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Titre :Apprentissage profond actif et incrémental avec des données de classes déséquilibrées
Mots clés : déséquilibre des classes, apprentissage actif, apprentissage incrémentiel (version en français)

Résumé : Les approches d’apprentissage profond
sont très performantes aujourd’hui dans un large
éventail de problèmes et en particulier pour les
tâches de reconnaissance visuelle. Bien que de
grands ensembles de données, parfaitement étique-
tées, soient disponibles à des fins académiques, les
jeux de données du monde réel présentent plusieurs
problèmes tels que le non-équilibre des classes, leur
coût d’annotation ainsi que leur caractère dyna-
mique dans un grand nombre d’applications. Dans
cette thèse, nous nous interessons aux limitations
des approches d’apprentissage profond supervisées
dans ce contexte. Notre proposition est d’exploiter
des schémas d’apprentissage itératifs profonds tels
que l’apprentissage actif et l’apprentissage incré-
mental, tout en tenant compte de la nature non-
équilibrée des ensembles de données du monde réel.

Dans notre première contribution, nous consi-
dérons le cas difficile du démarrage à froid dans
lequel nous ne disposons pas de jeu de données ini-
tial labélisé permettant d’initier le processus d’ap-

prentissage actif. Nous proposons donc un schéma
d’ apprentissage actif en une seule étape dans le-
quel un modèle source est réutilisé pour la sélection
d’instances à annoter dans l’ensemble de données
non supervisées du domaine cible.

Dans notre deuxième contribution, nous sup-
posons la disponibilité d’un jeu de données étique-
tées initial dans le domaine cible et nous propo-
sons des solutions qui suit le cadre itératif clas-
sique dans lequel les échantillons sont progressi-
vement annotés pour mettre à jour le modèle ap-
pris. Pour le deuxième cas, nous nous placons dans
un cadre d’apprentissage incremental déséquilibré
en se concentrant sur les méthodes de calibration
dont l’objectif est de réduire le biais de prédiction
entre les classes majoritaires et minoritaires. Nous
concluons que le problème d’apprentissage incré-
mental avec une mémoire à budget fixe pour les
classes précédemment apprises peut être traité ef-
ficacement comme un problème d’apprentissage de
déséquilibre de classe.

Title : Active and Incremental Deep learning with class imbalanced data
Keywords : class imbalance, active learning, incremental learning (version en anglais)

Abstract : Deep learning approaches have been
successful in a large range of problems and in par-
ticular for visual recognition tasks. Though large
and perfect labeled datasets are available for aca-
demic research, the real world application datasets
have several issues such as class imbalance, anno-
tation cost as well as dynamic nature of the data-
set in some applications. In our work, we perform
a joint study of these issues to tackle a more prac-
tical scenario. Our proposition is to leverage deep
iterative learning schemes such as active learning
and incremental learning while taking into account
the imbalance nature of real-world datasets.

Our first contributions are tailored from the
active learning, where a hard cold start setting is
considered in which no initial labeled setting is
available. We thus propose a single stage active

learning scheme in which a good embedding mo-
del is used in the selection of instances to annotate
in the unsupervised dataset of the target domain.
In our second contribution, we assume the avai-
lability of an initial labeled dataset in the target
domain (soft cold start problem) and we propose
solutions in the classical iterative setting in which
samples are progressively annotated to update the
learned model.

In the class incremental setting, we perform a
detailed study of imbalanced incremental learning
with focus on calibration methods whose objective
is to reduce the prediction bias between majority
and minority classes. We conclude that the incre-
mental learning problem with a fixed-budget me-
mory for the previously learnt classes can be effecti-
vely treated as a class imbalance learning problem.
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1 - Introduction

1.1 . Context : visual recognition at the era of deep learning

Deep learning algorithms and in particular supervised deep neural models have
allowed impressive progress in the last decade for various visual recognition tasks
such as classification, object detection or semantic segmentation (see Figure 1.1
for a quick overview on these tasks). Indeed, for all of these tasks, performances,
evaluated on public benchmarks, have taken a step forward thanks to deep neural
models. For instance, for the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [194], the average top1 accuracy has increased from 50.9% using pre-
deep learning models in 2011 to 90.2% in recent work [53]. Similar gain is seen for
object detection task on MS-COCO [142], where the average precision of boun-
ding boxes has increased from 34.9% in 2015 with Faster R-CNN models [66] to
58.7% in recent method [148]. In particular, deep learning has shifted the paradigm
from using hand-crafted features to representation learning with multi-layered
models [16]. Moreover, deep neural networks (DNNs) have proved to be efficient in
learning powerful hierarchical data representations that can even be transferred
to other tasks [170].

The advent of Graphics Processing Units (GPUs) [34, 232] to match
the computationally intensive nature of deep learning algorithms, the better design
of deep learning architectures [125, 39, 206, 66, 89] and the availability of
large annotated datasets [193, 166, 142] are some of the major factors which
explain performance gains and ubiquity of deep learning. For instance, Convolu-
tional Neural Networks (CNNs), which provide the basic architecture design for
most computer vision tasks today were envisioned as early as 1988 for phenome
classification task [6]. In 1989, Yann LeCun used CNNs for hand-written character
recognition and trained a neural network using backpropagation algorithm [131].
The usability of convolutional neural networks was limited at that time by the
computational hardware available and led to a hiatus between the work of LeCun
and the resurgence of CNNs in the last decade with the use of specialized GPUs
hardware. GPUs which were initially developed for gaming consoles effectively per-
formed the repetitive computations required in neural nets and thus helped to
resolve the hardware bottleneck in DNNs [172] and opened the era of deep neural
networks.

In particular, GPUs allowed advances in architecture design with more trainable
parameters resulting in an increased representation ability of deep neural networks.
As shown in Figure 1.2, it exists a strong relation between the size of the deep
models (number of parameters) and their efficiency in term of task accuracy. To-
day, deep learning architectures include millions of parameters which have to be
optimised for any given task. This overparameterized nature of deep models is
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Figure 1.1 – Illustration of various tasks in Computer vision for which
deep neural networks provide the state of the art performances [136].

Figure 1.2 – Evolution of model sizes and accuracy on ILSVRC [95]. The
model sizes have increased with time along with a corresponding in-
crease in model accuracy.

an asset for learning complex representations, but is also one of the limitations of
these models, since it limits their interpretability [143]. Indeed, while some progress
has been made towards increasing the interpretability of deep learning models [46],
a trade-off between interpretability and performance has been established due to
overparameterized nature of large deep learning models [72].

Another major factor that explains the rise in use of deep learning models is
the increase of available datasets and benchmarks. For research purposes, the com-
puter vision community has developed numerous large and high-quality annotated
datasets such as ImageNet [193] and CIFAR [124] for the task of object recognition,
MS COCO [142] and Open Images [128] for object detection and segmentation
as well as multi-label classification or Google landmarks [166] and indoor scene
recognition [253] for the task of scene understanding among others. Annotated
datasets are build using strong and rich lexical resources which are provided by
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Figure 1.3 – Top-5 Error rate of yearly winners on ILSVRC [145] classifi-
cation task. ResNet architecture surpassed the human performance of
5.1% in the year 2015.

human supervision during the annotation process. Therefore, building these da-
tasets are costly on both time and human resources. For instance, the ImageNet
database is build on the well known Wordnet lexical resource [157] that encodes
common sense knowledge. Each of the 14 million images of the ImageNet database
is assigned to one among of 22000 classes by a process that involved costly manual
annotation [193].

These datasets have served the community to benchmark and develop different
approaches. For instance, the long history between deep models and ILSVRC data-
set is shown in Figure 1.3 [145]. While these academic datasets have allowed deep
learning to advance on several difficult tasks, the availability of large perfectly an-
notated datasets in most practical scenarios can not be assumed. This is a major
bottleneck for real-world applications as the performance of deep learning models is
highly linked to the training dataset size. Authors in [211] show that for computer
vision tasks, performance increases logarithmically to the size of the dataset. Also,
as the size of the deep models has grown to improve its representational ability,
larger datasets are needed to avoid over-fitting where the model memorizes the
training data instead of learning useful patterns from the data [149]. Thus, while
the increase in model and dataset sizes has enabled deep learning models to vastly
outperform traditional machine learning models, designing deep learning solutions
has become highly dependent on the availability of large datasets, generating some
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important limitations.

1.2 . Data-dependent deep neural models : some limitations

Despite its success, deep learning has several potential and important draw-
backs arising from its data dependent nature, in particular in the context of the
design and the deployment of deep models for real case applications. We details
these factors in the following.

• Annotating data is a very expensive task While large scale image col-
lections are now widely available, for instance on the Web-corpus, their
manual labeling remains time-consuming and also cost-extensive. In the
context of public and general data, a classic solution to limit the cost and
time of annotation is to use crowd-sourcing, but this is not possible in
domains that require the availability of domain experts to do the annota-
tion such as medical imaging [186]. Moreover, some visual tasks are very
demanding because they require a very precise annotation as for example
for the semantic segmentation task. At last, the quality of the annotation
is also highly dependent on the ability to collect and prepare a dataset,
representative of the intended task. Annotation cost is thus a significant
issue and major limitation for supervised learning, which requires to train
the model using fully annotated training data.

To answer to this strong limitation of supervised models, a natural solu-
tion is to develop label-efficient learning schemes that prevent the need
of large annotated datasets. In the absence of annotations, unsupervised
learning [146, 222] is used to train a model that learns the underlying
structure of the data distribution. In semi-supervised learning [171], a
combination of supervised and unsupervised learning is used. The main
idea is to use a small amount of labeled (or annotated) data and to leve-
rage a large amount of unlabeled data. Weakly-supervised learning [254]
alleviates the burden of obtaining high-quality costly or impractical labe-
led datasets by assuming low quality annotations, i.e. inexact, noisy or
incomplete annotations. At the frontier between semi-supervised (small an-
notated dataset) and weakly supervised learning (incomplete annotation),
active learning proposes to select a small amount of relevant data which
needs to be labelled in order to have the highest impact in the training
of a supervised model. The transferability of learned deep representations,
mentioned above, has also boosted the development of so-called transfer
learning [236] and domain adaptation [228] approaches. In these para-
digms, we assume the availability of a source domain, for which we have
a large set of high-quality annotated data to train a model, that is then
adapted to a target domain less rich in terms of annotated data. At last,
another important recent learning setting to prevent the need of large an-
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notated datasets is self-supervised learning [107, 146] which is a meet
between unsupervised and supervised learning with the automatic building
of labels for unsupervised data using some pretext tasks.

These different learning schemes answer to the annotation cost with varying
success. Annotation cost of unsupervised algorithms is low but its effecti-
veness is constrained by the cluster assumption, which assumes that the
samples assigned to different clusters are semantically different [42] which
is often not satisfied in real world applications. It also fails to capture the
dataset semantics with the same degree of refinement and performance as
their supervised or semi-supervised counterparts [14]. Annotation cost is
still important for semi-supervised learning with the performance depen-
ding on the size of labeled dataset [76]. Moreover, the effectiveness of
semi-supervised approach also depends on strong assumption on the se-
mantics of data (i.e. cluster, manifold and smoothness assumption) that
is not necessarily verified on real world data [223]. Both transfer learning
and domain adaptation have been effective to reduce the annotation cost,
but are constrained by an assumed similarity between the source and the
target domain [260]. Finally, the performance of self-supervised learning
depends on the ability to design an effective pretext task [111], which can
be difficult for high expertise domains.

Thus, we argue that despite the recent advances in exploiting unlabeled
data, high quality labeled data used in supervised or semi-supervised lear-
ning is crucial. Indeed, most of the advances in computer vision tasks use
some form of supervision [53, 148]. In addition, the expertise and know-
ledge of domain experts can be contributed to the machine learning system
during the annotation process [82]. Annotation is also notably more impor-
tant in computer vision tasks as compared to tasks in natural language
processing, due to the well known semantic gap [208].

• Annotation should be a continuous and dynamic process Most data-
sets can be considered as static once curated and deep learning models are
generally learnt on stationary batches of training data. Nevertheless, in
practical applications, new data might be acquired continuously and thus
deep model should account for situations in which information becomes
incrementally available over time. It is the case of a large number of real
world applications. For instance in data analytics [63] or robotics [51], the
model needs to adapt to the changing environment. In cases where it is
assumed that one has access to all previously acquired data, the problem
becomes trivial, although time and resource intensive, as all acquired data
can be used to train the model in a single task. This methodology is very
inefficient and also hinders learning new data in real time. When access
to the old data is limited or impossible, the problem becomes much more
complicated. In particular, deep learning models suffer from catastrophic
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forgetting [154] where the old information is lost upon re-training to learn
new information. If nothing is done to prevent this phenomenon, predictions
for past classes become random or nearly so. It is particularly true for deep
learning algorithms which heavily rely on labelled data. It thus appeals for
annotation or training schemes that take into account the dynamic nature
of the targeted domain.
In the literature, various approaches have been proposed to tackle the pro-
blem of dynamic domains with different motivations. Lifelong learning or
continual learning [174] continuously learns on new data while retaining
knowledge learned in the past. Meta learning methods [134] handle a se-
quence of tasks, but with the objective to train an efficient learner on new
task. Thus, meta learning methods try to extract information during the
training of the previous tasks which would make learning the new task ea-
sier. This learning strategy has been extensively used in the context of few
shot learning in which we want to learn with very few samples [231]. Note
that meta-learning approaches are different from lifelong learning since they
do not have the same emphasis on retaining the previously learned task as
the latter [30].
Humans beings and also animals have the ability to continually acquire and
expand their knowledge by interacting with ever changing environment [22].
This ability is essential to design models which improve over time without
having to learn the model from scratch every time new information is pre-
sented [81]. It is an open area of research and an important step towards
creating artificial general intelligence [68].

• Dataset Bias Another important limitation due to the data-dependence of
deep models is their high sensitivity to dataset bias [219] which affects
most of the real-world applications. Several imperfections such as noisy la-
bels or imbalanced distributions can constitute dataset bias [217]. Dataset
bias has recently come into spotlight in vision tasks, mainly due to face
recognition applications which show algorithm negative bias towards cate-
gories of population which are less represented in training datasets. Authors
in [116] provide a systematic literature review of the problem of bias in fa-
cial recognition software and highlight the role of training data in instilling
bias in the algorithm. This bias is also present in very controlled domain.
For instance, in the medical domain, it was shown in [129] that gender bias
has a very strong effect in computer-aided medical diagnosis and that it is
the main factor of sub-optimal predictions for under-represented gender.
Class imbalance is a major issue that is mostly neglected when working
with academic datasets. These datasets can be considered as optimised
for learning since their classes are represented in a balanced way, i.e. the
number of instances of each class in the learning dataset is balanced. In
practice, it is prudent to consider that data sets are always imperfect.
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These imperfections can result from issues in the data acquisition process
or from various inherent complexities in real word data. Class imbalance [85]
appears when some classes in the dataset are over-represented or under-
represented compared to the other classes. The datasets built for real-life
applications are often imbalanced and classes of interest specially under
represented compared to other classes which are frequent. For instance, in
medical imaging, imbalance is encountered between the pathological cases
and the normal cases since instance with pathological anomalies can be
rare or unique [151]. Learning from imbalanced data, i.e. with minority and
majority classes, leads to a prediction bias towards majority classes. This
negative effect is well studied for classical machine learning methods as
described in the two following surveys [86, 108]. Similar study [23] has been
conducted recently on deep learning algorithms with a similar conclusion
on the negative effect of imbalance on the prediction performance.

1.3 . Machine learning deployment needs iterative learning schemes

In real-world applications that deploy machine learning models, it is common
to assume an iterative scheme where the performance of the model is monitored
continuously during the deployment and can be updated with new acquired data as
illustrated in Figure 1.4. While this aspect is often considered in the domain named
ML ops (Machine Learning Operational) in which a ML life cycle is considered, this
iterative scheme is rarely taken into account in research where we only consider the
three classical steps of training, validation and testing. In this thesis, we study this
iterative scheme in which we assume that new data has to be taken into account
iteratively in order to maintain the model performance.

Two scenarios are possible when updating the model with more data :

1. the new data that is acquired or annotated comes from the same domain
(i.e. same semantic classes)

2. new data comes from a different domain where either new classes are
introduced.

In both cases, considering new data is challenging in the context of deep mo-
dels in partly due to the data-dependent limiting factors described in the previous
section. We thus propose to tackle these two scenarios by adapting two iterative
learning schemes to the context of deep learning with incremental, limited and im-
balanced data. To tackle the first scenario in which new but limited data of a given
domain has to be annotated continuously, we build on the active learning scheme.
For the second scenario in which new data contains samples from previously un-
seen classes, we build on class incremental learning. We briefly present these
two iterative learning scenarios in the following.

1.3.1 . Towards active learning and its limitations
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Figure 1.4 – Overview of machine learning pipeline. It shows the ite-
rative scheme commonly used in practical applications. The model’s
performance ismonitored during deployment and additional new data
can be used to update the model.

Active Learning (AL) [199] attempts to tackle the problem of annotation cost
of large dataset for supervised learning. Under the assumption that not all samples
are equally valuable to the model, AL tries to select the most important samples for
manual annotation. AL is usually deployed in an iterative fashion. A fixed number of
samples is selected per iteration and annotated in order to retrain the model which
becomes gradually stronger. The selection strategy can be conducted with different
but complementary objectives : maximizing informativeness where samples which
are likely to bring new information are selected [202, 32, 196, 15] or maximizing
representativeness where the main criteria is to ensure a diverse set of samples
in order to learn a strong representation of the unlabeled dataset [198, 139, 36].

Recently AL has regained interest in the context of deep models. For instance,
[189] provides a recent survey on deep active learning (DAL). In this thesis, several
aspects have motivated the use of the AL scheme. First, it answers to both the
annotation cost and is well-suited to iterative learning scheme deployed in real world
applications. Moreover, AL is a human in the loop paradigm and it enables to add
continuously high-level expertise in the learning process through annotation. It also
brings more explainability [64] since it allows the expert to observe the evolution of
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the learning model and its prediction on unlabeled data. As such with the help of
human expertise, it might be possible to ascertain which concepts have been learnt
by the model and what is remaining [215]. Finally, in AL, the expertise is used to
annotate raw data, unlike unsupervised or self-supervised learning setting where
annotation is done on clustered data, which could be biased [224]. Nevertheless,
despite these recent works on deep active learning, there are still open-issues that
limit its use in practical scenarios.

1. Cold-start Problem : Active learning learns in an iterative setting. It se-
lects a fixed number of samples at each iteration and then updates the mo-
del using the samples annotated to this point. Here, two main problems are
encountered : (1) the selection of the initial set of samples to train the first
model starting the iterative process and (2) unstable probability estimate
of deep learning models when they are trained with limited data. These
two issues are referred in the literature as the cold-start problem [59,
119, 199, 256]. It requires the labelling of a large enough initial subset to
start the AL cycle. This issue is reinforced for deep learning models which
are data intensive.

2. Combining informativeness and representativeness : Classical acqui-
sition functions either optimise informativeness or representativeness ob-
jectives. The joint use of the two objectives can be challenging due to
different nature of the two selection strategies [199]. The informativeness
measure selects samples which are likely to add missing information to the
model, based on the predicted probability distribution. The representative-
ness measure selects samples in order to well represent the overall input
patterns of unlabeled data, based on their representation in the embedding
space. The two measures convey complementary information and a few set
of approaches have attempted to tackle their combination in order to select
samples which are both representative and informative [79, 99, 235]. Works
to combine these two criteria could help to select more valuable samples,
but joint optimization is still an open issue.

3. Imbalanced learning in AL : As said in the previous section, the class
imbalance problem is present in most practical datasets. It is argued in [50]
that AL can help in class imbalance learning by focusing on samples near the
class boundaries where the imbalance is observed to be less than overall
distribution. A margin exhaustion criteria can also be used to limit the
selection of samples from majority classes [9]. However, it is also shown
in [9] that unless processed, high degree of imbalance can have adverse
effects on the selection process, with biased model having a preference
for selecting samples from majority classes. Active learning for imbalanced
dataset adds another component to the selection criteria to ensure that
the imbalance in the unlabeled set is not transferred to the selected set.
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1.3.2 . Towards class incremental learning and its limitation
Class incremental learning (CIL) [26] aims to add new classes to the lear-

ning model, while also retaining the efficiency for the past classes. As discussed
earlier, the main challenge in learning with dynamic domains is catastrophic for-
getting [154] where models lose the previously learned knowledge, when re-trained
with new data. As such, it would be necessary to re-train the models with both
previous and new data, leading to higher cost both in terms of computational re-
sources to train on larger datasets as well as memory cost of storing all the past
data.

Our motivation to build on CIL is derived from its ability to deal with dynamic
domains which might be encountered in real world applications. Further, CIL forms
a part of the bigger aim of continual or lifelong learning where new information can
be continuously assimilated in the model. The re-usability of the learned information
is thus essential to limit the computational cost of learning the new model from
scratch with both old and new data. Moreover, CIL also allows to reduce the
memory usage by preventing or limiting the amount of past instances required to
be stored. The access to old data may be restricted or impossible due to several
factors such as : data removal on the Web and in stream data processing [77],
privacy in the medical domain [225] or limited resources in embedded systems
[175]. Thus, incremental learning is highly desirable in these dynamic domains to
boost the re-usability of learned knowledge for efficient resource usage, while also
reducing the dependency on past instances.

1. Catastrophic forgetting : This is the main challenge in incremental lear-
ning, which affects not only deep neural networks but also multi-layer per-
ceptrons or even classical machine learning classifiers. Hence, the problem
has been recognized for neural networks as early as 1989 [153], where the re-
searchers found that neural networks lose the past knowledge when trained
for a new task. As the model is updated with new data, the learned weights
are overridden by the new task and thus degrade the performance on ol-
der tasks. Thus, the re-training of the model without data from previously
learnt classes leads to the catastrophic forgetting of previously acquired
knowledge. A stability-plasticity dilemma [156] is presented for designing
model that learn continually over time. Lifelong learning systems have to be
stable enough to retrain the old information while at the same time showing
plasticity to acquire new information without catastrophic interference with
the already acquired information. A large number of works [43, 242, 245]
take inspiration from the human and animal brain to tackle the stability-
plasticity dilemma. Despite some advances, deep learning models are very
far away from displaying similar capacity of lifelong learning as humans and
animals and preventing catastrophic forgetting in deep incremental learning
models is still an open issue.

2. Model Calibration : The authors of [73] show that deep neural nets are
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over-confident on their predictions, with models often giving wrong predic-
tions with a very high probability score. A model is said to be calibrated if
the average softmax probability of the predicted class for all samples in a
dataset corresponds to the accuracy of the model over that dataset. Well-
calibrated models have confidence levels aligned to the model accuracy and
thus give valuable information of how likely the model is to be correct or
incorrect. In several scenarios, it can be important to take into account
the confidence of the model on the predictions. This is also the case when
decision has to be taken based on prediction of more than one model. In
incremental learning, calibration is important as well-represented classes of
new task show higher level of confidence as compared to classes for old
task which are bounded by fixed memory [114]. The incremental model
gets further mis-calibrated over times as the number of classes increases
and each old class is then represented with fewer samples.

3. Imbalanced learning in IL : Dealing with imbalance is an integral part
of incremental learning where access to old data is limited, leading to im-
balance between the old and new classes. If the initial dataset is balanced,
as it is assumed in existing incremental learning [25, 109, 188], the asso-
ciated imbalance profile is binary, with new classes having a large number
of images and past classes having a small but identical number of images.
If the dataset itself is imbalanced, as it is often the case in real contexts,
the inherent imbalance is added to the incremental one and the resulting
imbalance profile can be more complex. Thus, techniques have to devised
to not only tackle the imbalance between old and new classes, but also
between the new classes.

1.4 . Contributions

In this thesis, our objective is to provide new methodological tools to answer
to several limitations that affect the deployment of deep neural models in real word
applications. These limitations are threefold : the need of large annotated data to
build efficient and domain-knowledge aware models, the need of iterative learning
schemes in order to take into account the dynamic behavior of a majority of real
word applications and the imbalanced nature of most real world datasets. Based
on the two iterative learning schemes presented in the previous section, the active
learning scheme and the class incremental learning ones, we apply and evaluate our
solutions on visual recognition tasks such as image classification but our solutions
are generic and could be apply with small adaptation to other visual tasks such as
image segmentation or object detection as well as in tasks containing textual data
or one dimensional time-series data. In both settings, we consider the presence of
dataset imbalance as a core issue and propose solutions to mitigate its affects. An
overview of the issues tackled in the different chapters along with the corresponding
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contributions is given below and shown in Figure 1.5.

• Our first contribution, described in Chapter 3, proposes a new approach,
named single stage active learning, to answer to the cold start problem in
deep active learning. As said before, the iterative active learning process
needs an initial labeled dataset, large enough to be able to be used to kick
start the iterative learning process. Taking inspiration from transfer learning
and domain adaptation, we propose to use a general purpose representa-
tion that is learned on a source domain. This proposition is in line with
other efficient label learning schemes, and in particular few-shot learning
scheme in which it has been shown that state of the art results can be
obtained by a good learned representation [216]. The principle of our ap-
proach is to use a representation learned on a large labeled source dataset
to represent samples and to select, according to their representations, a
diverse set of samples to present for annotation. Our approach also assumes
that the unlabelled dataset can be imbalanced and our approach can limit
this imbalance.

• We then proposed to improve the the classical iterative active learning set-
ting that assume, contrary to the previous contribution, a sufficient initial
labeled subset of the target domain to answer to two of its limitations.
In Chapter 4, we focus on a better management of the imbalance of the
dataset. We propose a new selection strategy that prioritizes minority
classes for balanced and informative selection. We also compare the me-
thods from the first contribution which rely on a source domain with the
methods developed in the iterative setting.

• In Chapter 5, we propose a new strategy to combine the objectives of
informativeness and representativeness in the selection. We introduce a
novel acquisition function which selects samples based on estimates from
models learned in current and previous iterations. Samples for which there is
a maximum shift towards uncertainty between the last two learned models
predictions are favored. The choice is made to select samples for which the
model is most likely to forget and thus find difficult to learn.

• Our last contribution deals with the case where new classes can be seen in the
production data (i.e. dynamic domain) and build on incremental learning.
Our work focuses on limiting the catastrophic forgetting while taking care of
the class imbalance. We propose a detailed study of imbalanced incremental
learning with focus on calibration methods whose objective is to reduce the
prediction bias between majority and minority classes. We also propose two
novel calibration methods and compare their performance to the existing
ones. This part of our work is presented in Chapter 6.

We also propose a state of the art on active learning and incremental learning,
along with the challenges related to class imbalance problem in Chapter 2. The
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manuscript is ended by a general conclusion and some perspectives in Chapter 7.
Our works have been published in recent international conferences and journals.

• Chapter 3 Aggarwal Umang, Adrian Popescu, and Céline Hudelot. "Active
learning for imbalanced datasets." Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 2020.

• Chapter 4 Aggarwal Umang, Adrian Popescu, and Céline Hudelot. "Mino-
rity Class Oriented Active Learning for Imbalanced Datasets." 2020 25th
International Conference on Pattern Recognition (ICPR). IEEE, 2021.

• Chapter 5 Aggarwal Umang, Adrian Popescu, and Céline Hudelot. "Opti-
mizing Active Learning for Low Annotation Budgets" arxiv 2201.07200 in
cs.CV .

• Chapter 6 Aggarwal Umang, Adrian Popescu, Eden Belouadah, and Celine
Hudelot. "A comparative study of calibration methods for imbalanced class
incremental learning." Multimedia Tools and Applications (2021) : 1-20.

21



Figure 1.5 – An overview of the contributions in the different chapters.
Chapter 3, 4 and 5 tackle the problem of annotation cost in the context
of active learning. Chapter 3 proposes a single stage active learning
setting in order to answer to the cold start problem in AL by using the
predictions from amodel learned on a large annotated source dataset.
Chapter 4 devises approaches tomanage imbalance in iterative AL set-
ting by prioritizing selection of samples fromminority classes. Chapter
5 explores the use of active selection based on iterative probability es-
timates. This selection strategy allows to design a method to combine
the informative and representative objectives in AL. In Chapter 6, the
problem of catastrophic forgetting in dynamic domains is tackled in
the context of incremental learning. In this chapter, in addition to im-
balance between old and new classes present in incremental learning
due to boundedmemory, we tackle the problem of dataset imbalance.
We also explore a fine-tuning scheme along with post-calibration me-
thods instead ofmore complicated distillation losses [188] and propose
methods to improve the model calibration.22



2 - Related works on active and incremental
learning

We start by discussing the techniques used to deal with class imbalance which
is a major component of dataset bias in real-world datasets in Section 2.1. We
then describe various approaches to deal with highly data intensive nature of deep
learning in Section 2.2. Further, we discuss the related work in the two learning
schemes, active learning (Section 2.3) and incremental learning (Section 2.4) stu-
died in our work.

2.1 . Imbalanced Learning

Imbalanced learning is a learning setting in which classes have different prior
probabilities in the distribution [85]. Learning with imbalance is one of the main
challenge when working with datasets from real applications which often present
some kind of imbalance, with one or more classes being under- or over-represented
in the distribution. Learning from such datasets leads to a stronger feature extractor
for samples in the majority classes as compared to the ones in the minority
classes. This is a natural consequence of having more samples in majority classes
as compared to minority classes. This further leads to learn classifiers that are
biased to predict the majority class [86, 108, 23].

Two kinds of minority exists : absolute rarity and relative rarity [85]. Abso-
lutely rare classes do not have enough examples to learn a generalized represen-
tation for the class, whereas for relatively rare classes, classes may have enough
examples to learn a good generalized representation, but performance over these
classes is hampered as they exist in presence of majority classes. The problem of
learning a generalized representation for absolutely rare classes is named as rare
class problem [234]. Absolute and relative rare classes can co-exist leading to the
combination of rare class and class imbalance problem.

In addition to imbalance between classes of the dataset, we can also have
within class imbalance [85]. Within-class imbalance corresponds to the case where
a class is composed of a number of different sub-clusters and these sub-clusters do
not contain the same number of examples. This might lead to the classifier learning
only on the dominant sub-cluster and not the complete representation for a class,
resulting in mis-classification for images if they do not belong to the dominant
sub-cluster.

