N

N

Reconstructing our past deep learning for population
genetics
Théophile Sanchez

» To cite this version:

Théophile Sanchez. Reconstructing our past deep learning for population genetics. Neural and
Evolutionary Computing [cs.NE]. Université Paris-Saclay, 2022. English. NNT: 2022UPASGO032 .
tel-03701132

HAL Id: tel-03701132
https://theses.hal.science/tel-03701132

Submitted on 21 Jun 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03701132
https://hal.archives-ouvertes.fr

—
<
o
@
—
@)
@)
)
Ll
)
LLl
W
Ll
T
—

o
[90)
o
O
w0
<
o
)
N
[\
o
~

NNT :

[]
universite
PARIS-SACLAY

Reconstructing our past: deep learning
for population genetics

Reconstruire notre passé : apprentissage statistique
profond pour la génétique des populations

Theéese de doctorat de l'université Paris-Saclay

Ecole doctorale n° 580, Sciences et Technologies de I'Information et de
la Communication (STIC)

Spécialité de doctorat : Informatique

Graduate School : Informatique et sciences du numérique,

Référent : Faculté des sciences d’'Orsay

These préparée dans |I'unité de recherche Laboratoire interdisciplinaire des
sciences du numérique (Université Paris-Saclay, CNRS), sous la direction de
Marc SCHOENAUER, directeur de recherche INRIA, le co-encadrement de
Guillaume CHARPIAT, chargé de recherche INRIA et le co-encadrement de Flora
JAY, chargée de recherche CNRS.

Theése soutenue a Paris-Saclay, le 18 mars 2022, par

Théophile SANCHEZ

Composition du jury

Blaise HANCZAR Président
Professeur des universités, IBISC, Université Paris-
Saclay, Université d’Evry

Aurélien TELLIER Rapporteur & Examinateur
Professor, HDR, WZW, Technische Universitat

Minchen

Jean-Philippe VERT Rapporteur & Examinateur
Research scientist, Google Brain, entreprise

Audrey DURAND Examinatrice

Professeure adjointe, Université Laval

Stéphanie MANEL Examinatrice

Professeure des universités, CEFE, Ecole Pratique

des Hautes Ftudes

Marc SCHOENAUER Directeur de these
Directeur de Recherche, LISN, INRIA, Université

Paris-Saclay

Remerciements

Je tiens tout d'abord a remercier mes encadrants Flora Jay et Guillaume Charpiat pour
m’'avoir donné l'opportunité de réaliser ce doctorat et m'avoir accordé leur confiance.
Jespére que ce travail refléte leur bienveillance et la quantité inestimable de connais-
sances qu'ils m'ont transmises durant toutes ces années.

Merci a Jean Cury, Erik Madison Bray et Pierre Jobic pour étre derriere un grand
nombre des idées et des lignes de code présentées dans cette these.

Merci aux rapporteurs de ces travaux, Aurélien Tellier et Jean-Philippe Vert, ainsi
gu'aux examinateurs Audrey Durand, Blaise Hanczar et Stéphanie Manel pour m'avoir
fait 'honneur de participer au jury et d’avoir pris le temps d’évaluer mon travail.

Un tres grand merci a tous mes collegues de l'université Paris-Saclay, des équipes
TAU et Biolnfo pour tous ces moments partagés autour d'un café, d'une biére ou bien
plus encore. Adrien, Aris, Armand, Aurélien, Burak, Corentin, Cyril, Diviyan, Eléonore,
Etienne, Fanny, Francois, Giancarlo, Jérémy, Joél, Laurent, Loris, Manon, Marc, Marine,
Nilo, Olivier, Raphaél, Sarah, Saumya, Tamon, Victor et Zhengying, ce fut un plaisir de
travailler a vos cotés.

Merci a Marc Schoenauer et a Michele Sebag d'avoir créé une équipe de recherche
avec une ambiance aussi formidable.

Merci a tous mes amis caladois, lyonnais et parisiens pour m’avoir supporté dans
tous les sens du terme. Merci tout particulierement a Agnées, Audrey, Auriane, Aziliz,
Grégoire, Julien, Lucas, Marianne, Noélie, Paul, Rosa, Samuel, Thibault, Thomas, Théo,
Valentina et Vincent, sans le savoir, vous m'avez aidé pendant des étapes importantes
de ma thése.

Merci aux membres de ma famille pour votre soutien indéfectible et pour m’avoir
transmis le gene de la recherche s'il existe.

Et enfin, merci a vous qui prenez le temps de lire ces pages.

Résumé / Abstract

Résumé

Avec l'explosion des technologies de séquencage, de plus en plus de données
génomiques sont disponibles, ouvrant la voie a une connaissance approfondie des
forces évolutives en ceuvre et en particulier de I'histoire démographique des popu-
lations. Toutefois, extraire linformation intéressante de ces données massives de
maniere efficace reste un probleme ouvert. Compte tenu de leurs récents succes en
apprentissage statistique, les réseaux de neurones artificiels sont un candidat sérieux
pour mener a bien une telle analyse. Ces méthodes ont I'avantage de pouvoir traiter
des données ayant une grande dimension, de s'adapter a la plupart des problemes et
d'étre facilement mis a I'échelle des moyens de calcul disponibles. Cependant, leur per-
formance dépend fortement de leur architecture qui requiert d’étre en adéquation avec
les propriétés des données afin d’en tirer le maximum d'information. Dans ce cadre,
cette thése présente de nouvelles approches basées sur I'apprentissage statistique pro-
fond, ainsi que les principes permettant de concevoir des architectures adaptées aux
caractéristiques des données génomiques. L'utilisation de couches de convolution et
de mécanismes d'attention permet aux réseaux présentés d'étre invariants aux per-
mutations des haplotypes échantillonnés et de s'adapter a des données de dimensions
différentes (nombre d’haplotypes et de sites polymorphes). Les expériences conduites
sur des données simulées démontrent I'efficacité de ces approches en les comparant a
des architectures de réseaux plus classiques, ainsi qu'a des méthodes issues de I'état de
I'art. De plus, la possibilité d'assembler les réseaux de neurones a certaines méthodes
déja éprouvées en génétique des populations, comme l'approximate Bayesian computa-
tion, permet d'améliorer les résultats et de combiner leurs avantages. La praticabilité
des réseaux de neurones pour l'inférence démographique est testée grace a leur ap-
plication a des séquences génomiques completes provenant de populations réelles de
Bos taurus et d'Homo sapiens. Enfin, les scénarios obtenus sont comparés aux connais-
sances actuelles de I'histoire démographique de ces populations.

Abstract

Constant improvement of DNA sequencing technology that produces large quantities
of genetic data should greatly enhance our knowledge of evolution, particularly demo-
graphic history. However, the best way to extract information from this large-scale data
is stillan open problem. Neural networks are a strong candidate to attain this goal, con-
sidering their recent success in machine learning. These methods have the advantages
of handling high-dimensional data, adapting to most applications and scaling efficiently
to available computing resources. However, their performance dependents on their
architecture, which should match the data properties to extract the maximum infor-
mation. In this context, this thesis presents new approaches based on deep learning,
as well as the principles for designing architectures adapted to the characteristics of
genomic data. The use of convolution layers and attention mechanisms allows the pre-
sented networks to be invariant to the sampled haplotypes’ permutations and to adapt
to data of different dimensions (hnumber of haplotypes and polymorphism sites). Exper-
iments conducted on simulated data demonstrate the efficiency of these approaches
by comparing them to more classical network architectures, as well as to state-of-the-
art methods. Moreover, coupling neural networks with some methods already proven
in population genetics, such as the approximate Bayesian computation, improves the
results and combines their advantages. The practicality of neural networks for demo-
graphic inference is tested on whole genome sequence data from real populations of
Bos taurus and Homo sapiens. Finally, the scenarios obtained are compared with current
knowledge of the demographic history of these populations.

Contents

Introduction 13
Outline e e e e e 14

1 Demographic inference 17
1.1 Insights into the demographic inference problem 19
1.1.1 Examples of demographic history effects on genomic variation . . 19

1.1.2 Definition of the demographic inference problem 20

1.2 Sequentially Markov coalescent (SMC) methods 21
1.3 Summary statistics based inference 0oL 24
1.3.1 Inference from site frequency spectrum (SFS) 24

1.3.2 Inference from identity by state (IBS) and identity by descent (IBD) 25

1.3.3 Approximate Bayesian computation (ABC) 26

1.4 Simulators e 28
1.5 Chapterconclusion e 29

2 Deep learning for genomic data 31
2.1 Introductiontodeeplearning 31
2.1.1 Multilayer perceptron L e 32

2.1.2 Training artificial neural networks 35

2.1.3 Towards more complex networks 37

2.1.4 Technicalpoints 40

2.2 Deep learning applicationsin genetics 43
2.2.1 Inference fromgenomicdata. 44

2.2.2 Methods based on summary statistics 45

2.2.3 Methods basedonSNP matrices. 47

224 Generativemodels. 49

2.25 Recentworks 50

2.3 Chapterconclusion e e 50

3 Methodological development for demographic inference 53
3.1 Data . .. e e 55
3.1.1 Cattledataset. e 56

3.1.2 HGDPdataset e 57

3.2 Baselines e 61
3.2.1 Approximate Bayesian computation(ABC) 61

3.2.2 Multi-layer perceptron (MLP) 61

7

8 Contents

3.2.3 Custom convolutional neural network (custom CNN) 61
3.2.4 Flagel network 62
3.3 Sequence position informed deep learning architecture 63
3.3.1 Permutationinvariance 0oL 63
3.3.2 Adaptability tovaryingsize 65
3.3.3 SPIDNA combinedwithABC 66
3.4 Mixed attention SPIDNA e 68
3.4.1 Attentionhub. L 69
3.4.2 MixAttSPIDNA architecture 70
3.43 Inferencebyscenario 71
3.5 Training and hyperparameter optimization 72
3.5.1 Meansquarederror (MSE) 73
3.5.2 Automated hyperparameter optimisation 73
3.5.3 Learning rate strategies of MixAttSPIDNA 74
3.6 Interpreting deep neural networkswith CCA 75
3.7 dnadna: a python package for deep learning applied to population genetics 77
3.8 Chapterconclusion e 77
4 Inferring demography from genomic data 79
4.1 Study of ANN performances on simulateddata 79
4.1.1 SPIDNA hyperparameter optimization 80
4.1.2 Results on predefined scenarios 82
4.1.3 Prediction error on the whole set of simulated datasets 87
4.2 Insight into the inner workings and robustness of ANNs 93
4.2.1 Internalvariance of SPIDNA 94
4.2.2 Impact of positive selection on SPIDNA and ABC inference 98
4.2.3 Interpreting the custom CNN with canonical correlation analysis
(CCA) . . e e 103
4.2.4 Comparison of MixAttSPIDNA batch formats 108
4.3 Population size histories inferred by ANNsonrealdata. 110
431 Cattle . . . e e e e 111
432 HGDP e 111
4.4 Chapterconclusion e 114
5 Conclusion 119
5.1 Researchperspectives. i 121
5.1.1 Improving deep learning architectures 121
5.1.2 Solvinginverseproblem. 122
5.1.3 Evolutionary and demographicmodels 123
A Appendix 125
A.1 Computational resources v v v v i i i e e 125
A.2 ABC predictions from Boitardetal. 126

A3 Syntheseenfrancais. o v i i e 127

1.1

1.2
1.3

1.4

2.1
2.2
2.3
2.4

3.1

3.2

3.3
3.4

3.5
3.6
3.7

3.8
3.9

4.1

4.2

4.3

4.4

4.5

4.6

List of Figures

Genealogy of the same population modelled prospectively and retrospec-

tively. e e 18
Effect of expansion on coalescence. 20
Example of ancestral recombination graph (ARG) between three haplo-

types with the marginal genealogies associated. 23
Diagram of the approximate Bayesian computation algorithm (ABC). . . . 27
Diagram representing a multilayer perceptron (MLP). 33
Diagram of a convolution mask in two dimensions. 38

Figure from Wu and He (2018) of the different normalization methods. . 41
Example of conversion of a multiple sequence alignment into a SNP matrix. 45

Number of sample peer population in the HGDP dataset (Bergstrom et al.,

2020). . . e e e 58
Number of SNP peer population after removal of telomeres and cen-
tromeres the HGDP dataset (Bergstrom et al., 2020). 59
Distribution of the Human recombination rate from which pisdrawn. . . 60
Distribution of the growth rate for time windows of 100 years and 1000
yearsin HGDP simulations. 60
Schematic of Flagel network., 63
Schematic of equivariance and invariance. 64
Schematic of SPIDNA architecture. 67
Schematic of attentionhub. L. 70
Schematic of MixAttSPIDNA architecture block. 71
Population size prediction error for each run of the hyperparameter op-
timization procedure. 81
Predictions of SPIDNA, ABC using SPIDNA outputs and MixAttSPIDNA, all
trained on the simulated cattle dataset for six predefined scenarios. . . . 83
Predictions of SPIDNA trained on the simulated cattle dataset for six pre-
defined scenarios. 84
Predictions of ABC using SPIDNA outputs trained on the simulated cattle
dataset for six predefined scenarios. 85
Predictions of MixAttSPIDNA trained on the simulated cattle dataset, for
six predefined scenarios. 86
Prediction errors on the test set of the best run of each method after the
hyperparameter optimization. 91

9

List of Figures

4.7 Evolution of the data tensor variance during training at each SPIDNA block

before the convolution layer for differentvaluesofa.. 95
4.8 Variance of the data tensor before and after the convolution layer at each

SPIDNA block at the beginning of training for different values of a. 96
4.9 Variance of the data tensor before and after the convolution layer at each

SPIDNA block after 90015 training steps for different values of a.. 96
4.10 Evolution of the SPIDNA network losses during training for SPIDNA

trained from scratch with differentvaluesofa. 97
4.11 Robustness of SPIDNA to simulatortool. 99
4.12 Robustness of SPIDNA to the presence of positive selection. 100
4.13 Robustness of SPIDNA to the presence of positive selection. 101
4.14 Robustness of SPIDNAto samplesize.. 102
4.15 Distribution of summary statistic CCA weights pondered by the canonical

variates to custom CNN activationsineach layer. 104
4.16 Summary statistic CCA weights pondered by the canonical variates to cus-

tom CNN activationsineachlayer. 105

4.17 Distribution of summary statistic CCA weights pondered by the canon-

ical variates to custom CNN activations, with activations reduced to a 50-

dimensional spaceineachlayer., 106
4.18 Summary statistic CCA weights pondered by the canonical variates to cus-

tom CNN activations, with activations reduced to a 50-dimensional space

ineach layer. e 107
4.19 Correlation circle showing the contributions of each summary statistics

and custom CNN activations to the first two canonical components.. . . . 109
4.20 Comparison of MixAttSPIDNA prediction error for different number of

haplotypes and SNP matrixformat. 110
4.21 Effective population size of three cattle breeds inferred by ABC, by the

best SPIDNA architecture, SPIDNA batch normalization, and by ABC based

onSPIDNA outputs. e 112
4.22 Effective population size of three cattle breeds inferred by the best

SPIDNA architecture, SPIDNA batch normalization, by ABC and by ABC

based on SPIDNAOULtPULS. o i i e e 113
4.23 Effective population sizes inferred by MixAttSPIDNA for the human pop-

ulations fromthe HGDP dataset. 115
4.24 Effective population sizes inferred by MixAttSPIDNA for the human pop-

ulations from the HGDP dataset separated by region.. 116

A.1 Estimation of population size history using ABC in six different simulated
scenarios from Boitard et al. (2016b). oo 127

3.1
4.1

4.2

List of Tables

Parameters used for the Flage/ CNN. 63
Prediction errors of the best configuration of each method on the simu-

lated cattledataset. 92
Prediction errors on the simulated HGDP dataset. 93

11

Introduction

The study of population histories is an interdisciplinary field of research that involves
archaeology, palaeontology, linguistic or cultural history studies to reconstruct the de-
mographic evolution and spatio-temporal dynamic of populations. Although the latter
mainly focuses on human populations, the reconstruction of demographic histories
can also be tackled from another angle by studying the genetic variation at popula-
tion scales. Indeed, genetic variation is a product of multiple phenomenons, including
demographic events such as admixtures, population split or size changes. Therefore,
one can reverse this process by mapping genetic variation back to demographic his-
tory. Thanks to the advances made in genomics since the first complete sequencing of
a human genome (Collins et al., 2004), they are now more and more whole genome
sequencing (WGS) datasets including several individuals from the same population.
This type of datasets primarily focused on human populations, with the 1000 Genomes
Project (Consortium et al., 2010) being one of the first large scale WGS collection which
targeted seven populations from four continents originally sequenced with an aver-
age coverage of 3.6x (it also includes six samples with 42x coverage). This dataset
was later extended for improved world coverage and data quality (Bergstrom et al.,
2020; Consortium et al., 2015; Leitsalu et al., 2014; Mallick et al., 2016; Pagani et al.,
2016). Datasets of non-human species are also available, such as Bos taurus with the
1000 Bull Genomes Project (Daetwyler et al., 2014) or chimpanzees and gorillas with the
Great Apes Genome Project (Prado-Martinez et al., 2013) and many other species that
were previously difficult to study when relying solely on archaeological and historical
data. Therefore, methods based on genetic variation open the path of demographic
reconstruction to all species, from bacteria to vertebrates.

They are many cases where inferring the past demography of population is use-
ful. For instance, as changes in population sizes are often related to specific events, it
helps to support and date discoveries made by archaeologists and historians such as
cultural transitions, ancient migrations, climatic, geological or disease outbreak events.
In conservation biology, such information could help to identify whether a species is
endangered thanks to the sequencing of a very small subset of its individuals (Kerdon-
cuff et al., 2020) and furthermore could help to determine if a decline was caused by
anthropogenic activities or natural factors (Lorenzen et al., 2011). In addition, knowing
more precisely the demographic history of a population enables to build more realistic
neutral models, and thus to infer more accurately non-neutral signals due to the pro-
cess of selection. In the field of health, precisely inferring the demographic histories of
pathogens could help to monitor the impact of health policies. From a different point
of view, processing whole genome sequence datasets including multiple individuals is
a very challenging task itself. Therefore, developing methods able to efficiently process

13

14 Introduction

this large quantity of data benefits not only to demographic inference but also to the
myriad of problematics in population genetics and genomics. For instance, methods
for predicting binding sites, protein structure, or biomarkers in precision medicine, all
rely on similar datasets and are only a subset of the domains that could benefit from
developing new methods treating whole genome sequences.

Demographic inference from genomic data is difficult since evolution is a stochastic
process and only a few present-day individuals are sequenced. Mutation rate, recom-
bination rate, genetic drift and natural selection also drive genetic variation in popu-
lations, which, added to the phasing, sequencing or genotyping errors that can arise
during sample collection, introduce a lot of noise in the data. Thus, the signal left by
the demographic history into the genome is very blurred, which makes it even harder to
decipher between different demographic histories. Moreover, previous methods that
used to rely on mtDNA, microsatellite data or SNP chip with a limited amount of mark-
ers are difficult to scale to data produced by next generation sequencing (NGS) technics
and more recent SNP chips with millions of markers. The important number of dimen-
sions in these data makes them hard to handle computationally and statistically for
most methods because of the curse of dimensionality (Blum, 2010).

Thankfully, a new branch of machine learning has shown impressive results in many
fields of science, solving complex problems based on high-dimensional data. Called
deep learning, these methods share the common feature of being able to automati-
cally learn complex non-linear projections of the data. Based on the concept of arti-
ficial neural network (ANN), these algorithms are easily scalable and flexible, as they
can be applied to almost any task after some adaptations to its characteristics. The
main objective of this thesis is to leverage the potential of deep learning to infer the
past demography of populations from genomic data by focusing on the inference of
population size history.

Outline

This thesis is structured around four chapters:

Chapter 1 presents the state-of-the-art of demographic inference in population ge-
netics. It describes the evolutionary models that the community developed in order to
explain how genetic variation is related to demography. It also presents the simula-
tors that will be later used to train the deep learning architectures. These simulators
exploit the evolutionary models to generate genome sequences according to demo-
graphic scenarios specified by parameters such as the mutation rate, recombination
rate, effective size or selection. This chapter also includes a review of the state-of-the-
art in demographic inference with methods that do not rely on deep learning (except
for some very specific cases of approximate Bayesian computation (ABC)).

Chapter 2 introduces the field of deep learning and reviews its applications to ge-
netic data, with a focus on methods answering population genetic questions. ANNs are
very modular, meaning that the deep learning community has developed many ideas
that can be combined to build networks tailored to the task of interest. This chapter
introduces some basic concepts that are common to most ANNs such as backpropa-
gation or neuron activations, and others designed to leverage specific data features

Introduction 15

such as attention mechanisms. The deep learning concepts presented here have been
used by methods from the state-of-the-art of deep learning applied to genomics that
we reviewed in the second part of this chapter. Deep learning applications for popula-
tion genetics being fairly new, this review gives a thorough overview of the tasks, data
formats and ANN architectures tackled in this field, and serves as inspiration for the
methods that we developed and present in the next chapter.

Chapter 3 describes the materials and methods used to develop our ANN architec-
tures and how we trained them to tackle population size inference on real dataset. It
starts by presenting the two genomic datasets of real cattle and human populations
and explain how we generated their simulated counterpart in order to evaluate and
train the methods tested during this thesis. Then, the chapter presents the methods
we included in the baseline to evaluate the two main deep learning architectures we
developed. The first one, called sequence position informed deep learning architecture
(SPIDNA), tries to take into account most of the data features specific to population ge-
netic data. The second architecture, called mixed attention SPIDNA (MixAttSPIDNA), is
build upon the first and integrates multiple attention mechanisms in order to improve
the overall computing capabilities of the network without losing the adaptability to the
data features implemented in SPIDNA. This chapter also presents a method based on
canonical correlation analysis (CCA) that has been created during this thesis to interpret
ANNSs in the context of demography inference. Finally, the chapter presents a python
package that we developed to help the population geneticists to develop and distribute
new deep learning architectures.

Chapter 4 discusses the performance of baseline methods, SPIDNA and
MixAttSPIDNA on both simulated and real datasets. It also presents experiments aimed
at dissecting the robustness of the designed ANNSs, the hyperparameters'influence and
the optimization process. It finally concludes on the positive and negative impacts of
the mechanisms introduced in our architectures and methods used to train them.

The conclusion of this thesis includes perspectives that could be explored to im-
prove further the ANNs' accuracy in the context of demographic inference and to im-
prove their interpretability.

To summarize, the main contributions of this thesis are:

+ areview of the state-of-the-art of deep learning for demographic inference,

+ the development of the SPIDNA architecture, its benchmark to other methods
and application to a dataset of cattle genomic data (Sanchez et al.,, 2021a),

+ the development of the MixAttSPIDNA architecture, its comparison to SPIDNA and
application to the HGDP dataset of Human genomic data,

+ the elaboration of a set of guidelines to build ANNs tailored to genomic data and

+ the release of a package to facilitate the usage of deep learning by the population
genetic community (Sanchez et al., 2021a).

Demographic inference

Contents

1.1 Insights into the demographic inference problem 19
1.1.1 Examples of demographic history effects on genomic variation . 19
1.1.2 Definition of the demographic inference problem 20
1.2 Sequentially Markov coalescent (SMC) methods 21
1.3 Summary statistics based inference 24
1.3.1 Inference from site frequency spectrum (SFS) 24

1.3.2 Inference from identity by state (IBS) and identity by descent
(IBD) . . 25
1.3.3 Approximate Bayesian computation (ABC) 26
1.4 Simulators e e e 28
1.5 Chapter conclusion 00000 29

Population genetics is a subfield of evolutionary biology that seeks to understand
how evolution shapes genetic variation at the scale of a population. The emergence of
this discipline can be traced back to the early 20th century, decades before the discov-
ery of the DNA structure in the forties and the availability of large scale genomic data
of today. Therefore, this domain used to rely primarily on mathematics with the goal
of finding models that describe the genetic variation of a population. One of the first
evolutionary model has been published independently by Hardy (1908) and Weinberg
(1908). It describes the allele frequencies of a biallelic locus in a panmictic population of
infinite size, without mutation or selection. This model shows the counterintuitive no-
tion that two allele frequencies reach an equilibrium (the Hardy-Weinberg equilibrium)
under these assumptions, independently of their dominant or recessive state. Later,
Fisher (1958); Wright (1931) proposed a model with mutations in a finite size popula-
tion, making this model one of the first to take into account an evolutionary force and
a demographic parameter, opening the path to more realistic models that relax these
simplifying assumptions. Moran (1958) introduced a model with overlapping gener-
ations and asexual reproduction, where at each step an individual is cloned and an-
other one dies. Similarly, Kimura (1964) introduced a model based on partial differential
equations to highlight genetic drift and developed the neutral theory of molecular evo-
lution. This theory argues that genetic drift is the main evolutionary force that explains

17

18 Chapter 1. Demographic inference

variation, as opposed to natural selection. These models are prospective, meaning that
population changes are modelled by moving forward in time.

As genetic data of present-day individuals became available, it marked a turning
point because a new evolutionary model was needed to understand, retrospectively,
how evolution shaped genomes. Hence, a model called the coalescent has been intro-
duced by Kingman (1982). The principal idea of this model is to start from a sample
of present-day individuals and trace their lineages backward in time until all lineages
coalesce (i.e., until they merge in a single lineage) to the most recent common ances-
tor (MRCA). The quantities of interest here are the coalescence times, i.e., the number
of generations that two or more individuals took to coalesce. For simulation purpose,
this model is often more computationally efficient than prospective ones, because it
only takes into account the lineages that lead to present-day individuals sampled, as
illustrated in Figure 1.1. The coalescent has been complexified through the years in or-
der to relax some demographic assumptions to allow for population size changes and
population structure, or introduce other evolutionary forces such as recombination.

One of the main goal of population genetics is to study the genetic variations of
a population in order to infer demographic parameter values describing the popula-
tion size changes, their structuring, admixture and migration events. This first chapter
gives an intuition of the link between genetic variation and population demography,
and presents the problematic of demographic inference. Then, it shows how previ-
ously mentioned evolutionary models are integrated into methods for demographic
inference. Section 1.2 presents the sequentially Markovian coalescent, an evolutionary
model that approximates the coalescent via a hidden Markov chain, on which numer-
ous inference methods rely. Section 1.3 presents methods based on summary statistics
of the genomic data. Finally, this chapter will present the data simulators used during
this thesis.

MRCA of the
«— Ppopulation

Figure 1.1: Genealogy of the same population modelled prospectively (left) and retro-
spectively (right). Figure from Nordborg (2001). MRCA stands for most recent common ances-
tor of the individuals of the last generation.

1.1. Insights into the demographic inference problem 19

1.1 Insights into the demographic inference problem

As stated in the introduction, the main challenge of demographic inference in popu-
lation genetics is to infer the parameters values describing a population demographic
history from its genomic data. The demography of a population is described by changes
in its size, structure, and the occurrence of admixture or migration events. The models
cited earlier depict the effects of these demographic parameters on the evolution of
genomic variation. Therefore, it is possible to reverse this process in the light of evo-
lutionary models to infer these parameter values by studying the genomic variation.
Before defining the inference problem studied during this thesis, let us better under-
stand the link between demography and genomic variation through some examples.

1.1.1 Examples of demographic history effects on genomic varia-
tion

This section gives an intuition about why genetic variation within a population carry sig-
nals of the past demography. The first example shows how an expansion increases the
genomic diversity in the coalescent evolutionary model. The second example of a bot-
tleneck shows the reduction of the population size decrease its genetic diversity. The
third example shows how an event of admixture can be dated when the recombination
rate per generation is known.

Figure 1.2 illustrates how coalescent time is related to the size of the population.
The population with a growing rate IV, /N, has more coalescence events than expected
in a constant size case, when the population is small (close to N,) and the branches
(i.e., the coalescence times) are shorter during this period. Intuitively, two lineages are
more likely to coalesce at a time when the population is small. The total sum of the
lineage branches being longer for the expansion scenario than a scenario with a small
constant population size, new mutations have more chances to occur, resulting in a
higher genomic diversity in terms of number of polymorphism sites.

Now consider the scenario of a population with a high genetic diversity in the past,
that then undergoes a bottleneck, i.e., a sharp reduction of the population size, and
finally a size expansion. During the bottleneck, the genetic diversity of the population
is reduced and even if the population recovers its previous size during the expansion
phase, it will not quickly recover its level of genetic diversity. From that, we can infer that
a large population with small genetic diversity is likely to have encountered a bottleneck
in the past followed by an expansion (Gattepaille et al., 2013).

Another example is how an event of admixture (e.g., the introduction of individuals
of different ancestry (migrants) into the studied population) can be dated from genetic
data. Right after a migrant individual enters a population, his first generation offspring
will carry one entire chromosome originating from each population, leading to long
genomic regions that can be assigned to a single ancestry. However, recombination
occurs at each new generation, breaking apart these regions and mixing segments of
different ancestries. Analysing the length of the admixed regions of the genome in-
forms about the number of recombinations that happened since the admixture, and
thus allows to approximate the date of the event (assuming admixture happened in a

20 Chapter 1. Demographic inference

S ~,

-
—

Figure 1.2: Effect of expansion on coalescence. Left: scenario with constant population size
N.. Right: scenario with expanding population size at a growing rate N./n. during G generations.
Figure from Palamara et al. (2012).

single pulse) (Gravel, 2012; Liang and Nielsen, 2014; Verdu et al., 2014).

Yet, following the described logic to infer demographic events is valid only in the case
of an idealized population, where no other process disturbs the signal left by the pop-
ulation size changes in the two first examples and the admixture in the third. In these
cases, it is fairly easy to derive the parameter values describing these demographic
events from present-day data. However, real populations can undergo many demo-
graphic events and changes in the evolutionary process at the same time. For instance,
demographic events such as the presence of complex population size changes, multi-
ple events of admixture, migrations or non-random mating can completely distort the
demographic parameters inferred by simple derivations. Moreover, as pinpointed in
the introduction, changes in mutation rate, recombination rate, natural selection and
errors added during the data collection are other causes that break the simplest models
to the point that inferred parameters are outside the acceptable margin of error.

1.1.2 Definition of the demographic inference problem

When inferring past demography, one can try to infer all demographic parameters at
once, or choose to focus either on the inference of the population size history or its
structure when considering no admixture or migration events. As shown by previous
studies, these two families of demographic parameters are particularly difficult to dis-
entangle for most methods, as the effects on genomic variation of one also translate
very well into the other (Mazet et al., 2016). This thesis focuses solely on the inference
of population size histories of a panmictic population and does not consider the split,
merging and admixture events that populations may undergo, but we will discuss in
the next sections methods doing the opposite, i.e., ignoring population size changes
and inferring population structure through time. Another point is that inference can
be performed either as a regression task or a classification task. Classification is partic-
ularly useful when the population demography studied is known enough to formulate

1.2. Sequentially Markov coalescent (SMC) methods 21

competitive hypotheses. For instance in human populations, if it is already know that
two populations had encounter in the past thanks to archaeological evidences, one
can seek for the classification between different scenarios including admixture, non-
admixture or replacement of one population by the other. Here, each scenario would
be modelled under a demographic model with predefined parameter values, and the
classification task goal would seek which scenario is the most likely based on the real
population data.

During this thesis, we will focus on a regression task with the goal of inferring de-
tailed population size histories. These histories will be represented by 21 population
sizes parameters at fixed time steps. We chose to perform regression of a fairly com-
plex demographic scenario over classification because little prior information is known
about the population, and it covers a much greater range of possible scenarios. Hybrid
approaches can also be considered, with a first classification task inferring a general
scenario (e.g., the presence of an expansion or not) and a second regression task aimed
at refining the general scenario inferred (e.g., finding the date and rate of expansion if
that is what has been inferred by the classification).

We denote the demographic parameters of interest 6. Regression methods seek
either for the set of ¢ that maximizes the likelihood p(X | #) of the observed data X,
or the posterior distribution p(f | X) of §. The data X are the observed (potentially
preprocessed) sequencing data. The real evolutionary process that led to the observed
data is approximated by a model such as the Wright-Fisher or the coalescent ones,
which will include demographic information. However, these evolutionary models are
complex probabilistic models, also referred to as implicit models (Cranmer et al., 2020),
where the likelihood is often not explicitly defined, an approximation or the likelihood
under a simpler model. The real likelihood is hardly tractable because it would require
to integrate the posterior probability over all the possible mapping from 6 to X in the
model, which is not possible because these mapping are too numerous in the case of
complex probabilistic model. Moreover, the demographic parameter inferred can be
very different than the true values because of the assumptions made by the model. In
the case of population sizes, the inferred values are called “effective sizes” by opposition
to the true “census sizes”. We often consider the effective population sizes to be linearly
proportional to the census population sizes, which allows drawing conclusions on the
overall dynamic of the population size history.

The next sections present three different families of methods for demographicinfer-
ence: methods based on an approximation of the coalescent with hidden Markov mod-
els, methods using the likelihood computed on summary statistics (summarizing the
data) rather than the complete observed data X and finally, the approximate Bayesian
computation, a method that can approximate the posterior distribution, but also re-
quires the computation of summary statistics.

1.2 Sequentially Markov coalescent (SMC) methods

The sequential Markov coalescent (McVean and Cardin, 2005) is an evolutionary model
derived from the sequential coalescent (Wiuf and Hein, 1999), itself derived from the
coalescent with recombination (Hudson, 1983). It allows demographic inference by

22 Chapter 1. Demographic inference

adding few simplifications over the sequential coalescent. The main idea behind these
models is that recombination events of a population sample can be represented as
transitions between the marginal genealogies along the genome. To understand this
concept, we can take a look at a type of representation called the ancestral recombi-
nation graphs (ARG) (Figure 1.3) where each node represents either a coalescence or
a recombination event. The sequential coalescent associates each locus of the sam-
ple alignment to a genealogy that is embedded in the ARG. A recombination event in
the ARG can translate into a change of genealogy along the genome. After inferring
the marginal genealogies of each locus, a distribution of the coalescence times can be
computed from them and finally transformed into demographic parameters such as
the effective population sizes.

Inference under the coalescent with recombination is particularly difficult because
the state-space of possible ARG is huge. Indeed, the number of recombination is un-
bounded, and they can occur on haplotype segments that are not present in the sam-
pled haplotypes. Moreover, there are usually too few mutations to characterize locally
a precise genealogy. Therefore, there are numerous possible ARGs, each contributing
a little to the likelihood. SMC and its derivatives reduce this state-space by introduc-
ing the simplifying assumption that recombination events only occur in segments that
lead to coalescence events in the sample. In other words, an MRCA haplotype can only
contribute to one continuous fragment in the sequences sampled (in reality, multiple
fragments could have the same MRCA, but itis unlikely after many recombinations). The
changes in the genealogy are represented as transitions along the genome sequence
that follows a Markov chain dynamic, meaning that the probability of a genealogy at a
given position now depends only on the previous genealogy (directly on its left in the
sequence). Thus, a likelihood approximation can be computed by using hidden Markov
model (HMM) inference methods. In the HMM framework of the SMC, the hidden states
are the marginal genealogies, which are simplified into coalescence times between hap-
lotypes pairs by subsequent SMC based inference methods. The observed values are
the sample states at each locus.

