
HAL Id: tel-03701879
https://theses.hal.science/tel-03701879

Submitted on 22 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrated Programmable-Array accelerator to design
heterogeneous ultra-low power manycore architectures

Rohit Prasad

To cite this version:
Rohit Prasad. Integrated Programmable-Array accelerator to design heterogeneous ultra-low power
manycore architectures. Embedded Systems. Université de Bretagne Sud; Università degli studi
(Bologne, Italie). Facoltà di Ingegneria, 2022. English. �NNT : 2022LORIS624�. �tel-03701879�

https://theses.hal.science/tel-03701879
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE BRETAGNE SUD

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : « ÉLECTRONIQUE »

Par

« Rohit PRASAD »
« Integrated Programmable-Array accelerator to design heteroge-
neous ultra-low power manycore architectures »

Thèse présentée et soutenue à « Bologne, Italie », le « 20 janvier 2022 »
Unité de recherche : « UFR »
Thèse No : « 624 »

Rapporteurs avant soutenance :

Dr David NOVO Chargé de Recherches, CNRS – LIRMM
Dr Paolo MELONI Maître de Conférences, Université de Cagliari, Italie

Composition du Jury :
Président : Dr Paolo MELONI Maître de Conférences, Université de Cagliari, Italie
Examinateurs : Dr David NOVO Chargé de Recherches, CNRS – LIRMM

Davide ROSSI Maître de Conférences, Université de Bologne, Italie
Kevin MARTIN Maître de Conférences, Université Bretagne Sud

Dir. de thèse : Luca BENINI Professeur, Université de Bologne, Italie
Co-dir. de thèse : Philippe COUSSY Professeur, Université Bretagne Sud

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Integrated Programmable-Array
accelerator to design heterogeneous

ultra-low power manycore
architectures

Rohit Prasad

Thesis Directors

Philippe Coussy & Luca Benini

Thesis Supervisors

Kevin J. M. Martin & Davide Rossi

2022

Academic thesis, which with the approval of the Lab-STICC, UMR 6285, Université
Bretagne-Sud (France) & Department of Electrical Energy and Information Engineering

”Guglielmo Marconi”, Università di Bologna (Italy) will be presented for public review in
fulfilment of the requirements for a Doctor of Philisophy in Electronics Engineering.

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Abstract

There is an ever-increasing demand for energy efficiency (EE) in rapidly evolving Internet-
of-Things end nodes. This pushes researchers and engineers to develop solutions that
provide both Application-Specific Integrated Circuit-like EE and Field-Programmable
Gate Array-like flexibility. One such solution is Coarse Grain Reconfigurable Array
(CGRA). Over the past decades, CGRAs have evolved and are competing to become
mainstream hardware accelerators, especially for accelerating Digital Signal Processing
(DSP) applications. Due to the over-specialization of computing architectures, the focus
is shifting towards fitting an extensive data representation range into fewer bits, e.g., a
32-bit space can represent a more extensive data range with floating-point (FP) repre-
sentation than an integer representation. Computation using FP representation requires
numerous encodings and leads to complex circuits for the FP operators, decreasing the
EE of the entire system. This thesis presents the design of an EE ultra-low-power CGRA
with native support for FP computation by leveraging an emerging paradigm of approx-
imate computing called transprecision computing. We also present the contributions in
the compilation toolchain and system-level integration of CGRA in a System-on-Chip,
to envision the proposed CGRA as an EE hardware accelerator. Finally, an extensive set
of experiments using real-world algorithms employed in near-sensor processing applica-
tions are performed, and results are compared with state-of-the-art (SoA) architectures.
It is empirically shown that our proposed CGRA provides better results w.r.t. SoA
architectures in terms of power, performance, and area.

i

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

List of Figures

1.1 Three design corners of six architectures, implemented with the same
operating parameters. 4

1.2 Organization of chapters . 6

2.1 Architecture options for Digital Signal Processing applications 10

3.1 Integrated programmable Array integrated system 24
3.2 EMF model elements . 26
3.3 Application to CDFG . 28
3.4 Mapping of BB 4 (See Figure 3.3) onto 2x1 CGRA model and outline of

the generated assembly code . 29
3.5 smallFloat Unit . 30
3.6 TP-FPU [56] and its underlying hierarchical blocks. M = Master port ;

S = Slave port . 31
3.7 PULP SoC block diagram detailing SoC domain 33
3.8 PULP SoC block diagram detailing Cluster domain 34

4.1 CGRA Integrated System . 40
4.2 Processing Element . 41
4.3 Flexible-AGU . 42
4.4 Address calculation in Flexible-AGU . 43
4.5 Instruction Synchronizer . 44
4.6 FPU and its underlying hierarchical blocks 45
4.7 mSFU and its underlying hierarchical blocks 46
4.8 Clock-Gating Scheme between FP module and ALU 48
4.9 SIMD execution in FP module . 49
4.10 Implementation of FP-FMA in CGRA 50
4.11 Configuration Network for context loading 54
4.12 Segments of Context Memory . 57
4.13 Data and Address Bus in the configuration network 57

5.1 Compilation Flow . 63
5.2 EMF model of CDFG . 65
5.3 Graph Transformation to add dummy nodes and Mapping of DFG nodes

onto PEs . 67
5.4 Graph Transformation . 69
5.5 DFG with address generation branches 71
5.6 Decoupling of address generation branches in DFG 72

ii

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

List of Figures

6.1 Organization of CGRA and RI5CY in heterogeneous cluster 79
6.2 CGRA integration . 80
6.3 CGRA global wires . 81
6.4 PULP SoC Memory Map . 82
6.5 Manual Mapping Approach 1 . 85
6.6 Manual Mapping Approach 2 (used in k-means) 86

7.1 Total cell area (µm2) breakdown and comparison 96
7.2 Latency performance (cycles) of PCA kernels (binary16alt and binary32) 98
7.3 Energy consumption (µJ) of PCA kernels (binary16alt and binary32) . . 99
7.4 Energy-Efficiency (MOPS/mW) comparison of 4 architectures 100
7.5 Post-PnR view of heterogeneous cluster 104

iii

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

List of Tables

2.1 Comparison of architectures . 12
2.2 FP formats used in IoT devices . 14

4.1 Latency (cycles) of float operators . 45
4.2 State description of FSM for FP-FMA operation 50
4.3 ALU8 6-bit Opcodes. MSB is used to trigger ALU8, next 2-bit are

masked, and remaining last 4-bit are used for decoding ALU8 operation. 51
4.4 Description of FSM states in DMAC . 55
4.5 21-bit ISA Table . 56
4.6 Structure of Context Memory segments 56
4.7 Summary of Opcodes (R = Result, C = Condition bit) Gray colored cells

represent newly added opcodes. 59

5.1 Reserved keywords for FP datatype . 66

6.1 API for controlling CGRA . 81

7.1 Complexity of Kernels . 94
7.2 Accuracy Performance . 95
7.3 Total cell area (µm2) breakdown and comparison 96
7.4 Average PE Utilization of kernels . 97
7.5 Latency Performance (cycles) of kernels (binary8) 97
7.6 Energy Consumption (µJ) of kernels (binary8) 98
7.7 Kernel Complexity for CGRA . 102
7.8 Area comparison of CGRA sub-system and RI5CY sub-system 105
7.9 Latency comparison of CGRA and 8-cores RI5CY 105
7.10 Latency comparison of CGRA and 8-cores RI5CY. Both architectures are

executing with SIMD disabled. 106
7.11 Energy consumption comparison of CGRA sub-system and 8-cores RI5CY

sub-system . 107
7.12 Energy consumption of heterogeneous cluster 107
7.13 Energy consumption of heterogeneous cluster executing on RI5CY with

and without CGRA . 108
7.14 Correlation between PE Utilization and average Power consumption in

CGRA . 109
7.15 Dynamic PE Utilization of CGRA and dynamic core utilization of RI5CY 109

A.1 Architectural features of RI5CY and CGRA (4x4 PE) 118
A.2 Latency comparison of Dot-Product (in cycles) 118

iv

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

List of Tables

A.3 Energy consumption comparison of Dot-Product (in µJ). A single netlist
processed at 22 nm FD-SOI technology and running at 200 MHz is used
for the energy calculation. 118

v

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Nomenclature

µJ microJoule

µm2 microMeter Square

µW microWatt

AGU Address Generation Unit

ALAP As Late As Possible

ALU Arithmetic Logic Unit

ALU8 8-bit integer based Arithmetic Logic Unit

API Application Programming Interfaces

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

ASIP Application-specific Instruction Set Processor

AXI Advanced eXtensible Interface

BA Base Address

BB Basic Block

CCA Canonical Correlation Analysis

CDFG Control Flow Data Graph

CFG Control Flow Graph

CGRA Coarse Grain Reconfigurable Array

CONV Convolution

CPU Central Processing Unit

CR Control Register

CRF Constant Register File

CT Computerized Tomography

vi

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Nomenclature

DARPA Defense Advanced Research Projects Agency

DFG Data Flow Graph

DLP Data Level Parallelism

DMAC Direct Memory Access Controller

DRA Destination Register Address

DS Divide-Square-root

DSP Digital Signal Processing

DWT Discrete Wavelet Transform

ECG Electrocardiography

EEG Electroencephalography

EMF Eclipse Modeling Framework

ERI Electronics Resurgence Initiative

FC Fabric Controller

FD − SOI Fully Depleted Silicon On Insulator

FFG Fast-Fast Global

FFT Fast Fourier Transform

FIR Finite Impulse Response

FLL Frequency-Locked Loop

FMA Fused-Multiply-Add

FP Floating-Point

FPGA Field-Programmable Gate Array

FPU Floating-Point Unit

GCC GNU Compiler Collection

GCM Global Context Memory

GNU GNU’s Not Unix!

GP − CPU General Purpose-CPU

GPIO General-Purpose Input/Output

GPP General Purpose Processor

vii

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Nomenclature

HDL Hardware Description Language

HDTV High-Definition Television

HLS High Level Synthesis

I2C Inter-Integrated Circuit

I2S Inter-Integrated-Circuit-Sound

I$ Instruction

iCache Instruction Cache

IEEE Institute of Electrical and Electronics Engineers

IIR Infinite Impulse Response

ILP Instruction Level Parallelism

IoT Internet of Things

IP Intellectual Property

IRF Instruction Register File

IS Instruction Synchronizer

ISA Instruction Set Architecture

JTAG Joint Test Action Group

KiB Kilo Byte

LN Logarithmic Number

LSB Least Significant Bit

LSU Load-Store Unit

LV Loop Variable

MAC Multiply and Accumulate

matMUL Matrix Multiplication

MCU Microcontroller Unit

MHz Mega Hertz

MIMD Multiple-Instruction stream-Multiple-Data stream

MISD Multi-Instruction stream-Single-Data stream

ML machine Learning

viii

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Nomenclature

MOPS Million Operations Per Second

MRI Magnetic Resonance Imaging

MSB Most Significant Bit

mSFU mini-SmallFloat Unit

NMOS N-channel Metal–Oxide–Semiconductor

NOP No Operation

OPR Output Register

PCA Principal Component Analysis

PE Processing Element

PMOS P-channel Metal–Oxide–Semiconductor

PnR Place-and-Route

PPA Power, Performance,m and Area

PULP Parallel Ultra-Low-Power

PWM Pulse Width Modulation

RF Register File

RISC Reduced Instruction Set Computer

RRF Regular Register File

SCMD Single Configuration Multiple Data

SDH Software-Defined Hardware

SIMD Single-Instruction stream-Multiple-Data stream

SISD Single-Instruction stream-Single-Data stream

SoA State-of-the-Art

SoC System-on-Chip

SPI Serial Peripheral Interface

SRAM Static Random Access memory

SSG Slow-Slow Global

SVM Support Vector Machine

TCDM Tightly Coupled Data Memory

ix

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Nomenclature

TLP Thread Level Parallelism

TP − FPU Transprecision Floating-Point Unit

tSFU tiny-SmallFloat Unit

TT Typical-Typical

UART Universal Asynchronous Receiver/Transmitter

ULP Ultra-Low-Power

UML Unified Modeling Language

UNIX UNiplexed Information and Computing System

UNUM Unversal Number

UTBB Ultra-Thin Body and Buried oxide

V LIW Very Long Instruction Word

x

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Contents

List of Figures ii

List of Tables iv

1 Introduction 1

2 Related Work 9
2.1 Taxonomy of Architectures . 9

2.2 FP support in low-power circuits . 13

2.3 Transprecision Computing . 14

2.4 CGRA Architecture . 15

2.5 CGRA with FP support . 18

2.6 Compiler support . 19

2.7 Heterogeneous Computing Systems . 21

2.8 Summary and Concluding Remarks . 22

3 Background 23
3.1 Integrated Programmable Array . 23

3.2 Flynn’s taxonomy . 25

3.3 Eclipse Modeling Framework . 25

3.4 CGRA Compiler . 27

3.5 Transprecision Computing based Floating-Point Units 29

3.5.1 smallFloat Unit (SFU) . 29

3.5.2 Transprecision FPU (TP-FPU) 30

3.6 PULP Architecture . 32

3.7 Summary and Concluding Remarks . 36

4 Energy-Efficient Programmable Hardware Accelerator 37
4.1 CGRA Design Optimizations . 38

4.1.1 Design 1: IEEE 754-2008 Standard compliant 4x2 PE Array . . . 44

4.1.2 Design 2: Transprecision FP compliant 4x2 PE Array 46

4.1.3 Design 3: Mixed FP based 4x2 PE Array 47

4.1.4 Design 4: Transprecision FP compliant 4x4 PE Array 47

4.1.5 Design 5: 4x2 PE Array featuring 8-bit integer operators 51

4.2 Computation Model . 54

4.3 Summary and Concluding Remarks . 60

xi

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Contents

5 Compiler Support 61
5.1 Compilation Flow . 63

5.1.1 DFG Mapping with multi-cycle operations 66
5.1.2 Decoupling of address generation branches for Flexible-AGU . . . 69

5.2 Assembler . 72
5.3 Summary and Concluding Remarks . 74

6 Heterogeneous Platform for Transprecision Computing 77
6.1 Heterogeneous Platform . 78

6.1.1 CGRA Integration . 78
6.1.2 Software Infrastructure . 80
6.1.3 PULP SoC Memory Map . 81
6.1.4 Workload Synchronization between CGRA and RI5CY sub-systems 83
6.1.5 Manual Mapping approaches . 85

6.2 Summary and Concluding Remarks . 90

7 Experimental Framework and Performance Evaluation 91
7.1 Analyses of implementation of the proposed CGRA 93

7.1.1 Evaluation Methodology . 93
7.1.2 Quality of Results . 94
7.1.3 Implementation Results . 95
7.1.4 Latency Performance . 97
7.1.5 Energy Consumption . 99
7.1.6 Energy-Efficiency . 100

7.2 Analyses of implementation of the heterogeneous cluster 101
7.2.1 Evaluation Methodology . 101
7.2.2 Implementation Results . 103
7.2.3 Latency Performance . 104
7.2.4 Energy Consumption . 106
7.2.5 Utilization . 109

7.3 Summary and Concluding Results . 110

8 Conclusion & Future Work 111

A Evaluation of Architectures 117

Bibliography 119

xii

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 1

Introduction

Internet of Things (IoT) devices are rapidly evolving, and therefore, there is an ever-
increasing demand for ultra-low-power and energy-efficient computing architectures, i.e.,
IoT end nodes. Applying software-based optimizations to augment the performance of
a system is not enough [1]. A good trade-off between architectural characteristics and
computational capabilities must be considered to boost the performance of IoT end
nodes [2]. Such resource-constraint ultra-low-power (ULP) architectures face challenges
while executing algorithms involving near-sensor computing or embedded machine learn-
ing (ML). Multiple efforts to keep these architectures energy-efficient and flexible enough
to cope with the evolving technologies are seen in recent research works [3, 4, 5, 6].

Coarse Grain Reconfigurable Array (CGRA) architectures hold the potential to fit the
requirement of being energy-efficient and at the same time provide flexibility to support
evolving algorithms involving near sensor computing or embedded ML. A CGRA consists
of an array of Processing Elements (PE), which are relatively smaller and simpler than
General Purpose Processors (GPP). These PEs are connected through a simple on-
chip network to provide data movement within the array. Each PE is configurable to
execute part of a kernel in parallel with other PEs in the array. To provide an efficient
parallel execution, each PE features a small register file to temporarily keep data loaded
from memory or immediate results, which can be shifted/moved to other PEs using the
on-chip network, resulting in avoiding register spilling or memory traffic. CGRAs can
provide silicon efficiency approaching that of an Application-Specific Integrated Circuit
(ASIC) by exploiting spatial computation typical of dedicated hardware blocks while
keeping the programmability of GPPs [7, 8]. Furthermore, CGRAs have always been
competing for being adopted as high-performance accelerators [7, 8, 9, 10, 11].

Energy-efficient execution of fixed-point workloads is prevailing in the recent ULP archi-
tectures. However, emerging IoT end nodes demand support for operations on datatype
with high dynamic data range, i.e., floating-point (FP) numbers [12]. An alternative
is to port FP operations into low-cost fixed-point operations [13] but porting an FP
application into its fixed-point equivalent is laborious and demands in-depth knowledge
of the application domain. Besides, porting an FP application into a fixed-point is not
always energy-efficient due to the execution of instructions required for organization
and normalization of such operations to overlook the dynamic range of FP numbers,

1

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 1 Introduction

resulting in significant overheads [14].

An optimization technique to meet the computational demands of an application uses
mixed, i.e., floating-fixed point representation. Such mixed representation is featured
in State-of-the-Art (SoA) FP capable low-power architecture end-nodes like Cortex-
M processors [15]. Again, this approach requires a tedious manual analysis of the
applications for format selection between float and fixed for tuning the dynamic range
and results in software overheads for such on-the-fly conversions. Furthermore, using
such mixed representation results in degradation of the overall computational efficiency
of Cortex-M processors, like, energy dissipated while managing the pipelines and register
files in Cortex-M4 processor due to flushing or stalls [16].

A noticeable number of commercial architectures fail to turn off the FP units while fixed-
point operators are executing in the cores; this also further lowers the energy efficiency
of such architectures [17].

Approximate computing is a technique where the computing system does not compute
the precise result but computes an approximated result. In this technique, to boost
the performance of a computing system, a trade-off to the quality of computation with
the effort spent is realized, resulting in fewer circuits and less energy consumption.
An emerging paradigm of approximate computing is transprecision computing [1] that
aims to improve the energy efficiency of low-power systems by adopting multiple FP
formats to satisfy the accuracy requirements of the target application without manual
adjustments. Transprecision computing is an alternative for applications demand-
ing operations with high dynamic data range (i.e., FP operations) in IoT end nodes.
Transprecision computing provides both hardware and software-based control mech-
anisms to fine-tune the approximation of computations in an application. Integration
of transprecision computing in ULP architectures holds the potential to achieve high
energy efficiency while executing applications requiring high dynamic range FP opera-
tions [17].

This thesis explores the design of an energy-efficient ULP CGRA with native support
for FP computation by leveraging transprecision computing. Different design opti-
mizations and architectures are presented for developing the CGRA with support for
multiple FP datatype, including SoA IEEE 754-2008 standard FP and new custom
transprecision FP datatype. A design is incomplete without the aid of compilation
tools, so the contributions in the compilation toolchain to add support for FP in CGRA
are also presented. To envision the proposed CGRA as an energy-efficient hardware
accelerator, system-level integration of CGRA in a System-on-Chip is performed to
demonstrate the applicability of CGRA as an energy-efficient hardware accelerator by
using real-world algorithms employed in near-sensor processing application fields (i.e.,
image, audio, bio-signals, and embedded Machine Learning). Finally, two sets of results
are presented in this thesis. First, CGRA with a 4x2 PE array is compared with a
single-core SoA processor resulting in CGRA achieving a maximum of 10.06× better
latency performance and consuming 12.91× less energy, with an area overhead of 1.25×
only. Second, CGRA with a 4x4 PE array is compared with an 8-cores SOA processor
sub-system resulting in the CGRA sub-system achieving a maximum of 4.20× better

2

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

latency performance and consuming 7.80× less energy, while CGRA sub-system also
being 2.19× smaller than 8-cores SoA processor sub-system.

Motivation

CGRAs are a raw coarse-grained implementation of the perception of reconfigurable
computing proposed in the 1960s [18]. CGRA architectures were first introduced in
the 1990s [19, 20] and have been developing extensively since the 2000s [21, 22, 23, 24].
CGRAs continuously attract both academia and industries, as CGRAs can provide near-
ASIC energy efficiency and performance while maintaining software-like programmabil-
ity with post-fabrication [11, 25, 26, 27, 28]. Figure 1.1 provides an overview of the po-
sitioning of hardware accelerator and processor architectures, i.e., Application-Specific
Integrated Circuit (ASIC), Application-Specific Instruction Set Processor (ASIP), Gen-
eral Purpose Processor (GPP), Graphics Processing Unit (GPU), Field-Programmable
Gate Array (FPGA), and Coarse Grain Reconfigurable Array (CGRA) with three design
corners, where all architectures are implemented with the same operating parameters [7,
8, 11, 25, 29]. Breakdown of Figure 1.1 is as follows:

• ASICs are custom logic designs with fixed functions, making them the most energy-
efficient architectures with the highest computing performance. However, these
architectures are comprised of custom and fixed functions with limited libraries and
support. Hence, they are least flexible among all the architectures in Figure 1.1.

• ASIPs are designed for a specific application domain, and these architectures ex-
hibit an instruction set designed to accelerate most executed and critical functions.
These architectures provide a trade-off between energy efficiency, computing per-
formance, and flexibility.

• GPPs are designed to provide maximum flexibility to support all applications.
Hence, these architectures are least energy-efficient and have minimum computing
performance among all architectures in comparison in Figure 1.1.

• GPUs exhibit a large parallel array of cores designed for rendering graphics. These
architectures have relatively high energy consumption but somewhat similar com-
puting performance and flexibility as that of ASIPs.

• FPGA consists of a large number of configurable logic blocks that are connected
through programmable interconnects. Each configurable logic block is essentially
an array of programmable gates. These architectures provide high flexibility. How-
ever, these architectures provide low energy efficiency and computing performance
due to unavoidable overheads with such fine granularity.

• CGRAs are outset to provide a balance between these three design corners. These

3

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 1 Introduction

Energy-E ciency

(MOPS/mW)

Compu ng Performance

(GOPS)
Flexibility (Programming)

ASIC

ASIP

GPU

FPGA

CGRA

GPP

Figure 1.1: Three design corners of six architectures, implemented with the same oper-
ating parameters.

hybrid architectures are essentially systolic arrays 1 that are expanded to be pro-
grammed using instructions, making them coarser than FPGAs in terms of flex-
ibility. CGRAs exhibit simple architecture to provide moderately high energy
efficiency and computing performance.

GPPs are the most flexible architectures, ASICs are the most energy-efficient and pro-
vide the highest computing performance. On the other hand, CGRAs provide a balance
between these three design corners.

In academia, the researchers consider CGRAs as a firm competitor for mainstream
computing architectures because CGRAs provide a good trade-off among efficiency,
performance, and flexibility for a certain application domain [7, 8, 30, 31] and also
because of extensive supports by organizations like the Defense Advanced Research
Projects Agency (DARPA) [32]. The objective of DARPA ERI (Electronics Resurgence
Initiative) is software-defined hardware (SDH), i.e., to enable hardware to provide near-
ASIC performance (≈10×) while maintaining the programmability for data-extensive
kernels/algorithms. AHA Agile Hardware Project is an initiative to enable an agile
hardware development flow. Under this project, especially for the rapid development
of CGRAs, three domain-specific languages have been developed to generate individual
components for CGRA. These are (1) PEak for processing tiles, (2) Lake for memory
tiles, and (3) Canal for the interconnect [33].

1Systolic array is a network of tightly coupled data processing elements. These processing elements
perform the same logic operation with different data at the different timestamp.

4

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

In industry, Samsung presented their 8K high-definition television (HDTV) and Exynos
SoC featuring a CGRA accelerator [10, 34]. The CGRA intellectual property (IP) cores
are present in the satellite payload of Astrium, where the IP cores are developed by
PACT Incorporated [24]. An Intel project to integrate CGRAs into its Xeon processor
was initiated in 2016 [35]. Other companies also have related projects, plans, prototypes,
or products like DRP [36] and DAPDNA [37].

Ever-increasing computational demand from applications attracts researchers/industries
to implement FP-like computations (i.e., computing FP workload using integer-based
operators or converting FP workloads into fixed-point workloads) in CGRAs [11, 38, 39,
40, 41, 42]. A recent trend to equip IoT platforms with FP unit is also seen in micro-
controller units like M4 and M7 [43]; a factor leading to such trend is with technology
node scaling below 40nm, the cost of FP operation is getting near 1pJ per operation [44,
45], so it has become affordable in terms of absolute power to use FP in IoT. This gave
us an incentive to implement FP operators with variable dynamic range and variable
precision in a CGRA targeting the ULP domain and applications involving near-sensor
computing and embedded ML.

Contribution

This thesis contributes to the following characteristics of practicing CGRAs as hardware
accelerators in computing platforms.

1. Design of CGRA with support for FP computation: the main contribution of
the thesis is the design of an energy-efficient ULP CGRA with support for FP
computation. Multiple design optimizations and their architectures to add support
for multiple FP datatype in CGRA are presented.

2. Efficient mapping of FP operations: the changes in the hardware must be prop-
agated to the compilation flow, and integration of new features in the toolchain
must produce efficient mappings of the FP operations. This thesis presents the
techniques used and the challenges tackled during the change propagation from
hardware to compilation flow.

3. Implementation of Flexible-AGU: to improve the performance of CGRA, address
generation is decoupled from the compilation flow, and a hardware Flexible-Address
Generation Unit is introduced in the PEs of the proposed CGRA. The Instruction
Set Architecture (ISA) width of the CGRA is limited; encoding of data required
to compute the address and decoding instructions in the hardware was a challenge
and is also presented in this thesis.

4. System-level integration in an SoC: the point of presenting an energy-efficient
ULP CGRA is to improve the overall performance of the computing platforms.
This integration is necessary to envision the CGRA as a hardware accelerator

5

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 1 Introduction

Background

Energy-E�cient Programmable Hardware

Accelerator

Compiler support

Implementa�on of a CGRA featuring

Heterogeneous Pla�orm

Experiments and Performance Evalua�on

Conclusion and Future Research Direc�ons

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Related Work

Chapter 2

Introduc�on

Chapter 1

Figure 1.2: Organization of chapters

properly. The challenges in integrating the CGRA sub-system in an SoC to propose
a heterogeneous platform are presented in this thesis.

5. Benchmark: this thesis empirically shows that the CGRA can improve the overall
performance when integrated into a system. A wide range of real-world applica-
tions used in near sensor computing and embedded ML is used to benchmark the
CGRA w.r.t. SoA architectures and all the experimental results obtained using
gate-level simulation silicon-proven PULP platform [46].

Organization

Figure 1.2 shows the outline of the thesis and follows the points described in the contribu-
tion section. In chapter 2 and chapter 3, the related work and the necessary background
information associated with the contribution of this thesis are presented respectively.
Chapter 4 discusses the architecture and design optimizations of the CGRA with sup-
port for multiple FP datatype. Then, chapter 5 discusses the compiler support to enable
energy-efficient support for FP in CGRA. In chapter 6, a heterogeneous platform fea-

6

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

turing the proposed CGRA sub-system is presented. Chapter 7 presents the evaluation
methodology and performances of the proposed CGRA and the heterogeneous platform.
Finally, in chapter 8, the thesis summarizes the given work and suggestions for possible
future research directions.

List of Publications

1. R. Prasad, S. Das, K. J. M. Martin, G. Tagliavini, P. Coussy, L. Benini and
D. Rossi, ”TRANSPIRE: An energy-efficient TRANSprecision floating-point Pro-
grammable archItectuRE,” 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE), Grenoble, France, 2020, pp. 1067-1072,
https://doi.org/10.23919/DATE48585.2020.9116408

2. S. Das, R. Prasad, K. J. M. Martin and P. Coussy, ”Energy Efficient Acceler-
ation Of Floating Point Applications Onto CGRA,” ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 2020, pp. 1563-1567,
https://doi.org/10.1109/ICASSP40776.2020.9054613

3. R. Prasad, S. Das, K. J. M. Martin, and P. Coussy, ”Floating Point CGRA based
Ultra-Low Power DSP Accelerator,” Journal of Signal Processing Systems (2021).
https://doi.org/10.1007/s11265-020-01630-2

4. Journal to be submitted for publication. The title is as follows:
R. Prasad, G. Tagliavini, K. J. M. Martin, P. Coussy, L. Benini and D. Rossi,
”Hopalong: A Heterogeneous Cluster for Transprecision Computing on IoT End
Nodes”.

7

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://doi.org/10.23919/DATE48585.2020.9116408
https://doi.org/10.1109/ICASSP40776.2020.9054613
https://doi.org/10.1007/s11265-020-01630-2

8

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 2

Related Work

Contents

2.1 Taxonomy of Architectures 9

2.2 FP support in low-power circuits 13

2.3 Transprecision Computing . 14

2.4 CGRA Architecture . 15

2.5 CGRA with FP support . 18

2.6 Compiler support . 19

2.7 Heterogeneous Computing Systems 21

2.8 Summary and Concluding Remarks 22

This chapter discusses the topics of (1) Taxonomy of architectures, (2) Floating-Point
(FP) support in low-power circuits, (3) Transprecision computing, (4) CGRA archi-
tecture, (5) CGRAs supporting FP computations, (6) Compiler support for the de-
velopment of CGRA, and (7) PULP SoC [46] based heterogeneous computing systems
featuring different hardware accelerators. These topics serve as the related work for the
thesis.

2.1 Taxonomy of Architectures

There are billions of IoT devices that execute digital signal processing (DSP) appli-
cations and the majority of them are battery operated. In this thesis, the proposed
CGRA targets DSP applications and adopts multiple optimization techniques to boost
the energy efficiency of the entire system. Figure 2.1 shows six architectural options
that are interesting for digital signal processing applications. These architectures are
described below.

9

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 2 Related Work

RAM Controller

Interface

L2 Cache

Core Core

(a) GPP (b) GPU

Local Uni�ed

Bu�er for

Ac�va�ons

(24 MiB)

Matrix Mul�ply Unit

(64K MAC)

D
R

A
M

 P
o

rt

Host Interface

Control

PCIe Interface

Accumulators

(4 MiB) D
R

A
M

 P
o

rt

Ac�va�on

Pipeline

Miscellaneous

I/O

(c) ASIC (TPU [47])
(d) FPGA

P
re

fe
tc

h
 B

u

�

e
r

D
e

co
d

e
r

G
e

n
e

ra
l

P
u

rp
o

se

R
e

g
is

te
r

In
st

ru
c�

o
n

 F
e

tc
h

 |
 I

n
st

ru
c�

o
n

 D
e

co
d

e

In
st

ru
c �

o
n

 D
e

co
d

e
 |

 E
xe

cu
te

Arithme

�c Logic

Unit

Control

and

Status

Register

Mul�ply

Accumul

ate Unit

Dot-

Product

Unit

Floa�ng

-Point

Unit

E
xe

cu
te

 |
 W

ri
te

 B
a

ck

Load

Store

Unit

(e) ASIP (RI5CY [48])

Con�gura�on Memory

D
a

ta
 M

e
m

o
ry

(f) CGRA

Figure 2.1: Architecture options for Digital Signal Processing applications

10

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

2.1 Taxonomy of Architectures

ASIC

Figure 2.1c shows the organization of an Application-Specific Integrated Circuit (e.g.,
Tensor Processing Unit or TPU [47]). Typically, ASICs are non-programmable and
target only one application. ASICs were a preferred solution where the level of integra-
tion was limited, like Very Large-Scale Integration (VLSI) with the introduction of the
first MOS Integrated Circuit by General Microelectronics in 1964 [49]. However, multi-
ple solutions have been proposed over the past decades, and also, due to technological
advancements, ASICs are not the only choice of architecture to be integrated into a sys-
tem. Typically, ASICs are introduced for matured architectures with the highest level
of optimizations. ASICs are able to reach the highest energy efficiency and computing
performance for a target application.

ASIP

Figure 2.1e shows the organization of an Application-Specific Instruction Set Processor
(e.g., RI5CY [48]). An ASIP is designed for a specific application domain, and the
instruction set architecture (ISA) of these architectures is designed to accelerate the
frequently occurring functions or critical functions. The cost of hardware and the power
consumption is relatively lower than other architectures in Figure 2.1 because ASIPs
usually target predictable computing, so the design optimizations can be much higher
while providing a substantial amount of flexibility for the target domain applications.

GPP

Figure 2.1a shows the organization of a General Purpose Processing unit with two
cores. A GPP runs complex tasks and aims to facilitate maximum flexibility for all
applications. Typically, GPPs are limited to perform certain concurrent tasks as these
architectures consume a large amount of energy with little computing performance.
The compiler and Operating System are designed to support all applications, which
also requires a huge amount of engineering design time. Overall, building a GPP-based
computer infrastructure from scratch is very expensive.

GPU

Figure 2.1b shows a typical Graphic Processor Unit. A GPU consists of many smaller
specialized cores. These cores work together to deliver a massive performance by divid-
ing the task and processing them in parallel. Initially, GPUs began as specific ASIC to
accelerate specific 3D rendering tasks. Gradually, GPU cores evolved from fixed-function
engines to become programmable and flexible cores. Nowadays, GPUs are also capable

11

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 2 Related Work

Type
Power

Consumption
Strengths Constraints

ASIC Ultra-Low Small silicon footprint Fixed function

ASIP
Low to

Ultra-Low
Targets

application domain
Complex instructions

and tasks
GPP High Flexible Few cores
GPU High Highly parallel cores Large silicon footprint
FPGA Medium Re-programmable Programming Complexity

CGRA
Low to

Ultra-Low
Targets

application domain
Simple instructions

and tasks

Table 2.1: Comparison of architectures

of handling a wide range of applications and compete against other general-purpose
parallel processors.