Imbalance is a serious problem in many real world applications where identifi-
cation of minority classes is of real interest. For example, in case of fraud detecting
in banking system, only a few samples of fraud will be available compared to non-
fraud samples. Other application domains suffering from imbalance are listed in
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Figure 2.1 – Image distribution per class for full set of ImageNet leaf
classes. The data distribution over full set of ImageNet leaf classes is
highly imbalanced with number of samples in class varying frommore
than 3000 to less than 150 samples. The data distribution over Image-
Net leaf classes has a mean of 592 and a standard deviation of 508. It
is in contrast to ILSVRC dataset which is a balanced subset of Image-
Net containing 1000 classes with a mean of 1231 images per class and
standard deviation of 70.

[121] with bio-medical applications [184, 135, 103] and social data mining [240]
being some of the important ones.

A wide majority of deep learning works, often implicitly, make the hypothesis
that training datasets are balanced or nearly so. It is a consequence of benchmarking
deep learning advances with academic datasets built for research purpose. This is,
for instance, the case of the ImageNet LSV RC effort [193], that contains 1000
leaf classes, well represented in the dataset and thus balanced. The ILSV RC

training set used in [188] has a mean of 1231 images per class, with a standard
deviation of 70. However, an analysis of the full set of ImageNet leaf classes [38]
shows that image counts per class are highly variable, with a mean of 592 and a
standard deviation of 508.

Several approaches have been proposed in the literature to deal with imbalanced
datasets. A comprehensive review of the methods is covered in [86, 108, 121, 113].
Proposed methods can be divided into two categories [86] : data-Sampling methods
and algorithm based methods. Hybrid approaches combining data-sampling and
classifier-level methods are also studied in [147]. We discuss the most important
ones below.
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2.1.1 . Data-sampling methods

Data-sampling methods mitigate the bias towards majority classes by balancing
the training dataset. Balancing can be achieved either by randomly undersampling
the majority classes or by randomly oversampling minority classes [75]. The main
risk of undersampling is that it can lead to incomplete representation of classes, in
particular in case of within-class imbalance. Informed undersampling [126] partially
solves this problem by avoiding to select images which are close to class boundary
and thus informative for the discriminative problem. Oversampling methods are
sensitive to overfitting and affect the generalization ability for the minority classes.
Oversampling can also increase the training time significantly in case of high level
of imbalance on large datasets.

Synthetic Minority Oversampling Technique (SMOTE) [29] that consists in
generating samples for minority classes by interpolating between existing minority
samples is an influential solution to this problem. SMOTE has been extended
and improved in [12, 78, 150], by modifications in the interpolation method. It
basically creates synthetic samples for a dataset by applying simple arithmetic
transformations to actual samples. SMOTE is related to data augmentation, but
acts only on minority classes whereas data augmentation is more global.

A two phase learning approach [133, 84] which combines undersampling with
transfer learning is also studied in literature where the model is first pre-trained
with undersampled data and then fine-tuned with complete imbalanced data. These
works show an improvement in the performance of minority classes but are tested
only on highly specific domains, plankton classification in [133] and brain tumor
data in [84].

The direct comparison of these techniques is not straight-forward due to dif-
ferent datasets, imbalance levels and models used. [92] performed experiments
with different imbalanced versions of Cifar10 and concluded that random oversam-
pling can be effective in addressing slight class imbalance. [23] provides the most
comprehensive comparative study of these methods in the context of deep learning
for different imbalance levels and datasets. While they showed some improvements
for Cifar10 and Mnist [132], oversampling, undersampling and oversampling were
shown to have detrimental effect at higher levels for imbalance of the ImageNet

dataset [23]. Further, [23] did not find any improvement of using two phase learning
over random undersampling in one phase.

2.1.2 . Algorithm-based methods

Learning from imbalanced dataset leads to classifier biased towards the ma-
jority classes. Hence, another line of work deals with imbalance at classifier level.
Cost sensitive methods assign higher cost of misclassification to minority classes,
forcing the classifier to adapt to the imbalanced dataset [49]. An initial method
of estimating cost by moving threshold at the inference step is presented in [255].
Some recent methods [101] [117] integrate the cost in the loss function of deep

25



learning models.
Some works [229, 141] also propose new loss functions to give more weights to

samples from minority classes. In [229], as an alternate ive to mean square loss,
authors propose to compute the total loss as a mean of all individual class losses, so
that all classes contribute equally irrespective of the number of training samples in
each class. Further, loss of each class is computed as a mean of false positive and
false negative to better capture the errors in minority classes. Focal loss [141] deals
with extreme imbalance by modifying the cross entropy loss to reduce the impact
of samples that are easily classified. The easily classified samples are most likely
to come from majority classes and thus it reduces the effect of majority classes on
the loss function.

Thresholding works as a post-scaling step and modifies the decision threshold
of the classifier to counter the bias toward majority classes. A formulation of thre-
sholding is proposed in [190] where the outputs are modified using the prior class
probabilities. This allows to post-scale the output of the classifier according to
the number of training samples in each class. While very simple, thresholding out-
performed a large array of data-sampling and classifier-level methods for object
recognition in the context of deep learning models as shown in [23]. It is thus a
very competitive method in dealing with imbalance and is evaluated in the context
of both active learning and incremental learning in our work.

2.2 . Data-efficient deep learning approaches

As discussed in the introduction, the availability of large and perfectly labeled
datasets is a central requirement to train robust deep learning models. These large
labeled datasets can not be built easily for different reasons :

1. data acquisition - costly or unfeasible acquisition of data due to expensive
hardware or privacy concerns in some cases like medical data.

2. data annotation - time required to annotate large amount of data and also
the level of expertise required for annotations in some domains [186].

We present in the following different learning paradigms than the supervised one
that prevent the need of large annotated datasets.

2.2.1 . Data augmentation
Data augmentation makes the assumption that more information can be ex-

tracted from the dataset by using augmentations on training samples [205]. It has
been traditionally used to improve the generalization ability of the model towards
new instances. Various augmentation techniques have been introduced in the li-
terature. Data wrapping techniques are transformations that preserve the label
of the augmented sample. They include geometric transformations such as ran-
dom rotation, cropping, flipping etc., color space augmentations [214] or kernel
filters [115]. Generated samples are added to the training data for supervised lear-
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ning. Several techniques have been devised for deep learning models such as feature
space augmentation [41, 144], adversarial training [70, 138], generative adversarial
networks [69], neural style transfer [60] and meta-learning schemes such as Auto
Augment [31] which generates samples similar to the ones in the training dataset.
Although data augmentation has been shown to improve the generalization ability
of the model, it does not comprehensively solve the annotation cost issue of build
large labeled datasets for supervised setting. [104] also shows that data augmen-
tation with low labeled data can lead to model uncertainty. A detailed survey on
data augmentation techniques is provided in [205].

2.2.2 . Transfer learning/ Domain Adaptation

Works on transfer learning [236] and domain adaptation [228] have been pro-
posed to transfer the knowledge from a source domain with large annotated data
to a target domain with limited data. A common strategy, known as fine tuning,
entails two steps. First, a model is pre-trained on a well and large annotated source
domain (e.g. ILSVRC). Then, the model is partially re-trained on the target domain
using a limited number of annotated data in the target domain. Pre-trained models
can also be used to provide powerful feature extractor, which can be universally ap-
plied across different tasks. Unsupervised domain adaptation is a particular transfer
learning approach in which we assume that only unlabeled samples are available for
the target domain. Transfer learning is based on several assumptions such as the
availability of a large annotated dataset from a source domain and some similarity
relations between the source and the target domains. While transfer learning can
reduce the need of annotated data from the target task, it does not completely
solve the problem of annotation cost.

2.2.3 . Semi-supervised learning

Semi-supervised learning can be used to limit the annotation cost by using
unlabeled data, that it easier to collect, in order to alleviate the lack of labeled
data. Several semi-supervised methods, as detailed in [171], have been proposed
in the literature and can be broadly categorized as consistency based [18], proxy
labeling [192], generative models [168, 118] and graph-based methods [210, 33].
The current state of the art methods [209] use a consistency loss [18] to train the
model to give consistent output on unlabeled samples despite small perturbations
using data augmentation or dropout parameter. Semi-supervised learning is part
of weakly-supervised learning (WSL) [254, 250] which encompasses scenarios of
inexact [80], noisy [226] or incomplete supervision.

Semi-supervised learning has performances that are close to supervised learning,
with considerably less annotations for some datasets [209], but it remains some
limitations. Semi-supervised learning imposes some constraints such as cluster and
manifold assumption on the data [171] which might not be fulfilled for more com-
plex datasets such as ones containing overlapping classes. Most semi-supervised
learning works assume the presence of annotated validation set for tuning the hy-
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perparameters, which can be larger that the labeled set [169]. Such an assumption
is unrealistic in real-world scenarios where large validation sets are not readily avai-
lable. Finally, annotation cost is also important for semi-supervised learning with
the performance depending on the size of the labeled dataset [76].

2.2.4 . Unsupervised learning
Unsupervised learning uses only unlabelled data to learn the underlying struc-

ture of the distribution [146, 222]. Even though recent advances have been made
in unsupervised learning [96], performances are normally lower than in the super-
vised setting. The unsupervised setting assumes a clustering hypothesis, where
samples belonging to the same cluster are assumed to be semantically similar. It
is not always the case, in particular for fine classes or complex classes for which
the cluster assumption might not hold. In order to make the clusters semantically
meaningful, a labelling or a fine study of the clusters, involving experts can also
be needed [224]. Expert knowledge is therefore involved at the end of the learning
pipeline. Recent guidelines [160] recommend the use of expert knowledge on raw
data rather than on machine learning outputs which could be biased. Further, over
or under-clustering could also make the annotation process difficult for the expert.

2.2.5 . Self-supervised learning
Self-supervised learning involves automatic building of labels using some pretext

tasks to learn representations that can then be used for clustering, segmentation or
classification tasks. In general, the pretext task involves withholding a part of the
data, and train the model to predict the missing data. A large number of pretext
tasks have been proposed in literature such as patch prediction [44, 162], adding
color to images [130, 251], using adversarial training [45, 48], predicting rotations
[65], or discriminating instances [239, 90, 158]. The performance of self-supervised
learning depends on the ability to design an effective pretext task [111]. The repre-
sentations learned using the pretext task are then tested for the target classification
task by fine-tuning using annotated data [224]. Consequently the expert knowledge
is integrated at an intermediate step of the learning pipeline. While self-supervised
learning can aid in learning an effective initial representation, the annotation cost
of samples for the final task still remains an important concern. An end-to-end
pipeline is also studied in self-supervised learning where representation learning
and cluster association is done simultaneously using a contrastive loss [107, 146].
This is similar to the unsupervised learning pipeline, except the use of pretext task
and hence it also suffers from concerns of annotating on biased model outputs for
classification task.
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Figure 2.2 – Various learning schemes/techniques that deal with limi-
ted or no labeled data can be deployed based on their applicability in
different contexts. + and - signs shows that positive or negative im-
pact of the learning schemes in tacking the various scenarios. In the
context where the data acquisition cost is high, the applicability of tech-
niques dependent on large amount of data such as supervised lear-
ning (SL) and semi-supervised or self-supervised learning is affected.
Techniques such as transfer learning and domain adaptation can mi-
tigate the need of large dataset depending on the availability of a re-
lated source domain. Active learning (AL) can significantly reduce the
amount of annotated data by selecting only themost relevant samples
for annotation. While imbalance adversely affects most of the lear-
ning setting, data augmentation can potentially deal with some level
of imbalance by augmenting the samples from minority classes. AL
has also been shown to tackle the problem of imbalance by selecting
samples near the classifier boundary where the imbalance is lower. Fi-
nally, recent emphasis has been laid to include the human in the loop
of machine learning pipeline. AL is most suited due to its iterative na-
ture and has also shown to increase the explainability of models.
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2.3 . Active Learning

Active Learning (AL) is a sub-field of machine learning that consists in selecting
carefully instances to annotate in order to enable the model to learn on these
few highly important instances [199]. The objective of AL is thus to reduce the
annotation cost while achieving the required model accuracy. Active learning is
not a new domain and has been extensively used in classical machine learning.
AL has been applied mostly for binary classification or one dimensional data [137,
122] using classifiers such as Support Vector Machines (SVMs) [218] or K-Nearest
Neighbours (KNNs) [106]. Most recently, AL has been applied to deep learning
models for high dimensional problems such as image recognition [198, 7, 15],
object detection [83, 191] or text classification [5, 197]. These works have shown
the promising potential of AL to tackle the data greedy nature of deep neural
networks. In Figure 2.2, we position AL according to the other data-efficient
learning scheme presented in the previous section.

The iterative setting is commonly used in active learning as shown in Figure 2.3.
A majority of AL works [199] assume a weakly supervised setting, i.e. access to
a small manually labeled subset which includes all classes of the target domain is
provided at the start of the process. This assumption is necessary to kick start the
AL procedure by first training a model on the labeled subset. Then, the learned
model’s outputs are used to select a given budget of data from the unlabeled
dataset and submit them to an oracle for annotation. Then, the model can be
updated in an iterative manner when new samples are labeled.

In AL, the different approaches can be classified according to the selection
strategy [199] as shown in Figure 2.4. These approaches can primarily be divided
as :

1. Selective sampling : stream-based sampling or pool-based sampling.

2. Query synthesis

The first way to perform AL is selective sampling, where the samples are
selected from the given input distribution. Two setting are possible in selective
sampling, depending on the availability of unlabeled samples. In stream-based
setting, the learner decides to select or discard a sample from an incoming stream.
This setting is effective when the underlying distribution changes over time. The
decision to select the sample is generally based on a threshold on a predefined
criteria (eg. uncertainty). This could be sub-optimal when the data distribution is
static.

The second approach, named pool-based setting, examines all the unlabeled
samples to select the subset to annotate. Compared to stream-based setting, query
decisions are not taken individually but using evaluation and ranking on the set
of unlabeled data. This approach is commonly used for deep active learning [15,
198]. Indeed, while in classical AL, samples are generally selected one at a time for
annotation, it is not feasible in deep learning due to its computationally expensive
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Figure 2.3 – Classical active learning cycle, Source : [199]. A labeled
initial subset is used to learn a predictive model. The learnt model is
then used to provide predictions on the unlabeled dataset. A subset of
samples defined by the AL budget is selected to be annotated by the
oracle from the unlabeled dataset. Selection is done in "select queries"
phase based on the model predictions on unlabeled dataset and an
AL objective which is defined by acquisition function. The selected sub-
set is annotated and added to previously labeled dataset. The model is
then re-trained using the larger dataset in the next cycle.

training and also the fact that addition of single sample would not bring a significant
change in the model.

An alternative to selective sampling is to use membership query synthesis,
where the model generates a synthetic sample which is then annotated by a human
expert. This setting has been studied for classical machine learning but it has limited
applicability for deep models. Indeed, deep neural networks are highly non-linear
and might generate samples that are incomprehensible to human annotator [127].

In the following, we first present active learning techniques developed with
classical machine learning models in section 2.3.1, followed with works which have
been developed for deep models in section 2.3.2.

In the following, we first discuss the active learning techniques globally in
Section 2.3.1, and then study the specific issues and their related works when
applying active learning with deep neural networks in section 2.3.2.

2.3.1 . AL works

The literature on AL approaches is quite large and an exhaustive review is
provided in [108, 199]. More recently, [159, 189] provide a review of active learning

31



Figure 2.4 – Different query strategies that can be used in AL pipeline
to process the unlabelled dataset, Source : [199].

in deep learning context.
Here, we propose to formally define the problem of active learning in order to

set up the notations for the rest of the manuscript. We introduce the notion of
a target domain DT = (X ,YT , pT ) as the combination of an input space X , an
output space YT and an associated probability distribution pT . In the rest of the
thesis, we will be interested by a C class classification problem that means that
we consider that YT is a label space Y = {1, ..., C}. A domain is represented by
two datasets sampled over the space X × YT : a large unlabelled dataset of nT

samples, DU
T : xi ∈ X for i = 1..nT and a labelled dataset DL

T : (xi, yi) ∈ X ×YT .
This latter can be initially empty (hard cold start setting of active learning).

We also consider a model MT of parameters θT and a loss function l(., .; θT ) :

X × YT → R parameterized over the hypothesis class (θT ). We assume that the
model generates predictions in the form of probability distributions pθT (·|x) on Y
for x ∈ X . Also feature embedding fθT (x) can be extracted from the model. The
objective of active learning is to build, most of the time iteratively, the set Dtrain,
used to learn the model M in a supervised way, i.e. by minimizing the expected
loss on it. Dtrain is initialized with the initial labelled dataset DL

T and the objective
of active learning is to carefully choose most relevant data point from DU

T , ask its
annotation by an oracle and add to the current Dtrain. In the following, we also
note a({xi}, θ|Dtrain) an acquisition function which scores unlabelled data points
{xi} (singleton (stream based) or a set of samples (pool-based)) using the current
model parameters learned on the current Dtrain. Most of the time, the acquisition
function is a way to implement a query strategy.

Using this notation, we can simply defined the active learning with the following
optimisation problems to select the next data point :

argmin
x∗∈DU

T

Ex,y∼pT [l(x,y; θ|Dtrain)] (2.1)
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, where

x∗ = argmin
x∈DU

T

a({x1, ...xb}, θ|Dtrain) (2.2)

Below, we present only the most important query strategy methods used in AL
and we classify them according to the criteria used for the selection.

1. Informativeness A first class of methods is based on the informativeness
of samples. These methods try to estimate the new information that would
be added to the model by annotating a given sample and adding it in the
training dataset. We present below the main approaches that are based on
the estimation of class membership probabilities and are thus dependent on
the model parameters learned on the current Dtrain. The posterior probabi-
lity distribution is used and evaluated for determining whether an unlabeled
data sample should be queried for label or not.

• Uncertainty-based measures In these approaches, the informative-
ness criteria measures the ability of the instances in reducing the un-
certainty of the model. These approaches favor least certain samples
that are often at the borders of classes but while they can help in im-
proving the decision boundary of the classifier, they might not be most
representative for the data distribution as a whole [199]. We present in
the following the three main approaches used to estimate uncertainty.

Entropy sampling is based on the Shannon information view on un-
certainty [202]. It measures the difference between all predictions as
defined in information theory. According to our notations, if we consider
that the current model generates predictions in the form of probability
distributions pθT (·|x) on Y = {1, ..., C} for x ∈ X and for the current
model parameter θT then, the uncertainty of a sample x is computed
according to the following equation :

H(x, θT ) = −
C∑
c=0

pθT (yc|x) ∗ log pθT (yc|x) (2.3)

Margin Sampling estimates the uncertainty with the margin in the
confidence of top two predictions. It thus prioritizes samples for which
the margin is the lower. It is shown to be effective in AL task as it
is equivalent to select samples based on distance from the decision
boundary.

marg(x, θT ) = pθT (ŷ1|x)− pθT (ŷ2|x) (2.4)

with : ŷ1, ŷ2, the top-2 predicted classes for test sample x.
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Least confidence sampling prioritises the samples which predict a
class with least confidence. It thereby selects samples whose maximum
predicted probability has minimum value.

lc(x, θT ) = pθT (ŷ|x) (2.5)

where : ŷ is the predicted class for sample x.

• Query by committee Another way to ascertain the informativeness of
samples is to take into account the probability estimates from mul-
tiple classifiers. Query by committee [203] selects samples that have
the maximum disagreement among predictions from different classi-
fiers. The ability to create classifiers which are consistent with the
annotated dataset but contain disagreements is, thus, a central requi-
rement to find informative samples. Various methods to create such
classifiers have been proposed in literature, for instance with different
random parameter initialization [203, 11], ensemble-based boosting or
bagging [1, 54] or with different regions of feature space for different
classifiers [163].

• Other methods An approach to define informativeness of a sample es-
timates the change in model’s prediction, if the label of the sample
is known. [201] estimate the model change for gradient-based lear-
ning models by computing the gradient of the loss function for each
sample. This method can become computationally expensive for larger
models and with large unlabelled dataset. Expected error reduction ap-
proaches [259, 161] define informativeness by estimating the ability of
sample to reduce the generalisation error. The model is re-trained for
each query and the expected error of the query is approximated over
all the possible class labels. This makes the approach highly computa-
tionally expensive and has only been studied with classical models for
binary classification problem.

However, informativeness based methods on batch do not take into ac-
count the diversity of samples in a batch. It could lead to selection of
high informative but similar samples which is often detrimental to model
performance.

2. Representativeness A second class of methods was proposed to improve
the representativeness of the selected samples. The objective is thus to
select samples which represent the underlying distribution of the dataset.

Farthest-first traversal [94], that selects the most distant sample from the
last selected sample, has also been tested to maximize representativeness.
More recently [62] implement farthest-first traversal with deep models for
selection over long-tail distribution.
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Diversity based approaches have also been studied to improve the re-
presentativeness of selected samples. In [56], discussion on various simi-
larity measures (i.e. cosine, gaussian) is conducted to ascertain similarity
between samples and to enable the selection of the most diverse ones.
Clustering-based techniques [105] select the most representative samples
from different clusters to annotate diverse, high density samples. Recently
in deep learning, discriminative active learning [67] selects diverse samples
by solving the binary classification problem of discriminating between la-
beled and unlabeled samples in the representation space. The selection is
done with the motivation to make it difficult to distinguish between labeled
and unlabeled samples.
Information density is a simple strategy which consists in selecting samples
from high density regions to avoid outliers. Information theory methods are
studied in [152] for active selection for text classification task. [237] se-
lects the high density samples by prioritising sample with minimum average
distance to all other samples.
Coreset [198] is a recent method that solves the K-center problem as
shown in Figure 2.5. It tries to minimize the distance between any unlabeled
point to its closest labeled point. Hence at every step, it selects the point
which is at a maximum distance from its closest labeled point to cover the
representation space with least number of points.

core(DU
T ,DL

T ) = max
∀xu∈DU

T

min
xl∈DL

t

d(f(θT , xu), f(θT , xl)) (2.6)

where core(DU
T ,DL

T ) returns a sample from unlabeled dataset DU
T using

the labeled dataset DL
T , d(f(θT , xu), f(θT , xl)) is the distance between a

labeled point xl from DL
T and an unlabeled point xu from DU

T and f(θT , x)

is the feature embedding of sample x from the model MT with parameters
θT .
These methods require to compute the distance matrix of all the samples
in the unlabelled dataset, which is costly and is hence limiting for large
datasets.
For batch-based setting, both informative and representative methods can
be sub-optimal since they optimise for only one of the criteria.

3. Hybrid approaches A set of approaches have tackled the combination
of the two selection criteria in order to select samples which are both
representative and uncertain. Early efforts propose to exploit clustering
algorithms to combine the two objectives. [35] uses hierarchical clustering
followed by pruning of non-informative samples, while [20] implements an
approximation of spectral clustering followed by a selection of samples from
the cluster boundary. [177] applies a k-means clustering on a set of the
most uncertain samples and selects the most representative ones. More
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Figure 2.5 – Coreset [198] is used to select the unlabeled samplewhich is
at a maximum distance to its closest labeled sample. This can be visua-
lized by drawing circles of same radius δS fromeach labeled sample (re-
presented in blue) such that they cover all the unlabeled samples (re-
presented in red). The size of circle would thus depend on the sample
which is furthest away from its closest labeled data point. The objec-
tive is to provide coverage over all the unlabelled samples, while mi-
nimizing the radius of these circles. Thus the unlabelled sample at the
circle boundary and not represented in any other circle is selected to
ultimately reduce the radius of circle.

recently, [252] optimises k-means clustering by including the informative
weights of samples in the optimisation algorithm. Similarity of samples
implies the computation of the distances between all samples and hence
can be computationally expensive.

An information density-weighted approach is presented in [200]. It
weights the informativeness of a sample with its average similarity with
other samples.

QUIRE algorithm [102], shown in Figure 2.6, takes a min-max view of
active learning by using the prediction uncertainty of the samples based
on labeled and unlabelled data to quantify informativeness and represen-
tativeness respectively. In [27], entropy and KL-divergence are combined
to obtain uncertain and representative examples. Batch Active learning by
Diverse Gradient Embeddings (Badge) [7] is a recent work which samples
from a hallucinated gradient space using K-means++ clustering. The gra-
dient embedding of a sample has both a magnitude and direction vector
associated to it. The batch of samples having high gradient magnitude with
diverse gradient direction is selected to meet the two objectives.
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Figure 2.6 – Quire [102] method shows the advantage of selecting both
informative and representative samples. (a) shows all the unlabeled
samples and the true decision boundary for the binary classification (b),
(c) and (d) show the samples selected with informative, representative
and combined (QUIRE) objective.

2.3.2 . Deep AL- some limitations and solutions
Deep learning has given great results with automated feature extraction from

a large amount of high-dimensional data. AL has the potential to expand the
application of deep learning models by reducing the annotation cost. Although
a large number of acquisition functions have been defined for classical AL, the
adaptation of these methods to deep learning models is not straight-forward. The
major issues in DAL arise due to data intensive nature of deep models, their mis-
calibration and the joint learning pipeline to combine the AL with deep models. We
briefly describe these limitations in the following as well as approaches to narrow
them.

1. Data-intensive deep models Data intensive nature of deep learning also
requires both larger amount of initial data and larger batch size in sub-
sequent iterations of AL cycle.
An early effort to add additional data in deep active learning is presented
in Cost-Effective Active Learning (CEAL) [227]. As shown in Figure 2.7,
CEAL increases the amount of labelled data by assigning pseudo labels to
high certainty samples based on model prediction and using the oracle to
assign true labels to most uncertain samples.
Further, several ways to use complementary data through techniques such
as data augmentation, semi-supervised learning etc. have been studied in
the literature. We present the most relevant works from each technique in
the following.

• Data augmentation using GANs Another way to increase the label-
led data is data augmentation using Generative Adversarial Networks
(GANs) as shown in Figure 2.8. For example, GAAL [257] uses ge-
nerator network in AL to generate samples which might have addi-
tional information. However, GANs are likely to generate high quality
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Figure 2.7 – CEAL [227] adds the most confident samples with their
pseudo labels for training and gives the least certain samples for anno-
tation to get the true label before adding them to the training dataset.

samples, similar to those that have been learned correctly, and hence
have no guarantee of having more information than in the labeled da-
taset. Bayesian generative active deep learning (BGADL) [220] tackles
this problem by proposing a joint training of generative and classifica-
tion models and uses bayesian acquisition function, such as BALD [98],
to select the informative samples from labeled dataset. The generative
model is then used to generate samples which are similar to already se-
lected samples to ensure that generated samples have high informative
value. An implementation of GANs for augmenting samples of minority
class for credit card fraud detection is presented in [52].

• Semi-supervised learning Several works add the semi-supervised ob-
jective to active learning by using the unlabelled data to train the mo-
del. An approach to find the optimal acquisition function using feature
density matching between unlabelled dataset and weakly supervised
validation data is presented in [71]. Inspired by MixMatch [18], consis-
tency based semi-supervised learning [59] has been used for AL task by
selecting samples which give inconsistent predictions for different per-
mutations as shown in Figure 2.9. Semi-supervised learning is difficult
to generalize, particularly at lower annotation budgets. It also comes
with an added complexity in terms of implementation and computatio-
nal resources. More importantly, most of the methods in this category
use an additional labeled validation set to optimize the parameters. It
is not realistic to assume that such a set exists at the beginning of the
AL process.

• Adversarial learning has been used recently in AL [207, 247] to use
both labelled and unlabeled data as well as training using adversarial
samples. Variational autoencoder is used in [207] to learn a latent space
by using an adversarial network to discriminate between labeled and
unlabelled data points. [247] expands the above approach by adding
a certainty indicator in the discriminator to ascertain the importance
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Figure 2.8 – Generative adversarial active learning [257] uses data
augmentation through the generator model (GAN). The augmented
sample x∗ is given to the oracle to annotate and added to the labeled
dataset. Bayesian generative active deep learning (BGADL) [220], a joint
training of classifier and Variational Autoencoder Generative Adversa-
rial Networks (VA-GAN) allows to generate augmented sample (x′

, y∗)
for a labeled sample (x∗, y∗), both of which are directly added to the
training dataset.

of sample. [48] uses the smallest adversarial attack to ascertain the
distance to the decision boundary for CNN models. This is shown to
be an effective alternative to margin based approach on SVM classifier
which inherently selects samples close to the decision boundary. The
importance of sample is ascertained by finding the closest adversarial
sample by using several small random variations of the samples. This
can be computationally limiting for large datasets.

2. Cold-start problem The data intensive nature of deep learning exacerbates
the cold start problem of active learning, with larger amount of annotated
instances required to learn a model which provides reliable estimates suited
for AL task. The initial set is selected randomly in most works [15, 198] on
AL to kick start the iterative cycle. The estimation of amount of samples
required to learn an efficient initial model for AL task can be tricky. It is
shown that selecting a too small or too large set of initial samples can lead
to sub-optimal performance for a given total annotation budget [59].
Very few works tackle the problem of active selection with no initial selected
subset to train the first model. Active incremental fine-tuning (AIFT) [256]
proposes to use iterative fine tuning in order to improve AL for bio-medical
images. The main advantage is that the labeled seed samples are no longer
needed. Instead, a network learned on an external and independent dataset
is used for fine-tuning. Image patches are used to calculate entropy and
diversity over image regions and thus to select relevant examples. In [243]
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Figure 2.9 – Semi-supervised learning in AL [59] exploits both labeled
and unlabeled data during model training with cross-entropy loss for
labeled samples and consistency loss for unlabeled samples. Further
during the selection phase, unlabeled sample with higher consistency
loss on its various augmented instances is selected for annotation.

tackles the cold-start problem for language modelling by using loss functions
of Bert model [40] to select the most efficient initial samples for labelling.

