that ties occur is then equal to zero),
the idea underlying rank tests lies in the simple fact that, under the null hypothesis H0, the ranks of
positive instances are distribution-free, uniformly distributed over {1, . . . , N}. A popular choice is to
consider the sum of ’positive ranks’, leading to the well-known ranksum Mann-Withney-Wilcoxon
statistic, see Wilcoxon (1945):

Ŵn,m =
n

∑
i=1

Rank(Xi) . (6.2.2)

It is widely used to test H0 against the alternative stipulating that one of the two distributions is
stochastically larger than the other one. In the situation where G(dx) is stochastically larger1 than
H(dy), i.e. when H(z)≥G(z) for all z∈R, the test statistic (6.2.2) is naturally expected to take ’large’
values. Tables for the distribution of the statistics Ŵn,m under H0 being available (even in the case
where some observations are tied, by assigning the mean rank to ties, see Cheung and Klotz (1997)),
no asymptotic approximation result is thus needed for building a test at an appropriate appropriate
level. In the case where the two c.d.f. are linked by the relationship G(x) = H(x− θ) with θ ≥ 0

1Given two distribution functions H(dt) and G(dt) on R∪{+∞}, it is said that G(dt) is stochastically larger than
H(dt) if and only if for any t ∈ R, we have G(t)≤ H(t). We then write: H ≤sto G. Classically, a necessary and sufficient
condition for G to be stochastically larger than H is the existence of a coupling (X , Y ) of (G,H), i.e. a pair of random
variables defined on the same probability space with first and second marginals equal to H and G respectively, such that
X ≤ Y with probability one.
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(corresponding to the situation where the treatment effect is modeled in an additive fashion and the
null assumption reduces to H0 : θ = 0), the test statistic (6.2.2) is asymptotically uniformly most
powerful in the limit experiment θ ↘ 0, see e.g. Corollary 15.14 in section 15.5 of van der Vaart
(1998). Other functionals of the ’positive ranks’ can be used as test statistics for the two-sample
problem. In particular, the class of two-sample linear rank statistics defined below forms a rich
collection of functionals.

Definition 68. (TWO-SAMPLE LINEAR RANK STATISTICS) Let φ : [0,1]→ [0,1] be a nondecreasing
function. The two-sample linear rank statistics with ’score-generating function’ φ(u) based on the
random samples {X1, . . . , Xn} and {Y1, . . . , Ym} is given by

Ŵ φ
n,m =

n

∑
i=1

φ

(
Rank(Xi)

N + 1

)
. (6.2.3)

For φ(u) = u, the statistic (6.2.3) coincides with Ŵn,m/(N + 1). Under H0, the statistics (6.2.3)
defined above are all distribution-free, which make them particularly useful to detect differences
between the distributions H and G. Tabulating their distribution under the null assumption, they can
be used to design unbiased tests at certain levels α in (0,1). The choice of the score-generating
function φ can be guided by the type of difference between the two distributions (e.g. in scale,
in location) one possibly expects, and may then leads to locally most powerful testing procedures,
capable of detecting certain types of ’small’ deviations from H0. Refer to Chapter 9 in Serfling
(1980) or to Chapter 13 in van der Vaart (1998) for an account of the asymptotic theory of rank
statistics. We also emphasize that concentration properties of two-sample linear rank processes have
recently been studied in Clémençon et al. (2021) (Chap. 5), motivated by the interpretation of (6.2.3)
as a scalar statistical summary of the ROC curve relative to the pair (H,G).

Relation to ROC analysis. As outlined in Chapter 5, two-sample linear rank statistics as defined
in (6.2.3) are intimately related to univariate ROC analysis. Briefly, we recall that the AUC of the
empirical ROC curve is proportional ( up to an affine transform) to the ranksum Mann-Whitney-
Wilcoxon statistic (6.2.2)

Ŵn,m = nmAUCĤm,Ĝn
+

n(n + 1)

2
.

More generally, two-sample linear rank statistics (6.2.3) related to score generating functions differ-
ent from φ(u) = u provide alternative summaries of the empirical ROC curve and measure different
ways of deviating from the main diagonal of the unit square, which coincides with ROCH,G under the
null assumption. Notice incidentally that, under H0, we have

AUCH,G−1/2 =
∫ 1

α=0
{ROCH,G(α)−α}dα = 0 .

Like (6.2.2), the statistics (6.2.3) are pivotal and in order to quantify their fluctuations as the full
sample sizes n, m increase, the fraction of ’positive’/’negative’ observations in the pooled dataset
must be controlled. Let p ∈ (0,1) be the ’theoretical’ fraction of positive instances. For N ≥ 1/p,
we suppose that n = bpNc and m = d(1− p)Ne= N−n. Define the mixture probability distribution
F = pG +(1− p)H. As N tends to infinity, the asymptotic mean of Ŵ φ

n,m/n is:

Wφ = E[φ ◦F(X)] =
1
p

∫ 1

0
φ(u)du− 1− p

p

∫ 1

0
φ (p(1−ROCH,G(α))+(1−p)(1−α)) dα ,

(6.2.4)
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see section 5.3 of Chap. 5 (section 3 in Clémençon et al. (2021)). Observe that under H0, we have

Wφ =
∫ 1

0
φ(u)du .

Building a two-sample test in the ROC space. As previously highlighted, under H0, the theor-
etical ROC curve coincides with the main diagonal of [0,1]2: ROCH,H(α) = α for all α ∈ (0,1)
and any distribution H on R. In addition, since the empirical ROC curve is itself a function of
the ranks, it is also a (functional) pivotal statistic under the null assumption. When the probabil-
ity distribution H is continuous, all the possible empirical ROC curves are equiprobable under the
null assumption. Hence, in the situation where

(N
n

)
is not too large, since the ensemble Cn,m of all

possible empirical ROC curves based on positive and negative samples of respective sizes n and m
is of cardinality

(N
n

)
, all broken lines included in it can be enumerated (see Fig. 6.1) and for any

α ∈
{

i/
(N

n

)
: i = 1, . . . ,

(N
n

)}
, one can build a tolerance/prediction region Rα ⊂ Cn,m of level α ,

i.e. a subset Rα ⊂ Cn,m of cardinality α
(N

n

)
. Then, a test that rejects H0 when the empirical ROC

curve R̂OCH,G falls outside Rα can be considered. A natural way of building a critical region in the
space D([0,1]) of càd-làg mappings from [0,1] to [0,1] that defines a test of hypothesis H0 at level
α is to fix a pseudo-distance D on D([0,1]), sort the

(N
n

)
curves in Cn,m by increasing distance to the

first diagonal and keep the subset Rα formed by the d
(N

n

)
(1−α)e curves closest to the diagonal in

the sense of the distance D chosen. When choosing the distance defined by L1-norm, one naturally
recovers the Mann-Whitney-Wilcoxon test. However, many functional distances can be considered
for this purpose.

a. Breakpoints of empirical ROC curves
with n,m = 15

b. Empirical ROC curves with
n,m = 200,150

Figure 6.1. Examples of empirical ROC curves simulations under the null hypothesis.

Remark 7. (THE AUC AS A STATISTICAL DISTANCE) One may easily show that

AUCH,G =
1
2

+
∫

∞

−∞

{H(t)−G(t)}dH(t) , (6.2.5)

see the Appendix section for further details. Hence, when H is stochastically smaller than G, the
quantity AUCH,G−1/2 is equal to the L1(H)-distance between the cumulative distribution functions
H(t) and G(t).

Extensions of rank-based tests to the multivariate framework. Given the absence of any ’nat-
ural order’ on Rd as soon as d ≥ 2, numerous methods have been explored to circumvent it via
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new definitions of ranks. As exposed in the general Introduction, section 1.3, multiple types of
rank concepts exist. They usually rely on depth-based Beirlant et al. (2020); Chaudhuri (1996);
Chernozhukov et al. (2017); Deb and Sen (2019); Koshevoy and Mosler (1997); Liu (1990, 1995);
Oja (1983); Vardi and Zhang (2000) or spatial ranks Möttönen et al. (1997, 2005); Möttönen and
Oja (1995) approaches, while others are obtained via distance-based ranks Hallin and Paindaveine
(2002a,b, 2008) . Nevertheless, the majority is derived in semiparametric frameworks due to the
inherent complexity of nonparametric models.

In the next section 6.3, we detail and analyze the proposed approach. We raise that it shares
similarities with the method relying on statistical depth, except that the mapping used to ’project’ the
multivariate observations onto the real line is specifically learned from the data in order to detect best
the deviations in distribution between the two distributions. In this sense, the subsequent subsection
explains how any scoring function s : Z →]−∞, +∞] solution of the bipartite ranking problem
related to the pair (H,G) permits to extend the use of ROC analysis and two-sample rank statistics to
the two-sample problem in the multivariate setup developed.

6.2.3 Bipartite ranking - the rationale behind our approach

The goal of bipartite ranking is to learn, based on the ’positive’ and ’negative’ samples {X1, . . . , Xn}
and {Y1, . . . , Ym}, how to score any new observations Z1, . . . , Zk, being each either ’positive’
or else ’negative’, that is to say drawn either from G or else from H, without prior knowledge, so
that positive instances are mostly at the top of the resulting list with large probability. As detailed
in Sections 2.2 and 5.3, a natural way of defining a total preorder2 on Z is to map it with the
natural order on R∪ {+∞} by means of a scoring rule. It is defined as a measurable mapping
s : Z →]−∞, +∞] such that a preorder 4s on Z is: for all x, x′ in Z , x 4s x′ iff s(x) ≤ s(x′). We
denote by S the set of all scoring functions. The capacity of a candidate s(z) in S to discriminate
between the positive and negative statistical populations is generally evaluated by means of the ROC
curve ROCHs,Gs(α) = ROC(s,α), denoting by Hs and Gs the pushforward probability distributions
of H and G by the mapping s(z). Precisely, it is shown in Clémençon and Vayatis (2009b) (see
Proposition 4 therein) that the optimal scoring rules are the elements of the set

S ∗ =
{

s ∈S , ∀(z, z′) ∈Z 2, Ψ(z) < Ψ(z′)⇒ s∗(z) < s∗(z′)
}
. (6.2.6)

where Ψ(z) = dG/dH(z) is the likelihood ration. This leads to: ∀(s, α) ∈S × (0,1),

ROC(s, α)≤ ROC∗(α) ,

where ROC∗(.) = ROC(Ψ, .) = ROC(s∗, .) for any s∗ in S . Recall incidentally that this optimal
curve is non-decreasing and concave and thus always above the main diagonal of the unit square.
The bipartite ranking formulations via ROC analysis are extensively detailed in Section 2.2 of Chap.
5.

Ranking-based two-sample rank tests. The two-sample test procedure relies on the observation
that deviations of the curve ROC∗ from the main diagonal of [0,1]2, as well as those of W ∗

φ
from∫ 1

0 φ(u)du for appropriate score generating functions φ , provide a natural way of measuring the
dissimilarity beween G and H in theory. As revealed by the proposition below, such deviations are
equal to zero as soon as the null assumption is fulfilled.

Proposition 69. The following assertions are equivalent.
2A preorder 4 on a set Z is a reflexive and transitive binary relation on Z . It is said to be total, when either z4 z′ or

else z′ 4 z holds true, for all (z,z′) ∈Z 2.
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(i) The assumption ‘H0 : H = G‘ holds true

(ii) The optimal ROC curve relative to the bipartite ranking problem defined by the pair (H,G)
coincides with the diagonal of [0,1]2:

∀α ∈ (0,1), ROC∗(α) = α .

(iii) For any score generating function φ(u), we have:

W ∗φ =
∫ 1

0
φ(u)du .

(iv) There exists a strictly increasing score generating function φ(u), such that:

W ∗φ =
∫ 1

0
φ(u)du .

(iv) We have: AUC∗ = 1/2.

In addition, we have:
AUC∗−1/2 = E[|Ψ(Y)−1|] . (6.2.7)

We also recall that the optimal ROC curve related to the pair of distributions (H,G) is the same as
that related to the pair of univariate distributions (Hs∗ ,Gs∗) and that dG/dH(z) = dGs∗/dHs∗(s∗(z))
for any s∗ ∈ S ∗, see Corollary 5 in Clémençon and Vayatis (2009b). Hence, the optimal curve
ROC∗ is a very natural and exhaustive way of measuring the dissimilarity between two multivariate
distributions, extending the basic ROC analysis for distributions on R recalled in subsection 6.2.2, as
illustrated by the example below.

Example 70. (MULTIVARIATE GAUSSIAN POPULATIONS) Consider two Gaussian distributions H
and G on Rd with same positive definite covariance matrix Γ and respective means θ− and θ+ in Rd ,
supposed to be distinct. As an increasing transform of the loglikelihood ratio, the scoring function:

s(z) = 〈z, Γ
−1(θ+−θ−)〉, z ∈ Rd ,

is optimal scoring function, denoting by 〈., .〉 the usual Euclidean inner product on Rd . Since it
is linear, the distributions Hs and Gs are both Gaussian univariate distributions. Denoting ∆(t) =
(1/
√

2π)
∫ t
−∞

exp(−u2/2)du, t ∈ R, the cdf of the centered standard univariate Gaussian distribu-
tion, one may immediately check that the optimal ROC curve is given by:

∀α ∈ (0,1), ROC∗(α) = 1−∆

(
∆
−1(1−α)−

√
s(θ+−θ−)

)
.

And, the optimal AUC yields to:

AUC∗−1/2 = 1− exp{s(θ+−θ−)} .

If now θ+ = θ−= 0d , Γ+ = Id and Γ− is symmetric positive definite, it exists therefore a orthonor-
mal basis that diagonalizes Γ−. Consider uM the eigenvector associated to the highest eigenvalue
of the covariance matrix λM(Γ−). An increasing transform of the loglikelihood ratio can be ob-
tained by the scoring function s(z) = 〈z, uM〉, z ∈ Rd . It follows that ∀α ∈ (0,1), ROC∗(α) =
1−∆

(
λM(Γ−)1/2∆−1(1−α)

)
.

More generally, if the two distributions are of the group of multivariate α-stable distribution,
thanks to the linear stability property, projecting observations has no effect on the type of distribution.
It is straightforward to express the likelihood ratio when the class of scoring functions is considered
as linear i.e. SΘ := {sθ (·) := 〈·, θ〉, θ ∈Θ}. This property will be used for the numerical examples
and will be discussed in the Appendix.
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As the optimal ROC curve and its summaries such as the quantities AUC∗ or W ∗
φ

are unknown
in practice, the approach we propose for solving the two-sample problem is implemented in two
steps, splitting the samples {X1, . . . , Xn} and {Y1, . . . , Ym} into two halves: 1) the first step con-
sists in solving the bipartite ranking problem based on the first halves of the ’positive’ and ’negative’
samples, as described in the preceding subsection, producing a scoring function ŝ(z), 2) in the second
step of the procedure, the scores of the remaining data are first computed by means of the function
ŝ(z) learned at the previous step and a rank-based test is next performed based on the latter. The sub-
sequent sections of the present chapter provide both theoretical and empirical evidence that, beyond
the fact that they are nearly unbiased, such testing procedures permit to detect very small deviations
from the null assumption.

6.3 Ranking-based rank tests for the two-sample problem

This section describes at length the two-sample methodology foreshadowed by the observations made
in the previous section and discuss its possible implementations from a practical perspective.

6.3.1 Method

We now explain how the general idea sketched in subsection 6.2.3 can be applied effectively, based
on the observation of two independent i.i.d. samples X1, . . . , Xn and Y1, . . . , Ym with n, m≥ 1. Let
α ∈ (0,1) be the target level, i.e. the desired type-I error. As previously discussed, two ingredients
are essentially involved in the testing procedure:

1. A bipartite ranking algorithm A : Z n+m →S0 operating on a class S0 ⊂S and assigning
to any set of training observations Dn,m = {x1, . . . , xn} ∪ {y1, . . . , ym} a scoring function
A (Dn,m) in S0;

2. A two-sample rank test Φ
φ

α : ]−∞, +∞]n+m → {0, 1} of level α ∈ (0,1) with outcome de-
pending on {Rank(x1), . . . , Rank(xn)} for any pooled univariate dataset Dn,m = {x1, . . . , xn}∪
{y1, . . . , ym} and score-generating function φ .

Equipped with these two components, the methodology is implemented in two main steps, as detailed
in Figure 6.2.

Remark 8. (ON BIPARTITE RANKING ALGORITHMS) As mentioned in subsection 6.2.3, the vast
majority of bipartite ranking algorithms documented in the statistical learning literature solve M-
estimation problems over specific classes S0 of scoring functions. The criterion one seeks to max-
imize is the AUC or a (smoothed/concavified/penalized) variant of the latter such as (6.2.4), whose
set of optimal elements coincide with a subset of S ∗. See e.g. Freund et al. (2003), Rakotomamonjy
(2004), Rudin et al. (2005), Rudin (2006) or Burges et al. (2007) Generalization results in the form of
confidence upper bounds for the deficit of empirical maximizers have been established under various
complexity assumptions for S0 in Clémençon et al. (2008), Agarwal et al. (2005), Clémençon and
Vayatis (2007), Clémençon et al. (2011), Menon and Williamson (2016) and Clémençon et al. (2021).
Stronger theoretical guarantees (i.e. bounds for the sup-norm deviation (2.2.7)) have also been es-
tablished for alternative approaches, considering ROC optimization as a continuum of cost-sensitive
binary classification problems and combining M-estimation with nonlinear approximation meth-
ods, see Clémençon and Vayatis (2009b), Clémençon and Vayatis (2010), Clémençon and N.Vayatis
(2009) or Clémençon et al. (2013a).

Remark 9. (ON THE TWO-SPLIT TRICK) As recalled above, nearly optimal scoring functions are
generally learned by means of M-estimation techniques. Consequently, their dependence on the
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RANKING-BASED TWO-SAMPLE RANK TESTS

Input. Two independent and i.i.d. samples {X1, . . . , Xn} and {Y1, . . . , Ym} of sizes
n, m ≥ 2 and valued in Z - subsample sizes n′ < n and m′ < m - bipartite ranking A
algorithm operating on the class S0 of scoring functions on Z - univariate two-sample rank
test Φα of level α ∈ (0,1)

Two-split trick. Divide each of the original samples into two subsamples:

{X1, . . . , Xn′}∪{X1+n′ , . . . , Xn} and {Y1, . . . , Ym′}∪{Y1+m′ , . . . , Ym}

1. Bipartite ranking. Run bipartite ranking algorithm A based on training data Dn′,m′ =
{X1, . . . , Xn′}∪{Y1, . . . , Ym′}, producing the scoring function

ŝ(z) = A (Dn′,m′). (6.3.1)

2. Univariate rank test. Form the univariate samples

{ŝ(X1+n′), . . . , ŝ(Xn)} and {ŝ(Y1+m′), . . . , ŝ(Ym)},

compute the α-level test statistic

Φ
φ

α ({ŝ(X1+n′), . . . , ŝ(Xn)}∪{ŝ(Y1+m′), . . . , ŝ(Ym)}) , (6.3.2)

depending on {Rank(ŝ(X1+n′), . . . , Rank(ŝ(Xn))}, where Rank(t) = ∑
n
i=1+n′ I{ŝ(Xi)≤ t}+

∑
m
i=1+m′ I{ŝ(Y j)≤ t)}.

Figure 6.2. Ranking-based two-sample rank test procedure.

training observations may be complex and can hardly be make explicit in general. For this reason, a
2-split trick is used in order to make the analysis of the fluctuations of the quantity (6.3.2) tractable.
Hence, conditioned upon the subsamples used in the bipartite ranking step of the procedure, the
functional (6.3.2) is a two-sample rank statistic.

We now propose several ways of implementing the methodology summarized in Fig. 6.2, which
will be next studied theoretically in specific situations in Section 6.4 and whose performance will be
empirically investigated at length in Section 7.2, Chap. 7.

6.3.2 Ranking-based two-sample linear rank tests.

The simplest implementation consists in considering a test based on a two-sample linear rank statistic
(6.2.3), characterized by a given score generating function φ , see Definition 68. As recalled in sub-
section 6.2.2, such a statistic is pivotal under H0, its probability distribution can be easily tabulated,
even in the case where n, m take very large values, given the computing power now at disposal. For
all n, m≥ 1 and any α ∈ (0,1), one may thus determine the quantile

qφ
n, m(α) = inf

{
t ≥ 0 : PH0

{
Ŵ φ

n,m ≤ t
}
≥ 1−α

}
, (6.3.3)
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as well as the critical region {
Ŵ φ

n,m > qφ
n, m(α)

}
(6.3.4)

occuring with probability less than α under H0 in the univariate case and defining the test at level α:

Φ
φ

α(Dn,m) = I
{

Ŵ φ
n,m > qφ

n, m(α)
}

, (6.3.5)

based on the univariate samples Dn,m = {{X1, . . . , Xn}, {Y1, . . . , Ym}}. Attention shoud be paid, that
in contrast to the univariate situation, for which no bipartite ranking step is required, only a unilateral
test Φα is relevant in the multivariate case, insofar as the two-sample testing problem (6.2.1) can be
rephrased as follows:

H0 : W ∗φ =
∫ 1

0
φ(u)du versus H1 : W ∗φ >

∫ 1

0
φ(u)du , (6.3.6)

when φ is strictly increasing, see Proposition 69. As investigated in Clémençon et al. (2021), a natural
bipartite ranking approach consists in maximizing a statistical version of the performance criterion
(6.2.4) based on the (multivariate) training data Dn′,m′ over the class S0, i.e. solving the optimization
problem

max
s∈S0

Ŵ φ

n′,m′(s) , (6.3.7)

where, for any scoring function s(z), we set

Ŵ φ

n′,m′(s) =
1
n′

n′

∑
i=1

φ

(
Rank(s(Xi))

N′+ 1

)
, (6.3.8)

with N′= n′+m′, the quantity Rank(s(Xi))/(N′+1) being a natural empirical counterpart of Fs(s(Xi))
for i = 1, . . . , n′. The generalization capacity of solutions of the problem (6.3.7) and (gradient ascent
based) optimization strategies for solving the latter approximately have been studied in Clémençon
et al. (2021). Hence, provided that a solution ŝ of (6.3.7) has been obtained as the outcome of Step 1,
the test built at Step 2 based on the scored data

Dn′′,m′′(ŝ) = {{ŝ(X1+n′), . . . , ŝ(Xn)}, {ŝ(Y1+m′), . . . , ŝ(Ym)}} , (6.3.9)

writes
Φ

φ

α(Dn′′,m′′ (ŝ)) = I
{

Ŵ φ

n′′,m′′(ŝ) > qφ

n′′,m′′(α)
}

, (6.3.10)

with n′′ = n−n′ and m′′ = m−m′. Under specific assumptions (related to the class S0, n′ and m′ in
particular), the properties of the test (6.3.10) are investigated in subsection 6.4.1.

6.4 Theoretical guarantees

This section focuses on theoretical guarantees for the proposed two-stage procedure, in particular
regarding the two-sample homogeneity test step (Step 2 of Proc. 6.2). We consider the dataset
Dn′′,m′′ = {X1+n′ , . . . , Xn}∪{Y1+m′ , . . . , Ym}, with n′′ = n−n′ and m′′ = m−m′, such that letting
p ∈ (0,1) the ’theoretical’ fraction of the first sample and for N′′ = n′′+ m′′ ≥ 1/p, we suppose that
n′′/N′′ → p and m′′/N′′ → 1− p. From now on we will drop the primes and consider the simple
indices n, m and Dn,m.

Consider a fixed subclass S0 ⊂ S over which the bipartite ranking algorithm outputs the op-
timal scoring function ŝ ∈S0. In the following, we analyze the statistic Ŵ φ

n,m when valued at ŝ, i.e. ,
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the one obtained by Step 1. First, for a given score-generating function φ(u), we obtain nonasymp-
totic concentration bounds for the statistic under fixed alternatives and under the null, as well as its
(studentized) explicit asymptotic distributions. We also propose a method, for choosing the optimal
function φ in a minimax sense, to control both statistical errors (type-I and type-II). To this end, we
formulate the required assumptions below.

Assumption 8. Let M > 0. For all s ∈S0, the random variables s(X) and s(Y) are continuous, with
density functions that are twice differentiable and have Sobolev W 2,∞-norms bounded by M < +∞.

Assumption 9. The score-generating function φ : [0,1] 7→R, is nondecreasing and (i) twice continu-
ously differentiable or (ii) (1/N)∑i≤N φ 2(i/(N + 1))→

∫ 1
0 φ 2(u)du < ∞, when N→ ∞.

Notice that Assumptions 8 and 9(i) are the ones considered in the previous Chapter 5.

6.4.1 Concentration bounds under both testing hypothesis

This section provides exact distribution-free probability tail bounds of the deviations of the linear
rank statistic Ŵ φ

n,m, valued at the solution ŝ of Step 1. We determine its explicit confidence bounds of
its distribution, when based on its continuous counterpart Wφ and conditionally on ŝ. We first derive
a concentration bound for the two-sample linear rank statistic Ŵ φ

n,m under fixed alternatives.

Proposition 71. Suppose that Assumptions 8 and 9(i) are fulfilled. Then, based on the two samples
{X1, . . . , Xn} and {Y1, . . . , Ym}, for all t > 0, N ≥ 2 and s ∈S0:

PH1

{
|Ŵ φ

n,m(s)− Wφ (s)|> t
}
≤ 18e−CNt2

, (6.4.1)

where C = (1/8)min(p/‖φ‖2
∞,1/(p‖φ ′‖2

∞),1/((1− p)‖φ ′‖2
∞)).

We highlight that for small values of N, the test statistic can be compared to the distribution of
the statistic Ŵφ = (1/n)∑

n
i=1 (φ ◦Fs)(s(Xi)), see Prop. 53. The bound would be slightly different

with the constant C being proportional to 1/(κp‖φ ′‖2
∞). The proof of the Proposition is detailed in

the appendix section 6.6.3. It relies on the linearization result in Prop. 53, Chapter 5 (Proposition 4 in
Clémençon et al. (2021)), combined with probabilistic tail inequalities such as the one of Hoeffding
(1963). In fact, the assumptions of the referenced result are here simplified as we only look at the
deviations of the statistic valued at fixed scoring functions, and not uniformly over its class S0. Also,
we address particular attention to the remainder process of the linearization: it encompasses statistics
of higher order defined as degenerate U-processes.

On the contrary, the analysis is much simpler under the null hypothesis H0. Start by noticing for
all s ∈S0

Rank(s(Xi))
d
= Ui, for all i≤ n , (6.4.2)

where the i.i.d. sequence of the r.v. U1, . . . ,Un is drawn from the Uniform law on {1, . . . ,N}. The stat-
istic is therefore independent of the scoring function and equals in distribution to ∑i≤n φ(Ui/(N +1))

of mean Ŵ 0
φ

= (1/N)∑i≤N φ(i/(N + 1)). This simplest structure leads to the following probabilistic
tail inequality, holding true for more general conditions on the score-generating function.

Proposition 72. Suppose that Assumptions 8 and 9(ii) are fulfilled. Under the null hypothesis H0,
the following inequality holds true for all t > 0 and for all s ∈S0:

PH0

{
|Ŵ φ

n,m(s)− W 0
φ |> t

}
≤ 2e−2pN(t−∆N)2

, (6.4.3)

where ∆N = |(1/N)∑i≤N φ(i/(N + 1))−
∫ 1

0 φ(u)du| and W 0
φ

=
∫ 1

0 φ .
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This result provides an upperbound of the bias of the statistic. Also, it can be interpreted as
an approximation of the exact quantile of the unknown null distribution of the statistic detailed as
follows. For a fixed level α ∈ (0,1), H0 is rejected as soon as (Ŵ φ

n,m− W 0
φ

) exceeds zα = ± ∆N +√
log(1/α)/(2pN). We highlight the simplicity of the rejecting rule insofar it only depends on the

intrinsic parameters to the model φ ,N, p and on the level α , despite the high-dimensional setting and
the unknown learning algorithm. When valued at ŝ, it is supposed to satisfy generalization properties
in the bipartite ranking sense and that the related convergence is met as detailed in Chapter 5. For
completeness, the section 6.4.3 focuses on the asymptotic laws of the statistic Ŵ φ

n,m(s) under both
hypothesis and valued at fixed scoring function s.

6.4.2 Nonasymptotic control of the testing errors

Let φ(u) a score-generating function and recall the definition of the power related to the α-level test,
based on the two-sample Dn,m,

πn,m(φ , ŝ) = PH1{Φ
φ

α(Dn,m(ŝ)) = 1}
= PH1{Ŵ

φ
n,m(ŝ) > qφ

n,m(α)} ,

where ŝ is the optimal scoring function in the sense of Step 1 for a score-generating function φ and
qφ

n,m(α) is the (1−α)-quantile of the null distribution, see Eq. (6.3.4). We propose an estimator
of the power function based on M ∈ N∗ Monte Carlo samplings of the alternative distribution of the
sample Dn,m denoted D

(i)
n,m = D

(i)
n′,m′ ∪D

(i)
n′′,m′′ , with i≤M, defined by

π̂n′′,m′′(φ , ŝ) =
1 + ∑i≤M I{Ŵ φ

n′′,m′′(ŝ,D (i)
n′′,m′′) > qφ

n′′,m′′(α)}
1 + M

. (6.4.4)

This estimator is computed for a fixed score-generating function. Nevertheless, as highlighted in
Clémençon et al. (2021), tailoring the Wφ -criterion w.r.t. φ leads to different summaries of the ROC
curve. In this sense, the subsequent paragraph outlines a test statistics aiming to enhance the testing
power, by learning the ’optimal’ score-generating function in the minimax sense.

Optimal minimax R-statistic. While the (uniform) control of the type-I error of the tests related to
the R-statistics is obtained for all functions φ , we propose a method to choose the optimal one in the
minimax sense, to obtain nonasymptotic guarantees on the control of the type-II error. Consider the
class P of density functions satisfying the Assumption 8 for all s ∈S0, and the class C of score-
generating functions φ = [0,1]→ R, nondecreasing, satisfying Assumption 9. Denote by α ∈ (0,1)

the uniform upperbound of the type-I error sup(g,h)∈P, g=hPH0{Φ
φ

α(Dn,m(ŝ)) = 1} ≤ α and by β ∈
(0,1) the bound of the type-II error as sup(g,h)∈P, H≤stoGPH1{Φ

φ

α(Dn,m(ŝ)) = 0} ≤ β .

ρ(φ ,P,β ) := inf
ρ∈(1/2,1)

{
inf

(g,h)∈Pρ , H≤stoG
PH1

{
Φ

φ

α(Dn,m(ŝ)) = 1
}
≥ 1−β

}
(6.4.5)

= inf
ρ∈(1/2,1)

{
sup

(g,h)∈Pρ , H≤stoG
PH1

{
Φ

φ

α(Dn,m(ŝ)) = 0
}
≤ β

}
. (6.4.6)

The minimax rate of testing is the optimal rate obtained among all tests indexed by the class C that
are of level α . It is given by

ρ(φ
∗,P,β ) = inf

φ∈C
ρ(φ ,P,β ) . (6.4.7)
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In particular, if a score-generating function exists such that ρ(φ ,P,β ) ≤ Kρ(φ ∗,P,β ), with
K > 0 constant, then, the test associated to φ ∗ is said to be optimal in the minimax sense. Notice
that minimax tests applied to independence testing are usually related to separation rates using L2
distance, mutual information, etc. We refer to the works of Albert et al. (2021); Baraud (2002);
Berrett et al. (2021); Birgé and Massart (1998); Ingster and Suslina (2000); Lepski and Spokoiny
(1999); Schrab et al. (2021). Therefore, the definition above is completely new and driven by the
capacity of the AUC to summarize the dissimilarity between two d.f. in the ROC space. As outlined
in section 6.2.3, one can also refer to Clémençon et al. (2021) and Menon and Williamson (2016),
which much developed it in the context of bipartite ranking. However, the definition (6.4.5) relies of
the oracle AUC∗, that is unknown in practice. The class of true optimal scoring functions S ∗ depends
on the underlying distributions, see Proposition 6 in Clémençon et al. (2021) therein. Hence, if Step
1 is independent of C and if consistency is obtained, we can approximate the functions of S ∗ by the
solution ŝ of the chosen bipartite ranking algorithm such that Pρ(ŝ) = {(g,h) ∈P, AUChŝ,gŝ > ρ}.

The goal is to find the optimal score-generating function φ ∗ such that the resulting two-sample
test rejects the null hypothesis with minimal uniform separation rate. Therefore the nonasymptotic
control of ρ(φ ∗,P,β ) boils down to the analysis of the uniform separation rate, to determine the
optimal elements of C .

6.4.3 Asymptotic guarantees

This section provides the explicit asymptotic laws of the two-sample linear rank statistic Ŵ φ
n,m(s)

under fixed alternatives and under the null hypothesis. The particular choice of ŝ corresponds to
Procedure 6.2. However classical, these results remain of interest for establishing classical properties
such as asymptotic (relative) efficiency of the tests depending on the choice of the score-generating
function φ(u), and the explicit estimation of the asymptotic quantile of the null distribution. Like the
nonasymptotic bounds, we obtain exact distribution-free law under H0 that only depends on φ(u).
The proofs are not detailed as these results exclusively rely on the central limit theorem.

Asymptotic distribution of the statistic under fixed alternatives. Two results are provided for the
asymptotic distribution of the test statistic, whether it is studentized or based on its continuous coun-
terpart. We recall the unbiased empirical counterpart of the Wφ functional by Ŵφ = (1/n)∑

n
i=1 (φ ◦Fs)(s(Xi)).

Proposition 73. Suppose that Assumptions 8 and 9(i) are fulfilled. Under the alternative hypothesis
H1 and for all s ∈S0, the linear R-statistic Ŵ φ

n,m(s) based on the two samples {X1, . . . , Xn} and
{Y1, . . . , Ym}, converges in distribution to:

Ŵ φ
n,m(s)−Ŵφ (s)√

(N/n)σ̂2
φ
(s)

d−→
N→∞

W ∼N (0,1) , (6.4.8)

where considering X′,X i.i.d. drawn from G(dt) and Y from H(dt):

σ̂
2
φ (s) = Var(φ ◦Fs(s(X)))+(

n−1
N + 1

)2Var(ks(X))+
nm

(N + 1)2 Var(`s(Y))

+
n−1
N + 1

Cov(φ ◦Fs(s(X))),ks(X)) ,

and

ks(X) = Es(X′)∼Gs [I{s(X)≤ s(X′)}φ ′ ◦Fs(s(X′)) | s(X)] ,

`s(Y) = Es(X)∼Gs [I{s(Y)≤ s(X)}φ ′ ◦Fs(s(X)) | s(Y)] .
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Proposition 73 highlights the importance of the convergence of Step 1 to output the optimal ŝ.
This studentized statistic can be used to prevent form misuses of rank statistics due to mispecification
of the null hypothesis, as detailed in Chung and Romano (2016). A straightforward limit distribution
is obtained below when the test is centered w.r.t. its continuous counterpart Wφ (s), as σ̂2

φ
(s) is a

consistent estimator of σ2
φ
(s).

Proposition 74. Suppose that Assumptions 8 and 9(i) are fulfilled. Under the alternative hypothesis
H1 and for all s ∈S0, the linear R-statistic Ŵ φ

n,m(s) based on the two samples {X1, . . . , Xn} and
{Y1, . . . , Ym}, converges in distribution to:

√
N
(

Ŵ φ
n,m(s)−Wφ (s)

)
d−→

N→∞
W ∼N (0,σ2

φ (s)) , (6.4.9)

where

σ
2
φ (s) = (1/p)Var(φ ◦Fs(s(X)))+ pVar(ks(X))+(1− p)Var(`s(Y))

+ Cov(φ ◦Fs(s(X))),ks(X)) ,

Notice that for φ(u) = u, its derivative being equal to 1, the last Proposition recovers the asymptotic
law of the ranksum statistic.

Asymptotic distribution of the statistic under the null hypothesis. Under the null hypothesis,
the vector of univariate ranks is known to by uniformly drawn on the set of the N! permutations of
the integers {1, . . . ,N} (Hájek and Sidák (1967), Lemma 13.1, van der Vaart (1998)). This property
is, in fact, independent on the scoring function s. We prove the exact distribution-free asymptotic
law, only depending on score-generating function φ , similarly to the nonasymptotic guarantee of
Prop. 72. In the article of Mann and Whitney (1947), the exact null distribution of their eponym
statistic (proportional to the proposed statistic, with φ = Id) was derived by means of a recurrence
formulation. Later, Brus (1988); Chang (1992); Di Bucchianico (1999) for instance, proved this
relation and provided a closed form for the moments of the statistic using combinatorial techniques.
Nevertheless, for large values of N (greater than n = m = 8 in Mann and Whitney (1947)), the exact
computation of the null distribution of linear rank statistics is very expensive (of factorial order). We
propose estimating the null thanks to the asymptotic distribution for which its explicit parameters are
detailed hereafter.

Proposition 75. Suppose that Assumption 8 is fulfilled and φ : [0,1] 7→ R is nondecreasing. Then,
under the null hypothesis H0 and for all s ∈ S0, the linear R-statistic Ŵ φ

n,m(s) based on the two
samples {X1, . . . , Xn} and {Y1, . . . , Ym}, converges in distribution to:

Ŵ φ
n,m(s)−Ŵ 0

φ√
(N/n)σ̂2

φ

d−→
N→∞

W ∼N (0,1) , (6.4.10)

where Ŵ 0
φ

= φ̄N = (1/N)∑i≤N φ(i/(N + 1)) and σ̂2
φ

= (1/N(N−1))∑i≤N(φ(i/(N + 1))− φ̄N)2.

Choosing φ = Id, nŴ φ
n,m(s) yields to Ŵ 0

Id = n/2 and σ̂2
Id = nm/(12(N + 1)) and recovers the

Wilcoxon (ranksum) statistic by noticing that is equals to (N + 1)Ŵ Id
n,m. This is used to tabulate the

threshold values for the hypothesis test, depending on the size of samples n and m. Additionally, for
very large values of N and if the estimator σ̂2

φ
is consistent, one can use the asymptotic statistic to

compute the threshold.
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Proposition 76. Suppose that Assumptions 8 and 9(ii) are fulfilled. Then, under the null hypo-
thesis H0, for all s ∈S0, the linear R-statistic Ŵ φ

n,m(s) based on the two samples {X1, . . . , Xn} and
{Y1, . . . , Ym}, converges in distribution to:

√
N
(

Ŵ φ
n,m(s)−W 0

φ

)
d−→

N→∞
W ∼N (0,σ2

φ ) , (6.4.11)

where σ2
φ

= (1/p)(
∫ 1

0 φ 2− (
∫ 1

0 φ)2).