FPGA

Figure 2.1d shows a typical Field-Programmable Gate Array architecture. an FPGA
consists of many logic blocks which can be programmed and reprogrammed to per-
form numerous functions at any point in time. These logic blocks are interconnected
through a programmable interconnect network. Development on an FPGA is relatively
cheaper due to nearly non-existent Non-Recurring Engineering (NRE) cost than other
architectures in Figure 2.1. Such affordability makes FPGAs their preferred choice for
designers to perform experiments or even realize any architecture design (mainly in the
early development stages).

CGRA

Figure 2.1f shows the organization of a typical Coarse Grain Reconfigurable Array ar-
chitecture. A CGRA consists of an array of simple and small processing elements that
are connected through an interconnect network. CGRA can efficiently exploit parallel
computing due to the availability of an array of low-cost processing elements and also
due to affordable data movement of the spatial-temporal data between the processing
units. CGRAs were studied at first for accelerating the inner loop computation of the
applications. Over time, CGRAs have evolved to become a competitive solution for
high-performance accelerators.

Table 2.1 presents a comparison table of the six architectures. CGRA is the essence of
this thesis, and all the topics presented in this thesis involves the development of CGRA
architecture, its optimization techniques, and its associated toolchain.

12

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

2.2 FP support in low-power circuits

2.2 FP support in low-power circuits

Using a data format with a fewer precision bits format to represent decimal FP numbers
suffers substantially from the loss of accuracy. Applying such data formats with limited
precision bits in real-world DSP applications, where intermediate results are frequently
accumulated, can lead to undesirable loss of accuracy and devastating consequences like
ARIANE 5: Flight 501 Failure (i.e., failure of the maiden flight of the Ariane 5 launcher
on 4 June 1996) due to occurrence of errors while converting 64-bit FP number to 16-bit
signed integer value [50].

FP operations are much more complex than integer operations, so it is familiar to
trade-off between speed and accuracy while implementing FP computing modules. An
example of combining two FP datatype modules (i.e., IEEE 754-2008 Decimal FP and
IEEE 754-1985 Binary FP formats) is presented in [51, 52], where hardware resource
sharing resulted in saving up to 58% of less area w.r.t. the combined areas of individual
modules, with a negligible impact on the critical path delay for the combined module
over the individual decimal modules. Representing a decimal digit in IEEE 754-2008
standard requires 4-bit, and this leads to a larger datapath, making it unsuitable for
the FP units in the proposed ULP CGRA.

A good balance between delay, area, and accuracy for FP representation is provided
by IEEE 754-2008 standard. However, FP computing with increased precision bits
results in larger energy consumption, making those computing systems less attractive
for ULP architectures. An alternative is to explore custom FP formats for enabling
low-power circuits with FP operations. One such effort is presented in [53], where a
Logarithmic Number System (LNS) based LNS Unit (LNU) efficiently performs FP
operations by translating FP operations into simple integer operations. However, a
fallacy to this implementation is that the LNUs take a larger area than their single-
precision FP counterparts. These LNUs become attractive when shared among several
cores. They can be 4.1× more energy-efficient than a similar area design using four
private FPUs while executing standard nonlinear processing kernels.

An FP format similar to IEEE 754-2008 FP standard is Universal Numbers (UNUM).
UNUM features an additional tag for self-description of the represented value (i.e., num-
ber of bits for exponent and precision), enabling them to represent variable-sized FP
numbers [54]. The silicon implementation of an ASIC featuring UNUM-based ALU [55]
showed 7% less memory footprint w.r.t. an IEEE 754-2008 single-precision FP unit.
UNUM-based ALU also offered a more comprehensive range for half-precision FP for-
mats with an increased datapath complexity, making the design choice less attractive
for the proposed CGRA to avoid a complex interconnect network for PEs.

A new set of custom FP formats called smallFloat formats that can also be regarded as
an alternative to IEEE 754-2008 FP standard (i.e., float and float16) are binary16alt and
binary8 [1]. These new FP formats exhibit the same dynamic range as that of IEEE
counterparts with fewer precision bits. smallFloat formats are useful in applications
that require low precision, like ML applications. The silicon implementation of a 32-bit

13

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 2 Related Work

Format #Bits Exponent Mantissa Range
IEEE float 32 8 23 1.2 x 10−38 - 3.4 x 1038

binary16alt 16 8 7 1.2 x 10−38 - 3.4 x 1038

IEEE float16 16 5 11 5.9 x 10−8 - 6.5 x 104

Table 2.2: FP formats used in IoT devices

RISC-V core based ASIP, including a multi-format FPU featuring both IEEE 754-
2008 standard FP formats and smallFloat formats, showed the multi-format FPU could
achieve a latency gain of 1.67× w.r.t. an IEEE float based FPU without losing any
precision in the results, and reducing the system energy by 37% [56]. These results
make smallFloat formats very attractive for the proposed CGRA because the target
domain applications of CGRA also require high dynamic range, low precision, and low
power consumption.

2.3 Transprecision Computing

ML workloads executed by modern near-sensors applications demand both high dynamic
data range and low-power consumption. IEEE 754-2008 standard provides double-
precision (64-bit; IEEE double) and single-precision (32-bit; IEEE float) FP represen-
tations to realize the high dynamic data range demand, but such FP computations are
too costly in terms of energy consumption for IoT end nodes leveraging ULP archi-
tectures. The half-precision FP representation introduced in IEEE 754-2008 standard
(16-bit; IEEE float16) is a trade-off between dynamic range and energy cost, which is
suitable for approximate computing. Over the years, significant advancements in ap-
proximate computing are seen. However, there is still a considerable demand for high
dynamic data range and low-power consumption from IoT end nodes.

Typically, IEEE float and float16 are used in IoT devices but these FP representa-
tions either high energy consumption (in IEEE float) or lack high dynamic data range
(in IEEE float16). Recently, a new custom datatype has been introduced, called bi-
nary16alt, to cover the fallacies of these IEEE FP formats, i.e., provides a high dynamic
range as of IEEE float and at the same time consumes similar energy as of IEEE float16.
Table 2.2 shows these FP formats.

Range of SoA ML applications like Convolutional Neural Networks [57] and Temporal
Neural Networks [58] relies on ML models which can tolerate lower precision computa-
tions without losing their accuracy [59] and IEEE float16 and binary16alt FP datatype
is well suited for such applications. Adopting such lower precision FP formats enables
a system to achieve high performance and also be energy-efficient while executing such
ML applications, but embracing such FP formats will require full software support and
thorough analysis for tuning precision of FP variables to safely replace the high-cost FP
formats with low-cost FP formats [60] in those applications.

14

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

2.4 CGRA Architecture

Transprecision computing is an emerging paradigm of approximate computing which
aims to fulfill those demands of providing high dynamic data range and be energy-
efficient [1]. In transprecision computing, the intermediate results preserve the dynamic
range, and precision is tuned to fulfill the accuracy requirements of an application,
allowing programmers to adapt to a new FP format with fewer bits. In [56], a silicon-
proven architecture has been introduced, which is an integral part of the transprecision
computing framework by enabling programmers to fine-tune the workloads ranging from
algorithms and software down to hardware and circuits.

2.4 CGRA Architecture

The applications used in IoT devices keep evolving due to increasing computational de-
mands in IoT end nodes. Going for highly optimized and hardwired ASIC architectures
could lead to a very aggressive time-to-market to deliver the next iteration of current
designs. In this scenario, employing programmable hardware accelerators (i.e., CGRAs)
as co-processors in such systems can ease the before-mentioned deadlines. CGRAs have
proven to be effective in accelerating target applications by achieving silicon efficiency
near an ASIC by exploiting spatial computation typical of dedicated hardware while
keeping programmability typical of GPP [7].

Recent CGRAs have demonstrated effectiveness in executing fixed-point workloads be-
cause fixed-point units employ simpler architecture of integer arithmetic units [61]. How-
ever, there is an increasing demand for support for FP computation in emerging IoT end
nodes [13]. Few CGRAs have been presented in the past to support FP computations.
However, efficient and dedicated support for FP still lacks in those CGRAs [8, 11, 39,
40, 41, 42] which makes them less attractive for adoption in IoT end nodes or ULP
architectures.

CGRA architectures have an ample design space as these architectures feature (1) tightly
or loosely coupling to host processors, (2) types of on-chip interconnects and the inter-
actions between producer-consumer resources, (3) reconfigurability/programmability of
the array, (4) ways to control the executions in array, (5) support for different types of
parallelism. Typical characteristics of a CGRA that motivate a ULP CGRA to execute
FP computations efficiently are discussed below.

Reconfigurability

The salient feature of a CGRA is its ability to be reconfigured (i.e., flexibility). The
three types of reconfiguration are:

1. Dynamic reconfiguration where CGRAs use small controllers to fetch new config-
uration every clock cycle from configuration buffers.

15

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 2 Related Work

2. Static reconfiguration where configuration bits of CGRAs remain fixed for the
whole execution of a loop.

3. Hybrid reconfiguration where CGRAs use a combination of both static and dy-
namic configurations.

Notably, in the case of dynamic reconfiguration, a full reconfiguration follows every ex-
ecution cycle, and to better utilize such array, a simpler instruction fetching mechanism
w.r.t. GPPs is employed for iterating through a loop body without any control flow
like seen in ADRES [21], Silicon Hive [62], and MorphoSys [63]. Hybrid reconfigurable
CGRAs like RaPiD [64] where static and dynamic reconfigurability is controlled by a
small sequencer or PACT [65], where CGRA can self trigger events for partial recon-
figuration and consumes a substantial amount of time. In contrast to these CGRAs,
KressArray [66] features a fully static reconfiguration approach where CGRA is con-
figured before a loop is executed. In such CGRAs, efficiently mapping of kernels onto
hardware is prioritized, which is done at a higher level in the compiler.

While all before mentioned CGRAs avoid executing control statements mainly to mini-
mize hardware complexity, our priority was to opt for dynamic reconfiguration of CGRA
and execute a complete kernel by implementing low-cost control flow support in CGRA
by combining efficient mapping of control statements in compiler and simple design
choices in hardware.

Scheduling and Issuing

Execution of operations and data transfers can be controlled in a CGRA either by
dynamic, static, or hybrid reconfiguration. Such reconfiguration can be achieved in
a compiler by scheduling the static code schedules like seen in VLIW processors [67]
or the approach used in out-of-order processors can be used where processors issue
instructions the availability required operands [68] or by combining static and dynamic
reconfiguration and static and dynamic scheduling [21, 62, 63, 65, 66, 69, 70].

In the case of dynamic reconfiguration, the dynamic execution of control instructions
consumes more power. In static scheduling, all possible paths, even the slower ones that
might be taken infrequently during the execution, are scheduled and consumes more
resources. It can be concluded that the design choices depend on the target application
domain. In our case, we opted for a dynamic scheduling approach due to the simple
architecture of the PEs. All architectural decisions are driven by the energy consumption
of the modules implemented in PEs, including low power consuming controllers for
fetching new instructions.

16

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

2.4 CGRA Architecture

Parallel Processing

With the availability of the number of cores of a CGRA, it is recognizable to implement
support for different types of parallelism. In [65, 66], dynamic scheduling is implemented
through a distributed event-based control mechanism, and thus implementing Thread
Level Parallelism (TLP) is relatively simple and cheap. In this case, the execution
of independent small loops (with a combined resource can fit) on the CGRA can be
mapped on different parts of the distributed control resource. A different approach
is to design an architecture with centralized control mechanism where parallel threads
can run by implementing additional controllers or extending the central controller to
support the execution of parallel threads concurrently. Such extensions can increase
power consumption but might be suitable for certain code parts by saving datapath
energy and energy consumed while fetching configuration data.

Alternatively, TLP can be converted into a combination of Instruction Level Parallelism
(ILP) and Data Level Parallelism (DLP). At compile time, such a combined approach
can exploit kernels with multiple threads by scheduling those threads together as one
kernel and then selecting the appropriate combination of the scheduled kernel at run
time [71].

In our CGRA, parallel processing is achieved by combining the implementation of ad-
ditional controllers in hardware and exploitation of ILP and DLP in the kernels.

Interconnect Network

The type of reconfiguration scheme plays an essential role in the selection of intercon-
necting networks. Interconnect networks are required in both phases of execution in
CGRAs, i.e., (1) configuration phase, where a network is required to distribute the in-
structions to each core, and (2) compute phase, where a network is required to route the
data flow. PEs of a CGRA can be interconnected in a wide range of connections (1) with
direct connections (i.e., interconnect network), (2) with Register Files or other memo-
ries, and (3) with IO ports. In ULP architectures, energy efficiency is the main focus,
and low power networks could be implemented to achieve the low-power consumption
goal.

In the case of dynamic reconfiguration, if there is a centralized configuration network,
then the network for configurations or instructions is accessed as frequently as the net-
work for data flow by the cores of CGRA. In such a scenario, merging the two networks
could be a convenient choice and the use of proper routing of data and instructions can
avoid conflicts due to shared resources. If there is no centralized configuration memory,
then it may result in high power consumption due to the implementation of separate
networks for configurations and instructions.

In the case of static reconfiguration, a network dedicated for configuration phase is

17

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 2 Related Work

used once per execution cycle, and a network dedicated for compute phase is used
extensively, depending on the kernel. A low-cost interconnect network (like 2D mesh)
should be implemented to obtain high energy efficiency in such a scenario.

Register Files

Compilers for CGRA schedule the operations and their respective data flow is routed
over the connections between the PEs. These connections could be direct or latched,
or connections that go through RF, depending on the type of operations are being
scheduled. So, most compilers treat RFs as interconnects that can span over multiple
cycles instead of temporary storage. Thus, RFs in between cores of a CGRA are included
during design space exploration for interconnects. During such routing, (1) the number
of interconnecting wires, (2) their topology, i.e., RF size, (3) their location, and (4) the
number of ports contribute to determining the interconnectivity of cores of a CGRA.

Instruction Set Architecture

Implementing simple Instruction Set Architecture (ISA) could help minimize the cost
of instruction fetching and decoding due to simple decoder design and also leads to the
simple hardware design of the cores of CGRA, resulting in low-power consumption.

For example, a 32-bit ISA of RISC-V encodes a lot of information in each instruc-
tion. To execute an operation, the RISC-V core fetches 32-bit instruction and applies
a complex decoder to decode the already fetched instruction. This gives a little room
for optimization in the instruction fetch and instruction decode stage of the pipeline
architecture of the RISC-V core. In the case of conditional instructions, most of the
instruction space is non-utilized which also results in unavoidable power consumption
due to fetching and decoding of 32-bit instruction where most of the instruction bits
are zeros. While a simple ISA implementation with less number of bits (like 21-bit ISA
of the proposed CGRA) can avoid such a complex decoder or fetching of instructions
with large unused spaces (i.e., in case of conditional instructions), resulting in relatively
low-power consumption than the RISC-V core featuring 32-bit ISA.

2.5 CGRA with FP support

CGRAs can efficiently exploit both Data Level Parallelism (DLP) and Instruction Level
Parallelism (ILP) in a Digital Signal Processing (DSP) application because these archi-
tectures take advantage of the execution pattern characterized by repeated execution
of a combination of operators like addition, subtraction, and multiplication. Mainly,
DSP applications demand sharing or shifting of immediate data with the neighboring

18

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

2.6 Compiler support

entities, which CGRAs can efficiently execute by featuring cheap MOV E operations
due to simple cores and interconnect networks.

Real-world DSP applications are rapidly evolving and demand a more complex execution
pattern than ever. These applications also demand FP operations to satisfy the wide
dynamic range of the input/output data. In addition, recent CGRAs lack the flexibility
to efficiently execute such demanding, complex execution patterns and support for FP
operations. Microcontrollers like M4 and M7 [43] feature FP units and have been
implemented below 40nm process node. Their cost of executing FP operation is near
1pJ [44, 45], demonstrating that cost-efficient implementation of FP operators in IoT
devices is attainable.

Very few works have been demonstrated where a CGRA is featuring support for FP
operations. These reconfigurable/programmable architectures are limited with low ILP
and/or low DLP while adding support for FP operations. Imagine [38] is one of the
early programmable architectures that featured FP unit hardware for single-precision
FP operations, and the execution model of Imagine follows data streaming. RASP [39] is
a DSP architecture featuring an array of coarse-grain computing elements with support
for single-precision FP operations. RASP can efficiently execute sub-algorithms of filters
applied in radar signal processing, namely, FFT, IIR, and matrix-multiplication, to help
improve the overall computational efficiency of the radar system. Imagine and RASP
lack the capability to execute an entire application, while the proposed CGRA can
efficiently execute a whole application.

FloRA [40] and Wave CGRA [11] adopted a different approach of combining the integer-
based operators to perform FP computations, resulting in a complex execution model,
increased interconnect width, and degraded output quality. Another such architecture is
Butter array [41], which combines integer-based addition, multiplication, and additional
units for packing and rounding the output, resulting in extra area overhead and a lack of
native FP support. An approach to converting FP workloads into fixed-point workloads
before computing output is SDT-CGRA [42], which features a flexible interconnect
network to support multiple computation models with reduced hardware complexity but
the conversion of all FP inputs into fixed-point before the output is calculated brings
a significant overhead and loss of accuracy. In conclusion, all of these architectures are
too demanding in terms of power consumption to be considered for IoT end nodes or as
ULP architecture.

2.6 Compiler support

Compiler plays a crucial role in determining the efficiency of a CGRA because a com-
piler inputs a human-readable application code to produce the target machine code
(bit-stream). While compiling, a compiler faces challenges like (1) producing code ac-
cording to the level of granularity of the target hardware system or (2) maintaining
high utilization of the cores (with efficient exploitation of algorithmic parallelism) in

19

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 2 Related Work

the CGRA array.

Typically, dataflow languages expose the potential parallelism of any application. Still,
while generating required machine code for parallel General-Purpose-Processors (GPPs),
the compiler considers the overall dataflow network of the application only (i.e., Data
Flow Graph of the application). Due to such considerations by the compilers, potential
parallelism extracted from the internals of the code is left out (i.e., a loop structure,
pipelining of intra-agents, or task splitting and rescheduling). Allowing a CGRA com-
piler to exploit both ISA and micro-architecture of the CGRA enables the CGRA com-
piler to efficiently optimize the application to obtain maximum performances from the
target CGRA.

A CGRA compiler could efficiently exploit architectural support of multilevel parallelism
(i.e., data, instruction, memory, speculative, and thread) to obtain higher utilization of
the cores in the CGRA array. Still, there are substantial trade-offs that must be taken
into account. For instance, superscalar processors are more efficient by dispatching mul-
tiple instructions per clock cycle than scalar processors (Single Instruction Single Data
processors). Hence superscalar processors can efficiently utilize ILP; multi-core proces-
sors are more efficient than superscalar ones due to the efficient utilization of Thread
Level Parallelism (TLP); out-of-order processors exhibit better performance than in-
order processors due to efficient utilization of speculative parallelism. In CGRAs, a
good trade-off between area and power can lead to the implementation of efficient par-
allelism because when area and power overheads counterbalance the (latency) perfor-
mance gain, the area efficiency and energy efficiency are degraded. Such degradation
depends on both applications and architectures.

TRIPS [23] is a CGRA architecture that supports three modes of execution to support
various parallelism (i.e., DLP, ILP, and TLP) [72]. Another example is Polymorphic
Pipeline Array [73], which supports fine-grained parallelism by exploiting ILP and TLP
with the help of software pipeline and coarse-grained pipeline parallelism. CGRAs pre-
sented in [74, 75, 76, 77] exploit a technique of software pipelining to explore coarse
granularity of loop-level or kernel-level parallelism but pipelining of operations or in-
structions does not comply with the typical characteristics of CGRAs because CGRAs
mainly rely on energy-efficient spatial computations instead of time-multiplexed instruc-
tion or operation pipelines. Such CGRAs are specifically proposed to counter out-of-
order processors which dynamically exploit ILP in hardware. CGRAs like [23, 30, 78,
79, 80] use spatial computation model to implement ILP. In this technique, order of
execution and data preparation is done by static scheduling of a DFG. This technique
is also used to accommodate multiple DFGs on a single array. Domain-specific CGRA
like [22, 31] implement DLP in Single Configuration Multiple Data (SCMD) manner to
reduce area and power overheads due to fetching of same instructions for multiple-data,
i.e., provides a programmable interface to minimize memory accesses and bypass redun-
dant address generation. CGRAs with centralized control schemes are presented in [80,
81, 82, 21] where execution and reconfiguration of all cores of CGRA occur in lockstep,
i.e., using a large configuration to reduce energy consumption and maximize resource
utilization. However, integrating such CGRAs into a larger (hierarchical) CGRA could
result in a CGRA with coarse-grained TLP.

20

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

2.7 Heterogeneous Computing Systems

On the other hand, in [83], a distributed control scheme has been implemented in a
CGRA to execute multiple tasks simultaneously. Dataflow technique can be exploited
to implement TLP in CGRAs like TRIPS [23] which uses static dataflow to enable spa-
tial parallel execution of multiple DFGs, and CGRAs like SGMF [79] which exploits
dynamic dataflow to execute multiple DFGs in an overlapping manner. TFlex [84]
is a pipelined CGRA that implements speculative parallelism by introducing a predi-
cate/branch predictor that uses all predicates in a block (i.e., code in both True and
False paths of a condition statement) next block. In TFlex, if there is a misprediction,
then the speculative block is flushed from the pipeline.

The compiler support used for the proposed CGRA plays a crucial part by provid-
ing quick and efficient mapping solutions for the target applications for the proposed
CGRA. The mapping process is automated through a software tool implemented us-
ing an Eclipse-based modeling framework and code generation solution called Eclipse
Modeling Framework (EMF) [85, 86]. The compiler shares a common framework with a
High-Level Synthesis (HLS) tool called GAUT [87]. The contributions of this thesis to
the existing compilation flow [88, 80, 89, 90] are (1) adding support for custom FP for-
mats and multi-cycle operation support, and (2) decouple the data required for address
generation from the mapping process and encode the data in the generated instructions
that are to be decoded by a dedicated hardware module to calculate the corresponding
address in the CGRA during execution.

2.7 Heterogeneous Computing Systems

A series of work has been presented on PULP-Cluster [91] extended with hardware accel-
erators to combine general-purpose computing with domain-specific processing capabil-
ities. Flumine [5] is a PULP architecture [91] based SoC featuring four OpenRISC [92]
ISA-based GPPs and two cluster-coupled hardware accelerator engines, namely, HWCE
and HWCRYPT. Both engines can directly access the coupled data space as of the GPPs.
The engines are used in an inter-leaved form that allows each engine to access the data
space with zero-copy data exchange with other processing elements on the cluster. The
architectural solution of combining GPP and hardware accelerators, presented in Flu-
mine, demonstrated improvements of more than one order of magnitude in energy and
time w.r.t. a purely software-based solution. NeuroCluster [3] is a many-core platform
featuring RISC-V-based GPPs and co-processors (NeuroStream) to offer a scalable and
energy-efficient processor-in-memory solution to compute deep convolution networks.
NeuroCluster achieved 3.5× better energy efficiency w.r.t. a GPU implemented in a
similar process node. XNOR Neural Engine (XNE) [4] is a flexible hardware accelerator
for binary neural networks integrated into a microcontroller system for edge computing
and is implemented in a 22nm process node. XNE achieves 21.6 fJ/Op at 0.4V, and
XNE is also able to execute SoA ResNet-34 under 2.2 mJ/frame at 8.9 frames/second.
A heterogeneous cluster featuring RISC-V-based GPPs and a 32-bit integer datatype
compatible programmable accelerator is presented in [6]. The heterogeneous cluster can
surpass a similar homogeneous cluster (i.e., cluster featuring GPPs only) by 4.8× in

21

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 2 Related Work

latency and 4.5× energy-efficiency performances while executing a wide range of DSP
applications.

The heterogeneous cluster presented in this thesis explores the design space with differ-
ent configurations of combining multi-core 32-bit RISC-V-based CPUs enhanced with
ISA supporting SIMD-Style vectorization and support both IEEE 754-2008 standard
FP formats and custom smallFloat formats and proposed CGRA with 4x4 PE array
featuring multiple optimization techniques to pull off the highest performances from the
heterogeneous cluster in terms of latency, power, and area.

2.8 Summary and Concluding Remarks

In this chapter, a series of topics which act as the related work for this thesis are
discussed, i.e., (1) an overview of the taxonomy of architectures highlighting the ar-
chitecture options for Digital Signal Processing applications, (2) different low-power
architectures featuring FP support, (3) an emerging paradigm of approximate com-
puting called Transprecision computing, (4) CGRA architecture, (5) CGRA with FP
support, (6) Compiler support for CGRA, and (7) PULP-SoC architecture-based multi-
ple heterogeneous computing systems. In the next chapter, the background of the work
presented in this thesis is presented.

22

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 3

Background

Contents

3.1 Integrated Programmable Array 23

3.2 Flynn’s taxonomy . 25

3.3 Eclipse Modeling Framework 25

3.4 CGRA Compiler . 27

3.5 Transprecision Computing based Floating-Point Units . . . 29

3.5.1 smallFloat Unit (SFU) . 29

3.5.2 Transprecision FPU (TP-FPU) 30

3.6 PULP Architecture . 32

3.7 Summary and Concluding Remarks 36

This chapter discusses the background work, particularly, topics of (1) architecture
of Integrated Programmable Array which lays the basis of the proposed CGRA, (2)
Flynn’s taxonomy (3) Eclipse Modeling Framework, (4) Compiler support for proposed
CGRA, (5) Transprecision computing-based Floating-Point units, and (6) PULP archi-
tecture [91] are discussed, which provide a foundation of the research work presented in
this thesis.

3.1 Integrated Programmable Array

Integrated Programmable Array (IPA) is an energy-efficient CGRA accelerating ultra-
low-power domain application featuring 32-bit integer datatype [6, 80, 90]. IPA features
a 4x4 PE array (Figure 3.1) and provides an architectural template for the proposed
CGRA in this thesis. PEs are interconnected via a simple 2D mesh torus interconnect
network and share data with the host CPU through the Tightly Coupled Data Memory
(TCDM). Global Context Memory stores the context and data that the IPA Controller
distributes before the start of execution in IPA. IPA is evaluated using various ultra-low-
power domain applications executing 32-bit integer operations. IPA is able to achieve an

23

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 3 Background

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

DMA Controller

Global Context

Memory

Logarithmic Interconnect

TCDM Banks

Figure 3.1: Integrated programmable Array integrated system

average performance of 507 MOPS and an average energy efficiency of 142 MOPS/mW
at an operating voltage of 0.6V. IPA is able to surpass a RISC-V-based GPP, namely
or10n [93] by 6× in terms of latency performance and 10× in energy efficiency. Below
are the short descriptions of the components of the IPA sub-system.

Context Memory

Context Memory stores the configuration data for the PEs. Before computation in the
PEs array, the configuration data are loaded to their respective PEs through a bus
network. Depending on the PE array size, the Context Memory is sized adequately to
fit two configuration data.

Direct Memory Access Controller

Direct Memory Access Controller (DMAC) fetches context and data from Context Mem-
ory and loads them onto their respective PEs. DMAC is an FSM that decodes the
configuration data to determine the number of instructions and constants for each PE
and redirects them to their respective PEs. After context data has been loaded in their
respective PEs, DMAC initiates a signal to start execution in the PE array. DMAC also
handles the synchronization between CGRA and the host CPU.

24

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

3.2 Flynn’s taxonomy

TCDM and Logarithmic Interconnect

TCDM consists of multiple memory banks and is connected to the processing elements
(i.e., CGRA and host CPU) through a high-throughput ultra-low-latency interconnect
network [94]. Both sub-systems (i.e., CGRA sub-system and Host CPU sub-system)
share data through TCDM.

3.2 Flynn’s taxonomy

Flynn’s taxonomy [95] categorizes parallel computer architectures into four classes.
These are

1. SISD (single-instruction stream-single-data stream), i.e., a simplex overlapped pro-
cessor is limited by data dependencies,

2. SIMD (single-instruction stream-multiple-data stream), i.e., a master instruction
is applied over a vector of related operands, and SIMD processors are efficient
when a common data storage is used,

3. MISD (multiple-instruction stream-single-data stream), i.e., specialized streaming
organizations using multiple-instruction streams on a single sequence of data and
such kind of organizations are not useful anymore, and

4. MIMD (multiple-instruction stream-multiple-data stream), i.e., multiprocessors.

3.3 Eclipse Modeling Framework

Eclipse Modeling Framework (EMF) [85, 86] evolved around the idea of object-oriented
modeling. EMF is a Java framework and code generation facility for rapidly building
tools and applications based on a structured data model. EMF transforms the data
models into well-organized, correct, and simple customizable Java code. Figure 3.2
represents the basic elements of the EMF model and the references used to generate a
Java implementation. Mainly, a model is created and defined in Ecore format. Ecore
is the subset of Unified Modeling Language 1 (UML) Class diagrams and Java code is
generated from an Ecore model.

1Unified Modeling Language (UML) is a visual language or a general-purpose modeling language.
UML aims to define a standard technique to visualize the design of a system. UML consists of a set
of developed diagrams to help developers specify, visualize, construct, and document the product
of software systems [96].

25

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 3 Background

Class1

a�ribute1 : String

a�ribute2 : int

Two-way reference

One-way reference

Containment

reference

Genera�ng class

with super class

One-Class

EMF Model

Class2

a�ribute3 : String

One-Class

EMF Model

Class1

a�ribute1 : String

a�ribute2 : int

Class2

a�ribute3 : String

Class1

a�ribute1 : String

a�ribute2 : int

Class2

a�ribute3 : String

Class1

a�ribute1 : String

a�ribute2 : int

Class2

a�ribute3 : String

1

2

3

4

Figure 3.2: EMF model elements

In Figure 3.2, a single class called Class1 with two attributes: attribute1 of type String
and attribute2 of type int is shown. There are four types of references used in the EMF
model of Control and Data Flow Graph (CDFG) for generating Java implementation.
These references represent the association between the two classes.

1. One-way reference expands Class1 with Class2, and this type of reference is used
to access Class2 from Class1 (i.e., one-way access).

2. Two-way reference removes the access exclusivity between the classes and defines
the two-way relationship between two classes that is navigable both ways.

3. Containment reference is one of the important types of association because a con-
tainment reference identifies the parent or owner of a target instance.

4. Inheritance in EMF is represented by the fourth arrow in Figure 3.2. Inheritance is
used to extend the definition of a superclass (Class2) by inheriting another subclass
(Class1) and also to override the definition of methods from a superclass. In Java,
there are three rules for inheritance, i.e. (1) a class can inherit from only one class,
(2) an interface (i.e., collection of all abstract methods in a class) can inherit from
other interfaces, and (3) a class can implement multiple interfaces. Inheritance in
EMF is more permissive than in Java. However, Java code generated using the

26

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

3.4 CGRA Compiler

EMF model always respects these rules of Java.

3.4 CGRA Compiler

In the compiler, (1) CGRA is modeled as a bipartite directed graph with the operator
and register nodes. (2) An application is modeled as a Control and Data Flow Graph
(CDFG), which itself is a Control Flow Graph (CFG) where building blocks are called
Basic Blocks (BB), and each BB is a Data Flow Graph (DFG). A DFG is a bipartite
directed acyclic graph made up of operation and data nodes, and arrows connecting the
nodes in the DFGs represent the data dependencies. (3) The homomorphism between
the CGRA model and DFG drives the problem of mapping application onto CGRA as
a sub-graph finding problem. Each of these three parts is discussed below.

CGRA Model

CGRA is modeled as a bipartite-directed graph with the operator and register nodes. A
time extended model [77] of CGRA is used to determine the timing from the connection
between operator and register nodes. There are two types of operator nodes in the
CGRA, i.e., (1) nodes representing arithmetic and logic operations (+, -, *, AND,
OR, etc.) or/and memory operations (LOAD and STORE), and (2) memorization
operator [90] (memorization node is correlated to a register and represents the operation
of explicitly retaining a value in a local register).

In Figure 3.4, a 2x1 PE array is shown with three regular registers, an ALU, and an
output register. Not all connections are illustrated for simplicity, and the PEs are
connected via a mesh torus interconnect (See Figure 4.1). Mapping of applications onto
CGRA is discussed later in this section with the help of this CGRA model and an
equation (See Figure 3.4).

Application Model

An application is modeled as a Control and Data Flow Graph (CDFG) and featuring
support for the execution of control flow in CGRA makes the proposed CGRA execute
a complete application without involving a host processor to process any underlying
control statements.

A CDFG combines (1) Control Flow Graph (CFG) i.e., Graph G = (V,E), where
V = { v1, v2, ... vn } is a finite set of nodes and E ⊂ VxV is a control flow rela-
tion of directed sequence edges, and (2) Data Flow Graph (DFG) or BB i.e., Graph

27

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 3 Background

int i;

int A[10], B[10], C[10];

int OUT = 0;

for (i=0; i<10; i++)

{

 if (OUT <= 0)

OUT = (A[i] * B[i]) + C[i];

 else

OUT = (A[i] * B[i]) - C[i];

}

BB-1

i=0;

OUT=0;

BB-2

i<10;

BB-7

EXIT

BB-3

OUT <= 0;

BB-6

i++;

BB-4

OUT = (A[i] * B[i]) + C[i];

BB-5

OUT = (A[i] * B[i]) - C[i];

JUMP

 C-JUMP -> FALSE

C-JUMP -> TRUE

C-JUMP -> TRUE

C-JUMP -> FALSE

JUMP

JUMP

JUMP

Figure 3.3: Application to CDFG

G = (V,E), where V = { v1, v2, ... vn } is a finite set of nodes and E ⊂ VxV is an
asymmetric data flow relation of directed data edges.