The SMC and its improved version SMC' (Marjoram and Wall, 2006) are the under-
lying model for many inference methods including PSMC, MSMC and SMC++ (Li and
Durbin, 2011; Schiffels and Durbin, 2014; Terhorst et al.,, 2017). These methods differ
by the way they construct their hidden and observed states. For instance, the pairwise
sequential Markov coalescent (PSMC) uses two haplotypes (i.e., it only requires the se-
quence of a diploid individual) and its possible hidden states are the coalescence times
of each locus. PSMC is limited when it comes to inferring recent effective population
sizes because two haplotypes have few recent coalescent events, and thus less informa-
tion about recent population demography. It is difficult to leverage information from
more than two haplotypes due to the difficulty of expressing the marginal genealo-
gies and coalescence times of multiple haplotypes. The multiple sequential Markov
coalescent (MSMC) circumvents this issue by computing all the pairwise recombination
time between multiple sample haplotypes and retaining the most recent one. Another
method called SMC++ also leverages the information in multiple haplotypes. It uses an
observed state similar to PSMC (i.e., the alleles of two haplotypes), but adds to it a sum-
mary statistic called the site frequency spectrum (SFS) of the remaining n-2 haplotypes.

These SMC based methods have the advantage of using the information along the

1.2. Sequentially Markov coalescent (SMC) methods 23

A
MRCA
I TMRCA =17
I —t
—t o
=}
D
—t4 2
=
>
T ;
—t3 g
=)
— t5 3
o
o
(%)
<
T —
2 .y
]]]
Haplotype 1 Haplotype 2 Haplotype 3
Geneﬂogyj] Genealogy 2 Genealogy 3

-

Hapl. 1 Hapl. 2 Hapl. 3 Hapl. 1

Hapl. 2 Hapl. 3 Hapl. 1 Hapl. 2 Hapl. 3

Figure 1.3: Example of ancestral recombination graph (ARG) between three haplotypes
with the marginal genealogies associated. Each node of the ARG corresponds either a coales-
cence event or a recombination event (nodes r; and r2). The lineages of the haplotypes are rep-
resented until they all coalesce to the most recent common ancestor (MRCA). Each marginal ge-
nealogy (genealogy 1, 2 and 3) represents the coalescence events between the non-recombined

subsequences of the same colour.

24 Chapter 1. Demographic inference

sequence (usually by windows of 100 bp) and leverage linkage information between
sites. However, in addition to the simplifications discussed earlier, these methods have
other disadvantages due to the approximations introduced to limit their computational
cost. For instance, the possible hidden states (i.e., the possible coalescence times at
a loci) are discretized, which may reduce the accuracy. Moreover, they use phased
data, which require greater sequencing coverage. Therefore, researches in population
genetics have developed other methods based on different types of input data and
evolutionary models. The next sections introduce them, alongside their strengths and
weaknesses.

1.3 Summary statistics based inference

Instead of processing genomes sequentially like SMC-HMM based methods, summary
statistics based methods circumvent the high dimensionality of genomic data by fo-
cusing on a subset of statistics computed from the sequences. Many of such methods
have been developed by the community in population genetics through the years, and
this section highlights some of them to illustrate the different ways summary statistics
are used for demographic inference.

1.3.1 Inference from site frequency spectrum (SFS)

We saw in the previous sections that, compared to other SMC based methods, SMC++
uses the additional information of the site frequency spectrum (SFS) to integrate data
from more than two haplotypes. The SFS is the distribution of the number of n-ton (sin-
gleton, doubleton, tripleton, etc...) polymorphic sites in the population sample. dadi
from Gutenkunst et al. (2009) is an example of a method that utilizes such statistics to
infer effective sizes, splitting events and migrations between up to three populations.
More precisely, this method seeks for the demographic parameter values that maxi-
mizes the likelihood of the multi-population SFS under a diffusion model of evolution.
The multi-population SFS, which is the joint site frequency spectrum (SFS) between mul-
tiple populations, is a matrix with as many dimension than populations in the sample.
Each element of the matrix represents the shared number of polymorphic sites be-
tween the populations. For instance, the [2,0] entry of a 2 dimensional matrix records
the number of polymorphic sites where the derived allele is present twice (i.e., a dou-
bleton) in the first population, but not present in the second population. In the same
way as the SFS, the multi-population SFS contains all the information of the data of
multiple populations if the polymorphic sites are completely independent, and it scales
easily to the full genome length.

The stairway plot (Liu and Fu, 2015) is another method that optimizes observed SFS
likelihood using a genetic algorithm. The algorithm searches for the population scaled
mutation rates that are then converted into population sizes at different time point.
This method showed better estimations of recent effective population sizes than PSMC
over predefined simulated scenarios.

The fastsimcoal2 algorithm proposed by Excoffier et al. (2013, 2021) approximates
the likelihood of the SFS by using simulations. Here, the demographic parameters are

1.3. Summary statistics based inference 25

optimized thanks to an extension of the expectation-maximization (EM) algorithm. At
each cycle, the algorithm generates simulations from a set of demographic parameters
and computes the likelihood of the demographic model (by calculating the probability
of the observed SFS based on the simulated one). This likelihood is then used by the
EM algorithm to compute the next parameter values. The procedure usually simulates
100,000 SFS at each step for 20 to 40 cycles. Between 20 and 40 independent proce-
dures are launched in parallel with different starting demographic parameter values in
order to better explore the parameter space and avoid local optima.

1.3.2 Inference from identity by state (IBS) and identity by descent
(IBD)

ldentity by state (IBS) and identity by descent (IBD) are two other types of summary
statistics that have the advantage of taking into account linkage information between
sites. IBS describes sequence fragments that are identical, whereas IBD describes se-
guence fragments that are similar because they are inherited from a common ancestor
without any recombination events breaking the lineage from this ancestor. IBD does
not always imply identical fragments because new mutations can still occur after the
MRCA. Following the coalescent, the length of IDB fragments can be translated into
coalescence times to finally infer population sizes. Intuitively, small populations have
shorter coalescence times and thus, fewer recombination events that can break up
shared sequences, resulting in longer IBD fragments. One caveat of IBD based methods
is that they require a first inference step to identify the IBD fragments before perform-
ing the demographic inference itself, contrary to IBS fragments that can be computed
directly from the observed data (if their quality permits).

Harris and Nielsen (2013) thus compute the likelihood of the IBS segment lengths
based on the SMC evolutionary model and optimize the demographic parameters of
interest with quasi-Newton BFGS algorithm. This strategy enabled them to infer the
parameters of a demographic model including population size changes, divergence
events and admixture pulses. They obtained accurate predictions for simulated sce-
narios on which dadi was not able to converge, but had trouble leveraging long IBS
tracts in applications to real data, as those were interrupted by sequencing errors.

In their study, Browning and Browning (2015) focused on the inference of recent ef-
fective population sizes based on IBD fragments longer than a particular threshold.
Rather than having a direct expression of the likelihood, they express the relation-
ship between effective population sizes and IDB fragments based on a Wright-Fisher
discrete-generation evolutionary model. Effective population size values are updated
through an expectation-maximization (EM) algorithm by computing iteratively the esti-
mated and expected amount of IBD from a set of effective population sizes.

Except for fastsimcoal2 that could potentially use different simulators, the methods
presented here are tied to the evolutionary model they use to express the relation
between the summary statistics and the demographic parameters of interest. The next
section presents the approximate Bayesian computation (ABC) that, similarly to the
method underlying fastsimcoal2, is not tied to any evolutionary model, but has the
advantage of being able to leverage many type of summary statistics (rather than solely
the joint SFS).

26 Chapter 1. Demographic inference

1.3.3 Approximate Bayesian computation (ABC)

Approximate Bayesian statistical inference is a method that allows to estimate the pos-
terior distribution of model parameters given a set of observed data. To better under-
stand how this method works, let us remind the Bayes' theorem:

p(X [0)p(0)
p(X)

where p(f | X) is the posterior of parameter ¢ (i.e., the probability distribution of 6
given the observed data X), p(X | 0) is the likelihood (i.e., probability distribution of the
observations of the data X given 6), p(0) is the prior knowledge about the distribution of
0 without information from the data X and p(X) is called the marginal likelihood, which
is the distribution of all data that could be observed for all values of §. The marginal
likelihood is a normalizing constant that can be ignored because it cancels out when
comparing two posterior probabilities.

As explained in Section 1.1.2 observed data X are derived from sequencing data
and 6 are the parameters of interest in the context of demographic inference. One
caveat of ABC, is that it suffers from the curse of dimensionality (Blum, 2010) because it
computes a distance in the space of X that can be high-dimensional. Simply put, data
points become very sparse in the data space as the number of dimension increases,
which makes them appear equidistant to each other, preventing the usage of a rele-
vant distance metric. Because sequencing data are typically high-dimensional, they are
often converted into a smaller number of commonly used summary statistics with a
function s to give a vector of summary statistics observed s*. A set of parameters 6,
are randomly drawn from the prior p(#) and used to generate simulated data X;. Then,
a vector of simulated summary statistics s; is computed for each simulated data X;
thanks to the function s.

The ABC algorithm allows finding an approximation of the posterior distribution
p(0] X) of the demographic parameters 6 from the observed data X with the following
formula:

p(0| X) = (1.1)

p(0| X) =~ p(0; | d(5;,5%) <€) (1.2)

with d a distance measure (usually the Euclidean distance) and ¢ the tolerance thresh-
old. In other words, the posterior is estimated by the distribution of demographic pa-
rameters #; for which the corresponding summary statistics $; have a distance d(s;, s*)
inferior to the tolerance threshold e. Before constituting the estimated posterior, a step
of correction can be applied by fitting a regression model locally in order to improve the
inference of the demographic parameters in the vicinity of the observed data and help
to cope with the dimensionality of the set of summary statistics. This regression can
be performed with, for instance, lasso regression, ridge regression or a simple artificial
neural network (Boitard et al., 2016b). ABC steps are represented in Figure 1.4.

The first applications of this method for demographic inference date from the late
nineties. Tavarée et al. (1997) used it to infer the coalescence times from sequence
data and Pritchard et al. (1999) used the variations of eight human Y chromosome
microsatellite loci summarized into 3 summary statistics to infer the parameters of a
model of exponential growth. Nowadays, researchers are addressing more and more

1.3. Summary statistics based inference

27

Prior of demographic
parameter 6
N

AR BN
[Sirr:.‘l][Sinlw.z][SirTILn]

Summary Statistics

v v
-

)
1% le

Observed data

— A
Rejection -—— d(si, s*) <e 3*5

v

EaEalEs

Correction —»

Estimated
posterior of

0

Figure 1.4. Diagram of the approximate Bayesian computation algorithm (ABC). Demo-
graphic parameters are randomly drawn from the prior p(#) and fed to a simulator based on an
evolutionary model. Simulated and observed data are then converted into summary statistics.
Then simulated summary statistics s; that are too far from the observed summary statistics
s* according to the distance measure d and the tolerance threshold ¢ are rejected. The de-
mographic parameter associated to the remaining simulated summary statistic can then pass
through a step of correction to finally constitute the estimated posterior of the observed data.

28 Chapter 1. Demographic inference

complex tasks thanks to the availability of WGS data which are summarized by numer-
ous statistics inspired by population genetic theory in order to minimize the informa-
tion lost from the sequencing data. Summary statistics commonly used are the site fre-
quency spectrum (SFS) and its summaries (e.g., Tajima D), linkage disequilibrium (LD)
and statistics based on shared segments that are identical-by-state (IBS) or identical-
by-descent (IBD) (Boitard et al., 2016b; Gladstein and Hammer, 2019; Jay et al., 2019;
Sheehan and Song, 2016; Smith and Flaxman, 2019). Yet, they are not guaranteed to
be sufficient and including too many statistics can impact the performance of standard
ABC by falling back to the curse of dimensionality. An active research topic in the ABC
community is thus the development of methods addressing this issue by (i) selecting
the best subset of summary statistics according to some information-based criteria,
(i) integrating machine learning steps into ABC to handle a larger number of summary
statistics (e.g., kernel methods, random forests), (iii) constructing summary statistics us-
ing linear and non-linear models based on candidate statistics or on the original data
when feasible (Aeschbacher et al., 2012; Blum et al., 2013; Fearnhead and Prangle, 2012;
Jiang et al., 2017; Nakagome et al., 2013; Raynal et al., 2018).

Therefore, ABC has some drawbacks: it is sensitive to the curse of dimensionality
and cannot handle directly raw genomic data, it needs many simulated data due to
its rejection algorithm, it is difficult to interpret its output in terms of which statistics
were the most informative for each demographic descriptor, and it does not naturally
handle correlated or weakly informative summary statistics, which can add noise to the
data (Sheehan and Song, 2016) (to the exception of ABC random forests (Raynal et al.,
2019), which on the other hand lose the ability to estimate posteriors). However, its
ability to estimate posteriors and therefore, to compute credible intervals, gives it a
great advantage over other methods, such as most deep learning frameworks. During
this thesis, we used ABC as a baseline to compare to the architectures we developed.
The results of this comparison should also give us an idea of how our methods should
perform against other methods already tested against ABC, such as MSMC (Boitard
et al,, 2016b). Finally, we also combined ABC to our SPIDNA architecture in order to
benefit from the advantages of the two methods, as explained in Section 3.3.3.

1.4 Simulators

Numerous simulators have been developed and can be used with inference methods
that are not tied to any underlying evolutionary model, such as the ABC. They are often
categorized either into forward simulators or backward simulators. Forward simula-
tions, are based on prospective models, meaning that all individuals of a population
are usually followed one generation after the other, while backward simulations follow
the ancestors of only a small subset of the population. For instance, the SLiM program
(Haller and Messer, 2019) proposes two different forward simulators, one based on
the Wright-Fisher model and one non-Wright-Fisher (nonWF). The nonWF model is par-
ticularly flexible because it controls mating at the individual level. Thus, it can relax
many of Wright-Fisher assumptions to allow introducing new mating, recombination
or selection mechanisms, and more easily adapt the model to non-model organisms
(Cury et al,, 2021). However, these models are particularly time-consuming compared

1.5. Chapter conclusion 29

to backward simulators which are preferred for inference methods that require a lot
of simulated data, such as ABC and the deep learning methods developed during this
thesis. We will see in Chapter 3 that we used three similar coalescent based simulators,
ms, msms and msprime (Ewing and Hermisson, 2010; Hudson, 2004; Kelleher et al,,
2016), to test the robustness of our method to change of simulator (see Section 4.2.2).
We choose to use principally msprime to perform simulations to train and evaluate our
methods because it is the most computationally efficient of the three.

Demographic inference methods based on simulations require generating a lot of
simulated data under different scenarios that are drawn from prior distributions. As
explained in Section 3.1, we designed our priors to be as close as possible to the knowl-
edge on the two real datasets studied during this thesis.

1.5 Chapter conclusion

This chapter gave a brief overview of the state-of-the-artin demographic inference from
genomic data. The different methods rely on evolutionary models that describe the in-
fluence of demography on population genetic variations with the idea of finding the
demographic parameter values that maximize the likelihood of some observed data.
These methods are able to handle genomic data either by analysing polymorphic sites
or by reducing the data into relevant summary statistics. By comparing these methods,
we can see that there is often a tradeoff between the complexity of the evolutionary
model, the complexity of the demographic model, the computational efficiency and the
amount of information used from the data. For instance, ABC can be used with any evo-
lutionary model that allows for simulation, but is not particularly efficient as it requires
a lot of simulations, especially when testing a wide variety of demographic models and
parameters. Moreover, it also requires to carefully choose the summary statistics used
in order to lose the minimum of information from the genomic data. On the other
hand, we saw that some methods, such as SMC, despite analysing the full sequences,
were tied to evolutionary models. Hence, we can imagine some specifications for the
design of a new demographic inference method. It should be preferably agnostic to the
demographic and evolutionary models, able to handle directly genomic data and have
competitive prediction errors while being computationally efficient. The next chapter
presents the deep learning framework and why it is a good candidate to answer these
requests.

Deep learning for genomic data

Contents
2.1 Introduction to deep learning 31
2.1.1 Multilayer perceptrono oL 32
2.1.2 Training artificial neural networks 35
2.1.3 Towards more complex networks 37
2.1.4 Technical points, 40
2.2 Deep learning applications in genetics 43
2.2.1 Inference from genomicdata 44
2.2.2 Methods based on summary statistics 45
2.2.3 Methods based on SNP matrices 47
2.2.4 Generative models 49
225 Recent works oo 50
2.3 Chapter conclusion 00000 50

The main challenge of this thesis is to leverage the recent advance in Deep Learning
to solve the population genetic problem of inferring past demography. This chapter
first introduces deep learning and describes the fundamental building blocks of artifi-
cial neural networks (ANN) by focusing on one of the most basic ANN: the multilayer
perceptron (MLP). Then, the training phase and other deep learning concepts relevant
for the ANNs developed through this thesis are introduced. Finally, this chapter dis-
cusses the various applications of deep learning to genomic data with emphasis on the
field of population genetics.

2.1 Introduction to deep learning

The history of deep learning can be traced back to the first models of an artificial neuron
developed in the forties, which has since led to increasingly more complex networks of
these artificial neurons through the years. But it is not until the development of back-
propagation, a simple scheme of training based on chain rule, and the increase of com-
putational power and availability of large datasets that ANNs became powerful enough

31

32 Chapter 2. Deep learning for genomic data

to solve real world tasks such as handwritten digit recognition (LeCun et al., 1989). A
new deep learning craze started in 2012, after Krizhevsky et al. (2012) achieve unprece-
dented results during the ImageNet LSVRC-2010 image recognition contest. Fuelled by
the availability of specialized hardware such as graphical processing units (GPUs) and
the development of dedicated deep learning libraries, this craze has led to numerous
applications of deep learning in almost all branches of experimental sciences and in-
spired the advancement of deep learning theory.

The deep learning family of methods consists in a large set of algorithms that share
the same fundamental features: numerous learnable parameters organized in nested
functions called layers, an evaluation function defined to solve a specific task and an
optimization procedure aimed at finding the best parameter values over a set of data
called the training set. In other words, an ANN is a complex function with learnable pa-
rameters that can be automatically optimized in order to approximate a target function
that solves a task. Artificial neural networks are trained iteratively as each data sample
from the training set is fed to the network, then its outputs are evaluated to guide the
optimization of the learnable parameters. In the best case scenario, these two steps
are repeated until convergence to an optimum, but in reality a lot of factors can deviate
the training from this goal, and it is the work of the deep learning practitioner to find
the right architecture and settings that yield to a good solution.

2.1.1 Multilayer perceptron

This section presents one of the most basic types of deep learning architecture which is
called multilayer perceptron (MLP) or fully-connected network. Presenting this simple
network will help to define most of the building blocks of deep learning architectures
and how the general optimization process of deep learning works.

MLP architecture

The multilayer perceptron (Figure 2.1) is an ANN where each neuron (also referred as
“hidden units”) is connected to all the neurons of the upper and lower layer, hence
the name of fully-connected (or dense) layers. The first layer of this model, the input
layer, is a vector ¥ representing one data point of the dataset. After the input layer,
several hidden layers are added sequentially. The neurons activations of the hidden
layer [of size N' are denoted as a vector @' € RY'. The MLP has a total of L hidden
layers. The weights between layers [of size N and [+ 1 of size N'*! are denoted
by the matrix W' € RN >N A bias vector b is added at each hidden layer to allow
the network to shift the activation and thus, increases the capacity of the network to
approximate functions. Simple non-linear functions denoted ¢ are inserted between
layers to introduce non-linearities inside the network. The first layer thus computes
the function @' = o(W'Z + b') and each other layer computes a function of the form
@ = o(W'Z=! 4 bl). The last layer outputs the network predictions denoted by the

—

vector hy,z(@*~') = g € R”. This set of weights W = {W' W?...W"} and biases

b= {51, b2, EL} are optimized during training and therefore are part of the learnable
parameters.

2.1. Introduction to deep learning 33

Prediction
Data point Z A

Figure 2.1: Diagram representing a multilayer perceptron (MLP). A data point Z passes
through a series of hidden layers defined by their weights W' and bias b'. Each output ! of
an hidden layer pass through an activation function o. Last layer output the prediction of the
network 5

Activation function

Many activation functions with different proprieties have been used in Deep Learning.
For instance, the Rectified Linear Unit (ReLU) is defined as:

for >0
Trerv(2) = { S for j <0 (2.1)

ReLU has multiple advantages over other activation functions: (1) it avoids the van-
ishing gradient problem, (2) it gives a sparse network if weights are initialized around
0 and (3) it is efficient to compute. The vanishing gradient problem rises when the ac-
tivation function has a gradient restrained to a small range (functions such as sigmoid
or tanh that are asymptotically flat). These gradients are multiplied together during
the backpropagation, which might lead to an extremely small (vanishing) gradient be-
ing backpropagated to the first layers. Vanishing gradients prevent changes/updates in
these first layers’ weights. This issue often appears when the network has many layers,
i.e., when the network is deep.

Another type of activation function, the scaled exponential linear units (SELU) from
Klambauer et al. (2017), mitigates the vanishing gradient by design. It is defined as:

e —1) for z<0

ospL(2) = 7{ ! z for z>0 (2.2)

34 Chapter 2. Deep learning for genomic data

with a ~ 1.673 and v ~ 1.051, it has been proven to keep layer activations to 0 mean
and 1 variance. In practice, as it requires to carefully initialize the weights and normal-
ize the data, simpler and less computationally expensive activation functions like ReLU
combined with batch normalization (described in the next section) are often preferred.

Weight initialization

Prior to training, network weights need to be randomly initialized to ensure the smooth
functioning of the optimization process and to benefit from overparametrization opti-
mization properties. For instance, in a MLP setting, two weights with the same inputs
and initialized with the same value could be updated the same way through training
and remain identical, which is undesirable as it would reduce the overall expressive
power of the network. Careful weight initialization is also important to avoid explod-
ing or vanishing gradients and to start the optimization process near the optimum. To
this extent, numerous initialization schemes have been developed such as the popular
Kaiming He initialization (He et al., 2015) which is defined by:

2

W~ N(0, W) (2.3)
When using ReLU activation functions, this initialization guarantees that the output
variance of each layer is equal to 1. However, the assumptions made to obtain this
guaranty can break with more complex architectures, e.g., for networks with residual
connections, attention mechanisms or unstandardized inputs and targets. Thus, net-
works using these types of mechanisms are harder to train and typically use another

mechanism, called batch normalization, that allows a less careful initialization.

The universal approximation theorem

The universal approximation theorem (Cybenko, 1989; Hornik, 1991) shows the com-
putational power of ANN by proving that neural networks with bounded depth and
arbitrary width can approximate any continuous function over a compact:

Theorem 1 Let o be any continuous sigmoidal function. Then finite sums of the form:
N
G(x) = Z ozja(ijx +46,)
j=1

are dense in C(I,). In other words, given any f € C(1,,) and € > 0, there is a sum, G(z), of
the above form, for which:

|G(z) — f(x)| < eforallz € I,

Where ¢ can be arbitrary small, I,, is the n-dimensional unit cube and C(I,,), the space
of continuous functions on I,,. This theorem says that the number of units V € N¥, real
constants «a;,y; € R and real vectors 6; € R™ exist such that G is an approximation of
the target function f. It has since been extended to unbounded activation functions o

2.1. Introduction to deep learning 35

such as ReLU and to networks with arbitrary depth but bonded width (Lin and Jegelka,
2018).

2.1.2 Training artificial neural networks

The previous section defined the MLP, the weight initialization step and its universal
approximation property. This section will describe how ANN weights are actually op-
timized to approximate the objective function. This process called training is done it-
eratively by alternating between forward of the data and backward pass of the loss in
the network. During the forward pass, the network makes predictions on a set of data
called the training set. Then, during the backward pass, the loss gradient is backprop-
agated to update the network weights and biases.

Forward pass

During the forward pass, a data 7 is sent to the network. The activation of the neurons
a of the first hidden layer [= 1 of a MLP is defined by:

a' =o(Z') = o(W'Z +b') (2.4)

where the activation function o : R — Ris applied to each coordinate of its input vector
independently. Then, activations of hidden layer I > 2 are computed as the following:

i =o(Z") = oc(W'at + b (2.5)
The output layer is computed as follows:
g=Wwral + " (2.6)

Here there is no activation function in the last layer because this network is aimed
at solving a regression task with multiple parameters to predict, but it is also possible
to adapt this layer to other tasks. For instance, by adding a softmax activation func-
tion, this last layer would be suited for a classification task where classes to predict are
encoded as one-hot vectors.

Training and backpropagation

During the training phase, batches of inputs ¥ are passed though the network and pre-
dictions § = hy5(Z) are compared to the targeted outputs . For the regression case,
the L2 norm, also called mean squared error (MSE) can be used to measure the predic-
tion error (also called loss):

b’

- o Il &K=
JW.b,4.49) = —> |9; — il (2.7)
m
j=1

The method used to tune the weights of the networks developed in this thesis is
Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014), a method derived from

36 Chapter 2. Deep learning for genomic data

the stochastic gradient descent (SGD) (Bottou, 2010). SGD is an optimization technique
that can be applied to ANN using backpropagation. We first compute g—i to know how
a small change of a weight w = Wi{j affects the loss, and then update the weight with
w—w =w-— n?—i with n the learning rate. For weights w of the last hidden layer L, we
compute 97 using the chain rule:

aJ 9J oyl 9zk

= — 2.8
owl gy 0zl dwr (2.8)
For weights w in another layer ¢ < L, we have:
> q9+1 - —1-1 —q
aJ 9J 9y 0z" oa 0z (2.9)

ow — ggr 07 L1 9a=1 9211 ur

The optimal solution would be to compute the gradient over the full training set,
however this would lead to updating the weights only once per epoch and hence re-
quires a very large number of epochs (and computing time) to converge. Instead, the
network is trained with mini-batches, meaning that the weights are updated only after
computing and accumulating (summing) the gradient over a batch of data randomly
sampled from the dataset instead of accumulating over the whole dataset. This tech-
nique improves the speed of the gradient descent compared to passing the data one
by one and thus, improves the convergence time. It also adds stochasticity which leads
to noisier gradients that are better capable to escape local minima and prevent over-
fitting.

Gradient descent

The difference between Adam and SGD is that Adam stores m, the average of the expo-
nentially decaying past gradient and v, the average of the exponentially decaying past
squared gradients. With 8; and (3, the decay rates, at the training iteration ¢:

0J 0J
my = Bimy_1 + (1 — ﬁl)a—w vy = Bovp_1 + (1 — 62)(8_11))2 (2.10)
Then, the weight update rule becomes:
Ui my

w—w =w— (2.11)

vfipy+el =P

where ¢ is a smoothing term that avoids division by zero. Adam adds an adaptive mo-
mentum to the gradient descent that improves convergence speed and stability by
speeding up or slowing down the gradient descent when needed during the optimiza-
tion.

2.1. Introduction to deep learning 37

Learning rate

The learning rate n plays an important role in the overall training procedure. A high
learning rate can prevent any convergence to an optimum or, worse, cause numerical
error explosions. Contrariwise, a small learning rate can lead to a very slow training
and a convergence to the nearest local optimum without any exploration of other po-
tentially better optimums. For these reasons,) is often included into a hyperparameter
search procedure. It can also be useful to control during the training phase thanks to
a learning rate decay rule based either on a number of iterations of the training loop
or on a metric that detects when convergence reaches a plateau.

Generalization

Overfitting is a common issue that can arise with over-parametrized ML models able
to learn features specific to each training data without any capacity of generalizing to
data that are not in the training set. ANNs having up to more than billions of learnable
parameters, itis fair to assume that they can be subject to the same issue. Nonetheless,
it has been show experimentally and theoretically (Geiger et al.,, 2020; Zhang et al., 2017)
that ANNs often behave differently by exploiting at first the features shared among the
training data and then dedicate the remaining computational power to exploiting the
features specific to each data. This makes overfitting less of an issue for ANNs but
still requires monitoring overfitting by using another set of data called the validation
set. The loss 2.7 computed over the validation set, on which the network has not been
trained, gives the mean error expected on any data point as long as it is randomly
sampled in the same distribution. Finally, in the same way that the validation set is
used to monitor generalization during the optimization of the learnable parameters, a
third dataset called the test set is used to monitor generalization after optimization of
the hyperparameters (hyperparameters optimization is described in the Section 2.1.4).

2.1.3 Towards more complex networks

The universal approximation theorem shows that under certain conditions, any func-
tion can be approximated with a deep or large enough MLP, but it does not provide
a way to find the tuned parameters of such network. In practice, computational and
optimization constraints prevent to get close to this idealized network. To circumvent
this issue, deep learning researchers have developed through the years network de-
signs relying on multiple ways of organizing neurons of ANNs in order to make them
easier to train and more adapted to the task. This section describes some of these
improvements used in the architectures developed for this thesis or in the population
genetic community. One of the first improvements made over MLPs is the develop-
ment of convolution layers that allow to reuse weights to process different parts of a
same data sample, and thus greatly reduce the number of weights needed as well as
the required dataset size. This section also presents recurrent neural networks (RNNs),
a type of network that is suited to temporal data. Finally, this section shows how at-
tention mechanism is a very helpful method to associate layer inputs by using criteria
learned during the training.

38 Chapter 2. Deep learning for genomic data

Convolution layer

Intuitively, a convolution layer consists in applying the same mask of small size A to
submatrices of B of the corresponding size through a sliding window process. This
allows to reuse the weights of A multiple times over different entries of a layer and
exploit the spatial relationship between them. The stride describes how the filter is
shifted over B. For example, a stride of 3 tells that the filter is shifted by step of 3
elements after each application of A on B.

A convolution in two dimensions (Figure 2.2) is defined as a matrix A € RV*M
that convolves a bigger matrix B € RP*? with P > N and Q > M. The nota-
tion Bliy, i2; j1, jo] denotes the submatrix of B consisting of the intersection of rows
i1 through i, and columns j; through j,. With a stride of 1, the convolution filter is
applied to all submatrices of size N x M of B. With a stride of s; along the row axis
and s along the column axis, the filter is applied to all submatrices B[k x s;, N — 1 +
kX sl X sy, M —1+1x s3], k € {0,--- , =2}, 1 € {0,---, =X} by moving A by s,
and s, steps over B. The convolution operation itself is the element-wise sum of the
Hadamard product between A and the submatrix Bliy, i2; j1, jo):

conv(A, Bliy, ig; j1, J2]) = sum(A © Bliy, iy; j1, jo]) (2.12)

It can be performed on =X + 1 x €= 4 1 submatrices of B and will result in a new
matrix of dimension £=% 4 1 x =4 41,

+1

x_ — +1
52

Figure 2.2: Diagram of a convolution mask in two dimensions. The mask (in red) is ap-
plied over a matrix (in blue), resulting in the green matrix. Each element of the green matrix is
computed by performing the sum of the Hadamard product between the mask and the corre-
sponding window over the blue input matrix. s; and so denote the striding factor of the mask
in the two dimensions.

This mechanism is the core component of convolutional neural networks (CNNs). In
practice, CNNs include multiple masks per layer for which their result are concatenated
over a third dimension called the feature dimension. Therefore, the data take the form
of three-dimensional tensors through the network, which are processed with three-
dimensional masks.

2.1. Introduction to deep learning 39

Recurrent neural networks (RNN)

Recurrent neural networks (RNN) is a type of ANN that has been introduced in the 80s
to process sequential data such as temporal series or text. It consists of a cell that con-
tains a more or less complicated ANN which is repeated over the sequence of data.
For a given part of the sequence, the cell outputs a prediction, which is then passed
to the next cell along the sequence. RNNs are usually trained with backpropagation
through time (BPTT) which is simply the backpropagation algorithm described above,
but because the same cell is repeated along the sequence, the gradient is summed up
for each sequence step. RNNs are in theory capable of handling sequences of arbi-
trary length by repeating the cell to cover its entire length, but for long sequences, it is
subject to a strong exploding or vanishing gradient effects (Hochreiter et al.,, 2001). To
solve this issue, Hochreiter and Schmidhuber (1997) introduced long short-term mem-
ory networks (LSTMs), with cells that not only output a prediction, but also a “cell state”
that can be linearly altered by the two other inputs of the cell (the prediction from the
previous cell and the current input from the data sequence). This mechanism is similar
to residual connections in residual networks (He et al., 2016) as layers can be skipped
by a part of the data flowing through the network. This prevents gradient from van-
ishing in some cases, helps to find longer range dependencies in the data sequence
and overall improves training (Balduzzi et al,, 2017; Li et al., 2017a). Nonetheless, the
long-range dependencies that can be found by an LSTM are limited by the size of the
“cell state” and it is primarily for this reason that LSTMs have been later foreshadowed
by attention mechanisms.

Attention mechanism

Although the “cell state” of LSTM (Hochreiter and Schmidhuber, 1997) can be consid-
ered as a form of such mechanism, the term “attention mechanism” was first intro-
duced in the Transformer architecture (Vaswani et al., 2017) to tackle natural language
processing (NLP) problems. Bigger architectures based on similar mechanisms such as
Bert (Devlin et al., 2019) and GPT-3 (Brown et al., 2020) have shown impressive results
on NLP tasks. Attention mechanism has also been applied to other domains such as
image sampling and reconstruction with Image GPT (Chen et al., 2020), image genera-
tion with DALL-E (Ramesh et al., 2021) and protein folding with Alphafold (Jumper et al,,
2021). Similarly to RNNs, attention mechanism is aimed at treating a sequence, but
with the advantages of parallelizing the computation between all sequence elements
instead of processing them sequentially. It also connects the sequence elements in the
same way, which prevents the loss of information between distant elements and, thus,
better handles long range dependencies. Although the architectures previously men-
tioned are fairly complex and integrate other mechanisms, the core attention mecha-
nism (which is often called self-attention) can be described as follows: for each element
i of a sequence of length n embedded as a vector z;, three weight vectors are learned:
the queries ¢;, the values v; and the keys k;. The attention mechanism will compute, for
each element, a linear combination of values v;, with weights depending on the affinity
between element:and elements j, expressed as the similarity between the query ¢; and
the keys k For each 7}, the dot-product attention vector a; =< ¢;- /ﬁ q: - kg, RRINE k >
is computed To limit the risk of vanishing gradients, & is then scaled by /d;, d;, being

40 Chapter 2. Deep learning for genomic data

the dimension of the vectors ¢ and k (in practice, the dimension d, of the vector v; is

often chosen equal to d;), and passed through a softmax function: 3; = softmax(\%).

This vector §; can be interpreted as a measure of affinity between &, and the other
embedded elements of z. Finally, the output of the attention mechanism for z; is the
sum of the value vectors v of all sequence elements scaled by the affinities 3, that
is, Z?:l Bi;0;. If the vectors ¢;, k?l and v; of all elements are concatenated in matrices

Q € R4, K ¢ R4 and V € R™* the previous steps can be written as follows:

attention(Q, K, V) = softmax(Q—KT)V (2.13)
C Vi '

In order to perform more than a single attention at once and thus increase the
network expressivity, Vaswani et al. (2017) also introduced the multi-head attention
scheme by projecting h times @), K and V with & linear layers of learnable parameters
W&, WK and W}. The output of all heads is then concatenated and a last W€ linear
layer project the outputs back to the original dimension.

multihead(Q, K, V) = concat(head,, - - - , head;,)W©° (2.14)
where head; = attention(QW<, KWX vivY) (2.15)

The complexity per layer of attention for a sequence of length n and a representa-
tion dimension d is O(n? - d). This quadratic term arises because attention works on all
pairs of elements in the sequence, which can be problematic for long sequences. To
circumvent this issue, alternative attention mechanisms have been developed, such as
the ones described in the agglomerative attention paper (Spellings, 2019) or the one
developed for our MixAttSPIDNA architecture presented in Section 3.4.1.

2.1.4 Technical points

This section presents tools that can be applied to most types of architectures to fa-
cilitate their development. It describes how layer normalization circumvents common
issues of ANN optimization. This section also introduces some hyperparameter opti-
mization methods commonly used, how ANNs are implemented in practice, and how
specialized hardware can greatly improve computation times.

