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Chapter 1

Introduction

Optical communications industry development and architecture transformation are
driven by the enormous growth of traffic volume in emerging services such as Data
Center (DC) cloud interconnection, ultra-bandwidth video services, and 5G mobile
network services. Demand for cloud and video services is driving increasingly di-
verse traffic to the metro network. Traffic stays in the metro networks as opera-
tors, cloud providers, and co-location providers add data centers and keep content
closer to end-users. Moreover, a new deployment of optical fibers and network el-
ements is costly and requires long-term planning. Service providers are interested
in high-speed rates optical interface (e.g., 1Tb/s) and the efficient use of the optical
resource through an optical network that can dynamically provision and reconfigure
network resources. In the cloud era, networking is DC-centric. Therefore, networks
must support quick service provisioning, full automation, and open collaboration,
and network security mechanisms must be enhanced to improve network reliabil-
ity. These are the typical requirements and challenges of the next-generation optical
communication networks

1.1 GMPLS & Software-Defined Networking (SDN)

In the past, the rapid development of optical transport system has increased usage
of optical networks and optical devices. The diversity and complexity in manag-
ing these optical devices are the main motivations in enhancing MPLS to a more
generalized version of MPLS known as GMPLS (Generalized MultiProtocol Label
Switching). The GMPLS (Generalized MPLS) was introduced in 1999-2000 and was
designed as a superset of the MPLS control plane protocols to “avoid reinventing
the wheel”; by using and extending existing protocols for the unique characteristics
of the circuit-world. It was thought that the use of the same protocols could lead to
an intelligent, automated, unified control plane (UCP) for a variety of technologies
packet, time-slots, wavelengths, and fibers [2]. However, GMPLS has failed in actual
deployment in wide area networks. After a decade, GMPLS hasn’t been commercial
deployment as a unified control plane for all packet, time-slots, wavelengths, and
fibers networks. Even there have been many interoperability demonstrations and
standardized at the ITU, IETF and OIF. Most transport equipment vendors have
implemented it in their switches with a proprietary implementation of the GMPLS
control plane. GMPLS is ultimately just a bunch of control protocols and applica-
tions such as GMPLS RSVP-TE [3] (signaling), LMP [4] (link management), OSPF-TE
[5][6], and ISIS-TE [7] (routing), PCEP [8] (path computation), path computation [9],
multi-layer [10], network failure recovery [11] (protection, restoration) make GM-
PLS becomes quite complicated. There are two different control plane scenarios are
considered to deploy a GMPLS network:
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FIGURE 1.1: GMPLS Architectures

¢ The distributed GMPLS is shown as 1.1-a where path computation during both
provisioning and restoration are locally performed at the control plane of net-
work nodes. Each network node stores its own Traffic Engineering Database
(TED) in the distributed scenario, including network topology and spectrum
availability information. The TED is updated through Link State Advertise-
ment (LSA) information exchanged through OSPE-TE protocol [5]. During
provisioning, upon lightpath request, the source node computes a path and,
using RSVP-TE [3], triggers the establishment of a Label Switched Path (LSP)
(also called lightpath) for serving the specific request. During restoration,
upon failure, the detecting node sends an RSVP-TE Notify [5] to the source
node of each disrupted LSP and generates an OSPF-TE Router LSA identify-
ing the failed link which is flooded on the network [3]. A source node receiving
the RSVP-TE Notify performs the following actions. First, it sends an RSVP-
TE Tear message along the working path of the disrupted LSP to release the
resources utilized; then, it computes a new path. Once path computation is
completed, the source node triggers RSVP-TE signaling to activate the com-
puted backup path.

e The centralized GMPLS/PCE is shown in 1.1-b, where a centralized PCE is de-
ployed to perform the path computations. In the centralized scenario, besides
the TED, the considered Stateful PCE also stores an LSP database including in-
formation about all the LSPs currently established in the network [8]. The PCE
communicates with the nodes through the Path Computation Element Proto-
col (PCEP) [8]. Upon lightpath request, the source node sends the PCEP PCReq
message to ask for a path to the PCE during provisioning. The PCE performs
the path computation and replies with a PCEP PCRep message, including the
computed path and a suggested label indicating the spectrum slot to reserve.
The source node will then trigger RSVP-TE to perform the LSP establishment.
Similar to the distributed scenario, when a failure occurs, the detecting node
sends an RSVP-TE Notify [5] to the source node of each disrupted LSPs and
floods an OSPE-TE Router LSA for advertising the failure. When the source
node receives the Notify message, it sends an RSVP-TE Tear message to re-
lease the resources used by the disrupted LSPs. Then a PCEP PCReq message
is sent to request the computation of a backup path. Additionally, when the
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Tear message reaches the destination node, a PCEP PCRpt message is sent to
the PCE to report the released resources along the working path of the dis-
rupted LSPs.