3. Miscalibration of deep model predictions Another issue in DAL is the
problem of mis-calibration in the deep learning models. Some studies [74]
have shown that deep models show higher level of confidence on their
predictions than the accuracy of the predictions. In the context of DAL,
mis-calibration makes the probability estimates unreliable for AL task.
To tackle this issue, a bayesian perspective is taken to have a more realistic
evaluation of uncertainty measures. Bayesian probabilities were introduced
as better estimate of uncertainty by combining probabilities of several runs
of the model [57]. Monte Carlo (MC) dropout exploits the softmax predic-
tions of a deep model with random dropout masks to generate to model
uncertainty. Ensemble models have also been used to acquire multiple pro-
bability estimates. In [15], an ensemble of model snapshots is created by
using a cyclic learning rate. This design choice is important in order to limit
the computational effort needed to create the ensemble. Coupled with a
variation ratio function [112], ensembles are shown to outperform MC dro-
pout. MC-dropout and ensembles increase the computational complexity
of the AL process since multiple inferences are needed for each image.
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Figure 2.10 – Learning loss for active learning [241]. During the training
phase, represented with black arrows, labeled samples are used to
learn the parameters of both the model and the loss prediction mo-
dule by optimising for both target loss and loss prediction loss. During
the query phase, represented with red arrow, loss prediction module
is used to select the samples with maximum predicted loss.

4. Pipeline inconsistency between AL and DL
Classical AL involves training only the classifier over extracted feature repre-
sentations, while deep models jointly optimises both feature representation
and the classifier. As such, simply fine-tuning the deep model in AL context
might lead to some divergence issues.

To tackle the pipeline inconsistency between AL and DL, some works pro-
pose a combined framework that meets the AL and DL objectives. For
example [241] (see Figure 2.10), introduces a parallel parametric loss pre-
diction module in the DL pipeline which learns to predict losses on unla-
belled data at the model training time. The module is then used to predict
unlabeled samples which might have not been correctly learned. Active
learning with partial feedback [100], tackles the multi-class classification
problem by asking yes/no questions to annotator. Labels are then progres-
sively pruned as the process advances to minimize the manual labeling
effort. In contrast to classical AL, Deep AL learns both feature extractor
and classifier during training. [91] exploits the predictions from different
layers of the feature extractor along with classifier predictions to extract
better uncertainty estimates as shown in Figure 2.11.

Some works have used concepts from meta learning and reinforcement
learning to optimize the selection strategy using previous knowledge. Meta
learning approaches have been tried in AL to select samples from previous
selection strategies. In [119], sample selection strategies are learned from
an ensemble of multiple previous AL problems. A major drawback of meta-
active learning is considerably larger amount of data needed to train the
meta-learner. A reinforcement learning objective is used in [173] to derive
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Figure 2.11 – Towards better uncertainty sampling : Active learning with
multiple views for deep convolutional neural network [91] estimates
the uncertainty using prediction from different layers of the feature
extractor.

an active learning strategy directly from data. An approach to learn the data
representation along with the selection heuristics is presented in [10]. While
very interesting, approaches from reinforcement learning are not entirely
suited for large-scale image classification task.

2.3.3 . Imbalance in AL

Active learning has been shown to be useful in mitigating the transfer of im-
balance from unlabeled to labeled datasets in the context of classical machine
learning algorithms. The authors of [50] concluded that samples close to the de-
cision boundaries are likely to have less imbalance than the overall distribution
and this observation is thus used to drive sample balancing. Uncertain samples are
selected in [50, 258] along with a margin exhaustion criteria to limit the selection
for majority classes. As a result, the selection process stops when all samples close
to the margin are exhausted so as to avoid selecting samples for majority classes.
However, the authors of [9] show that a high degree of imbalance has an adverse
effect on the selection process. The resulting model will be biased towards selecting
samples from majority classes. Also, the prioritization of samples which are close
to the hyperplane can have negative effects, as it fails to create a good represen-
tation of the minority class. Particularly, the problem can be made worse when
the minority class contains several concepts or is not easily separable from a ma-
jority class [87]. Consequently, a diverse representation of minority classes should
be targeted. Cost-sensitive SVM (CS-SVM) was exploited as an effective way to
handle a skewed data distribution during active learning [50, 258]. Other works try
to explicitly favor the selection of minority class samples to reduce imbalance. The
mis-classification component is used to penalize selection of majority classes with
boosted SVMs in [261]. In [87], the authors propose to prioritize samples which are
nearest neighbours of minority classes. Note that most of these works are designed
for binary classification with shallow classifiers and are not easily transferable to
the multi-class classification problem using deep models tackled in our work.
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Some works tackle the problem of imbalance in the context of deep active
learning. Certainty-Based Active Learning (CBAL) [55] algorithm uses local beha-
viors in specific areas to identify query samples. It determines the query probability
of samples in relation to all samples within the neighbourhood. Similarity active
learning (SAL) [248] actively learns a similarity model to recommend unlabe-
led minority class samples for manual labeling, while high confidence unlabeled
samples for majority classes are automatically pseudo-labeled. [19] proposes a me-
thod which optimises batch selection to have minimum confidence and minimum
redundancy in the selected set. Any of the uncertainty measure can be used to
ascertain confidence while cosine similarity between samples is used to measure
redundancy. Further, samples with similarity to minority classes are prioritized. Ac-
tive learning important sampling (ALIS) [230] proposes an AL framework, which
consists of selecting important majority-class instances and generating informative
minority-class instances. Nevertheless, their approach considers large annotation
budget which is unrealistic.
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2.4 . Incremental Learning

Incremental learning is a machine learning method where a model is trained
repeatedly to extend its knowledge with new incoming data. As discussed earlier,
the main challenge in incremental learning is catastrophic forgetting [154], i.e. the
tendency to forget previously learned information when new data is incorporated.
It occurs whenever access to old data is constrained or impossible. Catastrophic
forgetting is a major issue in the context of deep learning models which jointly
optimise feature extraction and classification [17]. Several recent surveys [174, 13,
179, 37] have been done to summarize the issues and solutions for implementing
incremental learning in the context of deep learning models. We briefly present
them following their classification into three main categories.

2.4.1 . Parameter isolation methods

The first class of methods focuses on changing the neural net architectures
to incorporate new knowledge. Influential works include Growing a Brain [233],
progressive neural networks [195] or lifelong learning with a network of experts [4].
These methods are interesting but their complexity grows when new classes are
added incrementally. Notably, inference time will become longer as the model grows
and the scalability of these methods is consequently reduced.

2.4.2 . Regularization-based methods

This class of methods imposes regularization constraints to try to preserve the
past information. The past information can be stored using the model parameters
or classification outputs for the past classes. Learning-without-Forgetting (LwF) is
an influential method in this class and is presented in [140]. The algorithm does not
rely on past data and exploits knowledge distillation [93] to reduce the discrepancy
between the outputs of old classes with past and new model. A warm-up step which
freezes old parameters and trains the new ones is first performed in Lwf. Then a
joint training is run until convergence.

Alternatively, some works try to estimate the importance of model parameters
for different tasks. While learning a new task, changes to important parameters are
penalized to mitigate forgetting. Variational Continual Learning (VCL) [164] uses
an approximation of bayesian inference to prevent critical model parameters from
changing drastically with new data. [3] builts on VCL to lower the memory cost
for determining regularization strengths, while [246] explores a more realistic task
agnostic setting.

2.4.3 . Rehearsal based methods

This group of methods is based on training the model with new data along with
limited number of samples for old classes. These methods have constant model
complexity, except for the classification layer which integrates new classes, and
are more fitted for large scale content analysis. Most of them require a bounded
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memory in order to partially avoid catastrophic forgetting. The memory related
constraint is more acceptable than model complexity growth when analyzing large
datasets since the inference time is not influenced by the use of memory.

iCaRL [188] builds on top of LwF in that it combines classification and distilla-
tion losses for each incremental state of the algorithm. A first important difference
with LwF is that a bounded memory is allowed to store exemplars of old classes. As
more classes are added, the number of images per old class is reduced to fulfill the
memory constraint. Class exemplars are selected using a herding mechanism which
gives priority to images that are closest to the class mean. A second difference is
related to the classification mechanism. Instead of using the class activations of
the deep models, a nearest-mean-of-exemplars is implemented. The iCaRL ave-
rage top-5 accuracy on ILSV RC is 62.5%. An iCaRL analysis [109] indicates
that the most important algorithm components are the bounded memory and the
distillation loss. The herding mechanism and the nearest-mean-of-exemplars classi-
fication seem to matter less. Recently an end-to-end incremental learning scheme
with a bounded memory was introduced in [25]. The main modification compa-
red to iCaRL resides in the proposal of a loss function which includes separate
distillation terms for each incremental batch. In addition, data augmentation and
balanced fine tuning are used to reduce the effect of data imbalance between old
and new classes. Top-5 accuracy on ILSV RC is 69.4%, to be compared with
62.5% obtained by iCaRL. Interestingly, the use of herding to store exemplars
is only marginally useful (0.5 points) compared to random selection. This finding
confirms the iCaRL analysis conclusions from [109].

BiC [238] tackles the bias against old classes, by adding a linear layer with
two learnable parameters after the classification layer. A small part of the dataset
is reserved to learn the parameters of the bias correction layer. The training is
done in two steps. The model and classifier weights are learned first, then the
bias correction layer is learned using only the reserved dataset. In LUCIR [97],
authors proposed three balancing constraints at the time of training to mitigate
the imbalance bias between old and new classes. Firstly, they modify the distillation
loss component using cosine normalization to counter larger weights and biases for
new classes. Further, they exploit the observation that imbalance is less pronounced
at the classifier margin to introduce a margin loss function which is less susceptible
to imbalance. Finally, a less forget constraint is introduced which complements
the distillation loss by encouraging the orientation of features extracted by current
network to be similar to those by the original model.

An alternate approach [204, 8] to store the samples from old classes is using
GANs to learn the data distribution and then using synthetic samples generated
by GANs for rehearsal. Though interesting, it adds the computational complexity
of training GANs continuously.

In chapter 6, we study the problem of class incremental learning with a bounded
memory and model size. The focus is thus on rehearsal based methods where
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exemplars from each class is stored for future training.

2.5 . A brief summary and our positioning

Table 2.1 presents a summary of various issues in implementing deep active
learning along with possible solutions proposed in the literature. We make some
contributions to tackle these different problems in the following chapters. In Chap-
ter 3, we propose a single stage selection strategy which uses a larger labeled
source dataset to select a diverse and balanced initial labeled set, as an alternative
to random sampling which is used in most works [15, 198]. DAL is quite data
intensive and several works such as data augmentation using GANs [257, 220, 98],
semi-supervised learning [71, 59], adversarial learning [207, 247, 48] have been
proposed to add complementary data in the pipeline. In our work, we test learning
shallow classifier over strong pre-trained representations as an alternative to more
data intensive classical fine-tuning methods used in all these works. The propo-
sed training scheme is particularly interesting as it solves the issue of unreliable
uncertainty estimates of deep models at lower budgets, while also mitigates the
pipeline inconsistency problem of DAL, since only shallow classifiers are learned as
in classical AL setting. In batch pool AL, a combination of informative and repre-
sentative objective is desired. In chapter 5, we propose a novel way of selecting
samples by using predictions from successive iterative AL models which allows us
to select informative and diverse samples. Imbalance is a central part of our work
and we propose diversification and balancing constraints to select a balanced set of
most representative samples for both single stage and classical iterative AL setting
in Chapter 3 and 4 respectively.

In the incremental learning setting, several approaches have been studied to
elevate the problem of catastrophic forgetting. We focus on rehearsal based me-
thods, which assumes the possibility of storing some samples for old classes. In
chapter 6, we study a set of calibration methods to tackle the bias between old
and new classes.
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Issues in AL Possible solutions

Cold start Problem
Random selection of initial labeled seed set [15, 198]

AIFT [256] uses pre-trained model for selection

Designing single stage AL setting (Chapter 3)

Using
complementary data

Data augmentation using GANs [257, 220, 98], CEAL [227]

Semi-supervised learning [71, 59]

Adversarial learning [207, 247, 48]

Using pre-trained models(Chapter 3,4,5)

Unstable uncertainty
estimates

Bayesian [57], Ensemble [15]

Using shallow classifiers over fixed representations(Chapter 3,4,5)

Pipeline
inconsistency

LAAL [241]

Using hidden layers [91]

Meta learning [119] / Reinforcement learning [173]

Using shallow classifiers over fixed representations(Chapter 3,4,5)

Hybrid Selection to
combine informative
and representative

objective

Clustering-based methods [35, 20, 177, 252]

Quire [102], Badge [7]

Using iterative model predictions(Chapter 5)

Imbalance datasets
Cost-sensitive SVM classifiers [50, 258]

Margin-based AL [87]

Designing diversification and balancing constraint(Chapter 3,4)

Issues in IL Possible solutions

Catastrophic
forgetting

Parameter isolation [233, 195, 4]

Regularization-based methods [140, 93, 246]

Rehearsal based methods [188, 238, 97]

Study of calibration methods for rehearsal based methods (Chapter 6)

Table 2.1 – Summary of different issues and the possible solutions in
deep active and incremental learning . Our solutions to the different
issues are highlighted in bold.
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3 - Single stage active learning for imbalan-
ced dataset

Most works in active learning assume the presence of an initial labeled set of
samples to start the AL process [15, 198]. We propose to tackle a more realistic hard
setting in which we assume the following constraints : (1) we have no knowledge
on the target dataset, in the sense that we consider that no initial seed set of
annotated samples of the target domain is available (hard cold start problem) and
we are even not ascertained of the number of target classes ; (2) we have only a
limited budget for data annotation by an expert ; (3) we assume possible imbalance
in the unlabeled target dataset.

Our objective, here, is to select a diverse set of samples which best represents
all the classes from the unlabeled target dataset, while also ensuring that the
imbalance present in the unlabeled dataset is not transferred to the selected set.
With these objectives in mind, we propose a new approach that takes benefits from
both deep transfer learning and active learning acquisition functions. A pre-trained
model, learned on a source domain is used to provide robust estimates of target
sample uncertainties for selection, while also providing strong data representation
for training the target model on the annotated samples by the oracle. Our main
contribution is the adaptation of classical acquisition functions (AFs) to this single
stage AL scenario where source and target domains are introduced. We introduce a
diversification procedure which selects samples that are predicted as different source
class by the pre-trained model. Further, a sample balancing step is introduced which
reduces the propagation of imbalance from the unlabeled to the labeled dataset.

The evaluation of the contributions is done with imbalanced versions of four
public datasets designed for different visual tasks. Three AL labeling budgets are
tested for each dataset. The modified acquisition functions are compared to random
selection, to their original formulation and to core [198], a recent geometric-based
approach before and after balancing. We take inspiration from works in transfer
learning [185, 120] to propose two different schemes of training using shallow clas-
sifiers on deep features and fine-tuning the deep learning model. Results indicate
that both the modified acquisition functions and sample balancing are useful for
three of the four imbalanced datasets. We also provide an analysis on the trans-
ferability between source and target domains to legitimate the usability of source
domains for the proposed scheme.

The outline of the chapter is as follows. In Section 3.1, we motivate our ap-
proach. Then, in Section 3.2, we propose a formalization of our new learning setting
along with the definitions of the adapted acquisition functions in subsection 3.2.1.
The proposed methods, introducing the balancing and diversification constraints,
are presented in Section 3.3. An extensive experimental validation is proposed in
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Section 3.4 and we finally derive the conclusions in Section 3.5.

3.1 . Motivations

As mentioned in Chapter 2, classical and deep active learning approaches suffer
from the cold start problem. Indeed, a first seed of labeled samples is necessary to
initialize the AL process. The size of this initial labeled dataset can be important,
in particular for deep learning models [189]. It is an important drawback of the
classical scenario leading to selection of samples based on features, which might
be weak or unstable [199]. This problem is particularly stringent for deep models
which are data-intensive involving the need of larger batch sizes during both initial
and subsequent training steps.

In our work, we assume that such an initial labeled dataset is not available for
the target domain but that we can exploit robust features learned from a related
source domain. The proposed scenario is single stage in nature as the total number
of samples allowed by the AL budget is first selected and the AL model is learned
on the whole selected and labeled dataset. Moreover, an iterative training of deep
models to include each new labeled sample or batch of samples is very expensive and
time consuming. The existence of a pre-trained model is also a realistic hypothesis
which is extensively exploited in transfer learning [185, 120] and that we propose
to exploit in this context.

This chapter combines ideas from active learning, domain adaptation and trans-
fer learning to tackle the cold-start problem. Our objective is to select the minimal
subset of samples from a completely unlabeled dataset on a target domain in order
to present them to an oracle for annotation by leveraging knowledge coming from
the source domain. This is very close to domain adaptation, but our goal is to
select a diverse subset which best represents the target dataset, while reducing
the annotation cost. Further, we apply transfer learning to use the model that is
learned on source domain for training the model in the target domain. Techniques
from semi-supervised learning can be easily assimilated to further improve the lear-
ned model by also using the rest of the non-annotated data in the target dataset.
Nevertheless, semi-supervised learning does not always lead to improvement and
can also be detrimental in some cases [181].

AIFT [256] is the existing work which is closest to ours since we also make
the assumption that a pretrained model exists and can be exploited to remove the
need for a labeled seed set. However, important differences arise from : (1) our
focus on imbalance and (2) the criterion used to select candidate samples.

3.2 . Problem Formalization for single stage AL

In this section, we formally describe the problem of single stage active learning.
An overview of its pipeline is provided in Figure 3.1.
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Figure 3.1 – Overview of the single stage active learning pipeline. The
source model MS trained over the large labeled dataset DL

S from the
source domain DS . MS consists of the feature extractor FS and the
classifier PS . The unlabeled target dataset DU

T from target domain DT

is passed through FS and PS to extract the features f and predictions
pS for target samples. The AF is applied on these estimates to select
the samples to be annotated. The target modelMT is trained once the
DL

T is completely filled with b samples.

We consider a source domain DS represented by DL
S a labeled dataset with

xi, yi ∈ X × YS for i = 1..nS , i.i.d̄. realizations of random variables X ,YS ∼ PS

where PS is the source domain data distribution, X is the instance space (in our
case the image data), YS is the set of NS class labels {y1, ..., yNS

} of the source
domain and nS the number of annotated instances.

The target domain DT is only represented by an unlabeled dataset DU
T in the

hard setting here. The objective of single stage Active Learning is to select the
best subset DL

T from DU
T of cardinal b (the budget) for manual labeling in order to

maximize the performance of its associated model over the test dataset in target
domain DT . We also consider that DL

T is imbalanced, i.e. target classes can be
under or over represented. The level of imbalance can be defined, for instance, by
using a combination of mean (µ) and standard deviation (σ) of the number of
images per known class. The higher the ratio between σ and µ is, the stronger is
the imbalance of the dataset.

Our AL scenario encompasses the following steps. First, a deep model MS

represented by parameters θS is learned over the source domain and includes two
main components. The first is a feature extractor FS : x → Rd, with d the size
of the feature vector. The second is a classifier followed by a soft-max function
PS : Rd → PS which outputs the probability distributions over the NS classes of
the source domain. The two components of the model MS are used to extract
features f and predictions pS for all samples x from DU

T .
Second, a manually labeled dataset DL

T is obtained via the application of an
acquisition function AF [199]. Here we note the two main challenges. As the
model used to extract features and probabilities of the target dataset is trained on

51



the source domain, classical uncertainty-based AF might be sub-optimal due to
dataset shifts [183]. Also the target dataset contains imbalance which gets propa-
gated to DL

T . Minority classes are likely to be underrepresented or not represented
at all, especially for low labeling budgets. We thus introduce :

1. adaptations of uncertainty-based AF by diversifying samples based on
source class predictions

2. a two step acquisition process which first uses AF to discover classes and
then focuses on balancing the number of samples per class.

At last, a model MT is trained over the resulting DL
T . This model can be built

either by transferring representations from the initial model or by fine-tuning it.
The usefulness of each of the two approaches is determined by the AL budget b and
the transferability of features between DL

S and DL
T . We perform cross-validation on

the training set to determine which of the options is better in each configuration.
Optionally, semi-supervised learning can be then applied to expand DL

T into a larger
subset DS

T but this part of the process is not in focus here.
We now describe acquisition functions defined for the single stage setting.

3.2.1 . Acquisition Functions for single stage AL

In the single stage AL scenario, no manual annotation of the target dataset
is available at the start of the process to train a model on the target domain.
Thus the uncertainty and representative measures of the completely unlabeled
target dataset are computed using the outputs of the source model MS . First, we
define the acquisition functions to give the estimates for samples from completely
unlabeled target dataset based on predictions of the source model. These estimates
might not be directly meaningful for our task of creating a diverse and balanced
initial labeled set and modifications of classical AF are required to include these
objectives. In the next section 3.3, we detail our proposed modifications to instill
diversification and balancing constraints.

Uncertainty-based Functions

As discussed in Chapter 2, uncertainty-based methods allow an AL method
to query the instances on which the model is most uncertain. In single stage AL
context, these methods exploit the classifier PS obtained with the pretrained model
MS .

Entropy Sampling is based on the global shape of class predictions pS and is
defined in single stage scenario as :

H(x, θS) = −
NS∑
c=0

pS(yc|x) ∗ log pS(yc|x) (3.1)

with : NS the number of source classes.
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We consider entsort(DU
T ) as a permutation of the set DU

T by ordering its element
by decreasing value of entropy H(x, θS). DL

T is obtained by annotating the first b
samples from list. This baseline is noted as ent.

Margin Sampling computes the uncertainty of an instance x by comparing
its top 2 predictions of the source model. It is defined in single stage scenario as :

marg(x, θS) = pS(ŷ1|x)− pS(ŷ2|x) (3.2)

with : ŷ1 and ŷ2 are the top 2 predicted classes with MS of parameters θS for the
sample x.

We consider marginvsort(DU
T ) as a permutation of the set DU

T by ordering its
element by increasing value of margin marg(x, θS). The baseline is noted as ms.

Least Confidence Sampling selects instances for which the model MS gives
prediction with lowest probability. It is defined in single stage scenario as :

least(x, θS) = pS(ŷ1|x) (3.3)

with : ŷ1 the top 1 predicted class for the sample x with MS .
We consider leastinvsort(DU

T ) as a permutation of the set DU
T by ordering its

element by increasing value of margin least(x, θS). DL
T is obtained by annotating

the first b samples from list. The baseline is noted as lc.

Geometric-based Functions

Geometric approaches are based on building a subset which best represents the
complete dataset using the feature extractor FS of the pretrained model MS on
the unlabeled dataset.

Coreset
As discussed earlier, coreset selects unlabeled samples which are at a maximum dis-
tance from their closest labeled samples. We implement this method in single stage
setting by randomly selecting the first labeled point and then solving Equation 3.4 :

core(DU
T ,DL

T ) = max
∀xu∈DU

T

min
xl∈DL

T

d(f(xu), f(xl)) (3.4)

with d(f(xu), f(xl) the distance between the labeled point xl from labeled set DL
T

and unlabeled point xu from unlabeled set DU
T . The selected sample is then moved

from unlabeled set DU
T to labeled set DL

T . The process is continued till the budget
is exhausted. The baseline is noted as core.

3.3 . Proposed method

3.3.1 . Diversified Certainty-based Functions
We propose a diversification strategy based on source model’s top predictions

on target dataset. Our aim is to select a diverse set of samples which covers the
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maximum number of classes from unlabeled target dataset. To meet this objective,
the proposed diversification strategy selects samples which have different top source
classes as prediction. The hypothesis is that samples which are predicted as different
source classes are likely to be different from each other. This strategy operates
under the assumption that, due to representation transferability, a mapping between
classes in the source and target domains occurs. Even if imperfect by nature, class
mapping might help to partially counter the effects of imbalance and to discover
a broader range of classes compared to random sampling.

The uncertainty acquisition functions introduced in the last section act as a
base for our proposed selection strategy. We perform an inversion of uncertainty
based AF to ascertain the most certain samples belonging to each source class. The
inversion of the lists allows to prioritize the confident predictions for each source
class for selection. This makes the diversification procedure more effective in that
samples which are predicted as different source class with high certainty are more li-
kely to be different. Here, we note the inverted list as entinvsort(DU

T ), leastsort(DU
T )

and entsort(DU
T ) created by inversion respectively of lists entsort(DU

T ), leastinvsort(DU
T )

and entinvsort as previously defined. Our diversification procedure, named div, as
explained in Figure 3.2 and with the pseudo code presented in Algorithm 1 is then
performed to select samples.

In the following, we note entdivinv, msdivinv and lsdivinv, the resulting set obtained by
applying our diversification strategy div respectively on inverted lists entinvsort(DU

T ),
leastsort(DU

T ) and entsort(DU
T ).
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Algorithm 1 Diversification algorithm
1: U : a list of unlabeled samples
2: top : a dictionary containing top prediction source class for all
samples in U

3: b : budget of samples to be selected
4: procedure div(U , top, b)
5: Build L : a list of selected samples from U of length b
6: while len(L)≤ b do
7: seenclasses = empty list : reinitialize memory of source
classes

8: for each item i in U do
9: topsourceclass = top[i] :predicted source class for sample

U [i]
10: if topsourceclass not in seenclasses then
11: if i not in L then
12: add sample i in L
13: add topsourceclass in seenclasses
14: end if
15: end if
16: end for
17: end while
18: L = L[0 : b]
19: return L
20: end procedure
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Figure 3.2 – Diversification procedure. Samples are first assigned to
their predicted source class and then sorted according to the consi-
dered certainty criteria. This creates a list of samples for every source
class ordered in terms of certainty of belonging to the class. In the fi-
gure, we represent certain samples by using darker shades. Note that
it is possible that a source class is not the top predicted class for any
target sample and thus does not get any sample assigned to it. The
selection of samples is performed iteratively over the source classes,
selecting one example per source class, till the budget is filled. If the ac-
tive learning budget is larger than the number of classes of the source
domain, the memory is reset each time allNS classes were seen. Thus
a diverse set of images is selected by giving equal representation to
samples from all the source classes.

3.3.2 . Adding the Balancing component

Here, we introduce a sample balancing step which reduces the propagation of
imbalance from the unlabeled to the labeled dataset. A part of the labeling budget
is annotated with a classical acquisition approach. A criterion which depends on
the budget and on the degree of imbalance in the labeled dataset created so
far is proposed to switch toward the balancing step as shown is Figure 3.3. The
switch from classical AL selection to balancing step is done to ensure a good
balance between discovery and balancing steps of AL. If switching is done too
early, balancing is applied to a large number of samples but the number of found
classes is likely to be low. Inversely, if the class discovery step is too long, a larger
number of classes might be discovered but at the expense of significant imbalance
in DL

T . The switch between the two AL steps needs to be linked to the imbalance
profile of the target dataset. The classes are divided into under-represented or over-
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represented depending on whether they have less or more samples than the average
number of samples m/ncm, where ncm is the number of classes discovered after
selection of m samples. It is activated using the following criteria :

b−m <= cur × (µ(or)− µ(ur)) (3.5)

with cur - the number of under-represented classes ; µ(or) and µ(ur) - the mean
number of samples for under- and over-represented classes when m samples were
labeled manually in the current DL

T

Figure 3.3 – Balancing criteria. The class statistics are computed after
each selection. The switch is activated based on the imbalance incor-
porated in the dataset and the budget left to mitigate this imbalance.
Once the balancing criteria is met, the selection of samples proceeds
via the balancing algorithm.

For every m value, Equation 3.5 tests if there are enough samples left until b
to fill in the gap between the samples of under-represented and over-represented
classes. The stronger the imbalance of a dataset, the earlier the switch will be
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activated. Note that Equation 3.5 is likely to have little influence for balanced
datasets since the switch will be activated very late in the AL process.

Ideally, all samples labeled between m and b would be attributed to under-
represented classes in order to have a completely balanced distribution of class
samples. In practice, even if under-represented classes are favored during balancing,
some imbalance will subsist because :

1. under-represented classes simply do not have enough samples in DU
T

2. some of the samples attributed during balancing will be directed towards
other classes than the intended ones.

Thus once the balancing criteria is met, a given minority class c represented by nc

samples is given a maximum of b/ncm − nc attempts for balanced selection. This
allows all the under-represented classes to have an equal chance of achieve average
number of samples per class.

The balancing algorithm is shown in Figure 3.4. We start by prioritizing under-
represented classes which have the lowest number of associated samples. Samples
from DU

T are represented in feature space Rd provided by the initial model MS .
The mean feature representation is computed for each class using its manually
labeled samples in DL

T . Given the targeted rarest class Cmin
ur , we propose the next

sample for labeling using :

xnext = min
∀i∈{1,nT−m}

(
d(µ(FS(C

min
ur )), FS(xi))

max∀j∈{1,cor}(d(µ(FS(Cj)), FS(xi))
) (3.6)

with xi any of the (nT −m) unlabeled target samples at moment m ; d(., .)
L2-distance in the feature space Rd ; cor is the number of over-represented classes ;
µ(FS(.)) - mean features of a class as represented by its samples in the current
labeled subset DL

T .
The numerator in eq. 3.6 favors unlabeled samples which are close to the

target class Cmin
ur . The denominator favors samples which are furthest away from

any majority class. The imbalance profile of the labeled subset DL
T and the mean

representations of its known classes are updated after each manual labeling.

3.4 . Experiments

3.4.1 . Training Strategies
The training of a model MT over the manually labeled subset DL

T can be
done by transferring deep features from MS or by fine-tuning this model. The
first option seems preferable for small AL budgets because fine-tuning a deep
architecture might be suboptimal or even impossible. Transfer is implemented using
a classical approach [185] which learns shallow classifiers over the features provided
by the feature extractor FS . Inversely, fine-tuning becomes viable if b is larger
or if source and target domains are distant from one another. CNN models are
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Figure 3.4 – Balancing algorithm applied for minority class (green). The
algorithm calculates the mean distance of unlabeled sample to each
class in the feature spaceRd. The mean position of each class is shown
in the figure with bigger circles for simplification. The numbering in the
unlabelled samples (larger circles in grey) denotes the order of selec-
tion. The selection allows to give maximum chance of samples belon-
ging to the minority class. Thus sample which is closest to the mean
representation of minority class and furthest away from the closest
majority class is prioritized.

shown to be particularly prone to imbalance and provide prediction scores biased
towards majority classes [23]. Following the conclusions of this prior work, a post
processing based on prior probabilities is used to calibrate the scores and improve
overall accuracy. The choice between the two strategies is done via cross-validation
over DL

T . 10-folds are created and we create both shallow classifiers and fine tuned
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Dataset Class Images Mean(µ) Std(σ) ir
Food-101 101 22956 227.28 180.31 0.793
CIFAR-100 100 17168 171.68 126.98 0.740
IMN-100 100 18558 185.58 137.16 0.739
MIT-67 67 14281 213.15 168.16 0.789

Table 3.1 – Dataset statistics. ir is the imbalance ratio

models for each fold. Accuracy is averaged over all folds and the strategy which
has better performance is selected.