Figure 3.3 shows the CDFG representation of a sample kernel. A rectangle represents
each BB, and the flow from one BB to another is represented by an arrow which is lead
by a simple JUMP operation. In the case of conditional-JUMP or (C-JUMP), there
are TRUE and FALSE paths as shown in the Figure 3.3. The execution of CDFG is
as follows:

BB 1 → { either BB 2 (START LOOP) or BB 7 (EXIT LOOP) } ; if BB 2 → BB 3
→ { either BB 4 or BB 5 } → BB 6 → BB 2 (START LOOP)

Such execution flow is preserved by executing the BBs in synchronization, i.e., while a
BB is being executed, all PEs are engaged in executing the current BB. At the end of a
BB, all PEs are synchronized, i.e., before a JUMP or C-JUMP statement, which allows
all PEs to execute concurrently or sequentially. This makes a PE engaged in executing
several BBs at different timestamps by mapping multiple operations and data onto a
PE.

28

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

3.5 Transprecision Computing based Floating-Point Units

OUT = (A*B) + C

#1 PE_00 LOAD R1 B

#1 PE_01 LOAD R1 A

#2 PE_00 MUL R2 R1 NS

#2 PE_01 LOAD R2 C

#3 PE_00 ADD OPR R2 NS

#4 PE_00 STORE OUT

ALU OPR

R1

R2

R3

ALU OPR

R1

R2

R3

Cycle #1

Cycle #2

Cycle #3

Cycle #4

LOAD LOAD

LOAD

STORE

ADD

MUL

A B

C

OUT

PE_00

PE_01

Data Dependency

Mapping

Figure 3.4: Mapping of BB 4 (See Figure 3.3) onto 2x1 CGRA model and outline of the
generated assembly code

Homomorphism

The two graphs, i.e., (1) DFGs in CDGF and (2) CGRA model, represents two homo-
morphic systems. First, DFG has three elements, i.e., (1) operation nodes, (2) data
nodes, and (3) data dependencies and second, the CGRA model has three elements,
i.e., (1) operators, (2) registers, and (3) connection between time extended PEs. As the
two models are homomorphic, the compiler treats the mapping problem as a sub-graph
finding problem [97, 89, 90], i.e., finding a DFG in the CGRA model graph. Figure 3.4
shows the mapping of a BB 4 from Figure 3.3 over 4 clock cycles using a 2x1 PE array.

3.5 Transprecision Computing based Floating-Point
Units

3.5.1 smallFloat Unit (SFU)

Figure 3.5 shows the architecture of smallFloat Unit (SFU). SFU is a transprecision FP
unit capable of executing binary16alt and binary8 operations in addition to standard
binary32 and binary16 operations [61]. SFU is evaluated using an SoC for ultra-low-
power transprecision computing extending the PULPino [48] microcontroller architec-
ture with SFU integrated into the RI5CY processor core [1]. Using precision tuning and
vectorization, SFU is able to achieve 12% latency improvements and reduce the memory

29

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 3 Background

32-bit Operand_A

32-bit Operand_B

1x 32-bit Operand_A

1x 32-bit Operand_B

2x 16-bit Operand_A

2x 16-bit Operand_B

4x 8-bit Operand_A

4x 8-bit Operand_B

32-bit FP

Operators

16-bit FP

Operators

16-bit FP

Operators

8-bit FP

Operators

8-bit FP

Operators

8-bit FP

Operators

8-bit FP

Operators

Result

Output Data Selec�on

Data Distribu�on and Operand Selce�on

SFU

Figure 3.5: smallFloat Unit

accesses by 27% on average while executing FP-intensive benchmarks w.r.t. the system
executing standard FPs only. SoC is also able to consume 30% less energy by leveraging
the knobs provided by the SFU w.r.t. only executing standard FP operations.

3.5.2 Transprecision FPU (TP-FPU)

Transprecision Floating-Point Unit (TP-FPU) is a configurable open-source transprecision
FP computing FPU shown in Figure 3.6 that is capable of executing 64-bit, 32-bit FP,
16-bit FPs, and 8-bit FP formats [56]. FPnew is capable of executing both scalar and
SIMD-vectorized FP arithmetic and casting and packing operations.

TP-FPU Top Level

Figure 3.6a shows the top level of TP-FPU. TP-FPU can input a maximum of three FP
operands per clock-cycle, alongside the control signals to determine the operation and
format(s) required. An output leaves the unit along with a status flag augmented by the
current FP operation according to IEEE 754-2008 standard. According to the class of
instruction, input operands are routed to their respective operation group blocks. Out-
put is collected through arbiters which takes the calculated results from the operation
group blocks. During this process, unused operation group blocks are either clock-gated
or datapath-gated to silence the unused branches in the TP-FPU.

30

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

3.5 Transprecision Computing based Floating-Point Units

ADD

MUL
CONV

DIV

SQRT
COMP

Fair Round-Robin Arbitra�on of Outputs

Distribu�on and Silencing of Unused Operands

FPU Top Level

Operand Input

Result and Status Flags Output

M

S

M

S

M

S

M

S

Opera�on

Group

Block

Opera�on

Group

Block

Opera�on

Group

Block

Opera�on

Group

Block

(a) TP-FPU Top Level

Format

1

Mul�ple

Formats

Format

2

Format

n

Fair Round-Robin Arbitra�on of Outputs

Distribu�on and Silencing of Unused Operands

Opera�on Group Block

M

S

M

S

Parallel

Slice

Parallel

Slice

Parallel

Slice

Merged

Slice

(b) Operation Group Block

FMA FMA FMA

Vector Packing (Fixed Wiring)

Silencing of Unused Vector Lanes

Parallel Slice

Vector

Lane 1

Vector

Lane 2

Vector

Lane k

One Format

(c) Parallel Slice

Mul�

FMA

Mul�

FMA

Mul�

FMA

Vector Assembly (Format-Dependent)

Vector Disassembly & Lane Silencing

Merged Slice

Vector

Lane 1

Vector

Lane 2

Vector

Lane k

Mul�ple Formats

(d) Merged Slice

Figure 3.6: TP-FPU [56] and its underlying hierarchical blocks. M = Master port ; S
= Slave port

Operation Group Blocks

Figure 3.6b shows the organization and datapath of an operation group block. There
are four operation group blocks in TP-FPU that are:

1. ADDMUL: addition, multiplication, and fused-multiply-add (FMA)

2. DIVSQRT : division, and square-root

3. COMP : comparison, and bit-manipulation

4. CONV : conversions among FP formats, and to/from integers

Each of these blocks features an independent datapath for their respective operations.
In the case of a block featuring multiple FP formats operators, the blocks can feature
multiple format slices that are instrumented either as parallel slices (i.e., specific to for-
mats) or merged slices (i.e., for multiple formats). Figure 3.6c shows the organization in

31

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 3 Background

a parallel slice that can only host one single FP format and allows flexibility to efficiently
implement respective format operators but at the cost of increased total area. Unused
format slices are clock-gated to reduce switching activities in those slices. Figure 3.6d
shows a merged slice that can host multiple FP formats, which reduces their flexibility
but decreases the total area by sharing hardware.

Silicon Implementation

Silicon implementation of a single-core SoC platform based on RI5CY core integrated
with TP-FPU is done using a 22nm process node. The experiment results showed that
while executing a multi-format application kernel, with adaptive voltage and frequency
scaling, TP-FPU is able to achieve energy efficiencies between 178 Gflop/sW (on IEEE
64-bit) and 2.95 Tflop/sW (on binary8), and a latency performance between 3.2 Gflop/s
and 25.3 Gflops/s.

3.6 PULP Architecture

This section reviews the architecture of PULP SoC, particularly PULP architecture
based a silicon-proven SoC design called Mr. Wolf [2]. SoC design includes two separate
voltage and frequency domains [91, 2] :

1. SoC domain featuring a RISC-V CPU, L2 memory, ROM, and peripherals.

2. Cluster domain including tightly coupled multiprocessors.

SoC Domain

Figure 3.7 shows the block diagram of PULP Soc with focus on SoC domain. SoC
domain features a microcontroller unit (MCU) built around 512KiB of L2 memory and
a two-pipeline stage RISC-V processor (called zero-RI5CY [98]), referred to as Fabric
Controller (FC). FC is optimized for low power consumption and implements RV32IMC
RISC-V ISA [99]. FC includes a 32-bit integer-based sequential multiplier with a latency
of 3 clock cycles and a 32-bit integer-based divider with a latency of 35 clock cycles.
The processor configuration presents a trade-off between power and performance while
performing control-oriented tasks, i.e., IO management [98].

SoC features a full set of peripherals that are also found on advance MCUs, i.e., a parallel
camera interface, Quad Serial Peripheral Interface (SPI), Universal Asynchronous Re-
ceiver/Transmitter (UART), Inter-Integrated Circuit (I2C), General-Purpose Input/Out-

32

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

3.6 PULP Architecture

448KB SHARED 4 PORTS 4 BANKS

L2 MEMORY

32KB

1 PORT

32KB

1 PORT

8KB

BOOT ROM

MULTIPORT INTERLEAVED

LOW LATENCY INTERCONNECT

APB BRIDGE

AXI SLAVE

AXI MASTER

PARALLEL

COMPUTING

CLUSTER

APB PERIPHERALS

PMU RTC

RISC-V CPU

(FC)

uDMA COREPERIPHERALS

DEBUG

BRIDGE

G
P

IO
s

FLL

I D

Slave

Port

Master

Port

Figure 3.7: PULP SoC block diagram detailing SoC domain

put (GPIO), four Inter-IC-Sound (I2S), four-channel Pulse Width Modulation (PWM)
interface, and a Joint Test Action Group (JTAG) interface for debugging.

FC, peripherals, IO, and parallel computing cluster share data through L2 memory. To
perform efficient sharing of data among all functional units, a double-buffering mech-
anism is employed, i.e., overlapping of data transfers from peripherals and L2, and L2
to L1 memory, which results in high computing efficiency. To increase the access band-
width of L2 memory and minimize the conflicts during parallel accesses through the
six master ports present in the L2 memory interconnect (i.e., FC, µDMA, and parallel
computing cluster), the L2 memory is organized in the following way:

• 448KiB memory arranged as four 112KiB word-interleaved logic banks, and

• two 32KiB private banks.

Splitting of each logic bank in L2 memory into eight physical memory banks allows
power-gating of each bank and implements an incremental state-retentive mechanism.
Each master in the PULP SoC can access all memory locations, as single address space
is organized in the memory hierarchy. This eases the overall programmability of the
system.

FC does not have instruction cache, so data and instruction accesses from FC need to be
private and fast. When FC is active, a bandwidth of 3.2Gbps at 100MHz is available at
the instruction port. If such bandwidth from shared memory is dedicated to FC, then
this would degrade the performance of both FC and resources sharing data through L2
memory. To avoid such degradation, two 32KiB private banks are provided for FC to

33

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 3 Background

TCDM Banks

TCDM Interconnect

DMA

RI5CY cores

I$ Cache

L2 memory

S
o

C
 B

u
s

(A
X

I4
)

ROM

I/O

P
e

ri
p

h
e

ra
l

In
te

rc
o

n
n

e
ct

Instruc�on Bus (AXI4)

C
lu

st
e

r
B

u
s

(A
X

I4
)

B
ri

d
g

e

D
C

 F
IF

O
s

+
 l

e
v

e
l

sh
i�

e
rs

FLL

Parallel Compu�ng Cluster

FPU Cluster

B
ri

d
g

e

A
P

B
 B

U
S

A
X

I
to

 A
P

B

Event Unit

Cluster Control Unit

Cluster Timer

iCache Control Unit

Cluster Peripherals

2* 64-bit

64-bit

2 * 32-bit

2 * 32-bit

32-bit

Figure 3.8: PULP SoC block diagram detailing Cluster domain

use privately for the stack, program, and private data. Such organization reduces the
banking conflicts and improves the performance of FC (up to 2×) during the execution
of applications involving high memory-intensive computations [2].

Two asymmetric AXI plugs are employed for connection with the parallel computing
cluster, which are

1. a 64-bit wide for cluster-to-memory communication, and

2. a 32-bit wide for FC-to-cluster communication.

These asymmetrical plugs are implemented to save area because FC is the only master
in the SoC domain that can generate up to 32-bit blocking transactions. DMA present
in the cluster domain handles the high bandwidth data transfers through the 64-bit wide
plug, which is connected to the AXI bus in the parallel computing cluster. Apart from
high performance interconnect, PULP SoC also employs a low-cost APB subsystem for
accessing the configuration registers of the different SoC IO peripheral IPs, i.e. (1)
pad GPIO and multiplexing control, (2) timer, (3) clock and power control, (4) PWM
controller, and (5) µDMA configuration port.

34

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

3.6 PULP Architecture

Cluster Domain

Figure 3.8 shows the block diagram of PULP SoC with focus on Cluster domain. The
parallel computing cluster is turned on and adjusted to the required voltage and fre-
quency in the event of FC encounters highly intensive computation tasks and offloads
them onto the cluster domain.

Parallel computing cluster includes eight RISC-V cores implementing the RVC32IMF
instruction set [99], extended with custom instructions targeting energy-efficient digital
signal processing, called Xpulp [48]. There are two sets of extended instructions, which
are:

1. XpulpV1 : This set of instructions are easily inferred by the compiler and in-
cludes (1) instructions for hardware loop for accelerating for loop statements, (2)
LOAD/STORE with post-increment for accelerating stepped accesses to tensors
and vectors, and (3) multiply and accumulate (MAC).

2. XpulpV2 : This set of instructions exploits the built-in functions in the kernel code
and includes (1) SIMD instructions dedicated to performing parallel arithmetic
operations on 16-bit and 8-bit data, (2) bit manipulation instructions, and (3)
instructions to support fixed-point arithmetic.

These custom instructions, when compared to a baseline RVC32IMF ISA, have im-
proved the energy efficiency and performance of compute-intensive applications by up
to 11× [2].

Cluster domain enables shared-memory parallel computations by including a 64-bit
multi-banked L1 scratchpad memory, i.e., TCDM. TCDM is composed of 16 4-KiB
SRAM banks and allows parallel memory requests with 1-clock-cycle latency. Such low
latency is achieved by the implementation of a low-latency logarithmic interconnect.
The logarithmic interconnect is characterized by a word-level interleaved design with
round-robin arbitration, which results in a low contention rate [94]. Cluster peripherals
(i.e., cluster timer, event unit, cluster control unit, and iCache control unit) and AXI-
4 bus are accessed using a dedicated peripheral interconnect. A DMA controller is
employed to manage the data movements between TCDM and L2 memory. The DMA
controller supports a 2-dimensional addressing mode and is able to support a maximum
of 16 transactions through the AXI-4 bus to hide the access latency of L2 memory.

The instruction cache (iCache) is implemented using latch-based memory that is able
to save up to 4× the access energy of the instruction memory [100]. The latch-based
design has significant area overhead w.r.t. SRAM-based implementation [100]. This
overhead is compensated by sharing iCache among the cores and thus avoiding replica-
tion of instructions which is typically seen in private cache design employed in multi-core
systems [101].

Apart from the classic software support for fast event management, synchronization, and

35

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 3 Background

parallel thread dispatching, the parallel computing cluster also features an Event Unit
to improve the performance and energy-efficiency of parallel workloads in the cluster
domain. The Event Unit also handles the top-level clock gating of each core. Both the
DMA controller and the Event Unit are connected to the dedicated ports present in
each core for enabling fast and non-blocking accesses. Such design choice prefers the
access to time-critical low-latency interconnect over peripherals.

Configuration Employed for Gate-Level Simulation in the Thesis

PULP-Cluster presented in this thesis features eight 4-stage in-order RISC-V CPUs,
namely RI5CY [48]. The open-source distribution, called PULP Platform [46], includes
a set of IPs written in HDLs, a runtime software stack for low-power hardware support,
and a compilation toolchain. The core design features a clock-gated mode to mini-
mize the static and dynamic power waste while the cores are idle. The cores do not
include a private data cache; instead, PULP-Cluster includes a shared TCDM orga-
nized in 16 word-level interleaved memory banks. These banks are connected through a
non-blocking interconnect network to keep a minimum banking conflict [94]. A private
instruction cache of 512 Byte is included in each core linked up on a shared instruc-
tion bus. L2 memory and peripherals are managed by the DMAC that allows access
through an AXI4-compliant interconnect. Cluster events are managed by an Even Unit,
enabling fast event management, parallel thread dispatching, and synchronization be-
tween cores [2]. This Event Unit also controls Clock-gating between the proposed CGRA
and the RI5CY cores. There is an FPU cluster which the RI5CY cores share, and the
ratio between SFU [61, 56] cores and RI5CY cores is 2:1, and the scheduling of FP
operations is deterministic [14]. In chapter 6, a heterogeneous cluster is introduced to
improve the performance of PULP-Cluster further [91] for near sensor processing and
embedded ML.

3.7 Summary and Concluding Remarks

In this chapter, a discussion on the background work is presented, particularly CGRA ar-
chitecture, Integrated programmable Array [80], Eclipse Modeling Framework, CGRA
compiler, transprecision computing-based FP units, and PULP architecture are dis-
cussed. In the next chapter, a detailed discussion on the architecture of the proposed
CGRA and the different design optimizations are presented.

36

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4

Energy-Efficient Programmable
Hardware Accelerator

Contents

4.1 CGRA Design Optimizations 38

4.1.1 Design 1: IEEE 754-2008 Standard compliant 4x2 PE Array . 44

4.1.2 Design 2: Transprecision FP compliant 4x2 PE Array 46

4.1.3 Design 3: Mixed FP based 4x2 PE Array 47

4.1.4 Design 4: Transprecision FP compliant 4x4 PE Array 47

4.1.5 Design 5: 4x2 PE Array featuring 8-bit integer operators . . . 51

4.2 Computation Model . 54

4.3 Summary and Concluding Remarks 60

This chapter explores the architecture and design optimizations for implementing FP
support in the proposed CGRA. In the past, adding FP support in ULP reconfigurable
architectures imposes many limitations and makes it challenging to keep the FP oper-
ations under the tight ULP power budget. Still, a recent trend to equip IoT platforms
with FP Unit (e.g., microcontrollers like M4 and M7 [43]) has brought down the cost
of an FP operation (under 40nm process node) near to 1pJ/op [44, 45]. This gave a
significant incentive to explore and implement different FP datatype in our proposed
CGRA.

Contribution and Outline of the Chapter

In this chapter, each component of the CGRA sub-system is discussed, along with
different optimization techniques employed in the proposed CGRA to implement FP
support. Below are the highlights of this chapter:

• Implementation of Flexible-Address Generation Unit to decouple software-based
address generation in CGRA.

37

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

• Implementation of Instruction Synchronizer to synchronize between multi-cycle
operations and implement clock-gating between different modules.

• Design 1: Implementation of IEEE 754-2008 Standard compliant FP module in
CGRA.

• Design 2: Implementation of transprecision computing compliant FP module in
CGRA.

• Design 3: A version of CGRA featuring both IEEE 754-2008 Standard FP and
transprecision FP datatype.

• Design 4: Implementation of a highly optimized version of CGRA featuring transprecision
FP datatype for designing a heterogeneous cluster.

• Design 5: Exploration and implementation of 8-bit integer for accelerating Neural
Network (NN) applications.

• Computation Model of the proposed CGRA discussing the mechanism of context
loading and execution.

Finally, a summary and concluding remarks are provided at the end of this chapter.

4.1 CGRA Design Optimizations

In this section, five CGRA design optimizations are presented. All of these designs are
part of design space exploration to add support for energy-efficient FP computations
in ultra-low-power programmable architecture. Particularly, Design choices 1, 2, and
4 implement optimization techniques in an incremental pattern, such that each design
shows better performance and energy efficiency over the previous one. Following are
the overview of the design choices:

1. Design 1 (section 4.1.1) is an attempt to implement SoA IEEE 754-2008 standard
compliant FPU in the CGRA. This addition enabled the support for multi-cycle
operations in the CGRA and the associated toolchain.

2. Design 2 (section 4.1.2) is the first ever 1 implementation of transprecision FP
based FPU featuring two custom FP datatype i.e., 16-bit binary16alt and 8-bit bi-
nary8 in an ultra-low-power CGRA. This addition enabled the support for custom
datatype in the CGRA and associated toolchain.

1to the best of our knowledge

38

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.1 CGRA Design Optimizations

3. Design 3 (section 4.1.3) is an attempt to integrate all the FP datatype operators
into one hardware block. The design space exploration indicated that the resultant
hardware block would not be high-performing or energy-efficient w.r.t. Design 1
and 2 due to the area overheads and lack of fine-grained clock or datapath gating
schemes. This design choice is presented to inform the designers working on the
presented CGRA with a similar configuration as Design 3 to further implement the
optimization techniques required to obtain better performance and higher energy
efficiency from the resulting CGRA design.

4. Design 4 (section 4.1.4) is an iteration of Design 2 that only features binary16alt
operators along with 32-bit integer operators. The CGRA is also integrated into
a parallel computing cluster to present a heterogeneous cluster that exploits both
the CGRA sub-system and multi-core sub-system of the host CPU to pull off the
highest performances from the heterogeneous cluster. This integration is explained
in much detail in chapter 6.

5. Design 5 (section 4.1.5) is an attempt to support an 8-bit integer for accelerating
Deep Neural Network algorithms. Five 8-bit integer operators along with few
optimization techniques have been presented. However, SoA architectures, namely
TPU [47], Tensorflow [102], and NVDLA [103] are far superior architectures w.r.t.
the presented CGRA, and thus no further development of Design 5 is made during
the course of the research work presented in this thesis.

Figure 4.1 represents the organization of the CGRA sub-system consisting of a Pro-
cessing Element (PE) array interconnected via a mesh torus network, a Direct Memory
Access Controller (DMAC), and Context Memory. CGRA is loosely coupled with a
host CPU. Data is shared between two sub-systems through an L1 scratchpad memory
called Tightly Coupled Data Memory (TCDM) and is connected to the processing units
through an interconnected network.

Processing Element

Figure 4.2 shows the organization of a typical PE in the CGRA. To exploit inexpen-
sive data movement in PE array and also to avoid frequent memory operations due to
temporal data, each PE features a Constant Register File (CRF) to reduce the size of
the instructions, a Regular Register File (RRF) to store the temporary values, and an
OutPut Register (OPR). Instructions that are local to a PE are stored in the Instruction
Register File (IRF).

To perform 32-bit integer operations, each PE includes an Arithmetic Logic Unit (ALU).
For FP operations, each PE includes an FP module (different design optimizations im-
plement different versions of FP modules). To synchronize between multi-cycle opera-
tions, PE also features an Instruction Synchronizer (IS). PEs that feature Load-Store
Unit (LSU), a Flexible-Address Generation Unit (Flexible-AGU), is glued to every LSU
for hardware-based address generation. Each PE can directly share data with their

39

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

PE_00 PE_01 PE_02 PE_03

PE_10 PE_11 PE_12 PE_13

PE_20 PE_21 PE_22 PE_23

PE_30 PE_31 PE_32 PE_33

Host CPU

I$ Cache

SoC Bus

DMAC

Context Memory TCDM Banks

4x4 PE Array Grid

4
x2

 P
E

 A
rr

a
y

 G
ri

d

Figure 4.1: CGRA Integrated System

orthogonally adjacent PEs. Multiple optimization techniques have been implemented
in PEs which are discussed later in this section.

Flexible-AGU

In order to decouple the software based address generation in CGRA, Flexible-AGU is
introduced for hardware based address calculation. This module is compatible with a
Global Index representation i.e.,

Variable [(i + A) * (j + B)] [(k + C) * (l + D)]
where, i,j,k,l are the loop variables (LV) and A, B, C, D are the constant/variables.
This module can handle representing any 1D or 2D array variable in the target domain
applications 2 e.g.
(1) Input[(i+0)*(1+0)][(1+0)*(1+0)] is the representation for Input[i][1] and
(2) Input[(i+0)*(1+0)][(j +0)*(1+0)] is the representation for Input[i][j].

The organization of Flexible-AGU is shown in Figure 4.3, data required for address
calculation is embedded in the LOAD/STORE instruction. Particularly, the essential
information required for calculating the address of an element of an array are (1) the
Base Address of the array and (2) index values. The ISA of CGRA is 21-bit wide and

2Flexible-AGU is a hierarchical design and can be updated to work for 3D array variables.

40

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.1 CGRA Design Optimizations

Controller IS

RRF

LSU

CR ALU

OPR

CRF

Flexible-

AGU

Input_1

Control bits

to all PEs

Cluster Interconnect
To adjacent PEs

IRF

Input_2

From

Context Memory

via DMAC

FPU mSFU

FPU+mSFU tSFU

Design 1 Design 2

Design 3 Design 4

D
e

si
g

n
 5

ALU8

Figure 4.2: Processing Element

can not be included directly in the instruction. This information is stored in the CRF.
The corresponding addresses are embedded in the LOAD/STORE instruction (as shown
in Figure 4.3). Index information is encoded by the assembler, which is as follows:

1. Loop variables are represented in CRF as

MSB 10-bit 8-bit LSB
1/0 START STEP 1/0

where MSB determines if START (10-bit) value is a loop variable (MSB=1) or
a constant (MSB=0) and LSB determines if the STEP (8-bit) value should be
subtracted (LSB=1) or added (LSB=0) from the START value in the next loop
iteration.

2. Index Pair (i.e., (i+A) or (j +B) or (k+C) or (l+D)) lines are represented in CRF
as

MSB 9-bit 10-bit
1/0 LV address/Constant Constant

where, MSB determines if i,j,k or l are loop variables (MSB=1) or a constant value
(MSB=0). In the case of MSB=1, then the 5-bit address of the loop variable is

41

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

LD / STR BA addr Index addr (i+A) (j+B) (k+C) (l+D)

Constant

1/0
LV addr/

constant constant

1/0
LV addr/

constant constant

1/0
LV addr/

constant constant

1/0
LV addr/

constant constant

1/0 START STEP 1/0

1/0 START STEP 1/0

1/0 START STEP 1/0

1/0 START STEP 1/0

JMP Index addr 1/0

Constant

Updated Index+/-

Updated Index

Updated Index

Updated Index

*

*
+ + 32-bit

Address

LOAD/STORE Instruc�on

JUMP Instruc�on

Constant Register File

inside Flexible-AGU

from IRF

from CRF

MSB LSB

Loop Variable Index Pair

Line referenced in

LOAD/STORE

instruc�ons

Constant /

Base Address

Figure 4.3: Flexible-AGU

stored at [15:11] of the Index Pair line.

3. CRF line referenced in the LOAD/STORE instruction contains 5-bit addresses of
the Index Pair lines is represented as

5-bit 5-bit 5-bit 5-bit
(i+A) address (j +B) address (k+C) address (l+D)) address

The values obtained from index-pairs are processed, and finally, Base Address is added
to produce a 32-bit address. JUMP instructions are used to determine which loop-
variable is either updated or reset to the initial value (i.e., START values).

Let’s take a C-code example (Code 4.1) to understand the address generation in the
Flexible-AGU.

int i , j ;
f loat A[2] [3] , B [2] [3] , C [2] [3] ;
for (i = 0 ; i < 2 ; i ++){

for (j = 0 ; j < 3 ; j++){
C[i] [j] = A[i] [j] ∗ B[i] [j] ;

}
}

Code 4.1: Sample C code snippet

To keep it simple, let’s focus on the address generation for A[i][j] with a Base Address
of A=0 (See Figure 4.4b). Particularly, the address is calculated using the formula (for

42

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.1 CGRA Design Optimizations

i j k l
for (i=0; i<2; i++)

for (j=0; j<2; j++)

for (k=0; k<2; k++)

for (l=0; l<2; l++)

} // JUMP(l=2)

} // JUMP(k=2)

} // JUMP(j=2)

} // JUMP(l=2)

 l=l+1

 k=k+1

 j=j+1

 i=i+1

(a) Loop Variables and associated JUMP
instructions

0 4 8 12 16 20

JU
M

P
 f

o
r

(i
=

0
)

JU
M

P
 f

o
r

(i
=

1
)

JU
M

P
 f

o
r

(i
=

2
)

Address ->

A[i][j] -> A[0][0] A[0][1] A[0][2] A[1][0] A[1][1] A[1][2]

Address is

retained
Base Address = 0

(b) Addresses for 2D array using 2 loop
variables

Figure 4.4: Address calculation in Flexible-AGU

a 2D array with row-major ordering).

Address = [{
∑AD

n=1(I ∗ C + J)} * Address Space] + BA

where,
C = Number of Columns in array
I = Row Number
J = Column Number

BA = Base Address
AD = Array Dimension

Address Space = Memory chip is divided into equal parts, called cell and
Address Space is the data space in the cell.
TCDM is word addressable, so,
Address space = Word size (i.e., 4Bytes)

Derived equation from the above formula for calculating address of A[i][j] in Flexible-
AGU is:

Address = Address of A[i][j] before JUMP for previous i value
+ ([(i + 0) * (1 + 0)] + [(j + 0) * (1 + 0)])*4
+ BA

An optimization technique to retain the value of A[i][j] before JUMP for i always
produced correct address generation for variables in the target domain applications.
Implementing this technique also kept the circuit of Flexible-AGU simple, which even-
tually improved the energy efficiency of CGRA. TCDM is word (i.e., 32-bit) addressable
(See section 3.6), variables multiplied by 4. Address for A[0][0] is 0 as all values in the
formula are 0, similarly, addresses for A[0][2] and A[1][0] are 8 and 12 respectively
(See Figure 4.4b). This example can also be extended for address generation for vari-
able using 4 loop variables e.g. A[(i+n1)*(j+n2)][(k+n3)(l+n4)], where i,j,k, and l are
loop variables and n1, n2,n3, and n4 are the constants or variables (See Figure 4.4a).

43

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

FPU

ALU

C
lo

ck
 G

a
te

O
u

tp
u

t
S

e
le

c�

o
n

Opcode[5:0]

MSB

LSB

D
e

co
d

e
r

FSM

(a) Organization of Instruction Synchro-
nizer

NONE

FP DSALU

 A

F

D

AF FD

D1A1

AF1 FD1

F1

AD

AD1

(b) Instruction Synchronizer FSM

Figure 4.5: Instruction Synchronizer

Instruction Synchronizer

To synchronize the inputs and outputs of multi-cycle operations from ALU and FP
modules, an Instruction Synchronizer (IS) is introduced in PE (See Figure 4.5). Fig-
ure 4.5a shows the organization of IS, using last 5 bits of opcode[5:0] (i.e., excluding
MSB) the FSM featured in IS can decode if it is an ALU operation (1 clock-cycle), FP
operation (1/2 clock-cycles), or DS operation (5/8 clock-cycles). FSM also generates a
signal used to select between the ALU or FP module or DS unit output. To optimize
the design, there are two versions of IS, which are (1) FSM with ALU and FP states
(implemented in the PEs featuring ALU and FPU only), and (2) FSM with ALU, FP,
and DS states (implemented in the PEs featuring ALU, FPU, and DS Unit). Later in
this chapter, a technique to clock-gate ALU and FP Units using the MSB (1-bit) of
opcode and involving IS is presented. (See Figure 4.8).

Depending on the decoded opcode, FSM determines its state for synchronizing the op-
erations in a PE. NONE state represents no operation is executing in a PE, ALU state
represents ALU operations, FP state represents FP module operations, and DS state
represents Divide-Square-root Unit operations. In Figure 4.5b, A/F/D and A1/F1/D1
represent the conditions for transitions between ALU/FP/DS state to and fromNONE
state, respectively. Similarly, AD/AF/FD and AD1/AF1/AD1 represent the conditions
for transitions between ALU , FP , and DS states, respectively. When the FSM is in
NONE state, PE is clock gated particularly, if the current state of FSM is in either
ALU or FP or DS state, then clock gate the other modules which are not represented
by the current state in FSM.

4.1.1 Design 1: IEEE 754-2008 Standard compliant 4x2 PE Array

A 4x2 PE array is proposed in the first design optimization, and implicit support for
IEEE 754-2008 FP computing is embedded in the CGRA. Figure 4.1 shows the CGRA

44

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.1 CGRA Design Optimizations

Float Operator
Latency (cycles)

FPU
(32-bit)

mSFU
(16-bit)

mSFU
(8-bit)

tSFU
(16-bit)

Absolute 1 1 - 1
Less-Than 1 1 - 1
Multiply 2 2 2 1

Add 2 2 2 1
Subtract 2 2 2 1
Divide 8 5 - 5

Square-root 8 5 - 5
Fused-Multiply-Accumulate - - - 2

Table 4.1: Latency (cycles) of float operators

ADD

MUL

COMP

ABS

FPU

Input 1
from

RRF

from

CRF
Input 2

from

RRF

from

CRF

32-bit Output

32-bit 32-bit 32-bit 32-bit 32-bit 32-bit

32-bit

32-bit 32-bit 32-bit 32-bit

32-bit 32-bit

Selec�on of Output

Operand A Selec�on Operand B Selec�on

Figure 4.6: FPU and its underlying hierarchical blocks

integrated system, and Figure 4.2 shows the organization of a PE with IEEE 754-
2008 compliant FP Unit (FPU), respectively. PEs are connected through a mesh torus
network for sharing data with orthogonally adjacent PEs and a bus network to broadcast
the context data. Each PE features an FPU, a Load Store Unit, and a Flexible-Address
Generation Unit (Flexible-AGU).

FPU

Figure 4.6 shows the hierarchical blocks present in the FPU. FPU consists of five IEEE
754-2008 compliant FP operators, i.e., float-Absolute, float-Less-Than, float-Multiply,
float-Add, and float-Subtract. Division and Square-root operators are very costly w.r.t.
other FP operators, so a shared Divide-Square-root (DS) Unit is included in the PE
array, i.e., in PE 00. Table 4.1 shows the latency of featured FP operators in FPU.