Recently, Software-defined networking (SDN) is an umbrella term encompassing
several kinds of network technology to make the network as agile and flexible as the
virtualized server and storage infrastructure of the modern data center. SDN is de-
fined by three architectural principles: the separation of control plane functions and
data plane functions, the logical centralization of control, and the programmability
of network functions. Separation of control and data planes means that the decision
about how to handle traffic is not made by the switch in the data plane but is taken
by a centralized controller. Unlike traditional GMPLS, A logically centralized con-
trol plane in SDN (shown in 1.2) includes an SDN controller, and its applications are
responsible for performing all functions such as network discovery, path computa-
tion, service provisioning, restoration, protection... The idea is that networks can be
made easier to be managed (i.e., control and monitor) by going towards centralized
solutions. Moreover, experience has shown that some traffic engineering problems,
such as shared path protection, QoS, and adaptive load balancing [12], can be better
solved with a global view of the network. Many other aspects of networking can
also benefit from global optimization. A study in [13] has shown that SDN schemes
significantly reduce the lightpath setup and recovery time with respect to GMPLS-
based schemes. The programmability of network functions enables software au-
tomation that can react and reprogram the network without involving humans in
the critical path. Previous interfaces to network devices mainly were designed for
human interaction (e.g., the CLI: Command Line Interface) or narrow management
functions (e.g., through SNMP: Simple Network Management Protocol).

PCE Restoration Apps

[ SDN controller

FIGURE 1.2: SDN Architecture
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Although SDN was initially born for packet-switched networks, in recent years,
SDN gained interest as a control plane solution for EONs. In particular, some stud-
ies have been made to enable remote configuration of the components of the optical
node, such as the switching matrix and transmission characteristics (e.g., bit rate)
[14]. However, we are at the early stage of introducing SDN in EONs, and work still
needs to be done on the control plane to fully support the configuration of optical
networks, e.g., SBVTs. Moreover, apart from the control plane, also the management
plane needs improvements for supporting management mechanisms to reduce de-
ployment and operational complexity and maximize the benefits of EONs capabili-
ties [15].

1.2 Evolution of Optical Networks Control and Management

Optical transport systems and networks have historically been closed systems be-
cause optical signal transmission and switching technologies are complex. Because
many optical system components such as transponders, amplifiers, wavelength mul-
tiplexers/demultiplexers, wavelength selective switches (WSS), gain equalizers are
coupled. The control and management software of optical networks have been tradi-
tionally bound with these optical systems as well shown in 1.3 - left. Network disag-
gregation proposes to decouple the closed optical system equipment (OTs, ROADMs,
Amplifiers. .. ) according to their functions into independent and software-manageable
hardware devices in 1.3 - right. Furthermore, disaggregation aims to separate the op-
erating system from the underlying hardware, enabling the development of vendor-
agnostic optical hardware. Although there have been numerous efforts to open up
optical transport networks and move away from proprietary systems (e.g., the black
link model supporting alien wavelengths), all of these optical systems still have to
be designed together and optimized to get at least acceptable system performance,
resulting in slow progress toward open disaggregated optical transport networks.

Open Source
Network Controller

+ Proprietary and closed API I .
+ Vendor-specific data model .

+ Vertically integrated + Multi vendor

Vendor Proprietary

Network Controller

Open and standard API
Common data models

+ Single vendor + Disaggregated

FIGURE 1.3: Disaggregation concept [1]

The traditional approach to controlling and managing optical networks is un-
dergoing a transformation driven by the rapid advances in software-defined net-
working (SDN) technology. Current deployed optical networks (shown in 1.4-a) use
proprietary technology from a vendor which is not directly interoperable with other
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vendors and, as such, all devices (transponder, ROADM, amplifier), the network
management system (NMS), optical planning, optimization, and monitoring tools
are provided by the same vendor. The vendor lock-in is expanded as the network is
maintained and evolves. This is holding back flexibility and innovation in the opti-
cal network arena.

[ Vendor OLS Controller (NMS) ] [

[a3==5)
=

a) Traditional Optical Transport Networks

— (] D>

Transponder ROADM  Amplifier

SDN Controller ]

b) Fully Disaggregated Optical Transport Networks

FIGURE 1.4: Open Dis-aggregated Optical Networks

Increased optical networking flexibility, innovation, and reduced vendor lock-in
can be achieved by opening the optical network, i.e., disaggregating the network
and deploying an open SDN controller that can control and manage a multi-vendor
network via open and standard interfaces. The fully dis-aggregated optical network
architecture (Fig. 1.4-b) is the ultimate goal of open dis-aggregated optical networks
where the SDN controller configures and manages all devices from different ven-
dors directly through open standard interfaces allowing the SDN controller to have
direct access to the devices and providing it a complete view of the network topol-
ogy. This fully disaggregated optical network architecture can be used for greenfield
deployments; however, there are still many challenges such as standardization, in-
teroperability testing, and validation challenges to be overcome. Furthermore, the
SDN controller in fully disaggregated optical network architecture must be more
robust, have high scalability and flexibility, and ease the integration of third-party
software modules and applications.

