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Résumé

L’étude de la natation à la micro échelle (micro-natation) a subi une évolution majeure dans les
dernières années. Son but était initialement de comprendre le mouvement de micro-organismes
flagellés (comme les spermatozoïdes, ou les bactéries) et extraire les principes qui décrivent la
nage à cette échelle et qui la différencient de la nage basée sur les contributions inertielles.
Maintenant, à ces derniers, des investigations basées sur la théorie de la commande optimale
et l’investigation de la forme de ces nageurs se sont établies. Ces dernières sont motivées par
l’application médicale des micro-robots nageurs, qui est déjà une réalité dans des laboratoires de
recherche grâce à des études en vitro et vivo. De nombreux défis sont encore présents et motivent
la recherche dans le domaine, tels que le contrôle de ces nageurs, leur comportement dans des
endroits confinés, la meilleure forme pour les robots. La simulation numérique est un outil qui
peut aider à résoudre ces questions, et elle peut agir complémentairement aux expériences de
laboratoire, qui peuvent à leur tour en valider les résultats.

Pendant cette thèse nous nous sommes concentrés à la fois sur la description numérique de
la micro-natation et sur ses interactions avec les problèmes susmentionnés de forme optimale.
Pour cela faire, nous avons considéré deux méthodes numériques pour résoudre les équations
fluides, à savoir la méthode des éléments finis et la méthode des éléments de frontière. Ces
méthodes ont été appliquées à des nageurs flagellés différents, en tenant compte de leur stratégie
propulsive et de l’influence de cette dernière sur un domaine fluide éventuellement maillé. En fait,
parmi les nageurs à flagelle, il est possible d’identifier deux types de propulsions, qui se basent
sur la propagation d’ondes hélicoïdales ou d’ondes planaires. Le premier type de nageur, lors
de la rotation de ses flagelles, produirait une déformation du maillage fluide qui comporterait
un remaillage très fréquent, tandis que dans le deuxième cas le remaillage pourrait être fait
moins souvent. De plus, en termes de modélisation, la flagelle du premier type de nageurs
est souvent considérée comme une hélice rigide, or que le deuxième cas est modélisé avec une
flagelle déformable. C’est donc pour cela que le premier type de nageurs a été simulé à l’aide
des éléments de frontière et le deuxième à l’aide des éléments finis, car seulement cette dernière
méthode requiert le maillage du domaine fluide.

Celui-ci est le contexte dans lequel cette thèse s’est développée et les contributions qui peuvent
être mise en avant sont:

• L’étude de la forme optimale de nageurs à inspiration bactérienne, multi-flagellés, qui en
optimise la vitesse de propulsion tout en favorisant la nage dans une direction prescrite.
La méthode numérique utilisée est la méthode des éléments de frontière pour la résolution
des équations de Stokes couplées avec les contraintes de auto-propulsion. Cette méthode
est basée sur la fonction de Green et la formulation intégrale des équations de Stokes et sur
le fait qu’on peut obtenir la solution du problème fluide en discrétisant juste la frontière du
nageur. Les systèmes algébriques qui sont originés par cette méthode sont denses (car la
fonction de Green couple chaque nœud du maillage avec chaque autre nœud) et de petite
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taille si comparés avec les systèmes éparses produits par une discrétisation aux éléments
finis. Cela comporte que différentes techniques de stockage et de résolution sont requises
par cette méthode. Différents cas test issus de la littérature sont mis en œuvre pour valider
la méthode numérique de résolution du problème fluide. Le problème d’optimisation est
ensuite attaqué en utilisant la méthode d’optimisation Bayesienne, qui n’a jamais été
utilisée dans le cadre de l’optimisation de forme en micro-natation. Cette méthode procède
en construisant un meta-modèle du problème d’optimisation de forme en se basant sur un
budget fini d’évaluations, car la résolution du problème fluide reste couteuse et augmente
avec le nombre de flagelles. Le principe de cette méthode est d’utiliser les évaluations de la
fonction coût pour construire, à l’aide de la régression Gaussienne, un modèle probabiliste
de cette fonction, dont moyenne et variance sont mises à jour chaque fois qu’une nouvelle
mesure est disponible. De plus, grâce à ces estimations, il est possible de choisir le point
successif où la fonction coût sera évaluée dans les régions où la variance, l’incertitude du
modèle, est majeure.

• L’étude du mouvement de nageurs à inspiration bactérienne, bi-flagellés, pour lesquels
on modélise l’élasticité des jonctions à l’aide de ressorts de torsion. Ici nous utilisons la
Resistive Force Theory (RFT), une méthode approximée qui est tout de même valable
dans l’étude d’organismes mono-flagellés, sous la contrainte de négliger la contribution des
interactions entre les différents parties qui composent le nageur, à savoir queue et corps
cellulaire. Elle permet d’arriver à des formulations analytiques qui clarifient l’impact des
différents paramètres qui décrivent le nageur et elle a été utilisée pour des études de
commande optimale de nageurs robotiques validés avec des expériences de laboratoire.
Dans une première partie nous nous concentrons sur la modélisation d’un nageur à deux
flagelles à l’aide de la RFT pour mettre en valeur l’effet que la position des jonctions
élastiques et la forme du corps cellulaire ont sur la vitesse de propulsion du nageur. Cette
approximation est valable lors que les queues sont éloignées et les effets hydrodynamiques
entre elles sont négligeables. Dans un deuxième temps, nous considérons un modèle BEM
dans lequel nous laissons les queues libres de se réorienter suite à l’interaction entre le fluide
et les jonction élastiques. Cette dernière partie présente la modélisation du problème et
un exemple de validation. Le but futur sera de comparer les résultats du modèle BEM
avec les résultats issus de la Resistive Force Theory.

• L’utilisation de la librairie Feel++ pour la simulation aux éléments finis du problème de
la micro-natation. La méthode des éléments finis est rarement utilisée dans l’étude de la
micro-natation car souvent lourde et couteuse pour les études normalement menés dans
ce domaine. Par contre, si l’objectif est d’étudier des fluides biologiques complexes (à
partir du sang, jusqu’à la matrice extracellulaire) et leurs interactions avec des micro-
nageurs, ou bien modéliser l’élasticité des nageurs en utilisant un modèle décrit par des
équations aux dérivées partielles, la méthode des éléments finis regagne son intérêt aussi
pour de la micro-natation. La méthode choisie pour décrire l’interaction fluide-nageur est la
méthode Arbitrary-Lagrangian-Eulerian, qui découple en partie l’évolution du milieu fluide
de l’évolution du domaine computationnel. Cette méthode, déjà présente dans la librairie
grâce au travail de V. Chabannes pour la simulation des écoulements sanguins, a été
augmentée en ajoutant la partie qui décrit le mouvement d’un corps rigide immergé dans
le fluide, nécessaire pour décrire la position du nageur à tout moment. Cette description
de la nage oblige aussi à considérer les problèmes liés au déplacement du maillage et à sa
reconstitution lors d’une déformation importante. C’est dans cette optique que l’évaluation
de la qualité du maillage et l’inclusion du remaillage à l’aide des librairiesMMG et parMMG
ont été considérées. Dans cette partie de la thèse nous avons considéré différents méthodes
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qui peuvent être utilisées pour décrire le mouvement d’un nageur en nous basant sur la
littérature: soit on connait la forme exacte du nageur à chaque instant temporel, grâce à
une description analytique de sa forme; soit cette forme est décrite par un modèle simplifié
(par exemple des ODEs qui, une fois résolues, donnent la forme du nageur à chaque
instant); soit la forme dérive d’un modèle basé sur des EDPs. Chacun de ces cas demande
un traitement particulier, spécialement si un remaillage est déclenché, et on les a considérés
dans les développements proposés.
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Introduction

The study of swimming at the micro-scale (micro-swimming) has undergone a major evolution in
the last few years. Its aim was initially to understand the motion of swimming microorganisms
(like spermatozoa, or bacteria) in order to extract the principles that describe swimming at low
Reynolds number [106, 47, 51, 79]. More recently, micro-swimming has been studied using the
tools of optimal control theory [6, 8, 50, 9, 52] and the shapes of swimmers have been investigated
[109, 130, 102, 131, 82]. These studies are motivated by the medical application of swimming
micro-robots, which are already a reality in research laboratories [137, 82, 63]. Many challenges
are still present and motivate research in the field, such as the control of these robotic swimmers,
their behaviour in confined areas, their shape. Numerical simulations are a tool that can help
study these questions, and it often acts as a complement to laboratory experiments. This thesis
aligns with this research direction, by studying the problem of swimming at the micro-scale, with
emphasis on the shape of micro-swimmers and control of their motion, using different numerical
methods tailored to the cases under study.

We begin our discussion by presenting the peculiarities of low Reynolds number flows and how
they affect the swimming behaviour of micro-organisms. We continue by presenting the different
classes of swimmers that are capable of propulsion at low Reynolds number and specify the ones
we concentrate on. Later, we introduce the mathematical and numerical models that have
been developed to study (micro-)swimming and highlight the ones we focus on. Finally, the
contributions of this thesis are detailed.

Low Reynolds number flow

At the microscopic scale, the propulsion of swimming organisms is essentially due to viscous
forces [123, 106]. This means that micro-swimmers take only advantage of viscous drag to
propel themselves, and that the effective propulsion techniques are fundamentally different from
those experienced by larger swimmers, for which inertial forces overpower viscosity effects [27].
It is possible to highlight the difference between these swimming regimes by considering the
Navier-Stokes equations, that describe the space-time evolution of a Newtonian fluid. If we
define by F ⊆ Rd the fluid domain, d = 2, 3, ρ > 0 the fluid density, µ > 0 the fluid viscosity,
p : F×]0, T ]→ R and u : F×]0, T ]→ Rd the fluid pressure and velocity, f : F×]0, T ]→ Rd the
external volume forces, Navier-Stokes equations in the Eulerian frame write as{

ρ∂tu+ ρ(u · ∇u) = −∇p+ µ∆u+ f, in F ,
∇ · u = 0, in F .

Fluid flow in Navier-Stokes equations can be driven by at least two factors: by prescribing
a non-zero external force f or via suitable boundary conditions on ∂F that enforce non-zero

15



surface tensions or fluid velocities. In the following, we suppose that f = 0 and that fluid flow
is produced by prescribing boundary conditions on ∂F .

In order to measure the importance of viscous and inertial forces, we proceed with the non-
dimensionalisation of the Navier-Stokes equations by using the characteristic parameters of a
typical micro-swimmer. The non-dimensional version of the fluid variables is obtained by scaling
time, velocity and pressure using the characteristic time scale T , speed U and length L of an
average micro-organism. We use T = U

L , i.e. the ratio of the characteristic speed U and length
L of the swimmer, to scale the time variable. The scaling procedure gives the non-dimensional
variables

t̄ =
t

T
, ū =

u

U
, p̄ =

p
µU
L2

,

where µU
L2 is the pressure scaling factor for viscosity-dominated flows. The non-dimensional

version of Navier-Stokes equations reads as{
Re(∂t̄ū+ ū · ∇ū) = −∇p̄+ ∆ū, in F ,

∇ · ū = 0, in F ,

where Re is the Reynolds number

Re =
ρUL

µ
.

Reynolds number gives a measure of the relative intensity of inertial and viscous effects in a
Newtonian fluid, as it can be expressed as the ratio of their characteristic values, ρU2L2 and
µUL respectively

Re =
ρU2L2

µUL
.

If we choose realistic values for U ≈ 100 µm · s−1 and L ≈ 10 µm [106], based on a bacterium
propelling in water, where ρ ≈ 103 kg ·m−3 and µ ≈ 10−3 kg ·m−1 · s−1, we obtain Re ≈ 10−4.
This value of Re confirms what we stated in the beginning of the section, i.e. at the micro-scale
inertial contributions are negligible when compared to viscous forces. Such a small Reynolds
number motivates to push further the simplification of the fluid model and to consider the
limiting case where Re→ 0 in the fluid equations. The resulting equations for Newtonian fluids
are the Stokes equations {

−∇p+ µ∆u = 0, in F ,
∇ · u = 0, in F .

Representation of Stokes solution in unbounded domain

Stokes equations are linear in fluid pressure and velocity, and the absence of time derivatives
makes them time-reversible. This means that any sum of solutions to the equations is still a
solution, and that it is possible to have a fluid flow as well as its time inversion obeying the
Stokes equations. A consequence of the linearity of Stokes equations in terms of modelling is
that the superposition principle holds, making it possible to express any solution of the Stokes
equations as a superposition of fundamental solutions. In particular, there exist boundary
integral representations relying on the existence of a Green kernel and the superposition principle,
that allow to express a complex flow as a combination of several fundamental solutions obtained
with point forcing terms [71, 51]. For example, in free-space, the fundamental solution of Stokes
problem is given in terms of the Green kernel

G(x, y) =
1

8πµ

(
I

‖x− y‖
+

(x− y)⊗ (x− y)

‖x− y‖3

)
,
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where I is the identity tensor and ⊗ denotes the Kronecker product (a ⊗ b)ij = aibj . Based
on the superposition principle, and the related integral representation formulas, there exists a
number of approximate descriptions of flows at low Reynolds number that are generated by thin
beating filaments, like Resistive Force theory [51, 85] and Slender Body theory [69]. Using this
methodology, one can also describe the flow surrounding moving ellipsoidal bodies [71].

Due to the invariance of Stokes equations by time inversion, micro-swimming gaits must satisfy
a “non-reciprocity” constraint to ensure propulsion, as highlighted by Purcell in his seminal talk
[106]. Reciprocal motions produce fluid fields that are characterised by successive concatenations
of Stokes flows and their time inversions. By taking as an example the stroke pattern of a
scallop, which is reciprocal due to its only degree of freedom, Purcell showed that a swimmer
is incapable to propel if the non-reciprocity constraint is not satisfied. This observation, now
known as the Scallop theorem, shows the fundamental difference between inertia-based and low
Reynolds number swimming: while in the first case the acceleration of body deformation plays
a role in the propulsion, in the second case only the sequence of geometric shapes is determinant
for motion. Despite this constraint on the flow field that micro-swimmers produce, there exists
a plethora of shapes and deformation strategies that ensure net propulsion, as we will show in
the next section.

Swimming at low Reynolds number

Biological swimmers

Biological micro-swimmers are cells that are able to move in a fluid medium by continuously
changing their shape. Most of them developed thin appendices, i.e. flagella and cilia, where
the deformation strategy is concentrated. The propagation of waves along these deformable
appendices is the most common propulsion method, and depending on the number of flagella,
their density on the cell’s body, the shape of the cell body and the presence of external obstacles,
different travelling waveforms are preferred [38].

Starting with mono-flagellated micro-organisms, i.e. swimmers having one flagellum, one can
see that different propulsion mechanisms can be present and that these swimmers can switch
between deformation strategies according to external conditions. The first examples of mono-
flagellated micro-swimmer are spermatozoa, which show two types of tail beatings, planar and
three-dimensional, depending on their proximity to a solid boundary. The first behaviour is
shown when spermatozoa are swimming close to solid surfaces [47] while the second one appears
when they swim in bulk fluid [64]. In the first case, the cell follows a circular path, and at the
same time it is attracted towards the surface due to hydrodynamical effects (see figure 1, right).
This behaviour is functional to reproduction, as the sperm cell is trapped in the proximity of
the egg cell and progressively approaches it to fuse its nucleus with the egg cell’s one [37]. This
behaviour is initially triggered by chemotactic interaction with the egg cell [28] that accentuates
the asymmetry of the tail beating. In fact, when swimming in bulk fluid, in presence of a
chemoattractant, spermatozoa follow an helical path whose axis is aligned with the gradient
of the chemical cue. The curvature of the swimming path results from their tail beating in a
non-planar fashion [64]. Sperm cells of other species show planar sinusoidal beating [134] (see
figure 1, left) and other mono-flagellated swimmers, with larger cell body and shorter tail like
Trypanosomes, show yet different planar beating patterns [48].

In the case of multi-flagellated micro-organisms, i.e. swimmers with several flagella and pos-
sibly cilia, variability in the propulsion strategy is larger than before. In the E. Coli case,
a multi-flagellated bacterium, flagella are attached to the main body via a flexible hook, and
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Figure 1: On the left, a stylized representation of a spermatozoon propagating a planar wave
along its tail. On the right, a stylized representation of the circular path that sperm cells follow
when swimming in proximity of a surface.

Figure 2: On the left, a stylized representation of an E. Coli bacterium. On the right, a stylized
representation of the run-and-tumble swimming strategy of E. Coli.

the propulsion is guaranteed by a combination of helical waves propagating along the flagella
and flagellar bundling phenomena [68]. Bundling is also accentuated by the fact that, at low
Reynolds number, the cell body counter-rotates with respect to the flagellar bundle. In this
micro-organism, each flagellum can rotate independently from the others: when flagella rotate
in the same direction they entangle and form a tail bundle, allowing the bacterium to swim
in a precise direction; when one or more flagella counter-rotate in the bundled state, the tail
tangle is undone and the bacterium reorients (see figure 2). This run and tumble behaviour is
justified by the influence of chemotactic cues on the bacterium’s swimming direction. While
E. Coli forms a unique tail bundle, other bacteria can form multiple tail bundles due to their
conformation. As an example, a recent study considered a magnetotactic marine bacterium
presenting two separate flagellar bundles [138, 120]. In its case, a unique bundle was not formed
because the flagella are localised in two points of its cellular body and sheathed in two separate
groups. The study shows that the two separate flagellar bundles generate faster propulsion than
one bundle and that, similarly to E. Coli, the propulsion of this bacterium is guaranteed by
the counter-rotation of the cell body with respect to the flagella. In addition to chemical cues,
magnetotactic bacteria are able to follow the lines of the geomagnetic field as para-magnetic
beads are naturally included in their cell bodies.

The swimming direction of the biological micro-swimmers we presented can be influenced by
chemical interactions or magnetism, while their propulsion is fundamentally due to the exchange
of mechanical energy with the fluid by deforming their bodies. The same principles are exploited
in the manufacturing of artificial micro-swimmers, as the next paragraph shows.
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Figure 3: On the left, a stylized representation of a Janus particle propelling itself thanks to
chemical reactions. On the right, a stylized representation of an artificially propelled micro-
swimmer, inspired by [98].

Artificial swimmers

A large class of man-made micro-swimmers is composed of biomimetic swimmers inspired by
bacteria and self-propelling cells [13]. In this family, [35] reported the very first artificially con-
structed micro-swimmer by using DNA filaments as connecting material between a haemoglobin
cell and small magnetic spheres that composed the beating flagellum. In the study, flagellar
motion was controlled by an external magnetic field and a non-reciprocal deformation was im-
posed allowing the propeller to swim. In this category of bio-hybrid entities, one can also couple
a biological micro-swimmer to artificial matter in order to improve its propulsion, its control
properties or to add functionalities to it. Spermatozoa trapped in hollow tubes [3] or Spirulina
coated with magnetite [137] are two examples of bio-hybrid swimmers that combine the shape
or propulsion characteristics of the biological organism with the controllability properties of the
added artificial material: in fact, the coupled entity can then respond to external magnetic fields
and be steered in the desired direction. A steering mechanism based on the alignment with a
magnetic field is also used in the controlled propulsion of other artificial micro-swimmers [130].

Propulsion can also arise from non-mechanical effects. For example, some studies consider
propulsion strategies which are of chemical origin (Janus particles, functionalized surfaces, see
figure 3, left). In this case, the artificial swimmer is coated with specific chemical compounds
that can react with the surrounding fluid and produce the necessary energy to propel itself [91].
Others focus on propulsion via acoustic micromanipulation techniques, as these methods are bio-
compatible and precise for sensitive micro-agents like cells. These techniques focus sound waves
to trap and manipulate the particles, which can move passively (if the particle is dragged by the
acoustic wave tweezers) or actively (if the particle self-propels as a result of the interaction with
the tweezers at its resonant frequency). This latter category comprises artificial micro-swimmers
with air cavities or with flagella that vibrate in resonance with the external sound waves [90].
Low Reynolds number swimming can be extended even to situations where swimmers are not
microscopic: these studies are based on scaled-up laboratory experiences where the gravity force
is compensated and the fluid density and viscosity are appropriately tuned to reproduce the
conditions of low Reynolds number flows [98] (see figure 3, right, for the representation of this
scaled-up swimmer). This kind of setup allows focusing on the shape of the swimmer and on
the control of its trajectory, neglecting the effects of Brownian motion or random fluctuations
that appear when swimmers are microscopic.

Presently, the study of micro-swimmers continues to flourish as new possibilities arise: high-
precision flagella visualization for a range of biological micro-swimmers [47], force measurements
thanks to optical tweezers [94], miniaturization and control of artificial micro-swimmers [135] are
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just few among them. The development of targeted drug delivery micro-robots or non-invasive
surgical ones is a joint effort for the scientific community due to the large number of challenges
that must be faced [127], and modelling and simulation have their place in this as they provide
valuable insights by focusing the attention on specific problems. In fact, numerical simulations
can provide in silico experiments that may complement, explain or even substitute biological
observations and be helpful for robot design and (numerical) prototyping.

Modelling and simulation of micro-swimming

The analysis of the previous swimmers relies on different theories that stemmed from the study
of fluid mechanics at low Reynolds number. These theories exploit the linearity of the flow
equations and their Green kernels to give an approximation of the propulsion speeds and forces
exerted by a swimmer in low Reynolds number flows. Due to its prominence in micro-swimming
strategies, the propagation of travelling waves on slender filaments has been investigated numer-
ically and analytically by many authors. In [123], Taylor studied the propagation of sinusoidal
travelling waves on a non-deformable infinite sheet and computed its propulsion velocity. He
showed that the resulting speed, at first order, depends quadratically on the amplitude and
the wavelength of the wave. In [1] the authors focused on helical travelling waves, and us-
ing the approximate hydrodynamic effects of slender filaments proposed by Gray and Hancock
[51], they analysed the motion of such swimmers and investigated the optimal head-tail ratio
guaranteeing faster propulsion. Also, [69] used an approximated model to study the propulsion
generated by slender filaments, propagating planar or helical waves. Their model is based on
Slender Body Theory, which computes the effect of flagellar motion thanks to a line distribution
of fundamental solutions of Stokes equations along the centreline of the flagellum. Resistive
Force Theory (RFT) [51, 85] and Slender Body Theory (SBT) [69] are quite accurate models for
mono-flagellated swimmers with thin flagella, as their accuracy depends on the ratio between
the thickness and the length of the swimming appendices. Numerical simulations of flagellated
micro-organisms based on RFT, have been proposed in two and three dimensions: by discretizing
the flagellum in N segments, [5] recovered the circular paths followed by sperm cells swimming
close to a surface, while [36] used the RFT formalism to simulate a magnetic micro-robot with
a thicker elastic flagellum. These approximate models focus on the hydrodynamical effects of
each component of the swimmer, and neglect all the contributions that arise from close-range
interactions among swimmer’s parts. Even if approximate models can be used successfully for
multi-flagellated swimmers, as in [61] to study how the hydrodynamical instability of rotating
flagella generates propulsion, the mutual interaction of flagella need to be weak (or knowingly
neglected). The role of close-range hydrodynamical interaction among the beating flagella is
fundamental in the bundling of flexible flagella, in E. Coli for instance. Also the rotation of
the cell’s body influences bundling, but while this can be described with the help of resistive
force theory [103], the effect of near-field interactions on bundle formation can not be captured
by approximate hydrodynamical theories like RFT or SBT due to their hypotheses on weakly
interacting structures, and more accurate methods must be used [68, 114]. Accurate numerical
methods take into account the two or three dimensional nature of the problem at hand and
usually require a discretisation of the domains occupied by the fluid and/or the swimmer. A
numerical method that is widely used in the micro-swimming community is the Boundary Ele-
ment method, that relies on the integral formulation of the Stokes equations to determine the
fluid velocity field [104]. This formulation allows the solution of swimming problems in three-
dimensional domains by discretizing only the two-dimensional surfaces that bound the fluid.
This allows significant savings in terms of storage of the geometry of the problem as the fluid
domain (potentially unbounded) is not discretized. The boundary integral formulation that we
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evoked previously expresses the fluid velocity at the boundary of the swimmer as a function of
fluid stresses σik and velocities ui, via the fundamental solutions Gij and Tijk

cij(x0)ui(x0) = − 1

8µπ

∫
∂F
σik(x)nk(x)Gij(x, x0) dS(x) +

1

8π

∫ PV

∂F
ui(x)Tijk(x, x0)nk(x) dS(x),

(1)
where x0 ∈ ∂F , nk is the normal to ∂F pointing inside the fluid domain and cij(x) is a function
that depends on the geometry of ∂F [18]. Fundamental solutions Gij and Tijk become singular
as x→ x0, hence a regularisation procedure needs to be employed for the numerical solution of
(1). Two solutions are possible: a regularisation of the numerical approximation of the singular
integrals using a semi-analytic procedure [57] or the usage of regularised kernels Gεij and T εijk,
that are computed using a regularised impulse function depending on a small parameter ε.
Boundary element method has been used to investigate the hydrodynamics of micro-swimmers
in unbounded media, in presence of a wall and other swimmers. In [102] the authors analysed
the shape of micro-swimmers composed of an ellipsoidal head and a single helical flagellum and
they conducted a parametric study to identify the values of the parameters ensuring maximal
propulsion efficiency. In [129] this method was used to study the behaviour of the bacterium
Leishmania mexicana in presence of rigid boundaries. In this study, the boundary element
method was employed for two reasons: first, the shape of the bacterium (short flagellum and
large cell body) was not adapted to an analysis based on RFT; second, the presence of the
wall and its effects on the micro-swimmer needed to be accurately studied in order to explain
how the bacterium approaches and is deflected from the solid boundary. Also [120] used BEM
to study the swimming behaviour of a bacterium close to rigid boundaries, this time focusing
on a bi-flagellated bacterium. In [128] the hydrodynamics of two swimming sperm cells was
studied, in terms of stability, synchronism, and collaborative advantages. Boundary elements
can be used for non-linear problems as well, like Navier-Stokes equations, but in this case the
formulation is no longer defined on the boundary alone. For example, the internal domain needs
to be meshed if a pseudo-body force approach is chosen to approximate the convective term [72].
In [29] the regularised kernel method (based on Gεij and T εijk) was applied to the computation
of Stokes flow, its numerical analysis was performed and its implementation was benchmarked
against cases from the literature. Later, [97] used the regularised kernel method to study the
hyper-activation of sperm flagella by coupling the fluid model to a biochemical one, taking into
account the dynamics of the calcium ions that are responsible of the switching in swimming
behaviour. In [121] the regularised kernel method is used to perform a fluid-structure coupling
between the viscous fluid and an elastic filament: the flow is generated by the elastic forces of the
filament, while the filament’s shape and position are obtained by integrating the fluid velocity
field. The regularised kernel method was recently used to propose a higher-fidelity model for
bacteria interaction in [60], showing that the complex flow generated by the relative rotation of
cell body and flagellum is determinant to describe the interactions and behaviours of bacterial
active matter.

Another accurate numerical method able to account for the full, non-approximate description
of the swimming problem is the finite element method. This numerical method is very versatile
and it has been used in a wide variety of contexts and physical problems. An interesting feature
is its easy application, if compared with the boundary element method, to couplings between
different PDEs, as when coupling fluid and elasticity equations, or when the Newtonian fluid
tensor is substituted by a complex fluid one [117]. The literature on finite elements and micro-
swimming is quite reduced. To our knowledge, publications in this field are mainly coming from
the usage of commercial finite element software. Using the finite element method and the Comsol
software, an analysis of the swimming behaviour of 2d sperm cells was performed [111], varying
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the parameters that describe the geometry and the gait of the swimmers. In [34], using the
same software, the authors studied the behaviour of helical swimmers in a channel by varying
the parameters describing the geometry of the helix. If one does not restrict to micro-swimming,
one finds that a number of fluid-structure interaction and swimming problems at higher Reynolds
numbers have been addressed using this method. For example, in [115] the authors simulated a
swimming medusa by using snapshot of its gait, in order to study the mechanisms underlying
its propulsion. In [32] the authors considered the coupling of Navier-Stokes and active elasticity
equations to simulate the swimming behaviour of a carangiform fish propelled by its muscular
force.

Optimisation and micro-swimming

In order to understand biological micro-swimmers and their motion strategies, one often needs
to think in terms of propulsion efficiency or optimality with respect to a certain cost function.
Moreover, control and shape optimisation of artificial micro-swimmers are crucial for applica-
tions. For these reasons, questions involving micro-swimming and optimisation in its largest
sense have been addressed in recent literature.

In [102] a parametric study of the shape of a helical mono-flagellated swimmer is performed,
where propulsion speed and efficiency are considered. The authors remark that the minima in
the two cost functions usually do not coincide, which makes it interesting to investigate the
two different optimal swimmers. In [58] a genetic algorithm is used to analyse the optimal
beating pattern of a sperm flagellum in terms of its swimming efficiency. In this case, the
optimisation technique is inspired by the biological process of natural selection, by searching the
“fittest” swimmer from a set of offspring solutions. This optimisation technique is of black-box
type, meaning that it does not have a priori information about the problem at hand (like a
gradient descent would have) other than evaluations of the cost function at different points.
This family of methods, also called derivative-free since they do not use information about the
derivative of the cost and constraint functions, are suitable for the optimisation of models that are
computationally expensive [112, 78]. It is also possible to use theoretical shape optimisation to
optimise the shape of swimmers: in [131] the authors study the optimal shape of rigid, magnetic,
helical micro-swimmers both analytically and numerically, and compute the solution of the fluid
problem via BEM. Experimental studies are very frequent in this domain: [109] analysed the
shape of helical, scaled-up swimmers with multiple rigid flagella, while [130] investigated the
shapes of helical microscopic swimmers to determine which tail length provides the largest
propulsion speed.

Together with shape optimisation, the question of controlling the gait of swimmers and deter-
mining the optimal one is a relevant topic in recent literature. An optimal control problem for
a flagellated scaled-up micro-robot has recently been addressed in [36] from the mathematical
and experimental point of view. The objective of this study was to find a suitable periodic mag-
netic field that propelled the swimmer faster than a planar sinusoidal field. By using a limited
number of Fourier modes, the authors provided a magnetic field that improved swimming speed
by enforcing a three-dimensional beating pattern. Reinforcement learning has also been con-
sidered for path-planning and control of micro-swimmers. In these studies, propulsion and net
advancement are rephrased in terms of a reward function, often the displacement in the desired
direction, or the reach of a predetermined objective. Swimmers are then modelled as agents who
can access a set of actions and want to optimise their expected reward. In [2] Q-learning is used
to find the optimal strategy for a point-like swimmer immersed in a turbulent flow and moving
between two points. In [124] reinforcement learning is used to find the stroke of a multi-sphere
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swimmer ensuring the fastest propulsion in different fluid media. The authors also show that,
in Stokes flow, the optimal stroke of a three-sphere swimmer coincides with the one proposed in
[93], the first paper to propose this swimmer model.

Meta-modelling and reduced-order modelling

The numerical solution of an optimisation problem relies on algorithms that evaluate the cost
and constraint functions several times. When the cost function or the constraints depend on
the solution of PDE-based problems, the optimisation can become extremely expensive. One
possibility is to approximate of the effects described by the PDE using a simpler model. We have
extensively talked about approximate models of low Reynolds swimming, and we mention once
more [36] as an example of using RFT coupled with optimisation. However, if this approximation
is not possible and a full model must be used, it is still possible to reduce the computational cost
of the optimisation by using meta-models and reduced-order models. Meta-modelling creates
a simplified surrogate of the costly model by sampling the feasible region, which is then used
for the optimisation process [70, 73]. In [49] the authors considered two algorithms for reduced
order modelling of Stokes equations with parametrized domain, and computed the velocity and
pressure field generated by a push-me-pull-you micro-swimmer [11], that is composed of two
inflatable spheres of constant total volume moving on a line. The domain parametrization is
based on the radius of one of the spheres and the distance between their centres. Using reduced-
order modelling, it could be possible to assess the propulsion speed of the swimmer and look
for the optimal swimming strategy by evaluating the effects of sphere inflation and distance on
the overall swimmer’s motion. The usage of meta-modelling in the field of micro-swimming is
quite unexplored, but techniques like kriging [116] and physics-based machine learning models
for fluid mechanics [74, 21] could be exploited to address the shape or gait optimisation problems
and optimal control of microscopic swimmers.

Main contributions of the thesis

The complexity and abundance of swimmers’ gait and motion, together with the necessity to
consider more complex and realistic swimming environments, require the development of a flex-
ible framework, capable of accurate numerical simulation and open to optimisation. This thesis
presents two instances of this framework, based on different numerical methods. Part I proposes
a computational framework based on the boundary element method. Using this numerical ap-
proach, we modelled the complex hydrodynamical effects that originate from interacting objects,
like flagella and cell bodies in a bacterium, without the need to discretise the fluid domain. This
same approach was exploited for the parametric shape optimisation of micro-swimmers inspired
by flagellated bacteria, where the absence of a discretised fluid domain avoided the meshing
problems arising from rotating flagella. A further extension to include elasticity effects at the
junctions has been outlined, in order to be consider micro-swimmers which are closer to biologi-
cal ones. Part II proposes a computational framework based on the finite element method. This
second approach, despite being more costly than the previous one, was chosen for its extensi-
bility to complex environments and fluid models. In the present work, however, we focused on
the modelling and numerical aspects of the swimming problem in a classical Newtonian fluid.
We addressed the computational problems arising from the choice of the Arbitrary-Lagrangian-
Eulerian formulation to describe the swimming problem, like mesh adaptation and choice of the
appropriate preconditioning strategies. Parts III and IV present some computational aspects
of this second approach and a gallery of swimmers that were addressed within the framework:
multi-sphere swimmers, flagellated sperm cells and elastic bodies. In this last part, a reinforce-
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ment learning algorithm was also interfaced with the simulation framework to study the the gait
optimisation of multi-body swimmers in two dimensions.