3.4.2 . Datasets

The proposed methods are evaluated on four imbalanced datasets and we
consider ILSVRC [193] as source domain. A method [47] to generate pseudo-
label for unlabeled images from diverse target domain using a model trained on
source domain, shows the viability of using ILSV RC to provide rich high-level
representations. We test our methods on four publicly available dataset.

— Cifar100 [123] is designed for coarse-grained object classification.
— Food− 101 [21] is focused on fine-grained food recognition
— MIT − 67 MIT-Indoor-67 [182] is designed for indoor scene recognition.
— IMN − 100 is a subset of ImageNet which includes fine-grained classes

(i.e. ImageNet leaves). Note that the intersection between IMN − 100

and ILSV RC is empty.
These datasets are used to evaluate transfer between a large source dataset

and target datasets which were created using a protocol different from that of
ILSVRC. In addition, we create IMN-100, a subset of randomly selected 100 leaf
classes from ImageNet which are not present in ILSVRC. IMN-100 is created to
test transfer among classes from the same large collection of images. A common
imbalance induction procedure was applied to all datasets using a target imbalance
ratio to guide the pruning process. The imbalance ratio is defined as ir = σ

µ ,
with σ standard deviation and µ the mean of images per class in the dataset.
The main statistics of the obtained datasets are provided in Table 3.1. Similar
imbalance ratio was obtained across datasets to facilitate comparability of results.
Imbalance induction process was guided to attain imbalance ratio present in the
full ImageNet dataset, which is 0.813 in the 4 target dataset, by transferring the
class distribution of ImageNet dataset to the target dataset. Binning is performed
on number of images per classes in the ImageNet dataset. The number of bins is
set to the number of classes present in the target dataset. Thereafter, the mean
of each bin is normalized and multiplied to the mean number of images per class
in target dataset to give the images in target imbalanced dataset.

3.4.3 . Implementation Details

The Pytorch [176] pretrained ResNet-18 model is used as MS . The choice of
this model is guided by two criteria : (1) the AL labeled subsets are small and
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Figure 3.5 – Class imbalance in datasets

deeper models might not converge and (2) the number of experiments to run is
large and a relatively quick training is needed. A usual fine-tuning strategy is applied
when CNNs are used to create MT over the labeled subset DL

S . Parameters of the
source training are kept, except for the initial learning rate which is divided by 10.
Linear SVMs from scikit-learn [178] are used to create shallow model when transfer
learning is used. Their parameters are optimized using 10-fold cross validation over
the labeled subset DL

S . The choice between SVMs and CNNs to create AL models
is done by cross-validation, as explained in Subsection 3.4.1.

Evaluation Methodology

The size of the budget b is the main criterion used to evaluate the performance
of active learning methods [199, 198, 15] and we test b = {500, 1000, 2000} for
each of them. We present results with a range of existing AL acquisition functions
and their modified versions described in Subsection 3.2.1. Five runs are launched
for non-deterministic acquisition functions (random and core) and their accuracy
is averaged to prevent accuracy bias. AL performance is evaluated before and after
balancing. We also provide details about the number of classes discovered by each
AF and the associated imbalance ratio.

The evaluation measure of individual configurations is top-1 accuracy. It is
calculated as an average over the entire set of classes Nt represented in the test
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Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 23.02 30.63 38.68 27.31 33.66 39.78 47.24 56.62 63.87 34.99 44.56 53.33

ent 14.19 20.44 29.26 12.13 17.31 25.18 16.99 24.62 37.58 25.36 31.72 41.20
ms 8.49 14.31 28.48 23.70 25.25 35.76 28.46 41.29 38.98 28.91 34.64 46.50
lc 15.44 23.45 33.06 15.28 20.79 27.74 21.79 32.09 43.77 27.20 34.68 45.44

entinv 8.84 15.55 26.69 24.19 30.29 34.78 27.83 41.44 38.71 28.87 37.99 42.12
entdiv 13.93 20.24 30.34 23.96 29.35 35.97 24.25 42.99 55.45 27.07 39.01 44.35
entdivinv 19.71 25.60 34.11 32.13 38.94 43.94 53.65 61.21 66.79 39.17 46.79 52.09
msdivinv 16.05 24.26 32.62 24.61 31.46 39.13 39.47 51.68 61.02 31.46 40.99 49.13
lcdivinv 19.13 24.66 33.62 32.62 38.46 43.52 55.27 61.89 66.80 39.48 45.89 51.42
core 20.07 26.35 34.17 30.04 36.34 42.18 49.84 56.42 63.87 37.10 46.08 52.31
Full 65.85 59.49 70.20 72.43

GAL

-0.792
-1.308
-1.159
-1.191
-1.155
-1.077
-0.739
-0.928
-0.742
-0.790
-

Table 3.2 – Accuracy of the acquisition functions from Subsection 3.2.1
before balancing. random and core are non deterministic and their per-
formance is averaged over five runs. Best results are presented in bold.

set since the objective is to evaluate the capacity of each AL method to deal with
imbalance. Let the total number of classes found by an acquisition function be Nf

and the average accuracy over these classes be ACCf . The final accuracy ACCt of
a configuration is calculated over all the classes which could be discovered using :

ACCt = Accf
Nf

Nt
(3.7)

Taking all classes into consideration, even if some of them are not discovered
during AL acquisition, is necessary because our objective is to evaluate accuracy
over the complete task. The merits of the different methods tested are only com-
parable if tested for all classes which could be discovered.

Since the number of configurations for each AF is important, we also present
a summarized evaluation of performance. Inspired by recent works such as [187,
212], we propose a global performance score in Equation 3.8.

GAL =
1

c
×

c∑
i=1

acci − accfull
accmax − accfull

(3.8)

where : c - number of configurations tested ; acci - top-1 score for each confi-
guration (individual values of each row of Table 3.2 and Table 3.3 ; accfull - the
upper-bound accuracy of the dataset (full accuracy corresponds to fine-tuning a
model for each full imbalanced dataset with ILSVRC as source dataset, followed
by score calibration with prior class probabilities as done in [23]) ; accmax - the
maximum theoretical value obtainable (accmax = 100 here).

GAL measures the performance gap between methods which use a partial la-
beling of data and an upper-bound which exploits a fully labeled dataset. The
denominator is introduced to avoid a disproportionate influence of individual da-
tasets [212]. GAL has a negative value and the closer its value to zero, the better
the method is.
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Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 23.53 30.52 37.95 28.86 37.29 44.32 53.79 62.59 68.31 42.36 54.14 60.16

ent 19.10 27.06 34.43 24.07 33.82 41.20 41.19 57.65 65.47 34.75 51.68 60.16
ms 17.98 29.61 35.40 25.44 35.18 41.71 45.57 51.56 65.73 40.52 48.62 57.17
lc 19.59 26.70 37.20 26.68 36.70 40.13 43.03 59.32 67.45 41.30 51.23 59.34

entinv 18.06 28.81 35.62 25.89 34.06 41.87 44.48 57.45 64.08 36.25 49.33 58.15
entdiv 20.08 26.82 33.57 24.43 34.26 43.20 42.25 55.53 63.33 38.99 51.83 60.01
entdivinv 23.20 27.43 38.00 34.32 40.78 45.34 56.98 64.12 68.21 47.80 53.74 60.39
msdivinv 20.51 27.91 37.50 27.40 37.32 45.70 50.48 60.75 66.12 44.67 52.42 59.12
lcdivinv 21.77 28.71 36.16 32.21 39.92 45.13 55.55 64.05 68.86 45.34 51.79 61.06
core 20.84 28.21 37.44 32.68 39.70 44.43 54.57 62.14 67.97 46.42 54.34 60.46
Full 65.85 59.49 70.20 72.43

GAL

-0.653
-0.792
-0.784
-0.744
-0.785
-0.783
-0.612
-0.690
-0.637
-0.640
-

Table 3.3 – Accuracy of the acquisition functions from Subsection 3.2.1
after balancing. random and core are non deterministic and their per-
formance is averaged over five runs. Best results are presented in bold.

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

random
Classes 87.8 98.2 100.6 91 97 99 92.8 99 100 66 67 67

ir 0.936 0.849 0.820 0.837 0.785 0.757 0.864 0.798 0.772 0.857 0.796 0.784

ent
Classes 77 90 99 64 77 91 58 80 90 54 65 66

ir 1.758 1.528 1.328 2.480 2.079 1.556 2.947 2.304 1.735 1.280 1.148 1.031

entdivinv

Classes 85 92 100 97 98 99 99 99 100 64 67 67
ir 1.292 1.267 1.111 0.723 0.710 0.706 0.587 0.550 0.515 0.928 0.914 0.823

lcdivinv

Classes 84 92 99 95 98 99 99 100 100 63 65 67
ir 1.235 1.226 1.067 0.732 0.686 0.683 0.571 0.573 0.524 0.898 0.887 0.837

core
Classes 84.8 95 100 93 99 100 98 100 100 65.2 67 67

ir 1.266 1.228 1.170 0.926 0.831 0.767 0.844 0.774 0.754 0.918 0.853 0.820

Full
Classes 101 100 100 67

ir 0.793 0.740 0.739 0.789

Average

88.8
0.821
75.917
1.765
89
0.844
88.41
0.827
89.03
0.929
92
0.765

Table 3.4 – Number of classes found and imbalance ratio for the main
acquisition methods before balancing. The number of classes is not an
integer for random and core because these methods are not determi-
nistic and their performance is averaged over five runs.

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

random
Classes 90.6 97.4 100.4 90.8 96.6 99.4 93.4 98 99.6 65.8 67 67

ir 0.803 0.820 0.841 0.750 0.677 0.635 0.491 0.357 0.241 0.586 0.297 0.264

ent
Classes 85 98 100 88 95 100 86 96 100 63 64 67

ir 1.236 1.035 1.058 0.998 0.891 0.815 1.511 0.975 0.821 0.789 0.476 0.363

entdivinv

Classes 88 98 101 95 100 100 95 100 100 64 67 67
ir 0.986 0.976 0.850 0.587 0.559 0.655 0.368 0.377 0.187 0.449 0.434 0.341

lcdivinv

Classes 85 98 100 95 98 100 93 100 100 62 66 67
ir 0.849 0.865 0.908 0.710 0.614 0.613 0.420 0.337 0.210 0.522 0.405 0.352

core
Classes 89.8 96.8 100.8 91.4 99 99.800 97 99.4 100 65 66.6 67

ir 0.943 0.956 0.894 0.713 0.689 0.662 0.568 0.417 0.289 0.450 0.373 0.323

Full
Classes 101 100 100 67

ir 0.793 0.740 0.739 0.789

Average

88.83
0.563
86.83
0.914
89.58
0.564
88.66
0.567
89.38
0.606
92
0.765

Table 3.5 – Number of classes found and imbalance ratio for the main
acquisition methods after balancing. The number of classes is not an
integer for random and core because these methods are not determi-
nistic and their performance is averaged over five runs.
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3.4.4 . Performance of Acquisition Functions

A first finding provided by Table 3.2 is that existing AF are not well adapted
for the single stage AL. Their performance, as measured by GAL and for individual
configurations, is lower than that of random sampling. This is notably the case for
uncertainty-based functions whose GAL is consequently lower compared to random
sampling. Even the recent core method has global performance equivalent to that
of random sampling. This is somewhat expected since the direct application of AF
on a different source domain is not suited for our task.

A second important finding is that the proposed AF adaptations are efficient
since performance is improved for all uncertainty-based methods when diversifica-
tion is applied to their inversed definitions as discussed in Subsection 3.2.1. The
performance gain is particularly interesting for the modified versions of entropy
entdivinv and least confidence (lcdivinv) which gain 0.57 and 0.45 GAL point respecti-
vely and are globally better than that of random. As shown by the intermediate
result obtained for entinv and entdiv, both the shift from uncertain to representa-
tive images and the use of the diversification scheme-based on the predictions of
the pretrained model are beneficial. Note that we tried to apply the diversification
procedure to the core too but results were inconclusive. This negative finding is
probably explained by the fact that geometric-based functions are in the feature
space, and diversification is applied to the classifier predictions.

The analysis of individual configurations, entdivinv and lcdivinv, indicates that they
are clearly better compared to random for CIFAR-100 and IMN-100 and also for
the lower budgets of MIT-67. Gains are more important for lower budgets, i.e. the
most difficult and interesting AL configurations since they allow a larger reduction
of the labeling effort. At higher budgets, for instance at b = 2000, the accuracy
of the different methods as much closer. Interestingly, random is clearly the best
method for Food-101. This behavior underlines a limitation of deep representation
transferability, regardless of its implementation via transfer learning with shallow
classifiers or by fine-tuning the initial model. The result is explained by the larger
visual gap between Food-101 and ILSVRC which translates into a significantly
higher difference between AL scores and the performance on the full dataset. We
provide further analysis of transferability in Subsection 3.4.6.

In Table 3.4, we complement the analysis of accuracy with a presentation of
the number of classes discovered by each method and the standard deviation in
the distribution of labeled samples. An ideal method would discover all classes and
have a standard deviation as close as possible to zero in order to give all classes
similar chances of being recognized. Only the main methods from Table 3.2 are
kept here. Results are rather well correlated to accuracy, with entdivinv having the
best behavior for CIFAR-100 and IMN-100 and random being best for Food-101.
The low accuracy of classical entropy is explained by its poor behavior both in terms
of class discover and of imbalance ratio. Interestingly, while random samples are
more balanced for MIT-67 compared to entdivinv, accuracy remains better for the
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latter method. This is probably explained by the fact that the labeled samples are
more representative of each class for entdivinv compared to a random selection. The
results in Table 3.5 also validate our hypothesis that the application of acquisition
functions worsens the global imbalance of DU

T . None of the acquisition functions
has imbalance lower than that of the full imbalanced datasets. This justifies the
need for a balancing step during the acquisition process.

3.4.5 . Influence of Balancing

Balancing provides a consequent improvement for all AF . The GAL scores
after balancing (Table 3.5) are clearly better than those obtained before balancing
(Table 3.4). The GAL score for random moves from -0.792 to -0.653, while that of
entdivinv goes from -0.739 to -0.612. lcdivinv remains second best but with an increased
gap compared to entdivinv. We note also that balancing improves performance of
acquisition function for the Food-101 dataset. In particular, entdivinv is on par with
random for b = 500 and b = 2000 but still lags behind for b = 1000. This
result indicates that even balancing is useful to some extent even when feature
transferability is low.

The comparison of imbalance ratios before and after balancing provided in
Tables 3.4 and Table 3.5 shows that the proposed procedure is useful. The reduction
of imbalance contributes to the improvement of accuracy compared to the case
when no balancing is applied. The average imbalance ratio for random and entdivinv

is 0.821 and 0.844 without balancing compared to 0.563 and 0.564 with balancing
to be compared with 0.765 for the full imbalanced datasets.

The balancing process also provides a slight increase of the number of classes
discovered, which is another important factor which contributes to accuracy. This
can be explained by the fact that when switching between acquisition modes,
the acquisition strategy changes and a different subspace of the feature space is
explored.

3.4.6 . Analysis of Transferability

The distance from source to target domains conditions the success of transfer
learning [185]. The larger this distance is, the higher the chances for transfer to
be inefficient are. The differences of accuracy between the training with the full
dataset and with AL methods provided in Tables 3.2 and 3.3 indicate that the
distance between the ILSVRC source is highest for Food-101. We deepen this
simple estimation of transferability in Figure 3.6. It shows the mapping of top-
1 predictions for the training images in the target datasets over the classes of
the source dataset. Transfer is likely to be successful if the mapping encompasses
a large number of ILSVRC classes and is rather balanced. Such a distribution
would indicate that the target domain is richly represented in the source domain.
Inversely, a distribution concentrated on a small number of classes indicates that
the target is poorly represented and transfer would be less likely to succeed. The
distributions from Figure 3.6 are directly comparable for Food-101, CIFAR-100,
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Figure 3.6 – Distribution of number of target dataset images predic-
ted per source class. Source classes are ranked from left to right from
most to least frequent. To facilitate comparability, the raw number of
predictions is divided by the size of each target dataset. Best viewed in
color

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 26.73 34.75 43.20 34.78 43.81 51.33 56.75 65.81 71.50 48.39 57.95 64.47
entdivinv 23.45 28.15 36.72 35.75 42.48 49.17 53.39 62.47 69.10 48.09 55.53 62.18
lsdivinv 23.33 28.04 36.96 35.99 43.42 49.76 55.46 62.07 69.67 46.67 54.63 62.78
core 22.43 28.55 37.82 32.34 41.65 49.13 51.32 59.34 67.29 45.99 55.05 62.78
Full 68.53 63.02 72.89 65.47

GAL

-0.538
-0.627
-0.620
-0.662

-

Table 3.6 – Accuracy of the acquisition functions with balanced data-
set before balancing. random and core are non deterministic and their
performance is averaged over five runs. Best results are presented in
bold.

IMN-100 are directly comparable because these datasets have a nearly identical
number of classes. The distribution is the least balanced for Food-101, followed
by CIFAR-100 and IMN-100. This mirrors the accuracy reported for each dataset
in Tables 3.2 and 3.3. MIT-67 has fewer classes and its distribution is naturally
tighter. However, it is still more evenly distributed than that of Food-101. This
analysis underlines that ILVSRC is a good source domain dataset.

3.4.7 . Analysis with Balanced datasets

The balancing step introduced in Section 3.3.2 is intended for imbalanced da-
tasets. However, it is interesting to also test its behavior, as well as that of the
proposed acquisition functions, for balanced datasets. Tests are performed over
balanced subsets of the datasets which include a number samples per class compa-
rable to that of imbalanced versions. There are 200 images per class for Food-101,
CIFAR-100 and IMN-100 is set to 200 and 80 for MIT-67. The number of images is
lower for the latter dataset because its least represented classes include 80 images.
The performance of diversification based AF are comparable, with random being
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Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 27.49 36.18 44.11 35.76 45.30 51.94 58.57 66.67 71.42 51.79 59.46 64.80
entdivinv 26.10 29.33 40.52 38.48 45.18 50.62 59.70 65.32 70.31 48.95 58.67 64.65
lsdivinv 25.18 31.53 40.91 37.89 46.09 51.05 59.96 65.69 70.40 50.75 57.10 64.28
core 24.83 32.23 41.42 35.03 43.50 50.42 55.71 64.44 69.84 49.72 58.30 63.39
Full 68.53 63.02 72.89 65.47

GAL

-0.502
-0.544
-0.536
-0.568
-

Table 3.7 – Accuracy of the acquisition functions with balanced data-
set after balancing. random and core are non deterministic and their
performance is averaged over five runs. Best results are presented in
bold.

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

random
Classes 100.4 101 101 99.4 100 100 99 100 100 66.6 67 67

ir 0.463 0.316 0.204 0.442 0.318 0.216 0.446 0.293 0.220 0.361 0.227 0.146

entdivinv

Classes 87 100 101 97 100 100 99 100 100 66 67 67
ir 0.989 0.968 0.776 0.542 0.516 0.440 0.534 0.556 0.462 0.556 0.479 0.340

lcdivinv

Classes 90 99 101 99 100 100 100 100 100 66 67 67
ir 0.990 0.969 0.778 0.525 0.496 0.416 0.510 0.557 0.457 0.599 0.494 0.350

core
Classes 92.8 98.6 100.8 98.8 100 100 98.8 99.8 100 67 67 67

ir 0.957 0.860 0.763 0.578 0.542 0.465 0.707 0.654 0.578 0.627 0.488 0.359

Full
Classes 101 100 100 67

ir 0 0 0 0

Average

91.78
0.304
90.33
0.596
90.75
0.595
90.88
0.631
92
0

Table 3.8 – Number of classes found and imbalance ratio for the main
acquisition methods with balanced datasets before balancing. The
number of classes is not an integer for random and core because these
methods are not deterministic and their performance is averaged over
five runs.

Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

random
Classes 99.4 101 101 98.4 100 100 97.6 100 100 66.8 67 67

ir 0.415 0.225 0.104 0.321 0.186 0.095 0.280 0.144 0.084 0.174 0.092 0.056

entdivinv

Classes 99 100 101 98 100 100 98 100 100 67 67 67
ir 0.661 0.802 0.428 0.261 0.192 0.134 0.261 0.192 0.134 0.302 0.171 0.122

lcdivinv

Classes 98 100 101 99 100 100 99 100 100 67 67 67
ir 0.721 0.542 0.446 0.192 0.191 0.149 0.192 0.191 0.149 0.244 0.167 0.143

core
Classes 97 101 101 98.3 100 100 97.8 99.6 100 66.6 67 67

ir 0.642 0.464 0.291 0.315 0.213 0.168 0.363 0.241 0.204 0.331 0.181 0.141

Full
Classes 101 100 100 67

ir 0 0 0 0

Average

91.52
0.181
91.42
0.305
91.50
0.277
91.27
0.296
92
0

Table 3.9 – Number of classes found and imbalance ratio for the main
acquisition methods with balanced datasets after balancing. The num-
ber of classes is not an integer for random and core because these me-
thods are not deterministic and their performance is averaged over
five runs.
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Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 23.02 30.63 38.68 27.31 33.66 39.78 47.24 56.62 63.87 34.99 44.56 53.33
entdivinv 19.71 25.60 34.11 32.13 38.94 43.94 53.65 61.21 66.79 39.17 46.79 52.09

entdivinv +ens 19.63 26.20 33.84 34.67 42.67 47.78 58.24 63.67 69.11 43.17 46.34 55.01
lsdivinv 19.13 24.66 33.62 32.62 38.46 43.52 55.27 61.89 66.80 39.48 45.89 51.42

lsdivinv +ens 19.82 26.17 33.55 35.77 42.95 47.23 60.32 64.87 68.85 42.99 47.56 53.81
core 20.07 26.35 34.17 30.04 36.34 42.18 49.84 56.42 63.87 37.10 46.08 52.31

core +ens 19.90 26.34 33.86 31.95 38.29 46.10 54.08 59.90 66.41 38.73 48.79 55.62
Full 65.85 59.49 70.20 72.43

GAL

-0.792
-0.739
-0.672
-0.742
-0.663
-0.790
-0.723
-

Table 3.10 – Accuracy of the acquisition functions with ensemble before
balancing. We take the results for main methods from Table 3.2. For
ensemble, we add +ens to method names and present the results in
italics to improve readability. Note that random is not influenced by
ensembles and is the same as in Table 3.2.

most effective especially at higher budgets and core the least effective method, as
reported in Table 3.6.

Somewhat surprisingly, balancing is beneficial for all acquisition functions as
shown in Table 3.7. Even though the tested datasets are globally balanced, the
selection of a subset for annotation results in an imbalanced distribution. Imbalance
is naturally larger for lower budgets because subset is least representative of the
entire distribution. Accuracy gains are generally between two and three points
for lower budgets, which are most interesting in AL since they require the lowest
annotation effort. Also interesting, the global performance of entdivinv and lsdivinv

becomes closer to that of random . For the lowest budget, entdivinv and lsdivinv are
more competitive than random after balancing for CIFAR-100 and IMN-100, the
two datasets with best transferability from the source. The comparison of imbalance
ratio and classes found in Table 3.8 and 3.9 shows that none of the AF methods
finds a perfectly balanced subset for manual annotation. However, the degree of
imbalance is considerably reduced after the application of balancing. For instance,
it is more than halved for entdivinv and lsdivinv when applied to CIFAR-100 and IMN-
100 for all three AL budgets. The number of discovered classes is higher than that
reported for imbalanced datasets. This is intuitive since class discovery is simpler
when classes are balanced and the odds to find representatives of each class are
comparable.

3.4.8 . Active Learning with Ensembles
The authors of [15] showed that the use of ensembles is beneficial in active

learning. They use different snapshots selected during the training process of a
CNN to obtain an ensemble of models. Features for the ensemble are obtained
by applying a average pooling operator. We use the same methodology here. A
ResNet-18 model was trained for 90 epochs, six snapshots were retained every 15
epochs and their features and probabilities were then averaged. The results ob-
tained with the ensemble before and after balancing are reported in Tables 3.10
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Dataset Food-101 CIFAR-100 IMN-100 MIT-67
Budget 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000
random 23.53 30.52 37.95 28.86 37.29 44.32 53.79 62.59 68.31 42.36 54.14 60.16
entdivinv 23.20 27.43 38.00 34.32 40.78 45.34 56.98 64.12 68.21 47.80 53.74 60.39

entdivinv +ens 25.26 28.77 37.00 36.67 42.77 48.54 60.76 66.49 69.98 49.07 55.75 63.98
lsdivinv 21.77 28.71 36.16 32.21 39.92 45.13 55.55 64.05 68.86 45.34 51.79 61.06

lsdivinv +ens 22.12 28.59 34.72 35.53 42.93 48.77 59.47 67.08 69.61 45.53 54.26 63.98
core 20.84 28.21 37.44 32.68 39.70 44.43 54.57 62.14 67.97 46.42 54.34 60.46

core +ens 19.77 27.18 37.56 35.31 43.26 48.38 57.47 65.39 69.41 52.10 58.68 64.56
Full 65.85 59.49 70.20 72.43

GAL

-0.653
-0.612
-0.548
-0.637
-0.57 6
-0.640
-0.554
-

Table 3.11 – Accuracy of the acquisition functions with ensemble after
balancing. We take the results for main methods from Table 3.3. For
ensemble, we add +ens to method names and present the results in
italics to improve readability. Note that random is not influenced by
ensembles and is the same as in Table 3.3.

and 3.11 respectively. They indicate that the use of ensemble features is indeed
effective in most configurations and provides a performance improvement over the
non-ensemble counterpart. Further, the findings reported with vanilla features are
replicated with ensemble features, with diversification based methods outperfor-
ming random in most setting and balancing also providing improvement for all
the AF . The best strategy for Food-101, the dataset with lowest transferability
from the source model, remains random as this was the case for the experiments
with imbalanced datasets.

3.5 . Conclusion

We introduced the single stage AL setting to tackle the cold start problem en-
countered at the start of AL process. The target dataset is completely unlabelled
and number of classes are ascertained after the annotation process. A large external
annotated dataset is used to learn a source model. The modified acquisition func-
tions take advantage of a pretrained deep model to find diverse and class-balanced
set of samples for manual labeling. We tested the methods in their ability to dis-
cover maximum number of classes and to provide the best performance on target
domain. The focus was on imbalanced datasets and to limit the propagation to im-
balance from unlabeled to labelled set. The probability and feature estimates from
the source model is used to implement the diversification and balancing constraints.
A diversification method was added to the classical acquisition functions to select
samples which give different source class predictions. Further a balancing step was
introduced which is activated depending on the imbalance accumulated in the la-
beled set and the budget left. The balancing step focuses the labeling process on
classes which are underrepresented in the annotated subset. Both adaptations have
a positive effect as long as features are efficiently transferable between the source
model and the target imbalanced datasets. We also show that the proposed me-
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thod helps to reduce the imbalance in the selected set. Further, we also tested our
methods on balanced datasets and show that the balancing step is beneficial for
all acquisition functions. It is particularly the case for datasets with lower global
performance.

Obtained results are encouraging and further work can be pursued along three
lines. First, new diversification methods for the acquisition functions can be made
tested based on using different source models. Second, a pretrained model learned
on a larger dataset to ensure transferability toward a larger spectrum of target
datasets can be considered. Finally, methods to determine whether representations
are transferable between source and target datasets can be investigated. If this is
not the case, it becomes preferable to run random sampling followed by balancing
instead of more sophisticated acquisition functions.
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4 - Iterative active learning for imbalanced
datasets

In this chapter, we introduce a new active learning method for imbalanced
datasets in the iterative AL setting in which we assume the presence of an initial
annotated dataset to kick-start the AL process. This iterative setting is widely
studied in the literature of active learning [198, 15]. As discussed in Chapter 3, the
effectiveness of single stage AL depends on the transferability between the source
and target domain. Further, with a sufficient initial budget the model trained on
the target domain becomes effective for the AL task. Thus, the iterative setting
would become preferable when we dispose of a sufficient annotation budget.

In the previous chapter, we defined the balancing and diversification constraints
for imbalanced datasets in the single stage setting. These objectives also remain
important in the iterative setting to mitigate the transfer of imbalance from unla-
belled to labeled set. We propose a method which favors samples likely to be in
minority classes so as to reduce the imbalance of the labeled subset and create a
better representation for these classes. Further, we test three strategies for selection
of samples assigned to minority class. Evaluation is done with three imbalanced da-
tasets designed for different visual tasks. Results indicate that the proposed method
outperforms competitive baselines as introduced in Chapter 3. In addition to global
results, we present an analysis of the method components so as to understand their
individual roles.

The outline of the chapter is as follows. The first section 4.1 contains the
context and the motivations of our proposed method. In section 4.2, we detail it.
We provide an experimental analysis and a discussion on the method in section 4.3.
Finally, we provide some conclusions in section 4.4.

4.1 . Motivations

We introduce a new method which tackles imbalance in AL by focusing on
samples which are classified as belonging to minority class by the model learned in
the previous AL iteration. While simple, this approach has two advantages. First, if
the samples are correctly classified as minority classes, the selection of these samples
mitigates imbalance in the labeled subset and results in a better representation
of the minority classes. Second, if the samples are mis-classified as minority, we
hypothesize that these samples have high informative value. Indeed, in this case,
the model learns from samples that it previously mis-classified, thereby adding
important missing information. It could also help to prune the decision boundaries
around the minority classes as the samples mis-classified as minority class are
likely to be somewhat in the vicinity of the minority class. We use three selection
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strategies to sample from minority class based on uncertainty, certainty or diversity.
These intra-class selection strategies mirror the usual AL selection strategies which
are applied at the dataset level. The minority status of a class is dynamically
assigned after each iteration by updating statistics about the class distribution.
The number of samples selected for a minority class depends on the imbalance
profile. Note that minority class predictions might not be numerous enough to
cover the entire AL iteration. If so, the three intra-class strategies described above
become equivalent since all minority samples will be selected. Then, the remaining
budget of the iteration will be selected using a classical acquisition function, such
as random or margin sampling.