Layer normalization

Layer normalization is a powerful tool to avoid internal covariate shift, a shift of activa-
tion distribution that can lead to weights having infinite values and thus, vanishing or
exploding gradients. Adding layers of normalization allows being less sensitive about
weight initialization and input data normalization. From the earlier batch normaliza-
tion (loffe and Szegedy, 2015) to the more general Group normalization (Wu and He,
2018), several methods exist with the same goal of keeping the activation of each layer
to zero mean and unit variance. For instance, for a batch of activations B = a; ... a,,,

2.1. Introduction to deep learning 41

the activation after the batch normalization a} is given by the following process:

ah =~a; + (2.16)
where:
G = S _MB 2.17)
0%+ €

1 m

g =—S a (2.18)
m <
=1
1 m

o2 = -~ ;(ai — up)? (2.19)

f and v are learned with backpropagation and are frozen after training. During val-
idation and test phases, mean iz and variance ¢% are replaced by mean and variance
computed on the fly during training. Although batch normalization is sufficient in most
cases, variants of the SPIDNA architecture that handle data of varying size (see SPIDNA
Section 3.3.2 for more information) have to rely on other normalization procedures.
Indeed, data of varying sizes cannot be collated into the same tensor, which in practice,
makes the batch dimension inaccessible to the batch normalization layers. Figure 2.3
shows three other layer normalizations that operate similarly to batch normalization
without relying on the batch dimension.

Batch Norm Instance Norm Group Norm

Figure 2.3: Figure from Wu and He (2018) of the different normalization methods. From
Wu and He (2018): Each subplot shows a feature map tensor, with N as the batch axis, C' as the
channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized by the same mean
and variance, computed by aggregating the values of these pixels.

Pooling layers

Pooling layers are typically used in CNNs to quickly augment the scope of neurons over
the input of a network. A pooling layer consists of a filter over the layer inputs, similar to
a convolutional layer but without any weights, that performs an operation and return
a smaller output. The most commonly used pooling filters return either the max, the
min, or the average of the inputs covered by the filter. The size of the pooling filters
determines how the scope of the input will increase in the next layer. For instance, a
pooling filter with a size of 3 over one dimension will multiply by 3 the scope on the input

42 Chapter 2. Deep learning for genomic data

covered by the neurons in the next layer. One can also reduce the data flow dimension
by increasing the stride of convolution filters, but with the risk of not covering part of
the input if the stride is greater than the filter size.The size reduction offered by pooling
layers at almost no cost (since no weight needs to be learned) is also convenient at the
end of a network, in between the convolution and the fully connected layers. Indeed,
it allows a drastic reduction in input number, and thus weight number, of the first fully
connected layer. Finally, adaptive pooling can be used to consistently output tensors
of the same size even when inputs are of different sizes, by adapting the pooling filter
size to the input size.

Hyperparameters optimization

Some ANN architectures seem to perform well on very different tasks, for instance,
slightly modified versions of GPT-3 have been used to tackle various natural language
processing (NLP) problems (Brown et al., 2020) but also image generation (Chen et al,,
2020) and text-to-image translation (Ramesh et al,, 2021). However, until now, there is
not a single architecture that ensures to perform well on any type of dataset. Thus, one
of the challenge of applying ANN to a new dataset is to defined its architecture. ANNs
distinguish themselves from other machine learning methods by their large number
of hyperparameters, i.e., parameters that are not optimized during the gradient de-
scent optimization procedure. These hyperparameters can include, similarly to other
ML methods, parameters of the training process such as the learning rate, weight de-
cay or the batch size, but they also include parameters defining the computational
graph of the ANN such as the number of layers, their types (fully connected, recur-
rent, convolution, etc.) or the number of hidden units in each of them. The amount
of hyperparameters being potentially infinite and the training of an architecture being
time-consuming, the development of deep learning architectures often relies on the
experience and intuition of the practitioner in a try-and-repeat process instead of on
an automatic process. Nevertheless, it is possible to optimize some hyperparameters
automatically depending on computational resources. Grid search and random search
are two methods commonly used to explore the parameter space uniformly, but other
methods based on Bayesian optimization are more suited to the computational cost of
training ANNSs. For instance, HpBandSter is a package that implements the HyperBand
(Li et al., 2017b) algorithm to run many hyperparameter trials on a smaller resource
budget (i.e., few epochs) and runs the most promising trials on a greater budget. Com-
bined with BOHB (Falkner et al., 2018a), a Bayesian optimization procedure that models
the expected improvement of the joint hyperparameters, this method provides more
guided and faster search of the hyperparameter space. At each step, BOHB draws a
new combination of hyperparameter values to be tested according to the expected im-
provement and to a predefined prior.

Deep learning libraries and hardware

The recent advance in deep learning can be attributed in part to the development of
deep learning libraries and hardware that allow the implementation of complex archi-
tecture with minimal hassles. Libraries such as Pytorch (Paszke et al., 2017) or Tensor-

2.2. Deep learning applications in genetics 43

flow (Abadi et al., 2015) allow defining the forward computational graph of ANNs and
perform automatic differentiation for gradient computation. They also implement ba-
sic building blocks of ANNs and tools such as data loaders, convolution layers, learning
rate decay or layer normalization. All architectures developed through this thesis have
been implemented with Pytorch.

Graphics processing units (GPUs) were at first intended to provide fast and par-
allelized creation of images, but they are now also used for ANNs as they are more
adapted to operation between tensors than central processing units (CPUs). One im-
portant feature of GPUs is their dedicated memory called video random access memory
(VRAM). In practice, VRAM availability often limits the ANN size, as the network needs
to be fully loaded on it to exploit GPU computational speed without bottlenecks. To
circumvent the limits of VRAM, one can use multiple GPUs by copying different parts
of the ANN on the different GPUs, but this scheme introduces a bottleneck because in
this case they are bonded to run sequentially and need to communicate data with each
other. Another strategy that does not allow building bigger networks but still greatly in-
creases the computational speed is to split each mini-batch across GPUs which permits
bigger mini-batches without necessitating more VRAM.

2.2 Deep learning applications in genetics

Although complex evolutionary models of the genome such as the coalescent have
been developed during the past decades, it is only recently that large genome wide se-
quencing datasets of multiple individuals have been made publicly available (Bergstrom
etal., 2020; Consortium et al,, 2015; Daetwyler et al,, 2014). Hence, one of the new chal-
lenges in population genetics is to fill the gap between theoretical models of genome
evolution and experimental observations, which requires suited algorithms capable to
process genomic data. Because the diploid human genome being approximately 6.4
billions base pairs, handling it is very challenging for most statistical methods. This is
because most of them are subject to the curse of dimensionality, an issue that arises
while treating data that have many dimensions, making samples sparse in the data
space. To circumvent this issue, the data dimension is often reduced by computing
handcrafted summary statistics. Unfortunately, information relevant to solve the task
can be lost, thus leading to poor performances.

Computer vision is a domain that was subject to the same limitations due to the
dimensionality of high resolution images. Prior to the introduction of deep learning in
this field, many algorithms have been developed based on summary statistics designed
more or less by hand, but until the recent advances in deep learning, no method had
the capacity to automatically learn any type of summary statistics possible on images.
The main advantage of deep learning is that the search for summary statistics is jointly
optimized with the task to perform, ensuring that the first ANN layers compute data
features that are relevant for the task. Thus, deep learning has completely superseded
previous methods in this field and lead to impressive results, even beating humans for
some tasks such as image recognition (Krizhevsky et al., 2012), object detection (Red-
mon et al.,, 2016) or face recognition (Schroff et al., 2015).

Inspired by its success in computer vision, deep learning has also been applied to

44 Chapter 2. Deep learning for genomic data

genetic data because they share similarities with images: they both have high dimen-
sionality, characteristic patterns and long-range dependencies. But genetic data also
have their own characteristics that requires to adapt existing ANNs, which will be dis-
cussed in more details in the Section 3.3 detailing the SPIDNA architecture. For instance,
permutations of sequences in multiple sequence alignments (MSA) are equivalent and
represent the same data. SNP matrices, the favourite object of study of many pop-
ulation geneticists, can have a variable number of SNPs and haplotypes, preventing
the use of some types of ANNs. Nonetheless, deep learning has already shown great
success at predicting effects of noncoding variants with a CNN called DeepSEA (Zhou
and Troyanskaya, 2015), at detecting alternative splicing sites (Jaganathan et al., 2019),
at predicting phenotype markers (Ma et al., 2018), at predicting sequence specificities
of DNA and RNA-binding proteins with another CNN (Alipanahi et al., 2015) or more
recently, at predicting the protein 3D structures with Alphafold, an architecture that
includes attention mechanisms and takes MSAs as inputs (Jumper et al.,, 2021).

This section is a non-exhaustive review of the numerous applications of deep learn-
ing in the field of population genetics, with a focus on the architectures and data used
in each case. It will also discuss whether it seems possible to find a universal ANN that
could tackle all these different applications.

2.2.1 Inference from genomic data

Most deep learning applications to population genetics target inference problems,
meaning that ANNs are trained to take as input DNA sequences of a population and
infer parameter values linked to the population evolutionary parameters. The genetic
diversity of a population is driven by the interaction between mutation, genetic drift,
recombination, natural selection and demography. Therefore, it is in theory possible
to estimate the parameter values of each of these phenomena based on its observed
diversity, yet it is in practice difficult to disentangle them because they can have similar
and joint effects on the genome. In most settings, the ANN is trained in a supervised
manner, which requires a dataset of genomic data and their associated evolutionary
parameters associated to them. In practice, creating such dataset with real data would
require to precisely monitor the population parameters over many generations, for
many populations and in a setting close to what happens in nature if the goal is to
study wild populations. Although some controlled experiments have been conducted
with model organisms such as E. coli (Good et al,, 2017), the differences between real
and controlled populations could introduce important biases.

For all the above reasons, population geneticists turned towards simulation-based
inference and relies for this on the evolutionary models described in the second chap-
ter. Numerous population parameters are generated by drawing them from prior dis-
tributions, which are designed to contain the real evolutionary parameters of studied
populations. To reduce the dimension space of these parameters, it is possible to fix
some of them while focusing on the inference on the parameters of interest. For in-
stance, if the ANNs are trained to infer demographic parameters, the simulations can
neglect the effect of selection by removing it or fixing a simple rule that approximates
its effect on the population. Once these parameters are drawn, they are fed to the sim-
ulator, which produces the corresponding genomic data used to train, validate and test

2.2. Deep learning applications in genetics 45

the network. Different steps can be added to this scheme: raw genomic data can be
preprocessed and even drastically summarized into handcrafted summary statistics.

Data, either real or simulated, genotyped or sequenced, can usually be represented
as single-nucleotide polymorphism (SNP) matrices where each row represents an in-
dividual or a haplotype, and each column represents a SNP which is a locus with a
variation at a single base pair present in at least one of the sampled sequences. The
term SNP is often misused and could be replaced by single-nucleotide variant (SNV), as
its original definition indicates that the less frequent allele should be present in at least
a certain percentage of the population, which is not verified in most population genetic
studies. This matrix usually contains zeros and ones that represent the two possible,
with zeros for the alleles with the smallest frequency in the sample or for the ancestral
alleles when this information is available. A variety of alternative representations can
also be used depending on the information available. For instance, diploid unphased
data can be represented with zeros and twos for homozygous ancestral and derived
loci and ones for heterozygous. SNPs with more than two alleles are often removed
from the SNP matrix because they are very rare in reality and are often an artefact due
to sequencing errors. Moreover, a vector containing the positions of the SNPs is as-
sociated to the SNP matrix to locate them in the original genome. Positions are either
encoded by an integer that represents the absolute or relative number of base pairs,
or a float between zero and one for scaled positions. Encoding the positions into floats
requires to also store the full length of the sequence. Figure 2.4 shows how this format
is related to the MSA format and that the only information lost is the precise nucleotide
value. The matrix can cover from a small window to the full length of a contig in the
sequence. One important feature of these type of data is that for the same length of
DNA sequence covered, the number of columns in SNP matrices varies across samples.
The number of rows also varies depending on the number of individuals sequenced,
which is another feature that should be taken into account when designing methods
based on this type of data.

6 m SNPs
) 2 - 10° bp segment - o
101
LACGTTAGTGATTTTGA.. - 2
~ACTTTACTGATTATGA.. 5 !
s <
LACTTTAGTGATTATGAL. &
m relative .464..
positions

Figure 2.4: Example of conversion of a multiple sequence alignment of 2.10° bp (left) into
a SNP matrix (right). Here, major alleles (in orange) in terms of frequency in the sample are
encoded by ones and minor alleles (in red) by zeros. The SNP matrix has a relative position
vector that encodes the distance of each SNP to its right neighbour.

2.2.2 Methods based on summary statistics

This section presents methods based on ANNs exploiting summary statistics, a set of
statistics often designed by hand and tied to the population genetic theory, that are

46 Chapter 2. Deep learning for genomic data

computed on raw aligned sequences to reduce the data dimensionality.

Sheehan and Song (2016) developed one of the first approach for demography in-
ference using deep learning. In this paper, the authors trained a MLP to jointly infer
selection and demography of an African Drosophila melanogaster population. All sim-
ulations follow a simple demography with three piecewise constant population sizes
that overall represents a bottleneck (i.e., a sudden reduction of population size later
followed by a sudden increase). Along these three population sizes, a selection pa-
rameter is also drawn to include either a hard sweep, a soft sweep, balancing or no
selection at the center of the genomic region simulated. Other simulation parameters
such as generation time, recombination rate and mutation rate are fixed. After generat-
ing 400,000 genomic alignments of 100 haplotypes with msms (Ewing and Hermisson,
2010), summary statistics are computed for tree subregions, each of 100kb (only the
middle region encompasses the SNP under selection, yet the left and right neighbour-
ing regions can be affected more or less strongly by the selection effect). These statis-
tics include the number of segregating sites, the Tajima's D statistic (Tajima, 1989), the
folded site frequency spectrum (SFS), the length distribution between segregating sites,
the identity-by-state (IBS), the linkage disequilibrium (LD) and finally H1, H12, and H2
statistics from Garud et al. (2015). This deep learning method achieved very low relative
error over simulated data for the first two population sizes and a high accuracy for most
type of selection except for hard sweeps, which they discovered to be mostly due to in-
complete sweeps that are confused with balancing selection. Although the algorithm
achieved good performances overall, the underlying demographic model is simple and
it would be interesting to expand it thanks to additional population size parameters to
test the robustness of the bottleneck discovered in the Drosophila population.

In their paper, Villanea and Schraiber (2019) used a MLP with dropout to classify
the interaction between neandertal and two sapiens population (european and east
asian) from the 1000 Genomes Project between five models of admixture. Simulations
were performed using msprime (Kelleher et al., 2016) and translated to joint fragment
frequency spectrum (FSS), a summary statistics that is able to capture the number of
introgressed sites from a population to another.

Approximate Bayesian Computation (ABC) is a simple but powerful method to infer
demographic parameters values and their posterior probabilities, but one of its draw-
back is its sensitivity to the curse of dimensionality. To circumvent this issue, Mondal
et al. (2019) added a MLP to generate summary statistics from the site frequency spec-
trum (SFS). These summary statistics are later used with ABC to infer the posterior prob-
abilities of the demographic parameters of a model of Neanderthal and Denisova intro-
gression into Eurasian populations. They also used deep learning to primarily classify
eight introgression models and retained the most probable ones for parameter infer-
ence. All simulations used to train the ANNs have been performed with FastSimcoal2
(Excoffier etal., 2013). Here, the main advantage of adding an ABC step to deep learning
is that it is a simple way to add posterior inference. This scheme has also been tested
for other methods, such as SPIDNA (Sanchez et al., 2021b) which will be discussed in
details in the next chapter and Lorente-Galdos et al. (2019) which used it to study gene
flow between archaic, African and Eurasian populations. The last chapter will discuss
how this scheme could be replaced by methods relying solely on deep learning, such
as generative artificial networks (GANs) or invertible networks.

2.2. Deep learning applications in genetics 47

Xue et al. (2019) introduced another deep learning method based on diploS/HIC
(Kern and Schrider, 2018) called partialS/HIC to detect selection types in genome se-
quences from Anopheles Mosquito populations. This method is much different from the
previous ones, as it computes 89 summary statistics for 11 subwindows of 55 kb long
genomic sequence, resulting in two-dimensional matrices for each data, that are then
processed using a convolutional neural network (CNN). Therefore, spatial information
is introduced into the ANN and this is believe to improve inference because different
types of selection have different effects on the genomic spatial structure. This method
intermediary solution between methods relying on summary statistics computed on
the full sequence fragment length and methods relying on SNP matrices presented in
the next section.

2.2.3 Methods based on SNP matrices

The earliest application of deep learning to population genetic has been developed by
Bridges et al. (2011) to classify between three populations from genotypic data. They
used windows size of 20, 50 and 100 SNPs and trained the ANN with a subset of the real
data. They were able to classify populations that were not differentiable with principal
component analysis (PCA) and showed that ANNs perform similarly to support vector
machine (SVM) for this task. One should notice that the size and complexity of the MLP
they used was constrained by the technical limitations at the time, and it is expected
that a CNN over the full genotypic data could significantly improve the classification
error.

Flagel et al. (2018) used ANNs to tackle four tasks: detecting introgression, estimat-
ing locus-wide recombination rate for phased haplotype and autotetraploid genomes,
detecting and classifying selection and finally, inferring population size histories. Flagel
et al. (2018) simulated different datasets for each task, so this paragraph will focus on
the inference of population size histories, which has also been tackle during this thesis.
Similarly to Sheehan and Song (Sheehan and Song, 2016), they trained an ANN to infer
the parameters of a demographic model with three piecewise constant population sizes
and two parameters representing the time of the population size changes. They simu-
lated 100,000 alignments of 1.5 Mb regions with ms (Hudson, 2004) and used 80,000 of
them to train their network. The network is a CNN with two branches: the first one has
four convolutional layers with 128 filters with SNP matrices as input and the second has
one fully-connected layer with 32 hidden units with position vector as input. The out-
puts of the two layers are concatenated and passed to two fully connected layers with
256 hidden units and 5 hidden units (one for each parameter to infer). Multiple pooling
layers are present throught the network. In order to reduce the size of simulations, the
mutation rate has been divided by 10 which is equivalent to downsampling the number
of SNPs by 10. Simulated SNP matrices have been padded with zeros on their left side
to match the biggest matrix that contains 1,201 SNPs. They tested different shapes for
their convolution filters (1 x 2,1 x 4,1 x6,1x8,1x10,2x2,4x4,6x6,8x8and
10 x 10) and two alleles encoding (-1/1 and 0/-1) to finally obtain the best results with
1 x 2 filters and 0/-1 encoding. This method is further detailed in Section 2.1.4 and has
been compared to the SPIDNA architecture developed during this thesis.

Because the rows of SNP matrices represent haplotypes or individuals, a permuta-

48 Chapter 2. Deep learning for genomic data

tion of the matrix rows represent the same information as the non-permutated matrix.
For this reason, Chan et al. (2018) introduced a new CNN with outputs invariant to the
permutations of input rows to detect recombination hotspots in the genome. In order
to make their CNN invariant to permutation by design, they used convolution filters of
1 x 5 dimension in the first two convolution layers and used the mean of the element-
wise top decile as an invariant function afterwards. The outputs of the last convolution
layer is then passed through two fully connected layers with 128 hidden units. The
advantages of introducing this notion of invariance into the design of the ANN will be
discussed in more details in the next chapter. The position vector has been added to
the SNP matrix by duplicating it and adding it to the input tensor as a third dimen-
sion. This CNN is trained to handle windows of 20 SNPs over the input matrix and CNN
predictions for all windows are compiled to obtain a posterior. Here, simulation were
performed using msprime (Kelleher et al., 2016). Another important contribution of this
paper is the introduction of the simulation-on-the-fly scheme where data are simulated
during training so that each data is seen only once by the CNN. They obtained bet-
ter predictions compared to classical scheme with multiple epochs. They also demon-
strated that this paradigm guarantees that the posterior is calibrated and showed this
experimentally. This last point is important because most deep learning applications
lack of posterior and focus on point estimate, although other popular methods such
as approximate Bayesian computation (ABC) already allow approximating posteriors.
The perspective section (Section 5.1) of this thesis will discuss other methods to obtain
posterior and how they could be used to update simulation prior to further improve
predictions.

ImaGene (Torada etal., 2019) is another software that utilizes simulations generated
on-the-fly with msms (Ewing and Hermisson, 2010). Simulations take the form of SNP
matrices without position information, that are resized to 128 x 128 with an algorithm
primarily used for images. These data are then used to estimate the positive selection
coefficient for a given genomic region by training a CNN with three convolutional layers
with 32, 64 and 128 filters of size 3 x 3. For the last layer, the authors chose a strategy
that differs from most ANNs addressing regression tasks. Indeed, they transformed the
regression task into a classification task by dividing the range of possible values in 11
bins and uses a softmax layer with outputs interpreted as a distribution of probabilities.
The authors also showed that they obtained better results by systematically ordering
the rows and columns of the input SNP matrices according to a predefined ordering
function. By doing so, the algorithm is invariant to permutations, like the one presented
by Chan et al. (2018). However, this ordering might be sensitive to small changes in
the matrix because there is no ordering in high dimensional space that is stable with
respect to perturbations (Qi et al., 2016).

In their paper, Adrion et al. (2019) used simulation from msprime to train a recur-
rent neural network to infer the per-base recombination rate along the genome of a
population. Here, two ANNs based on gated recurrent unit (GRU) a special type of bidi-
rectional recurrent neural networks (RNNs) have been developed. The first one using
SNP matrices with position and alleles encoded as -1, 1 and 0 (for missing or padded
data). The second uses data in the form of a matrix with two rows, the allele frequencies
and the positions, to match real data obtained with Pool-seq.

Deelder et al. (2021) developed another CNN to classify between four different se-

2.2. Deep learning applications in genetics 49

lection sweep types and neutral evolution in Plasmodium genomes. They compared
different CNN architectures and obtained a final model with one convolutional layer
with two 40 x 9 convolutional filters and two fully-connected layers. Their simulations
were performed using SFS_Code (Hernandez, 2008), data columns (SNP dimension) are
sorted by shared haplotype length and the matrix is then compressed using an image
processing algorithm.

2.2.4 Generative models

The advances in deep learning also introduced new generative models that have been
recently applied to population genetics. In their study, Yelmen et al. (2019) used two
types of ANNs called generative adversarial network (GAN) (Goodfellow et al., 2014) and
restricted Boltzman machine (RBM) (Smolensky, 1986; Teh and Hinton, 2001) to create
artificial genomic datasets that closely match a real dataset. GAN consists of two neural
networks called the generator and the discriminator that compete in a zero-sum game,
meaning that the discriminator is optimized to distinguish between real and generated
data, and the generator is optimized to fool the discriminator. The input of the genera-
tor is randomly drawn from coordinates in a latent space. RBM is another kind of ANN
that comprises a visible and a hidden layer that are trained by encoding and decod-
ing inputs and updating the network weights until the decoded inputs closely match
them. These two models have been compared to other generators (a simple Bernouilli
generator, markov chain, HAPGEN2 (Su et al.,, 2011) and coalescent simulations) with
different quality metrics such as the similarity between real and generated summary
statistics and principal component analysis (PCA) projections. They also computed pri-
vacy metrics and searched for real haplotypes present in the generated genomes to
ensure that the generated data were effectively different from the real ones. Here, real
data consist in multiple subsets of SNPs from individuals of the 1000 Genomes Project
and the Estonian Biobank (Leitsalu et al., 2015) and the discriminator and generator for
the GAN are MLPs.

In their paper, Wang et al. (2020) utilized the GAN framework to perform inference
of demographic parameters. The motivation behind this approach is to perform simu-
lation “on-the-fly” like previous approaches, but also to optimize the set of demographic
parameters used by the generator until convergence to an estimation of the real pa-
rameter values. This approach is different from classical GANs because here, the gen-
erator is an evolutionary simulator (msprime (Kelleher et al., 2016)) and not an ANN.
Therefore, the demographic parameters inputted to the generator are optimized using
simulated annealing (because it is not possible to backpropagate the gradient through
the evolutionary simulator), while the discriminator is a CNN based on Chan et al. (2018)
and optimized with stochastic gradient descent from a cross entropy loss. GANs are no-
toriously difficult to train because an important imbalance between the performance of
the generator and the discriminator can make them rapidly diverge. Due to this issue
and the difference of nature between their generator and discriminator, Wang et al.
(2020) introduced a pre-training phase for their discriminator, by training it with real
and data simulated from msprime with random demographic parameter values. Then,
these parameters are optimized with the simulated annealing procedure. This setting
has been used to infer the demographic parameters of one and two-population models

50 Chapter 2. Deep learning for genomic data

of populations from the 1000 Genomes Project.

Another type of generative ANN called variationnal autoencoders (VAEs) has been
introduced both for data generation (Montserrat et al.,, 2019) and to replace the tools
used for visualizing population structure such as principal component analysis (PCA)
(Battey et al., 2021).

2.2.5 Recent works

The previous sections are intended to provide an overview of the various applications
of deep learning to population genetics by describing the various problems addressed
and architectures developed. However, this is a very active research area and the num-
ber of papers published each year is constantly increasing. Therefore, these sections
are not completely exhaustive, but several recent publications that will be not discussed
in details are worth mentioning. For instance, new deep learning methods have been
applied to genomic data for the detection of selection and adaptive introgression (Fadja
et al.,, 2021; Gower et al., 2021; Isildak et al., 2021) and one uses the ancestral recom-
bination graph as input of its network (Hejase et al,, 2021). A MLP has been recently
trained to infer the mutation rate from the site frequency spectrum (SFS) with robust-
ness to the recombination rate (Burger et al., 2021). Finally, Kirschner et al. (2022) de-
veloped a CNN paired with ABC inspired by our work (Sanchez et al., 2021b) to examine
the demography of European steppe biota.

2.3 Chapter conclusion

In conclusion, deep learning is a powerful framework that has shown results surpass-
ing classical machine learning and statistic predictive performance in most fields, but
sometimes at the expanse of interpretability and computing resources. These suc-
cesses can be attributed to the flexibility of ANNs that makes them adaptable to most
types of data, independently of their dimensionality and the task. ANNs are also very
efficient at automatically finding relevant features in the data through optimization.
Moreover, they can be easily scaled to use the full computing power available and at-
tempt to increase the network expressivity, by simply adding more weights or reusing
them on more inputs, as in convolution layers. Yet, deep learning has only been recently
applied to genomic data and a few papers developed ANNs specifically for population
genetics. The first ANNs targeted for demographic inference using raw genomic data
are even more recent and have been published during the course of this thesis. This
may be due to two facts: first, an ANN needs large labelled datasets in the context of
supervised training and second, developing deep learning methods for a new task is
not trivial, as a lot of choices in the design of the methods are left to the practitioner.
As illustrated by the short review presented in this chapter, most studies have over-
come this first issue by using recently released datasets and simulators. The second
point still requires more research, as the diversity of approaches present in this review
shows that no clear consensus has emerged on what are the best practices to address
genomic related tasks with ANNs.

2.3. Chapter conclusion 51

This chapter presented the different building blocks that have been used during
this thesis, but they are only a small subset of the wide variety of the possible deep
learning tools and approaches. There is no rule of thumb for developing ANNs and
most choices are made based on interpretations of the network behaviours that often
have no theoretical ground. Therefore, the next chapter will show how we tailored our
ANNSs to the demographic inference task by taking into account the data features and

the objective. It will also present the baselines we used to compare and evaluate our
methods.

Methodological development for
demographic inference

Contents

3.1 Data e e e e e e e e e e 55
3.1.1 Cattledataset 56
3.1.2 HGDP dataset 57
3.2 Baselines. e s e e 61
3.2.1 Approximate Bayesian computation (ABC) 61
3.2.2 Multi-layer perceptron (MLP) 61
3.2.3 Custom convolutional neural network (custom CNN) 61
3.24 Flagel networko o 62
3.3 Sequence position informed deep learning architecture 63
3.3.1 Permutation invariance L 63
3.3.2 Adaptability to varying sizeo 65
3.3.3 SPIDNA combined with ABC 66
3.4 Mixed attention SPIDNA 68
3.4.1 Attention hub 69
3.4.2 MixAttSPIDNA architecture 70
3.4.3 Inference by scenario L. 71
3.5 Training and hyperparameter optimization 72
3.5.1 Mean squared error (MSE) 73
3.5.2 Automated hyperparameter optimisation 73
3.5.3 Learning rate strategies of MixAttSPIDNA 74
3.6 Interpreting deep neural networks with CCA 75

3.7 dnadna: a python package for deep learning applied to popu-
lation genetics L o oL o s
3.8 Chapter conclusion 0000000, s

53

54 Chapter 3. Methodological development for demographic inference

This chapter will describe the methods developed through this thesis to infer de-
mography from genomic data, as well as the methods used as comparison baselines.
We trained and evaluated all methods to perform one objective: inferring the detailed
histories of effective population sizes using genomic data from a sample of individuals.
Based on whole sequences of multiple individuals from a single population, the differ-
ent methods aimed at predicting 21 population size parameters, each corresponding
to a fixed time window.

We simulated two datasets to comply with real data from the 1,000 genome bull
project (Daetwyler et al.,, 2014) (mentioned as cattle dataset) and high-coverage HGDP-
CEPH human genome sequences (Bergstrom et al., 2020) (mentioned as HGDP dataset).
We also generated simulations with selection to investigate the impact of this confound-
ing factor on inference. We constituted a collection of baselines that include two meth-
ods based on summary statistics: an ABC and a MLP, and three methods based on
SNP matrices: a MLP, a CNN previously developed by Flagel et al. (2018) and a cus-
tom CNN that has been developed during the preliminary work of this thesis. These
baselines are later compared to the two main architectures developed here: sequence
position informed deep learning architecture (SPIDNA) and mixed attention SPIDNA
(MixAttSPIDNA). This chapter will show how we refined these two architectures after
multiple iterations to improve inference and handle the key features of SNP matrices.
It will also show how we trained the different ANNs and the various automatic hyperpa-
rameter optimization scheme that we used. Section 3.6 presents a preliminary work on
the interpretation of deep neural networks with cannonical correlation analysis (CCA).
Finally, we introduced a python package called dnadna, which is aimed at facilitating
the development and sharing of deep learning architectures for the population genet-
ics community.

We published the methods for the baselines and the SPIDNA architecture, as well
as their comparison on simulated data and their application to the cattle dataset in
Molecular Ecology Resources (Sanchez et al., 2021b):

* Deep learning for population size history inference: Design, comparison and combi-
nation with approximate Bayesian computation. - Théophile Sanchez, Jean Cury,
Guillaume Charpiat and Flora Jay, Molecular Ecology Resources 21, no. 8, 2021.

The development of the MixAttSPIDNA architecture and its application to the cattle
and HGDP dataset has been done in collaboration with our intern Pierre Jobic. This
work has not been published.

We presented the dnadna package in a preprint (Sanchez et al.,, 20213a):

* dnadna: Deep Neural Architecture for DNA - A deep learning framework for popula-
tion genetic inference. - Théophile Sanchez, Erik Madison Bray, Pierre Jobic, Jérémy
Guez, Anne-Catherine Letournel, Guillaume Charpiat, Jean Cury and Flora Jay,
2021.

The results obtained with the methods described in this chapter will be discussed
in the next chapter (Chapter 4).

3.1. Data 55

3.1 Data

The two datasets studied in this thesis are a collection of cattle (Bos taurus) sequenc-
ing data from the 1,000 genome bull project (Daetwyler et al., 2014) and a collection of
modern humans (Homo sapiens) sequencing data from the HGDP-CEPH human genome
sequences (Bergstrom et al., 2020). They both include high coverage genome-wide se-
quencing of many individuals from different populations and thus, require computa-
tionally efficient methods in order to perform inference in reasonable time. Aside from
the quality and amount of data in these datasets, they have also been chosen because
they come from species that have been well studied from an archaeological and his-
torical viewpoint, therefore allowing to compare the inferred population size histories
to our current insights on the true demographic histories. For instance, the domesti-
cation of cattle that happened approximately 10,000 years ago should translate into a
decrease of the effective population sizes because most cattle breeds today are descen-
dant of a few individuals selected for farming (Consortium et al., 2009). Another exam-
ple for human populations is the Out of Africa hypothesis of the origins of non-African
populations, that should translate into a bottleneck at around 50,000 up to 100,000
years ago (Nielsen et al., 2017).

Most methods compared in this thesis are trained in a supervised fashion, and thus
require simulated genetic data with labels. These simulated data are also needed to
compare the performances of all methods, either by evaluating predictions on specific
scenarios (constant, decline, expansion, bottleneck, and zigzag) or by comparing an
evaluation metric averaged over many scenarios. To this end, the data are split into
three sets: the train set used by ABC and all ANNs, the validation set used to evalu-
ate performances for each hyperparameter’s settings and to monitor overfitting while
optimizing ANNSs, and finally, the test set consisting of data never seen during optimiza-
tion to compare methods while preventing overfitting (caused by the hyperparameter
optimization).

The data format has already been described in the previous chapter (Section 2.2.1)
and consists of a SNP matrix and its associated position vector encoded as distances
between SNPs. The matrices contain zeros and ones to encode ancestral and derived
alleles or minor and major frequency alleles, depending on the information available
for the real dataset. As described in the next section about the cattle dataset, the real
cattle haplotypes had to be collapsed into genotypes (instead of haplotypes) with zeros,
ones and twos encoding homozygous and heterozygous loci. Simulations are gener-
ated thanks to two evolutionary simulators, msprime (Kelleher et al., 2016) for neutral
simulations and msms (Ewing and Hermisson, 2010) for simulations that include selec-
tion, both based on the evolutionary models described in the chapter 1.

Simulating sequences using the previously mentioned evolutionary models requires
indicating the different parameter values that describe the demography of the popula-
tion simulated. Parameters that describes the demographic scenario and cofounding
factors are drawn from priors that are designed to be as close as possible to the knowl-
edge on the real population studied. There is a compromise between making a prior
large enough to ensure that the true values for parameters of the real population are
included and making it small enough so that the simulated demographic scenarios are
sufficiently dense in the space defined by the priors.

56 Chapter 3. Methodological development for demographic inference

The following sections will give an overview of both datasets, how they have been
processed to be handled by the different methods and how each set of priors have
been defined for each set of simulations.

3.1.1 Cattle dataset

The cattle dataset from Daetwyler et al. (2014) consists of whole genome sequences of
234 individuals from four cattle breeds (Angus, Holstein, Fleckvieh and Jersey) with an
8.3 fold coverage on average. The samples were sequenced using lllumina sequencing-
by-synthesis technology (Bentley et al., 2008) and preprocessed before being aligned to
the UMD3.1 reference genome. In their paper, Boitard et al. (2016b) used this dataset
to infer the population size history of the cattle breed with their method based on ap-
proximate Bayesian computation called PopSizeABC.

First, the Jersey population was removed from the analysis because it only includes
15 individuals compared to the 25 diploid sequences (i.e., 50 haplotypes) used to train
the ANNs. As the data of real cattle sequence are prone to phasing and sequencing er-
rors, they were converted from haplotype to genotype with a minimum allele frequency
(maf) of 0.2, as suggested by Boitard et al. (2016b). 25 diploid sequences were randomly
sampled from each population, split into 2Mb segment and then, segments compris-
ing centromeres were removed, leaving 1,213 segments. A similar number of SNPs
was obtained for the three breeds: Angus (average: 4,536 SNPs, maximum: 22,391 and
minimum: 775), Fleckvieh (average: 4,837 SNPs, maximum: 24,896 and minimum: 896)
and Holstein (average: 4,732 SNPs, maximum, 24,098 and minimum: 1,212).