Thesis content and outline

As we have shown, the accurate numerical simulation of swimming micro-organisms is important
to capture their mutual interactions, their interaction with boundaries and get insight in their
behaviour. For this reason, in this thesis we focus on the mathematical modelling and numerical
simulation of swimming micro-organisms via finite and boundary element method. At the same
time, our interest goes to shape improvement of these bodies and the more general problem of
fluid-elastic interaction.

In part I, we model the fluid flow via the integral formulation of Stokes equations, and we
simulate it via Boundary Element method. In chapter I.1 the swimming problem is detailed by
adding to the Stokes equations the self-propulsion constraints, ensuring zero net force and torque
on the swimmer. The discretization of the problem is presented, as well as various benchmarks
for the method. In chapter I.2, this method is applied to a bi-flagellated swimmer whose head
and tails are non deformable, that propels by rotating its helical tails. This swimmer was
studied using BEM over the finite element method because the relative motion between head
and tails would have required frequent remeshing of the fluid domain, if it were discretized. In
this chapter we focus on the swimmer’s shape optimisation in two ways: first, we optimise its
parameters successively, showing that funnel-like tails guarantee stronger propulsion and prolate
cell bodies are preferred when few rigidly rotating flagella are present. After that, we consider
Bayesian optimisation to construct a meta-model of the shape optimisation problem, allowing
all parameters to vary at the same time. The two optimisation methods that are employed are
of derivative-free type, since information on the gradient of the cost function is not available.
Chapter I.3 contains the embryo of a study comparing Resistive Force Theory and Boundary
Element method on a variation of the bio-inspired bi-flagellated bacterium of chapter I.2. In this
chapter, the helical tails are allowed to bend at the head-tail junctions, where the flexible hooks
are modelled as torque springs. In the first part of the chapter, the geometrical modelling and
benchmarks of the RFT are reported. These are followed by the results of RFT on the swimmer:
the interaction between the elastic junctions and the fluid forces lead the tails to settle at an
equilibrium angle depending on the cell’s body shape. Subsequently, the BEM modelling of the
problem is addressed and a benchmark is proposed.

In part II, the Finite Element method is used to study deformable micro-swimmers. In this
thesis, the Arbitrary-Lagrangian-Eulerian formalism is employed to model the fluid problem
in moving domain. In chapter II.1 the mathematical modelling of the swimming problem is
presented. A formulation for the motion of rigid-bodies in a fluid, based on the work of [88],
is discussed, together with mathematical models of passive and active elasticity. In this case,
the coupling conditions between the fluid and the elastic body are also discussed. Chapter II.2
is dedicated to the discretization of the swimmer problem and the numerical solution strategies
that are employed. Chapter II.3 is dedicated to validation and verification of the method.

In part III we collect and detail the developments in the Feel++ library that were contributed
during this thesis. The implementation of mesh adaptation and rigid-body motion are described
via the most important functions and data structures.

Part IV presents numerical experiment based on finite elements. A formulation to simulate
the three-sphere swimmer using finite elements, or more generally bodies whose components
move relatively to each other, is proposed and validated. A section on the gait optimisation of
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these swimmers is presented, where the optimisation was carried out via reinforcement learning.
Models of sperm cells are also investigated in this chapter to validate our computational model
when a predetermined boundary displacement is imposed.

The thesis closes with the collection of oral and written communications realised during this
doctoral work.

The computational framework

In this thesis we use two numerical methods to perform our investigations, namely the finite and
boundary element methods. Our developments rely on two libraries, i.e. the Feel++ library for
finite elements and the Gypsilab library for boundary elements.

The Feel++ library. The Finite Element Embedded Library in C++ (Feel++) [105] is
a computational framework providing a wide variety of advanced numerical methods for the
solution of partial differential equations. Its core assets are Galerkin methods (continuous, dis-
continuous, spectral, hybrid-discontinuous) as well as reduced basis and domain decomposition
methods. The library provides a number of tools ranging from polynomial interpolation to mesh
adaptation via a domain-specific embedded language mimicking the mathematical terminology
of variational formulations. Feel++ allows seamless parallel computations for solving large scale
problems, for 1D, 2D, 3D and surface problems. Its interfaces with Boost, Ublas, Eigen3 and
PETSc/SLEPc allow efficient data storage and solution of linear systems, in sequential and
parallel, while its interface with MMG and parMMG libraries allows the usage of remeshing
and mesh adaptation techniques in sequential and parallel as well. Feel++ follows the C++17
standard (more recently updated to C++20) and uses the Boost C++ libraries Parameter, Fu-
sion among others, to enhance the readability and conciseness of its code. Feel++ provides also
applications that solve physical problems (issued from fluid mechanics, solid mechanics, heat
diffusion) or coupled problems (thermo-fluid, fluid-structure interaction, multifluid) built from
libraries included in the framework [23, 89, 87].

The Gypsilab library. The Gypsilab library is an open source Matlab library for Boundary
Element/Finite Element simulations [4]. It relies on a number of classes that handle different
parts of the simulation process: mesh, finite element spaces, Green kernels, regularisation tech-
niques and quadrature formulas. Its syntax is close to the mathematical variational formulation
of the problems. It also contains a toolbox for storing the system matrices in H-matrix form,
i.e. a compressed format that neglects matrix entries giving small contributions, hence allowing
larger size problems to be treated. Regularisation techniques are based on semi-analytical inte-
grations, that allows to correct the inaccuracy of numerical quadrature close to singularities via
analytical integration [57].

Perspectives

Starting from the present work, numerous research opportunities open in the modelling and
computational domains. First, the fluid model can be extended to more biologically relevant
fluids, where the viscoelastic effects are taken into consideration, to obtain more realistic, com-
plex and multi-layered domains where swimmers can be studied. Examples of these fluids are
available in the boundary integral case [59] and in the differential case [117]. Comparison with
other numerical methods could be considered, for example with immersed boundary methods.
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The study of the shape optimisation problem could be cast in a more rigorous framework, using
the tools of shape derivative and adjoint fluid problem. This study has been performed in
the case of a still body in Stokes flow, in order to find the shape that minimizes the viscous
drag effects [16]. A similar shape optimisation problem was numerically solved in the case of
Navier-Stokes equations in [33]. However, at the best of our knowledge, the study of swimming
shapes using this technique has been considered only once in [131] for the study of helical and
magnetically propelled swimmers.

A last research direction could be the control of swimmers in complex fluid environments, where
the presence of obstacles or walls invalidates the control strategies that are currently used in
bulk fluid. Recently, machine learning has been introduced in the field to solve these control
problems, and reinforcement learning algorithms [124] have been introduced to optimise the
swimmer’s gait or to solve path-planning problems [84]. This direction, for instance, could be
explored in presence of obstacles in the fluid.
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Part I

Boundary element framework for
flagellated bacteria: modelling and

optimisation
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This part focuses on modelling, simulation and shape optimisation of flagellated bacteria swim-
ming in a Stokes fluid. In chapter I.1, the Boundary Integral formulation of the Stokes equations
is used to model the system, which is subsequently simulated via the Boundary Element Method.
In chapter I.2, two optimisation techniques are explored to analyse the parametric shape optimi-
sation of the swimmers: the derivative-free Nelder-Mead algorithm on one hand, and Bayesian
optimisation on the other hand. In chapter I.3 the RFT and BEMmethods are used to simulate a
bi-flagellated bacterium with elastic head-tail junctions and in chapter I.4 some implementation
aspects of the framework are presented.
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Chapter I.1

Boundary Element Method

In section I.1.1 the mathematical and numerical modelling are presented: in subsection I.1.1.1
the integral form of Stokes equations is detailed, together with the self-propulsion constraints
that encode the dynamical laws guaranteeing swimming at the micro-scale; in subsection I.1.1.2,
the numerical details of BEM are given, and validation tests are presented in subsections I.1.1.3
and I.1.1.4; in subsections I.1.1.5 and I.1.1.6 a solver of rigid body motion based on quaternions
and its validation are proposed.

I.1.1 Mathematical modelling

I.1.1.1 Integral formulation of Stokes equations

Stokes equations are a system of partial differential equations, linear in velocity and pressure.
The integral form of the three-dimensional Stokes equations is based on the existence of a
tensorial Green kernel Gij , for i, j ∈ {1, 2, 3}, that collects the i-th component of the fluid
velocity when the system is impulsively forced in the j-th direction. Let us denote by F ⊆ R3 the
unbounded fluid domain, complement in R3 of the region occupied by the swimmer, u = u(t, x)
the flow velocity and p = p(t, x) the fluid pressure, ḡ = ḡ(x, t) the known Dirichlet data to be
imposed on ∂FD, µ the viscosity of the flow. The system reads as

∇p− µ∆u = 0 on F ,
∇ · u = 0 on F ,

u = ḡ on ∂FD,
‖u‖, p→ 0 as ‖x‖ → ∞.

(I.1.1)

Using Fourier transform it is possible to find the fundamental solution Gij(x, x0), for i, j ∈
{1, 2, 3}, of singularly forced Stokes equations, which reads

Gij(x, x0) =
1

8πµ

( δij
‖x− x0‖

+
(xi − x0i)(xj − x0j)

‖x− x0‖3
)
, (I.1.2)

and provides the fluid velocity at point x as a result of an impulsive force located in x0. The
fundamental solution for the pressure reads

pj(x, x0) =
1

4π

(xj − x0j)

‖x− x0‖3
,
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and provides the pressure value at x as a result of an impulsive force located in x0 [104].
Generally speaking, the mathematical expression of G depends on the shape and geometry of
the domain, and whenever these are simple enough, an analytical expression of the Green kernel
is available (see [104]). The pressure fundamental solution is seldom used: in its place the stress
tensor

Tijk = −δikpj(x, x0) +
∂Gij
∂xk

(x, x0) +
∂Gkj
∂xi

(x, x0),

is preferred as it allows the imposition of Neumann boundary conditions.. Its expression, in free
space, is

Tijk(x, x0) = −6
(xi − x0i)(xj − x0j)(xk − x0k)

‖x− x0‖5
. (I.1.3)

In the general case, the fluid domain F can have one or more disjoint boundaries, representing
the fluid-solid interfaces where either Dirichlet either Neumann boundary conditions can be
imposed. Using the Lorentz reciprocal identity [104], the velocity field in F can be described by
the boundary integral equation

uj(x0) = − 1

8µπ

∫
∂F
σik(x)nk(x)Gij(x, x0) dS(x) +

1

8π

∫
∂F
ui(x)Tijk(x, x0)nk(x) dS(x) (I.1.4)

when x0 ∈ F̊ , or by

cij(x0)ui(x0) = − 1

8µπ

∫
∂F
σik(x)nk(x)Gij(x, x0) dS(x) +

1

8π

∫ PV

∂F
ui(x)Tijk(x, x0)nk(x) dS(x)

(I.1.5)
when x0 ∈ ∂F , where

∫ PV indicates the principal value of the integral and cij(x) a coefficient
that depends on the problem. The first integral on the right-hand side of (I.1.5) is sometimes
denoted as “single layer”, while the second one by “double layer”.

If the fluid flows around a still solid, the fluid velocity on that interface will be zero: this will
imply that also the contribution of the double layer, when considering the surface of such solid,
will be zero. If the immersed object is experiencing a rigid body motion, its velocity can be
written as u(x) = U + ω × (x− xCM ), where xCM is the centroid of the body, and substituting
it into the second integral of (I.1.5) leads to

1

4π

∫ PV

∂F
ui(x)Tijk(x, x0)nk(x) dS(x) = 0. (I.1.6)

Hence, when considering rigid body motion, the double-layer integral gives zero contribution
and the boundary integral representation of the flow is given by the single-layer potential alone,
according to

uj(x0) = − 1

8µπ

∫
∂F
σik(x)nk(x)Gij(x, x0) dS(x), (I.1.7)

for x0 ∈ ∂F .

Equation (I.1.7) provides the velocity on the boundary of the solid once the fluid stresses are
known. It can also be inverted and used to obtain the stresses from the fluid velocity on the
boundary of the solid [18]. If the solid self-propels or there are external forces Fext or torques
Text that power its motion, (I.1.7) must be complemented by a set of two vector equations closing
the system. These equations are ∫

∂F
σij(x)nj(x) dS(x) = Fi,ext,∫

∂F
σij(x)nj(x)× (x− xCM ) dS(x) = Text,

(I.1.8)
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stating that the net fluid forces and torques over the swimmer are balanced by the external
ones. If the external forces and torques are zero, these balance equations are called self-propulsion
constraints. The solution of system (I.1.7)-(I.1.8) provides the translational and rotational speeds
of the swimmer (U, ω), together with the normal fluid stress distribution σn on its boundary.

I.1.1.2 BEM for Stokes equations and the swimming problem

The Boundary Element method (BEM) is a mesh based numerical method. In our case, the
computational domain is a simplicial mesh which discretizes the surface of the swimming ob-
ject. A conforming finite element space is defined over the discrete surface and an appropriate
quadrature formula is chosen, depending on the polynomial degree of approximation. We now
detail the numerical formulation of problem (I.1.7)-(I.1.8).

In the following, let us denote by f the surface tensions σn. The components of surface tensions
are expanded as fj(y) =

∑N
l=1 f

l
jφ
l(y), where {φl}Nl=1 span the scalar piecewise-linear continuous

finite element space over ∂F , and each component of equation (I.1.7) is projected onto this space,
giving ∫

∂F
Uiφ

k(x) dx−
∫
∂F

((x− xS)× ω)iφ
k(x) dx+∫

∂F

(∫
∂F
Gij(x, y)

N∑
l=1

f ljφ
l(y) dy

)
φk(x) dx = 0 for k = 1, . . . , N,

(I.1.9a)

∫
∂F

N∑
l=1

f ljφ
l(y) dy = Fj,ext for l = 1, . . . , N, (I.1.9b)

∫
∂F

(y − xCM )×
N∑
l=1

[f l1, f
l
2, f

l
3]φl(y) dy = Mext for l = 1, . . . , N. (I.1.9c)

The integrals are evaluated numerically via Gaussian quadrature, and the singular Green ker-
nels are regularized when the singularity and the evaluation points approach one another. A
possible regularization method consists in using semi-analytic integration for singular kernels to
correct the result of Gaussian quadrature. This technique expresses the Green kernels in polar
coordinates (r, θ), as it is possible to separate the singular part in r from the non-singular part in
θ. Then, instead of performing Gaussian quadrature on the Cartesian form of the Green kernels,
the singular part is analytically integrated, while the non-singular one is numerically integrated
[57].

If the boundary of the fluid domain ∂F can be written as a sum of disjoint sets ∂Fi, for
i = 1, . . . , nT , the previous integrals can be split accordingly, and the resulting system ma-
trix will have a block structure. According to the number of disjoint sets nT , the block G that
corresponds to the kernel discretization will have (nT )2 sub-blocks: each of these will be ob-
tained by integrating

∫
A

∫
B Gij(x, y)φl(y)φk(x), where A,B ∈ {∂F1, . . . , ∂FnT }. Thanks to the

symmetry of the Green kernel (I.1.2) with respect to its arguments, only the upper-diagonal
blocks need to be computed. A nT sub-block structure is present in both of the blocks J and K
implementing the self-propulsion constraints (I.1.8). In summary, the matrix form of equations
(I.1.9) reads as

3×N × nT
{

3
{

3
{
 G JT KT

J 0 0
K︸︷︷︸

3×N×nT

0︸︷︷︸
3

0︸︷︷︸
3

fU
ω

 =

 0
Fext
Mext

 .
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The implementation is done through the Matlab BEM library Gypsilab1.

I.1.1.3 Convergence study and verification

The testcase we selected for the validation of the method was presented in [54, p.119, formulas
4-17.17 and 4-17.18]: it consists in a vertically translating rigid sphere with prescribed velocity
on the boundary u = [0; 0; Ūz].

The exact solution in [54] is given in spherical coordinates to exploit the symmetry of the
configuration, but one can resort to its Cartesian representation by using the tangent map of
the change of coordinates [54, p.507, formula A-15.29].

Let N denote the number of mesh nodes. Denote by G the matrix coming from the discretization
of the single layer, and by M the mass matrix whose entries are

G
{ij}
lk =

∫
∂F

∫
∂F
Gij(x, y)φl(y)φk(x), M

{ii}
lk =

∫
∂F
φl(x)φk(x), i, j ∈ {1, 2, 3},

for the {ij} and {ii} sub-blocks, respectively. Then, boundary stresses f are found via matrix
inversion

f = −G−1MU,

where U is the vector of size 3N whose components are

U =

 0N×1

0N×1

(Ūz)N×1

 .
The velocity field Uval is then evaluated on a set of preassigned points by multiplying the stresses
f with a radiation matrix Geval, computed in a similar way to G,

Ueval = −M−1Gevalf.

Uval is then compared with the exact solution coming from the literature. In our case we
evaluated Uval and the exact solution on a sphere whose radius was twice the radius of the
translating sphere.

For the testcase, we consider a translating sphere of unit radius, fluid viscosity µ = 1, a trans-
lational velocity of magnitude Ūz = 2 and a number of mesh points growing as 2p, 6 ≤ p ≤ 11,
with a maximum number of 2048 mesh points. In figure I.1.1 we present the convergence plot
for the L2 norm without the usage of H-matrices storage, while in figure I.1.2 we present the
convergence plot for the L2 norm with the usage of H-matrices. In this second case, we consid-
ered again a translating sphere of unit radius, fluid viscosity µ = 1, a translational velocity of
value Ūz = 2. However, thanks to the storage technique, a larger number of mesh points could
be used. They again grew as 2p, with 6 ≤ p ≤ 13, and a maximum number of 8192 mesh points
was used. The convergence profiles in figures I.1.1-I.1.2 are of order 2, as expected from P1 finite
element theory.

In order to verify the correct implementation of (I.1.7)-(I.1.8), we tested our code on a sphere
subject to a translating force and a rotating torque. Thanks to Stokes formulas for viscous fluid
force Fext = −6πRµU and torque Text = −8πR3µω for a sphere of radius R, we are able to
recover the imposed velocities U and ω with relative errors, as collected in table I.1.1.

1https://github.com/matthieuaussal/gypsilab
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Figure I.1.1: L2 error convergence without H-matrices.

Figure I.1.2: L2 error convergence with H-matrices.

I.1.1.4 Validation of the swimming system

After testing the example of the translating sphere, we reproduced some cases issued from micro-
swimming literature where the BEM method was used to solve the self-propulsion problem. The
first case we considered is issued from [102]: our aim was to reproduce figure 2 of the above
mentioned paper, where the non-dimensional mean swimming speed U/V , with V = ωF /kE the
ratio of the tail’s rotation speed and shrinkage coefficient kE (see (I.2.2) for the role of kE in
the shape of the helix), was plotted as a function of the number of wavelength of the helical
tail Nλ. The ratio between the radius A of the spherical head of the swimmer and the width a
of the flagellum is 0.02 in this case, and the product Rt2π/λ = 1, where Rt is the helix radius
and λ is the wavelength of the helix. The figure in the paper was sampled using a visualisation
tool, and the obtained values are compared to the results of our simulation in figure I.1.3. In
figure I.1.3 two tail lengths L are considered for comparison: L = 10A and L = 5A. The second
comparison we considered was with [120], where a bi-flagellated bacterium was considered. In
this case, the non-dimensionalisation of U and ω was performed with the angular ω0 and linear
speeds U0 of a mono-flagellated bacterium having the same tail and head shapes. Figure I.1.4
shows the comparison between our results and figure 2 of the paper. The values of the geometric
parameters that were employed and the shape of the swimmers are detailed in table I.2.1 and
in section I.2.
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Figure I.1.3: Comparison of our simulation results (red) with the values sampled from [102]
(blue). On the left, the results for L/A = 10 are reported while on the right the results for
L/A = 5 are reported.
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Figure I.1.4: Comparison of our simulation results (red) with the values sampled from [120]
(blue).
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Velocity Imposed value Computed value Relative error (%)
Ux 9.0 9.0173 < 0.2
Uy 5.0 5.0096 < 0.2
Uz 1.0 1.0019 < 0.2
ωx 34.0 34.1964 < 0.6
ωy 6.0 6.0347 < 0.6
ωz 3.0 3.0172 < 0.6

Table I.1.1: Velocity values and relative errors in the forced translating and rotating sphere
testcases.

I.1.1.5 Rigid-body solver

In order to update the position and orientation of the swimmer, we implemented a rigid body
solver in Matlab using the quaternion representation for the angular description of the body.
Unit quaternions are a good option to represent the orientation of a rigid object, since they
avoid parametrization issues that can affect other representations, like the gimbal lock for Euler
angles [41, 77].

A quaternion q is defined by a scalar q0 and a 3-dimensional vector qv = (qv1 , qv2 , qv3), q =
(q0, qv). The conjugate of q will be denoted by q̄ = (q0,−qv) and the quaternion product is
defined as q ∗ r = (q0r0 − qv · rv , q0rv + qvr0 + qv × rv). The norm of a quaternion is defined
as ||q|| =

√
qq̄ =

√
q2

0 + q2
v1 + q2

v2 + q2
v3 . Each quaternion of unit norm represents a reflection in

3D space, and together with its conjugate concurs to describe a rotation in space. The rotation
matrix linked to a unit quaternion q = (q0, qv) is given by

R(q) =

q2
0 + q2

v1 − q
2
v2 − q

2
v3 2(qv1qv2 − q0qv3) qv1qv3 + q0qv2

2(qv1qv2 + q0qv3) q2
0 − q2

v1 + q2
v2 − q

2
v3 2(qv2qv3 − q0qv1)

2(qv1qv3 − q0qv2) 2(qv2qv3 + q0qv1) q2
0 − q2

v1 − q
2
v2 + q2

v3

 .
In what follows we present how to get the swimmer frame dynamics in the laboratory frame.
CoordinatesX in the laboratory frame are expressed in the swimmer frame by [0, x] = q∗[0, X]∗q̄.
Performing time differentiation we get

d[0, x]

dt
=

dq

dt
∗ [0, X] ∗ q̄ + q ∗ [0, X] ∗ dq̄

dt
=

dq

dt
∗ q̄ ∗ [0, x] + [0, x] ∗ q ∗ dq̄

dt
.

Since
d[0, x]

dt
= [0, 2v × x],

in our case 2[0, v] = 2dq
dt ∗ q̄ = [0, R(q)ω]. Then, multiplying both sides of the equality by q gives

the following dynamics for the quaternion

dq

dt
=

1

2
[0, R(q)ω] ∗ q. (I.1.10)

Once the velocities are recovered by solving (I.1.7)-(I.1.8), we can determine the position and
orientation of the swimmer in the laboratory reference frame by solving a set of ODEs of the
form [41] 

dq

dt
=

1

2
[0, R(q)ω] ∗ q,

dX

dt
= R(q)U,

(I.1.11)
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where q is the unit quaternion representing the orientation of the body in the laboratory fixed
frame, R(q) is the rotation matrix associated to the unit quaternion q, ∗ denotes the quaternion
product andX is the position of the swimmer’s centroid in the fixed reference frame. Appropriate
initial conditions for the ODEs have to be chosen. The discretization of the time derivatives is
based on the fourth-order Nystrom scheme [17].

I.1.1.6 Validation of rigid body solver

In order to validate the rigid body solver, we considered the results presented in [86]. The
solution to

dX

dt
= R(q)U, (I.1.12a)

dq

dt
=

1

2
[0, R(q)ω] ∗ q, (I.1.12b)

dU

dt
= F/m, (I.1.12c)

I
dω

dt
+ ω × Iω = T, (I.1.12d)

complemented with adequate initial conditions, is searched.

Let us remark that the exactness of the translational part of the rigid body motion is easy to
check. As a result, we will consider only equations (I.1.12b) and (I.1.12d).

We validate the rotational part of the rigid body motion by extracting a set of sample points
from the graphics of [86] and compare such results with ours. The case we will consider is
characterised by a time-varying torque, defined in the body frame, given by

T =

 1.0 + 2.7× 10−2t− 2.4× 10−4t2 + 5.7× 10−7t3

−1.5− 9.0× 10−3t+ 1.2× 10−4t2 − 3.0× 10−7t3

13.5

N ·m.
The body reference frame at t = 0 coincides with the laboratory reference frame, which in terms
of quaternions is expressed as q(0) = (1, 0, 0, 0). The components of the angular velocity ω at
t = 0 along the three principal axes are (0, 0, 0.329) rad/s, while the inertia matrix is given by

I =

2985 0 0
0 2729 0
0 0 4183

 kg ·m2

Since in [86] the results about the frame orientation are given in terms of Euler angles (φx, φy, φz),
we use the following relationship to obtain them from a quaternion q = (q0, q1, q2, q3):

φxφy
φz

 =

 arctan 2(q0q1+q2q3)
1−2(q21+q22)

arcsin(2(q0q2 − q3q1))

arctan 2(q0q3+q1q2)
1−2(q22+q23)


Figure I.1.5 shows that our results are in agreement with the numerical results in [86].

38



Figure I.1.5: Comparison of the sampled solution from [86] and our numerical solution from
equations (I.1.12). On the left, the results on Euler angle φx are compared. On the right, the
results on the component ωx of the angular velocity are compared.
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Chapter I.2

Shape improvement of a
multi-flagellated bacterium

In this chapter we use the Boundary Element method to study the shape of multi-flagellated
micro-organisms inspired by magnetotactic bacteria MO-1 [81, 138, 120]. We exploit the Nelder-
Mead algorithm and Bayesian optimisation to optimise the shapes of these micro-swimmers
and find the fastest propelling ones. In section I.2.1 the swimmer model is presented and in
section I.2.2 the discrete swimming system and optimisation algorithms are detailed. Section
I.2.3 collects the results of subsequent steps of shape optimisation, each concerning only part
of the swimmer’s parameters, via the Nelder-Mead algorithm, while section I.2.4 contains the
results of simultaneous optimisation of all the swimmer’s parameters, via Bayesian optimisation.
Sections I.2.5 reports the comparison of the two approaches and section I.2.6 contains a detailed
formulation for the BEM matrix entries.

I.2.1 Mathematical modelling

The model swimmer S is composed of non-deformable parts: an ellipsoidal head, and nT helical
tails, where nT ∈ {1, 2, 4} varies according to the micro-swimmer in consideration (see figure
I.2.1 for a graphical representation of MO-1). The ellipsoidal headH is described by the equation

H = {(x, y, z) :
x2

(Rh1)2
+

y2

(Rh2)2
+

z2

(Rh3)2
= 1}, (I.2.1)

where Rh1 is the semi-axis in the propulsion direction and Rh2 , Rh3 are the two orthogonal semi-
axes. The tails, denoted by Fi, i = 1, ...nT , are tubes of radius r, having as centreline the curve
of total length L described by

x(s) = s,

y(s) = Rt(1− e−k2Es2) cos(2πs/λ),

z(s) = Rt(1− e−k2Es2) sin(2πs/λ),

(I.2.2)

where Rt is its maximal radius, λ is its wavelength and kE is a shrinkage coefficient [56]. Tails
are separated from the cell body by a small gap l, measured along the normal to the ellipsoid,
and are symmetrically distributed and rotated with respect to the propulsion direction. The gap
between the tails and the head corresponds to the space occupied by a flexible hook, which allows
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Figure I.2.1: Three-dimensional mesh model of the MO-1 bacterium (nT = 2). In this picture
the gaps l between the cell body and the tails are visible. The head is an ellipsoid with major
axis Rh3 and minor axes Rh1 = Rh2 . The tail arc-length is L, its sectional radius is r. The helix
wavelength is λ and its maximal radius is Rt. The analytical expression for the cell body and
the tail’s centreline are given in (I.2.1) and (I.2.2), respectively.

the flagella to change their orientation. In this chapter we neglect flexibility effects and suppose
that the flagella are not able to change their orientation as they interact with the surrounding
fluid. The latitude of the tail junctions is denoted by α while their inclination angle with respect
to the horizontal is indicated by γ. The previous notations are presented in Figure I.2.1, in the
case of a bi-flagellated swimmer (nT = 2). In order to swim, the helices rotate around their
axes at speed ωF = −2π, mimicking bacteria propagating helical waves along their tail. This
modelling was already employed in [120] for the bi-flagellated swimmer, and in [102] for the
mono-flagellated swimmer.

The fluid is modelled via Stokes equations, due to the small value of the Reynolds number for
micro-swimmers. Fluid velocity and pressure, denoted by (u, p), satisfy the following Dirichlet
boundary value problem when the swimmer is composed of one head H and several flagella Fi,
i ∈ {1, 2, 4} 

∇p− µ∆u = 0 on R3 \ S
∇ · u = 0 on R3 \ S

u = U + ω × (x− xCM ) on ∂H

u = U + ω × (x− xCM ) + ωF~e
Fi
1 × (x− xFi) on ∂Fi

where S = H ∪ F1 ∪ · · · ∪ FnT , x
CM is the centre of mass of the cell, ~eFi

1 is the axis direction
of the i−th tail, for i ∈ {1, . . . , nT }, xFi is the i−th tail’s junction i ∈ {1, . . . , nT }, U ∈ R3

and ω ∈ R3 are the linear and angular velocity of the swimmer. We remark that the Dirichlet
boundary conditions are composed of two distinct parts: the term ωF~e

Fi
1 × (x − xFi) depends

on the rotation rate of the helical tail, that is a known datum, while term U + ω × (x − xCM )
contains the linear and angular velocities that result from the interaction between the swimmer
and the fluid, which are unknown. Using the integral representation formula (1), the linear and
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angular velocities (U, ω) and the surface tensions f can be determined via

U − (x− xCM )× ω+∫
∂S
G(x, y)f(y) dy = (x− xF )× ωF~eF1 ,

(I.2.3a)

∫
∂S
f(y) dy = 0, (I.2.3b)∫

∂S
(y − xCM )× f(y) dy = 0. (I.2.3c)

Equation (I.2.3a) derives from (I.1.7), where we exploited the fact that on the boundary of a
rigid body the velocity writes as u(x) = U +ω× (x−xCM ) and that reduces the second integral
in (1) to 0 when x ∈ ∂S [104]. Equations (I.2.3b)-(I.2.3c) respectively indicate that net forces
and torques over the swimmer are zero, i.e. the body moves thanks to internal forces and body
deformations. Using (U, ω) obtained from (I.2.3), the resulting trajectory of the swimmer can be
computed via the rigid-body motion solver based on quaternions that we presented in subsection
I.1.1.5.

In the case of our interest, the shape of the swimmer depends on a finite number of parameters
p ∈ P, where we suppose P ⊂ Rd to be a compact set and d ∈ N∗ to be the number of variable
parameters. In order to optimise the propulsion speed, we define the cost function j(Ū) to be a
function of the swimmer’s average velocity Ū = 1

T

∫ T
0 U(t) dt over the tail’s rotation period T .

The volumes of the head |H| and tail
∑nT

i=1 |Fi| are fixed and equal to volH and volF . Thus, the
general form of the optimisation problem reads as

max
p∈P,

|H|=volH ,∑nT
i=1 |Fi|=volF

j(Ū). (I.2.4)

I.2.2 Numerical methods

I.2.2.1 The swimming problem

We briefly recall the discretization procedure for the boundary integral equations. As it was
previously done, the components of the surface tensions are expanded as fj(y) =

∑N
l=1 f

l
jφ
l(y),

where {φl}Nl=1 span the scalar piecewise linear finite element space over ∂S, and each component
of equation (I.2.3a) is projected on this space, giving∫

∂S
Uiφ

k(x) dx−
∫
∂S

((x− xCM )× ω)iφ
k(x) dx+∫

∂S

(∫
∂S
Gij(x, y)

N∑
l=1

f ljφ
l(y) dy

)
φk(x) dx =∫

∂S
(x− xF )× ωF~eF1 φk(x) dx for k, l = 1, . . . , N,

(I.2.5a)

∫
∂S

N∑
l=1

f ljφ
l(y) dy = 0 for l = 1, . . . , N, (I.2.5b)

∫
∂S

(y − xCM )×
N∑
l=1

[f l1, f
l
2, f

l
3]Tφl(y) dy = 0 for l = 1, . . . , N. (I.2.5c)
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The matrix form of equations (I.2.5) reads as

3×N × (1 + nT )
{

3
{

3
{
 G JT KT

J 0 0
K︸︷︷︸

3×N×(1+nT )

0︸︷︷︸
3

0︸︷︷︸
3

fU
ω

 =

I(ωF )
0
0

 .
We remark that, in this specific case, (I.2.5a) contains the tails’ angular velocities that are
responsible for the swimmer’s propulsion.

I.2.2.2 The optimisation algorithms

Two approaches are discussed to solve the parametric shape optimisation problem of the multi-
flagellated micro-swimmer. In the first case, parameters are optimised successively, one by
one, while in the second approach they are all optimised simultaneously. In both cases, black-
box optimisation algorithms are considered as evaluating the cost function is computationally
expensive, and there is no information about the differentiability of the cost function with respect
to the optimisation variables.

The algorithm we considered for the first approach is the Nelder-Mead simplex method [95], that
is available in the Matlab fminsearch routine and is an unconstrained minimization algorithm.
It consists in evolving a set of n + 1 linearly independent points, where n is the dimension of
the parameter space, in order to reach the minimum of the given function. The underlying
idea of the Nelder-Mead algorithm is to eventually shrink the simplex onto the optimal point.
At every iteration, the new point is searched on the line connecting the centroid of the best n
vertices with the worst vertex xn+1. If no improvement is obtained in this way, a shrinkage of
the simplex is realized, and all the vertices but x1 are recomputed and re-evaluated. The routine
is detailed in Algorithm 1. One can remark that this algorithm only exploits the current n+ 1
points to evaluate the descent direction, and according to [95] it requires on average 48(n+1)2.11

evaluations to converge to the minimum of the cost function. Convergence results about this
algorithm are proved in [75], that shows linear convergence in one dimension to the minimizer,
in the strictly convex case.