6.5 Conclusion

This chapter applied R-processes, as introduced in Chapter 5, to the two-sample problem. By high-
lighting its adaptability, a two-stage procedure was proposed relying on bipartite ranking meth-
ods, leveraging on the interpretability of those statistics. Theoretical guarantees are proved, with
nonasymptotic control of the deviation of the statistic under both statistical hypothesis, while the
(non)asymptotic consistency of the overall procedure is guaranteed by results of Chapter 5. Import-
antly, this ranking approach to the two-sample problem allows for multiple practical adaptations to
the practitioner. The numerical experiments highlighting the empirical properties of such method are
detailed in Chapter 7.

6.6 Proofs

6.6.1 Proof of Formula (6.2.5)

Given two independent r.v. X ∼ G and Y ∼ H, continuous, the proof is straightforward by noticing
that

∫
∞

−∞

{H(t)−G(t)}dH(t) =
1
2
−
∫

∞

−∞

G(t)dH(t)

so that

AUCH,G = P{Y≤ X}= E[E[I{Y≤ X}] | Y] = EY∼H[1−G(Y)] =
1
2

+
∫

∞

−∞

{H(t)−G(t)}dH(t) .

6.6.2 Proof of Proposition 69

The equivalence between assertions (i) and (ii) can be straightforwardly deduced from the following
result, proved in Clémençon and Vayatis (2009b) (see Corollary 5 and Proposition 6’s proof therein),
recalled here for the sake of clarity.

Lemma 77. (Clémençon and Vayatis (2009b)) It holds with probability one:

Ψ(Z) =
dGΨ

dHΨ

(Ψ(Z)),

Z denoting either X or Y.

The equivalence of assertion (ii) with the other assertions is immediate using formula (6.2.4).
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6.6.3 Proof of Proposition 71

Let s ∈S0 and suppose both assumptions 8 and 9(i) fulfilled. Following the footsteps of Chapter
5, the Taylor expansion of φ at order two at u = NF̂N(t)/(N + 1) around F(t) leads to an a.s. de-
composition of the statistic Ŵ φ

n,m when choosing t = Xi and summing for all i ≤ n, see Eq. (5.6.2)
and (5.6.3) in Chapter 5. By writing the first order term in a sum of U-statistics, and applying next
Hoeffding’s decomposition yields to the following:

Ŵ φ
n,m−Wφ = Ŵφ −Wφ +

1
n

(
V̂ X

n −E
[
V̂ X

n

])
+

1
n

(
V̂Y

m −E
[
V̂Y

m

])
+

1
n
Rn,m , (6.6.1)

where

Ŵφ (s) =
1
n

n

∑
i=1

(φ ◦Fs)(s(Xi)) ,

V̂ X
n (s) =

n−1
N + 1

n

∑
i=1

∫ +∞

s(Xi)
(φ
′ ◦Fs)(u)dGs(u) ,

V̂Y
m (s) =

n
N + 1

m

∑
j=1

∫ +∞

s(Y j)
(φ
′ ◦Fs)(u)dGs(u) .

The remainder statistic Rn,m results from the integral Taylor-Lagrange term, and additional higher
order statistics (OP(N−1)) inherited from the Hoeffding decomposition. It is analyzed in Lemma 78
hereafter. First, we sequentially apply the tail inequality of Hoeffding (1963) to the empirical parts
of the decomposition. Let t > 0,

P
{
|Ŵφ −Wφ |> t

}
≤ 2exp

{
−2pNt2

‖φ‖2
∞

}
, (6.6.2)

P
{

1
n
|V̂ X

n −E[V̂ X
n ]|> t

}
≤ 2exp

{
− 2Nt2

p‖φ ′‖2
∞

}
, (6.6.3)

P
{

1
n
|V̂Y

m −E[V̂Y
m ]|> t

}
≤ 2exp

{
− 2Nt2

(1− p)‖φ ′‖2
∞

}
. (6.6.4)

For the remainder process, the following result is proved subsequently.

Lemma 78. Suppose that the assumptions of Proposition 71 are satisfied. Then, for all t > 0 and
N ≥ 2, we have:

P{|Rn,m|> t} ≤ 12


exp
{
− Nt

12κp‖φ ′′‖∞

}
, if Nt ≥ 128‖φ ′‖2

∞/(p‖φ ′′‖∞)

exp
{
−

αpN2t2

512‖φ ′‖2
∞

}
otherwise

, (6.6.5)

where αp = min(p/(1− p),1), κp = max(p,1− p).

Then, the uniform bound yields the result where the statistic is valued at ŝ.

PROOF.(Lemma 78) Gathering the equations (B.4,8,15) of Clémençon et al. (2021), the remainder
process is decomposed as

|Rn,m| ≤ |R̂n,m|+ p2N|Un|+ p(1− p)N|Un,m|+ |T̂n,m| , (6.6.6)
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We sequentially bound in probability each statistic, where R̂n,m encompasses bounded i.i.d. aver-
ages based on {X1, . . . ,Xn} as detailed below. Un(k) (resp. Un,m(`)) is a one-sample degenerate
U-statistic of order 2 based on {X1, . . . ,Xn} (resp. two-sample of degree (1,1) based on the two
samples {X1, . . . ,Xn},{Y1, . . . ,Ym}). T̂n,m is the Taylor-Lagrange integral remainder of the expansion
of φ at order 2. First, R̂n,m can be upperbounded as follows (see Eq. (6.6.7) in Chap. 5)

|R̂n,m| ≤
1
N

∣∣∣∣∣ n

∑
i=1

G(Xi)φ
′ ◦F(Xi)−E[G(Xi)φ

′ ◦F(Xi)]

∣∣∣∣∣
+

1
N

∣∣∣∣∣ n

∑
i=1

H(Xi)φ
′ ◦F(Xi)−E[H(Xi)φ

′ ◦F(Xi)]

∣∣∣∣∣ . (6.6.7)

By noticing that the variations can be bounded by ‖φ ′‖∞, Hoeffding’s inequality with the union bound
directy yield, for t > 0

P
{

(1/n)|R̂n,m|> t/4
}
≤ 4exp

{
− pN3t2

32‖φ ′‖2
∞

}
. (6.6.8)

For the two degenerate U-processes, Lemma 47 of Chap. 4 (Clémençon et al. (2021)) is applied,
relying on Chernoff’s and symmetrization methods.

P{p(1− p)(N/n)|Un,m|> t/4} ≤ 2exp
{
− pN2t2

512(1− p)‖φ ′‖2
∞

}
, (6.6.9)

and similarly by Lemma 3 in Nolan and Pollard (1987)

P
{

p2(N/n)|Un|> t/4
}
≤ 2exp

{
− N2t2

512‖φ ′‖2
∞

}
. (6.6.10)

Lastly, from Eq. (5.6.5) in Chap. 5

(1/n)|T̂n,m| ≤ ‖φ ′′‖∞

(
sup
t∈R

(
F̂N(t)−F(t)

)2
+

1
(N + 1)2

)
≤ 3p2‖φ ′′‖∞ sup

t∈R

(
Ĝn(t)−G(t)

)2
+ 3(1− p)2‖φ ′′‖∞ sup

t∈R

(
Ĥm(t)−H(t)

)2
+

13‖φ ′′‖∞

N2 (6.6.11)

By Dvoretzky–Kiefer–Wolfowitz inequality and noticing that the third term is rapidly negligible, we
obtain

P
{

(1/n)|T̂n,m|> t/4
}
≤ 4exp

{
− Nt

12κp‖φ ′′‖∞

}
, (6.6.12)

where κp = max(p,1− p). Applying the union bound to Eq. (6.6.8),(6.6.9),(6.6.10),(6.6.12) con-
cludes the proof.
�



7 | Numerical Experiments

Abstract. This chapter gathers a series of numerical experiments, performed on syn-
thetic data, for testing the procedures proposed in both Chapters 5 and 6. First, a determ-
inistic algorithm based on a vanilla gradient ascent is detailed to maximize the smoothed
version of the Wφ -performance criterion in the context of bipartite ranking. Addition-
ally, we compare its performance through various choices of score-generating functions
φ . Then, a panel of experiments are proposed for the high-dimensional two-sample
problem with multiple choices of learning-to-rank state-of-the-art algorithms. The em-
pirical type-I and type-II errors are compared for all algorithms to three classical test
statistics: Maximum Mean Discrepancy (MMD, Gretton et al. (2012a)), Energy exten-
sion with the Euclidean norm (Energy, Szekely and Rizzo (2004)), Wald-Wolfowitz runs
(FR, Friedman and Rafsky (1979)). All experiments are based on explicit probabilistic
models that are detailed. We accompany these results with open access online codes
available at https://github.com/MyrtoLimnios.
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7.1 A deterministic approach to bipartite ranking

This section aims to empirically illustrate various points highlighted by the theoretical analysis car-
ried out in Chapter 5 in the context of bipartite ranking. In particular, the capacity of ranking rules
obtained by maximization of empirical Wφ -performance measures to generalize well and the impact
of the choice of the score generating function φ on ranking performance from the perspective of ROC
analysis. Some practical issues, concerning the maximization of smoothed versions of the empirical
Wφ -performance criterion, are also discussed through numerical experiments. Additional experi-
mental results can be found in the Appendix section 7.1.3. All experiments displayed in this sec-
tion can be reproduced using the code available at https://github.com/MyrtoLimnios/grad_
2sample.

7.1.1 A gradient-based algorithmic approach

We start by describing the gradient ascent method (GA) used in the experiments in order to maximize
the smoothed criterion (5.4.10) obtained by kernel smoothing over the class of scoring functions S0
considered, as proposed in section 5.4.2, see Algorithm 3. Precisely, suppose that S0 is a parametric
class, indexed by a parameter space Θ⊂ Rd with d ≥ 1 say: S0 = {sθ : Z → R, θ ∈ Θ}. Assume
also that, for all z ∈Z , the mapping θ ∈ Θ 7→ sθ (z) is of class C 1 (i.e. continuously differentiable)
with gradient ∂θ sθ (z) and that the score-generating function φ fulfills Assumption 4. The gradient
of the smoothed ranking performance measure of sθ w.r.t. to the parameter θ , is given by: for all
θ ∈Θ, h > 0,

∇θ

(
Ŵ φ

n,m,h(sθ )
)

=
n

∑
i=1

φ
′
(

F̂sθ ,N,h(sθ (Xi))
)

∇θ

(
F̂sθ ,N,h(sθ (Xi))

)
, (7.1.1)

where the gradient of F̂sθ ,N,h(sθ (z)) w.r.t. to θ is:

∇θ

(
F̂sθ ,N,h(sθ (z))

)
=

1
Nh

n

∑
i=1

K
(

sθ (z)− sθ (Xi)

h

)
(∂θ sθ (z)−∂θ sθ (Xi))

+
1

Nh

m

∑
j=1

K
(

sθ (z)− sθ (Y j)

h

)
(∂θ sθ (z)−∂θ sθ (Y j)) , (7.1.2)

https://github.com/MyrtoLimnios/grad_2sample
https://github.com/MyrtoLimnios/grad_2sample
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for any z ∈Z , using the fact that κ ′ = K.

Algorithm 3: Gradient Ascent for W -ranking performance maximization
Data: Independent i.i.d. samples {Xi}i≤n and {Y j} j≤m.
Input: Score-generating function φ , kernel K, bandwidth h > 0, number of iterations T ≥ 1,

step size η > 0.
Result: Scoring rule s

θ̂n,m
(z).

1 Choose the initial point θ (0) in Θ;
2 for t = 0, . . . , T −1 do
3 compute the gradient estimate ∇θ

(
Ŵ φ

n,m,h(s
θ (t))
)

;

4 update the parameter θ (t+1) = θ (t) + η∇θ

(
Ŵ φ

n,m,h(s
θ (t))
)

;

5 end
6 Set θ̂n,m = θ (T ).

In practice, the iterations are continued until the order of magnitude of the variations ||θ (t+1)−
θ (t)|| becomes negligible. Then, the approximate maximum s

θ̂n,m
(z) output by Algorithm 3 is next

used to rank test data. Averages over several Monte-Carlo replications are computed in order to
produce the results displayed in Subsection 7.1.3.

7.1.2 Synthetic data generation

We now describe the data generating models used in the simulation experiments, as well as the
parametric class of scoring functions, which the learning algorithm previously described is applied
to.

Score-generating functions. To illustrate the importance of the function φ in the Wφ -performance
ranking criterion, we successively consider φMWW (u) = u (MWW), φPol(u) = uq, q ∈N∗ (Pol, Rudin
(2006)) and φRT B(u) = SoftPlus(u− u0) + u0Sigmoid(u− u0), u0 ∈ (0,1) (RTB, smoothed version
of Clémençon and Vayatis (2007)), where the activation functions are defined by: SoftPlus(u) =
(1/β ) log(1+exp(βu)) and Sigmoid(u) = 1/(1+exp(−λu)), β ,λ > 0 being hyperparameters to fit
and control the derivative’s slope.

Probabilistic models. Two classic two-sample statistical models are used here, namely the location
and the scale models, where both samples are drawn from multivariate Gaussian distributions. We
denote by S+

d (R) the set of positive definite matrices of dimension d×d, by Id the identity matrix.

Location model. Inspired by the optimality properties of linear rank statistics regarding shift detec-
tion in the univariate setup (cf Subsection 5.2.1), the model considered stipulates that X∼Nd(µX ,Σ)
and Y ∼Nd(µY ,Σ) where Σ ∈ S+

d (R) and the mean/location parameters µX and µY differ. The Al-
gorithm 3 is implemented here with Z = Rd = Θ and S0 = {sθ (·) = 〈·,θ〉, θ ∈ Θ} as class of
scoring functions, where 〈·, ·〉 denotes the Euclidean scalar product on the feature space Rd , and con-
sequently exhibits no bias caused by the model. Indeed, by computing the loglikelihood ratio, one
may easily check that the function 〈θ ∗, ·〉, where θ ∗ = Σ−1(µX −µY ), is an optimal scoring function
for the related bipartite ranking problem. Denoting by ∆(t) = (1/

√
2π)

∫ t
−∞

exp(−u2/2)du, t ∈ R,



120 CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.1. Curves of the three score-generating functions under study: φMWW (u) = u in blue, φPol(u) = u3 in
orange, φRT B(u) = SoftPlus(u− u0) + u0Sigmoid(u− u0) the smoothed version of u 7→ uI{u ≥ u0} in green,
vertical line at x = u0 in black.

the c.d.f. of the centered standard univariate Gaussian distribution, one may immediately check that
the optimal ROC curve is given by:

∀α ∈ (0,1), ROC∗(α) = 1−∆

(
∆
−1(1−α)+

√
(µX−µY)TΣ−1(µX−µY)

)
.

Three levels of difficulty are tested through the implementations Loc1, Loc2 and Loc3. The
nearly diagonal covariance matrix of the three models has its eigenvalues in [0.5,1.5] and µX =
(1 + ε)µY with ε = 0.10 (resp. ε = 0.20 and ε = 0.30) for Loc1 (resp. Loc2 and Loc3). The
empirical ROC curves over the test pooled samples and additional curves are depicted in Fig. 7.5,
7.2, 7.5 for resp. Loc1, 2 and 3. The averaged test ROC curves and the best one among those
produced through the replications made are gathered for the three models in Fig. 7.3. In Fig. 7.4, the
evolution of the averaged empirical value of the Wφ -criteria on the train set during the algorithm is
computed. Fig. 7.7 shows the results for Loc2 and 3 for three different parameters of the RTB model
with u0 ∈ {0.70, 0.90, 0.95}.

Scale model. Consider now the situation where X∼Nd(µ,ΣX) and Y∼Nd(µ,ΣY ), the distribu-
tions having the same location vector µ ∈Rd but different scale parameters ΣX and ΣY in S+

d (R). The
Algorithm 3 is implemented with Z = Rd , Θ = S+

d (R) and S0 = {sθ (z) = 〈z,θ−1z〉, for all z ∈
Z , θ ∈ Θ}, with the notations previously introduced. By computing the likelihood ratio, one
immediately checks that sθ ∗(·), with θ ∗ = Σ

−1
X − Σ

−1
Y , is an optimal scoring function for the re-

lated scale model. For models Scale1, Scale2 and Scale3, observations are centered, ΣY = Id and
ΣX = Id + (ε/d)H, where ε is taken equal to 0.70, 0.80 and 0.90 respectively and H a d× d sym-
metric matrix with real entries such that all the eigenvalues of ΣX ∈ S+

d (R) are close to 1.
Similar to the location models, the empirical ROC curves over the test pooled samples and ad-

ditional curves are depicted in Fig. 7.2, 7.6, 7.6 for resp. Scale1, 2 and 3. The averaged test ROC
curves and the best one among those produced through the replications made are gathered for the
three models in Fig. 7.3. In Fig. 7.4, the evolution of the averaged empirical value of the Wφ -criteria
on the train set during the Algorithm is computed. Fig. 7.7 shows the results for Scale2 for three
different parameters of the RTB model with u0 ∈ {0.60, 0.70, 0.80}.
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Experimental parameters. In all the experiments below, the pooled train sample is balanced
(p = 1/2), i.e. n = m = 150 and the dimension of the feature space is d = 15. Similarly for the test
sample with n = m = 106 and d = 15. Concerning the score-generating functions, we consider q = 3
(Pol) and u0 = 0.9 (RTB). We use the Gaussian smoothing kernel K(u) = (1/

√
2π)exp{−u2/2}

with a bandwidth h = N−1/5, yielding an (asymptotically) optimal trade-off between bias and vari-
ance for the smoothed estimator of the c.d.f. involved in the criterion, see e.g. Girard and Saracco
(2014). For completeness, the impact of the choice of the smoothing bandwidth h is investigated in
Appendix 7.1.3: in short, a too large value for h flattens the criterion and significantly slows down the
convergence, while too small values make the gradient ascent algorithm very unstable. Algorithm
3 is implemented with T = 50 and a learning step size η of order 1/

√
T . For each model, B = 50

Monte-Carlo replications of the train pooled sample are generated. Based on the latter, the learning
algorithm is implemented B times and an average curve and a standard deviation based on the test
ROC curves thus obtained are computed for each model in a pointwise manner.

Evaluation of the criteria. In order to evaluate the performance of a scoring function produced by
an early-stopped version of Algorithm 3 depending on the score-generating function chosen, it is used
to score the observations of a large test sample. Using a Monte Carlo procedure, this is replicated
for B independent training datasets and the corresponding B test ROC curves are computed and
are compared to that of the optimal scoring function sθ ∗(z). In what follows, ’average/best/worst’
criterion values (respectively, test ROC curves, scoring functions) refer to the values of the criterion
taken over the B Monte Carlo replications. Particular attention is paid to the behavior of the test ROC
curves near the origin, which reflects the ranking performance for the instances with highest score
values.

7.1.3 Results and discussion

We now analyze the experimental results, by commenting on the test ROC curves obtained after
learning the scoring functions, using the early-stopped version of the Algorithm 3 described above,
that maximize the chosen (smoothed variant of the) Wφ -performance measure: MWW, Pol and RTB.
We compare them with ROC∗. All the experiments were run using Python.

For both the location and scale models, we ran the algorithm for three increasing levels of diffi-
culty defined by the decreasing value of the parameter ε . Figures 7.3 (location and scale) show that
the three methods (MWW, Pol, RTB) learn an empirical parameter θ̂n,m such that the correspond-
ing ROC curve gets close to ROC∗ (red curves) and the more ε increases and the more the scoring
rule learned generalizes well. Fig. 7.4 (location and scale) reveal the monotonicity of the evolution
of the empirical criteria, as the number of iterative steps of Algorithm 3 increases. Unsurprisingly,
all the results show an increasing ability to learn a scoring function that maximizes the three Wφ -
performance measures, as ε increases (i.e. when the distribution G and H are significantly more
different from each other).

Analyzing the average of the empirical ROC curves obtained, MWW performs better for the
location model as its corresponding curve converges faster to ROC∗ for all ε . This phenomenon
was expected due to the well-known high power of the related Mann-Whitney-Wilcoxon test statistic
in this modeling. The aggregated ROC curve for the Pol method also performs well, while RTB’s
presents a low performance compared to MWW, see Fig. 7.3. Indeed, considering only the best
ranked observations at each iteration in the learning procedure, does not always achieve a good scor-
ing parameter and is enhanced by the early-stopped rule. It results in a higher variance and a larger
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spectrum of the empirical curves both at the same time, see the light blue curves in Fig. 7.2.3. and
7.5.3. (Loc2 and Loc3). The slow convergence for the RTB method is illustrated with Loc1, where
almost both samples are blended/coincide, for which only the ROC curves above the diagonal were
kept. For the scale model, the aggregated ROC curves are comparable for the three methods with a
slightly higher performance obtained by RTB and we note the faster convergence of the algorithm
for this model, see Fig. 7.4.

Looking at the best ROC curves (dark blue lines), defined as those obtained by the scoring func-
tion minimizing the generalization error for each criterion, RTB yields to a scoring function that
generalizes best for most of the models. In particular, when focussing on the ’best’ instances in
the learning procedure, the obtained empirical scoring functions have higher performance at the be-
ginning of the ROC curves, see the zoomed plots. Also, choosing the optimal proportion 1− u0 of
observations to consider for the score-generating function results in different performance measures.
Figure 7.7 gathers the resulting plots for models Loc2 and 3 with u0 in {0.7,0.9,0.95} while Fig. 7.7
depicts the scale model 2 with u0 in {0.6,0.7,0.8} and a higher number of loops T = 70. Considering
the best ROC curves for all models shows that when u0 tends to one, the beginning of the curve is
accurately learned. Incidentally, note that the proportion of observations considered has to be large
enough, so that the optimization algorithm performs well.
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1. Loc2, φMWW (u) = u 2. Loc2, φPol(u) = u3 3. Loc2, φRT B(u) = uI{u≥ 0.9}

4. Scale1, φMWW (u) = u 5. Scale1, φPol(u) = u3 6. Scale1, φRT B(u) = uI{u≥ 0.9}

Figure 7.2. Empirical ROC curves and average ROC curve for Loc2 (1-3) (ε = 0.20) and for Scale1 (4-6) (ε = 0.70).
Samples are drawn from multivariate Gaussian distributions according to section 7.1.2,scored with early-stopped GA
algorithm’s optimal parameter for the class of scoring functions. Hyperparameters: u0 = 0.9, q = 3, B = 50, T = 50.
Parameters for the training set: n = m = 150; d = 15; for the testing set: n = m = 106; d = 15. Figures 1,2,3 correspond
resp. to the models MMW, Pol, RTB. Light blue curves are the B(= 50) ROC curves that are averaged in green (solid line)
with +/− its standard deviation (dashed green lines). The dark blue and purple curves correspond to the best and worst
scoring functions in the sense of minimization and maximization of the generalization error among the B curves. The red
curve corresponds to ROC∗.
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1. Loc1, ε = 0.10 2. Loc2, ε = 0.20 3. Loc3, ε = 0.30

4. Scale1, ε = 0.70 5. Scale2, ε = 0.90 6. Scale3, ε = 1.10

Figure 7.3. Average of the ROC curves (solid line), best ROC curves (dashed line) for the three location models Loc1
(1.), Loc2 (2.) and Loc3 (3.) and for the scale models Scale1 (4.), Scale2 (5.) and Scale3 (6.). In blue for MWW, orange
for Pol, green for RTB, red for ROC∗. Samples are drawn from multivariate Gaussian distributions according to section
7.1.2, scored with early-stopped GA algorithm’s optimal parameter for the class of scoring functions and averaged after
B = 50 loops. Hyperparameters: u0 = 0.9; q = 3, B = 50, T = 50. Parameters for the training set: n = m = 150; d = 15;
for the testing set: n = m = 106; d = 15.
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1. Loc, φMWW (u) = u 2. Loc, φPol(u) = u3 3. Loc, φRT B(u) = uI{u≥ 0.9}

4. Scale, φMWW (u) = u 5. Scale, φPol(u) = u3 6. Scale, φRT B(u) = uI{u≥ 0.9}

Figure 7.4. Average of the empirical Wφ -ranking performance measure over the B = 50 loops for the three location
models Loc1, Loc2 and Loc3 and for three scale models Scale1 , Scale2 and Scale3. Samples are drawn from multivariate
Gaussian distributions according to section 7.1.2, scored with early-stopped GA algorithm’s optimal parameter for the
class of scoring functions and averaged after B = 50 loops. Hyperparameters: u0 = 0.9; q = 3, B = 50, T = 50. Parameters
for the training set: n = m = 150; d = 15; for the testing set: n = m = 106; d = 15.
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1. Loc1, φMWW (u) = u 2. Loc1, φPol(u) = u3 3. Loc1, φRT B(u) = uI{u≥ 0.9}

1. Loc3, φMWW (u) = u 2. Loc3, φPol(u) = u3 3. Loc3, φRT B(u) = uI{u≥ 0.9}

Figure 7.5. Empirical ROC curves and average ROC curve for Loc1 (ε = 0.10), Loc3 (ε = 0.30). Samples are drawn
from multivariate Gaussian distributions according to section 7.1.2, scored with early-stopped GA algorithm’s optimal
parameter for the class of scoring functions. Hyperparameters: u0 = 0.9, q = 3, B = 50, T = 50. Parameters for the
training set: n = m = 150; d = 15; for the testing set: n = m = 106; d = 15. Figures 1,2,3 correspond resp. to the
models MMW, Pol, RTB. Light blue curves are the B(= 50) ROC curves that are averaged in green (solid line) with +/−
its standard deviation (dashed green lines). The dark blue and purple curves correspond to the best and worst scoring
functions over the B Monte Carlo replications. The red curve corresponds to ROC∗.
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1. Scale2, φMWW (u) = u 2. Scale2, φPol(u) = u3 3. Scale2, φRT B(u) = uI{u ≥
0.9}

1. Scale3, φMWW (u) = u 2. Scale3, φPol(u) = u3 3. Scale3, φRT B(u) = uI{u ≥
0.9}

Figure 7.6. Empirical ROC curves and average ROC curve for Scale2 (ε = 0.90) and Scale3 (ε = 1.10). Samples
are drawn from multivariate Gaussian distributions according to section 7.1.2, scored with early-stopped GA algorithm’s
optimal parameter for the class of scoring functions. Hyperparameters: u0 = 0.9, q = 3, B = 50, T = 50. Parameters
for the training set: n = m = 150; d = 15; for the testing set: n = m = 106; d = 15. Figures 1,2,3 correspond resp. to
the models MMW, Pol, RTB. Light blue curves are the B(= 50) ROC curves that are averaged in green (solid line) with
+/− its standard deviation (dashed green lines). The dark blue and purple curves correspond to the best and worst scoring
functions over the B Monte Carlo replications. The red curve corresponds to ROC∗.
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Additional results. This paragraph gathers some empirical results regarding the difference in per-
formance of the W -criteria for the RTB score-generating function, when we vary the rate u0, for
both the location and the scale model in Fig. 7.7. Lastly, in order to highlight the effect of a too
small/large value for the smoothing parameter h, Fig. 7.8 depicts the empirical results related to the
location model (Loc1) when considering smoothed versions of the MWW criterion in the learning
stage and varying h: the value of the test MWW criterion evaluated at the scoring function output by
Algorithm 3 is plotted for each of the B Monte-Carlo replications (when the algorithm diverges, the
value is set to zero by convention). As expected, it shows that the performance attained after a fixed
number of iterations deteriorates in average for too large values of the bandwidth h (the criterion used
in the learning stage flattens itself as h increases), whereas a greater unstability is observed when h
is too small.

1. Loc2, ε = 0.2, T = 50 2. Loc3, ε = 0.3, T = 50 2. Scale2, ε = 0.9, T = 70

Figure 7.7. Comparison of three RTB models. Average of the ROC curves (solid line), best ROC curves (dashed line) for
the two location models Loc2 and Loc3. Samples are drawn from multivariate Gaussian distributions according to section
7.1.2, scored with early-stopped GA algorithm’s optimal parameter for the class of scoring functions and averaged after B
loops. Hyperparameters: B = 50, T = 50 for the location models and T = 70 for Scale2. Parameters for the training set:
n = m = 150; d = 15; for the testing set: n = m = 106; d = 15.

7.2 Ranking-based two-sample testing

In the context of the two-sample problem, this section provides a series of numerical experiments to
discuss technical aspects involved in the proposed ranking-based procedure on simulated datasets.
First, let two independent i.i.d. random samples {X1, . . . , Xn} and {Y1, . . . , Ym}, with n, m ∈ N∗,
drawn from unknown G and H and valued in the measurable space Z . The goal is to test the
hypothesis below for a fixed level α ∈ (0,1) and based on the two samples:

H0 : G = H against the alternative H1 : G 6= H . (7.2.1)
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Figure 7.8. Test values of the Wφ -criterion for the experiment Loc1, with φMWW (u) = u, for each Monte-Carlo
replication, depending on the smoothing bandwidth used in the learning stage: h ∈ {0.1,1/7,0.2,1,1.5,2}.
The red curve corresponds to the bandwidth value proposed in Section 7.1.

In particular, the present objective is twofold: (i) to compare the performance of the proposed
procedure to classic multivariate two-sample tests, for various bipartite-learning algorithms, (ii) to
analyze its performance depending on the choice of the score-generating function φ . We first detail
the algorithmic elements of the bipartite ranking step, defined to learn the optimal scoring function
on the training dataset. Then the probabilistic models are presented, and the empirical results are
discussed. All experiments displayed in this section can be reproduced using the code available at
https://github.com/MyrtoLimnios.

7.2.1 Algorithms

We consider the two-stage testing procedure as summarized in 6.2 and briefly recall the framework.
The initial two-sample dataset is composed of independent and i.i.d. samples Dn,m = {{X1, . . . , Xn},
{Y1, . . . , Ym}} of sizes n, m≥ 2 and valued in Z ⊂Rd , with d ≥ 2. The technicalities of each step
are sequentially detailed, followed by the benchmark comparison tests and finally the experimental
parameters.

Bipartite ranking algorithms (Step 1). Consider an algorithm A trained on a subset Dn′,m′ ⊂
Dn,m, with n′ < n, m′ < m. For a given class S0, the goal is to learn the scoring function ŝ ∈ S0
that induces the optimal ranks of the random observations in the sense of the bipartite ranking loss
criterion. As exposed in the Section 6.2.3, the objective loss usually boils down to maximizing
the (tailored) empirical AUC. From the algorithmic perspective, this statistic is challenging due
to e.g. the comparison of pairs, leading to quadratic complexity. However, many algorithms have
been introduced to approximate the exact empirical loss, in particular in the context of pairwise
learning-to-rank frameworks. They are designed to bridge the gap to pairwise models by generating
all possible couples from the two samples and recovering the exact objective under the assumption
of linear separation between the samples. We propose a modified version to fit best to the proposed
statistic that generates only a particular class of pairs of instances. In particular, the linear RankSVM
(see Joachims (2002)) with L1 and L2 losses (resp. rSVM1, rSVM2), as well as both RankNN (RNN,
see Burges et al. (2005)) and LambdaRankNN (lRNN, see Burges et al. (2007)), are implemented.
We also provide the algorithms for boosting methods, RankBoost and AdaBoost. The modified

https://github.com/MyrtoLimnios
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algorithms are detailed in the Appendix section 7.4. These algorithms are particularly well fitted for
large samples and in the nonparametric setting i.e. when the type of transformation between the two
underlying probability laws is unknown. We also test classic algorithms for binary classification,
namely the LinearSVR (SVR) and the logistic regression (LR) for the sake of algorithmic simplicity,
available directly on the sklearn librairy of Python.

Remark 10. (ON THE EXACT MAXIMIZATION OF Wφ ) When few observations are available, such
algorithms might not converge. We propose an exact bipartite ranking algorithm based on a gradient
ascent optimization method. This relies on maximizing an empirical version of the smoothed Wφ -
criterion, as introduced in Section 7.1. Although it requires parametrizing S0, we showed it recovers
at best the ROC curve with different characteristics depending on the choice of φ . This is investigated
in Appendix sections A.2 and A.3.

Univariate two-sample rank tests (Step 2). Consider the optimal output ŝ of the first step, such
that the test subset Dn′′,m′′ is scored and valued in R. We implement the statistic Ŵ φ

n,m(s), for
φMWW (u) = u (MWW, Wilcoxon (1945)), φRT B(u) = uI{u ≥ u0} for u0 ∈ (0,1) (RTB, Clémençon
and Vayatis (2007)). For these choices of φ and for a given a level α , we evaluate our method
w.r.t. the type-I error and the power of the obtained test statistics. Notice that the directional error
(or type-III) is null when the underlying probabilistic model is known. For simulated datasets, we
first consider both probabilities when the dissimilarity/discrepancy parameter ε > 0 varies with fixed
design, then we fix the dissimilarity parameter but let the dimension d increase. Finally, for some
experiments, the empirical ROC curves based on the scored test sample are plotted.

Null distribution approximation. The linear rank statistic being exactly distribution-free, its uni-
variate distribution under the null hypothesis can be computed through a simple procedure, c.f. Sec-
tion 6.4.3. Although this property, its algorithmic complexity is of factorial order thus requiring high
computational capacity. Therefore, two distribution-free rules are implemented depending on the
sample sizes n,m, following the explicit formulations derived in Sections 6.4.1 and 6.4.3. Of course,
when the score-generating function φ corresponds to a classic univariate two-sample test, the SciPy
open-access library available in Python can be used directly on the scored samples to perform the
test.

Benchmark tests. We compare our results to three classic multivariate and nonparametric two-
sample tests from the literature. The unbiased (quadratic) Maximum Mean Discrepancy (MMD)
test with Gaussian kernels from Gretton et al. (2007, 2012a), the graph-based Wald-Wolfowitz runs
test (FR) generalized to the multivariate setting in Friedman and Rafsky (1979), the metric-based
Energy test (Energy), see Székely and Rizzo (2013). (Notice that both MMD and ED are not exactly
distribution-free tests.) For the selected tests, we reviewed and updated open-access Python libraries
to unify the testing framework, in particular to ensure that the estimation of the null distribution is
common. We point out that, even if experimental models are parametric, we do not implement
multivariate parametric tests, as those listed in Section 6.2.2.

Experimental parameters. For all the experiments, we consider the proportion for the train/test
for each sample equals to n′/n = 4/5 and n′′/n = 1/5 and n,m = 500,500, the power is estimated
via Monte-Carlo method and averaged over B = 50 replications, the significance level of the tests is
set to α = 0.05. The parameter of the RTB functions are u0 ∈ {0.6,0.7,0.8,0.9}. For the samples
parameters, n = m, with n = 500, and d > 1 depending on the probabilistic model. For the benchmark
tests, the null distribution is estimated with the permutation method set to Bperm = 100 and the
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hyperparameter β ∈ {1e− 3,1e− 2,1e− 1,1,5,10,15,20,25,30,1e2,1e3}. The plots include the
confidence interval for each point at level 95%. For a given experiment, the size of each sample is
kept fixed at each train/test split. Also, the hyperparameters are not optimized.

Evaluation criteria. In order to evaluate the performance of the procedure for various ranking
algorithms, we estimate the empirical type-I error, corresponding to ε = 0, and the empirical power,
for multiple choices of ε > 0. Precisely, a Monte-Carlo procedure is performed, as detailed in Chapter
6, section 6.4.2, with B ∈ N∗ replications as follows. For a given sample, the ranking algorithm of
Step 1 outputs the optimal scoring functions ŝ on the training sample. Then for Step 2, the scores
of the remaining two samples are computed and the homogeneity test is performed at risk α , i.e.
Φ

φ

α(Dn′′,m′′ (ŝ)), see Eq. (6.3.10). As a global evaluation criterion, the optimal test is selected using
the minimax separation rate ρ , as detailed in Chapter 6, section 6.4.2. It aims to output the test
achieving the higher power for the smaller ε in the sense of the Oracle test (AUC∗, with the notation
of the previous section 7.1), while controlling minimal type-I error.

7.2.2 Synthetic data generation

We illustrate the proposed class of rank-based test statistics performances through the following
frameworks. Various location and scale models are implemented to compare the empirical results to
the explicit oracle statistic. The additional parameters are detailed in the appendix section for clarity.

Location two-sample tests for Gaussian samples. The two samples X ∼ Nd(µX ,Σ) and Y ∼
Nd(µY ,Σ) are drawn independently, with Σ ∈ S+

d (R), ε ∈ {0.0,0.2,0.3,0.6}, as follows:

(L1) µY = 0d , µX = (ε/
√

d)×1d . Two modelings for the covariance matrix where the first marginal
is negatively correlated with all the others and for 2 ≤ k ≤ d the coordinates are : (L1−)
mutually independent; (L1+) positively correlated.

The explicit covariance matrices Σ are displayed in Section 7.4. This class of models has an explicit
solution of scoring class S ∗ corresponding of the linear functions satisfying sθ (·) = 〈θ , ·〉, θ ∈Θ⊂
Rd and of optimal parameter proportional to θ ∗ = Σ−1(µX −µY ), see Clémençon et al. (2021). The
true ROC curves (ROC∗) are plotted in the Appendix section 7.4.

Scale two-sample tests for Gaussian samples. The two samples X∼Nd(0d ,ΣX), and Y∼Nd(0d ,ΣY )
are drawn independently with ΣX , ΣY ∈ S+

d (R) as follows:

(S1) X∼Nd(0d ,ΣX), and Y∼Nd(0d ,Id), with ΣX = Id +(ε/d)H, H a symmetric invertible matrix
of eigenvalues in [0.5,1.5], with d ∈ {50,100}.

(S2) Decreasing correlation. X ∼Nd(0d ,ΣX), and Y ∼Nd(0d ,ΣY ), with ΣX ,i, j = α |i− j|, ΣY,i, j =
β |i− j|, for i, j ≤ d, with d ∈ {3,20}, β = 0.2 and α = β + ε .

