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Abstract

The emergence of large longitudinal data sets (subjects observed repeatedly at different time
points) has allowed the construction of different models improving the understanding of biologi-
cal or natural phenomena. Longitudinal studies have numerous applications: understanding of
the differences of progression in neurodegenerative disease such as Alzheimer’s, chemother-
apy monitoring, facial recognition, etc.. To process those data sets, mixed effects hierarchical
models can be used. They separate the population parameters (called fixed effects) from the
subjects random variables. One possible aim of those models is to create an atlas i.e. to
estimate a representative image, shape or even trajectory of the population together with the
inter-individual variability. Doing so, it is for instance possible to highlight the influence of a
disease on a particular organ compared to a normal ageing. The random variables then give
the population variability. One is able to use them to reconstruct the trajectory of each patient,
predict his future, issue a diagnosis, etc..

In practice, different data sets can be studied from the medical domain. Two or three di-
mensional images are obtained from scanners, MRI, radiography, etc.. Sometimes, meshes
of a particular organ are extracted from those images. To manage those different structures, a
unique framework has been developed. Using Riemannian geometry, one can create distances,
compute deformations and means via the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) framework. Models have first been developed for cross sectional data sets and have
then been generalized for longitudinal data sets. They, however, present several limitations that
we present here and that we will overcome in this thesis.

First, in the longitudinal case, those models assume that the population representative tra-
jectory follows a unidirectional dynamic. While correct in certain cases (atrophy of the hip-
pocampus for instance), it is not verified in others. In chemotherapy monitoring, a tumor often
first shrinks before growing again. A unidirectional trajectory cannot explain this behaviour. To
overcome this problem, we will propose a hierarchical mixed effect model allowing to consider
branching populations.
One of the advantages of the LDDMM framework is the fact that it uses diffeomorphic defor-
mations. However, this advantage can also pose a problem for some data sets. Indeed, for
an images data set issued from chemotherapy monitoring, each patient can have a different
number of tumors. But, being a diffeomorphic deformation from a unique representative image,
the reconstruction of any subject will always have the same number of tumors as the represen-
tative trajectory. In this thesis, we model the residuals as a sparse matrix, allowing to detect and
recover anomalies, such as tumors for example, on an observation.

In addition to providing new models, we will also focus on the estimation of the parameters
of non-linear mixed effects models as the one we have used. In practice, one uses Stochastic
Approximation Expectation Maximization (SAEM) algorithms coupled with Markov Chain Monte
Carlo methods. We will relax two hypotheses of these algorithms. The first one is the neces-
sity of geometric ergodicity of the Markov Chain, preventing from considering distributions with
heavy tails. We will relax this hypothesis by proposing a new set of assumptions, asking only
subgeometric ergodicity. Moreover, the SAEM algorithm asks the joint distribution of the mixed
effect model to belong to the curved exponential family. This hypothesis is in fact a bottleneck
in lots of situations. Here, we study an idea proposed by Kuhn and Lavielle (2005) allowing to
consider distributions that do not verify this assumption. We however show that this trick can
introduce a bias in the estimation and propose a new algorithm reducing it.
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CHAPTER 1

Résumé en Français

Abstract

L’émergence de vastes data sets longitudinaux (sujets observés de manière répété à différents
temps) a permis la construction de différents modèles améliorant la compréhension de phénom-
ènes biologiques. Les études longitudinales ont de nombreuses applications : compréhen-
sion des différences de progression pour des maladies neuro-dégénératives comme la mal-
adie d’Alzheimer, suivi de chimiothérapie, reconnaissance faciale,... Pour traiter ces data sets,
des modèles hiérarchiques à effets mixtes ont été développés. Ces modèles séparent les
paramètres de population (appelés effets fixes) des variables aléatoires propres à chaque su-
jet. Un but possible est de créer un atlas i.e. d’estimer une image, une forme ou même une
trajectoire représentative de la population ainsi que la variabilité inter-individu. Il est alors, par
exemple, possible de mettre en évidence l’influence d’une maladie sur un organe particulier par
rapport à un vieillissement normal. Quant aux variables aléatoires, elles nous renseignent sur
la variabilité des sujets. Elles peuvent être utilisées pour reconstruire la trajectoire de chaque
patient, prédire son avenir, émettre un diagnostic, ...

En pratique, différents types de données sont étudiées dans le domaine médical. Des im-
ages en deux ou trois dimensions sont obtenues à partir de scanners, d’IRM, de radiogra-
phies, etc. Parfois, le maillage d’un organe est extrait. Pour gérer ces différentes structures, un
cadre commun a été développé. En utilisant des notions de géométrie riemannienne et plus
particulièrement le Large Deformation Diffeomorphic Metric Mapping (LDDMM), il est possible
de calculer des distances, des déformations et des moyennes. Ces modèles ont d’abord été
développés pour des ensembles de données transversales et ont ensuite été généralisés à des
data sets longitudinaux. Ils possèdent cependant plusieurs limitations que nous présentons ici
et que nous allons surmonter dans cette thèse.

Tout d’abord, dans le cas longitudinal, ces modèles supposent que la trajectoire de la popu-
lation représentative suit une dynamique unidirectionnelle. Bien que correcte dans certains cas
(atrophie de l’hippocampe par exemple), cette hypothèse n’est pas vérifiée dans d’autres. Dans
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Chapter 1. Résumé en Français

le cadre du suivi de chimiothérapie par exemple, une tumeur commence souvent par rétrécir
avant de s’agrandir à nouveau. Une trajectoire unidirectionnelle ne peut donc pas expliquer
ce comportement. Pour surmonter ce problème, nous proposerons un nouveau modèle hiérar-
chique à effets mixtes permettant de considérer des populations à branchement.

L’un des avantages du LDDMM est son utilisation de déformations difféomorphiques. Toute-
fois, cet avantage peut également poser un problème pour certains types de données. En effet,
pour un ensemble d’images issues du suivi de chimiothérapie, chaque patient peut avoir un
nombre de tumeurs différent. Mais, ces patients étant considérés comme une déformation dif-
féomorphe d’une unique image représentative, leur reconstruction aura toujours le même nom-
bre de tumeurs. Dans cette thèse, nous proposons de représenter les résidus de reconstruction
par une matrice creuse, nous permettant de détecter et récupérer des anomalies, comme des
tumeurs par exemple, sur une observation.

En plus de fournir de nouveaux modèles, nous nous concentrons également sur l’estimation
des paramètres des modèles à effets mixtes utilisés. En pratique, des algorithmes de Stochas-
tic Approximation Expectation Maximization (SAEM) couplés à des méthodes de Monte Carlo
par chaîne de Markov sont utilisés. Nous allons assouplir deux hypothèses de ces algo-
rithmes. La première est la nécessité d’une ergodicité géométrique de la chaîne de Markov,
nous empêchant de considérer des distributions à queues lourdes. Nous allons assouplir cette
hypothèse en proposant un nouvel ensemble d’hypothèses, ne demandant qu’une ergodicité
sous-géométrique. De plus, l’algorithme SAEM requiert que la distribution jointe du modèle à
effets mixtes appartienne à la famille exponentielle courbe. Cette hypothèse est en fait un obsta-
cle dans de nombreuses situations. Ici, nous étudions une idée proposée par Kuhn and Lavielle
(2005) permettant de considérer des distributions qui ne vérifient pas cette hypothèse. Nous
montrons cependant que cette astuce peut introduire un biais dans l’estimation et proposons
un nouvel algorithme permettant de le réduire.

Plan de la thèse

Le manuscrit de cette thèse est séparé en deux parties. Dans la première, nous nous concen-
trons sur la modélisation de données médicales. Des données longitudinales et transversales
seront étudiées dans deux buts différents : classifier des données longitudinales à plusieurs dy-
namiques et identifier des anomalies (telles que les tumeurs) dans des organes. Dans la deux-
ième partie, nous étudions différentes propriétés théoriques des algorithmes d’approximation
stochastique et d’Expectation Maximization. Les quatre différents chapitres constituant ce
manuscrit sont résumés ci-dessous.

• Chapitre 3: Apprentissage de la classification de données longitudinales en un mélange
de trajectoires indépendantes ou branchantes.

Dans ce chapitre, nous étudions des données longitudinales. L’objectif d’un atlas lon-
gitudinal est la création d’une trajectoire représentative de la population ainsi que des
déformations vers chaque sujet. Les atlas longitudinaux, tels qu’ils sont présentés dans
Schiratti et al. (2015), ont cependant l’inconvénient de modéliser la trajectoire représen-
tative comme une géodésique. Toutefois, dans de nombreuses situations pratiques, il ne
s’agit pas d’une hypothèse valable. Elle n’est par exemple pas vérifiée dans le cas d’une
chimiothérapie lorsque la tumeur devient résistante au traitement après un certain temps.
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Chapter 1. Résumé en Français

Pour surmonter ce problème, nous modélisons la trajectoire représentative comme une
géodésique par morceaux. Cette idée a été introduite pour la première fois dans Cheval-
lier et al. (2017) où les auteurs proposent un tel modèle pour des données scalaires.
Dans ce premier chapitre, nous généralisons cette discussion en dimension plus grande
en introduisant des temps de rupture auxquels la trajectoire représentative passe d’une
dynamique à une autre. La modélisation de la trajectoire représentative par une géodésique
par morceaux nous permet également d’envisager des ensembles de données plus com-
plexes. En effet, nous pouvons supposer que la population est séparée en différents
groupes dont les trajectoires représentatives respectives se ramifient ou se rejoignent à
différents temps de rupture. C’est en partie ce qui nous motive à introduire un modèle
de classification non supervisée. Ce nouveau modèle est présenté au chapitre 3 et est
appliqué à différents jeux de données tels que le score RECIST dans le cas de la chimio-
thérapie ou le maillage de l’hippocampe dans le cas de la maladie d’Alzheimer.
Ce travail a été publié dans l’International Journal of Computer Vision (Debavelaere et al.,
2020).

• Chapitre 4: Détection d’anomalies dans le cadre LDDMM

Dans ce chapitre, nous nous intéressons à la détection d’anomalies, telles que la présence
de tumeurs, dans une image médicale. Plus précisément, nous nous plaçons dans le
cadre transversal et supposons que nous avons à notre disposition un template de sujets
témoins. Nous définissons alors une anomalie comme une structure qui ne peut pas être
récupérée comme une déformation difféomorphe du template témoin.
Par exemple, dans le cas de la détection de tumeurs, le template témoin n’aura pas de
tumeur et les déformations difféomorphes de ce template n’auront pas non plus de tumeur.
Nous sommes donc capables de récupérer ces tumeurs dans les résidus de la déforma-
tion.
Nous montrons que ce procédé améliore la reconstruction des observations et permet
effectivement de détecter les anomalies.
En particulier, notre méthode présente l’avantage de ne pas nécessiter de grands en-
sembles de données ou d’annotations par les médecins. De plus, elle peut être facile-
ment appliquée à n’importe quel organe. Pour mettre en évidence ces avantages, nous
appliquons cette méthode à deux jeux de données différents : un data set de foies de
patients atteints de cancer colorectal métastatique et un data set de cerveaux atteints de
gliomes.
Ce chapitre sera converti en un article à être soumis.

• Chapitre 5: Sur la convergence des approximations stochastiques sous une dynamique
de Markov sous-géométrique.

Les théorèmes assurant la convergence des approximations stochastiques sous dynamique
markovienne supposent que la chaîne de Markov est géométriquement ergodique. Dans
le chapitres 3, nous utiliserons ces algorithmes avec une dynamique markovienne obtenue
à partir d’algorithmes de Metropolis Hastings. Cependant, nous savons que, lorsque des
distributions à queues lourdes sont ciblées, ces chaînes de Markov peuvent être sous-
géométriques (Douc et al., 2004; Fort and Moulines, 2000, 2003; Jarner and Hansen,
2000). Ainsi, les garanties théoriques de convergence de ces approximations stochas-
tiques ne sont plus respectées.
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Chapter 1. Résumé en Français

C’est pourquoi, dans le chapitre 5, nous choisissons de lever la condition d’ergodicité
géométrique. Nous proposons un ensemble d’hypothèses plus générales, sous lesquelles
nous prouvons la convergence des approximations stochastiques avec dynamique sous-
géométrique. Ces hypothèses concernent essentiellement la vitesse de convergence de
la chaîne de Markov et la régularité de son noyau. En particulier, la plupart des vitesses
de convergence polynomiales satisfont ces hypothèses. Nous prouvons ensuite la con-
vergence de deux approximations stochastiques dans ce cadre. Tout d’abord, nous étu-
dions la convergence d’un algorithme de Metropolis Hastings dans le cas où la variance
de la proposition est adaptée au long des itérations. Dans le second exemple, nous
considérons un modèle d’analyse en composantes indépendantes dans le cas où des
distributions à queues lourdes positives conduisent à une chaîne de Markov ergodique
sous-géométrique dans un algorithme SAEM-MCMC.
Ce travail a été publié dans l’Electronic Journal of Statistics (Debavelaere et al., 2021).