The second approach is realized via Bayesian optimisation [46, 70], which also belongs to the
category of black-box optimisation methods and is available in the Matlab routine bayesopt. In
Bayesian optimisation the cost function is treated as a random variable, and its minimization is
based on the construction of a surrogate model, less expensive to evaluate. This model is built
from the cost function evaluations via Gaussian process regression, it is progressively updated
as new evaluations are performed and it influences the choice of the next evaluation points.

Given n points x1, x2, ..., xn ∈ Rd and the corresponding values of the cost function f(x1), f(x2),
..., f(xn), the prior distribution/surrogate function built from these evaluations is the normal
distribution

f(x1,..,n) ∼ N (µ(x1,..,n),Σ(x1,...,n, x1,...,n)), (I.2.6)

where the mean µ and covariance Σ are computed from previously chosen mean and covariance
functions, as the sample mean and the Màtern kernel respectively. Using the Bayes rule, it is
possible to infer the value of the cost function at a point x and construct the posterior distribution
f(x)|f(x1,...,n) ∼ N (µ1,..,n(x),Σ1,...,n(x)) where

µ1,..,n(x) = Σ(x, x1,...,n)Σ(x1,...,n, x1,...,n)−1(f(x1,...,n)− µ(x1,..,n)) + µ(x),

Σ1,...,n(x) = Σ(x, x)− Σ(x, x1,...,n)Σ(x1,...,n, x1,...,n)−1Σ(x1,...,n, x),
(I.2.7)

44



Algorithm 1: Nelder-Mead simplex algorithm
Initialize ρ, γ, σ, χ. (standard values are ρ = 1, γ = 1

2 , σ = 1
2 , χ = 2);

while not converged do
Order the n+ 1 points to satisfy f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1);
Compute xr = (1 + ρ)

∑n
i=0 xi/n− ρxn+1; Evaluate f(xr);

if f(x1) ≤ f(xr) < f(xn) then
xn + 1← xr

else if f(xr) < f(x1) then
Compute xe = (1 + ρχ)

∑n
i=0 xi/n− ρχxn+1; Evaluate f(xe);

if f(xe) < f(xr) then
xn + 1← xe

else
xn + 1← xr

else if f(xn) ≤ f(xr) < f(xn+1) then
Compute xc = (1 + ργ)

∑n
i=0 xi/n− γρxn+1; Evaluate f(xc);

if f(xc) < f(xr) then
xn+1 ← xc

else
Substitute xi, i = 2, ..., n+ 1 with vi = x1 + σ(xi − x1)

else if f(xr) ≥ f(xn+1) then
Compute xc = (1− γ)

∑n
i=0 xi/n+ γxn+1; Evaluate f(xc);

if f(xc) < f(xn+1) then
xn+1 ← xc

else
Substitute xi, i = 2, ..., n+ 1 with vi = x1 + σ(xi − x1)

are the updated mean and covariance. Based on this posterior probability distribution, one
chooses the next evaluation point according to an acquisition function, like the expected im-
provement. The expected improvement is defined as the conditional expectation

EIn(x) = E
[
[min f(x1,...,n)− f(x)]+|x1,...,n, f(x1,...,n)

]
, (I.2.8)

and the next evaluation point can be chosen as xn+1 = arg maxEIn(x). The maximum of EIn(x)
is to be found in regions where the posterior mean and standard deviation are high. In more
generality, this maximization is a trade-off between exploring regions where little information is
known and exploiting points were the expected posterior mean is larger than the cost function
at the previous best point.

The previous model works when the optimisation variables belong to simple domains, like hyper-
rectangles, but extensions of it allow the treatment of constrained problems where the constraints
are also expensive to evaluate (typically if they depend on the black-box outputs) [62]. In this
case, the expected improvement function will contain a term that weights the probability that
point x is feasible. Derivative-free optimisation algorithms have already proved effective in
micro-swimming problems, showing that helical propulsion is more efficient in the case of larger
cell bodies for sperm cells [58].

Details on the optimisation

When using the Nelder-Mead algorithm, we considered a non-convex cost function j(Ū , κ) =
Ū2

1 − κ(Ū2
2 + Ū2

3 ), and we maximize it under the constraint of constant tail arc-length. The
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parameter κ can be used to penalize transversal speeds as they can affect the forward propul-
sion. We expect that using this type of cost function, where transversal speeds are further
penalised, will give slower but more stable swimmers. The procedure we follow depends on the
micro-swimmer under consideration, but it is essentially based on subsequent optimisation of its
parameters. When using Bayesian optimisation, the cost function is the first component of the
average velocity, j(Ū) = Ū1. We consider additional constraints on Ū2, Ū3 defined by

|Ū2|, |Ū3| ≤ ε, (I.2.9)

where ε is a tolerance to be determined. In this case, the parameters of each swimmer are
optimised all at once.

In our simulations, the number of propulsion speed evaluations in each average is four, and
they are obtained when the tail is rotated around its axis by angles of 0.5πt, for t ∈ {0, 1, 2, 3}.
Using k = 4 evaluations instead of 6, 8 or 12 does not change the speed values in the propulsion
direction, nor the swimmer angular velocity in that same direction. The transversal velocities
change, but they remain of the same order they had in the 4 evaluations case. We limit the
number of function evaluations of the Nelder-Mead algorithm to 30. Such value is a compromise
between the accuracy of results and the time required for getting them. In figure I.2.2 an
evaluation on optimal tails’ parameters for bi-flagellated swimmers shows that, between 20 and
30 evaluations, the difference in radii and wavelengths is significant (ranging from 40% to 20%),
while these same differences between 30 and 45 evaluations amounted to 5% only. For what
concerns Bayesian optimisation, the function evaluation budget ranges from 200 to 250. We will
denote a quantity as “optimised" anytime it is the output of one of the previous optimisation
procedures.
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Figure I.2.2: This figure justifies the choice of 30 function evaluations in the optimisation process:
performing 45 or 60 evaluations leads to values that differ of about 5%.

I.2.3 Results for the first approach

In this section we address the optimisation of several swimmers. We first consider a mono-
flagellated micro-swimmer and optimise, successively, its tail wavelength and radius, its head,
and its tail section. Secondly, a bi-flagellated swimmer is considered, and the placement of the
tails and the head shapes are successively investigated. A symmetry constraint is imposed on
the shape in order to ensure a motion along the x-axis.
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Symbol Value (dimensionless) Value (dimensional)
Rh1 0.874 0.65 µm
Rh2 0.874 0.65 µm
Rh3 1.5Rh1 0.975 µm
L 3.0 2.2 µm
r 0.067 50 nm
Rt 0.2 0.15 µm
λ 1.0 0.74 µm
kE 0.333·2π/λ = 2.09 2.8 µm−1

l 2r = 0.134 100 nm

Table I.2.1: Parameters describing the body and tail shape of the bacterium. The length-scale
for the non-dimensionalisation is λ = 0.74 µm. This table is taken from [120].

Mono-flagellated swimmer. The optimisation of the mono-flagellated swimmer is addressed
in this section, according to the cost function j(Ū , κ). In order to validate our method, we
reproduced [102, fig. 6]. This graph represents the non-dimensional mean swimming speed of a
mono-flagellated micro-swimmer as a function of the ratio between its tail length and the radius
of its spherical head. The comparison is reported in figure I.2.3: blue squares are the samples
of [102, fig. 6] while green circles are the result of our algorithm combining BEM and Nelder-
Mead optimisation. The red triangle denotes the optimum found by our algorithm, which shows
that the optimisation process finds the same optimum as in the previous study. The velocity
value that is found is not exactly the same, and it might be attributed to the different domain
discretization (coarse in [102] and fine here) or the boundary elements (linear in our case and
piecewise constant in [102]).

Tail optimisation. Firstly, fixing the values of head parameters, tail section and arc-length as
in table I.2.1, the helix radius Rt and the wavelength λ are optimised. In figure I.2.4, three
optimal tails are presented for swimmers with prolate (Rh1 > Rh3), spherical and oblate heads
(Rh1 < Rh3) of equal volume. This first analysis returns as fastest swimmer the one with a
prolate head, depicted in figure I.2.4A, followed by the one with a spherical head, depicted in
figure I.2.4B. We notice that the tail shape is qualitatively very similar in the three cases. In
figure I.2.5 we compare the initial tail, as introduced in [120], and the optimal tail found by the
optimisation method using κ = 10 and an oblate head. The resulting tail has larger radius and
larger wavelength than the tail in [120], our initial guess. As a result, the optimal tail is not
forming a complete turn of radius Rt anymore, and it rather resembles to a conical helix than
to a cylindrical one. The figure reports the values of the swimming speeds, that is doubled with
respect to its initial value.

Head optimisation. Starting from the swimmer in figure I.2.4C the head shape is optimised under
the constraint of constant volume. The resulting head has the same volume as the initial one
(i.e. the head from [120]; see Table I.2.1 for the values). Figure I.2.6B shows the optimised head,
obtained with a maximal number of function evaluations equal to 30. The optimal head shape
is a prolate ellipsoid, with Rh2 ≈ Rh3 and Rh1 ≈ 3Rh3 . In other words, the sections orthogonal to
the propulsion direction are circular, and the sections containing the tail’s axis are ellipses with
an aspect ratio of 3.

Tail section optimisation. This paragraph is devoted to studying the effects that tail section
has on the propulsion speed. Three geometries are compared, under the constraint of constant
sectional area, and therefore constant tail volume. The helical tail is built by transporting the
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Ū
ω
/k

Figure I.2.3: Comparison of [102, Fig. 6] (blue thick line) and our results (green circles and
red triangle). On the x-axis the ratio L/A is represented, where L is the tail length and A is
the radius of the spherical head. On the y-axis the ratio Ūω/k is represented, where ω = 2π,
k = 1.5 is the wave parameter such that k/kE = 1, and Ū is the mean propulsion speed. The
optima roughly coincide, and the function values differ by 5% maximum.

(A). Prolate head. (B). Spherical head. (C). Oblate head.

Figure I.2.4: Comparison of optimal tails in the case of three head types with the same volume.
The fastest swimmer is on the left and the slowest on the right. We used the cost function
j(Ū , κ) with κ = 10, implementing further penalisation of lateral velocities to stabilise the
forward motion.
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U1 ≈ 0.0270 U1 ≈ 0.0585

(A). Initial tail from
[120]. Rt =0.15 µm
and λ =0.74 µm.

(B). Optimised tail.
Rt =0.30 µm and
λ =1.26 µm.

Figure I.2.5: In sub-figure (A) the tail of [120] is presented. In sub-figure (B), the optimised
tail for the mono-flagellated swimmer is represented. The latter was obtained by optimising
Rt and λ according to j(Ū , κ), with initial shape (A), with 30 evaluations in the Nelder-Mead
algorithm. The optimised tail has larger radius and larger wavelength than the tail in [120],
our initial guess. The optimised shape is not forming a complete turn of radius Rt anymore,
and it rather resembles to a conical helix than to a cylindrical one. The value of the propulsion
velocity U1 is given in the two cases.

U1 ≈ 0.0585 U1 ≈ 0.0750

(A). Initial head from [120]
with optimal tail.
Rh1 = Rh2 =0.65 µm,
Rh3 =0.975 µm.

(B). Optimised head with
optimal tail. Rh1 =1.52 µm,
Rh2 = Rh3 =0.5 µm.

Figure I.2.6: Comparison between the initial and the optimal head in the mono-flagellated case.
The optimal head shape is a prolate ellipsoid, with Rh2 ≈ Rh3 and Rh1 ≈ 3Rh3 . The sections
orthogonal to the propulsion direction are circular, and the sections containing the tail’s axis are
ellipses with an aspect ratio of 3. Sub-figure (A) shows the head from [120] and the optimised
tail previously computed, while sub-figure (B) shows at the same time the optimised head and
tail. The value of the propulsion velocity U1 is given in the two cases.
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section at s = 0 parallel to itself along the centreline, i.e. instead of using the Frenet-Serret
reference frame for the curve, we use here a parallel transported frame (see [53]). A parallel
transported frame prevents the section to twist around the centreline as it is displaced, while
in the Frenet-Serret frame case the orientation of the section depends on the torsion of the
centreline.

Once more, we are interested in selecting the tail which ensures the fastest propulsion. We
compare the mean speeds for three geometrical forms of the tail section: the circle, the triangle
and the square. As it is reported in figure I.2.7, the triangular section guarantees a larger
displacement speed. This result is explained by considering that, even if the area is constant, the

Section Propulsion speed Perimeter
Circle 0.0271 2πr ≈ 6.28r
Square 0.0290 4

√
πr ≈ 7.09r

Triangle 0.0302 6
√
πr/ 4
√

3 ≈ 8.08r

Figure I.2.7: Comparison between the propulsion speeds of different tails sections. The sections
have the same area πr2 but they are different in shape. The parameters are the same as in [120],
and in particular r = 0.067. The tail with a triangular section produces a larger propulsion
speed, followed by the square one and the circular one.

perimeter changes when passing from circular to polygonal sections. Larger sectional perimeter
leads to larger contact surface with the fluid, which enhances the propulsion. Thus, being the
triangle the geometrical figure with the larger perimeter among the ones we considered, it shows
a larger propulsion speed. These results are in line with the velocity pattern shown by the
experiments in [110].

Bi-flagellated swimmer This section focuses on the head optimisation for a swimmer with
two flagella, inspired by MO-1 (see [120]), using the same procedure we have introduced in section
I.2.3. As it is schematically depicted in figure I.2.8, eight tail configurations are tested. During
the optimisation process, the tail positions were constrained to be symmetric with respect to the
horizontal plane. Finally, the head volume was kept constant and equal to the initial volume,
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α
γ

Figure I.2.8: Schematization of (α, γ) variability in the study. For each of the three latitudes α,
from two to three tail attachment angles γ are chosen. In the figure, an example is reproduced
where (α, γ) = (0.3π, 0.1π).

calculated from table I.2.1. In figure I.2.9, the optimised heads are depicted according to the
latitude of the junctions and their angle of attachment: on the columns, the latitude angle α is
indicated, while on the rows the tail orientation angle γ is reported. Figure I.2.9 shows that a
larger mean speed is reached mainly in the case of a prolate head. Only two situations lead to
an optimised oblate head shape, and they are reported in red. Finally, the best configuration
in terms of head shape, orientation and position of the tails, is reached for a swimmer having a
prolate head and angle of attachment γ = 0 (see the blue swimmer in figure I.2.9).
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U1≈0.1263

U1≈0.1132

U1≈0.1227

U1≈0.1104

U1≈0.1160

U1≈0.1081

U1≈0.1187 U1≈0.1089

α = 0.2π α = 0.3π α = 0.45π

γ = −0.1π

γ = 0

γ = 0.1π

α = 0.2π α = 0.3π α = 0.45π

γ = −0.1π

γ = 0

γ = 0.1π

Figure I.2.9: Optimal heads in the bi-flagellated case as function of the tail junctions’ latitude
α and attachment angles γ. The image above shows the xy projections of the swimmers (radii
Rh1 −Rh2), while the image below shows the xz projections (radii Rh1 −Rh3). Leftmost swimmers
have α = 0.2π, middle swimmers have α = 0.3π, rightmost swimmers have α = 0.45π. Green
and blue swimmers have a prolate optimal head, red swimmers have an oblate optimal head.
The blue swimmer is the fastest propelling one. The value of the propulsion velocity U1 is given.
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Parameter Min Max
Rt 0.1 1
λ 0.3 4
α 0 0.5π
β 0 π

Parameter Min Max
Rh1 0.5 1.5
Rh3 0.5 1.5
γ −0.3π 0.3π
δ −0.5π 0.5π

Table I.2.2: Parameter intervals for the Bayesian optimisation algorithm.

I.2.4 Results of the second approach

In this section we address the shape optimisation of bacteria-inspired swimmers using Bayesian
optimisation. In this section the parametrisation of the swimmers included further variables in
order to represent all tail positions and orientations. We suppose the swimmer to be composed
of an ellipsoidal cell body (a volume constraint is prescribed also in this case) and nT helical tails
as in (I.2.2). If nT ≥ 2, one of the tails is identified as a reference and four angles are introduced
to describe its position and orientation; the remaining tails are symmetrically arranged with
respect to the propulsion direction. As in the previous chapter, α denotes the latitude of the
tail junction and γ the inclination angle with respect to the horizontal plane xy; angle β denotes
the longitude of the junction with respect to the xz meridian and δ the inclination angle with
respect to the vertical plane xz.

The parameter space of the optimisation is a hyper-rectangle P ⊆ Rd, and its extrema are
collected in table I.2.2. The optimisation problem reads

max
p∈P,

|H|=volH ,∑nT
i=1 |Fi|=volF
|Ū2|≤ε,|Ū3|≤ε

−Ū1. (I.2.10)

The shape optimisation of swimmers was initialised with 50 shapes. One of these shapes was
provided manually, using the values that were obtained with the Nelder-Mead optimisation,
while the 49 remaining ones were obtained via Latin hypercube sampling on P.

It is possible that the optimisation algorithm proposes a set of parameters that leads to tail-tail
intersection or tail-body intersection during its exploration of the parameter space. In order to
detect these unphysical cases and avoid the solution of the BEM system, we compute the convex
envelopes of tails and head, using the alphaShape routine in Matlab. For each pair of tail-tail or
body-tail envelopes, we look for intersections by checking if points of one envelope are contained
in the other. Considering the convex envelope of the helical tails allows us to also check if any
intersection will happen during the rotation of the tail around its axis. If an intersection is
detected, the corresponding set of parameters is declared unfeasible.

Mono-flagellated swimmer. Different values ε were tested to reduce the transversal motion
of the swimmer, and the value that was kept is ε = 0.01. The optimal shape that was obtained
for the mono-flagellated swimmer is reported in figure I.2.10: letting the placement of the tail
junction free, the optimal shape resulted in a prolate head and a tail which is eccentric with
respect to the propulsion direction. The optimal parameters are reported in table I.2.3 and none
of them is located on the boundary of the feasible region. The average propulsion velocity in
this case is U1 ≈ 0.089, which is larger than the propulsion velocities obtained in the first case.

Bi-flagellated swimmer. The presence of two flagella increases the number of parameters of
the problem, as the position and orientation of each flagellum is described by four angles. In order
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Figure I.2.10: Optimal mono-flagellated swimmer. From the left: swimmer R1 − R3 plane,
R1 −R2 plane and R2 −R3 plane.

Parameter Optimal value
Rt 0.819
λ 2.792
α -0.301
β 1.303

Parameter Optimal value
Rh1 1.278
Rh3 1.034
γ -0.019
δ 0.001

Table I.2.3: Parameters describing the geometry of the mono-flagellated optimal swimmer in
figure I.2.10. The optimal speed in this case is U1 ≈ 0.089.

to investigate whether four angular parameters per tail are necessary, we fixed the position of
the tails to be symmetric with respect to the propulsion direction and let the angles γ1, δ1, γ2, δ2

responsible for the orientation, free to change. We observed that the optimal configuration in
this case was obtained by a swimmer whose tail orientations were also symmetric with respect
to the direction of propulsion. For this reason, only a set of four angles is used to describe
the position and orientation of the tails. Starting from the reference tail, whose configuration
is dictated by α, β, γ, δ, the other tail is created by a rotation of 180◦ around the propulsion
direction. The optimal swimmer is depicted in figure I.2.9, and it has an oblate head. The
tails, rotating around their axes, are very close to the body of the swimmer and the helices they
form are very elongated. All the parameters, whose values are collected in table I.2.4, are in the
interior of P and among them δ is the closest one to one extremum of the feasible interval. The
propulsion velocity for this swimmer is extremely large, U1 ≈ 1, larger that the other propulsion
speeds of two orders of magnitude.

Figure I.2.11: Optimal swimmer in the bi-flagellated case. From the left: swimmer R1 − R3

plane, R1 −R2 plane and R2 −R3 plane.

Tetra-flagellated swimmer. In the tetra-flagellated swimmer case, the four flagella are lo-
cated at an angular distance of π

2 from each other, ensuring a symmetric body configuration
as in the bi-flagellated case. The optimal shape of the tetra-flagellated swimmer is depicted in

54



Parameter Optimal value
Rt 0.104
λ 3.133
α 0.102
β 2.465

Parameter Optimal value
Rh1 0.709
Rh3 0.654
γ 0.328
δ 1.316

Table I.2.4: Parameters describing the geometry of the optimal bi-flagellated bacterium in figure
I.2.11. The optimal speed in this case is U1 ≈ 1.

figure I.2.12: in this case the head of the swimmer is flattened in the propulsion direction and
the tails are similar to the optimal tails found in the bi-flagellated case. Table I.2.5 contains
the values of the optimal parameters describing the tetra-flagellated swimmer. The propulsion
speed of this swimmer is U1 ≈ 1.42, which is larger than the bi-flagellated swimmer’s velocity
but not linearly increasing with the number of tails.

Figure I.2.12: Optimal swimmer in the tetra-flagellated case. From the left: swimmer R1 − R3

plane, R1 −R2 plane and R2 −R3 plane.

I.2.5 Discussion

The shape optimisation of multiple micro-swimmers has been addressed, choosing to maximize
the advancement speed in the −x direction. Using the first approach, tail shape, head shape and
tail section shape optimisation were addressed in the mono-flagellated case. All these results
are in line with the literature: in the optimisation process, the number of waves in the optimal
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Parameter Optimal value
Rt 0.11201
λ 3.4106
α 1.152
β 2.6615

Parameter Optimal value
Rh1 0.52329
Rh3 1.3729
γ -0.74737
δ -0.72203

Table I.2.5: Parameters describing the geometry of the optimal bacterium in figure I.2.12. The
optimal speed in this case is U1 ≈ 1.42.

tail approaches unity, which was seen to be optimal for swimmers with shorter tails in [56, 102].
The number of turns is also in agreement with the experimental findings in [130], who find
(for ferromagnetic robots with thicker flagella, whose head and tails are integral) the value of
about 1.1 as the optimal one. The tail section optimisation fits the experimental results in [110]:
triangular tail sections have a larger perimeter and allow larger propulsion speeds since they
offer a wider contact surface to the surrounding fluid. Regarding the bi-flagellated case, the
head shape was optimised with respect to the different tail configurations. The prolate heads
appears to be the hydrodynamical best shape in a wide number of tail configurations, while
oblate heads, as the one of MO-1 bacteria, appear to be optimal in a restricted subset of tail
configurations.

When using the second optimisation approach and allowing the tails to orient outside the plane,
different optimal shapes are obtained. In the multi-flagellated cases, propulsion speeds are also
significantly larger than the ones obtained via the first approach, perhaps due to the increased
symmetry of the swimmer’s tail-body configuration. The presence of multiple tails does not
increase the propulsion speed proportionally to their number, but rather sub-linearly. Moreover,
the cell’s body seems to elongate in the directions of the tails’ junctions: prolate in the mono-
flagellated case, oblate in the bi-flagellated case, flat and symmetric in the tetra-flagellated case.

I.2.6 Explicit formulas for matrices in (I.2.5)

The matrix form of equations (I.2.5) is

3×N
{

3
{

3
{
 G JT KT

J 0 0
K︸︷︷︸

3×N

0︸︷︷︸
3

0︸︷︷︸
3

fU
Ω

 =

I(ω)
0
0

 .
Sub-matrix G is composed of (1 + nT )2 sub-matrices G{A,B}, for A,B ∈ {∂H, ∂Fi}. Let us
define as NA and NB the cardinality of the scalar finite element subspaces corresponding to the
degrees of freedom over A and B, respectively. Each of the G{A,B} is subdivided into NA ×NB

sub-matrices of size 3× 3, named G{A,B}ij,lk defined as

G
{A,B}
ij,lk :=

∫
A

∫
B
Gij(x, y)φl(x)φk(y) dxdy, (I.2.11)

for i, j = 1, 2, 3 and l = 1, . . . , NB, k = 1, . . . , NA.

Sub-matrix J is composed of (1 + nT ) sub-matrices JA for A ∈ {∂H, ∂Fi}. Each of the JA has
size 3× 3NA, it is block diagonal and it components JAil,j are 3×NA sub-matrices defined as

JAil,j :=

∫
A
~eiφl(x) dx, (I.2.12)
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for i = 1, 2, 3 and l = 1, . . . , NA inside each block and j = 1, 2, 3 denoting the diagonal block.

Sub-matrix K is composed of (1 +nT ) sub-matrices KA for A ∈ {∂H, ∂Fi}. Each of the KA has
size 3× 3NA, and its components KA

ij,l are defined as

KA
ij,l :=

∫
A

[(x− xCM )× ~ei]jφl(x) dx, (I.2.13)

for i, j = 1, 2, 3 and l = 1, . . . , NA.

Vector I(ω) is composed of (nT ) non-zero sub-vectors I(ω)A for A ∈ {∂Fi}, and one zero sub-
vector for A = ∂H. Each of the non-zero sub-vectors I(ω)Ai is subdivided into NA sub-vectors
of size 3, named I(ω)Ai

j,l defined as

I(ω)Ai
j,l =

∫
∂Ai

[(x− xAi)× ω~eAi
1 ]jφl(x) dx, (I.2.14)

for j = 1, 2, 3 and l = 1, . . . , NA.
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Chapter I.3

Swimming of a bi-flagellated bacterium
with elastic junctions

In this chapter we consider the MO-1 bacteria model to study its swimming behaviour under the
hypothesis of elastic tail-body junctions. While in the previous section the tails were rotating
at a fixed angle, here they are free to bend at the junctions as the elastic effects are modelled
via two torque springs at each junction. Since the two tail bundles are sufficiently far apart, we
first study an RFT model describing the steady swimming of the bacterium in section I.3.1. In
section I.3.2 we include elasticity at the junctions in the BEM numerical model and present an
initial testcase.

I.3.1 The RFT model

I.3.1.1 Geometry

The swimmer being addressed in this section is composed of a spheroidal head (i.e. among
the three radii that define an ellipsoid, two of them are equal) and of two tails. The tails are
Higdon helices of equations (I.2.2), given in the tail’s reference frame Oxyz. Here, the origin O
coincides with (0, 0, 0), the first axis is tangent to the curve at s = 0, and the other two span
the perpendicular plane to the tangent vector. The parameter s takes values in [0, XM ], R is
the helix radius, λ is the tail’s wavelength and kE = 0.33 ∗ 2π/λ. In this parametrization, the s
variable is not the arc-length, hence XM does not coincide with the length of the tail, but rather
with the maximal value taken in the local X direction. The arc-length of the line is given by

a(s) =

∫ s

0

√
1 + (

dy(r)

dr
)2 + (

dz(r)

dr
)2dr, (I.3.1)

from which one can compute the derivative with respect to s

da(s)

ds
=

√
1 + (

dy(s)

ds
)2 + (

dz(s)

ds
)2, (I.3.2)

that in turn can be rewritten, calling E(s) = (1− e−k2Es2), as

da(s)

ds
=
√

1 + (RE(s)′)2 + (2πR/λE(s))2. (I.3.3)
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I.3.1.2 The balance of forces and torques

The absence of inertial effects in the low Reynolds number regime simplifies Newton’s equations
to a balance of forces and torques where the inertial term is absent. In the following, we make
the assumption that the bending at the junctions is constrained on a plane (the one containing
the angle γ, cf. figure (I.2.1)). The balance of viscous drag and propulsion forces for the bi-
flagellated swimmer, projected in the propulsion direction and expressed in the laboratory frame,
is

[CD + 2K(γeq)]Ux − 2Fprop cos(γeq) = 0. (I.3.4)

Here, CD is the head resistance matrix, K(γeq) is the tail resistance matrix, Fprop is the propul-
sion force vector, γeq indicates the bending angle at which the torque balance at the junction
is realized and Ux denotes the translational velocity in the propulsion direction. The prefactor
2 indicates that the contributions coming from the two flagella add up. The balance of torques
over the flagellum reads as

L(γeq)Ux −G(k, γeq − γ̄) = 0, (I.3.5)

where L(γeq) is the tail resistance matrix related to torque effects, G is a function of k, the torque
spring elasticity, and γeq− γ̄ the angle between the tail’s axis in its equilibrium position and the
tail’s axis in its rest position. The functionG(k, γeq−γ̄) can be eitherG(k, γeq−γ̄) = k(γeq−γ̄) (if
we want to use the linear torque spring model), orG(k, γeq−γ̄) = k tan(γeq−γ̄). This latter model
is preferable since it behaves linearly for small displacements, but penalises large deviations with
stronger recovery forces. In particular, it can prevent unphysical interpenetrations between tails
and cell body. For the reasons just given, we use the second model for simulations, while the
first one will be useful for testcases.

Equations (I.3.4)-(I.3.5) are simultaneously solved via a bisection method. The angle γeq that
solves the previous non-linear system is then fed to (I.3.4) to recover the corresponding value of
the propulsion speed Ux in the propulsion direction.

I.3.1.3 The resistance matrices and propulsion force

The resistance matrix CD is computed according to [71, pag.64-68] for prolate-oblate spheroids,
in the head reference frame. In the prolate and oblate case

F = −6πaµ[XA
~d⊗ ~d+ YA(I− ~d⊗ ~d)]~U (I.3.6)

where XA and YA have different expressions depending on the shape of the spheroid, ~d and ~U
denote the symmetry axis of the spheroid and the velocity vector of the spheroid. We remark
that the definition of eccentricity for XA and YA is e =

√
a2
K − c2

K/aK where aK is the larger
semi-axis of the spheroid [71].

The resistance matrix Kf (γeq) is computed in the tail’s reference frame by integrating dF =
−[c‖t̂ ⊗ t̂ + c⊥(I − t̂ ⊗ t̂)] ds over the flagellum, where c‖ = (4µπ)/(ln(2λ/r) + 0.5) and c⊥ =
(2µπ)/(ln(2λ/r)−0.5), λ is the tail wavelength, r the tail’s thickness. Here ds is the arc-length,
t̂ is the normalised tangent vector to the helix, expressed using the arc-length parametrization.
So,

Kf (γeq) =

∫ L

0
dF = −

∫ XM

0
[c‖t̂(x)⊗ t̂(x) + c⊥(I− t̂(x)⊗ t̂(x))]

ds

dx
dx, (I.3.7)

using the parametrization in (I.2.2), and (I.3.3) for ds/dx.
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The resistance matrix Lf (γeq) is computed in the tail’s reference frame as well, by integrating
x× dF = −x× [c‖t̂⊗ t̂+ c⊥(I− t̂⊗ t̂)] ds over the flagellum

Lf (γeq) =

∫ L

0
x×(dF ·(ei×x)) = −

∫ XM

0
x×([c‖t̂(x)⊗ t̂(x)+c⊥(I− t̂(x)⊗ t̂(x))]·(ei×x))

ds

dx
dx,

(I.3.8)
again using the parametrization in (I.2.2), and (I.3.3) for ds/dx.

The propulsion force vector is F fprop, in the tail reference frame, is computed as follows

F fprop =

∫ XM

0
dF · (ωtail× x) dx = −

∫ XM

0
[c‖t̂(x)⊗ t̂(x) + c⊥(I− t̂(x)⊗ t̂(x))] · (ωtail× x)

ds

dx
dx,

(I.3.9)
where ωtail is the imposed angular velocity, which is directed along the tail’s axis.

These integrals are computed in the tails’ reference frame, and are successively expressed in the
laboratory frame by multiplication with the rotation matrix

R =
[
ẽ1 ẽ2 ẽ3

]
, (I.3.10)

where ẽi, i ∈ {1, 2, 3} is the tail local basis expressed in the laboratory reference frame. Hence, in
the laboratory frame, we get K(γeq) = RKf (γeq)R

T , L(γeq) = RLf (γeq)R
T and Fprop = RF fprop.

In the following simulations, we fix γ̄ to be the angle between laboratory x axis and the normal to
the head at the tail’s attachment point. Such normal is given by ~n = (x/(RH1 )2, y/(RH2 )2, z/(RH3 )2).
Oblate spheroids with high eccentricity will have γ̄ close to 0, while prolate spheroids with high
eccentricity will have γ̄ close to π/2. We fix the tail length by choosing XM = 3. This value of
XM , however, is not big enough to prevent the asymmetry of the helix to affect Fprop, L(γeq) or
K(γeq). Since the asymmetry is averaged over a tail rotation period, we take the projection of
F fprop along the helix axis before applying the rotation matrix R (cf. figures I.3.2-I.3.4 and the
following subsection). To produce these figures we fixed the tails’ latitude angle α = 0.4π.

The value of the elasticity constant k will be varied to see the effects it has on the equilibrium
angle γeq and on the propulsion velocity Ux.

I.3.1.4 Validation of the RFT model

The RFT model was validated against analytical results coming from the literature. We consider
a cylindrical helix of pitch angle θ, where tan θ = 2πR/λ, and we compute the fluid drag, the
fluid torque and the propulsion force for different values of the length-wavelength ratio L/λ and
the wavelength-radius ratio λ/R. Our results are compared to [113], who computed Fprop, L,K
for the cylindrical helix

Fprop = (ΩR)(Cn − ct) sin θ cos θ
L

cos θ
,

L = (ΩR3)(Cn cos2 θ + Ct sin2 θ)
L

cos θ
,

K = U(Cn sin2 θ + Ct cos2 θ)
L

cos θ
.

(I.3.11)

In figures I.3.1 we report the results of our benchmark for different values of the ratio λ/R. The
reference values for the fluid drag, torque and propulsion force, computed with equation (I.3.11),
are shown in yellow, while the values we computed are shown in red. We remark that the two
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Figure I.3.1: The figures present the comparison between the RFT coefficients for a cylindrical
helix as described in (I.3.11) and the ones computed by our code (in yellow and red, superposed),
matching with a relative tolerance of 10−10. In blue, we present the curves for the helix of our
interest, described by equations (I.2.2).

curves coincide, as the relative difference between our results and the benchmark is smaller than
1e−10. In blue we report the same coefficients, computed in the case of the helix of our interest.
Similar results were obtained when computing the RFT coefficients for different values of the
ratio L/λ, and for such reason those figures were not included.