(S3) Equi-correlated samples. X ∼ Nd(0d ,ΣX), and Y ∼ Nd(0d ,ΣY ), with ΣX = (1− α)Id +
α1d1T

d , ΣY = (1−β )Id + β1d1T
d , with d ∈ {3,20}, β = 0.3 and α = β + ε .

The optimal class of scoring class S ∗ is defined by the set of quadratic functions satisfying
sθ (·) = 〈·,θ−1·〉, θ ∈ Θ = S+

d (R) and of optimal parameter proportional to θ ∗ = Σ
−1
X − Σ

−1
Y , see

Clémençon et al. (2021). The ROC∗ curves are plotted in the Appendix section 7.4.
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Location and scale mixture models. We illustrate the case for both location and scale/rotation
mixture models with samples drawn from Gaussian distributions. We use the blobs dataset as a
classic example provided by the library scikit-learn of Python and corresponds to a grid of
two-dimensional Gaussian blobs, see Fig. 7.9. For all experiments, the number of blobs is fixed to
nblobs = 9 i.e. and their mean are equidistant by a parameter θ ∈R∗ that we make vary. Each blob is
drawn from N (µ,σ2× Id), where µ has coordinates µi ∈ {−θ ,0,θ}, for all i ∈ {1,2}, and σ > 0,
σY = 1.

(BL) Location. Both samples are drawn from the same distribution, but one is translated by ε > 0,
with σ2

X = σ2
Y = 1 and θ = 3.

(BS) Scale. Both samples are drawn from the same distribution, but one is rotated by an angle
ε ∈ {π/4, π/6}, with d ∈ {2,20}, σ2

X ∈ {1,4}, σ2
Y = 1 and θ ∈ {1,3}.

a. Location blobs model (ε = 1) b. Rotation blobs model (ε = π/6)

Figure 7.9. Blobs datasets for the location model (a) and the rotation model (b), the sample drawn from G
(blue) and from H (green), n = m = 1000, θ = 5.

The framework (S1) is from Section 7.1, (S2), (S3) inspired from Deb and Sen (2019).

7.2.3 Results and discussion

This section discusses the numerical results obtained for the series of two-sample R-tests when com-
paring the empirical type-I error and power to state-of-the-art nonparametric tests. We detail the
differences depending on the choice of the bipartite ranking algorithm. In particular, we concen-
trate on the ability to reject H0 for small deviations from it, while controlling low type-I error for
challenging probabilistic models. We gather in tables these indicators for all designs when using
the score-generating function φ = Id, i.e., corresponding to the MWW test statistic. Graphs are ad-
ditionally plotted for other φ , in particular this of the RTB model with various proportion values
u0 ∈ {0.6,0.7,0.8,0.9}. In this line, the optimal statistic(s) (in bold) is chosen to minimize the type-
I error while maximizing the power for the smallest value of ε . All experiments are run using Python.

For all experiments, we performed the two-stage procedure detailed in Fig. 6.2 (Chap. 6) at fixed
risk α = 0.05 and sample sizes. We made the dimension d of the feature space and the discrepancy
parameter ε vary. The more ε increases, the more the two underlying distributions are ’dissimilar’.
First, all tests show increasing empirical power with the increase of ε , for all experiments except for
the robust models. However, due to the sample sizes and the required data-split for all procedures,
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we observe an instability in the results for some experiments despite a large number of Monte Carlo
samplings (see e.g. MMD and Energy in Fig. 7.10, and when comparing their values in 7.1 and 7.1).
We sequentially review the results for each category of the probabilistic model.

First and most importantly, the location models are under scrutiny. On the one hand, these are
the most accurate probabilistic models for ranking algorithms. Precisely, Step 1. aims to learn
the optimal scoring function by minimizing the bipartite ranking loss. It was extensively shown
and discussed (Chap. 2 sec. 2.1, also Chap. 5) that only for the location model, the state-of-the-
art ranking algorithms are designed to optimize the exact risk, either with the binary or surrogate
losses. On the other hand, univariate rank statistics are known to be UMP for the location model;
hence we expect similar behavior in the multivariate setting. Overall, ranking-based tests show a
lower minimax separation rate than the three comparison tests. In particular, methods based on
Neural Nets and those estimating the likelihood ratio (SVR, LR) reject the null for very small ε (Fig.
7.10). While both RankSVM and boosting methods do not falsely reject the null, they have similar
performance to metric-based tests (Fig. 7.11, 7.12). In addition, Fig. 7.13 plots empirical ROC
curves of the prediction obtained by the bipartite ranking algorithms for the (L1-) model to compare
with the oracle curve, defined by ROC∗.

For the scale model (S1), we let the high dimension d ∈ {50,100}. MMD and Energy tests
have high statistical errors. On the contrary, (Lambda)RankNN have very small type-I error and an
increase of the power for d = 50. For d = 100, only RTB and the Oracle tests are of interest. For
both (S2) and (S3), (Lambda)RankNN models have a smaller ρ overall, while having higher power
for greater dimension d (see Fig. 7.15). While FR has empirical fuzzy behavior, MMD (except for
(S2) with d = 20) and Energy have lower testing performance. Lastly, boosting and SVM based
tests do not converge in this setting, their empirical power is very low, hence we do not present their
results.

The blobs dataset is of interest in this context for testing mixture types of models. In particular,
the transformation between the two samples can be greater than each blob’s variance. We com-
pare the results for two different variances (σ ) and means (θ ). The empirical results discussed in
Chwialkowski et al. (2015); Gretton et al. (2012c) showed low power for MMD and in particular if
the kernel is not well-chosen (Gretton et al. (2012c)). Chwialkowski et al. (2015) later investigated
it with a block method. This indicates that the implemented optimization of the kernel bandwidth
circumvents, to a certain extent, this issue and more broadly, that the results obtained in this section
are optimal in that sense. Regarding (BL), all ranking-based tests show high power, see Fig. 7.16
and Fig. 7.17. However, for (BS), SVM-based tests do not reject the null, even for large discrepancy
parameter ε .

To conclude, the choice of score-generating function impacts the performance of the R-statistic.
Of course, it was expected that φ = Id would yield better empirical results as it recovers the loss of
the bipartite ranking algorithms, as fairly discussed. However, testing in Step 2. with φrtb, shows
interesting results, in particular with (Lambda)RankNN models, see e.g. Fig. 7.10 (d = 6) and 7.15.
Therefore we only can hope for improvements following the last Section 7.1 and as briefly detailed
in Remark 10.
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Method Type-I error Power (d = 4) Type-I error Power (d = 6)

(L1-) (d = 4) ε = 0.2 ε = 0.3 ε = 0.6 (d = 6) ε = 0.2 ε = 0.3 ε = 0.6

RNN 0.08 (±0.075) 0.42 (±0.137) 0.20 (±0.111) 1.0 0.0 0.1 (±0.083) 1.0 1.0

lRNN 0.06 (±0.066) 0.32 (±0.129) 0.20 (±0.111) 1.0 0.06 (±0.066) 0.24 (±0.112) 1.0 1.0

rSVM1 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0

rSVM2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

rSVR 0.0 0.72 (±0.124) 1.0 1.0 0.0 0.98 (±0.039) 1.0 1.0

rLR 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0

Oracle 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0

MMD 0.0 0.54 (±0.140) 0.0 1.0 0.0 0.0 0.48 (±0.138) 0.0

Energy 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0

FR 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Method Type-I error Power (d = 4) Type-I error Power (d = 6)

(L1+) (d = 4) ε = 0.2 ε = 0.3 ε = 0.6 (d = 6) ε = 0.2 ε = 0.3 ε = 0.6

RNN 0.08 (±0.075) 0.18 (±0.106) 0.1 (±0.028) 0.46(±0.138) 0.26 (±0.122) 0.06 (±0.066) 0.24 (±0.118) 0.5 (±0.139)

lRNN 0.06 (±0.066) 0.18 (±0.106) 0.1 (±0.028) 0.38 (±0.135) 0.32 (±0.129) 0.08 (±0.075) 0.16 (±0.102) 0.52 (±0.138)

rSVM1 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0

rSVM2 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0

rSVR 0.0 0.94 (±0.066) 0.50 (±0.139) 0.48 (±0.139) 0.0 0.14 (±0.096) 0.64(±0.133) 0.98 (±0.039)

rLR 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0

Oracle 0.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0

MMD 0.0 0.0 0.38(±0.135) 1.0 0.0 0.0 0.9 (±0.083) 1.0

Energy 0.0 0.0 1.0 0.0 0.0 0.0 0.98 (±0.039) 1.0

FR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 7.1. Estimation of type-I error and power for the location models (L1-) and (L1+) with n,m = 500,500
and d ∈ {4,6}, ± their standard deviation at 95%. For ranking methods, only the results associated to MWW
test are presented. Bold estimates represent the ones that among all algorithms minimize the type-I error, and
maximize the power. The algorithm having ’best’ empirical results is in bold.
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a. (L1-), d = 4 b. (L1-), d = 6

Figure 7.10. Estimation of type-I error and power for the model (L1-) with n,m = 500,500, d = 4 (a) and
d = 6 (b), ± their standard deviation at 95%. Results for each algorithm are gathered in a same plot, where
RTB tests with u0 ∈ {0.6,0.7,0.8,0.9} are estimated.
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a. (L1+), d = 4 b. (L1+), d = 6

Figure 7.11. Estimation of type-I error and power for the model (L1+) with n,m = 500,500, d = 4 (a) and
d = 6 (b), ± their standard deviation at 95%. Results for each algorithm are gathered in a same plot, where
RTB tests with u0 ∈ {0.6,0.7,0.8,0.9} are estimated.
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a. (L1+), d = 4 b. (L1+), d = 6

Figure 7.12. Estimation of type-I error and power for (L1+) model with n,m = 500,500, and with d = 4 (a)
and d = 6 (b),± their standard deviation at 95%. Results for each algorithm are gathered in a same plot, where
RTB tests with u0 ∈ {0.6,0.7,0.8,0.9} are estimated.
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1. Neural Nets
1. Support Vector Ma-
chine

1. Boosting 1. Binary CPE

Figure 7.13. Empirical ROC curves of the predictions of scores for the observations drawn from model (L1-) with
ε = 0.20 and d = 6. The ranking algorithms are RankNN and LambdaRankNN (1.), RankSVM with logistic regression, L1
and L2 loss (2.), RankBoost and AdaBoost (3.). Logistic regression and linear support vector regression (4.). The blue
curve corresponds to ROC∗.

Method Type-I error Power (d = 50) Type-I error Power (d = 100)
(S1) (d = 50) ε = 0.5 ε = 1.0 (d = 100) ε = 2.5 ε = 5.0

RNN 0.14 (±0.096) 0.08 (±0.075) 0.38 (±0.135) 0.1 (±0.083) 1.0 1.0
lRNN 0.04 (±0.054) 0.02 (±0.039) 0.26 (±0.122) 0.03 (±0.047) 1.0 1.0
Oracle 0.0 1.0 1.0 0.0 1.0 1.0
MMD 0.0 0.0 0.0 0.0 0.0 1.0
Energy 0.0 0.0 0.0 0.0 0.0 1.0
FR 0.0 0.38 (±0.146) 0.0 0.0 1.0 1.0
Method Type-I error Power (d = 3) Type-I error Power (d = 20)
(S2) (d = 3) ε = 0.2 ε = 0.4 (d = 20) ε = 0.2 ε = 0.4

RNN 0.08 (±0.075) 0.32 (±0.129) 0.98 (±0.039) 0.18 (±0.106) 0.82 (±0.106) 1.0
lRNN 0.06 (±0.066) 0.18 (±0.106) 1.0 0.10 (±0.083) 0.76 (±0.118) 1.0
Oracle 0.0 1.0 1.0 0.0 1.0 1.0
MMD 0.0 0.0 1.0 0.0 1.0 1.0
Energy 0.0 0.0 0.78 (±0.115) 0.0 0.0 1.0
FR 1.0 0.0 1.0 1.0 1.0 1.0
Method Type-I error Power (d = 3) Type-I error Power (d = 20)
(S3) (d = 3) ε = 0.2 ε = 0.4 (d = 20) ε = 0.1 ε = 0.2

RNN 0.04 (±0.054) 0.42 (±0.137) 0.98 (±0.039) 0.02(±0.039) 0.30(±0.127) 0.80(±0.111)
lRNN 0.10 (±0.083) 0.34 (±0.131) 1.0 0.04 (±0.054) 0.22 (±0.115) 0.90 (±0.138)
Oracle 0.0 1.0 1.0 0.0 1.0 1.0
MMD 0.58 (±0.137) 0.0 1.0 0.0 0.0 1.0
Energy 0.10 (±0.083) 0.0 1.0 0.0 0.0 0.48 (±0.138)
FR 0.0 0.0 1.0 0.0 0.0 0.02 (±0.039)

Table 7.2. Estimation of type-I error and power for the scale models (S1), (S2) and (S3) with n,m = 500,500,
and d ∈ {50,100} (for S1) d ∈ {3,20} (for S2, S3), ± their standard deviation at 95%. For ranking methods,
only the results associated to MWW test are presented. Bold estimates represent the ones that among all
algorithms minimize the type-I error, and maximize the power. The algorithm having ’best’ empirical results
is in bold.
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a. (S1), d = 50 b. (S1), d = 100

Figure 7.14. Estimation of type-I error and power for the scale model (S1) with n,m = 500,500 and with
d = 50 (a) and d = 100 (b), ± their standard deviation at 95%. Results for each algorithm are gathered in a
same plot, where RTB tests with u0 ∈ {0.6,0.7,0.8,0.9} are estimated.
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a. (S2), d = 3 b. (S2), d = 20

c. (S3), d = 3 d. (S3), d = 20

Figure 7.15. Estimation of type-I error and power for the scale models (S2) (a,b) and (S3) (c,d) with n,m =
500,500 and with d = 3 (a,c) and d = 20 (b,d), ± their standard deviation at 95%. Results for each algorithm
are gathered in a same plot, where RTB tests with u0 ∈ {0.6,0.7,0.8,0.9} are estimated.
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Method Type-I error Power (θ = 3) Type-I error Power θ = 1
(BL) (d = 2, θ = 3) ε = 0.7 ε = 1.0 (d = 2, θ = 1) ε = 0.2 ε = 0.4

RNN 0.0 0.74 (± 0.122) 0.92 (±0.075) 0.0 0.18 (± 0.106) 0.92 (± 0.075)
lRNN 0.0 0.74 (± 0.122) 0.88 (±0.090) 0.0 0.2 (± 0.111) 0.9 (± 0.083)
rSVM1 0.0 0.84 (±0.102) 1.0 0.0 0.0 1.0
rSVM2 0.0 0.84 (±0.102) 1.0 0.0 0.0 1.0
rSVR 0.0 0.24 (±0.118) 0.46 (±0.138) 0.0 0.82 (± 0.106) 1.0
rLR 0.0 0.0 1.0 0.0 1.0 1.0
MMD 0.0 1.0 1.0 0.0 0.0 1.0
Energy 0.0 1.0 1.0 0.0 1.0 1.0
FR 0.0 1.0 1.0 0.0 0.0 0.0
Method Type-I error Power (d = 3) Type-I error Power (d = 20)
(BS) (d = 2, θ = 3) ε = π/6 ε = π/4 (d = 20, θ = 3) ε = π/6 ε = π/4

RNN 0.0 0.32 (±0.129) 0.2 (±0.115) 0.0 0.64 (±0.133) 1.0
lRNN 0.0 0.38 (±0.135) 0.40 (±0.136) 0.0 0.68 (±0.129) 0.86 (±0.096)
MMD 0.0 1.0 1.0 0.0 1.0 1.0
Energy 0.0 0.0 0.0 0.0 0.0 0.0
FR 0.0 1.0 1.0 0.0 1.0 1.0

Table 7.3. Estimation of type-I error and power for the blobs models with n,m = 500,500, d ∈ {2,20} and
θ ∈ {1,3}, ± their standard deviation at 95%. For ranking methods, only the results associated to MWW
test are presented. Bold estimates represent the ones that among all algorithms minimize the type-I error, and
maximize the power. The algorithm having ’best’ empirical results is in bold.
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a. (BL), θ = 3 b. (BL), θ = 1

Figure 7.16. Estimation of type-I error and power for the blobs location model (BL) with n,m = 500,500,
d = 2 and with θ = 3 (a) and θ = 1 (b), ± their standard deviation at 95%. Results for each algorithm are
gathered in a same plot, where RTB tests with u0 ∈ {0.6,0.7,0.8,0.9} are estimated.
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a. (RS), d = 2,θ = 3,σ = 1 b. (RS), d = 20,θ = 3,σ = 1

c. (RS), d = 2,θ = 1,σX = 4 d. (RS), d = 2,θ = 1,σ = 1

Figure 7.17. Estimation of type-I error and power for the blobs rotation model (BS) with n,m = 500,500
and with d = 2,θ = 3 (a), d = 20,θ = 3 (b) and d = 2,θ = 1,σ = 4 (c), d = 2,θ = 1,σ = 1 (d), ± their
standard deviation at 95%. Results for each algorithm are gathered in a same plot, where RTB tests with
u0 ∈ {0.6,0.7,0.8,0.9} are estimated.

7.3 Conclusion

We exposed the empirical results of the procedures introduced in Chapter 5 for bipartite ranking and
6 for the two-sample problem. First, the deterministic gradient ascent algorithm applied to bipartite
ranking shows that maximizing the proposed smoothed empirical Wφ -ranking criteria outputs scoring
functions that converge to the oracle model in the ROC space. In particular, different score-generating
functions φ reveal various characteristics of the underlying distributions. We highlight that concen-
trating the learning on the ’best’ instances yields a better recovery of the beginning of the oracle
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ROC curve. Then, the two-stage ranking procedure showed interesting properties of state-of-the-art
ranking algorithms for the two-sample problem. Indeed, a series of probabilistic models were tested.
Generally, they showed comparable empirical type-I and type-II errors to classical tests: Maximum
Mean Discrepancy statistic, Energy-based statistic, and Wald-Wolfowitz runs statistic. Open access
online codes also accompany all the experiments.

7.4 Appendix

Learning-to-rank algorithms. We detail how we modified the learning-to-rank algorithms in or-
der to fit the test statistic introduced. First, we fix a same index of query for all observations and
fix the score to 1 (resp. to 0) for the first sample drawn from G (resp. H). The three learning-
to-rank algorithms construct all possible couples of observations from the pooled sample. Here we
modify this step such that for all couples the first instance is drawn from G to obtain the sequence:
(Xi,X1), . . . ,(Xi,Xi), . . . ,(Xi,Xn) and (Xi,Y1), . . . ,(Xi,Ym), for all i ≤ n. Besides these points, the
structure of both algorithms is kept identical, note incidently that a smaller number of gradients are
computed in the Neural Net structure. The modified algorithms are detailed in Algorithm 4.

Algorithm 4: Modified Pairwise Learning-to-Rank algorithm procedure.
Data: Dataset of independent i.i.d. samples {Xi}i≤n and {Y j} j≤m.
Input: Learning-to-Rank algorithm RANK, Score-generating functions φ , parameters of the

NN (expliciter).
Result: Ranking model

1 Set q = (1, . . . ,1) of size n + m
2 Set score = (1, . . . ,1,0, . . . ,0) of size n + m
3 for i = 1, . . . , n do
4 for k = 1, . . . , n+m do
5 store the couple (Xi, Zk), where Zk = Xk if k ≤ n, Zk = Yk−n if k ≥ n
6 end
7 end
8 Build the model RANK((Xi, Zk)i≤n, k≤n+m)

Exact parameters for the location models.

(L1−) for d = 4, the diagonals of Σ are (2,6,1,5), (−1,0,0), (−1,0), (−1); d = 6, the matrix is
extended in a similar way with the main diagonal equal to (2,6,1,5,4,3)

(L1+) for d = 4, the diagonals of Σ are (6,4,5,3), (−2,4,2), (−3,0), (−2); d = 6, the matrix diag-
onals are equal to (6,5,5,3,2,3), (−2,4,2,1,2), (−3,0,0,1), (−2,1,1), (−3,2), (−2).

ROC∗ curves for the location and the scale models.
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(a) (L1-), left: d = 4, right: d = 6

(b) (L1+), left: d = 4, right: d = 6

(c) (S1), left: d = 3, right: d = 20

(d) (S2), left: d = 4, right: d = 20

Figure 7.18. True ROC curves (ROC∗) for the location and the scale models: (L1+),(L1-),(S1),(S2), depending
on the discrepancy parameter ε ∈ {0.2,0.3,0.6} for (L1+) and (L1-), ε ∈ {0.2,0.4,0.6} for (S1) and ε ∈
{0.05,0.1,0.2} for (S2).
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8 | Learning to Rank Anomalies with Two-
sample Linear R-statistics

Abstract. The ability to collect and store ever more massive databases has been ac-
companied by the need to process them efficiently. In many cases, most observations
have the same behavior, while a probable small proportion of these observations are
abnormal. Detecting the latter, defined as outliers, is one of the major challenges for
machine learning applications (e.g. in fraud detection or in predictive maintenance). In
this chapter and following Section 2.3 (Chapter 2), we propose a methodology address-
ing the problem of outlier detection, by learning a data-driven scoring function defined
on the feature space which reflects the degree of abnormality of the observations. This
scoring function is learnt through a well-designed binary classification problem whose
empirical criterion takes the form of a two-sample linear rank statistics on which theor-
etical results are available. We illustrate our methodology with preliminary encouraging
numerical experiments.
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8.1 Introduction

The problem of ranking multivariate data by degree of abnormality, referred to as anomaly ranking,
is of central importance for a wide variety of applications (e.g. fraud detection, fleet monitoring,
predictive maintenance). In the standard setup, the ’normal’ behavior of the system under study (in
the sense of ’not abnormal’, without any link to the Gaussian distribution) is described by the (un-
known) distribution F(dx) of a generic r.v. X , valued in Rd . The goal pursued is to build a scoring
function s : Rd →R+∪{+∞} that ranks any observations x1, . . . , xn nearly in the same order as any
increasing transform of the density f would do. Ideally, the smaller the score s(x) of an observation
x in Rd , the more abnormal it should be considered. In Clémençon and Thomas (2018), a functional
criterion, namely a Probability-Measure plot referred to as the Mass-Volume curve (the MV curve in
abbreviated form), has been proposed to evaluate the anomaly ranking performance of any scoring
rule s(x). This performance measure can be viewed as the unsupervised version of the Receiver Op-
erating Characteristic (ROC) curve, the gold standard measure to evaluate the accuracy of scoring
functions in the bipartite ranking context, see e.g. Clémençon and Vayatis (2009b). Beyond this
approach, let us highlight that the problem of anomaly detection has also been studied via various
other modelings. For instance, the works of Bergman and Hoshen (2020) and Steinwart et al. (2005)
are based on classification methods, while Liu et al. (2008) build on peeling, Breunig et al. (2000)
on local averaging criteria, Frery et al. (2017) on ranking and Schölkopf et al. (2001) on plug-in
techniques.

In this chapter, we propose a novel two-stage method for detecting and ranking abnormal in-
stances, by means of scalar criteria summarizing the MV curve and extending the area under its
curve, when F(dx) has compact support. Briefly, starting from a sample of observations X1, . . . , Xn,
we artificially generate an independent second sample U1, . . . ,Um that is used as a proxy for out-
liers. For theoretical reasons explained in the chapter, the agnostic choice consists in sampling the
Ui’s i.i.d. from the uniform law on a subset of Rd , which F(dx)’s support is supposedly included
in. We then learn to discriminate the Xi’s from the Ui’s thanks to a scoring function that maximizes
two-sample empirical counterparts of the aforementioned criteria, that are in particular robust to im-
balanced datasets. The resulting scoring function allows to rank the Xi’s by degree of abnormality.
This novel class of criteria is based on theoretical guarantees provided by Clémençon et al. (2021)
on general classes of two-sample linear rank processes, that incidentally circumvent the difficulty
of optimizing the functional MV criterion. Beyond the classical results of statistical learning theory
for these processes, Clémençon et al. (2021) obtain theoretical generalization guarantees for their
empirical optimizers. The numerical results performed at the end of the chapter also provide strong
empirical evidence of the relevance of the approach promoted here.
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The chapter is structured as follows. In section 8.2, the formulation of the (unsupervised) anom-
aly ranking problem is recalled at length, together with the concept of MV curve. In section 10.2,
the anomaly ranking performance criteria proposed are introduced and their statistical estimation is
discussed. Optimization of the statistical counterparts of the criteria introduced to build accurate
anomaly scoring functions is also put forward therein. Finally, the relevance of this approach is
illustrated by numerical results in section 8.4.

8.2 Background and preliminaries

We start off with recalling the formulation of the (unsupervised) anomaly ranking problem and in-
troducing notations that shall be used here and throughout. By λ is meant the Lebesgue measure on
Rd , by I{E } the indicator function of any event E , while the generalized inverse of any cumulative
distribution function K(t) on R is denoted by K−1(u) = inf{t ∈ R : K(t) ≥ u}. We consider a r.v.
X valued in Rd , d ≥ 1, with distribution F(dx) = f (x)λ (dx), modeling the ’normal’ behavior of the
system under study. The observations at disposal X1, . . . , Xn, with n ≥ 1, are independent copies of
X . Based on the Xi’s our goal is to learn a ranking rule for deciding among two observations x and
x′ in Rd which one is more ’abnormal’. The simplest way of defining a preorder1 on Rd consists in
transporting the natural order on R+ ∪{+∞} onto it through a scoring function, i.e. a Borel meas-
urable mapping s : Rd → R+: given two observations x and x′ in Rd , x is said to be more abnormal
according to s than x′ when s(x)≤ s(x′). The set of all anomaly scoring functions that are integrable
with respect to Lebesgue measure is denoted by S . The integrability condition is not restrictive since
the preorder induced by any scoring function is invariant under strictly increasing transformation (i.e.
the scoring function s and its transform T ◦ s define the same preorder on Rd provided that the Borel
measurable transform T : Im(s)→ R+ is strictly increasing on the image of the r.v. s(X), denoted
by Im(s)). One wishes to build, from the ’normal’ observations only, a scoring function s such that,
ideally, the smaller s(X), the more abnormal the observation X . The set of optimal scoring rules in
S should be thus composed of strictly increasing transforms of the density function f (x) that are
integrable w.r.t. to λ , namely:

S ∗ = {T ◦ f : T : Im( f )→ R+ strictly increasing,
∫
Rd

T ◦ f (x)λ (dx) < +∞} . (8.2.1)

The technical assumptions listed below are required to define a criterion, whose optimal elements
coincide with S ∗.

H1 The r.v. f (X) is continuous, i.e. ∀c ∈ R+, P{ f (X) = c}= 0.

H2 The density function f (x) is bounded: || f ||∞
de f
= supx∈Rd | f (x)|< +∞.

Measuring anomaly scoring accuracy - The MV curve. Consider an arbitrary scoring function
s ∈ S and denoted by Ωs,t = {x ∈X : s(x) ≥ t}, t ≥ 0, its level sets. As s is λ -integrable, the
measure λ (Ωs,t) ≤ (

∫
u∈R+

s(u)du)/t is finite for any t > 0. Introduced in Clémençon and Thomas
(2018), a natural measure of the anomaly ranking performance of any scoring function candidate s is
the Probability-Measure plot, referred to as the Mass-Volume (MV) curve

t > 0 7→
(
P{s(X)≥ t}, λ ({x ∈ Rd : s(x)≥ t})

)
= (F(Ωs,t), λ (Ωs,t)) . (8.2.2)

1A preorder 4 on a set Z is a reflexive and transitive binary relation on Z . It is said to be total, when either z4 z′ or
else z′ 4 z holds true, for all (z,z′) ∈Z 2.
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Connecting points corresponding to possible jumps, this parametric curve can be viewed as the plot of
the continuous mapping MVs : α ∈ (0,1) 7→MVs(α), starting at (0,0) and reaching (1, λ

(
supp(F)

)
in the case where the support supp(F) of the distribution F(dx) is compact, or having the vertical
line ’α = 1’ as an asymptote otherwise. A typical MV curve is depicted in Fig. 8.1.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4
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0.8
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Figure 8.1. Typical MV curve in red (x-axis:volume, y-axis:mass). In gray, the diagonal y = x.

Let α ∈ (0,1). Denoting by Fs(t) the cumulative distribution function of the r.v. s(X), we have:

MVs(α) = λ

(
{x ∈ Rd : s(x)≥ F−1

s (1−α)}
)
, (8.2.3)

when Fs ◦F−1
s (α) = α . This functional criterion is invariant by increasing transform and induces a

partial order over the set S . Let (s1,s2) ∈S 2, the ordering defined by s1 is said to be more accurate
than the one induced by s2 when:

∀α ∈ (0,1), MVs1(α)≤MVs2(α) .

As summarized by the result stated below, the MV curve criterion is adequate to measure the accuracy
of scoring functions with respect to anomaly ranking. It reveals in particular that optimal scoring
functions are those whose MV curve is minimum everywhere.

Proposition 79 (Clémençon and Thomas (2018)). Let the assumptions H1−H2 be fulfilled. The
elements of the class S ∗ have the same (convex) MV curve and provide the best possible preorder
on Rd w.r.t. the MV curve criterion:

∀(s,α) ∈S × (0,1), MV∗(α)≤MVs(α) , (8.2.4)

where MV∗(α) = MVf(α) for all α ∈ (0,1).

Equation (8.2.4) reveals that the lowest the MV curve (everywhere) of a scoring function s(x), the
closer the preorder defined by s(x) is to that induced by f (x). Favorable situations are those where
the MV curve increases slowly and rises more rapidly when coming closer to the ’one’ value: this
correponds to the case where F(dx) is much concentrated around its modes, s(X) takes its highest
values near the latter and its lowest values are located in the tail region of the distribution F(dx).
Incidentally, observe that the optimal curve MV∗ somehow measures the spread of the distribution
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F(dx) in particular for large values of α w.r.t. extremal observations (e.g. a light tail behavior
corresponds to the situation where MV∗(α) increases rapidly when approaching 1), whereas it should
be examined for small values of α when modes of the underlying distributions are investigated (a flat
curve near 0 indicates a high degree of concentration of F(dx) near its modes).

Statistical estimation. In practice, the MV curve of a scoring function s∈S is generally unknown,
just like the distribution F(dx), and it must be estimated. A natural empirical counterpart can be
obtained by plotting the stepwise graph of the mapping:

M̂Vs(α) : α ∈ (0,1) 7→ λ

({
x ∈ Rd : s(x)≥ F̂−1

s,n (1−α)
})

, (8.2.5)

where F̂s,n(t) = (1/n)∑
n
i=1 I{s(Xi) ≤ t} denotes the empirical c.d.f. of the r.v. s(X) and F̂−1

s,n its
generalized inverse. In Clémençon and Thomas (2018), for a fixed s∈S , consistency and asymptotic
Gaussianity (in sup-norm) of the estimator (8.2.5) has been established, together with the asymptotic
validity of a smoothed bootstrap procedure to build confidence regions in the MV space. However,
depending on the geometry of the superlevel sets of s(x), it can be far from simple to compute the
volumes. In the case where F has compact support, included in [0,1]d say for simplicity, and from
now on it is assumed it is the case, they can be estimated by means of Monte-Carlo simulation.
Indeed, if one generates a synthetic i.i.d. sample {U1, . . . ,Um}, independent from the Xi’s and drawn
from the uniform distribution on [0,1]d , which we denote by Ud , a natural estimator of the volume
M̂Vs(α) is:

M̃Vs(α) =
1
m

m

∑
j=1

I{s(U j)≥ F̂−1
s,n (1−α)} . (8.2.6)

Minimization of the empirical area under the MV curve. Thanks to the MV curve criterion, it is
possible to develop a statistical theory for the anomaly scoring problem. From a statistical learning
angle, the goal is to build from training data X1, . . . , Xn a scoring function with MV curve as close
as possible to MV∗. Whereas the closeness between (continuous) curves can be measured in many
ways, the L1-distance offers crucial advantages. Indeed, we have

d1(s, f ) =
∫ 1

α=0
|MVs(α)−MV∗(α)|dα =

∫ 1

α=0
MVs(α)dα−

∫ 1

α=0
MV∗(α)dα .

Notice that d1(s, f ), i ∈ {1, ∞}, is not a distance between the scoring functions s and f but meas-
ures the dissimilarity between the preorders they define and that minimizing d1(s, f ) boils down to
minimizing the scalar quantity

∫ 1−ε

α=0 MVs(α)dα , the area under the MV curve. From a practical
perspective, one may then learn an anomaly scoring rule by minimizing the empirical quantity∫ 1

0
M̃Vs(α)dα .

This boils down to maximizing the rank-sum (or Wilcoxon Mann-Whitney) statistic (see Wilcoxon
(1945)) given by:

Ŵn,m(s) =
n

∑
i=1

Rank(s(Xi)) , (8.2.7)

where Rank(s(Xi)) is the rank of s(Xi) among the pooled sample {s(X1), . . . , s(Xn)}∪{s(U1), . . . ,
s(Um)}: Rank(s(Xi)) = ∑

n
l=1 I{s(Xl)≤ s(Xi)}+∑

m
j=1 I{s(U j)≤ s(Xi)}. Indeed, just like the empirical

area under the ROC curve can be related to the rank-sum statistic, we have

nm
(

1−
∫ 1

0
M̃Vs(α)dα

)
+ n(n + 1)/2 = Ŵn,m(s) . (8.2.8)
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In the next section, we introduce more general empirical summaries of the MV curve that are of
the form of two-sample rank statistics, just like (8.2.7), and propose to solve the anomaly ranking
problem through the maximization of the latter.

8.3 Measuring and optimizing anomaly ranking performance

In this section, a class of anomaly ranking performance criteria are introduced, which can be estim-
ated by two-sample rank statistics. We also emphasize that a natural approach to anomaly ranking
consists in maximizing such empirical scalar criteria.

8.3.1 Scalar criteria of performance and two-sample rank statistics

Here we develop the statistical learning framework we propose for anomaly ranking. Let p ∈ (0,1),
we assume that N ≥ 2 observations are available: n = bpNc ’normal’ i.i.d. observations X1, . . . ,Xn

taking their values in [0,1]d for simplicity drawn from F(dx) = f (x)λ (dx) and m = N − n i.i.d.
realizations of the uniform distribution Ud , independent from the Xi’s. Hence, p represents the
’theoretical’ proportion of ’normal’ observations among the pooled sample. Let a class of scoring
functions S0 ⊂S such that, for all s(x), we consider the mixture distribution Gs = pFs + (1− p)λs

and its empirical counterpart Ĝs,N(t) = (1/n)∑
n
i=1 I{s(Xi) ≤ t}+ (1/m)∑

m
j=1 I{s(Ui) ≤ t}. Notice

that since n/N → p as N tends to infinity, the quantity above is a natural estimator of the c.d.f. Gs.
We refer to the scored random samples for {s(X1), . . . ,s(Xn)} and {s(U1), . . . ,s(Um)}. Therefore,
motivated by Eq. (8.2.8), Definition 80 below provides the class of Wφ -performance criteria we
consider in the subsequent procedure.

Definition 80. Let φ : [0,1]→ R be a nondecreasing function. The ’Wφ -ranking performance cri-
terion’ with ’score-generating function’ φ(u) based on the mixture cdf Gs(dt) is given by:

Wφ (s) = E[(φ ◦Gs)(s(X))] . (8.3.1)

One can naturally relate this generalized form to the MV curve, justifying this choice of scalar
performance criteria as summaries of the MV curve, through the equality

Wφ (s) =
∫ 1

0
φ (1− pα− (1− p)MVs(α))dα . (8.3.2)

Equipped with the two random samples, the following Definition 81 provides an empirical coun-
terpart, that generalizes the empirical summaries of the MV curve via collections of two-sample
linear rank statistics. Precisely, for a given mapping s(x), we allow to weight the sequence of ’nor-
mal ranks’ i.e. the ranks of the scored ’normal’ instances among the pooled sample, by means of a
score-generating function.

Definition 81. (TWO-SAMPLE LINEAR RANK STATISTICS) Let φ : [0,1]→ R be a nondecreasing
function. The two-sample linear rank statistics with ’score-generating function’ φ(u) based on the
random samples {X1, . . . , Xn} and {U1, . . . , Um} is given by:

Ŵ φ
n,m(s) =

n

∑
i=1

φ

(
Rank(s(Xi))

N + 1

)
, (8.3.3)

where Rank(t) = NĜs,N(t) = ∑
n
i=1 I{s(Xi)≤ t}+ ∑

m
j=1 I{s(U j)≤ t}.
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Optimality. Briefly, we refer to the comprehensive analysis of the general class of criteria in
Clémençon et al. (2021), that establishes the theoretical guarantees for the consistency of the two-
stage procedure we detail in the following subsection. Importantly, the set of optimal maximizers
of the empirical Wφ -criteria coincides with the nondecreasing transforms of the likelihood ratio, just
like for the MV curves, as shown thourgh the Eq. (8.3.2). The optimal set S ∗ derived in Eq. (8.2.1)
underlines the implicit characterization that inherits an outlier: the lower the scalar score is and the
likelier anomalous the observation can be considered. Also, the notion of distance induced by the
rank-based criteria is in fact directly related to the distribution of the ’normal’ sample compared to
the Uniform one.

Choosing φ . As foreshadowed above, the choice of the score-generating function is an asset of this
class of criteria as it provides a flexibility w.r.t. the weighting of the area under the MV curve. Indeed,
its minimization directly implies the maximization of the Wφ -criterion (see Eq. (8.3.2)), recalling the
nondecreasing variation of φ(u). Therefore, one can hope to recover at best the MV∗ curve by the
right choice of φ(u), especially when the initial sample is noisy. Additionally, when going back to
the problem of learning to rank the (possible abnormal) instances, it is an advantage to weight the
ranks accordingly.

First, we recall the simplest uniform weighting of each ’normal’ rank with φ(u) = u. It parenthet-
ically yields to Eq. (8.2.8), of continuous version: W (s) = p/2 +(1− p)(1−

∫ 1
0 MVs(α)dα), where

the area under the MV curve is clearly computed. Other functions were introduced in the literature
related to classic univariate two-sample rank statistics. Figure 5.1 gathers classical nondecreasing
score-generating functions broadly used for two-sample statistical tests (refer to Hájek (1962)).