In the last chapter, we showed that the training shallow classifier over the
feature representation extracted from pretrained model is preferable to fine-tune
all the parameters of the model in the early stage of single-stage AL, particularly if
pre-trained features are transferable toward the current task. Beyond the proposal
of a new AL method, we provide a comparison of these two learning strategies in
iterative AL and propose a combination of them to maximize accuracy.

In the previous chapter, we tackled the cold start in AL for imbalanced datasets
using a single-stage scenario. The selection of an initial diversified and balanced
sample set was done using a pre-trained model. The main differences between the
approach proposed here and the one in previous chapter are : (1) the proposal of
a different acquisition method, (2) the use of a more generic iterative AL setting
and (3) the adaptation of shallow classifiers to an imbalanced context.

4.2 . Proposed method

Minority classes have weaker representations in the models trained from imba-
lanced datasets. They need to be prioritized either during training or during post
processing to reduce the effect of imbalance [23, 86]. We translate this observa-
tion to an iterative AL scenario to propose a simple and efficient method which
improves sampling from imbalanced datasets. Minority classes are identified by
computing statistics of the class distribution of labeled data points up to the last
iteration. This distribution also provides the estimated number of samples needed
in the current iteration to remove imbalance for each minority class. The set of
candidates for a minority class is made of samples predicted as belonging to it
in the last trained model Mk−1. Selection of candidate samples can be done to
boost certainty, uncertainty or diversity and leads to the different versions of the
proposed AF discussed below.

In an iterative AL setting, a total budget b is allocated for manual labeling
in t iterations with b

t samples selected in each iteration. The process starts by
randomly selecting an initial subset of DU for annotation to create the initial
labeled dataset DL

0 with xj , yj ∈ X × Y for j = [1.. bt ]. Afterwards, at iteration
step k, for k = [1..t− 1], a batch of samples of size b

t is selected for labeling from
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DU
k = DU \DL

k−1, and added to DL
k−1 to update the labeled subset DL

k . DL
k is then

used to learn the model Mk with parameters θk.
At the start of the kth iteration, the number of labeled samples is sk = k b

t

and the objective is to add b
t new samples with priority given to minority classes.

We note sck as the number of labeled samples for class c and compute the average
number of samples per class µk = sk

C , where C is the number of classes. A class is
then considered as minority if sck < µk. The maximum number of samples which
is allowed for class c during the kth iteration is defined as :

mc
k =

{
µk − sck, if sck < µk

0, otherwise
(4.1)

Equation 4.1 favors minority classes since they are the only ones which have
candidate samples allocated. The set of unlabeled samples associated to class c is
given by :

DU(k)
c = {∀x ∈ DU

k , if P (c1 = c|x)} (4.2)

, where c1 is the predicted label for the sample x and DU
k is the set of unlabelled

samples at iteration k.
If |DU(k)

c | > mc
k, a selection is needed among the set of samples given by

Equation 4.2.
We propose three ways to select samples which are inspired from classical AL

objectives as shown in Figure 4.1. We present the methods with margin sampling
as the base informative measure, but it can be replaced by any other informative
measure.

4.2.1 . Certainty-oriented Minority Class Sampling

It favors the most certain data points from DU(k)
c using :

CMCS = arginvsort∀x∈DU(k)
c

margk(x, θk) (4.3)

where margk(x, θk) is the margin measure from Equation 2.4 and arginvsort

sorts the samples in decreasing order. Note that Equation 4.3 performs a margin
sampling at class level instead of dataset level. CMCS thus allows a selection
of certain samples for each minority class according to Equation 4.1 for sample
allocation to classes.

73



4.2.2 . Uncertainty-oriented Minority Class Sampling

It favors the most uncertain samples from DU(k)
c using :

UMCS = argsort∀x∈DU(k)
c

margk(x, θk) (4.4)

where margk(x, θk) the margin sampling criteria from Equation 2.4 and argsort

sorts the samples in increasing order. Equation 4.4 favors data points which are
predicted under c but are close to other classes. Its objective is inverse compared
to that of CMCS.

4.2.3 . Diversity-oriented Minority Class Sampling
It aims to select a diversified sample subset for c. Such a subset can be obtained,

for instance, by applying the Coreset method [198] from Equation 2.6 to DU(k)
c :

DMCS = core(DU(k)
c ,DL(k)

c ) (4.5)

where core as defined in Equation 2.5 is applied iteratively to select mc
k samples

from DU(k)
c using the samples already selected DL(k)

c for class c, while updating
the datasets with every selection.

Auxiliary acquisition functions The proposed sampling process is focused
on minority classes. It is possible that, if the imbalance is limited, the number of
samples allocated to minority classes is less than the budget. Further, there is no
guarantee that there are enough samples predicted under minority classes to treat
the imbalance. Minority predicted samples are most likely to be insufficient either at
the very beginning or towards the end of the AL process. In the beginning, minority
class representations are weak and their samples are likely to be mis-classified in
majority classes. Towards the end, there will be simply too few samples left for
labeling in minority classes. In such cases if the budget of the kth iteration is not
filled entirely, remaining samples can be selected according to any AF. Tests are run
using random and margin sampling for these remaining samples. The final forms
proposed acquisition functions are noted DMCS − rand and DMCS −marg.

4.3 . Experiments

We first describe the experimental setup and the datasets used in evaluation.
Then, we discuss the obtained results globally and also present an analysis of the
main components of the proposed approach.

4.3.1 . Certainty-diversified sampling
In addition to classical baselines such as margin sampling, coreset and random

sampling we also compare the method with the contribution from single stage
AL scenario introduced earlier. We introduced this function, abbreviated cds− bal

below, in last chapter to deal with the cold start problem in single-stage imbalanced
AL. It exploits a pretrained model MS to provide the features for its diversification
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Figure 4.1 – The method prioritises selection for minority classes based
on imbalance in the labeled set. For minority class (green) selection
is done from the samples predicted (larger circle) as minority class.
Three different strategies CMCS, UMCS and DMCS are proposed
based on selecting the most certain, uncertain or diverse samples res-
pectively. CMCS favors the certain samples and thus is most likely to
reduce imbalance. UMCS based on uncertainty selects samples from
the decision boundary for minority class and would potentially select
more informative samples. DMCS selects diverse samples using the
core baselines to create a diverse representation for majority class.
Note that if the number of samples classified as minority class is less
than or equal to samples allocated to the givenminority class, the three
variants would select the same samples.

75



and balancing objectives. Note that cds − bal is deployed in the feature space so
as to select samples which minimize their distance to the centroid of a minority
class and to maximize the distance to the centroid of the closest majority class.
cds−bal is adapted here for usage in an iterative AL setting by selecting the initial
subset using random sampling as in other AL acquisition function.

4.3.2 . Setup
We test the proposed approach using an usual iterative AL setting [15, 198,

57]. We set the AL budget to b = 8000 and the number of iterations to t = 16,
including the initial one. The number of samples selected in each iteration is 500.

We use a ResNet-18 architecture [88] for all experiments. The ResNet-18 mo-
del, trained over the ILSVRC dataset [193], is used MS .

AL performance is tested with two training schemes. The first scheme is based
on fine tuning as proposed in previous deep AL works [15, 198, 57]. We employ thre-
sholding based on prior class probabilities to reduce the effects of imbalance [23].
This scheme is noted FT − th and is used by default in experiments. FT − th

models are trained for 60 epochs with an initial learning rate of 0.01 and a batch
size of 32. The Stochastic gradient descent was used with the cross-entropy loss. A
learning rate decay of 0.1 was done if the loss plateaus for 10 epochs. The second
scheme is inspired from transfer learning and exploits a model pretrained on ILS-
VRC. It is less frequent in deep active learning but proved useful to tackle cold start
problem in Chapter 3. SVMs are trained after each iteration using the features pro-
vided by MS , the pretrained model. Following [50, 258], cost-sensitive SVMs are
used to reduce the negative effect of imbalance. This scheme is noted CS−SVM

and is used by default in experiments. Results obtained with fine tuning without
thresholding (noted FT ) and with classical SVMs (noted SVM) are also reported
to highlight the usefulness of adapting training schemes to an imbalanced learning
context. The two training schemes are run in parallel at the start of the AL process
in order to exploit the one which is more accurate. Transfer learning with SVMs
is more likely to be useful at the beginning, until the DL is sufficiently large for
efficient training of deep models. The switch between the two schemes will occur
faster if the content of the unlabeled dataset is visually unrelated to the one in the
generic model used for the pretrained model. Cross validation using 80 :20 split is
performed for each of the two schemes after each iteration. The average accuracy
of each scheme is computed to decide which of them should be used starting from
the following iteration. The methods which are non-deterministic in the iterative
setting, namely random sampling and the proposed method with auxiliary random
sampling are repeated with 5 different seeds.

It is common practice in imbalanced learning [23, 86] to evaluate performance
over balanced test datasets. This choice is also made here to give equal importance
to each class irrespective of the class distribution in the training dataset.
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Figure 4.2 – Iterative active learning performance for baselines and for
the proposed method using cross-validation between CS − SVM and
FT − th training schemes. Results with random (rand) and margin
(marg) based sampling are shown for the remaining budget of each
iteration when there are not enough samples associated to minority
classes. "*" represents the switching point from CS−SVM to FT − th
training scheme. The AL budget is b = 8000 and the number of itera-
tions t = 16. Best viewed in color.

4.3.3 . Datasets
The proposed method and the baselines are evaluated on three imbalanced

datasets designed for different visual tasks. As in previous chapter, imbalance is
induced in the publicly available CIFAR-100 [123] (object recognition) FOOD-
101 [21] (fine-grained food recognition), MIT-67 [182] (indoor scene recognition).
The main statistics of the obtained datasets are similar to ones in last chapter
shown in Table 3.1.

Figure 4.3 – Imbalance profile of labeled datasets for different acquisi-
tion functions. b = 8000, t = 16. Best viewed in color.

4.3.4 . Global performance discussion
The results obtained with the baseline methods and with DMCS, the diver-

sified version of the proposed AF, are provided in Figure 4.2. A consistent perfor-
mance gain is obtained with DMCS −marg and DMCS − rand compared to
the baselines. This indicates that the proposed method is appropriate for use in
iterative AL for imbalanced datasets. Accuracy improvements are obtained for all
three datasets. The average accuracy improvement of DMCS −marg compared
to the best baselines reaches 2.9, 1.1, 2.1 points for CIFAR−100, FOOD−101

and MIT − 67 respectively. The corresponding improvements for DMCS− rand

reach 3.0, 2.4 and 2.1 points respectively. The comparison of DMCS − rand

and DMCS − marg is globally favorable to the first method and is discussed
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in more detail in Subsection 4.3.5. Mirroring global results, DMCS − rand and
DMCS −marg have better performance for a large majority of individual itera-
tions on CIFAR− 100 and FOOD − 101 from Figure 4.2. They are also better
than margin sampling for MIT-67 between 1000 and 3000 samples and results
become more mixed afterwards as the uncertainty criteria becomes more reliable.
This can be attributed to higher performance for MIT-67 dataset as well as the
limited number of samples being classified as minority class in later stages. The
better behavior of the proposed method is partly explained by its ability to select
candidates for labeling whose distribution is globally more balanced, as illustrated
in Figure 4.3. The imbalance profiles of the two DMCS versions are clearly better
than those of baselines for CIFAR-100 and FOOD-101. They are comparable to
those of margin for MIT-67. It is noteworthy that the imbalance profile is not the
only factor explaining AF performance. This is clear from the analysis of cds− bal

imbalance profile, which is better than that of other methods but is not correla-
ted with a performance gain. The intrinsic quality of the selected samples is also
important. The reported results indicate that DMCS is able to provide a more
appropriate sampling than the other methods.

The performance of baselines methods is generally close to that of random
sampling or even lower. The only exception is margin for MIT-67, which is clearly
better than random. This result confirms previous reports [15, 198] that random
sampling is a competitive baseline in active learning. This is particularly the case
for the imbalanced datasets tested here. coreset is comparable to random for
CIFAR− 100, but is inefficient for FOOD− 101 and MIT − 67. It also fails to
provide any significant improvement in the imbalance profiles for the datasets. It is
likely that, for imbalanced datasets, coreset selects outliers that belong to majority
classes. cds − bal is useful to tackle cold start in AL and gives best performance
in the early stages of the AL process. cds− bal becomes sub-optimal in the later
stages when the methods based on the target models become more efficient.

The results show that transfer from a general pre-trained model is preferable at
the beginning for all three datasets. Surprisingly, this training scheme remains better
than fine-tuning for CIFAR-100 and MIT-67 throughout the entire AL process
presented in Figure 4.2. As illustrated, the switch from SVM toward fine-tuning
occurs only for FOOD− 101. This is intuitive since this dataset was shown to be
furthest away from ILSV RC in Chapter 3. The performance of the two schemes
is illustrated in detail in Figure 4.6 and further discussed in Subsection 4.3.7. This
finding is interesting insofar it is at odds with the usual assumption that fine
tuning schemes should be used in iterative active learning [15, 198, 57]. It is also
interesting because the transfer learning scheme is much faster since only shallow
classifiers need to be trained for each iteration.

4.3.5 . Comparison of random and margin as auxiliary AFs
In Figure 4.2, DMCS results are presented with random and margin as

auxiliary AFs if there are not enough samples associated to minority classes. It is
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Figure 4.4 – Iterative active learning performance of different versions
of the proposedmethod. Random sampling is used as AF for remaining
samples of each iteration if there are not enough samples associated
to minority classes. b = 8000, t = 16. Best viewed in color.

Figure 4.5 – Imbalance profile of labeled datasets for the three versions
of the proposedmethod. Random sampling is used as AF for remaining
samples of each iteration if there are not enough samples associated
to minority classes. b = 8000, t = 16. Best viewed in color.

somewhat surprising to note that DMCS − rand provides slightly better overall
accuracy compared to DMCS − margin. This happens even though margin

baseline is globally better than random when used alone. DMCS − rand is
better for all iterations for the FOOD − 101 dataset although the imbalance
profile in Figure 4.3 is better for DMCS−marg. The difference between the two
DMCS variants is very small for MIT − 67. Their performance for CIFAR −
100 is interesting as DMCS − rand is more effective in up to 5000 samples
and DMCS − marg becomes better afterwards. The change of performance is
correlated with an inversion of imbalance profiles in Figure 4.3.

We assume that some amount of randomness is effective in the beginning
for driving the balancing procedure to focus sampling on minority classes. There,
random sampling provides a better overall representation than margin sampling.
Later in the AL process, uncertainty estimates are more reliable and imbalance
has been mitigated to the extent possible for the given dataset. Then, it becomes
preferable to select the remaining samples based on margin sampling.

4.3.6 . Analysis of minority oriented sampling versions

The performance and imbalance profiles for three versions of the proposed me-
thod described in Subsection 4.2 are presented in Figures 4.4 and 4.5 respectively.
The comparison is done with random as auxiliary AF. All the three versions have a
positive impact in mitigating the imbalance with DMCS providing slightly better
global performance. This finding indicates that a diversified selection of samples
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Figure 4.6 – Comparison of classical (SVM, FT) and imbalance-oriented
training schemes (CS-SVM, FT, FT-th). b = 8000, t = 16. Best viewed in
color.

for minority classes is better than favoring the most certain or uncertain ones.
Accuracy is slightly better for DMCS and CMCS for CIFAR-100 in the initial
iterations, while UMCS is better later. This is partly explained by the imbalance
profile, which increases for the first two versions but not for the third after a certain
iteration. For MIT-67, UMCS is most effective since the average performance is
higher and the uncertain samples become the ones of interest. This is also the case
of CIFAR-100, but later in the AL process.

CMCS is most effective to mitigate the imbalance in the early stages, but
leads to most imbalanced dataset by the end of the learning process for CIFAR-
100 and MIT-67. It is likely that CMCS learns a limited representation of the
minority class, since it focuses on most certain samples. This reduces the model’s
ability to find samples for the class and also explain the observation that CMCS

is outperformed by DMCS and UMCS in later iterations.
The results for FOOD-101 are particularly interesting since the three selection

processes lead to different imbalance profiles while the accuracy is quite similar.

4.3.7 . Comparison of training schemes

We illustrate the results obtained by the two training schemes without (SVM ,
FT ) and with (CS − SVM , FT − th) adaptation for an imbalanced context in
Figure 4.6. CS − SVM and FT − th outperform SVM and vanilla FT , their
classical counterparts for random. The gain is quite significant for CS − SVM ,
validating its use in class imbalanced active learning [50]. Further, we show the
effectiveness of the proposed method DMCS−rand over random and the overall
strongest baseline margin for both of the two imbalance adapted schemes(CS −
SVM , FT − th). This shows the need to explicitly focus on minority classes
during the selection process and the effectiveness of the method irrespective of
training scheme. Another interesting remark is that, except for classical SVM −
random, all other transfer learning based schemes outperform fine-tuning schemes
for CIFAR-100 and MIT-67. Consequently, both training schemes should be tried
at the beginning of the AL process for a new unlabeled dataset. If the distance
between a generic dataset and the unlabeled one is not high, transferring features
from the first toward the second seems preferable to fine tuning. Otherwise, fine
tuning become better at some point during AL and can replace the transfer learning
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Dataset Class Images Mean(µ) Std(σ) ir
CIFAR-100 100 17168 171.68 126.9 0.74

CIFAR-100-im1 100 19343 193.43 96.36 0.50
CIFAR-100-im2 100 19720 197.20 65.03 0.33

Table 4.1 – Dataset statistics. ir is the imbalance ratio.
scheme, as in case of FOOD-101.

Figure 4.7 – Iterative active learning performance for baselines and
for the proposed method using cross-validation between CS − SVM
and FT − th training schemes over different imbalance ratios for CI-
FAR100. Results with random (rand) andmargin (marg) based sampling
are shown for the remaining budget of each iteration when there are
not enough samples associated to minority classes. The AL budget is
b = 8000 and the number of iterations t = 16. Best viewed in color.

Figure 4.8 – Imbalance profile of labeled datasets for different acquisi-
tion functions. b = 8000, t = 16. Best viewed in color.

4.3.8 . Analysis with different dataset imbalance
Experiments were performed with three degree of imbalance with one of the

datasets to show the effectiveness of method at different imbalance ratios. We ran
experiments with CIFAR-100 and created three imbalanced versions with imbalance
ratios of 0.74, 0.50 and 0.33, named CIFAR-100, CIFAR-100-im1 and CIFAR-100-
im2 respectively (Table 4.1). The results for CIFAR-100 which has ir-ratio as 0.74
is same to the ones presented above.

The experiments are run in the same budget setting as the main paper with
total budget b= 8000 and the total number iteration t set to 16. We observe gains
overs the baseline methods for all the three imbalance ratios as shown in Figure
4.7. The imbalance profiles of different methods is provided in Figure 4.8. The main
observation is similar over the three imbalance ratios with DSMC − rand being
the best method. Further, we also test the three versions of the proposed method
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Figure 4.9 – Iterative active learning performance of different versions
of the proposedmethod. Random sampling is used as AF for remaining
samples of each iteration if there are not enough samples associated
to minority classes. b = 8000, t = 16. Best viewed in color Best viewed in
color.

Figure 4.10 – Imbalance profile of labeled datasets for different acqui-
sition functions. b = 8000, t = 16. Best viewed in color.

to select samples from minority classes namely DSMC − rand, CSMC − rand

and USMC−rand in Figure 4.9. The imbalance profile for the three versions are
provided in 4.10. DSMC− rand provides better results over the three imbalance
ratios, particularly at earlier stages of iterative process.
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Figure 4.11 – Iterative active learning performance for baselines and
for the proposed method using cross-validation between CS − SVM
and FT − th training schemes. Results with random (rand) and margin
(marg) based sampling are shown for the remaining budget of each
iteration when there are not enough samples associated to minority
classes. "*" represents the switching point from CS−SVM to FT − th
training scheme. The AL budget is b = 3200 and the number of itera-
tions t = 16. Best viewed in color.

Figure 4.12 – Imbalance profile of labeled datasets for different acqui-
sition functions. b = 3200, t = 16. Best viewed in color.

4.3.9 . Experiments with smaller budget
We addition to testing the methods with a budget of 8000 as presented above,

we also test with a smaller budget with b = 3200 samples. In this setting 200
samples are added at each iterative step instead of 500. The lower budget setting
becomes important in cases where the annotation cost is much higher than the
computational cost. The accuracy of methods along with the imbalance profiles
are provided in Figure 4.11 and 4.12 respectively. CS − SVM training scheme
outperforms FT for all the datasets at lower budgets. Further, the gains become
slightly more pronounced in this setting, showing the effectiveness of CS − SVM

training scheme for AL task at smaller budgets.
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4.4 . Conclusion

We introduce a new acquisition method which is designed for iterative ac-
tive learning over imbalanced datasets. The method focuses the selection process
toward samples which are associated to minority classes in order to reduce the ne-
gative effect of imbalance. Evaluation is performed against competitive baselines
for active learning, while also applying an effective post-scaling method to tackle
affect of imbalance. The proposed methods ensure a performance gain showing that
it is important to mitigate the transfer of imbalance during the selection process
and techniques . An analysis of its main components facilitates the understanding
of their individual contributions. Surprisingly, we find that transfer learning scheme
outperforms the fine tuning based scheme usually deployed in AL. We also propose
a simple but effective way to test the accuracy of the two schemes after each
iteration in order to decide which one should be used later in the AL process.

The results presented here are encouraging and research would be pursued
along three axes. First, the proposed method will be tested on larger datasets to
understand its behavior for AL at scale. Second, the idea to prioritize minority
classes can be extended to balanced dataset to favor classes that are difficult
to learn. Finally the effect of the pretrained dataset on transfer learning will be
assessed. To do this, ILSVRC can be replaced with a larger dataset, such as the
entire ImageNet, for pretraining.
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5 - Iterative Active Learning- using asynchro-
nous model predictions

The works in AL use information only from one model i.e. the last learned
model, while iterative nature of AL cycle allows to store estimates from previously
learned models with minimal additional memory storage. In this chapter, we propose
a new measure of informativeness based on the evolution of probability distribution
between successive iterative states of AL cycle. Samples for which there is a maxi-
mum mismatch in classification between the last two learned models predictions are
favored. Further, we expand on diversification approaches introduced in previous
chapters to combine the informative and representative objectives of active lear-
ning. A diversification step allows to select samples with different class predictions
and thus introduces a representativeness component in our approach. The evalua-
tion is done are performed with three balanced datasets : Cifar100, Food-101 and a
subset of ImageNet classes which are not part of ILSVRC. We also test our method
for imbalanced datasets by creating imbalanced version of Cifar100 and Food-101
and using MIT-Indoor67 which is naturally imbalanced. As in previous chapters,
ILSVRC itself is used to create the fixed representation. The results indicate that
it outperforms the baselines in most of the evaluated configurations.

The outline of the chapter is as follows : First, we provide the context and
motivation of our proposed informative measures in the Section 5.1. Then, we
describe the proposed methods alamp and the diversified version alamp− div in
Section 5.2, followed the experimental analysis in Section 5.3. Finally, we provide
the conclusion in Section 5.4.

5.1 . Motivations

Active learning is generally implemented in an iterative fashion, with a new
batch of samples being selected for annotation based on the estimates of the last
learned model [15, 57, 199]. In our work, we hypothesise that use of estimates from
previous iteration could add useful additional information to the selection criteria.

Our main contribution is a new measure of informativeness which integrates
predicted probabilities in successive AL iterations. Samples whose prediction states
move from certain to uncertain between two iterations are prioritised. The under-
lying intuition here is that such samples encode information which is missing from
the models and should be integrated into them. The measure is illustrated for a
two-class problem in Figure 5.1. This view of informativeness is broader than the
one incorporated in current uncertainty-based sampling which only considers the
decision boundaries of the current iteration.

The proposed sample AF shares a limitation with existing informativeness-
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Figure 5.1 – Illustration of alamp, the proposed method, for a two class
problem. Blue and yellow regions are the class boundaries learned by
classifier. One sample is selected at each iteration. Uncertainty sam-
pling selects the sample (red) which is closest to the class boundary. At
Iteration 1, alamp selects the same sample as sampling, since it has is
no access to previous model. At Iteration 2, alamp selects the sample
which gives most certain prediction (i.e. is furthest away from decision
boundary) at Iteration 1 and gives the most uncertain prediction (i.e.
is closest to decision boundary) at Iteration 2. Similarly at Iteration 3,
alamp selects the sample with maximum shift from certainty to uncer-
tainty

based functions in that it could suffer from a lack of representativeness [199]. As
discussed earlier, informativeness and representativeness are not easy to optimize
jointly but, since they convey complementary cues, their combination could lead
to better AL selection and is studied in recent works such as [7, 27]. Our second
contribution is to add a representativeness dimension in the proposed acquisition
function. Representativeness is modeled via the use of a diversification procedure.
The proposed informativeness measure prioritizes samples with high certainty at the
previous iteration. The diversification procedure exploits this fact to select samples
with different class predictions in the previous iteration. This leads to selection of
samples from different uncertain regions distributed across the classification space
provided by the model classifier.

In the previous chapters, we explored training of a Support Vector Machine
(SVM) classifier over fixed representation as an alternate to the dominant fine
tuning scheme used in recent works [15, 57, 59]. This type of approach, which
instantiates transfer learning, has been shown to be effective in previous chapters
on active learning over imbalanced datasets. Interestingly, the two contributions
are well-suited for transfer learning based approach where shallow classifiers are
learned over fixed representations. The constant nature of representation helps
the proposed measure to effectively evaluate the distance of the samples to the
classifier boundary in the preceding and the current iterations. This is important
insofar fixed representations can be exploited from the very beginning for the AL
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task where the classical fine tuning estimates are shown to be unstable [59].

5.2 . Proposed method

The proposed method ascertains the informativeness of samples by taking into
account the change in their probability distribution in successive iterations. The
strategy prioritizes samples which were predicted with high certainty in the previous
iteration but which gives uncertain prediction in the current model. We derive an
analogy to a student who gave confident response to a question, but becomes
uncertain after learning some more information. Knowing the true answer should
benefit the student and provide relevant missing information. The strategy is well-
suited for the low budget setting where the batch size is generally small. The
update of model with large number of samples could make the precedent model
less relevant. Focusing on the unlabeled samples on which the model becomes
uncertain in its predictions adds a novel component of uncertainty in the selection
process. In cases where the sample was correctly predicted, selecting these samples
allows the model to focus on samples that it is most likely to forget. Alternatively,
even if a sample was predicted incorrectly, the measure allows to select more difficult
samples which can improve the generalization ability of the model. Hence, knowing
the labels of these samples should be informative.

5.2.1 . alamp : active learning with asynchronous model predictions

We present here, our formulation of alamp that allows to select the samples
with the maximum shift from certainty to uncertainty between the two iterations.
Note that any of the uncertainty measures can be used in alamp. The definition
of the method which exploits margin sampling as basic acquisition function is :

alampk(x, θk−1, θk) =
margk−1(x, θk−1)−margk(x, θk)

margk−1(x, θk−1) +margk(x, θk)
(5.1)

with margk(x, θk, the margin function as in equation 5.2 gives the uncertainty
score for samples x from DU

k at iteration k.

margk(x, θk) = pk(θk, ŷ1|x)− pk(θk, ŷ2|x) (5.2)

where ŷ1, ŷ2 are the top-2 predicted classes for test sample x at iteration k.
The score takes a normalized min-max view of uncertainty allowing to select

samples with maximum change (certainty to uncertainty) between the iteration.
The sample with higher score is selected. The numerator gives the difference in
the certainty between the previous and current iteration. The denominator norma-
lizes the certainties to ensure that for samples which same absolute difference in
certainty(numerator) one with lower sum of certainties is selected. This allows the
score to select samples with maximum relative shift towards uncertainty.
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We consider Alampsort(DU
k ) a permutation of the set DU

k by ordering its ele-
ment by decreasing value of alamp . DL

k+1 is obtained by the union of DL
k with

the first b
t samples of Alampsort(DU

k ).
The method has low supplementary memory requirements since it only stores

the probability distributions at each iterative step. At the first iterative step, we
have access to only the probability estimate P0 from the initial model M0, which
is trained over the initial randomly selected dataset DL

0 , thus the selection is based
on the uncertainty criteria in the first iterative step.

5.2.2 . alamp-div
alamp inherits the limitations of the uncertainty-based method used in its

definition in terms of sample representativity. We introduce a variant of the method,
named alamp−div which selects informative samples from different regions of the
classification space. alamp− div is described in Algorithm 2 is similar to the one
presented in Section 3.3. Instead of using the source model to assign samples to
classes, as in single stage AL setting, samples are assigned to classes predicted in the
previous iteration. alamp prioritises the sample with high certainty in the previous
iteration, while being uncertain in the current iteration. Thus, The selection process
is driven toward selecting the same number of samples from each pseudo class so
to aim for representativeness and balance across classes. This enables the selection
of informative samples across a diverse set of classifier boundaries in a multi class
problem.

5.3 . Experiments

We first describe the experimental setup for the transfer and fine-tuning training
schemes that are tested. Then, we describe the evaluation datasets. Finally, we
present the results and their analysis.

5.3.1 . Setup
The experimental setup is designed to focus on the small annotation budgets,

which is most challenging for AL. In our experiment, we use 200 samples for the
transfer and fine-tuning initial AL budget. The AL process is then run for 15
iterations with 200 samples selected at each iteration. The total budget at the end
of the process includes 3200 samples. Further, we test the performance of proposed
methods at a higher budget setting of 8000 samples with 500 samples selected for
each of the 15 iteration.