I.3.1.5 Results of the model

In figures I.3.2-I.3.4 we see that, depending on the tail length, the quantities K, L and Fprop
assume different values and reflect the asymmetry of the tail shape for shorter tails. However,
we expect that, over a period, the average propulsion force is directed in the tail’s axis direction.
For this reason, we directly consider Fprop = [Fprop,1 0 0] in the tail’s frame.

The equilibrium angle γeq and the propulsion speed vary with the elasticity constant, the head
shape and the tails’ attachment angle α. In figures I.3.5-I.3.6 we show all these variations at once,
fixing the elasticity constant. The top figures in I.3.5-I.3.6 show the reference angles γ̄ in black
(they vary because the normal varies with the attachment point and with the head shape) and
the corresponding coloured γeq, as the attachment angles vary from 0.1 to 1.1472, as a function
of the head eccentricity (in the abscissa). The bottom figures display the propulsion velocity as
the attachment angles vary, as a function of the head eccentricity. In figure I.3.5 the elasticity
constant is k = 100 and in figure I.3.6 the elasticity constant is k = 10. It is possible to see that
lower values of the elasticity constant allow for larger deviations from the equilibrium position
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Figure I.3.2: Comparison of K(γeq) for XM = 3 (left) and XM = 30 (right). We see that the
asymmetry of the initial part of the tail produces an asymmetry of K(γeq) with respect to the
γeq = 0 axis.

Figure I.3.3: Comparison of L(γeq) for XM = 3 (left) and XM = 30 (right). The asymmetry of
the initial part of the tail produces again an asymmetry of L(γeq) with respect to the γeq = 0
axis.

Figure I.3.4: Comparison of Fprop for XM = 3 (left) and XM = 30 (right). As before, a short
tail produces an asymmetry in the propulsion force Fprop with respect to the γeq = 0 axis.
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of the tails, as expected, since the elastic recovery momentum is weaker. This encourages the
alignment of tails with the propulsion direction, which improves the propulsion speed for prolate
heads, as we can see by comparing the two red curves in the bottom figures of I.3.5-I.3.6. It is
possible to see that, when tails are closer to the equator of the spheroid, the propulsion velocity
is higher for prolate head shapes (positive x). On the other hand, when tails are located far
from the equator, larger propulsion speeds are experienced for oblate heads.

I.3.2 The BEM model

The swimmer being considered has an ellipsoidal head and two helical tails. The tails junction
points are located symmetrically over the cell body, at the latitude provided by the angle α
and with an inclination with respect to the horizontal given by the angle γ. We indicate as
S ⊂ R3 the region occupied by the swimmer, and by ∂S its surface. H and Fi (i = 1, 2) will
be used to indicate the cell body and the tails, respectively; xCM will denote the centre of mass
of the cell body and xFi the junction point between the i−th flagellum and cell. We model
the elasticity effects at the head-tail junctions using torque springs, which are defined by their
elasticity constant k. A non-zero elastic torque will induce a rotation at the junction, which
will be described by two angular velocities ωi around the e2 and e3 axes of the flagellum’s local
reference frame. A more general expression of the elastic torque can be given by

Melast = −k ẽeq3 × ẽ3

||ẽeq3 × ẽ3||
tan(arcsin(

||ẽeq3 × ẽ3)||
||ẽeq3 || ||ẽ3||

), (I.3.12)

where ẽ3 is the axis vector of the tail in its rest position (seen in the lab frame) and ẽeq3 is the
the axis vector of the tail in its equilibrium position (seen in the lab frame).

As before, we employ the single layer formulation for the Stokes flow field (the constant prefactor
is inside G),

u(x) = −
∫
∂S

G(x, y)f(y) dS(y), (I.3.13)

and complement it with self propulsion constraints∫
∂S
f dS = 0,∫

∂S
(x− xCM )× f dS = 0.

(I.3.14)

The velocity field on the surface of the swimmer has the following form

V el(x) =


U + ω × (x− xCM ), x ∈ ∂H,

U + ω × (x− xCM ) + Bω1 × (x− xF1) + BΩF1 × (x− xF1), x ∈ ∂F1,

U + ω × (x− xCM ) + Bω2 × (x− xF2) + BΩF2 × (x− xF2), x ∈ ∂F2,
(I.3.15)

where ΩFi
is the imposed and known axial rotation of the flagellum, ωi is the angular velocity

coming from the torque spring and B is the matrix expressing the change in coordinates from
the body frame to the laboratory frame. ωi and ΩFi

are expressed in the cell body frame.

In order to recover ω1 and ω2, we complement the previous system with the following equations∫
∂F1

(x− xF1)× f = −MF1
elast,∫

∂F2

(x− xF2)× f = −MF2
elast,

(I.3.16)
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Figure I.3.5: Equilibrium angle (top) and propulsion speed (bottom) as a function of the head
eccentricity. The different curves are parametrized by the angle α which corresponds to the
latitude of the tails on the spheroid. In this case, the elasticity constant is equal to 100 and the
elastic recovery momentum maintains the tails close to their initial position.
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Figure I.3.6: Equilibrium angle (top) and propulsion speed (bottom) as a function of the head
eccentricity. The different curves are parametrized by the angle α. In this case, the elasticity
constant is equal to 10 and the elastic recovery momentum is weaker than the previous case. This
encourages the alignment of tails with the propulsion direction, which improves the propulsion
speed for prolate heads.
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Figure I.3.7: Relaxation times for two tails whose junctions are located at the extremities
(0, 0,±R3) of an ellipsoidal body of radii R1 = R2 = 1 and R3. Smaller values of R3 cor-
respond to smaller and flatter spheroids.

where MFi
elast = −k tan(φ)e⊥, k is the elasticity constant, φ = arcsin(|e′z × e′′z |) and e⊥ =

(e′z × e′′z)/|e′z × e′′z |, where e′′z is the axis vector of the tail in its rest position (seen in the lab
frame) and e′z s the the axis vector of the tail in its equilibrium position (seen in the lab frame).
The elastic momentum has the same form as in (I.3.12), but for the sake of benchmark, we
consider also an elastic momentum which is linear with respect to φMFi

elast = −kφe⊥. Equations
(I.3.16) impose the torque balance at the head-tail junctions by equalling the elastic and fluid
momenta, with respect to the junction xFi . By expanding each component of f over the finite
element basis {φl}Nl=1 defined over the flagella, we can write fj(y) =

∑N
l=1 f

l
jφ
l(y) , analogously

as we did for the self-propulsion constraint on the torque. We can then write the variational
formulation ∫

∂F1

(x− xF1)×
N∑
l=1

[f l1, f
l
2, f

l
3]Tφl(x) = −MF1

elast,∫
∂F2

(x− xF2)×
N∑
l=1

[f l1, f
l
2, f

l
3]Tφl(x) = −MF2

elast.

(I.3.17)

I.3.2.1 Validation of the elasticity model at the junctions

The implementation of the torsion spring is validated by considering the problem of tail relax-
ation, from a position where the elastic torque is non-zero to the rest position where the elastic
torque is zero, and subsequent stillness of the flagellum around that position. We performed this
check for different ellipsoidal shapes, and in all cases the relaxation position was attained. The
relaxation time depended on the ellipsoid’s shape, as shown in figure I.3.7. Figure I.3.8 shows
the relaxation of the tails towards the vertical position, denoted in our case by a blue vertical
vector.
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(a) t = 0.3 (b) t = 1.4 (c) t = 2.7

Figure I.3.8: Relaxation of the tails at the junctions. The blue lines correspond to the relaxed
position of the tails, the red lines to the current position and the black lines with the direction
of the elastic moment. As the time passes, the black vectors shrink and the red vector aligns
with the vertical blue one.
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Chapter I.4

Software development

The results and simulations presented in this part have been realised in Matlab. Part of the sim-
ulation framework is based on the Matlab BEM library Gypsilab, namely domain discretisation,
matrix assembly and numerical integration. Other parts are deferred to Matlab’s own routines,
like the optimisation algorithms and algebraic solution of the BEM system. The rest has been
implemented using as much as possible Matlab classes and tested via Matlab Unit testing.

The rigid-body solver, based on quaternions, is programmed as a class which calls a module of
functions. The module contains few functions implementing fundamental quaternion operations,
like the product of two quaternions or the transformation of the unit quaternion into a rotation
matrix. The class contains the properties which describe the position of the rigid body in
space and the methods that are required to solve the system of rigid-body ODEs. The testcase
presented in I.1.1.6 is implemented using the Unit Testcase framework of Matlab.

The scripts and functions implementing the convergence tests presented in I.1.1.3 are contained
in the Gypsilab GitHub repository1.

The RFT simulations are based on a class that computes the drag force, torque and propulsion
force given the helical tail. The choice of the cylindrical helix allowed us to benchmark our
results, as shown in the previous sections.

The BEM simulations are also based on few Matlab classes. The geometry of the swimmer
is encoded in three classes: two handle the mesh generation of head and tail, while the third,
named swimmer_geometry, adds further information on the global geometry of the swimmer
(like the angles α and γ) while inheriting the methods and properties of the first two. This
class also contains a method that detects intersections between tails or between one tail and the
head. Another class is responsible of the boundary element simulation during the tail revolution
period around its axis: this class derives the geometry from the swimming_geometry class and
implements the construction of the Stokes problem using BEM over the boundary of the swimmer
when no elasticity at the junction is considered. BEM simulations using elastic junctions are
treated by another class, which builds on the previous BEM class and adds the terms including
the elastic momentum and the torque springs at the junctions. Tests were run on these classes,
and their results have been shown along this chapter.

1https://github.com/matthieuaussal/gypsilab/nonRegressionTest/stokes/translatingSphere
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Part II

Finite element framework for
micro-swimming simulation and

optimisation
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This part presents the mathematical and numerical modelling of the swimming problem in
differential form, where the numerics is based on a conforming Arbitrary-Lagrangian-Eulerian
fluid-swimmer finite element discretization. Chapter II.1 presents the mathematical modelling of
the problem, focusing on different swimmer models and the Arbitrary-Lagrangian-Eulerian de-
scription of the fluid problem. Chapter II.2 contains the various aspects of the discrete problem:
spatial and temporal discretisations are addressed, as well as preconditioning and mesh adap-
tation. Chapter II.3 validates the methods and models presented in the previous two chapters
through testcases on mesh adaptation and fluid-body simulations.
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Chapter II.1

Modelling

In this chapter we focus on the mathematical modelling of the fluid-structure problem. In
section II.1.1 we present the different swimmers that we are able to model and simulate using
the framework, and we focus on their deformation strategy and gait. The distinctions we made
are also based on the mathematical and/or computational form of the swimming stroke. In
section II.1.2 we address the formulation of the moving continua using the Arbitrary-Lagrangian-
Eulerian formalism, which will then be used to express the fluid problem in moving domain; in
section II.1.3 we present the fluid model we consider and show how we modelled the motion
of an immersed rigid body; in section II.1.4 we present the coupling conditions that describe
the interaction of the fluid and swimmers for the different swimmer models we discussed at the
beginning of the chapter. The formulation is presented in terms of Navier-Stokes equations, to
be as general as possible, hence section II.1.5 discusses the usage of Stokes equations and how
the formulation changes with this model.

The Arbitrary-Lagrangian-Eulerian method is popular in fluid-structure interaction problems
[45, 115], and it is based on a formulation of the fluid equations in a frame that is intermediate
between Eulerian and Lagrangian. Here we use the Feel++ library for its implementation [105].
Other formalisms for fluid-structure interaction, like immersed boundary methods, use finite
elements. Differently from the conforming ALE method, the immersed boundary method [101]
formulates the fluid problem in the Eulerian frame, on a fixed domain, and the solid problem
on an independent moving domain that interacts with the fluid via equations that involve the
Dirac delta function. The fluid-interaction interaction forces appear on the right-hand side of the
Navier-Stokes equations and can be transferred to the fluid domain by using level set methods
to follow the fluid-solid interface and compute elastic forces [30].

II.1.1 Swimmer models

The variety of mathematical and computational descriptions of swimmers’ gaits led us to consider
different swimmer models in order to include as many cases as possible in our micro-swimming
framework. We grouped swimmer gaits and models into three categories. The first category is
constituted by non-deformable swimmers or by collection of rigid bodies. As these swimmers
are not able to deform their components, they move either by exploiting external actuations or
by relative motion of their parts. The second category of models contains deformable swimmers
whose body deformation is prescribed and known in advance. Here, the swimming gait can
be modelled via an analytical formula or it can come from observations.. The third category
comprises elastic swimmers modelled by elasticity equations. In our case, non-linear elasticity
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is chosen as the hypothesis of small displacement gradients is generally not satisfied by the
swimmers we aim to model, as their bodies bend significantly. In this last case, we consider also
models of “active” elasticity, that allow to model bodies that can self-deform exploiting internal
actuation mechanisms.

Let us denote by S ⊂ Rd the region occupied by the swimmer and by ud(t,X) : [0, T ]×∂S → Rd
the deformation velocity at the boundary of the swimmer encoding the swimming gait, defined on
the swimmer’s initial configuration. Let X ∈ S be the variable in the reference configuration, η :
S → Rd the swimmer’s displacement and x ∈ (I+η)(S) the variable in the current configuration
of the swimmer’s domain. The deformation velocity will have different forms depending on the
swimmer under consideration, and it will be part of the kinematic boundary condition at the
fluid-swimmer interface. As we will see later, on ∂S, one requires that the restriction of the
fluid velocity u(t, x)

∣∣∣
∂S

and the swimmer’s velocity coincide. This latter can be split as the sum

of two contributions: a rigid-body contribution U + ω × (x − xCM ), where U and ω are the
translational and angular velocity of the swimmer and xCM = (I+ η)(XCM ) its centre of mass,
and ud, which denotes the deformation velocity of the object, that is the speed at which its
shape changes or equivalently the velocity at which it’s able to push the fluid at its boundary.
Let ρs(X) be the density of the swimmer: its mass m, centre of mass XCM and inertia matrix
J are computed as

m =

∫
S
ρs(X) dX, XCM =

1

m

∫
S
Xρs(X) dX, J =

∫
S
ρs(X)(X −XCM )⊗ (X −XCM ) dX.

These quantities are defined in the swimmer’s reference frame, as they are computed in the
reference configuration S of the swimmer’s body. As it will be shown in section II.1.3, the centre
of mass and the moment of inertia of the swimmer will evolve as the swimmer’s local reference
frame moves with respect to the laboratory frame, in which the fluid equations are cast. Also
the expression of the deformation velocity ud will be influenced by the change of reference frame
necessary to express the swimmer’s variables in the fluid’s reference frame.

II.1.1.1 Rigid swimmers

A non-deformable micro-swimmer can be used to approximate ciliated micro-organisms via the
“squirmer” model [38], or to simulate swimmers like helical micro-robots [131] or phoretic par-
ticles [91]. In the squirmer case, the swimming gait of the organism can be encoded in the
function ud by prescribing a velocity field tangent to ∂S0, modelling the cilia waving pattern
on the surface of the body. For a circular squirmer moving in the direction ~d, the magnitude
of the surface velocity |ud| ∝ sin(∠(~d, x − xCM )) depends on the swimming direction ~d. For
helical micro-robots and phoretic particles, ud = 0 as those swimmers do not deform. However,
their motion is coming from chemical or magnetic forces and torques that influence directly their
translational and angular velocities U and ω.

When considering several rigid bodies, capable of moving relatively to each other, as in the case
of multi-sphere swimmers [93, 6], one can prescribe a non-zero ud to impose the relative velocity
between these bodies. This possibility will be shown in chapter IV.1, where the three-sphere
swimmer stroke proposed in [93] will be reformulated as a relative velocity prescription. Figure
II.1.1 illustrates this example where the left and right arms are activated by the function of
corresponding colour.
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T

Time

ud(t)

Figure II.1.1: The three sphere swimmer and its swimming gait are presented, as proposed by
[93]. Next, the functional form of the relative velocity function coming from this gait is presented
over one period T .

II.1.1.2 Swimmers with prescribed deformation

In the case of deformable swimmers, the function ud denotes the deformation velocity of the body.
Depending on the case under consideration ud can be available in different forms: analytical [111],
from reduced models based on ODEs [64] or from images [115]. Particular attention should
be paid to the body configuration in which the analytical and reduced models are evaluated.
Normally, they are evaluated on the initial configuration of the swimmer: for example, in the
case of a sperm cell, often these quantities are computed considering the tail to be in horizontal
position, as in

ud(t,X) =

[
A cos(4π(t−X))
B cos(2π(t−X))

]
, (II.1.1)

a simplified version of the deformation velocity employed in [111]. Another note to be considered
is that, for reduced models, the displacement being computed might concern just a subset of the
body, or lower dimensional approximation of it, for example the centreline of the tail as in

dr
dl

= −e3,

de1

dl
= −κfe3 + τfe2,

de2

dl
= −τfe1,

de3

dl
= κfe1.

(II.1.2)

where r is the position vector of the centreline, {e1, e2, e3} give the orientation of the local refer-
ence frame and l ∈ [0, L]. In this case, one should also devise a way to extend the displacement
to the whole region occupied by the swimmer’s body. In chapter IV.2.1 an example of this has
been addressed.

II.1.1.3 Elastic swimmers

The last category of swimmers we considered is the category of elastic swimmers, that collects
swimmers whose deformation is not known a priori or simplified with reduced models, but arises
from the solution of elasticity and the fluid-swimmer interaction. In this case we differentiate
among two elasticity models: passive elasticity is used to describe swimmers that deform as a
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result of external forces and torques, while active elasticity is used to model swimmers who can
deform as a result of internal effects. The first case comprises flexible passive micro-robots, while
the second one comprises flagella whose deformation is caused by internal molecular motors, or
more generally muscular action for larger swimmers.

Passive elasticity

Let F = I +∇Xη be the spatial gradient of the position vector x(t,X), encoding the geometric
variations of the deformable body. Then, let E = 1

2(F TF − I) = 1
2(∇Xη+∇XηT +∇XηT∇Xη)

be the strain tensor, which depends non-linearly on the displacement η. Finally, let us define Σ
as the second Piola-Kirchhoff tensor, whose expression depends on the constitutive model of the
elastic body and E. In this thesis we restrict to hyper-elastic materials, for which there exists
an energy function E such that Σ = ∂E

∂E . One peculiarity of hyper-elastic materials is that the
work done by the structure, when passing from one configuration to the other, depends only
on the initial and final state, and not on the particular sequence of deformations. The easiest
model one can consider is the Saint-Venant-Kirchhoff model, for which

E =
λ

2
tr(E)2 + µE : E, Σ =

∂E
∂E

= λtr(E)I + 2µE, (II.1.3)

where
λ =

eν

(1 + ν)(1− 2ν)
, µ =

e

2(1 + ν)

are the Lamé coefficients depending on the Young modulus e and Poisson ratio ν of the solid.
The displacement η :]0, T ]× S0 → Rd is the solution of the hyper-elasticity equations

ρs
∂2η

∂t2
−∇ · (FΣ) = f on S0×]0, T ], (II.1.4a)

η(0, X) = η̄(X) on S0 × {0}, (II.1.4b)

FΣ~n = g(t,X) on ∂SN × [0, T ], (II.1.4c)

η(t,X) = h(t,X) on ∂SD × [0, T ], (II.1.4d)

where ρs is the density of the solid and f is the density of external forces. In this formulation
the boundary was divided in two disjoint subsets ∂SN , ∂SD where the Neumann and Dirichlet
boundary conditions are imposed via functions g(t,X) and h(t,X) respectively. The term ∇ ·
(FΣ) models the internal forces that arise from the body’s deformations, while ρs ∂

2η
∂t2

denotes
the momentum contributions associated to the acceleration of the body.

If inertial effects are neglected, which is the case at low Reynolds number, the acceleration term
can be dropped and equations II.1.4a reduces to

−∇ · (FΣ) = f, on S0. (II.1.5)

In order to later address the finite element discretization, let us derive the variational formulation
of the non-linear elasticity equations. The variational problem is finding η(t, ·) ∈ [H1(S0)]d such
that, for all test functions φ ∈ [H1(S0)]d,∫

S0
ρs
∂2η

∂t2
· φ dX +

∫
S0
FΣ : ∇φ dX =

∫
S0
f · φ dX +

∫
∂SN

FΣ~n · φ dS, (II.1.6)
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and η(t,X) = h(t,X) on ∂SD. One way to solve the non-linear variational problem is using
Newton method coupled with finite elements. We also derive the linearisation of the product
FΣ for a Saint Venant-Kirchhoff material to use it later in the Newton algorithm. Let t > 0
and h be the increment. The linearization of FΣ at η is given by

d

dt
(FΣ)(η + th)|t=0 =

d

dt
(F )(η + th)|t=0Σ(η) + F (η)

d

dt
(Σ)(η + th)|t=0, (II.1.7)

where
d

dt
(F )(η + th)|t=0 = ∇h, d

dt
(Σ)(η + th)|t=0 = λtr(

d

dt
E|t=0)I + 2µ

d

dt
E|t=0, (II.1.8)

and
d

dt
E|t=0 =

1

2
(∇h+∇hT ) +

1

2
(∇ηT∇h+∇hT∇η). (II.1.9)

Active elasticity

Active elasticity models build on passive elasticity equations by adding activity functions or
decomposing elastic effects in their active and passive components. For this reason, we use the
same notations that we used in the previous paragraph on passive elasticity. One can find two
models of active hyper-elasticity in the literature, namely active stress and active strain models
[96]. The active stress model is based on an additive decomposition of the Piola-Kirchhoff stress
tensor that separates the passive and active effects

ρs
∂2η

∂t2
−∇ · (FΣ− FΣa) = f, on S0 × [0, T ],

η(0, X) = η̄(X) on S0 × {0}
FΣ~n− FΣa~n = g(t,X) on ∂SN × [0, T ],

η(t,X) = h(t,X) on ∂SD × [0, T ].

(II.1.10)

The equations hence solve the problem ρs∂ttη−∇· (FΣp) = f where Σp = Σ−Σa is the passive
component of the total stress of the body. A model for Σa corresponding to a travelling wave
along a two dimensional elastic body is given by Σa = [A sin(2πf(X − vat))(Yc − Y )]ea ⊗ ea
[125]. In the previous formula, ea is the tangent unit vector to the muscular fibres, A is the
amplitude of the deformation, f its frequency, va is the speed of the travelling wave, X and Y
are the coordinates in the swimmer’s reference frame, with X corresponding to the direction of
propagation of the wave, and Yc is the centre-line coordinate.

The second model is based on a multiplicative decomposition of the deformation gradient F =
FpFa into a passive and active part and the contraction of the body is ensured by prescribing Fa
[10]. Following what was done by [26, 31], we also consider this second approach. As before, since
the elasticity equations only describe the passive effects of the deformation, they are expressed
as a function of Σp = Σ(Fp) = λtr(Ep)I + 2µEp.

ρs
∂2η

∂t2
−∇ · (| det(Fa)|FF−1

a [Σ(F )− Σ(Fa)]F
−T
a ) = 0 on S0 × [0, T ],

η(0, X) = η̄(X) on S0 × {0}
|det(Fa)|FF−1

a [Σ(F )− Σ(Fa)]F
−T
a ~n = g(t,X), on ∂SN × [0, T ],

η(t,X) = h(t,X) on ∂SD × [0, T ].

(II.1.11)

Differently from the first model, it is now the visible strain tensor E = 1
2(F TF − I) that can

be decomposed as the sum of a time-varying distortion strain Ea, depending on the imposed
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muscular deformations, and of Ep, the passive part of elastic strain. In [31] the active strain
Ea is prescribed as a function of the imposed transversal displacement of the swimmer’s axis
d(X, t), for example

Ea,XX(X,Y, t) = −Y ∂
2d(X, t)

∂X2
, Ea,XY = Ea,Y X = Ea,Y Y = 0. (II.1.12)

Since Fa is used in (II.1.11), one should recover the value of Fa from the imposition of Ea, by
solving the normal equations F Ta Fa = 2Ea + I = f(Ea). These equations can be solved by
decomposing f(Ea) = QTDQ, where D is diagonal with positive entries and Q is orthogonal,
which gives Fa =

√
DQ. The linearisation of the active elasticity models for the Newton method

are done exactly as in the passive case, by linearising the product FΣ.

The wellposedness of the fluid-structure problem involving an active elastic body, the existence
and uniqueness of the solution is studied in [125] in the active stress case. The active strain
case was studied by [92], who considered the electromechanical coupling of the active strain
model with the activation potential, which is responsible for cardiac contraction, and established
the existence of weak solutions to a linearised version of the system. To our knowledge, the
mathematical analysis of the fluid-structure problem where the active structure is modelled via
the active strain approach has not been addressed yet.

II.1.2 Arbitrary-Lagrangian-Eulerian description of continua

The swimmers we consider in this thesis propel by interacting with the surrounding fluid medium
and deforming their bodies. Hence, the mathematical formulation of the fluid problem is cast in
the time-dependent domain. Consider F0 ⊆ Rd, for d = 2, 3 and ϕt : F0 → Ft a parametrized
family of smooth bijective functions describing the motion of the fluid continuum. Here, for the
sake of simplicity, the initial domain F0 will coincide with the reference and material domains,
but we will not always assume this in the numerical cases we will treat. Navier-Stokes and Stokes
equations are classically written in the Eulerian reference frame, meaning that they describe the
evolution of the fluid variables for each “geometric” point in a fixed computational domain
C. This description is opposed to the Lagrangian formalism, which describes the evolution of
the continuum by following the trajectories of each particle, typical of solid mechanics. As
this second approach is classically employed in solid mechanics, it is necessary to establish
a common description of the fluid and solid equations in order to formulate the fluid-solid
interaction problem. Among the possible choices, we consider the Arbitrary-Lagrangian-Eulerian
(ALE) formalism, which partially decouples the evolution of the computational domain from the
evolution of the underlying continua.

Let Ct be the computational domain where the fluid equations are solved at time t. We define
the ALE maps At : C0 → Ct as the one-parameter family of smooth bijective functions that
describe the evolution of the computational domain (see Figure II.1.2 for an example). In our
case, we consider C ≡ C0 ≡ F0, but in general we have Ct 6= Ft for t > 0. The time evolution of
the boundary of the computational domain ∂Ct, coincides with that of ∂Ft, but it is extended
to the interior of Ct via an arbitrary function that does not depend on the fluid evolution. Let
φ̄t : ∂C0 → ∂Ct the function describing the time evolution of the boundary of the computational
(and fluid) domain. The extension method we will be using throughout the thesis is based on
the Laplace (or harmonic) smoothing and consists in solving the elliptic equation{

∇ · ((1 + τ(X))∇φt(X)) = 0, on C0,

φt = φ̄t, on ∂C0,
(II.1.13)
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C0 At Ct

Figure II.1.2: Illustration of the evolution of the fluid computational domain Ct as described by
the Arbitrary-Lagrangian-Eulerian map.

where τ(X) is a discontinuous function to be specified later, and reconstructing At(X) = X +
φt(X), for X ∈ C0. The change of reference frame, from Eulerian to ALE, requires particular
care as additional terms appear due to the different evolution in time of the computational
domain and fluid continuum. Given an arbitrary function a(t,X) : [0, T ] × C0 → Rd defined in
the ALE frame over its reference domain C0, it is possible to express it in the Eulerian frame as
a(t,A−1

t (x)) : [0, T ]× Ct → Rd. The time derivative of a in the ALE frame can be compared to
its expression in the Eulerian frame

∂a

∂t

∣∣∣
At

(t, x) = uA · ∇a+
∂a

∂t
, x ∈ Ct, (II.1.14)

where the additional term appearing in the equations is the ALE velocity uA(t,X) = ∂x
∂t (t,A

−1
t (x)),

X ∈ C0 which is the velocity of the moving domain. In the Eulerian frame uA = 0, as ∀t ∈ [0, T ],
C0 = Ct. Therefore, At describes the position of the moving domain at time t, which is in ac-
cordance with the deformation of the fluid continuum at its boundary, but obeys a different
evolution in its interior.

II.1.3 Fluid model with moving bodies

The motion of a body can be described using two reference frames: a local one, translating and
rotating with the body, and a global one, fixed in space. A change of reference frame allows
to express the motion of the body in the global reference frame, that is usually preferred for
the description of fluid flows. If one denotes by O − xyz the global reference frame and by
P (t)−XY Z the local reference frame, one can describe the motion of P (t)−XY Z as seen from
O − xyz by xy

z

 = P (t) +R(t)

XY
Z

 . (II.1.15)

Here R(t) is the rotation matrix allowing to change the reference frame from local to global,
whose columns contain the coordinates of the local basis in the global reference frame. The
change of reference frame impacts all the vector and matrix quantities that are computed in the
local reference frame, in our case the moment of inertia and the deformation velocity. In the
following, moving bodies will be described using the global reference frame.

Let us consider Navier-Stokes equations in moving domain to describe the motion of the Newto-
nian fluid medium. Let Ct ⊂ Rd, where d = 2, 3 denote the region occupied by the fluid at time
t, µ the constant fluid viscosity and ρ the constant fluid density. Let St ⊂ Rd be the domain that
is occupied by the body, of constant density ρs. At each time instant t, the fluid is in contact
with the swimmer, and C̄t ∩ S̄t = ∂St.

The velocity field u(t, x) :]0, T ]× Ct → Rd and the pressure field p(t, x) :]0, T ]× Ct → R satisfy
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Navier-Stokes equations

ρ
(∂u
∂t

+ (u · ∇)u
)

= −∇p+ µ∆u+ f on ]0, T ]× Ct, (II.1.16a)

∇ · u = 0 on ]0, T ]× Ct, (II.1.16b)
u = ū on ]0, T ]× ∂St, (II.1.16c)

u(0, x) = u0(x) on {0} × C0, (II.1.16d)
u(t, x) = h(t, x) on ]0, T ]× ∂Ct,D, (II.1.16e)
σ(t, x)~n = (−pI + µD(u))~n = g(t, x) on ]0, T ]× ∂Ct,N , (II.1.16f)

where ū(t, x) : [0, T ] × Ct → Rd results from the interaction between the fluid and the body
and f(t, x) : [0, T ] × Ct → Rd represents external volume forces. In the case of swimming, ū
can be split into two contributions. The first one is determined by the translational velocity
U(t) : [0, T ] → Rd and angular velocity ω(t) : [0, T ] → Rd∗ of the swimmer around its centre
of mass xCM , where d∗ = 1 if d = 2 and d∗ = 3 if d = 3, while the second one is given by
the deformation velocity of the solid ud, if present. The function ū then becomes ū(t, x) =
U(t) + ω(t)× (x− xCM ) +R(t)ud(t,A−1

t (x)).
The translational and angular velocities result from the global force and torque balance on
the swimmer, which impose that any acceleration of the swimming body is the result of its
interaction with the fluid or with external net forces and torques, when present. If we denote by
m the swimmer’s mass and by J(t) its moment of inertia in the local reference frame, by Fext
and Mext the external force and momentum acting on the particle, the Newton equations read
as

m
dU

dt
= Fext −

∫
∂St

σ(u, p)~n, (II.1.17a)

d[R(t)J(t)R(t)Tω]

dt
= Mext −

∫
∂St

(x− xCM )× σ(u, p)~n, (II.1.17b)

dθ(t)

dt
= ω, (II.1.17c)

where θ are the Euler angles used to describe the orientation of the body and to compute the
rotation matrix R(t). In two dimensions, θ ∈ [0, 2π) and

R = R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (II.1.18)

while in three dimensions θ ∈ [0, 2π]× [0, π]× [−π, π] and

R = R(θ) = Rz(θz)Ry(θy)Rx(θx) (II.1.19)

and Rz, Ry, Rx are the matrices expressing a rotation around the corresponding axes of the
global frame.

The fluid problem is reformulated in the reference domain C0 thanks to the Arbitrary-Lagrangian
Eulerian maps At : C0 → Ct, which are continuous, invertible and relate the current fluid domain
Ct to the reference one C0. After this manipulation, equations (II.1.16) become

ρ
(∂u
∂t
|A + (u− uA) · ∇u

)
= −∇p+ µ∆u+ f on Ct, (II.1.20a)

∇ · u = 0 on Ct, (II.1.20b)

u = U + ω × (x− xCM ) +R(t)ud ◦ A−1
t (t, x) on ∂St. (II.1.20c)
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where ∂u
∂t |At(x) = ∂(u◦At)

∂t (t,A−1
t (x)) and uA(t, x) = ∂x

∂t (t,A
−1
t (x)) is the ALE velocity. As

before we define the ALE maps to be At(X) = X + φt(X), where φt(X) is obtained by solving{
∇ · ((1 + τ(X))∇φt) = 0 in C0,

φt|∂S0 = φ̄t on ∂S0.
(II.1.21)

The function φ̄t encodes the boundary displacement between ∂S0 and ∂St and equation (II.1.21)
extends such boundary displacement inside the fluid domain. The proposed variational formu-
lation of the coupled equations (II.1.17)-(II.1.20) follows closely [88], which ties the fluid and
body velocity spaces via the boundary conditions of the fluid problem. The following functional
spaces are used as the test and trial spaces for the variational formulation of the coupled problem

Qt = {p |p(t, ·) ∈ L2(Ct))}, T = {U |U(t) ∈ Rd}, W = {ω |ω(t) ∈ Rd
∗},

V t = {u |u(t, ·) ∈ [H1(Ct)]d, u = U + ω × (x− xCM ) for U ∈ T and ω ∈W}.