• Chapter 6: Famille courbe exponentielle et algorithme de Stochastic Approximation Ex-
pectation Maximization Algorithm
Parmi les hypothèses assurant la convergence des algorithmes SAEM et MCMC-SAEM,
l’une des plus restrictives est la nécessité que la vraisemblance jointe appartienne à la
famille exponentielle courbe. Cependant, cette hypothèse n’est pas toujours vérifiée (par
exemple pour les modèles hétéroscédastiques). Dans ce cas, Kuhn and Lavielle (2005)
propose de transformer le modèle statistique pour le rendre exponentiel. Leur solution
consiste à considérer les paramètres θ du modèle initial comme des variables latentes
supplémentaires suivant une distribution Gaussienne centrée sur un nouveau paramètre
θ̄ et avec une variance fixée σ2. Au lieu d’estimer θ, nous estimons alors sa moyenne θ̄.
Si cette méthode est souvent utilisée, il n’y a en fait aucune garantie que θ̄ est proche du
paramètre du modèle initial.
Dans le chapitre 6, nous montrons que l’utilisation de cette méthode peut introduire un
biais dans l’estimation du maximum de vraisemblance. Nous prouvons ensuite que ce
biais tend vers zéro lorsque la variance σ tends vers 0 et donnons une borne supérieure
pour σ petit. Cependant, sur un exemple numérique, nous voyons qu’un compromis doit
être fait entre l’erreur d’estimation et le temps de calcul. Pire encore, pour de très petites
valeurs de σ (et donc, théoriquement, de petites erreurs), l’algorithme ne converge pas
numériquement. Pour surmonter ce problème, nous proposons dans la dernière partie
du chapitre un nouvel algorithme permettant une meilleure estimation du maximum de
vraisemblance en un temps de calcul raisonnable.
Ce travail a été soumis (Debavelaere and Allassonnière, 2021).
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CHAPTER 2

Introduction

In this chapter, we introduce the different notions needed in this thesis. After explaining the
motivations behind this thesis and a quick introduction to mixed effect models, we begin by
presenting, section 2.3, the Riemannian notions necessary to the understanding of models
processing data living on Riemannian manifolds that we will use or generalize later on (section
2.4). To be able to present the algorithms (section 2.7) necessary to estimate the parameters
of those statistical models, we also present some notions on Markov Chains (section 2.5) and
Stochastic Approximations (section 2.6).
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Section 2.1. Motivation

2.1 Motivation

Numerous scientific fields require to study the mean behaviour of a population, whether along
time (subjects observed at different time points, forming a longitudinal data set) or not (one
observation per subject, forming a cross-sectional data set). For instance, the study of a data
set of organs can highlight the influence of a particular disease, allow to produce a diagnosis
and play a crucial role in the understanding of the disease. Similarly, the study of the temporal
progression of a phenomenon helps in the development of new treatments and in the prediction
of the future evolution of new patients.

One of the easiest examples of such studies is the growth of children. Development and
growth studies have provided representative scenarios of weight or height evolution with time.
Those scenarios give an average trajectory of progression which describes the typical evolution
of height and weight of a child. They also give the variability in the population in the form of
confidence intervals.

The data from such phenomena come in lots of different formats. The features may be real
numbers such as heights, weights or cognitive scores. Increasingly often, in medicine, the data
come from images. For instance, those images are used in neurological monitoring, oncol-
ogy, traumatology, etc.. From those images, different features may be extracted. One can, for
instance, measure the size of the tumors on an organ. Another possibility is to extract struc-
tures from those images: meshes can represent the surface of an anatomical shape like the
hippocampus or the cortex ribbon. Finally, sometimes, the whole image is used as a feature:
images from scanner, Magnetic Resonance Imaging (MRI), X-rays, etc..

The space of measurements to which the data belongs to is typically defined by smooth
constraints and may not behave as a Euclidian space. For instance, operations like addition
or scaling do not make sense for images or meshes. Hence, a new structure is needed to
transpose these intuitive operations to more complex objects. This is the goal of Riemannian
manifolds (Lafontaine et al., 2004; Younes, 2010). In such manifolds, one is able to define dis-
tances, means or even do statistics. The distance between two objects is then defined as the
minimum length of the curves going from one point to the other in the Riemannian space. This
curve of minimal length defines the deformation between the two objects.

For medical data, it is in particular crucial to conserve the structure of the objects studied.
For instance, if we want to compute the distance between two livers by deforming one onto the
other, we do not want this deformation to make holes appear. We do not want either to fold the
liver over itself. The Large Diffeomorphic Deformation Metric Mapping (LDDMM) (Trouvé, 1995;
Dupuis et al., 1998) has been developed in this perspective. In this framework, the distance
between two objects is computed as the difficulty to obtain one as a diffeomorphic deformation
of the other. The use of diffeomorphisms prevents the problems evoked above.

This framework will allow us to create atlases. An atlas of a data set is composed of an
object that is representative of the population, and of the variability within this population. To
this end, we introduce hierarchical mixed effect models (Lavielle and Mentré, 2007). Those
statistical models analyze a population as being driven by two levels of effects. First, the model
is parametric and the population parameters (called fixed effects) describe the population glob-
ally. Then, a second level of description is given by random variables (called random effects)
explaining the subjects variability inside this population. The individual variables are random
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variables on which we specify distributions while the fixed effects can be estimated using max-
imum likelihood estimates. By fitting a hierarchical mixed effect model, one can thus learn an
average model and derive from it an individual-specific model. They are generative statistical
models whose parameters can, most of the time, be easily interpreted.

Combining those two mathematical frameworks, our models aim at explaining the population
by a representative shape (in the case of cross-sectional data sets) or trajectory (in the case of
longitudinal data sets). The generative mixed effect models also allows us to reconstruct each
subject from this representative object using the LDDMM framework. This in particular, allows
us to obtain the population variability. Given this representative object and population variability,
it is then possible to fit new subjects and observe their position in the population variability. For
example, one is able to observe if a new subject is close to the representative object or in the tail
of the distribution. In that last case, it could be the sign of a pathology. In the longitudinal case,
it is also possible to predict the future of a patient. This can allow to issue an early diagnosis or
to adapt a treatment.

The use of the LDDMM framework in mixed effect models has already been studied in var-
ious cases: cross-sectional atlases for images (Miller et al., 2002; Durrleman et al., 2011a),
shapes (Durrleman et al., 2014) but also for longitudinal atlases (Muralidharan and Fletcher,
2012; Singh et al., 2016; Bône et al., 2018a). In this last case, the representative trajectory is
modeled by a geodesic and a temporal variability is added to the spatial variability: each sub-
ject can indeed have its own pace of progression and offset in addition to its own anatomical
evolution.

To estimate the parameters of mixed effect models, Expectation Maximization algorithms
are used. Those algorithms estimate a maximum of likelihood when some variables are not
observed (in our case, the individual random effects). They consist in the iteration of the com-
putation of an expectation and a maximization. In most cases, the expectation step is in fact
intractable. Stochastic Approximations (SA) coupled with Monte Carlo Markov Chains are then
used to compute it.

Stochastic approximations are used to find roots of a function h(θ) = Eθ(Hθ(X)) from which
we only have noisy observations. Using Markovian dynamics, one is able to find the solutions
of such an equation (Andrieu et al., 2005). This framework can hence be used to compute the
expectation step of EM algorithms (Delyon et al., 1999; Allassonnière et al., 2010).

If those different subjects have already been extensively studied, several points still neces-
sitate further investigations.

First, concerning longitudinal models using the LDDMM framework, not all data sets can be
correctly studied by the models mentioned above. Indeed, because they model the represen-
tative trajectory by a geodesic, they have the drawback to only allow a unique global dynamic.
If it is a valid assumption for lots of real cases (atrophy of the hippocampus, evolution of cogni-
tive scores for instance) it does not hold for others. For instance, in the case of chemotherapy
monitoring, a tumor often begins by shrinking before becoming resistant to the treatment and
growing again. Such a global behaviour cannot be modeled by a geodesic as two different dy-
namics follow one another. Here, we generalize a model modeling the representative trajectory
by a piecewise geodesic. This model has first been introduced in Chevallier et al. (2017) for one
dimensional data sets. We apply it here in the multi-dimensional case. In particular, we process

18



Section 2.2. Mixed effects models

more complex data sets with mixture of populations following different dynamics along time and
branching or joining in sub-populations.

In a second time, we apply the cross-sectional models already developed in a new setting.
By creating a representative image of normal subjects, one can look for anomalies in the dif-
feomorphic reconstruction of new subjects. This is particularly useful for patients with cancer.
Indeed, in that case, the tumors can be visible as new structures with different grey level textures
on the image. But, the reconstruction of a particular subject being a diffeomorphic deformation
of a representative shape without tumors, they will not appear on it. By splitting up the residuals
between noise and a sparse matrix, one can retrieve those tumors. Such methods have already
been studied in the framework of deep learning (Baur et al., 2018; You et al., 2019; Pawlowski
et al., 2018; Yu et al., 2019). However, those methods require a big amount of data and, often,
annotations from doctors. Our method has the particular advantage to be easily generalized to
any organ, even if one only has few observations and no annotation.

As explained above, the Expectation Maximization algorithm used to estimate the parame-
ters of our mixed effect models uses the framework of Stochastic Approximations coupled with
Monte Carlo Markov Chain methods (SAEM-MCMC algorithm). The usual assumptions en-
suring the convergence of such SA require that the subjacent Markov Chain is geometrically
ergodic (i.e. converges towards its invariant distribution at a geometric rate). This can be a bot-
tleneck in certain applications. The Metropolis Hastings algorithm is a commonly used MCMC
sampler. However, when targeting distributions with heavy tails, it can produce sub-geometric
ergodic chains. In that case, we no longer have any guarantee of convergence of the SAEM-
MCMC algorithm. We thus choose to study the case where the Markov Chain is not geometric
ergodic. We propose a new theorem of convergence of Stochastic Approximations with only
subgeometric ergodicity allowing, in particular, to apply the SAEM-MCMC in a broader range of
cases.

Finally, the SAEM-MCMC algorithm has the disadvantage to require the joint distribution
to belong to the curved exponential family. In practice, this is rarely the case, neither for het-
eroscedastic models nor for most non linear models. A usual trick is to transform the model
to make it curved exponential (Kuhn and Lavielle, 2005). It is this particular trick that we will
use further on in our models. However, the model being changed, there is no guarantee that
the estimated maximum likelihood of this new model is close to the initial one. In fact, we will
show that a bias is introduced by this method and propose a new algorithm allowing to reduce it.

In the next sections, we will introduce the different notions evoked here and needed to the
understanding of this thesis. Those introductions are succinct but references to more complete
books or articles are given.

2.2 Mixed effects models

Mixed effects models explain observations through two types of effects: the fixed effects are
shared by the whole population while the random effects are specific to each subject. This
type of statistical model is particularly helpful for hierarchical generative models. Although very
generic, we will focus here on longitudinal data analysis through these models. Given observa-
tions (yi,j)1≤i≤n,1≤j≤ki at times (ti,j)1≤i≤n,1≤j≤ki , the model writes:

yi,j = f(ti,j , β, zi) + εi,j (2.1)
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where β is the vector of parameters, called fixed effects, (zi)1≤i≤n are the random effects and
εi,j is a random variable representing the noise.

One of the easiest examples of those models is the random slope and intercept model
(Cohen et al., 2013) which takes in scalar longitudinal data . Given an initial time t0, this model
is linear and represents the observations as:

yi,j = (a+ ai)(ti,j − t0) + (b+ bi) + εi,j .

The vector of fixed effects is β = (a, b) while, for each subject i, the random effect are zi = (ai, bi)
and εi,j ∼ N (0, σ2) is the noise.
This model reflects the evolution dynamic of the population as a line: t 7→ a(t−t0)+b and allows
variability in the population by adjusting the slope and intersect for each subject.
By supposing ai ∼ N (0, σ2

a) and bi ∼ N (0, σ2
b ), one can estimate the fixed effects using, for

instance, Expectation Maximization algorithms (see section 2.7).

