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Résumé / Abstract

Résumé

Avec l’explosion des technologies de séquençage, de plus en plus de donnéesgénomiques sont disponibles, ouvrant la voie à une connaissance approfondie desforces évolutives en œuvre et en particulier de l’histoire démographique des popu-lations. Toutefois, extraire l’information intéressante de ces données massives demanière efficace reste un problème ouvert. Compte tenu de leurs récents succès enapprentissage statistique, les réseaux de neurones artificiels sont un candidat sérieuxpour mener à bien une telle analyse. Ces méthodes ont l’avantage de pouvoir traiterdes données ayant une grande dimension, de s’adapter à la plupart des problèmes etd’être facilementmis à l’échelle desmoyens de calcul disponibles. Cependant, leur per-formance dépend fortement de leur architecture qui requiert d’être en adéquation avecles propriétés des données afin d’en tirer le maximum d’information. Dans ce cadre,cette thèse présente de nouvelles approches basées sur l’apprentissage statistique pro-fond, ainsi que les principes permettant de concevoir des architectures adaptées auxcaractéristiques des données génomiques. L’utilisation de couches de convolution etde mécanismes d’attention permet aux réseaux présentés d’être invariants aux per-mutations des haplotypes échantillonnés et de s’adapter à des données de dimensionsdifférentes (nombre d’haplotypes et de sites polymorphes). Les expériences conduitessur des données simulées démontrent l’efficacité de ces approches en les comparant àdes architectures de réseaux plus classiques, ainsi qu’à desméthodes issues de l’état del’art. De plus, la possibilité d’assembler les réseaux de neurones à certaines méthodesdéjà éprouvées en génétique des populations, comme l’approximate Bayesian computa-
tion, permet d’améliorer les résultats et de combiner leurs avantages. La praticabilitédes réseaux de neurones pour l’inférence démographique est testée grâce à leur ap-plication à des séquences génomiques complètes provenant de populations réelles de
Bos taurus et d’Homo sapiens. Enfin, les scénarios obtenus sont comparés aux connais-sances actuelles de l’histoire démographique de ces populations.
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Abstract

Constant improvement of DNA sequencing technology that produces large quantitiesof genetic data should greatly enhance our knowledge of evolution, particularly demo-graphic history. However, the best way to extract information from this large-scale datais still an open problem. Neural networks are a strong candidate to attain this goal, con-sidering their recent success in machine learning. These methods have the advantagesof handling high-dimensional data, adapting tomost applications and scaling efficientlyto available computing resources. However, their performance dependents on theirarchitecture, which should match the data properties to extract the maximum infor-mation. In this context, this thesis presents new approaches based on deep learning,as well as the principles for designing architectures adapted to the characteristics ofgenomic data. The use of convolution layers and attention mechanisms allows the pre-sented networks to be invariant to the sampled haplotypes’ permutations and to adaptto data of different dimensions (number of haplotypes and polymorphism sites). Exper-iments conducted on simulated data demonstrate the efficiency of these approachesby comparing them to more classical network architectures, as well as to state-of-the-art methods. Moreover, coupling neural networks with some methods already provenin population genetics, such as the approximate Bayesian computation, improves theresults and combines their advantages. The practicality of neural networks for demo-graphic inference is tested on whole genome sequence data from real populations of
Bos taurus andHomo sapiens. Finally, the scenarios obtained are comparedwith currentknowledge of the demographic history of these populations.
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Introduction

The study of population histories is an interdisciplinary field of research that involvesarchaeology, palaeontology, linguistic or cultural history studies to reconstruct the de-mographic evolution and spatio-temporal dynamic of populations. Although the lattermainly focuses on human populations, the reconstruction of demographic historiescan also be tackled from another angle by studying the genetic variation at popula-tion scales. Indeed, genetic variation is a product of multiple phenomenons, includingdemographic events such as admixtures, population split or size changes. Therefore,one can reverse this process by mapping genetic variation back to demographic his-tory. Thanks to the advances made in genomics since the first complete sequencing ofa human genome (Collins et al., 2004), they are now more and more whole genomesequencing (WGS) datasets including several individuals from the same population.This type of datasets primarily focused on human populations, with the 1000 GenomesProject (Consortium et al., 2010) being one of the first large scale WGS collection whichtargeted seven populations from four continents originally sequenced with an aver-age coverage of 3.6× (it also includes six samples with 42× coverage). This datasetwas later extended for improved world coverage and data quality (Bergström et al.,2020; Consortium et al., 2015; Leitsalu et al., 2014; Mallick et al., 2016; Pagani et al.,2016). Datasets of non-human species are also available, such as Bos taurus with the1000 Bull Genomes Project (Daetwyler et al., 2014) or chimpanzees and gorillas with theGreat Apes Genome Project (Prado-Martinez et al., 2013) and many other species thatwere previously difficult to study when relying solely on archaeological and historicaldata. Therefore, methods based on genetic variation open the path of demographicreconstruction to all species, from bacteria to vertebrates.They are many cases where inferring the past demography of population is use-ful. For instance, as changes in population sizes are often related to specific events, ithelps to support and date discoveries made by archaeologists and historians such ascultural transitions, ancient migrations, climatic, geological or disease outbreak events.In conservation biology, such information could help to identify whether a species isendangered thanks to the sequencing of a very small subset of its individuals (Kerdon-cuff et al., 2020) and furthermore could help to determine if a decline was caused byanthropogenic activities or natural factors (Lorenzen et al., 2011). In addition, knowingmore precisely the demographic history of a population enables to build more realisticneutral models, and thus to infer more accurately non-neutral signals due to the pro-cess of selection. In the field of health, precisely inferring the demographic histories ofpathogens could help to monitor the impact of health policies. From a different pointof view, processing whole genome sequence datasets including multiple individuals isa very challenging task itself. Therefore, developing methods able to efficiently process
13



14 Introduction

this large quantity of data benefits not only to demographic inference but also to themyriad of problematics in population genetics and genomics. For instance, methodsfor predicting binding sites, protein structure, or biomarkers in precision medicine, allrely on similar datasets and are only a subset of the domains that could benefit fromdeveloping new methods treating whole genome sequences.Demographic inference from genomic data is difficult since evolution is a stochasticprocess and only a few present-day individuals are sequenced. Mutation rate, recom-bination rate, genetic drift and natural selection also drive genetic variation in popu-lations, which, added to the phasing, sequencing or genotyping errors that can ariseduring sample collection, introduce a lot of noise in the data. Thus, the signal left bythe demographic history into the genome is very blurred, whichmakes it even harder todecipher between different demographic histories. Moreover, previous methods thatused to rely on mtDNA, microsatellite data or SNP chip with a limited amount of mark-ers are difficult to scale to data produced by next generation sequencing (NGS) technicsand more recent SNP chips with millions of markers. The important number of dimen-sions in these data makes them hard to handle computationally and statistically formost methods because of the curse of dimensionality (Blum, 2010).Thankfully, a new branch ofmachine learning has shown impressive results inmanyfields of science, solving complex problems based on high-dimensional data. Calleddeep learning, these methods share the common feature of being able to automati-cally learn complex non-linear projections of the data. Based on the concept of arti-ficial neural network (ANN), these algorithms are easily scalable and flexible, as theycan be applied to almost any task after some adaptations to its characteristics. Themain objective of this thesis is to leverage the potential of deep learning to infer thepast demography of populations from genomic data by focusing on the inference ofpopulation size history.

Outline

This thesis is structured around four chapters:Chapter 1 presents the state-of-the-art of demographic inference in population ge-netics. It describes the evolutionary models that the community developed in order toexplain how genetic variation is related to demography. It also presents the simula-tors that will be later used to train the deep learning architectures. These simulatorsexploit the evolutionary models to generate genome sequences according to demo-graphic scenarios specified by parameters such as the mutation rate, recombinationrate, effective size or selection. This chapter also includes a review of the state-of-the-art in demographic inference with methods that do not rely on deep learning (exceptfor some very specific cases of approximate Bayesian computation (ABC)).Chapter 2 introduces the field of deep learning and reviews its applications to ge-netic data, with a focus onmethods answering population genetic questions. ANNs arevery modular, meaning that the deep learning community has developed many ideasthat can be combined to build networks tailored to the task of interest. This chapterintroduces some basic concepts that are common to most ANNs such as backpropa-gation or neuron activations, and others designed to leverage specific data features



Introduction 15
such as attention mechanisms. The deep learning concepts presented here have beenused by methods from the state-of-the-art of deep learning applied to genomics thatwe reviewed in the second part of this chapter. Deep learning applications for popula-tion genetics being fairly new, this review gives a thorough overview of the tasks, dataformats and ANN architectures tackled in this field, and serves as inspiration for themethods that we developed and present in the next chapter.Chapter 3 describes the materials and methods used to develop our ANN architec-tures and how we trained them to tackle population size inference on real dataset. Itstarts by presenting the two genomic datasets of real cattle and human populationsand explain how we generated their simulated counterpart in order to evaluate andtrain the methods tested during this thesis. Then, the chapter presents the methodswe included in the baseline to evaluate the two main deep learning architectures wedeveloped. The first one, called sequence position informed deep learning architecture(SPIDNA), tries to take into account most of the data features specific to population ge-netic data. The second architecture, called mixed attention SPIDNA (MixAttSPIDNA), isbuild upon the first and integrates multiple attention mechanisms in order to improvethe overall computing capabilities of the network without losing the adaptability to thedata features implemented in SPIDNA. This chapter also presents a method based oncanonical correlation analysis (CCA) that has been created during this thesis to interpretANNs in the context of demography inference. Finally, the chapter presents a pythonpackage that we developed to help the population geneticists to develop and distributenew deep learning architectures.Chapter 4 discusses the performance of baseline methods, SPIDNA andMixAttSPIDNA on both simulated and real datasets. It also presents experiments aimedat dissecting the robustness of the designed ANNs, the hyperparameters’ influence andthe optimization process. It finally concludes on the positive and negative impacts ofthe mechanisms introduced in our architectures and methods used to train them.The conclusion of this thesis includes perspectives that could be explored to im-prove further the ANNs’ accuracy in the context of demographic inference and to im-prove their interpretability.To summarize, the main contributions of this thesis are:

• a review of the state-of-the-art of deep learning for demographic inference,
• the development of the SPIDNA architecture, its benchmark to other methodsand application to a dataset of cattle genomic data (Sanchez et al., 2021a),
• the development of theMixAttSPIDNA architecture, its comparison to SPIDNA andapplication to the HGDP dataset of Human genomic data,
• the elaboration of a set of guidelines to build ANNs tailored to genomic data and
• the release of a package to facilitate the usage of deep learning by the populationgenetic community (Sanchez et al., 2021a).





Chapter1Demographic inference

Contents
1.1 Insights into the demographic inference problem . . . . . . . 19

1.1.1 Examples of demographic history effects on genomic variation . 19

1.1.2 Definition of the demographic inference problem . . . . . . . . 20

1.2 Sequentially Markov coalescent (SMC) methods . . . . . . . . 21

1.3 Summary statistics based inference . . . . . . . . . . . . . . . . 24

1.3.1 Inference from site frequency spectrum (SFS) . . . . . . . . . . 24

1.3.2 Inference from identity by state (IBS) and identity by descent
(IBD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.3 Approximate Bayesian computation (ABC) . . . . . . . . . . . 26

1.4 Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 29

Population genetics is a subfield of evolutionary biology that seeks to understandhow evolution shapes genetic variation at the scale of a population. The emergence ofthis discipline can be traced back to the early 20th century, decades before the discov-ery of the DNA structure in the forties and the availability of large scale genomic dataof today. Therefore, this domain used to rely primarily on mathematics with the goalof finding models that describe the genetic variation of a population. One of the firstevolutionary model has been published independently by Hardy (1908) and Weinberg(1908). It describes the allele frequencies of a biallelic locus in a panmictic population ofinfinite size, without mutation or selection. This model shows the counterintuitive no-tion that two allele frequencies reach an equilibrium (the Hardy-Weinberg equilibrium)under these assumptions, independently of their dominant or recessive state. Later,Fisher (1958); Wright (1931) proposed a model with mutations in a finite size popula-tion, making this model one of the first to take into account an evolutionary force anda demographic parameter, opening the path to more realistic models that relax thesesimplifying assumptions. Moran (1958) introduced a model with overlapping gener-ations and asexual reproduction, where at each step an individual is cloned and an-other onedies. Similarly, Kimura (1964) introduced amodel basedonpartial differentialequations to highlight genetic drift and developed the neutral theory of molecular evo-lution. This theory argues that genetic drift is the main evolutionary force that explains
17
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variation, as opposed to natural selection. Thesemodels are prospective, meaning thatpopulation changes are modelled by moving forward in time.As genetic data of present-day individuals became available, it marked a turningpoint because a new evolutionary model was needed to understand, retrospectively,how evolution shaped genomes. Hence, a model called the coalescent has been intro-duced by Kingman (1982). The principal idea of this model is to start from a sampleof present-day individuals and trace their lineages backward in time until all lineagescoalesce (i.e., until they merge in a single lineage) to the most recent common ances-tor (MRCA). The quantities of interest here are the coalescence times, i.e., the numberof generations that two or more individuals took to coalesce. For simulation purpose,this model is often more computationally efficient than prospective ones, because itonly takes into account the lineages that lead to present-day individuals sampled, asillustrated in Figure 1.1. The coalescent has been complexified through the years in or-der to relax some demographic assumptions to allow for population size changes andpopulation structure, or introduce other evolutionary forces such as recombination.One of the main goal of population genetics is to study the genetic variations ofa population in order to infer demographic parameter values describing the popula-tion size changes, their structuring, admixture and migration events. This first chaptergives an intuition of the link between genetic variation and population demography,and presents the problematic of demographic inference. Then, it shows how previ-ously mentioned evolutionary models are integrated into methods for demographicinference. Section 1.2 presents the sequentially Markovian coalescent, an evolutionarymodel that approximates the coalescent via a hidden Markov chain, on which numer-ous inferencemethods rely. Section 1.3 presentsmethods based on summary statisticsof the genomic data. Finally, this chapter will present the data simulators used duringthis thesis.

Figure 1.1: Genealogy of the same population modelled prospectively (left) and retro-
spectively (right). Figure fromNordborg (2001). MRCA stands for most recent common ances-tor of the individuals of the last generation.
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1.1 Insights into the demographic inference problem

As stated in the introduction, the main challenge of demographic inference in popu-lation genetics is to infer the parameters values describing a population demographichistory from its genomic data. The demography of a population is described by changesin its size, structure, and the occurrence of admixture or migration events. The modelscited earlier depict the effects of these demographic parameters on the evolution ofgenomic variation. Therefore, it is possible to reverse this process in the light of evo-lutionary models to infer these parameter values by studying the genomic variation.Before defining the inference problem studied during this thesis, let us better under-stand the link between demography and genomic variation through some examples.

1.1.1 Examples of demographic history effects on genomic varia-
tion

This section gives an intuition about why genetic variation within a population carry sig-nals of the past demography. The first example shows how an expansion increases thegenomic diversity in the coalescent evolutionary model. The second example of a bot-tleneck shows the reduction of the population size decrease its genetic diversity. Thethird example shows how an event of admixture can be dated when the recombinationrate per generation is known.Figure 1.2 illustrates how coalescent time is related to the size of the population.The population with a growing rateNa/Nc has more coalescence events than expectedin a constant size case, when the population is small (close to Na) and the branches(i.e., the coalescence times) are shorter during this period. Intuitively, two lineages aremore likely to coalesce at a time when the population is small. The total sum of thelineage branches being longer for the expansion scenario than a scenario with a smallconstant population size, new mutations have more chances to occur, resulting in ahigher genomic diversity in terms of number of polymorphism sites.Now consider the scenario of a population with a high genetic diversity in the past,that then undergoes a bottleneck, i.e., a sharp reduction of the population size, andfinally a size expansion. During the bottleneck, the genetic diversity of the populationis reduced and even if the population recovers its previous size during the expansionphase, it will not quickly recover its level of genetic diversity. From that, we can infer thata large populationwith small genetic diversity is likely to have encountered a bottleneckin the past followed by an expansion (Gattepaille et al., 2013).Another example is how an event of admixture (e.g., the introduction of individualsof different ancestry (migrants) into the studied population) can be dated from geneticdata. Right after a migrant individual enters a population, his first generation offspringwill carry one entire chromosome originating from each population, leading to longgenomic regions that can be assigned to a single ancestry. However, recombinationoccurs at each new generation, breaking apart these regions and mixing segments ofdifferent ancestries. Analysing the length of the admixed regions of the genome in-forms about the number of recombinations that happened since the admixture, andthus allows to approximate the date of the event (assuming admixture happened in a
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Figure 1.2: Effect of expansion on coalescence. Left: scenario with constant population size
Ne. Right: scenariowith expanding population size at a growing rateNa/Nc duringG generations.Figure from Palamara et al. (2012).

single pulse) (Gravel, 2012; Liang and Nielsen, 2014; Verdu et al., 2014).Yet, following the described logic to infer demographic events is valid only in the caseof an idealized population, where no other process disturbs the signal left by the pop-ulation size changes in the two first examples and the admixture in the third. In thesecases, it is fairly easy to derive the parameter values describing these demographicevents from present-day data. However, real populations can undergo many demo-graphic events and changes in the evolutionary process at the same time. For instance,demographic events such as the presence of complex population size changes, multi-ple events of admixture, migrations or non-random mating can completely distort thedemographic parameters inferred by simple derivations. Moreover, as pinpointed inthe introduction, changes in mutation rate, recombination rate, natural selection anderrors added during the data collection are other causes that break the simplestmodelsto the point that inferred parameters are outside the acceptable margin of error.

1.1.2 Definition of the demographic inference problem
When inferring past demography, one can try to infer all demographic parameters atonce, or choose to focus either on the inference of the population size history or itsstructure when considering no admixture or migration events. As shown by previousstudies, these two families of demographic parameters are particularly difficult to dis-entangle for most methods, as the effects on genomic variation of one also translatevery well into the other (Mazet et al., 2016). This thesis focuses solely on the inferenceof population size histories of a panmictic population and does not consider the split,merging and admixture events that populations may undergo, but we will discuss inthe next sections methods doing the opposite, i.e., ignoring population size changesand inferring population structure through time. Another point is that inference canbe performed either as a regression task or a classification task. Classification is partic-ularly useful when the population demography studied is known enough to formulate
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competitive hypotheses. For instance in human populations, if it is already know thattwo populations had encounter in the past thanks to archaeological evidences, onecan seek for the classification between different scenarios including admixture, non-admixture or replacement of one population by the other. Here, each scenario wouldbe modelled under a demographic model with predefined parameter values, and theclassification task goal would seek which scenario is the most likely based on the realpopulation data.During this thesis, we will focus on a regression task with the goal of inferring de-tailed population size histories. These histories will be represented by 21 populationsizes parameters at fixed time steps. We chose to perform regression of a fairly com-plex demographic scenario over classification because little prior information is knownabout the population, and it covers a much greater range of possible scenarios. Hybridapproaches can also be considered, with a first classification task inferring a generalscenario (e.g., the presence of an expansion or not) and a second regression task aimedat refining the general scenario inferred (e.g., finding the date and rate of expansion ifthat is what has been inferred by the classification).We denote the demographic parameters of interest θ. Regression methods seekeither for the set of θ that maximizes the likelihood p(X | θ) of the observed data X ,or the posterior distribution p(θ | X) of θ. The data X are the observed (potentiallypreprocessed) sequencing data. The real evolutionary process that led to the observeddata is approximated by a model such as the Wright-Fisher or the coalescent ones,which will include demographic information. However, these evolutionary models arecomplex probabilistic models, also referred to as implicit models (Cranmer et al., 2020),where the likelihood is often not explicitly defined, an approximation or the likelihoodunder a simpler model. The real likelihood is hardly tractable because it would requireto integrate the posterior probability over all the possible mapping from θ to X in themodel, which is not possible because these mapping are too numerous in the case ofcomplex probabilistic model. Moreover, the demographic parameter inferred can bevery different than the true values because of the assumptions made by the model. Inthe case of population sizes, the inferred values are called “effective sizes” by oppositionto the true “census sizes”. We often consider the effective population sizes to be linearlyproportional to the census population sizes, which allows drawing conclusions on theoverall dynamic of the population size history.The next sections present three different families ofmethods for demographic infer-ence: methods based on an approximation of the coalescent with hiddenMarkovmod-els, methods using the likelihood computed on summary statistics (summarizing thedata) rather than the complete observed dataX and finally, the approximate Bayesiancomputation, a method that can approximate the posterior distribution, but also re-quires the computation of summary statistics.

1.2 Sequentially Markov coalescent (SMC) methods

The sequential Markov coalescent (McVean and Cardin, 2005) is an evolutionary modelderived from the sequential coalescent (Wiuf and Hein, 1999), itself derived from thecoalescent with recombination (Hudson, 1983). It allows demographic inference by
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adding few simplifications over the sequential coalescent. The main idea behind thesemodels is that recombination events of a population sample can be represented astransitions between the marginal genealogies along the genome. To understand thisconcept, we can take a look at a type of representation called the ancestral recombi-nation graphs (ARG) (Figure 1.3) where each node represents either a coalescence ora recombination event. The sequential coalescent associates each locus of the sam-ple alignment to a genealogy that is embedded in the ARG. A recombination event inthe ARG can translate into a change of genealogy along the genome. After inferringthe marginal genealogies of each locus, a distribution of the coalescence times can becomputed from them and finally transformed into demographic parameters such asthe effective population sizes.
Inference under the coalescent with recombination is particularly difficult becausethe state-space of possible ARG is huge. Indeed, the number of recombination is un-bounded, and they can occur on haplotype segments that are not present in the sam-pled haplotypes. Moreover, there are usually too few mutations to characterize locallya precise genealogy. Therefore, there are numerous possible ARGs, each contributinga little to the likelihood. SMC and its derivatives reduce this state-space by introduc-ing the simplifying assumption that recombination events only occur in segments thatlead to coalescence events in the sample. In other words, an MRCA haplotype can onlycontribute to one continuous fragment in the sequences sampled (in reality, multiplefragments could have the sameMRCA, but it is unlikely aftermany recombinations). Thechanges in the genealogy are represented as transitions along the genome sequencethat follows a Markov chain dynamic, meaning that the probability of a genealogy at agiven position now depends only on the previous genealogy (directly on its left in thesequence). Thus, a likelihood approximation can be computed by using hiddenMarkovmodel (HMM) inferencemethods. In the HMM framework of the SMC, the hidden statesare themarginal genealogies, which are simplified into coalescence times between hap-lotypes pairs by subsequent SMC based inference methods. The observed values arethe sample states at each locus.
The SMC and its improved version SMC’ (Marjoram and Wall, 2006) are the under-lying model for many inference methods including PSMC, MSMC and SMC++ (Li andDurbin, 2011; Schiffels and Durbin, 2014; Terhorst et al., 2017). These methods differby the way they construct their hidden and observed states. For instance, the pairwisesequential Markov coalescent (PSMC) uses two haplotypes (i.e., it only requires the se-quence of a diploid individual) and its possible hidden states are the coalescence timesof each locus. PSMC is limited when it comes to inferring recent effective populationsizes because twohaplotypes have few recent coalescent events, and thus less informa-tion about recent population demography. It is difficult to leverage information frommore than two haplotypes due to the difficulty of expressing the marginal genealo-gies and coalescence times of multiple haplotypes. The multiple sequential Markovcoalescent (MSMC) circumvents this issue by computing all the pairwise recombinationtime between multiple sample haplotypes and retaining the most recent one. Anothermethod called SMC++ also leverages the information in multiple haplotypes. It uses anobserved state similar to PSMC (i.e., the alleles of two haplotypes), but adds to it a sum-mary statistic called the site frequency spectrum (SFS) of the remaining n-2 haplotypes.
These SMC based methods have the advantage of using the information along the
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Figure 1.3: Example of ancestral recombination graph (ARG) between three haplotypes
with themarginal genealogies associated. Each node of the ARG corresponds either a coales-cence event or a recombination event (nodes r1 and r2). The lineages of the haplotypes are rep-resented until they all coalesce to themost recent common ancestor (MRCA). Eachmarginal ge-nealogy (genealogy 1, 2 and 3) represents the coalescence events between the non-recombinedsubsequences of the same colour.
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sequence (usually by windows of 100 bp) and leverage linkage information betweensites. However, in addition to the simplifications discussed earlier, thesemethods haveother disadvantages due to the approximations introduced to limit their computationalcost. For instance, the possible hidden states (i.e., the possible coalescence times ata loci) are discretized, which may reduce the accuracy. Moreover, they use phaseddata, which require greater sequencing coverage. Therefore, researches in populationgenetics have developed other methods based on different types of input data andevolutionary models. The next sections introduce them, alongside their strengths andweaknesses.

1.3 Summary statistics based inference

Instead of processing genomes sequentially like SMC-HMM based methods, summarystatistics based methods circumvent the high dimensionality of genomic data by fo-cusing on a subset of statistics computed from the sequences. Many of such methodshave been developed by the community in population genetics through the years, andthis section highlights some of them to illustrate the different ways summary statisticsare used for demographic inference.

1.3.1 Inference from site frequency spectrum (SFS)
We saw in the previous sections that, compared to other SMC based methods, SMC++uses the additional information of the site frequency spectrum (SFS) to integrate datafrommore than two haplotypes. The SFS is the distribution of the number of n-ton (sin-gleton, doubleton, tripleton, etc...) polymorphic sites in the population sample. ∂a∂ifrom Gutenkunst et al. (2009) is an example of a method that utilizes such statistics toinfer effective sizes, splitting events and migrations between up to three populations.More precisely, this method seeks for the demographic parameter values that maxi-mizes the likelihood of the multi-population SFS under a diffusion model of evolution.Themulti-population SFS, which is the joint site frequency spectrum (SFS) betweenmul-tiple populations, is a matrix with as many dimension than populations in the sample.Each element of the matrix represents the shared number of polymorphic sites be-tween the populations. For instance, the [2, 0] entry of a 2 dimensional matrix recordsthe number of polymorphic sites where the derived allele is present twice (i.e., a dou-bleton) in the first population, but not present in the second population. In the sameway as the SFS, the multi-population SFS contains all the information of the data ofmultiple populations if the polymorphic sites are completely independent, and it scaleseasily to the full genome length.The stairway plot (Liu and Fu, 2015) is another method that optimizes observed SFSlikelihood using a genetic algorithm. The algorithm searches for the population scaledmutation rates that are then converted into population sizes at different time point.This method showed better estimations of recent effective population sizes than PSMCover predefined simulated scenarios.The fastsimcoal2 algorithm proposed by Excoffier et al. (2013, 2021) approximatesthe likelihood of the SFS by using simulations. Here, the demographic parameters are
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optimized thanks to an extension of the expectation-maximization (EM) algorithm. Ateach cycle, the algorithm generates simulations from a set of demographic parametersand computes the likelihood of the demographic model (by calculating the probabilityof the observed SFS based on the simulated one). This likelihood is then used by theEM algorithm to compute the next parameter values. The procedure usually simulates100,000 SFS at each step for 20 to 40 cycles. Between 20 and 40 independent proce-dures are launched in parallel with different starting demographic parameter values inorder to better explore the parameter space and avoid local optima.