We experiment with two training schemes. For comparability, a ResNet-18
architecture [88] is used as backbone of both of the training schemes tested here.
The first scheme, noted FT , is based on fine-tuning and mirrors the dominant
approach in existing deep AL works [57, 198]. We fine-tune the pre-trained model
for 80 epochs. All the parameters are optimised using stochastic gradient descent
with Nesterov momentum of 0.9. The initial learning rate is 0.01 and is reduced by
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Algorithm 2 Diversification algorithm
1: U : a list of unlabeled samples sorted according to alamp
2: k : current iterative step
3: top : a dictionary which assigns top class prediction in the iteration

k − 1 to all samples in U
4: b : budget of samples to be selected
5: procedure div(U , top, b)
6: Build L : list of samples selected from U of length b
7: while len(L)≤ b do
8: seenclasses = empty list : reinitialize memory of classes
9: for each item i in U do
10: topclass = top[i] :predicted class at iteration k − 1 for

sample U [i]
11: if topclass not in seenclasses then
12: if i not in L then
13: add sample i in L
14: add topclass in seenclasses
15: end if
16: end if
17: end for
18: end while
19: L = L[0 : b]
20: return L
21: end procedure
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Dataset Class Train images/class Test images/class
Cifar100 100 500 100
Food-101 101 750 250
IMN-100 100 1000 200

Table 5.1 – Dataset statistics.

a factor of 10 when the train error rate plateaus for 10 epochs. We use a weight
decay parameter of 0.001. The models are trained using the Pytorch framework.
Thresholding [23] which is shown to be effective to mitigate imbalance for deep
models is used in experiments with imbalanced datasets. The experiments are
repeated for 5 runs and the average performance is reported.

FT can be suboptimal when the budget is small enough to optimize the large
number of parameters of the DNN. An alternate to FT is to learn a SVM classifier
over the features of the pre-trained model. Transfer learning scheme, noted as
SVM here, has been proven to be beneficial when the number of annotated AL
samples is limited [2]. In our work, we exploit the features of a pre-trained model
on ILSV RC [193] dataset. The scikit-learn implementation of SVC classifier is
used with standard default parameters. The cost sensitive SVM implementation
is used for imbalanced datasets. The regularization parameter is selected using a
cross-validation on the training data. While sub-optimal, the use of training data
for validation necessary because of data scarcity specific to AL. The SVM training
scheme is deterministic once the initial subset is selected.

5.3.2 . Datasets
The acquisition function and the training schemes are tested on three publicly-

available image classification datasets Cifar100, Food − 101 and IMN − 100.
The three datasets are balanced and their main statistics are provided in Table 5.1.
In addition, we test our methods on imbalanced versions of datasets Cifar100 ,
Food− 101 and MIT − 67 [182]. The imbalance induced is similar as in previous
chapters.

Figure 5.2 – Iterative active learning performance with SVM and FT
training schemes at each of 15 iterative steps for balanced datasets Ci-
far100, Food-101 and IMN-100 with initial budget of 200 and total budget
of 3200. 200 samples added at each iteration Best viewed in color.
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5.3.3 . Analysis of results

The results obtained for the three balanced datasets using the baselines and
the proposed methods are presented in Figure 5.2. Note that we provide both the
detailed evolution of accuracy across AL iterations and the averaged performance
of each method. Globally, alamp and alamp − div provide the best performance
across the three datasets for SVM training scheme. random acts as a strong
baseline, especially for FT training scheme, where none of the methods that are
tested can outperform random. Further the performance of SVM scheme is clearly
higher than that of the usual FT scheme. This is an interesting result which is
analyzed in detail in Subsection 5.3.4.

Here we discuss the performance of different AFs in the SVM training scheme.
The average accuracy gain for the entire AL cycle is 2.4 , 1.3 and 1.3 points
for alamp compared rand for balanced versions of Cifar100, Food − 101 and
IMN−100 respectively. More interesting from a practical perspective, the number
of samples required for achieving 50 percentage of accuracy for Cifar100 is 1800
with random or marg, 1600 for alamp and 1400 for alamp − div. Similarly
for Food − 101, 40 percent accuracy is reached with around 1600 samples for
random, 1400 samples with alamp and marg and 1200 samples for alamp−div.
alamp−div avoids the annotation of 400 extra samples as compared to random to
achieve 50 percent accuracy for Cifar100 and 40 percent accuracy for Food−101.
The performance gain is more limited for IMN − 100. Overall accuracy for this
dataset is already quite high with SVM training scheme. This is an expected
result, since IMN − 100 is closest to the ILSV RC dataset used to train the
source model. alamp− div and alamp are still the best methods with 70 percent
accuracy attained with 1000 samples with alamp and alamp − div, while rand

and marg require 1200 samples.
marg outperforms random in the SVM training scheme, showing that SVM

classifier provides reliable uncertainty estimates even at low budgets. In our experi-
ments, marg becomes competitive to alamp at large budgets when the uncertainty
estimates become stronger. This is explained by the fact that, as the accuracy of
the model increases, uncertainty measures becomes more important to find the
missing information. This is the case of IMN −100, which has the highest overall
accuracy among the three dataset tested. The accuracy of IMN − 100 is around
50 percent at the start of AL cycle and marg is more competitive for IMN − 100

than for the other two datasets.
core has suboptimal performance in the SVM training scheme for all datasets.

This is particularly the case of Food − 101, which is most different from the
ILSV RC dataset used as feature extractor. It gives comparable performance to
other AFs in the FT training scheme where the feature extractor is updated along
with the classifier. badge is suited only for FT training scheme as it requires the
gradients on the features. In SVM training scheme, the features are fixed and
hence it is not possible to test badge. In the FT training scheme, badge also fails
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to provide any significant improvement over random.

5.3.4 . Analysis of training schemes
A initial subset is needed to start the iterative AL process. It has two main im-

pacts on the FT scheme as seen in Figure 5.2. First, at low budgets the fine-tuned
model fails to provide strong probability estimates for the acquisition function .
This is evident from the results where none of the tested AFs is able to conclusi-
vely outperform random sampling. It is also the case for badge which has shown
improvement over random in [7]. The key difference is the lower budget setting
studied in our work.

Second, the comparative analysis of the two training schemes shows that FT

is largely outperformed by the transfer learning strategy for low AL budgets. The
performance of FT scheme starts at 11.16, 13.19 and 32.65 percentage points for
balanced Cifar100, Food− 10 and IMN − 100 respectively. The corresponding
accuracy with SVM is significantly higher, with 25.5, 17.54 and 47.29 percentage
points respectively. This is somewhat intuitive since deep model can be accurately
trained only if a relatively large amount of data is available. FT lags behind even
at the end of the AL process for CIFAR100 and IMN − 100 but becomes
competitive for Food − 101. This last result is explained by the lower similarity
between Food−101 and ILSV RC compared to the other datasets. The efficiency
of transfer learning is lower for this dataset, but still much better than fine-tuning
in early phase AL.

The comparison of FT and SVM schemes has practical implications for AL.
The training process is much quicker with SVM since it only requires an update of
the shallow classifiers. Further, a cross-validation step can be envisaged to switch
from SVM to FT training when FT outperforms SVM training scheme. As
suggested by Food− 101 results, this happens once there are enough samples for
a competitive training of deep models.

Figure 5.3 – Iterative active learning performance accuracy with SVM
and FT training schemes at each of 15 iterative steps for imbalanced
datasets Cifar100, Food-101 and MIT-67 with initial budget of 200 and
total budget of 3200. 200 samples added at each iteration Best viewed
in color.
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Figure 5.4 – Imbalance Profiles with SVM (top) and FT (bottom) trai-
ning schemes at each of 15 iterative steps for imbalanced datasets Ci-
far100, Food-101 and MIT-67 with initial budget of 200 and total budget
of 3200. 200 samples added at each iteration Best viewed in color.

5.3.5 . Impact on imbalanced datasets
The performance of the methods on imbalanced dataset for SVM scheme of

annotated subset is presented in Figure 5.3. Both alamp and alamp−div provide
improvement over the baselines methods. alamp provides average gain of 1.99,
0.9 and 1.49 points for Cifar100, Food− 101 and MIT − 67 respectively. The
diversification component is particularly more effective for imbalanced datasets
with gains of 3.59, 1.14 and 2.71 points respectively. For example, 50 percent
performance on Cifar100, is reached with 1600 samples for alamp−div, while it
takes atleast 2000 samples for any other best method. A possible explanation can
be found in the imbalance profile of selected subsets (Figure 5.4). The imbalance
profiles show the effectiveness of the methods alamp and alamp−div to mitigate
the imbalance from being propagated to labeled subset. The results are reported
after the use of effective techniques from imbalanced learning. The improvements
with the proposed methods also shows the importance of tackling imbalance at the
time of sample selection for imbalanced datasets.

5.3.6 . Impact of diversification
The diversification procedure is effective for both balanced and imbalanced

dataset, where alamp − div improves results over alamp. The key reason for its
effectiveness is that alamp prioritizes samples with high certainty in the previous
iteration. Even though the class prediction changes after the update of the mo-
del, samples having different class prediction with high confidence at the previous
iteration are likely belong to different regions of representation space.

We also test the diversification procedure for standard acquisition functions
rand and marg on Cifar100. core is not considered here as it already selects
representative samples and also is not competitive with other AFs. The pseudo class
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Figure 5.5 – Iterative active learning performance for diversification ap-
plied to rand and marg with SVM training schemes at each of 15 ite-
rative steps for Cifar100 with initial budget of 200 and total budget of
3200. 200 samples added at each iteration.

for rand and marg is assigned using the current class prediction. The diversification
results are presented in Figure 5.5 , with rand−div and marg−div with diversified
version of rand and marg respectively.

alamp− div still provides the best performance, but interestingly rand− div

outperforms rand. The gain for rand − div is particularly higher at the start of
the iterative cycle, where representative sampling is shown to be more important.
marg− div has very little effect compared to marg. This is expected since marg

sorts the samples in terms of uncertainty. Thus, the class predictions are not reliable
and the diversification procedure becomes ineffective.

5.3.7 . Analysis with larger batch size
The results obtained for the three test datasets for a higher budget setting is

shown in Figure 5.6. The initial budget is set to 500 samples, with AL cycle run
for 15 iterations adding 500 samples at each iteration. The final budget is 8000
samples. The results for the two training schemes are presented separately.

The proposed methods alamp and alamp−div provide the best overall results
for the three datasets. The gain is most interesting for Cifar100 and Food −
101. IMN − 100 dataset performs the best at higher budgets and performance
of proposed method is close to uncertainty sampling. Similarly, we also test in
higher budget setting for the three imbalanced datasets. The initial budget is 500
and 500 samples are added for 15 iteration, for final budget to be 8000 samples.
The accuracy and imbalance profiles are presented in Figure 5.7 and Figure 5.8
respectively. The proposed methods alamp and alamp − div provide the best
overall results for the three datasets. alamp− div gives the best results as it able
to mitigate the imbalance to the labeled set.
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Figure 5.6 – Iterative active learning performance with SVM and FT
training schemes at each of 15 iterative steps for balanced datasets Ci-
far100, Food-101 and IMN-100 with initial budget of 500 and total budget
of 8000. 500 samples added at each iteration Best viewed in color.

Figure 5.7 – Iterative active learning performance accuracy with SVM
and FT training schemes at each of 15 iterative steps for imbalanced
datasets Cifar100, Food-101 and MIT-67 with initial budget of 500 and
total budget of 8000. 500 samples added at each iteration Best viewed
in color.

5.4 . Conclusion

The main contribution of this work is the introduction of two new acquisition
functions. alamp and alamp − div capture the dynamic nature of probability
estimates of iterative AL models. They outperform competitive baselines over both
balanced and imbalanced image classification datasets. A diversification component
is introduced to combine the objectives of informativeness and representativeness.
We tested the diversification procedure for random sampling, margin sampling and
our proposed method. The diversified version of alamp is particularly effective
compared to the other two sampling methods as alamp provides strong pseudo
class predictions using the certainty measure from the previous iteration.

We also tested the diversification procedure for random sampling and margin
sampling. The diversified version of random sampling gives some improvement and
performs even better than margin sampling. The diversified version of margin gives
slight improvement at the beginning of the iterative cycle where diversification is
more important.

The result of the proposed informative measure and the diversification proce-
dure is inconclusive for FT training scheme. This could be a result of evolving
representation space with fine-tuning of model. In the future, we plan to explore
ways to implement the proposed informative measure for fine-tuning scheme using
different snapshots during the fine-tuning process. Further, efficacy of the proposed
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Figure 5.8 – Imbalance Profiles with SVM (top) and FT (bottom) trai-
ning schemes at each of 15 iterative steps for imbalanced datasets Ci-
far100, Food-101 and MIT-67 with initial budget of 500 and total budget
of 8000. 500 samples added at each iteration Best viewed in color.

methods with different batch sizes can be studied. The selection of AL strategy
can be explored based on the imbalance ratio present in the selected labeled set.
In case of higher imbalance and applications where minority classes are of impor-
tance, the method presented in Chapter 3 is becomes suitable since it prioritizes
the selection of minority classes. While, for balanced datasets alamp is a better
option since it allows to combine the informative and representative objectives.
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6 - Incremental learning over imbalanced da-
taset

In this chapter, we focus on the intersection of incremental learning and class
imbalanced learning. Each problem is well studied separately but, to our knowledge,
they were not tackled together in the context of deep learning. A joint study is
needed to cope with dynamic and imbalanced datasets. The focus is on challenges
related to deep architecture complexity and to scalability. These properties are
of utmost importance in applications such as visual content analysis. The visual
corpora to be analyzed evolve quickly and there is a need for updating the un-
derlying classification models accordingly. Here we advocate that class incremental
learning with a bounded memory actually boils down to a form of imbalanced lear-
ning problem. New data most often corresponds to majority classes, while old data
corresponds to minority classes since images of old classes need to be fit in the
bounded memory that is allocated to them. In our work, we study various calibra-
tion methods and propose two novel ones to reduce the bias between majority and
minority classes. Further, we also evaluate the model calibration with each of the
calibration method.

We outline the structure of the chapter. Section 6.1 introduces the problem
of incremental learning in the presence of dataset imbalance. Section 6.2 forma-
lizes the incremental learning with imbalanced datasets problem. Section 6.3 dis-
cusses calibration as an effective way to counter dataset imbalance and introduces
the different calibration methods tested. Section 6.4 compares the calibration me-
thods to three strong incremental learning baselines and proposes an analysis of
results in terms of accuracy (Subsection 6.4.4) and the ability to provide calibrated
predictions (Subsection 6.4.5). Finally, Section 6.5 presents the conclusions and
perspectives related to the proposed contribution.

6.1 . Introduction

Large scale image repositories are highly dynamic, with content being added
and/or removed at a fast pace. However, content analysis is currently done with
algorithms built to learn from static information. This is notably the case for deep
learning models which are trained on fixed datasets. When model updates are
required, the entire training corpus is reused for learning, making the process cum-
bersome. To make image content analysis more dynamic and thus more adapted
to dynamic corpora, incremental [188] or lifelong [4] learning processes need to be
implemented.

Recent research in incremental learning use deep learning as backbone and
most of them focus on class incremental learning, a setting in which data are
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completely labeled. The main challenge in incremental learning is due to a restricted
or impossible access to old data. As discussed in section 2.4 if no memory of the
past is allowed, the deep architecture grows in time to accommodate new classes
[4, 195, 233]. If a bounded memory is allowed, the architecture is fixed and an
adapted fine tuning is applied to learn incrementally [25, 109, 188]. Fine tuning
based incremental learning methods are akin to an imbalanced learning problem
due to the availability of a fixed size memory for past classes. Imbalance worsens
as more classes are added incrementally since exemplars need to be fit in memory
for all past classes.

In our work, we study the calibration methods whose objective is to reduce the
prediction bias between majority and minority classes. We compare the following
calibration methods : (1) isotonic regression [244] and Platt scaling [180] which
leverage initial scores to improve final predictions, (2) thresholding applied to the
initial class probabilities in order to increase the predictions of rare classes [23], (3)
nearest-exemplar-mean classifier [188] and balanced fine tuning [25] which were
recently introduced as post-processing steps to reduce the effect of data imbalance
in deep incremental learning and (4) two proposed methods which group classes
in batches either as new vs. old or by image counts and then exploit the mean
classification scores per batch for calibration.

While the focus is on methods which increase the performance on the test
dataset, we also evaluate the intrinsic effect on model calibration. Deep learning
models have been shown to provide over-confident predictions that we do not
match its accuracy[73]. Well-calibrated models have the confidence levels aligned
to the model accuracy and thus give valuable information of how likely the model
is to be correct or incorrect.

Evaluation is done with three large scale datasets designed for object, face and
landmark recognition. Existing methods reduce the effect of imbalance via the use
of class exemplars [188] or balanced fine tuning [25]. We include these methods
in our study of calibration methods. We also include more recent methods such
as BiC [238] and LUCIR [97] as baselines to evaluate their performance on
imbalanced datasets.

The main findings are :

1. the obtained results support the usefulness of a majority of post-processing
methods for the reduction of bias toward majority classes

2. when a bounded memory is available, the use of vanilla fine tuning followed
by calibration is preferable to the widely used distillation loss [25, 109, 188,
97, 238].

3. thresholding based calibration is most effective in providing overall impro-
vement in accuracy, though it has detrimental affect on model calibration.
The proposed methods provide consistent improvement in both model ac-
curacy and model calibration.
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6.2 . Problem formalization

We consider DN a labeled dataset Xy, yt ∈ X × Y for t = 1, 2, ..T i.i.d
realizations of random variables X ,Y ∼ P, where P is the data distribution, X
is the instance space and Y is the set of N class labels {y1, ..., yN}. We denote
Xi = {x1i , x2i , ..., x

ni
i } the set of ni instances for the class yi in the dataset DN . In

a supervised classification problem, the objective is to learn a model M : X → Y
that maps an instance x to a label vector Ŷ . By the following, we will denote Ŷ

as a set of the class prediction with ŷi the prediction score for class yi.
In an incremental learning setting, at each incremental state k, a set of Pk

new classes is added to the previous dataset with, for each new class j, a set of nj

instances. The objective is thus to use Mk−1, the model learned at the previous
step, as input for an updated model Mk which classifies Nk = P1 +P2 + ...+Pk

classes. Here, Nk is the total number of classes that have been observed from the
beginning. Mk is trained using a dataset DNk

composed of all the instances of the
Pk new classes and only a restricted set of the instances of the Nk−1 old ones. In
particular, we assume a bounded memory B is available for the instances of the old
classes in each incremental state. As a consequence, due to this limited memory
size, DNk

is by nature imbalanced and imbalance grows at each incremental state.
We consider deep neural models Mk which include two main components. The

first is a feature extractor Fk : XNk
→ Rd, with d the size of the feature vector f .

The second is a classifier Ck : Rd → YNk
which outputs the classification scores

ŷi for the Nk learned classes. The classification scores can then be converted to
probability estimates p̂i to ascertain the confidence of the model. Depending on the
calibration method used, Fk and Ck are either integrated in a single deep model or
separated to tackle the bias while learning incrementally over imbalanced datasets.

6.3 . Calibration methods

Dealing with imbalance is important as the number of training samples per
class often varies in real-life applications. As a consequence, majority classes have
better representations and are favored over minority ones. The application of ca-
libration methods is an effective way to counter the effect of imbalance [23]. Put
simply, calibration attempts to boost predictions for minority classes in order to
compensate for their weaker representation in the deep model. We study different
calibration methods proposed either in imbalanced or incremental learning litera-
ture. Fine tuning algorithms for incremental learning update the model Mk−1 at
an incremental state k with training examples from new classes Pk and a bounded
exemplar set from past classes Nk−1. If the initial dataset is balanced, we assume
that each class is represented by S images. The bounded memory thus generates
a binary imbalance with old classes being represented by B

Nk−1
and new classes

by S images. We term this imbalance as incremental imbalance as it arises as a
consequence of learning incrementally with a bounded memory. In our context, a
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Figure 6.1 – Prediction scores for old and new classes using vanilla fine
tuning for the ILSV RC dataset. Training is done with vanilla fine tu-
ning, B = 5000 bounded memory for old classes and soft imbalance
configuration as defined in Section 6.4. The first, non-incremental, state
is not represented.

dataset imbalance due to the variable class image counts is added to the imbalance
generated via incremental learning. The imbalance profile is not binary anymore
since new classes are represented by a variable number of images and the proposed
calibration methods should take this into account.

When the model Mk is trained with a dataset affected by both incremental
and dataset imbalance, it learns a feature extractor which is biased toward majority
classes and performance is sub-optimal. On average, the biased classifier associates
higher scores to images from majority class than minority classes. Figure 6.1 illus-
trates this bias using the ILSV RC dataset. The mean score of a class is computed
using the predictions obtained for its samples from the training dataset. Then, we
aggregate the average over the old and new classes to estimate the mean score of
old and new classes. We note that the mean scores of old classes are consistently
lower than those of old classes for all incremental states. Moreover, the difference
tends to grow from left to right since the imbalance is higher in later incremental
states.

We focus on fixed deep architectures and, in this case, the bias induced by
imbalance needs to be reduced without increasing the complexity of the feature
extractor Fk for the deep model Mk. Consequently, calibration methods act
as an adaptation of Ck, the classification layer of Mk, with the aim of
reducing the bias toward majority classes.

We first present calibration methods which cover the main approaches from
literature. Then we introduce two simple methods which leverage : (1) the predic-
tion score means for old and new classes and (2) the distribution of the number of
images per class.
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6.3.1 . Isotonic regression calibration (iso)
Isotonic regression [244] transforms the initial classifier predictions into a dis-

crete set of calibrated scores. Since the number of available images is reduced in in-
cremental learning, isotonic regression exploits the training set DNk

. The calibration
is performed individually for each class and exploits the overlap between positive
and negative examples for each class. A discrete set of scores R = {0, ..., pl, ..., 1}
is created where each discrete value represents a range of initial prediction scores.
pl will be assigned to all initial predictions between two consecutive prediction
boundaries ŷi

l−1 and ŷi
l determined via isotonic regression, with ŷi

l−1 < ŷi
l. The

isotonic calibrated version of ŷi is :

ŷi
iso = pl, if ŷi

l−1 ≤ ŷi < ŷi
l (6.1)

Isotonic regression has the advantage of being non-parametric but requires a large
number of positive samples per class to discretize probabilities in an efficient man-
ner. The method is applied as a post-processing step after Ck. The class predicted
after calibration is the argmax value of all calibrated class predictions given by
Eq. 6.1.

6.3.2 . Platt calibration (pl)
Platt scaling [180] fits a logistic regression over the initial scores in order to

reduce miscalibration. We write the calibrated score as :

ŷi
pl =

1

1 + exp(Aŷi +B)
(6.2)

where A and B are two parameters which need to be learned and ŷi is the initial
prediction of the ith class. The incremental training set DNk

is used to determine
A and B by optimizing a max likelihood method. There is evidence that isotonic
regression outperforms Platt scaling if enough examples per class are available
[165]. However, this finding was not tested for imbalanced datasets which may
include a lot of minority classes, as it is the case here. The class predicted after
calibration is the argmax value obtained by applying Eq. 6.2 to the initial scores
predicted by Ck.

6.3.3 . Thresholding based calibration (th)
Thresholding [23] adjusts the prediction scores of a multi-class classifier by

dividing the output of a class in Ck by its estimated prior probability. The calibrated
score of is written as :

ŷi
th =

ŷi
ni∑Nk
l=1 nl

(6.3)

where ni is the number of images for the ith class and
∑Nk

l=1 nl is the total num-
ber of images in the training dataset DNk

. As we mentioned, a recent study of
imbalanced learning for deep learning models showed that thresholding is highly
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efficient [23]. Its usefulness is theoretically supported by the fact that the outputs
of a neural network correspond to Bayesian a posteriori probabilities [190]. The
class predicted after calibration is the argmax value obtained over all predictions
obtained with Eq. 6.3.

6.3.4 . Nearest-mean-of-exemplars calibration (nem)

The authors of iCaRL [188] proposed nearest-mean-of-exemplars, an adap-
tation of nearest class-mean classifier [155], to counter the inherent imbalance in
incremental learning. The calibrated score of the ith class is written as :

ŷi
nem = ||f(x)− µi|| (6.4)

where : f(x) is the d-dimensional feature of the test instance x provided by penul-
timate layer of the incremental model Mk ; µi =

1
ni

∑ni
l=1 f(xl) - the mean feature

of the exemplars available for the ith class. Note that, in order to reduce the majo-
rity bias, nem is performed after the selection of exemplars for new classes. nem
calibration replaces the classification layer Ck of deep models by an external clas-
sifier which was explicitly designed to counter imbalance. Consequently, iCaRL

is not an end-to-end incremental learning method. The class predicted for test
instance x after calibration is given by the argmin function applied to the set of
Euclidean distances computed for all classes using Eq. 6.4.

6.3.5 . Balanced fine tuning calibration (bal)

As an alternative to iCaRL [188], the authors of [25] propose an end-to-end
incremental learning method. The bias in favor of majority classes is reduced by
introducing a second training step. After the initial training which creates Mk using
the imbalanced dataset DNk

, a model Mbal
k : X bal

Nk
→ YNk

is trained. Mbal
k exploits

Dbal
Nk

a balanced version of DNk
which includes B

Nk
exemplar images for both old

and new classes and is fine tuned starting from Mk. We modify the approach
slightly in that balanced fine tuning only learns the weights of the classification
layer Cbal

k , instead of fine tuning the entire model. This modification is done in
order to make bal calibration more comparable to the other calibration methods,
which do not modify the feature extractor the deep model. It is also motivated by
the fact that initial experiments run with full fine tuning of Mk provided lower
results than fine tuning only the classification layer. Note that bal has a higher
computational cost at training time since it requires a supplementary training step.
The calibrated prediction of the ith class obtained with bal can be written as :

ŷi
bal = Cbal

k (i) (6.5)

where Cbal
k is the output of classification layer of the balanced model Mbal

k for the
ith class. The class predicted after calibration is the argmax value obtained over
all classes using Eq. 6.5.

102



6.3.6 . Batch mean based calibration (mb)
The analysis of raw classification scores from Figure 6.1 provides support for

a bias in favor of new classes in imbalanced incremental learning. A simple way
to reduce this imbalance is to exploit the mean prediction scores of new and old
classes of incremental state k. The calibrated score of the ith class is written as :

ŷi
mb =

µnew

µold
ŷi (6.6)

where the means are defined as
µnew = 1∑Pk

l=1 nl

∑Pk
l=1

∑nl
q=1 ŷq and

µold = 1∑Nk−1
l=1 nl

∑Nk−1

l=1

∑nl
q=1 ŷq for new and old classes respectively. Note

that here we hold out validation sets for new and old classes in order to compute
their mean classification scores. The class predicted after calibration is the argmax

prediction value obtained after applying Eq. 6.6.

6.3.7 . Fisher-Jenks based calibration
The mean based calibration operates at incremental batch level. It disregards

the fact that, due to dataset imbalance, some of the new classes might fall in the
minority classes set. To counter this problem, we propose a calibration method
which makes use of class image counts and of their associated classification score.
We use the Fisher-Jenks natural breaks method [110] to group classes. This method
ensures an optimal distribution of a set of values in a predefined set of L clusters.
It is thus appropriate to deal with the different imbalance profiles that occur in
imbalanced incremental learning. In our case, the inputs given to Fisher-Jenks are
the image counts ni associated to the Nk classes learned in incremental state k.
The calibrated score of the ith class is written as :

ŷi
fj =

µclL

µcl(i)
ŷi (6.7)

where µcl(i) is the mean prediction score of the Fisher-Jenks cluster which includes
the ith class and µclL is the mean prediction score of the Lth cluster with the largest
number of instances per class. Similar to the mb method from Subsection 6.3.6, the
means are computed using a validation set. The number of Fisher-Jenks clusters
is set using a cross-validation with the validation set. The class predicted after
calibration is the argmax prediction value obtained by applying Eq. 6.7 to all
initial class predictions.

6.4 . Evaluation

The experiments are designed to evaluate both dataset and incremental imba-
lances. All methods are evaluated with three large datasets designed for object, face
and landmark recognition. Soft and strong imbalance configurations are created
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to evaluate dataset imbalance. Three bounded memory size are introduced for each
dataset in order to test the robustness of calibration method with respect to this
central parameter of incremental algorithms.

6.4.1 . Baselines
The calibration methods studied here are applied on top of a vanilla fine tuning

backbone which is run iteratively for each incremental state in order to integrate
new classes. Naturally, vanilla fine tuning (FT hereafter) is the main baseline used
here. The selection of exemplars is based on the herding mechanism [155]. To eva-
luate the usefulness of the proposed approach, we compare it to three competitive
incremental learning methods :

— iCaRL [188] combines classification and distillation losses to counter ca-
tastrophic forgetting and uses a nearest exemplar mean classifier to counter
imbalance between past and new classes.

— BiC [238] introduces a linear layer at the end of the classification process
to ensure fairness between past and new classes. A distillation term which is
closer to the original formulation from [93] compared to iCaRL is equally
used.

— LUCIR [97] proposes a combination of three elements to improve incre-
mental learning. Cosine normalization is used for balancing the magnitudes
of past and new class predictions. The distillation term is improved by hand-
ling feature vectors instead of raw scores. Finally, inter-class separation is
favored in order to better separate embeddings of past and new classes.

6.4.2 . Datasets and methodology
We evaluate the baselines and the calibration methods on the following data-

sets :
— ILSV RC [193] is a subset of 1000 ImageNet classes used in the ImageNetLSV RC

challenges.
— V GGFace2 [24] (V GGF2 below) focuses on face recognition. We select

the 1000 classes with the largest number of associated images.
— GoogleLandmarks [167] (LAND below) was built for landmark recogni-

tion and we again select 1000 classes with the largest number of associated
images.

The test sets include 50000 images for ILSV RC and V GGF2 and 20000 for
LAND. There are 50 images per class for the first two datasets and 20 for the
latter.

The original amount of imbalance in these three datasets is weak, as shown in
Table 6.1. We introduce two imbalance configurations to evaluate behavior of the
algorithms with different degrees of dataset imbalance :

— soft - randomly retains between 50 and the initial number of images for
each class.