Neutral simulations

The demographic parameters were set up by following similar rules as Boitard et al.
(2016b): I = 21 time windows [t;,t;+1] were defined from present to ancient periods
with t; = 1 ((14aT)"U~Y —1) generations, i going from 0 to I — 1, T = 130,000,
a = 0.06 and t; = +o00. These values of T'and a were chosen by Boitard et al. (2016b) to
capture important periods of cattle history. They could be modified to describe more
precisely specific parts of the history by playing with the ratio between the length of re-
cent versus old time windows. By increasing exponentially the time windows as we go
further in the past, the scenarios became more detailed for recent times. Generation
time for cattle are assumed to be about 5 years. Each demographic scenario is gen-
erated by drawing a first population size N, between 10 and 100,000 from a uniform
distribution which corresponds to the most recent time window. The population sizes
of the next time windows follow N; = N;_; x 107 for i in [1,21], with 3 sampled uni-
formly between -1 and 1. g is redrawn if it gives a population size out of |10; 100, 000[.
50,000 scenarios have been randomly drawn from this prior distribution and 100 in-
dependent 2Mb-long segments of 50 haploid individuals have been simulated for each
scenario using the msprime coalescent simulator version 0.6.1 (Kelleher et al., 2016). A
total of 5,000,000 SNP matrices X of size M = 50 haplotypes x S SNP sites, each as-
sociated with a vector of size S that contains the distances between SNPs (in bp) were
obtained. Ancestral and derived alleles are encoded with 0 and 1. The mutation rate
is set to 1078 as in MaclLeod et al. (2013). The recombination rate is sampled uniformly

3.1. Data 57

between 10~ and 108 for each scenario to be consistent with the estimations in cattle
breeds (Sandor et al., 2012).

After simulation, scenarios producing fewer than 400 SNPs in any 2Mb regions were
removed. This threshold could be changed by modifying the networks or simulating
longer regions. However, the real cattle dataset has on average 4,357 SNPs across a
2Mb-long region, so these scenarios were far outside the plausible posterior distribu-
tion. That reduced the dataset to 18,461 scenarios (i.e., 1,846,100 SNP matrices) out
of the 50,000 scenarios simulated with an average of 2,486 SNPs and a maximum of
17,839 SNPs. This dataset is split into a validation set of 500 scenarios (i.e., 50,000 vali-
dation SNP matrices overall) and a training set with the remaining 17,961 scenarios (i.e.,
1,796,100 training SNP matrices). In order to check for hyperparameter overfitting, we
have also simulated a test set from the same prior distribution. Hence, we randomly
drew 2,000 scenarios and kept the 767 scenarios with more than 400 SNPs which gives
76,700 test SNP matrices. Training, validation and test set demographic parameters
were all standardized using mean and variance from the training set.

Simulations with selection

To investigate the robustness of the different approaches, an extra set of data was
simulated under demographic changes and selective pressure. msms (Ewing and Her-
misson, 2010) was used to simulate scenarios including positive selection with additive
fitness using varying values of selection coefficient (s in 2Ne units: 100, 200, 400 or 800),
selection starting time (7.;: 200, 1000 or 2000 generations ago) and initial frequency of
the beneficial allele (fy: 0.1%, 1%, 5%). The SNP under selection was located at the cen-
tre of the region. The mutation rate was set to 1078, the recombination rate to 5 - 1077,
the number of haplotypes to 50 and the region length to 2Mb. 16 x 100 replicates were
simulated for each of the 36 selection parameter combinations (s, Ts, fo) and 30 x 100
replicates with no selection under three demographic scenarios (constant, declining or
expanding size) leading to a total of 181,800 SNP matrices. Inference methods requir-
ing a fixed input size processed the 400 successive central SNPs (i.e., 200 before and
200 after the SNP under selection).

Summary statistics

This thesis investigates two methods based on summary statistics, the ABC approach
and a MLP. To this end, site frequency spectrum and the linkage disequilibrium have
been computed for this dataset. For each group of 100 segments corresponding to
one scenario, the site frequency spectrum and the linkage disequilibrium have been
computed as a function of the distance between SNPs averaged over 19 distance bins
for a total of 68 summary statistics. This python script is partly based on the scikit-allel
python module (Miles et al., 2019).

3.1.2 HGDP dataset

The HGDP dataset (Bergstrom et al.,, 2020) consists of 929 whole genomes from 54 pop-
ulations, with 6 to 46 individuals per population (Figure 3.1 shows the number of indi-

58 Chapter 3. Methodological development for demographic inference

viduals sampled per population). Sequencing has been performed using lllumina tech-
nology with an average coverage of 35x and reads have been mapped to the GRCh38
reference assembly. Despite having 1575 fewer sequenced genomes than the 1000
Genomes Project, Bergstrom et al. (2020) were able to identify a number of SNPs of the
same order thanks to their high-coverage and the diversity of their sample.

Region
I Africa
B East Asia
I Central South Asia
Europe
America
Oceania
Middle East

N w »
o o o
1 1

Number of individual sampled

=
o
1

S UL S NS RN .S @@ NS R O N A
R R R O & R SRR
<GV« & SRR BN *2‘7’%«(' O & 029%?’ SN o
2\ 2\ R\Y LS & \“(ojfo > RS> (o3
R (Q%%Ib éo & 2
<® & &
? <°

Figure 3.1: Number of sample peer population in the HGDP dataset (Bergstrom et al.,
2020).

For the purpose of this thesis, this dataset has been processed as follows: after
removing telomeres and centromeres, autosomes have been split into 2Mb segments
and then polyallelic sites have been removed and SNPs have been encoded with zeros
for ancestral and ones for derived by comparing either to the Ensembl database or to
chimpanzee reference genome or encoded as minor and major alleles for the few SNPs
for which ancestral information was not available. Figure 3.2 shows the great variability
of the number of individual sampled for each population in the HGDP dataset. There-
fore, we developed the MixAttSPIDNA (Section 3.4.2) architecture while keeping in mind
that it should be able to handle this feature of the data). For that, we compared differ-
ent mini-batch formats on the simulated cattle dataset (Section 4.2.4) and retained the
best for the inference on the real HGDP dataset (Section 4.3.2).

Simulations

Simulations designed to encompass the HGDP dataset have been performed using
msprime. The 21 time windows follow the same formula as the cattle dataset with
the first window representing the time before 1 million years ago. 100 replicates of 2
Mbp-long regions are generated for each of 30,000 scenarios. The mutation rate is set

3.1. Data 59

500000 A

400000 A

300000 A

200000 -

Number of SNP after processing

100000 A

0 m
ML S S A D e AR KRN 2.2 RN 2 o K R o A e AR N PR S
S N g
o SHENON Y N
A4 & <
NG RIS
& &
Figure 3.2: Number of SNP per population after removal of telomeres and centromeres
the HGDP dataset (Bergstrom et al., 2020).

to 0.5 x 1072 mutation per base and year, and a generation is 29 years. The recombina-
tion in centimorgan per base p is randomly drawn from a kernel Gaussian distribution
fitted over the distribution from the recombination map of the 1000 genomes project
(Consortium et al., 2015) (see Figure 3.3).

We choose this recombination rate prior over a constant value or a simpler uniform
distribution to take into account more accurately this confounding factor. It is a good
compromise with the most realistic strategy that would be to simulate the complete
genome alignments with corresponding recombination rates along each segment. We
preferred to simulate only 100 replicates of 2Mb segments by scenario in order to gen-
erate a wider range of demographic scenarios, as we focus primarily on the inference
of population size histories.

The number of haplotypes sampled is uniformly drawn between 10 and 100. The
effective population size for the most ancient of the 21 time steps is drawn uniformly
on logy scale between 100 and 1,000,000. Then, for each time window ¢, a growth rate
g is drawn with the following the formula:

g® = (y)10)1=VEN (3.1

with 3 ~ U(0,1), v ~ B(—1,1) and y® the length of time window ¢. The growth rate is
redrawn if the resulting effective population size fall outside the |100; 1, 000, 000] range.
We choose this distribution to have most of its mass around a growth rate of 1 while
allowing some rare extreme values depending on the duration of the time window has
shown by Figure 3.4. The idea behind this choice of prior is to have realistic popula-
tion size changes that depend on the time elapsed (contrary to the prior proposed in
Boitard et al. (2016b) and Sanchez et al. (2021b) that was already reducing the space

60 Chapter 3. Methodological development for demographic inference

Probability
© o o o o o
N w S ul (@)} ~

o
=

0.0 ; - : ; - -
0 1 2 3 4 5

Recombination rate (cM/Mb)
Figure 3.3: Distribution of the Human recombination rate from which p is drawn. The
recombination rate from the 1000 genomes project (Consortium et al., 2015) is averaged over
2Mb windows after masking centromeres and telomeres and fitted with a kernel Gaussian dis-
tribution.

of plausible histories by preventing extreme jumps (increases or decreases) in a sin-

gle step, however was not taking step duration into account), while allowing for some
extreme growth rates that cannot be greater than %

yt=100 yt=1000
0.6
0.5 0.20
204 2015
3 3
803 8
< 2 0.10
o o
0.2
01 0.05
0.0 : " ; ; " ; 0.00
0 2 4 6 8 10 0 20 40 60 80 100
Growth rate Growth rate

Figure 3.4: Distribution of the growth rate for time windows of 100 years (left) and 1000
years (right) in HGDP simulations. These distributions follow equation 3.1.

After removing scenarios that contain at least one replicate with fewer than 400
SNPs, the 21,044 scenarios are separated between a training set with 20,044 scenarios
(i.e., 2,004,400 training SNP matrices) and a validation set with 1,000 scenarios (i.e.,
100,000 validation SNP matrices). Independently, we simulated a test set including
1,499 scenarios (i.e., 149,900 validation SNP matrices) after preprocessing.

3.2. Baselines 61

3.2 Baselines

The choice of the methods that have been included in the baselines is motivated either
because the method has shown great results in previous studies: ABC, Flagel network
and the MLP using summary statistics, or because they are ANNs with simple archi-
tectures that can be later compared to the more complex SPIDNA architectures: MLP
and custom CNN with SNP matrices as inputs. It is noteworthy that most deep learn-
ing methods cited in chapter 2 for demographic inference were published during the
course of this thesis, except for Sheehan and Song (2016). Moreover, we started this
thesis by developing our custom CNN on the simpler task of inferring five demographic
parameters representing the demographic scenario of a population that undergo a bot-
tleneck: three changes in population size and two dates of decline and expansion (the
results will not be shown here). We later complexified the task by switching to a demo-
graphic model with 21 parameters representing population size changes at fixed dates
in order to apply our method to the cattle and HGDP datasets.

3.2.1 Approximate Bayesian computation (ABC)

Tested ABC algorithms included the simple rejection procedure (i.e., no correction) or
one of the three correction methods implemented in the R package abc (Csilléry et al,,
2012): local linear regression, ridge regression and non-linear regression based on a
single-hidden-layer neural network. Hyperparameters were set to default except for
the tolerance rate set to six possible values (0.05, 0.1, 0.15, 0.2, 0.25 and 0.3). ABC was
ran on (a) predefined summary statistics, (b) SPIDNA outputs (i.e., automatically com-
puted summary statistics), or (c) a combination of predefined summary statistics and
SPIDNA outputs. The median of the posterior distribution was used as the demographic
parameter estimate ©.

3.2.2 Multi-layer perceptron (MLP)

The first MLP is based on summary statistics, has 3 hidden layers, ReLU activation func-
tions and uses batch normalization. As in Sheehan and Song (2016), the hidden layers
have respectively 25, 25, and 10 neurons. It takes 34 summary statistics as input. This
network and all the following ones output 21 demographic parameters and are trained
with a regular L2 loss function and adam optimizer (Kingma and Ba, 2014) unless stated
otherwise. This MLP has a total of 2,986 trainable parameters. The second MLP is based
on “raw” genomic data and takes as input a matrix of 50 haplotypes (rows) for 400 SNPs
(columns) and its associated vector of distances between SNPs, both flattened into a
single vector. Its hidden layers respectively have 20, 20, and 10 neurons, which gives it
408,981 trainable parameters.

3.2.3 Custom convolutional neural network (custom CNN)

Prior to developing the SPIDNA architecture, we started with a more classical convolu-
tional neural network that we later included in our comparison baseline. CNN layers

62 Chapter 3. Methodological development for demographic inference

process input elements by groups, allowing close SNPs to be processed together. This
feature, combined with the stacking of layers in CNNs, helps the network to construct
features dependent on the SNPs proximity. Important summary statistics used in ABC
or other inference methods such as linkage disequilibrium can potentially be easily ex-
pressed by such CNN. Hence, our custom CNN has 2D filters that could have different
shapes, i.e., mixed kernel sizes but also non-symmetrical masks. There is indeed no ra-
tionale behind considering square masks only as is usually done in computer vision to
describe pixel neighbourhoods, as rows and columns in our case correspond to differ-
ent entities (individual or phased haplotype versus markers). Using varied mask shapes
helps our custom CNN to learn features of various patterns, potentially mimicking dif-
ferent types of summary statistics (“vertical” masks integrate over individuals, enabling
the computation of allele frequencies at a SNP, while “horizontal” ones integrate over
SNPs, as IBS or IBD sharing tract length does).

The custom CNN takes as input the same matrix of 400 SNPs and has 2-dimension
filters of various shapes. The first layer consists of 5 kernels with rectangular shape
(2x2, 5x4, 3x8, 2x10, 20x1) applied to the SNP matrix X. Each kernel creates 50 filters,
which amounts to 250 feature maps after the first layer. The SNP distance vector d is
treated by the 5 associated kernel shapes (1 x2, 1x4, 1x8, 1x10, 1x1)with 20 filters
each, making 100 filters in total. The results of the first convolutional layer are then
concatenated so that the second convolutional layer will couple information from X
and d in a way that emphasizes the original location of the SNPs along the genome. The
outputs of this second layer are then combined and go through 5 convolutional layers
and 2 fully connected layers. Adding convolutional layers one after the other allows our
network to combine patterns and reduce the size of the data without adding too many
weights to our model. This network has a total of 131,731 trainable parameters.

3.2.4 Flagel network

We reused the code associated with the repository of the first paper using a CNN for
demographic inference (Flagel et al., 2018) and adapted to the dataset and task. The
network was trained with the exact same architecture as the one published (Figure 3.5
from the original paper shows a schematic of the architecture), except that the last
layer was changed to allow the prediction of our 21 population size parameters. The
network was parametrized with the set of hyperparameters leading to the best perfor-
mance in the previous work for two different types of SNP encoding (0/255 or -1/1). It is
noteworthy that the actual encoding in their code is 0/-1 and not 0/255, thus the same
encoding was kept to be able to compare the performance. The networks were trained
with the same procedure of 10 epochs with early stopping in case of no progression of
the loss after 3 epochs. The batch size is 200. The input data had 50 haplotypes. Its
number of SNPs is either 400 (as processed by the custom CNN) or it is downsampled
to one every ten SNPs (as done in the original work), leading to 1,784 wide input SNP
matrices. This size corresponds to the tenth of the biggest SNP matrix in our dataset.
Smaller simulations are padded with zeros. All parameters can be found in Table 3.1.

3.3. Sequence position informed deep learning architecture 63

Flattened output
from poollng step

First 1D First pooling Second Second Third Third pooling Fully connected ANN
convolgtlon steg’ convolugion poohng step convolunon step layer + output

Input |mage I

o
| - EEEE— ==y S / .
] [| [] ==
) = - - e §
Second branch: |¥|

positions of

polymorphisms

and first fully

connected layer
Figure 3.5: Schematic of Flagel network. Figure from the original paper (Flagel et al., 2018).
Input images are SNP matrices that undergo a series of convolution and pooling layers. The
filters of the first convolution cover all haplotypes, then the filters of each layer cover all fea-
tures computed by the previous layer. In parallel, a fully-connected layer process the SNP po-
sitions. Finally, its result is concatenated to the convolution layer output and fed to another

fully-connected layer in order to output the predictions of the network.

Input di- | SNP en- | Convolu- | Kernel | Pooling| Log- Sort Use

mension | coding | tiontype | size size scaled chromo- | dropout?
output? somes?

50 x 400 0/-1 1D 2 2 Yes Yes Yes

50 x 1784 | 0/-1 1D 2 2 Yes Yes Yes

50 x 400 -1 1D 2 2 Yes Yes No

50 x 1784 | -1 1D 2 2 Yes Yes No

Table 3.1: Parameters used for the Flagel CNN.

3.3 Sequence position informed deep learning archi-
tecture (SPIDNA)

The Sequence Position Informed Deep Neural Architecture (SPIDNA) is designed to
comply to the principal features of SNP data: data heterogeneity (data includes genetic
markers and their positions encoded as distances between SNPs), haplotype permuta-
tion invariance, long range dependencies between SNPs and variable number of SNPs.
Similarly to the custom CNN, SPIDNA takes as input a matrix describing haploid individ-
uals as rows and SNP as columns, with an additional row for the SNP distances.

3.3.1 Permutation invariance

One of the SNP matrix properties is its invariance to the permutation of haploid or
diploid individuals (rows of the SNP matrix), meaning that the same matrix with per-
muted rows contains the exact same information and should lead to the same predic-
tions. Most summary statistics are already invariant to the haplotype order by defini-
tion. On the other hand, typical operations used in ANNs such as rectangular filters
and fully connected layers are not invariant, and consequently the baseline ANNs do
not respect this data feature, but can still approximately learn this data property. To
avoid wasting training time to learn that there is no information in the row order, it
has been proposed to systematically sort the haplotypes according to a predefined

64 Chapter 3. Methodological development for demographic inference

rule (Flagel et al., 2018; Torada et al., 2019). However, because there is no ordering in
high dimensional space that is stable with respect to perturbations (Qi et al., 2017), we
chose yet another alternative and enforced our network to be permutation-invariant
by design. Permutation-invariant networks, or exchangeable networks, were success-
fully applied in population genetics by Chan et al. (2018) for inferring local recombina-
tion, but our architecture is different in that the invariant operations are performed
at each block (there is only one invariant layer in Chan et al. (2018)), enabling both
individual equivariant features and global invariant features to contribute to the next
layer. Figure 3.6 shows the difference between equivariant and invariant functions.
It has been proven that this type of architecture provides universal approximation of
permutation-invariant functions (Lucas et al., 2018; Zaheer et al., 2017). Here we ap-
plied the methodology from Lucas et al. (2018) by using the mean as our invariant op-
eration for our SPIDNA and MixAttSPIDNA architectures. However, the mean over the
haplotype dimension has limited expressivity. To circumvent this, we first tried to add a
higher moment statistics (the variance) alongside the mean, but in practice, this did not
improve the predictions. We have finally chosen to develop a more flexible invariant
function based on attention mechanisms that we called attention hub (see Section 3.4.1
for more details), and added it alongside the mean in our MixAttSPIDNA architecture.

Invariant function

(33—

Equivariant function

—

Figure 3.6: Schematic of equivariance (left) and invariance (right). Here, the function on
the left is equivariant to rows' permutation by permuting the outputs accordingly to the input
permutation. The function on the right is invariant to rows’ permutations because it produces
the same output for any permutation.

In the SPIDNA architecture, the equivariant function is a convolutional layer with fil-
ters of size 1 x q, that treats each haplotype (row) independently and computes equiv-
ariant features, while the invariant function computes the mean of these features over
the row dimension. The invariant function reduces the dimension of the data to one
row, which is then concatenated to each equivariant row (Figure 3.7). Therefore, the
correlation between rows increases at each layer, which progressively transforms the
equivariant input to an invariant output. However, the correlation increase should be
moderate and progressive to avoid immediate loss of the information at the haplotype
level. To promote this, two independent normalizations were performed, one over the
output of the equivariant function and one over the input of the invariant function. A
correlation control parameter a that quantifies the contribution of the invariant func-

3.3. Sequence position informed deep learning architecture 65

tion to the next layer is added to control the speed at which the correlation increases
between rows. We studied the internal variance of SPIDNA in Section 4.2.1 in order
to assess the effect of a and better understand how this issue is handled during the
optimization.

3.3.2 Adaptability to varying size

A major difficulty that arises with genomic data is that the number of SNP varies from
one dataset to another, or from one genomic region to another, due to the stochasticity
of biological and demographic processes (and of their corresponding genetic simula-
tions). Therefore, we use convolution layers as they can handle data with variable size
while keeping the number of network weights constant. A filter can be repeated more
or fewer times to cover the whole input entering each layer, letting the network adapts
itself to the data. Consequently, the output size of each convolution layer will vary de-
pending on the input size. This prevents the use of fully connected layers directly after
a convolution layer, as it is often the case with CNNs. Instead, we use fully-connected
layers only after operations independent of the input size and with a fixed output size,
namely mean functions over the column and row dimensions (Figure 3.7).

Our adaptive architecture provides an alternative to data compression based on
computer vision algorithms: since compression is not optimized for the task of inter-
est, it could induce information loss by reducing data prematurely. Note indeed that
the success of deep learning in computer vision lies precisely in the replacement of ad-
hoc data descriptors and processing pipelines (e.g., SIFT features to describe image key
points (Lowe, 2004), and the “bag of visual words” pipeline (Sivic and Zisserman, 2003)
to build an exploitable representation of them through clustering and histograms) by
ones that can be optimized. It is also an alternative to padding, a technique that con-
sists in completing the SNP and distance matrices at the edges so that they all match
the biggest simulated SNP matrix; it is left to the neural network to guess where the real
genetic data stops and where padding starts. As such, it may make the task more dif-
ficult, given that the SNP matrix size is highly variable between different demographic
histories and some examples would contain more padding values than actual genetic
information. RNN are also a natural alternative to process sequence of variable size,
though they induce an unequal contribution of SNPs to the final result, depending on
their ordering along the sequence. Indeed, as the information from the previous ele-
ments of the sequence is stored in the internal state of the RNN, earlier parts of the
sequence can be more easily forgotten. Nonetheless, they were very recently proven
to be useful to predict local recombination rate along the genome (Adrion et al.,, 2019)
and future works should investigate whether this scales up to global characteristics and
to a different task.

We designed an architecture accounting for invariance and adaptive specificities by
stacking multiple equivariant blocks (Figure 3.7, label B). An equivariant block consists
in one convolution layer with filters of size 1 x 3 that are equivariant (C3), averages of
the convolution outputs across the haplotype axis (M1) and the SNP axis (M2) that are
both invariant, a concatenation of the equivariant and invariant features (I13), one max
pooling layer that is also adaptive to the number of SNPs (M3) and one fully-connected
layer that updates the demographic predictions at each block (F1) via a sum function

66 Chapter 3. Methodological development for demographic inference

(O1) (Figure 3.7).

We designed three variations of the SPIDNA permutation-invariant architecture.
Layer normalization techniques help the optimization of a neural network in practice.
The most common one is batch-normalization, which we applied to SPIDNA, obtain-
ing thus a first variation of this architecture. However, batch-norm requires all input
samples to have the same size, and therefore this first variation takes as input a fixed
number of 400 SNPs, similarly to two of the baselines. Instance normalization (see Fig-
ure 2.3) is another normalization technique, that does not require fixed size inputs and
normalize layer inputs per-data instead of per-batch (for the batch normalization). We
apply it and thus obtain a second variation of SPIDNA, which is invariant to the num-
ber of SNPs. As mentioned at the end of Section 3.3.1, we also consider a variation of
SPIDNA using two instance normalizations and an additional parameter «, in order to
control the speed at which the network becomes invariant (when going through the
layers). This network and the influence of « are studied in Section 4.2.1. The first vari-
ation using batch normalization has 110584 trainable parameters, and the other two
using instance normalization have 110384.

Except for the different normalization layers and the correlation control parame-
ter «, the three variations of SPIDNA have the same architecture represented in Fig-
ure 3.7. At each step i of the network, we consider that the data has four dimensions
B; x M; x S; x F;, B being the batch dimension, M the row dimension (also the haplo-
type/genotype dimension before the first layer), S the column dimension (also the SNP
dimension before the first layer) and F' the feature dimension (only one feature before
the first layer). A first convolution layer of 50 1 x 3 filters is applied to the SNP matrix
(Figure 3.7, label C1), and another convolution layer of 50 1 x 3 filters is applied to the
vector of distances between SNPs (C2) and repeated M times. The results of the two
convolutions have now the same dimensions and are concatenated along the feature
dimension (I1). The resulting tensor is then passed to seven blocks put end to end (12),
each one involving an equivariant function and an invariant function (B). The equivari-
ant function ¢ is a convolutional layer of 50 1 x 3 filters (C3) that outputs a tensor of
size B;_1 x M;_y x (S;_1 — 2) x F;_1/2. The result of the equivariant function is then
passed to the invariant function p, which is the mean over the dimension M (M1). Thus
p(6(X;-1)) has size B;_; x (S;—1 — 2) x F;_1/2, which is repeated M times to maintain
the same dimension as ¢(X;_1). Then p(¢(X;_1)) and ¢(X;_1) are concatenated over
the feature dimension (I13). Finally, max-pooling filters of dimension 1 x2 are applied,
and the result is passed to the next block (M3). In parallel, each block computes the av-
erage over the column dimension S of the 21 first features of p(¢(X;_1)) that are then
passed to a fully-connected layer with 21 outputs (F1). The predictions of each block
are summed (O1).

3.3.3 SPIDNA combined with ABC

ABC have already shown great results for demographic inference and has the advan-
tage of predicting estimated posterior instead of simple point estimates. Therefore,
we designed two setups to leverage the advantages of both deep learning and ABC. In
the first setup, we combine ABC to our SPIDNA architecture by using the predictions
made by the SPIDNA version with batch normalization already trained. This strategy

67

3.3. Sequence position informed deep learning architecture

“(z0) sJ4o19weled diydesdowap paidipald syl se ¥20|q ise| ayi Ag 1ndino Ajjeul) si 3] *s3nsaJ |4 pue anjeA snoinald s Jo (1L0)
wIiNs B Y1Im ¥20|q ¥YNAIdS Yyaea 1e palepdn si (usaJg ul) J01daA uondipald ayl *(14) 49Ae| pa1dauuod-A|ns e Ag passadoud si z|A Jo Indino ayy
‘I9]1e4ed U 20|19 YNAIdS 3Xau ay3 03 passed pue (g|N) 494Ae| Suijood xew e Aq passadoud si (€]) S3NsaJ LA pue £ Jo uoieualeduod ayl (ZIN)
JINSaJ LA JO SUWN|OD JSAO UBSW aY) pue (L IA) 2jNsaJ JaAe| UOIIN|OAUOD Y1 JO SMOJ JIAO UeaW 3yl Aq pamo||o} (D) JaAe| UoIIN|OAUOD e YlIM
S1eIS 320|q YNAIJS Y2e3 *(z1) S20|g YNAIdS UdASS Jo saluas e 01 passed siindino ayl “(L]) 1D Wou) S3NSaJ YIM pajeualeduod aq o) paleadal
2Je gD Jo s3nsay ‘(gD) sooxueisip ayy o1 paljdde si uake| uoiINjoAuod Jayioue pue (1)) SdNS 2yl 01 paldde si uake| uonnjoAuod v (an|q ui)
SANS U93M13Q S9DURISIP JO J0IIDA S} YUM Paleldosse Xidiew dNS e indul se sayel YNAIdS “34n32331yd4e YNAIdS 40 d13ewayds :/ < aunsi4

I

A

EN

sandino)}uomiau

D
6{

L4 Tgm_ kuuw::ou-b_::

N—ueaw | ||\

uolnjoAu0d

A
CWN | ueaw
SMOJ 19A0 Uea|\
+ N
uonn|oAu0d P
g9 Eot SaJnjes4 -
N €I

L X

19 Wo.j sainjea

€l

A

=

¥20|q
VNQIdS J0 sindup

S90S ‘E X L

%20|q YNAIdS

al

saJiniea)
saoueIsIp dNS N
+

7D S4B 0SE X 1

sainiea) dNS <

LI

sasuelsip dNS S

11

=
=2

SdNS §'

1D SI9NBO0S‘E X L

sadfyodey pnr

68 Chapter 3. Methodological development for demographic inference

was proposed by Jiang et al. (2017) who showed that a deep neural network could ap-
proximate the parameter posterior means, which are desirable summary statistics for
ABC. It was applied under the name of ABC-DL in two population genetics studies for
performing model selection, however both papers relied on the joint SFS as predefined
candidate summary statistics (Lorente-Galdos et al,, 2019; Mondal et al., 2019). Here,
we are taking advantage of both the deep architecture to bypass summary statistics
and the Bayesian framework to refine the prediction and approximate the posterior
distribution. The statistics currently processed by ABC are the average over multiple
independent regions of SPIDNA predicted population sizes. In the second setup, we
added the summary statistics, that we previously computed for the ABC without deep
learning, alongside to the inputs. For both setups, we applied the same hyperparame-
ter optimization that we applied to the ABC without deep learning, i.e., we tested local
linear regression, ridge regression and non-linear regression based on a single-hidden-
layer neural network as correction step and six possible tolerance rates (0.05, 0.1, 0.15,
0.2, 0.25 and 0.3).

3.4 Mixed attention SPIDNA (MixAttSPIDNA)

The work presented in this section is a collaboration with Pierre Jobic.

We developed the MixAttSPIDNA architecture with the intention of increasing the
expressivity of the original SPIDNA while retaining its invariance feature. One bottle-
neck of SPIDNA comes from its equivariant part, which is only a simple mean over the
haplotype dimension of the data flowing through the network. The mean is not a very
rich descriptor of a distribution of features over individuals. We thus are interested in
considering additional statistical descriptors, to better extract information about the
distribution of individuals. Indeed, while Lucas et al. (2018) proves that the mean is
informative enough, in the sense that all permutation-invariant functions can be ex-
pressed with the Deep Sets architecture making use only of the mean, provided there
are many layers enough, the number of required layers is not given. One can hope
that with richer statistical descriptors in each layer, the network will not need to be as
deep. Therefore, a first approach has been to also compute variance additionally to the
mean, but it showed similar or worst result compared to the original SPIDNA architec-
ture. In order to address this issue, an attention mechanism called attention hub was
added in parallel to the mean. This strategy greatly improves the overall expressivity of
the network while adding learnable parameters (410,786 in MixAttSPIDNA compared
to 114,847 in SPIDNA) that are included in the optimization by gradient descent proce-
dure. These parameters are reused, similarly to convolution layers, in a way that allows
the network to compute complex operations.

The attention mechanism introduced here is a variation of the original self-attention
mechanism from Vaswani et al. (2017); that relies on a new component called hub. In
the original self-attention, an affinity is computed between every pair of input elements,
which leads to a n? termin the overall complexity (where n is the number of individuals).
Here instead, the affinity is computed between each input element and a predefined
number of hubs, to reduce the complexity (now linear in n). Intuitively, these affinity
values will tell how to map the values computed from each input element to the hubs.

3.4. Mixed attention SPIDNA 69

The hubs are then mixed together and mapped back to the input space thanks to an-
other set of affinity values. In the context of a network that has SNP matrices as input,
each hub is a combination of the haplotypes and expresses a specific, learnable statis-
tic over them. The attention mechanism allows expressing statistics over individuals
that share a particular trait only.

We later improved MixAttSPIDNA by adding a similar attention mechanism to com-
bine the outputs from the different replicates of one scenario. The predictions from
the different replicates have been previously combined simply by performing a mean,
which does not take into account that different replicates can contain more or less in-
formation about the demography. This final attention mechanism allows the network
to express how confident it is in the prediction yielded by each replicate, in order to
better combine them. This last iteration of MixAttSPIDNA being more difficult to train,
a pretraining scheme was also introduced to improve convergence.

3.4.1 Attention hub

To express richer statistics, the attention hub mechanism is added to each SPIDNA
block alongside the computation of the mean over the haplotypes’ dimension. First,
a set of keys K and values V' are computed with two fully-connected layers over the
features dimension of the input tensor. Then a third set of affinity values A™ between
each element of the sequence (here the elements are a set of features correspond-
ing to a haplotype and a SNP) and each hub is computed using a fully-connected layer
with K as input. The outputs A™ of this fully-connected layer replace the product be-
tween Q and K from the original attention mechanism (described in Section 2.1.3).
These affinity values are passed through a softmax function and multiplied to the set
of value V to create the hubs H!. This way, each hub selects individuals, according to
their descriptors K, and mix their values V, in a weighted sum depending on K. In our
architectures, we set up the fully-connected layer dimensions so that operation yields
10 hubs, with 50 features each and as many “pseudo-SNPs” (elements of the SNP di-
mension) as the inputs of the attention mechanism. Each hub processes its input data
internally (through 2 fully-connected layers), independently of other hubs. Hubs are
passed to another fully-connected layer (H?) in order to match their dimensions with
the output dimensions (O), in the case where the number of features computed for
K and V is different from the number of features required for the outputs. The hubs
then dispatch the information they computed to each individual. For this, another at-
tention mechanism allows each individual to choose which hubs it would like to listen
to (by expressing weights for each hub). Therefore, another set of affinity values A°“
between hub and the original input data is computed with a fully-connected layer over
the inputs X and then passed through a softmax. Finally, the hubs are mapped to the
output space by multiplying them with this second set of affinities A°“* and sent to the
next MixAttSPIDNA block. The affinities A°“* determine the contribution of each hub to
the output. Figure 3.8 shows an overview of the attention hub mechanism.

We now consider the same dimension notation than Section 3.3.2 with B the batch
dimension, M the row dimension (also the haplotype/genotype dimension before the
first layer), S the column dimension (also the SNP dimension before the first layer) and
F the feature dimension. The attention hub takes as input a tensor data of Bx M x.Sx F

70 Chapter 3. Methodological development for demographic inference

—) K

A A i
@ :
L] Azt
H} H} 0
[— Y H; - 5 0,
"{ Vz F———— softmax(4™) x V . . » softmax(A™®) x H?
L Azt . :
i oom o

i

Figure 3.8: Schematic of attention hub. Two fully-connected layers compute keys K and
values V from the attention hub inputs. A third fully-connected layer computes the affinity
values A" from the keys K. The product between the softmax of A and V' gives the hub values
H' (softmax(A™) x V). A fourth fully-connected layer computes H? from H'. The last fully-
connected layer computes the affinity values A°“* used by the second attention dot product
(softmax(A°“) x H?)to output O.

and starts by swapping M and S. In practice, we choose our fully-connected layers so
that values V' have dimensions of B x S x M x F; = 50, keys K have dimensions of
B x S x M x Fy, = 50 and affinity values A™ have dimensions of B x S x M x Ny, = 10.
After permutation of M and Ny, in A™, the matrix multiplication between A™ and V'
gives a hub tensor H! of B x S x Ny, = 10 x Fy, = 50, transformed by a fully-connected
layer into H? of B x S x Njpus = 10x F,,,; = 50 dimensions. A°“ are computed in parallel
by a fully-connected layer with the tensor data of the attention hub as input and has
dimensions of B x S x M x Ny = 10. The matrix multiplication between A%% and H>
leads to the output tensor O of dimension B x S x M x F,,; = 50. Finally, M and S are
swapped back so that the output dimensions correspond to the input ones.

3.4.2 MixAttSPIDNA architecture

The MixAttSPIDNA architecture has been build upon the SPIDNA architecture from Sec-
tion 3.3. It takes the same data format as input, has the same first layers and also uses
a series of blocks that updates the outputs (demographic parameters to be estimated)
before passing the data to the next block. The main differences happen inside the block
(now called MixAttSPIDNA block) depicted in Figure 3.9. Thanks to the addition of an
attention hub mechanism, the features that are passed to the next block can now be
more complex. These features of the mean M1 and attention hub A1 are mixed thanks
to a fully-connected layer F3. Then, they are concatenated (I3) with the features from
the convolution C3 and a max pooling layer is applied before being passed to the next
block.

In parallel, the first attention hub mechanism A1 also contributes to the overall in-
ferred values by the network. Before being projected back to the output dimensions,
the first hubs are duplicated and sent to a series of two other hub attention mecha-
nisms (A2 and A3 in Figure 3.9) with attention computed over the hubs. Finally, pre-

3.4. Mixed attention SPIDNA 71

dictions from A3 are combined to the predictions from the mean over the haplotype
(M1) and SNP (M2) dimensions thanks to a fully-connected layer (F2). The part of the
network that outputs predictions based on the mean over the haplotype and SNP di-
mensions (F2) is the same has the original SPIDNA architecture, but its fully-connected
layer maps all the features to the 21 outputs (previously only the first 21 features were
mapped to the 21 outputs) as it has shown to be a simple improvement of the SPIDNA
architecture during the development of MixAttSPIDNA.