1.3.2 Inference from identity by state (IBS) and identity by descent
(IBD)

Identity by state (IBS) and identity by descent (IBD) are two other types of summarystatistics that have the advantage of taking into account linkage information betweensites. IBS describes sequence fragments that are identical, whereas IBD describes se-quence fragments that are similar because they are inherited from a common ancestorwithout any recombination events breaking the lineage from this ancestor. IBD doesnot always imply identical fragments because new mutations can still occur after theMRCA. Following the coalescent, the length of IDB fragments can be translated intocoalescence times to finally infer population sizes. Intuitively, small populations haveshorter coalescence times and thus, fewer recombination events that can break upshared sequences, resulting in longer IBD fragments. One caveat of IBD basedmethodsis that they require a first inference step to identify the IBD fragments before perform-ing the demographic inference itself, contrary to IBS fragments that can be computeddirectly from the observed data (if their quality permits).Harris and Nielsen (2013) thus compute the likelihood of the IBS segment lengthsbased on the SMC evolutionary model and optimize the demographic parameters ofinterest with quasi-Newton BFGS algorithm. This strategy enabled them to infer theparameters of a demographic model including population size changes, divergenceevents and admixture pulses. They obtained accurate predictions for simulated sce-narios on which ∂a∂i was not able to converge, but had trouble leveraging long IBStracts in applications to real data, as those were interrupted by sequencing errors.In their study, Browning and Browning (2015) focused on the inference of recent ef-fective population sizes based on IBD fragments longer than a particular threshold.Rather than having a direct expression of the likelihood, they express the relation-ship between effective population sizes and IDB fragments based on a Wright-Fisherdiscrete-generation evolutionary model. Effective population size values are updatedthrough an expectation-maximization (EM) algorithm by computing iteratively the esti-mated and expected amount of IBD from a set of effective population sizes.Except for fastsimcoal2 that could potentially use different simulators, the methodspresented here are tied to the evolutionary model they use to express the relationbetween the summary statistics and the demographic parameters of interest. The nextsection presents the approximate Bayesian computation (ABC) that, similarly to themethod underlying fastsimcoal2, is not tied to any evolutionary model, but has theadvantage of being able to leveragemany type of summary statistics (rather than solelythe joint SFS).
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1.3.3 Approximate Bayesian computation (ABC)

Approximate Bayesian statistical inference is a method that allows to estimate the pos-terior distribution of model parameters given a set of observed data. To better under-stand how this method works, let us remind the Bayes’ theorem:
p(θ |X) =

p(X | θ)p(θ)
p(X)

(1.1)
where p(θ | X) is the posterior of parameter θ (i.e., the probability distribution of θgiven the observed dataX), p(X | θ) is the likelihood (i.e., probability distribution of theobservations of the dataX given θ), p(θ) is the prior knowledge about the distribution of
θwithout information from the dataX and p(X) is called themarginal likelihood, whichis the distribution of all data that could be observed for all values of θ. The marginallikelihood is a normalizing constant that can be ignored because it cancels out whencomparing two posterior probabilities.

As explained in Section 1.1.2 observed data X are derived from sequencing dataand θ are the parameters of interest in the context of demographic inference. Onecaveat of ABC, is that it suffers from the curse of dimensionality (Blum, 2010) because itcomputes a distance in the space of X that can be high-dimensional. Simply put, datapoints become very sparse in the data space as the number of dimension increases,which makes them appear equidistant to each other, preventing the usage of a rele-vant distance metric. Because sequencing data are typically high-dimensional, they areoften converted into a smaller number of commonly used summary statistics with afunction s to give a vector of summary statistics observed s⃗⋆. A set of parameters θiare randomly drawn from the prior p(θ) and used to generate simulated dataXi. Then,a vector of simulated summary statistics s⃗i is computed for each simulated data Xithanks to the function s.
The ABC algorithm allows finding an approximation of the posterior distribution

p(θ |X) of the demographic parameters θ from the observed dataX with the followingformula:
p(θ |X) ≈ p(θi | d(s⃗i, s⃗⋆) < ϵ) (1.2)

with d a distance measure (usually the Euclidean distance) and ϵ the tolerance thresh-old. In other words, the posterior is estimated by the distribution of demographic pa-rameters θi for which the corresponding summary statistics s⃗i have a distance d(s⃗i, s⃗⋆)inferior to the tolerance threshold ϵ. Before constituting the estimated posterior, a stepof correction can be applied by fitting a regressionmodel locally in order to improve theinference of the demographic parameters in the vicinity of the observed data and helpto cope with the dimensionality of the set of summary statistics. This regression canbe performed with, for instance, lasso regression, ridge regression or a simple artificialneural network (Boitard et al., 2016b). ABC steps are represented in Figure 1.4.
The first applications of this method for demographic inference date from the latenineties. Tavaré et al. (1997) used it to infer the coalescence times from sequencedata and Pritchard et al. (1999) used the variations of eight human Y chromosomemicrosatellite loci summarized into 3 summary statistics to infer the parameters of amodel of exponential growth. Nowadays, researchers are addressing more and more
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Figure 1.4: Diagram of the approximate Bayesian computation algorithm (ABC). Demo-graphic parameters are randomly drawn from the prior p(θ) and fed to a simulator based on anevolutionary model. Simulated and observed data are then converted into summary statistics.Then simulated summary statistics s⃗i that are too far from the observed summary statistics
s⃗⋆ according to the distance measure d and the tolerance threshold ϵ are rejected. The de-mographic parameter associated to the remaining simulated summary statistic can then passthrough a step of correction to finally constitute the estimated posterior of the observed data.
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complex tasks thanks to the availability of WGS data which are summarized by numer-ous statistics inspired by population genetic theory in order to minimize the informa-tion lost from the sequencing data. Summary statistics commonly used are the site fre-quency spectrum (SFS) and its summaries (e.g., Tajima D), linkage disequilibrium (LD)and statistics based on shared segments that are identical-by-state (IBS) or identical-by-descent (IBD) (Boitard et al., 2016b; Gladstein and Hammer, 2019; Jay et al., 2019;Sheehan and Song, 2016; Smith and Flaxman, 2019). Yet, they are not guaranteed tobe sufficient and including too many statistics can impact the performance of standardABC by falling back to the curse of dimensionality. An active research topic in the ABCcommunity is thus the development of methods addressing this issue by (i) selectingthe best subset of summary statistics according to some information-based criteria,(ii) integrating machine learning steps into ABC to handle a larger number of summarystatistics (e.g., kernelmethods, random forests), (iii) constructing summary statistics us-ing linear and non-linear models based on candidate statistics or on the original datawhen feasible (Aeschbacher et al., 2012; Blumet al., 2013; Fearnhead andPrangle, 2012;Jiang et al., 2017; Nakagome et al., 2013; Raynal et al., 2018).Therefore, ABC has some drawbacks: it is sensitive to the curse of dimensionalityand cannot handle directly raw genomic data, it needs many simulated data due toits rejection algorithm, it is difficult to interpret its output in terms of which statisticswere the most informative for each demographic descriptor, and it does not naturallyhandle correlated or weakly informative summary statistics, which can add noise to thedata (Sheehan and Song, 2016) (to the exception of ABC random forests (Raynal et al.,2019), which on the other hand lose the ability to estimate posteriors). However, itsability to estimate posteriors and therefore, to compute credible intervals, gives it agreat advantage over other methods, such as most deep learning frameworks. Duringthis thesis, we used ABC as a baseline to compare to the architectures we developed.The results of this comparison should also give us an idea of how our methods shouldperform against other methods already tested against ABC, such as MSMC (Boitardet al., 2016b). Finally, we also combined ABC to our SPIDNA architecture in order tobenefit from the advantages of the two methods, as explained in Section 3.3.3.

1.4 Simulators

Numerous simulators have been developed and can be used with inference methodsthat are not tied to any underlying evolutionary model, such as the ABC. They are oftencategorized either into forward simulators or backward simulators. Forward simula-tions, are based on prospective models, meaning that all individuals of a populationare usually followed one generation after the other, while backward simulations followthe ancestors of only a small subset of the population. For instance, the SLiM program(Haller and Messer, 2019) proposes two different forward simulators, one based onthe Wright-Fisher model and one non-Wright-Fisher (nonWF). The nonWFmodel is par-ticularly flexible because it controls mating at the individual level. Thus, it can relaxmany of Wright-Fisher assumptions to allow introducing new mating, recombinationor selection mechanisms, and more easily adapt the model to non-model organisms(Cury et al., 2021). However, these models are particularly time-consuming compared
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to backward simulators which are preferred for inference methods that require a lotof simulated data, such as ABC and the deep learning methods developed during thisthesis. We will see in Chapter 3 that we used three similar coalescent based simulators,ms, msms and msprime (Ewing and Hermisson, 2010; Hudson, 2004; Kelleher et al.,2016), to test the robustness of our method to change of simulator (see Section 4.2.2).We choose to use principally msprime to perform simulations to train and evaluate ourmethods because it is the most computationally efficient of the three.Demographic inference methods based on simulations require generating a lot ofsimulated data under different scenarios that are drawn from prior distributions. Asexplained in Section 3.1, we designed our priors to be as close as possible to the knowl-edge on the two real datasets studied during this thesis.

1.5 Chapter conclusion

This chapter gave a brief overviewof the state-of-the-art in demographic inference fromgenomic data. The different methods rely on evolutionary models that describe the in-fluence of demography on population genetic variations with the idea of finding thedemographic parameter values that maximize the likelihood of some observed data.These methods are able to handle genomic data either by analysing polymorphic sitesor by reducing the data into relevant summary statistics. By comparing thesemethods,we can see that there is often a tradeoff between the complexity of the evolutionarymodel, the complexity of the demographicmodel, the computational efficiency and theamount of information used from the data. For instance, ABC can be usedwith any evo-lutionary model that allows for simulation, but is not particularly efficient as it requiresa lot of simulations, especially when testing a wide variety of demographic models andparameters. Moreover, it also requires to carefully choose the summary statistics usedin order to lose the minimum of information from the genomic data. On the otherhand, we saw that some methods, such as SMC, despite analysing the full sequences,were tied to evolutionary models. Hence, we can imagine some specifications for thedesign of a new demographic inferencemethod. It should be preferably agnostic to thedemographic and evolutionary models, able to handle directly genomic data and havecompetitive prediction errors while being computationally efficient. The next chapterpresents the deep learning framework and why it is a good candidate to answer theserequests.
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Themain challenge of this thesis is to leverage the recent advance in Deep Learningto solve the population genetic problem of inferring past demography. This chapterfirst introduces deep learning and describes the fundamental building blocks of artifi-cial neural networks (ANN) by focusing on one of the most basic ANN: the multilayerperceptron (MLP). Then, the training phase and other deep learning concepts relevantfor the ANNs developed through this thesis are introduced. Finally, this chapter dis-cusses the various applications of deep learning to genomic data with emphasis on thefield of population genetics.

2.1 Introduction to deep learning

The history of deep learning can be traced back to the firstmodels of an artificial neurondeveloped in the forties, which has since led to increasingly more complex networks ofthese artificial neurons through the years. But it is not until the development of back-propagation, a simple scheme of training based on chain rule, and the increase of com-putational power and availability of large datasets that ANNs became powerful enough
31
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to solve real world tasks such as handwritten digit recognition (LeCun et al., 1989). Anew deep learning craze started in 2012, after Krizhevsky et al. (2012) achieve unprece-dented results during the ImageNet LSVRC-2010 image recognition contest. Fuelled bythe availability of specialized hardware such as graphical processing units (GPUs) andthe development of dedicated deep learning libraries, this craze has led to numerousapplications of deep learning in almost all branches of experimental sciences and in-spired the advancement of deep learning theory.The deep learning family of methods consists in a large set of algorithms that sharethe same fundamental features: numerous learnable parameters organized in nestedfunctions called layers, an evaluation function defined to solve a specific task and anoptimization procedure aimed at finding the best parameter values over a set of datacalled the training set. In other words, an ANN is a complex function with learnable pa-rameters that can be automatically optimized in order to approximate a target functionthat solves a task. Artificial neural networks are trained iteratively as each data samplefrom the training set is fed to the network, then its outputs are evaluated to guide theoptimization of the learnable parameters. In the best case scenario, these two stepsare repeated until convergence to an optimum, but in reality a lot of factors can deviatethe training from this goal, and it is the work of the deep learning practitioner to findthe right architecture and settings that yield to a good solution.

2.1.1 Multilayer perceptron

This section presents one of themost basic types of deep learning architecture which iscalled multilayer perceptron (MLP) or fully-connected network. Presenting this simplenetwork will help to define most of the building blocks of deep learning architecturesand how the general optimization process of deep learning works.

MLP architecture

The multilayer perceptron (Figure 2.1) is an ANN where each neuron (also referred as“hidden units”) is connected to all the neurons of the upper and lower layer, hencethe name of fully-connected (or dense) layers. The first layer of this model, the inputlayer, is a vector x⃗ representing one data point of the dataset. After the input layer,several hidden layers are added sequentially. The neurons activations of the hiddenlayer l of size N l are denoted as a vector a⃗ l ∈ RN l . The MLP has a total of L hiddenlayers. The weights between layers l of size N l and l + 1 of size N l+1 are denotedby the matrix W l ∈ RN l+1×N l . A bias vector b⃗ is added at each hidden layer to allowthe network to shift the activation and thus, increases the capacity of the network toapproximate functions. Simple non-linear functions denoted σ are inserted betweenlayers to introduce non-linearities inside the network. The first layer thus computesthe function a⃗ 1 = σ(W 1x⃗ + b⃗ 1) and each other layer computes a function of the form
a⃗ l = σ(W lz⃗ l−1 + b⃗ l). The last layer outputs the network predictions denoted by the
vector hW,⃗b(⃗a

L−1) = ⃗̂y ∈ RP . This set of weights W = {W 1,W 2 · · ·WL} and biases
b⃗ = {⃗b 1, b⃗ 2, · · · b⃗L} are optimized during training and therefore are part of the learnableparameters.
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Figure 2.1: Diagram representing a multilayer perceptron (MLP). A data point x⃗ passesthrough a series of hidden layers defined by their weights W l and bias b⃗ l. Each output z⃗ l ofan hidden layer pass through an activation function σ. Last layer output the prediction of thenetwork ⃗̂y.

Activation function

Many activation functions with different proprieties have been used in Deep Learning.For instance, the Rectified Linear Unit (ReLU) is defined as:
σReLU(z) =

{
z for z > 0
0 for z ≤ 0

(2.1)
ReLU has multiple advantages over other activation functions: (1) it avoids the van-ishing gradient problem, (2) it gives a sparse network if weights are initialized around0 and (3) it is efficient to compute. The vanishing gradient problem rises when the ac-tivation function has a gradient restrained to a small range (functions such as sigmoidor tanh that are asymptotically flat). These gradients are multiplied together duringthe backpropagation, which might lead to an extremely small (vanishing) gradient be-ing backpropagated to the first layers. Vanishing gradients prevent changes/updates inthese first layers’ weights. This issue often appears when the network has many layers,i.e., when the network is deep.
Another type of activation function, the scaled exponential linear units (SELU) fromKlambauer et al. (2017), mitigates the vanishing gradient by design. It is defined as:

σSELU(z) = γ

{
α(ez − 1) for z < 0

z for z ≥ 0
(2.2)
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with α ≈ 1.673 and γ ≈ 1.051, it has been proven to keep layer activations to 0 meanand 1 variance. In practice, as it requires to carefully initialize the weights and normal-ize the data, simpler and less computationally expensive activation functions like ReLUcombined with batch normalization (described in the next section) are often preferred.
Weight initialization

Prior to training, network weights need to be randomly initialized to ensure the smoothfunctioning of the optimization process and to benefit from overparametrization opti-mization properties. For instance, in a MLP setting, two weights with the same inputsand initialized with the same value could be updated the same way through trainingand remain identical, which is undesirable as it would reduce the overall expressivepower of the network. Careful weight initialization is also important to avoid explod-ing or vanishing gradients and to start the optimization process near the optimum. Tothis extent, numerous initialization schemes have been developed such as the popularKaiming He initialization (He et al., 2015) which is defined by:
W l ∼ N (0,

2

N l−1
) (2.3)

When using ReLU activation functions, this initialization guarantees that the outputvariance of each layer is equal to 1. However, the assumptions made to obtain thisguaranty can break with more complex architectures, e.g., for networks with residualconnections, attention mechanisms or unstandardized inputs and targets. Thus, net-works using these types of mechanisms are harder to train and typically use anothermechanism, called batch normalization, that allows a less careful initialization.
The universal approximation theorem

The universal approximation theorem (Cybenko, 1989; Hornik, 1991) shows the com-putational power of ANN by proving that neural networks with bounded depth andarbitrary width can approximate any continuous function over a compact:
Theorem 1 Let σ be any continuous sigmoidal function. Then finite sums of the form:

G(x) =
N∑
j=1

αjσ(y
T
j x+ θj)

are dense in C(In). In other words, given any f ∈ C(In) and ϵ > 0, there is a sum, G(x), of
the above form, for which:

|G(x)− f(x)| < ϵ for all x ∈ In

Where ϵ can be arbitrary small, In is the n-dimensional unit cube and C(In), the spaceof continuous functions on In. This theorem says that the number of unitsN ∈ N∗, realconstants αj, yj ∈ R and real vectors θj ∈ Rm exist such that G is an approximation ofthe target function f . It has since been extended to unbounded activation functions σ
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such as ReLU and to networks with arbitrary depth but bonded width (Lin and Jegelka,2018).

2.1.2 Training artificial neural networks
The previous section defined the MLP, the weight initialization step and its universalapproximation property. This section will describe how ANN weights are actually op-timized to approximate the objective function. This process called training is done it-eratively by alternating between forward of the data and backward pass of the loss inthe network. During the forward pass, the network makes predictions on a set of datacalled the training set. Then, during the backward pass, the loss gradient is backprop-agated to update the network weights and biases.
Forward pass

During the forward pass, a data x⃗ is sent to the network. The activation of the neurons
a⃗ of the first hidden layer l = 1 of a MLP is defined by:

a⃗ 1 = σ(z⃗ 1) = σ(W 1x⃗+ b1) (2.4)
where the activation function σ : R → R is applied to each coordinate of its input vectorindependently. Then, activations of hidden layer l > 2 are computed as the following:

a⃗ l = σ(z⃗ l) = σ(W la⃗ l−1 + bl) (2.5)
The output layer is computed as follows:

⃗̂y = WLa⃗L + bL (2.6)
Here there is no activation function in the last layer because this network is aimedat solving a regression task with multiple parameters to predict, but it is also possibleto adapt this layer to other tasks. For instance, by adding a softmax activation func-tion, this last layer would be suited for a classification task where classes to predict areencoded as one-hot vectors.

Training and backpropagation

During the training phase, batches of inputs x⃗ are passed though the network and pre-dictions ⃗̂y = hW,⃗b(x⃗) are compared to the targeted outputs y⃗. For the regression case,
the L2 norm, also called mean squared error (MSE) can be used to measure the predic-tion error (also called loss):

J(W, b⃗, ⃗̂y, y⃗) =
1

m

m∑
j=1

|⃗̂yj − y⃗j|2 (2.7)
The method used to tune the weights of the networks developed in this thesis isAdaptive Moment Estimation (Adam) (Kingma and Ba, 2014), a method derived from
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the stochastic gradient descent (SGD) (Bottou, 2010). SGD is an optimization techniquethat can be applied to ANN using backpropagation. We first compute ∂J
∂w

to know howa small change of a weight w = W l
i,j affects the loss, and then update the weight with

w → w′ = w− η ∂J
∂w

with η the learning rate. For weights w of the last hidden layer L, wecompute ∂J
∂w

using the chain rule:
∂J

∂wL
=

∂J

∂⃗̂yLi

∂⃗̂yLi
∂z⃗ L

i

∂z⃗ L
i

∂wL
(2.8)

For weights w in another layer q < L, we have:
∂J

∂wq
=

∂J

∂⃗̂yL

∂⃗̂yL

∂z⃗ L

q+1∏
l=L

(
∂z⃗ l

∂a⃗ l−1

∂a⃗ l−1

∂z⃗ l−1
)
∂z⃗ q

∂wq
(2.9)

The optimal solution would be to compute the gradient over the full training set,however this would lead to updating the weights only once per epoch and hence re-quires a very large number of epochs (and computing time) to converge. Instead, thenetwork is trained with mini-batches, meaning that the weights are updated only aftercomputing and accumulating (summing) the gradient over a batch of data randomlysampled from the dataset instead of accumulating over the whole dataset. This tech-nique improves the speed of the gradient descent compared to passing the data oneby one and thus, improves the convergence time. It also adds stochasticity which leadsto noisier gradients that are better capable to escape local minima and prevent over-fitting.

Gradient descent

The difference between Adam and SGD is that Adam storesm, the average of the expo-nentially decaying past gradient and v, the average of the exponentially decaying pastsquared gradients. With β1 and β2 the decay rates, at the training iteration t:
mt = β1mt−1 + (1− β1)

∂J

∂w
vt = β2vt−1 + (1− β2)(

∂J

∂w
)2 (2.10)

Then, the weight update rule becomes:
w → w′ = w − η√

vt/1− βt
2 + ϵ

mt

1− βt
1

(2.11)
where ϵ is a smoothing term that avoids division by zero. Adam adds an adaptive mo-mentum to the gradient descent that improves convergence speed and stability byspeeding up or slowing down the gradient descent when needed during the optimiza-tion.
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Learning rate

The learning rate η plays an important role in the overall training procedure. A highlearning rate can prevent any convergence to an optimum or, worse, cause numericalerror explosions. Contrariwise, a small learning rate can lead to a very slow trainingand a convergence to the nearest local optimum without any exploration of other po-tentially better optimums. For these reasons, η is often included into a hyperparametersearch procedure. It can also be useful to control η during the training phase thanks toa learning rate decay rule based either on a number of iterations of the training loopor on a metric that detects when convergence reaches a plateau.
Generalization

Overfitting is a common issue that can arise with over-parametrized ML models ableto learn features specific to each training data without any capacity of generalizing todata that are not in the training set. ANNs having up to more than billions of learnableparameters, it is fair to assume that they can be subject to the same issue. Nonetheless,it has been showexperimentally and theoretically (Geiger et al., 2020; Zhang et al., 2017)that ANNs often behave differently by exploiting at first the features shared among thetraining data and then dedicate the remaining computational power to exploiting thefeatures specific to each data. This makes overfitting less of an issue for ANNs butstill requires monitoring overfitting by using another set of data called the validationset. The loss 2.7 computed over the validation set, on which the network has not beentrained, gives the mean error expected on any data point as long as it is randomlysampled in the same distribution. Finally, in the same way that the validation set isused to monitor generalization during the optimization of the learnable parameters, athird dataset called the test set is used to monitor generalization after optimization ofthe hyperparameters (hyperparameters optimization is described in the Section 2.1.4).

2.1.3 Towards more complex networks

The universal approximation theorem shows that under certain conditions, any func-tion can be approximated with a deep or large enough MLP, but it does not providea way to find the tuned parameters of such network. In practice, computational andoptimization constraints prevent to get close to this idealized network. To circumventthis issue, deep learning researchers have developed through the years network de-signs relying on multiple ways of organizing neurons of ANNs in order to make themeasier to train and more adapted to the task. This section describes some of theseimprovements used in the architectures developed for this thesis or in the populationgenetic community. One of the first improvements made over MLPs is the develop-ment of convolution layers that allow to reuse weights to process different parts of asame data sample, and thus greatly reduce the number of weights needed as well asthe required dataset size. This section also presents recurrent neural networks (RNNs),a type of network that is suited to temporal data. Finally, this section shows how at-tention mechanism is a very helpful method to associate layer inputs by using criterialearned during the training.
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Convolution layer

Intuitively, a convolution layer consists in applying the same mask of small size A tosubmatrices of B of the corresponding size through a sliding window process. Thisallows to reuse the weights of A multiple times over different entries of a layer andexploit the spatial relationship between them. The stride describes how the filter isshifted over B. For example, a stride of 3 tells that the filter is shifted by step of 3elements after each application of A on B.
A convolution in two dimensions (Figure 2.2) is defined as a matrix A ∈ RN×M

that convolves a bigger matrix B ∈ RP×Q with P ≥ N and Q ≥ M . The nota-tion B[i1, i2; j1, j2] denotes the submatrix of B consisting of the intersection of rows
i1 through i2 and columns j1 through j2. With a stride of 1, the convolution filter isapplied to all submatrices of size N ×M of B. With a stride of s1 along the row axisand s2 along the column axis, the filter is applied to all submatrices B[k × s1, N − 1 +
k × s1; l × s2,M − 1 + l × s2], k ∈ {0, · · · , P−N

s1
}, l ∈ {0, · · · , Q−M

s2
} by moving A by s1and s2 steps over B. The convolution operation itself is the element-wise sum of theHadamard product between A and the submatrix B[i1, i2; j1, j2]:

conv(A,B[i1, i2; j1, j2]) = sum(A⊙B[i1, i2; j1, j2]) (2.12)
It can be performed on P−N

s1
+ 1 × Q−M

s2
+ 1 submatrices of B and will result in a new

matrix of dimension P−N
s1

+ 1× Q−M
s2

+ 1.