More generally, non linear mixed effects are often used and one can refer, among many other
works, to Sheiner and Beal (1980); Bates and Watts (1988). As in the previous example, those
models estimate the fixed effects explaining the population dynamic and the random effects
modeling the variability in the population. Such models will be studied section 2.4 and in the
following chapters. One can find a complete review of mixed effect models in Lavielle and
Mentré (2007).

2.3 Riemannian notions

We now want to present the mixed effect models we will use later on. However, to do so, we first
need some notions of Riemannian geometry. We will present them only succinctly here and we
refer to Lafontaine et al. (2004); Younes (2010) for more details.

2.3.1 Riemannian metric and Exponential map

The structure of a Riemannian manifold is given by its metric. It is defined by a continuous
collection of dot products < · | · >x on the tangent space TxM at each point x ∈M .
Let γ : [0, 1] → M be a curve on the manifold. One can then compute the length of this curve
between t = a and t = b as:

Lba(γ) =

∫ b

a

(< γ̇(t) | γ̇(t) >γ(t))
1/2 dt .

We then define the distance between two points x and y of M as the minimum length among
the smooth curves joining x and y:

d(x, y) = min
{
L1

0(γ) |γ : [0, 1)→M,γ(0) = x and γ(1) = y
}
.

The curves realizing the minimum of length are called geodesics. It is possible to compute them
by solving a second order differential system.
We say that the manifold is geodesically complete if the definition domain of all geodesics can
be extended to R. This means that the manifold has no boundary nor any singular point that we
can reach in a finite time. In particular, such a manifold is complete for the induced distance and
there always exists at least one minimizing geodesic between any two points of the manifold. In
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the following, we suppose that M is geodesically complete.

Since a geodesic is the solution of a second order differential equation, there exists one
and only one geodesic γx,v going through the point x ∈ M at time t = t0 with tangent vector
v ∈ TxM . We call Riemannian exponential the application mapping each vector v to the value
of the associated geodesic at time t:

Expx,t0,t :TxM →M

v 7→ γx,v(t)

This exponential map will be of the upmost importance in the next sections as we will use it to
compute deformations of a shape x towards our different subjects.

2.3.2 Exp-parallelization

We now want to generalize the notion of parallels to Riemannian manifolds. In the following,
this notion will help us define spatial deformations. Let M be a geodesically complete Rie-
mannian manifold, γ : I ⊂ R → M a differentiable curve on M and ω ∈ Tγ(t0)M a tangent
vector. Given t0, t ∈ [0, 1], we first define the parallel transport of w from γ(t0) to γ(t) along γ:
Pt0,t(w) ∈ Tγ(t)M . We recall that this mapping is uniquely defined by the integration from u = t0
to t of the differential equation ∇γ̇(u)Pt0,u(w) = 0 with the initial condition Pt0,t0(w) = w where
∇ is the Levi-Civita covariant derivative.

We then define the exp-parallel variation of γ along ω as the curve ηw(γ; .) : I →M :

ηw(γ, .) : t 7→ Expγ(t),0,1(Pγ,t0,t(ω)) (2.2)

Hence, to obtain the parallel of γ(t) at the instant t, we first compute the parallel transport of ω
on γ and use the resulted vector in the Riemannian Exponential. This process is summarized
on a sphere Figure 2.1 and a numerical process to compute it has been introduced in Louis
et al. (2017).

Figure 2.1 Example of parallel transport on a sphere. On the left, we draw a trajectory γ and
the momenta to transport w. On the center, we transport w along γ. On the right, we compute
the exp-parallelization of γ by w.
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2.3.3 Fréchet mean

Given a data set, a usual question is to define its mean. However, on a Riemannian manifold,
we cannot just take the arithmetic mean of the observations as it would not always belong to
this manifold (this problem is particularly noticeable for data living on a sphere). To generalize
the notion of mean on a Riemannian manifold, we introduce the notion of Fréchet mean. Given
observations (xi)1≤i≤n in M and a distance d, we define:

x̄ = argminy∈M
1

n

n∑
i=1

d(xi, y) . (2.3)

This new notion generalizes the usual mean on Riemannian manifolds. In particular, on a Eu-
clidian space, the usual mean is also solution of 2.3.

The existence and uniqueness of the Fréchet mean have notably been studied by Karcher
(1977), Kendall (1990) or Bhattacharya et al. (2003) and we send back to those papers to find
conditions on the manifold ensuring the existence and uniqueness of the Fréchet mean.

2.3.4 Statistics on a Riemannian manifold

Different statistical models have been studied on Riemannian manifolds using the notions pre-
sented above. Theoretical results on the Fréchet mean and covariance matrix of random ele-
ments have been studied in Pennec (2006). Those properties have for instance been applied
by Boisvert et al. (2006) for the variability analysis of the scoliotic spine shape where defor-
mations belong to the Riemannian space of rigid transformations. Similarly, the Fréchet mean
for different distances on the set of positive definite matrices has been studied in Dryden et al.
(2009) to do statistics on covariance matrices. The Fréchet mean is also, for instance, used
in Vercauteren et al. (2005) to find a globally consistent mapping of input frames to a common
coordinate system.

Another point of interest from the statistical point of view has been the generalization of
Principal Components Analysis (PCA) on Riemannian manifolds. The simplest generalization
is the tangent PCA and consists in unfolding the whole distribution in the tangent space at the
mean, and computing the principal components of the covariance matrix in the tangent space.
Other possibilities consist in considering geodesic spaces (Fletcher et al., 2004) or barycentric
subspaces (Pennec et al., 2018).

In the next section, we will present the Large Deformation Diffeomorphic Metric Mapping
framework which will use most of the tools presented above and be used in part II of this
manuscript. This framework uses the Fréchet mean and the Exponential map on the manifold
space of shapes to construct a hierarchical model.

2.4 Large Deformation Diffeomorphic Metric Mapping

Now that we have presented the Riemannian geometry notions needed, we can introduce the
Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework we will use in our thesis.
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2.4.1 First notions of shape spaces

In 1942, d’Arcy et al. (1917) introduced what would later on be generalized as shape spaces. In-
stead of considering shapes as distinct objects, his idea was to study the deformations allowing
to go from one anatomical shape to another (see figure 2.2).

Figure 2.2 Illustration taken from the book On Growth and Form d’Arcy et al. (1917).

Grenander (1993) has then mathematically formalized this idea. The idea is the following.
We consider a shape space M . Here the term "shape" designs any structured data such as
meshes, images, etc.. We suppose that there exists G a group acting transitively on M . We
then define a shape space by considering the unique orbit of the action G.x0 for x0 in M . This
shape space is constituted of all the deformations of the shape x0 by the group G. In this thesis,
we will mainly consider the case where G is a subset of the set of diffeomorphisms on Rn.

We can already give an example of such shape spaces, composed of landmarks. We call
landmark a labelled set of points. The set of all landmarks of Rn of size p ∈ N is:

M = {x = (x1, ..., xp) ∈ (Rn)p | ∀i 6= j, xi 6= xj} .

Since the points are labelled, the landmarks are easily handled. In particular, we can easily
make C1(Rn) act on M by setting, for g ∈ C1(Rn), x ∈M ,

g.x = (g(x1), ..., g(xp)) .

The landmarks shape space has in particular been studied in Kendall (1984).

2.4.2 Measuring the distance between two shapes

Now that we have defined our shape space as G.x0 with x0 ∈ M , we can interest ourselves in
the creation of a distance between two shapes. Following the idea of d’Arcy et al. (1917), we
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will consider this distance as the difficulty to deform one shape onto another. More precisely,
we suppose that G is endowed with a right invariant metric dG . We can then endow M with the
following pseudo metric: for any x, y ∈M , we set:

d(x, y) = inf {dG(Id, g) | g.x = y} . (2.4)

If there is no deformation from x to y, g = Id and d(x, y) = 0. In general, d(x, y) is computed
using the minimal deformation transforming x into y.

The question is now to define the group G and the right invariant distance dG . The first
attempt to construct such structures in the medical image setting has been done using dis-
placement vector fields by Broit (1981). With Ω ⊂ Rn, one can consider a displacement vector
field u : Ω → Rn and set φu : x 7→ x + u(x) and φ−1

u : x 7→ x − u(x). G is then the group of all
such maps and acts on an image I0 by: φ.I0(x) = I0(φ−1(x)). We then define a distance on G
measuring the smoothness of the displacement field by setting:

dG(Id, φu) = || − α∆u+ γu||L2 .

This distance on G then allows us to compute a distance between images using equation 2.4.

However, this small deformation approach presents some limitations. First, it does not en-
sure a one to one transformation. It has also been showed in Christensen (1994) that it can
sometimes generate transformations folding the grid over itself and so destroying the neighbour-
hood structure. Moreover, it does not always generate invertible transformations. To overcome
those drawbacks, Trouvé (1995), Dupuis et al. (1998) and Beg et al. (2005) chose to proceed
infinitesimally by introducing the Large Deformation Diffeomorphic Metric Mapping (LDDMM).
They chose to only consider diffeomorphic transformations. Diffeomorphisms are particularly
well adapted here as they are smooth transformations with smooth inverses preserving con-
nected sets and smoothness of anatomical features. We present this framework below.

Let V be a set of vector fields over Rn endowed with a Hilbert structure and continuously
embedded into the space of diffeomorphisms vanishing at infinity and whose differential also
vanishes at infinity: C1

0(Rn). We also set L2([0, 1], V ) the set of time dependent vector fields,
L2-integrable with respect to t:

L2([0, 1], V ) =

{
(vt)t∈[0,1]

∣∣∣∣∀t ∈ [0, 1], vt ∈ V and
∫ 1

0

||vt||2V dt <∞
}

Instead of considering a deformation as Id + v as done in the small deformation framework,
we suppose that a deformation φ is obtained as the flow of a vector field vt. More precisely, for
v ∈ L2([0, 1], V ), we set φv1 the diffeomorphism obtained as the flow at time 1 of the vector field
v: {

∂tφ
v
t = vt ◦ φvt
φv0 = Id .

(2.5)

We then set G = {φv1|v ∈ L2([0, 1], V )} the group of such diffeomorphisms. It is now easy to
define a distance on G. For φ, φ′ ∈ G, we set:

dG(Id, φ) = inf

{(∫ 1

0

||vt||2V dt
)1/2

∣∣∣∣∣ v ∈ L2([0, 1], V ) and φv1 = φ

}
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and
dG(φ, φ′) = dG(Id, φ′ ◦ φ−1) .

It can be remarked that this distance depends on the norm ||.||V we put on V . The choice of
this norm will be discussed subsection 2.4.4.

This exactly states that G is given the structure of a manifold on which distances are com-
puted as the length of minimal geodesic paths (φvt )t∈[0,1] connecting two elements. In particular,
it means that we can use the different tools introduced section 2.3.

It has been showed that this infimum is in fact a minimum and that the distance is right in-
variant (Trouvé, 1995; Younes, 2010). Moreover, a geodesic in G passing through Id at an initial
time t0 is then uniquely defined by an initial velocity v0. In the following, we will write Expt0,t(v0)
the value of this geodesic at the time t, as introduced section 2.3 (contrary to the notation intro-
duced in that section, we do not specify the initial point Id).

Hence, for two shapes x and y ∈M , we set:

d(x, y) = inf

{(∫ 1

0

||vt||2 dt
)1/2

∣∣∣∣∣ v ∈ L2([0, 1], V ) and φv1.x = y

}
.

This distance measures the shortest length of the path relying x to y using the diffeormophisms
φv. It also allows to define a Riemannian structure on M . A geodesic on M will then be defined
using an initial shape p0 and initial velocity v0 by t 7→ Expt0,t(v0)(p0).

This construction answers our previous concerns: we measure the distance between two
shapes as the difficulty to deform one onto another. Moreover, as φv1 is a diffeomorphism, it is
invertible and preserves the smoothness and structure of the shapes.

2.4.3 Matching of two shapes

In the previous subsection, we have defined a distance between two shapes as a cost of defor-
mation. We now ask ourselves how to compute in practice this deformation. To do so, we will
use inexact matching by minimizing a function expressing a balance between length of the path
and target correspondence. We set, for λ > 0, x, y ∈M and for v ∈ L2([0, 1], V ),

J(v) =

∫ 1

0

||vt||2V dt+ λA(φv1.x, y) . (2.6)

A is the data attachment term. It measures the distance between the target y and the deformed
initial shape: φv1.x. In particular, as A only depends of φv1, we can see that any v minimizing J
will also verify

v = argmin

{(∫ 1

0

||vt||2 dt
)1/2

∣∣∣∣∣ v ∈ L2([0, 1], V ) and φv1 = φ

}
.