While fully disaggregated optical network architecture remains many challenges
need to be resolved, a pragmatic approach to opening an optical network is to evolve
to the partially disaggregation architecture [16], [17]. It can be used for short-term
brownfield deployment shown in Fig. 1.5) where the optical terminal (OT) (transpon-
der) is the first component being removed from the vendor lock-in. Transponders
have a rapid innovation cycle and thus enable operators to offer a new type of con-
nectivity services with incremental speed, reach, and QoT, among other attributes.
However, due to the lack of standardization at Layer 0 (LO) and the complexity of op-
tical transmission due to the presence of physical impairments, the vendor’s Open
Line System (OLS) controller needs to remain in the network and be responsible for
controlling the devices in the OLS domain via its vendor-proprietary interface and
performing the optical-impairment-aware path computation. The OLS controller in-
terfaces with the SDN controller via a standard northbound interface (NBI). The OLS
domain is abstracted as a “network node” in the SDN controller topology. The OTs,
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in this case, are controlled directly by the SDN controller via an open-source device
data model.

SDN Controller

Industry Stagdard Interface

Industry [ Vendor OLS ] Industry

Standard Controller (NMS) Standard
3 Interface

Interface

// I
Propri,etaqy\lpterface
4 1 N

4 N

Partially Disaggregated Optical Transport Networks

— () D>

Transponder ROADM Amplifier

FIGURE 1.5: Open partially disaggregation architecture

1.3 Thesis contribution and organization

This PhD. Thesis investigates the possible solutions to enhance the control and man-
agement platform of the open disaggregated optical networks. In particular, Chapter
2 covers the SDN controller platform. Chapters 3 and 5 focus on dynamic resource
allocation and optimization. Chapter 4 cover the closed-loop control scenarios. More
in detail, the thesis is structured as follows:

* Chapter 2 discusses the limitations of the monolithic SDN controller platform.
Then, a Container-based Microservices SDN controller Platform (nONCP) is
proposed, presented, and demonstrated its capabilities in a real hardware multi-
vendor network testbed at a network operator labs with different setups such
as single vendor fully disaggregated network setup, multi-vendor partially
disaggregated setup and the mix of multi-vendor fully and partially disag-
gregated network setup.

¢ Chapter 3 investigates and evaluates different RSA algorithms designed for
the pfONCP’s Path Computation Function Application. BLP model is also pro-
posed and evaluated with RSA algorithms via simulation.

* Chapter 4 proposes and demonstrates two closed-loop control automation sce-
narios. in the first scenario, a graph-based solution implemented in the ftONCP’s
Alarm Correlation application is presented. It demonstrates the alarm correla-
tion capability in a real hardware testbed of a partially disaggregated network
set up at a network operator lab. The second scenario demonstrates that the
SDN-based QoT monitor reacts to performance degradation and dynamically
fixes the misalignment between transmitter and receiver central frequencies.
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* Chapter 5 evaluates and demonstrates dynamic optical channel defragmen-
tation showing the benefits of dynamic optical channel defragmentation in
increasing the spectrum usage efficiency and reducing connectivity service
blocking probability.

¢ Finally Chapter 6 summarizes the thesis results and the Ph.D. achievements,
including the list of publications and other accomplishments.



Chapter 2

Container-based Micro-services
Optical Network Controller
Platform

The new generation of optical transport network architecture has been formed by
SDN technology, where a centralized controller controls the entire network. The
centralized controller manages network resources (port, capacity, spectrum...) and
performs complex functions such as global network planning, monitoring, optimiza-
tion, resource slicing, root cause analysis, correlation... With recent advances in ap-
plying machine learning technology to optical networks and the requirements of
open dis-aggregated multi-vendor optical networks, the centralized controller has
to provide the capability to support fast and straightforward integration of new net-
work control functions and vendor driver plugins. It also has to be flexible and
scalable enough to support the transformation of optical architecture from partially
dis-aggregated to fully dis-aggregated deployment.

2.1 Contribution

This research activity investigates and proposes a new software architecture and de-
tailed implementation of the Centralized SDN controller platform that provides a
modular network control plane called Container-based Micro-services Optical Net-
work Controller Platform (uONCP). The ptONCP provides the capabilities to instan-
tiate, upgrade, and automate and on-demand deployment of the controller platform
modules and their applications. The pfONCP relies on the micro-services architec-
ture, standardized YANG data model such as TAPI, OpenConfig, and in combina-
tion with Docker container [18] technology to allow: Network control platform as a
service, automated and on-demand deployment of controller’s modules or applica-
tions, and on-the-fly upgrades or swap of the software components. In the container-
based micro-services, the controller’s modules and its applications are built as inde-
pendent micro-service components running inside the docker containers, as shown
in 2.4, the modules communicate with each other over a messaging system (e.g.,
Rest/Restconf and Kafka). This allows the applications to be developed in any pro-
gramming language (e.g., C, Java, Python), hence rely on their libraries, and to be
independently tested. This tONCP enables automation of Continuous Integration/-
Continuous Delivery (CI/CD), which reduces CAPEX and OPEX of SDN software
development and operations. The controller and its applications are managed and
orchestrated by an orchestrator combined with CI/CD tools such as Git and Jenkins
to automate the testing and validation of each element. The orchestrator allocates
the IT resources for each software module, such as CPU and memory. Furthermore,
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the nONCP allows each of its modules to scale horizontally to adapt to the size of
optical network infrastructure and the transformation of optical architecture from
partially dis-aggregated to fully dis-aggregated deployment.