45

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

ADD

MUL

COMP

ABS

ADD

MUL

mSFU

Input 1
from

RRF

from

CRF
Input 2

from

RRF

from

CRF

Operand A Selec�on Operand B Selec�on

Distribu�on of Operands

Selec�on of Output

32-bit Output

32-bit 32-bit

32-bit 32-bit 32-bit32-bit32-bit32-bit

32-bit 32-bit 32-bit

16 16 16 16 16 16 8 8 8 8 8 8 8 8

Figure 4.7: mSFU and its underlying hierarchical blocks

Estimation of latency of each FP operator is done based on IEEE 754-2008 compliant
FP operators featured in shared-FPU-cluster on PULP-Cluster.

4.1.2 Design 2: Transprecision FP compliant 4x2 PE Array

This design optimization introduced transprecision computing in the CGRA. A 4x2 size
is used for the second design optimization, and instead of FPU, a mini-SFU (mSFU)
is introduced in the CGRA (Figure 4.1). As transprecision FP operators use 16-bit
and 8-bit operands, SIMD is also introduced in the design to optimize resources on the
CGRA. Due to the inclusion of more operators, ISA is extended by 1-bit (i.e., 21-bit
ISA), and this design optimization required updating the IRF size from 20*64 to 21*64
due to ISA extension and CRF size from 32*16 to 20*32 due to introduction of Flexible-
AGU (for storing more constants). Similar FP operators as of an FPU are featured in
the mSFU. A simple clock-gating scheme is implemented between ALU and mSFU to
improve the energy efficiency of CGRA further.

mini-SFU

Figure 4.7 shows the hierarchical blocks present in the mini-SFU (or mSFU). mSFU in-
cludes five FP operators, i.e., float-Absolute, float-Less-Than, float-Multiply, float-Add,
and float-Subtract (shown in Table 4.1) for transprecision computing using variable
FP datatype. With reduced datapath, it was feasible to introduce three binary16alt
compatible DS Units in the first three PEs (i.e., PE 00, PE 01, and PE 02). Commonly

46

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.1 CGRA Design Optimizations

used binary16alt based FP operators (i.e., float-Multiply, float-Add, and float-Subtract)
execute in 2-lane SIMD fashion (See Figure 4.9). Two binary16alt based FP operators
float-Absolute and float-Less-Than, often occur in a control statement and can not exe-
cute in parallel, are single-lane FP operators (i.e., do not use SIMD). Costly and rarely
occurred binary16alt based float-Divide and float-Square-root operators do not execute
in SIMD. Divide and Square-root operators use an iterative non-restoring divider, and
the required clock cycles are determined by the size of mantissa (i.e., precision bits).
With reduced mantissa size (i.e., 7-bit) these two FP operators have less latency (i.e.,
5-cycles) w.r.t. IEEE 754-2008 counterparts (i.e., 8-cycles).

binary8 FP datatype features only 2 precision bits and can only be used to perform
three fundamental FP operations (i.e., float-Multiply, float-Add, and float-Subtract).
These three FP operators execute in a 4-lane SIMD fashion.

4.1.3 Design 3: Mixed FP based 4x2 PE Array

Design space exploration to implement a version of CGRA featuring a configurable FP
Unit capable of executing 32-bit, 16-bit, and 8-bit FP format operations. The third
design optimization is the aggregation of Design 1 and Design 2. The FP module in this
design optimization includes both an FPU and an mSFU. This design choice increased
the total area of CGRA and reduced the energy efficiency of CGRA due to the lack of
fine-grained optimization in PEs.

4.1.4 Design 4: Transprecision FP compliant 4x4 PE Array

This configuration is used for designing a transprecision FP compliant heterogeneous
cluster using CGRA and 8-cores based on a 4-stage in-order RISC-V CPUs, namely
RI5CY [48]. Due to low PE Utilization in CGRA w.r.t. RI5CY cores, it was neces-
sary to optimize the PEs further and integrate CGRA into PULP-Cluster. Following
solutions were implemented in the CGRA sub-system to achieve higher performances
(while executing a set of real-world DSP applications) from the proposed heterogeneous
cluster using different configurations:

• 4x4 PE array featuring 8 LSUs is used to

– keep the total number of LSU in CGRA equal to the total number of LSU in
the RI5CY sub-system.

– exploit cheap MOV E operations due to simple mesh torus interconnect net-
work in CGRA.

• Only 1 DS Unit was included in PE 00 because float-Divide and float-Square-root
operations are rare and costly.

47

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

Opcode [5:0] LSBMSB

ALU

float-Absolute

float-Less-Than

float-Mul�ply*

float-Add*

float-Subtract*

float-Divide

float-Square-root

Operand_A

Operand_B

OutputD
e

co
d

e
r

FP Module

Latch

Clock

Gated

Clock

Latch

Clock

Gated

Clock

Operand_A

Operand_B

Select bit

from IS

MSB = 1

MSB = 0

Opcode[4:0]

* Module feature SIMD

float-Fused-Mul�ply-Accumulate*

C
lo

ck
-G

a
te

Opcode

Figure 4.8: Clock-Gating Scheme between FP module and ALU

• 3 types of PE are featured to exclude the modules which are not required. These
are

– PE with an LSU and Flexible-AGU to generate corresponding addresses for
memory operations (See Figure 4.2). Interleaving PE rows are used to place
these PEs for optimal movement of loaded data from memory.

– PE with ALU, tSFU, and DS Unit (i.e., PE 00 only)

– PE with ALU and tSFU (i.e., all PEs but PE 00)

• CGRA can achieve a high PE utilization while executing a kernel but often fails
to maintain such high PE utilization, so a hierarchical clock-gating scheme is im-
plemented to improve the energy efficiency of CGRA further. These are

– clock-gate PE, if End-of-Execution is reached.

– clock-gate all modules if stall(s) occurred due to memory operation(s), i.e.,
LOAD/STORE or NOP(s).

– clock-gate ALU, if FP operators are active and vice-versa (See Figure 4.8).

• To further exploit the cheap MOV E operations in PE array, when a data is loaded

48

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.1 CGRA Design Optimizations

Add/Sub *

Mul�ply

*Add and Sub opera�ons are alike. Sign-bit

is used to determine the logic on-the-�y.

Normalize

Add/Sub *

Mul�ply

Normalize

FP Module (SIMD Lane=2)

Operand_A[31:0]

Operand_B[31:0]

Opcode

Output[31:0]

Operand_A[15:0]

Operand_B[15:0]

Operand_A[31:16]

Operand_B[31:16]

Result_1[15:0]

Result_2[15:0]

Figure 4.9: SIMD execution in FP module

from memory into a PE, broadcast the loaded data to its adjacent PEs (See Fig-
ure 4.10). A single such broadcast can save up to the execution of 4 parallel
MOV E instructions to move loaded data into adjacent PEs, which resulted in a
significant improvement of the latency performance of CGRA.

tiny-SFU

binary16alt is widely adopted in mainstream architectures due to its high dynamic
range (i.e., similar to IEEE 754-2008 binary32) with a smaller footprint, i.e., reduced
precision bits (7-bit) [104]. It is apparent to exclude binary8 in the next iteration
of transprecision computing-based CGRA due to lack of real-world applications for
binary8 datatype. This design optimization features FP operators using binary16alt
only. Implementation of only 16-bit operators further reduced the area of transprecision
FP-based module (i.e., tiny-SFU (tSFU)) in the CGRA.

Considering that CGRA often fails to maintain a high PE utilization while executing a
kernel, to increase the energy efficiency of CGRA, a fine-tuned clock-gating scheme is
implemented between tSFU and ALU. A simple technique of comparing MSB of opcode
to determine execution between an FP operation or an ALU operation is employed.
This also aided the implementation of clock-gating using only 1-bit (See Figure 4.8)
to reduce the unnecessary switching activities in a PE. In Figure 4.8, a 6-bit opcode
is extracted from the 21-bit instruction. The MSB determines if the operation to be
executed is an FP operation (MSB=1; clock-gate ALU) or an ALU operation (MSB=0;

49

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

00

10

20

30

01

11

21

31

02

12

22

32

03

13

23

33

Group 1 Group 2 Group 3 Group 4

Group 5 Group 6 Group 7 Group 8

PE with

LSU

PE

execu�ng

fma op

Each

Group

consists

of

(a) PE grouping for FP-FMA operation

Next

opera�on in

PE_00 is LOAD

Next

opera�on in

PE_00 is not

LOAD

LOAD_A

LOAD_B

NONE

(b) FSM for FP-FMA operation

Figure 4.10: Implementation of FP-FMA in CGRA

Timestamp Operation FSM State
#0 in PE 00 LOAD data A NONE

#1 in PE 01
• Fetch A from PE 00
• Perform accumulation
• Jump to LOAD B State

LOAD A

#1 in PE 00 LOAD data B

#2 in PE 01

• Fetch B from PE 00
• Perform multiplication
• If there is next LOAD in PE 00,
then jump to LOAD B State
else, jump to NONE

LOAD B

Table 4.2: State description of FSM for FP-FMA operation

clock-gate tSFU). The remaining 5-bits are then sent to their respective destination and
decoded to determine the specific operation. If the FP operation is a SIMD (lane=2;
2x 16-bit) operation, then the final output is concatenated to align the incoming two
16-bit results from the FP normalize module to produce 32-bit data (See Figure 4.9).

Furthermore, a 3-state FSM-based FP-Fused-Multiply-Accumulate (FP-FMA) module
is also implemented to optimize kernels that extensively employ FP multiplication and
accumulation (See Figure 4.10 and Table 4.2). First, a group is formed using (1) PE with
LSU and (2) PE without LSU as shown in Figure 4.10a and 8 such groups can be formed
in the current 4x4 PE array. To understand the working of this FSM (See Figure 4.10b)
based FP-FMA module, let us focus on the PE group formed with PE 00 and PE 10
(See Table 4.2). When an FP-FMA opcode is encountered in PE 10 (i.e., timestamp
#0), at the same timestamp, a LOAD operation is also scheduled in PE 00. In this
timestamp, the FSM is in NONE state (FP-FMA module is clock-gated while FSM is in
NONE state) and set to jump to next state, i.e., LOAD A. In the next timestamp (i.e.,
timestamp #1), PE 00 has fetched the required data from memory and has broadcast it
to the adjacent neighboring PEs. Due to the cheap MOV E operation in CGRA, 8 such
parallel FP-FSM can be executed without significant energy-wise overhead. Now, PE 10
will choose the incoming operand from PE 00 only as operand information is provided by

50

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.1 CGRA Design Optimizations

MSB LSB
trigger masked-bit bits used for decoding

1 0 0 0 0 0 add
1 0 0 0 0 1 sub
1 0 0 0 1 0 mac
1 0 0 0 1 1 sumdotp
1 0 0 1 0 0 clip8

Table 4.3: ALU8 6-bit Opcodes. MSB is used to trigger ALU8, next 2-bit are masked,
and remaining last 4-bit are used for decoding ALU8 operation.

fetched instruction in PE 10. Fetched data is then accumulated with the data present in
a special register allocated for temporarily storing the accumulated values from FP-FMA
operations. FSM is set to jump to the next state, i.e., LOAD B. In the same timestamp
(i.e., timestamp #1), PE 00 will fetch the second operand required by PE 10 in the next
clock cycle. In the next timestamp (i.e., timestamp #2), if there is a load in PE 00, a
trigger signal is also issued, which is used by FSM in PE 10 to decide the next state
from the LOAD B state. In timestamp #2, PE 10 will fetch the data from PE 00, and
FSM is in LOAD B state already. Data loaded in previous clock-cycle (i.e., operand A)
and data fetched in current clock-cycle (i.e., operand B) are multiplied, and depending
on the value of trigger signal issued by PE 00, FSM will either jump to LOAD A state
(if there is LOAD operation in PE 00 in timestamp #3) or jump to NONE state (in
this case, result from a multiplication in PE 10 is added with the data in accumulator
register and stored in a register in RRF of PE 10, this destination register is provided
in the instruction fetched in timestamp #2).

4.1.5 Design 5: 4x2 PE Array featuring 8-bit integer operators

This design optimization includes 32-bit integer (i.e., ALU) and 8-bit integer (i.e.,
ALU8) datatype operators with 4x2 PE array (See Figure 4.2). Particularly, ALU8
features 8-bit integer (SIMD lane=4) based operators (See Table 4.3). These operators
are implemented to accelerate the Deep Neural Network (DNN) algorithms because
DNNs use quantization (i.e., a technique to reduce memory footprints) to reduce inputs
and weights, and 8-bit formats are well suited for such techniques [105, 106, 107, 108].

Five 8-bit integer based operators are implemented in ALU8, these are:

1. add: performs SIMD style 4x8-bit addition

2. sub: performs SIMD style 4x8-bit subtraction

3. mac: performs SIMD style 4x8-bit multiply-accumulate

4. sumdotp: performs dot-product using two 4x8-bit inputs

51

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

5. clip8: called just before STORE operation to clip (i.e., rounding and shifting) the
accumulated 32-bit value to 8-bit value

Decoding of operators (opcode width= 6-bit) in ALU8 is performed using 3-bit only,
and the remaining 2-bit are masked (these bits are always zeros), and MSB is used to
perform clock-gating between ALU and ALU8 (See Table 4.3). Clock-gating between
ALU and ALU8 is implemented using a similar technique presented in Design 4 (i.e.,
clock-gating between FP module and ALU) (See Figure 4.8).

ALU8 features a dedicated register file to temporarily store the immediate values gen-
erated while executing a kernel. The 5x32-bit register file is sectioned into two parts to
store the values from mac and sumdotp operators.

• 5x32-bit register file:

– 4x32-bit registers are dedicated to temporarily store 4 accumulated values
from 4 parallel 8-bit integer mac operations, and

– 1x32-bit register is dedicated to temporarily store the dot-product result from
sumdotp operator.

Code 4.2 is a sample code snippet (executed on RI5CY), including 2 loops.

// ∗∗ i n t 8 opera t ion in RI5CY ∗∗

// ∗∗ PULP bu i l t−in macro to perform dot−product on a . b ∗∗
// ∗∗ and r e s u l t i s s t o r ed in c ∗∗
#define SumDotp (a , b , c) b u i l t i n p u l p s d o t p 4 (a , b , c)

// ∗∗ PULP bu i l d−in macro to c l i p 32− b i t va lue to 8− b i t va lue ∗∗
// ∗∗ range i s manually de f ined ∗∗
#define CLIP8(x) b u i l t i n p u l p c l i p (x , −128, 127)

i n t 8 t ∗ pInBuf fe r ;
i n t 8 t ∗ pWeight ;
u i n t 1 6 t channels , columns , o u t s h i f t ;
i n t 8 t ∗ pOut ;
i n t 8 t ∗pOut2 = pOut + channe l s ;

// ∗∗ PULP bu i l t−in macro to r ep re s en t a vec to r o f 4 chars ∗∗
// ∗∗ t y p ede f s i gned char v4s a t t r i b u t e ((v e c t o r s i z e (4))) ; ∗∗
v4s vecA ;
v4s vecB ;

for (int i = 0 ; i < channe l s >> 2 ; i ++){
i n t 8 t ∗pB = pInBuf fe r ;
i n t 8 t ∗pB2 = (pB + columns) ;
i n t 8 t ∗pA = pWeight ;
int sum , sum2 ;

for (int j = 0 ; j < columns >> 2 ; j++){
vecA = ∗ ((v4s ∗) pA) ;

52

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.1 CGRA Design Optimizations

vecB = ∗ ((v4s ∗) pB) ;
vecB2 = ∗ ((v4s ∗) pB2) ;

sum = SumDotP (vecA , vecB , sum) ;
sum2 = SumDotP (vecA , vecB2 , sum) ;

pA += 4 ;
pB += 4 ;
pB2 += 4 ;

}

∗pOut = (i n t 8 t) CLIP8(sum >> o u t s h i f t) ;
pOut++;
∗pOut2 = (i n t 8 t) CLIP8(sum2 >> o u t s h i f t) ;
pOut2++;

}
pOut += channe l s ;

Code 4.2: C code snippet for matrix multiplication with PULP built-in macros

• Highlights of code snippet (Code 4.2) for RI5CY

– sum and sum2 stores the accumulated values over 2 loops

– SumDotP and CLIP8 are 3-input operand operators

– CLIP8 is called for rounding the final values

– If same operators without dedicated register file in ALU8 are implemented
in CGRA, then the inner loop requests channles×columns LOAD, STORE,
and MOVE operations for sum and sum2 (such unnecessary operations are
avoided by introducing dedicated 5x32-bit register file in ALU8)

// ∗∗ i n t 8 opera t ion in CGRA ∗∗
int i , j , channels , columns , o u t s h i f t ;
int = pInBuf fe r [columns∗ channe l s] ;
int = pWeight [columns∗ channe l s] ;
int = pOut [columns∗ channe l s] ;

for (i = 0 ; i < channe l s >> 2 ; i ++){
int sum , sum2 ;

for (j = 0 ; j < columns >> 2 ; j++){
sum = sumdotp (pInBuf fe r [i] , pWeight [i] , sum) ;
sum2 = sumdotp (pInBuf fe r [i] , pWeight [i+j] , sum) ;

}
pOut [i] = c l i p 8 (sum >> o u t s h i f t) ;
pOut2 [i +1] = c l i p 8 (sum2 >> o u t s h i f t) ;

}

Code 4.3: Modified C code snippet for matrix multiplication for CGRA

• Highlights of transformed code (Code 4.3) snippet for CGRA

53

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

Context

Memory

DMAC PE Array

Context Data [63:0] Context Address [31:0]

DMA Data [63:0]

DMA Address

[22:0]

Cluster Interconnect

(to TCDM)

SlaveMaster

XBAR TCDM Bus

Address Bus

Data Bus

1
5-bit

#Const
Inst 0

4-bit

PE ID

6-bit

#Inst
Inst 1

. . . . Inst (N-1) Const 0

. . . . Const (M-1)

0
5-bit

#Const
Inst 0

16-bit

Mask

6-bit

#Inst
Inst 1

. . . . Inst (N-1) Const 0

. . . . Const (M-1)

IDLE

ACCEPT

MIDDLEEND

START

DMAC FSM

Figure 4.11: Configuration Network for context loading

– sum and sum2 stores the accumulated values over 2 loops

– sumdotp and clip8 are 2-input operand operators

– Due to implementation of dedicated register file in ALU8, the inner loop
requests 0 LOAD, STORE, and MOVE operations for sum and sum2

– When clip8 operation is executed, then 32-bit sum and sum2 values stored
in dedicated register file are rounded and stored back in memory (pOut[i] and
Out[i+1])

Design optimization 5 presented a good exploration for accelerating DNNs on CGRA.
However, SoA architectures (i.e., TPU [47], Tensorflow [102], and NVDLA [103]) are
far superior architectures w.r.t. CGRA and thus restrained from further development
of CGRA for accelerating DNNs.

4.2 Computation Model

The associated compiler compiles an application, and required assembly code is ob-
tained (See chapter 5), then the assembler processes obtained assembly code using the

54

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.2 Computation Model

State Information

START
Sets flag for accepting inputs from Context Memory
and jump to ACCEPT state.

ACCEPT
Detects the addressing mode
and jumps to MIDDLE state.

MIDDLE

(1) Fetches a 64-bit context data from Context Memory,
(2) detects number of instructions and constants for that particular PE,
(3) directs the instructions into the IRF and
the constants to CRF of that particular PE, and
(4) jumps to MIDDLE state to repeat for next PE.
(5) When done, jumps to END state.

END
Stops accepting inputs from Context Memory
and jumps to IDLE state.

IDLE DMAC enters sleep mode.

Table 4.4: Description of FSM states in DMAC

ISA (See Table 4.5 and Table 4.7) of CGRA to generate the required instruction part
of a context for each PE (i.e., program to be stored into the IRF). Assembler also
employs a technique to eliminate the repeating constants in CRF for each PE by recur-
sively checking if the constant to be allocated in the CRF of a PE exists already or not
(See section 5.2). Finally, the context data (comprises of instructions and constants) is
generated for each PE which is later pre-loaded (and prior to execution) in the Con-
text Memory of CGRA. Corresponding instructions and constants are then loaded into
their respective PEs using DMAC (See Table 4.4). If the context data size is larger
to be fit into the PE array, then context data is split into multiple parts and executed
sequentially.

Load Context

Figure 4.11 shows the configuration network for loading context data in PEs, and Ta-
ble 4.4 shows the description of each state in DMAC FSM. Once the context data has
been loaded into the Context Memory, DMAC starts receiving the fetched context data
and detects the number of instructions and constants for each PE using the configu-
ration lines (See Figure 4.12). Each configuration line contains information, which are
(1) PE ID, (2) instruction count, and (3) constant count, and once this line is decoded,
DMAC redirects the bits to their respective PEs.

A full-sized series of instructions for a PE that can fit in the IRF is 64x21-bit, and
similarly, 32x20-bit of constants can fit into a CRF of a PE. So, the configuration line
dedicates 6-bit to represents the instruction counts (i.e., 6-bit are required to represent
numbers between 0 to 63 in binary representation) and 5-bit to represent a constant
count (i.e., 5-bit are required to represent numbers between 0 to 31 in binary repre-
sentation). There can be either 8 or 16 PEs in a PE array, so 4-bit is dedicated to

55

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

MSB LSB
5-bit 1-bit 5-bit 1-bit 3-bit 6-bit

Input 2 Addr Type (1/0) Input 1 Addr Type (1/0) DRA Opcode
Index Addr Type (1) BA Addr Type (1) DRA LOAD
Index Addr Type (1) BA Addr Type (1) DRA STORE

1-bit 2-bit 5-bit 1-bit 6-bit 6-bit
(1=BB)/(0=LV) 00 LV Addr Type (1) BB Addr JUMP

3-bit 6-bit 6-bit 6-bit
000 False Path Addr True Path Addr CJUMP

10-bit 5-bit 6-bit
00 0000 0000 #Consecutive NOPs NOP

DRA : Destination Register Address
BB : Basic Block
LV : Loop Variable
Type=1 : Source is in CRF
Type=0 : Source is either in RRF or in neighbouring PE

Table 4.5: 21-bit ISA Table

representing the PE ID. Figure 4.13 shows the format of the data and address bus in
the configuration network and Table 4.6 represents the structure of Context memory
segments. First bit is dedicated to determine the addressing modes, that are

• Broadcast Addressing Mode: This addressing mode is used to broadcast a set of
instructions and constants to the PEs requiring identical instructions and constants
in the CGRA.

• Normal Addressing Mode: This addressing mode is used to load non-identical
instructions and constants to the PEs in the CGRA.

#bits Information
1-bit Addressing Mode
4-bit or 16-bit Normal Address or Mask
6-bit Instruction count for current PE
5-bit Constants count for current PE
N*21-bit Total Instructions bits
M*20-bit Total Constants bits

Table 4.6: Structure of Context Memory segments

56

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.2 Computation Model

1 5-bit #Const Inst 04-bit PE ID 6-bit #Inst Inst 1

. . . . Inst (N-1) Const 0

. . . . Const (M-1)

0 5-bit #Const Inst 016-bit Mask 6-bit #Inst Inst 1

. . . . Inst (N-1) Const 0

. . . . Const (M-1)

Normal

Addressing Mode

Broadcast

Addressing Mode

Figure 4.12: Segments of Context Memory

3*21-bit Instruc�ons / 3*20-bit Constants

64-bit Data Bus

16-bit for PE Select
1-bit = 0 for

IRF Select

6-bit for CRF

Address

23-bit Address Bus containing Instruc�ons

16-bit for PE Select
1-bit = 1 for

CRF Select

5-bit for CRF

Address

23-bit Address Bus containing Constants

0

Figure 4.13: Data and Address Bus in the configuration network

In the case of normal addressing mode, the following 4-bit are dedicated to identify
the PE in the PE array. The succeeding 6-bit are dedicated to detect the number
of instructions for the identified PE, and the following 5-bit are dedicated to detect
the number of constants for the identified PE. The rest of the abutting bits that are
dedicated to the identified PE are instructions and constants of the identified PE.

In the case of broadcast addressing mode, the following (masked) 16-bit are dedicated
to identify the set of PEs in the PE array. The succeeding 6-bit are dedicated to detect
the number of instructions for the set of PEs, and the following 5-bit are dedicated to
detect the number of constants for the set of PEs. The rest of the abutting bits that
are dedicated to the set of PEs are instructions and constants.

Figure 4.13 shows the Data and Address bus in the configuration network. Each 64-bit
context data line that is fetched from the Context Memory through the data bus is
either 3x21-bit instructions or 3x20-bit constants. If the context data line contains the
instruction for PE, then the 23-bit address bus is segmented by dedicating (1) first 16-bit
to either mask or address of target PE, (2) 1-bit (= 0) dedicated to select IRF, and (3)
6-bit dedicated for addresses in IRF. If the context data line contains the data for PE,
then the 23-bit address bus is segmented by dedicating (1) first 16-bit to either mask or

57

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

address of target PE, (2) 1-bit (= 1) dedicated to select CRF, (3) 5-bit dedicated for
addresses in CRF, and (4) 1-bit (= 0) for zero-padding the extra space.

Execution

During execution, in each clock cycle, PE fetches a 21-bit instruction from their respec-
tive IRF and decodes it according to the ISA format shown in Table 4.5. Particularly,
the opcode (See Table 4.7 for a list of opcodes) is decoded, and it is determined if the
operation is an integer operation or an FP operation. The sources for operands and
destination of output are determined.

Mnemonic Datatype Description Operation

– – No Operation –

EoE – End-of-Execution –

U ADD int Unsigned Add
R = (U)In1 + In2

C = 0

S ADD int Signed Add
R = In1 + In2

C = 0

SUB int Subtract
R = In1 - In2

C = 0

MUL int Multiply
R = In1 * In2

C = 0

LSHIFT int Left Shift
R = In1 << In2

C = 0

RSHIFT int Right Shift
R = In1 >> In2

C = 0

LOAD int Load –

STORE int Store –

MOV int Move
R = In1

C = 0

AND int Bitwise AND
R = In1 & In2

C = 0

OR int Bitwise OR
R = In1 | In2

C = 0

58

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

4.2 Computation Model

NOT int Bitwise NOT
R = ~ In1

C = 0

XOR int Bitwise XOR
R = In1 ^ In2

C = 0

LTE int Less-than or Equal
if (In1 ≤ In2) , C = 1

else C = 0

GTE int Greater-than or Equal
if (In1 ≥ In2) , C = 1

else C = 0

NE int Not Equal
if (In1 < In2) , C = 1

else C = 0

DIV int Divide
R = In1 ÷ In2

C = 0

ABS int Absolute Value
R = | In1 |

C = 0

fABS float float Absolute
R = | In1 |

C = 0

fLT float float Less-Than
if (In1 < In2) , C = 1

else C = 0

fMUL float float Multiply
R = In1 * In2

C = 0

fADD float float Add
R = In1 + In2

C = 0

fSUB float float Subtract
R = In1 - In2

C = 0

fDIV float float Divide
R = In1 ÷ In2

C = 0

fSQRT float float Square-Root
R =

√
In1

C = 0

Table 4.7: Summary of Opcodes (R = Result, C = Condition bit)
Gray colored cells represent newly added opcodes.

59

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 4 Energy-Efficient Programmable Hardware Accelerator

4.3 Summary and Concluding Remarks

In this chapter, CGRA architecture and different design optimizations to implement FP
support under the ULP power budget are presented. Particularly, four different design
optimizations for FP computation and one exploration to support NN computation
are shown. The chapter begins with a brief motivation for the different design choices
with optimizations adopted for our proposed CGRA. Later follows a brief description
of each component in the CGRA sub-system with a detailed description of each design
optimization made during the design space exploration. Finally, the computation model
of the proposed CGRA is discussed.

60

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 5

Compiler Support

Contents

5.1 Compilation Flow . 63

5.1.1 DFG Mapping with multi-cycle operations 66

5.1.2 Decoupling of address generation branches for Flexible-AGU . 69

5.2 Assembler . 72

5.3 Summary and Concluding Remarks 74

Typically the algorithms used to compile codes for CGRAs feature any or all of the
three common characteristics, which are (1) support for static scheduling, (2) dynamic
reconfiguration, and (3) either limited to specific hardware properties or use a special
language or both. This is because most compiler research has evolved from algorithms
used for placement and routing of FPGAs [109] in combination with generating code
for VLIW processors like hyperblock formation [110] and modulo scheduling [111, 112].
Apart from those characteristics, a compiler must preserve the meaning of the source
code (i.e., correctness), produce efficient target code in terms of space and time (i.e.,
maximum output execution speed and minimum memory footprint), ease of use (i.e.,
user-friendly front-end), easily debugged, correct and understandable optimizations, and
does all of those tasks quickly (i.e., quick compilation).

Contribution and Outline of the Chapter

This chapter presented the compilation flow for the proposed CGRA and preceded by,
as part of motivation, two problem statements, i.e., (1) efficiently mapping of kernels
with multi-cycle operations onto proposed CGRA and (2) encoding of the required data
for address generation by Flexible-AGU (See section 4.1) within the LOAD/STORE
instructions using current compiler are presented. The outline of this chapter is as
follows:

• Problem statements.

61

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 5 Compiler Support

• Walk-through of the Compilation F low for proposed CGRA.

• Mapping of multi-cycle operations onto CGRA using Static Mapping approach.

• Development of a 5-stage pass to efficiently decouple the address generation branches
from DFGs for Flexible-AGU.

• Assembler and optimization techniques used.

• As part of exploration, a solution to auto-partition the large kernels for the pro-
posed CGRA is presented.

Finally, a summary and concluding remarks of this chapter are provided.

Problem Statement

Change propagation is a foremost element to consider during the development of any
(sub-)system. Any change(s) in architecture or to its element(s) must be propagated
through to the toolchain to keep consistency throughout the design cycle. The two main
problems to be addressed in the current compiler w.r.t. current design optimizations in
the proposed CGRA are:

Statement 1

Efficiently mapping a multi-cycle operation onto the same PE due to the implementation
of FP operators in the proposed CGRA.

Statement 2

Decoupling of address generation branches from DFGs and encoding required data for
address generation to be used by Flexible-AGU (See section 4.1) within the LOAD/S-
TORE instructions.

Next in this chapter, a walk-through of the current compilation flow and then proposed
solutions to the aforementioned problem statement are presented.

62

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

5.1 Compilation Flow

Mul�-cycle

Opera�on

Serializa�on

Scheduling

&

Placement

Stochas�c

Pruning

Graph

Transforma�on

Changes?

Solu�on?

Last Node?

Last DFG?

C code

GCC

Front-end

* Free to use GNU head image is available under the GNU Free Documenta�on

License v1.3, or the Free Art License, or the Crea�ve Commons A�ribu�on -ShareAlike

2.0 License. GNU head art available at h�ps://www.gnu.org/graphics/agnuhead.html

[URL Date: 30.03.2021]

CGRA Model

Select DFG

Assembly

code

01101110

01101001

01100011

01100101

FAIL

START

END

CDFG

NO

NO

NO

NO YES

YES

YES

YES

Decoupling of

Address

Genera�on

Branches

1

2

3

4 5

6

Figure 5.1: Compilation Flow

5.1 Compilation Flow

Figure 5.1 shows the compilation flow used for mapping CDFG of kernels onto proposed
CGRA. The mapping process is automated through a software tool implemented us-
ing an Eclipse-based modeling framework and code generation solution called Eclipse
Modeling Framework (EMF) [85, 86]. The internal representation (i.e., CDFG) is gen-
erated from the GCC front-end using a dedicated GCC plugin [113]. The dedicated
GCC plugin is introduced to transform the C syntax tree into a machine-independent
intermediate representation, i.e., GIMPLE [114] representation. The obtained CDFG is
interpreted and used to generate assembly code for the target CGRA by the compiler.

Figure 5.2 shows the EMF model of CDFG implemented in the compiler. Figure 5.2 in-
cludes all the Activity Nodes represented as classes along with their type of relationship

63

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 5 Compiler Support

with other classes. Particularly, EndLoad and BeginLoad classes have a two-way refer-
ence, and ConditionalJump and UnconditionalJump inherits from JumpInstruction
classes, respectively.

The Java model of CGRA implemented in the compiler and it includes all the defi-
nitions of modules of CGRA represented as classes along with there type of relation-
ships with other classes. Particularly, CGRA class contains (1) ConfigMemory (i.e.,
Instruction Memory), (2) DataMemory (i.e., Data Memory), (3) Link (i.e., repre-
sents all types of connections in the CGRA), and Tile (i.e., PE) classes. Tile class
includes all the classes which represents the components of a PE in the CGRA. Tile
class contains MemorizationUnit and ComputationUnit. Furthermore, Memorization
class represents the register part of a PE which are RF (i.e., Regular Register File),
ConstantRegisterF ile (i.e., Constant Register File), and (3) ConfigReg (i.e., Instruc-
tion Register File). ComputationUnit class represents the computation part of a PE
which are (1) LoadStore (i.e, Load Store Unit) , (2) ALU (i.e., Arithmetic Logic Unit)
and, (3) FPU (i.e., Floating Point Unit).

DFGs (or Basic Blocks) that constitute a CDFG are mapped onto the PE array of the
CDFG because of the homomorphism between the two graphs (i.e., (1) DFG and (2)
CGRA model).

An existing compilation framework is used in this thesis which uses a register alloca-
tion approach to map a DFG onto a PE array [88]. First, the DFGs are queued in a
series. This ordering is done either based on a DFG allocating the highest number of
registers to share temporary data with other DFGs, e.g., loop variables, etc., or based
on their occurrence in the CDFG from top to bottom [80]. Then for each DFG, a set
of mappings are found which are compatible with the already mapped DFGs by setting
the constraints, which are:

• Target location constraints are related to data that is used within the mapping
stage of a basic block.

• Reserved location constraints restrict the use of some resources due to the data
which are not used in the basic block but need to be considered during the mapping
stage of a basic block.