Figure 2.2: Diagram of a convolution mask in two dimensions. The mask (in red) is ap-plied over a matrix (in blue), resulting in the green matrix. Each element of the green matrix iscomputed by performing the sum of the Hadamard product between the mask and the corre-sponding window over the blue input matrix. s1 and s2 denote the striding factor of the maskin the two dimensions.
This mechanism is the core component of convolutional neural networks (CNNs). Inpractice, CNNs includemultiple masks per layer for which their result are concatenatedover a third dimension called the feature dimension. Therefore, the data take the formof three-dimensional tensors through the network, which are processed with three-dimensional masks.
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Recurrent neural networks (RNN)

Recurrent neural networks (RNN) is a type of ANN that has been introduced in the 80sto process sequential data such as temporal series or text. It consists of a cell that con-tains a more or less complicated ANN which is repeated over the sequence of data.For a given part of the sequence, the cell outputs a prediction, which is then passedto the next cell along the sequence. RNNs are usually trained with backpropagationthrough time (BPTT) which is simply the backpropagation algorithm described above,but because the same cell is repeated along the sequence, the gradient is summed upfor each sequence step. RNNs are in theory capable of handling sequences of arbi-trary length by repeating the cell to cover its entire length, but for long sequences, it issubject to a strong exploding or vanishing gradient effects (Hochreiter et al., 2001). Tosolve this issue, Hochreiter and Schmidhuber (1997) introduced long short-term mem-ory networks (LSTMs), with cells that not only output a prediction, but also a “cell state”that can be linearly altered by the two other inputs of the cell (the prediction from theprevious cell and the current input from the data sequence). This mechanism is similarto residual connections in residual networks (He et al., 2016) as layers can be skippedby a part of the data flowing through the network. This prevents gradient from van-ishing in some cases, helps to find longer range dependencies in the data sequenceand overall improves training (Balduzzi et al., 2017; Li et al., 2017a). Nonetheless, thelong-range dependencies that can be found by an LSTM are limited by the size of the“cell state” and it is primarily for this reason that LSTMs have been later foreshadowedby attention mechanisms.
Attention mechanism

Although the “cell state” of LSTM (Hochreiter and Schmidhuber, 1997) can be consid-ered as a form of such mechanism, the term “attention mechanism” was first intro-duced in the Transformer architecture (Vaswani et al., 2017) to tackle natural languageprocessing (NLP) problems. Bigger architectures based on similar mechanisms such asBert (Devlin et al., 2019) and GPT-3 (Brown et al., 2020) have shown impressive resultson NLP tasks. Attention mechanism has also been applied to other domains such asimage sampling and reconstruction with Image GPT (Chen et al., 2020), image genera-tion with DALL-E (Ramesh et al., 2021) and protein folding with Alphafold (Jumper et al.,2021). Similarly to RNNs, attention mechanism is aimed at treating a sequence, butwith the advantages of parallelizing the computation between all sequence elementsinstead of processing them sequentially. It also connects the sequence elements in thesame way, which prevents the loss of information between distant elements and, thus,better handles long range dependencies. Although the architectures previously men-tioned are fairly complex and integrate other mechanisms, the core attention mecha-nism (which is often called self-attention) can be described as follows: for each element
i of a sequence of length n embedded as a vector x⃗i, three weight vectors are learned:the queries q⃗i, the values v⃗i and the keys k⃗i. The attention mechanism will compute, foreach element i, a linear combination of values v⃗j , withweights depending on the affinitybetween element i and elements j, expressed as the similarity between the query q⃗i andthe keys k⃗j . For each x⃗i, the dot-product attention vector α⃗i =< q⃗i · k⃗1, q⃗i · k⃗2, · · · , q⃗i · k⃗n >is computed. To limit the risk of vanishing gradients, α⃗i is then scaled by√dk, dk being
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the dimension of the vectors q⃗ and k⃗ (in practice, the dimension dv of the vector v⃗i isoften chosen equal to dk), and passed through a softmax function: β⃗i = softmax( α⃗i√
dk
).

This vector β⃗i can be interpreted as a measure of affinity between x⃗i and the otherembedded elements of x. Finally, the output of the attention mechanism for x⃗i is thesum of the value vectors v of all sequence elements scaled by the affinities β⃗i, thatis, ∑n
j=1 βij v⃗j . If the vectors q⃗i, k⃗i and v⃗i of all elements are concatenated in matrices

Q ∈ Rn×dk ,K ∈ Rn×dk and V ∈ Rn×dv the previous steps can be written as follows:
attention(Q,K, V ) = softmax(QKT

√
dk

)V (2.13)
In order to perform more than a single attention at once and thus increase thenetwork expressivity, Vaswani et al. (2017) also introduced the multi-head attentionscheme by projecting h times Q, K and V with h linear layers of learnable parameters

WQ
i , WK

i and W V
i . The output of all heads is then concatenated and a last WO linearlayer project the outputs back to the original dimension.
multihead(Q,K, V ) = concat(head1, · · · , headh)WO (2.14)

where headi = attention(QWQ
i , KW

K
i , V W

V
i ) (2.15)

The complexity per layer of attention for a sequence of length n and a representa-tion dimension d isO(n2 · d). This quadratic term arises because attention works on allpairs of elements in the sequence, which can be problematic for long sequences. Tocircumvent this issue, alternative attention mechanisms have been developed, such asthe ones described in the agglomerative attention paper (Spellings, 2019) or the onedeveloped for our MixAttSPIDNA architecture presented in Section 3.4.1.

2.1.4 Technical points

This section presents tools that can be applied to most types of architectures to fa-cilitate their development. It describes how layer normalization circumvents commonissues of ANN optimization. This section also introduces some hyperparameter opti-mization methods commonly used, how ANNs are implemented in practice, and howspecialized hardware can greatly improve computation times.

Layer normalization

Layer normalization is a powerful tool to avoid internal covariate shift, a shift of activa-tion distribution that can lead to weights having infinite values and thus, vanishing orexploding gradients. Adding layers of normalization allows being less sensitive aboutweight initialization and input data normalization. From the earlier batch normaliza-tion (Ioffe and Szegedy, 2015) to the more general Group normalization (Wu and He,2018), several methods exist with the same goal of keeping the activation of each layerto zero mean and unit variance. For instance, for a batch of activations B = a1 . . . am,
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the activation after the batch normalization a′i is given by the following process:

a′i = γâi + β (2.16)
where:

âi =
ai − µB√
σ2
B + ϵ

(2.17)

µB =
1

m

m∑
i=1

ai (2.18)

σ2
B =

1

m

m∑
i=1

(ai − µB)
2 (2.19)

β and γ are learned with backpropagation and are frozen after training. During val-idation and test phases, mean µB and variance σ2
B are replaced by mean and variancecomputed on the fly during training. Although batch normalization is sufficient in mostcases, variants of the SPIDNA architecture that handle data of varying size (see SPIDNASection 3.3.2 for more information) have to rely on other normalization procedures.Indeed, data of varying sizes cannot be collated into the same tensor, which in practice,makes the batch dimension inaccessible to the batch normalization layers. Figure 2.3shows three other layer normalizations that operate similarly to batch normalizationwithout relying on the batch dimension.

Figure 2.3: Figure from Wu and He (2018) of the different normalization methods. FromWu and He (2018): Each subplot shows a feature map tensor, with N as the batch axis, C as the
channel axis, and (H,W ) as the spatial axes. The pixels in blue are normalized by the same mean
and variance, computed by aggregating the values of these pixels.

Pooling layers

Pooling layers are typically used in CNNs to quickly augment the scope of neurons overthe input of a network. A pooling layer consists of a filter over the layer inputs, similar toa convolutional layer but without any weights, that performs an operation and returna smaller output. The most commonly used pooling filters return either the max, themin, or the average of the inputs covered by the filter. The size of the pooling filtersdetermines how the scope of the input will increase in the next layer. For instance, apooling filterwith a size of 3 over one dimensionwillmultiply by 3 the scope on the input
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covered by the neurons in the next layer. One can also reduce the data flow dimensionby increasing the stride of convolution filters, but with the risk of not covering part ofthe input if the stride is greater than the filter size.The size reduction offered by poolinglayers at almost no cost (since no weight needs to be learned) is also convenient at theend of a network, in between the convolution and the fully connected layers. Indeed,it allows a drastic reduction in input number, and thus weight number, of the first fullyconnected layer. Finally, adaptive pooling can be used to consistently output tensorsof the same size even when inputs are of different sizes, by adapting the pooling filtersize to the input size.
Hyperparameters optimization

Some ANN architectures seem to perform well on very different tasks, for instance,slightly modified versions of GPT-3 have been used to tackle various natural languageprocessing (NLP) problems (Brown et al., 2020) but also image generation (Chen et al.,2020) and text-to-image translation (Ramesh et al., 2021). However, until now, there isnot a single architecture that ensures to performwell on any type of dataset. Thus, oneof the challenge of applying ANN to a new dataset is to defined its architecture. ANNsdistinguish themselves from other machine learning methods by their large numberof hyperparameters, i.e., parameters that are not optimized during the gradient de-scent optimization procedure. These hyperparameters can include, similarly to otherML methods, parameters of the training process such as the learning rate, weight de-cay or the batch size, but they also include parameters defining the computationalgraph of the ANN such as the number of layers, their types (fully connected, recur-rent, convolution, etc.) or the number of hidden units in each of them. The amountof hyperparameters being potentially infinite and the training of an architecture beingtime-consuming, the development of deep learning architectures often relies on theexperience and intuition of the practitioner in a try-and-repeat process instead of onan automatic process. Nevertheless, it is possible to optimize some hyperparametersautomatically depending on computational resources. Grid search and random searchare two methods commonly used to explore the parameter space uniformly, but othermethods based on Bayesian optimization are more suited to the computational cost oftraining ANNs. For instance, HpBandSter is a package that implements the HyperBand(Li et al., 2017b) algorithm to run many hyperparameter trials on a smaller resourcebudget (i.e., few epochs) and runs the most promising trials on a greater budget. Com-binedwith BOHB (Falkner et al., 2018a), a Bayesian optimization procedure thatmodelsthe expected improvement of the joint hyperparameters, this method provides moreguided and faster search of the hyperparameter space. At each step, BOHB draws anew combination of hyperparameter values to be tested according to the expected im-provement and to a predefined prior.
Deep learning libraries and hardware

The recent advance in deep learning can be attributed in part to the development ofdeep learning libraries and hardware that allow the implementation of complex archi-tecture with minimal hassles. Libraries such as Pytorch (Paszke et al., 2017) or Tensor-
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flow (Abadi et al., 2015) allow defining the forward computational graph of ANNs andperform automatic differentiation for gradient computation. They also implement ba-sic building blocks of ANNs and tools such as data loaders, convolution layers, learningrate decay or layer normalization. All architectures developed through this thesis havebeen implemented with Pytorch.Graphics processing units (GPUs) were at first intended to provide fast and par-allelized creation of images, but they are now also used for ANNs as they are moreadapted to operation between tensors than central processing units (CPUs). One im-portant feature of GPUs is their dedicatedmemory called video randomaccessmemory(VRAM). In practice, VRAM availability often limits the ANN size, as the network needsto be fully loaded on it to exploit GPU computational speed without bottlenecks. Tocircumvent the limits of VRAM, one can use multiple GPUs by copying different partsof the ANN on the different GPUs, but this scheme introduces a bottleneck because inthis case they are bonded to run sequentially and need to communicate data with eachother. Another strategy that does not allow building bigger networks but still greatly in-creases the computational speed is to split eachmini-batch across GPUs which permitsbigger mini-batches without necessitating more VRAM.

2.2 Deep learning applications in genetics

Although complex evolutionary models of the genome such as the coalescent havebeen developed during the past decades, it is only recently that large genome wide se-quencing datasets ofmultiple individuals have beenmadepublicly available (Bergströmet al., 2020; Consortium et al., 2015; Daetwyler et al., 2014). Hence, one of the new chal-lenges in population genetics is to fill the gap between theoretical models of genomeevolution and experimental observations, which requires suited algorithms capable toprocess genomic data. Because the diploid human genome being approximately 6.4billions base pairs, handling it is very challenging for most statistical methods. This isbecause most of them are subject to the curse of dimensionality, an issue that ariseswhile treating data that have many dimensions, making samples sparse in the dataspace. To circumvent this issue, the data dimension is often reduced by computinghandcrafted summary statistics. Unfortunately, information relevant to solve the taskcan be lost, thus leading to poor performances.Computer vision is a domain that was subject to the same limitations due to thedimensionality of high resolution images. Prior to the introduction of deep learning inthis field, many algorithms have been developed based on summary statistics designedmore or less by hand, but until the recent advances in deep learning, no method hadthe capacity to automatically learn any type of summary statistics possible on images.The main advantage of deep learning is that the search for summary statistics is jointlyoptimized with the task to perform, ensuring that the first ANN layers compute datafeatures that are relevant for the task. Thus, deep learning has completely supersededprevious methods in this field and lead to impressive results, even beating humans forsome tasks such as image recognition (Krizhevsky et al., 2012), object detection (Red-mon et al., 2016) or face recognition (Schroff et al., 2015).Inspired by its success in computer vision, deep learning has also been applied to
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genetic data because they share similarities with images: they both have high dimen-sionality, characteristic patterns and long-range dependencies. But genetic data alsohave their own characteristics that requires to adapt existing ANNs, which will be dis-cussed inmore details in the Section 3.3 detailing the SPIDNAarchitecture. For instance,permutations of sequences in multiple sequence alignments (MSA) are equivalent andrepresent the same data. SNP matrices, the favourite object of study of many pop-ulation geneticists, can have a variable number of SNPs and haplotypes, preventingthe use of some types of ANNs. Nonetheless, deep learning has already shown greatsuccess at predicting effects of noncoding variants with a CNN called DeepSEA (Zhouand Troyanskaya, 2015), at detecting alternative splicing sites (Jaganathan et al., 2019),at predicting phenotype markers (Ma et al., 2018), at predicting sequence specificitiesof DNA and RNA-binding proteins with another CNN (Alipanahi et al., 2015) or morerecently, at predicting the protein 3D structures with Alphafold, an architecture thatincludes attention mechanisms and takes MSAs as inputs (Jumper et al., 2021).This section is a non-exhaustive review of the numerous applications of deep learn-ing in the field of population genetics, with a focus on the architectures and data usedin each case. It will also discuss whether it seems possible to find a universal ANN thatcould tackle all these different applications.

2.2.1 Inference from genomic data

Most deep learning applications to population genetics target inference problems,meaning that ANNs are trained to take as input DNA sequences of a population andinfer parameter values linked to the population evolutionary parameters. The geneticdiversity of a population is driven by the interaction between mutation, genetic drift,recombination, natural selection and demography. Therefore, it is in theory possibleto estimate the parameter values of each of these phenomena based on its observeddiversity, yet it is in practice difficult to disentangle them because they can have similarand joint effects on the genome. In most settings, the ANN is trained in a supervisedmanner, which requires a dataset of genomic data and their associated evolutionaryparameters associated to them. In practice, creating such dataset with real data wouldrequire to precisely monitor the population parameters over many generations, formany populations and in a setting close to what happens in nature if the goal is tostudy wild populations. Although some controlled experiments have been conductedwith model organisms such as E. coli (Good et al., 2017), the differences between realand controlled populations could introduce important biases.For all the above reasons, population geneticists turned towards simulation-basedinference and relies for this on the evolutionary models described in the second chap-ter. Numerous population parameters are generated by drawing them from prior dis-tributions, which are designed to contain the real evolutionary parameters of studiedpopulations. To reduce the dimension space of these parameters, it is possible to fixsome of them while focusing on the inference on the parameters of interest. For in-stance, if the ANNs are trained to infer demographic parameters, the simulations canneglect the effect of selection by removing it or fixing a simple rule that approximatesits effect on the population. Once these parameters are drawn, they are fed to the sim-ulator, which produces the corresponding genomic data used to train, validate and test



2.2. Deep learning applications in genetics 45
the network. Different steps can be added to this scheme: raw genomic data can bepreprocessed and even drastically summarized into handcrafted summary statistics.Data, either real or simulated, genotyped or sequenced, can usually be representedas single-nucleotide polymorphism (SNP) matrices where each row represents an in-dividual or a haplotype, and each column represents a SNP which is a locus with avariation at a single base pair present in at least one of the sampled sequences. Theterm SNP is often misused and could be replaced by single-nucleotide variant (SNV), asits original definition indicates that the less frequent allele should be present in at leasta certain percentage of the population, which is not verified in most population geneticstudies. This matrix usually contains zeros and ones that represent the two possible,with zeros for the alleles with the smallest frequency in the sample or for the ancestralalleles when this information is available. A variety of alternative representations canalso be used depending on the information available. For instance, diploid unphaseddata can be represented with zeros and twos for homozygous ancestral and derivedloci and ones for heterozygous. SNPs with more than two alleles are often removedfrom the SNP matrix because they are very rare in reality and are often an artefact dueto sequencing errors. Moreover, a vector containing the positions of the SNPs is as-sociated to the SNP matrix to locate them in the original genome. Positions are eitherencoded by an integer that represents the absolute or relative number of base pairs,or a float between zero and one for scaled positions. Encoding the positions into floatsrequires to also store the full length of the sequence. Figure 2.4 shows how this formatis related to theMSA format and that the only information lost is the precise nucleotidevalue. The matrix can cover from a small window to the full length of a contig in thesequence. One important feature of these type of data is that for the same length ofDNA sequence covered, the number of columns in SNPmatrices varies across samples.The number of rows also varies depending on the number of individuals sequenced,which is another feature that should be taken into account when designing methodsbased on this type of data.
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Figure 2.4: Example of conversion of a multiple sequence alignment of 2.106 bp (left) into
a SNP matrix (right). Here, major alleles (in orange) in terms of frequency in the sample areencoded by ones and minor alleles (in red) by zeros. The SNP matrix has a relative positionvector that encodes the distance of each SNP to its right neighbour.

2.2.2 Methods based on summary statistics
This section presents methods based on ANNs exploiting summary statistics, a set ofstatistics often designed by hand and tied to the population genetic theory, that are
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computed on raw aligned sequences to reduce the data dimensionality.
Sheehan and Song (2016) developed one of the first approach for demography in-ference using deep learning. In this paper, the authors trained a MLP to jointly inferselection and demography of an African Drosophila melanogaster population. All sim-ulations follow a simple demography with three piecewise constant population sizesthat overall represents a bottleneck (i.e., a sudden reduction of population size laterfollowed by a sudden increase). Along these three population sizes, a selection pa-rameter is also drawn to include either a hard sweep, a soft sweep, balancing or noselection at the center of the genomic region simulated. Other simulation parameterssuch as generation time, recombination rate andmutation rate are fixed. After generat-ing 400,000 genomic alignments of 100 haplotypes with msms (Ewing and Hermisson,2010), summary statistics are computed for tree subregions, each of 100kb (only themiddle region encompasses the SNP under selection, yet the left and right neighbour-ing regions can be affected more or less strongly by the selection effect). These statis-tics include the number of segregating sites, the Tajima’s D statistic (Tajima, 1989), thefolded site frequency spectrum (SFS), the length distribution between segregating sites,the identity-by-state (IBS), the linkage disequilibrium (LD) and finally H1, H12, and H2statistics fromGarud et al. (2015). This deep learningmethod achieved very low relativeerror over simulated data for the first two population sizes and a high accuracy formosttype of selection except for hard sweeps, which they discovered to be mostly due to in-complete sweeps that are confused with balancing selection. Although the algorithmachieved good performances overall, the underlying demographic model is simple andit would be interesting to expand it thanks to additional population size parameters totest the robustness of the bottleneck discovered in the Drosophila population.
In their paper, Villanea and Schraiber (2019) used a MLP with dropout to classifythe interaction between neandertal and two sapiens population (european and eastasian) from the 1000 Genomes Project between five models of admixture. Simulationswere performed using msprime (Kelleher et al., 2016) and translated to joint fragmentfrequency spectrum (FSS), a summary statistics that is able to capture the number ofintrogressed sites from a population to another.
Approximate Bayesian Computation (ABC) is a simple but powerful method to inferdemographic parameters values and their posterior probabilities, but one of its draw-back is its sensitivity to the curse of dimensionality. To circumvent this issue, Mondalet al. (2019) added a MLP to generate summary statistics from the site frequency spec-trum (SFS). These summary statistics are later usedwith ABC to infer the posterior prob-abilities of the demographic parameters of amodel of Neanderthal and Denisova intro-gression into Eurasian populations. They also used deep learning to primarily classifyeight introgression models and retained the most probable ones for parameter infer-ence. All simulations used to train the ANNs have been performed with FastSimcoal2(Excoffier et al., 2013). Here, themain advantage of adding an ABC step to deep learningis that it is a simple way to add posterior inference. This scheme has also been testedfor other methods, such as SPIDNA (Sanchez et al., 2021b) which will be discussed indetails in the next chapter and Lorente-Galdos et al. (2019) which used it to study geneflow between archaic, African and Eurasian populations. The last chapter will discusshow this scheme could be replaced by methods relying solely on deep learning, suchas generative artificial networks (GANs) or invertible networks.
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Xue et al. (2019) introduced another deep learning method based on diploS/HIC(Kern and Schrider, 2018) called partialS/HIC to detect selection types in genome se-quences from AnophelesMosquito populations. Thismethod ismuch different from theprevious ones, as it computes 89 summary statistics for 11 subwindows of 55 kb longgenomic sequence, resulting in two-dimensional matrices for each data, that are thenprocessed using a convolutional neural network (CNN). Therefore, spatial informationis introduced into the ANN and this is believe to improve inference because differenttypes of selection have different effects on the genomic spatial structure. This methodintermediary solution between methods relying on summary statistics computed onthe full sequence fragment length and methods relying on SNP matrices presented inthe next section.

2.2.3 Methods based on SNP matrices

The earliest application of deep learning to population genetic has been developed byBridges et al. (2011) to classify between three populations from genotypic data. Theyused windows size of 20, 50 and 100 SNPs and trained the ANNwith a subset of the realdata. They were able to classify populations that were not differentiable with principalcomponent analysis (PCA) and showed that ANNs perform similarly to support vectormachine (SVM) for this task. One should notice that the size and complexity of the MLPthey used was constrained by the technical limitations at the time, and it is expectedthat a CNN over the full genotypic data could significantly improve the classificationerror.Flagel et al. (2018) used ANNs to tackle four tasks: detecting introgression, estimat-ing locus-wide recombination rate for phased haplotype and autotetraploid genomes,detecting and classifying selection and finally, inferring population size histories. Flagelet al. (2018) simulated different datasets for each task, so this paragraph will focus onthe inference of population size histories, which has also been tackle during this thesis.Similarly to Sheehan and Song (Sheehan and Song, 2016), they trained an ANN to inferthe parameters of a demographicmodelwith three piecewise constant population sizesand two parameters representing the time of the population size changes. They simu-lated 100,000 alignments of 1.5 Mb regions with ms (Hudson, 2004) and used 80,000 ofthem to train their network. The network is a CNN with two branches: the first one hasfour convolutional layers with 128 filters with SNPmatrices as input and the second hasone fully-connected layer with 32 hidden units with position vector as input. The out-puts of the two layers are concatenated and passed to two fully connected layers with256 hidden units and 5 hidden units (one for each parameter to infer). Multiple poolinglayers are present throught the network. In order to reduce the size of simulations, themutation rate has been divided by 10 which is equivalent to downsampling the numberof SNPs by 10. Simulated SNP matrices have been padded with zeros on their left sideto match the biggest matrix that contains 1,201 SNPs. They tested different shapes fortheir convolution filters (1 × 2, 1 × 4, 1 × 6, 1 × 8, 1 × 10, 2 × 2, 4 × 4, 6 × 6, 8 × 8 and
10 × 10) and two alleles encoding (-1/1 and 0/-1) to finally obtain the best results with
1× 2 filters and 0/-1 encoding. This method is further detailed in Section 2.1.4 and hasbeen compared to the SPIDNA architecture developed during this thesis.Because the rows of SNP matrices represent haplotypes or individuals, a permuta-
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tion of the matrix rows represent the same information as the non-permutatedmatrix.For this reason, Chan et al. (2018) introduced a new CNN with outputs invariant to thepermutations of input rows to detect recombination hotspots in the genome. In orderto make their CNN invariant to permutation by design, they used convolution filters of
1× 5 dimension in the first two convolution layers and used the mean of the element-wise top decile as an invariant function afterwards. The outputs of the last convolutionlayer is then passed through two fully connected layers with 128 hidden units. Theadvantages of introducing this notion of invariance into the design of the ANN will bediscussed in more details in the next chapter. The position vector has been added tothe SNP matrix by duplicating it and adding it to the input tensor as a third dimen-sion. This CNN is trained to handle windows of 20 SNPs over the input matrix and CNNpredictions for all windows are compiled to obtain a posterior. Here, simulation wereperformed usingmsprime (Kelleher et al., 2016). Another important contribution of thispaper is the introduction of the simulation-on-the-fly scheme where data are simulatedduring training so that each data is seen only once by the CNN. They obtained bet-ter predictions compared to classical scheme with multiple epochs. They also demon-strated that this paradigm guarantees that the posterior is calibrated and showed thisexperimentally. This last point is important because most deep learning applicationslack of posterior and focus on point estimate, although other popular methods suchas approximate Bayesian computation (ABC) already allow approximating posteriors.The perspective section (Section 5.1) of this thesis will discuss other methods to obtainposterior and how they could be used to update simulation prior to further improvepredictions.

ImaGene (Torada et al., 2019) is another software that utilizes simulations generated
on-the-fly with msms (Ewing and Hermisson, 2010). Simulations take the form of SNPmatrices without position information, that are resized to 128 × 128 with an algorithmprimarily used for images. These data are then used to estimate the positive selectioncoefficient for a given genomic region by training a CNNwith three convolutional layerswith 32, 64 and 128 filters of size 3× 3. For the last layer, the authors chose a strategythat differs frommost ANNs addressing regression tasks. Indeed, they transformed theregression task into a classification task by dividing the range of possible values in 11bins and uses a softmax layer with outputs interpreted as a distribution of probabilities.The authors also showed that they obtained better results by systematically orderingthe rows and columns of the input SNP matrices according to a predefined orderingfunction. By doing so, the algorithm is invariant to permutations, like the one presentedby Chan et al. (2018). However, this ordering might be sensitive to small changes inthe matrix because there is no ordering in high dimensional space that is stable withrespect to perturbations (Qi et al., 2016).

In their paper, Adrion et al. (2019) used simulation from msprime to train a recur-rent neural network to infer the per-base recombination rate along the genome of apopulation. Here, two ANNs based on gated recurrent unit (GRU) a special type of bidi-rectional recurrent neural networks (RNNs) have been developed. The first one usingSNP matrices with position and alleles encoded as -1, 1 and 0 (for missing or paddeddata). The second uses data in the formof amatrix with two rows, the allele frequenciesand the positions, to match real data obtained with Pool-seq.
Deelder et al. (2021) developed another CNN to classify between four different se-
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lection sweep types and neutral evolution in Plasmodium genomes. They compareddifferent CNN architectures and obtained a final model with one convolutional layerwith two 40 × 9 convolutional filters and two fully-connected layers. Their simulationswere performed using SFS_Code (Hernandez, 2008), data columns (SNP dimension) aresorted by shared haplotype length and the matrix is then compressed using an imageprocessing algorithm.