In the variational formulation of the problem, we look for the solution (u, p, U, ω) ∈ V t ×Qt ×
T ×W such that, for all the test functions (ũ, p̃, Ũ , ω̃) ∈ V t ×Qt × T ×W one has

∫
Ct
ρ
(
∂tu|A + (u− uA) · ∇u

)
· ũ dx+ 2µ

∫
Ct
D(u) : D(ũ) dx

−
∫
∂St

(−pI + 2µD(u))~n · ũ dS −
∫
Ct
p∇ · ũ dx =

∫
Ct
f · ũ dx, (II.1.22)

∫
Ct
p̃∇ · u dx = 0, (II.1.23)

m
dU

dt
· Ũ = Fext · Ũ −

∫
∂St

(−pI + 2µD(u))~n · Ũ dS, (II.1.24)

d[R(t)J(t)R(t)Tω]

dt
· ω̃ = Mext · ω̃ −

∫
∂St

(−pI + 2µD(u))~n× (x− xCM ) · ω̃ dS. (II.1.25)

As ũ = Ũ + ω̃ × (x − xCM ) on ∂St, one can express the boundary integral in (II.1.41) as a
combination of the integrals in (II.1.43)-(II.1.44)∫
∂St

(−pI+2µD(u))~n·ũ dS =

∫
∂St

(−pI+2µD(u))~n·Ũ dS+

∫
∂St

(−pI+2µD(u))~n×(x−xCM )·ω̃ dS,

(II.1.26)
which implies that encoding of the rigid velocity boundary conditions in the test space ensures
the transmission of hydrodynamic forces at the boundary of the swimmer. The variational
equation coupling (II.1.41)-(II.1.43)-(II.1.44) via (II.1.26) reads

∫
Ct
ρ
(
∂tu|A + (u− uA) · ∇u

)
· ũ dx+ 2µ

∫
Ct
D(u) : D(ũ) dx−

∫
Ct
p∇ · ũ dx

+m
dU

dt
· Ũ +

d[R(t)J(t)R(t)Tω]

dt
· ω̃ =

∫
Ct
f · ũ dx+ Fext · Ũ +Mext · ω̃, (II.1.27)
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II.1.4 The swimming problem

The purpose of this section is collecting the fluid and solid models presented before and proposing
the general mathematical form of the swimming problem that we will address. In all generality,
we considered Navier-Stokes equations in moving domain to model the fluid flow. In the next
section, we will discuss the necessary changes if the fluid model was based on Stokes equations.

Let F0 ⊆ Rd, d = 2, 3, be the initial configuration of the fluid domain and At : C0 → Ct the
smooth function that maps the reference fluid computational domain onto the computational
domain Ct occupied by the fluid at time t. Let S0 ⊆ Rd be the domain occupied by the swimmer
at time t = 0. Let (u, p) be the fluid velocity and pressure defined over Ft, µ the viscosity,
f the fluid volume forces. We denote by U and ω the translational and angular velocities of
the swimmer, by xCM its centre of mass. The coupled problem, expressing the kinematic and
dynamic coupling of the fluid with the swimmer, reads: find (u, p, U, ω) such that

ρ
(∂u
∂t
|A + (u− uA) · ∇u

)
= −∇p+ µ∆u+ f, in Ct,

∇ · u = 0, in Ct,

m
dU

dt
=

∫
∂S

(−pI + 2µD(u))~n dS,

d[R(t)J(t)R(t)Tω]

dt
=

∫
∂S

(−pI + 2µD(u))~n× (x− xCM ) dS,

u = U + ω × (x− xCM (t)) +R(t)ud ◦ A−1
t (t, x), on ∂Ct ∩ ∂S0

u(t, x) = h(t, x) on ]0, T ]× ∂Ct,D,
σ(t, x)~n = (−pI + µD(u))~n = g(t, x) on ]0, T ]× ∂Ct,N .

(II.1.28)

The map At(X) is defined as At(X) = X + φt(X), where φt(X) is the solution of the following
elliptic problem {

∇ · ((1 + τ(X))∇φt(X)) = 0 in C0,

φt(X) = φ̄t(X), on ∂C0 ,
(II.1.29)

where φ̄t(X) is obtained by integrating ˙̄φt(X) = U + ω × (X + φ(X) − XCM − φ(XCM )) +
R(t)ud(t,X). In this general formulation of the problem, the solid motion affects the fluid
medium via the deformation velocity ud, defined on the boundary of the swimmer. The defor-
mation velocity ud encodes the swimming stroke, and it varies with the micro-swimmer under
consideration. As before, we divide our analysis into three categories of swimmers: swimmers
composed of rigid parts, swimmers with prescribed deformation and elastic swimmers, to focus
on the peculiarities of each of them.

II.1.4.1 Rigid swimmers

In the case of swimmers made of one rigid body, the propulsion mechanism is due to external
forces and torques Fext andMext. Using a non-zero Fext, one can model the object being dragged
in the fluid, for example by optical tweezers or magnetic forces [63]. Using a non-zero Mext, one
can model an object being rotated by an external torque, for example originated by a magnetic
field [109]. When considering several rigid objects moving relatively to each other, it is possible
to use ud to prescribe the relative velocities between them. For example, in the case of the three-
sphere swimmer [93], it is possible to translate the relative motion of the bodies into relative
velocity prescription: the relative velocity can be modelled as a square wave, where positive
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values correspond to bodies approaching each other and negative values correspond to bodies
moving away from each other.

II.1.4.2 Swimmers with prescribed deformation

In presence of an analytical formula for bodies’ deformation velocity, this could be directly
substituted to ud. If the stroke is recovered from a simplified model, it must be transformed
into a function that is compatible with domain and range of ud. For example, one could have
an ODE model describing the centreline of a sperm’s tail [64]

dr
dl

= −e3,

de1

dl
= −κfe3 + τfe2,

de2

dl
= −τfe1,

de3

dl
= κfe1.

(II.1.30)

where r is the position vector, {e1, e2, e3} give the orientation of the local reference frame and
l ∈ [0, L]. In this case, the solution of the reduced model is extended as is to whole section
because ud is defined over the swimmer’s boundary.

II.1.4.3 Elastic swimmers

In the case of elastic swimmers, the deformation velocity ud is obtained from the solution of
two or three-dimensional elasticity equations. In this formulation, the fluid and the swimmer
fully interact and are able to influence the respective dynamics. Since ud is not imposed in
advance (analytically or via reduced models), it evolves in time due to the fluid-solid interaction.
The coupling conditions between the fluid and the solid models have to translate the physical
principles of continuity of stress and velocity fields on the common boundaries. At the same
time, the geometric continuity of the fluid and solid domains is imposed. The expression of the
coupling conditions depends on the ALE frame that was chosen to rewrite the fluid problem
and decouples the motion of the fluid continuum from the fluid computational domain. The
continuity of the solid and fluid velocities at the common boundary is written as

∂η

∂t
− u ◦ At = 0, on ∂S0 ∩ ∂C0, for t > 0, (II.1.31)

where the velocity of the fluid continuum is expressed in the ALE reference frame. Let now
FAt = ∇At be the Jacobian matrix of the ALE map At; the continuity of stresses at the
common boundary is written as

FΣ~n− σF−TAt
~ndet(∇At) = 0, on ∂S0 ∩ ∂C0, (II.1.32)

where σf is the Newtonian fluid stress tensor in the Eulerian reference frame, F−TAt
det(∇At)

performs the change of frame from Eulerian to Arbitrary-Lagrangian-Eulerian and ~n is the
outward-pointing normal of the solid domain. Finally, the geometric continuity is guaranteed
by

x(X, t)−At(X) = 0, on ∂S0 ∩ ∂C0, (II.1.33)

which states that interpenetration of the fluid and solid domain is not possible. In the case of
elastic swimmers, the hyper-elasticity equations

ρs
∂2η

∂t2
−∇ · (FΣ) = f on S0, (II.1.34)
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are solved for η(t,X), coupled to (II.1.28) via the coupling conditions which link ud(t,X) =
∂η
∂t (t,X) with the solution of the elasticity equations.

II.1.5 Discussion about Stokes equations

As it was discussed in the introduction, Stokes equations are the limit of Navier-Stokes equations
for Re = 0. In this section we specialise the fluid-rigid body formulation we discussed for Navier-
Stokes equations to the Stokes case. It will become clear that all the terms related to fluid or
body inertia are neglected, and the balance between external and fluid forces and torques must
be ensured at each time instant. In absence of external forces and torques, the balances of fluid
forces and torques are known under the name of “self-propulsion constraints”.

We first recall some concepts and results linked to the functional analytic framework of Stokes
equations, that are useful for the finite element treatment. In particular, we derive the vari-
ational formulation of these equations in appropriate Hilbert spaces and discuss under which
conditions the variational problem of the Stokes system has a unique solution. Mathemati-
cal analysis of these equations is well understood: existence and uniqueness of boundary value
problems involving Dirichlet and Neumann conditions have been proved [19]. We restrict to the
homogeneous Dirichlet problem in a fixed domain for the sake of simplicity.

Let F ⊆ Rd, d = 2, 3 the region occupied by the fluid domain, and let u : F → Rd and
p : F → R be the fluid velocity and pressure fields. In the low Reynolds number limit, Re→ 0,
incompressible Navier-Stokes equations reduce to Stokes equations

−µ∆u+∇p = f, in F ,
∇ · u = 0, in F ,

u = 0, on ∂F .

Suppose f ∈ [L2(F)]d. Let (v,m) ∈ [H1
0 (F)]d×L2(F) andD(u) = 1

2(∇u+∇uT ). The variational
formulation of the aforementioned boundary value problem reads: find (u, p) ∈ [H1

0 (F)]d×L2(F)
such that

2µ

∫
F
D(u) : D(v) dx−

∫
F
p∇ · v dx =

∫
F
f · v dx, ∀v ∈ [H1

0 (F)]d,∫
F
m∇ · u dx = 0, ∀m ∈ L2(F).

(II.1.35)

Let us remark that in II.1.35 we used the “mechanical” formulation of Stokes equations, where
∇u could be substituted by D(u) thanks to the incompressibility of the velocity field and ∇v
could be substituted by D(v) since

∇v = D(v) +
1

2
(∇v −∇vT ), A :

1

2
(∇v −∇vT ) = 0 for all A symmetric. (II.1.36)

This formulation, based on the symmetric gradientD(u) is closer to physics and allows higher ac-
curacy when imposing Neumann boundary conditions or computing fluid forces through bound-
ary integration. Let us denote the bilinear and linear forms appeared in (II.1.35) as

a(u, v) = 2µ

∫
F
D(u) : D(v) dx, b(v, p) = −

∫
F
p∇ · v dx,

(f, v) =

∫
F
f · v dx, b(u,m) = −

∫
F
m∇ · u dx.
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We mention two ways to prove that this problem has a unique solution. For the first one, one
defines the Hilbert space H0

div = {v ∈ [H1
0 (F)]d|∇ · v = 0} and remarks H0

div ⊂ [H1
0 (F)]d. The

variational formulation (II.1.35) reduces to finding u ∈ H0
div such that

a(u, v) = (f, v) ∀v ∈ H0
div. (II.1.37)

One can prove that the bilinear form a(u, v) is coercive and continuous on H0
div and that (f, v)

is a continuous linear form on H0
div. Lax-Milgram theorem for elliptic problems then guarantees

existence and uniqueness of the solution to this problem.

The second way to solve this problem is to find the pair (u, p) ∈ [H1
0 (F)]d × L2(F) that, for all

(v,m) ∈ [H1
0 (F)]d × L2(F), satisfies the following saddle-point formulation

a(u, v) + b(v, p) = (f, v),

b(u,m) = 0,
(II.1.38)

over the Hilbert space [H1
0 (F)]d×L2(F). One can prove that the bilinear forms a(·, ·) and b(·, ·)

are continuous, a(·, ·) is coercive over X = {v ∈ [H1
0 (F)]d| b(v,m) = 0 ∀m ∈ L2(F)} and that

there exists β > 0 such that

∀m ∈ L2(F) ∃v ∈ [H1
0 (F)]d, v 6= 0 : b(v,m) ≥ β‖v‖[H1

0 (F)]d‖m‖L2(F). (II.1.39)

These conditions ensure existence and uniqueness of the solution (see [108]) and (II.1.39) is
equivalent to the continuous version of the inf-sup or Ladyzhenskaya-Babuška-Brezzi condition.
This theoretical result has consequences in the discrete setting as it constrains the choice of the
discretization spaces for the fluid velocity and pressure.

Let us now consider the motion of a rigid particle P in a Stokes flow. As usual, we call (u, p) the
fluid velocity and pressure, µ the viscosity, f the fluid volume forces; we denote by U and ω the
translational and angular velocities of the particle. Let Fext and Mext be the external force and
momentum acting on the particle, xCM its centre of mass, ~n the unit normal pointing outward
of the fluid domain and dS the area measure. The fluid-structure problem consists in finding
(u, p, U, ω) satisfying

−µ∆u+∇p = f, in F ,
∇ · u = 0, in F ,

u = U + ω × (x− xCM ), on ∂P ,

0 = Fext −
∫
∂P

(−pI + 2µD(u))~n dS,

0 = Mext −
∫
∂P

(−pI + 2µD(u))~n× (x− xCM ) dS.

(II.1.40)

For the variational formulation of this problem, let ũ, p̃, Ũ , ω̃ denote the test functions. The
equations become

2µ

∫
F
D(u) : D(ũ) dx−

∫
∂P

(−pI + 2µD(u))~n · ũ dS −
∫
F
p∇ · ũ dx =

∫
F
f · ũ dx, (II.1.41)

∫
F
p̃∇ · u dx = 0, (II.1.42)

0 = Fext · Ũ −
∫
∂P

(−pI + 2µD(u))~n · Ũ dS, (II.1.43)
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0 = Mext · ω̃ −
∫
∂P

(−pI + 2µD(u))~n× (x− xCM ) · ω̃ dS. (II.1.44)

Following [88], the space of test functions is the collection of (ũ, Ũ , ω̃) ∈ [H1(F)]d×Rd×Rd∗ that
satisfies boundary conditions ũ = Ũ + ω̃ × (x − xCM ) on ∂P . Hence, from previous equations
(II.1.41)-(II.1.44), the relationship∫
∂P

(−pI+2µD(u))~n·ũ dS =

∫
∂P

(−pI+2µD(u))~n·Ũ dS+

∫
∂P

(−pI+2µD(u))~n×(x−xCM )·ω̃ dS,

(II.1.45)
holds, which allows the “compact" reformulation of the equations (II.1.41)-(II.1.43)-(II.1.44) as

2µ

∫
F
D(u) : D(ũ) dx−

∫
F
p∇ · ũ dx =

∫
F
f · ũ dx+ Fext · Ũ +Mext · ω̃. (II.1.46)

Since the boundary conditions that impose rigid body motion are encoded in the test (and trial)
functions, the coupling in the fluid-particle problem can be addressed in a monolithic manner.
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Chapter II.2

Solution strategy

In this chapter the swimming problem (II.1.28) is discretized using the finite element method, and
the different aspects of its solution are addressed. Section II.2.1 is devoted to the discretization
of swimmers; section II.2.2 focuses on the problems of mesh adaptation, domain discretization
and remeshing; sections II.2.3-II.2.4 present the general formulation of the fluid and swimming
problems in their discrete versions, while II.2.5 reports the description of the algebraic solution
strategies.

II.2.1 Swimmers discretization

The domain occupied by the swimmer is triangulated using the same low order geometric ap-
proximation that will be used in the fluid’s triangulation. However, high order geometric ap-
proximations, based on high order discretization of displacement and ALE map, could be also
used. This approach is explored in [100, 24], which considered Navier-Stokes equations in moving
domain and fluid-structure interaction problems with a quadratic geometric approximation.

Even though the interaction between the swimmer and the fluid is concentrated on the common
boundary, the interior of the swimmer is discretized for all swimmer categories under study. For
the three categories, the triangulation is used to perform the integrals defining the swimmer’s
centre of mass and inertia tensor. In addition to this, the triangulation is needed to discretize
the elasticity equations describing the deformation of elastic swimmers.

II.2.1.1 Rigid swimmers

Rigid swimmers are defined by their centre of mass and inertia tensor, which are stored using
arrays of suitable dimensions (2× 1 and 1× 1 in 2D, 3× 1 and 3× 3 in 3D). If several bodies are
present and they are connected to one another, it is necessary to model the whole collection of
bodies as a body itself. In this case, the centre of mass and the inertia tensor of the collection
of bodies has to be computed and updated following the motion of the swimmer.

II.2.1.2 Swimmers with prescribed deformation

In the case of swimmers with prescribed deformation, we examined two possibilities. If the
deformation velocity is analytically prescribed in the swimmer’s reference frame, it can be easily
evaluated for different times. In this case, the swimmer’s displacement can be recovered by
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r
e2

e1

Figure II.2.1: The figure shows the procedure we follow to construct the three-dimensional tail as
an extension of the centreline shape, dictated by (IV.2.3). First, the equations are solved in the
reference, horizontal, configuration. Then, based on its coordinate in the horizontal direction,
we assign to each node its position in the deformed configuration by using the local reference
frame {e1, e2, e3} and the linear interpolation of r.

integrating the deformation velocity via an accurate explicit 4th order Runge-Kutta scheme and
used to update the ALE map in the fluid domain.

In the case of reduced modelling based on ODEs, in which the position of the swimmer’s tail is
described in the local reference frame, we first solve the equations using an explicit 4th order
Runge-Kutta scheme. We recall that, in our particular case, the ODE system describes the
position of the centreline of the swimmer at each time instant (the variable being the arc-length
l). Second, we compute the extension of the centreline displacement to the whole swimmer
section based on the arc-length coordinate of the points. It is possible to recover the deformation
velocity via automatic differentiation, since we solve the ODEs to obtain the tail’s displacement,
and use it to prescribe ud on the boundary of the fluid domain.

In figure II.2.1, the construction of the three-dimensional tail is illustrated: first, the domain
[0, L] is subdivided in smaller segments and a three dimensional cylinder of radius a and length
L is meshed; second, based on their x coordinate, the cylinder’s nodes are displaced according
to the solution of the ODEs, that is by performing a linear interpolation of the solution r. The
coordinates in the perpendicular directions to the cylinder axis become the components in the
direction of {e1, e2}, giving x(l) = r(l) + ae1(l) + ae2(l), where we suppose that the vectors
{e1, e2} remain constant in each discretization interval. Tail coordinates are used to compute
the tail’s displacement, needed for the ALE maps, and the time derivative of the displacement,
appears as a Dirichlet boundary condition in the fluid problem.

II.2.1.3 Elastic swimmers

The discretization of the hyper-elasticity equations (II.1.4)-(II.1.6) is performed using P1 con-
tinuous finite elements. Let us denote by Sh0 the triangulated elastic domain and let us consider
the finite element spaces

Mh = {η
∣∣η ∈ [H1(Sh0 )]d ∩ [P1(Sh0 )]d},

Mh,0 = {η
∣∣η ∈ [H1

0 (Sh0 )]d ∩ [P1(Sh0 )]d}.
(II.2.1)
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Let us denote the approximation of the second time derivative by ∂2
τη, obtained by applying a

second order, unconditionally stable Newmark scheme

η̈n+1 =
1

β∆t2
(ηn+1 − ηn)− 1

β∆t
η̇n −

( 1

2β
− 1
)
η̈n,

η̇n+1 =
γ

β∆t
(ηn+1 − ηn)−

(γ
β
− 1
)
η̇n −∆t

( γ
2β
− 1
)
η̈n,

(II.2.2)

where β = 0.25 and γ = 0.5. The discrete problem at t = tn+1 consists in finding ηtn+1 ∈ Mh

such that ∀φ ∈Mh,0∫
Sh0
ρs∂

2
τη

tn+1 · φ+

∫
Sh0
F tn+1Σtn+1 : ∇φ =

∫
Sh0
f tn+1 · φ+

∫
∂Sh0

F tn+1Σtn+1~n · φ dS. (II.2.3)

The solution strategy is based on Newton non-linear iterations via the solution of the discrete
linearized system presented in (II.1.7): until ‖ηtn+1,k − ηtn+1,k−1‖/‖ηtn+1,k‖ ≤ ε one solves∫

Sh0
ρs∂

2
τη

tn+1,k · φ+

∫
Sh0
dF tn+1,kΣtn+1,k : ∇φ+

∫
Sh0
F tn+1,kdΣtn+1,k : ∇φ

=

∫
Sh0
f tn+1 · φ+

∫
∂Sh0

F tn+1,kΣtn+1,k~n · φ dS +

∫
Sh0
F tn+1,k−1Σtn+1,k−1 : ∇φ. (II.2.4)

The discretization of the active elasticity equations is performed analogously, giving the following
discrete problems to be addressed in the active stress case∫

Sh0
ρs∂

2
τη

tn+1 · φ+

∫
Sh0
F tn+1(Σtn+1 − Σtn+1

a ) : ∇φ

=

∫
Sh0
f tn+1 · φ+

∫
∂Sh0

F tn+1(Σtn+1 − Σtn+1
a )~n · φ dS, (II.2.5)

and active strain case, respectively∫
Sh0
ρs∂

2
τη

tn+1 · φ+

∫
Sh0
| det(F tn+1

a )|F tn+1(F tn+1
a )−1[Σ(F )tn+1 − Σ(Fa)

tn+1 ](F tn+1
a )−T : ∇φ

=

∫
Sh0
f tn+1 · φ+

∫
∂Sh0
|det(F tn+1

a )|F tn+1(F tn+1
a )−1[Σ(F )tn+1 − Σ(Fa)

tn+1 ](F tn+1
a )−T~n · φ dS.

(II.2.6)

As the linearised systems are similar to (II.2.4), they are not detailed here.

II.2.2 ALE map discretization

As the swimmer moves, the geometry of the fluid domain changes. In our framework we supposed
the interface between the solid and fluid domains to be conforming, and the evolution of the fluid
domain to be described in the ALE frame. The computation of the ALE map obeys equation
(II.1.29); however, in the discrete setting, it is not guaranteed that displacing the mesh according
to the solution of (II.1.29) will produce a valid triangulation when the mesh deformation is too
important. Mesh quality measures assess the validity of the triangulation: if the minimum of the
mesh quality field is above a predetermined threshold (depending on the quality measure, but
typically close to 1 for fair measures [44]) the mesh deformation is “small” enough to evolve the
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domain just according to the ALE map, computed by solving (II.1.29); if the minimum of the
mesh quality field falls below the threshold, the resulting mesh deformation is not viable and a
remeshing procedure has to be considered before applying the ALE map. In order to handle this
possibility, at every time step we work with three domains: the initial domains ˆ̂S , ˆ̂C, where the
swimmer’s equations are possibly cast, the reference domains Ŝtn , Ĉtn , domains of the discrete
ALE maps after mesh reconstruction, and the current domain Stn+p , Ctn+p . Let us denote by X
the coordinates in the initial domains, Xtn the coordinates in the n-th reference domain and by x
the coordinates in the current domain. The initial domain and the reference domain are related
by a bijective map Rtns : ∂ ˆ̂S→ ∂Ŝtn (Rtnv : ˆ̂S→ Ŝtn) that encodes the correspondence between
those surface (volume) geometric entities that are preserved across remeshing. In particular,
this correspondence is defined on the domain occupied by the swimmer and whose connectivity
remains unchanged. The reference and current domains are related by the displacement field,
defined over the latest reference domain Stn+p = (I + η(tn+p))(Ŝtn). Relationships Rtns ,Rt

n

v are
valid until remeshing is again performed, in which case the correspondence is rebuilt in order to
relate ˆ̂S and the new reference domain. These steps are illustrated in figure II.2.2: the initial
domain ˆ̂S is connected with each reference domain via the correspondence maps Rts,Rtv, and
between remeshing steps swimmers evolve according to the displacement field η or the extension
of the deformation velocity ud, defined over ˆ̂S. The inverse correspondence R−1 : Ŝtn → ˆ̂S
allows to evaluate the deformation velocity ud (when available) in the reference domain at time
tn. Essentially, Rtn corresponds to an ALE map between the initial domain ˆ̂S and current
reference domain Ŝtn of the swimmer, restricted to the geometric elements that are preserved
across remeshing.

II.2.2.1 Small mesh deformations

In the case of small mesh deformations, equation (II.1.29) is solved using P1 continuous finite
elements over the triangulated reference fluid domain Ĉht0 , where t0 is the reference time, i.e. the
latest time instant in which remeshing has been realised. Let us define the finite element spaces

Xh
φ̄ = {φ

∣∣φ ∈ [H1(Ĉht0)]d ∩ [P1(Ĉht0)]d, φ = φ̄ on ∂Ĉht0},

Xh
0 = {φ

∣∣φ ∈ [H1
0 (Ĉht0)]d ∩ [P1(Ĉht0)]d}.

(II.2.7)

The computational domain Chtn+1
= Atn+1

h (Ĉht0) is obtained by computing the discrete ALE map
Atn+1

h (X) = X +
∑tn+1

t=t0
φth(Xt) via the solution of{
∇ · ((1 + τ(X))∇φtn+1

h ) = 0, on Ĉht0 ,

φ
tn+1

h = φ̄tn+1 , on ∂Ĉht0 .
(II.2.8)

Here φ̄tn+1(Xt0) =
∫ tn+1

tn
U+ω×(Xt0 +φtn(Xt0)−XCM

t0 −φtn(XCM
t0 ))+R(tn)ud(t,R−1(Xt0)) dt

and τ is a piecewise constant coefficient, defined on each element e of the domain’s discretization
as τ

∣∣
e

= (1 − Vmin/Vmax)/(Ve/Vmax), where Vmax, Vmin and Ve are the volumes of the largest,
smallest and current element of the domain discretization [67]. This discontinuous coefficient
takes large values for elements of smaller volume, so that the mesh deformation is mainly sup-
ported on larger elements. The time integration of φ̄tn+1 is performed numerically in two steps:
first, the contributions coming from the translational and deformation velocities are integrated
to compute the new centre of mass φ̄tn+1

1 (XCM
t0 )

θn+1 = (tn+1 − tn)ωn + θn, R(tn+1) = R(θn+1),

φ̄
tn+1

1 (Xt0) = (tn+1 − tn)Un +R(tn+1)

∫ tn+1

tn

ud ◦ R−1
t0

(t,Xt0) dX;
(II.2.9)
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ˆ̂Cˆ̂S

R0
s,R0

v

Rps,Rpv

Rp+qs ,Rp+qv

Ĉt0Ŝt0

... }p steps Atp

CtpStp

Remesh

ĈtpŜtp

... }q steps Atp+q

Ctp+qStp+q

Remesh

Ĉtp+qŜtp+q

...

Figure II.2.2: The mesh adaptation procedure alternates remeshing steps with mesh motion. A
relationship Rt between the initial swimmer configuration ˆ̂S and the current reference configu-
ration Ŝt allows the evaluation of displacements whose domain coincides with ˆ̂S. Between two
remeshing steps, the reference configuration of domain Stp+1 is the latest remeshed domain Ŝtp .
Depending on the region where the connectivity is preserved, the relationship can be defined on
the boundary of the swimmer (Rts) or on its volume (Rtv).
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second, the orientation of the body is computed using the new centre of mass

φ̄tn+1(Xt0) ≈ R(tn+1)(Xt0 + φ
tn+1

1 (Xt0) − φ
tn+1

1 (XCM
t0 )) + φ

tn+1

1 (XCM
t0 ) − Xt0 . (II.2.10)

U and ω are approximated at tn since their values at tn+1 are computed during the solution of
the fluid problem on Chtn+1

. Few fixed point iterations are performed at each time step to ensure
the convergence of the body’s position. The deformation velocity ud ◦ R−1 is approximated
with a higher order scheme, as a Runge-Kutta scheme if the analytical form of the velocity
is known or a reduced model is available. If ud results from the discretization of elasticity
equations, its relationship with the swimmer’s displacement is discretized using an approximation
of
∫ tn+1

tn
ud ◦ R−1(t,X) =

∫ tn+1

tn
∂η/∂t.

The variational form the problem is finding φtnh ∈ X
h
φ̄
such that∫

Ch0
(1 + τ(X))∇φtnh (X) : ∇v dx = 0 ∀v ∈ Xh

0 ,

φtnh = φ̄tn , on ∂Ĉht0 .
(II.2.11)

II.2.2.2 Mesh adaptation and remeshing

If the domain deformation is too large, the geometric evolution of the triangulated domain,
following the extension of the boundary displacement φ̄ into the fluid domain via the ALE
maps, may prevent an accurate solution of the system. This problem presents when the quality
of the simplexes, a measure that depends on their geometry (e.g. edge lengths, angles, volume),
is degraded. We first describe in detail a few quality measures that are computed by performing
dimensionless ratios of geometric quantities [44]. These measures are fair, meaning that they
satisfy the criteria of normalization, boundedness, non-dimensionality and they can detect all
degenerate simplexes [44]. Later, we address the remeshing procedures and algorithms that we
considered to solve our problem.

In the case of a two dimensional simplicial mesh, the first quality measure we present is the
ratio ρ of the radii of the inscribed and circumscribed circumferences to each element, r and
R respectively. The quantity 2ρ = 2r/R is non-dimensional, takes value 1 when the triangle
is equilateral and it tends to 0 when the triangle shape is needle-like or flattened (in [107] the
inverse of ρ is chosen as a quality measure, so poor quality elements are characterised by 1

ρ →∞).
It is possible to express this quantity as a combination of the area A, half perimeter p and edge
lengths |ei|, i = 1, 2, 3, of the simplex as

2ρ =
4A2

|e1||e2||e3|p
. (II.2.12)

The definition of this quality measure can be extended to n-dimensional meshes as nρ = nr/R,
and takes the name of Normalized Shape Ratio (NSR, see [44]). Another 2D quality measure is

q2D =
4
√

3A

|e1|2 + |e2|2 + |e3|2
. (II.2.13)

It is scale invariant and q2D ≤ 1, where equality is attained only for an equilateral triangle. It is
possible to show that in the interval

√
3

2 ≤ q2D ≤ 1, the element does not have any obtuse angle
[12].
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Figure II.2.3: Example of poor quality mesh around a translating circle (left) and its improve-
ment after remeshing (right).

A 3D quality measure, function of the volume V and the facet areas |Ai| of the tetrahedra, is

q3D =
2338
√

3V 4

(
∑4

i=1A
2
1)3

. (II.2.14)

As the previous quality measure, q3D ≤ 1 and equality is attained in the case of the equilateral
tetrahedron [119]. Other measures that could be used in the case of a three dimensional problem
are the NSR, that would be the ratio of the inscribed sphere and circumscribed sphere radii, or
γ, defined using the length of the edges |ei| and the tetrahedron volume V as follows [99]:

γ =
(
√

1
6

∑6
i=1 |ei|2)3

V
. (II.2.15)

Since this ratio takes the value γ∗ = 8.47967 for an equilateral tetrahedron, the actual quality
measure will be γ∗/γ ≤ 1. Referring to the tests contained in [99], the remeshing procedure
could be activated when the ratio γ∗/γ < 0.5, which corresponds to tetrahedra of poor quality.

The solution that was chosen to address the loss of mesh quality is the reconstruction of the com-
putational mesh (remeshing) and the transfer of the simulation data onto the newly computed
geometry. Remeshing is realised when the minimal value of the quality measure associated to
simplexes is lower that an empirically predetermined tolerance. For example, in figure II.2.3(left),
the quality of the geometric discretization of the domain (computed via q2D quality ratio) has
deteriorated and its minimum has fallen below the threshold q̄2D = 0.8. Hence, a reconstruction
of the triangulation is necessary to continue the calculations, and figure II.2.3(right) shows an
example of this remeshing procedure. Independently from the quality measure being chosen, a
common procedure of data transfer from the old to the new domain discretization is realized. In
this procedure we take into account some constraints that arise from the fluid-structure problem
we are solving.

Firstly, we choose to maintain the same boundary discretization across the remeshing steps, in
order to keep the mass and the moment of inertia coherent throughout the simulation. This
is realised by passing to the mesh adaptation algorithm the set of entities that must remain
unvaried. The remeshing presented in figure II.2.3, for example, does not comply with these
requirements, as the boundary discretization of the circle has changed. Secondly, depending on
the distance from the swimming object, a varying mesh size is chosen, ensuring an increased
accuracy close to the swimmer’s boundary. Mesh size is encoded in the remeshing metric, which
is defined as a scalar function hR ≥ 0 that prescribes the characteristic sizes of the elements. In
order to capture the fluid behaviour in proximity of the swimmer, a graded remeshing strategy
is chosen, with the remeshing metric being proportional to the distance d from the swimmer’s
boundary (d = 0 on ∂Sht ). To compute d, we use the Fast Marching Method (FMM), which
is initialized on the set of degrees of freedom in contact with ∂Sh through an element by the
exact distance computation [89]. In our case, the graded remeshing is obtained by prescribing a
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Figure II.2.4: Poor quality mesh and its improvement after remeshing. The newly computed
mesh satisfies the constraint of unchanged boundary discretization of the immersed body. The
mesh size is variable and finer close to the immersed body.

piecewise-defined metric depending on the characteristic size h of the previous mesh

hR(x) =

{
havg if d(x, ∂Sht ) ≤ 2h,

havge
αd(x,∂Sht )/h if d(x, ∂St) > 2h,

(II.2.16)

where hR(x) is the mesh size at x, havg is the average mesh size of the previous mesh, α ≥ 1 is
a prescribed constant. In (II.2.16) the proportionality function is continuous and exponentially
increasing and a layer of fixed mesh size is defined for d(x, ∂Sht ) ≤ 2h. It is possible to prescribe
more layers of fixed mesh size by adding more cases to (II.2.16). Figure II.2.4 shows an example
of remeshing where the boundary discretization remains unchanged and where the variable mesh
size follows (II.2.16).