2.2 Current SDN controller

Ol—

a, Vertical Scaling

Ol== 0] O] [©] €

b, Horizontal Scaling

FIGURE 2.1: a) Vertical and b) Horizontal Scaling

The traditional approach to the control and management of the optical networks
is shifting along with the rapid advances in software-defined networking (SDN)
technology. The separation of control and data plane pushed the development of
the logically centralized control plane. Current open-source projects (e.g., ONOS,
ODL) are monolithic, as shown in 2.2, and resource-hungry software integrating
both SDN controller and its applications, which is simple to test, deploy and scale
vertically. However, this leads to non-efficient use of the resources and does not pro-
vide scaling mechanisms dealing with high loads of connectivity service requests or
many network devices. Moreover, as more and more applications and features are
being developed and integrated into the SDN controller platform, the limitations of
monolithic software appear: Addition of new features requires to be planned to re-
build and redeploy the controller, vertical scalability shown as 2.1-a of IT resources,
hard to maintain the source code... The controller platform also needs the enhanced
capability of instantiating, upgrading, automated and on-demand deployment of
the controllers and the applications such as path computation, defragmentation, re-
optimization, recovery or quality of transmission,... to be adapted to the specifics
of the optical network infrastructures [19]. This requires an evolution in the control
plane architecture from monolithic to microservices, including the SDN controllers
and the SDN applications. Most of the studies listed in [20] have been done to solve
the controller placement problem considering a variety of objectives such as min-
imizing the latency between controllers and their connected switches, enhancing
the reliability of the control network, or minimizing deployment cost and energy
consumption. These previous studies are at the level of algorithm design and per-
formance evaluation. The issues regarding how first to apply a controller placement
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FIGURE 2.2: Monolithic controller

algorithm and then to deploy or migrate the SDN controllers and the SDN applica-
tions in a real network control plane platform has not been addressed yet, including
with an experimental prototype.

2.3 Proposed Micro-services Controller Architecture

To overcome the monolithic controller’s challenges, the microservices-based con-
troller is proposed as shown in 2.3. The micro-services architecture style naturally
results in a modular platform with clean interfaces. The big monolithic controller
software stack is decoupled into small software modules. The modules communi-
cate with each other over a well-defined and standardized messaging system. Small
components make the system horizontally (multiple instances of the same compo-
nent type) scale up and down quickly. It also provides the controller resiliency where
the micro-services are monitored and restarted in case of misbehavior.



2.4. uONCP System Architecture and Implementation 11

Webul )
lapp2z (3| lappt 53

topology @Hpo\icy = | |service /@
device [J ||device =

| openﬂg&ﬂ//@| netconfT ,@ | = |
‘ openﬂ@&é SI netconf2 / ) | | gNMI S |
| openflow3 8‘ netconf3 ) |
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2.4 pONCP System Architecture and Implementation

In this section, the proposed controller software architecture is presented together
with the detailed implementation of each module/component of the controller. Then,
the use-case scenarios such as topology discovery and service-provisioning are de-
scribed.

2.4.1 System Architecture

Unlike the SDN controllers currently being developed as a single monolithic com-
posed of a software stack integrating the SDN controller and its applications as
shown in 2.2. The pONCP is a collection of small micro-services software modules in
containers running on the Kubernetes platform, as shown in 2.4. The micro-service
architecture style naturally results in a modular platform with clean interfaces, while
Kubernetes orchestration enables pfONCP to scale up and down quickly. It also pro-
vides the controller resiliency where the microservices are monitored and restarted
in case of misbehavior. Furthermore, each software module can quickly scale hori-
zontally in case of overload. The nONCP is composed of 4 main layers: Southbound
plugins, Core functions, Northbound applications, and Workflow Manager Orches-
tration.
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FIGURE 2.4: pONCP System Architecture

A common Data Model-driven Development Approach is used to design and
develop southbound plugin modules and the core function modules. Each module
is developed based on OpenDaylight Model-Driven Service Abstraction Layer (MD-
SAL) as the key element and built with its own yang models. MD-SAL is an infras-
tructure component that provides messaging and data storage functionality based
on data and interface models defined by application developers (i.e., user-defined
models). MD-SAL has two main objectives: i) Define a standard layer, concepts,
data model building blocks, and patterns that provide an infrastructure/framework
for applications and inter-application communication. ii) Provide support for user-
defined transport and payload formats, including payload serialization and adap-
tation (e.g., binary, XML or JSON). MD-SAL uses YANG as the modeling language
for both interface and data definitions to achieve the above objectives and provides
a messaging and data-centric runtime for such services based on YANG model-
ing. MD-SAL extends the YANGTools project (which provides a YANG parser, data
structures, and data supporting functionality) with messaging patterns and the con-
cept of data stores/data brokers.