If no mapping is found, then the compiler transforms the graph to ease the map-
ping [89]. If there can not be any transformation applied to a DFG, then there is
no valid mapping solution for the selected DFG. Then a backtracking mechanism is
used to find another compatible set of mapped DFGs to map the current DFG. All
the valid mappings found for the current DFG are stored in a mapping bank. The
mapping approach described in [90] is used in the compiler for the proposed CGRA.
The compilation flow presented in this chapter extends to add support for multi-cycle
operations and decouple the address generation branches in the DFGs due to the im-
plementation of Flexible-AGU in the proposed CGRA. The compilation flow consists
of six stages i.e., (1) Multi − cycle Operation Serialization (new contribution), (2)

64

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

5.1 Compilation Flow

[0..1] beginLoad

[0..1] endLoad

Figure 5.2: EMF model of CDFG

Decoupling of Address Generation Branches (new contribution), (3) Select DFG,
(4) Scheduling and P lacement (modified step), (5) Graph Transformation, and (6)
Stochastic Pruning. In this section, steps involved in addressing the aforementioned
two problems are discussed.

65

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 5 Compiler Support

Keyword Description
fABS$$ float Absolute

fLT$$ float Less-Than
fmul$$ float Multiply
fadd$$ float Add
fsub$$ float Subtract
fdiv$$ float Divide

fsqrt$$ float Square-Root

Replace $$ with 32, 16, 16alt, and 8 to represent IEEE 754-2008 binary32, IEEE
754-2008 binary16, binary16alt, and binary8 datatype respectively.

Table 5.1: Reserved keywords for FP datatype

5.1.1 DFG Mapping with multi-cycle operations

The compiler shares a common framework with a High-Level Synthesis (HLS) tool
called GAUT [87]. While compiler can easily detect primitive datatype i.e., int and
float however, it is difficult to detect custom datatype (i.e., binary16alt or binary8), as
compilation flow depends on CDFG provided by the GCC interpretation of the C code.
Some keywords (See Table 5.1) are reserved and supplied in the C code to facilitate the
SIMD feature for the custom float data. For simplicity, same technique is also applied for
IEEE 754-2008 binary32 and binary16 datatype. The compiler detects these keywords
and generates instructions. These instructions are later interpreted by the assembler
in the assembly code to generate the bit-stream with specified opcodes. Code 5.1 and
Code 5.2 are C code examples using reserved keywords for custom float datatype to
represent the ease of use to write kernels at the GCC front-end:

// ∗∗ b i na r y16a l t opera t ion ∗∗
int i ;
f loat A[1 0] , B[1 0] , C [1 0] ;
f loat OUT = 0.0 f ;
for (i = 0 ; i < 10 ; i ++){

// OUT = (A[i] ∗ B[i]) + C[i] ;
OUT = fadd16a l t (fmul16a l t (A[i] , B[i]) , C[i]) ;

}

Code 5.1: Modified C code for binary16alt operations

66

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

5.1 Compilation Flow

Cycle #1

Cycle #2

Cycle #3

Cycle #4

Cycle #5

Cycle #6

PE_00

PE_10

PE_01

PE_11

LOAD LOAD

LOAD

fadd

STORE

dummy_1

dummy_0

fmul

A B

C

OUT

Data Dependency

Mapping

Figure 5.3: Graph Transformation to add dummy nodes and Mapping of DFG nodes
onto PEs

// ∗∗ b inary8 opera t ion ∗∗
int i ;
f loat A[1 0] , B[1 0] , C [1 0] ;
f loat OUT = 0.0 f ;
for (i = 0 ; i < 10 ; i ++){

// OUT = (A[i] ∗ B[i]) + C[i] ;
OUT = fadd8 (fmul8 (A[i] , B[i]) , C[i]) ;

}

Code 5.2: Modified C code for binary8 operations

Multi-cycle Operation Serialization

The compilation flow detects the multi-cycle operations (i.e., FP operations) in the
CDFG. It transforms those operation nodes by adding dummy nodes equal to the num-
ber of clock cycles required to perform those operations. Figure 5.3 shows such graph
transformation to add dummy nodes and mapping for 2 clock-cycle FP operations (i.e.,
fmul and fadd) by adding a dummy node to each FP operation node (i.e., dummp 0
and dummy 1). The transformed DFG is then passed to the next step in the compilation
flow.

67

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 5 Compiler Support

Select DFG

In this step, a DFG is selected from the CDFG using forward traversal-Breadth First
Search (BFS) [80], and in the next step, nodes in selected DFG are mapped onto CGRA.
Once all DFGs are mapped, the compilation flow reaches the end of compilation, and
assembly code is generated.

Graph Transformation

Graph transformation performs the dynamic transformation of a DFG during the map-
ping process. Figure 5.4 shows the different types of graph transformation which the
compiler can perform on the fly. Figure 5.4a shows a sample DFG where node 4 is
a floating-point operation with a latency of 3 cycles. Figure 5.4b shows multi-cycle
serialization. In this step, the compiler detects the multi-cycle operations (i.e., FP op-
erations) and adds dummy nodes according to their latency. In Figure 5.4b two dummy
nodes are added, i.e. D1 and D2. In case the binding step does not find any solution for
a node, the compiler transforms the graph by either re-routing or distributes the fan-out
to find a valid mapping solution by satisfying the available connectivity constraints of
the CGRA. Figure 5.4c shows the re-routing and Figure 5.4d shows the re-computing
steps, respectively.

Scheduling and Placement

In this step, a backward traversal list scheduling algorithm [89] is used to schedule the
nodes in each DFG, where schedulable operations are listed by priority order. The
priority of a node depends on its weight, followed by mobility and total fan-outs. The
weight of an operation is decided by its latency of execution in clock cycles. A node
is schedulable in a backward traversal list scheduling algorithm if and only if all of its
child nodes are scheduled already. The difference decides mobility between ALAP and
ASAP schedule length. These make the FP operations to be scheduled with the highest
priority order.

An incremental version of Levi’s [97] sub-graph matching algorithm is used for the
binding step in the compilation flow. The proposed algorithm is exact in nature and
adds the currently scheduled operation node (except FP operations) and its associated
data node to the sub-graph, composed of previously scheduled and bound nodes. Only
the previously retained set of solutions are used to find possible mapping solutions to
add this new set of scheduled nodes (i.e., operation and data nodes). In this step, future
nodes, i.e., yet to be scheduled nodes, are not considered.

The binding of FP operation follows a static mapping approach, where the algorithm
skips the dummy nodes and finds a binding solution for the first operation node among
all the FP nodes (nodes fmul and fadd in Figure 5.3). The same binding solutions are

68

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

5.1 Compilation Flow

2

1

43

4
Floa�ng-Point Opera�on

node with latency=2

(a) Sample DFG with FP operation

2

1

D23

D1

4

(b) Multi-cycle Operation Serial-
ization

2

MOVE

D23

D1

4

1

(c) Re-routing

2

1

D23

D1

4

1

(d) Re-computing

Figure 5.4: Graph Transformation

then copied to the rest of the dummy nodes, i.e., the binding solution of fmul is copied
to dummy 0, and the binding solution of fadd is copied to dummy 1. Such binding of
FP operations enables the execution of multi-cycle operations onto the proposed CGRA
with static scheduling. In static scheduling, only the first encountered node of a multi-
cycle operation is mapped. The same mapping solution is then copied to the rest of the
nodes of that particular multi-cycle node, where the timestamp of the dummy nodes,
which copy the mapping solution of the already mapped operation node, is adjusted
accordingly.

5.1.2 Decoupling of address generation branches for Flexible-AGU

To decouple the address generation branches from a DFG, a 5-stage pass has been
implemented in the compiler. Implementation of Flexible-AGU can save up to 9 clock

69

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 5 Compiler Support

cycles (in case of a 2D variable, see assembly code below). In this section, a typical 2D
variable compatible with the Global Index representation (See section 4.1) is used to
explain decoupling address generation branches for Flexible-AGU and how the required
data is encoded in the memory instructions to be used in the hardware unit.

// ∗∗ Assembly code f o r address genera t ion o f ∗∗
// ∗∗ Input [(i+A)∗(j+B)] [(k+C)∗(l+D)] ∗∗
#1 PE 00 ADD R2 i A
#2 PE 00 ADD R3 j B
#3 PE 00 ADD R4 k C
#4 PE 00 ADD R5 l D
#5 PE 00 MUL R2 R2 R3
#6 PE 00 MUL R4 R4 R5
#7 PE 00 ADD R2 R2 R4
#8 PE 00 MUL R3 R2 4
#9 PE 00 ADD R3 R3 BA // ∗∗ 32− b i t address i s s t o r ed in R3 ∗∗
#10 PE 00 LOAD Input // ∗∗ Data LOAD ∗∗

Code 5.3: Sample Assembly code snippet for CGRA

Code 5.3 represents assembly code of the address generation for a typical 2D variable
(i.e., Input[(i+A)*(j+B)][(k+C)*(l+D)] where, i,j,k,l are the loop variables and A,B,C,D
are the variables / constants) that must be executed before a memory operation. The
use of Flexible-AGU allows eliminating such a series of execution of assembly code lines
before any memory operation (i.e., LOAD/STORE). The required data for address
generation is encoded within memory operation instruction (See section 4.1).

Figure 5.5 represents a possible DFG for address generation for Input[(i+A)*(j+B)]
[(k+C)*(l+D)]. To carefully detect the address generation branches in a DFG, a 5-stage
pass is implemented, which detects the address generation branches and incrementally
decomposes the branches into a series of data nodes attached to the memory operation
node while eliminating the unwanted operation nodes.

Detection of address generation branches for LOAD operation (See Figure 5.6a) is rel-
atively straightforward w.r.t. the detection for STORE operation. There is no com-
putation branch whose target node is attached to a LOAD operation node (i.e., the
LOAD operation node does not have source nodes). In the case of LOAD operation, the
algorithm recursively detects the data nodes and eliminates the encountered operation
nodes. However, each data node is evaluated for correct alignment for the LOAD opera-
tion node. To detect the Base Address (BS), the detection pattern is as follows; first, the
immediate source node (i.e., ADD node) of the LOAD operation node has 2 source nodes,
if one of the data nodes is evaluated as an integer value and has zero source nodes, then
the current data node contains the BA value. Then, the algorithm recursively searches
and finally ends up with data nodes that do not have any source operation nodes. In
between, the algorithm also detects the first index (i.e., Index1 = [(i+A)*(j+B)]) and
second index (i.e., Index2 = [(k+C)*(l+D)]) and finally aligns them as source nodes to
LOAD operation node in a series (See Figure 5.6b) like

70

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

5.1 Compilation Flow

MUL

ADD

MUL

ADD

i A

ADD

j B

MUL

ADD

k C

ADD

l D

4

ADD

BA

32-bit Address

LOADSTORE

Computa�on

Branch

Figure 5.5: DFG with address generation branches

Index1 → BA → Index2

and the LOAD instruction is as follows

timestamp #PE LOAD Reg Index1 BA Index2

A similar approach is applied for the STORE operation node, but the algorithm also
detects and avoids pruning of the computation branch (See Figure 5.6). This has been
done after exhaustively analyzing each possible DFG pattern for any combination of
variable representations that fall under the predefined Global Index representation. The
alignment of required data nodes for the STORE operation node is like

Computation Branch → Index1 → BA → Index2

and the STORE instruction is as follows

timestamp #PE STORE Reg Index1 BA Index2

The Assembler section explains how the assembler encodes the obtained assembly code
lines for memory operations to generate 21-bit instructions for the proposed CGRA.

71

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 5 Compiler Support

MUL

ADD

i A

ADD

j B

MUL

ADD

k C

ADD

l D

BA

LOAD

STORE

Computa�on

Branch

(a) DFG with sorted address generation branches

i A j B k C l D

BA

LOAD

STORE

Computa�on

Branch

(b) DFG with address generation data

Figure 5.6: Decoupling of address generation branches in DFG

5.2 Assembler

The Toolchain for the proposed CGRA has been split into (1) compiler (to efficiently
map kernels onto CGRA) and (2) assembler (to further optimize the generated assembly
code to produce the required bit-stream). The assembler takes the ASCII text assembly
generated by the compiler during the mapping process. The Instruction Set Architec-
ture (ISA) of the proposed CGRA produces the required machine code for PE array
configuration. The generated machine code consists of instructions and constants that
will be broadcast to the IRF and CRF of PEs. Memory instructions (i.e., LOAD/S-
TORE instructions) also include the addresses of the indexes stored in the CRF, which
Flexible-AGU will use for address generation. Mainly, the assembler adds the following
optimizations and encoding techniques (as a part of new contribution) while generating

72

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

5.2 Assembler

the required machine code:

• removes instructions generated for dummy nodes used to map multi-cycle opera-
tions (See dummy 0 and dummy 1 in Figure 5.3).

• eliminates any duplicate entry of constants in the CRF of PEs.

• encodes the information required by the memory instructions (explained below).

Alongside the assembly code file, compiler also generates a configuration file which con-
sists of information about the loop variables used in the application. These information
are (1) START, (2) STEP, and (3) END values of each loop variables. A parser is
implemented to manipulate these values and generate the required 20-bit data for each
loop variables which represents the loop variable line in CRF (See Section 4.1) and the
structure of such lines are as follow:

MSB 10-bit 8-bit LSB
1/0 START STEP 1/0

where, MSB determines if START (10-bit) value is a loop variable (MSB=1) or a con-
stant (MSB=0) and LSB determines if the STEP (8-bit) value should be subtracted
(LSB=1) or added (LSB=0) form the START value in the next loop iteration.

After this step, a second parser is implemented to manipulate the memory instructions
present in the assembly code file. This step formats each memory instructions in the
following structure

timestamp #PE LOAD/STORE Reg i A j B BA k C l D

where, i,j,k,l are the loop variables and A,B,C,D are constants/variables.

If any of these values are missing, the parser will produce the memory instruction lines
accordingly. Few examples are as follows:

• if the variable is Input[i], then instruction line would be

timestamp #PE LOAD/STORE Reg i 0 1 0 BA 0 0 0 0

• if the variable is Input[i][j], then instruction line would be

timestamp #PE LOAD/STORE Reg i 0 1 0 BA j 0 1 0

• if the variable is Input[i+A], then instruction line would be

timestamp #PE LOAD/STORE Reg i A 1 0 BA 0 0 0 0

• if the variable is Input[i][A], then instruction line would be

timestamp #PE LOAD/STORE Reg i 0 1 0 BA 0 A 1 0

73

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 5 Compiler Support

Next, the assembler interprets these memory instructions and produce Index Pair lines
(i.e., (i+A) or (j +B) or (k+C) or (l+D)) to be stored in CRF. The structure of these
lines are as follows:

MSB 9-bit 10-bit
1/0 LV address/Constant Constant

where, MSB determines if i,j,k or l are loop variables (MSB=1) or a constant value
(MSB=0). In the case of MSB=1, then the 5-bit address of the loop variable is stored
at [15:11] of the Index Pair line.

The assembled line (i.e., Index Address line) in CRF, which represents the addresses of
such Index Pair lines (which is referenced in the memory instructions), has a structure
like this

5-bit 5-bit 5-bit 5-bit
(i+A) address (j +B) address (k+C) address (l+D)) address

Finally, the assembler takes the modified memory instructions and generates the 21-bit
instruction to be included in IRF. The structure of 21-bit memory instructions are as
follows:

MSB LSB
5-bit 1-bit 5-bit 1-bit 3-bit 6-bit

Index Addr Type (1) BA Addr Type (1) DRA LOAD
Index Addr Type (1) BA Addr Type (1) DRA STORE

DRA : Destination Register Address
BB : Basic Block
LV : Loop Variable
Type=1 : Source is in CRF

A PE decodes (See section 4.1) such encoding when a memory instruction is encountered
to calculate the required address for fetching/storing data from/in the memory.

5.3 Summary and Concluding Remarks

This chapter presents the contribution in the compilation flow for the proposed CGRA.
The chapter begins with a general introduction of the compiler support for CGRAs
and then follows the background work. The focus of this chapter is on the compilation

74

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

5.3 Summary and Concluding Remarks

flow for the proposed CGRA. The chapter discusses the compilation flow and how the
homomorphism between the Application model and CGRA model made the mapping
problem a sub-graph finding problem. Finally, the main contribution of this chapter,
mapping of multi-cycle operation and decoupling of address generation branches from
the DFGs, are discussed. Next chapter 6 presents a heterogeneous cluster featuring
transprecision computing, including both the RI5CY sub-system and the CGRA sub-
system.

75

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

76

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 6

Heterogeneous Platform for
Transprecision Computing

Contents

6.1 Heterogeneous Platform . 78

6.1.1 CGRA Integration . 78

6.1.2 Software Infrastructure . 80

6.1.3 PULP SoC Memory Map 81

6.1.4 Workload Synchronization between CGRA and RI5CY sub-
systems . 83

6.1.5 Manual Mapping approaches 85

6.2 Summary and Concluding Remarks 90

This chapter discusses the design and implementation of a heterogeneous cluster, in-
cluding the transprecision computing-based CGRA sub-system. The CGRA design is
explained in detail in section 4.1.4, and this chapter mainly focuses on the integration
of CGRA into the PULP-Cluster of the PULP SoC [2] (See section 3.6).

Contribution and Outline of the Chapter

The outline of this chapter is as follows:

1. Design and implementation of a heterogeneous platform, particularly,

• integration of a transprecision computing-based CGRA into PULP-Cluster
and implementation of optimization techniques to optimize the performance
of the proposed heterogeneous cluster,

• description of the software infrastructure employed to enable the heteroge-
neous platform,

77

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 6 Heterogeneous Platform for Transprecision Computing

• memory map of PULP SoC and dedicating address space for the CGRA,

• workload synchronization between CGRA and RI5CY sub-systems, and

• manual mapping approaches adopted for mapping kernels on CGRA for ob-
taining high PE utilization.

Finally, a summary and concluding remarks are provided at the end of this chapter.

6.1 Heterogeneous Platform

PULP-SoC [2] (See Figure 3.7 and Figure 3.8) exploits the flexible aspect of the RISC-
V ISA to provide a multi-core RI5CY sub-system and also allows coupling of a pro-
grammable parallel processing engine (CGRA sub-system) for flexible near-sensor pro-
cessing (i.e., audio, image, bio-signals, and embedded ML). The parallel computing
heterogeneous cluster (Figure 6.1) contains 8 RI5CY cores supporting the RV32IMC in-
struction set [99], with an extension supporting SIMD-style vectorization and targeting
energy-efficient digital signal processing (Xpulp) [48].

The heterogeneous cluster presented is based on the parallel compute cluster domain
(aka PULP-Cluster) of the PULP Architecture (See section 3.6). The CGRA sub-
system includes a 4x4 PE array, and the architecture is presented in section 4.1.4. This
section focuses on the integration of the CGRA sub-system in PULP-Cluster and the
implementation of optimization techniques.

6.1.1 CGRA Integration

Figure 6.1 shows the organization of CGRA and RI5CY in the parallel compute cluster
domain (aka PULP-Cluster) of PULP-SoC. In the set-up of the parallel compute cluster
domain, the global wires to the CGRA Integration module are connected to

• Cluster Interconnect for transferring data between TCDM and CGRA sub-system,

• Cluster Bus for transferring data between CGRA and L2 memory,

• Event Unit to interact with the cluster events for CGRA (including events for
clock-gating between CGRA and RI5CY),

• Cluster Timer to access the cluster timer unit for input triggers (i.e., Frequency-
Locked Loop (FLL) clock, Prescaler to FLL clock, reference clock, and external
event), counting modes, interrupt request, and

78

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

6.1 Heterogeneous Platform

TCDM

Size = 64*1024

1 Bank Size = 4*1024

#Banks = 16

Cluster INTERCONNECT

TCDM_BANK_MEM_BUS

Master

Slave

DMA

XBAR_TCDM_BUS

Slave

Master

8 RI5CY cores

I$ Cache

#Banks = 8

Cache Size = 4*1024

L2 memory

Size = 512 * 1024
C

lu
st

e
r

B
U

S

CGRA Integra�on

AXI_BUS

Master

Slave

Event Unit

Cluster

Control Unit

Cluster Timer

icache

Control Unit

Cluster Peripherals

XBAR_TCDM_BUS

Master

Slave

TCDM arbitra�on Policy [1:0]

XBAR_PERIPH_BUSMaster

Slave

Cluster Domain

Slave

XBAR_PERIPH_BUSMaster

Figure 6.1: Organization of CGRA and RI5CY in heterogeneous cluster

• Cluster Control Unit to access the memory map of cluster domain.

Figure 6.2 shows the connections of wires inside the CGRA Integration module. CGRA
Integration is a wrapper for three components which are the key blocks of the CGRA sub-
system, (1) CGRA Wrapper which constitutes the PE array and DMA CGRA controller,
(2) Global Context Memory, which store the context data, and (3) DMA controller
dedicated for CGRA sub-system. Figure 6.3 shows the continuation of connections of
the global wires of the CGRA Integration module.

Clock-gating between CGRA and RI5CY sub-systems

A clock-gating scheme between CGRA and RI5CY sub-system is implemented to further
improve the energy efficiency of the heterogeneous cluster. The working of the clock-
gating scheme is as follows:

• When RI5CY cores are executing: CGRA sub-system detects that no task
has been issued for the CGRA and issues a CLK GATE CGRA signal to clock-gate
the PE array of CGRA.

• When the CGRA sub-system is executing: CGRA sub-system issues a
CGRA BUSY signal which is used to clock-gate the RI5CY sub-system. Par-
ticularly,

79

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 6 Heterogeneous Platform for Transprecision Computing

DMA Controller

(dedicated for fetching context data

from L2 memory to Global Context

Memory)

XBAR_TCDM_BUS

Master

Slave

CGRA Integra�on

Cluster PERIPHERALS Cluster BUS

(to L2 Memory)

XBAR_PERIPH_BUS AXI_BUS

Slave Master

TCDM arbitra�on Policy [1:0]

Cluster PERIPHERALS

Cluster PERIPHERALS

Cluster INTERCONNECT

(to TCDM)
XBAR_TCDM_BUS

XBAR_PERIPH_BUS

Master

Master

Slave

Slave

DMA CGRA

Controller

(includes an FSM to

send the context data

to their respec�ve

PEs)

CGRA

(PE array)

DMA Address

[22:0]

DMA Data

[63:0]

CGRA Wrapper

Global Context Memory

Size = 2*1024

1 Bank Size = 1024

#Banks = 2

Context Address

[31:0]
Context Data

[63:0]

Figure 6.2: CGRA integration

1. clock-gate FPU Cluster

2. clock-gate all RI5CY cores but CORE[0] (CORE[0] is always active (1) to
catch the interrupt signals within the heterogeneous cluster, and (2) to issue
functions for Cluster Peripherals and DMA)

6.1.2 Software Infrastructure

CGRA also features a dedicated memory mapping of operations, and PEs access these
control registers to offload works to the CGRA and synchronize the execution. There are
two control registers, i.e., (1) command register and (2) status register, and then with
the help of a simple Application Programming Interface (API), CGRA performs the
offloading and synchronization of tasks in the cluster domain. Table 6.1 describes the
main functions of this API. Before the initialization of execution on CGRA, the context
and data from the L2 memory are loaded into GCM and TCDM to program the DMA

80

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

6.1 Heterogeneous Platform

LSU

CRF

(includes FAGU)

IRF

CGRA (global wires)

DMA Data [63:0]

DMA Address [22:0]

TCDM Read Data [31:0]

Flexible-AGU
TCDM Address [31:0]

ALU/mSFU

TCDM Write Data [31:0]

Data for address calcula�on

Figure 6.3: CGRA global wires

Function Details

void DATA LOAD L2toTCDM()
writes data from L2 memory
to TCDM through DMA

void CGRA LOAD CONTEXT L2toTCDM()
writes context data from L2 memory
to the GCM through
DMA CGRA Controller

int CGRA START EXECUTION()
Begin CGRA execution by writing
in the command register

int CGRA CHECK STATUS(int ID) CGRA synchronization
int CGRA FREE CGRA(int ID) Release CGRA

Table 6.1: API for controlling CGRA

(dedicated for CGRA sub-system) and DMA CGRA Controller. The context of the
CGRA consists of instruction and constants for each PE (generated by the compilation
flow described in 5.1). The API functions CGRA LOAD CONTEXT L2toTCDM()
and DATA LOAD L2toTCDM() execute a set of routines to write context and data into
GCM and TDCM, respectively. The CGRA START EXECUTION() writes the execute
command into the command register of the CGRA. Upon completion of the execution of
workload in CGRA, the status register is updated. The status of the CGRA execution is
updated by calling CGRA CHECK STATUS() by checking the status register. Finally,
CGRA FREE CGRA() is called, and a signal is sent to the Event Unit in the cluster
domain to notify the availability of CGRA and scheduling of the next task in the cluster
domain.

6.1.3 PULP SoC Memory Map

Figure 6.4 represents the memory map of PULP SoC, mainly highlighting the reserved
and non-reserved addresses. All area in the memory map is addressable from any RI5CY
cores. Aliased addresses have a specific meaning when addressed from either Fabric Con-

81

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 6 Heterogeneous Platform for Transprecision Computing

0x00000000 – 0x003FFFFF Aliased Memory Area

0x1A100000 – 0x1A10FFFF
SoC Peripherals

Subsystems

0x1C000000 – 0x1FFFFFFF L2 Memory

ROM (8KiB)0x1A000000 – 0x1A003FFF

{0x1A000000 – 0x1A0FFFFF} ROM

0x10200000 – 0x102003FF Cluster Control Unit

0x10200400 – 0x102007FF Cluster Timer

0x10202000 – 0x10203FFF Non-reserved Addresses

0x10201000 – 0x102013FF Non-reserved Addresses

0x10204800 – 0x102FFFFF Non-reserved Addresses

0x10201800 – 0x10201BFF Non-reserved Addresses

0x10201C00 – 0x10201FFF DMA

0x10201400 – 0x102017FF
Cluster I$ Cache Control

Unit

0x10200800 – 0x10200FFF Cluster Event Unit

0x10204000 – 0x102043FF Cluster Event Unit Core

0x10204400 – 0x102047FF DMA

0x10300000 – 0x1033FFFF
Cluster Cores Debug
Units

0x10020000 – 0x100FFFFF Non-reserved Addresses

0x10100000 – 0x101FFFFF
Cluster L1 Memory Test
and Set Unit

0x10000000 – 0x1001FFFF Cluster L1 RAM (128KiB)

{0x10000000 – 0x103FFFFF}Cluster Subsystem

Address

space used

for CGRA

Figure 6.4: PULP SoC Memory Map

troller (FC) (i.e., a microcontroller like core for control, communications, and security
functions in the PULP SoC) or RI5CY cores in the PULP-Cluster. Aliased addresses
are preferred over standard addresses because they provide faster access that is typically
1 or 2 clock cycles.

Reserving address for CGRA Events in PULP-Cluster components

Table 6.1 shows a set of functions in the API used for controlling and triggering CGRA
events in the PULP-Cluster. Two main actions are required for efficient control of the
CGRA sub-system using the API.

82

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

6.1 Heterogeneous Platform

1. Position the CGRA DMA peripheral on the slave port of the Cluster Interconnect
to interact with the heterogeneous cluster peripherals.

• For CGRA DMA events, position number 8 is reserved, which corresponds to
address 0x10202000 in the memory map in Figure 6.4. This design choice re-
sulted in CGRA DMA COMMAND REGISTER address to 0x10202000, and
CGRA DMA STATUS REGISTER to 0x10202004. Command and Status
registers are used to control and synchronize the CGRA DMA events using
the APIs in Table 6.1. Depending on the number of tasks that can be serial-
ized in the CGRA at once, the value of CGRA DMA STATUS REGISTER
is incremented by 4 to get the next register address.

2. Position the CGRA peripherals on the slave port of the Cluster Interconnect to
interact with the heterogeneous cluster peripherals.

• For CGRA events, position number 9 is reserved, which corresponds to address
0x10202400 in the memory map in Figure 6.4. This design choice resulted
in CGRA COMMAND REGISTER address to 0x10202400 and the CGRA
STATUS REGISTER address to 0x10202404. These registers are used to
control and synchronize CGRA events using the API in Table 6.1. Depending
on the number of tasks that can be serialized in the CGRA at once, the value
of CGRA STATUS REGISTER is incremented by 4 to get the next register
address.

6.1.4 Workload Synchronization between CGRA and RI5CY
sub-systems

In this section, workload synchronization between the CGRA sub-system and the RI5CY
sub-system is explained using the help of an example program. Code 6.1 presents the
sample C code:

int i , k ;
f loat A[1 0] , B[1 0] , C [1 0] ;
f loat OUT[1 0] , OUT ORDERED[1 0] ;

// ∗∗ execu te in CGRA ∗∗
for (i = 0 ; i < 10 ; i ++){

// OUT[i] = (A[i] ∗ B[i]) + C[i] ;
OUT[i] = fadd8 (fmul8 (A[i] , B[i]) , C[i]) ; }

// ∗∗ execu te in RI5CY ∗∗
for (k = 9 ; k <= 0 ; k−−){

OUT ORDERED[k] = OUT[9−k] ; }

Code 6.1: Sample C code showing workload split between CGRA and RI5CY sub-
systems

83

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 6 Heterogeneous Platform for Transprecision Computing

The for loop with i is executed on CGRA sub-system and the for loop with k is
executed on RI5CY sub-system. First, the C code part that is executed on the CGRA
sub-system is compiled, and the corresponding bit-stream is obtained. Code 6.2 presents
the C function showing the workload synchronization between two sub-systems.

// ∗∗ i n c l u s i on o f header f i l e s and d e f i n i t i o n o f input / output data ∗∗

#define CGRA execute 1
#define RI5CY execute 1

stat ic int c l u s t e r e n t r y ()
{

// ∗∗ RI5CY par t i s executed on CORE[0] ∗∗
i f (g e t c o r e i d () == 0)
{

i f (CGRA execute)
{

// ∗∗ Data i s l oad ing from L2 to TCDM ∗∗
DATA LOAD L2toTCDM () ;

// ∗∗ Context i s l oad ing from L2 to GCM ∗∗
CGRA LOAD CONTEXT L2toGCM() ;

// ∗∗ CGRA execu t ion s t a r t e d ∗∗
int id = 0 ;
id = CGRA START EXECUTION() ;
CGRA CHECK STATUS(id) ;
CGRA FREE CGRA(id) ;

// ∗∗ CGRA Execution completed ∗∗
}

i f (RI5CY execute)
{

// ∗∗ RI5CY execu t ion s t a r t e d ∗∗
int k ;
for (k = 9 ; k <= 0 ; k−−)
{

OUT ORDERED[k] = OUT[9−k] ;
}
// ∗∗ CPU Execution completed ∗∗

}
}
return 1 ;

}

Code 6.2: C function showing workload synchronization between CGRA and RI5CY
sub-systems

84

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

6.1 Heterogeneous Platform

STORE �nal result

8

Logic opera�on on

operands

7

Logic opera�ons on

operands of next

itera�on

6

Logic opera�ons on

operands of next

itera�on

5

Logic opera�ons on

operands of next

itera�on

Logic opera�ons

on operands

4

Logic opera�ons

on operands

LOAD 2
nd

 operands

of next itera�on

LOAD 1
st

 operands

of next itera�on
3

Logic opera�on on

operands

2

LOAD 2
nd

 operands

LOAD 1
st

 operands1

CGRA with

4x4 PE array

featuring

8 LSUs

Data

movement

PE with LSU PE without LSU

LOAD/STORE

opera�on
Logic opera�on

PE blocked for sharing register

data to adjacent PE
�mestamp nn

Figure 6.5: Manual Mapping Approach 1

6.1.5 Manual Mapping approaches

The proposed compiler for CGRA is unable to fully exploit the available resources on
CGRA during the mapping step, resulting in low PE utilization. So, to reach a higher
PE utilization, mapping of the applications used for benchmarking heterogeneous cluster

85

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 6 Heterogeneous Platform for Transprecision Computing

LOAD and broadcast of

3
rd

 operands for FMA

LOAD and broadcast of

2
nd

 operands for FMA

LOAD and broadcast of

1
st

 operands for FMA

CGRA with 4x4 PE

array featuring 8

LSUs
Image with sliding

Kernel window

Pre-LOAD and broadcast

of Kernel data and store

in local registers of

respec�ve PEs

Logic opera�ons Logic opera�ons

Logic opera�ons Logic opera�ons Logic opera�ons

Kernel

Window for

current

itera�on

Kernel

Window for

next itera�on

Kernel

Window for

next itera�on

Overlapping

Kernel

Window for

two itera�ons

Kernel

Window for

next itera�on

Sliding Kernel

Window

direc�on

�mestamp nn
Data

movement

PE with LSU PE without LSU
LOAD/STORE

opera�on
Logic opera�on

PE blocked for sharing

register data to adjacent PE

1 2 3

4 5 6

7 8 9

Figure 6.6: Manual Mapping Approach 2 (used in k-means)

where mainly CGRA is executing are performed manually. There are particularly two

86

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

6.1 Heterogeneous Platform

manual mapping approaches employed. These are:

1. Manual mapping Approach 1: Figure 6.5 shows this approach and is used for
the applications where,

• majority of data required for computation are loaded during each loop itera-
tion, and

• majority of computed results are stored back to memory (i.e., TCDM) either
before or at the end of each loop iteration.

2. Manual mapping Approach 2: Figure 6.6 shows this approach and is used for
the applications where,

• majority of data required for computation are pre-loaded and used over several
loop iterations, and

• majority of computed results that can be temporarily stored in the local regis-
ters of CGRA to avoid repeated storing and loading of same data over several
loop iterations.