II.2.2.3 Remeshing and interpolation of fields

The geometric reconstruction of the computational domain is followed by the interpolation
of the finite element fields onto the newly computed mesh. First, a localization procedure
allows to pair each new node to the mesh element to which it previously belonged. Then, the
interpolating polynomial is locally constructed and evaluated for each degree of freedom. For
swimming simulations, the interpolation of finite element fields concerns the fluid velocity, as
its values at previous time instants are needed for the discretization of the time derivative, and
the fields describing the evolution of the computational domain. In this latter case, the relevant
quantities to be interpolated are the ALE maps, as they are used in the computation of the
ALE velocity, and the displacement with respect to the reference domain, which is needed to
compute the ALE maps. However, since at each remeshing step the newly created geometry
becomes the reference configuration until the next remeshing step, it is necessary to change the
reference of the displacement field η for the current and previous times. This means that, for
k = n+ 1, n, . . . , n− i+ 1, where i is the order of the time discretization,

η(tk, XR
n+1) = Ik(η(tk,Atk(A−1

tn+1(Xn+1)))) ◦ A−1
tk
◦ A−1

tn+1 − In+1(η(tn+1, Xn)), (II.2.17)

where In+1 : Chtn+1
→ R(Chtn+1

) is the interpolation operator that maps functions defined over the
poor quality domain Chtn+1

to its remeshed counterpart R(Chtn+1
). Here Xn+1 and XR

n+1 denote
the coordinates in the two domains. In the first remeshing step, a relationship R between
the reference mesh Mref and the current mesh Mn is created, pairing the geometric entities
that are kept fixed across the remeshing step. The relationship will be transferred at each
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following remeshing step, as the elements that are preserved do not change. This relationship
is a bijective map between the boundary faces of the reference and current meshes, allowing to
evaluate expressions that are defined in the reference configuration or in the swimmer’s reference
frame. The steps that are involved in the mesh adaptation process are collected and detailed in
the algorithms that follow:

• Algorithm 2 shows the procedure that we follow to move the fluid mesh using elliptic smooth-
ing. In this algorithm, the relationship R is used to evaluate the displacement of the boundary
of the domain in its reference configuration.
Algorithm 2: Ext algorithm
Input: Mesh Mn, displacement η et relation R
Obtain the harmonic extension φ(t,X), with R(η) as Dirichlet data (cf. equation (II.1.29))
for i=1 to Nnodes do
node(i)Mn+1 = node(i)Mn + φ(t,X)

end for
Output: Mn+1

• Algorithm 3 shows the procedure that is followed to interpolate the solutions to the fluid
problem and mesh displacement onto the new domain.
Algorithm 3: Interpolate algorithm
Input: Mesh Mn,Mn+1, fluid fields u|Mn , p|Mn , displacement field from reference
configuration η|Mn

I = I(Mn,Mn+1) construct the interpolation operator
for i=1 to Norder do
u|Mn+1(i) = I(u|Mn(i)), p|Mn+1(i) = I(p|Mn(i))
η|Mn+1(i) = η|Mn(i)− η|Mn(Norder)

end for
Output: u|Mn+1 , p|Mn+1 , η|Mn+1

• Algorithm 4 explains the procedure that is followed to evolve the mesh and remesh, when nec-
essary. In this case we use an incremental approach to implement the ALE transformation:
the ALE map is decomposed in a fixed number of equivalent summands and steps of domain
motion and remeshing are alternated until the whole deformation has been applied.
Algorithm 4: MoveRemesh algorithm
Input: Mesh Mn, relation R, displacement ηn+1, and number of sub-iterations N
η ← ηn+1/N
for i=1 to N do
Mn+1(i) = Ext(M i

n,R(η))
if meshQuality ≤ tol then
Remesh
Interpolate

end if
end for

Output: Mn+1

• Algorithm 5 shows the procedure for the construction of the initial mesh from the reference
one, by making use of the previously cited algorithms. This algorithm is useful, in particular,
for the swimmer in section IV.2.2, as the reference and initial configurations do not coincide.
In this case, A0 6= I which is not usual in most of fluid-structure interaction studies.
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Algorithm 5: InitialMesh algorithm
Input: Reference mesh Mref , initial displacement η0.

[M0,R]=Remesh(Mref )
MoveRemesh(M0,R,η0,N)

Output: M0

• Algorithm 6 contains the general solution strategy that combines all the previous algorithms.
Starting from the reference mesh Mref and initial displacement η0, the initial mesh at time
t = 0 is computed. Then, for t ≤ T , the displacement η on the boundary of the fluid do-
main is recovered (the specific way to do this depends on the swimmer under consideration)
and the displacement velocity ud is computed by differentiating numerically η. Finally, the
displacement velocity ud is imposed on the swimmer’s boundary and the solution of the fluid
problem is addressed.
Algorithm 6: Solution algorithm
Input: Reference mesh Mref , initial displacement η0

M0=InitialMesh(Mref ,η0)
while t ≤ T do
if meshQuality ≤ tol then
Remesh
Interpolate

end if
Evaluate η in Mn+1

Impose ud = δtη
Solve fluid problem

end while

Development details on the mesh adaptation procedure as it is implemented in Feel++ are
collected in chapter III.1.2.

II.2.3 The fluid-body problem

Let T0 be the triangulation discretizing the fluid domain F0 at time t = 0, which coincides with
the computational domain C0. Since the computational domain Ct is moving according to the
ALE maps At, also the triangulation will be moving according to a discrete approximation of
the ALE maps, that we denote Ath. For each time instant tn, 0 ≤ n ≤ nT , in which the time
interval [0, T ] is subdivided, it is possible to define the triangulation Ttn = Atnh (T0).

Let unh and pnh denote the discrete approximations of the velocity and pressure fields at time
tn. The discrete approximation spaces for the fluid variables are now defined: as the domain is
time dependent, the functional spaces are time dependent as well via the discrete ALE maps.
In particular, they are related to the discrete approximation spaces on the reference domain via
Ath. The velocity and pressure spaces are, respectively,

V t
h = {v : Ct → Rd, v = v̂ ◦ (Ath)−1, v̂ ∈ H1(C0) ∩ [PN (C0)]d}

Qth = {p : Ct → R, p = p̂ ◦ (Ath)−1, p̂ ∈ PN−1(C0)}.
(II.2.18)

We choose the Taylor-Hood finite element spaces V t
h − Qth with N = 2 for our finite element

simulations, as they satisfy the discrete version of the inf-sup condition [40]. Therefore, the
velocity is discretized using continuous piecewise quadratic finite elements, and the pressure is
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discretized using continuous piecewise affine finite elements. The discrete variational formula-
tion of the Navier-Stokes equations at time tn+1 requires finding un+1

h , pn+1
n ∈ V tn+1

h × Qtn+1

h ,
(Un+1, ωn+1) ∈ Rd × Rd∗ such that, for all (v, q) ∈ V tn+1

h ×Qtn+1

h , (Ũ , ω̃) ∈ Rd × Rd∗

∫
Ctn+1

∂tu
n+1
h ·v−

∫
Ctn+1

((uA
n+1
h −un+1

h ) ·∇xun+1
h ) ·v+

d[R(t)J(t)R(t)Tω]

dt

n+1

·ω̃+m
dU

dt

n+1

·Ũ

+ 2µ

∫
Ctn+1

D(un+1
h ) : D(v)−

∫
Ctn+1

pn+1
h ∇x · v =

∫
Ctn+1

fn+1 · v (II.2.19)

∫
Ctn+1

q∇x · un+1
h = 0 (II.2.20)

The degrees of freedom of u on the boundary of the body ∂S only depend on U and ω if we
neglect ud, as it is a known datum when solving the fluid equations. For this reason, these
degrees of freedom are treated differently by considering the procedure proposed in [88]. Let us
denote the degrees of freedom that belong to the boundary of the particle by the subscript Γ as
uΓ, pΓ and the others by the subscript I as uI , pI . Equations (II.1.41) can be split as

∫
Ctn+1

∂tu
n+1
h · ũI −

∫
Ctn+1

((uA
n+1
h − un+1

h ) · ∇xun+1
h ) · ũI

+2µ

∫
Ctn+1

D(un+1
h ) : D(ũI) dx−

∫
Ctn+1

pn+1
h ∇ · ũI dx =

∫
Ctn+1

fn+1 · ũI dx,∫
Ctn+1

∂tu
n+1
h · ũΓ −

∫
Ctn+1

((uA
n+1
h − un+1

h ) · ∇xun+1
h ) · ũΓ + 2µ

∫
Ctn+1

D(un+1
h ) : D(ũΓ) dx

−
∫
Ctn+1

pn+1
h ∇ · ũΓ dx =

∫
Ctn+1

fn+1 · ũΓ dx,

(II.2.21)

and equation (II.1.42) can be split as∫
Ctn+1

p̃∇ · uI dx = 0,∫
Ctn+1

˜p∇ · uΓ dx = 0.

(II.2.22)

Remark. Boundary terms of the form
∫
∂S(−pI + 2µD(u))~n · ũ dS are never computed in

the assembly of the system matrix. Instead of building the finite element basis spanning the
constrained test space of (ũ, Ũ , ω̃) ∈ [H1(Ctn+1)]d ×Rd ×Rd∗ that satisfies boundary conditions
u = U+ω×(x−xCM ) on ∂S, we first use the standard finite element bases to discretize equation
(II.1.46), getting 

AII AIΓ 0 0 BT
I

AΓI AΓΓ 0 0 BT
Γ

0 0 T 0 0
0 0 0 M 0
BI BΓ 0 0 0



uI
uΓ

U
ω
p

 =


GI
GΓ

0
0
0

 , (II.2.23)
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where

AJK =

∫
Ctn+1

(∂tu
n+1
h )J · ũK −

∫
Ctn+1

((uA
n+1
h − un+1

h ) · ∇xun+1
h )J · ũK+

2µ

∫
Ctn+1

D(un+1
h )J : D(ũK) dx, for J,K ∈ I,Γ

BI = −
∫
Ctn+1

pn+1
h ∇ · ũI dx BΓ = −

∫
Ctn+1

pn+1
h ∇ · ũΓ dx,

GI =

∫
Ctn+1

fn+1 · ũI dx, GΓ =

∫
Ctn+1

fn+1 · ũΓ dx.

T = mI, M = RnJn(Rn)T ,

Then, the operator

P =


I 0 0

0 P̃U P̃ω
0 I 0
0 0 I

 ,
that satisfies the equation

(uI , U, ω)T = P (uI , uΓ, U, ω)T +R(t)ud

is built, as it performs the change of finite element basis from the standard Lagrange basis to
the constrained one. In the previous matrix, P̃U and P̃ω are the interpolation operators that
allow the expression of uΓ as a function of U and ω. In order to detail them, let us define the
spaces

V0 = {v ∈ C0(∂Sh), v
∣∣
E
∈ P0(E) ∀E ∈ ∂Sh},

V1 = {v ∈ C0(∂Sh), v
∣∣
E
∈ P1(E) ∀E ∈ ∂Sh}.

Let us define the polynomial space PN (∂Sh), where N = 2 is the local polynomial degree of the
fluid velocity approximation. The operator P̃U

∣∣ : PN (∂Sh)→ V0 is defined by∫
∂Sh

uϕdx =

∫
∂Sh

Uϕdx, ∀ϕ ∈ V0, (II.2.24)

and the operator P̃ω
∣∣ : PN (∂Sh)→ V1 is defined in an analogous manner by∫
∂Sh

uϕdx =

∫
∂Sh

ω × (x− xCM )ϕdx, ∀ϕ ∈ V1. (II.2.25)

Consider the operator

P =


I 0 0 0

0 P̃U P̃ω 0
0 I 0 0
0 0 I 0
0 0 0 I

 ,
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i.e. the P operator extended to include pressure degrees of freedom. It is now possible to
compute the matrix expressing the coupled fluid-rigid body problem by conjugation with P

PT


AII AIΓ 0 0 BT

I

AΓI AΓΓ 0 0 BT
Γ

0 0 T 0 0
0 0 0 M 0
BI BΓ 0 0 0

P =


AII AIΓP̃U AIΓP̃ω BT

I

P̃ TUAΓI P̃ TUAΓΓP̃U + T P̃ TUAΓΓP̃ω P̃ TUB
T
Γ

P̃ Tω AΓI P̃ Tω AΓΓP̃U P̃ Tω AΓΓP̃ω +M P̃ Tω B
T
Γ

BI BΓP̃U BΓP̃ω 0

 ,
and the right-hand side of the coupled problem by multiplying it by PT

PT


GI
GΓ

0
0
0

− PT

AII AIΓ 0 0 BT

I

AΓI AΓΓ 0 0 BT
Γ

0 0 T 0 0
0 0 0 M 0
BI BΓ 0 0 0




0

R(t)ud ◦ A−1
t

0
0
0

 . (II.2.26)

Remark. A similar system arises when applied to the Stokes equations, except that inertial
terms disappear, including T = M = 0.

In the case of several independent immersed rigid bodies, the previous formulation extends
naturally. We now look for a solution (un+1

h , pn+1
n , Un+1

i , ωn+1
i ) ∈ V tn+1

h ×Qtn+1

h × [Rd]n× [Rd∗ ]n

to the weak formulation of the problem. Let (ũ, p̃, Ũi, ω̃i) ∈ V tn+1

h ×Qtn+1

h × [Rd]n× [Rd∗ ]n denote
the test functions. The variational formulation reads∫

Ctn+1

∂tu
n+1
h ·ũ−

∫
Ctn+1

((uA
n+1
h −un+1

h )·∇xun+1
h )·ũ+

n∑
i=1

(d[R(t)J(t)R(t)Tω]

dt

n+1

·ω̃+m
dU

dt

n+1

·Ũ
)

+ 2µ

∫
Ctn+1

D(un+1
h ) : D(ũ)−

∫
Ctn+1

pn+1
h ∇x · ũ =

∫
Ctn+1

fn+1 · ũ, (II.2.27)∫
Ctn+1

p̃∇x · un+1
h = 0, (II.2.28)

where D(u) = 1
2(∇u+∇uT ).

Following [88] once more, we choose (ũ, Ũi, ω̃i) ∈ V tn+1

h × [Rd]n× [Rd∗ ]n satisfying ũ = Ũi + ω̃i×
(x− xCMi ) on ∂Shi .

If the rigid bodies are related by translational velocity constraints, as in the three-sphere swim-
mer example [93] we will consider later, a different formulation is considered.

Remark. In the multi-body swimmers we study, only one angular velocity and rotating frame
are needed to describe the orientation of the swimmer. Since, in this case, we do not allow
bodies to rotate independently of each other, the subscript i is dropped for the angular velocity
to denote that it is shared among the bodies. In order to compute the contribution ω×(x−xCM )
to u, it is the centre of mass xCM of the multi-body system that is used, for which the subscript
i is once more dropped. We denote by P̃Ui and P̃ωi the interpolation operators relative to body
Shi that allow to express u∂Shi as a function of Ui and ωi. In particular, if one denotes by Di the
number of velocity degrees of freedom that lie on ∂Shi , one has that the interpolation operators
relative to translational velocity is

P̃U =

 PU1 . . . 0D1×d . . . 0D1×d
0Di×d . . . PUi . . . 0Di×d
0Dn×d . . . 0Dn×d . . . PUn

 . (II.2.29)
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The constraints on the relative velocities between the bodies can be imposed via Lagrange
multipliers or through a modification of the operator P .

The first method is the least invasive: additional equations and unknowns are added to a pre-
existing discretized problem of n independent bodies, as described in (II.1.40). Lagrange mul-
tipliers αi ∈ Rd, i = 1 . . . n − 1 are introduced to impose the constraints on the translational
velocities Ui onto the differential formulation. The previous constraints will appear in the
equations that describe the rigid body motion of the solid bodies: equations (II.1.43) will be
substituted by

miU̇i · Ũi + αi · Ũi = −
∫
∂Shi

(−pI + 2µD(u))~n · Ũi dS, i = 1 . . . n− 1, (II.2.30)

mnU̇n · Ũn −
n−1∑
i=1

αi · Ũn = −
∫
∂Shn

(−pI + 2µD(u))~n · Ũn dS, (II.2.31)

αi · (Ui − Un) = αi ·Win, i = 1 . . . n− 1. (II.2.32)

The addition of Lagrange multipliers entails the modification of P by providing an additional
identity matrix of size d(n − 1) × d(n − 1) on the diagonal. Despite its easy application, this
approach deteriorates the condition number of the system matrix, as we show in table IV.1.1 by
comparing different solution strategies applied to the simulation of the three sphere swimmer.
The data show that, depending on the solution strategy, the Lagrange multiplier approach can
lead the algebraic solver to diverge, and in general is less efficient than the P matrix approach,
that we now present.

Instead of using Lagrange multipliers to constrain the translational velocities, a modification of
the operator P could give the same results. In terms of finite element spaces, this consists in
reducing the constrained finite element space to basis functions that satisfy u = Un + ω × (x−
xCM (t)) + R(t)ud(t) on ∂Shi , with ud(t) function of Win. More precisely, the fluid boundary
conditions at the solid’s boundary would read:

u = Un + ω × (x− xCM (t)) +Win(t), for i = 1, . . . , n− 1, on ∂Shi ,
u = Un + ω × (x− xCM (t)), on ∂Shn ,

(II.2.33)

which gives ud(t, x) = Win(t) for x ∈ ∂Shi , where we define Wnn(t) = 0. Now we can write

(uI , u∂Bi
, Ui, ω, p)

T = P̃(uI , Un, ω, p)
T +R(t)ud, (II.2.34)

where P̃ is given by

P̃ =


I 0 0 0

0 ˜̃PU P̃ω 0
0 E 0 0
0 0 I 0
0 0 0 I

 . (II.2.35)

The dn×dn block that corresponded to the translational speeds, is presently substituted by the
dn× d matrix

B1

{
...

Bi
{
...

Bn
{


Id
...
Id
...
Id

 = E, (II.2.36)
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and matrix P̃U is substituted by

˜̃PU =


P̃U1

...
P̃Ui

...
P̃Un

 . (II.2.37)

The relative velocities appear on the right-hand side of the problem, as they are encoded in ud.

II.2.4 The swimming problem

In this section we discretise the swimming problems that were presented in the modelling section.
As we did there, we divide this section according to the swimmers categories we identified earlier.
We remark that the discretization of the swimmer’s domain is necessary to compute dynamic
quantities like mass, moment of inertia and centre of mass, and that the coupling between the
fluid and solid problems is performed by using the boundary discretisation.

II.2.4.1 Rigid swimmers

The discrete version of the swimming problem for rigid swimmers, at time tn+1, requires finding
un+1
h , pn+1

n ∈ V tn+1

h × Qtn+1

h and (Un+1, ωn+1) ∈ Rd × Rd∗ , for all (v, q) ∈ V tn+1

h × Qtn+1

h , as
defined in (II.2.18), and (Ũ , ω̃) ∈ Rd × Rd∗ such that∫

Ctn+1

∂tu
n+1
h · v −

∫
Ctn+1

((uA
n+1
h − un+1

h ) · ∇xun+1
h ) · v + 2µ

∫
Ctn+1

D(un+1
h ) : D(v)

+
d[R(t)J(t)R(t)Tω]

dt

n+1

·ω̃+m
dU

dt

n+1

·Ũ−
∫
Chtn+1

pn+1
h ∇x·v =

∫
Chtn+1

fn+1·v+Fn+1
ext ·Ũ+Mn+1

ext ·ω̃,

(II.2.38)∫
Chtn+1

q∇x · un+1
h = 0, (II.2.39)

These equations are valid in the case of one rigid body and of articulated swimmers, composed of
several connected rigid bodies. In the first case, the mass, inertia tensor and centre of mass are
relative to the unique rigid body, while in the second case, they concern the whole articulated
swimmer. The solution of the fluid-rigid coupled problem follows the formulation just presented
in section II.2.3, based on the projection of un+1

h onto rigid-body-like velocities on the common
boundaries.

The computational domain Chtn+1
= Atn+1

h (Cht0) is obtained by computing the discrete ALE map
Atn+1

h = x+
∑tn+1

t=t0
φth via the solution of
∫
Ch0

(1 + τ(X))∇φtn+1

h (X) : ∇v dx = 0 ∀v ∈ Xh
0

φ
tn+1

h = φ̄tn+1 , on ∂Cht0 ,
(II.2.40)

where φ̄tn+1(X) is discretized as in (II.2.9)-(II.2.10). In this case, ud is either zero (in the case
of unique rigid body) or a function in analytical form in the case of relative motion between the
rigid bodies. In this second case, an accurate integration scheme is used to compute

∫ tn+1

tn
ud ◦

(Atnh )−1 dt. The implementation of relative motion constraints can be realised using Lagrange
multipliers or by modifying matrix P as described in section II.2.3.
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II.2.4.2 Swimmers with prescribed deformation

The case of swimmers with prescribed deformation differs from the rigid swimmers’ case only
in the part concerning the treatment of ud when using a reduced model for the swimmer’s
deformation. In this case, since the model we considered provided the shape of the swimmer at
each time instant, the velocity was computed using automatic differentiation.

II.2.4.3 Elastic swimmers

The solution of discrete, coupled fluid-elastic problems can be realised using two types of schemes,
i.e. monolithic or partitioned. In the first case, the fluid, structure and geometric problems are
assembled in a unique system and solved simultaneously at each time instant; in the second
case each of the fluid, solid and geometric sub-problems are individually solved. This second
approach is preferable in our case as the fluid and solid solvers are readily and independently
available. This second technique, however, requires an iterative procedure that cycles between
the solution of the different sub-problems to impose the coupling conditions [42, 76].

In partitioned algorithms, the coupling conditions can be treated implicitly, semi-implicitly or
explicitly [76]. In the first case, at each step of the iterative loop that imposes the kinematic,
dynamic and geometric continuity at the boundary for a fixed time, the geometry of the fluid
domain is updated, which leads to a recalculation of the terms of the fluid problem. The
semi-implicit approach, instead, keeps the geometry unvaried during the loop on the coupling
conditions. In this case, since the geometric coupling is not exactly satisfied, one requires more
iterations of the fixed point loop and a smaller time step to ensure stability of the coupling [22].
The explicit treatment of coupling conditions does not guarantee the energy conservation at the
interface, and using coupling schemes like Dirichlet-Neumann (Dirichlet boundary conditions on
the fluid and Neumann on the solid) is not possible as they are not transparent to added-mass
instabilities, as pointed out in [43] who proposed a Generalized Robin-Neumann scheme that is
transparent to added-mass effects.

II.2.5 Algebraic representation and solution

The size and the sparsity of the matrices lead us to use iterative methods to solve the associated
algebraic systems, and adapted preconditioning strategies are necessary to reduce the compu-
tational effort associated with the numerical solution. In this section we describe each of the
systems we solve and the associated preconditioning strategies.

II.2.5.1 The algebraic systems

An algebraic system is associated to each of the following solution steps: computation of the
ALE map, computation of the swimmer’s dynamics using an elasticity model, solution of the
problem coupling fluid flow and rigid-body motion. The algebraic system associated with the
computation of the ALE maps, according to equation (II.2.8), is sparse, symmetric and positive
definite. The preconditioning strategy that is employed for this system is based on algebraic
multigrid preconditioners (AMG), that project the problem onto coarser spaces that are found by
selecting the nodes providing larger contributions to the system matrix. This choice is dictated by
the usage of an unstructured mesh for the domain discretization and the discontinuous nature of
the the coefficient τ(X) [20]. The algebraic system associated with the hyper-elasticity equations
as reported in equation (II.2.3) is also solved using algebraic multigrid preconditioners coupled
with an iterative algebraic solver like GMRES.
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The system associated with the coupling of fluid and rigid body motion has a natural block
structure, as shown in equation (II.2.23). This block structure, typical of indefinite problems
discretised with mixed finite elements, is efficiently preconditioned with methods based on al-
gebraic factorization, which approximates the Schur complement via a convection-diffusion-like

problem in the pressure itself [39]. Let the system matrix A =

[
A00 A01

A10 0

]
be factorised in a

block LDU form, with inverse of the form

A−1 =

(
I −A−1

00 A01

0 I

)
︸ ︷︷ ︸

U−1

(
A−1

00 0
0 S−1

)
︸ ︷︷ ︸

D−1

(
I 0

−A10A
−1
00 I

)
︸ ︷︷ ︸

L−1

, (II.2.41)

where S = −A10A
−1
00 A01 is the Schur complement. Sub-matrix A00 contains the terms depending

exclusively on fluid, translational and angular velocity, while A01 and A10 contain the pressure
terms. In presence of a multi-body swimmer where the the velocity constraints among its
components are expressed in terms of Lagrange multipliers (modelled as in (II.2.32)), A00 will
contain also the terms depending on the Lagrange multipliers. The preconditioner PA has the
same form of A−1, where A−1

00 and S−1 are substituted with less expensive versions Â−1
00 and

Ŝ−1

PA =

(
I −Â−1

00 A01

0 I

)
︸ ︷︷ ︸

U−1

(
Â−1

00 0

0 Ŝ−1

)
︸ ︷︷ ︸

D−1

(
I 0

−A10Â
−1
00 I

)
︸ ︷︷ ︸

L−1

. (II.2.42)

The choice of efficient Â−1
00 and Ŝ−1 guarantees that the preconditioner is spectrally equivalent

to the inverse matrix PA ≈ A−1.

In case of low Reynolds number flows, the preconditioner Ŝ of the Schur complement is propor-
tional to the pressure mass matrix Mp = [mij ], mij =

∫
Ct qiqj where qi span the finite element

space of the pressure. The scaling factor of the pressure mass matrix is the fluid viscosity, giving
Ŝpmm = 1

µMp. In the case of P1 pressure approximation, the lumped version of Mp can be used
as well. Both Mp and its lumped version are spectrally equivalent to the Schur complement
S [39], and they provide a preconditioner which is independent from the mesh size h. In case
of higher Reynolds number flows, a preconditioner based on a convection-diffusion problem in
the pressure variable is used to approximate S. This preconditioner is given by the successive
application of three operators Ŝpcd = MpF

−1
p Ap, where Ap = [aij ], aij =

∫
Ct ∇qi : ∇qj , and

Fp = [fij ], where fij = µ
∫
Ct ∇qi : ∇qj +

∫
Ct(uh · ∇qj)qi, uh is the most recent approximation of

the fluid’s velocity field and qi span the finite element space of the pressure, as before.

II.2.5.2 Preconditioning

In order to show that the preconditioning strategy for the fluid-body problem is adapted to
the problem under consideration, we compare it to more generic preconditioners and verify its
scaling properties. Strong parallel scalability, that refers to the decrease of the solution time as
the problem size remains constant and the computational power increases, is used to compare
the different preconditioning strategies. The speed-up, defined as the ratio of the solution time
on one processor T (1) and the solution time T (N) on N processors,

S =
T (1)

T (N)
,

is the measure of strong scalability we consider. We will look also at scalability for multigrid
preconditioners, which stands for the invariance of the number of iterations needed by the
iterative solver to converge at each time step, as the size of the problem grows.
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There are two types of preconditioners we have explored for the solution of the coupled fluid and
rigid body problem: monolithic preconditioners and block preconditioners. In the first group we
considered LU preconditioning from the MUMPS library. In the second group, we considered
preconditioners based on algebraic factorisation with different preconditioning strategies on each
of the blocks, ranging from algebraic multigrid to LU factorization.
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Chapter II.3

Verification and validation

This chapter presents some of the computational tests that were devised to verify the correctness
of the algorithms. The results that are presented in this section are obtained with Feel++. In
particular, section II.3.1 collects tests on remeshing and mesh adaptation; section II.3.2 tests the
swimmer gait models, especially the solution of active elasticity and the interplay of imposed
deformation and deformation velocity; section II.3.3 presents a third set of tests consisting in
two instances of immersed rigid bodies settling under gravity, in 2D and 3D..

II.3.1 Mesh adaptation tests

In these tests, available for sequential and parallel execution1, the ability to effectively perform
remeshing and function interpolation across a remeshing step is verified. Different cases are
tested to verify if the procedure is robust in 2D and 3D: domains with one and two materials are
remeshed, in order to see if mesh features are preserved in presence of a solid body immersed
in a fluid; the interpolation of constants, linear functions, quadratic functions is verified to be
exact; the solution of an elliptic problem is also interpolated to see the effects of interpolation
on a piecewise polynomial finite element field; several remeshing steps with different metrics
are also performed, in order to further check the robustness of the algorithm under repeated
applications.

Let Vh the finite element space defined on the initial discretization of Ω = [0, 1]2 in 2D (Ω = [0, 1]3

in 3D), and V R
h the finite element space defined on the new discretization of Ω. Let u∗ be the

function to be interpolated. We denote by uR ∈ V R
h the approximation of u∗ on the new finite

element space, by I : Vh → V R
h the interpolation operator between the old and new finite element

spaces and by I(u) ∈ V R
h the interpolation of the function u ∈ Vh on the new mesh, where u is

the approximation of u∗ in Vh. The elliptic problem that is solved in Ω is
−∆u = f, on Ω,

u = sin(πx), on ∂Ω,

f = π2 sin(πx),

(II.3.1)

and its exact solution is u∗(x) = sin(πx). In this case, uR will be the representation of the
exact solution on V R

h and I(u) the interpolation of the numerical solution of the problem in
Vh. The results of the interpolation are collected in table II.3.1, where the L2 norm of the

1These tests are located in the Feel++ repository in file feelpp/testsuite/feelmesh/test_remesh.cpp.
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interpolation error ‖I(u)−uR‖L2 is reported. The results show the exactness of the interpolation
on constants, linear functions and quadratic functions when using P2 continuous finite elements.
The interpolation error on the elliptic problem is not negligible, but it is reduced when the mesh
size of the initial discretization of Ω decreases. Algorithm 7 shows the sequence of operations
that are performed to assess the interpolation error for each function, using different remeshing
metrics gi. As the results of the tests are similar in sequential and parallel, the table only reports

Algorithm 7: Interpolation test

Input: Mesh M0, functions {u∗i }
Nfunctions

i=1 , projection operators Π,ΠR onto Vh, V R
h , metrics

{gm}Nremesh
m=1

Create Vh on M0

for m=1 to Nremesh do
Mm = Remesh(M0, gm)
for i=1 to Nfunctions do
Create V R

h on Mm

u = Π(u∗i ) or u = Solve(II.3.1)
uR = ΠR(u∗i )
Build I : Vh → V R

h

Compute ‖I(u)− uR‖L2

end for
end for

the result obtained when running the tests in sequential.

II.3.2 Swimming tests

II.3.2.1 Prescribed deformation model

A correct approximation of the beating tail is fundamental to recover the behaviour and interac-
tion of the swimmer with the surrounding fluid. Hence, it is necessary to choose an appropriate
time integration scheme to recover the tail’s shape from its deformation velocity. Since we restrict
to “prescribed deformation” models, the evaluation of the deformation velocity is inexpensive
and schemes with many evaluations can be chosen.

We focus on the tail beating proposed in section IV.2.2, where the centreline of the flagellum
is obtained via the solution of a system of ODEs (IV.2.3). At each time instant the solution of

One material Two materials

Interpolation error (2D)

Constant 1.75e-15
Linear 5.52e-16

Quadratic 8.51e-16
Elliptic problem 8.02e-5

Constant 1.75e-15
Linear 1.52e-16

Quadratic 8.51e-16
Elliptic problem 9.33e-6

Interpolation error (3D)

Constant 5.55e-15
Linear 2.31e-15

Quadratic 2.34e-15
Elliptic problem 3.32e-5

Constant 5.54e-15
Linear 1.57e-15

Quadratic 1.55e-15
Elliptic problem 6.49e-5

Table II.3.1: Test on the interpolation error across remeshing steps.
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Figure II.3.1: Comparison between the position of the two-dimensional approximation of the tail
beating proposed in (IV.2.3) and its reconstruction from the deformation velocity, using different
time integration schemes. On the left, the reconstruction using a Runge-Kutta 4th order scheme
(green) is compared with the one using an implicit Euler scheme (blue). On the right, for
comparison, the position of the tail (red, obtained by solving (IV.2.3)) is again compared to the
reconstruction using implicit Euler (blue).

(IV.2.3) describes the position of the tail, which can be used as a term of comparison for the shape
resulting from time integration of the deformation velocity. In order to have a clearer picture
of the effects of the time integration schemes, we restricted to the two-dimensional projection,
on the plane xz, of the tail beating proposed in section IV.2.2. Automatic differentiation is
used to derive the deformation velocity of the centreline from equation (IV.2.3). Two time
discretization schemes were compared to assess their performance on the reconstruction of the
swimmer’s body from its deformation velocity ud, namely implicit Euler and 4th order Runge-
Kutta. Figure II.3.1 compares the tail reconstruction of the two integration schemes with the
position of the tail, obtained by solving (IV.2.3) at every time instant. One can see that using a
first order implicit Euler scheme is not sufficient to recover the exact position of the swimmer’s
beating tail, while a Runge-Kutta scheme of 4th order is able to recover it. This lead us to
prefer the latter integration scheme to reconstruct the swimmer’s body.

As the volume of the swimmers we consider is discretized, the reconstruction of the swimming
gait is coupled to mesh adaptation and remeshing. Figure II.3.2 illustrates that it is possible
to subdivide the gait reconstruction in sub-steps that alternate mesh smoothing and remeshing.
Further tests were performed to verify the relationship between the reference and current meshes
for the evaluation of ud, and to monitor the evolution of the swimmer’s volume (or area in 2D)
along the simulation. We have shown previously that constant functions were preserved across
remeshing, hence verifying that the volume of the swimmer is preserved across remeshing is a
corollary of the previous tests. It is not guaranteed, however, that the volume of the swimmer
remains constant while swimming, especially if the gait results from an extension of a 1D model.