YANG is a data modeling language standardized by IETF [21]. YANG has been
developed and standardized as a language to model data into NETCONF messages.
A Yang module can be translated into an XML representation which makes YANG
also adaptable to other protocols (e.g., RESTCONF, Kafka) beside NETCONE. In re-
cent years, operators and vendors have been increasingly interested in YANG be-
cause of the possibility of standardizing standard models for configuration and man-
agement data in a vendor-neutral way. YANG also supports the "deviations" from
the standard model to enable a vendor to adapt and augment the original model
with advanced, differentiated features. YANG model contains two types of data:
configuration and state (operational) data. An external entity explicitly sets configu-
ration data on the system (e.g., Southbound plugin, northbound application). State
data cannot be set by the external entity but can be read. There are two ways to
interact with the device’s models, synchronously or asynchronously. In the case of
synchronous communication, each configuration command issued by the controller
is then confirmed or rejected. The controller knows the success or failure of the con-
figuration change that it makes (and hence it knows the exact configuration of the
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system). In this case, the value of any configuration variable always reflects the con-
figured value. In the case of asynchronous communication, each transaction is writ-
ten, but the device does not synchronously return success or failure. The value of a
configuration variable may not reflect the controller’s intent. Thus a field can have
different actual vs. intended values. Due to this ambiguity, each configuration data
is also replicated as state data representing the device’s current state. YANG also
supports the definition of “Notification” to model the content of NETCONF Noti-
fication messages, which indicate that certain events have been recognized (e.g., a
failed link). Moreover, although YANG is mainly considered a data modeling lan-
guage, it also provides the possibility to define executable functions through Remote
Procedure Calls (RPCs) that specify the name, the input, and the output parameters
of a specific function, e.g., switching on(off) a device inside a node. Then, some con-
siderations are here reported on the nature of YANG. First, it is a highly readable text
language. This significantly simplifies management and troubleshooting operations
than protocols relying on bit encoding, which requires ad-hoc software to parse en-
coded information, such as OpenFlow. Nowadays, handling a text file instead of bit
encoding does not represent a challenge. Moreover, in the case of bit encoding, the
support of novel parameters at the data plane would imply redesigning the protocol
messages’ content, such as header and objects. On the contrary, thanks to the nature
of YANG, when the model changes, the YANG model can be refined without re-
designing the protocol, thus providing a much more practical solution with respect
to bit encoding. Such an example must be considered relevant given the continuous
evolution of the technology in the data plane.

LISTING 2.1: example.yang.

module example {
namespace "sssup:example";
prefix example ;

typedef NEW-TYPE{
type enumeration {
enum type-one;
enum type-two;
enum type-three;

}

leaf data-1 {
type uintil6 ;

leaf data-2 {
type decimal64 {
fraction-digits 18;
}

leaf data-3 {
type NEW-TYPE ;

list element-of-a-list {

key "leaf-data-1";

leaf leaf-data-1 {
type uintil6 ;

}

leaf leaf-data-2 {
type uintil6 ;

}
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LISTING 2.2: example.yang tree.

module example
+--rw data-17 unitil6
+--rw data-17 decimal64
+--rw data-17 NEW-TYPE
+--rw element-of-a-1list? [leaf-data-1]
+--rw leaf-data-1 unitil6
+--rw leaf-data-27 unitilé

YANG can be hierarchically represented in a tree structure with a root and leaves.
Listing 2.1 shows a generic YANG model and the resulting tree organization: root
and leaves have names, data types, data values, and child leaves. For example,
YANG defines data types as 16-bit unsigned integer (as “data-1”, line 13 in Listing
2.1) or 64-bit signed decimal (as “data-2”, line 17). The new data type can also be de-
fined. In Listing 2.1, “data-3" is of the “NEW-TYPE” type. The new type can assume
just three values (lines 5- 11). YANG also includes the definition of lists. The “key”
of a list is used to specify one or more leaves in a list that will uniquely identify
an element (data instance) of the list. The example in Listing 2.1 shows the model
“example” composed of four leaves (each leaf is defined with the syntax “leaf”, e.g.,
line 12): “data-1", “data-2”, “data-3”, and a list (line 23). Each of these data is asso-
ciated with a type. A list is initiated with the command “list” (line 23), and the data
of a list can have child leaves as “leaf-data-1” and “leaf-data-2”. The resulting tree,
obtained with the Pyang software, is visualized in Listing 2.2 with: i) “example” as
the root; ii) “data-1”, “data-2”, “data-3”, and the list as leaves; and iii) “leaf-data-1"
and “leaf-data-2” as the leaves of each element in the list.