1 X 3,50 filters —_—
Ne— N\
Inputs of 13 M3
MixAttSPIDNA %} Features from B1 Features from B1 I
block convolution convolution
+
c3 T Combined Features
F3
Al R i :[fully-connected layer]_’ Combined Features
AttHub
> AttHub
S
C e) — AttHub ————> AttHub ——— []
A2 A3 F2
M1 —>[fully-connected layer]
—> mean —\ mean ——>{ fully-connected layer }]] | |
M2 F1 01
| 1 + a

Figure 3.9: Schematic of MixAttSPIDNA architecture block. Each MixAttSPIDNA block starts
with a convolution layer (C3) followed by the mean over rows of the convolution layer result
(M1) and the mean over columns of M1 result (M2). The output of M2 is processed by a fully-
connected layer (F1) to constitute the first part of the block output. In parallel, an attention hub
(A1) process C3 output. The hub features from A1 are then process by two attention hubs (A2
and A3) to constitute the second part of the block output. The fully-connected layer F2 combine
the two block output parts, and the result is added (O1) to the network output (in green) to be
passed to the next block. The next block also takes as input the combination of C3 output and
outputs of M1 and A1 with a fully-connected layer F3. Outputs of C3 and F3 are combined (I3)
and passed to the next block after passing through a max pooling layer M3.

3.4.3 Inference by scenario

In order to combine the predictions performed over each replicate (representing one
of the simulated or observed genomic regions) of one scenario (one specific population
size history) in a more complex way than the mean previously used, another attention
mechanism has been added to MixAttSPIDNA. In this version called MixAttSPIDNA with
attention on scenario, each batch contains all replicates of a single scenario and noth-
ing more. The features computed in the second layer of hubs of each block (A2 in Figure
3.9) are averaged on the hub dimension and fed to a fully-connected layer followed by
a softmax. The attention vector obtained determines the contribution of each replicate
to the final prediction by weighting the outputs (computed by F2 in Figure 3.9). This step
finally leaves one prediction by block in the network that are combined thanks to a last
fully connected layer. The idea behind this strategy is to let the network give different

72 Chapter 3. Methodological development for demographic inference

weights to the different replicates for predicting the demographic parameters of a sce-
nario. Therefore, the network could potentially learn to give more importance to the
most informative replicates. Moreover, even though we have not tested this, including
noise (e.g., selection or sequencing error) in some replicates during training could help
the network learning to discard uninformative replicates that may be present in real
datasets.

3.5 Training and hyperparameter optimization

Most methods presented in this thesis are based on deep learning and thus require to
define a loss function for their training. We chose to minimize the mean squared error
(MSE) over the demographic parameters inferred. We also used this metric to guide the
design of the ANNSs, optimize the hyperparameters and compare the methods in the
next chapter (Chapter 4). Let us remind the different population size inference methods
studied during this thesis. The baselines include:

* An approximate Bayesian computation (ABC) using summary statistics

« A multi-layer perceptron (MLP) using summary statistics

* A MLP using flatten SNP matrices

* A custom convolutional neural network (custom CNN) using SNP matrices

* The Flagel network from Flagel et al. (2018) using SNP matrices

We compare these baselines to the following variations of our SPIDNA and Mix-
AttSPIDNA architectures:

+ SPIDNA with batch normalization using SNP matrices
+ SPIDNA with instance normalization using SNP matrices

« SPIDNA with instance normalization using SNP matrices with different number of
SNPs

+ ABC using SPIDNA predictions
« ABC using SPIDNA predictions and summary statistics
* MixAttSPIDNA using SNP matrices

* MixAttSPIDNA using SNP matrices with an attention mechanism on scenario pre-
dictions

* MixAttSPIDNA using SNP matrices with an attention mechanism on scenario pre-
dictions with an unfreezing learning strategy

3.5. Training and hyperparameter optimization 73

Flagel network and the ANNs that we developed use the MSE over the training set
as the loss metric for their backpropagation algorithms. The MSE is also computed
over the validation set to guide the development of our architectures and to perform
automatic hyperparameter optimization. ABC and MLP hyperparameters have been
optimized with random or grid searches. In order to include more hyperparameters
and cope with the longer training time of the SPIDNA architecture, we used a more ad-
vanced hyperparameter optimization procedure called HyperBandSter (Falkner et al.,
2018b; Li et al,, 2016). However, we did not yet reuse this procedure for the Mix-
AttSPIDNA architecture because we preferred to focus first on substantial changes in
the architecture structure (which is not easily amenable to hyper optimization) and be-
cause these newly designed architectures already outperformed previous methods (as
we will see in the next chapter). We also tried different learning rate strategies for the
MixAttSPIDNA architecture with attention mechanism on scenario predictions because
we trained it in two steps, first to infer demographic parameters by replicate, and sec-
ond to infer them per scenario (i.e., exploiting all replicates of a scenario).

3.5.1 Mean squared error (MSE)

Before computing the prediction error, the demographic parameters ©* are standard-
ized with the following formula:

ln(@*) - ,utrain

Otrain

0= (3.2)
where i, and o4,.4:n, are the mean and standard deviation of in(©*) over the training
set.

Then, each method is evaluated using its prediction error given by the following
mean squared error:

1,J

[iJZ@;’_@;)z 5:3)

Z7j

where ©' and @; are respectively the true and predicted standardized population size
for the time window i and scenario j, I = 21 is the number of time windows and J the
number of scenarios in the set. For inference based on raw data and neural networks
that perform one prediction by replicates, the prediction é;l is given by the average of
the population sizes (®§r)r:1,...7nrep estimated for each replicate (independent region) r.
The two version of MixAttSPIDNA that perform prediction by scenarios apply an atten-
tion mechanism over the predictions of all scenario replicates to obtain the prediction
O

3.5.2 Automated hyperparameter optimisation

Compared to other machine learning methods, ANNs have a potentially infinite amount
of hyperparameters when including for instance the number of layers, the number of
neurons in each of them, the learning rate, weight decay or the batch size. Moreover, a
run over a full dataset with enough epochs to reach convergence is time-consuming for

74 Chapter 3. Methodological development for demographic inference

networks with a complex architecture defined by many learnable parameters. There-
fore, the development of deep learning architectures often relies on the experience
and intuition of the practitioner in a try-and-repeat process. Grid search and random
search are two strategies for exploring the hyperparameter space uniformly. They are
commonly used but are limited by the computing resources available. In our study, we
used HpBandSter, a package that implements the HyperBand (Li et al., 2016) algorithm
to run many hyperparameter trials on a smaller resource budget (i.e., few epochs) and
runs the most promising trials on a greater budget. Combined with BOHB (Falkner et al.,
2018b), a Bayesian optimisation procedure that models the expected improvement of
the joint hyperparameters, this method provides more guided and faster search of the
hyperparameter space. At each step, BOHB draws a new combination of hyperparam-
eter values to be tested according to the expected improvement and to a predefined
prior. Here, we performed a search in a 5-dimensional space defined by uniform pri-
ors over the type of architecture (architectures from our baselines and variations of
SPIDNA architecture, based on 400 SNPs or the full number of SNPs), the learning rate,
the weight decay and the batch size. For SPIDNA architectures that controlled correla-
tion, we added the control parameter a to the Bayesian optimization procedure with a
log-uniform prior between 0.5 and 1. The search was performed for 3 budget steps and
replicated 5 times, leading to a total of 83 successfully trained networks. The results of
this procedure are shown in Section 4.1.1.

As the training time of the MLP using summary statistics was short because of its
small input size and number of parameters, we optimized its hyperparameters with a
random search by drawing 27 configurations from uniform distributions and trained a
network for each configuration during 6 epochs. The batch size was drawn between 10
and 100, learning rate between 5 - 107° and 1 - 1072 and weight decay between 5 - 10~°
and1-1072

For ABC, the tolerance rates ranged from 0.05 to 0.3 by step of size 0.05 and were
optimized for 12 ABC algorithms independently (4 correction methods x 3 types of
inputs: predefined summary statistics, SPIDNA outputs or both).

3.5.3 Learning rate strategies of MixAttSPIDNA

The work presented in this section is a collaboration with Pierre Jobic.

We tested numerous versions of MixAttSPIDNA during its development, but we will
only focus on three versions: MixAttSPIDNA, MixAttSPIDNA with attention on scenario
and MixAttSPIDNA with attention on scenario unfreezing. They all include a learning
rate decay strategy that divide by two their learning rate after five epochs to improve
the final prediction error. When trained on the cattle dataset, the three versions of Mix-
AttSPIDNA use the same batch format as SPIDNA with batch normalization (batches of
SNP matrices with 50 haplotypes and 400 SNPs). However, because the HGDP dataset
has a number of haplotypes that varies for each scenario to mimic the different sample
sizes of the real HGDP populations. We tested different strategies of mini-batch format-
ting on the cattle dataset (see Section 4.2.4) and used the best for the HGDP dataset.
MixAttSPIDNA with attention on scenario and MixAttSPIDNA with attention on scenario
unfreezing are trained in two steps. First they are trained to predict demographic pa-
rameters replicate-wise like MixAttSPIDNA for ten epochs. Then, they are trained to pre-

3.6. Interpreting deep neural networks with CCA 75

dict demographic parameters scenario-wise, either by only optimizing the weights and
biases used for scenario predictions (MixAttSPIDNA with attention on scenario) or by
giving a higher learning rate to the weights and biases used for scenario (MixAttSPIDNA
with attention on scenario unfreezing). This scheme is meant to stabilize the learn-
ing when the network task moves from predicting replicate-wise to scenario-wise. In
experiments not shown in this manuscript, training scenario-wise MixAttSPIDNA with-
out pretraining on replicates have shown unstable behaviours with error increases on
the training set. MixAttSPIDNA has 410,786 learnable parameters, MixAttSPIDNA with
attention on scenario and MixAttSPIDNA with attention on scenario unfreezing have
414,076 learnable parameters.

3.6 Interpreting deep neural networks with Canonical
Correlation Analysis (CCA)

Whether neural networks are artificial or biological and despite being very different,
they are often seen as a blackbox difficult to interpret because they perform an impor-
tant amount of complex operations on the input data which could have more or less
importance for the final prediction. The interpretability of neural networks is a very
active research area as it helps to better understand how they work and possibly to im-
prove how they should be build. In most fields of deep learning applications, it is also
crucial to provide human understandable explanations for any prediction made by the
network. Medicine diagnosis made by ANNs are a famous example where the physician
needs to understand the inner reasoning of the ANN to avoid any mistakes that could
have been easily avoided by human. Nonetheless, neuroscientists have been tackling
this goal from a theoretical and an experimental angle since the discovery of brain cells,
but are still far from a complete theory.

Understanding ANNs should be in principle much simpler, as they are less complex
than their biological counterparts and operate in the controlled environment of com-
puters. Some of the approaches that have been recently developed generate a more
interpretable model from the ANNs such as a decision tree with semantic annotations
(Zhang et al.,, 2019). Others aim at generating saliency maps or mask over the input
data to highlight its most important features with variants of backpropagation and gra-
dient analysis (Chattopadhay et al., 2018; Selvaraju et al., 2019). These last methods are
mostly used for image data but can also be used to highlight binding motifs (Shrikumar
et al,, 2017), identify variants associated to a particular trait (Sharma et al,, 2020) or
show alleles under selection in DNA sequences.

ABC methods for population size inference are based on a set of handcrafted sum-
mary statistics computed from the SNP data, and the method developed here seeks to
find if a network computes the same summary statistics internally. This should help
to understand what are the most relevant summary statistics for predictions, but also
which ones are not computed by the network and could be added as input alongside the
raw genomic data in order to improve the predictions. Searching for such correlations
between the ANN activations and the summary statistics is a difficult task as the net-
work potentially computes combinations of summary statistics in a complex non-linear
fashion and the computation of a summary statistics can be performed by the combi-

76 Chapter 3. Methodological development for demographic inference

nation of multiple parts of the network. Some methods applied to computer vision
already seek for high correlations between sets of activations and a single summary
statistic (often called concept), but they do not seek for correlations with a combina-
tion of multiple summary statistics (Graziani et al., 2018; Kim et al.,, 2018).

The method presented here is based on canonical correlation analysis (CCA) and
inspired by SVCCA, a method designed to understand ANN training dynamics by com-
paring the activations of a network at different training stages (Raghu et al., 2017). Here,
the CCA is not performed between two sets of activations, but between a set of activa-
tions and a set of summary statistics. Activations are grouped by layer and each layer
is compared to a set of 279 summary statistics suggested by Jay et al. (2019), includ-
ing bins of site frequency spectrum (SFS), identity by state (IBS), linkage disequilibrium
(LD) and other such as expected heterozygosity, Tajima’s D and nucleotide diversity
7. Similarly to Raghu et al. (2017), the method first uses singular value decomposition
(SVD) with a variance conserved threshold of 0.99 to reduce the dimensionality of the
activations when greater than 50 in a layer. This helps to reduce noise and spurious
correlations in the next step of the analysis. SVD is preferred over other dimensionality
reduction methods because it does not standardize the data, and thus performs well
on sparse data such as neuron activations in ANNs with ReLU activation function.

Then, the sets of reduced activations and summary statistics are analyzed with CCA.
The two sets after standardization are denoted by X, € R™? and X, € R"*? with n
the number of samples and ¢ and p the numbers of variables observed in each set.
CCA searches for linear combinations of the features (columns) of X, and X, that have
maximal correlation with each other. That is, CCA searches for two vectors w, € RP
and w, € R? (the canonical weight vectors) such that the resulting linear combinations
Z, = X,W, and z, = Xyw, (that are 2 real data-sample-dependent values) are the most
correlated (across samples).

The algorithm seeks w, and j, that minimize the enclosing angle between 2, and
Z, 0 € [0, 5], with the constraint that z, and Z, are unit norm vectors. The cosine of this
angle (also referred as the canonical correlation) is given by the formula:

<Za7 gb> -

'a7) — TS an=n — ay_' 3.4
cos(Z) = A~ e G4

The first pair of Z! and Z! corresponds to the smallest angle ¢, given by:

cosfy =max(Z), 7)), |IZa=1 and |Z].=1 (3.5)
Za,%b

Then the next enclosing angle 6, is found in the orthogonal complements of Z"~! and

Z/~'. The pair z7, ZI is defined by :

cosl, =max(z, %), |Zla=1 and |5 =1 (3.6)
Zay”h

with the constraints: ‘ ‘
(zL 7)) =0, (5,5)=0, Vji#r G.7)

a’”~a

There exist several methods to compute the canonical variates, with some of them
extending CCA to non-linear correlation (Akaho, 2006; Andrew et al., 2013). Here, the

3.7. dnadna: a python package for deep learning applied to population genetics 77

CCA implemented in scikit-learn (Pedregosa et al., 2011; Wegelin, 2000) was used to
seek for linear relationships between the two sets in order to interpret the correla-
tions more easily. Finally, we compared a variable from a set to all variables from the
other one, by averaging the correlation between the canonical variates pondered by
the weights of the variable. These weights can be interpreted as the contribution of the
variable to each canonical variates.

This method was applied as a proof-of-concept to the custom CNN. Activations were
measured after training for the validation set in the five last layers of the CNN (the
computation time being too long for the first two layers because of their large number
of activations) and 50 canonical variates were computed for each layer.

3.7 dnadna: a python package for deep learning applied
to population genetics

Alongside the development of new deep learning architectures for demography infer-
ence in population genetics, we released a python software called dnadna, supported
by a pre-print (Sanchez et al., 2021a). It is task-agnostic and aims at facilitating the de-
velopment, reproducibility, dissemination, and reusability of neural networks designed
for genetic polymorphism data.

dnadna defines multiple user-friendly workflows. First, users can implement new
architectures and tasks, while benefiting from dnadna input/output and other utility
functions, training procedure and test environment, which not only saves time but also
decreases the probability of bugs. Second, implemented networks can be re-optimized
based on user-specified training sets and/or tasks. Finally, users can apply pretrained
networks in order to predict evolutionary history from alternative real or simulated
genetic datasets, without the need of extensive knowledge in deep learning. Thanks to
dnadna, newly implemented architectures and pretrained networks are easily shareable
with the community for further benchmarking or applications.

dnadna comes with a peer-reviewed exchangeable neural network allowing demo-
graphic inference from SNP data, that can be used directly or retrained to solve other
tasks. Toy networks are also available to ease the exploration of the software, and we
expect that the range of available architectures will keep expanding thanks to contri-
butions from the community.

Availability: dnadna repository is available at https://gitlab.com/mlgenetics/
dnadna and its associated documentation athttps://mlgenetics.gitlab.io/dnadna/.

3.8 Chapter conclusion

This chapter gave a description of all the materials and methods that have been used
or developed through this thesis. We built two tools with the intention of helping the
population genetic community to develop new deep learning architectures. The first
one uses the CCA to better understand which kind of features a network learns to com-
pute on genomic data. The second one is a python package designed to facilitate the
development, usage, and distribution of ANNs processing SNP data. The main focus of

https://gitlab.com/mlgenetics/dnadna
https://gitlab.com/mlgenetics/dnadna
https://mlgenetics.gitlab.io/dnadna/

78 Chapter 3. Methodological development for demographic inference

this thesis is the development of deep learning methods for population size inference.
To this end, we designed priors for our demographic scenario simulations to be as close
as possible to the information known about the real cattle and human datasets that we
studied, and generated simulations accordingly. Our strategy for developing the two
main architectures (SPIDNA and MixAttSPIDNA) was to take into account as much as
possible the characteristics of population size inference and could be adapted to other
population genetic tasks. We created and implemented architectures that are invariant
to haplotype permutations and changes in SNP number. Then, we designed attention
hubs in order to make the MixAttSPIDNA network more expressive while keeping the
computational time reasonable and without breaking the previously mentioned char-
acteristics of the network. The attention mechanism also allowed to combine predic-
tions from different segment alignments of the same sample of individuals in a way that
allows the network to give more or less importance to each segment in the final predic-
tion. The comparison baselines include a MLP and an ABC that use summary statistics
as input, the Flagel network, and ANNSs that are less adapted to the input data (MLP and
custom CNN). By comparing them to SPIDNA and MixAttSPIDNA, we will see in the next
chapter whether the architecture choices made translate into better predictions.

Inferring demography from
genomic data

Contents

4.1 Study of ANN performances on simulated data 79
4.1.1 SPIDNA hyperparameter optimization 80
4.1.2 Results on predefined scenarios 82
4.1.3 Prediction error on the whole set of simulated datasets 87
4.2 Insight into the inner workings and robustness of ANNs . .. 93
4.2.1 Internal variance of SPIDNA 94
4.2.2 Impact of positive selection on SPIDNA and ABC inference . . 98

4.2.3 Interpreting the customm CNN with canonical correlation analysis
(CCA) . . 103
4.2.4 Comparison of MixAttSPIDNA batch formats 108
4.3 Population size histories inferred by ANNs on real data . . . 110
4.3.1 Cattle 111
4.3.2 HGDP 111
4.4 Chapter conclusion 114

We evaluate and compare the methods described in the previous chapter thanks
to the real and the simulated datasets. This chapter presents and analyses the results
to assess which choices in the architecture design improve the predictions. The sec-
ond section presents the results of several procedures aimed at better understanding
the ANN inner workings and how they behave under changes in test or real data that
were not present in the training set. Finally, the last section includes SPIDNA's and
MixAttSPIDNA’s predictions for the two real datasets, in order to show their usage in
practice.

4.1 Study of ANN performances on simulated data
We simulated two main datasets with priors designed to fit the real data from the cattle
and HGDP datasets. We used these datasets to train and compare the baseline meth-

ods to the different versions of SPIDNA and MixAttSPIDNA architectures by evaluating

79

80 Chapter 4. Inferring demography from genomic data

their mean squared errors (MSE) on validation and test sets. We also compared their
predictions for specific simulated demographic scenarios. The MSE has been used to
guide the design of the multiple versions of these two architectures by iteratively intro-
ducing new mechanisms and evaluating their impact on this metric.

4.1.1 SPIDNA hyperparameter optimization

As explained in Section 3.5.2 of the previous chapter, finding the best hyperparameters
of an ANN mainly relies on the practitioner intuition because of the infinite amount of
configurations possible and the training time of most architectures. However, we can
still apply an automatic optimization to some hyperparameters in order to improve pre-
dictions. Therefore, we used the HpBandSter procedure on baseline ANNs and SPIDNA
architectures. The best configuration in terms of loss corresponds to the SPIDNA archi-
tecture processing 400 SNPs with batch normalization, a weight decay of 2.069 - 1072, a
learning rate of 1.416- 1072 and a batch size of 78 (Figure 4.1). Configurations with large
batch sizes tended to yield lower losses (Figure 4.1), which is expected, as large batches
provide a better approximation of the full training set gradient. However, a batch size
too close to the training set size can lead to overfitting the training set. Here, we did not
observe overfitting for any run when monitoring training and validation losses. This is
probably due to the large size of our simulated datasets, as training often converges
even before seeing the full dataset. The best configurations also tended to have low
learning rates and weight decays (Figure 4.1). These low values slow down the con-
vergence, but usually decrease the final prediction error if the budget (i.e., number of
training epochs) is high enough for the network to reach convergence.

The Bayesian hyperparameter optimization procedure allowed to test multiple net-
works (MLP, custom CNN with heterogeneous filter sizes, SPIDNA with different nor-
malization schemes, adaptive or not to SNP number) thanks to a better usage of the
computational power available by giving more budget to the most promising ANN archi-
tectures and hyperparameters. Note that it would be possible to extend this procedure
to hyperparameters that further describe the architecture of the network, such as the
number and type of layers, number and type of neurons, the type of non-linearity or
the topology. However, even if this optimization of hyperparameters is faster than sim-
pler methods such as random or grid search, it still requires an important amount of
computational power, and many GPUs to perform each run in parallel. Another caveat
is that these runs have been performed on budgets that represent few epochs, and
it is possible that a longer training would reveal another best set of hyperparameters.
Nonetheless, the barplots in Figure 4.1 show very similar scores regardless of the ex-
tended number of epochs for the best architecture (SPIDNA with batch normalization).
For all the reasons above, we did not rely on hyperparameter optimization for the de-
velopment of MixAttSPIDNA, but rather focused on more radical changes related to the
architecture. Indeed, those changes led to more substantial differences in scores than
fine-tuning hyperparameters, such as the batch size, the learning rate or the weight
decay, since the latter led to moderate differences in score.

4.1. Study of ANN performances on simulated data

81

® MLP ® Custom CNN @ SPIDNA instance norm. alpha @ SPIDNA instance norm. adaptive
@ SPIDNA batch norm. @ SPIDNA instance norm. @ SPIDNA instance norm. alpha adaptive
1.0
° P
091 r r
|
0.8 F €
° ’ f 4
070, ®0p8 o ® B® | [oW *o® &°| @ g ® e,
e @ ® ° L4
_ ® » . oh L]
206 - -
o 9}
< 0 go8° % Boo 5 & o8 3 8¢
S 05 ¢
s & WP | [T e A% o =
Soal . .
5 25 50 75 100 0 0.005 0.010 0.005 0.01
o Batch size Learning rate Weight decay
N
»
c1.0 T T T
S . | | |
S - | | |
o ° 1 1 1
S : : !
0.8 1 i : % : :
1 1 1
P E : : :
07 T ° r 1 1 1
p ¢ & : é‘ : 4
i i i
0.6 r 1 1 1
ol g
0.5 1°m - i =] i
L &
0.4 T 1 H H
0.50 0.75 1.00 1.1e+06 3.3e+06 6.7e+06 le+07
Alpha Budget

Figure 4.1: Population size prediction error for each run of the hyperparameter optimiza-
tion procedure. X-axes indicate the hyperparameter (batch size, learning rate, weight decay
and alpha) or budget values, and colors indicate the type of network used for the run (MLP,
custom CNN and multiple SPIDNA architectures). For each network the best run is surrounded

by a square.

82 Chapter 4. Inferring demography from genomic data

4.1.2 Results on predefined scenarios

The performances of SPIDNA, SPIDNA combined with ABC and MixAttSPIDNA are illus-
trated on a subset of cattle demographic scenarios (Figure 4.2) that were previously
investigated by Boitard et al. (2016b) (see Figure A.1). Six scenarios were simulated:
“Medium”, “Large”, “Decline”, “Expansion”, “Bottleneck” and “Zigzag" by specifying the
demographic parameters instead of drawing them from the prior of the training set.
SPIDNA correctly reconstructed histories of constant size, expansion and decline, as
SPIDNA predictions from 100 independent genomic regions (Figure 4.3) approximately
followed the real population size trend and magnitude. In Figure 4.4, the true param-
eters were always included in the 90% credible intervals (light green envelopes) pre-
dicted by SPIDNA combined with ABC without predefined summary statistics and, in
most cases, in the 50% credible intervals (dark green). Similarly to the inferred values
by ABC in Boitard et al. (2016b), the credible interval increases during the most ancient
times for all scenarios except “Large” and “Decline”. These time steps are older than the
TMRCA (see Figure A.1 for TMRCA estimations) which can explain this increase, as most
information in the sample is lost beyond this point. SPIDNA and SPIDNA combined
with ABC correctly reconstructed a complex history consisting in an expansion inter-
rupted by a bottleneck and followed by a constant size (see Figure 4.2 “Bottleneck”),
but SPIDNA predicted an earlier and weaker bottleneck than the true scenario. How-
ever, both methods were unable to correctly estimate the parameters of a very com-
plex “Zigzag" history, except for its initial growth period, and instead reconstructed a
smoother history with values intermediate within the range of the lower and higher
population sizes (see Figure 4.2 “Zigzag"). This confirmed the smoothing behavior iden-
tified previously for ABC and MSMC on these demographic scenarios (Boitard et al.,
2016b) (Figure A.1). Similarly to ABC on predefined summary statistics (Boitard et al,,
2016b), SPIDNA predictions of very recent population sizes were slightly biased toward
the center of the prior distribution, however combining SPIDNA with ABC tended to cor-
rect this bias in most cases. MixAttSPIDNA performed better than SPIDNA by including
the true effective size in almost all boxplot of each scenario, as shown by Figure 4.5.
However, similarly to SPIDNA, it failed at precisely predicting the most recent popula-
tion sizes for some scenarios. On the opposite of our two other methods, MixAttSPIDNA
was able to reconstruct the most ancient bottleneck of the “Zigzag” scenario (Figure 4.5).
The experiments shown in this section have been conducted to have an insight on
the predictions made by each architecture. Although the prediction error on a large
dataset, which will be presented in the next section (Section 4.1.3), can be a good met-
ric to compare them, the simulations used to compute it might include many unrealistic
scenarios on which the architecture performs well. This might lower the overall predic-
tion error without improving the predictions on realistic simulated scenarios and thus,
on real scenarios. These experiments are also important to assess whether the predic-
tions are capable to capture the scenario dynamics, by reconstructing the expansion,
decline, bottleneck and stable phases. This last point is crucial because most studies
of population size evolutions try to link ecological or historical events to changes in the
population size dynamic, rather than predicting very precisely the effective population
size. Here, the MixAttSPIDNA architecture, which is the best of the three architectures
compared in terms of prediction error (see next section), is also the only architecture
that has been able to identify the most ancient bottleneck in the “Zigzag” scenario.

4.1. Study of ANN performances on simulated data

83

Medium

10°

104

Large

—=—=- Scenario
103 —— SPIDNA
—— SPIDNA + ABC
—— MixAttSPIDNA
10?
Decline Expansion
10°

104

103

10?

Effective population size (log scale)

Bottleneck

10°

104

10°

102

Zigzag

10t 102 103

104 10° 10! 102

Generations before present (log scale)

103 104 10°

Figure 4.2: Predictions of SPIDNA, ABC using SPIDNA outputs and MixAttSPIDNA, all
trained on the simulated cattle dataset for six predefined scenarios (dashed black lines).
100 replicates were simulated for each scenario and predictions were averaged.

84 Chapter 4. Inferring demography from genomic data

Medium Large

105 4

-%.-.%..ﬁﬁ%ﬁ_%é_ﬁi%%_%ﬁ_é_é — - ;
Decline Expansion

104 L] %I_‘

250 . | L’é.% .

Effective population size (log scale)

102
Bottleneck Zigzag
10°
TTTTTTmmmmmss sy 3 [===="""""5 3]
- e [el e L
- = EEETeL e a Hge e tBT,
vy i L= & T 75" Ly b
104 L % L b %
Ll [FA— L _| '_%.%___
¥4 $g
103
10?2
10! 107 103 104 10° 10! 102 103 104 10°

Generations before present (log scale)

Figure 4.3: Predictions of SPIDNA trained on the simulated cattle dataset for six prede-
fined scenarios (dashed black lines). 100 replicates were simulated for each scenario. Box-
plots show the dispersion of SPIDNA predictions over replicates.

4.1. Study of ANN performances on simulated data

85

Medium

10?

Decline

102

Effective population size (log scale)

Bottleneck

102

10! 102 103

104

10°

Large

Expansion

10!

102

Generations before present (log scale)

103

104

10°

Figure 4.4: Predictions of ABC using SPIDNA outputs trained on the simulated cattle
dataset for six predefined scenarios (dashed black lines). 100 replicates were simulated
for each scenario. For each history inferred by SPIDNA combined with ABC, the posterior me-
dian is display with plain green line, the 50% credible interval (dark green) and the 90% credible

interval (light green).

86 Chapter 4. Inferring demography from genomic data

v ST "'"'"';@:{%‘%‘%‘%‘%%%‘%’%‘%‘%‘%‘%é
"otk [
Ot = TR
%ﬁ%ﬁﬁ %ﬁ%ﬁééé
e e,
i '%._%. ?‘u%_ﬂ %’ % e %L%. %’;%,%_ég

10t 102 103 104 10° 10! 102 103 104 10°

Generations before present (log scale)

Figure 4.5: Predictions of MixAttSPIDNA trained on the simulated cattle dataset, for six
predefined scenarios (dashed black lines). 100 replicates were simulated for each scenario.
Boxplots show the dispersion of SPIDNA predictions over replicates.

4.1. Study of ANN performances on simulated data 87

4.1.3 Prediction error on the whole set of simulated datasets

The first part of this section presents the results obtained on the simulated cattle
dataset with all the methods from the baselines, all versions of SPIDNA and Mix-
AttSPIDNA. Second, our best version of SPIDNA and all versions of MixAttSPIDNA are
trained and compared on the simulated HGDP dataset.

To interpret the results and compare them, let us first note that in Figure 4.6, Tables
4.1 and 4.2, a 0 error means perfect prediction, while an error of 1 means that no in-
formation is extracted from the input. Indeed, a function outputting always the same
value, for all samples, can at best predict the average target value over the dataset,
in which case the mean squared error (also referred to as the prediction error) is the
standard deviation over the dataset of the value to predict, which is normalized to 1 in
our setup, as explained in Section 3.5.1.

Simulated cattle dataset

The hyperparameter optimization procedure of ANNs considered a certain number of
architectures, for each of which we selected and trained the best version with a greater
budget (i.e., during 10 epochs), allowing for an in-depth comparison to the baseline
methods. This longer training did not yield any substantial decrease in prediction error
compared to their counterparts with a smaller 10” budget (107 training SNP matrices,
i.e., 5.57 epochs) (Figures 4.1 and 4.6). Prediction errors for the validation set (used in
the hyperparameter optimization procedure) and the test set (never used before) are
shown in Table 4.1. In the following text, each method is designated along its index in
Table 4.1.

Summary statistics based methods The prediction errors achieved by ABC using
summary statistics ranged from 0.496 (index 0, ABC rejection, i.e., without correction)
to 0.364 (ABC neural networks, index 3). The gap of performance between the ABC
without and with correction shows that the data points selected by the rejection are
structured in the demographic parameters space. The small difference between lin-
ear corrections (linear and ridge, 0.369 and 0.376, indexes 1 and 2) and the non-linear
one (0.364, ABC neural networks, index 3) seems to indicate that the relation between
data points (summary statistics) and demographic parameters is mostly linear in the
neighborhood of each validation or test example.

The MLP based on summary statistics performed worse than ABC with correction
(0.437, index 4). It is slightly overfitting on the validation set (0.399 validation error
versus 0.437 test error, index 4), which may be due to the hyperparameter optimization
procedure, but we did not investigate this phenomenon further.

Overall, we obtained good predictions with summary statistics based methods, es-
pecially for the ABCs including a correction step. Therefore, the summary statistics
chosen seemed to preserve a great part of the relevant information from the dataset.
Compared to ANNs, ABC methods have the advantage of constructing an approximate
posterior of the demographic parameters that allows to construct credible intervals, as
in Figure 4.4. However, ABC can be time-consuming when inferring the demographic
parameters of numerous populations at once, because it requires to repeat the rejec-

88 Chapter 4. Inferring demography from genomic data

tion algorithm (i.e., compares the observed data to all the data from the training set)
for each population. Note that, for the exact same reason, ABC is also expansive to
benchmark on large validation and test sets. On the other side, ANNs have only one
long training phase, while the inference phase is fast and scales easily when applied to
many populations. Relying on summary statistics also has some disadvantages: (i) the
loss of information is possibly impeding further improvement of the prediction error,
despite improvements in the inference method itself; (ii) it is difficult to know which
summary statistics should be added to the dataset in order to improve inference (a so-
lution to this issue is to design them automatically, as we do with SPIDNA combined
to ABC); (iii) for the most recent biological questions and data types, expert summary
statistics might not yet exist; (iv) the computation of certain types of summary statistics
on all the different datasets can be particularly time-consuming (for instance, the link-
age disequilibrium is in practice computed on a subsample of SNPs because measuring
the pairwise dependence between SNPs at different distances is computationally too
expensive on large dataset).

Baselines ANNs The MLP based on raw data performed very poorly (0.675, index 5)
and all other networks based on raw data outperformed this MLP. This is not surprising,
since genomic information is encoded as a simple list of values, where the order has no
meaning from the MLP point of view, which then cannot exploit information given by
the data structure. This MLP configuration has two major drawbacks: (i) the number of
network parameters to estimate is high; (ii) the MLP can only retrieve the geometry of
the data through training, with no guarantee that it will learn the spatial structure of the
genome (i.e., the column order and distance between SNPs) or distinguish from which
individual comes each SNP. In spite of all these hindrances, the MLP still performed far
better than random guesses or constant prediction (32% better).

The custom CNN obtained results similar results as the ABC without correction
(0.487, index 6) and that, without the disadvantages of summary statistics enumerated
previously. The mixed size filters have proven useful in the Computer Vision literature,
under the name of Inception architectures (Szegedy et al., 2017); they allow the extrac-
tion of a mixture of different kinds of information from multiple scales within the same
layer. The large gap in performance between a simple MLP and this custom CNN con-
firms the importance of such considerations. A natural extension would be to integrate
this feature into SPIDNA, our permutation-invariant architecture.

The Flagel CNNs adapted from Flagel et al. (2018), that were not using dropout, had
average test losses of 0.541 when based on the first 400 SNPs (index 7) and 0.444 when
based on 1784 downsampled SNPs (index 8). The two using dropout achieved predic-
tion errors of 0.609 (with 400 SNPs, index 9) and 0.484 (with downsampling, index 10).
We can see that, for this network, downsampling the number of SNPs lead to better
predictions than using the 400 first SNPs of each matrix. Similarly to the custom CNN,
this network is another example of the usefulness of convolution layers (also used in
SPIDNA and MixAttSPIDNA), and more generally, why tailoring the network to the data
characteristics (taking into account the spatial dependency between SNPs) can improve
predictions compared to MLPs. The best configuration of the Flagel CNN (0.444, index
8) performed similarly to the best SPIDNA version without ABC (0.454, index 11), how-
ever Flagel CNNs have 8 to 34 times more learnable parameters than SPIDNA, and thus,

4.1. Study of ANN performances on simulated data 89

are longer to train.