Manual Mapping Approach 1

Figure 6.5 shows the Manual Mapping Approach 1. To explain this approach, Code 6.3
presents a simple multiply-accumulate kernel to explain each step in this mapping ap-
proach.

int j ;
f loat A[8] , B [8] ; // ∗∗ Input Data ∗∗
f loat OUT; // ∗∗ Output Data ∗∗

f loat tempA = 0 . 0 ;
f loat tempB = 0 . 0 ;

// ∗∗ l oop unro l l e d ∗∗
// f o r (j = 0 ; j < 8 ; j+=8)
// {

f loat temp0 = A[j +0] ∗ B[j +0] ;
f loat temp1 = A[j +1] ∗ B[j +1] ;
f loat temp2 = A[j +2] ∗ B[j +2] ;
f loat temp3 = A[j +3] ∗ B[j +3] ;

tempA = temp0 + temp1 + temp2 + temp3 ;

f loat temp4 = A[j +4] ∗ B[j +4] ;
f loat temp5 = A[j +5] ∗ B[j +5] ;
f loat temp6 = A[j +6] ∗ B[j +6] ;
f loat temp7 = A[j +7] ∗ B[j +7] ;

87

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 6 Heterogeneous Platform for Transprecision Computing

tempB = temp4 + temp5 + temp6 + temp7 ;
// }

OUT = tempA + tempB ;

Code 6.3: A simple multiply-accumulate C code

Following are the steps considered for mapping the kernel onto a 4x4 PE array with 8
LSUs.

1. At timestamp #1, addresses are calculated in the Flexible-AGU of PEs with LSU.
A[0], A[1], A[2], A[3] are loaded in first row, and B[0], B[1], B[2], B[3] are loaded
in third row, respectively.

2. At timestamp #2, PEs in the second row perform logic operations, i.e., multipli-
cation on the fetched data. PEs in the first and third rows broadcast the loaded
data to their adjacent PEs.

3. At timestamp #3, A[4], A[5], A[6], A[7] are loaded in the first row, and B[4], B[5],
B[6], B[7] are loaded in the third row, respectively. While data is being loaded
in the first and third rows, PEs in the second row performs the accumulation of
calculated results.

4. At timestamp #4, PEs in the fourth row perform logic operations, i.e., multipli-
cation on the fetched data, and PEs in the second row perform accumulation of
the calculated results.

5. At timestamp #5, PEs in the fourth row performs accumulation.

6. At timestamp #6, PEs in the fourth row performs accumulation.

7. At timestamp #7, PE in the third row performs the final addition of the accumu-
lated results from the third and fourth rows.

8. At timestamp #8, finally accumulated result is stored back in the memory.

Manual Mapping Approach 2

Figure 6.6 shows the Manual Mapping Approach 2. To explain this approach, Code 6.4
presents a sample C code to explain each step in this mapping approach.

int i0 , i , j ;
f loat Image [2 0 0] [2 0 0] , A[2 0 0] , B [9] ; // ∗∗ Input Data ∗∗
f loat Image Out [2 0 0] [2 0 0] ; // ∗∗ Output Data ∗∗

88

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

6.1 Heterogeneous Platform

for (i 0 = 0 ; i 0 < 200 ; i 0++)
{

// ∗∗ l oop unro l l e d ∗∗
for (i = 0 ; i < 200 ; i +=2)
{

f loat tempA = 0 . 0 ;
f loat tempB = 0 . 0 ;

f loat temp0 = B[0] + A[i0+0] ∗ Image[i0][i] ;

f loat temp1 = B[1] + A[i0+1] ∗ Image[i0][i] ;

f loat temp2 = B[2] + A[i0+2] ∗ Image[i0][i] ;

f loat temp3 = B[3] + A[i0+3] ∗ Image[i0][i] ;

tempA = temp0 + temp1 + temp2 + temp3 ;

f loat temp4 = B[4] + A[i0+4] ∗ Image[i0][i+1] ;

f loat temp5 = B[5] + A[i0+5] ∗ Image[i0][i+1] ;

f loat temp6 = B[6] + A[i0+6] ∗ Image[i0][i+1] ;

f loat temp7 = B[7] + A[i0+7] ∗ Image[i0][i+1] ;

tempB = temp4 + temp5 + temp6 + temp7 ;

Image Out [i 0] [i +0] = tempA ∗ B[8] ;

Image Out [i 0] [i +1] = tempB ∗ B[8] ;

}
}

Code 6.4: A sample C code. Text highlights correspond to the color coding in Figure 6.6.
Pre-loaded Data , Distinct Data 1 , Distinct Data 2 , Common Data

Following are the step considered for mapping the kernel onto a 4x4 PE array with 8
LSUs.

1. First, the code is analyzed to determine the common and distinct calculations to
be performed over multiple loop iterations. For example, the sliding kernel window
in Figure 6.6 has both common and distinct calculations over two loop iterations.

2. At timestamp #1, elements of the B[8] array are pre-loaded into their respective
PEs. This step is done before starting execution of the loops in the kernel, as
these values are stored in the local registers of the PEs and used over several loop
iterations.

3. At timestamp #2, elements of the Image[200][200] array are loaded in the first row
and the third row, respectively.

4. At timestamp #3, elements of the A[200] array are loaded in the first row and
the third row, respectively. PEs in the second row begins logic operations, i.e.,
fused-multiply-accumulate (FMA).

89

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 6 Heterogeneous Platform for Transprecision Computing

5. At timestamp #4, if B[8] array data is not present in PEs to perform FMA, then
those data are loaded in adjacent PE in either first or third rows and broadcast to
the PEs second and fourth rows, respectively. Otherwise, the second and fourth
rows perform FMA operations with the preloaded data.

6. At timestamp #5, PEs in the second and fourth rows perform accumulation.

7. At timestamp #6, PEs in the second row perform accumulation.

8. At timestamp #7, PEs in the third row perform accumulation.

9. At timestamp #8, PEs in the third row perform multiplication.

10. At timestamp #9, finally, the results are stored back in the memory.

6.2 Summary and Concluding Remarks

This chapter presents a heterogeneous cluster featuring a transprecision computing-
based CGRA sub-system and a multi-core RI5CY sub-system. Particularly, highlighting
the (1) integration of CGRA into the PULP-Cluster, (2) clock-gating between CGRA
and RI5CY sub-systems, (3) software infrastructure, (4) PULP SoC memory map, (5)
reserving addresses for CGRA events into the PULP-Cluster components, (6) work-
load synchronization between two sub-systems, and (7) manual mapping approaches to
map applications onto CGRA. Next chapter 7 presents an extensive exploration of the
design space and evaluation of proposed CGRA and the heterogeneous cluster using
a set of real-world applications which implements the fundamental algorithms for the
applications used in two domains relevant for ultra-low-power systems, i.e., near sensor
computing and embedded machine learning.

90

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7

Experimental Framework and
Performance Evaluation

Contents

7.1 Analyses of implementation of the proposed CGRA 93

7.1.1 Evaluation Methodology . 93

7.1.2 Quality of Results . 94

7.1.3 Implementation Results . 95

7.1.4 Latency Performance . 97

7.1.5 Energy Consumption . 99

7.1.6 Energy-Efficiency . 100

7.2 Analyses of implementation of the heterogeneous cluster . . 101

7.2.1 Evaluation Methodology . 101

7.2.2 Implementation Results . 103

7.2.3 Latency Performance . 104

7.2.4 Energy Consumption . 106

7.2.5 Utilization . 109

7.3 Summary and Concluding Results 110

This chapter analyses the implementation of proposed CGRA, mainly, (1) Design opti-
mization 1: IEEE 754-2008 Standard compliant 4x2 PE Array (See section 4.1.1), (2)
Design optimization 2: Transprecision FP compliant 4x2 PE Array (See section 4.1.2),
and (3) Design optimization 4: Transprecision FP compliant 4x4 PE Array (See sec-
tion 4.1.4), are presented. A standard Power, Performance, and Area (PPA) analysis and
other experiments are performed to evaluate proposed CGRA featuring transprecision
computing, and the obtained results are compared with different architectures support-
ing either transprecision FP or SoA IEEE 754-2008 standard FP computations.

The evaluation of the CGRA designs is performed and presented in two parts.

91

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7 Experimental Framework and Performance Evaluation

• In the first part, Design optimization 2: Transprecision FP compliant 4x2 PE Array
is in focus and compared with (1) Design optimization 1: IEEE 754-2008 Standard
compliant 4x2 PE Array, to provide an overview of comparing transprecision
computing-based CGRA design with SoA FP computing-based CGRA, (2) a highly
optimized RISC-V based ASIP extended with custom instructions for accelerating
DSP applications, namely RI5CY [48], supporting tranprecision computing, and
(3) RI5CY supporting SoA FP computing.

• In the second part, an extensive exploration of the design space with different
configurations to pull off the highest performances from the heterogeneous cluster
containing both CGRA sub-system and multi-core RI5CY sub-system (See chap-
ter 6), in terms of latency, power, and area is presented.

Contribution and Outline of the chapter

The outline of this chapter is as follows:

1. Analyses of implementation of the proposed CGRA, particularly,

• description of the experimental setup, including a brief description of the
applications used for PPA analysis and the different architectures used for
comparison in this chapter,

• evaluation of accuracy deviation of binary16alt with respect to SoA FP datatype
i.e., IEEE 745-2008 binary32,

• implementation in 28nm process node and total cell area (µm2) comparing
the proposed GCRA with different architectures,

• latency performance (cycles) and evaluation of different architectures execut-
ing kernels using different FP datatype,

• energy consumption (µJ) and comparison with different architectures, and

• energy-efficiency (Million Operations Per Second Per mW or MOPS/mW) of
different architectures.

2. Analyses of implementation of the heterogeneous cluster, particularly,

• setup of the experiments, including a brief description of the applications used
for Power, Performance, and Area (PPA) analysis,

• implementation in 22nm process node (design sign-off) and total area (µm2)
breakdown of the heterogeneous cluster,

92

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

7.1 Analyses of implementation of the proposed CGRA

• latency performance (cycles) and evaluation of different configurations while
executing kernels,

• energy consumption (µJ) of the sub-systems and heterogeneous cluster, and

• exposition of the correlation between PE utilization of CGRA and variations
in the power consumption.

Finally, a summary of the results and concluding remarks are provided at the end of
this chapter.

7.1 Analyses of implementation of the proposed CGRA

7.1.1 Evaluation Methodology

A set of applications, which implements the fundamental algorithms for the applications
used in two domains relevant for ultra-low-power systems, i.e., near sensor computing
and embedded machine learning, are chosen for performing the experiments. Below is
a brief description of the selected applications.

• PCA performs Principal Component Analysis, and this algorithm is used for
seizure detection, which is used for a wide range of applications for processing
Electroencephalography (EEG) signals. PCA itself consists of 5 sequentially exe-
cuted kernels, namely, (1) Mean Covariance, (2) Householder, (3) Accumulate, (4)
Diagonalize, and (5) Principal Component. These kernels exhaustively perform FP
computations and also require a wide dynamic range of FP data representation.
Particularly, binary16alt and IEEE 754-2008 binary32 FP datatype are used.

• CONV implements a 5x5 convolution kernel, and this algorithm is used for image
and audio processing applications. Particularly, binary8 FP datatype is used.

• DWT computes the Discrete Wavelet Transform, and this algorithm is used for ap-
plications performing Electrocardiography (ECG) analysis. Particularly, binary8
FP datatype is used.

• SVM is the prediction stage of a Support Vector Machine, and this algorithm is
used as a classifier for predicting traffic data, ECG, etc. Particularly, binary8 FP
datatype is used.

Table 7.1 shows the complexity of these kernels in terms of (1) total number of operations
executed, (2) highest loop iteration, and (3) input data size (in bits).

93

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7 Experimental Framework and Performance Evaluation

Kernel
Operations
executed

Highest
loop iteration

Input Data
size (bits)

mean covariance 397,348 47,104 94,208
Householder 35,632 1,360 9,216
Accumulate 106,298 1,240 8,704
Diagonalize 74,987 2,368 9,216

PC 168,738 11,776 102,400
CONV 766,728 4,096 131,072
DWT 39,456 448 16,384
SVM 15,630 896 72,000

Table 7.1: Complexity of Kernels

Here, Design 2 (See section 4.1.2) is referred to as TRANSPIRE. TRANSPIRE is com-
pared against 3 different architectures featuring binary16alt, binary8, and IEEE 754-2008
binary32. Below is a brief description of the three selected architectures.

• RI5CY FPU [48] is a single-core in-order 4-stage RISC-V CPU with support for
IEEE 745-2008 binary32 FP datatype. This architecture will provide a comparison
of TRANSPIRE with SoA architecture.

• RI5CY SFU [61] is a single-core in-order 4-stage RISC-V CPU with enhanced ISA
supporting SIMD-style vectorization and supports binary16alt and binary8 FP
datatype. This architecture will provide a comparison of TRANSPIRE with SoA
architecture with similar features.

• TRANSPIRE FPU (See section 4.1.1) is version of TRANSPIRE featuring IEEE
754-2008 binary32 FP datatype. This architecture will compare TRANSPIRE
with the same architecture featuring SoA IEEE 754-2008 binary32 with no degra-
dation on quality of results. TRANSPIRE FPU features the same FP operators
as TRANSPIRE.

All the configurations of different architectures have been carefully chosen to ensure a
fair comparison. Mainly, RI5CY [48] is an in-order 4-stage RISC-V CPU that supports
SIMD extensions, custom instructions, and misaligned load support. Due to these
features, the bandwidth requirements for data memory are extensively reduced, and
computational efficiency increases. RI5CY is highly optimized for DSP applications,
making it a good candidate for a fair comparison with TRANSPIRE.

7.1.2 Quality of Results

One of the main concerns of using an FP format with fewer precision bits is the accuracy
degradation w.r.t. SoA FP datatype. Table 7.2 shows the accuracy deviation of the
results calculated using binary16alt and binary8 w.r.t. IEEE 754-2008 binary32 and

94

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

7.1 Analyses of implementation of the proposed CGRA

Kernel Average deviation (%) Data-type
mean covariance 4.80 binary16alt

Householder 0.33 binary16alt
Accumulate 9.03 binary16alt
Diagonalize 5.49 binary16alt

PC 1.54 binary16alt
CONV 2.32 binary8
DWT 6.98 binary8
SVM 7.11 binary8

Table 7.2: Accuracy Performance

binary16 respectively. It must be noted that binary16alt and IEEE 754-2008 binary32
have same dynamic data range and binary8 and IEEE 754-2008 binary16 have same
dynamic data range. So, the results of these pairs are compared with each other to ensure
a fair comparison. In the Table 7.2, it can be observed that the accuracy deviation is
always below 10%. Particularly, Accumulate kernel shows a 9.03% accuracy loss due
to extensive computations on sub-normal FP numbers (i.e., FP numbers between -1.0
to +1.0). The least accuracy loss is observed in the Householder kernel due to fewer
operations involving sub-normal FP numbers.

7.1.3 Implementation Results

All four architecture designs have been synthesized (for gate-level simulation) at 28nm
Ultra-Thin Body and Buried oxide Fully Depleted Silicon On Insulator (UTBB-FD-
SOI) [115] process node. Parameters used for synthesis are configured to test setup
time violation (because zero wire model is used during logic synthesis), and they are as
follows:

• 50 Hz frequency

• 0.6V operating voltage

• worst-case analysis corner (i.e., slow NMOS, slow PMOS)

• 125◦C temperature

• low power low Vt transistors

Configuration of TRANSPIRE is as follows:

• Context Memory is sized at 4KiB, to fit two full-size configuration data (i.e.,
instructions and constants)

95

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7 Experimental Framework and Performance Evaluation

TRANSPIRE
RI5CY

SFU
TRANSPIRE

FPU
RI5CY
FPU

DMA Controller 593 4 KiB 593 4 KiB
Interconnect 6,273 Instruction 6,273 Instruction

Context memory 9,345 Cache 9,345 Cache
TCDM 65,164 65,164

PE Array 186,407 174,230
Total 267,784 213,371 255,605 185,812

Table 7.3: Total cell area (µm2) breakdown and comparison

(a) Area comparison of FPU, mSFU, and DS (b) Area breakdown of PE

Figure 7.1: Total cell area (µm2) breakdown and comparison

• TCDM is sized at 32KiB

• 4x2 PE array size

• Instruction Register File (IRF) is sized at 21x64-bit, featured in each PE

• Constant Register File (CRF) is sized at 20x32-bit, featured in each PE

• Regular Register File (RRF) is sized at 7x32-bit, featured in each PE

• OutPut Register (OPR) is sized at 1x32-bit, featured in each PE

TRANSPIRE FPU shares the same configuration as TRANSPIRE, with mSFU and DS
unit replaced with IEEE 754-2008 binary32 compliant FPU and DS unit, respectively.
Both RI5CY SFU and RI5CY FPU also feature a 4KiB instruction cache and 32KiB
data memory (i.e., TCDM) for the sake of fair comparison.

Table 7.3 shows the total cell area (µm2) breakdown analysis of all four architec-
tures (synthesized in 28nm process node). It can be observed that TRANSPIRE has
1.25× larger total cell area than RI5CY SFU, 1.05× larger total cell area than TRAN-
SPIRE FPU, and 1.44× larger total cell area than RI5CY FPU. RI5CY sub-systems
have a comparable total cell area (µm2) w.r.t. TRANSPIRE sub-system (See Table 7.3),

96

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

7.1 Analyses of implementation of the proposed CGRA

Kernel PE Utilization (%)
PCA 72%

CONV 63%
DWT 87.5%
SVM 47%

Table 7.4: Average PE Utilization of kernels

Kernel
TRANSPIRE

binary8 (cycles)
RI5CY SFU

binary8 (cycles)
Gain

CONV 268,179 1 455,097 5.43×
DWT 11,140 16,912 1.52×
SVM 11,408 114,747 10.06×

Table 7.5: Latency Performance (cycles) of kernels (binary8)

so single-core RI5CY featuring either SFU or FPU is used for comparison in this chap-
ter.

Figure 7.1b shows the total cell area (µm2) breakdown of a PE featuring mSFU and DS
unit, and it can be observed that mSFU takes 9% and DS unit takes 4% of total cell
area (µm2) of a PE. This allowed an mSFU to be included in each PE in TRANSPIRE.
Figure 7.1a represents the total cell area (µm2) comparison of transprecision computing
compliant mSFU and DS with SoA IEEE 754-2008 binary32 compliant FPU and DS
unit. It can be observed that the later combination has 1.42× larger total cell area
(µm2) than transprecision compliant units. Particularly, FPU is 1.09× larger than
mSFU and IEEE 754-2008 binary32 compliant DS unit is 2.18× larger than binary16alt
compliant DS unit.

7.1.4 Latency Performance

This section presents and compares the latency performance of each architecture exe-
cuting the set of kernels discussed in section 7.1.1. The latency performance is shown
in the number of clock cycles consumed in executing a kernel.

Table 7.4 shows the average PE utilization of TRANSPIRE for each kernel. Same
PE utilization numbers are also applicable for TRANSPIRE FPU, as both architec-
tures use the same compilation flow. TRANSPIRE features a 32-bit wide datapath, so
TRANSPIRE can support SIMD lanes=2 with 16-bit FP datatype (i.e., binary16alt)
and SIMD lanes=4 with 8bit FP datatype (i.e., binary8) but TRANSPIRE FPU only
uses 32-bit FP datatype (i.e., IEEE 754-2008 binary32). Thus, fewer cycles are con-
sumed for executing the same set of kernels in TRANSPIRE w.r.t. TRANSPIRE FPU.
Figure 7.2 shows the latency performance (cycles) of four architectures executing PCA
kernels featuring different FP formats.

97

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7 Experimental Framework and Performance Evaluation

Figure 7.2: Latency performance (cycles) of PCA kernels (binary16alt and binary32)

Kernel
TRANSPIRE
binary8 (µJ)

RI5CY SFU
binary8 (µJ)

Gain

CONV 3.036 21.506 7.08×
DWT 0.124 0.256 2.07×
SVM 0.123 1.588 12.91×

Table 7.6: Energy Consumption (µJ) of kernels (binary8)

At 100% PE utilization, TRANSPIRE can execute 8x2 parallel 16-bit FP operations
and 8x4 parallel 8-bit FP operations, while RI5CY SFU can execute 1x2 parallel 16-bit
FP operations and 1x4 parallel FP operations. It must be noted that RI5CY cores can
efficiently execute memory operations (i.e., LOAD and STORE) by exploiting its in-
order 4-stage pipeline architecture, which gives RI5CY cores an architectural advantage
to perform well in kernels demanding extensive memory operations w.r.t. TRANSPIRE.
It can be observed that RI5CY SFU is unable to surpass the latency performance of
TRANSPIRE with low average PE Utilization. Moreover, TRANSPIRE (while exe-
cuting binary8 kernels) outperforms RI5CY SFU (while executing binary8 kernels) by
10.06×. Table 7.5 shows latency performance (cycles) TRANSPIRE and RI5CY SFU
executing kernels featuring binary8 FP format. Unlike RI5CY SFU, RI5CY FPU nei-
ther supports SIMD nor surpasses the latency performance of TRANSPIRE with the
average PE utilization(See Figure 7.2).

98

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

7.1 Analyses of implementation of the proposed CGRA

Figure 7.3: Energy consumption (µJ) of PCA kernels (binary16alt and binary32)

7.1.5 Energy Consumption

Total cell area (µm2) of TRANSPIRE sub-system is 1.25× and 1.44× larger than
RI5CY SFU and RI5CY FPU sub-systems, respectively. However, implementing power-
saving techniques in TRANSPIRE lowered the power consumption in TRANSPIRE,
such that the obtained results are comparable with RI5CY sub-systems. Energy con-
sumption (µJ) is directly proportional to latency (seconds) which can be deduced from
the following equation:

Total Energy (µJ) = (avg Power (mW) ∗ cycles) ∗ 1 clk cycle (ns) ∗ 10−6

(7.1)

where,

cycles = total number of cycles executed on RI5CY/ TRANSPIRE

avg Power = average Power consumption (mW) of RI5CY/ TRANSPIRE sub-system

Using a proper clock-gating scheme, a better energy-saving scheme can be implemented;
the previous chapter discusses such implementation (See chapter 6)

Figure 7.3 shows the total energy consumption (µJ) of each sub-system while executing
16-bit or 32-bit FP datatype. Latency performance (cycles) of TRANSPIRE (See Fig-
ure 7.2) is better than the rest of the three architectures in comparison. This resulted in

99

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7 Experimental Framework and Performance Evaluation

Figure 7.4: Energy-Efficiency (MOPS/mW) comparison of 4 architectures

the least energy consumption (µJ) of TRANSPIRE w.r.t. RI5CY SFU, RI5CY FPU,
and TRANSPIRE FPU (See Equation 7.1). Similarly, TRANSPIRE (while executing
binary8 kernels) consumes less energy than RI5CY SFU (while executing binary8 ker-
nels) by 12.91× (See Table 7.6).

Particularly, TRANSPIRE FPU performed non-vectored FP operations on 32-bit operands
and executed more instructions, resulting in more energy consumption. Due to the com-
plex architecture of the RI5CY SFU core, its energy consumption is higher than TRAN-
SPIRE. Lastly, RI5CY FPU performs non-vectored FP operations on 32-bit operands
and features a complex core w.r.t. TRANSPIRE, which consumes more energy than
TRANSPIRE.

7.1.6 Energy-Efficiency

Figure 7.4 shows the energy efficiency (MOPS/mW) of four architectures while execut-
ing 16-bit or 32-bit FP operations. IEEE 754-2008 binary32 is comparable with bi-
nary16alt, PCA kernels are considered for this comparison. TRANSPIRE outperforms
all architectures used in the comparison due to simple and efficient architecture. Par-
ticularly, Householder and Diagonalize kernels have low performance in TRANSPIRE
w.r.t. other kernels because these kernels are high control intensive due to complex
control flow constructs and hence, causes low ILP. TRANSPIRE reaches a maximum of
224 MOPS/mW, and TRANSPIRE FPU reaches a maximum of 156 MOPS/mW, while
RI5CY SFU shows 60 MOPS/mW and RI5CY FPU shows 24 MOPS/mW. In RI5CY
cores, the energy efficiency is constant because these cores can efficiently execute the

100

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

7.2 Analyses of implementation of the heterogeneous cluster

complete PCA application at once.

7.2 Analyses of implementation of the heterogeneous
cluster

7.2.1 Evaluation Methodology

Applications

A set of applications employed in different near-sensor processing application fields
(i.e., audio, image, bio-signals, and embedded ML) is considered for conducting the
experiments. These applications include different execution patterns and stress the
flexibility of CGRA. Table 7.7 shows the complexity of these kernels for CGRA in terms
of (1) number of operations executed, (2) highest loop iteration (after optimization), (3)
size of the global context data (Bytes), and (4) input data size (Bytes). These kernels are
executing 16-bit binary16alt operations on both sub-systems (i.e., CGRA and RI5CY).
Following is a brief description of the applications used to conduct experiments, along
with some of their real-life usage:

• FFT: Implements radix-2 Fast Fourier Transform and is widely used in voice
recognition, telecommunication, medical imaging, and Magnetic Resonance Imag-
ing (MRI) as well as Computerized Tomography (CT) scan, optics, military, and
geology.

• FIR: Implements Finite Impulse Response and is used where linearity has to be
ensured. FIR is preferred for its adaptive design, and some of its applications are
linear predicting coding, linear interpolation, spatial beamforming (sensor arrays),
adaptive filters (ECG), speech analysis and modeling, averaging filters (counter
noisy signal), and multi-rate signal processing (Digital-Analog Converters).

• IIR: Implements Infinite Impulse Response and is one of the two primary types
of filters used in audio and digital signal processing.

• k-means: Implements k-means clustering and is used in machine learning for
quantization and classification.

• matMUL: Implements matrix multiplication is used to describe any linear system
for equations (modern physics).

• CONV: Implements 5x5 convolution and is widely used in image and audio pro-
cessing applications.

101

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7 Experimental Framework and Performance Evaluation

Kernel
#Operations

Executed

Highest
loop iteration

(after optimization)

Global Context
Data size
(Bytes)

Input
Data size
(Bytes)

FFT 341,586 1,792 8,688 6,144
FIR 9,222 32 3,720 528
IIR 171,984 416 4,752 5,056

k-means 1,202,920 15,400 8,954 7,488
matMUL 1,514,676 4,096 5,520 16,384

CONV 352,080 1,024 5,712 4,196
DWT 77,902 384 3,840 1,040
SVM 147,562 308 10,992 11,704
CCA 460,199 900 41,856 3,800

Table 7.7: Kernel Complexity for CGRA

• DWT: Implements Discrete Wavelet Transform and is mainly used in applications
for ECG analysis.

• SVM: Implements the prediction stage of Support Vector Machine and is widely
used as a classifier for predicting ECG, traffic data, etc.

• CCA: Implements Canonical Correlation Analysis and is a multivariate statistical
ordination analysis (Brain-Computer Interfaces).

Heterogeneous Cluster

Figure 6.1 shows the organization of CGRA and RI5CY in the heterogeneous cluster.
Both architectures load their respective context data from a 512KiB L2 memory through
Cluster Bus. Both architectures share data using a 64KiB TCDM, implemented using 16
1024x32-bit SRAM banks. Peripherals on the cluster, particularly, Event Unit (controls
the cluster event generation by issuing CGRA and RI5CY, clock-gating between CGRA
and RI5CY, and DMA events), are shared by both architectures. Below are a brief
description of both sub-systems.

• CGRA is a 4x4 PE array connected through a simple mesh torus interconnect
network (See section 4.1.4). Each PE features 1*32-bit integer as well as 2*16-bit
binary16alt FP datatype operators. Each PE has a 21x32-bit instruction register
file, 20x32-bit constant register file, and 8x32-bit local register file. CGRA sub-
system features an 8KiB Context Memory implemented using 2 1024x32-bit SRAM
banks to hold 2 maxed size configuration data of 4KiB each (16*[21*64 + 64 +
20*32] = 4KiB, here extra 16*64-bit hold 16 configuration lines used to identify
the PE, its number of instructions, and its number of constants).

• RI5CY is a 4-stage in-order RISC-V CPU with an enhanced ISA supporting

102

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

7.2 Analyses of implementation of the heterogeneous cluster

SIMD-style vectorization. Sub-system features a 4KiB shared instruction cache
implemented using a standard cell (or latch) based approach. RI5CY 8-cores share
an FPU cluster consisting of 4 SFU [61, 56] cores. Scheduling of FP operations is
deterministic and based on the scheme described in [17].

7.2.2 Implementation Results

PPA analysis is considered for evaluating the performance of heterogeneous clusters
for different configurations using CGRA and RI5CY sub-systems. Additionally, PPA
analysis is also used for comparing CGRA and RI5CY at the sub-system level.

CAD Tools

All experiments are conducted using a post-synthesis netlist obtained after digital sign-
off in GLOBALFOUNDARIES 22FDX R© (22nm FD-SOI Technology) using a low-
threshold 8-cell library at low voltage. Synopsys Design Compiler is used for logic
synthesis, and place-and-route (PnR), Cadence Innovus, is used. Particularly, PnR
is done using multi-mode-multi-corner analysis i.e., best-case (FFG, -40◦C & +125◦C,
0.72V), worst-case (SSG, -40◦C & +125◦C, 0.59V), and typical-case (TT, +25◦C, 0.65V)
constraints. Finally, Synopsys PrimeTime is used for power estimation using typical-
case constraints, where the cluster is running at 200MHz frequency.

PULP Platform

PULP is a silicon-proven Parallel Ultra Low Power platform targeting ULP application
domains [46]. An approximation for conducting experiments is to run the parts of kernels
on the best performing architecture available on the heterogeneous cluster. Particularly,
to measure performances of FFT and DWT on CGRA, a major part of the kernel
is executed on CGRA, and parts consisting of only memory operations (i.e., LOAD/
STORE operations to arrange the final output data in memory) between TCDM and
CGRA are executed on the RI5CY sub-system.

Area Results

Table 7.8 shows the total area (µm2) breakdown of CGRA and RI5CY sub-system, and
Figure 7.5 shows the post-PnR layout of the heterogeneous cluster. CGRA sub-system
is 2.19× smaller than RI5CY sub-system, which indicates that CGRA can be included
alongside RI5CY without bringing any major area-wise overhead to cluster.

103

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7 Experimental Framework and Performance Evaluation

CGRA Sub-system

RI5CY 8-cores

4-KiB Instruction Cache

Shared FPU Cluster

Interconnect

Figure 7.5: Post-PnR view of heterogeneous cluster

7.2.3 Latency Performance

CGRA vs. RI5CY 8-cores

Table 7.9 shows the latency performance of two architectures while executing different
kernels. CGRA can efficiently exploit the ILP of k-means, FIR, IIR, CCA, and SVM
than RI5CY due to highly parallelizable inner loops. However, FFT, matMUL, CONV,
and DWT have low performance on CGRA due to (1) a high number of memory oper-
ations because CGRA requires at least 2 clock-cycles to perform a memory operation
or (2) the inner loops have less parallelism resulting in low PE utilization in CGRA
or (3) a kernel featuring high control intensive code constructs because all PEs in the
CGRA is synchronized before every JUMP instruction, which further restricts CGRA
to exhibit low PE utilization.

104

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

7.2 Analyses of implementation of the heterogeneous cluster

CGRA
(µm2)

RI5CY
(µm2)

DMA Controller 1,114 FPU Cluster (161,738)
CGRA Interconnect 363 + Interconnect (65,989)

Context Memory 14,608 + 4-KiB I$ Cache (234,026)
PE Array 344,058 + RI5CY 8-cores (326,605)

Total 360,143 788,358

Table 7.8: Area comparison of CGRA sub-system and RI5CY sub-system

Kernel
CGRA
(cycles)

RI5CY
(cycles)

CGRA
vs.

RI5CY
FFT ∗34,349 24,753 0.72x
FIR 1,393 3,806 2.73x
IIR 16,348 30,214 1.85x

k-means 102,586 431,144 4.20x
matMUL 72,556 71,028 0.98x

CONV 22,108 16,112 0.73x
DWT ∗∗6,108 1,961 0.32x
SVM 9,516 11,421 1.20x
CCA 40,203 50,641 1.26x

∗ 92% of the workload of FFT is executing on CGRA (31,579 cycles) while the rest 8% is

executing on RI5CY (2,770 cycles).
∗∗ 87% of the workload of DWT is executing on CGRA (5,321 cycles) while the rest 13% is

executing on RI5CY (787 cycles).

Table 7.9: Latency comparison of CGRA and 8-cores RI5CY

CGRA (with SIMD disabled) vs. RI5CY 8-cores (with SIMD disabled)

The number of processing units in the CGRA sub-system are [16 PEs * 2 SIMD lanes]
= 32 processing units, and in the RI5CY sub-system are [8 cores * 2 SIMD lanes] =
16 processing units. CGRA sub-system has 2× more processing units than RI5CY sub-
system, but CGRA is unable to (always) maintain 100% PE utilization while RI5CY
can efficiently maintain a high utilization. So, to explore if the latency numbers for
CGRA are influenced by any architectural advantage, particularly due to SIMD w.r.t.
RI5CY, Table 7.10 shows the comparison between two architectures with SIMD disabled
while executing 6 kernels (whose optimized non-SIMD version are available). It can be
observed that the gain pattern in Table 7.10 is similar with Table 7.9. Thus, it is
concluded that both architectures are efficiently utilizing the SIMD feature.

105

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7 Experimental Framework and Performance Evaluation

Kernel
CGRA
(cycles)

RI5CY
(cycles)

CGRA
vs.

RI5CY
FFT ∗63,612 41,377 0.65x
FIR 1,961 4,190 2.14x
IIR 31,752 47,772 1.51x

matMUL 243,340 150,733 0.62x
CONV 41,972 21,802 0.52x
DWT ∗∗11,607 3,733 0.32x

∗ 92% of the workload of FFT is executing on CGRA (60,833 cycles) while the rest 8% is

executing on RI5CY (2,779 cycles).
∗∗ 87% of the workload of DWT is executing on CGRA (10,277 cycles) while the rest 13% is

executing on RI5CY (1,330 cycles).

Table 7.10: Latency comparison of CGRA and 8-cores RI5CY. Both architectures are
executing with SIMD disabled.