2.2.4 Generative models

The advances in deep learning also introduced new generative models that have beenrecently applied to population genetics. In their study, Yelmen et al. (2019) used twotypes of ANNs called generative adversarial network (GAN) (Goodfellow et al., 2014) andrestricted Boltzman machine (RBM) (Smolensky, 1986; Teh and Hinton, 2001) to createartificial genomic datasets that closely match a real dataset. GAN consists of two neuralnetworks called the generator and the discriminator that compete in a zero-sum game,meaning that the discriminator is optimized to distinguish between real and generateddata, and the generator is optimized to fool the discriminator. The input of the genera-tor is randomly drawn from coordinates in a latent space. RBM is another kind of ANNthat comprises a visible and a hidden layer that are trained by encoding and decod-ing inputs and updating the network weights until the decoded inputs closely matchthem. These two models have been compared to other generators (a simple Bernouilligenerator, markov chain, HAPGEN2 (Su et al., 2011) and coalescent simulations) withdifferent quality metrics such as the similarity between real and generated summarystatistics and principal component analysis (PCA) projections. They also computed pri-vacy metrics and searched for real haplotypes present in the generated genomes toensure that the generated data were effectively different from the real ones. Here, realdata consist in multiple subsets of SNPs from individuals of the 1000 Genomes Projectand the Estonian Biobank (Leitsalu et al., 2015) and the discriminator and generator forthe GAN are MLPs.In their paper, Wang et al. (2020) utilized the GAN framework to perform inferenceof demographic parameters. The motivation behind this approach is to perform simu-lation “on-the-fly” like previous approaches, but also to optimize the set of demographicparameters used by the generator until convergence to an estimation of the real pa-rameter values. This approach is different from classical GANs because here, the gen-erator is an evolutionary simulator (msprime (Kelleher et al., 2016)) and not an ANN.Therefore, the demographic parameters inputted to the generator are optimized usingsimulated annealing (because it is not possible to backpropagate the gradient throughthe evolutionary simulator), while the discriminator is a CNNbased on Chan et al. (2018)and optimizedwith stochastic gradient descent from a cross entropy loss. GANs are no-toriously difficult to train because an important imbalance between the performance ofthe generator and the discriminator can make them rapidly diverge. Due to this issueand the difference of nature between their generator and discriminator, Wang et al.(2020) introduced a pre-training phase for their discriminator, by training it with realand data simulated frommsprime with random demographic parameter values. Then,these parameters are optimized with the simulated annealing procedure. This settinghas been used to infer the demographic parameters of one and two-populationmodels
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of populations from the 1000 Genomes Project.
Another type of generative ANN called variationnal autoencoders (VAEs) has beenintroduced both for data generation (Montserrat et al., 2019) and to replace the toolsused for visualizing population structure such as principal component analysis (PCA)(Battey et al., 2021).

2.2.5 Recent works

The previous sections are intended to provide an overview of the various applicationsof deep learning to population genetics by describing the various problems addressedand architectures developed. However, this is a very active research area and the num-ber of papers published each year is constantly increasing. Therefore, these sectionsare not completely exhaustive, but several recent publications thatwill be not discussedin details are worth mentioning. For instance, new deep learning methods have beenapplied to genomic data for the detection of selection and adaptive introgression (Fadjaet al., 2021; Gower et al., 2021; Isildak et al., 2021) and one uses the ancestral recom-bination graph as input of its network (Hejase et al., 2021). A MLP has been recentlytrained to infer the mutation rate from the site frequency spectrum (SFS) with robust-ness to the recombination rate (Burger et al., 2021). Finally, Kirschner et al. (2022) de-veloped a CNN paired with ABC inspired by our work (Sanchez et al., 2021b) to examinethe demography of European steppe biota.

2.3 Chapter conclusion

In conclusion, deep learning is a powerful framework that has shown results surpass-ing classical machine learning and statistic predictive performance in most fields, butsometimes at the expanse of interpretability and computing resources. These suc-cesses can be attributed to the flexibility of ANNs that makes them adaptable to mosttypes of data, independently of their dimensionality and the task. ANNs are also veryefficient at automatically finding relevant features in the data through optimization.Moreover, they can be easily scaled to use the full computing power available and at-tempt to increase the network expressivity, by simply adding more weights or reusingthemonmore inputs, as in convolution layers. Yet, deep learning has only been recentlyapplied to genomic data and a few papers developed ANNs specifically for populationgenetics. The first ANNs targeted for demographic inference using raw genomic dataare even more recent and have been published during the course of this thesis. Thismay be due to two facts: first, an ANN needs large labelled datasets in the context ofsupervised training and second, developing deep learning methods for a new task isnot trivial, as a lot of choices in the design of the methods are left to the practitioner.As illustrated by the short review presented in this chapter, most studies have over-come this first issue by using recently released datasets and simulators. The secondpoint still requires more research, as the diversity of approaches present in this reviewshows that no clear consensus has emerged on what are the best practices to addressgenomic related tasks with ANNs.
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This chapter presented the different building blocks that have been used duringthis thesis, but they are only a small subset of the wide variety of the possible deeplearning tools and approaches. There is no rule of thumb for developing ANNs andmost choices are made based on interpretations of the network behaviours that oftenhave no theoretical ground. Therefore, the next chapter will show how we tailored ourANNs to the demographic inference task by taking into account the data features andthe objective. It will also present the baselines we used to compare and evaluate ourmethods.
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This chapter will describe the methods developed through this thesis to infer de-mography from genomic data, as well as the methods used as comparison baselines.We trained and evaluated all methods to perform one objective: inferring the detailedhistories of effective population sizes using genomic data from a sample of individuals.Based on whole sequences of multiple individuals from a single population, the differ-ent methods aimed at predicting 21 population size parameters, each correspondingto a fixed time window.We simulated two datasets to comply with real data from the 1,000 genome bullproject (Daetwyler et al., 2014) (mentioned as cattle dataset) and high-coverage HGDP-CEPH human genome sequences (Bergström et al., 2020) (mentioned as HGDP dataset).We also generated simulationswith selection to investigate the impact of this confound-ing factor on inference. We constituted a collection of baselines that include twometh-ods based on summary statistics: an ABC and a MLP, and three methods based onSNP matrices: a MLP, a CNN previously developed by Flagel et al. (2018) and a cus-
tom CNN that has been developed during the preliminary work of this thesis. Thesebaselines are later compared to the two main architectures developed here: sequenceposition informed deep learning architecture (SPIDNA) and mixed attention SPIDNA(MixAttSPIDNA). This chapter will show how we refined these two architectures aftermultiple iterations to improve inference and handle the key features of SNP matrices.It will also show howwe trained the different ANNs and the various automatic hyperpa-rameter optimization scheme that we used. Section 3.6 presents a preliminary work onthe interpretation of deep neural networks with cannonical correlation analysis (CCA).Finally, we introduced a python package called dnadna, which is aimed at facilitatingthe development and sharing of deep learning architectures for the population genet-ics community.We published the methods for the baselines and the SPIDNA architecture, as wellas their comparison on simulated data and their application to the cattle dataset in
Molecular Ecology Resources (Sanchez et al., 2021b):

• Deep learning for population size history inference: Design, comparison and combi-
nation with approximate Bayesian computation. - Théophile Sanchez, Jean Cury,Guillaume Charpiat and Flora Jay, Molecular Ecology Resources 21, no. 8, 2021.

The development of the MixAttSPIDNA architecture and its application to the cattleand HGDP dataset has been done in collaboration with our intern Pierre Jobic. Thiswork has not been published.We presented the dnadna package in a preprint (Sanchez et al., 2021a):
• dnadna: Deep Neural Architecture for DNA - A deep learning framework for popula-
tion genetic inference. - Théophile Sanchez, Erik Madison Bray, Pierre Jobic, JérémyGuez, Anne-Catherine Letournel, Guillaume Charpiat, Jean Cury and Flora Jay,2021.

The results obtained with the methods described in this chapter will be discussedin the next chapter (Chapter 4).
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3.1 Data

The two datasets studied in this thesis are a collection of cattle (Bos taurus) sequenc-ing data from the 1,000 genome bull project (Daetwyler et al., 2014) and a collection ofmodern humans (Homo sapiens) sequencing data from theHGDP-CEPHhuman genomesequences (Bergström et al., 2020). They both include high coverage genome-wide se-quencing of many individuals from different populations and thus, require computa-tionally efficient methods in order to perform inference in reasonable time. Aside fromthe quality and amount of data in these datasets, they have also been chosen becausethey come from species that have been well studied from an archaeological and his-torical viewpoint, therefore allowing to compare the inferred population size historiesto our current insights on the true demographic histories. For instance, the domesti-cation of cattle that happened approximately 10,000 years ago should translate into adecrease of the effective population sizes becausemost cattle breeds today are descen-dant of a few individuals selected for farming (Consortium et al., 2009). Another exam-ple for human populations is the Out of Africa hypothesis of the origins of non-Africanpopulations, that should translate into a bottleneck at around 50,000 up to 100,000years ago (Nielsen et al., 2017).
Most methods compared in this thesis are trained in a supervised fashion, and thusrequire simulated genetic data with labels. These simulated data are also needed tocompare the performances of all methods, either by evaluating predictions on specificscenarios (constant, decline, expansion, bottleneck, and zigzag) or by comparing anevaluation metric averaged over many scenarios. To this end, the data are split intothree sets: the train set used by ABC and all ANNs, the validation set used to evalu-ate performances for each hyperparameter’s settings and to monitor overfitting whileoptimizing ANNs, and finally, the test set consisting of data never seen during optimiza-tion to compare methods while preventing overfitting (caused by the hyperparameteroptimization).
The data format has already been described in the previous chapter (Section 2.2.1)and consists of a SNP matrix and its associated position vector encoded as distancesbetween SNPs. The matrices contain zeros and ones to encode ancestral and derivedalleles or minor and major frequency alleles, depending on the information availablefor the real dataset. As described in the next section about the cattle dataset, the realcattle haplotypes had to be collapsed into genotypes (instead of haplotypes) with zeros,ones and twos encoding homozygous and heterozygous loci. Simulations are gener-ated thanks to two evolutionary simulators, msprime (Kelleher et al., 2016) for neutralsimulations and msms (Ewing and Hermisson, 2010) for simulations that include selec-tion, both based on the evolutionary models described in the chapter 1.
Simulating sequences using the previouslymentioned evolutionarymodels requiresindicating the different parameter values that describe the demography of the popula-tion simulated. Parameters that describes the demographic scenario and cofoundingfactors are drawn from priors that are designed to be as close as possible to the knowl-edge on the real population studied. There is a compromise between making a priorlarge enough to ensure that the true values for parameters of the real population areincluded and making it small enough so that the simulated demographic scenarios aresufficiently dense in the space defined by the priors.
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The following sections will give an overview of both datasets, how they have beenprocessed to be handled by the different methods and how each set of priors havebeen defined for each set of simulations.

3.1.1 Cattle dataset
The cattle dataset from Daetwyler et al. (2014) consists of whole genome sequences of234 individuals from four cattle breeds (Angus, Holstein, Fleckvieh and Jersey) with an8.3 fold coverage on average. The samples were sequenced using Illumina sequencing-by-synthesis technology (Bentley et al., 2008) and preprocessed before being aligned tothe UMD3.1 reference genome. In their paper, Boitard et al. (2016b) used this datasetto infer the population size history of the cattle breed with their method based on ap-proximate Bayesian computation called PopSizeABC.First, the Jersey population was removed from the analysis because it only includes15 individuals compared to the 25 diploid sequences (i.e., 50 haplotypes) used to trainthe ANNs. As the data of real cattle sequence are prone to phasing and sequencing er-rors, theywere converted fromhaplotype to genotypewith aminimumallele frequency(maf) of 0.2, as suggested by Boitard et al. (2016b). 25 diploid sequenceswere randomlysampled from each population, split into 2Mb segment and then, segments compris-ing centromeres were removed, leaving 1,213 segments. A similar number of SNPswas obtained for the three breeds: Angus (average: 4,536 SNPs, maximum: 22,391 andminimum: 775), Fleckvieh (average: 4,837 SNPs, maximum: 24,896 andminimum: 896)and Holstein (average: 4,732 SNPs, maximum, 24,098 and minimum: 1,212).
Neutral simulations

The demographic parameters were set up by following similar rules as Boitard et al.(2016b): I = 21 time windows [ti, ti+1] were defined from present to ancient periodswith ti = 1
a

(
(1 + aT )i/(I−1) − 1

) generations, i going from 0 to I − 1, T = 130, 000,
a = 0.06 and tI = +∞. These values of T and awere chosen by Boitard et al. (2016b) tocapture important periods of cattle history. They could be modified to describe moreprecisely specific parts of the history by playing with the ratio between the length of re-cent versus old time windows. By increasing exponentially the time windows as we gofurther in the past, the scenarios became more detailed for recent times. Generationtime for cattle are assumed to be about 5 years. Each demographic scenario is gen-erated by drawing a first population size N0 between 10 and 100,000 from a uniformdistribution which corresponds to the most recent time window. The population sizesof the next time windows follow Ni = Ni−1 × 10β for i in [1, 21], with β sampled uni-formly between -1 and 1. β is redrawn if it gives a population size out of ]10; 100, 000[.50,000 scenarios have been randomly drawn from this prior distribution and 100 in-dependent 2Mb-long segments of 50 haploid individuals have been simulated for eachscenario using the msprime coalescent simulator version 0.6.1 (Kelleher et al., 2016). Atotal of 5,000,000 SNP matrices X of size M = 50 haplotypes × S SNP sites, each as-sociated with a vector of size S that contains the distances between SNPs (in bp) wereobtained. Ancestral and derived alleles are encoded with 0 and 1. The mutation rateis set to 10−8 as in MacLeod et al. (2013). The recombination rate is sampled uniformly
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between 10−9 and 10−8 for each scenario to be consistent with the estimations in cattlebreeds (Sandor et al., 2012).After simulation, scenarios producing fewer than 400 SNPs in any 2Mb regions wereremoved. This threshold could be changed by modifying the networks or simulatinglonger regions. However, the real cattle dataset has on average 4,357 SNPs across a2Mb-long region, so these scenarios were far outside the plausible posterior distribu-tion. That reduced the dataset to 18,461 scenarios (i.e., 1,846,100 SNP matrices) outof the 50,000 scenarios simulated with an average of 2,486 SNPs and a maximum of17,839 SNPs. This dataset is split into a validation set of 500 scenarios (i.e., 50,000 vali-dation SNPmatrices overall) and a training set with the remaining 17,961 scenarios (i.e.,1,796,100 training SNP matrices). In order to check for hyperparameter overfitting, wehave also simulated a test set from the same prior distribution. Hence, we randomlydrew 2,000 scenarios and kept the 767 scenarios with more than 400 SNPs which gives76,700 test SNP matrices. Training, validation and test set demographic parameterswere all standardized using mean and variance from the training set.
Simulations with selection

To investigate the robustness of the different approaches, an extra set of data wassimulated under demographic changes and selective pressure. msms (Ewing and Her-misson, 2010) was used to simulate scenarios including positive selection with additivefitness using varying values of selection coefficient (s in 2Ne units: 100, 200, 400 or 800),selection starting time (Tsel: 200, 1000 or 2000 generations ago) and initial frequency ofthe beneficial allele (f0: 0.1%, 1%, 5%). The SNP under selection was located at the cen-tre of the region. The mutation rate was set to 10−8, the recombination rate to 5 · 10−9,the number of haplotypes to 50 and the region length to 2Mb. 16× 100 replicates weresimulated for each of the 36 selection parameter combinations (s, Tsel, f0) and 30×100replicates with no selection under three demographic scenarios (constant, declining orexpanding size) leading to a total of 181,800 SNP matrices. Inference methods requir-ing a fixed input size processed the 400 successive central SNPs (i.e., 200 before and200 after the SNP under selection).
Summary statistics

This thesis investigates two methods based on summary statistics, the ABC approachand a MLP. To this end, site frequency spectrum and the linkage disequilibrium havebeen computed for this dataset. For each group of 100 segments corresponding toone scenario, the site frequency spectrum and the linkage disequilibrium have beencomputed as a function of the distance between SNPs averaged over 19 distance binsfor a total of 68 summary statistics. This python script is partly based on the scikit-allelpython module (Miles et al., 2019).

3.1.2 HGDP dataset
The HGDP dataset (Bergström et al., 2020) consists of 929 whole genomes from 54 pop-ulations, with 6 to 46 individuals per population (Figure 3.1 shows the number of indi-
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viduals sampled per population). Sequencing has been performed using Illumina tech-nology with an average coverage of 35x and reads have been mapped to the GRCh38reference assembly. Despite having 1575 fewer sequenced genomes than the 1000Genomes Project, Bergström et al. (2020) were able to identify a number of SNPs of thesame order thanks to their high-coverage and the diversity of their sample.
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Figure 3.1: Number of sample peer population in the HGDP dataset (Bergström et al.,
2020).

For the purpose of this thesis, this dataset has been processed as follows: afterremoving telomeres and centromeres, autosomes have been split into 2Mb segmentsand then polyallelic sites have been removed and SNPs have been encoded with zerosfor ancestral and ones for derived by comparing either to the Ensembl database or tochimpanzee reference genome or encoded asminor andmajor alleles for the few SNPsfor which ancestral information was not available. Figure 3.2 shows the great variabilityof the number of individual sampled for each population in the HGDP dataset. There-fore, we developed theMixAttSPIDNA (Section 3.4.2) architecture while keeping inmindthat it should be able to handle this feature of the data). For that, we compared differ-ent mini-batch formats on the simulated cattle dataset (Section 4.2.4) and retained thebest for the inference on the real HGDP dataset (Section 4.3.2).
Simulations

Simulations designed to encompass the HGDP dataset have been performed usingmsprime. The 21 time windows follow the same formula as the cattle dataset withthe first window representing the time before 1 million years ago. 100 replicates of 2Mbp-long regions are generated for each of 30,000 scenarios. The mutation rate is set
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Figure 3.2: Number of SNP per population after removal of telomeres and centromeres
the HGDP dataset (Bergström et al., 2020).

to 0.5×10−9 mutation per base and year, and a generation is 29 years. The recombina-tion in centimorgan per base ρ is randomly drawn from a kernel Gaussian distributionfitted over the distribution from the recombination map of the 1000 genomes project(Consortium et al., 2015) (see Figure 3.3).We choose this recombination rate prior over a constant value or a simpler uniformdistribution to take into account more accurately this confounding factor. It is a goodcompromise with the most realistic strategy that would be to simulate the completegenome alignments with corresponding recombination rates along each segment. Wepreferred to simulate only 100 replicates of 2Mb segments by scenario in order to gen-erate a wider range of demographic scenarios, as we focus primarily on the inferenceof population size histories.The number of haplotypes sampled is uniformly drawn between 10 and 100. Theeffective population size for the most ancient of the 21 time steps is drawn uniformlyon log10 scale between 100 and 1,000,000. Then, for each time window t, a growth rate
g(t) is drawn with the following the formula:

g(t) = (y(t)/10)(1−
√
β)γ (3.1)

with β ∼ U(0, 1), γ ∼ B(−1, 1) and y(t) the length of time window t. The growth rate isredrawn if the resulting effective population size fall outside the ]100; 1, 000, 000[ range.We choose this distribution to have most of its mass around a growth rate of 1 whileallowing some rare extreme values depending on the duration of the time window hasshown by Figure 3.4. The idea behind this choice of prior is to have realistic popula-tion size changes that depend on the time elapsed (contrary to the prior proposed inBoitard et al. (2016b) and Sanchez et al. (2021b) that was already reducing the space
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Figure 3.3: Distribution of the Human recombination rate from which ρ is drawn. Therecombination rate from the 1000 genomes project (Consortium et al., 2015) is averaged over2Mb windows after masking centromeres and telomeres and fitted with a kernel Gaussian dis-tribution.

of plausible histories by preventing extreme jumps (increases or decreases) in a sin-gle step, however was not taking step duration into account), while allowing for some
extreme growth rates that cannot be greater than y(1)
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Figure 3.4: Distribution of the growth rate for time windows of 100 years (left) and 1000
years (right) in HGDP simulations. These distributions follow equation 3.1.

After removing scenarios that contain at least one replicate with fewer than 400SNPs, the 21,044 scenarios are separated between a training set with 20,044 scenarios(i.e., 2,004,400 training SNP matrices) and a validation set with 1,000 scenarios (i.e.,100,000 validation SNP matrices). Independently, we simulated a test set including1,499 scenarios (i.e., 149,900 validation SNP matrices) after preprocessing.
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3.2 Baselines

The choice of the methods that have been included in the baselines is motivated eitherbecause the method has shown great results in previous studies: ABC, Flagel networkand the MLP using summary statistics, or because they are ANNs with simple archi-tectures that can be later compared to the more complex SPIDNA architectures: MLPand custom CNN with SNP matrices as inputs. It is noteworthy that most deep learn-ing methods cited in chapter 2 for demographic inference were published during thecourse of this thesis, except for Sheehan and Song (2016). Moreover, we started thisthesis by developing our custom CNN on the simpler task of inferring five demographicparameters representing the demographic scenario of a population that undergo a bot-tleneck: three changes in population size and two dates of decline and expansion (theresults will not be shown here). We later complexified the task by switching to a demo-graphic model with 21 parameters representing population size changes at fixed datesin order to apply our method to the cattle and HGDP datasets.

3.2.1 Approximate Bayesian computation (ABC)
Tested ABC algorithms included the simple rejection procedure (i.e., no correction) orone of the three correction methods implemented in the R package abc (Csilléry et al.,2012): local linear regression, ridge regression and non-linear regression based on asingle-hidden-layer neural network. Hyperparameters were set to default except forthe tolerance rate set to six possible values (0.05, 0.1, 0.15, 0.2, 0.25 and 0.3). ABC wasran on (a) predefined summary statistics, (b) SPIDNA outputs (i.e., automatically com-puted summary statistics), or (c) a combination of predefined summary statistics andSPIDNAoutputs. Themedian of the posterior distributionwas used as the demographicparameter estimate Θ̂.

3.2.2 Multi-layer perceptron (MLP)
The first MLP is based on summary statistics, has 3 hidden layers, ReLU activation func-tions and uses batch normalization. As in Sheehan and Song (2016), the hidden layershave respectively 25, 25, and 10 neurons. It takes 34 summary statistics as input. Thisnetwork and all the following ones output 21 demographic parameters and are trainedwith a regular L2 loss function and adam optimizer (Kingma and Ba, 2014) unless statedotherwise. ThisMLP has a total of 2,986 trainable parameters. The secondMLP is basedon “raw” genomic data and takes as input amatrix of 50 haplotypes (rows) for 400 SNPs(columns) and its associated vector of distances between SNPs, both flattened into asingle vector. Its hidden layers respectively have 20, 20, and 10 neurons, which gives it408,981 trainable parameters.

3.2.3 Custom convolutional neural network (custom CNN)
Prior to developing the SPIDNA architecture, we started with a more classical convolu-tional neural network that we later included in our comparison baseline. CNN layers
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process input elements by groups, allowing close SNPs to be processed together. Thisfeature, combined with the stacking of layers in CNNs, helps the network to constructfeatures dependent on the SNPs proximity. Important summary statistics used in ABCor other inference methods such as linkage disequilibrium can potentially be easily ex-pressed by such CNN. Hence, our custom CNN has 2D filters that could have differentshapes, i.e., mixed kernel sizes but also non-symmetrical masks. There is indeed no ra-tionale behind considering square masks only as is usually done in computer vision todescribe pixel neighbourhoods, as rows and columns in our case correspond to differ-ent entities (individual or phased haplotype versusmarkers). Using variedmask shapeshelps our custom CNN to learn features of various patterns, potentially mimicking dif-ferent types of summary statistics (“vertical” masks integrate over individuals, enablingthe computation of allele frequencies at a SNP, while “horizontal” ones integrate overSNPs, as IBS or IBD sharing tract length does).
The custom CNN takes as input the same matrix of 400 SNPs and has 2-dimensionfilters of various shapes. The first layer consists of 5 kernels with rectangular shape(2×2, 5×4, 3×8, 2×10, 20×1) applied to the SNPmatrixX . Each kernel creates 50 filters,which amounts to 250 feature maps after the first layer. The SNP distance vector d istreated by the 5 associated kernel shapes (1×2, 1×4, 1×8, 1×10, 1×1) with 20 filterseach, making 100 filters in total. The results of the first convolutional layer are thenconcatenated so that the second convolutional layer will couple information from Xand d in a way that emphasizes the original location of the SNPs along the genome. Theoutputs of this second layer are then combined and go through 5 convolutional layersand 2 fully connected layers. Adding convolutional layers one after the other allows ournetwork to combine patterns and reduce the size of the data without adding too manyweights to our model. This network has a total of 131,731 trainable parameters.

3.2.4 Flagel network

We reused the code associated with the repository of the first paper using a CNN fordemographic inference (Flagel et al., 2018) and adapted to the dataset and task. Thenetwork was trained with the exact same architecture as the one published (Figure 3.5from the original paper shows a schematic of the architecture), except that the lastlayer was changed to allow the prediction of our 21 population size parameters. Thenetwork was parametrized with the set of hyperparameters leading to the best perfor-mance in the previous work for two different types of SNP encoding (0/255 or -1/1). It isnoteworthy that the actual encoding in their code is 0/-1 and not 0/255, thus the sameencoding was kept to be able to compare the performance. The networks were trainedwith the same procedure of 10 epochs with early stopping in case of no progression ofthe loss after 3 epochs. The batch size is 200. The input data had 50 haplotypes. Itsnumber of SNPs is either 400 (as processed by the custom CNN) or it is downsampledto one every ten SNPs (as done in the original work), leading to 1,784 wide input SNPmatrices. This size corresponds to the tenth of the biggest SNP matrix in our dataset.Smaller simulations are padded with zeros. All parameters can be found in Table 3.1.
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Figure 3.5: Schematic of Flagel network. Figure from the original paper (Flagel et al., 2018).Input images are SNP matrices that undergo a series of convolution and pooling layers. Thefilters of the first convolution cover all haplotypes, then the filters of each layer cover all fea-tures computed by the previous layer. In parallel, a fully-connected layer process the SNP po-sitions. Finally, its result is concatenated to the convolution layer output and fed to anotherfully-connected layer in order to output the predictions of the network.
Input di-mension SNP en-coding Convolu-tion type Kernelsize Poolingsize Log-scaledoutput?

Sortchromo-somes?
Usedropout?

50× 400 0/-1 1D 2 2 Yes Yes Yes
50 × 1784 0/-1 1D 2 2 Yes Yes Yes
50× 400 -1/1 1D 2 2 Yes Yes No
50× 1784 -1/1 1D 2 2 Yes Yes No

Table 3.1: Parameters used for the Flagel CNN.

3.3 Sequence position informed deep learning archi-
tecture (SPIDNA)

The Sequence Position Informed Deep Neural Architecture (SPIDNA) is designed tocomply to the principal features of SNP data: data heterogeneity (data includes geneticmarkers and their positions encoded as distances between SNPs), haplotype permuta-tion invariance, long range dependencies between SNPs and variable number of SNPs.Similarly to the custom CNN, SPIDNA takes as input a matrix describing haploid individ-uals as rows and SNP as columns, with an additional row for the SNP distances.