— strong - randomly retains between : 10 and 25 images for 300 classes, 26
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µorig σorig µsoft σsoft µstrong σstrong

ILSV RC 1231 70 649 354 147 231
V GGF2 492 49 266 129 97 120
LAND 374 103 212 111 85 90

Table 6.1 – Means and standard deviations of image counts in the ori-
ginal datasets (orig) and the two imbalance configurations (soft and
strong).

and 75 for 300 classes, 76 and 100 for 200 classes and between 101 and
the initial number of images for the remaining 200 classes.

The corresponding means and standard deviations are reported in Table 6.1. In
the soft configuration, slightly more than half of the original training data is kept
and the standard deviation amounts to over 50% of dataset means. With strong,
we discard a wide majority of original data and the resulting imbalance is much
stronger and the standard deviation becomes higher than the mean in each case.

The evaluated calibration methods operate either at class level (iso, pl, th,
nem, bal) or at an aggregate level which includes a subsets of the learned classes
(mb, fj). For class level methods, we reuse the training images from the initial
dataset as inputs for calibration. This is necessary since the number of available
images is reduced, especially for old and/or minority classes and most of the me-
thods require a rather large amount of data to provide reliable results. Consequently,
the use of a validation subset would be suboptimal here. When inputs from dif-
ferent classes are aggregated in batches (mb and fj), the use of a proper validation
split becomes possible. We create validation sets using 10% of the training data
of old and new classes. We maintain the val/train split in the bounded memory
B to avoid mixing the training and validation exemplars in different incremental
states. Note that the outputs of Ck are used either in their raw form (iso, pl,mb,
fj) or after transformation in probabilities by applying softmax (th). This choice
is made in order obtain an optimal configuration of each algorithm.

The experimental setup is inspired by the one proposed in iCaRL [188]. Each
dataset of 1000 classes is split into k = 10 incremental states. Each incremental
state adds a batch of Pk = 100 classes to those that were already learned in
states 1 to k − 1. The same class ordering provided in iCaRL [188] is reused
for ILSV RC and a random ordering of classes is created to form V GGF2 and
LAND states. The size of bounded memory B was shown to have a central
importance for the performance of incremental learning algorithms [25, 188]. To
assess its influence on the proposed calibration methods, we report results with B =

{5000, 10000, 20000} exemplars stored in memory for each dataset and imbalance
configuration.

A ResNet-18 architecture [88] is used as a backbone for all experiments. Re-
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sNet have been successful in allowing neural nets to be deeper by tackling the
problem to stagnation of performance with addition of layers after some point.
They employ residual mapping as the basis function which adds the input values
to approximate the final function. ResNet-18 has one (7*7) and sixteen (3*3)
convolutional layers in addition to two max pooling layers and a final linear classifi-
cation layer. We used the publicly available iCaRL TensorFlow implementation in
[188] with a binary cross-entropy loss and the original parameters proposed there.
Vanilla fine tuning (FT ) was implemented in Pytorch [176] using cross-entropy
loss. The models were trained for 25 epochs with a initial learning rate of 0.1 at
every incremental state and scheduled to decay by 0.1 when the loss plateaus out
for 5 epochs. For V GGF2, face cropping is done with MTCNN [249] before further
processing. Training images are processed using randomly resized 224× 224 crops
and horizontal flipping and are normalized afterwards.

6.4.3 . Metrics

— Accuracy - the performance of different methods is evaluated using top-1
accuracy for each incremental step defined as :

acc = 100 ∗ 1

n

n∑
i=1

argmax(Ŷ ) == yi (6.8)

, where Ŷ is the set of predicted score and yi is the true label for test
sample i. This measure is then averaged over all incremental states in
order to obtain a single value for the entire incremental process. Note that
averaged accuracy is the usual metric employed in incremental learning [97,
188, 238]. The test dataset contains the same number of samples for each
class. This gives equal importance to all the classes irrespective of class-
distribution in the training dataset. The test sets include 50000 images for
ILSV RC and V GGF2 and 20000 for LAND. There are 50 images per
class for the first two datasets and 20 for the latter.

— Expected Calibration Error (ECE)- is a metric to ascertain the difference
between the model accuracy and confidence [73]. The estimation of ac-
curacy and confidence is done by dividing the samples into bins based on
confidence. In our implementation the number of bins M are set to 20, to
give 20 intervals of 1/M = 0.05 size from 0 to 1. Bm are set of samples
in the interval m , with m = {1,2 ... M} and n is the number of samples
in the test dataset.

ECE =
M∑

m=1

Bm/n ∗ ||conf(Bm)− acc(Bm)|| (6.9)

conf(Bm) = 1/Bm

∑
i∈Bm

max(P̂i) (6.10)
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acc(Bm) = 1/Bm

∑
i∈Bm

1(argmax(Ŷi) == yi) (6.11)

,where P̂i and Ŷi are the set of predicted probability and score respectively
and yi is the true label for test sample i. The values of ECE range from
0 to 1, with lower values indicating better model calibration.

6.4.4 . Analysis of Accuracy of Calibration methods
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5000
ILSV RC 21.8 45.5 41.3 38.7 23.5 31.4 45.0 39.3 40.5 41.6 41.5
V GGF2 61.0 84.4 78.7 81.4 42.7 65.5 85.4 81.9 81.4 84.9 85.1
LAND 64.1 86.9 80.6 84.3 37.9 76.0 88.0 85.2 81.1 85.7 86.0

10000
ILSV RC 23.6 48.9 45.5 45.3 32.1 38.6 49.8 44.8 45.6 46.9 46.4
V GGF2 62.1 86.9 80.3 86 66.1 76.5 88.0 85.2 82.2 87.4 87.7
LAND 65.7 88.9 82.1 88.9 53.9 84.6 90.7 88.2 85.8 89 89.2

20000
ILSV RC 24.5 52.7 49.7 50.1 38.3 44.8 53.4 48.6 49.8 50.7 50.3
V GGF2 62.2 88.4 81.6 90.2 80 86.1 91.0 88.8 87.3 90.5 90.9
LAND 65.8 90.8 83.3 92.2 75.4 90.5 92.6 90.8 91.6 92.0 92.1

Table 6.2 – Top-1 average accuracy for the soft imbalance configura-
tion and B = {5000, 10000, 20000} bounded memory sizes. The first
two columns represent iCaRL [188] and vanilla fine tuning (FT ), our
baselines. The next two columns are calibrated versions of FT as fol-
lows : FTiso - isotonic regression ; FTpl - Platt scaling ; FTth - threshol-
ding ; FTnem - nearest-mean-of-exemplars ; FTbal - balanced fine tu-
ning ; FTmb - batch mean based calibration ; FTfj - Fisher-Jenks based
calibration. Following [25], accuracy scores are averaged over the in-
cremental states of the system and the first, non-incremental, state is
ignored.

The obtained results are presented in Tables 6.2 and 6.3. A detailed view of
top-1 accuracy for the incremental states of ILSV RC with B = 5000 bounded
memory for soft and strong imbalance configurations is provided in Figure 6.2.

The performance level of the presented methods is much lower than that of
non-incremental and balanced learning. We trained a ResNet-18 non- incrementally
and using the full ILSV RC dataset and obtained a top-1 accuracy of 73.0%. The
non-calibrated accuracy (FT ) obtained for ILSV RC with memory B = 20000 are
50.1% and 37.5% for soft and strong imbalance configurations. The best results
obtained for the same settings after calibration are 53.4% and 39.4% respectively. If
the allowed memory is B = 5000, performance goes from 38.7% and 29.9% (non-
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5000
ILSV RC 13.9 21.7 24.5 29.9 17.8 23.6 33.1 31.0 29.2 28.9 30.2
V GGF2 50.4 66.3 65.9 76.7 32.3 63.6 78.6 75.1 72.0 77.4 78.1
LAND 57.5 77.2 73.3 80.8 36.6 74.7 82.4 80.7 80.4 80.7 81.3

10000
ILSV RC 15.9 24.9 26.2 34.4 24.3 29.1 36.8 34.9 32.1 33.0 34.3
V GGF2 51.3 68.5 67.9 80.8 55.9 72.9 81.7 78.7 77.0 80.5 81.43
LAND 58.8 79.4 74.9 85.7 47 82.6 86.3 84.6 84.4 85.3 85.8

20000
ILSV RC 16.2 27.0 27.1 37.5 29.1 33.0 39.4 37.6 34.7 36.2 37.3
V GGF2 51.4 71.8 68.8 83.9 68.6 78.6 84.6 82.1 81.1 83.4 84.3
LAND 60.4 80.9 75.1 87.8 65.8 85.5 88.4 86.4 86.0 87.5 88.1

Table 6.3 – Top-1 average accuracy for the strong imbalance confi-
guration and B = {5000, 10000, 20000} bounded memory sizes. See
Table 6.2 for the description of the different methods presented.

calibrated FT ) to 45.0% and 33.1% (FTth) for soft and strong configurations
respectively.

Intuitively, performance for soft imbalance (Table 6.2) is higher compared to
that for strong imbalance (Table 6.3). The difference between the two configura-
tions is largest for ILSV RC, the most difficult dataset among the three tested.
With a memory of B = 10000 exemplars, the difference in performance between
soft and strong configurations for FT is 10.9%, 5.2% and 3.2% for ILSV RC,
V GGF2 and LAND respectively. The size of the memory has also a strong in-
fluence on results. For instance, the performance of FT on ILSV RC for bounded
memories B = {5000, 10000, 20000} reaches 38.7%, 45.3% and 50.1% in the soft
imbalance configuration.

The combined effect of incremental learning and dataset imbalance is thus
strong and, while calibration is useful, the problem remains an open one. The
difference between soft and strong imbalance configurations is also well illustra-
ted in Figure 6.2. These detailed results show that the induced imbalance has a
particularly important effect in early incremental states. This is normal since the
importance of dataset imbalance is reduced in later incremental states, where the
incremental imbalance due to the bounded memory B acts upon a large majority
of classes.

The analysis of individual calibration methods shows that isotonic regression
(FTiso) and Platt calibration (FTpl) have detrimental effect for both soft and
strong imbalance configurations. Both methods rely heavily on the number of
available class samples. The negative influence of iso and pl is larger for lower
memory sizes and, within each B size, for later incremental states. This is probably
an effect of lack of sufficient data in order to obtain a stable parametrization of
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Figure 6.2 – Top-1 accuracy for ILSV RC with memory B = 5000 in
soft (left) and strong (right) imbalance configurations. To be aligned
with the results from Tables 6.2 and 6.3, only the incremental states
are represented. (Best viewed in color.)

the methods. The behavior of iso and pl in imbalanced incremental learning is
different from the one previously reported in [165]. There are two main differences
between the two studies : (1) the algorithms used are different (deep models here
and shallow models in [165]) and (2) the amount of data available for calibration
which is much smaller here.

Thresholding (FTth) improves performance for all tested configurations. This
method has the largest positive effect among all methods tested in a wide majority
of cases. th performs score post-processing and is less dependent of the number
of samples than iso and pl. It provides the largest improvements for B = 5000,
the memory setting which corresponds to the largest imbalance for the three visual
tasks with soft and strong configurations. The results obtained for th confirm
those presented in [23] for imbalanced learning. They indicate that this simple
calibration method should be considered in priority for the implementation of im-
balanced incremental learning applications.

Nearest-mean-of-exemplars (FTnem) has contrasted performance. The method
is beneficial for the object recognition task (ILSV RC), although with lower effect
for B = 20000. For face recognition task (V GGF2) and landmarks (LAND)
gain is observed only for soft imbalance at 5000 budget . For ILSV RC, nem
is more useful for the strong imbalance configuration than for the soft one. The
method works on top of the penultimate layer of the deep model but is highly
dependent of the number of samples available to compute the individual class
means, a property shared with iso and pl. Note also that FTnem is equivalent
to an iCaRL version in which the distillation loss was ablated. The authors of
iCaRL [188] report that nem classification has positive influence over a direct
use of deep model predictions in all configurations tested in their paper. A main
difference is that those tests were done with classification and distillation losses,
with larger memory and with datasets that are initially balanced. The effect of
nem is more contrasted for the imbalanced datasets tested here with a vanilla fine
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B Dataset FT FTis FTpl FTth FTnem FTbal FTmb FTfj

5000
ILSV RC 0.214 0.231 0.310 0.545 0.389 0.252 0.216 0.218
V GGF2 0.045 0.422 0.651 0.138 0.814 0.102 0.033 0.036
LAND 0.013 0.373 0.756 0.118 0.843 0.130 0.009 0.011

10000
ILSV RC 0.201 0.317 0.382 0.497 0.444 0.266 0.213 0.202
V GGF2 0.022 0.803 0.857 0.087 0.883 0.089 0.021 0.022
LAND 0.011 0.533 0.841 0.091 0.874 0.111 0.009 0.012

20000
ILSV RC 0.172 0.379 0.444 0.462 0.482 0.271 0.197 0.171
V GGF2 0.031 0.656 0.761 0.115 0.847 0.107 0.028 0.029
LAND 0.011 0.748 0.900 0.070 0.900 0.086 0.007 0.011

Table 6.4 – Expected Calibration Error for the soft imbalance configu-
ration and B = {5000, 10000, 20000} bounded memory sizes. The first
columns represent vanilla fine tuning (FT ), our baseline. The next co-
lumns are calibrated versions of FT as follows : FTiso - isotonic regres-
sion ; FTpl - Platt scaling ; FTth - thresholding ; FTnem - nearest-mean-
of-exemplars ; FTbal - balanced fine tuning ; FTmb - batch mean based
calibration ; FTfj - Fisher-Jenks based calibration. ECE are averaged
over the incremental states of the systemand the first non-incremental
state is ignored.

tuning backbone with exemplars selected based on moving mean.
Balanced fine tuning (FTbal) has a negative effect in most configurations. The

methods provides improvement over FT for ILSV RC at 5000 and 10000 budgets
with soft imbalance. The effect is particularly detrimental for strong imbalance,
Note that the reported bal performance is obtained by fine tuning only the classi-
fication layer of the incremental deep models Mk. Balanced fine tuning (FTbal) is
performed by creating a balanced dataset, leading to much smaller datasets, espe-
cially if there is more dataset imbalance in addition to incremental imbalance. This
would explain the sub-optimal performance as the dataset imbalance is increased.

Batch mean based calibration (FTmb) improves performance over FT for all
settings with soft imbalance, while being comparative to FT for strong imbalance.
As for th , the gains are larger for lower memory size and for ILSV RC, the hardest
visual task tested here. mb and fj have comparable results for soft imbalance
configurations, while fj gives slightly better results for strong imbalance. mb is
the simplest of all calibration methods tested since it only exploits mean predictions
for old and new classes. It only accounts for the incremental imbalance as it groups
new and old classes together, regardless of their image counts.

Fisher-Jenks based calibration (FTfj) is a refined version of mb in which both
the incremental and dataset imbalance are taken into account when clustering
classes. The advantage of such clustering is more obvious for strong imbalance
configurations, where the dataset imbalance is more important compared to soft
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B Dataset FT FTis FTpl FTth FTnem FTbal FTmb FTfj

5000
ILSV RC 0.276 0.239 0.288 0.627 0.345 0.426 0.339 0.275
V GGF2 0.060 0.318 0.632 0.204 0.746 0.197 0.063 0.068
LAND 0.018 0.360 0.743 0.165 0.799 0.179 0.017 0.018

10000
ILSV RC 0.286 0.174 0.233 0.662 0.307 0.405 0.337 0.288
V GGF2 0.044 0.554 0.725 0.175 0.782 0.174 0.057 0.054
LAND 0.015 0.465 0.822 0.129 0.838 0.157 0.012 0.018

20000
ILSV RC 0.263 0.287 0.326 0.601 0.372 0.453 0.324 0.260
V GGF2 0.044 0.681 0.783 0.148 0.816 0.157 0.055 0.051
LAND 0.014 0.653 0.850 0.110 0.856 0.127 0.010 0.015

Table 6.5 – Expected Calibration Error for the strong imbalance confi-
guration and B = {5000, 10000, 20000} bounded memory sizes.

imbalance. Its performance is better than that of bal and nem for both soft and
strong imbalance. ft globally has lower performance than th calibration.

A statistical analysis of the LUCIR and FTth reveal that FTth is significantly
better for strong imbalance regime as compared to soft imbalance. We compute
the p-values over the accuracies at each incremental batch to ascertain the signi-
ficance in the incremental setting. For ILSV RC dataset, the p-value at budgets
5000, 10000 and 20000 are 0.91 , 0.84 and 0.85 for soft imbalance as compared
to 0.02 , 0.006 and 0.005 for strong imbalance. Similarly for Land dataset the
p-value for soft imbalance is at 0.43, 0.10 and 0.001 as compared to 0.001, 0.003
and 0.0028 for strong regime. For V GGF2, the p-values for soft imbalance is
at 0.119, 0.038 and 0.019 as compared to 0.0041, 0.0042 and 0.0017 for strong
regime.

A final interesting observation is that iCaRL performance lags well behind
that of FT for all datasets and tested configurations. Further, FT baseline is
competitive with LUCIR and BIC, at soft imbalance, while being clearly the
preferable option in the strong imbalance regime. This comparison is contrary to
the conclusions of [188], where FT has significantly worse performance compared
to iCaRL. However, that evaluation was biased insofar iCaRL was using a me-
mory of past classes while FT results obtained in absence of this memory. Our
results indicate that, when running a fair comparison, the simpler FT method is
clearly a better suited backbone for incremental learning with bounded memory
than the state-of-the-art backbone which combines classification and distillation
losses [25, 109, 188].

6.4.5 . Analysis of Expected Calibration Error

The results for Expected Calibration Error ECE for the calibration methods
are presented in Tables 6.4 and 6.5. The first main observation is that the value
of ECE for FT is higher for ILSV RC dataset as compared to the other two
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datasets. This is explained by the fact that V GGF2 and LAND are easier to learn
and FT provides significantly higher accuracy for these two datasets. Hence, the
confidence is matched with high performance, which is not the case for ILSV RC.

Isotonic regression (FTiso) and Platt calibration (FTpl) provide very high ECE

values as compared to FT , particularly for V GGF2 and LAND datasets. A look
at LAND at soft imbalance with 10000 budget, shows the accuracy at 53.9%

and 84.6% for FTiso and FTpl, whereas the ECE is 0.533 and 0.841 respectively.
This allows us to infer that the confidence of probabilities after FTiso and FTpl

calibration is quite low, and the models actually under-calibrated. This can be partly
explained by limited number of positives instances for a class, and high number of
negative instances in one-vs-all calibration used in Isotonic Regression and Platt
Scaling.

The results for FTnem are similar to FTiso and FTpl with very high values of
ECE, particularly when the accuracy is high. We draw similar conclusions that the
model is under-calibrated for FTnem as well. Note that for FTnem, the scores are
calculated as the inverse of the distance to the class mean in the feature space,
which are then used to derive the probabilities using the softmax function. The
accuracy for FTbal are slightly lower than FT , and this is also reflected in ECE

values of FTbal which are slightly higher than FT .
FTth provides the most improvement in accuracy out of all the calibration

method. th mitigate the bias towards minority classes by calibrating the score for
a class depending on the number of samples in the given class. It provides better
performance by increasing the confidence of minority classes, though it also makes
the model more mis-calibrated. ECE score for FTth is consistently higher than its
FT counterpart. This shows that FTth provides improvement in overall accuracy,
but at the some expense of calibration of model.

The proposed methods FTmb and FTfj provides the best calibration out of
all the calibration methods. The calibration is quite similar to FT with ECE values
being quite close to ones for for FT . This is an interesting results since FTmb and
FTfj are the only methods which provide improvement in overall accuracy while
not adversely affecting the calibration of the model.

6.5 . Conclusion

We performed a study of score calibration methods in an incremental and im-
balanced deep learning setting which was not explored before. Calibration methods
selected from both imbalanced and incremental learning streams of research were
thoroughly compared using three visual tasks, two imbalance configurations and
three bounded memory sizes for incremental learning. The obtained results indicate
that, while calibration is certainly useful, imbalanced class incremental learning re-
mains an open problem. They also show that both dataset imbalance and memory
size have an important impact on performance. This is particularly true for object
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recognition, the most difficult of the three tested tasks, and for lower memory sizes.
The performance of the evaluated calibration methods is variable. Isotonic re-

gression and Platt calibration, which were shown to work well when enough data
per class is available [165], have a negative effect on results here. This behavior is
explained by the scarcity of available data when working in an incremental setting.
Nearest-mean-of exemplars [188] and balanced fine tuning [25], the calibration
methods introduced in recent incremental learning works, have contrasted and
negative effects respectively. Note that, after initial experiments, an adaptation
of balanced fine tuning was performed so as to fine tune only the classification
layer instead of the entire network as done in [25]. The batch mean based and
Fisher-Jenks calibration methods introduced here have a positive effect in most
of the configurations. Fisher-Jenks behaves slightly better than mean based cali-
bration. This is explained by the fact that the first method models both dataset
and incremental imbalance while the second models only incremental imbalance.
The best performance in terms of accuracy is obtained by thresholding based cali-
bration, which uses the prior class probabilities to augment the scores of minority
classes. An analysis of model calibration after the calibration method shows that
overall FTmb and FTfj provide the best model calibration, while also tacking the
imbalance.

Finally, the results also show that vanilla fine tuning is a better backbone for
class incremental learning with bounded memory compared to a fine tuning which
exploits both classification and distillation losses. The performance gap between
the two approaches is significant and we advocate that future developments in
class incremental learning should use vanilla fine tuning as baseline.

The reported results are interesting and we intend to develop our research along
the following lines : (1) improve the vanilla fine tuning backbone using recent results
in imbalanced learning [23] ; (2) explore other score calibration methods and (3)
integrate incremental learning in content based multimedia retrieval frameworks.
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7 - Conclusion and Perspectives

7.1 . Conclusion

In this work, we study two learning settings : active learning and incremental
learning to tackle the data-dependent issues of deep neural networks. These two
settings are important in the context of deploying deep learning models to real-
world applications. Active learning is suitable to reduce the annotation cost of deep
learning models. Incremental Learning is essential to create systems which evolve
in dynamic domains. In both settings, we devise solutions to mitigate the effect of
imbalance, while also tackling other open issues.

Large annotated datasets are a central requirement for training deep learning
models in a supervised setting. The annotation of large datasets is both time and
cost intensive. Active learning reduces this cost by the iterative selection of the
most relevant samples based on model estimates on unlabelled data. A cold-start
problem exists in AL which needs a large enough initial subset to be annotated
to start the AL iterative process. In Chapter 3, we tackle the cold start problem
by using an external dataset coming from a source domain. We propose a single
stage setting, where the samples are selected using the knowledge from a source
domain. This removes the need of a labeled dataset to kick-start the classical
active learning setting, while also avoiding the time-consuming iterative training of
the model. The objective is to make a diverse and balanced selection of samples,
while discovering maximum of classes from a completely unlabeled dataset. The
focus is on imbalanced dataset where random selection is clearly sub-optimal as it
populates the selected set with samples from majority classes.

In Chapter 4, we extend our study on imbalanced datasets to the classical ite-
rative active learning setting. The iterative setting becomes more pertinent when
enough samples have been annotated for the target domain to provide reliable
uncertainty estimates which are effective for AL task. In the iterative setting, we
devise solutions to mitigate transfer of imbalance by applying balancing and diver-
sity constraints. In particular, we propose a method which favors samples likely to
be in minority classes so as to reduce the imbalance of the labeled subset and create
a better representation for these classes. The evaluation is done with classical base-
lines and also with the method introduced in the single stage AL setting introduced
in Chapter 3. In both the works, the proposed solutions are tested against state of
the art techniques in active learning as well as in imbalanced learning.

In Chapter 5, we propose a new measure of informativeness based on the evo-
lution of probability distribution between successive iterative states. The strategy
prioritized samples which are predicted with high certainty in the previous iteration
but which give uncertain prediction in the current model. This also allows to effec-
tively assign a pseudo class to each sample depending on the confident predictions
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of previous iteration. A diversification step was added to select samples from dif-
ferent regions of the classification space and thus introduces a representativeness
component in our approach. Evaluation is done against competitive methods with
three balanced and imbalanced datasets and outperforms them.

Here, we summarize the main conclusion from the works on active learning.

• Single stage setting We propose a single stage setting to tackle the cold
start problem in active learning. The results show that single stage set-
ting outperforms random sampling, which is normally used to select the
initial subset in AL. The diversification process which selects samples with
different source class prediction allows to select a diverse set of samples.
Further we introduce a balancing step which is activated depending on the
imbalance accumulated in the labeled set and the budget left. The balan-
cing step focuses the labeling process on classes which are underrepresented
in the annotated subset. Both adaptations have a positive effect as long as
features are efficiently transferable between the source model and the tar-
get datasets. Further, we show that the proposed method helps to reduce
the imbalance in the selected set, while also selecting samples from more
number of classes. Finally, we test our methods on balanced datasets and
show that the balancing step is beneficial for all acquisition function.

• Imbalanced Datasets Imbalance is big source of bias in dataset which
leads to unfavourable predictions towards less represented classes. We test
the affect of imbalance in both the single stage and iterative setting of
AL. The results show that imbalance has to explicitly taken into account
when creating the labeled dataset. Active learning techniques propagate
the imbalance from unlabelled dataset while can also induce imbalance
in the labeled set when working with balanced dataset. Further, this im-
balance is only partially treated using techniques from imbalance learning
such as thresholding [23]. This provides a strong motivation for designing
techniques to mitigate the propagation of imbalance at the time of sample
selection for annotation. AL could save considerable time and expertise in
building datasets for real world applications. Real-world applications also
normally contain imbalance with lesser occurrence of classes of interest.
The balancing and diversification methods developed in our work help to
create better datasets at lesser annotation cost.

• Shallow classifiers over fixed representation In our work with both
single stage and iterative active learning setting, we test our methods at
low annotation budgets. The training of deep models from scratch or
the fine-tuning based approach requires large enough samples to be an-
notation to avoid overfitting and to provide efficient estimates for the AL
task. We test the use of shallow classifiers over the representation of a pre-
trained model as an alternative to classical fine-tuning. Our results show
that shallow classifier not only outperform fine-tuned model, but also the
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probability estimates from shallow classifier are more reliable for AL task.
This has important, insofar that almost all AL works explore only the more
computationally expensive fine-tuning scheme, which require deep learning
hardware. Alternatively, shallow classifiers over fixed representation can be
easily trained on general purpose CPUs. Further, we also propose a cross-
validation step to switch from shallow classifier to fine-tuning method when
enough samples points are selected in Chapter 4.

• Using iterative model probability AL is usually implemented in an ite-
rative cycle with model trained with more annotated data in each cycle.
Thus it is possible to store the iterative model’s estimates on unlabelled
dataset with minimal cost. In Chapter 5, we propose a new measure of
informativeness based on evaluating the change with every update of mo-
del. The proposed measures are more effective for shallow classifiers than
the fine-tuning scheme. The fixed representation used for shallow classi-
fiers allows the proposed measure to effectively evaluate the distance of
the samples to the classifier boundary in the preceding and the current
iterations. Further, we apply a diversification procedure to combine the in-
formative and representative objectives of active learning. The efficiency of
probability estimate from previous model is subject to the batch sizes used
in AL. At large batch sizes, the estimates from the previous model might
become less relevant.

In the work of incremental learning, Chapter 6, we tackle the problem of
learning from a dynamic domain where classes are learned incrementally. We allow
a fixed memory budget to store the examples from old classes. The model is fine-
tuned whenever new classes are added using the exemplars from old classes and
the data from new classes. We consider a real-world setting where the dataset can
contain imbalance. This leads to two kind of imbalance in the dataset :

(1) imbalance between old and new classes due to fixed-memory incremental
setting and

(2) imbalance inherent in the dataset.
We show that IL with fixed memory for exemplars from old classes can be sol-

ved as a imbalance learning problem. A wide range of post-processing calibration
methods are considered for treating the two kind of imbalance. The best perfor-
mance is generally obtained by thresholding based calibration, which uses the prior
class probabilities to augment the scores of minority classes. An analysis of model
calibration after the calibration method shows that proposed methods FTmb and
FTfj provide the best model calibration, while also tacking the imbalance. The
results also further show that vanilla fine tuning is a better backbone for class in-
cremental learning with bounded memory compared to a fine tuning which exploits
both classification and distillation losses.
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7.2 . Future Works

The methods developed in our work can be tested and improved upon in the
following ways :

• AL setting selection In our work, we test and compare both the single
stage and iterative setting of active learning. Instead of randomly selecting
the first batch of images as done in the iterative setting, single stage AL
setting is used to select the initial dataset. The efficiency of the single
stage setting depends on the similarity between source and target domain.
Further, with enough number of samples the target model becomes more
suitable for the active learning task. A method to select the best strategy
can be explored which switches from single stage AL setting to the iterative
setting. The switch point would depend on the budget and the re-usability
of source domain for the target AL task. This would also include the cold-
start problem to try to ascertain the number of samples required before
active learning can be started. [58] provide some theoretical framework
in this context to select the number of samples randomly before active
learning can be performed.

• Universality/ Domain Adaptation The methods developed in single stage
setting : diversification and balancing depends on transferability of features
between source and target domain to create a mapping between source and
target classes. These methods could benefit from a more universal repre-
sentation [213] to be applicable to more diverse dataset. We also show
that using shallow classifier over fixed representation is a better alternate
to classical fine tuning method at low budgets. Universal representation
could also help the shallow classifier scheme to be more effective, and out-
perform fine-tuning till higher budgets. Further, curating the features from
the source domain to suit the target domain can be explored [221].

• Using iterative models for AL In Chapter 5, we propose a method to se-
lect samples which move from certain to uncertain regions with the update
of iterative model. This idea can be extended to fine-tuning scheme by using
estimates from different snapshots during the fine-tuning process. Such an
approach, would help identify samples which the model finds difficult to
learn and forgets easily. Further, previous works [28, 61] have shown that
for easier samples intermediate models during the optimisation can provide
better confidence estimates as compared to final model.