The path (φvt )t∈[0,1] will thus be a geodesic in the manifold G.

Different data attachment terms exist depending on the nature of the shape observed. For
images, the L2 distance between the two images is used. Similarly, for landmarks, as the points
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are labelled, we just use a square distance:

∀x = (x1, ..., xp) ∈ (Rn)p, y = (y1, ..., yp) ∈ (Rn)p, v ∈ V, A(φv1.x, y) =

p∑
i=1

||φv1(xi)− yi||2 .

The problem is more complex when the points are not labelled and when two shapes can have a
different number of points (meshes for instance). In that case, different attachment terms mea-
suring the distance between two shapes have been created. Using discrete measures, Glaunes
et al. (2004) proposes an attachment term for non-labelled points. Vaillant and Glaunès (2005)
introduces the notion of currents to match oriented shapes. As for non oriented shapes, Charon
and Trouvé (2013) introduces the concept of varifolds.

In the following parts, we will either use varifolds or currents for meshes and the L2 norm
for images. Hence, once we have defined this attachment term, we are able to perform the
inexact matching by minimizing the function J . To do so, the computation of its gradient has
been the object of several articles (see Miller and Younes (2001); Miller et al. (2002); Beg et al.
(2005) among others). More recently, the use of automatic differentiation is often privileged. An
illustration of a matching and of the deformation field is given Figure 2.3.

Figure 2.3 Illustration taken from Miller et al. (2002).

2.4.4 Finite parametrization of the vector fields

To finalize our explanation of matching, we still have to define the norm we use on our vector
fields ||.||V . To do so, Joshi and Miller (2000) and Durrleman et al. (2011a) propose to char-
acterize the vector fields by a finite number of parameters: control points and momenta. They
endow V with a Reproducing Kernel Hilbert Space (RKHS) structure. A RKHS is associated
with a kernel such that for any function f , the operation f(x) can be performed by taking an
inner product with a function determined by the kernel KV .
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In this RKHS, for x ∈ Rn, a vector field v is represented as:

v(x) =

ncp∑
i=1

KV (ci, x)αi (2.7)

where (ci)1≤i≤ncp are called control points and (αi)1≤i≤ncp are called momenta. v is thus repre-
sented as the interpolation of the momenta at the control points using the kernelKV . In practice,
we choose KV to be a Gaussian kernel with variance σ2

V : for x, y ∈ Rn,

KV (x, y) = exp

(
−||x− y||

2

2σ2
V

)
.

This construction can be seen Figure 2.4 where the control points are represented by red
points, the momenta by red arrows and the vector field by blue arrows.

Figure 2.4 Construction of the vector field v (blue arrows) using the control points (red points)
and momenta (red arrows).

With such notations, the length of the path parameterized by (vt)t∈[0,1] is:

∫ 1

0

||vt||2V dt =

∫ 1

0

ncp∑
i,j=1

αi(t)
tKV (ci(t), cj(t))αj(t) dt .

We come back to our matching problem. Given two shapes, we are looking for a vector field
(vt)t∈[0,1] minimizing equation (2.6). We will now see that it is enough to define initial control
points and momenta at t = 0 to be able to compute at any time point the velocity field (vt)t∈[0,1]

minimizing the function J .

As explained in the previous subsection, a vector field minimizing J generates a geodesic
path in G beginning at Id. Hence, it is enough to look for geodesic paths and so for the initial
velocity.
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It has been showed in Miller et al. (2006) that, in a RKHS, a geodesic path (φvt )t∈[0,1] defined by
a velocity field (vt)t∈[0,1] verifies:

vt(x) =

ncp∑
i=1

Kg(ci(t), x)αi(t) . (2.8)

where the time dependent control points and momenta are solutions of the Hamiltonian equa-
tions: {

ċ(t) = KV (t)m(t)

ṁ(t) = ∇c(t)
(
m(t)TKV (t)m(t)

) (2.9)

with initial conditions m(0) = (mk(0))1≤k≤ncp , c(0) = (ck(0))1≤k≤ncp and where KV (t) is the
ncp × ncp kernel matrix (KV (ci(t), cj(t)))1≤i,j≤ncp .
Hence, the geodesic path t 7→ Expt0,t(v0) is uniquely defined by its initial momenta and control
points.

To summarize, given initial control points and momenta, we are able to generate a geodesic
path. Hence, to solve our matching problem, we now just have to find those initial vectors min-
imizing the function J . This is to be compared with the previous situations where one had to
estimate a vector field v0 on the whole space. We now just have to estimate a finite number of
initial vectors to solve the same problem.

An example of a matching using this method is presented Figure 2.5. In part II, it is this
decomposition of vector fields using momenta and control points that we will use in our experi-
ments.

Figure 2.5 Illustration taken from Durrleman et al. (2011a). The red points are the initial control
points, the red arrows, the initial momenta. On the left is the initial shape. On the right is the
deformed shape (white) superposed with the target (grey).

2.4.5 Cross sectional atlas

Now that we know how to compute a distance between two shapes, we can interest ourselves in
the creation of an atlas. An atlas is constituted of a representative shape (also called template)
of the population as well as the deformations from this representative shape towards each
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subject. To create this representative shape, we use the concept of the Fréchet mean introduced
subsection 2.3.3. This notion has been used on different data sets in numerous papers, see
Guimond et al. (1998); Le and Kume (2000); Pennec (2006); Mio et al. (2007); Ma et al. (2008);
Allassonnière et al. (2007) among others. We present this approach here.
Given a data set of observations (yi)1≤i≤m, we will minimize the function:

J(p, v1, ..., vm) =
1

2σ2

m∑
i=1

A(φvi1 .p, yi) + Reg(p, v1, ..., vm)

Hence, we are looking for a shape p and for the deformation fields vi transforming p onto an
approximation of each observation. A is the data attachment term and we also add a regularity
term allowing, for instance, to add smoothness conditions. The parameter σ allows us to bal-
ance between the regularity and the attachment to the data desired.

This minimization problem can be solved using gradient descents algorithms. It is also pos-
sible to transform it into a Bayesian problem by associating it to a statistical model. The obser-
vations yi are then supposed to follow a normal law centered in φvi1 .p and of variance σ2. The
regularization terms are composed of the sum of the log-likelihood of vi (often, vi ∼ N (0,Σ))
and of the log-likelihood of priors. In that case, Expectation-Maximization algorithms are used
to estimate the parameters of the model (see section 2.7). We no longer estimate p as a Fréchet
mean but as a maximum likelihood estimate. It has been showed in Devilliers et al. (2017) that
a bias is introduced between those two notions when the data is noised.

An example of a dataset and representative shapes obtained by this method is presented
Figure 2.6.

Figure 2.6 Figure obtained from Allassonnière et al. (2010). On the left, the dataset constituted
of numbers from the USPS data set. On the right, the templates obtained for each number using
a SAEM algorithm.

2.4.6 First longitudinal models

We now interest ourselves in longitudinal data sets. In that case, we are given a data set
(yi,j)1≤i≤n,1≤j≤ki of observations of n subjects, each being observed at ki different times ti,j .
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We present here different models developed in the literature to tackle that case.

Geodesic shooting:
To explain the longitudinal trajectory of a particular subject, Fletcher (2013) considers it as a
geodesic. It is the equivalent to a linear regression model but for Riemannian manifolds. Instead
of estimating an intercept and a slope, we will estimate a point p on the manifold M and a vector
v ∈ TM the tangent bundle of M . More precisely, given a trajectory (yj)1≤j≤m of a particular
subject associated to times (tj)1≤j≤m, we write:

yj = Exp0,1(ε) (Exp0,1(tjv)(p)) ,

where ε is a random variable taking its value in the tangent space ofM at the point Exp0,1(tjv)(p)
and where Exp0,1(v)(p) designs the value at time 1 of the unique geodesic in M passing through
p at time 0 with initial speed v. This notation means that yj is written as the deformation of an
initial point to which we add a noise.
Fletcher (2013) then uses a least square method to estimate the parameters of the model and
applies it to the Corpus Callosum aging. This model reconstructs the trajectory of each subject
independently of the others and hence does not give a representative trajectory of the popula-
tion. To obtain one, the next model presented chooses to obtain the subject trajectories as the
deformation of a mean one.

Shapes-based approach:
To obtain an atlas from a population (yi,j)1≤i≤n,1≤j≤ki , we need to define a hierarchical model.
Muralidharan and Fletcher (2012) endow the tangent bundle ofM with a Riemannian metric: the
Sasaki metric. It allows them to consider the random effects (pi, vi) as a geodesic perturbation
on the tangent bundle of M . More precisely, let (α, β) ∈ TM be the fixed effects and, for
1 ≤ i ≤ n, let (qi, wi) be a vector in the tangent space of TM at (α, β). We then write,{

(pi, vi) = ExpS0,1
((qi, wi))(α, β)

yi,j = Exp0,1(εi,j) (Exp(ti,jvi)(pi))
(2.10)

Here ExpS designs the Riemannian Exponential associated to the Sasaki metric on the tan-
gent bundle TM of M and εi,j is a random variable taking its value in the tangent space
of M at the point Exp0,1(ti,jvi)(pi). This allows them to define a representative trajectory as
Exp0,1(ti,jβ)(α). This model is once again applied to the Corpus Callosum aging.

Diffeomorphism-based approach:
Another way to construct an atlas of a longitudinal data set is to directly look for a geodesic tra-
jectory of diffeomorphisms representing the population dynamic as done in Singh et al. (2016).
In this model, each individual trajectory is modeled by a geodesic parameterized by its value
and direction at the initial time of observation. Those two random effects are obtained as a
perturbation of the fixed effects defining the population geodesic.

This model however has the drawback to heavily depend on the initial times of observation
of each subject. A change of this initial time then modifies all the parameters. However, in most
practical cases, this initial time has no intrinsic meaning. We will thus look for a model that is
robust to change of time origin.

The different models evoked here all have the disadvantage not to take into account the
difference of temporality between subjects. Different problems arise from this fact. When we
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study the progression of a disease, it is not always possible to know when this disease starts.
Moreover, it can develop slower or faster from one patient to another. Thus, constructing a pop-
ulation trajectory by comparing all patients at the same age can result to a bad representation
of the mean progression of the disease.

To overcome this problem, Schiratti et al. (2015) proposed to learn a temporal reparameter-
ization together with the spatial deformations. This is the model we present in the next section.

2.4.7 Hierarchical spatio-temporal model

Exactly as we have explained how to create a cross-sectional atlas, we now want to create a
longitudinal atlas. This time we observe (yi,j)1≤i≤m,1≤j≤ki the trajectory of m subjects, each
of them being observed at times (ti,j)1≤j≤ki . In particular, each subject can be observed a
different number of times and at different ages.

The goal is to estimate a representative trajectory as well as the distributions of the spatio-
temporal deformations from that representative trajectory towards the population of subjects. In
Schiratti et al. (2015), the authors propose a hierarchical model where each subject is obtained
as a spatio-temporal deformation of a representative curve.

More precisely, the representative curve γ0 is now a trajectory of shapes along time. We
suppose that it is obtained using a geodesic flow applied on an initial shape. The trajectory of a
subject i is then obtained using a spatial deformation φi and a temporal one ψi. This writes:

yi,j = φi ◦ γ0(ψi(ti,j)) + εi,j , (2.11)

where εi,j is a Gaussian noise.

As we suppose the representative trajectory to be obtained from a geodesic, it means that
we can parameterize it using an initial shape p0 at an initial time t0 with an initial velocity v0.
This writes:

γ0(t) = Expt0,t(v0)(p0) , (2.12)

where Exp has been defined subsection 2.4.2 and is the geodesic path in G with initial velocity
v0 at time t0. As explained subsection 2.4.4, the velocity v0 will be obtained as the interpolation
of momenta m0 at control points c0. (t0,m0, c0, p0) are then the fixed effects to estimate.

Concerning the temporal deformation, it must be noticed that each subject can have its
own acceleration and time shift. For instance, if we study a disease, it can be declared at a
younger or older age and then develop itself more or less quickly. As we want to construct the
representative trajectory of the disease, we need to compare the subjects at the same stage.
Hence the necessity of a temporal reparameterization. We thus consider for each subject an
acceleration parameter αi and a time shift parameter τi and write:

φi(t) = αi(t− t0 − τi) + t0 . (2.13)

As for the spatial deformation, we use the notion of exp-parallelization defined section 2.3.2:
the trajectory of a subject i is obtained as the exp-parallelization of the representative trajectory
using a certain vector wi: ηwi(γ0, ·).
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Thus, using those temporal and spatial deformation, we define the trajectory of the subject i
as:

γi : t 7→ ηωi(γ0, ψi(t)) (2.14)

Hence, knowing the representative trajectory, the deformation of each subject is obtained using
only 3 variables: the acceleration αi, the time shift τi and the space shift ωi.