3.3.1 Permutation invariance
One of the SNP matrix properties is its invariance to the permutation of haploid ordiploid individuals (rows of the SNP matrix), meaning that the same matrix with per-muted rows contains the exact same information and should lead to the same predic-tions. Most summary statistics are already invariant to the haplotype order by defini-tion. On the other hand, typical operations used in ANNs such as rectangular filtersand fully connected layers are not invariant, and consequently the baseline ANNs donot respect this data feature, but can still approximately learn this data property. Toavoid wasting training time to learn that there is no information in the row order, ithas been proposed to systematically sort the haplotypes according to a predefined
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rule (Flagel et al., 2018; Torada et al., 2019). However, because there is no ordering inhigh dimensional space that is stable with respect to perturbations (Qi et al., 2017), wechose yet another alternative and enforced our network to be permutation-invariantby design. Permutation-invariant networks, or exchangeable networks, were success-fully applied in population genetics by Chan et al. (2018) for inferring local recombina-tion, but our architecture is different in that the invariant operations are performedat each block (there is only one invariant layer in Chan et al. (2018)), enabling bothindividual equivariant features and global invariant features to contribute to the nextlayer. Figure 3.6 shows the difference between equivariant and invariant functions.It has been proven that this type of architecture provides universal approximation ofpermutation-invariant functions (Lucas et al., 2018; Zaheer et al., 2017). Here we ap-plied the methodology from Lucas et al. (2018) by using the mean as our invariant op-eration for our SPIDNA and MixAttSPIDNA architectures. However, the mean over thehaplotype dimension has limited expressivity. To circumvent this, we first tried to add ahigher moment statistics (the variance) alongside themean, but in practice, this did notimprove the predictions. We have finally chosen to develop a more flexible invariantfunction based on attentionmechanisms that we called attention hub (see Section 3.4.1for more details), and added it alongside the mean in our MixAttSPIDNA architecture.
Equivariant function Invariant function

Figure 3.6: Schematic of equivariance (left) and invariance (right). Here, the function onthe left is equivariant to rows’ permutation by permuting the outputs accordingly to the inputpermutation. The function on the right is invariant to rows’ permutations because it producesthe same output for any permutation.
In the SPIDNA architecture, the equivariant function is a convolutional layer with fil-ters of size 1× a, that treats each haplotype (row) independently and computes equiv-ariant features, while the invariant function computes the mean of these features overthe row dimension. The invariant function reduces the dimension of the data to onerow, which is then concatenated to each equivariant row (Figure 3.7). Therefore, thecorrelation between rows increases at each layer, which progressively transforms theequivariant input to an invariant output. However, the correlation increase should bemoderate and progressive to avoid immediate loss of the information at the haplotypelevel. To promote this, two independent normalizations were performed, one over theoutput of the equivariant function and one over the input of the invariant function. Acorrelation control parameter α that quantifies the contribution of the invariant func-
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tion to the next layer is added to control the speed at which the correlation increasesbetween rows. We studied the internal variance of SPIDNA in Section 4.2.1 in orderto assess the effect of α and better understand how this issue is handled during theoptimization.

3.3.2 Adaptability to varying size

A major difficulty that arises with genomic data is that the number of SNP varies fromone dataset to another, or fromone genomic region to another, due to the stochasticityof biological and demographic processes (and of their corresponding genetic simula-tions). Therefore, we use convolution layers as they can handle data with variable sizewhile keeping the number of network weights constant. A filter can be repeated moreor fewer times to cover the whole input entering each layer, letting the network adaptsitself to the data. Consequently, the output size of each convolution layer will vary de-pending on the input size. This prevents the use of fully connected layers directly aftera convolution layer, as it is often the case with CNNs. Instead, we use fully-connectedlayers only after operations independent of the input size and with a fixed output size,namely mean functions over the column and row dimensions (Figure 3.7).Our adaptive architecture provides an alternative to data compression based oncomputer vision algorithms: since compression is not optimized for the task of inter-est, it could induce information loss by reducing data prematurely. Note indeed thatthe success of deep learning in computer vision lies precisely in the replacement of ad-hoc data descriptors and processing pipelines (e.g., SIFT features to describe image keypoints (Lowe, 2004), and the “bag of visual words” pipeline (Sivic and Zisserman, 2003)to build an exploitable representation of them through clustering and histograms) byones that can be optimized. It is also an alternative to padding, a technique that con-sists in completing the SNP and distance matrices at the edges so that they all matchthe biggest simulated SNPmatrix; it is left to the neural network to guess where the realgenetic data stops and where padding starts. As such, it may make the task more dif-ficult, given that the SNP matrix size is highly variable between different demographichistories and some examples would contain more padding values than actual geneticinformation. RNN are also a natural alternative to process sequence of variable size,though they induce an unequal contribution of SNPs to the final result, depending ontheir ordering along the sequence. Indeed, as the information from the previous ele-ments of the sequence is stored in the internal state of the RNN, earlier parts of thesequence can be more easily forgotten. Nonetheless, they were very recently provento be useful to predict local recombination rate along the genome (Adrion et al., 2019)and future works should investigate whether this scales up to global characteristics andto a different task.We designed an architecture accounting for invariance and adaptive specificities bystacking multiple equivariant blocks (Figure 3.7, label B). An equivariant block consistsin one convolution layer with filters of size 1 × 3 that are equivariant (C3), averages ofthe convolution outputs across the haplotype axis (M1) and the SNP axis (M2) that areboth invariant, a concatenation of the equivariant and invariant features (I3), one maxpooling layer that is also adaptive to the number of SNPs (M3) and one fully-connectedlayer that updates the demographic predictions at each block (F1) via a sum function
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(O1) (Figure 3.7).We designed three variations of the SPIDNA permutation-invariant architecture.Layer normalization techniques help the optimization of a neural network in practice.The most common one is batch-normalization, which we applied to SPIDNA, obtain-ing thus a first variation of this architecture. However, batch-norm requires all inputsamples to have the same size, and therefore this first variation takes as input a fixednumber of 400 SNPs, similarly to two of the baselines. Instance normalization (see Fig-ure 2.3) is another normalization technique, that does not require fixed size inputs andnormalize layer inputs per-data instead of per-batch (for the batch normalization). Weapply it and thus obtain a second variation of SPIDNA, which is invariant to the num-ber of SNPs. As mentioned at the end of Section 3.3.1, we also consider a variation ofSPIDNA using two instance normalizations and an additional parameter α, in order tocontrol the speed at which the network becomes invariant (when going through thelayers). This network and the influence of α are studied in Section 4.2.1. The first vari-ation using batch normalization has 110584 trainable parameters, and the other twousing instance normalization have 110384.Except for the different normalization layers and the correlation control parame-ter α, the three variations of SPIDNA have the same architecture represented in Fig-ure 3.7. At each step i of the network, we consider that the data has four dimensions
Bi ×Mi × Si × Fi, B being the batch dimension,M the row dimension (also the haplo-type/genotype dimension before the first layer), S the column dimension (also the SNPdimension before the first layer) and F the feature dimension (only one feature beforethe first layer). A first convolution layer of 50 1×3 filters is applied to the SNP matrix(Figure 3.7, label C1), and another convolution layer of 50 1×3 filters is applied to thevector of distances between SNPs (C2) and repeated M times. The results of the twoconvolutions have now the same dimensions and are concatenated along the featuredimension (I1). The resulting tensor is then passed to seven blocks put end to end (I2),each one involving an equivariant function and an invariant function (B). The equivari-ant function ψ is a convolutional layer of 50 1×3 filters (C3) that outputs a tensor ofsize Bi−1 ×Mi−1 × (Si−1 − 2) × Fi−1/2. The result of the equivariant function is thenpassed to the invariant function ρ, which is the mean over the dimensionM (M1). Thus
ρ(ϕ(Xi−1)) has size Bi−1 × (Si−1 − 2) × Fi−1/2, which is repeatedM times to maintainthe same dimension as ϕ(Xi−1). Then ρ(ϕ(Xi−1)) and ϕ(Xi−1) are concatenated overthe feature dimension (I3). Finally, max-pooling filters of dimension 1×2 are applied,and the result is passed to the next block (M3). In parallel, each block computes the av-erage over the column dimension S of the 21 first features of ρ(ϕ(Xi−1)) that are thenpassed to a fully-connected layer with 21 outputs (F1). The predictions of each blockare summed (O1).

3.3.3 SPIDNA combined with ABC

ABC have already shown great results for demographic inference and has the advan-tage of predicting estimated posterior instead of simple point estimates. Therefore,we designed two setups to leverage the advantages of both deep learning and ABC. Inthe first setup, we combine ABC to our SPIDNA architecture by using the predictionsmade by the SPIDNA version with batch normalization already trained. This strategy
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was proposed by Jiang et al. (2017) who showed that a deep neural network could ap-proximate the parameter posterior means, which are desirable summary statistics forABC. It was applied under the name of ABC-DL in two population genetics studies forperformingmodel selection, however both papers relied on the joint SFS as predefinedcandidate summary statistics (Lorente-Galdos et al., 2019; Mondal et al., 2019). Here,we are taking advantage of both the deep architecture to bypass summary statisticsand the Bayesian framework to refine the prediction and approximate the posteriordistribution. The statistics currently processed by ABC are the average over multipleindependent regions of SPIDNA predicted population sizes. In the second setup, weadded the summary statistics, that we previously computed for the ABC without deeplearning, alongside to the inputs. For both setups, we applied the same hyperparame-ter optimization that we applied to the ABC without deep learning, i.e., we tested locallinear regression, ridge regression and non-linear regression based on a single-hidden-layer neural network as correction step and six possible tolerance rates (0.05, 0.1, 0.15,0.2, 0.25 and 0.3).

3.4 Mixed attention SPIDNA (MixAttSPIDNA)

The work presented in this section is a collaboration with Pierre Jobic.

We developed the MixAttSPIDNA architecture with the intention of increasing theexpressivity of the original SPIDNA while retaining its invariance feature. One bottle-neck of SPIDNA comes from its equivariant part, which is only a simple mean over thehaplotype dimension of the data flowing through the network. The mean is not a veryrich descriptor of a distribution of features over individuals. We thus are interested inconsidering additional statistical descriptors, to better extract information about thedistribution of individuals. Indeed, while Lucas et al. (2018) proves that the mean isinformative enough, in the sense that all permutation-invariant functions can be ex-pressed with the Deep Sets architecture making use only of the mean, provided thereare many layers enough, the number of required layers is not given. One can hopethat with richer statistical descriptors in each layer, the network will not need to be asdeep. Therefore, a first approach has been to also compute variance additionally to themean, but it showed similar or worst result compared to the original SPIDNA architec-ture. In order to address this issue, an attention mechanism called attention hub wasadded in parallel to the mean. This strategy greatly improves the overall expressivity ofthe network while adding learnable parameters (410,786 in MixAttSPIDNA comparedto 114,847 in SPIDNA) that are included in the optimization by gradient descent proce-dure. These parameters are reused, similarly to convolution layers, in a way that allowsthe network to compute complex operations.The attentionmechanism introduced here is a variation of the original self-attentionmechanism from Vaswani et al. (2017); that relies on a new component called hub. Inthe original self-attention, an affinity is computed between every pair of input elements,which leads to a n2 term in the overall complexity (where n is the number of individuals).Here instead, the affinity is computed between each input element and a predefinednumber of hubs, to reduce the complexity (now linear in n). Intuitively, these affinityvalues will tell how to map the values computed from each input element to the hubs.
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The hubs are then mixed together and mapped back to the input space thanks to an-other set of affinity values. In the context of a network that has SNP matrices as input,each hub is a combination of the haplotypes and expresses a specific, learnable statis-tic over them. The attention mechanism allows expressing statistics over individualsthat share a particular trait only.We later improved MixAttSPIDNA by adding a similar attention mechanism to com-bine the outputs from the different replicates of one scenario. The predictions fromthe different replicates have been previously combined simply by performing a mean,which does not take into account that different replicates can contain more or less in-formation about the demography. This final attention mechanism allows the networkto express how confident it is in the prediction yielded by each replicate, in order tobetter combine them. This last iteration of MixAttSPIDNA being more difficult to train,a pretraining scheme was also introduced to improve convergence.

3.4.1 Attention hub

To express richer statistics, the attention hub mechanism is added to each SPIDNAblock alongside the computation of the mean over the haplotypes’ dimension. First,a set of keys K and values V are computed with two fully-connected layers over thefeatures dimension of the input tensor. Then a third set of affinity values Ain betweeneach element of the sequence (here the elements are a set of features correspond-ing to a haplotype and a SNP) and each hub is computed using a fully-connected layerwith K as input. The outputs Ain of this fully-connected layer replace the product be-tween Q and K from the original attention mechanism (described in Section 2.1.3).These affinity values are passed through a softmax function and multiplied to the setof value V to create the hubs H1. This way, each hub selects individuals, according totheir descriptorsK , and mix their values V , in a weighted sum depending onK. In ourarchitectures, we set up the fully-connected layer dimensions so that operation yields10 hubs, with 50 features each and as many “pseudo-SNPs” (elements of the SNP di-mension) as the inputs of the attention mechanism. Each hub processes its input datainternally (through 2 fully-connected layers), independently of other hubs. Hubs arepassed to another fully-connected layer (H2) in order to match their dimensions withthe output dimensions (O), in the case where the number of features computed for
K and V is different from the number of features required for the outputs. The hubsthen dispatch the information they computed to each individual. For this, another at-tention mechanism allows each individual to choose which hubs it would like to listento (by expressing weights for each hub). Therefore, another set of affinity values Aout

between hub and the original input data is computed with a fully-connected layer overthe inputs X and then passed through a softmax. Finally, the hubs are mapped to theoutput space by multiplying them with this second set of affinities Aout and sent to thenext MixAttSPIDNA block. The affinities Aout determine the contribution of each hub tothe output. Figure 3.8 shows an overview of the attention hub mechanism.We now consider the same dimension notation than Section 3.3.2 with B the batchdimension,M the row dimension (also the haplotype/genotype dimension before thefirst layer), S the column dimension (also the SNP dimension before the first layer) and
F the feature dimension. The attention hub takes as input a tensor data ofB×M×S×F
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Figure 3.8: Schematic of attention hub. Two fully-connected layers compute keys K andvalues V from the attention hub inputs. A third fully-connected layer computes the affinityvaluesAin from the keysK. The product between the softmax ofAin and V gives the hub values
H1 (softmax(Ain) × V ). A fourth fully-connected layer computes H2 from H1. The last fully-connected layer computes the affinity values Aout used by the second attention dot product(softmax(Aout)×H2) to output O.

and starts by swappingM and S. In practice, we choose our fully-connected layers sothat values V have dimensions of B × S ×M × F1 = 50, keys K have dimensions of
B×S×M×F2 = 50 and affinity valuesAin have dimensions ofB×S×M×Nhubs = 10.After permutation ofM and Nhubs in Ain, the matrix multiplication between Ain and Vgives a hub tensorH1 ofB×S×Nhubs = 10×F2 = 50, transformed by a fully-connectedlayer intoH2 ofB×S×Nhubs = 10×Fout = 50 dimensions. Aout are computed in parallelby a fully-connected layer with the tensor data of the attention hub as input and hasdimensions of B×S×M ×Nhubs = 10. The matrix multiplication between Aout andH2

leads to the output tensor O of dimension B×S×M ×Fout = 50. Finally,M and S areswapped back so that the output dimensions correspond to the input ones.

3.4.2 MixAttSPIDNA architecture
TheMixAttSPIDNA architecture has been build upon the SPIDNA architecture from Sec-tion 3.3. It takes the same data format as input, has the same first layers and also usesa series of blocks that updates the outputs (demographic parameters to be estimated)before passing the data to the next block. Themain differences happen inside the block(now called MixAttSPIDNA block) depicted in Figure 3.9. Thanks to the addition of anattention hub mechanism, the features that are passed to the next block can now bemore complex. These features of the mean M1 and attention hub A1 are mixed thanksto a fully-connected layer F3. Then, they are concatenated (I3) with the features fromthe convolution C3 and a max pooling layer is applied before being passed to the nextblock.In parallel, the first attention hub mechanism A1 also contributes to the overall in-ferred values by the network. Before being projected back to the output dimensions,the first hubs are duplicated and sent to a series of two other hub attention mecha-nisms (A2 and A3 in Figure 3.9) with attention computed over the hubs. Finally, pre-
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dictions from A3 are combined to the predictions from the mean over the haplotype(M1) and SNP (M2) dimensions thanks to a fully-connected layer (F2). The part of thenetwork that outputs predictions based on the mean over the haplotype and SNP di-mensions (F2) is the same has the original SPIDNA architecture, but its fully-connectedlayer maps all the features to the 21 outputs (previously only the first 21 features weremapped to the 21 outputs) as it has shown to be a simple improvement of the SPIDNAarchitecture during the development of MixAttSPIDNA.
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Figure 3.9: Schematic of MixAttSPIDNA architecture block. Each MixAttSPIDNA block startswith a convolution layer (C3) followed by the mean over rows of the convolution layer result(M1) and the mean over columns of M1 result (M2). The output of M2 is processed by a fully-connected layer (F1) to constitute the first part of the block output. In parallel, an attention hub(A1) process C3 output. The hub features from A1 are then process by two attention hubs (A2and A3) to constitute the second part of the block output. The fully-connected layer F2 combinethe two block output parts, and the result is added (O1) to the network output (in green) to bepassed to the next block. The next block also takes as input the combination of C3 output andoutputs of M1 and A1 with a fully-connected layer F3. Outputs of C3 and F3 are combined (I3)and passed to the next block after passing through a max pooling layer M3.

3.4.3 Inference by scenario

In order to combine the predictions performed over each replicate (representing oneof the simulated or observed genomic regions) of one scenario (one specific populationsize history) in a more complex way than the mean previously used, another attentionmechanism has been added to MixAttSPIDNA. In this version called MixAttSPIDNA withattention on scenario, each batch contains all replicates of a single scenario and noth-ingmore. The features computed in the second layer of hubs of each block (A2 in Figure3.9) are averaged on the hub dimension and fed to a fully-connected layer followed bya softmax. The attention vector obtained determines the contribution of each replicateto the final prediction byweighting the outputs (computed by F2 in Figure 3.9). This stepfinally leaves one prediction by block in the network that are combined thanks to a lastfully connected layer. The idea behind this strategy is to let the network give different
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weights to the different replicates for predicting the demographic parameters of a sce-nario. Therefore, the network could potentially learn to give more importance to themost informative replicates. Moreover, even though we have not tested this, includingnoise (e.g., selection or sequencing error) in some replicates during training could helpthe network learning to discard uninformative replicates that may be present in realdatasets.

3.5 Training and hyperparameter optimization

Most methods presented in this thesis are based on deep learning and thus require todefine a loss function for their training. We chose to minimize the mean squared error(MSE) over the demographic parameters inferred. We also used thismetric to guide thedesign of the ANNs, optimize the hyperparameters and compare the methods in thenext chapter (Chapter 4). Let us remind the different population size inferencemethodsstudied during this thesis. The baselines include:
• An approximate Bayesian computation (ABC) using summary statistics
• A multi-layer perceptron (MLP) using summary statistics
• A MLP using flatten SNP matrices
• A custom convolutional neural network (custom CNN) using SNP matrices
• The Flagel network from Flagel et al. (2018) using SNP matrices
We compare these baselines to the following variations of our SPIDNA and Mix-AttSPIDNA architectures:
• SPIDNA with batch normalization using SNP matrices
• SPIDNA with instance normalization using SNP matrices
• SPIDNA with instance normalization using SNPmatrices with different number ofSNPs
• ABC using SPIDNA predictions
• ABC using SPIDNA predictions and summary statistics
• MixAttSPIDNA using SNP matrices
• MixAttSPIDNA using SNP matrices with an attention mechanism on scenario pre-dictions
• MixAttSPIDNA using SNP matrices with an attention mechanism on scenario pre-dictions with an unfreezing learning strategy
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Flagel network and the ANNs that we developed use the MSE over the training setas the loss metric for their backpropagation algorithms. The MSE is also computedover the validation set to guide the development of our architectures and to performautomatic hyperparameter optimization. ABC and MLP hyperparameters have beenoptimized with random or grid searches. In order to include more hyperparametersand cope with the longer training time of the SPIDNA architecture, we used a more ad-vanced hyperparameter optimization procedure called HyperBandSter (Falkner et al.,2018b; Li et al., 2016). However, we did not yet reuse this procedure for the Mix-AttSPIDNA architecture because we preferred to focus first on substantial changes inthe architecture structure (which is not easily amenable to hyper optimization) and be-cause these newly designed architectures already outperformed previous methods (aswe will see in the next chapter). We also tried different learning rate strategies for theMixAttSPIDNA architecture with attention mechanism on scenario predictions becausewe trained it in two steps, first to infer demographic parameters by replicate, and sec-ond to infer them per scenario (i.e., exploiting all replicates of a scenario).

3.5.1 Mean squared error (MSE)
Before computing the prediction error, the demographic parameters Θ⋆ are standard-ized with the following formula:

Θ =
ln(Θ⋆)− µtrain

σtrain
(3.2)

where µtrain and σtrain are the mean and standard deviation of ln(Θ⋆) over the trainingset.Then, each method is evaluated using its prediction error given by the followingmean squared error:
1

I × J

I,J∑
i,j

(
Θ̂i

j −Θi
j

)2 (3.3)
where Θi

j and Θ̂i
j are respectively the true and predicted standardized population sizefor the time window i and scenario j, I = 21 is the number of time windows and J thenumber of scenarios in the set. For inference based on raw data and neural networksthat perform one prediction by replicates, the prediction Θ̂i

j is given by the average ofthe population sizes (Θ̂i
jr)r=1,...,nrep estimated for each replicate (independent region) r.The two version of MixAttSPIDNA that perform prediction by scenarios apply an atten-tion mechanism over the predictions of all scenario replicates to obtain the prediction

Θ̂i
j .

3.5.2 Automated hyperparameter optimisation
Compared to othermachine learningmethods, ANNs have a potentially infinite amountof hyperparameters when including for instance the number of layers, the number ofneurons in each of them, the learning rate, weight decay or the batch size. Moreover, arun over a full dataset with enough epochs to reach convergence is time-consuming for
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networks with a complex architecture defined by many learnable parameters. There-fore, the development of deep learning architectures often relies on the experienceand intuition of the practitioner in a try-and-repeat process. Grid search and randomsearch are two strategies for exploring the hyperparameter space uniformly. They arecommonly used but are limited by the computing resources available. In our study, weused HpBandSter, a package that implements the HyperBand (Li et al., 2016) algorithmto run many hyperparameter trials on a smaller resource budget (i.e., few epochs) andruns themost promising trials on a greater budget. Combinedwith BOHB (Falkner et al.,2018b), a Bayesian optimisation procedure that models the expected improvement ofthe joint hyperparameters, this method provides more guided and faster search of thehyperparameter space. At each step, BOHB draws a new combination of hyperparam-eter values to be tested according to the expected improvement and to a predefinedprior. Here, we performed a search in a 5-dimensional space defined by uniform pri-ors over the type of architecture (architectures from our baselines and variations ofSPIDNA architecture, based on 400 SNPs or the full number of SNPs), the learning rate,the weight decay and the batch size. For SPIDNA architectures that controlled correla-tion, we added the control parameter α to the Bayesian optimization procedure with alog-uniform prior between 0.5 and 1. The search was performed for 3 budget steps andreplicated 5 times, leading to a total of 83 successfully trained networks. The results ofthis procedure are shown in Section 4.1.1.As the training time of the MLP using summary statistics was short because of itssmall input size and number of parameters, we optimized its hyperparameters with arandom search by drawing 27 configurations from uniform distributions and trained anetwork for each configuration during 6 epochs. The batch size was drawn between 10and 100, learning rate between 5 · 10−5 and 1 · 10−2 and weight decay between 5 · 10−5

and 1 · 10−2.For ABC, the tolerance rates ranged from 0.05 to 0.3 by step of size 0.05 and wereoptimized for 12 ABC algorithms independently (4 correction methods × 3 types ofinputs: predefined summary statistics, SPIDNA outputs or both).
3.5.3 Learning rate strategies of MixAttSPIDNA
The work presented in this section is a collaboration with Pierre Jobic.

We tested numerous versions of MixAttSPIDNA during its development, but we willonly focus on three versions: MixAttSPIDNA, MixAttSPIDNA with attention on scenarioand MixAttSPIDNA with attention on scenario unfreezing. They all include a learningrate decay strategy that divide by two their learning rate after five epochs to improvethe final prediction error. When trained on the cattle dataset, the three versions of Mix-AttSPIDNA use the same batch format as SPIDNA with batch normalization (batches ofSNP matrices with 50 haplotypes and 400 SNPs). However, because the HGDP datasethas a number of haplotypes that varies for each scenario tomimic the different samplesizes of the real HGDP populations. We tested different strategies ofmini-batch format-ting on the cattle dataset (see Section 4.2.4) and used the best for the HGDP dataset.MixAttSPIDNA with attention on scenario andMixAttSPIDNA with attention on scenariounfreezing are trained in two steps. First they are trained to predict demographic pa-rameters replicate-wise likeMixAttSPIDNA for ten epochs. Then, they are trained to pre-
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dict demographic parameters scenario-wise, either by only optimizing the weights andbiases used for scenario predictions (MixAttSPIDNA with attention on scenario) or bygiving a higher learning rate to the weights and biases used for scenario (MixAttSPIDNAwith attention on scenario unfreezing). This scheme is meant to stabilize the learn-ing when the network task moves from predicting replicate-wise to scenario-wise. Inexperiments not shown in this manuscript, training scenario-wise MixAttSPIDNA with-out pretraining on replicates have shown unstable behaviours with error increases onthe training set. MixAttSPIDNA has 410,786 learnable parameters, MixAttSPIDNA withattention on scenario and MixAttSPIDNA with attention on scenario unfreezing have414,076 learnable parameters.

3.6 Interpreting deep neural networks with Canonical
Correlation Analysis (CCA)

Whether neural networks are artificial or biological and despite being very different,they are often seen as a blackbox difficult to interpret because they perform an impor-tant amount of complex operations on the input data which could have more or lessimportance for the final prediction. The interpretability of neural networks is a veryactive research area as it helps to better understand how they work and possibly to im-prove how they should be build. In most fields of deep learning applications, it is alsocrucial to provide human understandable explanations for any prediction made by thenetwork. Medicine diagnosismade by ANNs are a famous examplewhere the physicianneeds to understand the inner reasoning of the ANN to avoid any mistakes that couldhave been easily avoided by human. Nonetheless, neuroscientists have been tacklingthis goal from a theoretical and an experimental angle since the discovery of brain cells,but are still far from a complete theory.Understanding ANNs should be in principle much simpler, as they are less complexthan their biological counterparts and operate in the controlled environment of com-puters. Some of the approaches that have been recently developed generate a moreinterpretable model from the ANNs such as a decision tree with semantic annotations(Zhang et al., 2019). Others aim at generating saliency maps or mask over the inputdata to highlight its most important features with variants of backpropagation and gra-dient analysis (Chattopadhay et al., 2018; Selvaraju et al., 2019). These last methods aremostly used for image data but can also be used to highlight binding motifs (Shrikumaret al., 2017), identify variants associated to a particular trait (Sharma et al., 2020) orshow alleles under selection in DNA sequences.ABC methods for population size inference are based on a set of handcrafted sum-mary statistics computed from the SNP data, and the method developed here seeks tofind if a network computes the same summary statistics internally. This should helpto understand what are the most relevant summary statistics for predictions, but alsowhich ones are not computedby the network and could be added as input alongside theraw genomic data in order to improve the predictions. Searching for such correlationsbetween the ANN activations and the summary statistics is a difficult task as the net-work potentially computes combinations of summary statistics in a complex non-linearfashion and the computation of a summary statistics can be performed by the combi-
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nation of multiple parts of the network. Some methods applied to computer visionalready seek for high correlations between sets of activations and a single summarystatistic (often called concept), but they do not seek for correlations with a combina-tion of multiple summary statistics (Graziani et al., 2018; Kim et al., 2018).
The method presented here is based on canonical correlation analysis (CCA) andinspired by SVCCA, a method designed to understand ANN training dynamics by com-paring the activations of a network at different training stages (Raghu et al., 2017). Here,the CCA is not performed between two sets of activations, but between a set of activa-tions and a set of summary statistics. Activations are grouped by layer and each layeris compared to a set of 279 summary statistics suggested by Jay et al. (2019), includ-ing bins of site frequency spectrum (SFS), identity by state (IBS), linkage disequilibrium(LD) and other such as expected heterozygosity, Tajima’s D and nucleotide diversity

π. Similarly to Raghu et al. (2017), the method first uses singular value decomposition(SVD) with a variance conserved threshold of 0.99 to reduce the dimensionality of theactivations when greater than 50 in a layer. This helps to reduce noise and spuriouscorrelations in the next step of the analysis. SVD is preferred over other dimensionalityreduction methods because it does not standardize the data, and thus performs wellon sparse data such as neuron activations in ANNs with ReLU activation function.
Then, the sets of reduced activations and summary statistics are analyzed with CCA.The two sets after standardization are denoted by Xa ∈ Rn×p and Xb ∈ Rn×q with nthe number of samples and q and p the numbers of variables observed in each set.CCA searches for linear combinations of the features (columns) ofXa andXb that havemaximal correlation with each other. That is, CCA searches for two vectors w⃗a ∈ Rp

and w⃗b ∈ Rq (the canonical weight vectors) such that the resulting linear combinations
z⃗a = Xaw⃗a and z⃗b = Xbw⃗b (that are 2 real data-sample-dependent values) are the mostcorrelated (across samples).