SPIDNA Most of the SPIDNA architectures (all except SPIDNAs with instance normal-
ization and 400 SNPs, 0.641 and 0.599, index 12 and 14) outperformed the ABC rejection
(0.454 and 0.469, index 11 and 15) or led to similar errors (0.489, index 13). However,
they did not outperform the ABC with correction (0.369, 0.376 and 0.364, indexes 1,
2 and 3). This could be explained by SPIDNA not being able to leverage the local lin-
ear relationships in each data point neighborhood found by the ABC, which motivates
furthermore the combination of both methods.

Among our permutation-invariant architectures, the best one (SPIDNA using batch
normalization, (0.454, index 11 in Table 4.1) had a smaller prediction error than our cus-
tom CNN (0.487, index 6). However, it is not clear whether this improvement is directly
linked to its built-in permutation-invariance property, or to other differences between
the two networks.

The best non-adaptive SPIDNA (using 400 SNPs of each matrix) uses batch normal-
ization while the adaptive versions (using all the SNPs of each matrix) use instance nor-
malization, as there is currently no implementation of batch normalization for batches
with inputs of mixed sizes (see Section 2.1.4 for more information about why our adap-
tive networks do not use batch normalization). The Non-adaptive SPIDNA architecture
using batch normalization (0.454, index 11) achieved better results than its adaptive
counterpart versions that use instance normalization (0.489 and 0.469, indexes 13 and
15). To understand if this loss of performance can be attributed to the addition of the
adaptive feature or to the difference of normalization layer, we also trained two ver-
sions that have the same configuration as the adaptive ones, but using only 400 SNPs.
These two non-adaptive versions with instance normalization have a much higher test
error (0.641 and 0.599, indexes 12 and 14), suggesting that our networks using instance
normalization tend to underfit, and that the adaptive feature of these networks seems
to partially compensate for this effect. Therefore, adaptive architectures could greatly
benefit from an optimized implementation of adaptive batch normalization or from an
implementation of batches with mixed data sizes.

Controlling the speed to invariance thanks to the parameter « improved the perfor-
mance of the instance normalization SPIDNA (0.641 versus 0.599, indexes 12 and 14),
but less significantly the performance of the instance normalization adaptive SPIDNA
(0.489 versus 0.460, indexes 13 and 15). The impact of the parameter « is studied in
more details in Section 4.2.1.

SPIDNA combined with ABC We evaluated two types of inputs for ABC: (i) SPIDNA
outputs only (inspired by Jiang et al. (2017)) or (ii) both SPIDNA outputs and summary
statistics. When using only the predictions of SPIDNA as input to ABC with correction
(linear regression, ridge regression or neural network), we improved greatly SPIDNA's
performance and obtained errors similar to the ABC based on predefined summary
statistics (0.369 compared to 0.364, index 21 and 3). When using both SPIDNA predic-
tions and predefined summary statistics as input to the ABC algorithm, we decreased
further the prediction errors (0.347, index 29).

It is not yet entirely clear why this combination of ABC and deep learning (without
using summary statistics) decreases the prediction error. Neural networks, such as

90 Chapter 4. Inferring demography from genomic data

SPIDNA, learn a very general mapping of the whole input space to the output demo-
graphic parameter space. On the other hand, ABC learns a local relationship, the pos-
terior distribution of the demographic parameters, for each observed example based
on its neighborhood in the input space. Combining ABC with SPIDNA thus adds a local
inference step to the general mapping learned by SPIDNA, and this might help readjust
the predictions locally. This is illustrated in Figure 4.3 where recent population sizes es-
timated by SPIDNA have a tendency towards the center of the prior, while SPIDNA+ABC
corrects it (Figure 4.4). This combination might be modifying the bias/variance trade-off
favored by SPIDNA towards higher variance.

MixAttSPIDNA The best results were obtained with the three versions of Mix-
AttSPIDNA (indexes 32, 33 and 34), making them the first purely “end-to-end without
ABC step” approaches to outperform ABC on summary statistics. The first one that in-
cludes solely an attention mechanism on lines of tensor matrices reaches an error of
0.320 (index 32). Additionally, including an attention mechanism on the predictions of
all replicates for each scenario (0.287, indexes 33) greatly improved the prediction error
(0.287). During this run, the architecture is first trained to perform predictions replicate
wise, then its weights are frozen, while a group of layers allowing for predictions sce-
nario wise is added and trained. Finally, if instead of freezing the weights we kept train-
ing them together with the added layers, the predictions improved further (0.251, index
34). In this last configuration, MixAttSPIDNA is first trained to perform replicate-wise
predictions, then, instead of being completely frozen, the learned weights are assigned
alower learning rate and are further optimized during the scenario-wise training. These
three architectures are the first that do not rely on any summary statistic or ABC step
to have significantly outperformed all the other methods presented here.

Simulated HGDP dataset

Now, we investigate the performance of a subset of architectures on our second train-
ing set, the HGDP simulated dataset (Section 3.1). Precisely, using this dataset, we train
the best SPIDNA architecture (without ABC nor summary statistics, index 11 in Table
4.1), and all MixAttSPIDNA version (indexes 32, 33 and 34 in Table 4.1) to solve the
same task (reconstructing population sizes through time). We present the results in
Table 4.2.

It is important to note that summary statistics cannot be easily compared directly
across scenarios of this dataset. Indeed, each example has a varying number of hap-
lotypes with the purpose of representing real data heterogeneity (where a different
population might have a different number of sequenced individuals). This heterogene-
ity impacts most summary statistics, and one would need to redesign them in order
to be insensitive to the sampling size. Previous works have instead decided to sim-
ulate datasets with a large number of individuals, recompute summary statistics on
subsets corresponding to each smaller sampling size, and use different reference ta-
bles for each prediction (Boitard et al,, 2016b). Although this solves the issue, it is not
the most efficient fashion, particularly for machine learning methods that would need
to be retrained on each reference table (i.e., for each sampling size, i.e., almost each
population), hence losing the advantage of a single training and fast predictions.

91

4.1. Study of ANN performances on simulated data

1.0

0.48 0.48

0.8 1

0.35

0.36
' Summary
----- Statistics
+
SPIDNA
Outputs

"""" SNP
Matrices

Population size prediction error

0.2 1 Summary
Statistics
0.0 -
(@) Q > > (] “ [} O [[N
g § § & F 5 £ £ & 5§ & & & 5 & & § & & 2
< s &6 & s s & 8 § % S~ 5 § 8 <~ ¢ & 7
N IS T < < < Q c & + N < o + & S &
) S I < [J) k] (2] () S o kej ko]] ° °
< 2 S o) ¥ T 5 (v IS5 I = T T Ny < < T
o Y T & 5 T 2 5 S 9 o : P -
2 g 5 &5 £ X IS 9 3 g > g o & o
e © s £ 5§ 5 ° ¢ g & < &£ T g 2 ¢
G I £ IS S = %) a5 7 s & <l ; 5
8 Q < @ = J< o o 7 I &
2 g 5 ¢ & 9 g = £ = 5 £
< @ 2 g g & T8 ¢ 5 3 ¢
%) I3 o < + L% Q Q a Q
ES S g = < & “ <
s F 9 9 < *
Q < & I
& = i % 5 =
%) Q & S Q
£ @® & &
EN
2 N
£ 3

Figure 4.6: Prediction errors on the test set of the best run of each method after the hy-
perparameter optimization. The best configurations of each ANN (MLP, custom CNN, SPIDNA
and MixAttSPIDNA) have been retrained for 10 epochs. Traditional ABC methods are depicted
in yellow, deep MLPs and CNNs in red and orange, SPIDNA ANNs in blue, MixAttSPIDNA ANNs
in purple and combinations of ANNs and ABC in green. Methods are grouped into 4 families:
“Summary statistics” (processed by ABC or ANN), “SNP matrices” (processed by ANN), “SPIDNA
outputs” (processed by ABC, no summary statistic used), “Summary statistics and SPIDNA out-
puts” (processed by ABC). Vertical black lines on top of each bar represent the 95% confidence
interval of prediction errors. Horizontal dashed line indicate the lowest error obtained (adap-
tive SPIDNA + ABC with local linear regression using summary statistics and SPIDNA outputs).

92 Chapter 4. Inferring demography from genomic data

Method Adaptive Summgry ABC correction | «value Validation | Test
statistics error error

0 | ABC No Yes No No 0.490 0.496
1 ABC No Yes Linear reg. No 0.357 0.369
2 | ABC No Yes Ridge reg. No 0.363 0.376
3 | ABC No Yes Single layer NN | No 0.352 0.364
4 MLP No Yes No No 0.399 0.437
5 | MLP No No No No 0.690 0.675
6 Custom CNN No No No No 0.485 0.487
7 | Flagel CNN 0/-1 encoding | No No No No 0.537 0.541
8 | Flagel CNN 0/-1 encoding | Downsampling | No No No 0.437 0.444
9 | Flagel CNN -1/1 encoding | No No No No 0.610 0.609
10 | Flagel CNN -1/1 encoding | Downsampling | No No No 0.482 0.484
11 | SPIDNA No No No No 0.453 0.454
12 | SPIDNA No No No No 0.637 0.641
13 | SPIDNA Yes No No No 0.487 0.489
14 | SPIDNA No No No 0.849 0.592 0.599
15 | SPIDNA Yes No No 0.539 0.466 0.469
16 | ABC + SPIDNA No No No No 0.462 0.462
17 | ABC + SPIDNA No No Linear reg. No 0.364 0.377
18 | ABC + SPIDNA No No Ridge reg. No 0.371 0.380
19 | ABC + SPIDNA No No Single layer NN | No 0.363 0.372
20 | ABC + SPIDNA Yes No No 0.539 0.458 0.460
21 | ABC + SPIDNA Yes No Linear reg. 0.539 0.363 0.369
22 | ABC + SPIDNA Yes No Ridge reg. 0.539 0.382 0.391
23 | ABC + SPIDNA Yes No Single layer NN | 0.539 0.374 0.384
24 | ABC + SPIDNA No Yes No No 0.476 0.478
25 | ABC + SPIDNA No Yes Linear reg. No 0.339 0.353
26 | ABC + SPIDNA No Yes Ridge reg. No 0.341 0.357
27 | ABC + SPIDNA No Yes Single layer NN | No 0.345 0.361
28 | ABC + SPIDNA Yes Yes No 0.539 0.474 0.478
29 | ABC + SPIDNA Yes Yes Linear reg. 0.539 0.335 0.347
30 | ABC + SPIDNA Yes Yes Ridge reg. 0.539 0.339 0.354
31 | ABC+ SPIDNA Yes Yes Single layer NN | 0.539 0.347 0.365
32 | MixAttSPIDNA No No No No 0.314 0.320
33 MixAttSPIDNA with No No No No 0.288 0.287

attention on scenarios
34 MixAttSPIDNA with No No No No 0.234 0.251

attention on scenarios

unfreezing

Table 4.1: Prediction errors of the best configuration of each method on the sim-
ulated cattle dataset. Section 3.3.2 explains the adaptive characteristic of SPIDNA to
the number of SNP indicated in column “Adaptive”. Section 4.2.1 explains the utility of
the parameter « in SPIDNA indicated in column “« value”.

4.2. Insight into the inner workings and robustness of ANNs 93

For these reasons, we built architectures flexible to the input size and investigated
in Section 4.2.4 the best procedure for training them on data heterogeneous in sample
size. Thanks to this experiment, we chose to format the batches by subsampling the
number of haplotypes to 50 when greater than this value in the unprocessed SNP ma-
trix (they are between 10 and 100 haplotypes for each matrix in the simulated HGDP
dataset). On the other hand, matrices with fewer than 50 haplotypes are padded with
the value 255 to reach 50 rows.

Overall, the rank between architectures is the same as in Table 4.1. However, the
errors are greater on the simulated HGDP dataset than on the previously simulated
cattle dataset, probably because the new priors are more complicated and include a
varying number of haplotypes in each scenario. This explains why the gap in terms
of prediction error between SPIDNA on the simulated cattle dataset (0.454, index 11 in
Table 4.1) and HGDP dataset is important (0.560, index 0 in Table 4.2). Similarly, the two
versions of MixAttSPIDNA without weight unfreezing mechanism have a greater error
on the simulated HGDP dataset (0.484 and 0.392 in Table 4.2, versus 0.320 and 0.287
in Table 4.2). However, this gap of performance is much lower for MixAttSPIDNA with
attention mechanism on scenario and weight unfreezing (0.288, index 3 in Table 4.2
versus 0.251, index 34 in Table 4.1). This observation shows that the weight unfreezing
mechanism seems to play an important role to overcome the difficulties of the HGDP
dataset, which are the wider priors and the variable number of haplotypes. We thus
later applied this trained network to the real HGDP dataset in Section 4.3.2.

Method Scenario prediction aggregation | Training procedure | Validation error | Test error
0 | SPIDNA Mean Normal 0.554 0.560
1 | MixAttSPIDNA Mean Normal 0.480 0.484
2 | MixAttSPIDNA | Attention mechanism Normal 0.407 0.392
3 | MixAttSPIDNA | Attention mechanism Unfreezing 0.298 0.288

Table 4.2: Prediction errors on the simulated HGDP dataset. The SPIDNA version
included here is based the same as index 11 in Table 4.1. Section 3.4.3 details the dif-
ferences between prediction aggregators indicated in the column “scenario prediction
aggregation”. Section 3.5.3 explains the differences between the training procedures
indicated in the column “Training procedure”.

4.2 Insight into the inner workings and robustness of
ANNSs

Although ANNs performed very well on the simulated data, several experiments have
been conducted to understand how they behave during training, which features they
compute from the data and whether they are robust to perturbations of the input data.
These experiments are important in the context of simulation-based inference because
of the discrepancy between artificial and real data. Indeed, real data are certainly more
noisy and often do not respect the evolutionary model assumptions, which may greatly
bias the predicted demography. Because real labeled datasets are not available for our
task, we are compelled to test for these biases with simulated data. The first experiment

94 Chapter 4. Inferring demography from genomic data

shown aims at understanding the behaviour of the internal variance of data flowing
through SPIDNA and the impact of the parameter « added to control this variance.
The second experiment evaluates the robustness of ABC and SPIDNA after training to
changes in the population genetic simulator, as well as the addition of selection and
variations of the number of haplotypes in the SNP matrices. The third experiment is a
proof of concept using Canonical correlation analysis (CCA) to find correlations between
the features computed by an ANN and summary statistics computed from the dataset.
Finally, we compare different ways to format the batch for MixAttSPIDNA and evaluates
them on the simulated cattle dataset in order to choose which one is the most robust
to variations of the number of haplotypes. The best procedure will be later used for
prediction on the real HGDP dataset.

4.2.1 Internal variance of SPIDNA

As explained in Section 3.3.1, each block of SPIDNA combines invariant and equivariant
features for the network to be invariant to row permutations in the input matrix (see
step I3 in Figure 3.7). In more details, the invariant features are the mean (over the
haplotype dimension) of the equivariant ones obtained after the convolution layer. In
order to combine both types of features after each block, the invariant ones are copied
multiple times (i.e., once for each haplotype) to match the size of the equivariant tensor.
Therefore, the network becomes gradually more invariant, rather than just equivariant.
Actually, a decrease in the activation variance is expected in most networks, where
the complex high dimensional features computed from the inputs are step by step
combined into simpler features as data reach the output. However, in SPIDNA case,
the duplication of invariant features at each block accentuates this phenomenon.

To control the speed at which the network becomes invariant with depth, i.e., to
control the proportion of equivariant and invariant features, we added a parameter «
that multiplies equivariant features by « and invariant features by 1 — a. We tested
adding this parameter to two versions of SPIDNA with instance normalization: the first
takes as input the first 400 SNPs of each data matrix and the second uses all the SNPs
(their number varies between matrices). An « greater than 0.5 gives more weights to
equivariant features and, thus, increase the overall variance of the network activities
across the haplotypes.

In practice, figures 4.7 at training step 0 (the darkest blue lines) and 4.8 show that
the variance with « > 0.5 is indeed greater when measured before the convolution
layer of each block, since more weight is given to the equivariant (unique) features
than to the averaged and copied invariant features. There is a clear trend of variance
decreasing more smoothly with larger alphas before convolution and, to a lesser extent,
after convolution. However, after training this trend remains only before convolution
(as it is expected by construction of the tensor fed to the convolution) and disappears
after each convolution (Figure 4.9). But the training curves in Figure 4.10 show similar
to worse results for high values of « in the first training steps (90,000 training steps
represent less than one epoch). We also tested different values of o on longer runs
during the hyperparameters’ optimization procedure (Figure 4.1) and there seems to be
no effect of a for SPIDNA with a number of SNPs fixed to 400 (dark blue) and debatably a
correlation between « and the network loss for SPIDNA with variable number of SNPs

4.2. Insight into the inner workings and robustness of ANNs 95

(light blue). Figure 4.7 shows that the variance quickly converges to a stable regime
which does not depend on « after few training steps. Figure 4.9 shows similar variance
patterns when measured after the convolution layer.

Variance during training

a=0.25 a=0.45
0.4 0.4

0.3 0.3

0.2

0.1

0.1

0.0

a=0.55 a=0.65

Variance before the convolution layer

Training step

SPIDNA block

Figure 4.7: Evolution of the data tensor variance during training at each SPIDNA block
before the convolution layer for different values of . The x-axis indicates the depth of the
convolution layer. The network is composed of seven blocks, with the first convolution layer
denoted as block 0 on the x-axis. One training step corresponds to one SNP matrix sampled
from the training set.

These experiments show that despite that parameter « has indeed an effect on the
datavariance, it has little effect on the network performances even with extreme values.
One explanation could be that the optimization is able to quickly set up the weights to
compensate for any variance profile to the required one for prediction. Although this
parameter does not seem to improve the predictions or the optimization, it should be
considered for more extreme architectures where the optimization does not converge
easily. a could also be improved by replacing it by a function depending on the current

96 Chapter 4. Inferring demography from genomic data

Variance at training step 0

Before the convolution layer After the convolution layer
0.9
0.84
0.8
0.6 0.7 1
[
o
C
0
= 0.6
> 0.4
0.54
0.2
0.44
" 0.31
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
SPIDNA block

Figure 4.8: Variance of the data tensor before and after the convolution layer at each
SPIDNA block at the beginning of training for different values of a.

Variance at training step 90015

Before the convolution layer After the convolution layer
0.8
0.7 0.8
0.6
0.5 061
(V]
1)
C
o 0.4+
=
g 0.4
0.3
0.21
0.21
0.1+
0.01 0.0
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

SPIDNA block

Figure 4.9: Variance of the data tensor before and after the convolution layer at each
SPIDNA block after 90015 training steps for different values of «.. One training step corre-
sponds to one SNP matrix sampled from the training set.

4.2. Insight into the inner workings and robustness of ANNs 97

a=0.45

L N —

Best validation error = 0.69

a=0.65

Best validation error = 0.71

a=0.25
1.0 1
|
|
\ —— Training
0.9 “ - Validation
|
0.8
0.7
Best validation error = 0.7
0.6
a=0.55
1.0
0.9+
a
2 0.8
|
0.7
Best validation error = 0.7
0.6
a=0.85
1.0 i
|
0.9- N
0.8 ___
0.7
Best validation error = 0.73
0.6

a=0.95

T T T T
0 20000 40000 60000

T
80000

Training step

Best validation error = 0.76

T T T T T
0 20000 40000 60000 80000

Figure 4.10: Evolution of the SPIDNA network losses during training for SPIDNA trained
from scratch with different values of «. Validation loss is computed after averaging the pre-
dictions of SPIDNA for all replicates of each scenario. Training loss is the average of the MSE of
all replicates. One training step corresponds to one SNP matrix sampled from the training set.

98 Chapter 4. Inferring demography from genomic data

depth in the network to more precisely define the variance pattern.

4.2.2 Impact of positive selection on SPIDNA and ABC inference

The impact of positive selection, that is when a novel mutation is beneficial for the indi-
viduals carrying it and thus increases in frequency together with its surrounding neutral
mutations (physically linked to the beneficial one), on SPIDNA and ABC inference was in-
vestigated for three illustrative demographic cases (scenarios “Medium”, “Decline” and
“Expansion” of Figure 4.2). Because including selection required a change in the genetic
simulator (msms instead of msprime), we first ensured that the change of tool to gener-
ate the new test dataset had no influence on the prediction accuracy (Figure 4.11). We
then simulated 2Mb regions including a central SNP under positive selection, with vary-
ing selection strength, starting time and frequency of the beneficial allele at this time
(100 regions for each scenario). We chose a conservative approach in which all 100
regions are under selection (worst case scenario). For each scenario, we predicted the
population size history using SPIDNA (batch normalization) or ABC (with local linear cor-
rection) on summary statistics. Both ABC and SPIDNA predictive errors varied with the
selection coefficient (Figure 4.12). On average a moderate selective pressure (100-400)
did not decrease the performance (Figure 4.12 top row). ABC inference for declining
population datasets was the only one negatively impacted (increased error for s=200
and 400). In fact, in multiple cases, increasing s decreased the prediction error mean.
Very strong selection (s = 800) on the other hand led to an increased prediction error
mean in all cases except for the declining histories inferred by SPIDNA. In addition, the
95% quantile and standard deviations of the prediction errors tend to increase with s
(Figure 4.12) indicating that the prediction should be taken more cautiously in the pres-
ence of strong positive selection. This variance was systematically smaller for SPIDNA
than ABC. In particular, a handful of histories reconstructed with ABC were far off, while
SPIDNA prediction errors remained comparatively low for all scenarios (Figure 4.13).

Robustness to the number of individuals

Importantly, SPIDNA adapts to the number of individuals, which is an advantageous
property compared to many methods relying on summary statistics. SPIDNA can be
trained on data sets having similar or varying sample sizes, and, once trained, it can be
directly applied to a dataset of reasonably close sample size, but unobserved during
training. We provide an example of robustness in an experiment focusing on a subset
of demographic scenarios (Medium, Large constant size, Decline and Expansion) and a
wide range of sample sizes (from 10 to 150, Figure 4.14). SPIDNA using batch normal-
ization (trained on exactly 50 haplotypes) did not suffer a strong loss of accuracy when
the sample sizes remained in the [45,65] range. Outside of this range, the predictions
were inaccurate in two cases: small sample sizes under expanding and constant size
scenarios, or large sample sizes under the expansion scenario. This was expected be-
cause this specific network was not exposed to diverse sampling sizes during training.
Given the observed variations across scenarios and if the sample size is expected to
vary substantially from 50, we would advise the user to perform a similar experiment
based on her/his targeted sample size and a larger number of scenarios drawn from

4.2. Insight into the inner workings and robustness of ANNs 99

scenario = Medium scenario = Large
1.0 1
0.8 A 1
ot
©
=
@ 0.6 1 1
<
[}
[0}
2 0.4 1
L
S
@ 0.2 - |
0.0 A 1
scenario = Decline scenario = Expansion
1.0 8
0.8 A
ot
[0}
=)
@ 0.6 1
<
[}
3
. 0.4+
L
S
@ 0.2 -
0.0 A
msprime ms msms msprime ms msms
simulator simulator

Figure 4.11: Robustness of SPIDNA to simulator tool. Distributions of SPIDNA predictive
errors per replicate (i.e, per independent genomic region) for four demographic scenarios and
three different genetic simulators (msprime, ms, msms). SPIDNA batch norm. network was
trained on simulated datasets generated with msprime. The test datasets were generated by
different simulators, based on the same demographic parameters and under neutrality. X-axes:
simulator for the test set ; Y-axes: predictive error for each region/replicate (i.e., for each ma-
trix of size 50 samples x400 SNPs) averaged over the 21 time steps. Each violin describes 100
replicates.

100

Chapter 4. Inferring demography from genomic data

scenario = Medium

mean of predictive errors

scenario = Decline

scenario = Expansion

0.6 0.124
0.1149
5012 0.5
=
o 0.101
g 041 method
g 0.11 0.09 1 ® abc
@ !) spidna
aQ
0.3 4
5 0.10 0.08
]
g 0.2 0074
0.09 9 Y
| 0.06
T T T T T 0.1 T T T T T T T T T T
0.0 100.0 200.0 400.0 800.0 0.0 100.0 200.0 400.0 800.0 0.0 100.0 200.0 400.0 800.0
SAa(scaled) SAa(scaled) SAa(scaled)
quantile95 of predictive errors
scenario = Medium scenario = Decline scenario = Expansion
0.275 4.0 0.30
0
S 0.250 35
@ 0.25
20225 30
S 2.5 method
g 0200 0.20 ® abc
::_L 2.0 ® spidna
S 0.175
n 1.5
> 0.150 0.15
s 1.0
E] \
3 0.125 . | 05 0.10 N G—
0.100 0.0 —
0.0 100.0 200.0 400.0 800.0 0.0 100.0 200.0 400.0 800.0 0.0 100.0 200.0 400.0 800.0
SAa(scaled) SAa(scaled) SAa(scaled)
std of predictive errors
scenario = Medium scenario = Decline scenario = Expansion
0.07
0.104
¢ 0.06 1
o
5 0.05 0.08 4
9 . method
T 0.04 0.06 ® abc
S) spidna
s 0.03 1 0.04 4
° s
T 0.02 '/
@ 0.02 X 4
0.014] y
T T T T T T T T T T 0.00 1 T T T T T
0.0 100.0 200.0 400.0 800.0 0.0 100.0 200.0 400.0 800.0 0.0 100.0 200.0 400.0 800.0
SAa(scaled) SAa(scaled) SAa(scaled)

Figure 4.12: Robustness of SPIDNA to the presence of positive selection. ABC and SPIDNA
(batch norm.) predictive errors computed from 100 2Mb-long regions for three demographic
scenarios (“Medium” constant size, “Decline” and “Expansion”) under various selective pressures
(with additive fitness effect). The reference/training set is the same as the one used throughout
the paper (neutral simulations generated with msprime from a prior distribution on recombi-
nation rate and population sizes). The test datasets were simulated using msms with multiple
values of selection strength, starting time and initial frequency of the beneficial allele. X-axes:
Selection coefficient SAa. Y-axes: Mean (top), 95% quantile (middle row) and variance (bottom
row) estimators of the predictive error (across 30 test sets for SAa=0 and 144 test sets for any
other SAa value). Vertical bars correspond to 95% confidence intervals computed via bootstrap.

4.2. Insight into the inner workings and robustness of ANNs 101

scenario = Medium

method = abc method = spidna
0.40 ¢
0.35 ¢
§ 0.30
@
o 0.25 ‘
=
T 0.20
el
(9
£ 0.15 ¢
- ==
0.05
0.0 100.0 200.0 400.0 800.0 0.0 100.0 200.0 400.0 800.0
SAa(scaled) SAa(scaled)
scenario = Decline
method = abc method = spidna
¢
(]
4 ¢
¢
23 U
[
o ¢
E] (]
)
g’ .
£ ' ¢
1 i : ————
. - é é —— - ———
0.0

100.0 200.0 400.0 800.0 0.0 100.0 200.0 400.0 800.0
SAa(scaled) SAa(scaled)

scenario = Expansion

method = abc method = spidna
0.7 ¢
0.6
§ 0.5
@ 0.4
20 ’ '
9]
£ 03 $
o ¢
o (4
0.2
L) .
0.0
0.0 100.0 200.0 400.0 800.0 0.0 100.0 200.0 400.0 800.0
SAa(scaled) SAa(scaled)

Figure 4.13: Robustness of SPIDNA to the presence of positive selection. ABC and SPIDNA
(batch norm.) predictive errors computed from 100 2Mb-long regions for three demographic
scenarios (“Medium” constant size, “Decline” and “Expansion”) under various selective pres-
sures. The reference/training set is the same as the one used throughout the paper (neutral
simulations generated with msprime from a prior distribution on recombination rate and pop-
ulation sizes). The test datasets were simulated using msms with multiple values of selection
strength, starting time and initial frequency of the beneficial allele. X-axes: Selection coefficient
SAa. Y-axes: Distribution of predictive errors (across 30 test sets for SAa = 0 and 144 test sets
for any other SAa value).

102 Chapter 4. Inferring demography from genomic data

the prior distribution. If needed, the user can then train a new SPIDNA network with-
out any change in its architecture, either on a set containing a wider range of sampling
sizes or on a set matching the targeted sample sizes. To fasten the training, this net-
work could be initialized with the weights of the network optimized for the sample size
50, and fine-tuned on the new set.

scenario = Medium scenario = Large
2.5 A1 .
2 2.0 ‘
@©
=
o
]
= 1.51 b
<
1)
©
(V]
S 1.0 1
S
o ‘ ““ ‘ — $$
NI 2¥Y ‘ _ ¢448444
" " " Number of haplotypes "7 " Number of haplotypes
(sample size) (sample size)
scenario = Decline scenario = Expansion

_ L
lod | “‘&6‘6“

10 25 35 40 45 50 55 60 65 75 100150 10 25 35 40 45 50 55 60 65 75 100150
Number of haplotypes Number of haplotypes
(sample size) (sample size)

Error for each replicate
o L L N N
(6] o (6] o 6]
A L
1 1 1 1

o
o

Figure 4.14: Robustness of SPIDNA to sample size. Distributions of SPIDNA predictive er-
rors per replicate (i.e, per independent genomic region) for four demographic scenarios and
different sampling sizes. SPIDNA (batch norm.) network was trained on simulated datasets
containing exactly 50 samples. The test datasets were simulated with msprime based on the
same four demographic parameter sets but with different sample sizes (ranging from 10 to 150
haplotypes). X-axes: sample size M of the targeted region ; Y-axes: predictive error for each
replicate (i.e., for each matrix of size M samples x400 SNPs) averaged over the 21 time steps.
Each violin describes 100 replicates.

4.2. Insight into the inner workings and robustness of ANNs 103

4.2.3 Interpreting the custom CNN with canonical correlation anal-
ysis (CCA)

We apply the method based on CCA described in Section 3.6 to the custom CNN archi-
tecture trained on the simulated cattle dataset in order to understand if ANNs compute
features similar to the summary statistics that are often used in population genetics.
As explained in the previous chapter, this method seeks for correlation between sets
of network activations and summary statistics. After training the network, we start by
reducing the dimensionality of the activations by applying a singular value decomposi-
tion (SVD). Then, CCA seeks for the projection that maximizes the correlation between
the two sets. In this section, we analyse the results obtained.

Figure 4.15 shows the distributions of the summary statistic weights in the CCA,
pondered by the correlation between the canonical variates associated, for each layer
of the network. If this quantity is equal to 1 for a summary statistic, it would mean that it
exists one canonical variate explaining all the correlation between the sets of activation
and summary statistics, and this variate would only depend on one summary statistic.
Figure 4.16 is similar, but distinguish each summary statistic by type. These two figures
show an overall decrease in correlation between summary statistics and activations
when moving close to the output of the network. This observation could have two
meanings, either the correlation decreases because the network computes features
that are more and more complex combinations of summary statistics (and therefore
less correlated to individual summary statistics), or this is an artefact from the method
itself.

Let us remind that an SVD with a variance conserved threshold of 0.99 was applied
on all layers studied except for the last that have already only 50 activations. By setting
athreshold on the variance conserved, the activations of the first layers are projected in
a space with much more than 50 dimensions (dimensions of each layer after SVD: 950,
907, 730, 393, 163 and 50) and therefore, the CCA has more chances to find spurious
correlation with the first layers than the last, explaining the decreases in correlation. In
Figures 4.17 and 4.18, the SVD has been set up to project the activations of each layer to
a 50-dimensional space, which resulted in an inverse dynamic with an increase in cor-
relation in the last layers of the network and particularly with the identity by state sum-
mary statistics. This discrepancy between the results obtained with the two different
settings of the SVD tends to confirm that this method is not robust enough and could
be improved. For instance, the contribution of each activation to the final prediction
is not taken into account, and doing otherwise should reduce the risk of interpreting
spurious correlations. This amelioration and others will be discussed in more details in
the perspectives.

The last layer of the custom CNN contains 50 activations and thus did not require to
be projected with an SVD. Therefore, the contributions of the activations and summary
statistics to the first canonical variates (i.e., those who explain most of the correlation
between the two sets) can be directly analysed with the correlation circle in Figure 4.19.
First, the vector of the nucleotide diversity 7 (Pl in Figure 4.19) and expected heterozy-
gosity (HET in Figure 4.19) are confounded, which is expected because they are in reality
the exact same measure in our data. These two summary statistics mostly contribute
to the second canonical component which is also very related to activations 7 and 20,

104 Chapter 4. Inferring demography from genomic data

Distribution of summary statistics correlation to custom CNN activations in each layer

0.020
0.015
0.010
0.005
0.000

2 3 4 5 6 7
Custom CNN layer

Summary statistics weights ponderated by canonical variable correlations

Figure 4.15: Distribution of summary statistic CCA weights pondered by the canonical
variates to custom CNN activations in each layer.

4.2. Insight into the inner workings and robustness of ANNs 105

summary statistics correlation to custom CNN activations in each layer

Summary statistics
mmm Site frequency spectrum
mmm Linkage disequilibrium
I |dentity by state
|
|

Allele frequency identity by state
Other

Custom CNN layer

Figure 4.16: Summary statistic CCA weights pondered by the canonical variates to custom
CNN activations in each layer. The height of a bar correspond to the CCA weights pondered by
the canonical variate of a summary statistic, and its colour on which family of summary statistics
it is part of.

106 Chapter 4. Inferring demography from genomic data

Distribution of summary statistics correlation to custom CNN activations in each layer

0.020

0.015

0.010

0.005

Summary statistics weights ponderated by canonical variable correlations

0.000

2 3 4 5 6 7
Custom CNN layer

Figure 4.17. Distribution of summary statistic CCA weights pondered by the
canonical variates to custom CNN activations, with activations reduced to a 50-
dimensional space in each layer.

4.2. Insight into the inner workings and robustness of ANNs 107

summary statistics correlation to custom CNN activations in each layer

Summary statistics
Site frequency spectrum
Linkage disequilibrium
Identity by state
Allele frequency identity by state
Other

Custom CNN layer

Figure 4.18: Summary statistic CCA weights pondered by the canonical variates to custom
CNN activations, with activations reduced to a 50-dimensional space in each layer. The
height of a bar correspond to the CCA weights pondered by the canonical variate of a summary
statistic, and its colour on which family of summary statistics it is part of.

108 Chapter 4. Inferring demography from genomic data

therefore these activations seem to capture a data feature that is very close to these
two summary statistics. Similarly, the first bin of the site frequency spectrum (SFS_1,
the number of singletons in the data), contributes mainly to the first component. Many
activations also contribute to this component (mainly activations 4, 17, 21, 31 and 48),
showing that these activations compute features that are partially related to the num-
ber of singletons. If these activations contribute a lot to the final prediction, this would
mean that the network heavily relies on features similar to the expected nucleotide di-
versity 7 and number of singletons. This result is interesting because the nucleotide
diversity 7 is strongly linked to the effective size of a population with a constant size
and increases with large population. Moreover, singletons are considered particularly
useful to distinguish expansions.

4.2.4 Comparison of MixAttSPIDNA batch formats

SPIDNA and MixAttSPIDNA are designed to take a variable number of haplotypes with-
out modification of the SNPs matrices, thanks to the use of layers that easily adapt to
variations in the input sizes. More specifically, the layers that we use (the convolutional
and hub attention layers) treat each element of the haplotype dimension in the same
manner. Therefore, adding an element (a haplotype) to the input only requires repeat-
ing the same processing that is already applied to each other element (e.g., the filter
convolutions are repeated to match the number of element of the haplotype dimen-
sion in the case of convolutional layers). Furthermore, the mean steps of the networks
operate the same regardless of the number of haplotype, leading to an output of the
same size when the number of haplotype varies.