II.3.2.2 Active elasticity models

In order to test the solution to the active elasticity problems (II.1.10)-(II.1.11), we perform a
convergence study on manufactured solutions. In order to verify the correct implementation of
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Figure II.3.2: Mesh degradation can be avoided if the displacement between two tail positions
is subdivided in equal parts. Mesh smoothing and remeshing are alternately applied in order
to move between the initial and final tail configurations while guaranteeing a minimal value of
mesh quality.

the 2D active elasticity models, we started from the exact solution

η∗ =

[
0

sin(x)

]
,

to construct the test problems to be solved. In the active stress case, the active stress tensor

Σa =

[
0 0
0 −x sin(y)

]
,

was prescribed, while in the active strain case, the active component of the deformation gradient

Fa =

[
1 0
0 1.02 + 0.01 sin(y)

]
,

was prescribed. The forcing term f was obtained by inserting these components and the exact
solution in equations (II.1.10) and (II.1.11). In the test problems we considered, equations
(II.1.10) and (II.1.11) were solved with f computed as before, and Dirichlet boundary conditions
equal to η∗ on the swimmer’s surface. The convergence tests presented in figures II.3.3 and II.3.4
show the expected quadratic decrease of the L2 error and linear decrease of the H1 error as the
maximum mesh size hmax of the swimmer’s triangulation decreases.

II.3.3 Fluid tests

II.3.3.1 Sphere subject to gravity

In this section we consider a test that validates a fundamental building block for swimming
simulation, that is the interaction between fluid and solid bodies, in three dimension. It consists
in computing terminal velocity and fluid forces on a rigid sphere that is immersed in a viscous
medium and is settling under the action of gravity. The following Stokes and settling velocity
formulas are used as benchmarks for the fluid-rigid body coupling solver. The Stokes formula
relates the drag force and the translational velocity of the sphere via the linear relationship
F = 6πµRV , where R is the radius of the sphere, V its velocity and µ is the viscosity of the
fluid. If we suppose that the sphere is settling under gravity and viscous dissipation has levelled
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Figure II.3.3: Convergence test for active stress elastic model.
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Figure II.3.4: Convergence test for active strain elastic model.
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Ω

Γext
Sphere

Figure II.3.5: Computational domain for the settling sphere example.

Mesh Nu Np Nelements hmax
M0 163773 7277 48340 2.22947
M1 250350 11015 78867 1.96095
M2 1044645 44096 298478 1.18534

Mesh LU FSLU−Pmm−GAMG
1 FSGAMG−Pmm−jacobi

1

M0 1 0.86 0.65
M1 1 0.61 1.18
M2 1 1.031 5.2

Mesh LU FS1 FS2

M0 - 3 23
M1 - 7 21
M2 - 3 12

Table II.3.2: The top table reports the mesh characteristics for the falling sphere example. The
bottom tables compares the preconditioning strategies when the problem is solved on N = 24
processors. On the left, numbers represent the ratios of average solution time tLU/tprec. The
block preconditioning approach proves more effective than LU preconditioning with more refined
meshes. We refer to the body of the text to describe the acronyms about the splitting strategies.
On the right, the number of iterations of the Krylov subspace solver is reported. This table
shows that the number of iterations does not depend on the mesh size, but it depends on the
choice of the blocks: preconditioner FS1 collects the fluid and rigid-body velocities in the same
block, while preconditioner FS2 assigns the rigid-body velocities to the block containing the
pressure degrees of freedom.

out transitory effects, the drag force F will balance the gravity force and the settling velocity
will be given by

V =
2(ρs − ρ)gR2

9µ
, (II.3.2)

where ρs and ρ are the sphere and fluid densities, respectively, and g is the gravity acceleration.

The computational domain, represented in figure II.3.5, consists in a small solid sphere immersed
in a fluid medium that is itself bounded by a spherical container. On the external boundaries of
the fluid domain, homogeneous Dirichlet boundary conditions are imposed, while on the bound-
ary of the sphere one has u = U+ω× (x−xCM ), i.e. the equality between the fluid velocity and
the velocity of the solid. As gravity is the driving force of the motion, it is possible to evaluate
both the settling speed and the drag force as products of the computations. The results are
reported in Figure II.3.6, which shows the percentage error for the settling velocity (left figure)
and the drag force (right figure) with respect to their theoretical values, when refining the do-
main discretization. In table II.3.2 we report the statistics of the mesh that were used, in terms
of number of elements Nelements and degrees of freedom for pressure Np and velocity Nu. An
analysis of the preconditioning strategies is also carried out on this toy problem by comparing
LU preconditioning strategy to block preconditioning. In order to compare the two methods,
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Figure II.3.6: Percentage error on the translational velocity of a sphere subject to gravity (left)
and associated drag force (right). The exact values are computed via (II.3.2) where ρs =
10−3, ρ = 10−6, g = 9.81, R = 0.1, µ = 1.

we looked at the ratio between the average solution time of a single time-step using LU precon-
ditioning, where the preconditioner is constructed at every time-step, or algebraic factorization
with block preconditioning. We looked at two different block splitting strategies depending on
the position of the rigid body degrees of freedom in the splitting. Table II.3.2, on the left,
shows that, as the number of degrees of freedom grows, the block preconditioning approach
provides a faster solution when compared to LU preconditioning; this speed up depends also on
the preconditioning strategies for each individual block. In both cases that we investigated, the
degrees of freedom corresponding to rigid-body velocities are assigned to block A00 (cf. section
II.2.5), and this splitting choice is denoted by the acronym FS1. The LU −Pmm−GAMG and
GAMG−Pmm− jacobi acronyms refer to the preconditioning strategy for the two sub-blocks:
LU or algebraic multigrid for the A00 sub-block, and Pmm with algebraic multigrid or jacobi
preconditioning for the Schur’s complement sub-block. Table II.3.2, on the right, shows that
the number of Krylov iterations does not depend on the mesh size, but it depends on the type
of block splitting. The number of iterations varies slightly as the mesh is refined, but it does
not show an increasing trend. Strong scaling of the fluid-solid coupling is also tested in the
case of multi-body swimmers (chapter IV.1), where further comparison between solution time
for different problem sizes are presented.

II.3.3.2 Falling two-dimensional rigid bodies

The tests we propose here differ in two aspects from the previous one: they are two dimensional
and the fluid regime has a higher Reynolds number. The first test is taken from [14, Section
3.3.3] and considers a two dimensional disk settling under the effect of gravity. In this test we
compare the vertical position of the disk with the corresponding curve from [14]. Since we do
not have an algorithm that handles contacts between the solid and the domain, the simulation
is stopped when the cylinder reaches the bottom of the box; whence the representation of a
shorter time window if compared with [14].

The computational domain is a [0, 2] × [0, 6]cm box filled with fluid, which contains a disk of
radius 0.125 cm and centred in (1, 4). The fluid density is ρ = 1 g/cm3 and the fluid viscosity
is µ = 0.01 cm2/s, while the solid density is ρs = 1.5 g/cm3. The value of gravity acceleration
is g = 980 cm/s2. For this simulation, the time step was ∆t = 10−3s and the non-linearity of
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Figure II.3.7: In these figures we report the results relative to the first testcase of a falling
two-dimensional cylinder. On the left, we show the velocity field at time t = 0.1 s. On the right,
we present the comparison of our results with [14] on the vertical coordinate of the disk’s centre
of mass. A good agreement between the two results is found.

Navier-Stokes equations was solved using the Newton method. Figure II.3.7, on the left, reports
the velocity field at time t = 0.1s, and on the right the vertical coordinate of the disk’s centre of
mass, which shows a good agreement with the results presented in [14]. In [14], the fluid-solid
interaction was solved via immersed boundary method.

A second test of cylinder sedimentation is taken from [132]. The geometry of the testcase is the
same as before: the geometrical parameters defining the computational domain, the cylinder and
its initial position have the values we have previously reported. The fluid parameters, however,
are different: the fluid density is ρ = 1 g/cm3, the fluid viscosity is µ = 0.1 cm2/s and the solid
density is ρs = 1.25 g/cm3. Also in this case, we used a time step of ∆t = 10−3s. In figure II.3.8
we compare our results to [132] and find a good agreement. In [132], the fictitious boundary
method was employed to address the fluid-solid interaction, and the finite element method was
used to solve the fluid equations. The Reynolds number is computed as Re = ρsD

√
U2
x + U2

y /µ,
where D = 2R = 0.25 cm is the diameter of the cylinder, and the kinetic energy is computed as
EK = 0.5ρsπR

2(U2
x + U2

y ).

A third test on the simulation of a falling body in a fluid consist in looking at the settling
trajectory of an ellipse in a long channel. We compare our results to those in [136], which were
obtained via a multi-block Lattice Boltzmann method and an ALE based finite element method.
The fluid domain is a [0, 0.4]× [0, 2.8]cm channel, in which an ellipse of axes 0.1cm and 0.05cm
is located at (0.2, 2.4). The initial configuration of the ellipse is also rotated of 45◦ with respect
to the case where the long axis is parallel to the x axis. In this case, the viscosity of the fluid is
µ = 0.01 cm2/s, the fluid density is ρ = 1 g/cm3 and the solid density is ρs = 1.1 g/cm3. Figure
II.3.9 shows the trajectory followed by the centre of mass of the ellipse, scaled with respect to
the characteristic size of the problem L = 0.4 cm.
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Figure II.3.8: In these figures we report the results of the second falling cylinder test. The blue
lines correspond to Wan and Turek results in [132], while the red lines correspond to our results.
In the top left figure we report the time evolution of the y coordinate of the centre of mass of
cylinder; in the top right the evolution of its vertical velocity Uy; in the bottom left figure the
Reynolds number; in the bottom right the kinetic energy. The figures show a good agreement
between our results and those contained in [132].
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Figure II.3.9: On the left figure, the geometry of the problem is presented: at t = 0s the ellipse
forms a 45◦ angle with the horizontal direction, and it is located in a long rectangular cavity. In
the left figure, the x and y coordinates of the ellipse’s centre of mass are rescaled with respect
to L = 0.4 cm and plotted one against the other. The resulting trajectory is in good agreement
with the points from the benchmark case in [136].
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Part III

Implementation in Feel++
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This part collects the software contributions to the Feel++ library motivated by swimming
simulation. The implementation of rigid body motion, remeshing and a generic computational
model for swimmers, to be interfaced with the fluid solver, are presented.
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Chapter III.1

Developments

The software contributions to the Feel++ library are presented in this chapter: section III.1.1
describes the implementation details for the motion of immersed bodies and articulated swim-
mers; section III.1.2 discusses the computational aspects of mesh adaptation; section III.1.3
presents a generic application with which different swimmers can be simulated.

Within the Feel++ framework it is possible to build and configure toolboxes that solve prob-
lems ranging from Newtonian fluid mechanics (Navier-Stokes and Stokes equations), non-linear
elasticity to coupled fluid-structure interaction problems. These toolboxes are based on the
Feel++ core library, and handle initialisation of the data structures, solution via finite elements
of the differential equations and post-processing of the results. Figure III.1.1 presents the in-
heritance diagram of the classes implementing the fluid, solid and fluid-structure interaction:
first ModelBase handles the execution of the toolboxes at the lowest level (creating folders for
data, interface for parallel computations); then, ModelAlgebraic and ModelNumerical contain
the algebraic data structures that are necessary for the solution of the discrete problem, for the
post-processing and time-stepping; ModelPhysics contains the data structures that characterise
the physics of the problem (e.g. material properties, turbulence models). These classes are
then extended by FluidMechanics, SolidMechanics or FluidSolidInteraction, that fill the
general interface proposed by the previous classes with the specific discrete variational problem
coming from the discretisation of the differential equations. The development originated by this
thesis influenced mainly the FluidMechanics class, through the addition of data structures that
handle moving bodies and remeshing.

Apart from the Feel++ swimming framework, which is recent and open source, other software
solutions already exist to simulate swimming. Using finite elements, but not only, the commer-
cial COMSOL Multi-physics1, is capable to solve fluid-structure interaction problems [111, 34];
via the open source CFD software OpenFOAM2, which uses finite elements, finite volumes or
Lagrangian particle tracking, it is possible to solve the fluid equations and interface a in-house
solid solver to simulate the swimmer’s motion; other options are softwares based on the im-
mersed boundary method, like [15], or on libraries for boundary element method, like BEMLIB3

for [59]. To our knowledge, ours is one of the few open source platforms for the simulation of
(micro-)swimming.

1www.comsol.com
2www.openfoam.com
3http://dehesa.freeshell.org/BEMLIB/
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ModelBase

ModelAlgebraic

ModelNumerical ModelPhysics

FluidMechanicsFluidMechanics SolidMechanicsSolidMechanics

FluidSolidInteraction

Figure III.1.1: UML diagram for the fluid, solid and fluid-solid interaction toolboxes.

III.1.1 Motion of immersed bodies

III.1.1.1 Rigid bodies

The motion of rigid bodies in a Newtonian fluid, as modelled in the context of this thesis, was
added to the toolbox dedicated to fluid mechanics problems. A generic interface for an immersed
rigid body is provided by the class Body, whose attributes are

• mass,

• centre of mass,

• moment of inertia,

• Euler angles,

• rotation matrix R(t) between the local and global reference frames

of the body, and other variables and labels identifying its particular physical model, i.e. “body”.
The methods of the class consist in accessors and mutators for the attributes, as well as routines
that compute mass, centre of mass and moment of inertia of the body. In Figure III.1.2 a
synthetic view of the Body class is shown: apart from the attributes that were already mentioned,
we highlighted the method expressing the moment of inertia J of the body in the laboratory
reference frame as R(t)JR(t)T .

The kinematics of immersed rigid bodies is encoded in the BodyBoundaryCondition class, that
contains the translational and angular velocity on which the fluid velocity u = U+ω×(x−xCM )
at the surface of the body depends. In particular, BodyBoundaryCondition contains

• translational/angular velocity and the corresponding P0 finite element spaces,
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• expressions that allow the imposition of ω × (x − xCM ) (since it’s a space-dependent
quantity that needs to be evaluated),

• routines that create the P̃ matrices which couple the rigid body velocity with the degrees
of freedom of the fluid velocity (see section II.1.3).

In order to make this class extensible to an immersed elastic body, it is also possible to add a
velocity field ud(X) such that the velocity at the interface of the fluid domain is U + ω × (x−
xCM ) +R(t)ud ◦ A−1

t (x).

Since the toolboxes are configured via json configuration files that prescribe material properties
and boundary conditions of the specific problem, a collection of new keywords relative to the
Body framework has been added to include rigid bodies. In particular, in the Materials section
of the configuration file one specifies the volume markers and density value of the rigid body as

1 “Materials ’’:{...,
2 “RigidBody":{
3 “markers": “VolumeMarkers",
4 “physics": “body",
5 “rho": “DensityValue"}
6 }

while in the BoundaryConditions section it is necessary to notify the presence of the rigid body
via its surface markers and its material as

1 “BoundaryConditions":
2 {
3 ...,
4 “fluid":
5 {
6 “body":
7 {
8 “":
9 {

10 “markers":“SurfaceMarkers",
11 “materials":“RigidBody"
12 // “translational -velocity":“{0.5,-1}"
13 // , “angular -velocity":“0"
14 // , “elastic -velocity":“{u_dX(x),u_dY(x)}"
15 }
16 }
17 }
18 }

It is also possible to impose the translational or angular velocity of the body as a Dirichlet
boundary condition, as well as use the elastic-velocity keyword to impose the velocity of
deformation ud(X) for an elastic body. A synthetic version of the BodyBoundaryCondition is
shown in figure III.1.2, collecting the attributes and routines that have been described.

A complete example of json configuration file for a rigid body, moving in a fluid, is now presented:
it concerns the simulation of a sphere subject to gravity in the low Reynolds number regime,
using Navier-Stokes equations. In this case, the computational domain is divided in two parts:
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Body

M_mass
M_massCenter
M_momentOfInertia_bodyFrame
M_rigidRotationAngles

computeMomentOfInertia_inertialFrame

BodyBoundaryCondition

M_body
M_fieldTranslationalVelocity
M_fieldAngularVelocity

updateDisplacement
updateMatrixPTilde_angular

BodyArticulation

M_body1
M_body2

initLagrangeMultiplier
areConnected
setTranslationalVelocityExpr

NBodyArticulated

M_rigidRotationAngles
M_massCenter

articulations
momentOfInertia_inertialFrame

Figure III.1.2: Synthetic UML diagrams for the new classes that were added to FluidMechanics.
The Body class collects the variables describing the position of the body and its dynamical prop-
erties, as well as the routines to update them. BodyBoundaryCondition contains the variables
that describe the rigid and deformation velocity of the body, while NBodyArticulated allows to
describe a body which is made of several Body components, connected and moving relatively to
each other as prescribed in BodyArticulation.

the Fluid part, occupied by the fluid and the SphereVol part, occupied by the solid sphere. The
interface between the two is named SphereSurf, and corresponds to the surface of the spherical
object. The Models and Materials sections collect the information on physical models and the
values of the physical coefficients; the section BoundaryConditions contains the information
about the boundary conditions to be imposed on the differential problem; the PostProcess
section specifies the fields and measurements to be exported along the simulation.

1 {
2 "Name": "FallingSphere",
3 "ShortName":"FallingSphere",
4 "Models":
5 {
6 "equations":"Navier -Stokes"
7 },
8 "Materials":
9 {

10 "Fluid":{
11 "markers":["Fluid"],
12 "physics":"fluid",
13 "rho":"1e-6",
14 "mu":"1"
15 },
16 "Solid":{
17 "markers":"SphereVol",
18 "physics":"body",
19 "rho":"1e-3"
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20 }
21 },
22 "BoundaryConditions":
23 {
24 "velocity":
25 {
26 "Dirichlet":
27 {
28 "Walls":
29 {
30 "expr":"{0,0,0}"
31 },
32 "Outlet":
33 {
34 "expr":"{0,0,0}’’
35 }
36 }
37 },
38 "fluid":
39 {
40 "body":
41 {
42 "p1_mark":
43 {
44 "markers":["SphereSurf"],
45 "materials":
46 {
47 "names":["Solid"]
48 }
49 }
50 }
51 }
52 },
53 "PostProcess":
54 {
55 "Exports":
56 {
57 "fields":["velocity","pressure","pid","displacement"]
58 },
59 "Measures":
60 {
61 "Forces":"Sphere"
62 }
63 }
64

65 }
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III.1.1.2 Articulated swimmers

In this thesis, an articulated swimmer is a multi-body object whose components are intercon-
nected and can move relatively to each other. Following the formulation proposed in section
II.2.3, the connection between two bodies will be defined in terms of their relative linear veloc-
ity. The value of the relative velocity as well as the pairs of bodies forming an articulation are
encoded in the BodyArticulation class. Since the articulation is defined in terms of relative
velocities, and these are prescribed on the boundary of the bodies, this class depends on the
BodyBoundaryCondition classes of the two bodies that are connected via the articulation. Via
a Lagrange multiplier field, defined over each pair of bodies, the relative velocity can be imposed
for an arbitrary number of articulations; a second approach based on matrix P̃ , as presented in
II.2.3, can be chosen.

The articulation connection between two bodies is prescribed in the json configuration file in
an additional block as

1 “BoundaryConditions":
2 {
3 ...,
4 “fluid":
5 {
6 “body":
7 {
8 “":
9 {

10 “markers":“SurfaceMarkers1",
11 “materials":“RigidBody1"
12

13 },
14 “":
15 {
16 “markers":“SurfaceMarkers2",
17 “materials":“RigidBody2",
18 "articulation":
19 {
20 "body":"SurfaceMarkers1",
21 "translational -velocity":"RelativeLinearVelocity"
22 }
23 }
24 }
25 }
26 }

The “master” body is defined as usual, by detailing its markers and materials. The “slave” body,
on the other hand, is characterised by an additional articulation section which specifies the
master body and the relative velocity between the two. In general, an articulated body can be
composed of multiple articulations, and this information is stored in the class NBodyArticulated
which is briefly presented in Figure III.1.2, together with BodyArticulation.

We provide an example of json configuration file for the simulation of an articulated three-sphere
swimmer in the Stokes regime, realising the swimming gait proposed in [93], i.e. retraction and
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extension of the joints between the spheres with a constant speed, in a non-reciprocal fashion.

1 {
2 "Name": "three_sphere swimmer",
3 "ShortName":"three_sphere swimmer",
4 "Models":
5 {
6 "equations":"Stokes"
7 },
8 "Materials":
9 {

10 "Fluid":{
11 "physics":"fluid",
12 "rho":"1",
13 "mu":"1"
14 },
15 "SphLeft":{
16 "physics":"body",
17 "rho":1e-1
18 },
19 "SphCent":{
20 "physics":"body",
21 "rho":1e-1
22 },
23 "SphRight":{
24 "physics":"body",
25 "rho":1e-1
26 }
27 },
28 "Parameters":
29 {
30 "eps":1e-10
31 },
32 "BoundaryConditions":
33 {
34 "velocity":
35 {
36 "Dirichlet":
37 {
38 "BoxWalls":
39 {
40 "expr":"{0,0,0}"
41 }
42 }
43 },
44 "fluid":
45 {
46 "body":
47 {
48 "SphereCenter":
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49 {
50 "markers":["SphereCenter"],
51 "materials":
52 {
53 "names":["SphCent"]
54 }
55 },
56 "SphereRight":
57 {
58 "markers":["SphereRight"],
59 "materials":
60 {
61 "names":["SphRight"]
62 },
63 "articulation":
64 {
65 "body":"SphereCenter",
66 "translational -velocity":"4*pulse(t,1-eps,2-eps,4)-4

*pulse(t,3-eps,4-eps,4):t:eps"
67 }
68 },
69 "SphereLeft":
70 {
71 "markers":["SphereLeft"],
72 "materials":
73 {
74 "names":["SphLeft"]
75 },
76 "articulation":
77 {
78 "body":"SphereCenter",
79 "translational -velocity":"4*(pulse(t,0,1-eps,4)+

pulse(t,4-eps,4,4)) -4*pulse(t,2-eps,3-eps,4):t:eps"
80 }
81 }
82 }
83 }
84 },
85 "PostProcess":
86 {
87 "Exports":
88 {
89 "fields":["velocity","pressure","pid","displacement"]
90 },
91 "Measures":
92 {
93 "Quantities":
94 {
95 "names":"all"
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96 }
97 }
98 }
99

100 }

This configuration file uses the pulse(t,a,b,c) function, which implements a square wave of
period c, of unit value in [a,b], to prescribe the relative speed between the spheres.

Since multi-sphere articulated swimmers are often used as benchmarks or toy models, a tool for
the simulation of N -spheres swimmer, with 3 ≤ N ≤ 10 aligned spheres, has been implemented.
Its purpose is the automatic creation of the configuration files for the fluid toolbox (.cfg, .json,
.geo) and the configuration file for the block preconditioner (based on algebraic factorisation)
required to launch the simulation of the N -spheres swimmer propagating a travelling wave. This
tool is also available for the two dimensional version of these swimmers.

III.1.2 Mesh adaptation

Mesh adaptation and reconstruction were necessary to the numerical solution of swimming
problems. In fact, working with conforming interfaces between the fluid and the moving solids
may lead to important deformations of the discrete computational domain and mesh degradation.
The Feel++ library is interfaced with the MMG and ParMMG libraries in order to delegate
sequential and parallel remeshing tasks. Interfacing the two libraries required:

• conversions between the Feel++ and MMG mesh data structures (in sequential and par-
allel);

• creating a table that communicates the indices of mesh faces shared between two processors
(in parallel);

• extensive testing of the mesh adaptation tools.

The conversion between the two data structures is ensured by the functions mesh2Mmg and
Mmg2mesh of the class Remesh, defined in feel/feelmesh/remesh.hpp

mesh2Mmg converts the Feel++ mesh structure into MMG ’s mesh structure. The information trans-
ferred during sequential remeshing include the coordinates of mesh points, the table
of elements and the markers of preserved geometrical entities. At first, if some facets
were preserved and parallel remeshing was considered, the global facet index required by
the ParMMG interface was computed using the Cantor pairing function. This function,
C = C(a, b), is a bijective function that, given a pair of integers a, b, outputs a unique
integer of the form

C(a, b) =
(a+ b)(a+ b+ 1)

2
+ b.

In the three-dimensional case, the Cantor function was applied twice to get, from the
nodes’ indices a, b, c, the global face index C(a, b, c) = C(C(a, b), c). However, the Cantor
pairing function can lead to integer overflow, since C(a, b, c) grows fast in three-dimensions.
Hence, the global face index is no longer constructed and local indices are used. In the
communication between two processors, instead of associating to each face on the proces-
sors’ interface a global index, a table is constructed, pairing the local indices of the face on
the respective processors. This table is then sorted depending on the rank of the current
processor (if the first processor has a smaller rank than the adjacent, the first column is
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sorted and the second accordingly in order to keep the pairings unvaried; if the rank of
the first processor is larger, sorting is applied on the second column).

mmg2Mesh converts the MMG mesh structure into a Feel++ mesh structure by defining the new
geometrical entities.

Remesh contains other functions to access the remeshing functionalities in Feel++:

setMetric can be used to prescribe a metric function which imposes the local element size for the
new mesh;

remesher creates the Remesh object from the initial mesh and the fixed geometrical entities (elements,
edges). The syntax of this function is

Code III.1.1: Syntax of the function remesher
1 // r -> mesh data structure after remeshing
2 // mesh -> mesh data structure before remeshing
3 // marked_elements -> elements that are fixed across remeshing
4 // marked_faces -> faces that are fixed across remeshing
5 auto r = remesher(mesh ,marked_elements ,marked_faces ,{});

The last parameter of remesher is a second mesh structure related to mesh, and it is op-
tional. If specified, remesher creates a relationship table R between the optional “parent”
mesh and the “child” mesh, that is the result of remeshing procedure. This development
was motivated by the need to evaluate expressions in the local reference frame of swim-
ming bodies, as when an analytical expression for tail beating is available. As the mesh is
reconstructed, the parent-child relationship maintains the connectivity of a subset of faces
or elements previously identified, and allows the interpolation/evaluation of expressions
on the parent mesh. The syntax of remesher with the optional parameter becomes

1 auto r=remesher(mesh ,marked_elements ,marked_faces ,parent);

The relationship table is a data structure that was already employed in the creation of sub-
mesh structures, and it consists of a pointer to the parent mesh and a bidirectional map,
containing the bijective correspondence between the parent and child geometric elements.

execute applies the remeshing procedure via the MMG remeshing routines.

As mesh quality assessment is the necessary step that initiates mesh reconstruction, three qual-
ity measures are proposed in the header quality.hpp: 2d Normalised Shape Ratio, q2D (see
(II.2.13)) and q3D in three dimensions (see (II.2.14)) can be computed for each element in the
mesh. Another aspect, complementary to setMetric, is the computation of the metric function,
i.e. the local mesh size of the reconstructed mesh. In particular, it is possible to impose a mesh
size that is proportional to the distance from the swimmer, this latter computed via the Fast
Marching Method available in Feel++.

The remeshing tools are tested in the Feel++ Testsuite, in feelmesh/test_remesh.cpp. Tests
are realized in two-dimensional and three-dimensional geometries, both in sequential and paral-
lel, to verify that interpolating a finite element field onto the newly constructed mesh does not
introduce additional errors. This is verified across several remeshing steps and with different
requirements on the mesh, like fixing the discretization of a boundary or of a volume (these
tests are conducted on fixed domains). Other tests combining moving domains and mesh adap-
tation are performed: they are closer to the swimming problem and add the problems of time
discretization and domain matching to the interpolation of fields. Tests were conducted in two
and three-dimensional geometries with and without moving rigid inclusions immersed in a fluid:
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fluid equations are solved at the same time and interpolation of fields across the remeshing steps
was performed to continue the simulation. Interpolation of fields was performed in the case of
an order 1 time scheme, for which the polynomial approximation of the time derivatives contains
terms defined on the domain immediately prior to remeshing. In the case of higher order time
schemes, the interpolation of previous values of the fields must be preceded by domain reversion.
In presence of immersed bodies, the interpolation of the fluid quantities on the fluid subdomain
is realised by an interpolation operator defined as in III.1.2.

Code III.1.2: Interpolation operator on a portion of the domain
1 // op_vel -> interpolation operator for the fluid velocities
2 // fSpace1 -> fluid velocity function space on the old mesh
3 // fSpace2 -> fluid velocity function space on the new mesh
4 // marked_elements2 -> marked elements in the new mesh where the fluid

velocity is defined
5 // backend -> the options ensure that the operator is rebuilt from scratch at

every remeshing step
6 auto op_vel = opInterpolation( _domainSpace=fSpace1 ,
7 _imageSpace=fSpace2 ,
8 _range=marked_elements2 ,
9 _backend=backend(_name="B",_rebuild=true));

In our tests we imposed a constant discretization of the moving boundary and volume of the
moving body (when present), since it ensured constant values for the volume and inertia matrix.
The case of several bodies in the fluid was also considered. Some examples of the geometries
that were treated are collected in figure III.1.3. Figure III.1.4 presents an example of parallel
remeshing of a cube.

III.1.3 Swimmer toolbox

Swimmers interact with the surrounding fluid and propel by inducing a velocity field on their
surface and exchanging momentum with the surrounding medium. The specifics of each swimmer
(gait, shape, internal dynamics) are not directly relevant to the coupling, but they are necessary
to compute the surface velocity field. Following this reasoning, a general class that abstracts
the “coupling” interface of a swimmer is created, which is then complemented by a system of
plug-ins that allow to choose the swimmer model among the available ones.

In computational terms, this is done by using the concept of factory design pattern. Here,
instead of calling a constructor to instantiate the generic Swimmer object, one calls a factory
method which defers the instantiation to one of the subclasses which specifies the particular
swimmer to be created. Simulations in chapter IV.2.1 and in section ?? are performed using
this computational model. The interface of the Swimmer generic class contains the following
functions:

updateState which updates the displacement and velocity fields of the swimmer, its centre of mass and
inertia tensor at the prescribed time instant.

stepper which specifies the time stepping scheme that is used to compute the displacement field
from the velocity field of the swimmer.

Three subclasses are currently available:

spermatozoon where the velocity of body deformation is prescribed via an analytical formula. This class
computes the displacement field using a Runge-Kutta scheme. Its name derives from the
two-dimensional tail beating of a spermatozoon model.
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Figure III.1.3: Geometries that were considered in the remeshing testcases with moving objects.
We report the two and three-dimensional rectangular domains with the corresponding hollow
inclusions. On the left column, the triangulations before remeshing are presented. On the right,
the results of the mesh adaptation.
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Figure III.1.4: Remeshing a cube in parallel using six processors. On the top left, a section of
the initial mesh is presented, while on the top right the same section of the remeshed domain is
shown. On the bottom, the partition of the mesh among the processors is displayed.
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Figure III.1.5: Tail beating for the two-dimensional sperm cell described by the nature subclass.
The colours correspond to different instants (in chronological order: red t = 0 ms, orange t =
3 ms, yellow t = 10 ms, green t = 15 ms and blue t = 19 ms).

nature where the position of the swimmer’s tail is described through a set of ODEs and the
deformation velocity is computed via automatic differentiation. In this case, the position
of the swimmer at t = 0 does not coincide with its reference position. Its name derives
from the fact that the ODE model we consider comes from fitting biological observations.

active-elasticity where the displacement and velocity of the swimmer’s body are computed using an active
elasticity model.

The interfaces and methods of the swimmer subclasses are verified in a separate application,
gait. In this application, mesh adaptation and remeshing occupy a fundamental part: swim-
mers’ body deformation is subdivided into sub-steps that are alternated with mesh quality
assessments and remeshing in order to avoid invalid elements. The number of sub-steps is fixed
for the moment, but a future development might propose an adaptive strategy to establish the
number of subdivisions. In fact, when returned elements or elements of extremely bad quality
are detected after updating the geometry, mesh deformation should be reverted and the displace-
ment step should be divided in two sub-steps. This procedure should be applied iteratively, until
the whole displacement has been imposed. For a first order geometrical discretization, reverted
elements can be detected by checking if the Jacobian of the transformation between the reference
and current finite elements has negative determinant. If one is using a higher order geometric
discretization, one should use Bezier polynomials as in [66].

The swimmer’s domain is preserved across remeshing by fixing its elements and facets, while the
relationship R between the reference and current domain is used to evaluate expressions that are
defined in the swimmer’s reference frame, as for the spermatozoon subclass. These tools were
discussed in the previous chapter on mesh adaptation. We show in figure III.1.5 the beating
tail of the nature subclass example, which required frequent remeshing. The colours correspond
to different time instants of the deformation cycle (in chronological order, red, orange, yellow,
green and blue).
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Part IV

Swimming computational experiments
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This part is dedicated to numerical experiments on swimming. Different swimmers are consid-
ered: the three dimensional three-sphere swimmer; its extensions to multi-sphere swimmers and
their two-dimensional analogues; an example on reinforcement learning for gait optimisation,
applied to two-dimensional multi-sphere swimmers; two examples regarding sperm cells, in two
and three dimensions. Below we describe in more detail each of these cases.

The first category of swimmers we considered in chapter IV.1 are collections of rigid bodies
moving relatively to each other. In this family, we look at the three sphere swimmer and its
extensions to four and five sphere swimmers. Here, the relative velocities between the spheres
are prescribed and our results for the three-sphere swimmer are in accordance with the literature
[93]. We also consider the two dimensional analogues of these swimmers and use Q-learning to
recover their optimal swimming strategy.