The algorithm seeks w⃗a and w⃗b that minimize the enclosing angle between z⃗a and
z⃗b, θ ∈ [0, π

2
], with the constraint that z⃗a and z⃗b are unit norm vectors. The cosine of thisangle (also referred as the canonical correlation) is given by the formula:

cos(z⃗a, z⃗b) =
⟨z⃗a, z⃗b⟩
∥z⃗a∥∥z⃗b∥

= ⟨z⃗a, z⃗b⟩ (3.4)
The first pair of z⃗ 1

a and z⃗ 1
b corresponds to the smallest angle θ1 given by:

cos θ1 = max
z⃗a,z⃗b

⟨z⃗ 1
a , z⃗

1
b ⟩, ∥z⃗ 1

a ∥2 = 1 and ∥z⃗ 1
b ∥2 = 1 (3.5)

Then the next enclosing angle θr is found in the orthogonal complements of z⃗ r−1
a and

z⃗ r−1
b . The pair z⃗ r

a , z⃗ r
b is defined by :
cos θr = max

z⃗a,z⃗b
⟨z⃗ r

a , z⃗
r
b ⟩, ∥z⃗ r

a ∥2 = 1 and ∥z⃗ r
b ∥2 = 1 (3.6)

with the constraints:
⟨z⃗ r

a , z⃗
j
a ⟩ = 0, ⟨z⃗ r

b , z⃗
j
b ⟩ = 0, ∀j ̸= r (3.7)

There exist several methods to compute the canonical variates, with some of themextending CCA to non-linear correlation (Akaho, 2006; Andrew et al., 2013). Here, the
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CCA implemented in scikit-learn (Pedregosa et al., 2011; Wegelin, 2000) was used toseek for linear relationships between the two sets in order to interpret the correla-tions more easily. Finally, we compared a variable from a set to all variables from theother one, by averaging the correlation between the canonical variates pondered bythe weights of the variable. These weights can be interpreted as the contribution of thevariable to each canonical variates.This method was applied as a proof-of-concept to the custom CNN. Activations weremeasured after training for the validation set in the five last layers of the CNN (thecomputation time being too long for the first two layers because of their large numberof activations) and 50 canonical variates were computed for each layer.

3.7 dnadna: a python package for deep learning applied
to population genetics

Alongside the development of new deep learning architectures for demography infer-ence in population genetics, we released a python software called dnadna, supportedby a pre-print (Sanchez et al., 2021a). It is task-agnostic and aims at facilitating the de-velopment, reproducibility, dissemination, and reusability of neural networks designedfor genetic polymorphism data.
dnadna defines multiple user-friendly workflows. First, users can implement newarchitectures and tasks, while benefiting from dnadna input/output and other utilityfunctions, training procedure and test environment, which not only saves time but alsodecreases the probability of bugs. Second, implemented networks can be re-optimizedbased on user-specified training sets and/or tasks. Finally, users can apply pretrainednetworks in order to predict evolutionary history from alternative real or simulatedgenetic datasets, without the need of extensive knowledge in deep learning. Thanks to

dnadna, newly implemented architectures andpretrainednetworks are easily shareablewith the community for further benchmarking or applications.
dnadna comes with a peer-reviewed exchangeable neural network allowing demo-graphic inference from SNP data, that can be used directly or retrained to solve othertasks. Toy networks are also available to ease the exploration of the software, and weexpect that the range of available architectures will keep expanding thanks to contri-butions from the community.
Availability: dnadna repository is available at https://gitlab.com/mlgenetics/

dnadna and its associated documentation at https://mlgenetics.gitlab.io/dnadna/.

3.8 Chapter conclusion

This chapter gave a description of all the materials and methods that have been usedor developed through this thesis. We built two tools with the intention of helping thepopulation genetic community to develop new deep learning architectures. The firstone uses the CCA to better understand which kind of features a network learns to com-pute on genomic data. The second one is a python package designed to facilitate thedevelopment, usage, and distribution of ANNs processing SNP data. The main focus of

https://gitlab.com/mlgenetics/dnadna
https://gitlab.com/mlgenetics/dnadna
https://mlgenetics.gitlab.io/dnadna/
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this thesis is the development of deep learning methods for population size inference.To this end, we designed priors for our demographic scenario simulations to be as closeas possible to the information known about the real cattle and human datasets that westudied, and generated simulations accordingly. Our strategy for developing the twomain architectures (SPIDNA and MixAttSPIDNA) was to take into account as much aspossible the characteristics of population size inference and could be adapted to otherpopulation genetic tasks. We created and implemented architectures that are invariantto haplotype permutations and changes in SNP number. Then, we designed attentionhubs in order to make the MixAttSPIDNA network more expressive while keeping thecomputational time reasonable and without breaking the previously mentioned char-acteristics of the network. The attention mechanism also allowed to combine predic-tions fromdifferent segment alignments of the same sample of individuals in away thatallows the network to give more or less importance to each segment in the final predic-tion. The comparison baselines include a MLP and an ABC that use summary statisticsas input, the Flagel network, and ANNs that are less adapted to the input data (MLP and
custom CNN). By comparing them to SPIDNA and MixAttSPIDNA, we will see in the nextchapter whether the architecture choices made translate into better predictions.
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We evaluate and compare the methods described in the previous chapter thanksto the real and the simulated datasets. This chapter presents and analyses the resultsto assess which choices in the architecture design improve the predictions. The sec-ond section presents the results of several procedures aimed at better understandingthe ANN inner workings and how they behave under changes in test or real data thatwere not present in the training set. Finally, the last section includes SPIDNA’s andMixAttSPIDNA’s predictions for the two real datasets, in order to show their usage inpractice.

4.1 Study of ANN performances on simulated data

We simulated twomain datasets with priors designed to fit the real data from the cattleand HGDP datasets. We used these datasets to train and compare the baseline meth-ods to the different versions of SPIDNA and MixAttSPIDNA architectures by evaluating
79
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their mean squared errors (MSE) on validation and test sets. We also compared theirpredictions for specific simulated demographic scenarios. The MSE has been used toguide the design of the multiple versions of these two architectures by iteratively intro-ducing new mechanisms and evaluating their impact on this metric.

4.1.1 SPIDNA hyperparameter optimization

As explained in Section 3.5.2 of the previous chapter, finding the best hyperparametersof an ANN mainly relies on the practitioner intuition because of the infinite amount ofconfigurations possible and the training time of most architectures. However, we canstill apply an automatic optimization to somehyperparameters in order to improve pre-dictions. Therefore, we used the HpBandSter procedure on baseline ANNs and SPIDNAarchitectures. The best configuration in terms of loss corresponds to the SPIDNA archi-tecture processing 400 SNPs with batch normalization, a weight decay of 2.069 · 10−2, alearning rate of 1.416 ·10−2 and a batch size of 78 (Figure 4.1). Configurations with largebatch sizes tended to yield lower losses (Figure 4.1), which is expected, as large batchesprovide a better approximation of the full training set gradient. However, a batch sizetoo close to the training set size can lead to overfitting the training set. Here, we did notobserve overfitting for any run when monitoring training and validation losses. This isprobably due to the large size of our simulated datasets, as training often convergeseven before seeing the full dataset. The best configurations also tended to have lowlearning rates and weight decays (Figure 4.1). These low values slow down the con-vergence, but usually decrease the final prediction error if the budget (i.e., number oftraining epochs) is high enough for the network to reach convergence.
The Bayesian hyperparameter optimization procedure allowed to test multiple net-works (MLP, custom CNN with heterogeneous filter sizes, SPIDNA with different nor-malization schemes, adaptive or not to SNP number) thanks to a better usage of thecomputational power available by givingmore budget to themost promising ANNarchi-tectures and hyperparameters. Note that it would be possible to extend this procedureto hyperparameters that further describe the architecture of the network, such as thenumber and type of layers, number and type of neurons, the type of non-linearity orthe topology. However, even if this optimization of hyperparameters is faster than sim-pler methods such as random or grid search, it still requires an important amount ofcomputational power, and many GPUs to perform each run in parallel. Another caveatis that these runs have been performed on budgets that represent few epochs, andit is possible that a longer training would reveal another best set of hyperparameters.Nonetheless, the barplots in Figure 4.1 show very similar scores regardless of the ex-tended number of epochs for the best architecture (SPIDNA with batch normalization).For all the reasons above, we did not rely on hyperparameter optimization for the de-velopment of MixAttSPIDNA, but rather focused onmore radical changes related to thearchitecture. Indeed, those changes led to more substantial differences in scores thanfine-tuning hyperparameters, such as the batch size, the learning rate or the weightdecay, since the latter led to moderate differences in score.
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Figure 4.1: Population size prediction error for each run of the hyperparameter optimiza-
tion procedure. X-axes indicate the hyperparameter (batch size, learning rate, weight decayand alpha) or budget values, and colors indicate the type of network used for the run (MLP,
custom CNN and multiple SPIDNA architectures). For each network the best run is surroundedby a square.
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4.1.2 Results on predefined scenarios
The performances of SPIDNA, SPIDNA combined with ABC and MixAttSPIDNA are illus-trated on a subset of cattle demographic scenarios (Figure 4.2) that were previouslyinvestigated by Boitard et al. (2016b) (see Figure A.1). Six scenarios were simulated:“Medium”, “Large”, “Decline”, “Expansion”, “Bottleneck” and “Zigzag” by specifying thedemographic parameters instead of drawing them from the prior of the training set.SPIDNA correctly reconstructed histories of constant size, expansion and decline, asSPIDNA predictions from 100 independent genomic regions (Figure 4.3) approximatelyfollowed the real population size trend and magnitude. In Figure 4.4, the true param-eters were always included in the 90% credible intervals (light green envelopes) pre-dicted by SPIDNA combined with ABC without predefined summary statistics and, inmost cases, in the 50% credible intervals (dark green). Similarly to the inferred valuesby ABC in Boitard et al. (2016b), the credible interval increases during the most ancienttimes for all scenarios except “Large” and “Decline”. These time steps are older than theTMRCA (see Figure A.1 for TMRCA estimations) which can explain this increase, as mostinformation in the sample is lost beyond this point. SPIDNA and SPIDNA combinedwith ABC correctly reconstructed a complex history consisting in an expansion inter-rupted by a bottleneck and followed by a constant size (see Figure 4.2 “Bottleneck”),but SPIDNA predicted an earlier and weaker bottleneck than the true scenario. How-ever, both methods were unable to correctly estimate the parameters of a very com-plex “Zigzag” history, except for its initial growth period, and instead reconstructed asmoother history with values intermediate within the range of the lower and higherpopulation sizes (see Figure 4.2 “Zigzag”). This confirmed the smoothing behavior iden-tified previously for ABC and MSMC on these demographic scenarios (Boitard et al.,2016b) (Figure A.1). Similarly to ABC on predefined summary statistics (Boitard et al.,2016b), SPIDNA predictions of very recent population sizes were slightly biased towardthe center of the prior distribution, however combining SPIDNAwith ABC tended to cor-rect this bias in most cases. MixAttSPIDNA performed better than SPIDNA by includingthe true effective size in almost all boxplot of each scenario, as shown by Figure 4.5.However, similarly to SPIDNA, it failed at precisely predicting the most recent popula-tion sizes for some scenarios. On the opposite of our twoothermethods, MixAttSPIDNAwas able to reconstruct themost ancient bottleneck of the “Zigzag” scenario (Figure 4.5).The experiments shown in this section have been conducted to have an insight onthe predictions made by each architecture. Although the prediction error on a largedataset, which will be presented in the next section (Section 4.1.3), can be a good met-ric to compare them, the simulations used to compute it might includemany unrealisticscenarios on which the architecture performs well. This might lower the overall predic-tion error without improving the predictions on realistic simulated scenarios and thus,on real scenarios. These experiments are also important to assess whether the predic-tions are capable to capture the scenario dynamics, by reconstructing the expansion,decline, bottleneck and stable phases. This last point is crucial because most studiesof population size evolutions try to link ecological or historical events to changes in thepopulation size dynamic, rather than predicting very precisely the effective populationsize. Here, the MixAttSPIDNA architecture, which is the best of the three architecturescompared in terms of prediction error (see next section), is also the only architecturethat has been able to identify the most ancient bottleneck in the “Zigzag” scenario.
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Figure 4.2: Predictions of SPIDNA, ABC using SPIDNA outputs and MixAttSPIDNA, all
trained on the simulated cattle dataset for six predefined scenarios (dashed black lines).100 replicates were simulated for each scenario and predictions were averaged.
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Figure 4.3: Predictions of SPIDNA trained on the simulated cattle dataset for six prede-
fined scenarios (dashed black lines). 100 replicates were simulated for each scenario. Box-plots show the dispersion of SPIDNA predictions over replicates.
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Figure 4.4: Predictions of ABC using SPIDNA outputs trained on the simulated cattle
dataset for six predefined scenarios (dashed black lines). 100 replicates were simulatedfor each scenario. For each history inferred by SPIDNA combined with ABC, the posterior me-dian is display with plain green line, the 50% credible interval (dark green) and the 90% credibleinterval (light green).
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Figure 4.5: Predictions of MixAttSPIDNA trained on the simulated cattle dataset, for six
predefined scenarios (dashed black lines). 100 replicates were simulated for each scenario.Boxplots show the dispersion of SPIDNA predictions over replicates.
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4.1.3 Prediction error on the whole set of simulated datasets

The first part of this section presents the results obtained on the simulated cattledataset with all the methods from the baselines, all versions of SPIDNA and Mix-AttSPIDNA. Second, our best version of SPIDNA and all versions of MixAttSPIDNA aretrained and compared on the simulated HGDP dataset.To interpret the results and compare them, let us first note that in Figure 4.6, Tables4.1 and 4.2, a 0 error means perfect prediction, while an error of 1 means that no in-formation is extracted from the input. Indeed, a function outputting always the samevalue, for all samples, can at best predict the average target value over the dataset,in which case the mean squared error (also referred to as the prediction error) is thestandard deviation over the dataset of the value to predict, which is normalized to 1 inour setup, as explained in Section 3.5.1.
Simulated cattle dataset

The hyperparameter optimization procedure of ANNs considered a certain number ofarchitectures, for each of which we selected and trained the best version with a greaterbudget (i.e., during 10 epochs), allowing for an in-depth comparison to the baselinemethods. This longer training did not yield any substantial decrease in prediction errorcompared to their counterparts with a smaller 107 budget (107 training SNP matrices,i.e., 5.57 epochs) (Figures 4.1 and 4.6). Prediction errors for the validation set (used inthe hyperparameter optimization procedure) and the test set (never used before) areshown in Table 4.1. In the following text, each method is designated along its index inTable 4.1.
Summary statistics based methods The prediction errors achieved by ABC usingsummary statistics ranged from 0.496 (index 0, ABC rejection, i.e., without correction)to 0.364 (ABC neural networks, index 3). The gap of performance between the ABCwithout and with correction shows that the data points selected by the rejection arestructured in the demographic parameters space. The small difference between lin-ear corrections (linear and ridge, 0.369 and 0.376, indexes 1 and 2) and the non-linearone (0.364, ABC neural networks, index 3) seems to indicate that the relation betweendata points (summary statistics) and demographic parameters is mostly linear in theneighborhood of each validation or test example.The MLP based on summary statistics performed worse than ABC with correction(0.437, index 4). It is slightly overfitting on the validation set (0.399 validation errorversus 0.437 test error, index 4), whichmay be due to the hyperparameter optimizationprocedure, but we did not investigate this phenomenon further.Overall, we obtained good predictions with summary statistics based methods, es-pecially for the ABCs including a correction step. Therefore, the summary statisticschosen seemed to preserve a great part of the relevant information from the dataset.Compared to ANNs, ABC methods have the advantage of constructing an approximateposterior of the demographic parameters that allows to construct credible intervals, asin Figure 4.4. However, ABC can be time-consuming when inferring the demographicparameters of numerous populations at once, because it requires to repeat the rejec-
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tion algorithm (i.e., compares the observed data to all the data from the training set)for each population. Note that, for the exact same reason, ABC is also expansive tobenchmark on large validation and test sets. On the other side, ANNs have only onelong training phase, while the inference phase is fast and scales easily when applied tomany populations. Relying on summary statistics also has some disadvantages: (i) theloss of information is possibly impeding further improvement of the prediction error,despite improvements in the inference method itself; (ii) it is difficult to know whichsummary statistics should be added to the dataset in order to improve inference (a so-lution to this issue is to design them automatically, as we do with SPIDNA combinedto ABC); (iii) for the most recent biological questions and data types, expert summarystatistics might not yet exist; (iv) the computation of certain types of summary statisticson all the different datasets can be particularly time-consuming (for instance, the link-age disequilibrium is in practice computed on a subsample of SNPs becausemeasuringthe pairwise dependence between SNPs at different distances is computationally tooexpensive on large dataset).
Baselines ANNs The MLP based on raw data performed very poorly (0.675, index 5)and all other networks based on rawdata outperformed thisMLP. This is not surprising,since genomic information is encoded as a simple list of values, where the order has nomeaning from the MLP point of view, which then cannot exploit information given bythe data structure. This MLP configuration has two major drawbacks: (i) the number ofnetwork parameters to estimate is high; (ii) the MLP can only retrieve the geometry ofthe data through training, with no guarantee that it will learn the spatial structure of thegenome (i.e., the column order and distance between SNPs) or distinguish from whichindividual comes each SNP. In spite of all these hindrances, the MLP still performed farbetter than random guesses or constant prediction (32% better).The custom CNN obtained results similar results as the ABC without correction(0.487, index 6) and that, without the disadvantages of summary statistics enumeratedpreviously. The mixed size filters have proven useful in the Computer Vision literature,under the name of Inception architectures (Szegedy et al., 2017); they allow the extrac-tion of a mixture of different kinds of information frommultiple scales within the samelayer. The large gap in performance between a simple MLP and this custom CNN con-firms the importance of such considerations. A natural extension would be to integratethis feature into SPIDNA, our permutation-invariant architecture.The Flagel CNNs adapted from Flagel et al. (2018), that were not using dropout, hadaverage test losses of 0.541 when based on the first 400 SNPs (index 7) and 0.444 whenbased on 1784 downsampled SNPs (index 8). The two using dropout achieved predic-tion errors of 0.609 (with 400 SNPs, index 9) and 0.484 (with downsampling, index 10).We can see that, for this network, downsampling the number of SNPs lead to betterpredictions than using the 400 first SNPs of each matrix. Similarly to the custom CNN,this network is another example of the usefulness of convolution layers (also used inSPIDNA and MixAttSPIDNA), and more generally, why tailoring the network to the datacharacteristics (taking into account the spatial dependency between SNPs) can improvepredictions compared to MLPs. The best configuration of the Flagel CNN (0.444, index8) performed similarly to the best SPIDNA version without ABC (0.454, index 11), how-ever Flagel CNNs have 8 to 34 timesmore learnable parameters than SPIDNA, and thus,



4.1. Study of ANN performances on simulated data 89
are longer to train.
SPIDNA Most of the SPIDNA architectures (all except SPIDNAs with instance normal-ization and 400 SNPs, 0.641 and 0.599, index 12 and 14) outperformed theABC rejection(0.454 and 0.469, index 11 and 15) or led to similar errors (0.489, index 13). However,they did not outperform the ABC with correction (0.369, 0.376 and 0.364, indexes 1,2 and 3). This could be explained by SPIDNA not being able to leverage the local lin-ear relationships in each data point neighborhood found by the ABC, which motivatesfurthermore the combination of both methods.Among our permutation-invariant architectures, the best one (SPIDNA using batchnormalization, (0.454, index 11 in Table 4.1) had a smaller prediction error than our cus-
tom CNN (0.487, index 6). However, it is not clear whether this improvement is directlylinked to its built-in permutation-invariance property, or to other differences betweenthe two networks.The best non-adaptive SPIDNA (using 400 SNPs of each matrix) uses batch normal-ization while the adaptive versions (using all the SNPs of each matrix) use instance nor-malization, as there is currently no implementation of batch normalization for batcheswith inputs of mixed sizes (see Section 2.1.4 for more information about why our adap-tive networks do not use batch normalization). The Non-adaptive SPIDNA architectureusing batch normalization (0.454, index 11) achieved better results than its adaptivecounterpart versions that use instance normalization (0.489 and 0.469, indexes 13 and15). To understand if this loss of performance can be attributed to the addition of theadaptive feature or to the difference of normalization layer, we also trained two ver-sions that have the same configuration as the adaptive ones, but using only 400 SNPs.These two non-adaptive versions with instance normalization have a much higher testerror (0.641 and 0.599, indexes 12 and 14), suggesting that our networks using instancenormalization tend to underfit, and that the adaptive feature of these networks seemsto partially compensate for this effect. Therefore, adaptive architectures could greatlybenefit from an optimized implementation of adaptive batch normalization or from animplementation of batches with mixed data sizes.Controlling the speed to invariance thanks to the parameter α improved the perfor-mance of the instance normalization SPIDNA (0.641 versus 0.599, indexes 12 and 14),but less significantly the performance of the instance normalization adaptive SPIDNA(0.489 versus 0.460, indexes 13 and 15). The impact of the parameter α is studied inmore details in Section 4.2.1.
SPIDNA combined with ABC We evaluated two types of inputs for ABC: (i) SPIDNAoutputs only (inspired by Jiang et al. (2017)) or (ii) both SPIDNA outputs and summarystatistics. When using only the predictions of SPIDNA as input to ABC with correction(linear regression, ridge regression or neural network), we improved greatly SPIDNA’sperformance and obtained errors similar to the ABC based on predefined summarystatistics (0.369 compared to 0.364, index 21 and 3). When using both SPIDNA predic-tions and predefined summary statistics as input to the ABC algorithm, we decreasedfurther the prediction errors (0.347, index 29).It is not yet entirely clear why this combination of ABC and deep learning (withoutusing summary statistics) decreases the prediction error. Neural networks, such as
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SPIDNA, learn a very general mapping of the whole input space to the output demo-graphic parameter space. On the other hand, ABC learns a local relationship, the pos-terior distribution of the demographic parameters, for each observed example basedon its neighborhood in the input space. Combining ABC with SPIDNA thus adds a localinference step to the general mapping learned by SPIDNA, and this might help readjustthe predictions locally. This is illustrated in Figure 4.3 where recent population sizes es-timated by SPIDNA have a tendency towards the center of the prior, while SPIDNA+ABCcorrects it (Figure 4.4). This combinationmight bemodifying the bias/variance trade-offfavored by SPIDNA towards higher variance.
MixAttSPIDNA The best results were obtained with the three versions of Mix-AttSPIDNA (indexes 32, 33 and 34), making them the first purely “end-to-end withoutABC step” approaches to outperform ABC on summary statistics. The first one that in-cludes solely an attention mechanism on lines of tensor matrices reaches an error of0.320 (index 32). Additionally, including an attention mechanism on the predictions ofall replicates for each scenario (0.287, indexes 33) greatly improved the prediction error(0.287). During this run, the architecture is first trained to perform predictions replicatewise, then its weights are frozen, while a group of layers allowing for predictions sce-nario wise is added and trained. Finally, if instead of freezing the weights we kept train-ing them together with the added layers, the predictions improved further (0.251, index34). In this last configuration, MixAttSPIDNA is first trained to perform replicate-wisepredictions, then, instead of being completely frozen, the learned weights are assigneda lower learning rate and are further optimized during the scenario-wise training. Thesethree architectures are the first that do not rely on any summary statistic or ABC stepto have significantly outperformed all the other methods presented here.
Simulated HGDP dataset