However, in practice, SNP matrices with different sizes cannot be collated in the
same batch (the same tensor). Therefore, training a network on these matrices would
require to input them one by one and performing the backpropagation once they each
have been processed by the network. This considerably reduces the parallelization of
ANNSs, and thus, slows down the training of the network. This is why it is preferable to
collate SNP matrices in the same batch by either padding or by collating matrices of the
same sizes together.

This last experiment compares four different batch formats that can be used to
collate SNP matrices. To this end, between 5 and 50 haplotypes are drawn for each
replicate of the simulated cattle dataset, and SNP sites that are not polymorphic (vari-
able) in the subset of selected haplotypes are removed. We then trained MixAttSPIDNA
by using the four batch formats described in Figure 4.20. After training, we evaluated
the four trained architectures on the validation dataset with all matrices subsampled
to between 5 and 50 haplotypes.

From Figure 4.20, the best method consists in making batches with SNP matrices
that have a different number of haplotypes (heterogeneous batches) by padding every
SNP matrices with 255 to match 50 haplotypes (blue line). We choose the value 255
because the SNP in the matrices are encoded as unsigned integer, and it is the most
distinguishable value from 0 and 1 for this type of data. With this method, all the SNP
matrices reach the dimension 50x 400, i.e., 50 “haplotypes” (some will be completely
filled with value 255) and 400 SNPs. It shows a very constant error for any number of
haplotypes with a slight increase for the smallest number, which is expected due to lack

4.2. Insight into the inner workings and robustness of ANNs 109

Correlation circle between activations and summary statistics in the custom CNN

1.00

Second cannonical component

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
First cannonical component

Figure 4.19: Correlation circle showing the contributions of each summary statistics and
custom CNN activations to the first two canonical components. The custom CNN have been
trained on the simulated cattle dataset and the canonical components have been obtained by
performing a CCA between the network activations in its last layer and 279 summary statistics.

110 Chapter 4. Inferring demography from genomic data

of information when the number of haplotypes is very low. Thanks to this experiment
conducted on the simulated cattle dataset, we chose the batch format later used for
the simulated HGDP dataset, where matrices have a different number of haplotypes to
match the different number of individuals in the real HDGP dataset.

Prediction error of MixAttSPIDNA for different number of haplotypes and SNP matrix formats

—— Heterogene batches padded to 50 haplotypes
Heterogene batches padded to maximum number of haplotypes
Homogene batches without padding

—— Homogene batches padded to 50 haplotypes

=4 o o 4 o g =
n EY S @ © o -

Prediction error (Mean Squared Error)

o
S

10 40 50

20 0
Number of haplotypes in SNP matrices before padding

Figure 4.20: Comparison of MixAttSPIDNA prediction error for different number of hap-
lotypes and SNP matrix format. Each MixAttSPIDNA architecture is trained on the simulated
cattle training dataset, with between 5 and 50 haplotypes randomly subsampled for each SNP
matrix. Blue and orange lines represents MixAttSPIDNA trained with batches composed of SNP
matrices with different number of haplotypes. SNP matrices in batches are either padded with
255toreach 50 “haplotypes” (blue line) or padded to fit the SNP matrix with the highest number
of haplotypes in the batch (orange line). Green and red lines represents MixAttSPIDNA trained
with batches composed of SNP matrices with the same number of haplotypes. SNP matrices
in batches are either padded with 255 to reach 50 “haplotypes” (red line) or not padded (green
line). Prediction errors are computed over the cattle validation dataset, with all matrices sub-
sampled to the number of haplotypes indicated on the x-axis.

4.3 Population size histories inferred by ANNs on real
data

Although it is not possible to have a precise error metric over the real datasets because
the true population size histories are not known, the archaeological and historical in-
sights about these populations can hint the accuracy of the predictions. Moreover,
performing predictions over real population not only allows to evaluate each inference
methods, but also allows having an insight about the rightfulness of the overall model
including the data collect and processing, and the simulation model. Indeed, in the case
where the inference method perform well on simulated data but not on real data, one
could suspect that other parts of the model like for instance the simulator, the priors

4.3. Population size histories inferred by ANNs on real data 111

are not tailored enough to the real evolutionary process. This chapter will also discuss
the results obtained with each method and pinpoints their advantages and features.

4.3.1 Cattle

We inferred the effective population size history of three breeds of cattle (Angus, Fleck-
vieh and Holstein) based on the same 75 individuals studied by Boitard et al. (2016b)
and sampled by the 1,000 Bull Genomes Project (Figure 4.21). The best ABC and
SPIDNA configurations both infer a large ancestral effective population size and a de-
cline for the past 70,000 years. However, SPIDNA reports higher recent population sizes
(Angus:11,334, Holstein:12,311, Fleckvieh:13,579) than ABC (Angus:344, Holstein:389,
Fleckvieh:1,436). Interestingly, SPIDNA infers the same population sizes for all three
breeds before 10 thousand years ago. This is in agreement with the estimation of the
beginning of the domestication (Zeder, 2008). Posterior point estimates obtained by
SPIDNA combined with ABC also indicated a decline after domestication, but with larger
population sizes for the last 30,000 years than SPIDNA alone and fairly large credible
intervals at recent times (Figure 4.22). Angus had the largest recent population size and
Fleckvieh the smallest, in contrary to the two previous methods. Credible intervals of
ABC based on SPIDNA outputs overlapped SPIDNA predictions except for the most an-
cient time window. On the contrary, credible intervals of ABC based on summary statis-
tics overlap SPIDNA predictions except for the most recent time windows (Figure 4.22).
Finally, SPIDNA combined with ABC identified an episode of smooth decline and recov-
ery of the population size preceding the domestication (between 400,000 and 30,000
years ago). ABC on summary statistics did not infer this ancient change (this study and
Boitard et al. (2016b)), however Boitard et al. (2016a) also estimated that 123,465 years
ago the ancestral population size increased from 73,042 to 137,775 using fastsimcoal2
(Excoffier et al., 2013).

4.3.2 HGDP

The experiments conducted in the previous sections of this chapter helped us to select
which architecture and configuration should be applied to the HGDP real genomes. The
results on the cattle test set and HGDP test set presented in Figure 4.6, Tables 4.1 and
4.2 show that all versions of MixAttSPIDNA have outperformed the other architectures
in terms of prediction error. We selected the best architecture configuration and batch
format, trained it on simulated data to finally infer the effective population size his-
tory of the 54 HGDP populations from the 929 whole genome sequences. The results
presented in Figures 4.23 and 4.24 can be interpreted in the light of our knowledge
about human population history to assess the accuracy of the values inferred. Figure
4.23 shows that the inferred histories gradually diverge when moving forward to the
present time. We expected this behavior as populations share a common ancestry be-
fore the “out of Africa” dispersal event.

Overall, most African populations (in blue) have a higher effective size during the last
400,000 years. This is not expected for the most ancient time prior to the “out of Africa”
dispersal event, and could be an effect of non-panmictic events that are not modeled,
such as structure in the African populations. Starting around 50,000 years ago, African

112 Chapter 4. Inferring demography from genomic data

105 i
|
=1 1
= et T
2 LT
wn LR
A i S —— e e Sryer s Y) S
o
N 104 -
7 : . H H
g .‘ - — Angus
= : : —— Fleckvieh
g jroordeen : Holstein
S TN : —— SPIDNA
o : pooeed . ABC
2 e ! :
£ : -== SPIDNA+ABC
& 103 4 i :
L :
i Domestication
102 103 104 105 108

Years before present (log scale)

Figure 4.21: Effective population size of three cattle breeds inferred by ABC (dotted lines),
by the best SPIDNA architecture, SPIDNA batch normalization (plain lines), and by ABC
based on SPIDNA outputs (dashed lines). Domestication is estimated to have occurred 10,000
years ago (vertical dotted line).

4.3. Population size histories inferred by ANNs on real data

113

Effective population size (log scale) Effective population size (log scale)

Effective population size (log scale)

10°

102 4

10t

10°

=
o
o)

[
o
>

=

o
W
n

-

o
~
L

10t

106

=

o
vl
L

=

o
w
L

=

o
]
L

10!

Angus

..... ABC
—-—-- SPIDNA+ABC
Domestication
10? 103 104 10° 106
Years before present (log scale)
Fleckvieh
.
[