For the model to be identifiable, the vectors ωi are supposed to be orthogonal to the tra-
jectory γ0. It prevents the model from considering an acceleration with respect to the repre-
sentative trajectory as a space shift (Schiratti et al., 2017). Moreover, to reduce the dimension
of the problem, one can assume that the space shifts wi are obtained as linear combinations
of independent sources: wi = Asi with si a vector whose dimension is small compared to the
dimension of ωi.

Finally, writing zi = (αi, τi, si), the statistical model can be written as:{
yi,j | zi, θ ∼ N (γi(ti,j), σ

2)

zi | θ ∼ N (0,Σ)
(2.15)

where the parameters to estimate are θ = (t0,m0, c0, p0, A, σ,Σ). Often priors are added to
theoretically ensure the existence of the maximum a posteriori estimate of the parameters.

To estimate θ, we can use Expectation Maximization algorithms that we will present section
2.7. This spatio-temporal model has in particular be implemented in Deformetrica and can be
accessed in open access (Bône et al., 2018b).

The principal limitation of the spatio-temporal model presented above is the necessity for
the representative trajectory to be a geodesic. In particular, it means that the representative
trajectory cannot take the same value twice. In certain cases, it is not a problem. For instance,
for the Alzheimer’s disease, this model has been successfully applied for an early detection
(Koval et al., 2018; Bône et al., 2018a). However, it can be a severe limitation in other cases.
In the case of chemotherapy, the treatment is often efficient at first, but, after a certain time, the
tumor becomes resistant and its size increases again. Such a dynamic cannot be reproduced
by the model previously presented. However, this dynamic, and particularly the time at which
the tumor becomes resistant, would be of the upmost interest to doctors. One of the goals of
this thesis will be to remove this limitation while considering heterogeneous populations.

2.5 Markov Chains and Metropolis Hastings algorithms

We now want to present the estimation algorithms we will use to estimate the parameters of
the models presented previous section. To do so, we first need notions about Markov Chains,
Metropolis Hastings algorithms and Stochastic Approximations. One can find a review of the
Markov Chains notions presented here in Meyn and Tweedie (2012) or Douc et al. (2018). We
only focus in this section on the required notions necessary to understand the rest of this thesis.
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2.5.1 Markov Chains

Let (X ,B(X )) be a separable space and P a transition kernel on (X ,B(X )). For any probability
measure µ on B(X ), one can define a probability measure Pµ on B(X )⊗N such that, for all n ≥ 0
and A0 × ...×An ∈ B(X )n+1,

Pµ(X0 ∈ A0, ..., Xn ∈ An) =

∫
A0×...×An

µ(dx0)P (x0, dx1)...P (xn−1, dxn) .

(Xi)i∈N is then called the canonical Markov Chain.

We will quickly define four notions about Markov Chains that we will need further on: irre-
ducibility, aperiodicity, small sets and ergodicity.

We say that a kernel P is φ-irreducible if there exists a non trivial measure φ on B(X ) such
that, for all x ∈ X and for all A ∈ B(X ) verifying φ(A) 6= 0, there exists n ≥ 1 such that
Pn(x,A) > 0. It means that all sets of φ measure positive are accessible. We call φ maximal if
it dominates all other irreducibility measures.

P is said to be aperiodic if there are no d measurable sets (Ai)1≤i≤d with d ≥ 2 and
ψ(
⋃d
i=1Ai) = 1 for a certain maximal irreducibility measure ψ such that P (x,Ai+1) = 1 for

all x ∈ Ai, 1 ≤ i ≤ d.

We then define the concept of small sets. If P is irreducible and aperiodic, we say that a set
C ∈ B(X ) is ν-small if there exist constants ε > 0, m ≥ 1 and a probability measure ν such that

∀x ∈ C, Pm(x, ·) ≥ εν .

The existence of small sets will be one of the conditions ensuring convergence of stochastic
approximations with Markovian dynamic. In practice, if P is ψ-irreducible aperiodic and X is
separable, any set of positive ψ-measure contains a small set (Douc et al., 2018). Hence, it is
not a restrictive condition.

We also define the notion of petite sets. C ∈ B(X ) is petite if there exist ε > 0, probability
measures a on N and νa on B(X ) such that, for all x ∈ C:∑

n∈N
a(n)Pn(x, ·) ≥ ενa .

When P is ψ-irreducible and aperiodic, petite sets are exactly the ν-small sets.

We can now define the notion of ergodicity. A probability measure π is invariant for P if, for
all A ∈ B(X ),

π(A) =

∫
π(dy)P (y,A) .

P is then said to be ergodic if it is ψ-irreducible, aperiodic, has an invariant probability measure
π and, for ψ-almost every x,

lim
n
||Pn(x, ·)− π||TV = 0 ,

where the total variation norm for a signed measure µ is defined by:

||µ||TV = sup
A∈B(X )

µ(A)− inf
A∈B(X )

µ(A) .
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In particular, it means that, for any bounded function g : X → R and, for ψ-almost every x,

lim
n
|Png(x)− π(g)| = 0 ,

where Png(x) :=
∫
Pn−1g(y)P (x, dy), P 0(x, dy) := δx(dy) and π(g) :=

∫
g(y)π(dy).

Instead of interesting ourselves only to bounded functions g, we can choose to study func-
tions g increasing at infinity at most like another function f . To do so, we define, for f ≥ 1, the
f -norm of a function g : X → R by:

||g||f = sup
x∈X

|g(x)|
f(x)

.

We write Lf = {g : X → R | ||g||f <∞}. We can then define the f -norm of a signed measure µ
by:

||µ||f := sup
||g||f=1

|µ(g)| .

As before, we can now define the concept of f -ergodicity. P is said to be f -ergodic if it is
ψ-irreducible, aperiodic, has an invariant probability measure π and for ψ-almost every x,

lim
n
||Pn(x, ·)− π||f = 0

It is rarely enough to know that a function is ergodic: we also need to know the speed of
convergence. This means that we need to find a sequence (rn)n∈N positive and increasing such
that;

lim
n
rn||Pn(x, ·)− π||f = 0

ψ-almost everywhere.
When rn = λ−n with λ < 1, we say that the sequence is f -geometrically ergodic. Otherwise, we
say that it is f -subgeometric. In practice, it is often difficult to verify the ergodicity of a Markov
Chain. To do so, we will use drift conditions presented below.

The first drift condition gives us the geometrical ergodicity of the Markov Chain. Suppose
that there exist V : X → [1,∞) a measurable function, λ ∈ [0, 1), b ∈ [0,∞), an integer m and
C ∈ B(X ) such that:

PmV ≤ λV + b1C . (2.16)

In that case, the function V is called the drift or Lyapunov function. Assume also that P is ape-
riodic and that C is a small set. Then, P is V -geometrically ergodic.

If this drift condition immediately gives us the λ defining the speed of convergence rn = λ−n,
it is a bit more complex in the subgeometric case.
Assume that there exist a function V : X → [1,∞), a concave, monotone nondecreasing differ-
entiable function φ : [1,∞]→ (0,+∞] with limt→∞ φ′(t) = 0, a petite set C and a finite constant
b such that:

PV + φ ◦ V ≤ V + b1C . (2.17)

Suppose also that there exists x0 ∈ X such that V (x0) <∞. Then, there exists a unique invari-
ant distribution π such that P is φ ◦ V -ergodic.
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This time, the rate of convergence rn is more complex to determine. We will here follow the
steps detailed in Douc et al. (2004). Define:

Hφ(v) =

∫ v

1

dx

φ(x)
,

rφ(z) = φ ◦H−1
φ (z) .

Then, if equation (2.17) holds with supx∈C V (x) <∞ and if P is ψ-irreducible and aperiodic then
P is ergodic with, for all x ∈ {V <∞}:

lim
n
rφ(n)||Pn(x, ·)− π||TV = 0

To find the rate of convergence in f -norm for a certain function f , we need to introduce the
notion of Young functions. We say that Ψ1 and Ψ2 are a pair of Young functions if they are
ultimately nondecreasing with limx→∞Ψ1(x) = limx→∞Ψ2(x) =∞ and, for all x, y ∈ [1,∞),

Ψ1(x)Ψ2(y) ≤ x+ y .

One of the most usual pair of Young function is Ψ1(x) = p1/px1/p and Ψ2(x) = q1/qx1/q with
1/p+ 1/q = 1.
Then, if equation (2.17) holds with supx∈C V (x) <∞ and if P is ψ-irreducible and aperiodic then
P is ergodic with, for all x ∈ {V <∞}:

lim
n

Ψ1(rφ(n))||Pn(x, ·)− π||Ψ2(φ◦V ) = 0 .

The choice of Ψ1 and Ψ2 expresses a compromise between the rate of convergence Ψ1(rφ(n))
and the control function Ψ2(φ ◦ V ).

In practice, it is those drift conditions (2.16) and (2.17) which are proved in order to verify the
ergodicity of a Markov Chain.

2.5.2 Metropolis Hastings algorithm

When exact simulation of a random variable is impossible, one can use Markov Chain Monte
Carlo (MCMC) methods. The idea of MCMC methods is to generate a Markov Chain whose
invariant distribution is the law we want to sample from. Hence, we replace one sample from a
complex distribution by the hopefully easiest iteration of a Markov Chain.

The most frequently used Markov Chain Monte Carlo method is the Metropolis Hastings
algorithm introduced by Hastings (1970). This method has the particular advantage to only
require knowledge of the target distribution up to a multiplicative constant. Hence, it is not
necessary to know the normalization constant, often intractable. At each step, given the cur-
rent step of the Markov Chain, it consists in proposing a new value and accepting it according to
a certain rate. Given a target π and a proposal q, the exact algorithm is described in Algorithm 1.

In most cases, the proposal is a Gaussian distribution centered in the previous value xk−1.
It is then symmetric and the acceptance rate has an easier form:

α(xk, x) = 1 ∧ π(x)

π(xk−1)
.
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Algorithm 1: Metropolis Hastings algorithm.
Data: x0 an initial value, K a number of iterations.
for 1 ≤ k ≤ K do

Proposition step: Sample x ∼ q(·, xk−1).

Acceptation step: Compute

α(xk, x) = 1 ∧ π(x)q(xk−1, x)

π(xk−1)q(x, xk−1)

and set:

xk =

{
x with probability α(xk−1, x)

xk−1 with probability 1− α(xk−1, x)

In that case, it measures how the likelihood has evolved between the proposal and the last
iteration. This is known as symmetric Random Walk Metropolis Hastings (SRW-MH) and was
heavily studied.

A natural question is how to choose the variance σq of the proposal. Indeed, this variance
influences the acceptance rate and tuning it manually is most of the time impossible as it has
to evolve along the simulation to better fit the target density. In practice, we try to reach an
acceptance rate argoal = 30% by adapting it every nadapt iterations following the idea of Roberts
et al. (1997). One can use the following formula:

σq ← σq

(
1 +

1

kδ
ār− argoal

(1− argoal) · 1ār≥argoal + argoal · 1ār<argoal

)
with k the current iteration, δ > 0.5 and ār the mean acceptance rates over the last nadapt itera-
tions.

A different problem arises when sampling in a high dimension space. In that case, it is dif-
ficult to explore the whole set using the proposal and thus, the resulting Markov Chain will not
explore the whole array of possible target values. To overcome this problem, one can combine
the Metropolis Hastings algorithm with Gibbs samplers. Instead of proposing a new vector at
each iteration, one can choose to update only one coordinate or block of coordinate, accept or
reject it and then repeat this process for each coordinate (see Geman and Geman (1984)).

We finally interest ourselves in the ergodicity of this Markov Chain. It will be necessary to
know its rate of convergence towards the target distribution when used in parallel with a stochas-
tic approximation algorithm (see section 2.6). Jarner and Hansen (2000) show that geometric
ergodicity of random-walk-based Metropolis algorithm is equivalent to the acceptance probabil-
ity being uniformly bounded away from zero.