Now, we investigate the performance of a subset of architectures on our second train-ing set, the HGDP simulated dataset (Section 3.1). Precisely, using this dataset, we trainthe best SPIDNA architecture (without ABC nor summary statistics, index 11 in Table4.1), and all MixAttSPIDNA version (indexes 32, 33 and 34 in Table 4.1) to solve thesame task (reconstructing population sizes through time). We present the results inTable 4.2.It is important to note that summary statistics cannot be easily compared directlyacross scenarios of this dataset. Indeed, each example has a varying number of hap-lotypes with the purpose of representing real data heterogeneity (where a differentpopulation might have a different number of sequenced individuals). This heterogene-ity impacts most summary statistics, and one would need to redesign them in orderto be insensitive to the sampling size. Previous works have instead decided to sim-ulate datasets with a large number of individuals, recompute summary statistics onsubsets corresponding to each smaller sampling size, and use different reference ta-bles for each prediction (Boitard et al., 2016b). Although this solves the issue, it is notthe most efficient fashion, particularly for machine learning methods that would needto be retrained on each reference table (i.e., for each sampling size, i.e., almost eachpopulation), hence losing the advantage of a single training and fast predictions.
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Figure 4.6: Prediction errors on the test set of the best run of each method after the hy-
perparameter optimization. The best configurations of each ANN (MLP, custom CNN, SPIDNAand MixAttSPIDNA) have been retrained for 10 epochs. Traditional ABC methods are depictedin yellow, deep MLPs and CNNs in red and orange, SPIDNA ANNs in blue, MixAttSPIDNA ANNsin purple and combinations of ANNs and ABC in green. Methods are grouped into 4 families:“Summary statistics” (processed by ABC or ANN), “SNP matrices” (processed by ANN), “SPIDNAoutputs” (processed by ABC, no summary statistic used), “Summary statistics and SPIDNA out-puts” (processed by ABC). Vertical black lines on top of each bar represent the 95% confidenceinterval of prediction errors. Horizontal dashed line indicate the lowest error obtained (adap-tive SPIDNA + ABC with local linear regression using summary statistics and SPIDNA outputs).
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Method Adaptive Summarystatistics ABC correction α value Validationerror Testerror0 ABC No Yes No No 0.490 0.4961 ABC No Yes Linear reg. No 0.357 0.3692 ABC No Yes Ridge reg. No 0.363 0.3763 ABC No Yes Single layer NN No 0.352 0.3644 MLP No Yes No No 0.399 0.4375 MLP No No No No 0.690 0.6756 Custom CNN No No No No 0.485 0.4877 Flagel CNN 0/-1 encoding No No No No 0.537 0.5418 Flagel CNN 0/-1 encoding Downsampling No No No 0.437 0.4449 Flagel CNN -1/1 encoding No No No No 0.610 0.60910 Flagel CNN -1/1 encoding Downsampling No No No 0.482 0.48411 SPIDNA No No No No 0.453 0.45412 SPIDNA No No No No 0.637 0.64113 SPIDNA Yes No No No 0.487 0.48914 SPIDNA No No No 0.849 0.592 0.59915 SPIDNA Yes No No 0.539 0.466 0.46916 ABC + SPIDNA No No No No 0.462 0.46217 ABC + SPIDNA No No Linear reg. No 0.364 0.37718 ABC + SPIDNA No No Ridge reg. No 0.371 0.38019 ABC + SPIDNA No No Single layer NN No 0.363 0.37220 ABC + SPIDNA Yes No No 0.539 0.458 0.46021 ABC + SPIDNA Yes No Linear reg. 0.539 0.363 0.36922 ABC + SPIDNA Yes No Ridge reg. 0.539 0.382 0.39123 ABC + SPIDNA Yes No Single layer NN 0.539 0.374 0.38424 ABC + SPIDNA No Yes No No 0.476 0.47825 ABC + SPIDNA No Yes Linear reg. No 0.339 0.35326 ABC + SPIDNA No Yes Ridge reg. No 0.341 0.35727 ABC + SPIDNA No Yes Single layer NN No 0.345 0.36128 ABC + SPIDNA Yes Yes No 0.539 0.474 0.47829 ABC + SPIDNA Yes Yes Linear reg. 0.539 0.335 0.34730 ABC + SPIDNA Yes Yes Ridge reg. 0.539 0.339 0.35431 ABC + SPIDNA Yes Yes Single layer NN 0.539 0.347 0.36532 MixAttSPIDNA No No No No 0.314 0.32033 MixAttSPIDNA withattention on scenarios No No No No 0.288 0.287
34 MixAttSPIDNA with

attention on scenarios
unfreezing

No No No No 0.234 0.251

Table 4.1: Prediction errors of the best configuration of each method on the sim-
ulated cattle dataset. Section 3.3.2 explains the adaptive characteristic of SPIDNA tothe number of SNP indicated in column “Adaptive”. Section 4.2.1 explains the utility ofthe parameter α in SPIDNA indicated in column “α value”.
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For these reasons, we built architectures flexible to the input size and investigatedin Section 4.2.4 the best procedure for training them on data heterogeneous in samplesize. Thanks to this experiment, we chose to format the batches by subsampling thenumber of haplotypes to 50 when greater than this value in the unprocessed SNP ma-trix (they are between 10 and 100 haplotypes for each matrix in the simulated HGDPdataset). On the other hand, matrices with fewer than 50 haplotypes are padded withthe value 255 to reach 50 rows.Overall, the rank between architectures is the same as in Table 4.1. However, theerrors are greater on the simulated HGDP dataset than on the previously simulatedcattle dataset, probably because the new priors are more complicated and include avarying number of haplotypes in each scenario. This explains why the gap in termsof prediction error between SPIDNA on the simulated cattle dataset (0.454, index 11 inTable 4.1) and HGDP dataset is important (0.560, index 0 in Table 4.2). Similarly, the twoversions of MixAttSPIDNA without weight unfreezing mechanism have a greater erroron the simulated HGDP dataset (0.484 and 0.392 in Table 4.2, versus 0.320 and 0.287in Table 4.2). However, this gap of performance is much lower for MixAttSPIDNA withattention mechanism on scenario and weight unfreezing (0.288, index 3 in Table 4.2versus 0.251, index 34 in Table 4.1). This observation shows that the weight unfreezingmechanism seems to play an important role to overcome the difficulties of the HGDPdataset, which are the wider priors and the variable number of haplotypes. We thuslater applied this trained network to the real HGDP dataset in Section 4.3.2.
Method Scenario prediction aggregation Training procedure Validation error Test error0 SPIDNA Mean Normal 0.554 0.5601 MixAttSPIDNA Mean Normal 0.480 0.4842 MixAttSPIDNA Attention mechanism Normal 0.407 0.392

3 MixAttSPIDNA Attention mechanism Unfreezing 0.298 0.288

Table 4.2: Prediction errors on the simulated HGDP dataset. The SPIDNA versionincluded here is based the same as index 11 in Table 4.1. Section 3.4.3 details the dif-ferences between prediction aggregators indicated in the column “scenario predictionaggregation”. Section 3.5.3 explains the differences between the training proceduresindicated in the column “Training procedure”.

4.2 Insight into the inner workings and robustness of
ANNs

Although ANNs performed very well on the simulated data, several experiments havebeen conducted to understand how they behave during training, which features theycompute from the data and whether they are robust to perturbations of the input data.These experiments are important in the context of simulation-based inference becauseof the discrepancy between artificial and real data. Indeed, real data are certainly morenoisy and often do not respect the evolutionarymodel assumptions, whichmay greatlybias the predicted demography. Because real labeled datasets are not available for ourtask, we are compelled to test for these biaseswith simulated data. The first experiment



94 Chapter 4. Inferring demography from genomic data

shown aims at understanding the behaviour of the internal variance of data flowingthrough SPIDNA and the impact of the parameter α added to control this variance.The second experiment evaluates the robustness of ABC and SPIDNA after training tochanges in the population genetic simulator, as well as the addition of selection andvariations of the number of haplotypes in the SNP matrices. The third experiment is aproof of concept using Canonical correlation analysis (CCA) to find correlations betweenthe features computed by an ANN and summary statistics computed from the dataset.Finally, we compare different ways to format the batch forMixAttSPIDNA and evaluatesthem on the simulated cattle dataset in order to choose which one is the most robustto variations of the number of haplotypes. The best procedure will be later used forprediction on the real HGDP dataset.

4.2.1 Internal variance of SPIDNA

As explained in Section 3.3.1, each block of SPIDNA combines invariant and equivariantfeatures for the network to be invariant to row permutations in the input matrix (seestep I3 in Figure 3.7). In more details, the invariant features are the mean (over thehaplotype dimension) of the equivariant ones obtained after the convolution layer. Inorder to combine both types of features after each block, the invariant ones are copiedmultiple times (i.e., once for each haplotype) tomatch the size of the equivariant tensor.Therefore, the network becomes graduallymore invariant, rather than just equivariant.Actually, a decrease in the activation variance is expected in most networks, wherethe complex high dimensional features computed from the inputs are step by stepcombined into simpler features as data reach the output. However, in SPIDNA case,the duplication of invariant features at each block accentuates this phenomenon.To control the speed at which the network becomes invariant with depth, i.e., tocontrol the proportion of equivariant and invariant features, we added a parameter αthat multiplies equivariant features by α and invariant features by 1 − α. We testedadding this parameter to two versions of SPIDNA with instance normalization: the firsttakes as input the first 400 SNPs of each data matrix and the second uses all the SNPs(their number varies between matrices). An α greater than 0.5 gives more weights toequivariant features and, thus, increase the overall variance of the network activitiesacross the haplotypes.In practice, figures 4.7 at training step 0 (the darkest blue lines) and 4.8 show thatthe variance with α > 0.5 is indeed greater when measured before the convolutionlayer of each block, since more weight is given to the equivariant (unique) featuresthan to the averaged and copied invariant features. There is a clear trend of variancedecreasingmore smoothlywith larger alphas before convolution and, to a lesser extent,after convolution. However, after training this trend remains only before convolution(as it is expected by construction of the tensor fed to the convolution) and disappearsafter each convolution (Figure 4.9). But the training curves in Figure 4.10 show similarto worse results for high values of α in the first training steps (90,000 training stepsrepresent less than one epoch). We also tested different values of α on longer runsduring the hyperparameters’ optimization procedure (Figure 4.1) and there seems to beno effect ofα for SPIDNAwith a number of SNPs fixed to 400 (dark blue) and debatably acorrelation between α and the network loss for SPIDNA with variable number of SNPs
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(light blue). Figure 4.7 shows that the variance quickly converges to a stable regimewhich does not depend on α after few training steps. Figure 4.9 shows similar variancepatterns when measured after the convolution layer.
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Figure 4.7: Evolution of the data tensor variance during training at each SPIDNA block
before the convolution layer for different values of α. The x-axis indicates the depth of theconvolution layer. The network is composed of seven blocks, with the first convolution layerdenoted as block 0 on the x-axis. One training step corresponds to one SNP matrix sampledfrom the training set.

These experiments show that despite that parameter α has indeed an effect on thedata variance, it has little effect on thenetwork performances evenwith extreme values.One explanation could be that the optimization is able to quickly set up the weights tocompensate for any variance profile to the required one for prediction. Although thisparameter does not seem to improve the predictions or the optimization, it should beconsidered for more extreme architectures where the optimization does not convergeeasily. α could also be improved by replacing it by a function depending on the current
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depth in the network to more precisely define the variance pattern.

4.2.2 Impact of positive selection on SPIDNA and ABC inference
The impact of positive selection, that is when a novel mutation is beneficial for the indi-viduals carrying it and thus increases in frequency together with its surrounding neutralmutations (physically linked to the beneficial one), on SPIDNA andABC inferencewas in-vestigated for three illustrative demographic cases (scenarios “Medium”, “Decline” and“Expansion” of Figure 4.2). Because including selection required a change in the geneticsimulator (msms instead ofmsprime), we first ensured that the change of tool to gener-ate the new test dataset had no influence on the prediction accuracy (Figure 4.11). Wethen simulated 2Mb regions including a central SNP under positive selection, with vary-ing selection strength, starting time and frequency of the beneficial allele at this time(100 regions for each scenario). We chose a conservative approach in which all 100regions are under selection (worst case scenario). For each scenario, we predicted thepopulation size history using SPIDNA (batch normalization) or ABC (with local linear cor-rection) on summary statistics. Both ABC and SPIDNA predictive errors varied with theselection coefficient (Figure 4.12). On average a moderate selective pressure (100-400)did not decrease the performance (Figure 4.12 top row). ABC inference for decliningpopulation datasets was the only one negatively impacted (increased error for s=200and 400). In fact, in multiple cases, increasing s decreased the prediction error mean.Very strong selection (s = 800) on the other hand led to an increased prediction errormean in all cases except for the declining histories inferred by SPIDNA. In addition, the95% quantile and standard deviations of the prediction errors tend to increase with s(Figure 4.12) indicating that the prediction should be takenmore cautiously in the pres-ence of strong positive selection. This variance was systematically smaller for SPIDNAthan ABC. In particular, a handful of histories reconstructed with ABCwere far off, whileSPIDNA prediction errors remained comparatively low for all scenarios (Figure 4.13).
Robustness to the number of individuals

Importantly, SPIDNA adapts to the number of individuals, which is an advantageousproperty compared to many methods relying on summary statistics. SPIDNA can betrained on data sets having similar or varying sample sizes, and, once trained, it can bedirectly applied to a dataset of reasonably close sample size, but unobserved duringtraining. We provide an example of robustness in an experiment focusing on a subsetof demographic scenarios (Medium, Large constant size, Decline and Expansion) and awide range of sample sizes (from 10 to 150, Figure 4.14). SPIDNA using batch normal-ization (trained on exactly 50 haplotypes) did not suffer a strong loss of accuracy whenthe sample sizes remained in the [45,65] range. Outside of this range, the predictionswere inaccurate in two cases: small sample sizes under expanding and constant sizescenarios, or large sample sizes under the expansion scenario. This was expected be-cause this specific network was not exposed to diverse sampling sizes during training.Given the observed variations across scenarios and if the sample size is expected tovary substantially from 50, we would advise the user to perform a similar experimentbased on her/his targeted sample size and a larger number of scenarios drawn from
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the prior distribution. If needed, the user can then train a new SPIDNA network with-out any change in its architecture, either on a set containing a wider range of samplingsizes or on a set matching the targeted sample sizes. To fasten the training, this net-work could be initialized with the weights of the network optimized for the sample size50, and fine-tuned on the new set.
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Figure 4.14: Robustness of SPIDNA to sample size. Distributions of SPIDNA predictive er-rors per replicate (i.e, per independent genomic region) for four demographic scenarios anddifferent sampling sizes. SPIDNA (batch norm.) network was trained on simulated datasetscontaining exactly 50 samples. The test datasets were simulated with msprime based on thesame four demographic parameter sets but with different sample sizes (ranging from 10 to 150haplotypes). X-axes: sample size M of the targeted region ; Y-axes: predictive error for eachreplicate (i.e., for each matrix of size M samples ×400 SNPs) averaged over the 21 time steps.Each violin describes 100 replicates.
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4.2.3 Interpreting the custom CNNwith canonical correlation anal-

ysis (CCA)

We apply the method based on CCA described in Section 3.6 to the custom CNN archi-tecture trained on the simulated cattle dataset in order to understand if ANNs computefeatures similar to the summary statistics that are often used in population genetics.As explained in the previous chapter, this method seeks for correlation between setsof network activations and summary statistics. After training the network, we start byreducing the dimensionality of the activations by applying a singular value decomposi-tion (SVD). Then, CCA seeks for the projection that maximizes the correlation betweenthe two sets. In this section, we analyse the results obtained.
Figure 4.15 shows the distributions of the summary statistic weights in the CCA,pondered by the correlation between the canonical variates associated, for each layerof the network. If this quantity is equal to 1 for a summary statistic, it wouldmean that itexists one canonical variate explaining all the correlation between the sets of activationand summary statistics, and this variate would only depend on one summary statistic.Figure 4.16 is similar, but distinguish each summary statistic by type. These two figuresshow an overall decrease in correlation between summary statistics and activationswhen moving close to the output of the network. This observation could have twomeanings, either the correlation decreases because the network computes featuresthat are more and more complex combinations of summary statistics (and thereforeless correlated to individual summary statistics), or this is an artefact from the methoditself.
Let us remind that an SVD with a variance conserved threshold of 0.99 was appliedon all layers studied except for the last that have already only 50 activations. By settinga threshold on the variance conserved, the activations of the first layers are projected ina space with much more than 50 dimensions (dimensions of each layer after SVD: 950,907, 730, 393, 163 and 50) and therefore, the CCA has more chances to find spuriouscorrelation with the first layers than the last, explaining the decreases in correlation. InFigures 4.17 and 4.18, the SVD has been set up to project the activations of each layer toa 50-dimensional space, which resulted in an inverse dynamic with an increase in cor-relation in the last layers of the network and particularly with the identity by state sum-mary statistics. This discrepancy between the results obtained with the two differentsettings of the SVD tends to confirm that this method is not robust enough and couldbe improved. For instance, the contribution of each activation to the final predictionis not taken into account, and doing otherwise should reduce the risk of interpretingspurious correlations. This amelioration and others will be discussed in more details inthe perspectives.
The last layer of the custom CNN contains 50 activations and thus did not require tobe projected with an SVD. Therefore, the contributions of the activations and summarystatistics to the first canonical variates (i.e., those who explain most of the correlationbetween the two sets) can be directly analysed with the correlation circle in Figure 4.19.First, the vector of the nucleotide diversity π (PI in Figure 4.19) and expected heterozy-gosity (HET in Figure 4.19) are confounded, which is expected because they are in realitythe exact same measure in our data. These two summary statistics mostly contributeto the second canonical component which is also very related to activations 7 and 20,
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Figure 4.15: Distribution of summary statistic CCA weights pondered by the canonical
variates to custom CNN activations in each layer.
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Figure 4.16: Summary statistic CCAweights pondered by the canonical variates to custom
CNNactivations in each layer. The height of a bar correspond to the CCAweights pondered bythe canonical variate of a summary statistic, and its colour onwhich family of summary statisticsit is part of.
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Figure 4.17: Distribution of summary statistic CCA weights pondered by the
canonical variates to custom CNN activations, with activations reduced to a 50-
dimensional space in each layer.
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Figure 4.18: Summary statistic CCAweights pondered by the canonical variates to custom
CNN activations, with activations reduced to a 50-dimensional space in each layer. Theheight of a bar correspond to the CCA weights pondered by the canonical variate of a summarystatistic, and its colour on which family of summary statistics it is part of.
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therefore these activations seem to capture a data feature that is very close to thesetwo summary statistics. Similarly, the first bin of the site frequency spectrum (SFS_1,the number of singletons in the data), contributes mainly to the first component. Manyactivations also contribute to this component (mainly activations 4, 17, 21, 31 and 48),showing that these activations compute features that are partially related to the num-ber of singletons. If these activations contribute a lot to the final prediction, this wouldmean that the network heavily relies on features similar to the expected nucleotide di-versity π and number of singletons. This result is interesting because the nucleotidediversity π is strongly linked to the effective size of a population with a constant sizeand increases with large population. Moreover, singletons are considered particularlyuseful to distinguish expansions.

4.2.4 Comparison of MixAttSPIDNA batch formats

SPIDNA and MixAttSPIDNA are designed to take a variable number of haplotypes with-out modification of the SNPs matrices, thanks to the use of layers that easily adapt tovariations in the input sizes. More specifically, the layers that we use (the convolutionaland hub attention layers) treat each element of the haplotype dimension in the samemanner. Therefore, adding an element (a haplotype) to the input only requires repeat-ing the same processing that is already applied to each other element (e.g., the filterconvolutions are repeated to match the number of element of the haplotype dimen-sion in the case of convolutional layers). Furthermore, the mean steps of the networksoperate the same regardless of the number of haplotype, leading to an output of thesame size when the number of haplotype varies.However, in practice, SNP matrices with different sizes cannot be collated in thesame batch (the same tensor). Therefore, training a network on these matrices wouldrequire to input them one by one and performing the backpropagation once they eachhave been processed by the network. This considerably reduces the parallelization ofANNs, and thus, slows down the training of the network. This is why it is preferable tocollate SNPmatrices in the same batch by either padding or by collatingmatrices of thesame sizes together.This last experiment compares four different batch formats that can be used tocollate SNP matrices. To this end, between 5 and 50 haplotypes are drawn for eachreplicate of the simulated cattle dataset, and SNP sites that are not polymorphic (vari-able) in the subset of selected haplotypes are removed. We then trainedMixAttSPIDNAby using the four batch formats described in Figure 4.20. After training, we evaluatedthe four trained architectures on the validation dataset with all matrices subsampledto between 5 and 50 haplotypes.From Figure 4.20, the best method consists in making batches with SNP matricesthat have a different number of haplotypes (heterogeneous batches) by padding everySNP matrices with 255 to match 50 haplotypes (blue line). We choose the value 255because the SNP in the matrices are encoded as unsigned integer, and it is the mostdistinguishable value from 0 and 1 for this type of data. With this method, all the SNPmatrices reach the dimension 50× 400, i.e., 50 “haplotypes” (some will be completelyfilled with value 255) and 400 SNPs. It shows a very constant error for any number ofhaplotypes with a slight increase for the smallest number, which is expected due to lack
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custom CNN activations to the first two canonical components. The custom CNN have beentrained on the simulated cattle dataset and the canonical components have been obtained byperforming a CCA between the network activations in its last layer and 279 summary statistics.
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of information when the number of haplotypes is very low. Thanks to this experimentconducted on the simulated cattle dataset, we chose the batch format later used forthe simulated HGDP dataset, where matrices have a different number of haplotypes tomatch the different number of individuals in the real HDGP dataset.
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Figure 4.20: Comparison of MixAttSPIDNA prediction error for different number of hap-
lotypes and SNP matrix format. Each MixAttSPIDNA architecture is trained on the simulatedcattle training dataset, with between 5 and 50 haplotypes randomly subsampled for each SNPmatrix. Blue and orange lines represents MixAttSPIDNA trained with batches composed of SNPmatrices with different number of haplotypes. SNP matrices in batches are either padded with255 to reach 50 “haplotypes” (blue line) or padded to fit the SNPmatrix with the highest numberof haplotypes in the batch (orange line). Green and red lines represents MixAttSPIDNA trainedwith batches composed of SNP matrices with the same number of haplotypes. SNP matricesin batches are either padded with 255 to reach 50 “haplotypes” (red line) or not padded (greenline). Prediction errors are computed over the cattle validation dataset, with all matrices sub-sampled to the number of haplotypes indicated on the x-axis.

4.3 Population size histories inferred by ANNs on real
data

Although it is not possible to have a precise error metric over the real datasets becausethe true population size histories are not known, the archaeological and historical in-sights about these populations can hint the accuracy of the predictions. Moreover,performing predictions over real population not only allows to evaluate each inferencemethods, but also allows having an insight about the rightfulness of the overall modelincluding the data collect and processing, and the simulationmodel. Indeed, in the casewhere the inference method perform well on simulated data but not on real data, onecould suspect that other parts of the model like for instance the simulator, the priors



4.3. Population size histories inferred by ANNs on real data 111
are not tailored enough to the real evolutionary process. This chapter will also discussthe results obtained with each method and pinpoints their advantages and features.

4.3.1 Cattle
We inferred the effective population size history of three breeds of cattle (Angus, Fleck-vieh and Holstein) based on the same 75 individuals studied by Boitard et al. (2016b)and sampled by the 1,000 Bull Genomes Project (Figure 4.21). The best ABC andSPIDNA configurations both infer a large ancestral effective population size and a de-cline for the past 70,000 years. However, SPIDNA reports higher recent population sizes(Angus:11,334, Holstein:12,311, Fleckvieh:13,579) than ABC (Angus:344, Holstein:389,Fleckvieh:1,436). Interestingly, SPIDNA infers the same population sizes for all threebreeds before 10 thousand years ago. This is in agreement with the estimation of thebeginning of the domestication (Zeder, 2008). Posterior point estimates obtained bySPIDNA combinedwith ABC also indicated a decline after domestication, but with largerpopulation sizes for the last 30,000 years than SPIDNA alone and fairly large credibleintervals at recent times (Figure 4.22). Angus had the largest recent population size andFleckvieh the smallest, in contrary to the two previous methods. Credible intervals ofABC based on SPIDNA outputs overlapped SPIDNA predictions except for the most an-cient time window. On the contrary, credible intervals of ABC based on summary statis-tics overlap SPIDNA predictions except for the most recent time windows (Figure 4.22).Finally, SPIDNA combined with ABC identified an episode of smooth decline and recov-ery of the population size preceding the domestication (between 400,000 and 30,000years ago). ABC on summary statistics did not infer this ancient change (this study andBoitard et al. (2016b)), however Boitard et al. (2016a) also estimated that 123,465 yearsago the ancestral population size increased from 73,042 to 137,775 using fastsimcoal2(Excoffier et al., 2013).

4.3.2 HGDP
The experiments conducted in the previous sections of this chapter helped us to selectwhich architecture and configuration should be applied to theHGDP real genomes. Theresults on the cattle test set and HGDP test set presented in Figure 4.6, Tables 4.1 and4.2 show that all versions of MixAttSPIDNA have outperformed the other architecturesin terms of prediction error. We selected the best architecture configuration and batchformat, trained it on simulated data to finally infer the effective population size his-tory of the 54 HGDP populations from the 929 whole genome sequences. The resultspresented in Figures 4.23 and 4.24 can be interpreted in the light of our knowledgeabout human population history to assess the accuracy of the values inferred. Figure4.23 shows that the inferred histories gradually diverge when moving forward to thepresent time. We expected this behavior as populations share a common ancestry be-fore the “out of Africa” dispersal event.Overall, most African populations (in blue) have a higher effective size during the last400,000 years. This is not expected for the most ancient time prior to the “out of Africa”dispersal event, and could be an effect of non-panmictic events that are not modeled,such as structure in the African populations. Starting around 50,000 years ago, African
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Figure 4.21: Effective population size of three cattle breeds inferredbyABC (dotted lines),
by the best SPIDNA architecture, SPIDNA batch normalization (plain lines), and by ABC
based on SPIDNAoutputs (dashed lines). Domestication is estimated to have occurred 10,000years ago (vertical dotted line).
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Figure 4.22: Effective population size of three cattle breeds inferred by the best SPIDNA
architecture, SPIDNA batch normalization, by ABC (dotted lines) and by ABC based on
SPIDNA outputs (dashed lines). Boxplots show the dispersion of SPIDNA predictions (overreplicates). For each history inferred by ABC and by SPIDNA combined with ABC, we displaythe posterior median (dotted and dashed lines) and the 95% credible interval. Domestication isestimated to have occurred 10,000 years ago (vertical dotted line).
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populations go through an expansion, while most non-African populations remain sta-ble or undergo a bottleneck shortly after. This observation corroborates the “out ofAfrica” dispersal dated at around 50,000-100,000 years ago (Harris and Nielsen, 2013;Nielsen et al., 2017), where ancestors of non-African populations are expected to havea lower size than the ones of African populations at the time of their migration out ofAfrica and in the following generations. Despite this, the bottleneck in non-African pop-ulations is not systematically as strong as what was inferred in the literature. Ideally,MixAttSPIDNA should have inferred a recent expansion for most populations duringthe recent time steps, but instead, it often infers an expansion just after 10,000 years(which could correspond to the Neolithic expansion), followed by a decline. Some pos-sible explanations for not observing this would be that the recent human expansionfalls outside the priors or that our method has difficulties to reconstruct recent events,similarly to SMC based methods.From Figure 4.24, we can observe thatmost populations from the same region showsimilar trends. For instance, MixAttSPIDNA infers a similar population size histories forMiddle Eastern populations, with two bottlenecks, one around 150,000 years ago andanother one 10,000 years ago that is followed by an expansion. All European popula-tions follow a similar pattern, except for the Tuscan population, that does not have thesignal of the second bottleneck and expansion. Following a different history, Americanpopulations go under a decline after a short expansion around 40,000 years ago. Un-like the other populations from the same region, the Maya population has a secondexpansion phase starting 4,000 years ago, which corroborates the strong expansionfound by Bergström et al. (2020).Although we identified some well known trends such as the “out of Africa” disper-sal and common origins of human population in our results, further investigations arerequired to explain the variations between regions and understand why some pop-ulations display a different pattern from others within the same region. It would beparticularly interesting to find if these observations overlap with cultural, archaeologi-cal and historical evidences, for example the presence or absence of expansions couldbe linked to population lifestyles, as previous papers have detected differences in thedemographic histories of nomadic and sedentary populations (Aimé et al., 2013). Fur-thermore, it seems to be no correlation between the inferred pattern and the numberof individuals sampled in each population, however, other sources of bias could be in-vestigated, such as the effective coverage (the sequencing aimed for a 35× coverage butafter sequencing, each sample can have a slightly different coverage) or non-randomsampling of individuals that could misrepresent the real population.