Then, in chapter IV.2, we consider a two-dimensional model of a sperm cell. The problem
is modelled as the solution of fluid equations in moving domain, where the body deformation
is analytically known. In this case, since the propulsion is guaranteed by the predetermined
body deformations, the internal dynamics (elastic behaviour, internal motors) of the body is
completely neglected. A three-dimensional version of this same propulsion is presented. We
then considered the motion produced by an asymmetric beating tail. In this case, the problem
is formulated as the solution of fluid equations in moving domain, where the body deformation
is numerically calculated via a system of ODEs. In this case, the ODEs model the position of
a one-dimensional approximation of the spermatozoon’s tail, which is then radially extended
to be imposed on the two-dimensional tail of the spermatozoon. Also in this case the internal
dynamics of the body is neglected, and the propulsion is guaranteed by the deformations arising
from the computed displacement.
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Chapter IV.1

Numerical experiments with rigid
bodies

In this chapter we present several examples of articulated swimmers composed of collections of
rigid bodies. In section IV.1.1 modelling of the articulated multi-body swimmers we consider
is briefly recalled; in section IV.1.2 the testcase of the three-sphere swimmer is presented, to
validate our approach; in section IV.1.3 a four-sphere and five-sphere swimmers are simulated;
in section IV.1.4 a scaling study is proposed to analyse the implementation of articulations with
respect to different preconditioning strategies; in section IV.1.5 a Q-learning algorithm is applied
to two dimensional examples of articulated swimmers to learn the optimal swimming strategy,
and other two-dimensional instances of multi-circle swimmers are presented.

IV.1.1 Articulated swimmers

We define an articulated micro-swimmer as an object composed of n rigid bodies among which
a reference body Sn is identified. The latter body is linked to all the other bodies Si, for
i ∈ {1 . . . n− 1}, by thin and hydro-dynamically negligible arms. The length of these links can
be changed via “internal motors” that impose a relative speed between the bodies, leading to
self-propulsion. In principle, each Si can have a different shape, but we choose to work with
spheres for benchmarking purposes. In fact, the motion of some multi-sphere swimmers can be
analytically computed by using the appropriate Green kernel of Stokes equations [93].

The velocities Ui of bodies Si, i = 1 . . . n− 1, are expressed as functions of Un via constraints of
the form

Ui = Un + Win(t), i = 1 . . . n− 1, (IV.1.1)

where Win(t) represents the relative velocity between Si and Sn. The addition of these con-
straints to (II.1.40) completes the formulation of the swimming problem for the articulated
swimmers. We notice that the resulting system is a particular instance of the general case
presented in (II.1.28), where ud(t, x) is given by combining the constraints in (IV.1.1).

The formulation we just described applies directly to the three-sphere swimmer [93], an artic-
ulated swimmer composed of three aligned spheres. Here the reference body Sn = S3 is the
central sphere, which is connected by extensible arms to the other two spheres S1 and S2. The
formulation can be applied as well to the planar three sphere swimmer [7] or to the four sphere
swimmer [6], whose spherical bodies are initially placed on the vertices of an equilateral triangle
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Figure IV.1.1: Representation of the three-sphere swimmer and its swimming gait. The gait is
composed of four strokes in which one of the arms is alternatively shrunk or elongated. The
alternation guarantees the non-reciprocity of the motion.

and tetrahedron, respectively. In those cases, the relative velocity vectors Win should be care-
fully computed, as each extensible arm connects Si to the barycentre of the swimmer, and not
to Sn directly as in the case of the three-sphere swimmer.

IV.1.2 The three-sphere micro-swimmer

The three-sphere micro-swimmer [93] is a three-dimensional swimmer composed of three aligned
spheres having the same radius R. The two outer spheres are connected to the central one by
extensible links, and the propulsion of the swimmer is ensured by changing the lengths of the
connecting arms between two fixed values. The arm shrinkage is performed in a non-reversible
fashion, in order to break the time-reversal symmetry of the Stokes equations, with a constant
relative speed between the central sphere and the approaching one. For example, if the left
arm is shrinking and the right arm keeps its length fixed, the translational speed U3 and U2 of
the central and right sphere coincide, while the speed of the left sphere, moving with relative
speed W13 with respect to the centre sphere, will be U3 + W13. The (non-reciprocal) stroke is
composed of 4 steps, as shown in Figure IV.1.1, where the lengths of the two arms are alternately
modified. A quantitative example of a swimming three-sphere swimmer is presented in [93]. Let
us define R to be the radius of each sphere, L = 10R thee length of each link at its rest position
and a = 4R the maximal variation for the length of each arm (leaving a link length of 6R
when the arms are completely shrunk). The central sphere is displaced by 0.16R in the positive
direction at the end of the 4-step stroke. In the first step, the travelled distance is 1.35R in the
negative direction; in the second step, it is 1.44R in the positive direction; in the third step, it
is 1.44R in the positive direction; in the fourth step, it is 1.35R in the negative direction.

Using the Lagrange multipliers formulation, we are able to recover the displacement at each
step of the 4-step stroke reported in [93]. Figure IV.1.2 (left), translates the steps of the body
deformation in terms of relative velocities between the central and lateral spheres. Figure IV.1.2
(right), represents the motion of B3 during several repetitions of the 4-step stroke. The re-
sults were obtained using the library Feel++ [22] and in particular the toolbox that solves
Navier-Stokes equations in moving domain with immersed rigid bodies. The formulations based
on Lagrange multipliers and P modification are implemented and available in Feel++ Github
repository [25], and can be used to reproduce the results in sequential and parallel.
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Figure IV.1.2: The left figure presents the relative speed W13, between the central and left
sphere, and the relative speed W23, between the central and right sphere, as functions of time.
The right figure shows, in blue, the position of the central sphere during the 4-step stroke. The
red line intersects the trajectory of the central sphere at the red circles, which mark the 0.08R
and 0.16R displacements predicted in [93] after 2 and 4 steps composing the swimming stroke.

IV.1.3 Four and five sphere swimmers

We now focus on the simulation of the N = 4 and N = 5 sphere micro-swimmers, and com-
pare the swimming speed we obtain with that obtained by [126] using approximate analytical
methods. In this case, during the swimming stroke all arms are active and their lengths follow
a co-sinusoidal pattern of the form

Li(t) = L+ λ cos(t+ φi) for i = 1, . . . , N − 1, (IV.1.2)

where L is the average arm length and λ is the amplitude of the oscillations around L. In [126],
the propulsion speed is computed as a sum of swimming contributions depending on all the
possible sphere triplets one can form in a swimmer composed of N spheres. In our case, where
the radii R of the spheres are of unit value and the average arm length is L, the propulsion speed
depends on two dimensionless quantities, ε = λ/L and δ = 3R/2L, and on the phase differences
ϕij = φi − φj . According to [126], the non-dimensional swimming speed of the four and five
sphere swimmers are, respectively,

V4SS = ε2δ
7

64

((
1 +

41

63

)(
sin(ϕ12) + sin(ϕ23)

)
+ 2

41

63
sin(ϕ12 + ϕ23)

)
,

V5SS =
ε2δ

50

[
(4a+ b+ c)(sinϕ12 + sinϕ34) + (5a+ 2b) sinϕ23

+ (a+ 2b+ c)[sinϕ13 + sinϕ24] + (a+ 2c) sinϕ14

]
,

where a = 7/8, b = 41/18 and c = 151/72.

Taking L = 8, φ1 = 0, φ2 = π/3, φ3 = 2π/3 in the four sphere case and φ1 = 0, φ2 = π/4, φ3 =
π/2, φ4 = 3π/4 in the five sphere case, the expected average velocity values are

V4SS = −1.2 · 10−3, V5SS = −2.1 · 10−3, (IV.1.3)

and the non-dimensional displacements after a complete stroke of period 2π are X4SS = ε2V4SS

and X5SS = ε2V5SS . Their dimensional counterparts are

X4SS =
2

3ε2
V4SS = −5.45 · 10−2, X5SS =

2

3ε2
V5SS = −9.02 · 10−2, (IV.1.4)
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Ndof (u+ p) Formulation Preconditioner N. iterations Time
311000 Lagrange multipliers LU - 190s
311000 Lagrange multipliers fieldsplit 41 33s
311000 Lagrange multipliers gasm+LU - ∞
311000 Matrix P̃ LU - 190s
311000 Matrix P̃ fieldsplit 36 30s
311000 Matrix P̃ gasm+LU 170 80s

888000 (2.85) Lagrange multipliers fieldsplit 50 (1.22) 110s (3.33)
888000 (2.85) Lagrange multipliers gasm+LU - ∞
888000 (2.85) Matrix P̃ fieldsplit 43 (1.19) 97s (3.23)
888000 (2.85) Matrix P̃ gasm+LU 350(2.06) 505s (6.31)
2094000 (6.73) Lagrange multipliers fieldsplit 66 (1.60) 350s (10.6)
2094000 (6.73) Lagrange multipliers gasm+LU - ∞
2094000 (6.73) Matrix P̃ fieldsplit 53 (1.47) 293s (9.76)
2094000 (6.73) Matrix P̃ gasm+LU 395(2.32) 2550s (31.87)

Table IV.1.1: Numerical study on the algebraic solution of the three-sphere swimmer problem.
The simulation was launched on 8 cores, and “Time” is the runtime for one time iteration. For
the three meshes, the average element size is 3, 2 and 1.5 respectively. For the second and third
mesh, in parentheses, we reported the ratio of degrees of freedom, number of iterations and time
with respect to the first mesh.

where the factor 2/3 comes from inverting the non-dimensionalisation of δ, while Lε2 comes
from the relationship between the non-dimensional velocity and displacement ViSS = ε2XiSS

[126, eq. (4.1)], for i = 4, 5. After approximately 2π seconds, the average displacements that we
computed by averaging the position of the centres of mass of the spheres are Xsim

4SS ≈ −5.51·10−2

and Xsim
5SS ≈ −8.42 · 10−2, whose values are similar to those computed in (IV.1.4).

IV.1.4 Scaling tests

We dedicate this section to study the efficiency of the different solution strategies on large
problems involving multi-body swimmers. Table IV.1.1 presents the algebraic solution strategy
and runtime per time iteration for the simulation of a three-sphere swimmer on 8 cores. It is
shown that block preconditioning (fieldsplit) leads to faster solution and that the formulation
based on P̃ is slightly more efficient than the approach based on Lagrange multipliers as the mesh
is refined. Block preconditioners are built using PETSc fieldsplit, and a comparison is performed
with MUMPS LU preconditioning and PETSc gasm + LU preconditioners based on Additive
Schwarz domain decomposition with LU preconditioning on the sub-domains. We notice that
the gasm+ LU preconditioner fails on the Lagrange Multiplier formulation while LU becomes
very expensive as we refine the mesh. The results show that generic preconditioning strategies
are not scaling well — or do not scale at all — in terms of iteration count or computing time.
Our solution strategy, based on block preconditioning, is almost optimal in the sense that the
number of iterations increases only slightly as the number of unknowns increases.

We propose also an analysis on the scaling properties of each part of the simulation, whose
results are collected in table IV.1.2. LU preconditioning was used in this case. We notice that
the time per step we report here is larger than the one shown in table IV.1.1, as the results were
obtained on different machines. While the construction and solution parts scale well according
to the number of processors, the post-processing part does not. This is due to the fact that
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Nproc 1 2 4 8
Nelements 73682 73682 73682 73682
Ndof 310916 310916 310916 310916

Constructor 205s 131s 59.4s 21.8s
Speed-up constructor 1 1.57 3.45 9.38

Solution 1720s 940s 469s 277s
Speed-up solution 1 1.83 3.67 6.21

Post-process 2.14s 1.14s 0.76s 0.46s
Speed-up post-process 1 1.88 2.80 4.65
Time-step update 0.12s 0.39s 0.27s 0.20s

Speed-up time-step update 1 0.32 0.46 0.62
Time per step 1927.26s 1072.53s 529.43s 299.46s

Speed-up 1 1.799 3.64 6.43

Table IV.1.2: Scalability test on the three-sphere swimmer.

disk writing in parallel does not scale perfectly. Parallel simulation of this testcase was made
possible by a partition of the domain that assigned all the velocity degrees of freedom over the
boundaries of the swimmer to a unique processor. This pre-processing allowed the Lagrange
multipliers constraints to be easily imposed and avoided the communication of translational
velocity values of the rigid bodies between processors.

IV.1.5 Two dimensional multi-sphere micro-swimmers

IV.1.5.1 Q-learning for multi-sphere micro-swimmers

We now turn our attention to two-dimensional swimmers as their behaviour is qualitatively
similar to their three-dimensional counterparts and they are a less expensive alternative to
investigate the behaviours of multi-body swimmers. In collaboration with Youssef Essousy,
intern in Université de Strasbourg, a Q-learning algorithm was applied to two-dimensional multi-
sphere micro-swimmers to “learn” the optimal swimming stroke. This study was inspired by [124],
who studied the same problem in three dimensions and recovered the travelling wave motion as
the optimal swimming stroke for a multi-sphere swimmer in a Newtonian fluid.

A learning problem is defined by means of its state space S, action spaces Ai (one for each state)
and the reward function r. The state space S collects all the possible arm configurations that
the N -sphere micro-swimmer can take: since each arm can have two length values, the state
space is discrete and isomorphic to {0, 1}N−1. The action space Ai contains the actions that are
accessible from state si ∈ S and that modify the length value of one arm only: the cardinality of
Ai is directly proportional to the number of spheres. The reward function at step n is the sum
of the swimmer’s displacements δi realised after the i-th action, for i = 1, . . . , n. In particular,
the reward function we consider is rn =

∑n
i=1 δi · e1, i.e. the cumulative displacement in the

direction e1, whose purpose is selecting the propulsion strategy ensuring the largest displacement
in the desired direction. The last element of the Q-learning algorithm is the Q-matrix, which
collects information about the reward for previous state-action pairs, and is an approximation
of the optimal action-value function [133]. The Q-learning algorithm 8 updates the Q-matrix Q
according to the rule

Q(sn, an)← Q(sn, an) + α[rn + γmax
an+1

Q(sn+1, an+1)−Q(sn, an)], (IV.1.5)
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where 0 ≤ α ≤ 1 is a constant defining the learning rate and 0 ≤ γ ≤ 1 weights the influence
of the new value Q(sn+1, an+1) on the update of the Q-matrix. A variant of the Q-learning

Algorithm 8: Q-learning algorithm
Input: s0 initial state; set Q(s, a) to 0
for i=1 to Nlearn do
Choose ai using the policy given by Q
Take action ai, observe the new displacement δi and state si
Update Q via (IV.1.5)

end for
Output: Q, r

algorithm, namely double Q-learning (see Algorithm 9), appears to learn the optimal swimming
strategy faster than the classical version. This algorithm uses two Q matrices, QA and QB,
that are randomly updated and used to choose the next action. The idea behind this approach
is that QA(s′, a∗) can be considered as an unbiased estimate for the value of action a∗ in the
QB function, as the two learn from different experience samples [55]. We apply Q-learning to

Algorithm 9: Double Q-learning algorithm
Input: s0 initial state; set QA(s, a), QB(s, a) to 0
for i=1 to Nlearn do
Choose ai using the policy given by QA, QB
Take action ai, observe the new displacement δi and state si
Choose (randomly) to update QA or QB
if update QA then
Let a∗ = arg maxa(QA)(si, a)
Update QA(s, a)← QA(s, a) + α[rn + γQB(si, a

∗)−QA(s, a)]
end if
if update QB then
Let a∗ = arg maxa(QB)(si, a)
Update QB(s, a)← QB(s, a) + α[rn + γQA(si, a

∗)−QB(s, a)]
end if
s← si

end for
Output: QA, QB, r

the N -sphere micro-swimmers with 3 ≤ N ≤ 5, and in the three cases the optimal swimming
policy, namely the travelling wave, is found. Figure IV.1.3 shows the learning process for the
three swimmers under study. In the N = 3 case, as the travelling wave policy is the only
strategy allowing a forward propulsion, the swimmer is not able to advance until this policy
is learnt. In the first iterations, the swimmer oscillates around its initial position; then, once
the travelling wave strategy is learnt, the cumulative reward (that is the motion in the desired
direction) increases steadily. Even if the swimming policy is learnt, there are still actions which
can be taken at random via the ε-greedy scheme, in order to ensure a thorough exploration of
the state-action space. These random choices are responsible of the steps where the cumulative
reward does not increase in the linear part of the graphs. In the N = 4 and N = 5 cases,
the state-action space is larger and several strategies ensure forward propulsion, as one can see
from the different slopes in the corresponding figures. Learning the travelling wave strategy is
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Figure IV.1.3: Learning the optimal policy via Q-learning, for different values of N . From the
top left N = 3, N = 4 and N = 5.

harder in these instances, and many more learning steps are required. In order to be sure that
the policy being learnt is the optimal one, the Q-learning algorithm is run several times with
a number of learning steps Nlearn increasing with the number of spheres, and the results are
compared.

Remark. The Q-learning algorithm converges when the underlying dynamics has the Markov
property, meaning that state sn+1 only depends on the previous state and action pair (sn, an)
and not on the whole history of the process. Due to the Markov property, we were able to reduce
the computational cost of Q-learning by storing the displacement δn that resulted from choosing
action an when the system started from state sn.

Q-learning was also applied to study a two dimensional three-sphere swimmer which could vary
its arm lengths among a finite set of possibilities, meaning that it could choose to shrink its
arms of ε ∈ {1, 2, 3, 4}. In this case, Q-learning recovered a travelling wave as optimal policy
and ε = 4. This result was expected as it is in line with the quadratic dependence of the
three-sphere swimmer’s velocity on ε [93]. Figure IV.1.4 reports these results: on the left, a
first simplified case considered only two values of ε ∈ {2, 4}. The different slopes in the figure
show that different swimming strategies are available even in this simplified case, but finally
the travelling wave with ε = 4 is recovered. The same result is obtained when considering
ε ∈ {1, 2, 3, 4}, but, as before, the number of learning steps must be increased in order to ensure
the thorough exploration of the state-action space.
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Figure IV.1.4: Learning the optimal arm extension via Q-learning. On the left, only two values
of arm extensions were available (2 and 4); on the right, four values of arm extensions were
available (1, 2, 3 and 4).

IV.1.5.2 More three-sphere swimmers

Other variations of two dimensional three-sphere swimmers were studied: first, we considered
three sphere swimmers whose arms are not aligned and which are able to move in circles, as [80]
did in three dimensions; then, we looked at a three sphere swimmer in a shear flow and observe
its long-time behaviour.

In the first set of swimmers, two configurations are chosen: one where the arms form an angle of
β = 53◦ and one where the arms form an angle β = 140◦. The swimmers retract and extend their
arms between L = 9 and L = 10 alternately and the three circles are of unit radius. In both cases
the swimmer moves in counter-clockwise direction, and the circle described by the β = 140◦ has a
smaller radius than the one described by the β = 53◦ one. Figure IV.1.5 presents the trajectories
of the centre of mass of the swimmers. Using these data, we computed the average radius of the
trajectories via least squares and obtained that Rβ=53◦ ≈ 0.49 is larger than Rβ=140◦ ≈ 0.32,
which is in qualitative agreement with the results obtained in three dimensions by [80]. In these
cases, the minimal mesh quality threshold was fixed to 0.4 and it was computed with q2D (see
(II.2.13)). The three sphere swimmer in the shear flow is composed of three circles of unit radius
separated by arms of constant length L = 10. The central circle is not allowed to translate and
the swimmer performs a rotational motion around the fixed central sphere. The angular speed
decreases as the swimmer reaches the horizontal configuration (as shown in figure IV.1.6, on the
left), as this position is a stable equilibrium for the system when the radii of the circles are small
and the swimmer can be approximated by an elongated rod [122]. However, the equilibrium
is not found as the circles we consider are not of negligible radius. Along the simulation, the
length of the arms does not vary and the outer spheres perform circular trajectories around the
origin, as shown in figure IV.1.6 on the right, for the left sphere.
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β

Figure IV.1.5: On the top, schematic representation of the three circle swimmer with non-
aligned arms. On the bottom left, position of the centre of mass of the three circle swimmers
with β = 53◦. On the bottom right, position of the centre of mass of the three circle swimmer
with β = 140◦. A least square estimation of the average radii of the trajectories reveals that
the circle described by the β = 53◦ swimmer has a larger radius than the circle described by the
β = 140◦ swimmer, which is in qualitative agreement with [80].
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Figure IV.1.6: On the top, the representation of the three circle swimmer in shear flow. The shear
velocity ushear(x, t) increases linearly from the bottom towards the top of the computational
domain. On the bottom left, the y coordinate of the centre of mass of the left sphere: close to
the horizontal configuration (y = 0), the slope of the curve decreases as the system is attracted
towards the equilibrium position. On the bottom right, trajectory of the centre of mass of the
left sphere: the trajectory is a circle around the centre of mass of the central sphere, i.e. the
origin of the coordinate system.
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Chapter IV.2

Numerical experiments with prescribed
deformation

In this chapter, two examples of swimming sperm cells are presented: section IV.2.1 is dedicated
to the simulation of a two dimensional spermatozoon with prescribed sinusoidal beating of the
flagellum; section IV.2.2 is focused on the simulation of a two-dimensional sperm cell with
asymmetric prescribed beating.

IV.2.1 Sperm cell with planar beating of the flagellum

In this first section, we focus on a two-dimensional model of a sperm cell swimming in a channel,
inspired by the study on sperm cell motion realised in [111]. In this case, the analytical expression
of the tail’s deformation is known in advance, and the fluid problem can be solved for velocity u
and pressure p. Thanks to the coupling algorithm of section II.2, the translational and angular
velocities of the swimmer, U and ω, can be computed at the same time.

The computational domain is represented in figure IV.2.1, and it consists in a two-dimensional
rectangular channel Ω in which the sperm cell moves. The deformation of the swimmer’s tail is
such that the cell, on average, moves only in the horizontal direction. In order to solve the fluid
problem, homogeneous Dirichlet boundary conditions are imposed on the channel’s walls (top

Γinlet Γoutlet

Γwall

Γwall

Ω

Figure IV.2.1: Schematic representation of the computational domain for the two-dimensional
sperm cell example.
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Fluid Geometry ud
density viscosity a semi-axis b semi-axis λ T L

1000 kg/m3 0.001 Pa s 2 µm 1 µm 20 µm 0.3 s 50 µm

Table IV.2.1: In this table we report the values needed for the reproduction of the two-
dimensional sperm cell example.

and bottom boundaries Γwall) and homogeneous Neumann boundary conditions are imposed on
the inlet Γinlet and outlet Γoutlet of the channel. The fluid-solid coupling condition imposes that,
on the head boundary, u = U + ω ∧ (x− xCM ), where xCM is the swimmer’s centre of mass in
the fluid reference frame. On the tail boundary u = U + ω × (x− xCM ) +R(t)ud ◦ A−1

t (t, x) is
imposed, where ud(t,X) is the elastic velocity in the swimmer’s reference frame and it has the
form

ud(t,X) =

[
2π
4T [Amax(X −Xj)/L]2 2π

λ cos(4π( tT −
X
λ ))

2π
T [Amax(X −Xj)/L] cos(2π( tT −

X
λ ))

]
. (IV.2.1)

Equation (IV.2.1) represents the velocity of a sinusoidal wave of linearly increasing amplitude,
propagating from the head of the swimmer to the tip of its tail. While the y-component of ud
comes from the time derivative of the sinusoidal wave

Y =
Amax(X −Xj)

L
sin

(
2π

(
t

T
− X

λ

))
, (IV.2.2)

the x-component comes from a constraint of inextensibility on the sperm tail [123]. In the
previous equations, T is the period of the wave, λ is the wavelength of the wave, L is the
length of the tail, Xj is the position of the head-tail junction, Am is the maximal amplitude
experienced by the flagellum’s distal end. The evaluation of (IV.2.1) in the swimmer’s reference
frame motivated the development of the relationship R between meshes (see section II.2.2):
thanks to the fact that the discretization of the swimmer’s boundary is left unchanged by the
mesh adaptation algorithm, it is possible to associate to each node of the deformed boundary
its initial coordinates.

We report in Table IV.2.1 the values of the parameters in the expression of ud, the fluid properties
and the sperm geometric parameters. We consider two values for the channel half-height, namely
7.5 µm and 15 µm, and compare our results to [111], who used the software COMSOL for the
swimming simulations. In particular, in figure IV.2.2 we report the comparison between the
propulsion velocities we computed and those found in [111]. We notice that, in the case of the
smaller channel half-height and small amplitudes, our values correspond to the results from the
literature; larger amplitudes, instead, do not follow the results of [111]. In the case of a larger
channel height, the propulsion speed we compute is smaller than the reference value, but it still
shows a linearly increasing behaviour.

It is possible to simulate the same oscillatory swimming in three dimensions, just by changing
few parameters in the configuration of the model, and by extending ud to 0 for the z coordinate.
In figure IV.2.3 we show few time instants of the simulation of a three-dimensional sperm cell,
whose beating flagellum propagates a sinusoidal wave of linearly increasing amplitude. The wave
is restricted to the xy plane and its maximal amplitude is Amax = 4 µm. Figure IV.2.4 shows a
section of the fluid field and the velocity magnitude on two different sections.
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Figure IV.2.2: Comparison of swimming speeds for a 2D swimming spermatozoon in different
channels. Blue and black symbols correspond to our results in the case of h = 7.5 µm and
h = 15 µm channels, while red and green symbols correspond to results obtained in [111, Fig.7b].

Figure IV.2.3: Three dimensional simulation of a swimming sperm cell with planar flagellar
beating. The plane of the beating flagellum is the xy plane, and the maximal amplitude of the
sinusoid is Amax = 4 µm. The four images show the position and shape of the sperm cell at the
time instants t = 0 s, t = 0.5 s, t = 1.85 s and t = 2.65 s.
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Figure IV.2.4: Fluid section for the three dimensional swimmer with planar beating. The colour
represents the magnitude of the fluid velocity.

IV.2.2 Asymmetric beating of the flagellum

In experimental studies on spermatozoa, researchers can track the tail’s position during a beating
period thanks to fast cameras and tail staining [47, 64]. As the filament is assumed to have
negligible thickness, fitting of the experimental data provides ODE models for the filament
kinematics. In [64], the tail beating was recorded and the set of ODEs

dr
dl

= −e3,

de1

dl
= −κfe3 + τfe2,

de2

dl
= −τfe1,

de3

dl
= κfe1.

(IV.2.3)

was proposed to represent it, where l ∈ [0, L]. At all time instants, the solution to these ODEs
provides the tail shape, via the position vector r, and the orientation of the local reference
frame {e1, e2, e3}. The vectors e1, e2, e3 describe the local (Cosserat) reference frame of the
swimmer’s tail: e3 defines the tail’s tangent direction and e1, e2 span the normal plane to the
tail’s centreline. These ODEs depend on two parameters: a constant twist parameter τf > 0
and a mean curvature parameter K0, contributing to the definition of the curvature

κf (l, t) = K0 +B cos(ω0t− λl).

The two parameters have different roles: the twist parameter τf allows the swimming path to
be three dimensional, while K0 > 0 provides circular trajectories. The combination of the two
effects gives rise to 3D helices. Planar circular motions of spermatozoa were already observed
and modelled in [47], modelled and simulated in [6]. Since equations (IV.2.3) only model the
shape of the tail’s centreline, we provide an extension of r to the whole section of the tail, since
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Figure IV.2.5: Two screenshots of the beating pattern governed by (IV.2.3) when the parameter
values coincide with those in [64].

Tail Twist
L τf

41 µm 0 µm−1

κf (l, t)

K0 B ω0 λ
0.0351 µm−1 0.16 µm−1 0.273 ms−1 0.212 µm−1

Table IV.2.2: The first two tables collect the parameters for IV.2.3.

in our simulations we are considering a tail of finite thickness. The ODEs are solved using the
odeint library, and a Runge-Kutta scheme of 4th order. The values of the parameters for this
numerical experiment are collected in table IV.2.2.

Also in this case frequent remeshing is needed because the tail deformation is important, as
Figure IV.2.5 shows. Moreover, reaching the initial configuration, that is the position of the
tail at t = 0, required a pre-processing phase. In this phase, the displacement between the
horizontal configuration of the tail and its position at t = 0 was divided in equal parts, and
mesh adaptation was needed to reach the initial configuration as described in section II.2.2.

In figure IV.2.6 the mesh, the pressure and velocity fields are shown at three different time
instants. We notice that large pressure differences form on the two sides of the flagellum, and
that these are responsible of the swimmer’s motion. The asymmetric tail beating we propose in
this section allows the swimmer to follow a circular trajectory [65]; in figure IV.2.7 we show the
trajectory of the centre of mass of a two-dimensional sperm cell with no head, when it follows
the prescribed beating of (IV.2.3). In [65], an estimate of the radius of the circular trajectory is
given, and it is approximately rp ≈ 1.3/K0 = 37 µm. The trajectory we obtain shows a radius
comparable to rp, but further investigations should be performed to improve the quality of our
approximation.
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Figure IV.2.6: These pictures show the mesh, pressure and velocity fields corresponding to the
asymmetrically beating flagellum. From top to bottom, they correspond to the time instants
t = 16.25 s, t = 48.75 s and t = 64.05 s.
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Figure IV.2.7: Oscillations around a circular path of the centre of mass of the asymmetrically
beating flagellum.
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Conclusions and perspectives

In this thesis we have presented two mathematical and computational frameworks for the study
of micro-swimming, with brief excursions in the shape optimisation of micro-robots inspired by
flagellated bacteria and gait optimisation via Q-learning.

First, we modelled the swimming problem using the Boundary Integral formulation of Stokes
equations and used the Boundary Element method via the Gypsilab library for the numerical
simulations. This choice was dictated by a class of swimmers we aimed to model, i.e. flag-
ellated micro-swimmers with rotating flagella. As their swimming strategy modifies strongly
the fluid domain, any triangulation of the latter requires several reconstruction steps to carry
on the simulations. Moreover, this method handles three-dimensional problems via a less ex-
pensive two-dimensional domain discretisation. A framework for the simulation of flagellated
micro-swimmers was created with the objective of studying the parametric shape optimisation
of flagellated micro-swimmers via black-box optimisation. Two optimisation strategies were in-
vestigated: first, the tail shape or head parameters were optimised by keeping the rest of the
swimmer’s shape fixed; second, the whole set of parameters was optimised at the same time.
The first approach is similar to “practical” parametric optimisation, where just one feature of the
swimmer is optimised [130]. The second approach, based on Bayesian optimisation, was more
generic and gave better propulsion speeds. In this second case, the set of possible positions and
orientations of the tails was enlarged with respect to the first one. In order to study a more real-
istic model, we considered a variation of the multi-flagellated swimmers to account for elasticity
at the flagellar junctions. A preliminary study using Resistive Force Theory was conducted, and
some preliminary tests are presented to study the effects of the fluid-elastic interaction.

In the second part of our work, we focused on the differential formulation of the micro-swimming
problem and its finite element simulation. Aspects concerning the motion of rigid and elastic
bodies in fluids were studied and a computational framework was proposed. This framework
is complementary to the toolboxes already available in Feel++ for the study of fluid and solid
mechanics. Different test-cases were considered to validate the results, and numerical exper-
iments were conducted to illustrate the framework, from multi-body swimmers to deformable
flagellated ones. The swimming problem motivated the addition of functionalities to the Feel++
finite element library, in order to handle the computational issues raised by mesh motion and
change of reference frames. The usage of the mesh adaptation libraries MMG and ParMMG,
the handling of rigid-body motion were added to the already available fluid-structure interaction
formalism. Thanks to these additions, the Feel++ swimming framework is now a computational
tool that can be used to perform long time physical simulations where swimmers experience
large displacements. To our knowledge, it is one of the few open source platforms for the nu-
merical simulation of (micro-)swimming (see chapter III.1) and, among them, perhaps the only
one using a conforming Arbitrary Lagrangian Eulerian approach.

In the near future, the framework will be extended to swimmers whose motion is described by
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passive and active elasticity models. However, already with the current setting, many research
opportunities open in the study of the long time behaviour of multi-body swimmers in bulk fluid
or next to rigid boundaries. As we have mentioned in the introduction, applying reinforcement
learning to these micro-swimmers, in order to find the optimal swimming strategy next to bound-
aries, could be investigated. However, more refined learning algorithms should be considered to
efficiently handle the increasing sizes of the state and action spaces, and to search the optimal
policy. In a second moment, complex fluid models (biological and viscoelastic fluids [117]) could
be added to the framework, with the purpose of increasing the physical and practical interest
of the Feel++ swimming framework. In fact, in the recent years, the scientific and engineering
community has started to address the challenges concerning the shape and navigation of swim-
mers in heterogeneous and complex media [118, 83]. Finally, the framework could be used to
investigate problems of shape optimisation for micro-swimmers, as it provides the fluid solver
as well as a number of optimisation and numerical methods that are commonly used for shape
and topology optimisation [33].

Other numerical methods could be investigated to solve the fluid-structure problem, and the
immersed boundary method would be a natural choice due to an already existing implementation
of the level set method in the Feel++ library [101]. In this case, we could compare the different
numerical methods and choose the more appropriate one for the swimming problem at hand.
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This thesis is devoted to modelling and simulating swimmers at low Reynolds number. Two com-
putational frameworks are devised for these purposes, and they are used in synergy with optimisation
algorithms to address two problems regarding the optimal shape and gait of micro-swimmers.

In the first part of the thesis, we study a problem of parametric shape optimisation for multi-
flagellated micro-swimmers. The simulations are based on the Boundary Integral formulation of Stokes
equations and the Boundary Element method, while the optimisation is carried out with black-box
algorithms. An extension of the framework to flagellated swimmers with elastic junctions is realised.

In the second part of the thesis, the problem of swimming micro-organisms is modelled using the
Arbitrary-Lagrangian-Eulerian formalism and simulated via the Finite Element method. A coherent
framework for the simulation of different swimmers is proposed: multi-body, flagellated or elastic micro-
swimmers can be investigated using this unique and modular platform. We show that interactions with
optimisation or machine-learning algorithms are possible by studying the gait optimisation of a two
dimensional multi-sphere micro-swimmer.
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