In particular, the authors give us conditions of geometric ergodicity if the target density is
super-exponential, i.e. if it is positive and has continuous first derivatives such that

lim
x→∞

n(x) · ∇ log π(x) = −∞ ,
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where n(x) denotes the unit vector x/|x|. This condition implies that for any H > 0, there exists
R > 0 such that

π(x+ an(x))

π(x)
≤ exp(−aH) for all |x| ≥ R, a ≥ 0 .

This equation means that π(x) is at least exponentially decaying along any ray with the rate H
tending to in infinity as x goes to in infinity.
Then, under this assumption, the random-walk-based Metropolis algorithm is geometrically er-
godic if

lim sup
|x|→∞

n(x) ·m(x) < 0 ,

where m(x) = ∇π(x)/|∇π(x)| is the normalized gradient of π.

When leaving the class of super-exponential targets, there is no longer easy conditions en-
suring geometric ergodicity of the Metropolis Chain. In particular, for heavy tails targets, this er-
godicity will not always be verified. Such a behaviour has been highlighted in Fort and Moulines
(2000, 2003) among others. In those papers, different conditions are presented resulting in a
subgeometric ergodicity of the Markov Chain obtained from a Metropolis Hastings algorithm.
We present here two sets of conditions resulting in subgeometric ergodic Markov Chains.

(E1) The target density π is continuous and positive on Rd and there exist m ∈ (0, 1),
r ∈ (0, 1), positive constants di, Di, i = 0, 1, 2 and R0 <∞ such that, if |x| ≥ R0,
x 7→ π(x) is twice continuously differentiable and〈

∇π(x)

|∇π(x)|
,
x

|x|

〉
≤ −r

d0|x|m ≤ − lnπ(x) ≤ D0|x|m

d1|x|m−1 ≤ |∇ lnπ(x)| ≤ D1|x|m−1

d2|x|m−2 ≤ |∇2 lnπ(x)| ≤ D2|x|m−2 .

(E2) There exist ε > 0 and r <∞ such that y < r =⇒ qθ(y) ≥ ε. Moreover, qθ is
symmetric, bounded away from zero in a neighborhood of zero, and is compactly
supported. We also assume that there exist C > 0 and β ∈ (0, 1) such that for all
(θ, θ′) ∈ Θ2, ∫

X

|qθ(z)− qθ′(z)|λLeb(dz) ≤ C|θ − θ′|β .

Remark 2.5.1. Among others, the Weibull distribution on R+ π : x 7→ βηxη−1 exp(−βxη) with
β > 0 and η ∈ (0, 1) verifies those conditions.
The compactly supported condition could be relaxed with appropriate moment conditions.

We then have the following proposition proved in Fort (2009):

Proposition 2.5.1 Assume (E1) and (E2). Then, there exists s, c > 0 such that:

lim
n→∞

exp
(
cnm/(2−m)

)
||Pn(x, ·)− π||π−s = 0
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Hence, we have a first example of targets with heavy tails (see condition (E1)) making the
Markov Chain obtained from the Metropolis Hastings algorithm subgeometric.

We now give another set of conditions that implies a polynomial rate of convergence.
(E3) π is continuous on R and there exist some finite constants α > 1, M > 0, C > 0 and

a function ρ : R→ [0,∞) verifying limx→∞ ρ(x) = 0 such that for all |x| > M , π is
strictly decreasing and, for all y ∈ {z ∈ R |π(x+ z) ≤ π(x)},∣∣∣∣π(x+ y)

π(x)
− 1 + αyx−1

∣∣∣∣ ≤ C|x|−1ρ(x)y2 .

(E4) There exist ε > 0 and r <∞ such that y < r =⇒ qθ(y) ≥ ε. Moreover, qθ is
symmetric and there exists ξ ≥ 1 such that

∫
|y|ξ+3qθ(y)dy <∞.

Remark 2.5.2. This class of distributions contains in particular the Pareto distributions (π(x) ∝
x−α) as well as many heavy tail distributions.

We can now give the following proposition proved in Fort and Moulines (2003):

Proposition 2.5.2 Assume (E3) and (E4) and set s∗ = ξ ∧ s. Then, for all r ∈ [0, s∗ − 1) and
γ ∈ [0, (s∗ − 1− r)/2),

lim
n→∞

(n+ 1)γ ||Pn(x, ·)− π||1+|x|r = 0

Hence, as we can see, in some situations, we cannot assume that the resulting Markov
Chain is geometric ergodic. This will be an issue when dealing with Stochastic Approximations
where, to ensure theoretical convergence, one needed the geometric ergodicity of the Markov
Chain. This particular framework is studied next section.

2.6 Stochastic Approximations

2.6.1 Presentation

Now that we have defined the necessary notions about Markov Chains, we can discuss the
Stochastic Approximations framework. The goal is to estimate the parameter θ∗ solution of the
equation:

Eθ[Hθ(X)] = 0 , (2.18)

where H is known, but the computation of the expectation of Hθ(X) is impossible (distribution
unknown or computation too expensive). Moreover, the distribution of X may also depend on
θ. In that case, we write h(θ) = Eθ[Hθ(X)] the mean field, and we are looking for a solution of
h(θ∗) = 0.

In the Stochastic Approximation framework, we do not have direct access to the cost function
Eθ[Hθ(X)] but only to noisy observations: Hθ(Xn) with Xn having the same law as X. The
stochastic approximation then produces a sequence (θn)n∈N of the form

θn = θn−1 + γnHθn−1
(Xn) (2.19)

and converging towards a solution of equation (2.18).
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One of the first examples of this process is the case of the stochastic gradient descent. In
that case, we want to find a solution to

θ∗ = argminθ E[Q(θ,X)]]

and we observe independent samples Xn with distribution X. Hence, the choice Hθ(y) =
−∇θQ(θ, y) leads to process looking like a gradient descent algorithm where the expectation
sign E has been omitted.

In general however, the variables Xn are not independent. In the Markovian dynamic setting,
Xn is a random variable depending only on (θn−1, Xn−1). Hence, the distribution of Xn knowing
(θn−1, Xn−1) is given by a transition kernel Pθn(Xn−1, ·). This setting contains in particular the
Stochastic Approximation Expectation Maximization algorithm presented section 2.7.4.

The convergence of the Stochastic Approximations in the Markovian dynamic case has in
particular been studied in Andrieu et al. (2005). The authors present a set of hypotheses, re-
called here, and ensuring the convergence of the stochastic approximation.

2.6.2 Convergence theorem in the Markovian dynamic case

In the following, we denote X the state space and Θ the parameter space that we assume to be
an open subset of Rnθ . Moreover, we suppose that both are equipped with countably generated
σ-fields B(X ) and B(Θ). We present the framework of a stochastic approximation producing a
sequence of elements converging towards a solution of h(θ) = 0 when there exist probability
measures πθ such that, for any θ ∈ Θ, h(θ) = Eπθ (Hθ(X)) with Hθ : X 7→ Θ. h is then called
the mean field of the stochastic approximation.

Let ∆ = (∆n)n∈N be a non-increasing sequence of positive real numbers with ∆0 ≤ 1 and
set θc /∈ Θ and xc /∈ X two cemetery states. We then define a Markov chain Y ∆

n = (Xn, θn) on
X ∪ {xc} ×Θ ∪ {θc} by:

θn+1 =

{
θn + ∆n+1Hθn(Xn+1) and Xn+1 ∼ Pθn(Xn, .) if θn ∈ Θ
θc and Xn+1 = xc if θn /∈ Θ .

(2.20)

Keeping notations and hypotheses labels from Andrieu et al. (2005), we put the following
hypothesis on the transition probabilities (Pθ, θ ∈ Θ) and on the random vector field H:

(A2) For any θ ∈ Θ, the Markov kernel Pθ has a single stationary distribution πθ. In
addition, H : Θ×X → Θ is measurable for all (θ, x) ∈ Θ×X .

The existence and uniqueness of the invariant distribution can be verified under the classical
conditions of irreducibility and recurrence Meyn and Tweedie (2012).

We assume the mean field h satisfies the following hypothesis that amounts to the existence
of a global Lyapunov function:
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(A1) h : Θ→ Rnθ is continuous and there exists a continuously differentiable function
w : Θ→ [0,+∞[ such that:

(i) there exists M0 > 0 such that

L := {θ ∈ Θ, 〈∇w(θ), h(θ)〉 = 0} ⊂ {θ ∈ Θ, w(θ) < M0} ,

(ii) there exists M1 ∈ (M0,+∞] such thatWM1 := {θ ∈ Θ, w(θ) ≤M1} is a compact
set,

(iii) for any θ ∈ Θ \ L, 〈∇w(θ), h(θ)〉 < 0,

(iv) the closure of w(L) has an empty interior.

We denote by F = {Fn, n ≥ 0} the natural filtration of the Markov chain (Xn, θn) and by
P∆
x,θ the probability measure associated to the chain (Y ∆

n ) started from the initial conditions
(x, θ) ∈ X ×Θ. Finally, we denote by Q∆n the sequence of transition probabilities that generate
the inhomogeneous Markov chain (Y ∆

n ).

To ensure convergence of the sequence towards a root of h, the sequence (θn)n∈N is re-
quired to remain in a given compact set. This assumption is rarely satisfied. To alleviate this
constraint, we introduce the usual trick which consists in reprojecting on increasing compact
sets. It is then proved that the sequence will be projected only a finite number of times along
the algorithm. Using this trick, the sequence (θn)n∈N now remains in a compact set of Θ. We
detail this process below.

We assume that there exists (Kn)n∈N a sequence of compact subsets of Θ such that⋃
q≥0

Kq = Θ and Kq ⊂ int(Kq+1) .

Let (εn)n∈N be a sequence of non-increasing positive numbers and K be a subset of X . Let
Φ : X × Θ → K × K0 be a measurable function. We then define the stochastic approximation
algorithm with adaptive truncation sets as a homogeneous Markov chain on X ×Θ× N× N by

Zn = (Xn,Θn, κn, νn) (2.21)

with the following transition at iteration n+ 1:

• If νn = 0, then draw (Xn+1, θn+1) ∼ Q∆n(Φ(Xn, θn), .). Otherwise, draw (Xn+1, θn+1) ∼
Q∆n

(Xn, θn, .).

• If |θn+1 − θn| ≤ εn and θn+1 ∈ Kκn then set κn+1 = κn and νn+1 = νn + 1. Otherwise, set
κn+1 = κn + 1 and νn+1 = 0.

To summarize this process, if our parameter θ leaves the current truncation set Kκn or if the
difference between two of its successive values is larger than a time dependent threshold εn,
we reinitialize the Markov chain by a value inside K0: Φ(Xn, θn) and update the truncation set
to a larger one Kκn+1 as well as the threshold to a smaller one: εn+1. Hence, κn represents
the number of re-initializations before the step n while νn is the number of steps since the last
re-initialization.
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The idea behind this truncation process is to force the noise to be small in order for the drift
h(θ) to dominate. We do so by forcing our algorithm to come back to the center of Θ whenever
the parameters become too large.

We finally state two last hypotheses about the control of fluctuations before presenting the
theorem proved in Andrieu et al. (2005).

We first define, for any compact K and any sequence of non-increasing positive numbers
(εk)k∈N, σ(K) = inf(k ≥ 1, θk /∈ K) and νε = inf(k ≥ 1, |θk − θk−1| ≥ εk). Moreover, for
W : X → [1,∞) and g : X → Rnθ , we write

||g||W = sup
x∈X

|g(x)|
W (x)

.

We can now present the hypothesis (A3):
(A3) For any θ ∈ Θ, the Poisson equation g−Pθg = Hθ−h(θ) has a solution gθ. Moreover,

there exist a function W : X → [1,+∞] such that {x ∈ X ,W (x) < +∞} 6= ∅,
constants α ∈ (0, 1] and p ≥ 2 such that for any compact subset K ⊂ Θ,

(i) the following holds:
sup
θ∈K
||Hθ||W <∞ (2.22)

sup
θ∈K
||gθ||W + ||Pθgθ||W <∞ (2.23)

sup
θ,θ′∈K

||θ − θ′||−α (||gθ − gθ′ ||W + ||Pθgθ − Pθ′gθ′ ||W ) <∞ (2.24)

(ii) there exist constants {Ck, k ≥ 0} such that, for any k ∈ N, for any sequence ∆
and for any x ∈ X ,

sup
θ∈K

E∆
x,θ[W

p(Xk)1σ(K)≥k] ≤ CkW p(x) (2.25)

(iii) there exist a sequence (εk)k∈N and a constant C such that for any sequence ∆
and for any x ∈ X ,

sup
θ∈K

E∆
x,θ[W

p(Xk)1σ(K)∧νε≥k] ≤ CW p(x) . (2.26)

This assumption concerns the existence and regularity of the Poisson equation associated
with each of the transition kernel Pθ. Finally, the last condition concerns the step size se-
quences:

(A4) The sequences (∆k)k∈N and (εk)k∈N are non-increasing, positive and satisfy∑∞
k=0 ∆k =∞, limk→∞ εk = 0 and

∞∑
k=1

∆2
k + ∆kε

α
k + (ε−1

k ∆k)p <∞

where p and α are defined in (A3).
We can finally state the theorem proved in Andrieu et al. (2005):
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Theorem 2.6.1 Andrieu et al. (2005) Assume (A1)-(A4). Let K ⊂ X such that supx∈KW (x) <
∞ and such that K0 ⊂ WM0 (where M0 andWM0 are defined in (A1)) and let Zn be as defined
in (2.21). Then, for all (x, θ) ∈ X ×Θ, we have limk→∞ d(θk,L) = 0, P∆

x,θ-a.s. where L is defined
in (A1).