7.2.4 Energy Consumption

The gate count in a module is directly proportional to its power consumption (i.e.,
internal power, switching power, and leakage power), thus, its energy consumption.
Even though the total area of the CGRA sub-system is 2.19× less than the RI5CY
sub-system, the RI5CY sub-system can efficiently clock-gate 98% of core registers [91].
To further explore the energy consumption of both architectures and the effects on the
performance of PULP-Cluster with the integration of CGRA, three different experiments
are conducted, particularly, (1) comparison of energy consumption between two sub-
systems, (2) comparison of energy consumption of heterogeneous cluster for different
configurations, and (3) if the inclusion of CGRA does lower the energy-efficiency of
PULP-Cluster due to added leakage current by CGRA sub-system when not active.

CGRA vs. RI5CY 8-cores

Table 7.11 shows the comparison of energy consumption of two sub-systems. Due to
the simple design of PEs in CGRA and the efficient clock gating scheme, the energy
consumption of CGRA is less w.r.t RI5CY. Even, latency-wise less performing kernels
on CGRA exhibits similar or lesser energy consumption w.r.t. RI5CY. Particularly,
CGRA consumes 1.49× less energy w.r.t. RI5CY while executing matMUL (latency
performance of CGRA is 0.98× w.r.t. RI5CY) and 0.96× energy w.r.t. RI5CY while
executing DWT (latency performance of CGRA is 032× w.r.t. RI5CY).

106

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

7.2 Analyses of implementation of the heterogeneous cluster

Kernel
CGRA

(µJ)
RI5CY

(µJ)

CGRA
vs.

RI5CY
FFT ∗0.8824880 0.6703261 0.76x
FIR 0.0286958 0.1254629 4.38x
IIR 0.3636613 0.9959894 2.74x

k-means 2.5856801 20.1751680 7.80x
matMUL 1.5936925 2.3779464 1.49x

CONV 0.4691318 0.4491526 0.96x
DWT ∗∗0.1387076 0.0889372 0.86x
SVM 0.1901297 0.3007069 1.58x
CCA 1.0011935 1.3878727 1.39x

∗ 92% of the workload of FFT is executing on CGRA (0.8074750 µ) while the rest 8% is

executing on RI5CY (0.0750130 µ).
∗∗ 87% of the workload of DWT is executing on CGRA (0.1030146 µ) while the rest 13% is

executing on RI5CY (0.0356930 µ).

Table 7.11: Energy consumption comparison of CGRA sub-system and 8-cores RI5CY
sub-system

Kernel
CGRA

(µJ)
RI5CY

(µJ)

CGRA
vs.

RI5CY
FFT ∗1.625019 0.897049 0.55x
FIR 0.061027 0.162212 2.66x
IIR 0.749065 1.287721 1.72x

k-means 4.963111 26.670570 5.38x
matMUL 3.185208 3.051363 0.96x

CONV 0.967888 0.614512 0.64x
DWT ∗∗0.266665 0.112640 0.42x
SVM 0.400148 0.417095 1.04x
CCA 1.896455 1.714678 0.91x

∗ 92% of the workload of FFT is executing on CGRA (1.524634 µ) while the rest 8% is

executing on RI5CY (0.100385 µ).
∗∗ 87% of the workload of DWT is executing on CGRA (0.221460 µ) while the rest 13% is

executing on RI5CY (0.045205 µ).

Table 7.12: Energy consumption of heterogeneous cluster

107

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7 Experimental Framework and Performance Evaluation

Kernel
RI5CY

without CGRA
(µJ)

RI5CY
with CGRA

(µJ)
Difference

FFT 0.824399 0.897049 8%
FIR 0.151022 0.162212 7%
IIR 1.198892 1.287721 7%

k-means 25.405160 26.670570 5%
matMUL 2.842896 3.051363 7%

CONV 0.567142 0.614512 8%
DWT 0.106865 0.112640 5%
SVM 0.383517 0.417095 8%
CCA 1.569849 1.714678 9%

Table 7.13: Energy consumption of heterogeneous cluster executing on RI5CY with and
without CGRA

Energy consumption of heterogeneous cluster

Table 7.12 shows the energy consumption of the heterogeneous cluster while executing
kernels with different configurations, i.e., (1) executing a kernel using CGRA sub-system
only, (2) executing a kernel using RI5CY sub-system only, or (3) executing a kernel
using both sub-systems. Furthermore, the overall gain pattern in Table 7.12 is similar
to Table 7.11, which supports that CGRA does not bring or add a significant overhead
to the heterogeneous cluster. A detailed exploration of this effect is performed in the
next sub-section.

Energy consumption of heterogeneous cluster with and without CGRA

Energy-wise overhead due to leakage current of CGRA sub-system is unavoidable, and
the effect of such overhead on the heterogeneous cluster is evaluated in this sub-section.
In order to analyze the overhead due to leakage current, two configurations of PULP-
Cluster are considered, i.e., (1) heterogeneous cluster featuring CGRA sub-system, and
(2) PULP-Cluster without CGRA sub-system. This experiment empirically shows that
the energy consumption differences between the two configurations are low enough to in-
clude both sub-systems in PULP-Cluster and still be within the ULP domain. Table 7.13
shows the energy consumption differences of executing kernels between two configura-
tions. It can be observed that the overhead is always below 10%, which concludes that
the integration of the CGRA sub-system into the PULP-Cluster does not bring any
significant overhead or downgrades the overall performance of the PULP-Cluster.

108

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

7.2 Analyses of implementation of the heterogeneous cluster

Kernel
Static

PE Utilization
Mean

PE Utilization
Peak

PE Utilization

avg. Power
Consumption

(µW)
FFT 7% 42% 50% 5.114
FIR 25% 66% 100% 4.120
IIR 13% 56% 100% 4.449

k-means 7% 36% 75% 5.041
matMUL 50% 82% 100% 4.393

CONV 7% 44% 100% 4.244
DWT 25% 50% 75% 3.872
SVM 7% 32% 75% 3.996
CCA 7% 35% 100% 3.856

Table 7.14: Correlation between PE Utilization and average Power consumption in
CGRA

Kernel
CGRA

PE Utilization
RI5CY

core Utilization
FFT 42% 92%
FIR 66% 61%
IIR 56% 71%

k-means 36% 80%
matMUL 82% 87%

CONV 44% 75%
DWT 50% 52%
SVM 32% 50%
CCA 35% 44%

Table 7.15: Dynamic PE Utilization of CGRA and dynamic core utilization of RI5CY

7.2.5 Utilization

Table 7.14 shows the correlation between average power consumption and PE utilization
of CGRA. Here, (A) static PE utilization is the minimum number of PEs that are always
active during the execution of a kernel, (B) mean PE utilization is the average number
of active PEs during an entire execution of a kernel, and (C) peak PE utilization is the
highest number of active PEs at any timestamp during the execution of a kernel. The
varying PE utilization is resulting in the variation of the average power consumption of
CGRA. Such effect is due to the implementation of a hierarchical clock-gating scheme
in CGRA, which is done at 3 different levels:

1. clock-gate PE, if End-of-Execution is reached.

2. clock-gate all modules, if stalls(s) encountered due to LOAD/STORE operations(s)
(due to issue of stall of 1 clock-cycle by a cluster interconnect for each data load
or store from a distinct memory bank in TCDM [94]) or if NOP operation is

109

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 7 Experimental Framework and Performance Evaluation

encountered.

3. clock-gate ALU, if FP operators are executing and vice-versa.

Furthermore, Table 7.15 shows the dynamic PE utilization of CGRA and dynamic core
utilization of RI5CY. Although CGRA exhibits a relatively low PE utilization w.r.t.
RI5CY, CGRA can demonstrate similar or better performances as a highly optimized
multi-core ASIP, i.e., RI5CY. This is mainly due to the simple ISA choice of CGRA,
which resulted in the simple (no pipeline) design of PEs. Thus, CGRA can efficiently
exploit the parallelization of kernels (in terms of lesser energy consumption) w.r.t. com-
plex 4-stage pipeline design of RI5CY.

7.3 Summary and Concluding Results

In the first part of this chapter, it is empirically presented that TRANSPIRE achieves
better performance w.r.t. TRANSPIRE FPU, RI5CY SFU, and RI5CY FPU. Partic-
ularly, TRANSPIRE optimally exploits instruction parallelism and data parallelism in
the applications presented to achieve a maximum of 10.06× better performance and
consumed 12.91× less energy w.r.t. RI5CY core with an area overhead of 1.25× only.

In the second part of this chapter, the heterogeneous cluster is implemented (design
sign-off) in a 22nm process node and is evaluated using a set of kernels used in different
near-sensor processing applications fields, particularly audio, image, bio-signal, and em-
bedded ML. With the help of an extensive exploration of the design space with different
configurations to pull off the highest performances from the heterogeneous cluster in
terms of latency, power, and area is presented. Finally, it is concluded that the inte-
gration of CGRA into the PULP-Cluster, does not bring and significant (energy-wise)
overhead or degrades the overall performance of the PULP-Cluster.

110

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 8

Conclusion & Future Work

Summary of the Research Work

The presented thesis is divided into three parts. (1) First part shows the architecture
of an energy-efficient programmable hardware accelerator with native Floating-Point
(FP) support capable of efficiently executing a complete kernel. (2) Second part mainly
addresses the challenges of implementing multi-cycle support in the compiler and de-
coupling of address generation computation from the associated compilation flow. (3)
Finally, the third part introduces a heterogeneous platform featuring a CGRA sub-
system and a RI5CY sub-system. The heterogeneous platform makes the most different
configurations to pull off the highest performances while executing multiple real-world
algorithms employed in various near-sensor processing application fields (i.e., audio, im-
age, bio-signals, and embedded Machine Learning). An exhaustive set of results are also
presented, with the help of a silicon-proven Parallel Ultra Low Power (PULP) platform
targeting Ultra-Low-Power (ULP) application domain, to empirically show that the pro-
posed CGRA, when integrated into a System-on-Chip (SOC) targeting ULP application
domain, boosts the performance of the SoC.

Energy-Efficient Programmable Hardware Accelerator

The first part of the thesis presents the design space exploration of the CGRA with the
help of five design optimizations.

• Design 1 presents a CGRA with native support for State-of-the-Art (SoA) IEEE
754-2008 standard single-precision (32-bit) FP support (i.e., binary32). The ex-
periment results show that design optimization 1 can achieve a maximum of 6.5×
energy-efficiency compared to a RISC-V based GPP featuring binary32 FP support
while executing kernels used in Electroencephalography (EEG) signal processing
application, with an area overhead of 1.9×. Design optimization 1 formed the
basis for the implementation of design optimization 2.

111

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 8 Conclusion & Future Work

• Design 2 presents a CGRA with transprecision computing capabilities. Two
custom FP datatype with same dynamic range as that of SoA FP counterparts
with less precision bits (i.e., binary16alt to substitute binary32, and binary8 to
substitute binary16, respectively) are featured in this design optimization. This
design optimization is first to present a CGRA which integrates (1) transprecision
computing, (2) Single Instruction Multiple Data, and (2) target ULP application
domain. The CGRA can achieve a maximum of 10.06× performance gain and
consumes up to 12.91× less energy w.r.t. a RISC-V based GPP with an enhanced
ISA supporting SIMD-Style vectorization and FP datatype, while executing a set
of near-sensor processing applications, with an area overhead of 1.25× only.

• Design 3 combines all FP related features of Design 1 and Design 2 to present a
CGRA featuring both SoA FP datatype and transprecision FP datatype. This
design optimization was part of an exploration. No additional experiments are
performed on Design 3.

• Design 4 is the incremental configuration of Design 2. This design optimization
featured a 4x4 PE array with support for 32-bit integer and 16-bit binary16alt
only. Implementation of a hierarchical clock-gating scheme and manual generation
of assembly codes with high PE utilization enabled this design optimization to be
compared with a multi-core RISC-V-based GPP with an enhanced ISA supporting
SIMD-Style vectorization and FP datatype. This design optimization formed the
basis of the third part of this thesis.

• Design 5 presents an exploration and implementation of an 8-bit integer-based
ALU for accelerating Neural Network applications. The design includes 32-bit
integer (i.e., ALU) and 8-bit integer (i.e., ALU8) operators with a 4x2 PE array.
ALU8 features SIMD with SIMD lanes=4. To reduce the memory footprints,
ALU8 features a dedicated register file to store the immediate values generated
while executing kernels. This design presents a good exploration for accelerating
DNNs on CGRA. However, SoA architectures are far superior architectures w.r.t.
CGRA and thus restrained from further development of CGRA for accelerating
DNNS.

Compiler Support

The second part of the thesis presents the associated compilation flow of the proposed
CGRA. The walk-through of the compilation flow and how homomorphism between the
Application and CGRA models made the mapping problem a sub-graph finding problem.
Mainly, this part focuses on the two main contributions in the compilation flow. First
is the challenges in implementing a technique of mapping multi-cycle operations (i.e.,
static mapping approach). The second is the decoupling of address generation branches
from the application Data Flow Graph (DFG). Both tasks require in-depth knowledge
of the compilation flow and CGRA architecture and helped identify a major limitation
of executing a large kernel on CGRA.

112

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Heterogeneous Platform for Transprecision Computing

The point of presenting an energy-efficient ULP CGRA as a hardware accelerator is
to improve the overall performance of the SoC. This part of the thesis presents the
system-level integration of the proposed CGRA into an SoC to present a heterogeneous
platform. Design 4 presented in the first part of the thesis is integrated into the clus-
ter domain of an SoC, where both the CGRA sub-system and the RISC-V based GPP
multi-core sub-system features transprecision computing. The heterogeneous cluster
is implemented (Design Sign-off) in a commercial 22nm FD-SOI technology. All the
experiments presented in this section are obtained from this Placed-and-Routed netlist.
Particularly, CGRA can reach a maximum of 4.20× latency gain and consumes a max-
imum of 7.80× less energy w.r.t. RISC-V based GPP multi-core sub-system without
degrading the cluster performances while executing a set of real-world algorithms em-
ployed in various near-sensor processing application fields (i.e., audio, image, bio-signals,
and embedded Machine Learning).

This thesis presented an energy-efficient CGRA targeting the ULP application domain
and its associated compilation flow. To envision the CGRA as a hardware accelerator,
the CGRA is integrated in the SoC. A set of real-world algorithms used in the near-sensor
processing application fields are considered for benchmarking the proposed CGRA or
heterogeneous cluster. All the experiments were conducted using a post-synthesized
netlist of the CGRA or the heterogeneous cluster implemented using commercial FD-
SOI process nodes. Finally, multiple challenges and future research directions have been
identified.

Concluding Remarks

The research work presented in this thesis can be inferred into a number of objectives.
These objectives also lay the basis for possible future work directions.

The research work presented in this thesis can be promptly described as:

• to add support for Floating-Point computations in a programmable architecture
targeting ultra-low-power domain applications, and

• to add support for multi-cycle operations in a programmable architecture (previ-
ously supporting only single-clock-cycle operations) and its associated toolchain.

The research work presented in this thesis is able to recognize a number of continuing

113

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 8 Conclusion & Future Work

objectives. These objectives also helped in identifying future work directions. These
objectives are as follows.

• Further optimize the proposed CGRA to further clock-gate or datapath-gate avail-
able hardware blocks or even individual operators. This must be carefully imple-
mented, and a highly exhaustive design space exploration must be performed to
achieve even higher energy efficiency than presented in this thesis.

• Versatility of the proposed CGRA can be tested with even more complex DSP
applications, especially (1) applications with unequal loop iterations (w.r.t. num-
ber of PEs in the CGRA), (2) inconsistent memory accesses during the execution,
and (3) executing very large applications, even larger than Principal Component
Analysis (PCA) or Canonical Component Analysis (CCA).

• Include more SoA architectures into consideration while benchmarking the pro-
posed CGRA, especially CGRAs targeting the Digital Signal Processing applica-
tions domain.

• Provide a silicon-proven architecture of the proposed CGRA to make it more ap-
pealing in the research community and motivate researchers to include this archi-
tecture while performing the evaluation of certain reconfigurable or programmable
architectures.

The research work presented in this thesis also identified some objectives which can
be taken further to extend the versatility of the proposed CGRA architecture. These
objectives are as follows.

• Extend support for accelerating Deep Neural Networks (DNNs), especially per-
forming online training of the DNNs at the edge.

• Extend support for accelerating cryptography algorithms with efficient implemen-
tation of hardware loops in the proposed CGRA with possibly different configura-
tions.

• Perform design space exploration to increase the number of PEs in the CGRA
up to two orders of magnitude (100×). Such large CGRA will result in an in-
crease in power consumption, and to compensate for such overhead, integrating
the resulted CGRA into a single-core microcontroller system like Pulpino featuring
zero-RI5CY [98] would be an imminent logical step to consider.

Future Work

This work help in identifying multiple directions for future work in the proposed CGRA.

114

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

• Execution model of proposed CGRA synchronizes all PEs before any JUMP or
Conditional-JUMP statements. Due to such an execution model, the design space
exploration to implement hardware loops in each PE requires PEs to be active all
the execution time. This eventually degraded the energy efficiency of CGRA, as
none of the PEs can be temporarily clock-gated.

• Results obtained from the proposed heterogeneous platform indicate that the ex-
ploration of executing Stencil kernels on this tiny CGRA could be a success and
extend the applicability of the proposed CGRA.

• Another exploration can be done with applications used in the field of cryptogra-
phy. The proposed CGRA demonstrated to efficiently execute complex real-world
applications and to extend the application field of the proposed CGRA. Cryptog-
raphy can also be considered in future exploration work.

Auto-Partition

Proposed CGRA features limited memory storage for context and data. To execute a
large kernel in the CGRA, that kernel needs to be segregated into smaller chunks of
sizes that can fit into the tiny memories of the proposed CGRA. To partition any kernel
requires an in-depth knowledge of the application field and the application segregation
process is also time-consuming. All the data dependencies in the kernel need to be
identified to perform any partitioning of the kernel. Exploration has been done address-
ing this limitation, where all DFGs of the application are analyzed. Local groups of
the nodes with data dependencies are identified, and such local groups are coarsened.
Then, each coarsened graph is then analyzed to identify the final instruction and con-
stant counts. If the obtained coarsened graph is small enough to fit into the memories of
CGRA, then the final bitstream is generated. If the coarsened graph is larger than the
required size, then the process is repeated by uncoarsening the already coarsened graph
and analyzing further segregation. The proposed technique is implemented in the as-
sembler where the large application has been mapped already. The same technique can
be replicated in the compiler during the mapping process and is left as future work.

Hardware Loops

An exploration is made to efficiently implement hardware loops in each PE of CGRA.
However, the execution model of CGRA to synchronize each PE before any JUMP or
Conditional-JUMP operation requires all PEs to be active. This degraded the overall
energy efficiency of the proposed CGRA, as clock-gating of PEs can not be executed
in case of NOP or stalls. The implementation of the hardware loop was performed as
an extension of the already implemented Flexible-AGU. This limited the exploration to
implement the hardware loop as a separate module. If a separate hardware loop module

115

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Chapter 8 Conclusion & Future Work

is to be explored, the implementation of execution of multiple threads must be taken
into consideration.

Acceleration of Stencils Kernels

Interesting performance figures are obtained from the proposed CGRA while executing
real-world algorithms employed in the various near-sensor processing application fields.
This gives an incentive to further extend the applicability of the proposed tiny CGRA
by including complex Stencil kernels.

Cryptography

Another application field that can be included in the list of exploration is Cryptography.
Cryptography applications are always evolving, and due to this, these applications are
mainly realized on FPGAs. ASIC implementations are rarely seen for these applications
in the research field as they tend to go obsolete very soon. In this scenario, CGRAs can
be a boon as they provide both flexibility and energy efficiency.

116

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Appendix A

Evaluation of Architectures

A simple dot-product example is used to demonstrate where CGRA stands when com-
pared to a RISC-V-based highly optimized multi-core ASIP, namely RI5CY. To main-
tain consistency in this experiment, SIMD is disabled on all architectures, so that one
might not get added advantage over the other, and common overheads are also omitted
from the comparison. All architectures execute an optimized version of the following
C-code:

\\ ∗∗ SIZE = Pre−de f ined Vector s i z e ∗∗
int i ; f loat A[SIZE] , B[SIZE] , temp , RESULT;
for (i = 0 ; i < SIZE ; i ++){

temp += A[i] ∗ B[i] ;
}
RESULT = temp ;

Table A.1 shows the architectural features of RI5CY and CGRA sub-systems. Some
important points to be noted are:

• At 100% PE utilization, CGRA can execute a total of 16 parallel FP operations
with SIMD disabled while 1-core and 8-cores RI5CY can issue only 1 and 4 parallel
FP operations with SIMD disabled, respectively.

• While maintaining 100% PE utilization in CGRA is rare, RI5CY can efficiently
maintain a high utilization. On top of that, RI5CY cores fail to maintain an
Instruction Per Clock-cycle (IPC) of 1, but these cores benefit from an in-order
4-stage pipeline scheme and can efficiently partition a kernel and execute them
separately.

• RI5CY cores can handle LOADs / STOREs much efficiently w.r.t. CGRA. More-
over, RI5CY can also efficiently use the fused-multiply-accumulate operator for
calculating dot-product, while CGRA can efficiently exploit local registers in each
PE and cheap MOVE operations to shift data around the PEs to avoid duplicate
LOADs from memory.

Table A.2 shows bare-bones versions of latency (in cycles) and Table A.3 shows the
energy consumption (in µJ) numbers from each architecture i.e., CGRA with 4x4 PE

117

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Appendix A Evaluation of Architectures

Features
1-core

RI5CY Sub-system
8-cores

RI5CY Sub-system
4x4 PE array

CGRA Sub-system
Pipeline Yes Yes No

SIMD Yes Yes Yes
ISA 32-bit 32-bit 21-bit

#Cores 1 8 16
#LSU 1 8 8

#FP Ops. 1 8 32
Communication through TCDM through TCDM Mesh Torus network

#LSU = Total number of Load-Store Units

#FP Ops. = Maximum number of parallel binary16alt FP operations (with SIMD) that can

be issued

Communication = Shifting/Movement of data among cores in the sub-system

Table A.1: Architectural features of RI5CY and CGRA (4x4 PE)

Vector Size
CGRA
4x4 PE

RI5CY
1-core

RI5CY
8-cores

8 13 60 64
800 213 3,225 462

8,000 1,994 32,024 4,062

Table A.2: Latency comparison of Dot-Product (in cycles)

array, 1-core RI5CY, and 8-cores RI5CY, respectively. It can be observed that, in case
of vector size = 8, the ratio between CGRA and RI5CY is higher than vector size =
800 or 8,000 because of the execution of instructions required to setup the variables in
kernels outweighs the instructions required for FP calculation in RI5CY. This overhead
in RI5CY becomes negligible as the vector size is increased. From Table A.2, it can also
be observed that as the ratio between the number of cycles from CGRA and RI5CY
architectures are maintained as the vector size is increased (i.e., CGRA : 8-cores RI5CY
' 2 ; CGRA : 1-core RI5CY ' 16) because CGRA can issue a maximum of 16 FP
operations while 8-cores RI5CY can issue 4 FP operations and 1-core RI5CY can issue
1 FP operation.

Vector Size
CGRA
4x4 PE

RI5CY
1-core

RI5CY
8-cores

8 0.000276 0.000989 0.001784
800 0.004520 0.053153 0.012879

8,000 0.042313 0.527804 0.113236

Table A.3: Energy consumption comparison of Dot-Product (in µJ). A single netlist
processed at 22 nm FD-SOI technology and running at 200 MHz is used for
the energy calculation.

118

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Bibliography

[1] G. Tagliavini et al. “A transprecision floating-point platform for ultra-low power
computing.” In: 2018 Design, Automation Test in Europe Conference Exhibition
(DATE). Dresden, Germany: IEEE, 2018, pp. 1051–1056. doi: 10.23919/DATE.
2018.8342167.

[2] A. Pullini et al. “Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low
Power SoC for IoT Edge Processing.” In: IEEE Journal of Solid-State Circuits
54.7 (2019), pp. 1970–1981. doi: 10.1109/JSSC.2019.2912307.

[3] E. Azarkhish et al. “Neurostream: Scalable and Energy Efficient Deep Learning
with Smart Memory Cubes.” In: IEEE Transactions on Parallel and Distributed
Systems 29.2 (2018), pp. 420–434. doi: 10.1109/TPDS.2017.2752706.

[4] F. Conti, P. D. Schiavone, and L. Benini. “XNOR Neural Engine: A Hardware Ac-
celerator IP for 21.6-fJ/op Binary Neural Network Inference.” In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 37.11 (2018),
pp. 2940–2951. doi: 10.1109/TCAD.2018.2857019.

[5] F. Conti et al. “An IoT Endpoint System-on-Chip for Secure and Energy-Efficient
Near-Sensor Analytics.” In: IEEE Transactions on Circuits and Systems I: Reg-
ular Papers 64.9 (2017), pp. 2481–2494. doi: 10.1109/TCSI.2017.2698019.

[6] S. Das et al. “A Heterogeneous Cluster with Reconfigurable Accelerator for En-
ergy Efficient Near-Sensor Data Analytics.” In: 2018 IEEE International Sym-
posium on Circuits and Systems (ISCAS). Florence, Italy: IEEE, 2018, pp. 1–5.
doi: 10.1109/ISCAS.2018.8351749.

[7] Leibo Liu et al. “A Survey of Coarse-Grained Reconfigurable Architecture and
Design: Taxonomy, Challenges, and Applications.” In: ACM Comput. Surv. 52.6
(Oct. 2019). issn: 0360-0300. doi: 10.1145/3357375. url: https://doi.org/
10.1145/3357375.

[8] A. Podobas, K. Sano, and S. Matsuoka. “A Survey on Coarse-Grained Reconfig-
urable Architectures From a Performance Perspective.” In: IEEE Access 8 (2020),
pp. 146719–146743. doi: 10.1109/ACCESS.2020.3012084.

[9] Bjorn De Sutter, Praveen Raghavan, and Andy Lambrechts. “Coarse-Grained
Reconfigurable Array Architectures.” In: Handbook of Signal Processing Systems.
Boston, MA: Springer US, 2010, pp. 449–484. isbn: 978-1-4419-6345-1. doi: 10.
1007/978-1-4419-6345-1_17. url: https://doi.org/10.1007/978-1-4419-
6345-1_17.

119

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.1109/JSSC.2019.2912307
https://doi.org/10.1109/TPDS.2017.2752706
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCSI.2017.2698019
https://doi.org/10.1109/ISCAS.2018.8351749
https://doi.org/10.1145/3357375
https://doi.org/10.1145/3357375
https://doi.org/10.1145/3357375
https://doi.org/10.1109/ACCESS.2020.3012084
https://doi.org/10.1007/978-1-4419-6345-1_17
https://doi.org/10.1007/978-1-4419-6345-1_17
https://doi.org/10.1007/978-1-4419-6345-1_17
https://doi.org/10.1007/978-1-4419-6345-1_17

Bibliography

[10] S. Kim et al. “Flexible video processing platform for 8K UHD TV.” In: 2015 IEEE
Hot Chips 27 Symposium (HCS). Cupertino, CA, USA: IEEE, 2015, pp. 1–1. doi:
10.1109/HOTCHIPS.2015.7477475.

[11] Chris Nicol. “A coarse grain reconfigurable array (CGRA) for statically scheduled
data flow computing.” In: Wave Computing White Paper . (2017), pp. 1–9. url:
https://wavecomp.ai/wp-content/uploads/2018/12/WP_CGRA.pdf (visited
on 02/09/2021).

[12] L. Duch et al. “HEAL-WEAR: An Ultra-Low Power Heterogeneous System for
Bio-Signal Analysis.” In: IEEE Transactions on Circuits and Systems I: Regular
Papers 64.9 (2017), pp. 2448–2461. doi: 10.1109/TCSI.2017.2701499.

[13] STMicroelectronics. “STM32L4 MCU series: Excellence in ultra-low-power with
performance.” In: STM32 Ultra Low Power MCUs . (2018), pp. 1–23. url:
https://www.st.com (visited on 02/09/2021).

[14] Fabio Montagna, Simone Benatti, and Davide Rossi. “Flexible, Scalable and En-
ergy Efficient Bio-Signals Processing on the PULP Platform: A Case Study on
Seizure Detection.” In: Journal of Low Power Electronics and Applications 7.2
(2017), pp. 1–3. issn: 2079-9268. doi: 10.3390/jlpea7020016. url: https:
//www.mdpi.com/2079-9268/7/2/16.

[15] Arm Limited. Arm Cortex-M55 Processor Devices Generic User Guide Revision
r0p1. url: https : / / developer . arm . com / documentation / 101273 / 0001 /

Cortex - M55 - Processor - level - components - and - system - registers ---

Reference-Material/Floating-point-and-MVE-support (visited on 06/04/2021).

[16] Arm Limited. Cortex-M4 Processor Datasheet. url: https://developer.arm.
com/ip-products/processors/cortex-m/cortex-m4 (visited on 06/04/2021).

[17] Fabio Montagna et al. A transprecision floating-point cluster for efficient near-
sensor data analytics. 2020. arXiv: 2008.12243 [cs.DC].

[18] Gerald Estrin. “Organization of Computer Systems: The Fixed plus Variable
Structure Computer.” In: Papers Presented at the May 3-5, 1960, Western Joint
IRE-AIEE-ACM Computer Conference. IRE-AIEE-ACM ’60 (Western). San Fran-
cisco, California: Association for Computing Machinery, 1960, pp. 33–40. isbn:
9781450378697. doi: 10.1145/1460361.1460365. url: https://doi.org/10.
1145/1460361.1460365.

[19] R.W. Hartenstein et al. “A novel ASIC design approach based on a new machine
paradigm.” In: IEEE Journal of Solid-State Circuits 26.7 (1991), pp. 975–989.
doi: 10.1109/4.92017.

[20] D.C. Chen and J.M. Rabaey. “A reconfigurable multiprocessor IC for rapid pro-
totyping of algorithmic-specific high-speed DSP data paths.” In: IEEE Journal
of Solid-State Circuits 27.12 (1992), pp. 1895–1904. doi: 10.1109/4.173120.

[21] Bingfeng Mei et al. “ADRES: An Architecture with Tightly Coupled VLIW Pro-
cessor and Coarse-Grained Reconfigurable Matrix.” In: Field Programmable Logic
and Application. Ed. by Peter Y. K. Cheung and George A. Constantinides.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 61–70. isbn: 978-3-540-
45234-8. doi: 10.1007/978-3-540-45234-8_7.

120

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://doi.org/10.1109/HOTCHIPS.2015.7477475
https://wavecomp.ai/wp-content/uploads/2018/12/WP_CGRA.pdf
https://doi.org/10.1109/TCSI.2017.2701499
https://www.st.com
https://doi.org/10.3390/jlpea7020016
https://www.mdpi.com/2079-9268/7/2/16
https://www.mdpi.com/2079-9268/7/2/16
https://developer.arm.com/documentation/101273/0001/Cortex-M55-Processor-level-components-and-system-registers---Reference-Material/Floating-point-and-MVE-support
https://developer.arm.com/documentation/101273/0001/Cortex-M55-Processor-level-components-and-system-registers---Reference-Material/Floating-point-and-MVE-support
https://developer.arm.com/documentation/101273/0001/Cortex-M55-Processor-level-components-and-system-registers---Reference-Material/Floating-point-and-MVE-support
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://arxiv.org/abs/2008.12243
https://doi.org/10.1145/1460361.1460365
https://doi.org/10.1145/1460361.1460365
https://doi.org/10.1145/1460361.1460365
https://doi.org/10.1109/4.92017
https://doi.org/10.1109/4.173120
https://doi.org/10.1007/978-3-540-45234-8_7

[22] H. Singh et al. “MorphoSys: an integrated reconfigurable system for data-parallel
and computation-intensive applications.” In: IEEE Transactions on Computers
49.5 (2000), pp. 465–481. doi: 10.1109/12.859540.

[23] Karthikeyan Sankaralingam et al. “TRIPS: A Polymorphous Architecture for
Exploiting ILP, TLP, and DLP.” In: ACM Trans. Archit. Code Optim. 1.1 (Mar.
2004), pp. 62–93. issn: 1544-3566. doi: 10.1145/980152.980156. url: https:
//doi.org/10.1145/980152.980156.

[24] Volker Baumgarten et al. “PACT XPP—A self-reconfigurable data processing
architecture.” In: The Journal of Supercomputing 26 (Sept. 2003), pp. 167–184.
doi: 10.1023/A:1024499601571.

[25] Mark Horowitz. “1.1 Computing’s energy problem (and what we can do about
it).” In: 2014 IEEE International Solid-State Circuits Conference Digest of Tech-
nical Papers (ISSCC). 2014, pp. 10–14. doi: 10.1109/ISSCC.2014.6757323.

[26] G. Theodoridis, D. Soudris, and S. Vassiliadis. “A Survey of Coarse-Grain Re-
configurable Architectures and Cad Tools.” In: Fine- and Coarse-Grain Recon-
figurable Computing. Ed. by Stamatis Vassiliadis and Dimitrios Soudris. Dor-
drecht: Springer Netherlands, 2007, pp. 89–149. isbn: 978-1-4020-6505-7. doi:
10.1007/978-1-4020-6505-7_2. url: https://doi.org/10.1007/978-1-
4020-6505-7_2.

[27] Leibo Liu et al. “HReA: An Energy-Efficient Embedded Dynamically Reconfig-
urable Fabric for 13-Dwarfs Processing.” In: IEEE Transactions on Circuits and
Systems II: Express Briefs 65.3 (2018), pp. 381–385. doi: 10.1109/TCSII.2017.
2728814.

[28] Leibo Liu et al. “An Energy-Efficient Coarse-Grained Reconfigurable Processing
Unit for Multiple-Standard Video Decoding.” In: IEEE Transactions on Multi-
media 17.10 (2015), pp. 1706–1720. doi: 10.1109/TMM.2015.2463735.

[29] Loris Duch. “Hardware / Software Architectural and Technological Exploration
for Energy-Efficient and Reliable Biomedical Devices.” In: 2018. url: https:
//infoscience.epfl.ch/record/261219/files/EPFL_TH8917.pdf (visited on
06/04/2021).