Data model-driven development approach addresses the requirements in terms
of speed and scale of network automation and monitoring capabilities. The cost of
IT operations can be reduced. Motivations aside, organizations are interested, and
vendors are implementing these capabilities. However, to do so requires a new way
of thinking, especially if someone has been in networking for a long time.
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FIGURE 2.5: Module architecture and development process

As depicted in 2.5-b and ¢, Karaf/OSGi is used as the run-time environment of
the SB plugin and core modules. Each module has its own YANG data models and
interfaces. However, all modules have a common development process of 5 steps, as
shown in 2.5-a. Starting from a set of YANG data models, the MD-SAL YANGtools
compile and generate a jar file containing JAVA APIs (interface and classes). Using
the generated JAVA APIs implements the service, logic inside each module becomes
simple. After logic and service implementation, the module is compiled and ready
to be deployed as run-time.

2.4.2 South-Bound Plugin Modules

The southbound plugin is an SDN enabler that provides a communication proto-
col between the control plane and the data plane. It is used for device discovery
and also pushes configuration information to devices. It also provides an abstrac-
tion of the network device’s functionality to the control plane. Major challenges
of southbound interfaces are heterogeneity, vendor-specific network elements, and
language specifications. There is a wide range of traditional network protocols and
models, which creates heterogeneity issues. Every vendor has its own architecture
for switching fabric and supports different configurations and languages. South-
bound plugins resolve these issues in this architecture by providing an open and
standardized protocol and model. The proposed architecture contains three south-
bound plugin modules: NETCONF/OpenConfig, OpenFlow, and RESCONF/TAPL
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OpenFlow module

OpenFlow is the first standard communications interface defined between an SDN
architecture’s control and forwarding layers. OpenFlow allows direct access and ma-
nipulation of the forwarding plane of network devices such as switches and routers,
both physical and virtual (hypervisor-based) [22]. This provides us a way to control
the behavior of switches throughout our network dynamically and programmati-
cally. OpenFlow is a key protocol in many SDN solutions. To turn the concept of
SDN into practical implementation, two requirements must be met. First, a common
logical architecture must be in all switches, routers, and other network devices to
be managed by an SDN controller. This logical architecture may be implemented in
different ways on different vendor equipment and in different types of network de-
vices, so long as the SDN controller sees a uniform logical switch function. Second,
a standard, secure protocol is needed between the SDN controller and the network
device [23]. Both of these requirements are addressed by OpenFlow. Indeed, Open-
Flow is composed of OpenFlow switch and OpenFlow protocol shown in Figure 2.6.
OpenFlow switch meets the first requirement, and the OpenFlow protocol meets the
second requirement. Figure 2.6 illustrates the basic structure of the OpenFlow envi-
ronment.

SDN controller

Openflow Switch

.
_________ Serure | i |Group Meter
------- Channel | : |Table Table
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over §5L Flow w| Flow Flow
Table [~ 7| Table > Table
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FIGURE 2.6: OpenFlow Switch

OpenFlow protocol describes message exchanges between a controller and an
OpenFlow switch. Typically, the protocol is implemented on top of SSL or Transport
Layer Security (TLS), providing a secure OpenFlow channel. The OpenFlow proto-
col enables the controller to add, update, and delete actions to the flow entries in the
flow tables. It supports three types of messages:

¢ Controller-to-Switch: These messages are initiated by the controller and, in
some cases, require a response from the switch. This class of messages enables
the controller to manage the logical state of the switch, including its configu-
ration and details of flow- and group-table entries. Also included in this class
is the Packet-out message. This message is used when a switch sends a packet
to the controller and the controller decides not to drop the packet but to direct
it to a switch output port.
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Message Description

Features Request the capabilities of a switch. Switch responds with
a features reply that specifies its capabilities.

Configuration Set and query configuration parameters. Switch responds
with parameter settings.

FlowMod Add, delete, and modify flow/group entries and set switch
port properties.

Multipart Collect information from switch, such as current configura-
tion, statistics, and capabilities.

Packet-out Direct packet to a specified port on the switch.

Barrier Barrier request/reply messages are used by the controller
to ensure message dependencies have been met or to re-
ceive notifications for completed operations.

Role-Request Set or query role of the OpenFlow channel. Useful when
switch connects to multiple controllers.

Asynchronous- Set filter on asynchronous messages or query that filter.

Configuration Useful when switch connects to multiple controllers.

TABLE 2.1: Controller-to-Switch OpenFlow Messages

¢ Asynchronous: These types of messages are sent without solicitation from the
controller. This class includes various status messages to the controller. Also
included is the Packet-in message, which may be used by the switch to send a
packet to the controller when there is no flow-table match.

Message

Description

Packet-in

Transfer packet to controller.

Flow-Removed

Inform the controller about the removal of a flow entry
from a flow table.

Port-Status

Inform the controller of a change on a port.

Error

Notify controller of error or problem condition.

TABLE 2.2: Asynchronous OpenFlow Messages

¢ Symmetric: These messages are sent without solicitation from either the con-
troller or the switch. They are simple yet helpful. Hello messages are typically
sent back and forth between the controller and switch when the connection
is first established. Echo request and reply messages can be used by either the
switch or controller to measure the latency or bandwidth of a controller-switch
connection or just verify that the device is operating. The Experimenter mes-
sage is used to stage features to be built into future versions of OpenFlow.