Of the four conditions (A1) to (A4), (A3) is often the most difficult to verify and we need more
practical conditions. In particular, in Andrieu et al. (2005), the authors show that a geometric
ergodicity of the Markov Chain implies (A3). We recall this hypothesis here.

(DRI) For any θ ∈ Θ, Pθ is ψ-irreducible and aperiodic. In addition, there exist a function
V : X → [1,+∞), constants p ≥ 2 and β ∈ [0, 1] such that, for any compact subset
K ⊂ Θ,

(DRI1) there exist an integer m, constants 0 < λ < 1, b, κ, δ > 0 and a probability
measure ν such that:

sup
θ∈K

Pmθ V
p(x) ≤ λV p(x) + b1C(x) ,

sup
θ∈K

PθV
p(x) ≤ κV p(x) ∀x ∈ X ,

inf
θ∈K

Pmθ (x,A) ≥ δν(A) ∀x ∈ C,∀A ∈ B(X ) .

(DRI2) there exists C such that, for all x ∈ X ,

sup
θ∈K
|Hθ(x)| ≤ CV (x) ,

sup
θ,θ′∈K

|θ − θ′|β |Hθ(x)−Hθ′(x)| ≤ CV (x) ,

(DRI3) there exists C such that, for all (θ, θ′) ∈ K ×K,

||Pθg − P ′θg||V ≤ C||g||V |θ − θ′|β ∀g ∈ LV ,

||Pθg − P ′θg||V p ≤ C||g||V p |θ − θ′|β ∀g ∈ LV p .

where LV := {g : X → Rnθ | ||g||V <∞}

The assumption (DRI1) is classical in the Markov chain literature as it implies the existence
of a stationary distribution πθ for all θ ∈ Θ and V p-geometric ergodicity as explained section
2.5.1.

Andrieu et al. (2005) then prove the following proposition:

Proposition 2.6.1 Assume (DRI). Then, (A2) and (A3) are verified for any 0 < α < β.

If the condition (DRI) is easier to prove than (A3) in practice, it presents the serious drawback
of asking the geometric ergodicity of the Markov kernel. Often, the distribution Yn is sampled
using a Metropolis Hastings algorithm. But, as explained section 2.5.2, if the target has heavy
tails, the kernel is only subgeometrically ergodic (see Douc et al. (2004); Fort and Moulines
(2000, 2003); Jarner and Hansen (2000) among others). The assumption (DRI) will thus not
be verified in that case and the proposition 2.6.1 will not be applicable. To overcome this prob-
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lem, we will relax those conditions in the chapter 5 to allow subgeometric kernels with some
hypotheses on their regularity and speed of convergence.

2.7 The Expectation Maximization algorithm and its variants

We now present Expectation Maximization algorithms that will allow us to estimate the param-
eters of the mixed effects models considered in this thesis. Some of them will in particular use
the Stochastic Approximation framework presented above.

2.7.1 The Expectation Maximization algorithm

The Expectation-Maximization (EM) algorithm has first been introduced in Dempster et al.
(1977). It proposes a general approach to iteratively compute maximum-likelihood estimates
when the observations are viewed as incomplete data.
The term incomplete data means that we will consider two state spaces Z and Y ⊂ Rn. The
observed data y belongs to Y. It depends of an unobserved variable z ∈ Z, not observed di-
rectly but only indirectly through y.
The problem is then the following. We assume we have a family of complete densities f(y, z, θ)
depending on a parameter θ with y the observations and z the latent, non observed, variables.
We assume that the densities are integrable with respect to the measure µ. From those, we
derive the corresponding family of incomplete data densities:

g(y, θ) =

∫
Z
f(y, z, θ)µ(dz) .

The goal is then to find the parameter θ maximizing the observed likelihood g(y, θ) given the
observations y. The EM algorithm allows us to compute this maximum using only the complete
density f .
It consists in two different steps called the Expectation step (E-step) and Maximization step
(M-step). To describe its operation, we introduce the following function:

Q(θ|θ′) := E
(

log f(y, z, θ)
∣∣∣y, θ′) =

∫
Z

log
(
f(y, z, θ)

)
p(z|y, θ′)µ(dz) ,

where p is the conditional distribution of z given the observations y:

p(z|y, θ) =

{
f(y, z, θ)/g(y, θ) if g(y, θ) 6= 0
0 otherwise.

Dempster et al. (1977) then show that, for all k ∈ N, log g(y, θk+1) ≥ log g(y, θk). Hence,
the EM algorithm increases the value of the observed log likelihood at each iteration. It can
however be observed that there is no guarantee that the EM algorithm will converge towards a
global maximum of the observed likelihood.

The convergence properties of the EM algorithm have been studied by Wu (1983) in a gen-
eral case.

Delyon et al. (1999) have then given more specific hypothesis in the case where the joint
likelihood belongs to the curved exponential family (M1):
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Algorithm 2: EM algorithm
Data: θ0 an initial value of the parameter.
for 1 ≤ k ≤ K do

E-step: Compute Q(θ|θk−1) = E(log f(y, z, θ)|y, θk−1).

M-step: Choose θk a value maximizing Q(θ|θk−1).

(M1) The parameter space Θ is an open subset of Rp with p ∈ N. Moreover, for all y ∈ Y, z ∈ Z
and θ ∈ Θ, the complete likelihood can be written as:

f(y, z, θ) = exp (Ψ(θ) + 〈S(y, z),Φ(θ)〉) (2.27)

where S : Y × Z → S is a Borel function taking its value in S, an open subset of Rns .
In that case, we say that f belongs to the curved exponential family.
Moreover, we assume that the convex hull of S(Rl) is included in S and, for all θ ∈ Θ for
all y ∈ Y, ∫

Rl
|S(y, z)|p(z|y, θ)µ(dz) <∞

(M2) The functions Ψ and Φ are twice continuously differentiable on Θ.

(M3) The function s : Θ→ S defined as:

s(θ) =

∫
Rl
S(y, z)p(z|y, θ)µ(dz)

is continuously differentiable on Θ.

(M4) The observed likelihood g is continuously differentiable on Θ and

∂θg(y, θ) =

∫
Rl
∂θf(y, z, θ)µ(dz)

(M5) There exists a function θ̂ : S → Θ such that

∀θ ∈ Θ,∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ)

with L(s, θ) = −Ψ(θ) + 〈s,Φ(θ)〉.
Moreover, θ̂ is continuously differentiable on S.

Using the fact that the joint likelihood belongs to the curved exponential family, the EM algo-
rithm can be written in an easier way. Indeed, in that case,

Q(θ|θ′) = Ψ(θ) + 〈E (S(y, z)|y, θ′) ,Φ(θ)〉 .

Hence, at each iteration, we only need to compute Sk = E(S(y, z)|y, θk−1). Using (M5), the
M-step can also be rewritten as θk = θ̂(Sk). This process is summarized in algorithm 3.

Then, we have the following convergence theorem:
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Algorithm 3: EM algorithm when f belongs to the curved exponential family.
Data: θ0 an initial value of the parameter.
for 1 ≤ k ≤ K do

E-step: Compute Sk = E(S(y, z)|y, θk−1).

M-step: Set θk = θ̂(Sk).

Theorem 2.7.1 Delyon et al. (1999)
Assume that (M1) to (M5) hold and that clos (L) is a compact subset of Θ where

L := {θ ∈ Θ|∂θg(y, θ) = 0} .

Then, for any initial point θ0, the sequence (g(y, θk))k∈N is increasing and

lim
k−→∞ d(θk,L) = 0 .

The Expectation Maximization algorithm has been used in a wide variety of applications such
as maximum likelihood estimation of the parameters of mixture of densities (Titterington et al.,
1985), of hidden Markov models (MacDonald and Zucchini, 1997) or maximum a posteriori
estimation in censored data model (Little and Rubin, 1989) among many others.

It must be remarked that the EM algorithm can be difficult to execute in certain cases. In-
deed, while the M-step is often achievable in closed form, it is not always the case. When this
maximization step is not possible, one can replace the maximization by a single step of an ap-
proximate Newton’s method leading to the EM gradient algorithm (Lange, 1995).

The E-step is often more problematic. Most of the time, the function f is complex and the
computation of the expectation not possible. To overcome this difficulty, different algorithms
have been introduced. Those will be the subject of the next subsections with an emphasis be-
ing made on the SAEM and the MCMC-SAEM algorithms.

2.7.2 The Stochastic EM algorithm

When the E-step is intractable, Celeux (1985) proposes to replace the computation of the ex-
pectation of f(y, z, θ) with respect to the conditional distribution by the simpler sampling of zk
with respect to this conditional distribution followed by the computation of f(y, zk, θ). They then
maximize the function θ 7→ f(y, zk, θ). This leads to the algorithm 4.

This new algorithm has the advantage not to necessitate the computation of any expectation.
Moreover, by introducing some randomness, it limits its dependence with respect to its initial
parameter θ0 which can be a problem with the EM algorithm. However, contrary to the EM
algorithm and the other variants we will see later on, its convergence is not proven almost
surely but only in mean.

2.7.3 The Monte Carlo EM algorithm

In the same vein as the SEM, the Monte Carlo EM Wei and Tanner (1990) replaces the E-step
by computing a Monte Carlo approximation of the expectation of Q using a large amount of
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Algorithm 4: Stochastic EM algorithm.
Data: θ0 an initial value of the parameter.
for 1 ≤ k ≤ K do

S-step: Sample zk from p(.|y, θk−1).

M-step: Set θk ∈ argmax f(y, zk, θ).

simulated missing data z. This is summarized algorithm 5.

Algorithm 5: Monte Carlo EM algorithm.
Data: θ0 an initial value of the parameter and m the number of variables sampled in the

S-step.
for 1 ≤ k ≤ K do

S-step: Sample m variables zjk, for j between 1 and m from p(.|y, θk−1).

E-step: Compute the Monte-Carlo approximation of Q:

Qk(θ) =
1

m

m∑
j=1

log f(y, zjk, θ)

M-step: Set θk ∈ argmax Qk(θ).

It can be remarked that, if m = 1, we recover the previous algorithm. Similarly, m = ∞
corresponds to the initial EM. In order for Qk to approximate the expectation Q, we need m to
be big enough. However, taking m big greatly increases the computation time. To mitigate this
problem Wei and Tanner (1990) advise to begin with m = 1 and to gradually increase its value.

Fort et al. (2003) have then proved the almost-sure convergence of the MCEM algorithm in
the case where the joint distribution f belongs to the curved exponential family and when the
number of simulations m increases along iterations.
If this algorithm allows us to compute a maximum likelihood estimate when the E-step is in-
tractable if we are able to simulate z, it must however be remarked that it can be computationally
costly as one needs to sample more and more values of z. To overcome this problem, a new
algorithm using stochastic approximations is presented next subsection.

2.7.4 The Stochastic Approximation EM algorithm

Delyon et al. (1999) propose to use the theory of the stochastic approximations presented sec-
tion 2.6 to approximate the expectation of Q using only one simulated value of the missing data
z.
Once again, as we suppose that f belongs to the curved exponential family, the SAEM algo-
rithm can be written in the form given in algorithm 6, only involving the sufficient statistics.
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Algorithm 6: SAEM algorithm.
Data: θ0 an initial value of the parameter.
for 1 ≤ k ≤ K do

Simulation step: Generate zk a realization of the hidden variables under the
conditional density p(z|y, θk−1)

Approximation step: Update Sk = Sk−1 + γk(S(y, zk)− Sk−1).

Maximization step: Set θk = θ̂(Sk).