o st

—— SPIDNA
~~~~~ ABC
—=-- SPIDNA+ABC
Domestication
102 103 104 10° 106

Years before present (log scale)

Holstein

"""" —— SPIDNA
..... ABC
—-- SPIDNA+ABC
Domestication
10? 103 104 10° 106

Years before present (log scale)

Figure 4.22: Effective population size of three cattle breeds inferred by the best SPIDNA
architecture, SPIDNA batch normalization, by ABC (dotted lines) and by ABC based on
SPIDNA outputs (dashed lines). Boxplots show the dispersion of SPIDNA predictions (over
replicates). For each history inferred by ABC and by SPIDNA combined with ABC, we display
the posterior median (dotted and dashed lines) and the 95% credible interval. Domestication is
estimated to have occurred 10,000 years ago (vertical dotted line).



114 Chapter 4. Inferring demography from genomic data

populations go through an expansion, while most non-African populations remain sta-
ble or undergo a bottleneck shortly after. This observation corroborates the “out of
Africa” dispersal dated at around 50,000-100,000 years ago (Harris and Nielsen, 2013;
Nielsen et al., 2017), where ancestors of non-African populations are expected to have
a lower size than the ones of African populations at the time of their migration out of
Africa and in the following generations. Despite this, the bottleneck in non-African pop-
ulations is not systematically as strong as what was inferred in the literature. Ideally,
MixAttSPIDNA should have inferred a recent expansion for most populations during
the recent time steps, but instead, it often infers an expansion just after 10,000 years
(which could correspond to the Neolithic expansion), followed by a decline. Some pos-
sible explanations for not observing this would be that the recent human expansion
falls outside the priors or that our method has difficulties to reconstruct recent events,
similarly to SMC based methods.

From Figure 4.24, we can observe that most populations from the same region show
similar trends. For instance, MixAttSPIDNA infers a similar population size histories for
Middle Eastern populations, with two bottlenecks, one around 150,000 years ago and
another one 10,000 years ago that is followed by an expansion. All European popula-
tions follow a similar pattern, except for the Tuscan population, that does not have the
signal of the second bottleneck and expansion. Following a different history, American
populations go under a decline after a short expansion around 40,000 years ago. Un-
like the other populations from the same region, the Maya population has a second
expansion phase starting 4,000 years ago, which corroborates the strong expansion
found by Bergstrom et al. (2020).

Although we identified some well known trends such as the “out of Africa” disper-
sal and common origins of human population in our results, further investigations are
required to explain the variations between regions and understand why some pop-
ulations display a different pattern from others within the same region. It would be
particularly interesting to find if these observations overlap with cultural, archaeologi-
cal and historical evidences, for example the presence or absence of expansions could
be linked to population lifestyles, as previous papers have detected differences in the
demographic histories of nomadic and sedentary populations (Aimé et al., 2013). Fur-
thermore, it seems to be no correlation between the inferred pattern and the number
of individuals sampled in each population, however, other sources of bias could be in-
vestigated, such as the effective coverage (the sequencing aimed for a 35x coverage but
after sequencing, each sample can have a slightly different coverage) or non-random
sampling of individuals that could misrepresent the real population.

4.4 Chapter conclusion

This chapter presented the results obtained for our different architectures, as well as a
robustness study and experiences designed to better understand the inner workings of
the ANNs developed here. During the first part of this thesis, we developed the SPIDNA
architecture that was able to match the results obtained by ABC, an already well estab-
lished method for demographic inference, without relying on summary statistics. Then
we further improved the error by using SPIDNA's predictions as input for an ABC. The



4.4. Chapter conclusion 115

10°
—_ — =’_\_
CH I R ———
I —F— =
c’ —
P — - _-—
o —— ——] —
N I = —— ———
[%)] ] 1 ——— [
S = = =
E |
g_ }
g
o 10° - 1
=
=)
O
(0]
e
w
102 T T T T T T T T T L T T T T T T
103 104 10° 108
Years before present (log scale)
—— Africa —— Central south asia —— Europe Oceania
America —— East asia —— Middle east

Figure 4.23: Effective population sizes inferred by MixAttSPIDNA for the human popula-
tions from the HGDP dataset. Effective sizes are inferred by the MixAttSPIDNA version with
the lowest prediction error on the simulated dataset, i.e., with attention mechanism on sce-
nario, batches with padding and the weight unfreezing mechanism.



116 Chapter 4. Inferring demography from genomic data

108 Middle east 105 Africa
c
®
S
a
10 10°
&
@
c
S
K}
3
2
g
o 10° 10°
2
g
£
b
10? 102
10° 10¢ 10° 10° 10° 10* 10° 108
Bedouin Druze Mozabite ~—— Palestinian —— BantuKenya Biaka Mbuti  —— Yoruba
Bantt ica —— San
108 Europe 105 America
E)
©
b
g 104
o
£ |
s
<
3
2
g
o 10°
%
£
i
10? 102
10° 10* 10° 10° 10° 104 10° 10°
— Adygei Bergamoltalian Orcadian ~—— Sardinian
Basque French ~—— Russian Tuscan ~—— Colombian Maya —— Pima —— Surui
Karitiana
108 Oceania 105 East asia

= =

10° 10°

Effective population size (log scale)

I

il

(i

[l

|

[

|

10? 102

10° 104 10° 10° 10° 104 10° 10°
Years before present (log scale)
Bougainville PapuanHighlands —— PapuanSepik
—— Cambodian Japanese NorthernHan — Tujia
—— Dai Lahu Orogen —— Xibo
Central south asia ~—— Daur Miao —— She Yakut
10° Han Mongolian — Tu Yi

’ﬁ Hezhen Naxi
L

10°

Effective population size (log scale)

102
10° 104 10° 10°
Years before present (log scale)

—— Balochi Hazara Makrani  —— Sindhi
Brahui Kalash —— Pathan Uygur
Burusho

Figure 4.24: Effective population sizes inferred by MixAttSPIDNA for the human popula-
tions from the HGDP dataset separated by region. Effective sizes are inferred by the Mix-
AttSPIDNA version with the lowest prediction error on the simulated dataset, i.e., with attention
mechanism on scenario, batches with padding and the weight unfreezing mechanism.



4.4. Chapter conclusion 117

best error, not including the use of MixAttSPIDNA, was obtained by adding summary
statistics alongside the predictions of SPIDNA before an ABC step. When applied to
the real cattle data, our methods inferred a decline after domestication, which was ex-
pected knowing cattle history. However, the decline observed is less strong than what
we obtained with ABC, and it is still unclear what are the most likely scenarios (strong or
soft decline) for these cattle breeds. SPIDNA showed to be robust to the introduction of
positive selection, differences of simulator tools and variations of the number of hap-
lotypes in the matrices on predefined scenarios. These experiments demonstrated the
robustness of SPIDNA to small perturbations for which it has not been trained for, and
seems to indicate that it could better handle the reality gap between simulated and real
data at least for these specific cases. By comparing the different versions of SPIDNA,
we were able to understand the usefulness of the mechanisms introduced. The per-
mutation invariant design of this architecture showed better results compared to the
custom CNN and MLP despite having a similar number of learnable parameters. We
think that this difference in performance comes from the fact that the custom CNN and
MLP are less adapted to the data characteristics, which shows the soundness of devel-
oping architectures tailored to the data. The SPIDNA versions that are able to adapt to
any number of SNP in the matrices did not outperform the versions relying on the first
400 SNPs of each matrix. This loss of accuracy seems to be attributed to the change
of normalization layer from a batch normalization to an instance normalization, rather
than to the introduction of all SNP from each data. Moreover, the parameter « de-
signed to control the contribution of invariant and equivariant features in the network
does not have a significant importance for the prediction error because the network
automatically converges to a variance profile after few training iterations.

We tested the CCA based method described in the previous chapter on the custom
CNN as a proof of concept to compare summary statistics to network activations. Al-
though this method is promising, it still needs some refinements to handle the high
number of activations and to take into account their importance for the final inferred
values. Indeed, the results were not robust to changes in the SVD step used to reduce
the activation space. However, we still found some strong correlations between activa-
tions in the last layer (where the activation space is already low dimensional and does
not require reduction) and summary statistics such as the first bin of the SFS (hnumber
of singletons) and the nucleotide diversity .

During the second part of this thesis, we developed another deep learning architec-
ture based on SPIDNA. Called MixAttSPIDNA, this architecture is intended to predict the
population size history of human populations from the HGDP dataset. In order to im-
prove the predictive power of this architecture, we added a more general invariant func-
tion in the network than the mean used by SPIDNA. We also introduced an attention
mechanism to combine the inferred values over multiple replicates in a manner that
assigns automatically a different weight to each replicate. Moreover, we performed an
experiment aimed at finding the best way to collate SNP matrices with different number
of haplotypes in the same batch tensor. Alongside the weight unfreezing mechanism
used to train this version of MixAttSPIDNA, it achieved the best results on both cattle
and HGDP datasets without using summary statistics nor ABC. Finally, the results on
the real populations of the HGDP dataset showed that MixAttSPIDNA was able to re-
cover some well studied parts of the human history, as the recent common origin of



118 Chapter 4. Inferring demography from genomic data

populations, their divergence through time and the first out of Africa dispersal event.
A more extensive study of these results would help to understand if the precise trends
displayed by each population have a sense from a cultural, archaeological and historical

viewpoint.



Conclusion

Contents
5.1 Research perspectives . . . . . . . . . . i i e e 121
5.1.1 Improving deep learning architectures . . . . .. ... .. ... 121
5.1.2  Solving inverse problem . . . . .. ... ... 0L 122
5.1.3 Evolutionary and demographic models . . . . . ... ... ... 123

Demographic inference is a challenging task in population genetics. The inference
methods developed in this field are the product of decades of research in sequencing
technology, computation technology, statistical analysis and evolution theory, and rely
on a wide variety of inference frameworks. As seen in the first chapter, most of them
are either tied to an evolutionary model or to the computation of summary statistics
that may lose information from the original data. However, the many successes of deep
learning show that it is possible to build powerful inference methods without integrat-
ing much domain-based knowledge. Therefore, we developed a deep learning frame-
work with the idealized goal to provide a trained network that would infer demography
for any species.

When we started the works presented in this thesis, few publications were included
deep artificial neural networks to tackle problems in population genetics, and only the
work from Sheehan and Song (2016) aimed explicitly toward the inference of popula-
tion demography. This pioneering work introduced a multilayer perceptron using sum-
mary statistics to infer the presence of selection and a demographic model with three
piece-wise constant effective population sizes. Inspired by this, we have driven our re-
search towards a more challenging problem by increasing the number of demographic
parameters (effective population sizes) to 21 and by bypassing summary statistics. Se-
quencing data is still preprocessed (by us or others) for the classical alignment, discard-
ing untrusted reads, genotype calling, phasing, filtering out low-quality regions, etc.;
however, once those pre-steps are done, relevant information should be preserved by
the data encoding (SNP and position matrices) and the automatic construction of fea-
tures. Moreover, we wanted to develop a flexible approach that requires few expert
knowledge in population genetics (e.g., summary statistics or inference method based
directly on evolutionary models), as such method would be easier to adapt to changes
in the evolutionary or the demographic models, and could potentially be transferred
to challenging questions in population genetics concerning processes leaving complex

119



120 Chapter 5. Conclusion

patterns in the data, that can not be fully addressed with the summary statistic ap-
proach. Moreover, following this logic could also extend the application field of this
approach to problems based on genomic data that are outside the scope of population
genetics.

We first tested the MLP that, despite having many learnable parameters and com-
plete access to the genomic data, did notyield good prediction error compared to meth-
ods relying on summary statistics. At that time, we observed that the success of deep
learning in most fields can be explained partially by the fact that researchers have de-
veloped architectures tailored to the data characteristics when the variables are not
independent. For instance, one major contribution to the field of image processing
was the introduction of convolution layers that take into account the spatial depen-
dence between the pixels of an image. Similarly, recurrent neural networks and the
long short-term memory architectures are an essential milestone for the field of nat-
ural language processing, and more generally, for processing time series because of
their abilities to handle sequences of infinite length. Following the same path, we iden-
tified the characteristics of SNP data that a network could handle by design and picked
from the deep learning literature or designed ourselves mechanisms taking into ac-
count these characteristics.

We developed a first convolutional neural network (custom CNN) to take into ac-
count the spatial dependencies between SNPs. We later introduced the SPIDNA archi-
tecture that also uses convolution filters, but remove any steps that could not cope
with the variations of the number of haplotypes and SNPs in the data. Moreover, we
designed SPIDNA to be invariant to permutations of haplotypes, a second propriety
of our data, by combining invariant and equivariant operations. This architecture gave
predictions competitive with the best baseline, ABC with summary statistics, but only af-
ter adding an ABC step and using only 400 SNPs. From these results, we concluded that
taking into account the permutation invariance propriety of the data helps the predic-
tion. However, although taking into account the varying number of SNPs is a promising
lead, our architecture still needs some refinement before effectively surpassing their
counterpart trained on a fixed number of SNPs. Our last architecture, MixAttSPIDNA,
was designed with the intention to further improve the predictions by removing two
limitations of SPIDNA, thanks to a new type of permutation invariant attention mech-
anism, that we called hub attention. We added this mechanism alongside the original
invariant layer of SPIDNA with a simple mean operation in order to give the network
more freedom in the invariant computations that could be learned during training. We
also used this mechanism to replace the mean operation performed by SPIDNA over
the predictions made for each replicate (i.e., 2 Mbp-long regions) of a scenario. This
provided an alternative (and more accurate) solution for combining information com-
ing from multiple regions of large genomes. Both of these improvements led to a sub-
stantial reduction of the prediction error, beating all the other approaches studied, and
in a statistical framework that only relies on deep learning.

Although the design of new deep learning architectures for genomic data repre-
sents the main contribution of this thesis, we also explored other aspects of the infer-
ence framework. Firstly, we used our implementation experience to develop a package
aimed at facilitating the development and usage of deep learning in the population
genetic community. Secondly, we proposed a method based on canonical correlation



5.1. Research perspectives 121

analysis, which still requires further development but could help understand if neural
networks compute features similar to summary statistics. Finally, we trained all archi-
tectures with the final goal of inferring the population size history of populations from
two real datasets of Bos taurus (cattle) and Homo sapiens. This required careful design
of the priors of our simulated datasets to minimize the reality gap.

5.1 Research perspectives

In this section, we will discuss some leads to improve the methods presented in this the-
sis, along new methods that have a great potential for demographic inference. These
perspectives could further improve the demographic parameter values inferred, but
also offer better interpretability and better handling of the data features.

5.1.1 Improving deep learning architectures

Deep learning profits from an important community outside of population genetics,
constantly offers new tools that could benefit demographic inference. Therefore, they
are numerous ways to build upon our architectures by integrating new mechanisms
developed by this community.

We identified that the higher prediction error of SPIDNA adaptive to a variable num-
ber of SNPs, compared to the non-adaptive one, is probably a consequence of replacing
the batch normalization layers with instance normalization layers. We used a different
kind of normalization layer because data could not be collated in the same batch after
the dimension sizes no longer match. As this is only a technical limitation and batch
normalization could be in theory for heterogeneous batches, we think that this version
of SPIDNA could greatly benefit from an implementation of the batch normalization
adapted to this type of batch.

We saw during this thesis that the development of new architectures is a tedious
task that relies primarily on trial and error, as the architecture often needs to be evalu-
ated each time a new mechanism is introduced. It also requires a good understanding
of the data properties and domain of application. Although we used an hyperoptimiza-
tion procedure, this approach cannot be used as a replacement for the numerous de-
sign choices we made during the development of our ANNs because it was not enough
computationally efficient. Consequently, a new field called automated deep learning
has recently emerged with the goal of automating the search for new architectures.
We think that using such workflow could significantly improve the optimization of ar-
chitecture’s hyperparameters that for now relies mainly on human interactions.

Although increasing the number of features computed by SPIDNA did not yield to
substantial improvement of the prediction error, very large networks such as GPT-3
(Brown et al., 2020) have shown unprecedented results. Moreover, after training, these
networks can be transferred to smaller ones by a process called knowledge distillation,
removing the burden of requiring numerous GPUs and of storing a large network for
the users during inference. Therefore, it would be interesting to increase the expressive
capability of our networks by increasing drastically its number of weights and layers.



122 Chapter 5. Conclusion

However, SPIDNA and MixAttSPIDNA architectures are already fairly large and are dis-
tributed on three GPUs for mini-batches of size around one hundred. Thus, increasing
their number of weights would require a lot of engineering work to parallelize it over
many more GPUs, by not only splitting the mini-batches over GPUs, but also the archi-
tecture itself.

5.1.2 Solving inverse problem

Demography inference falls in the category of inverse problems because it seeks to
find the causal explanations (a demographic scenario and an evolutionary model) of
the observed genomic data. In this thesis, we used the evolutionary model as a simula-
tor to generate labeled genomic data under specific demographic scenarios and ANNs
are then trained to reverse the process by mapping genomic data to demographic sce-
narios. However, other methods that are invertible by design have been recently de-
veloped in order to inverse a simulator by mimicking it. This section will describe a
promising type of architecture, called invertible network, that has not yet been applied
to demographic inference.

The intuition of invertible networks in the context of inverse problems is to train the
network to map the hidden variable x to the observed data y (Ardizzone et al., 2018),
where x would be the demographic parameter values and y the genomic data or some
summary statistics. Once the forward mapping from z to y is learned by using data gen-
erated by an evolutionary simulator, the inverse mapping from y to x is obtained for
free because of the invertible property of the network. Combined to normalizing flows
(Tabak and Vanden-Eijnden, 2010), a generative model capable of learning non-linear
transformation between a complex data distribution and a simple prior distribution,
this process allows approximating the posterior p(z | y) instead of having point estima-
tions. However, the network must have a tractable Jacobian and triangular in order to
be invertible and being capable of mapping one distribution to another. To this extent,
the NICE architecture (Dinh et al., 2014) uses coupling layers that have been later com-
plexified in the Real NVP architecture (Dinh et al.,, 2016). These layers split the input
data into two; one part of the input is treated by an arbitrarily complex function that
can be any type of neural network. Then the result is combined with the other part of
the input data with an easily invertible function, which is simply a sum in the original
NICE architecture (Dinh et al., 2014). Multiple coupling layers are stacked to compose
the overall architecture. In the context of inference, an additional latent output vari-
able z is added alongside y to counteract the information loss in the forward process,
as explained in Ardizzone et al. (2018). Nonetheless, in its current configuration, this
type of network require the inputs and outputs to have the same dimension and would
need further development to map genomic data to demographic scenarios. This ap-
proach is still very promising because the network is directly maximizing the likelihood
and learns the real posterior distribution, contrarily to variational autoencoders (VAEs)
and generative adversarial networks (GANS).



5.1. Research perspectives 123

5.1.3 Evolutionary and demographic models

The predictions made by our deep learning framework not only depend on the network
architecture, but also on the training data generated.

Unlike methods that derive a likelihood from an evolutionary model, our deep learn-
ing approach uses it as a simulator. Hence, it could be easily swapped for another
one that has fewer assumptions about the real evolutionary process, such as a non
Wright-Fisher model, with the advantages presented in Section 1.4. A different evo-
lutionary model could also introduce nuisance parameters such as variations of the
mutation rate, recombination rate, and the presence of natural selection in order to
simulate more realistic data. Furthermore, the simulator could also simulate data at
different generations to leverage the increasing availability of ancient DNA sequences.
Note that such improvements would not translate into better prediction errors on sim-
ulated datasets (except maybe when incorporating ancient DNA data), but could greatly
improve the differences between the effective sizes inferred and the real census sizes
by minimizing the reality gap between simulations and the real sequences.

Although our demographic model is fairly complex in terms of the number of pa-
rameters to infer, it does not include other demographic factors other than population
sizes. Therefore, another main source of improvement would be to have parameters
describing population structure, admixture, and migration events.

To conclude, the work conducted during this thesis opens the path for a new infer-
ence approach in population genetics that offers great perspectives of improvement.
We hope that this work will help to find new discoveries regarding the past of popula-
tions and inspire the community to develop new deep learning architectures.






Appendix

A.1 Computational resources

Simulations have been performed on the genotoul bioinformatics platform with the
following hardware:

* 68 nodes with 2 E5-2670 v2 Intel CPUs (2.50GHz, 20 threads) and 256GB of RAM
« 48 nodes with 2 E5-2683 v4 Intel CPUs (2.10GHz, 32 threads) and 256GB of RAM.

All summary statistics, trainings and predictions were computed on the TAU's Titanic
platform with the following hardware:

* 5nodes with 4 GTX 1080 (12GB of VRAM) GPUs, 2 E5-2650 v4 Intel CPUs (2.20GHz,
24 threads) and 252GB of RAM

« 7 nodes with 4 RTX 2080 (12GB of VRAM) GPUs, 2 Silver 4108 Intel CPUs (1.80GHz,
18 threads) and 252GB of RAM

* 1 node with 4 Tesla P100 (16GB of VRAM) GPUs, 2 E5-2690 v4 Intel CPUs (2.60GHz,
28 threads) and 252GB of RAM

* 1 node with 2 RTX 2080 (8GB of VRAM) GPUs, 2 E5-2650 v4 Intel CPUs
(2.20GHz, 24 threads) and 252GB of RAM

Both platforms use Slurm as job scheduling system. Batch sizes and deep learning
architectures were all designed to fit on less than 12GB of VRAM during training. To train
non-adaptive architectures, batches were split between 3 GPUs with at least 12GB of
VRAM. Adaptive architectures were trained on one GPU as batch data of varying sizes
could not be concatenated in the same tensor. The training of SPIDNA took at most
1h42 per epoch for non-adaptive version and 31h31 per epoch for adaptive version.
The slow computation time of adaptive SPIDNA is mostly due to data being inputted
one by one in the network instead of concatenated in tensors.

125



126

Appendix A. Appendix

A.2

ABC predictions from Boitard et al. (2016b)

8 small
o
=
—~ O
o=
S E[TMRCA]
Z .
gs 5 .-
85 : i
wn ' o'
c St ]
kel ceaat ‘- e e
[ EPRREE o R
3o ' -
e =
2 4 - - - true value E[TMRCA]
‘g = average estimation
= —— estimations for one replicate
=3 : 8_| ---* 90% Cl for one replicate
T T T T T 1 T T T T T
0 10 100 1,000 10,000 0 10 100 1,000 10,000
generations before present (log scale)
1S decline
o
=
o
o
o
o
=)
o o
o o
S S
- - E[TMRCAJ. .
o o L.
o- o !
o o
o o
o o
o] o]
o o
o o
o o
o o
=} =}
o o
o o
S S
o o
o— o -

T I T 1 I T I
0 10 100 1,000 10,000 0 10 100 1,000 10,000



A.3. Synthése en francais 127

Figure A.1: Estimation of population size history using ABC in six different simulated
scenarios from Boitard et al. (2016b). From Boitard et al. (2016b): a small constant population
size (N = 500, top left), a large constant population size (N = 50,000, top right), a decline scenario
mimicking the population size history in Holstein cattle (middle left), an expansion scenario mimicking
the population size history in CEU human (middle right), a scenario with one expansion followed
by one bottleneck (bottom left) and a zigzag scenario similar to that used in Schiffels and Durbin
(2014) (bottom right), with one expansion followed by two bottlenecks. For each scenario, the true
population size history is shown by the dotted black line, the average estimated history over 20 PODs
is shown by the solid black line, the estimated histories for five random PODs are shown by solid
colored lines, and the 90% credible interval for one of these PODs is shown by the dotted red lines.
The expected time to the most recent common ancestor (TMRCA) of the sample, E[TMRCA], is indicated
by the vertical dotted black line. Summary statistics considered in the ABC analysis were (i) the AFS
and (ii) the average zygotic LD for several distance bins. These statistics were computed from n =25
diploid individuals, using all SNPs for AFS statistics and SNPs with a MAF above 20% for LD statistics.
The posterior distribution of each parameter was obtained by neural network regression (Blum and
Francois, 2010), with a tolerance rate of 0.005. Population size point estimates were obtained from
the median of the posterior distribution.

A.3 Syntheése en francais

Depuis les premieres découvertes des principes régissant I'évolution des génomes, les
généticiens n‘ont eu cesse de proposer des modeéles de plus en plus réalistes afin de
décrire I'évolution des variations génétiques au sein d'une population. Ces modéles de
d’évolution ont permis de mettre évidence que les génomes d’'une population dépen-
dent non seulement de parametres comme le taux de mutation, de recombinaison ou
encore de la sélection naturelle, mais aussi de son histoire démographique passée.
Parallelement, le développement de techniques de séquencage de plus en plus per-
formantes a permis de constituer des bases de données pouvant regrouper jusqu’a
plusieurs centaines de génomes d'une méme population. Il est donc maintenant pos-
sible de retracer I'histoire de ces populations a I'aide de méthodes statistiques capa-
bles d'exploiter I'information laissée par les événements démographiques dans les
génomes. Cette these présente de nouvelles méthodes basées sur I'apprentissage
statistique profond (deep learning) pour l'inférence des parametres démographiques
d’'une population et, plus particulierement, sa taille efficace (c'est-a-dire du nombre
d'individus sous les conditions d'un modele d’évolution) dans le passé.

Les deux principaux réseaux de neurones présentés dans cette thése sont inspirés
d’architectures ayant fait leurs preuves dans d’autres domaines traitant des données
en grande dimension, mais ils integrent aussi des stratégies permettant de prendre en
compte des caractéristiques propres aux données génomiques. La premiere, SPIDNA,
utilise une organisation des neurones en couche de convolution issue du traitement
dimage. Ces couches de convolution générent des filtres capables de détecter des
motifs de mutations particuliers dans les séquences. La seconde architecture, Mix-
AttSPIDNA est une amélioration de la premiére incluant un mécanisme d'attention in-
spiré par les réseaux traitant le langage naturel. Ce mécanisme permet de calculer
des statistiques globales sur les différentes séquences d'un échantillon, tout en étant



128 Appendix A. Appendix

invariant a leurs différentes permutations possibles. Ces deux architectures com-
portent aussi un enchainement de fonction invariante et équivariante afin d'assurer
I'équivariance globale. De plus, leur empilement de couches assure aux réseaux la pos-
sibilité de détecter des dépendances entre des SNPs éloignés dans les séquences.

Afin d’étre entrainés, ces réseaux ont besoin d'une grande quantité de données re-
liant des scénarios démographiques a des échantillons de séquences de populations.
Cependant, une telle base de données n'existe pas pour des populations réelles, car
leurs histoires démographiques précises sont tres difficiles a caractériser autrement
que par I'étude de leurs génomes. Il a donc fallu utiliser un simulateur basé sur un
modele d’évolution afin de constituer une base d’entrainement de taille conséquente.
Pour chaque simulation, un scénario démographique est tiré au hasard d'un apriori sur
les différents parametres et est ensuite donné au simulateur afin qu'il génére un échan-
tillon de séquences possibles. L'objectif de nos réseaux de neurone est donc de réaliser
le processusinverse, et de retrouver les valeurs des parametres démographiques a par-
tir des séquences de I'échantillon. Une fois entrainé, le réseau peut étre utilisé sur un
échantillon de séquences d'une population réelle afin d'inférer sa démographie passée.

L'entrainement de ces réseaux vise a minimiser I'erreur quadratique moyenne de
la taille efficace inférée au cours du temps. Cette métrique permet de comparer les
performances des réseaux entrent elles, mais aussi de les comparer a d'autres méth-
odes plus couramment utilisées en génétique des populations comme l'approximate
Bayesian computation (ABC). La comparaison présentée dans cette thése montre qu'un
réseau de neurones est capable d'obtenir des performances similaires ou meilleures
que I'ABC, sans passer par une étape de réduction des données génétiques de grande
dimension en des statistiques expertes. Plus précisément, I'architecture SPIDNA util-
isant des données brutes donne des performances égales a I'ABC sur statistiques ré-
sumeées lorsqu’elle est combinée a cette derniére. Quant a MixAttSPIDNA, elle montre
des performances bien supérieures a toutes les autres méthodes testées et repose
uniquement sur son réseau de neurones.

Cette thése présente aussi d’'autres expériences visant a mieux comprendre le fonc-
tionnement des réseaux de neurones en comparant les activations des neurones aux
statistiques classiquement utilisées en génétique des populations. D’autres expéri-
ences ont aussi permis de vérifier la robustesse des prédictions faites par les réseaux
a certaines des perturbations pour lesquels elles n‘'ont pas été entrainées, comme la
présence de sélection positive. Enfin, les méthodes développées ont été testées dans
la pratique en inférant la démographie passée de populations réelles de Bos taurus et
d’Homo sapiens. Les prédictions faites sur les populations de ces deux especes ont en-
suite été comparées a nos connaissances de leurs démographies passées afin d'avoir
une deuxieme source d'évaluation de nos méthodes.

Ainsi, la principale contribution de cette thése est d'apporter de nouvelles méthodes
profitant des avantages de I'apprentissage statistique profond que sont sa capacité a
traiter la grande dimension des données génomiques sans les résumer par des statis-
tiques expertes, sa flexibilité vis-a-vis des parametres démographiques a prédire et ses
performances comparables a I'état de l'art, tout cela en étant indépendant du modele
d'évolution employé. Pour leurs nombreux avantages, ces méthodes sont amenées a
étre de plus en plus utilisées en génétique des populations et plus généralement pour
résoudre les taches d'inférences basées sur des données génomiques.



Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, |. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Mur-
ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URLhttps://www.tensorflow.org/. Software available from tensor-
flow.org.

J. R. Adrion, J. G. Galloway, and A. D. Kern. Inferring the landscape of recombination
using recurrent neural networks. bioRxiv, page 662247, 2019.

S. Aeschbacher, M. A. Beaumont, and A. Futschik. A novel approach for choosing sum-
mary statistics in approximate bayesian computation. Genetics, 192(3):1027-1047,
2012.

C. Aimé, G. Laval, E. Patin, P. Verdu, L. Ségurel, R. Chaix, T. Hegay, L. Quintana-Murci,
E. Heyer, and F. Austerlitz. Human genetic data reveal contrasting demographic pat-
terns between sedentary and nomadic populations that predate the emergence of
farming. Molecular biology and evolution, 30(12):2629-2644, 2013.

S. Akaho. A kernel method for canonical correlation analysis. arXiv preprint cs/0609071,
2006.

B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey. Predicting the sequence speci-
ficities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 33(8):
831-838, 2015.

G. Andrew, R. Arora, J. Bilmes, and K. Livescu. Deep canonical correlation analysis. In
International conference on machine learning, pages 1247-1255. PMLR, 2013.

L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. Maier-Hein,
C. Rother, and U. Kéthe. Analyzing inverse problems with invertible neural networks.
arXiv preprint arXiv:1808.04730, 2018.

D. Balduzzi, M. Frean, L. Leary, J. Lewis, K. W.-D. Ma, and B. McWilliams. The shattered
gradients problem: If resnets are the answer, then what is the question? In Interna-
tional Conference on Machine Learning, pages 342-350. PMLR, 2017.

129


https://www.tensorflow.org/

130 Bibliography

C. Battey, G. C. Coffing, and A. D. Kern. Visualizing population structure with variational
autoencoders. G3, 11(1):1-11, 2021.

D. R. Bentley, S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G. Brown,
K. P. Hall, D.]. Evers, C. L. Barnes, H. R. Bignell, et al. Accurate whole human genome
sequencing using reversible terminator chemistry. nature, 456(7218):53-59, 2008.

A. Bergstrom, S. A. McCarthy, R. Hui, M. A. Almarri, Q. Ayub, P. Danecek, Y. Chen,
S. Felkel, P. Hallast, J. Kamm, et al. Insights into human genetic variation and pop-
ulation history from 929 diverse genomes. Science, 367(6484), 2020.

M. G. Blum. Approximate bayesian computation: a nonparametric perspective. Journal
of the American Statistical Association, 105(491):1178-1187, 2010.

M. G. Blum and O. Francois. Non-linear regression models for approximate bayesian
computation. Statistics and computing, 20(1):63-73, 2010.

M. G. Blum, M. A. Nunes, D. Prangle, S. A. Sisson, et al. A comparative review of dimen-
sion reduction methods in approximate bayesian computation. Statistical Science, 28
(2):189-208, 2013.

S. Boitard, M. Boussaha, A. Capitan, D. Rocha, and B. Servin. Uncovering adaptation
from sequence data: lessons from genome resequencing of four cattle breeds. Ge-
netics, 203(1):433-450, 2016a.

S. Boitard, W. Rodriguez, F. Jay, S. Mona, and F. Austerlitz. Inferring population size
history from large samples of genome-wide molecular data-an approximate bayesian
computation approach. PLoS genetics, 12(3):e1005877, 2016b.

L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT2010, pages 177-186. Springer, 2010.

M. Bridges, E. A. Heron, C. O'Dushlaine, R. Segurado, D. Morris, A. Corvin, M. Gill,
C. Pinto, I. S. Consortium, et al. Genetic classification of populations using supervised
learning. PloS one, 6(5):e14802, 2011.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

S. R. Browning and B. L. Browning. Accurate non-parametric estimation of recent ef-
fective population size from segments of identity by descent. The American Journal of
Human Genetics, 97(3):404-418, 2015.

K. E. Burger, P. Pfaffelhuber, and F. Baumdicker. Neural networks for self-adjusting
mutation rate estimation when the recombination rate is unknown. bioRxiv, 2021.

J. Chan, V. Perrone, J. Spence, P. Jenkins, S. Mathieson, and Y. Song. A likelihood-free in-
ference framework for population genetic data using exchangeable neural networks.
In Advances in Neural Information Processing Systems, pages 8594-8605, 2018.



Bibliography 131

A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian. Grad-cam++:
Generalized gradient-based visual explanations for deep convolutional networks. In
2018 IEEE winter conference on applications of computer vision (WACV), pages 839-847.
IEEE, 2018.

M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative pre-
training from pixels. In International Conference on Machine Learning, pages 1691-
1703. PMLR, 2020.

F. Collins, E. Lander, J. Rogers, R. Waterston, and I. Conso. Finishing the euchromatic
sequence of the human genome. Nature, 431(7011):931-945, 2004.

. G. P. Consortium et al. A map of human genome variation from population-scale
sequencing. Nature, 467(7319):1061, 2010.

. G. P. Consortium et al. A global reference for human genetic variation. Nature, 526
(7571):68, 2015.

B. H. Consortium, R. A. Gibbs, J. F. Taylor, C. P. Van Tassell, W. Barendse, K. A. Eversole,
C.A.Gill, R. D. Green, D. L. Hamernik, S. M. Kappes, et al. Genome-wide survey of snp
variation uncovers the genetic structure of cattle breeds. Science, 324(5926):528-532,
20009.

K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055-30062, 2020.

K. Csilléry, O. Frangois, and M. G. Blum. abc: an r package for approximate bayesian
computation (abc). Methods in ecology and evolution, 3(3):475-479, 2012.

J. Cury, B. C. Haller, G. Achaz, and F. Jay. Simulation of bacterial populations with
slim. bioRxiv, 2021. doi: 10.1101,/2020.09.28.316869. URL https://www.biorxiv.org/
content/early/2021/03/03/2020.09.28.3168609.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303-314, 1989.

H. D. Daetwyler, A. Capitan, H. Pausch, P. Stothard, R. Van Binsbergen, R. F. Breandum,
X. Liao, A. Djari, S. C. Rodriguez, C. Grohs, et al. Whole-genome sequencing of 234
bulls facilitates mapping of monogenic and complex traits in cattle. Nature genetics,
46(8):858, 2014.

W. Deelder, E. D. Benavente, J. Phelan, E. Manko, S. Campino, L. Palla, and T. G. Clark.
Using deep learning to identify recent positive selection in malaria parasite sequence
data. Malaria journal, 20(1):1-9, 2021.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.


https://www.biorxiv.org/content/early/2021/03/03/2020.09.28.316869
https://www.biorxiv.org/content/early/2021/03/03/2020.09.28.316869
https://aclanthology.org/N19-1423

132 Bibliography

L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estima-
tion. arXiv preprint arXiv:1410.8516, 2014.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

G. Ewing and J. Hermisson. Msms: a coalescent simulation program including recombi-
nation, demographic structure and selection at a single locus. Bioinformatics, 26(16):
2064-2065, 2010.

L. Excoffier, I. Dupanloup, E. Huerta-Sanchez, V. C. Sousa, and M. Foll. Robust demo-
graphic inference from genomic and snp data. PLoS genetics, 9(10):e1003905, 2013.

L. Excoffier, N. Marchi, D. A. Marques, R. Matthey-Doret, A. Gouy, and V. C. Sousa. fast-
simcoal2: demographic inference under complex evolutionary scenarios. Bioinfor-
matics, 37(24):4882-4885, 2021.

A. N. Fadja, F. Riguzzi, G. Bertorelle, and E. Trucchi. Identification of natural selection in
genomic data with deep convolutional neural network. 2021.

S. Falkner, A. Klein, and F. Hutter. Bohb: Robust and efficient hyperparameter opti-
mization at scale. In International Conference on Machine Learning, pages 1437-1446.
PMLR, 2018a.

S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and efficient hyperparameter opti-
mization at scale. In J. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Re-
search, pages 1437-1446, Stockholmsmassan, Stockholm Sweden, 10-15 Jul 2018b.
PMLR. URL http://proceedings.mlr.press/v80/falkner18a.html.

P. Fearnhead and D. Prangle. Constructing summary statistics for approximate
bayesian computation: semi-automatic approximate bayesian computation. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 74(3):419-474, 2012.

R. A. Fisher. The genetical theory of natural selection. 1958.

L. Flagel, Y. Brandvain, and D. R. Schrider. The unreasonable effectiveness of convolu-
tional neural networks in population genetic inference. Molecular biology and evolu-
tion, 36(2):220-238, 2018.

N. R. Garud, P. W. Messer, E. O. Buzbas, and D. A. Petrov. Recent selective sweeps
in north american drosophila melanogaster show signatures of soft sweeps. PLoS
genetics, 11(2):e1005004, 2015.

L. M. Gattepaille, M. Jakobsson, and M. G. Blum. Inferring population size changes with
sequence and snp data: lessons from human bottlenecks. Heredity, 110(5):409-419,
2013.

M. Geiger, A. Jacot, S. Spigler, F. Gabriel, L. Sagun, S. d" Ascoli, G. Biroli, C. Hongler, and
M. Wyart. Scaling description of generalization with number of parameters in deep
learning. Journal of Statistical Mechanics: Theory and Experiment, 2020(2):023401, Feb


http://proceedings.mlr.press/v80/falkner18a.html

Bibliography 133

2020. ISSN 1742-5468. doi: 10.1088/1742-5468 /ab633c. URL http://dx.doi.org/10.
1088/1742-5468/ab633c.

A. L. Gladstein and M. F. Hammer. Substructured population growth in the ashkenazi
jews inferred with approximate bayesian computation. Molecular biology and evolu-
tion, 36(6):1162-1171, 2019.

B. H. Good, M. J. McDonald, J. E. Barrick, R. E. Lenski, and M. M. Desai. The dynamics of
molecular evolution over 60,000 generations. Nature, 551(7678):45-50, 2017.

|. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

G. Gower, P. I. Picazo, M. Fumagalli, and F. Racimo. Detecting adaptive introgression in
human evolution using convolutional neural networks. Elife, 10:e64669, 2021.

S. Gravel. Population genetics models of local ancestry. Genetics, 191(2):607-619, 2012.

M. Graziani, V. Andrearczyk, and H. Muller. Regression concept vectors for bidirectional
explanations in histopathology. In Understanding and Interpreting Machine Learning in
Medical Image Computing Applications, pages 124-132. Springer, 2018.

R. N. Gutenkunst, R. D. Hernandez, S. H. Williamson, and C. D. Bustamante. Inferring
the joint demographic history of multiple populations from multidimensional snp
frequency data. PLoS genetics, 5(10):e1000695, 2009.

B. C. Haller and P. W. Messer. Slim 3: Forward genetic simulations beyond the wright-
fisher model. Molecular biology and evolution, 36(3):632-637, 2019.

G. H. Hardy. Mendelian proportions in a mixed population. Science, 28(706):49-50,
1908.

K. Harris and R. Nielsen. Inferring demographic history from a spectrum of shared
haplotype lengths. PLoS genetics, 9(6):e1003521, 2013.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026-1034, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770-778, 2016.

H. A. Hejase, Z. Mo, L. Campagna, and A. Siepel. Sia: Selection inference using the
ancestral recombination graph. bioRxiv, 2021.

R. D. Hernandez. A flexible forward simulator for populations subject to selection and
demography. Bioinformatics, 24(23):2786-2787, 2008.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.


http://dx.doi.org/10.1088/1742-5468/ab633c
http://dx.doi.org/10.1088/1742-5468/ab633c

134 Bibliography

S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies, 2001.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural net-
works, 4(2):251-257, 1991.

R. R. Hudson. Properties of a neutral allele model with intragenic recombination. The-
oretical population biology, 23(2):183-201, 1983.

R. R. Hudson. ms a program for generating samples under neutral models. 2004.

S. loffe and C. Szegedy. Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift. In International conference on machine learning, pages
448-456. PMLR, 2015.

U. Isildak, A. Stella, and M. Fumagalli. Distinguishing between recent balancing selec-
tion and incomplete sweep using deep neural networks. Molecular Ecology Resources,
2021.

K.Jaganathan, S. K. Panagiotopoulou, J. F. McRae, S. F. Darbandi, D. Knowles, Y. I. Li, J. A.
Kosmicki, J. Arbelaez, W. Cui, G. B. Schwartz, et al. Predicting splicing from primary
sequence with deep learning. Cell, 176(3):535-548, 2019.

F. Jay, S. Boitard, and F. Austerlitz. An abc method for whole-genome sequence data:
inferring paleolithic and neolithic human expansions. Molecular biology and evolution,
36(7):1565-1579, 2019.

B. Jiang, T.-y. Wu, C. Zheng, and W. H. Wong. Learning summary statistic for approxi-
mate bayesian computation via deep neural network. Statistica Sinica, pages 1595-
1618, 2017.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvu-
nakool, R. Bates, A. Zidek, A. Potapenko, et al. Highly accurate protein structure pre-
diction with alphafold. Nature, pages 1-11, 2021.

J. Kelleher, A. M. Etheridge, and G. McVean. Efficient coalescent simulation and
genealogical analysis for large sample sizes. PLoS computational biology, 12(5):
e1004842, 2016.

E. Kerdoncuff, A. Lambert, and G. Achaz. Testing for population decline using maximal
linkage disequilibrium blocks. Theoretical population biology, 134:171-181, 2020.

A. D. Kern and D. R. Schrider. diplos/hic: an updated approach to classifying selective
sweeps. G3: Genes, Genomes, Genetics, 8(6):1959-1970, 2018.

B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al. Interpretability be-
yond feature attribution: Quantitative testing with concept activation vectors (tcav).
In International conference on machine learning, pages 2668-2677. PMLR, 2018.

M. Kimura. Diffusion models in population genetics. Journal of Applied Probability, 1(2):
177-232, 1964.



Bibliography 135

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

J. F. Kingman. On the genealogy of large populations. Journal of applied probability, 19
(A):27-43, 1982.

P.Kirschner, M. F. Perez, E. Zaveska, |. Sanmartin, L. Marquer, B. C. Schlick-Steiner, N. Al-
varez, F. M. Steiner, and P. Schénswetter. Congruent evolutionary responses of eu-
ropean steppe biota to late quaternary climate change. Nature Communications, 13
(1):1-11, 2022.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural net-
works. In Proceedings of the 31st international conference on neural information pro-
cessing systems, pages 972-981, 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:
1097-1105, 2012.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural compu-
tation, 1(4):541-551, 1989.

L. Leitsalu, T. Haller, T. Esko, M.-L. Tammesoo, H. Alavere, H. Snieder, M. Perola, P. C. Ng,
R. Magi, L. Milani, et al. Cohort profile: Estonian biobank of the estonian genome cen-
ter, university of tartu. International journal of epidemiology, 44(4):1137-1147, 2014.

L. Leitsalu, T. Haller, T. Esko, M.-L. Tammesoo, H. Alavere, H. Snieder, M. Perola, P. C. Ng,
R. Magi, L. Milani, et al. Cohort profile: Estonian biobank of the estonian genome cen-
ter, university of tartu. International journal of epidemiology, 44(4):1137-1147, 2015.

H. Li and R. Durbin. Inference of human population history from individual whole-
genome sequences. Nature, 475(7357):493-496, 2011.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of
neural nets. arXiv preprint arXiv:1712.09913, 2017a.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. arXiv preprint
arXiv:1603.06560, 2016.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. The journal of Machine
Learning Research, 18(1):6765-6816, 2017b.

M. Liang and R. Nielsen. The lengths of admixture tracts. Genetics, 197(3):953-967,
2014.

H.Lin andS. Jegelka. Resnet with one-neuron hidden layers is a universal approximator.
arXiv preprint arXiv:1806.10909, 2018.



136 Bibliography

X. Liu and Y.-X. Fu. Exploring population size changes using snp frequency spectra.
Nature genetics, 47(5):555-559, 2015.

B. Lorente-Galdos, O. Lao, G. Serra-Vidal, G. Santpere, L. F. Kuderna, L. R. Arauna,
K. Fadhlaoui-Zid, V. N. Pimenoff, H. Soodyall, P. Zalloua, et al. Whole-genome se-
quence analysis of a pan african set of samples reveals archaic gene flow from an
extinct basal population of modern humans into sub-saharan populations. Genome
biology, 20(1):77, 2019.

E. D. Lorenzen, D. Nogués-Bravo, L. Orlando, J. Weinstock, J. Binladen, K. A. Marske,
A.Ugan, M. K. Borregaard, M. T. P. Gilbert, R. Nielsen, et al. Species-specific responses
of late quaternary megafauna to climate and humans. Nature, 479(7373):359-364,
2011.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91-110, 2004.

T. Lucas, C. Tallec, Y. Ollivier, and J. Verbeek. Mixed batches and symmetric discrimina-
tors for GAN training. InJ. Dy and A. Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 2844-2853, Stockholmsmassan, Stockholm Sweden, 10-15 Jul 2018.
PMLR. URL http://proceedings.mlr.press/v80/lucas18a.html.

W. Ma, Z. Qiu, J. Song, J. Li, Q. Cheng, J. Zhai, and C. Ma. A deep convolutional neural
network approach for predicting phenotypes from genotypes. Planta, 248(5):1307-
1318, 2018.

l. M. MacLeod, D. M. Larkin, H. A. Lewin, B. J. Hayes, and M. E. Goddard. Inferring De-
mography from Runs of Homozygosity in Whole-Genome Sequence, with Correction
for Sequence Errors. Molecular Biology and Evolution, 30(9):2209-2223, 07 2013. ISSN
0737-4038. doi: 10.1093/molbev/mst125. URL https://doi.org/10.1093/molbev/
mst125.

S. Mallick, H. Li, M. Lipson, I. Mathieson, M. Gymrek, F. Racimo, M. Zhao, N. Chennagiri,
S. Nordenfelt, A. Tandon, et al. The simons genome diversity project: 300 genomes
from 142 diverse populations. Nature, 538(7624):201, 2016.

P. Marjoram and J. D. Wall. Fast" coalescent" simulation. BMC genetics, 7(1):1-9, 2006.

O. Mazet, W. Rodriguez, S. Grusea, S. Boitard, and L. Chikhi. On the importance of
being structured: instantaneous coalescence rates and human evolution—lessons
for ancestral population size inference? Heredity, 116(4):362-371, 2016.

G. A. McVean and N. . Cardin. Approximating the coalescent with recombination. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 360(1459):1387-1393,
2005.

A. Miles, P. Ralph, S. Rae, and R. Pisupati. cggh/scikit-allel: v1.2.1, June 2019. URLhttps:
//doi.org/10.5281/zenodo.3238280.


http://proceedings.mlr.press/v80/lucas18a.html
https://doi.org/10.1093/molbev/mst125
https://doi.org/10.1093/molbev/mst125
https://doi.org/10.5281/zenodo.3238280
https://doi.org/10.5281/zenodo.3238280

Bibliography 137

M. Mondal, J. Bertranpetit, and O. Lao. Approximate bayesian computation with deep
learning supports a third archaic introgression in asia and oceania. Nature communi-
cations, 10(1):246, 2019.

D. M. Montserrat, C. Bustamante, and A. loannidis. Class-conditional vae-gan for local-
ancestry simulation. arXiv preprint arXiv:1911.13220, 2019.

P. A. P. Moran. Random processes in genetics. In Mathematical proceedings of the
cambridge philosophical society, volume 54, pages 60-71. Cambridge University Press,
1958.

S. Nakagome, K. Fukumizu, and S. Mano. Kernel approximate bayesian computation in
population genetic inferences. Statistical applications in genetics and molecular biology,
12(6):667-678, 2013.

R. Nielsen, J. M. Akey, M. Jakobsson, J. K. Pritchard, S. Tishkoff, and E. Willerslev. Tracing
the peopling of the world through genomics. Nature, 541(7637):302-310, 2017.

M. Nordborg. Coalescent theory. Handbook of statistical genetics, 2001.

L. Pagani, D. J. Lawson, E. Jagoda, A. Mdrseburg, A. Eriksson, M. Mitt, F. Clemente,
G. Hudjashov, M. DeGiorgio, L. Saag, et al. Genomic analyses inform on migration
events during the peopling of eurasia. Nature, 538(7624):238, 2016.

P. F. Palamara, T. Lencz, A. Darvasi, and |. Pe'er. Length distributions of identity by de-
scent reveal fine-scale demographic history. The American Journal of Human Genetics,
91(5):809-822, 2012.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

J. Prado-Martinez, P. H. Sudmant, J. M. Kidd, H. Li, J. L. Kelley, B. Lorente-Galdos, K. R.
Veeramah, A. E. Woerner, T. D. O'Connor, G. Santpere, et al. Great ape genetic diver-
sity and population history. Nature, 499(7459):471, 2013.

J. K. Pritchard, M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman. Population growth
of human y chromosomes: a study of y chromosome microsatellites. Molecular biol-
ogy and evolution, 16(12):1791-1798, 1999.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Point-net: Deep learning on point sets
for 3d classification and segmentation. corr abs/1612.00593 (2016). arXiv preprint
arXiv:1612.00593, 2016.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652-660, 2017.



138 Bibliography

M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. Svcca: Singular vector canonical
correlation analysis for deep learning dynamics and interpretability. arXiv preprint
arXiv:1706.05806, 2017.

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092, 2021.

L. Raynal, J.-M. Marin, P. Pudlo, M. Ribatet, C. P. Robert, and A. Estoup. Abc random
forests for bayesian parameter inference. Bioinformatics, 35(10):1720-1728, 2018.

L. Raynal, J.-M. Marin, P. Pudlo, M. Ribatet, C. P. Robert, and A. Estoup. Abc random
forests for bayesian parameter inference. Bioinformatics, 35(10):1720-1728, 2019.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 779-788, 2016.

T. Sanchez, E. M. Bray, P. Jobic, J. Guez, G. Charpiat, J. Cury, and F. Jay. dnadna: Deep
neural architectures for dna-a deep learning framework for population genetic infer-
ence. 2021a.

T. Sanchez, J. Cury, G. Charpiat, and F. Jay. Deep learning for population size history
inference: Design, comparison and combination with approximate bayesian compu-
tation. Molecular Ecology Resources, 21(8):2645-2660, 2021b.

C. Sandor, W. Li, W. Coppieters, T. Druet, C. Charlier, and M. Georges. Genetic variants
in rec8, rnf212, and prdm9 influence male recombination in cattle. PLoS genetics, 8
(7), 2012.

S. Schiffels and R. Durbin. Inferring human population size and separation history from
multiple genome sequences. Nature genetics, 46(8):919-925, 2014.

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recog-
nition and clustering. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 815-823, 2015.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam:
Visual explanations from deep networks via gradient-based localization. International
Journal of Computer Vision, 128(2):336-359, Oct 2019. ISSN 1573-1405. doi: 10.1007/
s11263-019-01228-7. URL http://dx.doi.org/10.1007/s11263-019-01228-7.

D. Sharma, A. Durand, M.-A. Legault, L.-P. L. Perreault, A. Lemac¢on, M.-P. Dubé, and
J. Pineau. Deep interpretability for gwas. arXiv preprint arXiv:2007.01516, 2020.

S. Sheehan and Y. S. Song. Deep learning for population genetic inference. PLoS com-
putational biology, 12(3):e1004845, 2016.

A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through prop-
agating activation differences. In International Conference on Machine Learning, pages
3145-3153. PMLR, 2017.


http://dx.doi.org/10.1007/s11263-019-01228-7

Bibliography 139

J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in
videos. In null, page 1470. IEEE, 2003.

C. C. Smith and S. M. Flaxman. Leveraging whole genome sequencing data for de-
mographic inference with approximate bayesian computation. Molecular ecology re-
sources, 2019.

P. Smolensky. Information processing in dynamical systems: Foundations of harmony
theory. Technical report, Colorado Univ at Boulder Dept of Computer Science, 1986.

M. Spellings. Agglomerative attention. arXiv preprint arXiv:1907.06607, 2019.

Z.Su, ). Marchini, and P. Donnelly. Hapgen2: simulation of multiple disease snps. Bioin-
formatics, 27(16):2304-2305, 2011.

C. Szegedy, S. loffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and
the impact of residual connections on learning. In Thirty-First AAAI Conference on Arti-
ficial Intelligence, 2017.

E. G. Tabak and E. Vanden-Eijnden. Density estimation by dual ascent of the log-
likelihood. Communications in Mathematical Sciences, 8(1):217-233, 2010.

F. Tajima. Statistical method for testing the neutral mutation hypothesis by dna poly-
morphism. Genetics, 123(3):585-595, 1989.

S.Tavaré, D.]. Balding, R. C. Griffiths, and P. Donnelly. Inferring coalescence times from
dna sequence data. Genetics, 145(2):505-518, 1997.

Y. W. Teh and G. E. Hinton. Rate-coded restricted boltzmann machines for face recog-
nition. Advances in neural information processing systems, pages 908-914, 2001.

J. Terhorst, J. A. Kamm, and Y. S. Song. Robust and scalable inference of population
history from hundreds of unphased whole genomes. Nature genetics, 49(2):303-309,
2017.

L. Torada, L. Lorenzon, A. Beddis, U. Isildak, L. Pattini, S. Mathieson, and M. Fumagalli.
Imagene: a convolutional neural network to quantify natural selection from genomic
data. BMC bioinformatics, 20(9):337, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, t. Kaiser, and
|. Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998-6008, 2017.

P. Verdu, T. J. Pemberton, R. Laurent, B. M. Kemp, A. Gonzalez-Oliver, C. Gorodezky,
C. E. Hughes, M. R. Shattuck, B. Petzelt, J. Mitchell, et al. Patterns of admixture and
population structure in native populations of northwest north america. PLoS genetics,
10(8):e1004530, 2014.

F. A. Villanea and J. G. Schraiber. Multiple episodes of interbreeding between nean-
derthal and modern humans. Nature ecology & evolution, 3(1):39-44, 2019.



140 Bibliography

Z. Wang, J. Wang, M. Kourakos, N. Hoang, H. H. Lee, |. Mathieson, and S. Mathieson.
Automatic inference of demographic parameters using generative adversarial net-
works. bioRxiv, 2020.

J. A. Wegelin. A survey of partial least squares (pls) methods, with emphasis on the
two-block case. 2000.

W. Weinberg. Uber vererbungsgesetze beim menschen. Zeitschrift fiir induktive
Abstammungs-und Vererbungslehre, 1(1):440-460, 1908.

C. Wiuf and J. Hein. Recombination as a point process along sequences. Theoretical
population biology, 55(3):248-259, 1999.

S. Wright. Evolution in mendelian populations. Genetics, 16(2):97, 1931.

Y. Wu and K. He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pages 3-19, 2018.

A.T. Xue, D. R. Schrider, A. D. Kern, A. Consortium, et al. Discovery of ongoing selective
sweeps within anopheles mosquito populations using deep learning. bioRxiv, page
589069, 2019.

B. Yelmen, A. Decelle, L. Ongaro, D. Marnetto, C. Tallec, F. Montinaro, C. Furtlehner,
L. Pagani, and F. Jay. Creating artificial human genomes using generative models.
bioRxiv, page 769091, 2019.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola. Deep
sets. arXiv preprint arXiv:1703.06114, 2017.

M. A. Zeder. Domestication and early agriculture in the mediterranean basin: Origins,
diffusion, and impact. Proceedings of the national Academy of Sciences, 105(33):11597-
11604, 2008.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
requires rethinking generalization, 2017.

Q. Zhang, Y. Yang, H. Ma, and Y. N. Wu. Interpreting cnns via decision trees. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6261-6270, 2019.

J. Zhou and O. G. Troyanskaya. Predicting effects of noncoding variants with deep
learning-based sequence model. Nature methods, 12(10):931-934, 2015.



ECOLE DOCTORALE

[ )
universite
PARIS-SACLAY

Sciences et technologies
de I'information et de
la communication (STIC)

Titre: Reconstruire notre passé : apprentissage statistique profond pour la génétique des populations.
Mots clés: Génétique des populations, Apprentissage statistique profond, Inférence démographique,
Réseaux de neurones artificiels, Données de taille variable

Résumé: Avec |'explosion des technologies
de séquencage, de plus en plus de données
génomiques sont disponibles, ouvrant la voie a une
connaissance approfondie des forces évolutives en
ceuvre et en particulier de I'histoire démographique
des populations. Toutefois, extraire I'information
intéressante de ces données massives de maniére
efficace reste un probléme ouvert. Compte tenu de
leurs récents succés en apprentissage statistique,
les réseaux de neurones artificiels sont un candi-
dat sérieux pour mener a bien une telle analyse.
Ces méthodes ont |'avantage de pouvoir traiter des
données ayant une grande dimension, de s'adapter
a la plupart des problémes et d'étre facilement
mis a |'échelle des moyens de calcul disponibles.
Cependant, leur performance dépend fortement de
leur architecture qui requiert d'étre en adéquation
avec les propriétés des données afin d'en tirer le
maximum d'information. Dans ce cadre, cette
thése présente de nouvelles approches basées sur
I'apprentissage statistique profond, ainsi que les
principes permettant de concevoir des architec-
tures adaptées aux caractéristiques des données

génomiques. L'utilisation de couches de convo-
lution et de mécanismes d'attention permet aux
réseaux présentés d'étre invariants aux permuta-
tions des haplotypes échantillonnés et de s'adapter
a des données de dimensions différentes (nombre
d'haplotypes et de sites polymorphes). Les expéri-
ences conduites sur des données simulées démon-
trent |'efficacité de ces approches en les comparant
3 des architectures de réseaux plus classiques,
ainsi qu'a des méthodes issues de |'état de I'art.
De plus, la possibilité d'assembler les réseaux de
neurones a certaines méthodes déja éprouvées en
génétique des populations, comme |'approximate
Bayesian computation, permet d'améliorer les re-
sultats et de combiner leurs avantages. La prat-
icabilité des réseaux de neurones pour l'inférence
démographique est testée grace a leur application
a des séquences génomiques complétes provenant
de populations réelles de Bos taurus et d'Homo
sapiens. Enfin, les scénarios obtenus sont com-
parés aux connaissances actuelles de I'histoire dé-
mographique de ces populations.




ECOLE DOCTORALE

®
universite
PARIS-SACLAY !

Sciences et technologies
de I'information et de
la communication (STIC)

Title: Reconstructing our past: deep learning for population genetics
Keywords: Population genetics, Deep learning, Demographic inference, Artificial neural networks,

Data of variable size

Abstract: Constant improvement of DNA se-
quencing technology that produces large quanti-
ties of genetic data should greatly enhance our
knowledge of evolution, particularly demographic
history. However, the best way to extract informa-
tion from this large-scale data is still an open prob-
lem. Neural networks are a strong candidate to
attain this goal, considering their recent success in
machine learning. These methods have the advan-
tages of handling high-dimensional data, adapt-
ing to most applications and scaling efficiently to
available computing resources. However, their per-
formance dependents on their architecture, which
should match the data properties to extract the
maximum information. In this context, this the-
sis presents new approaches based on deep learn-
ing, as well as the principles for designing archi-
tectures adapted to the characteristics of genomic
data. The use of convolution layers and attention

mechanisms allows the presented networks to be
invariant to the sampled haplotypes’ permutations
and to adapt to data of different dimensions (num-
ber of haplotypes and polymorphism sites). Exper-
iments conducted on simulated data demonstrate
the efficiency of these approaches by comparing
them to more classical network architectures, as
well as to state-of-the-art methods. Moreover,
coupling neural networks with some methods al-
ready proven in population genetics, such as the
approximate Bayesian computation, improves the
results and combines their advantages. The practi-
cality of neural networks for demographic inference
is tested on whole genome sequence data from real
populations of Bos taurus and Homo sapiens. Fi-
nally, the scenarios obtained are compared with
current knowledge of the demographic history of
these populations.




	Introduction
	Outline

	Demographic inference
	Insights into the demographic inference problem
	Examples of demographic history effects on genomic variation
	Definition of the demographic inference problem

	Sequentially Markov coalescent (SMC) methods
	Summary statistics based inference
	Inference from site frequency spectrum (SFS)
	Inference from identity by state (IBS) and identity by descent (IBD)
	Approximate Bayesian computation (ABC)

	Simulators
	Chapter conclusion

	Deep learning for genomic data
	Introduction to deep learning
	Multilayer perceptron
	Training artificial neural networks
	Towards more complex networks
	Technical points

	Deep learning applications in genetics
	Inference from genomic data
	Methods based on summary statistics
	Methods based on SNP matrices
	Generative models
	Recent works

	Chapter conclusion

	Methodological development for demographic inference
	Data
	Cattle dataset
	HGDP dataset

	Baselines
	Approximate Bayesian computation (ABC)
	Multi-layer perceptron (MLP)
	Custom convolutional neural network (custom CNN)
	Flagel network

	Sequence position informed deep learning architecture
	Permutation invariance
	Adaptability to varying size
	SPIDNA combined with ABC

	Mixed attention SPIDNA
	Attention hub
	MixAttSPIDNA architecture
	Inference by scenario

	Training and hyperparameter optimization
	Mean squared error (MSE)
	Automated hyperparameter optimisation
	Learning rate strategies of MixAttSPIDNA

	Interpreting deep neural networks with CCA
	dnadna: a python package for deep learning applied to population genetics
	Chapter conclusion

	Inferring demography from genomic data
	Study of ANN performances on simulated data
	SPIDNA hyperparameter optimization
	Results on predefined scenarios
	Prediction error on the whole set of simulated datasets

	Insight into the inner workings and robustness of ANNs
	Internal variance of SPIDNA
	Impact of positive selection on SPIDNA and ABC inference
	Interpreting the custom CNN with canonical correlation analysis (CCA)
	Comparison of MixAttSPIDNA batch formats

	Population size histories inferred by ANNs on real data
	Cattle
	HGDP

	Chapter conclusion

	Conclusion
	Research perspectives
	Improving deep learning architectures
	Solving inverse problem
	Evolutionary and demographic models


	Appendix
	Computational resources
	ABC predictions from Boitard et al.
	Synthèse en français