The OpenFlow protocol enables the controller to manage the logical structure of a
switch without regard to how the switch implements the OpenFlow logical architec-
ture. OpenFlow only defines the minimal set of hardware capabilities (via the switch
specifications) and how to access them (via the OpenFlow channel), but not what to
do with these switches, which allows the network operators to define their behaviors
in their networks. Although OpenFlow was initially conceived for packet switching
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Message Description

Hello Transfer packet to controller.

Echo Echo request/reply messages can be sent from either the
switch or the controller, and they must return an echo reply.

Experimenter For additional functions.

TABLE 2.3: Symmetric OpenFlow Messages

(L2/L3), from release 1.4 [24], OpenFlow has been extended to support also circuit
switching (L1/L0). In particular, for LO switching, new optical port description,
modification, and statistics properties were introduced for describing, configuring,
and monitoring optical ports. However, these extensions are still incomplete. An
extension of OpenFlow was proposed to enrich the optical port statistic properties
to include a complete list of parameters for LO flow monitoring, and we implement
a monitoring function as an SDN application.

This section presents the proposed OpenFlow extensions to support the monitor-
ing of the transponders. The Request and Reply OF messages have been extended
to offer the new possibility of retrieving only a portion of the parameters. Listing
2.3 shows the parameters of an optical port that are currently supported in 1.5 ( the
latest release). It can be seen that only a few parameters are supported, in particu-
lar, the central frequency, the transmitted and received power, the temperature, and
the bias current of the laser. Listing 2.4 shows the proposed extensions (in both)
to support the monitoring of transponders. In particular, the Optical Port Statistic
structure has been enriched with new parameters about the transmitter and receiver
associated with a Line-port of transponders, such as the pre-Forwarding Error Cor-
rection Bit Error Rate (pre-FEC-BER), the Polarization Mode Dispersion (PMD), and
the others. In addition, for each parameter in the model, these new extensions pro-
vide instants values and statistics, i.e., average, variance, minimum and maximum
values, to enable the device to compute statistics locally and offload the control chan-
nel. Finally, a 32-big filter flag was added to both Optical Port Statistic Request and
Reply messages to indicate which parameters are requested by the controller and
supported /returned by the device.

LISTING 2.3: Standard OpenFlow 1.5 Optical Port Statistics.

struct ofp_port_stats_prop_optical {

uintl6_t type; /* OFPPSPT_OPTICAL. x*/

uint16_t length; /* Length in bytes of this property. */
uint8_t pad [4]; /* Align to 64 bits. */

uint32_t flags; /* Features enabled by the port. */
uint32_t tx_freq_lmda; /* Current TX Frequency/Wavelength */
uint32_t tx_offset; /* TX Offset x*/

uint32_t tx_grid_span; /* TX Grid Spacing */
uint32_t rx_freq_lmda; /* Current RX Frequency/Wavelength */

uint32_t rx_offset; /* RX Offset x*/

uint32_t rx_grid_span; /* RX Grid Spacing x*/
uint16_t tx_pwr; /* Current TX power x*/
uint16_t IX_pwWr; /* Current RX power x*/
uint16_t bias_current; /* TX Bias Current x*/
uint16_t temperature; /* TX Laser Temperature x*/

LISTING 2.4: Proposed OpenFlow Extensions.
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struct ofp_port_stats_prop_optical {

uintl6_t type;
uintl6_t length;
uint8_t pad [4];
uint32_t flags;

of _transmitter_t
of _receiver_t

};

receiver;

struct of_transmitter {

/* OFPPSPT_OPTICAL. x*/

/* Length in bytes of this property.

/* Align to 64 bits. */

/* Features enabled by the port.
transmitter;

uintl6_t
uintl6_t
uint32_t
uintl6_t
uintl6_t
uintl6_t

length;
transmitter_id;
filter_flags;

bit_rate;
baud_rate;
bandwidth;

uint8_t modulation;

of _fec_t

fec;

/* Gbps */
/* GSps */
/* GHz */

/* GHz */

of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t

central_frequency;

output_power;
temperature;
bias_current;

};

struct of_receiver {

uintl6_t
uint32_t
uintl6_t
uintl6_t
uintl6_t

length;
flags;
bitRate;
baudRate;
bandwidth;

/* dBm */
/* C*10 %/
/* mA*10 =

uint8_t modulation;

of _fec_t fec;

of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t
of _inst_avg_var_max_min_t

central_frequency;
input_power;
temperature;
bias_current;
sampling_rate;
pre_fec_ber;

pmd;

cd;

qFactor;

struct of_inst_avg_var_max_min {

uint8_t flags;

uintl6_t
uintl6_t
uintl6_t

instant;
average;
variance;

uintl6_t
uintl6_t
}:

max ;
min;

struct of_fec {
uint8_t fec_type;
uint8_t message_length;
uint8_t block_length;

*/

*/




20 Chapter 2. Container-based Micro-services Optical Network Controller Platform

In summary, this section presented a contribution to implementing an OpenFlow ex-
tension for optical networks. SDNs implemented using OpenFlow provides a pow-
erful, vendor-independent approach to managing complex networks with dynamic
demands. However, It was designed to operate packet switching networks. Adopt
OpenFlow for optical networks would require many works in terms of design and
implementation. OpenFlow for Optical remains as experimental research. Besides
the OpenFlow protocol, network vendors and operators have also considered other
existing protocols (different from OpenFlow) to enable the SDN infrastructure. One
of these protocols is Network Configuration Protocol (NETCONE).