8.3.2 The two-stage procedure

In this paragraph, we detail the two-stage procedure, where we assume that both the framework and
assumptions detailed in the previous subsection are adopted. We define the test sample as the set of
i.i.d. random variables {X t

1, . . . , X t
nt
}, with nt ∈ N∗, a priori drawn from F(dx). The goal pursued is

to distinguish among the test sample, the instances the most likelier to be anomalous. In particular, we
propose a first step (1.) that outputs an optimal ranking rule ŝn,m(x), in the sense of the maximization
of the rank statistics of Eq. (81). Then, in the second step (2.) and equipped with this rule, the
instances of the test sample are optimally ranked by increasing order of similarity w.r.t. the X’s. We
also choose to watch a number of nlowest ∈ N∗ worst ranked instances i.e. of lowest empirical score.
The procedure is detailed in the following Fig. 8.2. By means of the recalled theoretical guarantees
proved in Clémençon et al. (2021), it results to the asymptotic consistency of step (1.) as well as its
nonasymptotic consistency with high probability, under some technical assumptions.

8.4 Numerical experiments

In this section, we illustrate the procedure promoted along the chapter through numerical experiments
on imbalanced synthetic data. As these experiments are mainly here to support our methodology, we
propose for the step (1.) to learn the empirical maximizer ŝn,m by means of a regularized classification
algorithm. At a technical level, we would ideally like to replace usual loss criterion such as the BCE
(Binary Cross-Entropy) loss by our tailored objective Wφ . Unfortunately, the latter is not smooth
and of highly correlated terms, which results in many challenges regarding its optimization. In order
to incorporate Wφ and still keeping good performances, we (i) use a regularized proxy of it and
(ii) incorporate the regularized criterion in a penalization term. The second point allows to drive the
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ANOMALY RANKING PROCEDURE

Consider the ’normal’ i.i.d. random sample {X1, . . . , Xn} of unknown probability probability func-
tion F(dt) defined on a feature space included [0,1]d . Consider a new random sample {X t

1, . . . , X t
nt
}

a priori drawn from F(dt), nt ∈N∗, independent of the X’s. Let S0 ⊂S a class of scoring functions
and φ a score-generating function. Set nlowest ∈ N∗.

1. Maximizing the Wφ -ranking performance criterion.

(i) Generate a i.i.d. random sample {U1, . . . ,Um} from Ud(dt), independent of {X1, . . . , Xn},

(ii) Output the optimal empirical scoring rule ŝn,m = argmaxs∈S0
Ŵ φ

n,m(s) based on the two samples
{X1, . . . , Xn} and {U1, . . . ,Um}.

2. Ranking anomalies.

(i) Compute the empirical scores of the test sample {ŝn,m(X t
1), . . . , ŝn,m(X t

nt
)},

(ii) Define as anomalous the nlowest observations of lowest empirical scores among the sequence
ŝn,m(X t

i ), i≤ nt .

Result. Output the set of anomalous observations with their corresponding rank.

Figure 8.2. Two-stage procedure for learning to rank anomalies.

learning with a usual BCE loss, which asymptotically amounts to estimate the conditional probability
P(y = 1 |X), while considering Wφ .

Data generating process. We generated the ’positive’ sample by i.i.d. Gaussian variables X1, . . . ,Xn,
n = 1000, in dimension d = 2, centered and with covariance matrix 0.1× I2 (where I2 is the identity
matrix). We chose the Gaussian law for its attractive structure and in particular for its symmetry, it
can be a reasonable choice in many situations where the data at hand are indeed well structured. We
then sampled the ’negative’ sequence of i.i.d. r.v. U ′1, . . . ,U

′
m, m = 500, from the following radial law,

expressed in terms of its density in polar coordinates:

RadLawα,β : (v,r) ∈ Sd−1× (0,1) 7→ 1
Area(Sd−1)

dv× 1
B(α,β )

rα−1(1− r)β−1dr ,

where α,β > 0 are two tunable parameters, Sd−1 = {x ∈ Rd , ‖x‖= 1} is the unit sphere, and where
B(α,β ) =

∫ 1
0 rα−1(1− r)β−1dr. In other words, v is uniformly sampled in the unit sphere and r has

Beta law with parameters α and β . Notice that α = β = 1 corresponds to the Uniform law and that,
when β = 1, the law puts more mass around 1 as α > 1 increases. In our experiment, we choose α = 3
and β = 1. Denoting by rad = max1≤i≤n ||Xi||, we finally obtained m ’synthetic outliers’ U1, . . . ,Um

defined by Ui = (rad + ε)×U ′i , with ε = 0.01. To simplify the notations, we denote by Ztrain the
concatenation of the Xi’s and the Ui’s. We also denote by ytrain the labels, where we choose to assign
the label 1 (resp. 0) to the ’positive’ (resp. ’negative’) sample. Figure 8.3 illustrates both data
generating processes. For the test set, we generated similarly a sequence of nt = 400 i.i.d. Gaussian
r.v. X t

1, . . . ,X
t
nt

from the same Gaussian law as the ’positive’ sample, and a i.i.d. random sequence
U t

1, . . . ,U
t
mt

, mt = 100, drawn from the law RadLawαt ,βt , with αt = 2. and βt = 1., dilated by a factor
(rad + ε).
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(a) Train data. (n, m) = (1000, 500).
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(b) Test data. (nt , mt) = (400, 100).

Figure 8.3. Data visualization for the two generating processes. The Gaussian observations are represented
in blue. The ’synthetic outliers’ samples drawn from the radial law are represented in red. The left figure (a)
corresponds to the train dataset, the right (b) to the test dataset.

Metrics. Once the algorithm that learns a (renormalized) optimal scoring function ŝn,m : Rd →
(0,1) has been trained (i.e. step (1.)), we score the test data with ŝn,m and compute the proportion
of true outliers among the nlowest points having lowest scores (i.e. step (2.)). We let nlowest varies in
{25,50,75,100}. Formally, if ξ1 4 · · ·4 ξnt+mt denote the points X t

i and U t
i sorted by scores, i.e. the

ordered sequence based on ŝn,m(Ztest,1), . . . , ŝn,m(Ztest,nt+mt ), we compute the following accuracy

Accnlowest =
1

nlowest

nlowest

∑
i=1

I{ξi ∈ {U t
1, . . . ,U

t
mt
}} . (8.4.1)

Neural Network. We trained a neural network MLP composed of one hidden layer of size 2× d,
a ReLu activation function and whose last layer is a Sigmoid function, computing the desired score.
For each nepoch = 30 epochs, we use the following training scheme:

1. Each sample of (Ztrain, ytrain) is individually passed through the network, the BCE loss is
computed2 and a backpropagation step is performed,

2. At the end of each epoch, the whole batch of the training dataset (Ztrain, ytrain) is passed
through the network and we computed the Binary Cross Entropy loss, denoted by BCE, and
the following proxy of Wφ

Ŵ φ
n,m =

n

∑
i=1

φ

(
(n + m)×MLP(Xi)+ 1

n + m + 1

)
.

In our experiments, we choose φ(u) = u and φu0(u) = uI{u ≥ u0} with u0 = 0.7, as defined
in section 8.3.1. We then compute the regularized loss BCE−λŴ φ

n,m, where λ is a hyperpara-
meter in {0,0.01,0.1,1,10}.

The training procedure of the Neural Net is summarized in the Algorithm 5.

Repetitions. We repeat B = 100 times the procedure, each time computing the accuracy metric
defined above.

2Remember it is given by −y ln ŷ− (1− y) ln(1− ŷ), where ŷ = MLP(X).
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Algorithm 5: Training of the Neural Network
Data: (Ztrain,ytrain).
Input: Network MLP, number of epochs nepoch, penalization strength λ .
Result: Trained network.

1 for n = 0, . . . , nepoch do
2 for X ,y ∈ Ztrain,ytrain do
3 compute ŷ = MLP ;
4 compute BCE = BCE(ŷ,y), backpropagate and zero grad ;
5 end
6 compute ŷ = MLP(Ztrain) ;
7 compute BCE = BCE(ŷ,y) and Ŵ φ

n,m ;
8 compute the regularized loss BCE−λŴ φ

n,m, backpropagate and zero grad ;
9 end

Visualization and results. In this section, we only display the results obtained with φ(u) = u since
they are very similar to the one obtained with φ(u) = uI{u ≥ u0}. This is probably due to the very
simple framework adopted for the data generating process and further investigations would be of
interest.

For the first learning loop, we saved the evolution of the BCE losses, for all values of λ , computed
at each epoch together with the Wφ proxy and the accuracy metric for nlowest = 75. As displayed in
Figure 8.4, one can see that the incorporation of the empirical Wφ criterion in the penalization term
improves the performances for a well chosen parameter λ . For instance, λ ∈ {1,10} output the best
results in this setting.
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Figure 8.4. Evolutions of the BCE loss, the AUC proxy and the accuracy for nlowest = 75 in function of the
epochs, for φ(u) = u and all values of the hyperparameter λ ∈ {0,0.01,0.1,1,10}.

At the end of the training, we select the network having the highest empirical Wφ score, which
here corresponds to choosing λ = 1. We then score the initial observations X1, . . . ,Xn and display in
Figure 8.5 the points with an intensity varying from red to blue as the score increases from 0 to 1.
The fact that the red points are on the sides of the dataset empirically validates our methodology. We
represent in Fig. 8.6 the averaged mass volume curve together with standard deviation computed for
λ = 1 over B = 50 repetitions. Table 8.1 gathers the results averaged over B = 50 repetitions. Notice
that these results support the soundness of our approach. Indeed, the area under the MV curve is
minimized and the proportion of detected outliers is high even when nlowest increases.
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Figure 8.5. A heatmap of the scores for φ(u) = u.

nlowest 25 50 75 100
Accnlowest 0.91±0.13 0.84±0.15 0.74±0.15 0.64±0.13

Table 8.1. Tabular view of the empirical accuracy ± its standard deviation, when nlowest varies in
{25,50,75,100}, with λ = 1.
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(a) λ = 1 and φ(u) = u.
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(b) λ = 1 and φ(u) = uI{u≥ u0}.
Figure 8.6. Empirical Mass-Volume curves.

8.5 Conclusion

In this chapter, we promoted a binary classification approach to the problem of learning to rank
anomalies. We established a clear theoretical link between these two machine learning tasks through
the study of the mass-volume curve. In particular, our procedure is robust with respect to imbalanced
datasets through the choice of the parameter p that is chosen initially in practice. Previous results
obtained in Chapter 5 support the effectiveness of our methodology. Moreover, we illustrate our
method with numerical experiments of synthetic data.





9 | The Two-sample Problem Applied to
Biomedical Studies

Abstract. Falling in Parkinsonian syndromes (PS) is associated with postural instability
and consists a common cause of disability among PS patients. Current posturographic
practices record the body’s center-of-pressure displacement (statokinesigram) while the
patient stands on a force platform. Statokinesigrams, after appropriate processing, can
offer numerous posturographic features. This fact, although beneficial, challenges the ef-
forts for valid statistics via standard univariate approaches. In this work, 123 PS patients
were classified into fallers (PSF) or non-faller (PSNF) based on the clinical assessment,
and underwent simple Romberg Test (eyes open/eyes closed). We developed a non-
parametric multivariate two-sample test (ts-AUC) based on machine learning, in order
to examine statokinesigrams’ differences between PSF and PSNF. We analyzed posturo-
graphic features using both multiple testing with p-value adjustment and ts-AUC. While
ts-AUC showed significant difference between groups (p-value = 0.01), multiple testing
did not agree with this result (eyes open). PSF showed significantly increased antero-
posterior movements as well as increased posturographic area compared to PSNF. Our
study highlights the superiority of ts-AUC compared to standard statistical tools in dis-
tinguishing PSF and PSNF in multidimensional space. Machine learning-based statistical
tests can be seen as a natural extension of classical statistics and should be considered,
especially when dealing with multifactorial assessments.
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9.1 Introduction

Postural control is the capacity of an individual to maintain a controlled upright position. Falls
have been reported as one of the major causes of injury among elderly and more importantly among
patients of balance-related disorders, such as Parkinsonian syndromes (PS). It has been estimated that
one third of the population over 65 years-old faces minimum one fall per year Tinetti (2003a). Falls
promote the decrease in mobility, problems of autonomy in daily activities (bathing, cooking, etc.),
or even death Melzer et al. (2004); Tinetti (2003a). Taking also into consideration the aging of many
modern societies, accurate risk assessment has become a major challenge with huge socio-economic
impact Stevens et al. (2006).

Force platforms are one of available acquisition tools of clinical researchers for the assessment
of postural control. Such platforms record the displacement of the center of pressure (CoP) applied
by the whole body in time while the individual stands upon it and follows the clinician’s instructions.
These CoP trajectories, usually called statokinesigrams, have been widely used in assessing the bal-
ance disorder in healthy or PS populations. It has been shown that CoP displacement characteristics
can reflect individuals’ postural impairment when special acquisition protocols are followed Chagdes
et al. (2009); Mancini et al. (2012a); Melzer et al. (2004).

Clinical research often aims to find the significant differences between fall-prone individuals and
others who have not yet manifested important balance impairment. Researchers usually compute
several features using signal processing techniques and evaluate their usefulness relying on a variety
of available univariate tests, such as the Student’s t-test, Kolmogorov–Smirnov or Mann-Whitney
Wilcoxon. However, usually in experimental works, where pre-planned hypotheses are not well-
fixed, multiple univariate tests are applied consecutively in order to find the features that separate
significantly the two groups. The aforementioned multiple testing scheme has been part of a well-
known scientific debate Feise (2002), mainly criticized for the increased probability of reporting
a false-positive finding. More specifically, it has been reported that for alpha level α = 0.05, it
is possible that 1 in 20 relationships may be statistically significant but not clinically meaningful
Feise (2002). Thus, several biostatisticians recommend to disclose all the elements of the conducted
analysis, and not only the elements that found to be significant. The violation of this recommendation
and the regular misuse of those tests Thiese et al. (2015) combined with the relatively small available
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cohorts, may lead to false conclusions and as a consequence to a significant lack of clinical consensus
or at least delay in reaching it. Well-known adjustments have been proposed in order to limit the
aforementioned probability of a false-positive finding (such as Bonferroni corrections) but they have
been reported as conservative compromises (due to the significant increase of the probability for
false-negative output) Feise (2002) that do not constitute a satisfactory solution Perneger (1998a).
Other corrections (more powerful than Bonferroni) such as Hommel (1988), Hochberg (1988) and
Holm (1979) (in descending power order Gou et al. (2014)) have been also proposed.

Classic statistical tests are very sensitive on the size of the available dataset. The generalization
of any result is not safe when only relatively small populations are available (see Wood et al. (2014)
for the high risk of making false conclusions). In order to reduce this sensitivity, machine learning
algorithms assess their results using cross-validation schemes. Briefly, an algorithm trains a model
that ‘learns’ to solve the problem in a randomly selected part of the dataset (called training-set), and
then tests whether it can be effective on the rest of the ‘unseen’ data (test-set). The learning and
validation process is repeated multiple times and performance metrics are averaged. In the context of
multidimensional datasets with binary labels {−1,+1}, the idea of assessing the separability of two
groups is based on the aforementioned learning and validation scheme. The learning process sets the
criteria in order to rank the population in the test-set by means of a scoring function s. Those who
are ranked at the top of the list will be considered to belong to the positive class Clémençon et al.
(2009). The machine learning community has recently made significant progress in this topic Bach
et al. (2008); Chen and Qin (2010); Clémençon et al. (2005); Gretton et al. (2012b), especially related
to the design of appropriate criteria for the characterization of the ranking performance and/or mean-
ingful extensions of the Empirical Risk Minimization (ERM) approach to this framework Agarwal
et al. (2005); Cortes and Mohri (2004). In a large part of these efforts, the well-known criterion of the
area under the ROC curve (AUC) is considered as the gold standard for measuring the capacity of a
scoring function to discriminate groups of populations Clémençon et al. (2009). Briefly, in the setting
of two-sample statistical testing, an algorithm ‘learns’ the rule that maximizes the AUC between the
two groups in the training-set, and then tests the applicability of this rule to the test-set during the
validation process.

Unfortunately, to the best of our knowledge, these novel advancements in statistical testing re-
main largely unexploited by the parkinsonism-related community. The lack of common language
and proper methodological simplifications to make the approaches easy to understand by clinical
researchers are possibly the major reasons for such an observed distance.

In postural research, simple acquisition protocols (such as the basic Romberg test) have been
reported to contain inconclusive information to evaluate sufficiently the postural control of an indi-
vidual Palmieri et al. (2002). However, only recently, works proposed that a combination of multiple
global features, derived from CoP trajectories using data mining techniques, might be advantageous
in order to classify fallers and non-fallers. Earlier works Audiffren et al. (2016); Bargiotas et al.
(2018), showed that although none of the features alone could classify effectively elderly fallers/non-
fallers (i.e. weak classifiers), yet combining all features through non-linear multi-dimensional classi-
fication gave significant results. It is suggested that the shape of the decision surface lies indeed in a
multidimensional space and should be learned using multiple features at once. As a consequence, the
above findings raise reasonable questions about the ability of traditional statistical tools and testing
protocols to fully reveal and exploit the existing associations.

The objective of the present study is to propose an easy-to-use and -interpret two-sample hy-
pothesis testing approach, in an attempt to address some the aforementioned difficulties of clinical
research. Our contribution is to propose a new variation of a multivariate two-sample test through
AUC maximization, which was originally theoretically established in Clémençon et al. (2009), and
test it to a PS population which includes two groups: fallers (PSF) and non-fallers (PSNF). We intend
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to highlight the benefits that one might have by using such kind of two-sample analysis in the pres-
ence of multiple features, and demonstrate the contradicting conclusions that a traditional statistical
analysis (hypothetical future clinical study) might have had compared to the proposed method. In
addition, we performed comparative performance in simulated synthetic data in order to strengthen
the evidence that the proposed approach is statistically sound and consistent. Therefore, we decided
to conduct such a study, providing it though in the Section 9.5.1 in order to keep the main text focused
on the problem-specific results in which we are primarily interested.

9.2 Materials and methods

9.2.1 Balance measurements and fall assessment

Our dataset comes from the Neurology department of the HIA, Percy hospital (Clamart, France), and
includes 123 patients (78.7± 5.4 years-old, Table 9.1) who suffered from Parkinsonian syndromes.
PS patients that suffered from other comorbidities (such as vestibular and proprioceptive impaire-
ments) were not included in the study. Following the acquisition protocol, patients were asked to
remove their shoes and to maintain upright position on a force platform keeping their eyes open and
their arms at the side. The CoP trajectory was recorded for 25 seconds at that stance. After that,
patients were asked to close their eyes maintaining their upright position. After a ten-second pause,
clinical experts recorded 25 additional seconds with eyes closed (Figure 9.1).

Characteristics Non-Fallers Fallers
Population size 99 24
Age 78.8 ± 5.3 78.5 ± 5.9
Gender M:71/W:28 M:16/W:8
UPDRS III total score 23.6 ± 11.9 26.3 ± 11.1
Disease duration 4.7 ± 3.5 5.7 ± 4.2

Table 9.1. Population characteristics: the 123 patients included in the study.

Statokinesigrams were acquired using a Wii Balance Board (WBB) (Nintendo, Kyoto, Japan),
which has been found to be a suitable and convenient tool for the clinical setting Clark et al. (2010);
Leach et al. (2014), and the newly proposed portable package developed in our laboratory. Statokin-
esigram from WBB are sent to the clinician‘s professional Android tablet via Bluetooth connection.
Acquired signals are sent (after anonymization and encryption) to a central database for high level
processing (computation of features associated to postural control and application of appropriate
algorithms Audiffren et al. (2016); Bargiotas et al. (2018, 2019)), and the demanded results are com-
municated to the clinician online. Since the WBB records the CoP trajectories at non-stable time
resolution, the acquired statokinesigrams are resampled at 25Hz using the SWARII algorithm Audif-
fren and Contal (2016).

In order to label the participants, a questionnaire (implemented to the Android tablet) was filled
for every subject registering information about falls during the last six months prior to the examina-
tion. As in previous works Zecevic et al., participants were labeled as fallers (PSF) if they had come
to a lower level near the ground unintentionally at least once during that period. Twenty-four (24)
patients were labeled as fallers. Any useful information about the conditions of falls were registered.
The clinical trial registered at ANSM (ID RCB 2014-A00222-45) was approved by the following eth-
ics committee/institutional review board(s): 1) Ethical Research Committees (CPP), Ile-de-France,
Paris VI; 2) French National Agency for the Safety of Medicines and Health Products (ANSM); 3)
National Commission on Informatics and Liberty (study complies with the MR-001). All research
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Figure 9.1. Examples of statokinesigrams from fallers and non-fallers. The x-axis is the medio-lateral (ML)
movement and the y-axis is the antero-posterior (AP) movement of the body in centimeters (cm) during the
acquisition. As it can be observed, fallers and non-fallers are not easily distinguishable by examining visually
their statokinesigrams.

was performed in accordance with relevant guidelines and regulations. After information and al-
lowing adequate time for consideration, written informed consent was obtained from all participants
before being included in the study.

9.2.2 Choice of posturographic features

Our analysis included only features that were computed on the two-dimensional CoP displacement
and have been previously proposed as indicators of postural impairment Błaszczyk et al. (2007);
Melzer et al. (2004); Muir et al. (2013). Table 9.2 provides the names, measuring units, and descrip-
tions (where needed) for the features that were included in the test.

9.2.3 Two-sample test through AUC optimization (ts-AUC)

We applied a bootstrap aggregation classification, in particular a random forest (RF) Breiman (2001)
that comprises several decision trees (DTs). Therefore, in the development of each DT, only a part
of the whole dataset does participate (in-bag) while the other part is left out (out-of-bag, or OOB).
Consequently, the OOB subset can be used as test-set for the particular DT. In our approach, instead
of the originally proposed testing method based on data splitting, we used the predictions of the OOB
population Breiman (1996). The number of DTs was large enough (T = 200) compared to the actual
population. The individuals can be selected in different OOB sets more than once. Every time an
individual is part of an OOB set, the corresponding DT outputs the probability for him/her being
a PSF or a PSNF. This is computed as the fraction of individuals of the positive class (fallers) in
the tree leaf where he/she reaches. Thus, his/her final score is given by the average of the posterior
probabilities over the trees he/she was part of the OOB set (see Figure 9.2). Averaged posterior
probabilities (P) of the positive class (fallers) are used in order to compute the Mann-Whitney U-test
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Feature Unit Description
RangeX cm –
MaxX cm Maximum medio-lateral displacement (right)
MinX cm Minimum medio-lateral displacement (left)
VarianceX cm2 –
VelocityX cm/s Average instant x-axis velocity of CoP changes
AccelerationX cm/s2 Average instant x-axis acceleration of CoP changes
F95X Hz Frequency below which 95% of the x-axis CoP trajectory’s energy lies
RangeY cm –
MaxY cm Maximum antero-posterior displacement (front)
MinY cm Minimum antero-posterior displacement (back)
VarianceY cm2 –
VelocityY cm/s Average instant y-axis velocity of CoP changes
AccelerationY cm/s2 Average instant y-axis acceleration of CoP changes
F95Y Hz Frequency below which 95% of the y-axis CoP trajectory’s energy lays)
DistC cm Instant distance from the center of the trajectory
EllArea cm2 Confidence ellipse area that covers the 95% of the trajectory’s points
AngularDeviation degrees Average of the angle of deviation

Table 9.2. Computed features derived from the CoP displacement during the acquisitions.

statistic, denoted by U as proposed in the theoretical work of Clémençon et al. (2009) . The empirical
AUC for the chosen hyperparameters is given by U/(NF ·NNF). Briefly, the null hypothesis, H0, and
the alternative one, H1, are expressed as follows:

“H0 : AUC∗ =
1
2

” vs. “H1 : AUC∗ >
1
2

” . (9.2.1)

The OOB percentage was fixed to 36.8% of the included population. Searching the empirical
AUC∗ (maximal AUC), the hyperparameters that are optimized are the leaf-size LS and the number of
features to be used to build each tree M. We avoided a greedy approach using a Bayesian optimization
process, where only relatively shallow (7 < LS < 20) and simple (M < 9) DTs were allowed to
be tested. The averaged posterior probabilities of the star model, where AUC = AUC∗, are used
to compute the scoring function (and the p-value) through a univariate Mann-Whitney Wilcoxon
(MWW from now on) test on the whole available dataset (see Algorithm 6 and Figure 9.2).

9.2.4 Out-of-bag feature importance

Additionally, the proposed algorithmic modifications allow the assessment of the importance of each
feature to the ts-AUC’s final decision. We estimated the out-of-bag feature importance by permuta-
tion. Briefly, the more important a feature is, the higher its influence (i.e. the increase) would be to
the model’s error after feature’s random permutation at the OOB subset. The permutation of a non-
influential feature will have minimum, or no effect at all, on the model’s error. Having D features in
the dataset and T trees in the RF model, the influence of feature j ∈ {1, ...,D} is computed as:

I j =
d j

σ j
, (9.2.2)

where d j is the average change of model error after the permutation of feature j, and σ j is the
standard deviation of the above change. Important to explain that every feature j participates only
to the training of a subset of the trees of the RF. Therefore, d j and σ j are derived by those trees in
which the feature j was selected to participate in their training.
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Figure 9.2. Scheme of the ts-AUC algorithm. In order to find the AUC∗ (maximal AUC), a number of Random
Forests (RFs). For the RF∗ with the best AUC∗, the univariate Mann-Whitney Wilcoxon non-parametric two-
sample test is applied on the average posterior probability values of the whole population.

Algorithm 6: The proposed ts-AUC statistical test.
Data: X and Y are the points’ coordinates of the trajectory (statokinesigram).
Result: AUC∗, RF∗, P∗, p-value∗.

1 Step 1: Exploration of the space of hyperparameters.

2 for i ∈ LS do
3 for j ∈M do
4 RF = RandForest(X ,Y,LSi,M j);
5 P = OOBpredict(RFi, j);
6 U = Mann Whitney Utest Statistic(P);
7 AUCi, j = AUCestimation(U,Y );
8 end
9 end

10 Step 2: Choose the best model and apply MWW.

11 Set (i∗, j∗) = argmaxi∈LS, j∈M AUCi, j;
12 Set AUC∗ = AUCi∗, j∗ ;
13 Set RF∗ = RandForest(X ,Y,LSi∗ ,M j∗);
14 Set P∗ = OOBpredict(RF∗);
15 p-value∗ = MWW(P∗,Y ).

Since our objective is to enhance interpretability of results, our feature importance analysis aims
to identify all the important features, even those which are redundant or colinear, rather than finding
a parsimonious set of important features. Hence, we followed the additional procedure proposed in
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Genuer et al. (2010) especially for interpretation purposes. Briefly, we computed the AUC of the
OOB (AUCOOB) of RFs starting from the most important feature, and adding progressively all the
others in descending importance order. The best model is the smallest model (less features) with an
AUCOOB higher than the maximum AUCOOB reduced by its empirical standard deviation (based on
20 runs).

9.2.5 Experimental settings

We compare the results obtained by the proposed ts-AUC with the Maximum Mean Discrepancy test
(MMD-test) Gretton et al. (2012a), which is a well-established multivariate test and state-of-the-art
in terms of performance. The MMD measures the maximum difference between the mean of two
data samples, in the space of probability measures of a Reproducing Kernel Hilbert Space (RKHS).
Practically, this test uses the unbiased squared MMD statistic. It has been proven to be highly efficient
and easy to use (a package with kernel optimization is provided in Sutherland et al. (2017)).

In addition, we compare the results of ts-AUC with standard statistical testing approaches which
are usually used in clinical studies. We checked the p-values of all 17 features (i.e. D = 17) with
the labels {‘faller’/‘non-faller’} using the non-parametric Mann-Whitney Wilcoxon test. Typically,
clinicians would report those features which were found statistically significant (e.g. with p-value <
α = 0.05) and any interesting non-significant finding.

In order to prevent the increase of the false positive probability due to the large number of tested
hypotheses, p-value adjustment procedures are applied. We use the Bonferroni correction, which is
the most widely used p-value adjustment in biomedical research. Moreover, after taking into account
the criticism that Bonferroni has received Perneger (1998a), we also apply alternative approaches
such as Hommel (1988), Hochberg (1988), Holm (1979) and Bonferroni corrections.

We assess the effect of population size to the final result by performing the following two addi-
tional experiments:

1. We progressively decrease, uniformly at random, the population size by a step of 10% (from
95% to 35%).

2. We progressively reduce, uniformly at random, the number of PSNF by a step of 10% (from
95% to 35%).

At every step, the analysis of each case runs 12 times and the percentages of significant results were
compared (see Figure 9.6 and Figure 9.5).

Finally, to enhance further our conclusions, we compared the behaviour of the tests to simulated
groups with various populations (N from 100 to 200), various levels of separation (difference in mean
values) and various class proportions between the two groups (50/50, 70/30, 90/10, percentages of
positives/negatives). These results can be found in the Appendix (see Figures 9.7, 9.8, 9.9, 9.10,
9.11, 9.12, 9.13).

9.3 Results

The presented ts-AUC test was applied using the features derived from statokinesigrams from Eyes-
Open and Eyes-Closed acquisitions. Table 9.3 contains the obtained p-values for the two groups by
the application of the ts-AUC and MMD tests. Both these tests agreed that the features derived by
statokinesigrams of Eyes-Open significantly separated PSF from PSNF, contrary to those from Eyes-
Closed that did not show a significant result (Table 9.3). Therefore, we will henceforth continue by
presenting detailed analysis only for Eyes-Open features.
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Data type MMD result ts-AUC result
Eyes-Open H0 rejected * p-value < 0.01 *
Eyes-Closed H0 not rejected p-value > 0.05

Table 9.3. The p-values obtained by the application of the ts-AUC and MMD tests on the features extracted
from Eyes-Open and Eyes-Closed statokinesigrams. Features derived by Eyes-Closed statokinesigrams did
not show a statistically significant result neither using ts-AUC nor MMD test. Therefore the study did not
proceed to further analysis of these statokinesigrams. The statistically significant results are indicated by ‘ * ’.

The most influential features were found to be the VelocityY, VarianceY,
AccelerationY, EllArea (Confidence Ellipse area) and MaxX (see in Figure 9.3 their relative im-
portance and in Figure 9.4 their mean ± standard deviation per group). Table 9.4 indicates those
features that showed p-value < 0.05 and the decisions regarding statistical significance obtained
after applying each of the three employed corrections. In every row of Table 9.4, values at column
1 compared one by one to values at columns 2, 3 and 4 were found always higher. Interest-
ingly, although the AccelerationY did not show statistical significance after the MWW application
(p-value > 0.05), it was found as one of the influential features by the ts-AUC test. According to
Table 9.4, using the results from the three corrections with level α = 0.05, none of the features would
reject the H0 of two-sample MWW test.
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Figure 9.3. Important Features. The importance of features as estimated by applying the approach of Genuer
et al. (2010) using the hyperparameters that produced the RF∗.

9.3.1 Population size

As expected, the decrease of population size had an important effect to the performance of all tests.
Both ts-AUC and MMD test showed similar behavior with the progressive decrease of population
size. Specifically, the number of times that the fallers and non-fallers were found statistically dif-
ferent was gradually decreased. After 55% of population size decrease, the two groups were found
significantly different in less than 50% of the cases (Figure 9.5). Univariate testing through MWW
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Figure 9.4. Radar chart comparing fallers and non-fallers based on the mean (o) ± standard deviation (-) of
the most important features of our analysis. All six features are positively correlated with low postural control,
which justifies the meaningfulness of inspecting the area of the curves in this chart. The profile of the two
groups is significantly different.

followed a similar decrease. Multiple testing showed that the groups cannot be considered as statist-
ically different(almost always).
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Figure 9.5. The average performance of two-sample testing approaches with smaller population. The dataset
size was progressively decreased by a step of 10%. The included subset of each step was selected uniformly at
random 12 times and the tests run in every iteration. We observe that ts-AUC and MMD have almost the same
performance. Decreasing the population leads to lower chance of distinguishing the two groups. On the other
hand, all the two-sample corrections present significantly lower performance.
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p-value before correction p-value after correction
Feature p-value Hommel Hochberg Holm Bonferroni
EllArea 0.0045 0.058 0.071 0.071 0.072
VarianceY 0.006 0.092 0.11 0.11 0.12

MaxY 0.006 0.092 0.11 0.11 0.12
DistC 0.007 0.10 0.11 0.11 0.13
RangeY 0.008 0.12 0.13 0.13 0.17

VelocityY 0.009 0.24 0.33 0.36 0.50
MaxX 0.03 0.32 0.33 0.36 0.51
RangeX 0.04 0.34 0.41 0.47 0.79

VarianceX 0.04 0.36 0.41 0.47 0.82
MinY 0.04 0.41 0.41 0.47 0.87
MinX >0.05 - - - -

VelocityX � - - - -
AccX � - - - -
F95X � - - - -
AccY � - - - -
F95Y � - - - -

AngularDev � - - - -

Table 9.4. Significant and non-significant results of a univariate two-sample Mann-Whitney Wilcoxon
(MWW) test, and the p-values after Hommel, Hochberg, Holm and Bonferroni corrections. After all cor-
rections, none of the p-values were found lower than α level of 0.05. Therefore, none of the features can
safely reject the null hypothesis at the default 5% significance level.

Regarding Figure 9.6, that shows the important role of the size proportion among the groups,
the performance of ts-AUC, MMD, and multiple testing were comparable to those from Figure 9.5
(uniform decrease of the population size). However, ts-AUC and MMD exhibit a less abrupt decrease
of performance. On the other hand, the gradual balancing of the sizes of the two groups, through the
exclusion of non-fallers, seems to have a minor effect on the univariate MWW testing.

9.4 Discussion

The objective of this study was to introduce an easy, interpretable, and intuitive multivariate two-
sample testing strategy. The particular interest of this study was to highlight the beneficial effect
that this approach can have in clinical research, and particularly in the research of postural control in
PS patiens. Using the proposed statistical testing approach, it was shown that: a) Different profiles
between fallers and non-fallers were observed only for Eyes-Open protocol; b) The fall-prone PS
patients have significantly different statokinesigram profile during quiet standing from those who
are non-fallers, contrary to the classic multiple testing approach which did not agree with such a
result; c) The novel multivariate two-sample testing approach (ts-AUC) showed equal performance
with the state-of-the-art Maximum Mean Discrepancy (MMD) test, with the additional element of
providing feature importance assessment without further analysis. d) The VelocityY, VarianceY,
AccelerationY, EllArea (Confidence Ellipse area), and MaxX, appeared to be the most important
features for distinguishing fallers and non-fallers.
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Figure 9.6. The average performance of two-sample testing approaches with smaller non-faller population.
The non-fallers were progressively excluded, by a step of 10%, in order to balance the size of the two groups
without excluding fallers. The included subset of each step was selected uniformly at random 12 times, all
fallers were included, and the tests run in every iteration. We observe that ts-AUC and MMD have almost equal
performance. Decreasing the non-faller population leads to lower chance of distinguishing the two groups. On
the other hand, all the two-sample corrections present significantly lower performance.

One of the main results of this chapter is that the proposed multivariate two-sample test, the
ts-AUC, and the standard statistics (usually used in clinical studies), when both applied to the data-
set of PS patients lead to contradictory conclusions. The multivariate approach found fallers’ and
non-fallers’ statokinesigram characteristics significantly different, while traditional statistics did not
confirm this result. In line with previous works Feise (2002); Perneger (1998a), the applied p-value
correction strategies are found to be more strict in controlling the Type I error, compared to the
proposed multivariate alternative.

Researchers can always perform multiple univariate tests and not apply correction strategies (see
univariate MWW results in Table 9.4, Figure 9.5, and Figure 9.6), and take the risk of having a
false-positive finding. However, when modest evidence is found in relatively small populations after
multiple testing, then the aforementioned false-positive probability is significantly high. The level
of that risk may be controlled when some criteria are met (see Feise (2002)) considering the quality
of the study, the quality of the dataset and the clinical strength of pre-set hypotheses. In exploratory
studies though, some of the p-values around 0.05, whichever side they may lie on, would definitely
be considered as “interesting hints”, whereas concluding without thoughtful consideration from such
findings should be generally avoided Wood et al. (2014). The multivariate and cross-validated ap-
proaches can decrease the aforementioned uncertainty. The proposed ts-AUC test has interesting
and convenient properties: it is a test which is easy to implement and interpret, while it can be also
applied to other similar multidimensional datasets.

The features included in our analysis have been used by clinical researchers in the past. Most
of them were proposed as indicators of balance impairment at least once in the clinical literature
(indicative references Błaszczyk et al. (2007); Mancini et al. (2012b); Melzer et al. (2004); Muir
et al. (2013)). We deliberately avoided any feature engineering or transformation process, not only
because that goes beyond the scope of this study, but also because we intended to focus particularly
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on the merits of the newly proposed approach.
Interestingly, only the Eyes-Open acquisition allowed to significantly distinguish fallers from

non-fallers in a population of PS patients. This result seems slight contradictory since PS patients
exhibit increased dependency on visual sensing Rinalduzzi et al. (2015). By exploiting the advant-
age of the ts-AUC test that provides automatically the importance assessment of features, we found
that medio-lateral movement played also a role in faller/non-faller separation of PS patients (see
Figure 9.3 and Figure 9.4). The medio-lateral movement has been reported as the most discrim-
inative element between PS patients and age-matched controls Mancini et al. (2012a) and seems
that play a role in distinguishing fallers and non-fallers PS patients. However, the key-difference
between fallers and non-fallers was spotted in antero-posterior movement. VelocityY, VarianceY,
and AccelerationY, which may carry overlapping information, were found among the most influ-
ential features in the fallers/non-fallers separation. The aforementioned result is in line with previous
works that reported increased antero-posterior movement of PS patients in quiet-standing conditions
with eyes open Kerr et al. (2010); Korpelainen et al. (2007); Latt et al. (2009). Although many PS
patients with low postural control did not manifest large posturographic areas, the confidence ellipse
area (EllArea) was found significantly larger in fallers compared to non-fallers (Figure 9.4). How-
ever, the EllArea value of non-fallers was highly dispersed. Therefore larger fallers cohorts are
needed in order to draw safer conclusions. The confidence ellipse area is recommended to be always
considered together with antero-posterior features such as variance and velocity, in order to perform
more accurate postural control assessment.