4.4 Chapter conclusion

This chapter presented the results obtained for our different architectures, as well as arobustness study and experiences designed to better understand the inner workings ofthe ANNs developed here. During the first part of this thesis, we developed the SPIDNAarchitecture that was able to match the results obtained by ABC, an already well estab-lished method for demographic inference, without relying on summary statistics. Thenwe further improved the error by using SPIDNA’s predictions as input for an ABC. The
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Figure 4.23: Effective population sizes inferred by MixAttSPIDNA for the human popula-
tions from the HGDP dataset. Effective sizes are inferred by the MixAttSPIDNA version withthe lowest prediction error on the simulated dataset, i.e., with attention mechanism on sce-nario, batches with padding and the weight unfreezing mechanism.
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Figure 4.24: Effective population sizes inferred by MixAttSPIDNA for the human popula-
tions from the HGDP dataset separated by region. Effective sizes are inferred by the Mix-AttSPIDNA version with the lowest prediction error on the simulated dataset, i.e., with attentionmechanism on scenario, batches with padding and the weight unfreezing mechanism.
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best error, not including the use of MixAttSPIDNA, was obtained by adding summarystatistics alongside the predictions of SPIDNA before an ABC step. When applied tothe real cattle data, our methods inferred a decline after domestication, which was ex-pected knowing cattle history. However, the decline observed is less strong than whatwe obtained with ABC, and it is still unclear what are themost likely scenarios (strong orsoft decline) for these cattle breeds. SPIDNA showed to be robust to the introduction ofpositive selection, differences of simulator tools and variations of the number of hap-lotypes in the matrices on predefined scenarios. These experiments demonstrated therobustness of SPIDNA to small perturbations for which it has not been trained for, andseems to indicate that it could better handle the reality gap between simulated and realdata at least for these specific cases. By comparing the different versions of SPIDNA,we were able to understand the usefulness of the mechanisms introduced. The per-mutation invariant design of this architecture showed better results compared to the
custom CNN and MLP despite having a similar number of learnable parameters. Wethink that this difference in performance comes from the fact that the custom CNN andMLP are less adapted to the data characteristics, which shows the soundness of devel-oping architectures tailored to the data. The SPIDNA versions that are able to adapt toany number of SNP in the matrices did not outperform the versions relying on the first400 SNPs of each matrix. This loss of accuracy seems to be attributed to the changeof normalization layer from a batch normalization to an instance normalization, ratherthan to the introduction of all SNP from each data. Moreover, the parameter α de-signed to control the contribution of invariant and equivariant features in the networkdoes not have a significant importance for the prediction error because the networkautomatically converges to a variance profile after few training iterations.

We tested the CCA based method described in the previous chapter on the customCNN as a proof of concept to compare summary statistics to network activations. Al-though this method is promising, it still needs some refinements to handle the highnumber of activations and to take into account their importance for the final inferredvalues. Indeed, the results were not robust to changes in the SVD step used to reducethe activation space. However, we still found some strong correlations between activa-tions in the last layer (where the activation space is already low dimensional and doesnot require reduction) and summary statistics such as the first bin of the SFS (numberof singletons) and the nucleotide diversity π.
During the second part of this thesis, we developed another deep learning architec-ture based on SPIDNA. CalledMixAttSPIDNA, this architecture is intended to predict thepopulation size history of human populations from the HGDP dataset. In order to im-prove the predictive power of this architecture, we added amore general invariant func-tion in the network than the mean used by SPIDNA. We also introduced an attentionmechanism to combine the inferred values over multiple replicates in a manner thatassigns automatically a different weight to each replicate. Moreover, we performed anexperiment aimed at finding the best way to collate SNPmatriceswith different numberof haplotypes in the same batch tensor. Alongside the weight unfreezing mechanismused to train this version of MixAttSPIDNA, it achieved the best results on both cattleand HGDP datasets without using summary statistics nor ABC. Finally, the results onthe real populations of the HGDP dataset showed that MixAttSPIDNA was able to re-cover some well studied parts of the human history, as the recent common origin of
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populations, their divergence through time and the first out of Africa dispersal event.A more extensive study of these results would help to understand if the precise trendsdisplayed by each population have a sense froma cultural, archaeological and historicalviewpoint.



Chapter5Conclusion

Contents
5.1 Research perspectives . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1.1 Improving deep learning architectures . . . . . . . . . . . . . . 121

5.1.2 Solving inverse problem . . . . . . . . . . . . . . . . . . . . . . 122

5.1.3 Evolutionary and demographic models . . . . . . . . . . . . . . 123

Demographic inference is a challenging task in population genetics. The inferencemethods developed in this field are the product of decades of research in sequencingtechnology, computation technology, statistical analysis and evolution theory, and relyon a wide variety of inference frameworks. As seen in the first chapter, most of themare either tied to an evolutionary model or to the computation of summary statisticsthatmay lose information from the original data. However, themany successes of deeplearning show that it is possible to build powerful inference methods without integrat-ing much domain-based knowledge. Therefore, we developed a deep learning frame-work with the idealized goal to provide a trained network that would infer demographyfor any species.When we started the works presented in this thesis, few publications were includeddeep artificial neural networks to tackle problems in population genetics, and only thework from Sheehan and Song (2016) aimed explicitly toward the inference of popula-tion demography. This pioneering work introduced amultilayer perceptron using sum-mary statistics to infer the presence of selection and a demographic model with threepiece-wise constant effective population sizes. Inspired by this, we have driven our re-search towards a more challenging problem by increasing the number of demographicparameters (effective population sizes) to 21 and by bypassing summary statistics. Se-quencing data is still preprocessed (by us or others) for the classical alignment, discard-ing untrusted reads, genotype calling, phasing, filtering out low-quality regions, etc.;however, once those pre-steps are done, relevant information should be preserved bythe data encoding (SNP and position matrices) and the automatic construction of fea-tures. Moreover, we wanted to develop a flexible approach that requires few expertknowledge in population genetics (e.g., summary statistics or inference method baseddirectly on evolutionary models), as such method would be easier to adapt to changesin the evolutionary or the demographic models, and could potentially be transferredto challenging questions in population genetics concerning processes leaving complex
119
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patterns in the data, that can not be fully addressed with the summary statistic ap-proach. Moreover, following this logic could also extend the application field of thisapproach to problems based on genomic data that are outside the scope of populationgenetics.
We first tested the MLP that, despite having many learnable parameters and com-plete access to the genomic data, did not yield goodprediction error compared tometh-ods relying on summary statistics. At that time, we observed that the success of deeplearning in most fields can be explained partially by the fact that researchers have de-veloped architectures tailored to the data characteristics when the variables are notindependent. For instance, one major contribution to the field of image processingwas the introduction of convolution layers that take into account the spatial depen-dence between the pixels of an image. Similarly, recurrent neural networks and thelong short-term memory architectures are an essential milestone for the field of nat-ural language processing, and more generally, for processing time series because oftheir abilities to handle sequences of infinite length. Following the same path, we iden-tified the characteristics of SNP data that a network could handle by design and pickedfrom the deep learning literature or designed ourselves mechanisms taking into ac-count these characteristics.
We developed a first convolutional neural network (custom CNN) to take into ac-count the spatial dependencies between SNPs. We later introduced the SPIDNA archi-tecture that also uses convolution filters, but remove any steps that could not copewith the variations of the number of haplotypes and SNPs in the data. Moreover, wedesigned SPIDNA to be invariant to permutations of haplotypes, a second proprietyof our data, by combining invariant and equivariant operations. This architecture gavepredictions competitivewith the best baseline, ABCwith summary statistics, but only af-ter adding an ABC step and using only 400 SNPs. From these results, we concluded thattaking into account the permutation invariance propriety of the data helps the predic-tion. However, although taking into account the varying number of SNPs is a promisinglead, our architecture still needs some refinement before effectively surpassing theircounterpart trained on a fixed number of SNPs. Our last architecture, MixAttSPIDNA,was designed with the intention to further improve the predictions by removing twolimitations of SPIDNA, thanks to a new type of permutation invariant attention mech-anism, that we called hub attention. We added this mechanism alongside the originalinvariant layer of SPIDNA with a simple mean operation in order to give the networkmore freedom in the invariant computations that could be learned during training. Wealso used this mechanism to replace the mean operation performed by SPIDNA overthe predictions made for each replicate (i.e., 2 Mbp-long regions) of a scenario. Thisprovided an alternative (and more accurate) solution for combining information com-ing from multiple regions of large genomes. Both of these improvements led to a sub-stantial reduction of the prediction error, beating all the other approaches studied, andin a statistical framework that only relies on deep learning.
Although the design of new deep learning architectures for genomic data repre-sents the main contribution of this thesis, we also explored other aspects of the infer-ence framework. Firstly, we used our implementation experience to develop a packageaimed at facilitating the development and usage of deep learning in the populationgenetic community. Secondly, we proposed a method based on canonical correlation
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analysis, which still requires further development but could help understand if neuralnetworks compute features similar to summary statistics. Finally, we trained all archi-tectures with the final goal of inferring the population size history of populations fromtwo real datasets of Bos taurus (cattle) and Homo sapiens. This required careful designof the priors of our simulated datasets to minimize the reality gap.

5.1 Research perspectives

In this section, wewill discuss some leads to improve themethods presented in this the-sis, along new methods that have a great potential for demographic inference. Theseperspectives could further improve the demographic parameter values inferred, butalso offer better interpretability and better handling of the data features.

5.1.1 Improving deep learning architectures

Deep learning profits from an important community outside of population genetics,constantly offers new tools that could benefit demographic inference. Therefore, theyare numerous ways to build upon our architectures by integrating new mechanismsdeveloped by this community.
We identified that the higher prediction error of SPIDNA adaptive to a variable num-ber of SNPs, compared to the non-adaptive one, is probably a consequence of replacingthe batch normalization layers with instance normalization layers. We used a differentkind of normalization layer because data could not be collated in the same batch afterthe dimension sizes no longer match. As this is only a technical limitation and batchnormalization could be in theory for heterogeneous batches, we think that this versionof SPIDNA could greatly benefit from an implementation of the batch normalizationadapted to this type of batch.
We saw during this thesis that the development of new architectures is a tedioustask that relies primarily on trial and error, as the architecture often needs to be evalu-ated each time a new mechanism is introduced. It also requires a good understandingof the data properties and domain of application. Although we used an hyperoptimiza-tion procedure, this approach cannot be used as a replacement for the numerous de-sign choices we made during the development of our ANNs because it was not enoughcomputationally efficient. Consequently, a new field called automated deep learninghas recently emerged with the goal of automating the search for new architectures.We think that using such workflow could significantly improve the optimization of ar-chitecture’s hyperparameters that for now relies mainly on human interactions.
Although increasing the number of features computed by SPIDNA did not yield tosubstantial improvement of the prediction error, very large networks such as GPT-3(Brown et al., 2020) have shown unprecedented results. Moreover, after training, thesenetworks can be transferred to smaller ones by a process called knowledge distillation,removing the burden of requiring numerous GPUs and of storing a large network forthe users during inference. Therefore, it would be interesting to increase the expressivecapability of our networks by increasing drastically its number of weights and layers.
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However, SPIDNA and MixAttSPIDNA architectures are already fairly large and are dis-tributed on three GPUs for mini-batches of size around one hundred. Thus, increasingtheir number of weights would require a lot of engineering work to parallelize it overmany more GPUs, by not only splitting the mini-batches over GPUs, but also the archi-tecture itself.

5.1.2 Solving inverse problem

Demography inference falls in the category of inverse problems because it seeks tofind the causal explanations (a demographic scenario and an evolutionary model) ofthe observed genomic data. In this thesis, we used the evolutionary model as a simula-tor to generate labeled genomic data under specific demographic scenarios and ANNsare then trained to reverse the process by mapping genomic data to demographic sce-narios. However, other methods that are invertible by design have been recently de-veloped in order to inverse a simulator by mimicking it. This section will describe apromising type of architecture, called invertible network, that has not yet been appliedto demographic inference.
The intuition of invertible networks in the context of inverse problems is to train thenetwork to map the hidden variable x to the observed data y (Ardizzone et al., 2018),where x would be the demographic parameter values and y the genomic data or somesummary statistics. Once the forwardmapping from x to y is learned by using data gen-erated by an evolutionary simulator, the inverse mapping from y to x is obtained forfree because of the invertible property of the network. Combined to normalizing flows(Tabak and Vanden-Eijnden, 2010), a generative model capable of learning non-lineartransformation between a complex data distribution and a simple prior distribution,this process allows approximating the posterior p(x | y) instead of having point estima-tions. However, the network must have a tractable Jacobian and triangular in order tobe invertible and being capable of mapping one distribution to another. To this extent,the NICE architecture (Dinh et al., 2014) uses coupling layers that have been later com-plexified in the Real NVP architecture (Dinh et al., 2016). These layers split the inputdata into two; one part of the input is treated by an arbitrarily complex function thatcan be any type of neural network. Then the result is combined with the other part ofthe input data with an easily invertible function, which is simply a sum in the originalNICE architecture (Dinh et al., 2014). Multiple coupling layers are stacked to composethe overall architecture. In the context of inference, an additional latent output vari-able z is added alongside y to counteract the information loss in the forward process,as explained in Ardizzone et al. (2018). Nonetheless, in its current configuration, thistype of network require the inputs and outputs to have the same dimension and wouldneed further development to map genomic data to demographic scenarios. This ap-proach is still very promising because the network is directly maximizing the likelihoodand learns the real posterior distribution, contrarily to variational autoencoders (VAEs)and generative adversarial networks (GANs).
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5.1.3 Evolutionary and demographic models
The predictionsmade by our deep learning framework not only depend on the networkarchitecture, but also on the training data generated.Unlikemethods that derive a likelihood froman evolutionarymodel, our deep learn-ing approach uses it as a simulator. Hence, it could be easily swapped for anotherone that has fewer assumptions about the real evolutionary process, such as a nonWright-Fisher model, with the advantages presented in Section 1.4. A different evo-lutionary model could also introduce nuisance parameters such as variations of themutation rate, recombination rate, and the presence of natural selection in order tosimulate more realistic data. Furthermore, the simulator could also simulate data atdifferent generations to leverage the increasing availability of ancient DNA sequences.Note that such improvements would not translate into better prediction errors on sim-ulated datasets (exceptmaybewhen incorporating ancient DNA data), but could greatlyimprove the differences between the effective sizes inferred and the real census sizesby minimizing the reality gap between simulations and the real sequences.Although our demographic model is fairly complex in terms of the number of pa-rameters to infer, it does not include other demographic factors other than populationsizes. Therefore, another main source of improvement would be to have parametersdescribing population structure, admixture, and migration events.
To conclude, the work conducted during this thesis opens the path for a new infer-ence approach in population genetics that offers great perspectives of improvement.We hope that this work will help to find new discoveries regarding the past of popula-tions and inspire the community to develop new deep learning architectures.





ChapterAAppendix
A.1 Computational resources

Simulations have been performed on the genotoul bioinformatics platform with thefollowing hardware:
• 68 nodes with 2 E5-2670 v2 Intel CPUs (2.50GHz, 20 threads) and 256GB of RAM
• 48 nodes with 2 E5-2683 v4 Intel CPUs (2.10GHz, 32 threads) and 256GB of RAM.
All summary statistics, trainings and predictionswere computed on the TAU’s Titanicplatform with the following hardware:
• 5 nodes with 4 GTX 1080 (12GB of VRAM) GPUs, 2 E5-2650 v4 Intel CPUs (2.20GHz,24 threads) and 252GB of RAM
• 7 nodes with 4 RTX 2080 (12GB of VRAM) GPUs, 2 Silver 4108 Intel CPUs (1.80GHz,18 threads) and 252GB of RAM
• 1 node with 4 Tesla P100 (16GB of VRAM) GPUs, 2 E5-2690 v4 Intel CPUs (2.60GHz,28 threads) and 252GB of RAM
• 1 node with 2 RTX 2080 (8GB of VRAM) GPUs, 2 E5-2650 v4 Intel CPUs(2.20GHz, 24 threads) and 252GB of RAM
Both platforms use Slurm as job scheduling system. Batch sizes and deep learningarchitectureswere all designed to fit on less than 12GBof VRAMduring training. To trainnon-adaptive architectures, batches were split between 3 GPUs with at least 12GB ofVRAM. Adaptive architectures were trained on one GPU as batch data of varying sizescould not be concatenated in the same tensor. The training of SPIDNA took at most1h42 per epoch for non-adaptive version and 31h31 per epoch for adaptive version.The slow computation time of adaptive SPIDNA is mostly due to data being inputtedone by one in the network instead of concatenated in tensors.
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A.2 ABC predictions from Boitard et al. (2016b)
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Figure A.1: Estimation of population size history using ABC in six different simulated
scenarios from Boitard et al. (2016b). From Boitard et al. (2016b): a small constant population
size (N = 500, top left), a large constant population size (N = 50,000, top right), a decline scenario
mimicking the population size history in Holstein cattle (middle left), an expansion scenariomimicking
the population size history in CEU human (middle right), a scenario with one expansion followed
by one bottleneck (bottom left) and a zigzag scenario similar to that used in Schiffels and Durbin
(2014) (bottom right), with one expansion followed by two bottlenecks. For each scenario, the true
population size history is shown by the dotted black line, the average estimated history over 20 PODs
is shown by the solid black line, the estimated histories for five random PODs are shown by solid
colored lines, and the 90% credible interval for one of these PODs is shown by the dotted red lines.
The expected time to themost recent common ancestor (TMRCA) of the sample, E[TMRCA], is indicated
by the vertical dotted black line. Summary statistics considered in the ABC analysis were (i) the AFS
and (ii) the average zygotic LD for several distance bins. These statistics were computed from n = 25
diploid individuals, using all SNPs for AFS statistics and SNPs with a MAF above 20% for LD statistics.
The posterior distribution of each parameter was obtained by neural network regression (Blum and
François, 2010), with a tolerance rate of 0.005. Population size point estimates were obtained from
the median of the posterior distribution.

A.3 Synthèse en français

Depuis les premières découvertes des principes régissant l’évolution des génomes, lesgénéticiens n’ont eu cesse de proposer des modèles de plus en plus réalistes afin dedécrire l’évolution des variations génétiques au sein d’une population. Ces modèles ded’évolution ont permis de mettre évidence que les génomes d’une population dépen-dent non seulement de paramètres comme le taux de mutation, de recombinaison ouencore de la sélection naturelle, mais aussi de son histoire démographique passée.Parallèlement, le développement de techniques de séquençage de plus en plus per-formantes a permis de constituer des bases de données pouvant regrouper jusqu’àplusieurs centaines de génomes d’une même population. Il est donc maintenant pos-sible de retracer l’histoire de ces populations à l’aide de méthodes statistiques capa-bles d’exploiter l’information laissée par les événements démographiques dans lesgénomes. Cette thèse présente de nouvelles méthodes basées sur l’apprentissagestatistique profond (deep learning) pour l’inférence des paramètres démographiquesd’une population et, plus particulièrement, sa taille efficace (c’est-à-dire du nombred’individus sous les conditions d’un modèle d’évolution) dans le passé.Les deux principaux réseaux de neurones présentés dans cette thèse sont inspirésd’architectures ayant fait leurs preuves dans d’autres domaines traitant des donnéesen grande dimension, mais ils intègrent aussi des stratégies permettant de prendre encompte des caractéristiques propres aux données génomiques. La première, SPIDNA,utilise une organisation des neurones en couche de convolution issue du traitementd’image. Ces couches de convolution génèrent des filtres capables de détecter desmotifs de mutations particuliers dans les séquences. La seconde architecture, Mix-AttSPIDNA est une amélioration de la première incluant un mécanisme d’attention in-spiré par les réseaux traitant le langage naturel. Ce mécanisme permet de calculerdes statistiques globales sur les différentes séquences d’un échantillon, tout en étant
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invariant à leurs différentes permutations possibles. Ces deux architectures com-portent aussi un enchainement de fonction invariante et équivariante afin d’assurerl’équivariance globale. De plus, leur empilement de couches assure aux réseaux la pos-sibilité de détecter des dépendances entre des SNPs éloignés dans les séquences.
Afin d’être entrainés, ces réseaux ont besoin d’une grande quantité de données re-liant des scénarios démographiques à des échantillons de séquences de populations.Cependant, une telle base de données n’existe pas pour des populations réelles, carleurs histoires démographiques précises sont très difficiles à caractériser autrementque par l’étude de leurs génomes. Il a donc fallu utiliser un simulateur basé sur unmodèle d’évolution afin de constituer une base d’entrainement de taille conséquente.Pour chaque simulation, un scénario démographique est tiré au hasard d’un apriori surles différents paramètres et est ensuite donné au simulateur afin qu’il génère un échan-tillon de séquences possibles. L’objectif de nos réseaux de neurone est donc de réaliserle processus inverse, et de retrouver les valeurs des paramètres démographiques à par-tir des séquences de l’échantillon. Une fois entrainé, le réseau peut être utilisé sur unéchantillon de séquences d’une population réelle afin d’inférer sa démographie passée.
L’entrainement de ces réseaux vise à minimiser l’erreur quadratique moyenne dela taille efficace inférée au cours du temps. Cette métrique permet de comparer lesperformances des réseaux entrent elles, mais aussi de les comparer à d’autres méth-odes plus couramment utilisées en génétique des populations comme l’approximate

Bayesian computation (ABC). La comparaison présentée dans cette thèse montre qu’unréseau de neurones est capable d’obtenir des performances similaires ou meilleuresque l’ABC, sans passer par une étape de réduction des données génétiques de grandedimension en des statistiques expertes. Plus précisément, l’architecture SPIDNA util-isant des données brutes donne des performances égales à l’ABC sur statistiques ré-sumées lorsqu’elle est combinée à cette dernière. Quant à MixAttSPIDNA, elle montredes performances bien supérieures à toutes les autres méthodes testées et reposeuniquement sur son réseau de neurones.
Cette thèse présente aussi d’autres expériences visant àmieux comprendre le fonc-tionnement des réseaux de neurones en comparant les activations des neurones auxstatistiques classiquement utilisées en génétique des populations. D’autres expéri-ences ont aussi permis de vérifier la robustesse des prédictions faites par les réseauxà certaines des perturbations pour lesquels elles n’ont pas été entrainées, comme laprésence de sélection positive. Enfin, les méthodes développées ont été testées dansla pratique en inférant la démographie passée de populations réelles de Bos taurus etd’Homo sapiens. Les prédictions faites sur les populations de ces deux espèces ont en-suite été comparées à nos connaissances de leurs démographies passées afin d’avoirune deuxième source d’évaluation de nos méthodes.
Ainsi, la principale contribution de cette thèse est d’apporter de nouvellesméthodesprofitant des avantages de l’apprentissage statistique profond que sont sa capacité àtraiter la grande dimension des données génomiques sans les résumer par des statis-tiques expertes, sa flexibilité vis-à-vis des paramètres démographiques à prédire et sesperformances comparables à l’état de l’art, tout cela en étant indépendant du modèled’évolution employé. Pour leurs nombreux avantages, ces méthodes sont amenées àêtre de plus en plus utilisées en génétique des populations et plus généralement pourrésoudre les taches d’inférences basées sur des données génomiques.
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Titre: Reconstruire notre passé : apprentissage statistique profond pour la génétique des populations.
Mots clés: Génétique des populations, Apprentissage statistique profond, Inférence démographique,
Réseaux de neurones artificiels, Données de taille variable

Résumé: Avec l’explosion des technologies
de séquençage, de plus en plus de données
génomiques sont disponibles, ouvrant la voie à une
connaissance approfondie des forces évolutives en
œuvre et en particulier de l’histoire démographique
des populations. Toutefois, extraire l’information
intéressante de ces données massives de manière
efficace reste un problème ouvert. Compte tenu de
leurs récents succès en apprentissage statistique,
les réseaux de neurones artificiels sont un candi-
dat sérieux pour mener à bien une telle analyse.
Ces méthodes ont l’avantage de pouvoir traiter des
données ayant une grande dimension, de s’adapter
à la plupart des problèmes et d’être facilement
mis à l’échelle des moyens de calcul disponibles.
Cependant, leur performance dépend fortement de
leur architecture qui requiert d’être en adéquation
avec les propriétés des données afin d’en tirer le
maximum d’information. Dans ce cadre, cette
thèse présente de nouvelles approches basées sur
l’apprentissage statistique profond, ainsi que les
principes permettant de concevoir des architec-
tures adaptées aux caractéristiques des données

génomiques. L’utilisation de couches de convo-
lution et de mécanismes d’attention permet aux
réseaux présentés d’être invariants aux permuta-
tions des haplotypes échantillonnés et de s’adapter
à des données de dimensions différentes (nombre
d’haplotypes et de sites polymorphes). Les expéri-
ences conduites sur des données simulées démon-
trent l’efficacité de ces approches en les comparant
à des architectures de réseaux plus classiques,
ainsi qu’à des méthodes issues de l’état de l’art.
De plus, la possibilité d’assembler les réseaux de
neurones à certaines méthodes déjà éprouvées en
génétique des populations, comme l’approximate
Bayesian computation, permet d’améliorer les ré-
sultats et de combiner leurs avantages. La prat-
icabilité des réseaux de neurones pour l’inférence
démographique est testée grâce à leur application
à des séquences génomiques complètes provenant
de populations réelles de Bos taurus et d’Homo
sapiens. Enfin, les scénarios obtenus sont com-
parés aux connaissances actuelles de l’histoire dé-
mographique de ces populations.
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Abstract: Constant improvement of DNA se-
quencing technology that produces large quanti-
ties of genetic data should greatly enhance our
knowledge of evolution, particularly demographic
history. However, the best way to extract informa-
tion from this large-scale data is still an open prob-
lem. Neural networks are a strong candidate to
attain this goal, considering their recent success in
machine learning. These methods have the advan-
tages of handling high-dimensional data, adapt-
ing to most applications and scaling efficiently to
available computing resources. However, their per-
formance dependents on their architecture, which
should match the data properties to extract the
maximum information. In this context, this the-
sis presents new approaches based on deep learn-
ing, as well as the principles for designing archi-
tectures adapted to the characteristics of genomic
data. The use of convolution layers and attention

mechanisms allows the presented networks to be
invariant to the sampled haplotypes’ permutations
and to adapt to data of different dimensions (num-
ber of haplotypes and polymorphism sites). Exper-
iments conducted on simulated data demonstrate
the efficiency of these approaches by comparing
them to more classical network architectures, as
well as to state-of-the-art methods. Moreover,
coupling neural networks with some methods al-
ready proven in population genetics, such as the
approximate Bayesian computation, improves the
results and combines their advantages. The practi-
cality of neural networks for demographic inference
is tested on whole genome sequence data from real
populations of Bos taurus and Homo sapiens. Fi-
nally, the scenarios obtained are compared with
current knowledge of the demographic history of
these populations.
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