[30] Tony Nowatzki et al. “Stream-dataflow acceleration.” In: 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA). 2017, pp. 416–
429. doi: 10.1145/3079856.3080255.

[31] Raghu Prabhakar et al. “Plasticine: A reconfigurable architecture for parallel pat-
terns.” In: 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). 2017, pp. 389–402. doi: 10.1145/3079856.3080256.

[32] DARPA. Defense Advanced Research Projects Agency. url: https : / / www .

darpa.mil/ (visited on 05/05/2021).

[33] Rick Bahr et al. “Creating an Agile Hardware Design Flow.” In: 2020 57th
ACM/IEEE Design Automation Conference (DAC). 2020, pp. 1–6. doi: 10 .

1109/DAC18072.2020.9218553.

121

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://doi.org/10.1109/12.859540
https://doi.org/10.1145/980152.980156
https://doi.org/10.1145/980152.980156
https://doi.org/10.1145/980152.980156
https://doi.org/10.1023/A:1024499601571
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1007/978-1-4020-6505-7_2
https://doi.org/10.1007/978-1-4020-6505-7_2
https://doi.org/10.1007/978-1-4020-6505-7_2
https://doi.org/10.1109/TCSII.2017.2728814
https://doi.org/10.1109/TCSII.2017.2728814
https://doi.org/10.1109/TMM.2015.2463735
https://infoscience.epfl.ch/record/261219/files/EPFL_TH8917.pdf
https://infoscience.epfl.ch/record/261219/files/EPFL_TH8917.pdf
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1145/3079856.3080256
https://www.darpa.mil/
https://www.darpa.mil/
https://doi.org/10.1109/DAC18072.2020.9218553
https://doi.org/10.1109/DAC18072.2020.9218553

Bibliography

[34] SAMSUNG. Exynos 5 Octa (5430). url: https://www.samsung.com/semiconductor/
minisite/exynos/products/mobileprocessor/exynos-5-octa-5430/ (vis-
ited on 05/05/2021).

[35] Intel Corporation. Intel, Tsinghua University and Montage Technology Collab-
orate to Bring Indigenous Data Center Solutions to China. url: https : / /

newsroom.intel.com/news-releases/intel-tsinghua-university-and-

montage-technology-collaborate-to-bring-indigenous-data-center-

solutions-to-china/ (visited on 05/05/2021).

[36] M. Suzuki et al. “Stream applications on the dynamically reconfigurable pro-
cessor.” In: Proceedings. 2004 IEEE International Conference on Field- Pro-
grammable Technology (IEEE Cat. No.04EX921). 2004, pp. 137–144. doi: 10.
1109/FPT.2004.1393261.

[37] T. Sato, H. Watanabe, and K. Shiba. “Implementation of dynamically recon-
figurable processor DAPDNA-2.” In: 2005 IEEE VLSI-TSA International Sym-
posium on VLSI Design, Automation and Test, 2005. (VLSI-TSA-DAT). 2005,
pp. 323–324. doi: 10.1109/VDAT.2005.1500086.

[38] S. Rixner et al. “A bandwidth-efficient architecture for media processing.” In:
Proceedings. 31st Annual ACM/IEEE International Symposium on Microarchi-
tecture. Dallas, TX, USA, USA: IEEE, 1998, pp. 3–13. doi: 10.1109/MICRO.
1998.742118.

[39] Fan Feng et al. “Floating-point operation based reconfigurable architecture for
radar processing.” In: IEICE Electronics Express 13.21 (2016), pp. 20160893–
20160893. doi: 10.1587/elex.13.20160893.

[40] Manhwee Jo et al. “Design of a Coarse-Grained Reconfigurable Architecture with
Floating-Point Support and Comparative Study.” In: Integr. VLSI J. 47.2 (Mar.
2014), pp. 232–241. issn: 0167-9260. doi: 10.1016/j.vlsi.2013.08.003. url:
https://doi.org/10.1016/j.vlsi.2013.08.003.

[41] Claudio Brunelli et al. “A Coarse-Grain Reconfigurable Architecture for Multi-
media Applications Supporting Subword and Floating-Point Calculations.” In:
J. Syst. Archit. 56.1 (Jan. 2010), pp. 38–47. issn: 1383-7621. doi: 10.1016/j.
sysarc.2009.11.003. url: https://doi.org/10.1016/j.sysarc.2009.11.
003.

[42] X. Fan et al. “Stream Processing Dual-Track CGRA for Object Inference.” In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26.6 (2018),
pp. 1098–1111. doi: 10.1109/TVLSI.2018.2797600.

[43] STMicroelectronics. “STM32H7 Dual Core World Most Powerful MCU.” In:
STM32H7 Series . (2019), pp. 1–41. url: https://www.st.com (visited on
02/09/2021).

[44] S. Mach et al. “A 0.80pJ/flop, 1.24Tflop/sW 8-to-64 bit Transprecision Floating-
Point Unit for a 64 bit RISC-V Processor in 22nm FD-SOI.” In: 2019 IFIP/IEEE
27th International Conference on Very Large Scale Integration (VLSI-SoC). Cuzco,
Peru, Peru: IEEE, 2019, pp. 95–98. doi: 10.1109/VLSI-SoC.2019.8920307.

122

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5430/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5430/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://newsroom.intel.com/news-releases/intel-tsinghua-university-and-montage-technology-collaborate-to-bring-indigenous-data-center-solutions-to-china/
https://doi.org/10.1109/FPT.2004.1393261
https://doi.org/10.1109/FPT.2004.1393261
https://doi.org/10.1109/VDAT.2005.1500086
https://doi.org/10.1109/MICRO.1998.742118
https://doi.org/10.1109/MICRO.1998.742118
https://doi.org/10.1587/elex.13.20160893
https://doi.org/10.1016/j.vlsi.2013.08.003
https://doi.org/10.1016/j.vlsi.2013.08.003
https://doi.org/10.1016/j.sysarc.2009.11.003
https://doi.org/10.1016/j.sysarc.2009.11.003
https://doi.org/10.1016/j.sysarc.2009.11.003
https://doi.org/10.1016/j.sysarc.2009.11.003
https://doi.org/10.1109/TVLSI.2018.2797600
https://www.st.com
https://doi.org/10.1109/VLSI-SoC.2019.8920307

[45] B. Zimmer et al. “A 0.11 pJ/Op, 0.32-128 TOPS, Scalable Multi-Chip-Module-
based Deep Neural Network Accelerator with Ground-Reference Signaling in
16nm.” In: 2019 Symposium on VLSI Circuits. Kyoto, Japan, Japan: IEEE, 2019,
pp. C300–C301. doi: 10.23919/VLSIC.2019.8778056.

[46] PULP Platform. Open hardware, the way it should be! 2013. url: https://pulp-
platform.org/index.html (visited on 02/09/2021).

[47] Norman P. Jouppi et al. “A Domain-Specific Architecture for Deep Neural Net-
works.” In: Commun. ACM 61.9 (Aug. 2018), pp. 50–59. issn: 0001-0782. doi:
10.1145/3154484. url: https://doi.org/10.1145/3154484.

[48] M. Gautschi et al. “Near-Threshold RISC-V Core With DSP Extensions for Scal-
able IoT Endpoint Devices.” In: IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 25.10 (2017), pp. 2700–2713. doi: 10.1109/TVLSI.2017.
2654506.

[49] Computer History Museum. 1964: FIRST COMMERCIAL MOS IC INTRO-
DUCED. url: https://www.computerhistory.org/siliconengine/first-
commercial-mos-ic-introduced/ (visited on 06/11/2021).

[50] G. Le Lann. “An analysis of the Ariane 5 flight 501 failure-a system engineering
perspective.” In: Proceedings International Conference and Workshop on Engi-
neering of Computer-Based Systems. Monterey, CA, USA: IEEE, 1997, pp. 339–
346. doi: 10.1109/ECBS.1997.581900.

[51] C. Tsen et al. “A Combined Decimal and Binary Floating-Point Multiplier.”
In: 2009 20th IEEE International Conference on Application-specific Systems,
Architectures and Processors. Boston, MA, USA: IEEE, 2009, pp. 8–15. doi:
10.1109/ASAP.2009.28.

[52] A. A. Wahba and H. A. H. Fahmy. “Area Efficient and Fast Combined Bina-
ry/Decimal Floating Point Fused Multiply Add Unit.” In: IEEE Transactions on
Computers 66.2 (2017), pp. 226–239. doi: 10.1109/TC.2016.2584067.

[53] M. Gautschi et al. “An Extended Shared Logarithmic Unit for Nonlinear Function
Kernel Acceleration in a 65-nm CMOS Multicore Cluster.” In: IEEE Journal of
Solid-State Circuits 52.1 (2017), pp. 98–112. doi: 10.1109/JSSC.2016.2626272.

[54] John Gustafson. The End of Error: Unum Computing. USA: Chapman and Hal-
l/CRC Computational Science, Feb. 2015. isbn: 1482239868. doi: 10.1201/

9781315161532.

[55] F. Glaser et al. “An 826 MOPS, 210uW/MHz Unum ALU in 65 nm.” In: 2018
IEEE International Symposium on Circuits and Systems (ISCAS). Florence,
Italy: IEEE, 2018, pp. 1–5. doi: 10.1109/ISCAS.2018.8351546.

[56] Stefan Mach et al. FPnew: An Open-Source Multi-Format Floating-Point Unit
Architecture for Energy-Proportional Transprecision Computing. 2020. arXiv: 2007.
01530 [cs.AR].

[57] Jiaxiang Wu et al. “Quantized Convolutional Neural Networks for Mobile De-
vices.” In: CoRR abs/1512.06473 (2015). arXiv: 1512.06473. url: http://

arxiv.org/abs/1512.06473.

123

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://doi.org/10.23919/VLSIC.2019.8778056
https://pulp-platform.org/index.html
https://pulp-platform.org/index.html
https://doi.org/10.1145/3154484
https://doi.org/10.1145/3154484
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://www.computerhistory.org/siliconengine/first-commercial-mos-ic-introduced/
https://www.computerhistory.org/siliconengine/first-commercial-mos-ic-introduced/
https://doi.org/10.1109/ECBS.1997.581900
https://doi.org/10.1109/ASAP.2009.28
https://doi.org/10.1109/TC.2016.2584067
https://doi.org/10.1109/JSSC.2016.2626272
https://doi.org/10.1201/9781315161532
https://doi.org/10.1201/9781315161532
https://doi.org/10.1109/ISCAS.2018.8351546
https://arxiv.org/abs/2007.01530
https://arxiv.org/abs/2007.01530
https://arxiv.org/abs/1512.06473
http://arxiv.org/abs/1512.06473
http://arxiv.org/abs/1512.06473

Bibliography

[58] M. Zanghieri et al. “Robust Real-Time Embedded EMG Recognition Framework
Using Temporal Convolutional Networks on a Multicore IoT Processor.” In: IEEE
Transactions on Biomedical Circuits and Systems 14.2 (2020), pp. 244–256. doi:
10.1109/TBCAS.2019.2959160.

[59] N. Burgess et al. “Bfloat16 Processing for Neural Networks.” In: 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH). Kyoto, Japan: IEEE, 2019,
pp. 88–91. doi: 10.1109/ARITH.2019.00022.

[60] G. Tagliavini, A. Marongiu, and L. Benini. “FlexFloat: A Software Library for
Transprecision Computing.” In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 39.1 (2020), pp. 145–156. doi: 10.1109/TCAD.
2018.2883902.

[61] S. Mach et al. “A Transprecision Floating-Point Architecture for Energy-Efficient
Embedded Computing.” In: 2018 IEEE International Symposium on Circuits and
Systems (ISCAS). Florence, Italy: IEEE, 2018, pp. 1–5. doi: 10.1109/ISCAS.
2018.8351816.

[62] G. Burns et al. “Reconfigurable accelerator enabling efficient SDR for low-cost
consumer devices.” In: SDR Technical Forum. Orlando, USA, 2003.

[63] Ming-Hau Lee et al. “Design and Implementation of the MorphoSys Reconfig-
urable Computing Processor.” In: Field-Programmable Custom Computing Tech-
nology: Architectures, Tools, and Applications. Ed. by Jeffrey Arnold, Wayne Luk,
and Ken Pocek. Boston, MA: Springer US, 2000, pp. 21–38. isbn: 978-1-4615-
4417-3. doi: 10.1007/978-1-4615-4417-3_3. url: https://doi.org/10.
1007/978-1-4615-4417-3_3.

[64] Carl Ebeling. The General Rapid Architecture Description. Mar. 2004. url: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.314&rep=

rep1&type=pdf.

[65] Eberhard Schüler and Markus Weinhardt. “XPP-III.” In: Dynamic System Re-
configuration in Heterogeneous Platforms: The MORPHEUS Approach. Ed. by
Nikolaos S. Voros, Alberto Rosti, and Michael Hübner. Dordrecht: Springer Nether-
lands, 2009, pp. 63–76. isbn: 978-90-481-2427-5. doi: 10.1007/978-90-481-
2427-5_6. url: https://doi.org/10.1007/978-90-481-2427-5_6.

[66] R. Hartenstein et al. “Mapping Applications onto Reconfigurable KressArrays.”
In: Field Programmable Logic and Applications. Ed. by Patrick Lysaght, James
Irvine, and Reiner Hartenstein. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, pp. 385–390. isbn: 978-3-540-48302-1.

[67] Joseph Fisher, Paolo Faraboschi, and Cliff Young. Embedded computing: a VLIW
approach to architecture, compilers and tools. Jan. 2005. isbn: 978-1-55860-766-8.
url: http://www.vliw.org/book/.

[68] John Paul Shen and M. Lipasti. “Modern Processor Design: Fundamentals of
Superscalar Processors.” In: 2002.

124

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://doi.org/10.1109/TBCAS.2019.2959160
https://doi.org/10.1109/ARITH.2019.00022
https://doi.org/10.1109/TCAD.2018.2883902
https://doi.org/10.1109/TCAD.2018.2883902
https://doi.org/10.1109/ISCAS.2018.8351816
https://doi.org/10.1109/ISCAS.2018.8351816
https://doi.org/10.1007/978-1-4615-4417-3_3
https://doi.org/10.1007/978-1-4615-4417-3_3
https://doi.org/10.1007/978-1-4615-4417-3_3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.314&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.314&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.314&rep=rep1&type=pdf
https://doi.org/10.1007/978-90-481-2427-5_6
https://doi.org/10.1007/978-90-481-2427-5_6
https://doi.org/10.1007/978-90-481-2427-5_6
http://www.vliw.org/book/

[69] K. Sankaralingam et al. “Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture.” In: 30th Annual International Symposium on Computer
Architecture, 2003. Proceedings. 2003, pp. 422–433. doi: 10.1109/ISCA.2003.
1207019.

[70] Mark Gebhart et al. “An Evaluation of the TRIPS Computer System.” In:
SIGARCH Comput. Archit. News 37.1 (Mar. 2009), pp. 1–12. issn: 0163-5964.
doi: 10.1145/2528521.1508246. url: https://doi.org/10.1145/2528521.
1508246.

[71] Daniele Paolo Scarpazza et al. “Software Simultaneous Multi-Threading, a Tech-
nique to Exploit Task-Level Parallelism to Improve Instruction- and Data-Level
Parallelism.” In: Integrated Circuit and System Design. Power and Timing Model-
ing, Optimization and Simulation. Ed. by Johan Vounckx, Nadine Azemard, and
Philippe Maurine. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 12–
23. isbn: 978-3-540-39097-8. doi: 10.1007/11847083_2.

[72] Hung-Wei Tseng and Dean M. Tullsen. “Data-triggered threads: Eliminating re-
dundant computation.” In: 2011 IEEE 17th International Symposium on High
Performance Computer Architecture. 2011, pp. 181–192. doi: 10.1109/HPCA.
2011.5749727.

[73] Hyunchul Park, Yongjun Park, and Scott Mahlke. “Polymorphic Pipeline Array:
A flexible multicore accelerator with virtualized execution for mobile multime-
dia applications.” In: 2009 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 2009, pp. 370–380. doi: 10.1145/1669112.

1669160.

[74] B. R. Rau and C. D. Glaeser. “Some Scheduling Techniques and an Easily
Schedulable Horizontal Architecture for High Performance Scientific Comput-
ing.” In: SIGMICRO Newsl. 12.4 (Dec. 1981), pp. 183–198. issn: 1050-916X. doi:
10.1145/1014192.802449. url: https://doi.org/10.1145/1014192.802449.

[75] Bingfeng Mei et al. “Exploiting loop-level parallelism on coarse-grained reconfig-
urable architectures using modulo scheduling.” In: 2003 Design, Automation and
Test in Europe Conference and Exhibition. 2003, pp. 296–301. doi: 10.1109/
DATE.2003.1253623.

[76] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. “EPIMap: Using Epi-
morphism to map applications on CGRAs.” In: DAC Design Automation Con-
ference 2012. 2012, pp. 1280–1287. doi: 10.1145/2228360.2228600.

[77] M. Hamzeh, A. Shrivastava, and S. Vrudhula. “REGIMap: Register-aware ap-
plication mapping on Coarse-Grained Reconfigurable Architectures (CGRAs).”
In: 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC). 2013,
pp. 1–10. doi: 10.1145/2463209.2488756.

[78] Steven Swanson et al. “The WaveScalar Architecture.” In: ACM Trans. Comput.
Syst. 25.2 (May 2007). issn: 0734-2071. doi: 10.1145/1233307.1233308. url:
https://doi.org/10.1145/1233307.1233308.

125

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://doi.org/10.1109/ISCA.2003.1207019
https://doi.org/10.1109/ISCA.2003.1207019
https://doi.org/10.1145/2528521.1508246
https://doi.org/10.1145/2528521.1508246
https://doi.org/10.1145/2528521.1508246
https://doi.org/10.1007/11847083_2
https://doi.org/10.1109/HPCA.2011.5749727
https://doi.org/10.1109/HPCA.2011.5749727
https://doi.org/10.1145/1669112.1669160
https://doi.org/10.1145/1669112.1669160
https://doi.org/10.1145/1014192.802449
https://doi.org/10.1145/1014192.802449
https://doi.org/10.1109/DATE.2003.1253623
https://doi.org/10.1109/DATE.2003.1253623
https://doi.org/10.1145/2228360.2228600
https://doi.org/10.1145/2463209.2488756
https://doi.org/10.1145/1233307.1233308
https://doi.org/10.1145/1233307.1233308

Bibliography

[79] Dani Voitsechov and Yoav Etsion. “Single-graph multiple flows: Energy efficient
design alternative for GPGPUs.” In: 2014 ACM/IEEE 41st International Sym-
posium on Computer Architecture (ISCA). 2014, pp. 205–216. doi: 10.1109/
ISCA.2014.6853234.

[80] Satyajit Das et al. “An Energy-Efficient Integrated Programmable Array Accel-
erator and Compilation Flow for Near-Sensor Ultralow Power Processing.” In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 38.6 (2018), pp. 1095–1108. doi: 10.1109/TCAD.2018.2834397.

[81] S.C. Goldstein et al. “PipeRench: a reconfigurable architecture and compiler.”
In: Computer 33.4 (2000), pp. 70–77. doi: 10.1109/2.839324.

[82] Venkatraman Govindaraju et al. “DySER: Unifying Functionality and Parallelism
Specialization for Energy-Efficient Computing.” In: IEEE Micro 32.5 (2012),
pp. 38–51. doi: 10.1109/MM.2012.51.

[83] Jared Pager, Reiley Jeyapaul, and Aviral Shrivastava. “A Software Scheme for
Multithreading on CGRAs.” In: ACM Trans. Embed. Comput. Syst. 14.1 (Jan.
2015). issn: 1539-9087. doi: 10.1145/2638558. url: https://doi.org/10.
1145/2638558.

[84] Changkyu Kim et al. “Composable Lightweight Processors.” In: 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 2007). 2007,
pp. 381–394. doi: 10.1109/MICRO.2007.41.

[85] Eclipse Foundation. Eclipse Modeling Framework (EMF). url: https://www.
eclipse.org/modeling/emf/ (visited on 06/03/2021).

[86] IBM Corporation. The Eclipse Modeling Framework (EMF) Overview. 2005. url:
https://www.ibm.com/docs/en/z-open-development/2.0.x?topic=guides-

emf-framework-programmers-guide (visited on 06/03/2021).

[87] Philippe Coussy et al. “GAUT: A High-Level Synthesis Tool for DSP Appli-
cations.” In: High-Level Synthesis: From Algorithm to Digital Circuit. Ed. by
Philippe Coussy and Adam Morawiec. Dordrecht: Springer Netherlands, 2008,
pp. 147–169. isbn: 978-1-4020-8588-8. doi: 10.1007/978-1-4020-8588-8_9.
url: https://doi.org/10.1007/978-1-4020-8588-8_9.

[88] Satyajit Das et al. “Efficient mapping of CDFG onto coarse-grained reconfig-
urable array architectures.” In: 2017 22nd Asia and South Pacific Design Au-
tomation Conference (ASP-DAC). 2017, pp. 127–132. doi: 10.1109/ASPDAC.
2017.7858308.

[89] T. Peyret et al. “Efficient application mapping on CGRAs based on backward
simultaneous scheduling/binding and dynamic graph transformations.” In: 2014
IEEE 25th International Conference on Application-Specific Systems, Architec-
tures and Processors. 2014, pp. 169–172. doi: 10.1109/ASAP.2014.6868652.

[90] Satyajit Das et al. “A Scalable Design Approach to Efficiently Map Applica-
tions on CGRAs.” In: 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). 2016, pp. 655–660. doi: 10.1109/ISVLSI.2016.54.

126

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://doi.org/10.1109/ISCA.2014.6853234
https://doi.org/10.1109/ISCA.2014.6853234
https://doi.org/10.1109/TCAD.2018.2834397
https://doi.org/10.1109/2.839324
https://doi.org/10.1109/MM.2012.51
https://doi.org/10.1145/2638558
https://doi.org/10.1145/2638558
https://doi.org/10.1145/2638558
https://doi.org/10.1109/MICRO.2007.41
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.ibm.com/docs/en/z-open-development/2.0.x?topic=guides-emf-framework-programmers-guide
https://www.ibm.com/docs/en/z-open-development/2.0.x?topic=guides-emf-framework-programmers-guide
https://doi.org/10.1007/978-1-4020-8588-8_9
https://doi.org/10.1007/978-1-4020-8588-8_9
https://doi.org/10.1109/ASPDAC.2017.7858308
https://doi.org/10.1109/ASPDAC.2017.7858308
https://doi.org/10.1109/ASAP.2014.6868652
https://doi.org/10.1109/ISVLSI.2016.54

[91] D. Rossi et al. “Energy-Efficient Near-Threshold Parallel Computing: The PULPv2
Cluster.” In: IEEE Micro 37.5 (2017), pp. 20–31. doi: 10 . 1109 / MM . 2017 .

3711645.

[92] OpenRISC. OpenRISC 1000 Architecture. 2014. url: http://openrisc.io/
or1k.html (visited on 02/09/2021).

[93] Michael Gautschi et al. “Tailoring instruction-set extensions for an ultra-low
power tightly-coupled cluster of OpenRISC cores.” In: 2015 IFIP/IEEE Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC). 2015, pp. 25–30.
doi: 10.1109/VLSI-SoC.2015.7314386.

[94] A. Rahimi et al. “A fully-synthesizable single-cycle interconnection network for
Shared-L1 processor clusters.” In: 2011 Design, Automation Test in Europe.
Grenoble, France: IEEE, 2011, pp. 1–6. doi: 10.1109/DATE.2011.5763085.

[95] Michael J. Flynn. “Some Computer Organizations and Their Effectiveness.” In:
IEEE Transactions on Computers C-21.9 (1972), pp. 948–960. doi: 10.1109/
TC.1972.5009071.

[96] Inc. Object Management Group R©. What is UML — Unified Modeling Language.
2005. url: https://www.uml.org/what-is-uml.htm (visited on 06/03/2021).

[97] Giorgio Levi. “A note on the derivation of maximal common subgraphs of two
directed or undirected graphs.” In: Calcolo 9.4 (1973), pp. 341–352. url: https:
//doi.org/10.1007/BF02575586.

[98] Pasquale Davide Schiavone et al. “Slow and steady wins the race? A comparison
of ultra-low-power RISC-V cores for Internet-of-Things applications.” In: 2017
27th International Symposium on Power and Timing Modeling, Optimization and
Simulation (PATMOS). 2017, pp. 1–8. doi: 10.1109/PATMOS.2017.8106976.

[99] Krste Asanović Andrew Waterman. “The RISC-V Instruction Set Manual, Vol-
ume I: Unprivileged ISA.” In: RISCV Foundation (2019). url: https://riscv.
org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf.

[100] P. Meinerzhagen, C. Roth, and A. Burg. “Towards generic low-power area-efficient
standard cell based memory architectures.” In: 2010 53rd IEEE International
Midwest Symposium on Circuits and Systems. 2010, pp. 129–132. doi: 10.1109/
MWSCAS.2010.5548579.

[101] Igor Loi et al. “The Quest for Energy-Efficient I$ Design in Ultra-Low-Power
Clustered Many-Cores.” In: IEEE Transactions on Multi-Scale Computing Sys-
tems 4.2 (2018), pp. 99–112. doi: 10.1109/TMSCS.2017.2769046.

[102] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. 2015. url: https://www.
tensorflow.org/.

[103] NVDLA. NVIDIA Deep Learning Accelerator. url: http://nvdla.org/ (visited
on 05/17/2021).

[104] Dhiraj Kalamkar et al. A Study of BFLOAT16 for Deep Learning Training. 2019.
arXiv: 1905.12322 [cs.LG].

127

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://doi.org/10.1109/MM.2017.3711645
https://doi.org/10.1109/MM.2017.3711645
http://openrisc.io/or1k.html
http://openrisc.io/or1k.html
https://doi.org/10.1109/VLSI-SoC.2015.7314386
https://doi.org/10.1109/DATE.2011.5763085
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/TC.1972.5009071
https://www.uml.org/what-is-uml.htm
https://doi.org/10.1007/BF02575586
https://doi.org/10.1007/BF02575586
https://doi.org/10.1109/PATMOS.2017.8106976
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://doi.org/10.1109/MWSCAS.2010.5548579
https://doi.org/10.1109/MWSCAS.2010.5548579
https://doi.org/10.1109/TMSCS.2017.2769046
https://www.tensorflow.org/
https://www.tensorflow.org/
http://nvdla.org/
https://arxiv.org/abs/1905.12322

Bibliography

[105] Gianmarco Ottavi et al. “A Mixed-Precision RISC-V Processor for Extreme-Edge
DNN Inference.” In: 2020 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). 2020, pp. 512–517. doi: 10.1109/ISVLSI49217.2020.000-5.

[106] Manuele Rusci, Alessandro Capotondi, and Luca Benini. Memory-Driven Mixed
Low Precision Quantization For Enabling Deep Network Inference On Microcon-
trollers. 2019. arXiv: 1905.13082 [cs.LG].

[107] Bert Moons et al. “Minimum energy quantized neural networks.” In: 2017 51st
Asilomar Conference on Signals, Systems, and Computers. 2017, pp. 1921–1925.
doi: 10.1109/ACSSC.2017.8335699.

[108] Itay Hubara et al. Quantized Neural Networks: Training Neural Networks with
Low Precision Weights and Activations. 2016. arXiv: 1609.07061 [cs.NE].

[109] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD
for Deep-Submicron FPGAs. USA: Kluwer Academic Publishers, 1999. isbn:
0792384601. doi: 10.1007/978-1-4615-5145-4.

[110] Scott A. Mahlke et al. “Effective Compiler Support for Predicated Execution
Using the Hyperblock.” In: SIGMICRO Newsl. 23.1–2 (Dec. 1992), pp. 45–54.
issn: 1050-916X. doi: 10.1145/144965.144998. url: https://doi.org/10.
1145/144965.144998.

[111] B. Ramakrishna Rau. “Iterative modulo Scheduling: An Algorithm for Soft-
ware Pipelining Loops.” In: Proceedings of the 27th Annual International Sym-
posium on Microarchitecture. MICRO 27. San Jose, California, USA: Association
for Computing Machinery, 1994, pp. 63–74. isbn: 0897917073. doi: 10.1145/
192724.192731. url: https://doi.org/10.1145/192724.192731.

[112] M. Lam. “Software Pipelining: An Effective Scheduling Technique for VLIW Ma-
chines.” In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation. PLDI ’88. Atlanta, Georgia, USA: Asso-
ciation for Computing Machinery, 1988, pp. 318–328. isbn: 0897912691. doi:
10.1145/53990.54022. url: https://doi.org/10.1145/53990.54022.

[113] Mickael Lanoe et al. “A modeling and code generation framework for critical
embedded systems design: From Simulink down to VHDL and Ada/C code.” In:
2014 21st IEEE International Conference on Electronics, Circuits and Systems
(ICECS). 2014, pp. 742–745. doi: 10.1109/ICECS.2014.7050092.

[114] GCC team. 12 GIMPLE. url: https://gcc.gnu.org/onlinedocs/gccint/
GIMPLE.html (visited on 06/03/2021).

[115] STMicroelectronics. Learn More About FD-SOI. url: https://www.st.com/
content/st_com/en/about/innovation---technology/FD-SOI/learn-more-

about-fd-soi.html (visited on 04/29/2021).

128

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

https://doi.org/10.1109/ISVLSI49217.2020.000-5
https://arxiv.org/abs/1905.13082
https://doi.org/10.1109/ACSSC.2017.8335699
https://arxiv.org/abs/1609.07061
https://doi.org/10.1007/978-1-4615-5145-4
https://doi.org/10.1145/144965.144998
https://doi.org/10.1145/144965.144998
https://doi.org/10.1145/144965.144998
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/53990.54022
https://doi.org/10.1145/53990.54022
https://doi.org/10.1109/ICECS.2014.7050092
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI/learn-more-about-fd-soi.html
https://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI/learn-more-about-fd-soi.html
https://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI/learn-more-about-fd-soi.html

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

Titre : Accélérateurs programmables intégrés dynamiquement reconfigurables pour la concep-
tion d’architectures manycores ultra-basse consommation

Mot clés : Architecture reconfigurable à gros grains, faible consommation, calcul flottant, trans-

précision, traitement numérique du signal

Résumé : La demande sans cesse croissante d’ef-
ficacité énergétique (EE) dans les nœuds de l’In-
ternet des objets pousse les chercheurs et les in-
génieurs à développer des solutions architecturales
qui offrent à la fois une flexibilité de programmation
et des performances en temps d’exécution. L’une de
ces solutions est une architecture reconfigurable à
gros grains (CGRA). Au cours des dernières décen-
nies, les CGRA ont évolué et rivalisent pour deve-
nir des accélérateurs matériels grand public, en par-
ticulier pour accélérer les applications de traitement
du signal numérique. Dans le cadre de ces travaux
de recherche, l’accent est mis sur l’intégration de
calculs sur nombres flottants (FP) dans les CGRA.
Le calcul utilisant la représentation FP nécessite de
nombreux encodages et conduit à des circuits com-
plexes pour les opérateurs FP, diminuant l’EE de l’en-

semble du système. Cette thèse présente la concep-
tion d’un CGRA ultra-basse consommation avec un
support natif pour le calcul FP en tirant parti d’un pa-
radigme émergent de calcul approximatif appelé cal-
cul de transprécision. Nous présentons également les
contributions dans la chaîne d’outils de compilation
et l’intégration du CGRA dans un système sur puce,
pour envisager le CGRA proposé comme un accé-
lérateur matériel. Enfin, une campagne d’expérimen-
tations utilisant des algorithmes du monde réel em-
ployés dans des applications de traitement proches
capteurs sont effectués, et les résultats sont compa-
rés avec des architectures existantes. Il est démon-
tré empiriquement que le CGRA que nous proposons
fournit de meilleurs résultats par rapport aux solutions
existantes en termes de consommation, de perfor-
mances et de surface.

Title: Integrated Programmable-Array accelerator to design heterogeneous ultra-low power
manycore architectures

Keywords: Coarse Grain Reconfigurable Architecture, Transprecision Computing, Digital Sig-

nal Processor, Ultra-Low-Power, Energy-Efficiency

Abstract: There is an ever-increasing demand for
energy efficiency (EE) in rapidly evolving Internet-
of-Things end nodes. This pushes researchers and
engineers to develop solutions that provide both
Application-Specific Integrated Circuit-like EE and
Field-Programmable Gate Array-like flexibility. One
such solution is Coarse Grain Reconfigurable Ar-
ray (CGRA). Over the past decades, CGRAs have
evolved and are competing to become mainstream
hardware accelerators, especially for accelerating
Digital Signal Processing (DSP) applications. Due
to the over-specialization of computing architectures,
the focus is shifting towards fitting an extensive data
representation range into fewer bits, e.g., a 32-bit
space can represent a more extensive data range
with floating-point (FP) representation than an integer
representation. Computation using FP representation

requires numerous encodings and leads to complex
circuits for the FP operators, decreasing the EE of the
entire system. This thesis presents the design of an
EE ultra-low-power CGRA with native support for FP
computation by leveraging an emerging paradigm of
approximate computing called transprecision comput-
ing. We also present the contributions in the compila-
tion toolchain and system-level integration of CGRA
in a System-on-Chip, to envision the proposed CGRA
as an EE hardware accelerator. Finally, an exten-
sive set of experiments using real-world algorithms
employed in near-sensor processing applications are
performed, and results are compared with state-of-
the-art (SoA) architectures. It is empirically shown
that our proposed CGRA provides better results w.r.t.
SoA architectures in terms of power, performance,
and area.

Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures Rohit Prasad 2022

	List of Figures
	List of Tables
	Introduction
	Related Work
	Background
	Energy-Efficient Programmable Hardware Accelerator
	Compiler Support
	Heterogeneous Platform for Transprecision Computing
	Experimental Framework and Performance Evaluation
	Conclusion & Future Work
	Evaluation of Architectures
	Bibliography