The choice of using the OOB observations as cross-validation method has two basic advantages:
1) provides faster results in the AUC maximization process, and 2) allows the final MWW test to be
applied once to the whole dataset, which is more intuitive for clinicians. In cases where the popu-
lation size is sufficiently large and the hypothesis of similar distributions between train and test-sets
is not violated, it is expected that more classic methods such train-test split (as originally proposed
in Clémençon et al. (2009)) would have given the same result (or even better; OOB prediction error
results have been reported as slightly overestimated Janitza and Hornung (2018)). However, clinical
datasets are usually limited in size and the aforementioned assumption about the same distribution is
not always fully guaranteed. In these cases, multiple train-test splits seem more appropriate whereas
they would significantly increase the testing process. OOB observations can be seen as an internal
multiple train-test split (one per tree) of the RF (each observation’s prediction is predicted by less
than T trees) but,conveniently, the final two-sample MWW test is applied once to the whole dataset
after the validation process.

Another important modification is the addition of unbiased feature importance through random
permutation of OOB observations. We believe that this property is a cornerstone of the proposed
approach and inline with the current clinicians’ needs. While they need to know if two groups are
(or are not) significantly separated, they are also interested to know the most influential features
that lead to the reported result. Although the algorithm offers this convenience, we need to note
that feature importance should be treated with extra care.The proposed approach tries to minimize
the false conclusions concerning the importance of features when redundant features are present.
According to Genuer et al. (2010), some of the collinear features (relevant to the phenomenon) will
be in the final selection, and others will not. This issue is still under research and the current ts-AUC
framework can integrate better solutions in the future. A general advice to clinicians can be to check
for features exhibiting mutual information before the beginning of the testing process.

The features computed by the basic Romberg test have been reported as relatively inconclusive
in distinguishing fallers and non-fallers, mainly due to the lack of realistic conditions of fall Palmieri
et al. (2002). The available patients’ dataset, with its relatively ‘marginal’ separation between fallers
and non-fallers (see Table 9.4), can be considered as an ideal dataset in order to check the perform-



174 CHAPTER 9. THE TWO-SAMPLE PROBLEM APPLIED TO BIOMEDICAL STUDIES

ance of the newly proposed approach. We consider MMD algorithm as the gold-standard method
in terms of separability of the two groups. The fact that ts-AUC shows similar performance to that
of MMD is very important, especially if we think that the proposed ts-AUC can also provide addi-
tional information about the most influential features without the need of any supplementary (meta-
)analysis. Therefore, it would be fare to say that ts-AUC is competitive in terms of performance,
while also boosting the interpretability of the result for the convenience of clinicians.

Interestingly, the decrease of the overall population and the gradual balancing between the groups
of fallers and non-faller, showed that the proposed test is less conservative than the multiple testing
process (with corrections). Exploratory studies, where a hypothesis about the structure of the dataset
is not strictly defined in advance, could benefit from such multivariate approaches.

Comparing the results of the two population reduction schemes, i.e. the uniform reduction of the
population versus the reduction of non-fallers (the larger group), we observe that all the statistical
tests performed slightly worse in the former case. This was an expected result since fallers were only
24 out of the 123 available PS patients, and thus decreasing the size of that group made the fallers
heavily underrepresented in the produced subsample.

Limitations. The first limitation of this study is the lack of sufficient evidence about the reasons
behind falls. The basic Romberg test has been reported to be an insufficient protocol to provide such
physiological information Palmieri et al. (2002); Swanenburg et al. (2010). Previous studies proposed
richer protocols (including multi-tasking or use of foam surfaces Chagdes et al. (2009); Melzer et al.
(2004); Swanenburg et al. (2010)) for postural control assessment of fragile individuals such as PS
patients. Undoubtedly, such protocols can have beneficial effect to the faller/non-faller classification,
as well as to the impairment assessment of patients (visual, vestibular, somatosensor, nervous sys-
tem). Yet, among the objectives of this work was to show that basic Romberg test does contain fall
risk-related information, whose extraction and full exploitation is largely up to the adequacy of the
employed statistical analytics.

It is worth noting that there is always some uncertainty in what patients report as their recent fall
experience. Participants who were asked about previous falls might confabulate without a conscious
intention to deceive (recall bias). Therefore, some of the non-fallers might be mistakenly labeled as
non-fallers. Machine learning algorithms are usually robust to the presence of such noise. Besides,
in medical studies the sample size is most usually small, as in ours, and it is required to prepare
carefully the population to study. Therefore, this kind of noise is usually minor since patients are
actually interviewed by medical experts who can identify subjects that could bring uncertainty to the
analysis and exclude them from the sample.

In extreme cases of imbalanced datasets with many negative values and few positive ones, other
metrics rather than the AUC, such as the precision-recall (PR) curve, the F1 score, or the area under
the PR curve, could be more appropriate in order to prevent overfitting Davis and Goadrich (2006)
(AUC still remains robust to imbalanced datasets). We decided to keep the AUC criterion, which is
the one initially proposed by Clémençon et al. (2009), in order to fulfill one of our main objectives: to
propose the algorithm as understandable, interpretable and easy-to-implement as possible. In return,
as it has been already mentioned, we controlled the leaf size (LS) and the number of features (M) in
the optimization procedure, and we applied cross-validation in each resulting case.

The use of Wii Balance Board (WBB) as a force platform during the acquisition protocol, is
another mentionable limitation. The reliability of the WBB as a medical examination tool has been
previously questioned Pagnacco et al. (2011). Basic reported drawbacks were: a) the modest agree-
ment with laboratory grade force platforms, b) the lower signal to noise ratio in its recording, and
c) the irregular sampling rate Castelli et al. (2015). We state that we are perfectly aware of the
aforementioned limitations. However, Wii Balance Board presents an increasing popularity in pos-
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turography studies as a valid tool for assessing standing balance Clark et al. (2010); Leach et al.
(2014). It is an inexpensive piece of equipment and hence seems ideal for applications that intend
to provide a quick and low-cost first scan of individuals with certain possibility of postural control
loss. In addition, recent works Audiffren and Contal (2016); Leach et al. (2014) showed that a careful
pre-processing can mitigate some of its aforementioned drawbacks.

9.5 Conclusion

In this chapter we showed that using the proposed ts-AUC two-sample test, which is a based on
AUC maximization, faller and non-faller patients who suffer from Parkinsonian syndromes (PS)
can actually be distinguished by examining posturographic features that are derived following the
basic Romberg protocol. This novel approach was also able to reveal the posturographic features
that are significantly different between the two groups (more discriminative). We confirmed that a
fall-prone PS patient may manifest wider and more abrupt antero-posterior oscillations and larger
posturographic areas compared to a non-faller. This separation appeared statistically less detectable
when using more traditional approaches such as multiple testing. Interestingly, the above results
were observed only in statokinesigrams derived by the Eyes-Open protocol. The results of our study
highlighted that new multivariate methods based on machine learning, such as the ts-AUC test, can
play an important role in evaluating the usefulness of simple and inexpensive acquisition protocols
as well as the extracted posturographic features. We plan to generalize the current framework. Nev-
ertheless, any extension should investigate the statistical metrics that would be theoretically suitable
to be used as optimization criteria.

9.5.1 Additional results in simulated datasets

We conducted additional experiments to test and compare the performance of ts-AUC using simulated
datasets and we provide it as a supplement to the analysis on the real use-case of we studied in the
main text. The figures appearing below compare ts-AUC with MMD and a multiple testing procedure
with p-value correction.

Simulated data. We created datasets by mixing two independent Gaussian groups. For each dataset
we pick:

• the population size (N = 100 or 200);

• the proportion of the two groups forming the population (50%/50%, 70%/30%, or 90%/10%);

• the number of dimensions (10, 20, or 30) mimicking the amount of variables that a usual
clinical study may have;

• 2/3rd of those dimensions had no difference between the two groups by design (generated
using exactly the same average and standard deviation).

• the remaining 1/3rd had a progressively increasing difference in their average (x-axis in all
figures below).

We run the test 20 times per each combination case. We compared the performance of ts-AUC,
MMD, and multiple testing with p-value correction (We only mention Hommel and Hochberg for
lisibility reasons as well as due to their power superiority compared to the others), keeping the per-
centage of significant results that each test acquired (y-axis). In all generated cases of non-extreme
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proportions (50/50, 70/30) between groups’ sizes (Figures 9.7, 9.8, 9.9 and 9.10), ts-AUC and MMD
present similar behavior, and they were always superior to multiple testing approaches in detecting
the difference between the two groups. In cases of highly imbalanced groups (see Figures 9.11 and
9.12), there is no clear superiority of any method; all methods have increased Type I errors since the
generation of the minority group is not reliable.
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Figure 9.7. The average performance of two-sample testing approaches in simulated datasets with class bal-
ance 50/50, and 10, 20, or 30 features. We observe that ts-AUC and MMD have almost the same performance
and always superior to the multiple testing strategies.
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Figure 9.8. We observe also that ts-AUC and MMD have almost the same performance and always superior
to the multiple testing strategies, especially for the cases of >10 hypothesis tests.
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Figure 9.9. In this setting, we observe that ts-AUC and MMD have almost the same performance. Introducing
class imbalance reduces the chance of distinguishing the two groups mainly due to the low representation of
the minor group. The two-sample corrections are affected more and present significantly lower performance
than in the balanced case.
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Figure 9.10. In this setting, we observe that ts-AUC and MMD have almost the same performance (ts-AUC is
slightly better in case of 10 hypothesis test). Some Type I errors might be present in both multivariate tests.

9.5.2 Feature importance and population

We created two independent Gaussian groups of:

• various total populations (N = 50, 100, 150, 200);

• 50%/50% balance between groups;
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Figure 9.11. In this setting, we observe that all approaches have almost the same performance. For mean
difference >0.5, it seems that the two multivariate approaches, ts-AUC and MMD, begin to have superior
performances. However, they also tend to have higher Type I errors. Generally, one of the groups is extremely
small (size of 10) for a reliably distinguished distributions at simulation process.
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Figure 9.12. In this setting, we observe that in this special case, still ts-AUC has the best overall performance.
We now see more reasonable results due to the fact that the minority group (now size of 20) can marginally
have a reliably distinguished distributions at simulation process. However, TYPE I errors are still present.

• 30 dimensions (features);

• three quarters of those features (no. 1-22) had no difference between the two groups by design
(all generated using exactly the same average and standard deviation - N (0, 1));

• the remaining one quarter (no. 23-30) were generated by N (0.9, 1);
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• no colinearities between features.

By design, the features 23-30 are significantly different between the two generated groups. We
performed 10 runs of the algorithm for every population. Indeed, the feature importance element of
the algorithm performed effectively and found as more important the features that by design were
more different between the two groups (see Figure 9.13). The proposed algorithms almost always
selected as important elements only those which had by default significant difference between the
groups. More details about the limitations of the current feature importance algorithm can be found
in the Limitations part at the end of the Discussion section.
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Figure 9.13. Features 23-30 are by design significantly different between the two generated groups. We
observe that ts-AUC detects effectively the important elements in all populations.





10 | A Generative Model for the Postural
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Abstract. Falls are a major concern of public health, particularly for older adults, as the
consequences of falls include serious injuries and death. Therefore, the understanding
and evaluation of postural control is considered key, as its deterioration is an important
risk factor predisposing to falls. In this work we introduce a new Langevin-based model,
local recall, that integrates the information from both the center of pressure (CoP) and
the center of Mass (CoM) trajectories, and compare its accuracy to a previously proposed
model that only uses the CoP. Nine healthy young participants were studied under quiet
bipedal standing conditions with eyes either open or closed, while standing on either a
rigid surface or a foam. We show that the local recall model produces significantly more
accurate prediction than its counterpart, regardless of the eyes and surface conditions,
and we replicate these results using another publicly available human dataset. Addi-
tionally, we show that parameters estimated using the local recall model are correlated
with the quality of postural control, providing a promising method to evaluate static bal-
ance. These results suggest that this approach might be interesting to further extend our
understanding of the underlying mechanisms of postural control in quiet stance.
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10.1 Introduction

In our ageing societies, falls are a major concern of public health cdc (2017). This is especially true
for older adults, as the consequences of falls are more severe, including serious injuries and death
Sterling et al. (2001), and their prevalence is high, as each year more than a third of population 65
years-old and older faces a fall Tinetti (2003b). While strategies of prevention and rehabilitation
have been shown to be effective to reduce those falls and their consequences Rubenstein (2006);
Van Diest et al. (2013), they rely on an early detection and accurate characterization of the individual
balance related deficiencies. In particular, the evaluation of postural control – the ability to maintain
equilibrium and orientation in a gravitational environment Horak (1987) – is considered key to this
end Perrin et al. (1997) as its deterioration is an important risk factor predisposing to falls Rubenstein
(2006).

Postural control results from the complex synergy between the central nervous system, the mus-
culoskeletal system and the sensory entries (visual, somatosensory and vestibular) Horak (2006);
Kurz et al. (2013); Loram (2015); Peterka (2002). A common approach to evaluate postural control
is to use protocols that inhibit visual (such as the Romberg test Khasnis et al. (2003)) or proprio-
ceptive feedbacks (using e.g. foam Patel et al. (2008)) while recording the position of the center
of pressure (CoP) – the point of application of the ground reaction forces resultant under the feet
Lafond et al. (2004) – over time using a force platform. The recorded two-dimensional signal, which
includes both the medio-lateral (ML) and antero-posterior (AP) axes, can be used to analyse the
neuromuscular control involved, and in particular the adjustments performed by the individual to
maintain balance, i.e. to keep the projection of the center of mass (CoM) inside the base of support
Baratto et al. (2002); Winter et al. (1998).

In previous works, multiple descriptors derived from the CoP have been shown to capture dis-
criminatory characteristics of postural control Baratto et al. (2002); Caron et al. (2000); Corriveau
et al. (2004). More precisely, they were shown to present statistically significant different values
among distinct populations such as older adults fallers, athletes, or individuals with neurological
disorders such as Parkinson’s disease Mitchell et al. (1995); Nicolaı̈ and Audiffren (2018). Those
descriptors can be general statistics of the signals, such as mean velocity or sway density Prieto et al.
(1996), or parameters derived from dynamic models Collins and De Luca (1993); Hernandez et al.
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(2015); Peterka (2002). A significant benefit of the later approach is that it enables an interpretable
parametrization of trajectories that arises directly from the formulation of the dynamic model.

Interestingly, several of these aforementioned models have assumed the presence of randomness
in the CoP trajectory, due to either self-induced perturbations of postural control or external perturb-
ations such as respiration Bottaro et al. (2005), as well as the inaccuracy of the sensorimotor system.
Consequently, these previous studies have proposed to model the CoP signal as a stochastic process
Collins and De Luca (1993); Newell et al. (1997). For instance, it has been suggested that the CoP
displays a mean quadratic displacement similar to the one of a fractional brownian motion with two
regimes Collins and De Luca (1993). Other works have proposed to model the CoP dynamic using
Langevin differential equations Bosek et al. (2004, 2005); Lauk et al. (1999); Tawaki and Murakami
(2019). This model has shown to be promising to reproduce intrinsic characteristics of the trajectory
Tawaki and Murakami (2019). In this setting, the acceleration of the CoP is expressed as the combin-
ation of several of the following forces: a spring restoring force, also called recall, a damping force
and a Brownian motion.

Possible interpretations have been proposed for these forces. For instance, the recall force has
been used to express the corrective force acting on the CoP to pull it back towards a reference position
Hernandez et al. (2015); Lauk et al. (1999).

This is in line with previous works that have advocated for the existence of a mechanism that pro-
duces a corrective ankle joint moment, which can be modeled as a spring restoring force, eventually
damped Peterka (2002); Winter et al. (1998, 2001). Since the parameters of each force can be es-
timated using e.g. ordinary least-square method applied on transformations of the signal, such as the
mean squared displacement Bosek et al. (2004), or directly on the CoP signal Tawaki and Murakami
(2019), it is possible to evaluate the relative importance of each force, hence giving insights about
the characteristics of balance control. It has been claimed for instance that this model enables the
evaluation of individual stiffness Lauk et al. (1999).

However, we argue that these Langevin-based models can be significantly improved by including
the Center of Mass (CoM) as part of the system. Indeed, one popular hypothesis states that the
CoM trajectory operates as a moving reference position, from which any deviation results in the
activation of appropriate restoring forces Gatev et al. (1999); Zatsiorsky and Duarte (1999). This
assumption has been strengthened by previous studies which have shown that during quiet stance,
the CoP oscillates in phase with the CoM with higher amplitudes Winter et al. (1998). Moreover,
this hypothesis has been successfully applied to continuous linear feedback controllers with time
delay system such as PID (Proportional, Integral, Derivative) systems to model the control of body
deviations Mahboobin et al. (2007); Masani et al. (2006); Peterka (2002).

In line with these results, in the present study we introduce a new Langevin model that includes
a recall force pulling the CoP toward the CoM, in addition to a damping force and a Brownian noise.
Our experiments show that this model significantly improves the quality of the CoP trajectory pre-
dictions, compared to a commonly used Langevin model, including when subjects’ vision and/or
standing surface were manipulated. Additionally, we show that the same results can be obtained on
another publicly available dataset of postural control dos Santos et al. (2017). We also used this new
model to estimate the relative importance of each force, and our results show that these parameters
can be used to differentiate between distinct populations and experimental conditions, highlighting
their possible use to improve the understanding of several aspects of postural control. Overall, the
present study supports the hypothesis that the CoP dynamic is intrinsically and deeply intertwined
with the CoM dynamic, and that the Langevin model has the potential to quantify interesting com-
ponents of postural control and can greatly benefit from encoding joint dynamic of the CoP and CoM
instead of their marginal behavior.
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10.2 Method

10.2.1 Participants and protocol

In this study we analyzed our model using two different populations. For the first population (here-
after referred to as population 1), 9 healthy young participants were recruited specifically for this
study (age: 27.6 ± 7.1 years, weight: 73.0 ± 6.5 kg, height: 170.0 ± 10.1 cm, three females). All
participants were right-hand dominant with normal or corrected to normal vision. All participants
signed an informed consent document approved the 22 July 2020 by the IRB of the Fribourg Univer-
sity, Switzerland, ref. 583R3.

Participants were asked to stand still with feet at pelvis width, arms laying at the side. For each
acquisition, this quiet stance was recorded for 50 seconds, using a force platform and a kinematic sys-
tem. Each participant was recorded twice for each possible combination of the following conditions:
eyes open or closed, and standing on a surface that was either rigid or foam. During trials with eyes
open, participants were asked to fix a target which was located at eyes height, at two meters distance.
Trials were acquired in blocks of two consecutive recordings, in order to reduce confounding factors,
such as fatigue or learning Hernandez et al. (2015). In between blocks, subjects were allowed to rest
by sitting or walking around.

We replicated our results by using the public dataset dos Santos et al. (2017) (hereafter referred
to as population 2), which contains three-dimensional kinematics and the ground reaction forces of
49 subjects (27 young individuals – 15 males, 12 females – between 18 and 40 years old; 22 older
adults – 11 males and 11 females – 60 years old or older). The database contains 588 recordings
in total, among which 17 were removed as their kinematics time series were missing. All subjects
were recorded in similar conditions as the first population, and both subjects’ vision and the standing
surface were identically manipulated.

10.2.2 Hardware

For our study, CoP data were collected using a ground-level six-channel force plateform (AccuSway,
AMTI, Watertown, MA, USA), which sampled the three-dimensional ground reaction forces and
moments at 100 Hz. A poster was used to provide a 5-cm fixation target that was displayed ap-
proximately two meters in front of the participant, at eye level, during eyes open conditions. In
order to standardize the shoe–platform interface, participants were recorded while wearing stand-
ardized socks. Kinematic data were collected using an OptiTrack system (NaturalPoint, Corvallis,
OR, USA) at a sampling rate of 100 Hz using 18 cameras. Each participant wore a full body suit,
on which markers were placed to track the position of key anatomical locations, which were used
to compute the position and trajectory of the CoM during the recording. More specifically, markers
were positioned following the model defined in Lafond (2003); Zatsiorsky and Zaciorskij (2002).
The detailed position of the markers can be found in Table 10.1.

10.2.3 Data preprocessing

Data from the force platform and the Optitrack system were collected and synchronized using Motive
(NaturalPoint, Corvallis, OR, USA). Data preprocessing and analysis software were written using
Python (v3.7, Python Software Foundation, OR, USA). Raw force platform data were processed with
a fourth-order, zero-lag, low-pass Butterworth filter with a 10 Hz cutoff frequency, in accordance to
Hernandez et al. (2015). CoP position was calculated with the usual formula Sandholm et al. (2009):

CoPx =
−Fxc−My

Fz
and CoPy =

−Fyc + Mx

Fz
,
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Body part Markers positions
Head Vertex, Midpoints between gonions
Trunk Acromions, Xyphoid, Antero-superior illiac splines
Arms Acromions, Elbow joint centers, Styloid processes,

and Distals of the tips of the third metacarpes
Legs Greater trochanters, Knee joint centers, Posteriors of

calcanei and Tips of the second toes

Table 10.1. Marker positions used for CoM tracking, sorted by body part.

where CoPx (respectively CoPy), Fx (resp. Fy), Mx (resp. My) denote the coordinates of the CoP, the
ground reaction forces and the moments on the medio-lateral, resp. antero-posterior axis, Fz denotes
the ground reaction force coordinates in the vertical axis, and c is the calibration parameter of the
force platform. The resulting CoP trajectory was then centered.

Similarly, the COM trajectory was derived from the markers positions using the mass ratio coef-
ficient defined in (Lafond, 2003, Table 3.II). The resulting three dimensional trajectory was then
projected to the ground plane, centered, and processed with a fourth-order, zero-lag, low-pass Butter-
worth filter with a 10 Hz cutoff frequency. Finally, both the CoP and CoM trajectory were resampled
at 20 Hz, corresponding to a Nyquist frequency of 10 Hz. Example of the resulting trajectories can
be found in Figure 10.1.

10.2.4 Mathematical model: Local Recall

As noted by previous works, the behavior of the CoP trajectory shares important characteristics with
a Wiener process Collins and De Luca (1993). However, representing the CoP by a Brownian motion
implies that the CoP would exit the base of support in finite time, leading to a fall, which is in
contradiction with the purpose of postural control. Therefore, previous studies have built on this
remark by formulating the system as a Langevin model with additional forces, such as a damping
or a spring restorative force Hernandez et al. (2015). In these works, the reference position for the
spring restorative force is assumed to be static, and equal to the center of the base of support Lauk
et al. (1999), or piecewise constant to model the shifting of weight between the feet Hernandez et al.
(2015).

However, it has been observed that the CoP tends to oscillate around the CoM, instead of a fixed
central point. Consequently, in this study, we are interested in studying and evaluating the following
model, called local recall, where the CoP is assumed to be solution of the stochastic differential
equation:

dV CoP
t =

Λ(CoMt −CoPt)︸ ︷︷ ︸
Recall

+Γ(−V CoP
t )︸ ︷︷ ︸

Damping

dt + Σ dBt︸︷︷︸
Perturbations

(10.2.1)

where CoMt , CoPt and V CoP
t are respectively the two dimensional coordinates of the CoM, the CoP

and the velocity of the CoP at time t, Λ, Γ, Σ ∈ R2×2 are the coefficients matrices that characterize
respectively the recall, damping and perturbations of the dynamic and Bt is a two dimensional Wiener
process. Note that (10.2.1) is similar to the classical Langevin equation.

Also, (10.2.1) simultaneously defines the dynamic of the CoP along the ML and the AP axes.
The resulting dynamics in each axis can significantly differ, a well known phenomenon in postural
control Baratto et al. (2002). In this model, the ML and AP dynamics are assumed independent, thus
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Figure 10.1. Representative CoP / CoM trajectories. The figure shows the CoP excursion (blue) and the CoM
excursion (red) from a representative participant with either eyes open (top) or eyes closed (bottom) on a rigid
surface (left) and on a foam (right).

Λ, Γ and Σ are diagonal. Therefore we can write Λ =

(
ΛML 0

0 ΛAP

)
where ΛML and ΛAP represent

the components of the local recall force applying respectively on the ML and AP axis. ΓML, ΓAP,
ΣML and ΣAP are defined similarly.

10.2.5 Parameters estimation

Estimating the parameters Λ, Γ, Σ in (10.2.1) is key to the analysis of this model. Indeed, different
values of each parameters will result in significantly different trajectories, and we do not assume
that every individual will share identical dynamics. This is particularly important as the second
population studied in this work includes both older adults that have fallen multiple times and healthy
young individuals dos Santos et al. (2017), two groups that have been shown to have different postural
controls Alexander et al. (1992); Nicolaı̈ and Audiffren (2018). Therefore, in order the assess the
relevance of the local recall model, the task is double: first, the parameters of the model are estimated
for each trajectory, using the recordings; and then the predictions of the model using these parameters
are compared to the observed dynamic.

A significant difficulty regarding the parameter estimation is that while the model defined by
(10.2.1) is continuous, the CoP and CoM trajectory are only observed at constant discrete time inter-
val ∆s (here ∆s = 0.05 s after resampling). To address this issue, we approximate the dynamic of the
discrete trajectory of the CoP using (10.2.1) as follows:{

CoPt+∆s
≈ CoPt + ∆sV

CoP
t

V CoP
t+∆s
≈ V CoP

t +N
(
∆sµt,∆sΣ

2) (10.2.2)
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(a) Values of the adjusted R2 for population 1, for each of the four recording conditions: open eyes (top),
closed eyes (bottom), rigid surface (left) and foam (right). ML and AP trajectories are jointly considered.

(b) Values of the adjusted R2 for population 2. Four subgroups are considered : Young age group (top), Older
adults group (bottom), rigid surface (left) and foam (right). Open eyes and closed eyes conditions, as well as
ML and AP trajectories, are jointly considered.

Figure 10.2. Distribution of values of the adjusted R2 for the local recall model (green), the global recall model
(blue) and the average recall model (red) on both populations. The whiskers indicate the 95% confidence
interval. In every case, the adjusted R2 values for the local recall model are significantly larger than for the
global recall model.
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with
µt = Λ(CoMt −CoPt)+ Γ(−V CoP

t ) (10.2.3)

Since CoMt , CoPt , and V CoP
t are known from the recording, (10.2.2) and (10.2.3) define a linear

model, where the unknown parameters are Λ and Γ. We use the Ordinary Least Square (OLS)
method to estimate their respective values. More precisely, using the independence of the ML and
AP dynamics, (

ΛML
ΓML

)
= F†

MLAML, (10.2.4)

where † denotes the Moore-Penrose pseudo-inverse,

FML = ∆s

 CoM∆s,ML−CoP∆s,ML −V CoP
∆s,ML

. . . . . .
CoMn∆s,ML−CoPn∆s,ML −V CoP

n∆s,ML

 ,

is the force matrix applied to the CoP, and

AML =

 V CoP
2∆s,ML−V CoP

∆s,ML
. . .

V CoP
n∆s,ML−V CoP

(n−1)∆s,ML.

 ,

is the vector of observed speed variations. Once Λ and Γ have been computed, we are also interested
in estimating Σ, since this coefficient drives the perturbation force in the Langevin model (10.2.1).
We estimate Σ as the unique positive square root of the empirical variance of the residuals divided by
the sampling interval, that is :

ΣML =

√√√√ 1
n∆s

n∆s

∑
t=∆s

(Rt,ML−RML)2

where

ÂML = FML

(
ΛML
ΓML

)
is the predicted speed variation matrix,

Rt = At,ML− Ât,ML

is the residual of the model at time t, and RML is the average value of the residuals. The same process
can be repeated to obtain ΛAP, ΓAP and ΣAP.

10.2.6 Model analysis

All statistical analysis were performed following the recommendations of Cumming (2014). When
reported, p-values where obtained using Mann-Whitney U-test with Bonferroni correction Feise
(2002), and 95% confidence intervals for estimators were obtained using the 1.96 standard deviation
half width.

Performance evaluation. To evaluate the performance of the model, we proceeded as follows.
For any given trajectory τ of length n, recall that At and Ât denote respectively the observed speed
change of the CoP at time t and the expected speed change predicted by the linear model at time
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(a) Population 1. (b) Population 2.

Figure 10.3. Difference of the adjusted R2 between the local recall model minus respectively the global recall
model (blue) and the average model (red) for each trajectory of both populations (left: population 1, right:
population 2). The whiskers indicate the 95% confidence intervals. For every trajectory, the adjusted R2
difference is positive, highlighting the fact that the local recall model consistently produces better predictions.

(a) Population 1. (b) Population 2.

Figure 10.4. Difference of the RMSE between respectively the global recall model (blue) and the average
model (red) minus the local recall model, for each trajectory of both populations (left: population 1, right:
population 2). The whiskers indicate the 95% confidence intervals. For every trajectory, the RMSE difference
is positive, indicating a lower RMSE for the local recall model.

t. We computed the root mean square error (RMSE) of the prediction of speed variations EML(τ),
defined as

EML(τ) =

√√√√1
n

n∆s

∑
t=∆s

(At,ML− Ât,ML)2 ,

We also computed R̃2
ML(τ), the adjusted coefficient of determination (adjusted R2) of the model

Richard (1994):

R2
ML(τ) = 1−

∑
n∆s
t=∆s

(At,ML− Ât,ML)2

∑
n∆s
t=∆s

(At,ML−AML)2

R̃2
ML(τ) = 1− (1−R2

ML(τ))
n−1

n−1− p
.

where AML is the average value of the observed speed change of the CoP and p is the number of
predictor variables in the model. R̃2

AP(τ) and EAP(τ) are computed similarly. All the aforemen-
tioned quantities are calculated at the trajectory level, and we analyzed the resulting distribution over
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trajectories. Using these metrics, we compared the accuracy of the local recall model to two others,
to highlight the benefits of the local recall approach. In the first one, called global recall, the CoP
is assumed to follow a Langevin dynamic similar to (10.2.1), except that the recall force pulls the
trajectory towards the center of the base of support:

dV CoP
t =

[
Λ
′(−CoPt)+ Γ

′(−V CoP
t )

]
dt + Σ

′dBt

In the second one, called average model, we assume that the CoP acceleration can be directly ap-
proximated by the CoM acceleration:

dV CoP
t ≈ dV CoM

t + Σ
′′dBt

Note that Λ′, Γ′, Σ′ and Σ′′ were also estimated using the OLS algorithm.

Parameters distribution. In a second part, we compared the distributions of the estimated para-
meters Λ, Γ, Σ of the local recall model for different groups of individual (such as healthy young
individuals and older adults), as well as for different balance conditions (open eyes and closed eyes),
to show that the values of these parameters may be indicative of different postural control profiles.

10.3 Results

10.3.1 Model evaluation

In all our analyses, the local recall model produced significantly larger values of explained variance
(see Figure 10.2). As shown in Figure 10.2(a), this improvement was observed for every recording
condition of our experiment (p < 10−8 compared to the global recall model, p < 10−10 compared
to the average model). Similar results were obtained on the larger population 2, which is the public
dataset of dos Santos et al. (2017) (Figure 10.2(b), all respective p-values are < 10−40). This is
particularly interesting as the population included in this second dataset is larger and far more diverse,
including young individuals and older adults, as well as individuals with a history of falls. It is also
interesting to note that the average model, which tries to infer the acceleration of the CoP using
solely the acceleration of the CoM, achieves adjusted coefficients of determination closed to zero,
and significantly lower than the other models. This tends to show that while the CoP and CoM
are closely related together, the CoP possesses its own dynamic that cannot be fully expressed by the
CoM dynamic. Further analyses show that this improvement occurs for every trajectory (Figure 10.3,
p < 10−20). Similar improvements were observed for the RMSE metric (see Figure 10.4, p < 10−20).
This confirms that the local recall model provides better predictions of the CoP dynamics, for every
recording condition (open/closed eyes, rigid surface and foam) and for every individual.

10.3.2 Estimated parameters distribution

Table 10.2 reports the average and standard deviation of the estimated values of the parameters of
the local recall model – Λ, Γ and Σ – for different recording conditions and different groups of
individuals. Interestingly, the perturbation coefficient Σ generally increases as the expected quality
of the postural control decreases. For instance, AP perturbations for young individuals on rigid
surface with open eyes 2.05(±0.27) are significantly lower than the values for young individuals on
foam surface with closed eyes 5.82(±1.65) (p < 10−20), which in turn are lower than the values
for older adults on foam surface with closed eyes 9.51(±3.59) (p < 10−8). This relation is further
explored in Figure 10.5, where it can be seen that this phenomenon is observable on both populations.
Moreover, while no significant variations of ΓAP are observed, ΓML shows an important decrease on
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Pop. 1 Units Open Eyes Rigid Closed Eyes Rigid Open Eyes Foam Closed Eyes Foam

Recall ML s−2 35.17(±11.54) 34.74(±11.85) 35.08(±11.01) 35.87(±7.73)

Recall AP s−2 43.85(±11.27) 49.00(±13.71) 47.72(±12.87) 49.70(±6.48)

Damping ML s−1 7.49(±2.16) 6.81(±2.08) 6.07(±2.44) 5.93(±1.76)

Damping AP s−1 7.11(±1.76) 6.67(±1.94) 5.72(±2.12) 5.77(±0.91)

Perturbation ML (cm× s−2) 1.37(±0.53) 1.39(±0.32) 2.72(±0.78) 4.23(±1.69)

Perturbation AP (cm× s−2) 2.36(±0.73) 2.82(±0.83) 4.40(±1.50) 7.32(±3.14)

Pop 2. (YP) Units Open Eyes Rigid Closed Eyes Rigid Open Eyes Foam Closed Eyes Foam

Recall ML s−2 40.32(±8.11) 40.10(±7.74) 37.91(±6.25) 37.33(±6.04)

Recall AP s−2 35.94(±10.92) 39.86(±11.42) 42.22(±7.50) 48.85(±9.21)

Damping ML s−1 9.74(±3.73) 9.05(±3.54) 4.49(±1.10) 3.91(±0.98)

Damping AP s−1 5.59(±1.68) 5.03(±1.46) 3.56(±0.78) 3.96(±1.08)

Perturbation ML cm× s−2 1.96(±0.27) 2.04(±0.32) 3.06(±0.45) 4.00(±0.82)

Perturbation AP cm× s−2 2.05(±0.27) 2.27(±0.40) 3.51(±0.66) 5.82(±1.65)

Pop 2. (OP) Units Open Eyes Rigid Closed Eyes Rigid Open Eyes Foam Closed Eyes Foam

Recall ML s−2 35.21(±6.90) 38.71(±8.32) 31.53(±5.40) 32.85(±6.71)

Recall AP s−2 43.39(±9.22) 47.26(±11.79) 50.33(±8.23) 55.67(±12.47)

Damping ML s−1 8.20(±3.39) 7.68(±3.72) 3.45(±0.94) 3.63(±1.05)

Damping AP s−1 4.86(±1.82) 4.75(±1.86) 4.07(±1.15) 4.43(±1.31)

Perturbation ML cm× s−2 2.03(±0.33) 2.19(±0.43) 3.54(±0.83) 4.76(±1.56)

Perturbation AP cm× s−2 2.41(±0.53) 2.93(±0.70) 5.96(±1.65) 9.51(±3.59)

Table 10.2. Average (± standard deviation) of the estimated parameters for the local recall model for different
experimental conditions and for different populations: (top) Population 1, (middle for the young population
(YP) and bottom for the (OP)) Population 2.

Pop 2. for individuals on foam surfaces compared to individuals on rigid surfaces (p < 10−10). Note
however that this difference is not observed on Pop 1 (see Figure 10.6). Conversely, the local recall
coefficient Λ does not vary significantly between recording conditions. While a mild increase is
observed on the AP axis between individuals on rigid surfaces and foam surfaces for Pop. 2 (p <
0.01), further analyses show strong overlap of the confidence intervals (see Figure 10.7). Therefore,
these observations are insufficient to conclude in either direction.

10.4 Discussion

In the first part of the analyses we compared the accuracy of the predictions of three models : the
global recall model, where the CoP follows a Langevin dynamic whose sole equilibrium point is the
center of the force platform; the local recall model, where the CoP is assumed to follow a Langevin
dynamic with the CoM position as non-static attachment point; and the average model, which as-
sumes that the CoP acceleration is driven solely by the CoM acceleration.

The results of the analyses showed that the local recall model provided significantly better pre-
dictions of the CoP dynamic than its two counterparts. This is particularly true for the average model,
whose accuracy is the lowest, which tends to show that the CoP acceleration cannot be approximated
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(a) AP Σ for population 1

(b) ML Σ for population 1

(c) AP Σ for population 2 –
young adults

(d) ML Σ for population 2 –
young adults

(e) AP Σ for population 2 – older
adults

(f) ML Σ for population 2 – older
adults

Figure 10.5. Distribution of the estimated perturbation coefficient in the local recall model for different con-
ditions (green: open eyes rigid surface, cyan: closed eyes rigid surface, blue: open eyes foam and red: closed
eyes foam), different populations (left: Population 1, middle: young individuals of population 2, right: older
adults of population 2) and different axes (top: antero-posterior, bottom: medio-lateral. The whiskers indicate
the 95% confidence interval. Average values of the Σ parameter significantly increase as the expected balance
deteriorates.

by the CoM acceleration. However, the analyses also showed that by adding information about the
CoM position in the Langevin model, the local recall model produces better estimates of the CoP dy-
namic than the global recall model. This result suggests that the trajectory of the CoM is important
to understand the CoP dynamic, and that the Langevin model may provide relevant insights into the
CoP behavior with respect to the CoM. Crucially, the predictions accuracy improvement was con-
sistent, and occurred for each trajectory of both datasets, regardless of the protocol or of individual
characteristics.