OPENCONFIG/NETCONF Module

NETCONF [25] is emerging as an SDN protocol standardized by IETFE, which pro-
vides both control (e.g., data plane device configuration) and management function-
alities (e.g., access to monitoring information). In particular, such protocol standard-
ization is an answer to specific requirements of the IETF [26]:

* Developing standards for network configuration and management

¢ Use eXtensible Markup Language (XML) for data encoding.

NETCONF protocol provides mechanisms to install, manipulate, and delete man-
agement states and information of network devices. NETCONF also has the prospects
to be particularly indicated for monitoring purposes through the use of specific mes-
sages such as notifications that are not available in other protocols such as Open-
Flow. In particular, through NETCONE, a controller can subscribe to a notification
when a specific monitored parameter exceeds a given threshold. In this case, the
monitoring system triggers the NETCONF notification (i.e., an alarm), which is sent
to the controller subscribed to such notification. NETCONF relies on the Yet An-
other Next Generation (YANG) [21, 27], a modeling language representable in XML.
YANG enables the definition of the configurable parameters and state information
of the different network devices in a standard way. Thus, YANG and NETCONF
provide a standard way to control and manage network elements, independently
from the vendor [26]. For these reasons, NETCONF and YANG gather interest from
network operators.

NETCONF messages are illustrated in 2.7. Initially, the NETCONF transport
protocol session is opened between two peers, named client (i.e., the centralized
controller) and server (device), respectively. Thus, <hello> messages (1,2) are ex-
changed between the two peers to list the peer’s capabilities (i.e. the capability iden-
tifiers), as a discovery phase. A capability describes a supported data model (e.g. the
transponder model) or supported operations (e.g. support for notifications), and it
is uniquely identified through an Uniform Resource Identifier (URI). A capability is
described through YANG modeling language and the URI is the unique identifier for
the specific YANG data modeling describing that capability. In this phase, the cen-
tralized controller discovers which type of data plane device has to control/manage.
Once the session is opened, the NETCONF peers exchange <rpc> and <rpc-reply>
messages. The <rpc> message is used to enclose a NETCONF command sent from
the controller (client) to the device (server). The main commands encapsulated in
the <rpc> message are the following: <get>, <get-config>, <edit-config>, and <delete-
config>. The <get> command is used to retrieve the running configuration and state
information of the device (3). The <get-config> command is used to retrieve only
the configuration data exclusively (the state information is not returned). The <edit-
config>command is used to write a specific configuration on the device (5) (e.g. to set
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the maximum transmission unit of a specific Ethernet interface). Finally, the <delete-
config> command is used to delete a specific configuration. The <rpc-reply> message
is sent from the device to the controller in response to an <rpc> message. The re-
sponse data for the given method invoked is encoded as one or more child elements
enclosed in the <rpc-reply> message. Three are the possible responses encapsulated
in the <rpc-reply>: <ok>, <rpc-error>, or the data requested by the operation. The
<ok> response is sent if no errors or warnings occurred during the processing of the
<rpc> request and no data was returned from the operation (6,8). The <rpc-error>
response is sent if an error occurs during the processing of the <rpc> request. Oth-
erwise, if some data was expected from the <rpc> request, the data is returned (4).

Controller Device
o=
[11]]
I%
.. 2-<hello>
I - <get> I

4 - <rpc-reply>

e

. 6 - <ok> >

. I
! - <create-subscription>:
i: 8 - <ok> l

9 - <notification> =

I 10 - <close-session>

FIGURE 2.7: NETCONF message exchange.

NETCONF and YANG have been introduced in several networking scenarios.
For example, in [28], the authors propose a NETCONF agent for link-state monitor-
ing compared with other management technologies such as Simple Network Man-
agement Protocol (SNMP). In [29], the authors highlight the benefits provided by
NETCONF in terms of security and scalability, compared with SNMP and REpre-
sentational State Transfer (REST). In [30], the authors use YANG and NETCONF to
manage a 10G-PON. In [31] and [32], some YANG network models are provided,
including a preliminary version for the transponder.

In the context of optical networks, several standardization bodies and working
groups (e.g., IETE, OpenConfig [31], OpenROADM [32]) have released YANG mod-
els. As an example, the IETF draft in [33] defines a YANG model for representing,
retrieving, and manipulating traffic engineering (TE) topologies supporting optical-
switching nodes. OpenROADM has recently defined YANG models focused on
ROADM disaggregation. These models describe how different pluggable devices