• Calibration methods for incremental learning We test a range of cali-
bration methods to reduce the bias towards the minority classes and improve
the model calibration. Application of these post-processing techniques on
top of latest works in incremental learning would help to ascertain their
broader applicability. To do this the vanilla fine tuning backbone can be
improved using recent results [238, 97].
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8 - Appendix

8.1 . Résumé en français

8.1.1 . Contexte : la reconnaissance visuelle à l’ère de l’apprentis-
sage profond

Les algorithmes d’apprentissage profond et en particulier les modèles neuronaux
profonds supervisés ont permis des progrès impressionnants au cours de la dernière
décennie pour diverses tâches de reconnaissance visuelle telles que la classification,
la détection d’objets ou la segmentation sémantique (voir la Figure 8.1 pour un
aperçu rapide de ces tâches). En effet, pour toutes ces tâches, les performances,
évaluées sur des benchmarks publics, ont franchi un cap grâce aux modèles neuro-
naux profonds. Par exemple, pour le défi ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [194], la précision moyenne du top1 est passée de 50,9% en
utilisant des modèles de pré-apprentissage profond en 2011 à 90,2% dans les tra-
vaux récents [53]. Un gain similaire est observé pour la tâche de détection d’objets
sur MS-COCO [142], où la précision moyenne des boîtes englobantes est passée
de 34,9% en 2015 avec des modèles R-CNN plus rapides [66] à 58,7% dans la
méthode récente [148]. En particulier, l’apprentissage profond a fait évoluer le pa-
radigme de l’utilisation de caractéristiques créées à la main vers l’apprentissage
par représentation avec des modèles multicouches [16]. De plus, les réseaux de
neurones profonds (DNN) se sont révélés efficaces pour apprendre de puissantes
représentations hiérarchiques des données qui peuvent même être transférées à
d’autres tâches [170].

Le avènement des unités de traitement graphique (GPU) [34, 232] pour
correspondre à la nature intensive en calcul des algorithmes d’apprentissage pro-
fond, la meilleure conception des architectures d’apprentissage profond [125,
39, 206, 66, 89] et la disponibilité des grands ensembles de données anno-
tées [193, 166, 142] sont quelques-uns des principaux facteurs qui expliquent les
gains de performance et l’omniprésence de l’apprentissage profond. Par exemple,
les réseaux de neurones convolutifs (CNN), qui constituent l’architecture de base
de la plupart des tâches de vision par ordinateur aujourd’hui, ont été envisagés
dès 1988 pour la tâche de classification des phénomes [6]. En 1989, Yann LeCun
a utilisé les CNN pour la reconnaissance de caractères manuscrits et a formé un
réseau neuronal à l’aide de l’algorithme de backpropagation [131]. L’utilisation des
réseaux neuronaux convolutifs était limitée à l’époque par le matériel informatique
disponible, ce qui a entraîné une interruption entre les travaux de LeCun et la
résurgence des CNN au cours de la dernière décennie grâce à l’utilisation de GPU
spécialisés. Les GPU, initialement développés pour les consoles de jeu, effectuent
efficacement les calculs répétitifs nécessaires aux réseaux neuronaux et ont ainsi
contribué à résoudre le goulot d’étranglement matériel des DNN [172] et ouvert
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Figure 8.1 – Illustration de diverses tâches de vision par ordinateur pour
lesquelles les réseaux de neurones profonds fournissent des perfor-
mances de pointe [136].

Figure 8.2 – Évolution de la taille et de la précision des modèles sur
ILSVRC [95]. La taille des modèles a augmenté avec le temps, de même
que leur précision.

l’ère des réseaux neuronaux profonds.
En particulier, les GPU ont permis des avancées dans la conception de l’archi-

tecture avec davantage de paramètres entraînables, ce qui a permis d’augmenter
la capacité de représentation des réseaux neuronaux profonds. Comme le montre la
figure 8.2, il existe une forte relation entre la taille des modèles profonds (nombre
de paramètres) et leur efficacité en termes de précision de la tâche. Aujourd’hui, les
architectures d’apprentissage profond comprennent des millions de paramètres qui
doivent être optimisés pour une tâche donnée. Ce caractère surparamétré des mo-
dèles profonds est un atout pour l’apprentissage de représentations complexes, mais
c’est aussi une des limites de ces modèles, puisqu’il limite leur interprétabilité [143].
En effet, si certains progrès ont été réalisés pour augmenter l’interprétabilité des
modèles d’apprentissage profond [46], un compromis entre interprétabilité et per-
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Figure 8.3 – Top-5 Taux d’erreur des lauréats annuels sur la tâche de
classification ILSVRC [145]. L’architecture ResNet a surpassé la perfor-
mance humaine de 5,1% en 2015.

formance a été établi en raison de la nature surparamétrée des grands modèles
d’apprentissage profond [72].

Un autre facteur important qui explique la hausse de l’utilisation des modèles
d’apprentissage profond est l’augmentation du nombre de jeux de données et de
repères disponibles. À des fins de recherche, la communauté de la vision par ordina-
teur a développé de nombreux jeux de données annotés de grande taille et de haute
qualité, tels que ImageNet [193] et CIFAR [124] pour la tâche de reconnaissance
d’objets, MS COCO [142] et Open Images [128] pour la détection et la segmen-
tation d’objets ainsi que la classification multi-label ou les Google landmarks [166]
et la reconnaissance de scènes intérieures [253] pour la tâche de compréhension de
scènes, entre autres. Les ensembles de données annotées sont construits à l’aide
de ressources lexicales solides et riches, fournies par une supervision humaine au
cours du processus d’annotation. Par conséquent, la construction de ces ensembles
de données est coûteuse en temps et en ressources humaines. Par exemple, la
base de données ImageNet est construite sur la ressource lexicale Wordnet bien
connue [157] qui encode les connaissances de sens commun. Chacune des 14 mil-
lions d’images de la base de données ImageNet est affectée à l’une des 22 000
classes par un processus impliquant une annotation manuelle coûteuse [193].

Ces ensembles de données ont servi à la communauté pour évaluer et déve-
lopper différentes approches. Par exemple, la longue histoire entre les modèles
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profonds et le jeu de données ILSVRC est illustrée dans la figure 8.3 [145]. Bien
que ces ensembles de données académiques aient permis à l’apprentissage profond
de progresser sur plusieurs tâches difficiles, la disponibilité de grands ensembles de
données parfaitement annotés dans la plupart des scénarios pratiques ne peut être
supposée. Il s’agit d’un obstacle majeur pour les applications du monde réel, car la
performance des modèles d’apprentissage profond est fortement liée à la taille de
l’ensemble de données d’entraînement. Les auteurs de [211] montrent que pour
les tâches de vision par ordinateur, les performances augmentent de façon logarith-
mique en fonction de la taille de l’ensemble de données. De plus, comme la taille
des modèles profonds a augmenté pour améliorer leur capacité de représentation,
des ensembles de données plus grands sont nécessaires pour éviter l’over-fitting où
le modèle mémorise les données d’entraînement au lieu d’apprendre des modèles
utiles à partir des données [149]. Ainsi, alors que l’augmentation de la taille des
modèles et des ensembles de données a permis aux modèles d’apprentissage pro-
fond de surpasser largement les modèles d’apprentissage automatique traditionnels,
la conception de solutions d’apprentissage profond est devenue fortement dépen-
dante de la disponibilité de grands ensembles de données, ce qui génère certaines
limitations importantes.

8.1.2 . Modèles neuronaux profonds dépendants des données : quelques
limites

Malgré son succès, l’apprentissage profond présente plusieurs inconvénients
potentiels et importants découlant de sa nature dépendante des données, en par-
ticulier dans le contexte de la conception et du déploiement de modèles profonds
pour des applications réelles. Nous détaillons ces facteurs dans ce qui suit.

• L’annotation des données est une tâche très coûteuse .

Alors que les collections d’images à grande échelle sont désormais largement
disponibles, par exemple sur le Web-corpus, leur étiquetage manuel reste
une tâche fastidieuse et coûteuse. Dans le contexte des données publiques
et générales, une solution classique pour limiter le coût et le temps d’anno-
tation est d’utiliser le crowd-sourcing, mais cela n’est pas possible dans les
domaines qui nécessitent la disponibilité d’experts du domaine pour faire
l’annotation comme l’imagerie médicale [186]. De plus, certaines tâches vi-
suelles sont très exigeantes car elles nécessitent une annotation très précise
comme par exemple pour la tâche de segmentation sémantique. Enfin, la
qualité de l’annotation dépend aussi fortement de la capacité à collecter et
préparer un jeu de données, représentatif de la tâche visée. Le coût de l’an-
notation est donc un problème important et une limitation majeure pour
l’apprentissage supervisé, qui nécessite d’entraîner le modèle en utilisant
des données d’entraînement entièrement annotées.

Pour répondre à cette forte limitation des modèles supervisés, une solution
naturelle est de développer des schémas d’apprentissage efficaces en termes
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d’étiquettes qui évitent le besoin de grands ensembles de données anno-
tées. En l’absence d’annotations, l’apprentissage non supervisé [146,
222] est utilisé pour former un modèle qui apprend la structure implicite
de la distribution des données. Dans l’apprentissage semi-supervisé, une
combinaison d’apprentissage supervisé et non supervisé est utilisée. L’idée
principale est d’utiliser une petite quantité de données étiquetées (ou anno-
tées) et d’exploiter une grande quantité de données non étiquetées. L’ap-
prentissage faiblement supervisé [254] allège le problème de l’obten-
tion d’ensembles de données étiquetées de haute qualité, coûteux ou peu
pratiques, en supposant des annotations de faible qualité, c’est-à-dire des
annotations inexactes, bruyantes ou incomplètes. À la frontière entre l’ap-
prentissage semi-supervisé (petit ensemble de données annotées) et l’ap-
prentissage faiblement supervisé (annotation incomplète), l’apprentissage
actif propose de sélectionner une petite quantité de données pertinentes qui
doivent être étiquetées afin d’avoir le plus grand impact possible sur l’ap-
prentissage d’un modèle supervisé. La transférabilité des représentations
profondes apprises, mentionnée ci-dessus, a également stimulé le dévelop-
pement des approches dites de apprentissage par transfert [236] et de
adaptation au domaine [228]. Dans ces paradigmes, nous supposons la
disponibilité d’un domaine source, pour lequel nous disposons d’un large
ensemble de données annotées de haute qualité pour entraîner un modèle,
qui est ensuite adapté à un domaine cible moins riche en termes de don-
nées annotées. Enfin, un autre cadre d’apprentissage récent et important
pour éviter le besoin de grands ensembles de données annotées est l’ap-
prentissage auto-supervisé. Il s’agit d’une rencontre entre l’apprentissage
non supervisé et supervisé avec la construction automatique d’étiquettes
pour les données non supervisées à l’aide de certaines tâches prétextes.

Ces différents schémas d’apprentissage répondent au coût d’annotation
avec un succès variable. Le coût d’annotation des algorithmes non supervi-
sés est faible, mais leur efficacité est limitée par l’hypothèse des clusters, qui
suppose que les échantillons affectés à différents clusters sont sémantique-
ment différents [42], ce qui n’est souvent pas satisfait dans les applications
du monde réel. Elle ne parvient pas non plus à capturer la sémantique
des ensembles de données avec le même degré de raffinement et de perfor-
mance que leurs homologues supervisés ou semi-supervisés [14]. Le coût de
l’annotation reste important pour l’apprentissage semi-supervisé, les per-
formances dépendant de la taille de l’ensemble de données étiquetées [76].
De plus, l’efficacité de l’approche semi-supervisée dépend également d’une
hypothèse forte sur la sémantique des données (c’est-à-dire l’hypothèse du
cluster, du collecteur et de la régularité) qui n’est pas nécessairement véri-
fiée sur des données réelles [223]. L’apprentissage par transfert et l’adapta-
tion au domaine se sont avérés efficaces pour réduire le coût d’annotation,
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mais ils sont limités par une similarité supposée entre le domaine source et le
domaine cible [260]. Enfin, la performance de l’apprentissage auto-supervisé
dépend de la capacité à concevoir une tâche prétextuelle efficace [111], ce
qui peut être difficile pour les domaines de haute expertise.

Ainsi, nous soutenons que, malgré les progrès récents dans l’exploitation
des données non étiquetées, il est crucial d’utiliser des données étiquetées
de haute qualité dans l’apprentissage supervisé ou semi-supervisé. En effet,
la plupart des avancées dans les tâches de vision par ordinateur utilisent une
certaine forme de supervision parenciteforet2020sharpness,liu2021swin. En
outre, l’expertise et les connaissances des experts du domaine peuvent être
apportées au système d’apprentissage automatique au cours du processus
d’annotation parencitehassanzadeh2011machine. L’annotation est égale-
ment beaucoup plus importante dans les tâches de vision par ordinateur
que dans les tâches de traitement du langage naturel, en raison du fossé
sémantique bien connu [208].

• L’annotation doit être un processus continu et dynamique La plupart
des ensembles de données peuvent être considérés comme statiques une fois
constitués et les modèles d’apprentissage profond sont généralement appris
sur des lots stationnaires de données d’entraînement. Néanmoins, dans les
applications pratiques, de nouvelles données peuvent être acquises en per-
manence et les modèles d’apprentissage profond doivent donc tenir compte
des situations dans lesquelles les informations deviennent disponibles de
manière progressive au fil du temps. C’est le cas d’un grand nombre d’ap-
plications du monde réel. Par exemple, dans l’analyse de données [63] ou
la robotique [51], le modèle doit s’adapter à l’environnement changeant.
Dans les cas où l’on suppose que l’on a accès à toutes les données ac-
quises précédemment, le problème devient trivial, bien que gourmand en
temps et en ressources, car toutes les données acquises peuvent être utili-
sées pour entraîner le modèle en une seule tâche. Cette méthodologie est
très inefficace et entrave également l’apprentissage de nouvelles données en
temps réel. Lorsque l’accès aux anciennes données est limité ou impossible,
le problème devient beaucoup plus compliqué. En particulier, les modèles
d’apprentissage profond souffrent d’un oubli catastrophique [154] où les
anciennes informations sont perdues lors du réentraînement pour apprendre
de nouvelles informations. Si rien n’est fait pour empêcher ce phénomène,
les prédictions pour les classes du passé deviennent aléatoires ou presque.
C’est particulièrement vrai pour les algorithmes d’apprentissage profond
qui dépendent fortement des données étiquetées. Il fait donc appel à des
schémas d’annotation ou de formation qui tiennent compte de la nature
dynamique du domaine visé.

Dans la littérature, diverses approches ont été proposées pour aborder le
problème des domaines dynamiques avec des motivations différentes. Life-
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long learning ou apprentissage continu [174] apprend continuellement
sur de nouvelles données tout en conservant les connaissances acquises
dans le passé. Les méthodes de méta apprentissage [134] traitent une
séquence de tâches, mais avec l’objectif de former un apprenant efficace
sur une nouvelle tâche. Ainsi, les méthodes de méta-apprentissage tentent
d’extraire des informations pendant la formation des tâches précédentes
qui faciliteraient l’apprentissage de la nouvelle tâche. Cette stratégie d’ap-
prentissage a été largement utilisée dans le contexte du few shot learning
dans lequel nous voulons apprendre avec très peu d’échantillons [231]. No-
tez que les approches de méta-apprentissage sont différentes de celles de
l’apprentissage tout au long de la vie, car elles ne mettent pas l’accent sur
la rétention de la tâche précédemment apprise comme le fait ce dernier [30].
Les êtres humains et les animaux ont la capacité d’acquérir et d’étendre
continuellement leurs connaissances en interagissant avec un environne-
ment en constante évolution [22]. Cette capacité est essentielle pour conce-
voir des modèles qui s’améliorent avec le temps sans avoir à apprendre le
modèle à partir de zéro à chaque fois que de nouvelles informations sont
présentées [81]. C’est un domaine de recherche ouvert et une étape impor-
tante vers la création d’une intelligence générale artificielle [68].

• Bias de l’ensemble des données Une autre limitation importante due à
la dépendance des modèles profonds vis-à-vis des données est leur grande
sensibilité au biais dans les données. Plusieurs imperfections, telles que des
étiquettes bruyantes ou des distributions déséquilibrées, peuvent constituer
un biais dans les données. Le biais de jeu de données a récemment été mis en
évidence dans les tâches de vision, principalement en raison des applications
de reconnaissance des visages qui montrent un biais négatif de l’algorithme
vers les catégories de la population qui sont moins représentées dans les
jeux de données d’entraînement. Les auteurs in [116] fournissent une revue
systématique de la littérature sur le problème du biais dans les logiciels
de reconnaissance faciale et soulignent le rôle des données d’entraînement
dans l’instillation du biais dans l’algorithme.
Ce biais est également présent dans des domaines très contrôlés. Par exemple,
dans le domaine médical, il a été démontré dans [129] que le biais de genre
a un effet très fort dans le diagnostic médical assisté par ordinateur et
qu’il est le facteur principal des prédictions sous-optimales pour le genre
sous-représenté.
Le déséquilibre des classes est un problème majeur qui est généralement
négligé lorsque l’on travaille avec des ensembles de données universitaires.
Ces ensembles de données peuvent être considérés comme optimisés pour
l’apprentissage puisque leurs classes sont représentées de manière équili-
brée, c’est-à-dire que le nombre d’instances de chaque classe dans l’en-
semble de données d’apprentissage est équilibré. En pratique, il est pru-
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dent de considérer que les ensembles de données sont toujours imparfaits.
Ces imperfections peuvent résulter de problèmes dans le processus d’ac-
quisition des données ou de diverses complexités inhérentes aux données
de mots réels. Le déséquilibre des classes [85] apparaît lorsque certaines
classes de l’ensemble de données sont surreprésentées ou sous-représentées
par rapport aux autres classes. Les ensembles de données construits pour
des applications réelles sont souvent déséquilibrés et les classes d’intérêt
sont particulièrement sous-représentées par rapport aux autres classes qui
sont fréquentes. Par exemple, dans le domaine de l’imagerie médicale, on
rencontre un déséquilibre entre les cas pathologiques et les cas normaux,
car les cas présentant des anomalies pathologiques peuvent être rares ou
uniques [151]. L’apprentissage à partir de données déséquilibrées, c’est-à-
dire avec des classes minoritaires et majoritaires, conduit à un biais de pré-
diction en faveur des classes majoritaires. Cet effet négatif est bien étudié
pour les méthodes classiques d’apprentissage automatique, comme décrit
dans les deux études suivantes [86, 108]. Une étude similaire [23] a été
menée récemment sur les algorithmes d’apprentissage profond avec une
conclusion similaire sur l’effet négatif du déséquilibre sur les performances
de prédiction.

8.1.3 . Le déploiement de l’apprentissage automatique nécessite des
schémas d’apprentissage itératifs

Dans les applications du monde réel qui déploient des modèles d’apprentissage
automatique, il est courant de supposer un schéma itératif où les performances
du modèle sont surveillées en permanence pendant le déploiement et peuvent être
mises à jour avec les nouvelles données acquises, comme illustré dans la figure
8.4. Alors que cet aspect est souvent considéré dans le domaine appelé ML ops
(Machine Learning Operational) dans lequel un cycle de vie ML est considéré, ce
schéma itératif est rarement pris en compte dans la recherche où l’on ne considère
que les trois étapes classiques de formation, validation et test. Dans cette thèse,
nous étudions ce schéma itératif dans lequel nous supposons que les nouvelles
données doivent être prises en compte de manière itérative afin de maintenir la
performance du modèle.

Deux scénarios sont possibles lors de la mise à jour du modèle avec de nouvelles
données :

1. les nouvelles données acquises ou annotées proviennent du même domaine
(c’est-à-dire des mêmes classes sémantiques)

2. les nouvelles données proviennent d’un domaine différent où de nouvelles
classes sont introduites.

Dans les deux cas, la prise en compte de nouvelles données est un défi dans le
contexte des modèles profonds, en partie à cause des facteurs limitatifs dépendants
des données décrits dans la section précédente. Nous proposons donc d’aborder ces
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Figure 8.4 – Vue d’ensemble du pipeline d’apprentissage automatique.
Il montre le schéma itératif couramment utilisé dans les applications
pratiques. Les performances du modèle sont contrôlées pendant le
déploiement et de nouvelles données supplémentaires peuvent être
utilisées pour mettre à jour le modèle.

deux scénarios en adaptant deux schémas d’apprentissage itératif au contexte de
l’apprentissage profond avec des données incrémentales, limitées et déséquilibrées.
Pour aborder le premier scénario dans lequel des données nouvelles mais limitées
d’un domaine donné doivent être annotées en permanence, nous nous basons sur le
schéma active learning. Pour le second scénario, dans lequel les nouvelles données
contiennent des échantillons de classes précédemment inconnues, nous nous basons
sur le schéma apprentissage incrémentiel de classe. Nous présentons brièvement
ces deux scénarios d’apprentissage itératif dans ce qui suit.

Apprentissage actif

L’apprentissage actif (AL) [199] tente de résoudre le problème du coût d’anno-
tation de grands ensembles de données pour l’apprentissage supervisé. En partant
du principe que tous les échantillons n’ont pas la même valeur pour le modèle,
l’apprentissage actif tente de sélectionner les échantillons les plus importants pour
une annotation manuelle. AL est généralement déployé de manière itérative. Un
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nombre fixe d’échantillons est sélectionné par itération et annoté afin de réen-
traîner le modèle qui devient progressivement plus fort. La stratégie de sélection
peut être conduite avec des objectifs différents mais complémentaires : maximiser
la informativité où les échantillons qui sont susceptibles d’apporter de nouvelles
informations sont sélectionnés [202, 32, 196, 15] ou la maximisation de la repré-
sentativité où le critère principal est d’assurer un ensemble diversifié d’échantillons
afin d’apprendre une représentation forte de l’ensemble de données non étiquetées
[198, 139, 36].

Récemment, AL a regagné de l’intérêt dans le contexte des modèles profonds.
Par exemple, [189] fournit une étude récente sur l’apprentissage actif profond
(DAL). Dans cette thèse, plusieurs aspects ont motivé l’utilisation du schéma AL.
Tout d’abord, il répond à la fois au coût d’annotation et est bien adapté au schéma
d’apprentissage itératif déployé dans les applications du monde réel. De plus, AL est
un paradigme humain dans la boucle et permet d’ajouter continuellement une ex-
pertise de haut niveau dans le processus d’apprentissage par l’annotation. Il apporte
également plus d’explicabilité [64] puisqu’il permet à l’expert d’observer l’évolution
du modèle d’apprentissage et sa prédiction sur des données non étiquetées. Ainsi,
avec l’aide de l’expertise humaine, il pourrait être possible de déterminer quels
concepts ont été appris par le modèle et ce qui reste à apprendre. Enfin, dans l’AL,
l’expertise est utilisée pour annoter les données brutes, contrairement à l’apprentis-
sage non supervisé ou auto-supervisé où l’annotation est effectuée sur des données
groupées, ce qui pourrait être biaisé [224]. Néanmoins, malgré ces travaux récents
sur l’apprentissage actif profond, il reste des questions ouvertes qui limitent son
utilisation dans des scénarios pratiques.

Apprentissage incrémentiel par classe

L’apprentissage incrémentiel par classe (CIL) [26] vise à ajouter de nouvelles
classes au modèle d’apprentissage, tout en conservant l’efficacité pour les classes du
passé. Comme nous l’avons vu précédemment, le principal défi de l’apprentissage
dans des domaines dynamiques est l’oubli catastrophique [154] où les modèles
perdent les connaissances acquises précédemment, lorsqu’ils sont réentraînés avec
de nouvelles données. Il est donc nécessaire de réentraîner les modèles avec les
données précédentes et nouvelles, ce qui entraîne un coût plus élevé en termes de
ressources informatiques pour l’entraînement sur des ensembles de données plus
importants, ainsi qu’en termes de mémoire pour le stockage de toutes les données
antérieures.

Nous avons choisi de nous appuyer sur le CIL en raison de sa capacité à traiter
les domaines dynamiques que l’on peut rencontrer dans les applications du monde
réel. De plus, le CIL fait partie de l’objectif plus large de l’apprentissage continu
ou tout au long de la vie où de nouvelles informations peuvent être continuelle-
ment assimilées dans le modèle. La réutilisation des informations apprises est donc
essentielle pour limiter le coût de calcul de l’apprentissage du nouveau modèle à
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partir de zéro avec les anciennes et les nouvelles données. En outre, le CIL permet
également de réduire l’utilisation de la mémoire en empêchant ou en limitant la
quantité d’instances passées à stocker. L’accès aux anciennes données peut être
restreint ou impossible en raison de plusieurs facteurs tels que : la suppression des
données sur le Web et dans le traitement des données en continu [77], la confiden-
tialité dans le domaine médical [225] ou les ressources limitées dans les systèmes
embarqués [175]. Ainsi, l’apprentissage incrémentiel est hautement souhaitable
dans ces domaines dynamiques afin de stimuler la réutilisation des connaissances
apprises pour une utilisation efficace des ressources, tout en réduisant également
la dépendance aux instances passées.

8.1.4 . Contributions

Dans cette thèse, notre objectif est de fournir de nouveaux outils méthodolo-
giques pour répondre à plusieurs limitations qui affectent le déploiement de modèles
neuronaux profonds dans des applications de mots réels. Ces limitations sont au
nombre de trois : le besoin de grandes données annotées pour construire des mo-
dèles efficaces et conscients du domaine, le besoin de schémas d’apprentissage
itératifs afin de prendre en compte le comportement dynamique d’une majorité
d’applications de mots réels et la nature déséquilibrée de la plupart des jeux de don-
nées du monde réel. Sur la base des deux schémas d’apprentissage itératif présentés
dans la section précédente, le schéma d’apprentissage actif et celui d’apprentissage
incrémentiel par classe, nous appliquons et évaluons nos solutions sur des tâches
de reconnaissance visuelle telles que la classification d’images, mais nos solutions
sont génériques et pourraient être appliquées avec une petite adaptation à d’autres
tâches visuelles telles que la segmentation d’images ou la détection d’objets, ainsi
qu’à des tâches contenant des données textuelles ou des séries temporelles unidi-
mensionnelles. Dans les deux cas, nous considérons la présence du déséquilibre des
ensembles de données comme un problème central et nous proposons des solutions
pour en atténuer les effets. Un aperçu des questions abordées dans les différents
chapitres ainsi que les contributions correspondantes est donné ci-dessous.

• Notre première contribution, décrite dans le Chapitre 3, propose une nou-
velle approche, appelée apprentissage actif à un seul stade, pour répondre
au problème de démarrage à froid de l’apprentissage actif profond. Comme
nous l’avons dit précédemment, le processus d’apprentissage actif itératif a
besoin d’un ensemble de données initiales étiquetées, suffisamment grand
pour pouvoir être utilisé pour lancer le processus d’apprentissage itératif. En
s’inspirant de l’apprentissage par transfert et de l’adaptation au domaine,
nous proposons d’utiliser une représentation à usage général qui est apprise
sur un domaine source. Cette proposition est en accord avec d’autres sché-
mas efficaces d’apprentissage d’étiquettes, et en particulier avec le schéma
d’apprentissage few-shot dans lequel il a été démontré que des résultats de
pointe peuvent être obtenus par une bonne représentation apprise [216]. Le
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principe de notre approche est d’utiliser une représentation apprise sur un
grand ensemble de données source étiquetées pour représenter les
échantillons et de sélectionner, en fonction de leurs représentations, un
ensemble diversifié d’échantillons à présenter pour annotation. Notre ap-
proche suppose également que l’ensemble de données non étiquetées peut
être déséquilibré et que notre approche peut limiter ce déséquilibre.

• Nous avons ensuite proposé d’améliorer le cadre classique de l’apprentissage
actif itératif qui suppose, contrairement à la contribution précédente, un
sous-ensemble initial étiqueté suffisant du domaine cible pour répondre
à deux de ses limites. Dans le Chapitre 4, nous nous concentrons sur
une meilleure gestion du déséquilibre du jeu de données. Nous proposons
une nouvelle stratégie de sélection qui priorise les classes minoritaires
pour une sélection équilibrée et informative. Nous comparons également les
méthodes de la première contribution qui reposent sur un domaine source
avec les méthodes développées dans le cadre itératif.
le chapitre 5, nous proposons une nouvelle stratégie pour combiner les
objectifs d’information et de représentativité dans la sélection. Nous intro-
duisons une nouvelle fonction d’acquisition qui sélectionne les échantillons
en fonction des estimations des modèles appris dans les itérations actuelles
et précédentes. Les échantillons pour lesquels il y a un décalage maximal
vers l’incertitude entre les deux dernières prédictions des modèles appris
sont favorisés. Le choix est fait de sélectionner les échantillons pour les-
quels le modèle est le plus susceptible d’oublier et donc de trouver difficile
l’apprentissage.

• Notre dernière contribution traite du cas où de nouvelles classes peuvent être
vues dans les données de production (i.e. domaine dynamique) et s’appuie
sur l’apprentissage incrémentiel. Notre travail se concentre sur la limitation
des oublis catastrophiques tout en prenant en compte le déséquilibre des
classes. Nous proposons une étude détaillée de l’apprentissage incrémentiel
déséquilibré en nous concentrant sur les méthodes de calibration dont l’ob-
jectif est de réduire le biais de prédiction entre les classes majoritaires et
minoritaires. Nous proposons également deux nouvelles méthodes de cali-
bration et comparons leurs performances à celles des méthodes existantes.
Cette partie de notre travail est présentée dans le Chapitre 6.

Nos travaux ont été publiés dans des conférences et revues internationales
récentes.

• Chapitre 3 Aggarwal Umang, Adrian Popescu, et Céline Hudelot. "Appren-
tissage actif pour les ensembles de données déséquilibrés". Actes de la
conférence d’hiver IEEE/CVF sur les applications de la vision par ordina-
teur. 2020.

• Chapitre 4 Aggarwal Umang, Adrian Popescu, et Céline Hudelot. "Mino-
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rity Class Oriented Active Learning for Imbalanced Datasets". 2020 25e
Conférence internationale sur la reconnaissance des formes (ICPR). IEEE,
2021.

• Chapitre 5 Aggarwal Umang, Adrian Popescu, et Céline Hudelot. "Opti-
mizing Active Learning for Low Annotation Budgets" arxiv 2201.07200 in
cs.CV .

• Chapitre 6 Aggarwal Umang, Adrian Popescu, Eden Belouadah, et Céline
Hudelot. "Une étude comparative des méthodes de calibration pour l’ap-
prentissage incrémentiel en classe déséquilibrée". Outils et applications mul-
timédia (2021) : 1-20.
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