This observation that the CoM is key to understand the CoP dynamic is in line with the results
discussed by previous works. In Zatsiorsky and Duarte (1999) a method was proposed to decom-
pose the CoP trajectory in two components, rambling and trembling, where the latter is assumed to
reflect the oscillations of the CoP around a reference point trajectory. In their findings, the authors
mentioned that this reference trajectory – computed as the interpolation of the CoP points at which
the horizontal force resultant vanishes – is very close to the CoM trajectory, and this result can be
seen as hinting at the possibility that the CoM might be a reference point around which the CoP
gravitates. In Winter et al. (1998) the authors introduced a model based on the inverted pendulum
that relies on the assumption that muscles of the ankle act as springs to cause the CoP to control
the body deviations from the vertical. This hypothesis has been successfully applied to continuous



10.4. DISCUSSION 193

(a) AP Γ for population 1

(b) ML Γ for population 1

(c) AP Γ for population 2 –
young adults

(d) ML Γ for population 2 –
young adults

(e) AP Γ for population 2 – older
adults

(f) ML Γ for population 2 – older
adults

Figure 10.6. Distribution of the estimated damping coefficient in the local recall model for different conditions
(green: open eyes rigid surface, cyan: closed eyes rigid surface, blue: open eyes foam and red: closed eyes
foam), different populations (left: Population 1, middle: young individuals of population 2, right: older adults
of population 2) and different axes (top: antero-posterior, bottom: medio-lateral. The whiskers indicate the
95% confidence interval. While no significant variations are observed in Population 1, ΓML significantly
decreases between the rigid and foam conditions in Population 2.

linear feedback controllers such as PID (Proportional, Integral, Derivative) systems Mahboobin et al.
(2007); Masani et al. (2006); Peterka (2002). In these works the CoM is central to the model, as the
forces to maintain posture are modeled by springs dependent on both body angle and body angular
velocity, which can be assumed approximately proportional to the CoM position and speed for small
body angles.

In our model the mediolateral and anteroposterior components are assumed to have distinct dy-
namics. This assumption is important considering the significant differences in balance control ob-
served in each axis through the characteristics of the CoP Baratto et al. (2002) or the different muscles
involved Winter et al. (1998). However, we additionally assume that those dynamics are independ-
ent. While this assumption is a commonly used approximation Collins and De Luca (1993), previous
works Bosek et al. (2004) have proposed models where the dynamic of the postural control is in-
fluenced by the radius, i.e. the distance between the CoP and the center of the base of support. As
the radius inherently depends simultaneously on both the AP and ML coordinates, such phenomenon
cannot be captured by the local recall model, and studying extensions of the model that can embed
possible axes interdependence seems an interesting research direction.

It should be noted that RMSE and R2, while providing important information, are not perfect
metrics to evaluate the accuracy of one model. Indeed, the problem of measuring goodness-of-fit is
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(a) AP Λ for population 1

(b) ML Λ for population 1

(c) AP Λ for population 2 –
young adults

(d) ML Λ for population 2 –
young adults

(e) AP Λ for population 2 – older
adults

(f) ML Λ for population 2 – older
adults

Figure 10.7. Distribution of the estimated recall coefficient in the local recall model for different conditions
(green: open eyes rigid surface, cyan: closed eyes rigid surface, blue: open eyes foam and red: closed eyes
foam), different populations (left: Population 1, middle: young individuals of population 2, right: older adults
of population 2) and different axes (top: antero-posterior, bottom: medio-lateral. The whiskers indicate the
95% confidence interval. No significant variations of Λ are observed in either populations.

still an open research topic (see e.g. Jitkrittum et al. (2017)). Consequently, while observed results
tend to show that the local recall model is better than its two counterparts, i.e. at a relative scale,
it is significantly harder to assess how good the model is on an absolute scale. For instance, model
residuals are ambivalent as they encompass both model errors, i.e. inaccurate predictions, as well
as the Brownian perturbations that can be part of the postural control system. Previous works have
considered alternative approaches to validate models, such as bootstrapping. This method uses a gen-
erative model to assess the likelihood of the observed characteristics on the original signals compared
to the characteristics of the generated ones. Recently, this method of validation has been applied on
a Langevin equation of the CoP Tawaki and Murakami (2019). Unfortunately, this approach requires
the choice of specific characteristics of the CoP, a choice which can have a significant influence on
the results, and also necessitates a joint generative model of both the CoP and the CoM. Nevertheless,
this is an interesting future direction for this research.

Interestingly, the parameter Λ, which encodes the strength of the recall force in the local re-
call model, does not significantly vary between different groups and protocols in our experiments.
In previous works, the recall parameter has been interpreted as related to the ankle joint stiffness
Hernandez et al. (2015); Lauk et al. (1999), which is defined as the derivative of the torque applied
at the ankle with respect to the angle of deviation from the gravity line Winter et al. (2001). How-
ever, Langevin models do not explicitly incorporate ankle stiffness and further work is required to



10.5. CONCLUSION 195

link quantitatively the recall parameter to biomechanics components.
Conversely, the parameter Γ, which measures the strength of the damping, i.e. the force which

opposes to the velocity of the system, was shown in our experiments on Pop 2. to decrease in
the ML axis when going from a rigid surface to a foam surface. This result shows that this force,
preventing the velocity of the body becoming too strong, is a component of postural control that can
be vulnerable to sensorial perturbations induced by unstable surfaces Kiers et al. (2012), and thus be
indicative of some specificity in sensorimotor profile. The fact that this result is not observed on Pop
1. could be explained by some differences existing between the type of foam used in each dataset.

Finally, the parameter Σ appears to strongly increase when the expected balance quality decreases
in our experiments. The interpretation of the perturbation force is more complicated, as it can be
representative of two distinct phenomena. On the one hand, Σ corresponds to the coefficient of dif-
fusion associated with the Brownian process ΣBt and therefore may be associated with the strength
of the stochastic activity in the postural system, which has been suggested to increase with aging
Collins et al. (1995). These perturbations may arise from various sources such as breathing Bottaro
et al. (2005); Hodges et al. (2002) or from any errors in sensorimotor integration or postural adjust-
ments. On the other hand, ΣdBt also represents the noise in the formalization of the linear model, and
therefore can include the fitting error of the model. Consequently the parameter Σ may also reflect
a wrong adjustment to the local recall model. In both views, large components of Σ for a trajectory
in comparison to other individual’s trajectories could be the sign of a bad balance, either because
of a perturbed postural control, or because the individual does not share the same postural control
dynamics as others, which could be explained by the existence of age-dependent postural control
strategies Collins et al. (1995).

10.5 Conclusion

In conclusion, this study showed that the dynamic of the CoP is strongly influenced by the trajectory
of the CoM, and that the spring restorative force that is part of Langevin models for quiet stance
should be aimed toward to the CoM position, instead of the center of the base of support. We showed
that this modified model, called local recall, significantly increased the accuracy of the prediction
of the CoP Langevin model, providing interesting research directions for future postural control
models. Additionally, we provided a method to estimate the parameters of the local recall model,
and showed that key parameters (damping, perturbations) are closely correlated with the quality of
postural control. Finally, these findings support the hypothesis that the Langevin model has the
potential to quantify interesting aspects of postural control, and could be significantly improved by
the embedding of the CoM trajectory. Further work is needed to link precisely the parameters of
the local recall model to biomechanical components of postural control as well as to investigate if
other improvements of the model, such as the addition of nonlinearities Gottschall et al. (2009) or
intermittent postural adjustements Bottaro et al. (2005), could lead to a more realistic quantification
of postural control.
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This work presents a new multivariate and nonparametric generalization of rank statistics through
learning-to-rank approaches. An in-depth theoretical investigation led to a series of statistical learn-
ing guarantees in the general formulation and for the two-sample problem. Also, we presented how
this generic framework encompasses interesting interpretability by leveraging the ROC analysis.
Lastly, various (modeling) applications were presented in machine learning and biomedicine with
associated algorithmic procedures. In particular, two contributions in the context of the Human pos-
tural analysis are gathered: a method for the statistical comparison between clinical populations and
a stochastic model to generate posturographic data. The main results are sequentially summarized,
and selected perspectives are detailed to conclude this manuscript. In particular, potential applica-
tions and theoretical open questions are highlighted that remain not studied yet to the best of our
knowledge.

General conclusion. The first part of this manuscript reviews problems with two samples and the
necessary theoretical tools to derive the results related to two-sample linear R-processes. Precisely,
Chapter 2 gathers classic paradigms from both statistics and machine learning, that are later shown to
be applications of our proposed class of R-processes. While one can find all results and approaches
in the indicated references with greater detail, we promote a unified formulation that aims to help for
a better understanding and comparison of the state-of-the-art methods. In particular, we raise their
limits and the necessity for a new methodology, such that classic statistical properties hold true under
mild probabilistic conditions while allowing for (simple) practical implementations.

In Chapter 3, the theoretical tools for such problems are recalled, particularly by motivating them
in the ERM context. Classic ERM approaches study statistical risk criteria taking the form of empir-
ical processes analyzed using PAC nonasymptotic techniques. The risk is formulated as M-statistics.
However, risk criteria of higher order can be decomposed using U-statistics. We gather some results
on one and two-sample U-processes, reformulated under the assumptions of this manuscript that are
key for the following chapters.

The second part is the core of this work. We introduced and constructed a new generic frame-
work for two-sample linear rank statistics. A multivariate and nonparametric generalization of the
univariate statistic is obtained using bipartite ranking approaches. This generalization is proved to be
at the crossroads of hypothesis testing, learning-to-rank methods, and ROC analysis. Additionally,
it allows for great adaptability in many applications while inheriting from the univariate theoretical
guarantees.

Chapter 5 details and establishes uniform generalization bounds and related results for these R-
processes. We first presented the optimal elements that maximize the statistic. Then, the uniform
deviations of the statistic w.r.t. its continuous counterpart, referred to as Wφ -ranking performance
criterion, are proved to achieve a classic learning rate bound of order OP(1/

√
N), when based on

a training dataset of size N. Additionally, similar contributions for model selection procedures and
smoothed versions of the statistics are detailed. These results are new in the statistical learning
literature and provide distribution-free nonasymptotic bounds. The constants are detailed and only
depend on the parameters of the statistic and the ’theoretical’ proportion of one sample among the
pooled samples. Importantly, this formulation is one of the first grounded multivariate generalizations
of R-statistics for nonparametric probabilistic assumptions.

All these results rely on the uniform concentration bound for two-sample U-processes proved in
Chapter 4. It is a new step towards the nonasymptotic analysis of uniform deviations of U-statistics
based on multiple samples drawn from different distributions when indexed by infinite classes of
kernels. For these two chapters, we used a series of techniques for the proofs, ranging from stochastic
processes such as U-processes, to chaining and decoupling methods for non-i.i.d. statistics, under
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minimal assumptions on the underlying probability distributions of the two samples, on the class S
and on the function φ .

Chapter 6 states a new generic framework for the two-sample problem. A two-stage in pro-
posed wherein, given two statistical samples: (1) the optimal scoring function on the first halves of
the samples are learnt by a bipartite ranking algorithm, (2) the corresponding R-statistic is used to
perform the statistical test by mapping the second ones onto the real line. While the first step has
strong guarantees obtained in Chapter 5, we proved nonasymptotic control of the bias for the second
step. Also the asymptotic laws of the statistic under both testing hypotheses are proved. Our class
of R-statistics inherits from the strong properties of the univariate formulation while allowing for
high-dimensional and generic feature spaces (i.e. not necessarily Euclidean). Additionally, it en-
compasses a series of classic homogeneity testing frameworks and provides for multiple algorithmic
architectures. These results provide a competitive approach for the two-sample problem, compared
to state-of-the-art methods as detailed in Chapter 2. This procedure is distribution-free under the
null, with bounds independent on the dimension of the feature space under both hypotheses while
achieving exact control of the type-I and type-II errors. In particular, it inherits from the robustness
and unbiasedness of univariate ranks statistics.

In Chapter 7, we explored algorithmic empirical properties of the proposed procedures for bi-
partite ranking and the two-sample problem. First, formulated as a scalar performance criterion for
the bipartite ranking problem, we explored the importance of the score-generating function φ for
the statistic. In particular, we implemented an exact optimization gradient ascent algorithm. Then,
we implemented and tested a series of algorithmic possibilities for the high-dimensional two-sample
problem w.r.t. the choice of state-of-the-art bipartite ranking algorithms. We compared the results to
three classic tests that rely on different approaches from ours. All codes are open source and available
online, promoting the replicability of the experiments.

The last part gathers three applications that highlight the adaptivity of the proposed R-processes.
Chapter 8 explores anomaly ranking modeling, wherein our framework allows for a generalization
of scalar performance rank-based criteria that are intrinsic to the model, compared to state-of-the-art
methods. It bridges the gap from unsupervised one-sample to two-sample frameworks.

Chapter 9 provides a new algorithmic methodology for the two-sample problem when consid-
ering biomedical data samples. In particular, we were interested in addressing this problem with
an interpretable algorithmic procedure. We compared our results to traditional methods used in the
biomedical community when applied to real statokinesigrams. It reveals an essential difference in
the statistical findings while being consistent with those from a typical multivariate two-sample test.

Lastly, regarding Chapter 10, a new stochastic generative model for statokinesigrams is proposed.
Based on Langevin stochastic differential equations, it models and couples the temporal evolution of
two indicators: the Center of Pressure and the Center of Mass. Importantly, we show how this
approach can be used as a generative model, while providing an estimation of the parameters proper
to the clinical cohort or the patients. Hence, it is a step forward for the modeling and understanding
of such stochastic dynamics.

Perspectives and open questions. This last paragraph outlines selected research directions our
results lead to. In particular, we develop ongoing topics of research related to the two-sample problem
and to the question of choosing the optimal test statistic.

• Chapter 5. The series of results are obtained under particular assumptions on the type of
classes of scoring functions (S0), characterized by Vapnik-Chervonenkis theoretical tools.
However, typical examples used in machine learning algorithms do not satisfy these requisites.
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A possible extension is related to using Rademacher risk criteria, allowing localization bounds
for instance. We want to explore this very interesting direction despite the high technical
complexity.

• Chapter 6. From the practical perspective, the proposed procedure offers great algorithmic
possibilities depending on the field of applications or the type of data. The theoretical guaran-
tees are proved for generic forms of: the bipartite ranking algorithm (A ), the score-generating
functions (φ ), and the class of scoring function (S0). For instance, Chapter 9 adapted it to a
bagging-based two-sample test for biomedical data.

• Chapter 7. From a more general perspective, we discovered a lack of practical methods for
pairwise ranking algorithms in the machine learning community. We detailed some research
directions in Section 2.2.2, Chap. 2. However, they correspond to the particular choices of
φ(u) = u, and when S0 is composed of linear functions. We highlight the intrinsic compu-
tational difficulty, as it has to be balanced with high algorithmic complexity due to the pairs
comparisons. This point falls into the lack of bivariate algorithms, also noticed for U-statistics
optimization in recent publications for instance.

• Chapters 9 and 10. Lastly, ongoing research directions are related to postural control analysis,
either through statistical methods for modeling/estimating it or via the ability to propose a gen-
erative model. We work on pairwise statistical models applied to follow-ups, i.e., longitudinal
data, to compare trajectories of patients. Also, we have promising results on implementing the
proposed deterministic algorithm to maximize the Wφ criterion to biomedical model validation.
We believe in the importance of interpretable and replicable algorithmic procedures, seeking
more reliable results.

This manuscript gathers research works and related results to two-sample linear R-statistics
wherein we considered fixed score-generating functions φ . However, and motivated by many cited
articles, e.g., Clémençon and Vayatis (2007); Rudin (2006), we detailed how the choice of φ is funda-
mental to reveal various characteristics of the studied model throughout the manuscript. Also, from
the univariate R-statistics literature, typical examples of optimal functions φ exist for maximizing
asymptotic efficiencies depending on the problem, see e.g. examples of Chapter 13 and Section 15.5
in van der Vaart (1998). The following paragraph describes selected research directions on choosing
the best score-generating function. We accompany the following points with preliminary results and
applications regrouped in Appendix chapter A.

Which is the best R-statistic we can choose?

• Theoretical perspective. The works of H. Koul (see Koul (2002)), study asymptotic uniform
deviations of linear rank statistics on the class of score-generating functions. However, his
studies focus on the particular multivariate regression model. In the continuity of our frame-
work, we believe that similar nonasymptotic results are important and can be obtained. More
precisely, we aim to derive nonasymptotic generalization bounds of the deviations of the gen-
eric R-statistic when indexed by a class of score-generating functions. This would help to
better understand the empirical Wφ -criteria and to obtain refined results on its stochastic fluc-
tuations. In particular, we hope to express explicit nonasymptotic bounds depending on the
same parameters as the ones of Chap. 5: p, S0, φ . This work requires broader and more com-
plex techniques than the ones of Chap. 5. Some preliminary results are detailed in Appendix
section A.1.
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• Adaptive two-sample homogeneity rank tests. We highlighted the adaptivity of the two-sample
procedure proposed in Chap. 6, for the choice of φ in points 3 (for the homogeneity test
statistic) and 4 (for the bipartite ranking). Motivated by the empirical results to maximize
the empirical Wφ -criteria of Chap. 7, we propose an alternative approach to the two-stage
procedure in Appendix section A.2. Instead of using a bipartite ranking algorithm, we propose
to maximize the exact Wφ -criterion at Step 1. We also describe an adaptive test statistic that
aggregates a sequence of R-statistics indexed by a class of functions φ . It aims at choosing
the best R-statistic depending on φ , to maximize the power at the least conservative level of
test bounded by α . In particular, we would like to derive theoretical guarantees on this type of
procedures.

• Towards an efficient optimization algorithm for high-dimensional two-sample testing. We dis-
cussed at length about the lack of methods for the multivariate two-sample problem for com-
plex data structures. In particular, and motivated by biomedical applications, typical examples
encompass very high-dimensional settings (e.g., when the feature dimension and sample size
are of similar order (n ∼ d) if Rd) and small sample sizes. For such frameworks, obtaining
replicable and interpretable results is even more difficult. In this sense, we gather in the Ap-
pendix section A.3 first numerical results. We sampled two samples of sizes n = m = 30 in
Rd with d ∈ {30,50}, such that we can perform the exact maximization of Wφ (Step 1) for
various choices of φ using the gradient ascent algorithm of Chap. 5 on subsamples of size
n = m = 24. The remaining observations are used for the homogeneity testing with the related
R-statistic. Therefore, we can easily compute the exact null distribution of the statistics for
such samples sizes. This is an ongoing research direction as it would allow for the exact gen-
eralization of R-statistics. Importantly, this procedure has tractable optimization algorithm and
exact homogeneity test statistics that allows for very high-dimensional data analysis.
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O. Caron, T. Gélat, P. Rougier, and J.-P. Blanchi. A comparative analysis of the center of gravity
and center of pressure trajectory path lengths in standing posture: an estimation of active stiffness.
Journal of applied biomechanics, 16(3):234–247, 2000.

A. Carpentier, O. Collier, L. Comminges, A. Tsybakov, and Y. Wang. Minimax rate of testing in
sparse linear regression. Automation and Remote Control, 80, 2018.

A. Carrington, P. Fieguth, H. Qazi, A. Holzinger, H. Chen, F. Mayr, and D. Manuel. A new con-
cordant partial auc and partial c statistic for imbalanced data in the evaluation of machine learning
algorithms. BMC Med Inform Decis Mak, 20(1), 2020.



BIBLIOGRAPHY 207

V. R. Carvalho, J. L. Elsas, W. W. Cohen, and J. G. Carbonell. Suppressing outliers in pairwise
preference ranking. In Proceedings of the 17th ACM Conference on Information and Knowledge
Management, CIKM ’08, page 1487–1488. Association for Computing Machinery, 2008.

L. Castelli, L. Stocchi, M. Patrignani, G. Sellitto, M. Giuliani, and L. Prosperini. We-measure: To-
ward a low-cost portable posturography for patients with multiple sclerosis using the commercial
wii balance board. Journal of the Neurological Sciences, 359:440–444, 2015.

J. Chagdes, S. Rietdyk, J. Haddad, H. Zelaznik, A. Raman, K. Rhea, and T. A. Silver. Multiple
timescales in postural dynamics associated with vision and a secondary task are revealed by wave-
let analysis. Experimental Brain Research, 197(3):297–310, 2009.

A. Chakraborty and P. Chaudhuri. Tests for high-dimensional data based on means, spatial signs and
spatial ranks. The Annals of Statistics, 45(2):771 – 799, 2017.

D. K. Chang. A note on the distribution of the wilcoxon rank sum statistic. Statistics and Probability
Letters, 13(5):343–349, 1992.

P. Chaudhuri. On a geometric notion of quantiles for multivariate data. Journal of the American
Statistical Association, 91(434):862–872, 1996.

B. Chen, P. Liu, F. Xiao, Z. Liu, and Y. Wang. Review of the upright balance assessment based on
the force plate. International Journal of Environmental Research and Public Health, 18(5), 2021.

S. X. Chen and Y.-L. Qin. A two-sample test for high-dimensional data with applications to gene-set
testing. The Annals of Statistics, 38(2):808 – 835, 2010.

H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of
Observations. The Annals of Mathematical Statistics, 23(4):493 – 507, 1952.

H. Chernoff and I. Savage. Asymptotic normality and efficiency of certain non parametric test stat-
istics. Ann. Math. Stat., 29:972–994, 1958.

V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry. Monge–kantorovich depth, quantiles, ranks
and signs. The Annals of Statistics, 45(1):223–256, 2017.

Y. Cheung and J. Klotz. The Mann Whitney Wilcoxon distribution using linked list. Statistica Sinica,
7:805–813, 1997.

E.-Y. Chung and J. P. Romano. Exact and asymptotically robust permutation tests. The Annals of
Statistics, 41(2):484 – 507, 2013.

E.-Y. Chung and J. P. Romano. Asymptotically valid and exact permutation tests based on two-sample
u-statistics. Journal of Statistical Planning and Inference, 168:97–105, 2016. ISSN 0378-3758.

K. Chwialkowski, A. Ramdas, D. Sejdinovic, and A. Gretton. Fast two-sample testing with analytic
representations of probability measures. In Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 2, page 1981–1989, 2015.

K. Chwialkowski, H. Strathmann, and A. Gretton. A kernel test of goodness of fit, 2016.

R. Clark, A. Bryant, Y. Pua, P. McCrory, K. Bennell, and M. Hunt. Validity and reliability of the
nintendo wii balance board for assessment of standing balance. Gait and posture, 31(3):307–310,
2010.



208 BIBLIOGRAPHY
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falls in parkinson’s disease: a regression approach. Movement Disorders, 22(13):1927–1935,
2007.

G. Koshevoy and K. Mosler. Zonoid trimming for multivariate distributions. The Annals of Statistics,
25(5):1998–2017, 1997.

H. Koul. Some convergence theorems for ranks and weighted empirical cumulatives. The Annals of
Mathematical Statistics, (41):1768–1773, 1970.

H. Koul. Weighted Empirical Processes in Dynamic Nonlinear Models, volume 166 of Lecture Notes
in Statistics. Springer, 2nd edition, 2002.

W. Krzanowski and D. Hand. ROC Curves for Continuous Data (1st ed.). 2009.

M. J. Kurz, D. J. Arpin, B. L. Davies, and R. Harbourne. The stochastic component of the postural
sway variability is higher in children with balance impairments. Annals of biomedical engineering,
41(8):1703–1712, 2013.
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multiple views of the data. In 2012 IEEE 12th International Conference on Data Mining, pages
529–538, 2012.
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A | Generalized two-sample R-processes
and efficient two-sample tests

Abstract. This short chapter analyzes generalized R-processes, insofar alternative as-
sumptions are considered for the score-generating functions from Chapter 5. Although
those results are fundamental, they do not apply for discontinuous choices of φ such as
the ones introduced in the works of Boyd et al. (2012); Clémençon and Vayatis (2007);
Cossock and Zhang (2006). Also, we present an adaptive two-sample homogeneity test
based on R-statistics aiming to optimize the procedure proposed in Chap. 6. It relies on
aggregating a sequence of linear R-statistics when indexed by a class of score-generating
functions.
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A.1 General score-generating functions

Chapter 5 introduced a class of two-sample linear rank statistics as W -ranking performance measure
related to a given score-generating function φ(u), a class of scoring functions S and based on the
independent i.i.d. samples {X1, . . . , Xn} and {Y1, . . . , Ym}. In particular, we studied concentration
inequalities and the performance of empirical maximizers when φ(u) is assumed to be nondecreasing
and twice continuously differentiable. We aim here at proving similar results under mild assumptions
on the score-generating function and deriving concentration result of the class of score-generating
functions, based on the work of Koul (2002) (Chapter 3) and Clémençon and Vayatis (2007).

We recall that the r.v. X and Y are independent and defined on the same probability space
(Ω, F , P), valued in the same space Z , resp. drawn from G and H. Let p∈ (0,1) be the ’theoretical’
fraction of positive instances. For N ≥ 1/p, we suppose that n = bpNc and m = d(1− p)Ne= N−n.
Define the mixture probability distribution F = pG + (1− p)H. For any s ∈S , the distribution of
s(X) (i.e. the image of G by s) is denoted by Gs, that of s(Y) (i.e. the image of H by s) by Hs.
We also denote by Fs the image of distribution F by s. For simplicity, the same notations are used
to mean the related cumulative distribution functions. We also introduce their statistical versions
Ĝs,n(t) = (1/n)∑

n
i=1 I{s(Xi)≤ t} and Ĥs,m(t) = (1/m)∑

m
j=1 I{s(Y j)≤ t} and define

F̂s,N(t) = (n/N)Ĝs,n(t)+(m/N)Ĥs,m(t) . (A.1.1)

Since n/N → p as N tends to infinity, the quantity above is a natural estimator of the c.d.f. Fs. We
suppose the following assumptions fulfilled.

Assumption 10. φ ∈ C where C := {φ : [0,1]→ R, φ cadlag, ‖φ‖tv := φ(1)−φ(0) = 1} and the
set of non-continuity points is countable.

In particular, denoting ξ1, . . . ,ξJ , J ∈ N∗ the sequence of discontinuity points of the function
φ , such that, for all j ≤ J− 1, φ is continuous increasing function on the open interval (ξ j,ξ j+1).
Therefore, for all functions ` defined on a given ξ j, one has∫

[ξ j,ξ j]
`dφ = `(ξ j)[φ(ξ

+
j )−φ(ξ

−
j )].

Let a subclass S0 of S such that the following assumptions are fulfilled.

Assumption 11. The class of scoring functions S0 ⊂S defines a VC-class of finite VC-dimension
V .

Assumption 12. The optimal element s∗ exists and lies in S . The empirical optimal function of S0
is denoted by ŝN .

Assumption 13. Let M > 0. For all s ∈S0, the random variables s(X), s(Y) are continuous, with
density functions that are twice differentiable and have Sobolev W 2,∞-norms1 bounded by M < +∞.

Assumption 14. Let m > 0. For all s ∈S0, the probability density functions of the random variables
s(X), s(Y) are strictly bounded above gs(t) > m, hs(t) > m, for all t ∈ R.

1Recall that the Sobolev space W 2,∞ is the space of all Borelian functions h : R→ R such that h and its first and
second order weak derivatives h′ and h′′ are bounded almost-everywhere. Denoting by ||.||∞ the norm of the Lebesgue
space L∞ of Borelian and essentially bounded functions, W 2,∞ is a Banach space when equipped with the norm ||h||2,∞ =
max{||h||∞, ||h′||∞, ||h′′||∞}.
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Definition 82. The two-sample ’Wφ -ranking performance measure’ is defined, for all score-generating
function φ ∈ C and for all scoring function s ∈S , as the functional:

W (φ ,s) = E[(φ ◦Fs)(s(X))] . (A.1.2)

Its empirical counterpart is expressed as a R-process, as follows:

Ŵn,m(φ ,s) =
n

∑
i=1

φ

(
Rank(s(Xi))

N + 1

)
, (A.1.3)

where Rank(t) := NF̂s,N(t) = ∑i≤n I{s(Xi)≤ t}+∑ j≤m I{s(Y j)≤ t} is the rank statistic and defined
for all s ∈S . Optimality in the sense of (cite) is with respect to the element s ∈S0 that maximizes
the empirical W -ranking performance measure for a given score-generating function φ , i.e. ,

ŝn,m ∈ argmax
s∈S0

Ŵn,m(φ ,s) . (A.1.4)

Considering a subclass C0 of C , we aim at providing similar nonasymptotic bounds w.r.t. to the
optimal element s(z) and as well as the optimal φ(u). First, introduce the two-sample stochastic
process Ẑn(t,s), for all (t,s) ∈ [0,1]×S0, through

Ẑn(t,s) =
n

∑
i=1

I{Rank(s(Xi))≤ Nt} . (A.1.5)

Let φ ∈ C satisfy the Assumption (10), by performing integration by parts and linear change of
variables yields

ŴN(φ ,s) =
∫

φ

(
Nt

N + 1

)
Ẑn(dt,s) = φ(1)n−

∫ 1

0
Ẑn

(
(N + 1)x

N
,s
)

dφ(x) . (A.1.6)

Hence, we will study the process Ẑn(t,s) and in particular its fluctuations through uniform devi-
ation bounds on [0,1]×S0 in order to obtain uniform bounds on C0×S0 for the process ŴN(φ ,s).

Remark 11. Notice that for φ(u) = u, the equality is trivially obtained.

Uniform and Linear Approximation of the Two-Sample Process Ẑn. In order to study the fluc-
tuations of the process to obtain statistical guarantees, we need to linearize its structure due to the
non-independent sum. Classic tools such as orthogonal projections onto linear combinations of i.i.d.
variables cannot be directly applied and we follow the footsteps of Koul (2002) by considering the
equivalent process Ŝn(t,s) to exhibit the leading empirical process of order OP(N−1/2), defined as
follows

Ŝn(t,s) =
1
n ∑

i≤n
I{s(Xi)≤ F̂−1

N,s (t)} , (A.1.7)

for all (t,s). It is an estimator of the following empirical process Sn of mean S:

Sn(t,s) =
1
n ∑

i≤n
I{s(Xi)≤ F−1

s (t)} (A.1.8)

S(t,s) = E[I{s(X)≤ F−1
s (t)}] = Gs(F−1

s (t)) (A.1.9)

The following result establishes a linear approximation of the stochastic process Ŝn(t,s) through
the sum of the function S(t,s) and a leading term T̂n,m(t,s) averaging i.i.d. variables that is of order
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OP(N−1/2) plus a remainder of higher order. As introduced by Koul (2002), we link the process
Ŝn(t,s) to the empirical process Sn(t,s) by evaluating the latter at Fs ◦ F̂−1

N,s (t). It consequently bridges
the gap of Ŝn(t,s)’s correlated structure, at the price of an approximation error in the linearization.

Proposition 83. Let δ ∈ (0,1). Consider the Assumptions 11, 13, 14. Therefore, for all scoring
function s ∈S0 and t ∈ [0,1], the following decomposition holds

Ŝn(t,s) = S(t,s)+ T̂n,m(t,s)+Rn,m(t,s) , (A.1.10)

with

T̂n,m(t,s) = t∂tS(t,s)−S(t,s)+
1
n

n

∑
i=1

(1− n
N

∂tS(t,s))I{s(Xi)≤ F−1
s (t)}

− 1
N

∂tS(t,s)
m

∑
j=1

I{s(Y j)≤ F−1
s (t)} , (A.1.11)

where the derivative of S(t,s) w.r.t. t ∈ [0,1] is equal to

∂tS(t,s) =

(
gs

fs

)
(F−1

s (t))

and with probability 1−δ , the remainder process Rn,m(t,s) is of order OP(N−1).

PROOF. Suppose the Assumptions of Proposition 83 fulfilled. Let s ∈S0 and t ∈ [0,1], we have

Ŝn(t,s)−S(t,s) = Sn(Fs ◦ F̂−1
N,s (t),s)−S(t,s)

= V̂n(Fs ◦ F̂−1
N,s (t),s)+ S(Fs ◦ F̂−1

N,s (t),s)−S(t,s) . (A.1.12)

with the centered empirical process V̂n(t,s) = Sn(t,s)−S(t,s). The proof of the proposition relies on
the following two lemmas.

Lemma 84. Let δ ∈ (0,1), (t,s) ∈ [0,1]×S0. Consider the Assumptions 11 and 13 satisfied, there-
fore there exists a nonnegative constant C, such that

P
{
|V̂n(Fs ◦ F̂−1

N,s (t),s)−V̂n(t,s)|< x
}
≥ 1−δ , (A.1.13)

with x = C log(1/δ )/N.

Lemma 85. Let (t,s) ∈ [0,1]×S0. Consider the Assumptions 11, 13, 14 satisfied, therefore

S(Fs ◦ F̂−1
N,s (t),s) = S(t,s)− (Fs ◦ F̂−1

N,s (t)− t)∂tS(t,s)+ OP(N−1) . (A.1.14)

�

PROOF.Proof of Lemma 84. Let δ ∈ (0,1), x,ε > 0 and t ∈ [0,1], . Consider the Assumptions 11 and
13 satisfied. Following the footsteps of Clémençon and Vayatis (2007), conditionally on the event
A(s,ε) = {|Fs ◦ F̂−1

N,s (t)− t|< ε}, we have

|V̂n(Fs ◦ F̂−1
N,s (t),s)−V̂n(t,s)| ≤ sup

t ′:|t−t ′|<ε

|V̂n(t ′,s)−V̂n(t,s)|
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Consider the distance di,s, for all i≤ n, defined by

di,s : (t, t ′) 7→ I{s(Xi) ∈ [F−1
s (max(t, t ′)),F−1

s (min(t, t ′))]}+ |t− t ′|

such that

|V̂n(t ′,s)−V̂n(t,s)| ≤ 1
n

n

∑
i=1

di,s(t, t ′) =: d̂n,s(t, t ′)

where d̂s is the weighted distance over R for a given s(z). Then the the uniform bound of the distance
on the event A(s,ε) w.r.t. t ′ is equal to

D̂(ε) := sup
t ′:|t−t ′|<ε

d̂s(t, t ′)

=
1
n

n

∑
i=1

I{s(Xi) ∈ [F−1
s (t− ε)),F−1

s (t + ε))]}+ ε

Therefore following the footsteps of Clémençon and Vayatis (2007) and using the Lemma 8.5 from
van de Geer (2000), the result is obtained.
�

PROOF.Proof of Lemma 85. Let (t,s) ∈ [0,1]×S0. Consider the Assumptions 11, 13, 14 satisfied.
Note that

|Fs ◦ F̂−1
N,s (t)− t| ≤ sup

t
|Fs(t)− F̂N,s(t)|+ 1/N ,

implies |Fs ◦ F̂−1
N,s (t)− t| is of order OP(N−1), and by pointwise differentiability of the c.d.f. s Gs and

Hs, a first order approximation of S(Fs ◦ F̂−1
N,s (t),s) at t concludes on the result.

�

A.2 Adaptive two-sample homogeneity rank tests

This section presents an adaptive two-sample homogeneity rank test in the continuity of Chapter
6. By considering a sequence of R-statistics indexed by a class of score-generating functions, we
propose a procedure intending to minimize both statistical errors by aggregating the former sequence.
It extends the procedure proposed 6.2 wherein the bipartite ranking step (Step 1) is replaced by the
exact maximization of the Wφ -performance criterion, thus depending on the choice of φ . We first
detail the new version of the procedure and then outline the aggregated test statistic.

Two-stage homogeneity rank-based testing. The considered framework for this method is similar
to the one of Chap. 6. Based on the observation of two independent i.i.d. samples X1, . . . , Xn and
Y1, . . . , Ym with n, m≥ 1, the goal is to test at level α ∈ (0,1), the homogeneity hypothesis:

H0 : W ∗φ =
∫ 1

0
φ(u)du versus H1 : W ∗φ >

∫ 1

0
φ(u)du , (A.2.1)

where the Wφ -criterion is defined in Def. A.1.2 and the considered class of two-sample linear rank
statistic is defined by
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Ŵn,m(s,φ) =
1
n

n

∑
i=1

φ

(
Rank(s(Xi))

N + 1

)
, (A.2.2)

with N = n + m, see Eq. (A.1.3). Therefore, the two-stage procedure can be summarized as in the
Figure A.1.

GENERALIZED TWO-SAMPLE RANK TESTS

Input. Two independent and i.i.d. samples {X1, . . . , Xn} and {Y1, . . . , Ym} of sizes
n, m ≥ 2 and valued in Z - subsample sizes n′ < n and m′ < m - A algorithm operating
on the class S0 of scoring functions on Z - φ score-generating function - univariate
two-sample rank test Φ

φ

α of level α ∈ (0,1)

Two-split trick. Divide each of the original samples into two subsamples:

{X1, . . . , Xn′}∪{X1+n′ , . . . , Xn} and {Y1, . . . , Ym′}∪{Y1+m′ , . . . , Ym}

1. Maximizing the Wφ -ranking performance criterion. Run algorithm A based on training
data Dn′,m′ = {{X1, . . . , Xn′}, {Y1, . . . , Ym′}}, producing the scoring function

ŝ(z) = argmax
s∈S0

Ŵn′,m′(φ , s) (A.2.3)

2. Univariate rank test. Form the univariate samples

{ŝ(X1+n′), . . . , ŝ(Xn)} and {ŝ(Y1+m′), . . . , ŝ(Ym)},

the outcome of the test being finally determined by computing the quantity

Φ
φ

α ({ŝ(X1+n′), . . . , ŝ(Xn)}∪{ŝ(Y1+m′), . . . , ŝ(Ym)}) , (A.2.4)

depending on {Rank(ŝ(X1+n′), . . . , Rank(ŝ(Xn))}, where Rank(t) = ∑
n
i=1+n′ I{ŝ(Xi)≤ t}+

∑
m
i=1+m′ I{ŝ(Y j)≤ t)}.

Figure A.1. Extension of the ranking-based two-sample rank test procedure.

Remark 12. (ON THE CONSISTENCY OF THE PROCEDURE) We can consider two possible assump-
tions for the score-generating functions to obtain the consistency of Proc. A.1. Under the framework
of Chap. 6, if φ satisfies Assumption 9(i) (or 4 in Chap. 5), then one obtains nonasymptotic consist-
ency of the method, for which all generalization results inherited from Chap. 5 are applicable. Recall
that it supposes φ : [0,1] 7→R to be nondecreasing and twice continuously differentiable. Under mild
conditions on φ of Assumption 10, Section A.1, asymptotic consistency can be obtained thanks to the
linearization result of Prop. 83.

Remark 13. (ON THE ALGORITHM A ) The procedure of Chap. 6 relies on bipartite ranking al-
gorithms A , where one minimizes the related empirical loss, see Chap 2, section 2.2. However,
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the present procedure aims to maximize the exact empirical version of the Wφ -ranking performance
criterion. It is, therefore, possible to apply the deterministic gradient ascent algorithm introduced
in Chap. 7 for semiparametric classes of scoring functions S0. Importantly, this allows for very
interpretable high-dimensional testing procedures. We refer to some preliminary numerical results
presented in the Conclusion part of the manuscript.

Aggregating multiple R-statistics. We now discuss the approach of Proc. A.1 wherein Step 1
exactly maximizes the empirical Wφ -performance criterion based on Dn′,m′ , and as expressed in Eq.
(A.1.3). The goal is to construct a procedure that maximizes the power of the two-sample test by
aggregating R-statistics for various choices of φ .

Consider C to be composed of B ∈ N∗, finite, score-generating functions φ (1), . . . ,φ (B). Refer to
Remark 12 for the related assumptions. Define the associated sequence of optimal scoring functions
ŝ(b) ∈ S0 obtained at Step 1 when maximizing the statistic Ŵn′,m′(φ (b), ·). The sequence of test
statistics for Step 2 are therefore related to Ŵ (b)

n′′,m′′ = Ŵn′′,m′′(φ (b), ŝ(b)), based on Dn′′,m′′ .

The simplest aggregated R-statistic is defined by W̄ B
n′′,m′′ = (1/B)∑b≤BŴ (b)

n′′,m′′ . From now on we
drop the primes. Notice the difficulty here is related to the unknown null distribution of the stat-
istic W̄ B

n,mWe can estimate its quantile using data-driven procedures such as permutation or bootstrap
approaches. However, we would lose the fundamental property of rank statistics of obtaining ex-
plicit null distribution. That is why, by following the works of Baraud (2002), we can consider a
weighted combination of the statistics by introducing the sequence (λb)b≤B, such that ∑b≤B λb = 1
and W̄ B

n,m,λ = ∑b≤B λbŴ (b)
n,m. The procedure learns the optimal weights to obtain nonasymptotic guar-

antees for both errors. Hence, for a given testing level α , W̄ B
n,m,λ rejects H0 if there exists one test

among the Bs rejecting the null at corrected level λbtα , where tα is the least conservative threshold
such that the aggregate statistic is of level α . Following Baraud (2002), tα is defined by

tα := sup
t∈(0,minb≤B(1/λb))

{
PH1

{
max
b≤B

(
Ŵ (b)

n,m−qφ (b)

n,m (λbt)
)
> 0
}
≤ α

}
, (A.2.5)

where we recall that qφ (b)

n,m is the quantile of the null distribution of the statistic Ŵ (b)
n,m. Notice also that

the sup in Eq. (A.2.5) is well defined for the considered range of t. We propose an estimator of the
optimal threshold by randomly sampling M′ ∈ N∗ samples from the alternative distribution, denoted
by D

(i)
n,m, with i≤M′, as follows

t̂α := sup
t∈(0,minb≤B(1/λb))

{
1

M′
M′

∑
i=1

I
{

max
b≤B

(
Ŵ (b)

n,m(D
(i)
n,m)−qφ (b)

n,m (λbt)
)
> 0
}
≤ α

}
. (A.2.6)

In fact, in comparison to the works of Albert et al. (2021); Baraud (2002) (for independence
testing) and Schrab et al. (2021) (for two-sample testing), this method is much simpler as the null
distributions for all b ≤ B statistics are computable, and for all sizes of samples. This leads to the
exact computation of the quantile qφ (b)

n,m at all levels. We therefore propose the use of the statistic

Φ̂α(Dn,m, C ) = I
{

max
b≤B

(
Ŵ (b)

n,m(D
(i)
n,m)−qφ (b)

n,m (λbt̂α)
)
> 0
}

. (A.2.7)

Based on this statistic, data-driven procedures can be developed to estimate t̂α , leading to the
aggregated version of the R-statistic over class C . We importantly highlight that we can compute
the exact null distribution of this procedure for all (n, m) and at all test levels. In the mentioned
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literature, results are usually obtained under regularity conditions on the class of density functions,
such as Besov spaces or Sobolev balls.

Example 86. This modeling is particularly adapted for the score-generating function associated
to the LocalAUC (Clémençon and Vayatis (2007)), wherein the set of hypotheses is indexed by the
parameter u0 ∈ (0.5,1) and C is composed of the functions φu0 : u 7→ uI{u≥ u0}. In addition, sharp
upperbounds of the uniform separation rate, and lower bounds of the minimax uniform separation
rate when based on an adaptive approach of the estimation of (A.2.7) can be studied.

A.3 Towards an efficient optimization algorithm for high-dimensional
two-sample testing.

This short section provides some numerical results in the context of the two-sample problem, for
a particular type of data structure. Indeed, we explore how to leverage the deterministic algorithm
detailed in Chap. 7 when facing very small sample sizes of observations valued in Z ⊂ Rd , with
d > 1 greater than n. While providing an interpretable algorithm, it also allows for the exact op-
timization of the smoothed version of the Wφ -ranking performance criterion for multiple choices of
score-generating functions φ . We sequentially detail the algorithm we perform, the probabilistic
models and the parameters for the experiments.

Algorithm, parameters and probabilistic model. We implement the two-stage procedure detailed
in the previous section A.2 (Fig. A.1), wherein the algorithm for Step 1 is chosen to be the Gradi-
ent Ascent detailed in Section 7.1, Algorithm 3. Precisely the empirical version of the smoothed
counterpart of the Wφ -ranking performance criterion is optimized.

• S0 is a parametric class, indexed by a parameter space Θ ⊂ Rd with d ≥ 1 say: S0 = {sθ :
Z → R, θ ∈Θ}.

• We implemented the algorithm for various choices of score-generating functions, in order to
illustrate the importance of its choice. We considered φMWW (u) = u (MWW), and φRT B(u) =
SoftPlus(u−u0)+ u0Sigmoid(u−u0), u0 ∈ (0,1) (RTB, smoothed version of Clémençon and
Vayatis (2007)). As for Section 7.1, the activation functions are defined by: SoftPlus(u) =
(1/β ) log(1+exp(βu)) and Sigmoid(u) = 1/(1+exp(−λu)), β ,λ > 0 being hyperparameters
to fit and control the derivative’s slope. We let u0 ∈ {0.8,0.9,0.95}.

• We sampled the two-samples according to location model (L2) that we detail below:
X∼Nd(µX ,Σ) and Y∼Nd(µY ,Σ) are drawn independently, with: µY = 0d , µX = (ε/

√
d)×

1d , Σi, j = β |i− j|, for i, j≤ d, β = 0.8, such that Σ∈ S+
d (R), d ∈ {30,50}, and ε ∈ {0.4,0.8,1.5,

3.0,10.0}.

• The parameters for the GA are similar to the ones of Section 7.1, except that we let the al-
gorithm run for T = 200 loops.

Results. We gather the results in Fig. A.2 (for d = 30), A.3 (for d = 50). Some points of the
discussion in Section 7.1 remain true for these experiments. Briefly, the present results are very
promising as we empirically obtain that the statistics associated to RTB recover the oracle curve
(beginning) ROC∗ with smaller variance compared to MWW. Also, the more proportion u0 increases
and the more the variance of the associated criterion is low. In fact, even if it remains to perform the
exact Step 2, these results motivate to consider the alternative procedure detailed in Fig. A.1 for such
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complex data structures. We highlight that these are preliminary results and we intend to test broader
scale of probabilistic models in the future. Importantly this procedure has tractable optimization
algorithm and exact homogeneity test statistic that allows for very high-dimensional data analysis.

1.a. RTB u0 = 0.95 1.b. RTB u0 = 0.9 1.c. RTB u0 = 0.8 1.d. MWW

2.a. RTB u0 = 0.95 2.b. RTB u0 = 0.9 2.c. RTB u0 = 0.8 3.d. MWW

Figure A.2. Empirical ROC curves for (L3) with ε = 0.4 for (1.) and ε = 0.8 for (2.). Maximization of the Wφ -
criterion with φrtb for figures (a-c) with u0 ∈ {0.95,0.9,0.8} and with φmww for figures (d). Samples are scored
with early-stopped GA algorithm’s optimal parameter for the class of scoring functions. Hyperparameters:
B = 20, T = 200. Parameters for the training set: n = m = 24; d = 30; for the testing set: n = m = 105; d = 30.
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1.a. RTB u0 = 0.95 1.b. RTB u0 = 0.9 1.c. RTB u0 = 0.8 1.d. MWW

2.a. RTB u0 = 0.95 2.b. RTB u0 = 0.9 2.c. RTB u0 = 0.8 2.d. MWW

3.a. RTB u0 = 0.95 3.b. RTB u0 = 0.9 3.c. RTB u0 = 0.8 3.d. MWW

Figure A.3. Empirical ROC curves for (L3) with ε = 1.5 for (1.), ε = 3.0 for (2.), and ε = 10.0 for (3.). Max-
imization of the Wφ -criterion with φrtb for figures (a-c) with u0 ∈ {0.95,0.9,0.8} and with φmww for figures (d).
Samples are scored with early-stopped GA algorithm’s optimal parameter for the class of scoring functions.
Hyperparameters: B = 20, T = 200. Parameters for the training set: n = m = 24; d = 50; for the testing set:
n = m = 105; d = 30.

1. (L3), ε = 3.0 2. (L3), ε = 5.0 3. (L3), ε = 10.0

Figure A.4. Comparison on the beginning of the empirical ROC curves for the (L3) model and for RTB
(orange, green and purple) with u0 ∈ {0.95,0.9,0.8} and MWW (blue). Samples are scored with early-stopped
GA algorithm’s optimal parameter for the class of scoring functions. Hyperparameters: B = 20, T = 200.
Parameters for the training set: n = m = 24; d = 50; for the testing set: n = m = 105; d = 30.



B | Univariate framework and state-of-
the-art

This section spotlights fundamental topics and methods in univariate statistics for this thesis. First,
some definitions and properties of rank statistics (R-statistics) are recalled, the two-sample problem
is stated and properties of hypothesis testing are enumerated. A graphical tool is then introduced,
namely the Receiver Operating Characteristics (ROC) curve, especially used in biomedicine.

B.1 Univariate rank statistics

Rank statistics are a particular example of permutation statistics, for which they depend on the ob-
servations only through their relative order when compared to the whole sample.

Introduction to R-statistics. Consider the set of N ∈ N∗ real observations z1, . . . ,zN . We define
their ordered sequence as z(1), . . . ,z(N) such that it is possible to range them in ascending order:
z(1) ≤ . . .≤ z(N). In fact, when considering a sequence of real and independent random variables (r.v.)
Z1, . . . ,ZN , we similarly define the order statistics as those ranged by ascending order: Z(1), . . . ,Z(N)

such that Z(1) ≤ . . .≤ Z(N), almost surely. These statistics induce a notion of ranking that takes form
of rank statistics. The sequence of rank variables associated to the Z1, . . . ,ZN is defined as R1, . . . ,RN ,
such that

Zi = Z(Ri), for all i≤ N .

For a given observation, the corresponding rank equals to its position w.r.t. the order statistics,
when no ties are supposed i.e. if the random variables have continuous distribution functions so that
the ties occur with probability zero. Under more general assumption, we choose the definition of
upranks as follows

Rank(Zi) = ∑
j≤N

I{Z j ≤ Zi}, for all i≤ N .

Some basic results are formulated below.

Lemma 87. (Lemma 13.1, van der Vaart (1998)) Suppose the sequence of independent r.v. Z1, . . . ,ZN ,
N ∈ N∗ has common continuous distribution function, then:

(i) the vectors {Z(i)}i≤N and {Ri}i≤N are independent

(ii) the vector {Ri}i≤N is uniformly distributed over all the N! permutations of SN

235
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We define the rank statistics as functions of the rank variables and consider the particular form
of simple linear rank statistics, defined by

TN = ∑
i≤N

cNiaN,RNi , (B.1.1)

where the subscript N is to specify the size of the considered vectors. The sequences {aN,i}i≤N and
{cNi}i≤N are respectively defined as the scores and the coefficients of the statistic.

Example 88. (TWO-SAMPLE R-STATISTIC) Let n∈N∗ and m = N−n. Suppose the n first variables
constitute the first sample, while the remaining m form the second one, then the coefficients of the
linear R-statistic are defined by

(cN1, . . . ,cNN) = (1, . . . ,1︸ ︷︷ ︸
n times

,0, . . . ,0︸ ︷︷ ︸
m times

)

and c̄N = n/N, ∑
N
i=1(cNi− c̄N)2 = nm/N.

The following Lemma is a simple illustration that emphasizes the simplicity of these remarkable
statistics.

Lemma 89. (Lemma 13.1, van der Vaart (1998)) Suppose the sequence of r.v. Z1, . . . ,ZN , N ∈N∗ has
common continuous distribution function, then

E[TN ] = Nc̄N āN and Var[TN ] =
1

N−1

N

∑
i=1

(cNi− c̄N)2
N

∑
i=1

(aNi− āN,i)
2 , (B.1.2)

where c̄N = (1/N)∑i≤N cNi and āN = (1/N)∑i≤N aN,i.

In fact the scores {aN,i}i≤N are usually supposed to be generated from a score-generating function
φ : [0,1]→ R, for which two specific definitions are commonly used for R-statistics. First, consider
a sequence of i.i.d. r.v. U1, . . . ,UN uniformly drawn in [0,1], then for all i≤ N,

aN,i = E[φ(UN(i))] , (B.1.3)

where {UN(i)}i≤N is the order N-sample of the sequence U1, . . . ,UN . The second definition is

aN,i = φ

(
i

N + 1

)
. (B.1.4)

Under assumptions on φ , both definitions are related as E[UN(i)] = i/(N + 1). If the r.v. Z is absolute
continuous of square-integrable probability density function f and distribution function F , a third
representation due to Hajek (1961) and resulting from a projection method, is a tool for asymptotic
results such as UMP tests. In particular, the score-generating function in defined as φ(i/(N + 1)) =∫ i/N

(i−1)/N− f ′(F−1(u))/ f (F−1(u))du, for all i ≤ N. Interesting examples for the two-sample model
(Example 88) are detailed below.

Example 90. (CLASSIC TWO-SAMPLE TESTS) Two-sample rank statistics applied to hypothesis
testing.

• The median test is generated by defining the scores with (B.1.4) with φ(u) = I{(0,1/2])}(u),
s.t.

Tn,m =
n

∑
i=1

I{RNi ≤ (N + 1)/2} .
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• The van der Waerden test. Let Φ the cumulative distribution of a standard normal variable,
then

Tn,m =
n

∑
i=1

Φ
−1(RNi) .

• The Wilcoxon test is generated by defining the scores with (B.1.4) with φ(u) = u, s.t.

Tn,m =
n

∑
i=1

RNi .

The first step for understanding these statistics is to provide their asymptotic behavior as their
structure does not allow for a direct analysis. Classic approaches decompose rank statistics. We
consider either of the two definitions (B.1.3), (B.1.4), such that the linearized statistic is considered:

T̄N = Nc̄N āN +
N

∑
i=1

(cNi− c̄N)φ(F(Xi)) . (B.1.5)

The following theorem proves the asymptotic equivalence of the two statistics: T̄N and TN .

Theorem 91. (Theorem 13.5, van der Vaart (1998)) Consider a i.i.d. sequence Z1, . . . ,ZN of continu-
ous distribution function F. Suppose either of the two models:

(i) the scores are defined by (B.1.3) with φ not constant a.e. and s.t.
∫ 1

0 φ 2(u)du < ∞

(ii) the scores are defined by (B.1.4) with φ continuous a.e., nonconstant, s.t. (1/N)∑i≤N φ 2(i/(N +

1))→
∫ 1

0 φ 2

Then, the sequences TN (B.1.1) and T̄N (B.1.5) are asymptotically equivalent, of same mean and s.t.
Var[TN− T̄N ]/Var[TN ]→ 0.

Linear R-statistics under alternatives. One of the major applications of R-statistics is hypothesis
testing where the null hypothesis to test is related to the equality in the underlying distributions,
against the alternatives, usually formulated such that each variables is drawn from a different distri-
bution. We consider the generalized formulation, where the sequence of r.v. Z1, . . . ,ZN is respectively
drawn from the continuous distribution functions F1, . . . ,FN . A straightforward consequence is that
the rank variables are no longer uniformly drawn on the set of permutations (Lemma 87-(ii)). The
structure of R-statistics is ever more complex under alternatives, formed of a correlated sum of non-
i.i.d. r.v.. An equivalent statistic of simpler form, at least asymptotically, is thus necessary. A classic
method introduced by J. Hájek in his seminal contribution Hájek (1968), corresponds to projecting
the statistic onto the space induced by the independent r.v.. It is detailed in the sequel for general form
of square integrable statistics, obtaining a linearized statistic composed of an average of independent
r.v.plus an uncorrelated term. Refer also to Chapter 11 in van der Vaart (1998) for further details.

Lemma 92. (HÁJEK PROJECTION, HÁJEK (1968)) Let a sequence of i.i.d. r.v. Z1, . . . , ZN and
SN = SN(Z1, . . . , ZN) a real-valued square integrable statistic. The Hájek projection of SN is defined
as

ŜN =
N

∑
i=1

E[SN | Zi]− (N−1)E[SN ] . (B.1.6)

It is the orthogonal projection of the square integrable r.v. SN onto the subspace of all variables of
the form ∑i≤N gi(Zi), for arbitrary measurable functions gi s.t. E[g2

N(Zi)] < +∞.
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Lemma 92 applied to TN with scores generated by (B.1.4) is important in Chap. 5. Consider the
sample Z1, . . . ,ZN of independent variables and of respective distribution functions F1, . . . ,FN , sup-
pose φ : [0,1]→R twice continuously differentiable. Using Rank(t) = NF̂N(t) and F̄N = (1/N)∑i≤N Fi,
one can consider

T̄N =
N

∑
i=1

cNiφ (F̄N(Zi)) . (B.1.7)

By regularity of φ and of the sequence of c.d.f. F1, . . . ,FN , a Taylor expansion of order two around
F̄N of TN yields

TN = T̄N +
N

∑
i=1

cNi

(
RNi(Zi)

N + 1
− F̄N(Zi)

)
φ
′ (F̄N(Zi))

+
N

∑
i=1

cNi

2

(
RNi(Zi)

N + 1
− F̄N(Zi)

)2

φ
′′ (F̄N(Zi))+OP(N−1) .

Hájek’s lemma 92 applied to the second term and the asymptotic bounding on the second term
plus the remainder term of the projection, yields the asymptotic equivalent statistic

T̂N = T̄N +
N

∑
i=1

∫
∞

Xi

φ
′ (F̄N(u))dF̄c

N(u) , (B.1.8)

where the weighted average equals to F̄c
N = (1/N)∑i≤N cNiFi. We refer to Section 13.4 of van der

Vaart (1998) for all technical details. A first inequality for bounding the variance of the difference of
the two statistics is obtained in the following. Hájek (1968) (Theorem 3.1) obtained a weaker bound
for more general score-generating functions.

Lemma 93. (Lemma 13.23, van der Vaart (1998)). Let φ : [0,1]→ R twice continuously differenti-
able. Then, there exists a universal constant K > 0, such that

Var(TN− T̂N)≤ K
N

N

∑
i=1

(cNi− c̄N)2 (‖φ ′‖2
∞ +‖φ ′′‖2

∞

)
. (B.1.9)

Some notes on fundamental results. We formulate the rank central limit theorem under the hypo-
thesis of identical probability distributions and for generic sequence of scores aN , as defined in Eq.
(B.1.1) and (B.1.5). The result is obtained thanks to J. Hájek.

Theorem 94. (Theorem 4.4, Hajek (1961)) Let Z1, . . . ,ZN a i.i.d. sequence of r.v. and define TN as
in Eq. (B.1.1). Suppose maxi≤N |cNi− c̄N |/CN → 0 and similarly maxi≤N |aNi− āN |/AN → 0, with
CN = ∑i≤N(cNi− c̄N)2 and AN = ∑i≤N(aNi− āN)2. Then,

TN−E[TN ]√
Var[TN ]

−→W , (B.1.10)

where W is a standard normal variable, iff for all ε > 0,

n

∑
i=1

n

∑
j=1

|cNi− c̄N |2|aN j− āN |
A2

NC2
N

→ 0 . (B.1.11)
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Besides the classic asymptotic results, the class of R-statistics challenged the standard paramet-
ric tests, where a fundamental question of practitioners and statisticians is which statistics should
they use to obtain better performances. The answer depends on the probabilistic model and the re-
lated asymptotic (relative) efficiency, Bahadur and Pitman efficiencies, (local) power and contiguous
alternatives, etc., see van der Vaart (1998). In particular, a major challenge related to rank-based
inference is how to choose the optimal score-generating function φ . The works of H. Koul, later
generalized and gathered in Koul (2002) for the location multivariate model, is a reference. The
works initialized by J. Hájek (Hájek (1962, 1968); Hájek and Sidák (1967)) and later by H. L. Koul
and J. Jurecková are of high importance for classes of R-statistics and processes, generalized on mul-
tiple samples, studying the asymptotic properties under alternatives for very generic forms of linear
statistics, see Gutenbrunner and Jurečková (1992); Jurečková et al. (2010).

R-statistics as U-statistics. The two-sample Wilcoxon statistic (Wilcoxon (1945)) is related to two-
sample U-statistics: consider two independent samples X1, . . . ,Xn and Y1, . . . ,Ym, then the ranksum
statistic W = ∑i≤n Rank(Xi) can be decomposed by means of U-statistics. If we define ψ(x,y) =
I{x > y} for simplicity in the absence of ties, and define Un,m = ∑i≤n ∑ j≤m ψ(Xi,Yj), then

Wn,m = Un,m + n(n + 1)/2 .

U is in fact the Mann-Whitney U-statistic (Mann and Whitney (1947)), that is proportional to the
generalized U statistic: Un,m = (nm)−1U .

B.2 The two-sample problem

Suppose we want to statistically test the efficiency of a medical treatment for which, typically, prac-
titioners would choose two groups with similar characteristics (e.g. age, medical history, symptoms).
The experimental protocol then would recommend to administrate the drug to be tested to the first
group while a placebo would be given to the second one. The problem consists in testing statistically
its effect, based on the features/measures collected for both populations after an observational time.
We suppose that practitioners know neither the typical behavior of the populations nor how the drug
affects the patients.

Formally, this two-sample test is modeled as follows. Given two independent random variables X
and Y , valued in the measurable space Z , either univariate or multivariate, of continuous distribution
functions G and H, the goal is to test, for a fixed level α ∈ (0,1) the null hypothesis of the equality
of distributions:

H0 : G = H against the alternative H1 : G 6= H . (B.2.1)

This formulation being quite generic, many problems can be related, such as to goodness-of-
fit (GoF) testing, see for instance Darling (1957) (univariate) and Friedman (2004) (multivariate),
independence testing (e.g. Spearman (1904)) and pairwise testing (e.g. Wilcoxon (1945)). The two-
sample problem is in practice formulated based on two independent i.i.d. sequences {X1, . . . ,Xn} and
{Y1, . . . ,Ym}, resp. drawn from G and H, with n, m ∈ N∗, such that statistic for testing H0 is based
on the empirical measures

µ̂n =
1
n

n

∑
i=1

δXi and ν̂m =
1
m

m

∑
j=1

δY j , (B.2.2)

or similarly on both empirical c.d.f. Ĝn(t) = (1/n)∑
n
i=1 I{Xi ≤ t} and Ĥm(t) = (1/m)∑

m
j=1 I{Yj ≤ t},

and many generalizations of univariate two-sample tests rely on related empirical metrics such as
quantiles, copulas, data depth functions, etc. While there exists a plethora of statistics in this very
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generic formulation, the present thesis is restricted to nonparametric testing. Refer to classic books
Gibbons and Chakraborti (2011); Lehmann and Romano (2005); Sheskin (2011); van der Vaart
(1998) for comprehensive reviews of theory, methodologies and statistics in the field of (nonpara-
metric) hypothesis testing.

Example 95. (LOCATION AND SCALE TESTS) In (semi)parametric testing, the location/shift prob-
lem is formulated, by considering G(t) = µ(t−θ1), H(t) = ν(t−θ2), with parameters θ1, θ2 ∈ R:

H0 : θ1 = θ2 vs. H1 : θ1 6= θ2 .

It is usually assumed µ, ν known and equal. Notice that the simplest version is the test of means for
Gaussian distributions, recovering Student’s t-test. The scale/shape test can similarly be defined, let
θi,σi ∈R×R∗+, then G(t) = µ((t−θ1)/σ1) and H(t) = ν(((t−θ2)/σ2), such that the hypothesis to
test are:

H0 : θ1 = θ2, σ1 = σ2 vs. H1 : θ1 = θ2, σ1 6= σ2 .

Some statistical properties. The subsequent properties for both theoretical and practical aspects
are relevant and adequate for the characterization of the various test statistics.

(E1) Type-I error or the false positive proportion, corresponds to the probability of falsely rejecting
H0.

(P) Type-II error or power: while constructing a test statistic highlighting the discrepancies of the
two distributions may be straightforward, it is by far more complicated to control and maximize
its power. It is defined as the probability of rejecting the alternative distribution. Usually, it
is proved under fixed alternatives, but some results can be established for sequences of local
alternatives, leading to contiguity analysis. This concept was introduced by Cam (1960), later
obtaining the famous Le Cam’s First and Third lemmas.

(C, AC) Consistency and asymptotic consistency against any fixed alternative hypothesis, for establish-
ing convergence in probability of the statistic to its expected value or equivalently states the
convergence of the power to one, when the number of observations tends to infinity.

(DF) Exact/asymptotic distribution freeness with respect to H0. It is typically a property of univari-
ate rank-based tests.

(DFa) Essential maximal ancillary refers to the concept of (DF) but w.r.t. the alternative. Ancillarity
was introduced by Fisher (1925) and the concept of maximal ancillary later by Basu (1959).
Briefly, a statistic is defined as ancillary if it is invariant w.r.t. transformations of the alternative
probabilistic model. It is said maximal if there does not exist another ancillary statistic that can
be written as function of it, without being equivalent. For instance, rank statistic satisfy this
definition for translation transformations. In particular Basu studied the case where statistics
could be modified in sets of probability zero. Refer also to Lehmann and Scholz (1992) for
examples.

(U) Unbiased test: for a test of size α ∈ (0,1), the power of the test is lowerbounded by α where
also α upperbounds the type-I error, uniformly over all the admissible sets. If there exists
a Uniformly Most Powerful (UMP) test, it is unbiased. If the asymptotic distribution of the
statistic is Gaussian, under the null and local alternatives, then it is asymptotically locally
unbiased.

Below, three classic univariate tests subject to generalizations in the multivariate framework (de-
tailed in Chap. 2), are essential to illustrate some statistical concepts for which the exact tabulation
for small sample sizes are available.
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Mann-Whitney Wilcoxon (MWW) test. It was introduced in Wilcoxon (1945) as a rank-based
statistic Tn,m, and in Mann and Whitney (1947) as an unbiased U-statistic Un,m. The ranks of one
sample among the pooled sample are summed up and the famous relation that allows for defining the
Mann-Whitney-Wilcoxon statistic is

Tn,m = nmUn,m + n(n + 1)/2 . (B.2.3)

It is known as the uniformly most powerful test for the location problem and fulfills all the listed
properties. In particular, (U) is satisfied against one-sided alternative and if the distributions G and
H are symmetric, it is also satisfied against two-sided alternative.

Kolmogorov-Smirnov (KS) test. The KS test was introduced in Darling (1957); Smirnov (1939)
and defined by

Dn,m = sup
z∈Z
|Ĝn(z)− Ĥm(z)| . (B.2.4)

Smirnov (1939) proved the asymptotic distribution under the alternative to be independent of the
data, whereas it remains unknown under the null. The associated metric on the space of distribu-
tion functions leads to, e.g., goodness-of-fit testing, but also generalized to empirical processes, see
van der Vaart and Wellner (1996). Also, applying the Glivenko-Cantelli theorem or Donsker the-
orem, yield to consistent test with explicit rate of convergence against any fixed tw-sided alternative,
where Dn,m is expected to be large under H1 and to tend to zero otherwise. Numerical experiments
show that while performing very well for the location and the scale models, it lacks power for others
test. Notice that a related statistic, also known as the Cramér-von Mises, computes the square of the
difference between the empirical c.d.f.

Wald–Wolfowitz runs (WWr) test. The WWr statistic, introduced in Wald and Wolfowitz (1940),
counts the number of runs obtained in the pooled sample. Associate a symbol + to the Xs sample and
− to the Y s sample. A run is a consecutive sequence of maximal non-empty segment of the sequence
consisting of adjacent identical elements, for example

++−−−+−−−−−+++++−−+

equals to 10 where 5 for + and 5 for −. The statistic considered is defined

W =
R−2mn/N−1√

2mn(2mn−N)/(N2(N−1))
, (B.2.5)

where R denotes the total number of runs. It is shown to be less powerful than the KS for the location
problem but more for the scale test. While this method is studied through an extensive literature in the
1940-50s by means of combinatorial approaches Wolfowitz (1943), it has been adapted to Markovian
analysis and gathered in Fu (1996).

Remark 14. (TWO-SAMPLE TESTING WITH R-STATISTICS) The alternative can be formulated as
a one-sided hypothesis, yielding

H0 : G = H against the alternative H1 : G≤sto H , (B.2.6)

where H1 corresponds to H is stochastically larger1 than G. It corresponds to the very general
framework wherein for example, when testing the effect of a treatment, one can suppose that it cannot

1Given two distribution functions H(dt) and G(dt) on R∪{+∞}, it is said that G(dt) is stochastically larger than
H(dt) iff for any t ∈ R, we have G(t) ≤ H(t). We then write: H ≤sto G. Classically, a necessary and sufficient condition
for G to be stochastically larger than H is the existence of a coupling (X, Y) of (G,H), i.e. a pair of random variables
defined on the same probability space with first and second marginals equal to H and G respectively, such that X≤Y with
probability one.
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be modeled by a fixed parameter (e.g. location model G(t) = H(t−θ)) but rather suppose that the
size of the effect depends on the value of the observation (e.g. θ depends on t). For instance, MWW is
UMP when choosing H as the logistic distribution H(t) = 1/(1+e−x) related to the location model,
see Lehmann and Romano (2005), Chapter 6.9.

Comparing statistical tests to MWW. Historically, the introductory articles on specific R-statistics
suggested their interest based on empirical results. Their experiments were confirmed by the famous
article of Hodges and Lehmann (1956) that proved that the asymptotic relative efficiency (ARE) for
the rank-based Wilcoxon statistic compared to the Student t-test for various null distributions, never
goes bellow 0.864. This article had a great impact on the community as mentioned by E.L. Lehmann
himself: ”this paper was influential in the sense that it dispelled the belief that while nonpammetric
[rank-based] techniques are very convenient because you don’t have many assumptions, they have
so little power that they are no good”, interview in Statistical Science in 1984, see also Hallin and
Tribel (2000).

B.3 Univariate ROC analysis

This section introduces a gold standard tool, known as the Receiver Operating Characteristics (ROC)
curve. The ROC curve is a graphical tool formally introduced by Egan (1975) for quantifying the
difference between two classes at different thresholds, when based on parametric probability laws.
However it was initially motivated by signal detection theory, it became essential to decision making
and classifier/model selection. It offers a visual tool gathering performances from different devices,
easy to understand and to interpret. ROC curves are used in both datamining and biomedicine, for
which a series of references can be found in Krzanowski and Hand (2009) for its properties, and in
Fawcett (2006); Park et al. (2004); Swets (1988) for applications.

Two-sample ROC curve as a P-P plot. The ROC curve is a reference tool to describe the dissimil-
arity between two univariate probability distributions G and H. This functional criterion denoted by
ROCH,G, can be defined as the parametrized curve in [0,1]2

t ∈ R 7→

 1−H(t)︸ ︷︷ ︸
False Positive Rate

, 1−G(t)︸ ︷︷ ︸
True Positive Rate

 . (B.3.1)

It directly plots the variation of the True Positive Rate (TPR) depending on the False Positive Rate
(FPR) for all possible threshold levels. TPR, also known as the sensitivity, is therefore plotted against
(1- specificity), and corresponds to a Probability-Probability (P-P) plot. The graph is nterpretable by
non-experts, justifying its standardization in applied fields.

By convention, we connect possible jumps by line segments to ensure that the resulting curve
is continuous. The ROC curve related to the pair of d.f. (H,G) is the graph of a càd-làg (i.e. right-
continuous and left-limited) nondecreasing mapping valued in [0,1], defined by

α ∈ (0,1) 7→ 1−G◦H−1(1−α) , (B.3.2)

at points α such that H ◦H−1(1−α) = 1−α . By denoting ZH (resp. ZG) the support of H (resp.
G), that the ROC curve connects the point (0,1−G(ZH)) to (H(ZG),1) in the unit square [0,1]2. In
the following, we suppose that there are no atoms of the c.d.f. , instead of restricting Z to ZG. The
curve α ∈ (0,1) 7→ ROCG,H(α) is the image of α ∈ (0,1) 7→ ROCH,G(α) by the reflection with the
main diagonal of the Euclidean plane as axis. Proposition below gathers fundamental properties.
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Proposition 96. Suppose G and H two probability functions. The following assertions hold true.

(i) G = H iff ROCH,G(α) = α , for all α ∈ [0,1].

(ii) H ≤sto G iff ROCH,G(α)≥ α , for all α ∈ [0,1].

(iii) ROCH,G coincides with the left upper corner of the unit square iff the essential supremum of
the distribution H is smaller than the essential infimum of the distribution G.

Hence, the concept of ROC curve offers a visual tool to examine the differences between two
distributions in a pivotal manner, as illustrated in Fig. B.1.

a. Probability distributions b. ROC curves

Figure B.1. Examples of pairs of distributions and their related ROC curves. The distribution H is represented
in blue and three examples of G distributions are in purple, orange and green, like the associated ROC curves.

A univariate summary. Another advantage of the ROC curve lies in the probabilistic interpretation
the summary criterion, referred to as the Area Under the ROC Curve (AUC in short). It indicates the
average dissimilarity of two variables overall the different ’thresholds’ discriminating them and is
defined by

AUCH,G :=
∫ 1

0
ROCH,G(α)dα = P{Y < X}+

1
2
P{X = Y} , (B.3.3)

where (X ,Y ) denotes a pair of independent r.v. with respective marginal distributions H and G. A
more sensitive criterion is defined as the partial AUC (pAUC), that averages over a prespecified range
of the FPR, see e.g. McClish (1989). For instance, the simplest definition is by integrating on the
half line of the type ]−∞,ω], where ω thresholds the FPR. The pAUC thus averages the values lying
at the beginning of the ROC curve, interpreted as the best instances. These summaries can lead to
more complex statistics, difficult to optimize as they may not be convex. However, the ethical and
economical interpretations of both TPR and FPR can need for such tailored criteria. They find a
particular interest for biomedical applications as it is possible to constraint prespecified ranges for
either TPR or FPR. We refer to Carrington et al. (2020); Walter (2005); Yang et al. (2019).





C | Additional content

C.1 Some facts on scientific research based on statistics

Testing statistical hypothesis became an essential practice in applied research since the 1950s, includ-
ing in biomedicine, pharmacology, economics, law, engineering, etc., as it is part of every comparison
of real measures/observations regarding the quantification of a phenomenon. Usually, it accompan-
ies/supports protocols that are modeled to compare two independent samples/groups/populations,
where a null hypothesis representing the absence of phenomenon (H0) is statistically tested, against
an alternative hypothesis (H1). A significant conclusion can drawn if H0 is rejected based on a
small p-value, defined as the probability that the actual data-driven event occurred under the null hy-
pothesis. However simple to state, hypothesis testing is at the heart of a strong debate in the scientific
community as it drives many scientific findings. For example, the free biomedical archive PubMed
Central, registered more than 524 773 articles referring to p-values only for the past five years and
more than 135 165 in the last year.

In spite of this attractiveness, p-values and more generally hypothesis testing are poorly and
imprecisely used. While intending to provide results that should be reliable and reproducible, the
findings are questionable as the methodologies are not rigorous and lack of in-depth analysis. In
this sense, researches raised their concerns by publishing reviews that tackle statistical practices
since the 1980s, see e.g. Bland and Altman (1988); Glantz (1980) and ever more recently, with the
acceleration of the capacity of data collection and analysis and the ability to openly share articles in
online databases. Some of the striking facts are listed in the following regarding the (bio)medical
community. First, reproducibility calls scientific practices into question. Indeed, Baker and Penny
(2016) reported in Nature, that 90% of researchers surveyed believe in a ’reproducibility crisis’.
An online survey in 2014 among 900 members of the American Society for Cell Biology reports
only 17.18% disagree that the lack of rigorous statistical analysis plays a role in the impossibility to
replicate published results (see go.nature.com/kbzs2b), while 71.54% reported being unable to
replicate a published result. Begley and Ellis (2012) calls for levelling up the reliability of preclinical
studies, as it was estimated based on data from GoogleScholar up to May 2011, that Preclinical
research generates more secondary publications if nonreproducible than if reproducible.

Besides, a real challenge is raised regarding the methods and the quality of the published ana-
lysis. Hill et al. (1997) evaluates approximately 90% of the articles lack of discussion regarding
the statistical hypothesis studied. Based on surveys from 1987 to 2008, Fanelli (2009) reports that
33.7% of studies in a pool of articles used dubious research practices. Thiese et al. (2015) points
out abuses in analytical plans w.r.t. the statistical design, the lack of transparency and errors in the
presentation/description of the data, the statistical method applied, etc. More generally, the works
of J. Ioannidis question why the majority of scientific findings are false, see e.g. Ioannidis (2005).
Unfortunately, the COVID-19 pandemic has intensified these facts. For instance, the top medical
journal The Lancet published a highly shared article on the hydroxychloroquine, that was based on
data from a huge amount of hospitals and was proved to be false.
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In response to these warnings, highly specialized scientists published statistical guidelines and
recommendations for constructing analytical plans and protocols, see for instance Benjamin et al.
(2018); Lang and Altman (2015); Moher D. (2001); Perneger (1998b). Moreover, online journ-
als and projects, such as IPOL (https://www.ipol.im), Reproducibility Project: Psychology
(RP:P) (https://osf.io/ezcuj/), EQUATOR (www.equator-network.org), aim to enhance
these good practices. While reviews raise awareness among the scientific community, some question
the essence of hypothesis testing. Fortunately, some months ago, the culminant communication lead
by the Editor in Chief of the journal The Annals of Applied Statistics, see Kafadar (2021), gathered
a Task Force to clarify the importance of the use of statistical hypothesis and the role of p-values to
replicability, see Benjamini et al. (2021).

C.2 Introduction (en français)

C.2.1 Contexte et motivations

Les tests statistiques non paramétriques de comparaison de deux échantillons en grande dimen-
sion. Dans sa formulation statistique la plus générale, le problème à deux échantillons teste l’égalité
de deux distributions de probabilité inconnues à un niveau de risque fixé, où deux échantillons
aléatoires i.i.d. indépendants X1, . . . , Xn et Y1, . . . , Ym sont conidérés, évalués sur le (même) espace
mesurable Z , par exemple de Rd , d ≥ 2. Bien qu’il existe une vaste littérature pour le cas uni-
varié (voir Lehmann and Romano (2005)), ce problème reste un sujet de recherche pour les cadres
multivarié et non paramétrique. En effet, la capacité croissante à collecter de nombreuses données,
voire massives, de structures variées et éventuellement biaisées dû au processus de collecte, a forte-
ment défié les modélisations classiques, voir e.g. Wang et al. (2019). De tels types de données sont
notamment analysées dans des domaines appliqués comme en biomédecine (e.g. essais cliniques,
génomique), en marketing (e.g. tests A/B, systèmes de recommandation), en économie, etc. Les
méthodes récentes développées en grande dimension reposent généralement sur des distance statis-
tiques. Ces dernières sont estimées grâce à des versions empiriques des mesures de probabilité sous-
jacentes, tel que plus la distance diminue, plus les deux échantillons peuvent être qualifiés comme
homogènes, voir Biau and Gyorfi (2005); Gretton et al. (2012a). Malheureusement, ces formulations
dépendent souvent de la définition intrinsèque de la métrique choisie, et de la représentation am-
biante des observations aléatoires. De plus, des propriétés statistiques importantes peuvent manquer,
concernant par exemple : le contrôle non asymptotique des erreurs de type I et/ou de type II, le calcul
exacte de la distribution nulle, ou même la stabilité par rapport à la dimension de l’espace Z (e.g. de
d).

Statistiques de rang et méthodes d’apprentissage d’ordonencement. En réponse à l’ “hypothèse
gaussienne” traditionnelle, les statistiques de rang ont été introduites par Spearman dans Spearman
(1904), définissant la statistique de test rhô. En effet, les observations étant uniquement considérées
via leur ordre relatif, les R-statistiques “réduisent les “erreurs accidentelles”” (page 81, Spear-
man (1904)). Elles ont, par la suite, gagné en popularité grâce à leur simplicité, leur rapidité de
calcul et en tant que cas particulier des statistiques de permutation. Concernant les tests de com-
paraison à deux échantillons, les statistiques de rang sont très compétitives lorsque les conditions
considérées pour les distributions de probabilité sous-jacentes sont faibles, voir e.g. Chernoff and
Savage (1958); Hodges and Lehmann (1956). En particulier, elles permettent d’obtenir la distribu-
tion explicite sous l’hypothèse nulle (égalité des distributions), tout en garantissant une puissance
élevée dans le cadre univarié, voir Chap. 15 dans van der Vaart (1998). La version la plus simple,

https://www.ipol.im
https://osf.io/ezcuj/
www.equator-network.org
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connue sous le nom de statistique de test ranksum ou Mann-Whitney-Wilcoxon (Mann and Whit-
ney (1947); Wilcoxon (1945)), est célèbre pour être asymptotiquement uniformément plus puissante
(UPP) pour le problème de localisation à taille de test fixe et sous distributions logistiques, voir
Ex.15.15 dans van der Vaart (1998). Cependant, la définition des statistiques de rang est loin d’être
simple en grande dimension, dû au manque de relation d’ordre naturel pour les données multivariées.
La littérature s’appuie généralement sur la profondeur ou les rangs spatiaux, qui dépendent fortement
de leur définition intrinsèque et sont principalement conçus pour des tests (paramétriques) particu-
liers, voir e.g. Chakraborty and Chaudhuri (2017); Hallin and Paindaveine (2008).

Dans un contexte différent, l’ordonnancement d’observations est devenu fondamental dans de
nombreux problèmes d’analyse de données au cours des dernières décennies, e.g., en recherche
d’information et en biologie computationnelle. Elles sont définies comme méthodes d’apprentis-
sage d’ordonnancement (learning-to-rank), c’est-à-dire apprenant un ordre à partir d’un ensemble
d’observations en fonction de leur pertinence/importance/préférence, pour prédire l’ordre de tout
“nouvel” échantillon de données. En particulier, l’approche la plus simple pour deux échantillons
est connue pour être intimement liée à la statistique Mann-Whitney-Wilcoxon via l’analyse Receiver
Operating Characteristic (ROC), voir Clémençon and Vayatis (2009b). Une série de contributions
fondamentales reliant les approches d’apprentissage d’ordonnancement et l’analyse ROC sont, par
exemple, Agarwal et al. (2005); Cortes and Mohri (2004). Cependant, et à notre connaissance, seuls
Clémençon et al. (2008, 2009) ont théoriquement exploité leur relation aux classes de statistiques
linaires de rang. Cette dernière direction motive ce travail et a idéalement pour but de proposer des
procédures algorithmiques faciles à utiliser, interprétables et traçable.

Vers des guaranties non asymptotiques. Plus généralement, les structures de données complexes
acquéries sous des conditions éventuellement biaisées nécessitent une modélisation statistique non
paramétrique et multivariée. Concernant les tests d’hypothèses, les extensions multivariées des statis-
tiques de test univariées classiques présentent une analyse non paramétrique limitée. Valiant (1984)
a introduit la théorie probably approximately correct (PAC), fournissant un cadre quantifiant la dif-
ficulté d’un problème d’analyse de données. Brièvement, en considérant un espace de probabilité
(Ω, A , P), les bornes PAC définissent formellement le contrôle d’un événement A avec une certaine
probabilité, comme suit :

A probabilité fixée δ > 0, pour tout element ω ∈ A(δ ) tel que l’évènement A(δ )⊂Ω,
vérifie P{A(δ )} ≥ 1−δ .

En fait, les bornes de concentration peuvent être obtenues pour un estimateur ZN basé sur un échantillon
de taille N ∈ N∗, en trouvant le seuil tδ ,N > 0 tel que P{ZN < tδ ,N} ≥ 1−δ , où A(δ ) = {ZN < tδ ,N}.
Avec probabilité 1− δ , la variable aléatoire ne dépasse pas un certain seuil, interprété par la même
comme intervalle de confiance (non asymptotique) de l’estimateur. Ce type de bornes est parti-
culièrement utilisé en théorie de l’apprentissage statistique pour étudier les fluctuations aléatoires
du risque empirique étant donné un modèle.

Application biomédicale : comparaison de données posturographiques. Cette thèse est motivée
par un projet biomédical portant sur la quantification du comportement humain développé dans une
équipe de recherche interdisciplinaire1. En particulier, dans le cadre de la médecine personnalisée et
de la prévention des personnes âgées, une équipe réunissant des mathématiciens, des (bio)statisticiens

1Le Centre Borelli est un laboratoire de recherche issu de la fusion récente d’un laboratoire de mathématiques ap-
pliquées (CMLA, Ecole Normale Supérieure Paris-Saclay) et d’un laboratoire de neurosciences (COGNAC-G, Université
Paris Descartes), où se développent de multiples projets interdisciplinaires.
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et des cliniciens de différentes spécialités, étudie le contrôle postural des populations cliniques. Le
but est de pouvoir recueillir l’évolution du contrôle postural au travers des suivis cliniques pour en
détecter une éventuelle détérioration. Plus précisément, la progression de la fragilité chez les patients
agés et parkinsoniens est au cœur du projet. Cette population est sujette à l’instabilité posturale, impli-
quant des chutes possibles à des âges pour lesquels les interventions chirurgicales sont découragées.
Une façon de mesurer le contrôle postural consiste à utiliser des plateformes sensorimotrices enre-
gistrant, pendant un court intervalle de temps, la variation temporelle du déplacement du Centre de
pression (CoP) (statokinésigramme) du patient. Le protocole expérimental est illustré dans la Figure
C.1.

FIGURE C.1. Illustration du protocole d’acquisition des statokinésigrammes. Le patient reste immobile en (A)
pour mesurer la trajectoire bi-dimensionnelles du centre de pression par la plateforme de force. Les deux séries
temporelles des axes médio-latéral et antéro-postérieur sont resp. représentés sur l’axe x et y en (B). Exemple
de statokinésigramme en (C). Source : Chen et al. (2021).

Dans ce contexte, un problème typique et important consiste à comparer des patients au contrôle
postural fragile, désignés comme Chuteur, à une population ’témoin’ choisie, désignée comme Non
Chuteur. Afin de mieux comprendre la difficulté, la Figure C.2 rassemble des statokinésigrammes
mesurés à partir de ces deux populations, pour lesquelles la distinction visuelle entre les paires de
patients (a vs. b, et c vs. d) est loin d’être simple. Les mesures sont de structure complexe (e.g. ca-
ractéristiques multiples, nature fonctionnelle, cohortes petites/déséquilibrées), pour lesquelles des in-
formations/caractéristiques supplémentaires sur les patients peuvent y être ajoutées (e.g. comorbidité,
âge). En fait, après un prétraitement adéquat, de nombreuses caractéristiques des statokinésigrammes
obtenus peuvent être collectées et analysées, voir Quijoux et al. (2021). Cependant, il existe de
fortes contraintes liées à ce type de données pour utiliser des approches traditionnelles de test à
deux échantillons. Les praticiens sont confrontés soit à une approche difficilement implémentable,
soit à des modèles univariés et paramétriques inadéquats. Nous avons exploré ces approches ty-
piques dans Bargiotas et al. (2021) pour analyser le contrôle postural, et plus généralement mis en
évidence quelques faits scientifiques globaux relevés par la communauté scientifique à l’usage des
statistiques en Annexe Chap. C.1. Par exemple, pour comparer des observations multivariées, plu-
sieurs procédures de test sont généralement associées à de simples corrections permettant le contrôle
de l’erreur de type I voir e.g. Hochberg (1988); Hommel (1988). Nous avons comparé leur capacité
à discriminer deux populations (Chuteur/Non Chuteur) à deux méthodes multivariées : la Maximum
Mean Disrepancy (MMD), voir Gretton et al. (2007), et un algorithme adapté aux données se basant
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sur la généralisation des statistiques de rang de Clémençon et al. (2009). Les procédures classiques
ne rejettent pas l’hypothèse nulle, i.e. , concluent que les deux populations sont tirées de la même
distribution. Alors que les deux méthodes multivariées concluent à une différence significative, avec
des p-valeurs très faibles. Nous nous référons au chapitre 9 pour les résultats détaillés, aux tableaux
9.3 et 9.4.

FIGURE C.2. Illustration de statokinésigrammes pour patients Chuteur (a,c) et Non Chhuteur (b,d) dans l’es-
pace médio-latéral/antéro-postérieur. Source : Audiffren et al. (2016).

C.2.2 Introduction à trois problèmes statistiques fondamentaux à deux échantillons

Tests statistiques de comparaison de deux populations en grande dimension

Cette section introduit le problème à deux échantillons dans le cadre multivarié et non paramétrique.
Nous nous référons à la section annexe B.2 pour sa formulation univariée avec un rappel sur les
propriétés classiques et les statistiques.

Considérons deux variables aléatoires indépendantes X et Y, définies sur un espace de probabi-
lité à valeurs dans le (même) espace mesurable multivarié Z , de fonctions de répartition continue
inconnues G et H. A niveau α ∈ (0,1) fixé, le problème à deux échantillons correspond au teste de
comparaison des deux hypothèses ci-dessous :

H0 : G = H contre l’alternative H1 : G 6= H . (C.2.1)

Aussi connu sous le nom de teste d’homogénéité, de nombreux problèmes classiques peuvent y
être associés. Voir Darling (1957) pour le test d’ajustement (goodness-of-fit) et Friedman (2004) pour
le cas multivarié, Spearman (1904) pour le test d’indépendance, et enfin Wilcoxon (1945) pour les
tests appariés. En pratique, et en particulier pour les variables non paramétriques, nous considérons
des copies indépendantes de la v.a. étudiée, étant donnée les (classes de) distributions sous-jacentes
inconnues. Soient {X1, . . . , Xn} et {Y1, . . . , Ym}, avec n, m ∈ N∗, deux échantillons indépendants
et i.i.d. tirés suivant G et H, et à valeurs dans le (même) espace mesurable Z . Les statistiques
univariées non paramétriques, telles que celle de Kolmogorov-Smirnov (Smirnov (1939)), reposent
sur des estimations empiriques des distributions sous-jacentes ou des (pseudo)-métriques associées,
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voir la section annexe B.2. L’hypothèse nulle H0 est rejetée si l’on obtient de ’grandes’ valeurs de
ces statistiques, c’est-à-dire, dans le cas de ’grands écarts’ des deux échantillons aléatoires. Pour les
observations multivariées, leur distribution empirique sont, par exemple,

µ̂n =
1
n

n

∑
i=1

δXi and ν̂m =
1
m

m

∑
j=1

δY j , (C.2.2)

où δx est la masse de Dirac en tout point x, ou des versions empiriques des fonctions de répartition,
quantiles, copules, profondeurs, etc. Des (pseudo-)metriques aléatoires classiques mesurant la dis-
similarité entre deux distributions de probabilité sont : la distance χ2 , la divergence de Kullback-
Leibler, la distance d’Hellinger, la distance de Kolmogorov-Smirnov. Se référer à Rachev (1991)
pour une revue complète.

Une formulation classique dans la littérature non-paramétrique est connue sous le nom de tests
minimax, où l’alternative correspond à la séparation des distributions sous-jacentes au sens d’une
métrique, voir e.g., Lam-Weil et al. (2022) étudiant le taux de séparation minimax local défini par
la norme L1 et appliqué à des distributions discrètes, Carpentier et al. (2018) utilisant la norme L2
en régression linéaire creuse. Nous nous référons en particulier à Albert et al. (2021); Berrett et al.
(2021) pour les tests d’indépendance, et à Baraud (2002); Ingster and Suslina (2003, 2000); Lepski
and Spokoiny (1999) pour les tests d’ajustement. Enfin, un problème connexe dans la littérature
informatique fait référence au problème à deux échantillons en tant que test de propriété, voir par
exemple Goldreich et al. (1998); Rubinfeld and Sudan (1996). L’exemple ci-dessous formule un test
statistique classique connu sous le nom de test de localisation.

Example 97. (TEST DE LOCALISATION DANS Rd ) En statistique (semi-)paramétrique, soient P1, P2 ∈
P un modèle probabiliste, tel que G(t) = P1(t−θ1), H(t) = P2(t−θ2), de paramètres θ1, θ2 ∈ Rd ,
où d ∈ N∗, le problème de localisation s’écrit :

H0 : θ1 = θ2 vs. H1 : θ1 6= θ2 .

La forme la plus simple est souvent présentée lorsque P1, P2 sont supposées connues et égales. Nous
retrouvons le test T 2 d’Hotelling’s pour l’égalité des moyennes entre distributions gaussiennes.

Alors que des statistiques peuvent être construites pour un modèle probabiliste particulier, e.g.
modèles gaussiens, elliptiques, ce manuscrit se concentre sur des formulations non paramétriques
pour lesquelles l’obtention de garanties statistiques est possible. Plus précisément, nous nous intéres-
sons à la consistance (asymptotique), au contrôle (asymptotique) des deux erreurs statistiques (type-I
et type-II), à l’indépendance de la distribution nulle des statistiques de test par rapport au modèle
sous-jacent, à l’indépendance des statistiques de test aux transformations du modèle sous l’alternative
(également connu sous le nom de statistiques ancillaires Fisher (1925)), la caractéristique non-biaisée
de la statistique de test. Voir la section annexe B.2 pour plus de détails et définitions. Se référer aux
livres classiques Gibbons and Chakraborti (2011); Lehmann and Romano (2005); Sheskin (2011);
van der Vaart (1998) pour des revues complètes de la théorie, des méthodologies et des statistiques
dans le domaine des tests d’hypothèses (non paramétriques).

Processus de rang

Cette section introduit la définition univariée choisie des statistiques de rang linéaire à deux échantil-
lons. Se référer à la section annexe B.1 pour une introduction détaillée dans le cadre univarié et en
particulier pour les méthodes classiques (e.g. projection de Hájek, Hájek (1968)) et les propriétés
fondamentales (asymptotiques) sous les hypothèses nulle et alternative.
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Historiquement, les statistiques de rang étaient intéressantes grâce à leur simplicité et à la ra-
pidité de calcul pour des échantillons relativement petits, en commençant formellement par le test
rhô de Spearman (Spearman (1904)) et plus tard avec le test à deux échantillons de Wilcoxon (Wil-
coxon (1945)). Spearman a motivé sa statistique comme une réponse à l’“hypothèse gaussienne” tra-
ditionnelle, car les méthodes d’ordonnancement “réduisent les “erreurs accidentelles”” (page 81,
Spearman (1904)), par rapport à celles basées sur la valeur des observations. En effet, les extrêmes,
c’est-à-dire, les observations éloignées du comportement ’moyen’, ne ’pèsent’ pas plus dans le calcul
de la statistique. Au contraire, ces observations rares affectent les statistiques qui tiennent compte de
leurs valeurs.

Soient deux v.a. indépendantes X , Y respectivement tirées suivant G, H et à valeurs dans Z ⊂R.
Nous considérons les deux échantillons comme suit. Soient X1, . . . ,Xn, avec n ∈ N∗, suite d’observa-
tions i.i.d. tirées suivant G, et Y1, . . . ,Ym, avec m ∈ N∗, i.i.d. tirées suivant H, telles que n/N → p ∈
(0,1), avec N = n + m. Le paramètre p est interprété comme la proportion asymptotique des X dans
l’échantillon regroupé. Nous définissons les statistiques de rang univariées basées sur l’échantillon
regroupé, de distribution de mélange asymptotique égale à F = pG+(1− p)H. Sous des hypothèses
classiques sur les distributions sous-jacentes, et en tenant compte d’éventuelles égalités, nous choi-
sissons la définition des upranks (voir van der Vaart (1998), page 173), comme suit

Rank(t) =
n

∑
i=1

I{Xi ≤ t}+
m

∑
j=1

I{Yj ≤ t}, for all t ∈Z . (C.2.3)

Les rangs étant basés sur l’échantillon regroupé, ils sont proportionnels à la distribution empi-
rique de mélange F . Précisément, en considérant les versions empiriques des fonctions de répartitions
G et H, i.e. , Ĝn(t) = (1/n)∑i≤n I{Xi ≤ t} et Ĥm(t) = (1/m)∑ j≤m I{Yj ≤ t}, pour tout t ∈ Z , son
estimateur est donné par F̂N(t) = (n/N)Ĝn(t) + (m/N)Ĥm(t), puisque n/N→ p lorsque N tend vers
l’infini. Nous obtenons alors

Rank(t) = NF̂N(t), pour tout t ∈Z .

Plus généralement, cette définition permet l’utilisation de quantiles empiriques, de copules, etc.
Les R-statistiques linéaires à deux échantillons sont construites pouvant générer divers types de tests
statistiques. Seuls les rangs des X parmi les échantillons regroupés sont considérés et adaptés/pondérés
à l’aide d’une fonction génératrice de score φ : [0,1] −→ R, formellement définie comme l’une des
représentations possibles des scores induits par les rangs, voir Def. (B.1.3) et (B.1.4) pour les princi-
paux concepts générateurs.

Definition 98. (R-STATISTIQUES LINÉAIRES À DEUX ÉCHANTILLONS) Soit φ : [0,1] → R une
fonction strictement croissante. Les statistiques linéaires de rang à deux échantillons de “fonction
géné-ratrice de score” φ(u) basée sur les échantillons {X1, . . . , Xn} et {Y1, . . . , Ym} sont définies
par :

Ŵ φ
n,m =

n

∑
i=1

φ

(
Rank(Xi)

N + 1

)
. (C.2.4)

Des résultats fondamentaux sur les R-statistiques à deux échantillons ont été obtenus grâce à H.
Chernoff et I.R. Savage, et sur leur version généralisée par J. Hájek. Chernoff and Savage (1958)
fournit une analyse asymptotique en écrivant les statistiques sous forme de mesures empiriques à
l’aide de méthodes issues de von Mises. Hájek and Sidák (1967) formalise les propriétés essen-
tielles et des exemples de R-statistiques. Dwass (1956) a proposé pour les R-statistiques linéaires à
deux échantillons une formulation grâce aux statistiques non-biaisées (unbiased, U-). Il a prouvé leur
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distribution limite gaussienne lorsque toutes les variables sont identiquement distribuées et, en par-
ticulier, a étudié la puissance asymptotique pour le test de localisation (Exemple 97 ). Ces résultats
constituent les bases pour l’étude des statistiques linéaires de rang (Eq. (C.2.4)). Dans le contexte des
tests à deux échantillons, leur propriété fondamentale est leur indépendance par rapport aux distri-
butions sous-jacentes sous H0, voir Annexe B, Lemme 87-(ii). Le calcul exact des valeurs critiques
sans aucune hypothèse de régularité sur les probabilités sous-jacentes des observations est alors pos-
sible. Nous nous référons à la section annexe B pour les propriétés fondamentales de ces statistiques
univariées, à la fois sous l’hypothèse d’égalité des distributions et sous les alternatives. Ci-dessous,
la Figure C.3 rassemble quelques choix pour φ conduisant à des tests classiques à deux échantillons,
qui sont notamment détaillés dans la section Annexe B.

FIGURE C.3. Courbes de fonctions génératrices de score avec test de comparaison associé : test logistique
φlog(u) = 2

√
3(u−1/2) en bleu, test logrank φlrk(u) =− log(1−x) en violet, test de Mann- Whitney-Wilcoxon

φmww(u) = u en rouge, test de la médiane φmed(u) = sgn(u−1/2) en orange, test de Van der Waerden φvdw(u) =
Φ−1(u) en vert, Φ est le quantile de la loi normale standard.

Méthodes d’apprentissage statistique d’ordonnancement

Les méthodes d’apprentissage automatique d’ordonnancement sont des approches statistiques de
classement basées sur les données. Le but est d’apprendre une relation d’ordre à partir d’un en-
semble d’observations selon leur pertinence/importance/préférence, pour prédire le rang de tout
nouvel ensemble d’observations. La tâche d’apprentissage est formulée comme celle d’ordonnan-
cement dans un cadre non/semi/-supervisé. Les applications sont nombreuses, telles que la recherche
d’information, le Data Mining mais aussi les systèmes de recommandation (recherche web, listes
préférentielles d’envoi, etc.) et les moteurs de recherche. Le contexte général des méthodes de clas-
sement est d’abord décrit. Ensuite, la formulation probabiliste des modèles appariés est détaillée,
connue sous le nom de classement bipartite.

Dans l’approche la plus générique, le but est d’apprendre à classer un ensemble d’observations
sachant un ensemble de requêtes, afin de minimiser un risque statistique. Cela revient à apprendre
une fonction de scoring s(z) définie sur un espace de caractéristiques multi-dimensionnel Z et à
valeurs dans R, telle que l’on peut classer toute paire d’observations : a 4 b ssi s(a) < s(b) où <
est la relation d’ordre classique dans R. Par exemple, dans la recherche de documents, le but est
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d’apprendre un ordre parmi un ensemble de documents par rapport à leur pertinence, étant donné
une série de requêtes. Ces problèmes d’optimisation ne considèrent les observations qu’à travers leur
rang, au sens des statistiques d’ordre (Section C.2.2). La question fondamentale de ces modèles est
d’apprendre à comparer des observations multivariées.

De nombreuses méthodes d’ordonnancement existent dépendamment des structures des données.
D’une part, les méthodes d’apprentissage point à point résolvent le problème du classement en fonc-
tion de la pertinence de chaque élément. La fonction de perte évalue ensuite la qualité de la fonction
de scoring apprise en comparant la prédiction de chaque donnée par rapport à l’ordre connu. Le clas-
sement peut donc être modélisé via la classification, la régression ou la régression ordinale. D’autre
part, les méthodes appariées et plus largement par liste, formulent la fonction de perte basée sur la
comparaison par paire/liste des éléments. Cette fonction mesure la précision des paires/listes d’ob-
servations prédites par une fonction de scoring par rapport à l’ordre connu. Les algorithmes associés
sont plus complexes, étudiant au moins des comparaisons relatives par paires évaluées à toutes les
données. Voir Liu (2009) pour une revue des modèles appliqués à la recherche d’information.

Ce manuscrit se concentre sur une approche binaire formulée comme un modèle d’apprentissage
d’ordonnancement apparié avec requête unique, et connue sous le nom de modèle de classement
bipartite. Les observations sont labélisées par une variable binaire, définie comme “positive” ou
“ négative ”. Le but est d’apprendre leurs images univariées obtenues grâce à une fonction de sco-
ring s(z) optimale. Cette fonction induit alors un ordre minimisant la perte statistique de classement
bipartite. Ces modèles se sont récemment développés à la détection d’anomalies, où le classement
est appris afin d’ordonner les données en fonction de leur degré d’anormalité, voir Clémençon and
Jakubowicz (2013); Clémençon and Thomas (2018); Frery et al. (2017); Müller et al. (2013). Voir la
Section 2.3, Chap. 2, pour plus de détails sur ces dernières.

Formulation probabiliste des problèmes d’ordonnancement bipartites. Soit une variable Z
d’entrée définiée sur l’espace de probabilité (Ω, A , P) et à valeurs dans l’espace multivarié Z ,
associée à son étiquette binaire ζ à valeurs dans {−1, +1}. L’ordonnancement bipartite peut être re-
formulé comme la comparaison de deux paires de variables aléatoires (Z,ζ ) et (Z′,ζ ′) conditionnel-
lement à l’évènement {ζ = 1, ζ ′ =−1} grâce à leur image par une fonction de scoring. La fonction
optimale s∗ est apprise parmi une classe de candidats S = {s : Z →R∪{+∞}, s mesurable}, telle
qu’elle minimise le risque d’ordonnancement bipartite, défini par :

L(s) = E[I{s(Z′) > s(Z)} | ζ ′ =−1, ζ = 1] +
1
2
P{s(Z′) = s(Z) | ζ ′ =−1, ζ = 1} , (C.2.5)

où les cas d’égalités sont tirés aléatoirement. De fait, s∗ est définie par L(s∗) = infS L =: L∗. En
considérant la probabilité a posteriori η(z) = P{ζ = 1 | Z = z}, l’ensemble d’élèments optimaux est
défini par, voir Clémençon and Vayatis (2008), Proposition 2 :

S ∗ =
{

s ∈S s.t. pour tout z, z′ dans Z : η(z) < η(z′)⇒ s∗(z) < s∗(z′)
}
. (C.2.6)

Voir Clémençon and Vayatis (2008) pour les résultats d’optimalité associés. L’excès de risque pour
une fonction s(z) est défini par

L(s)−L∗ = E[|η(Z′)−η(Z)|I{(s(Z)− s(Z′))(η(Z)−η(Z′)) < 0}] , (C.2.7)

voir l’exemple 1 dans Clémençon et al. (2008). Cette formulation est fondamentale pour la compréhen-
sion de nombreuses méthodes de l’état de l’art, comme discuté en détails au Chap. 2. En pratique,
la distribution sous-jacente étant inconnue, on considère la forme statistique basée sur des obser-
vations aléatoires i.i.d. {(Zi,ζi)i≤N}, avec N ∈ N∗. Le but de l’ordonnancement bipartite est donc
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d’apprendre un score pour tout nouvel échantillon ZN+1, . . . , ZN+k de label inconnu, de sorte qu’il
minimise la version empirique de la fonction de perte L(s), définie par :

L̂(s) =
1

nm ∑
{i, ζi=+1}

∑
{ j, ζ j=−1}

(
I{s(Z j) > s(Zi)}+

1
2
I{s(Z j) = s(Zi)}

)
, (C.2.8)

où n = ∑i≤N I{ζi = +1} et m = ∑i≤N I{ζi =−1}. La fonction de scoring optimale reproduit idéalement
l’ordre induit par η et maximise les scores des observations ’positives’ par rapport aux ’négatives’.
Nous renvoyons à Menon and Williamson (2016) pour une revue détaillée des approches théoriques
du classement bipartite et des algorithmes de l’état-de-l’art.

C.2.3 Organisation du manuscrit

Problèmes existants à deux échantillons et formulations mathématiques fondamentales. Cette
partie regroupe et définit les concepts principaux traités dans cette thèse. Elle est divisée en deux
chapitres :

• Chapitre 2 : Problèmes à deux échantillons. Tout d’abord, l’état de l’art des tests de compa-
raison multivariés et non paramétriques à deux échantillons est étudié. Ensuite, deux modèles
d’apprentissage d’ordonnancement sont détaillés, à savoir les problèmes d’ordonnancement
bipartite et d’anomalie. Tous sont formulés sous leur forme générique, tout en passant en revue
les principaux résultats et les méthodes de référence.

• Chapitre 3 : Quelques résultats de concentration. Motivés par la théorie de minimisation du
risque empirique, la construction d’inégalités de concentration est présentée. Cela permet le
contrôle de statistiques et surtout de leurs collections, définies comme processus empiriques
(si statistiques d’ordre 1), U-processus (si d’ordre supérieur).

Contributions relatives aux R-processus. Cette deuxième partie constitue le cœur de la thèse,
développant une analyse de la version généralisée des R-processus et de leur application au problème
à deux échantillons. Les simulations numériques sur des données synthétiques sont rassemblées dans
le dernier chapitre.

• Chapitre 4 : Une inégalité de concentration pour U-processus. Ce chapitre d’introduction
démontre une nouvelle concentration pour des U-processus dégénérés particuliers à deux échan-
tillons, lorsqu’il sont indexés par une classe de noyaux de complexité contrôlée. C’est un nou-
veau résultat pour la littérature, et nécessaire pour le chapitre suivant. Il a été publié dans le
cadre de l’article [1].

• Chapitre 5 : Inégalités de concentration pour des R-processus basés sur deux échantillons. Les
résultats relatifs aux R-processus sont démontrés et motivés par les modèles d’ordonnancement
bipartite. Ce chapitre correspond à la publication [1].

• Chapitre 6 : Tests statistiques d’homogénéité à deux échantillons. Une formulation générique
du problème à deux échantillons basée sur les R-statistiques est proposée, optimisée grâce à
des algorithmes d’apprentissage d’ordonnancement. Nous énonçons une procédure en deux
étapes avec garanties théoriques. Il s’agit d’un document en cours de travail.

• Chapitre 7 : Simulations numériques. Cette section rassemble des expériences numériques
basées sur des données synthétiques afin de tester nos critères basés sur le rang proposés dans
deux contextes : l’ordonnancement bipartite et le test de comparaison à deux échantillons.
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Tous les détails sur les codes sont en particulier détaillés. Ce chapitre regroupe les résultats
numériques de [1] (Chapitre 6) et [2] (Chapitre 8). Les algorithmes sont codés en Python et
sont en lignès en accès libre à https://github.com/MyrtoLimnios.

Applications. Cette dernière partie se concentre sur trois contributions applicatives. Alors que la
première est liée à un modèle d’apprentissage du rang, les deux suivantes sont issues de la recherche
interdisciplinaire effectuée au Centre Borelli et liées à l’analyse et modélisation du contrôle postural.

• Chapitre 8 : Apprentissage d’ordonnancement d’anomalies avec des R-statistiques basées sur
deux échantillons. Nous proposons une méthodologie pour apprendre à classer les observations
selon leur degré d’anormalité. La publication associée est [3].

• Chapitre 9 : Tests de comparaisons appliqués aux études biomédicales. Une méthode de test
d’homogénéité à deux échantillons pour les applications biomédicales est détaillée, adaptée
pour maximiser une version particulière des R-statistiques proposées. Cet algorithme est ap-
pliqué à la comparaison statistique de deux populations cliniques, et plus particulièrement basé
sur des mesures extraites de statokinésigrammes. Les publications/communications associées
sont [4-5].

• Chapitre 10 : Un modèle génératif pour le contrôle posutral. Un modèle est proposé pour
générer l’évolution temporelle du centre de pression lorsqu’il est modélisé par une correlation
temporelle au centre de masse. Ce modèle est basé sur le modèle stochastique de Langevin. La
publication associée est [6].

Appendice. L’appendice regroupe trois chapitres comme suit.

• Appendice A : R-processus à deux échantillons généralisés et tests de comparaison efficients.
Cette section est liée à l’étude des R-statistiques lorsqu’elles sont indexées par une classe de
fonctions génératrices de score φ . Dans la continuité du chapitre 5 et inspirés des travaux
de H. Koul (voir Section 1.3.2), nous étudions les R-processus sous des hypothèses faibles
supposées pour la fonction génératrice de score. Ensuite, pour les tests de comparaison, une
procédure supplémentaire est décrite, dans laquelle Étape 1. de la Fig. 1.4 est remplacée par la
maximisation exacte de la R-statistique. Nous utilisons l’algorithme 1 et quelques expériences
numériques sont fournies. En outre, une approche adaptative pour choisir la “meilleure” fonc-
tion génératrice de score est détaillée.

• Appendice B : Formulation univariée et état de l’art. Cette section développe des résultats
fondamentaux et des exemples sur les problèmes univariés suivants : les statistiques de rang à
deux échantillons, les tests de comparaison à deux échantillons et l’analyse ROC.

• Appendice C : Suppléments. Certains faits sur la recherche scientifique basée sur des statis-
tiques sont traités et en particulier concernant la recherche reproductible. Enfin, l’introduction
générale du manuscrit en français est dévelopée.

https://github.com/MyrtoLimnios


Titre: Processus de Rang et Applications Statistiques en Grande Dimension
Mots clés: statistiques linéaires de rang, apprentissage statistique, inégalités de concentration, processus de
rang, tests de comparaison, problème à deux échantillons

Résumé: Ce projet de recherche propose de
développer des outils mathématiques et algorithmiques
pour étudier et comparer deux jeux de données com-
plexes en grande dimension : vecteurs, signaux mul-
tivariés, trajectoires, signaux sur graphes. Il répond à
des enjeux fondamentaux liés à la quantification dans
les sciences expérimentales, notamment les sciences de
la vie et par-là même les neurosciences et ses applic-
ations cliniques. Pour se faire, nous proposons une
généralisation des statistiques linéaires de rang à l’aide
d’outils développés en apprentissage automatique. En
effet, et grâce à des techniques d’ordonnancement bi-
partite, une étude avancée et non-paramétrique de
ces statistiques à deux échantillons est menée sous
l’angle de la théorie de l’apprentissage statistique.
Plus précisément, ces méthodes permettent de pal-
lier l’absence de relation d’ordre dans les espaces de
grande dimension grâce à l’apprentissage d’une fonc-
tion de score. Définie sur l’espace ambiant et à
valeur réelle, cette dernière a pour but d’induire un

ordre sur les observations multivariées en maximis-
ant la statistique de rang généralisée. Nous propo-
sons une première application dans le cadre des tests
d’hypothèses statistiques, en associant décision (ac-
ceptation/rejet) de l’hypothèse nulle à l’apprentissage
d’un modèle décrivant les données. Nous étudions,
plus précisément, les tests d’homogénéité à deux
échantillons. Ensuite, deux applications en analyse
de données sont introduites et développées en util-
isant les statistiques de rang comme critère scalaire
de performance. Nous les appliquons aux problèmes
d’ordonnancement bipartite et d’apprentissage des
données extrêmes, ou anomalies, et précisons leurs re-
lations à l’état de l’art. Enfin, dans la volonté de pro-
poser des outils adaptés aux données issues des sci-
ences expérimentales et dans le cadre de l’étude des
données biomédicales, nous introduisons une méthode
interprétable de comparaison statistique de deux pop-
ulations cliniques, ainsi que d’un modèle stochastique
génératif de données longitudinales particulières.

Title: Rank Processes and Statistical Applications in High Dimension
Keywords: linear rank statistics, statistical learning, concentration bounds, rank processes, homogeneity testing,
two-sample problem

Abstract: This research project aims at developing
mathematical and algorithmic tools to study and eval-
uate the level of similarity between two complex data-
sets in high-dimension: vectors, multivariate signals,
trajectories, signals on graphs. It answers fundamental
questions related to quantification in experimental sci-
ence, particularly in life sciences, neurosciences, and
clinical applications. We propose a generalization of
linear rank statistics using methods developed in ma-
chine learning. Indeed, thanks to bipartite ranking ap-
proaches, we articulate an in-depth and nonparamet-
ric study of those statistics based on two statistical
samples, using statistical learning theory. More pre-
cisely, ranking methods circumvent the lack of relation
order in high-dimensional spaces by learning a scoring
function. The latter, defined on the ambient space and
valued in the real line, aims at inducing an order on

the multivariate observations by maximizing the gen-
eralized rank statistic. We propose the first application
in statistical hypothesis testing by combining decision
(acceptance/rejection) of the null hypothesis and learn-
ing a model describing the data. More specifically, we
study two-sample homogeneity tests. Then, two ap-
plications in data analysis are introduced and developed
using rank statistics as a performance criterion. They
are applied to bipartite ranking and anomaly detection
problems and specify their relation to state-of-the-art
formulations. Finally, and motivated to propose tools
adapted to experimental sciences and in the context of
biomedical data studies, we introduce an interpretable
method for the statistical comparison of two clinical
populations and a stochastic generative model of spe-
cific longitudinal data.
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