It can be remarked, that, contrary to the MCEM algorithm, the SAEM algorithm only requires
us to sample one realization of the conditional density, greatly reducing the complexity of the
problem.

To prove the convergence of this algorithm, the authors add the following hypothesis:

(SAEM1) For all k ≥ 0, 0 ≤ γk ≤ 1,
∑∞
i=1 γk =∞ and

∑∞
i=1 γ

2
k <∞

(SAEM2) l : Θ→ R and θ̂ : S → Θ are ns times differentiable.

(SAEM3) For all positive Borel function φ:

E(φ(zk+1)|Fk) =

∫
φ(z)p(z|y, θk)µ(dz)

where zk is the missing value simulated at step k under the conditional density p(z|y, θk−1)
and Fn is the family of σ-algebra generated by the random variables S0, z1, . . . , zn.

(SAEM4) For all θ ∈ Θ,
∫
Rl ||S(y, z)||2p(z|y, θ)µ(dz) <∞ and Γ(θ) := Covθ(S(z)) is continuous with

respect to θ.

(A) With probability 1, clos((Sk)k≥1) is a compact subset of S.

Remark 2.7.1. The assumption (A) can easily be relaxed without further hypotheses by project-
ing the sequence (Sk)k∈N on increasing compacts. See Andrieu et al. (2005) for more details.

We then have the following convergence theorem:

Theorem 2.7.2 Delyon et al. (1999)
Assume that (M1) to (M5), (SAEM1) to (SAEM4) and (A) are verified. Then, with probability 1,

lim
k−→∞ d(θk,L) = 0 where L = {θ ∈ Θ|∂θg(θ) = 0} .

If this algorithm is implementable without having to compute the intractable E-step, it still
presents two major drawbacks. First, we once again suppose that the joint probability belongs
to the curved exponential family. However, this assumption is not verified in different situations:
neither for heteroscedastic models (Dubois et al., 2011; Kuhn and Lavielle, 2005) nor with some
more complex models (Bône et al., 2018a; Debavelaere et al., 2020; Lindsten, 2013; Meza
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et al., 2012; Schiratti et al., 2015; Wang, 2007). The relaxation of this hypothesis will be the
object of chapter 6.
The second restriction is the necessity to be able to draw from the conditional distribution
p(.|y, θ) for any θ ∈ Θ. In many practical situation, it is in fact impossible to directly draw from
this distribution. The next subsection answers this problematic.

2.7.5 The Monte Carlo Markov Chain SAEM algorithm

In Kuhn and Lavielle (2004), the authors propose to couple the Stochastic Approximation Scheme
with a Monte Carlo Markov Chain method. Instead of sampling from the conditional distribution,
they propose to compute one step of a Markov Chain whose invariant distribution is p(.|y, θk).
More precisely, they suppose that, for all θ ∈ Θ, there exists a transition kernel Πθ whose
unique invariant distribution is p(.|y, θ) (see section 2.5.2 for an example of such a kernel). The
MCMC-SAEM then takes the form described algorithm 7.

Algorithm 7: MCMC-SAEM algorithm.
Data: θ0 an initial value of the parameter.
for 1 ≤ k ≤ K do

Simulation step: Generate zk ∼ Πθk−1
(zk−1, .)

Approximation step: Update Sk = Sk−1 + γk(S(y, zk)− Sk−1).

Maximization step: Set θk = θ̂(Sk).

The authors then replace the hypotheses (SAEM3) and (SAEM4) by the following:

(SAEM3’) 1. The chain (zk)k≥0 takes its values in a compact subset of E ⊂ Z.

2. For any compact subset V of Θ, there exists a real constant L such that, for any
(θ, θ′) ∈ V 2,

sup
(x,y)∈E2

|Πθ(x, y)−Π′θ(x, y)| ≤ L|θ − θ′| .

3. The transition probabilities Πθ generate a uniformly ergodic chain whose invariant
probability is the conditional distribution p(.|y, θ):

∃Kθ ∈ R+,∃ρθ ∈]0, 1[|∀z ∈ E ,∀k ∈ N, ||Πk
θ(z, .)− p(.|y, θ)||TV ≤ Kθρ

k
θ

where ||.||TV refers to the total variation norm, supθKθ <∞ and supθ ρθ < 1.

4. The function S is bounded on E .

Under these new hypotheses, one can state the following theorem:

Theorem 2.7.3 Kuhn and Lavielle (2004)
Assume that assumptions (M1) to (M5), (SAEM1), (SAEM2) and (SAEM3’) and (A) are verified.
Then, with probability 1,

lim
k−→∞ d(θk,L) = 0 where L = {θ ∈ Θ | ∂θg(θ) = 0} .
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Remark 2.7.2. Once again, it is possible to do without assumption (A) by projecting the sufficient
statistics on increasing compacts and obtain convergence of the resulting algorithm without
adding any other hypothesis (Allassonnière et al., 2010).

It can also be highlighted that targeting the exact distribution by a Markov Chain is not always
necessary. Indeed, in Allassonnière and Chevallier (2019), the authors show that sampling from
an approximate distribution is enough under some assumptions. This, in particular, opens the
possibility to use tempered distributions to improve the convergence.

Hence, instead of sampling from the exact conditional distribution, it is now possible to use
Markov Chains targeting it. In part II we will use this algorithm coupled with Metropolis Hastings
algorithms to compute maximum of likelihood estimates.

2.7.6 Restrictions of the Stochastic EM algorithms

In the part III, we will tackle two restrictions of those Stochastic EM algorithms.

First, the condition (SAEM3’-3.) forces us to only consider geometric ergodic chains. This
can be a problem when the conditional probability has heavy tails (Weibull or Pareto distribu-
tions for instance). Indeed, in that case, a Metropolis Hastings Markov Chain targeting this
conditional probability is only subgeometric ergodic. We will show chapter 5 that this condition
can be relaxed by supposing only a subgeometric ergodicity of the Markov Chain with appropri-
ate assumptions on the rate of convergence.

Moreover, both the SAEM and the MCMC-SAEM algorithms suppose that f belongs to the
curved exponential family while it is not verified in many practical examples. We will see chapter
6 how to deal with this assumption when it is not verified and we will propose a variant of the
SAEM algorithm allowing a better estimation of the maximum of likelihood in that case.

2.8 Thesis outline

In this thesis, we will focus on some limitations of the existing models presented above. The
manuscript is separated in two principal parts. In the first part, we focus on the modeling of
medical data. Both longitudinal and cross-sectional data will be studied for two different pur-
poses: clustering longitudinal trajectories of shapes with successive dynamics and identifying
anomalies (such as tumors) in organs. In the second part, we study different theoretical prop-
erties of Stochastic Approximation and Expectation Maximization algorithms. The four different
chapters constituting this manuscript are summarized below.

• Chapter 3: Learning the clustering of longitudinal shape data sets into a mixture of inde-
pendent or branching trajectories.

In this chapter, we choose to study data sets of longitudinal observations. The goal of a
longitudinal atlas is to create a representative trajectory of the population as well as the
deformations towards each subject. As explained section 2.4, longitudinal atlases as in-
troduced in Schiratti et al. (2015) have the disadvantage of modeling the representative
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trajectory as a geodesic. However, in lots of practical situations, this is not a valid hypoth-
esis. It is for instance not valid in the case of chemotherapy where the tumor becomes
resistant to the treatment after a certain time. To overcome this problem, we model the
representative trajectory by a piecewise geodesic. This idea has first been introduced in
Chevallier et al. (2017) where the authors proposed such a model for scalar data.
In this first chapter, we generalize this discussion in larger dimensions by introducing
rupture times at which the representative trajectory goes from one dynamic to another.
Modeling the representative trajectory as a piecewise geodesic also allows us to consider
more complex data sets. Indeed, we can suppose that the population is separated in
different clusters whose respective representative trajectories branch or join at different
rupture times. This is in part our motivation to introduce unsupervised clustering in the
model. This new model is presented chapter 3 and is applied on different data sets such
as the RECIST score in the case of chemotherapy or meshes of the hippocampus in the
case of the Alzheimer’s disease.
This work has been presented at the International Conference on Medical Image Comput-
ing and Computer-Assisted Vision (Debavelaere et al., 2019) and published in the Inter-
national Journal of Computer Vision (Debavelaere et al., 2020).

• Chapter 4: Detection of anomalies using the LDDMM framework.

In this chapter, we are interested in the detection of anomalies, such as the presence
of tumors in a medical image. More precisely, we place ourselves in the cross-sectional
framework and assume that we have at our disposal a template of control subjects. We
then define an anomaly as a structure that cannot be recovered as a diffeomorphic defor-
mation of the control template.
For example, in the case of tumor detection, the control template will have no tumor and
the diffeomorphic deformations from this template will also have no tumor. We are there-
fore able to recover these tumors in the residuals of the deformation.
We show that this process improves the reconstruction of the observations and indeed
allows anomalies to be detected.
In particular, our method has the advantage of not requiring large data sets or annotations
by physicians. Moreover, it can be easily applied to any organ. To highlight these advan-
tages, we apply this method to two different data sets: a data set of livers from patients
with metastatic colorectal cancer and a data set of brains with gliomas.
This chapter will be converted into a paper for submission.

• Chapter 5: On the convergence of stochastic approximations under a subgeometric er-
godic Markov dynamic.

As explained section 2.6, theorems ensuring convergence of stochastic approximations
with Markovian dynamic require the Markov Chain to be geometrically ergodic. In the
chapters 3 and 4, we will use stochastic approximations with a Markovian dynamic ob-
tained from Metropolis Hastings algorithms. However, we know that, when targeting distri-
butions with heavy tails, those Markov Chains can be subgeometric ergodic (Douc et al.,
2004; Fort and Moulines, 2000, 2003; Jarner and Hansen, 2000). Thus, the theoretical
guarantees on the convergence of those stochastic approximations are no longer met.
Hence, in chapter 5, we choose to relax the condition of geometric ergodicity. We propose
a more general set of hypotheses, under which we prove the convergence of stochastic
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approximations with subgeometric Markovian dynamics. They are essentially about the
rate of convergence of the Markov Chain and the regularity of its kernel. Most of the
polynomial rates of convergence satisfy these assumptions. We then use this new set of
hypotheses to prove the convergence of two stochastic approximations. The first one is
a Metropolis Hastings algorithm where the variance of the proposal is adapted along iter-
ations. In the second example, we consider the independent component analysis model
where distributions with positive heavy tails lead to a subgeometric ergodic Markov Chain
in a SAEM-MCMC algorithm.
The work done in that chapter has been published in the Electronic Journal of Statistics
(Debavelaere et al., 2021).

• Chapter 6: On the curved exponential family in the Stochastic Approximation Expectation
Maximization Algorithm.

We have presented section 2.7 the different conditions ensuring the convergence of the
SAEM and MCMC-SAEM algorithm. Among those hypotheses, one of the most restrictive
is the necessity for the joint likelihood to belong to the curved exponential family. How-
ever, this hypothesis is not always verified, for instance for heteroscedastic models. In
that case, Kuhn and Lavielle (2005) propose to transform the statistical model to make it
exponential. Their solution consists at considering the parameters θ of the initial model as
additional latent variables following a Normal distribution centered on a new parameter θ̄
and with fixed variance σ2. Instead of estimating θ we then estimate its mean θ̄. If this
method is often used, there is in fact no guarantee that θ̄ will be close to the parameter of
the initial model.
In chapter 6, we show that using this method can introduce a bias in the estimation of the
maximum of likelihood. We then prove that this bias tends to zero when the variance σ2

goes to zero and give an upper bound for σ small. However, on a numerical example, we
see that a compromise must be made between the error in the estimation and the com-
putation time. Even worse, for very small values of σ (and so, theoretically, small errors),
the algorithm does not converge numerically. To overcome this problem, we propose in
the last part of this chapter a new algorithm allowing a better estimation of the maximum
likelihood with a reasonable computation time.
This work has been submitted (Debavelaere and Allassonnière, 2021).
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Atlases on Riemannian manifolds
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CHAPTER 3

Learning the clustering of longitudinal shape data sets into a
mixture of independent or branching trajectories

Given a longitudinal data set, this chapter introduces a new model allowing to learn a classifi-
cation of the shapes progression in an unsupervised setting: we automatically cluster a longitu-
dinal data set in different classes without labels. Our method learns for each cluster an average
shape trajectory (or representative curve) and its variance in space and time. Representative
trajectories are built as piecewise geodesics. This mixture model is flexible enough to handle
independent trajectories for each cluster as well as fork and merge scenarios. This new formu-
lation allows, for example, to consider subjects that deviate from a normal ageing at a certain
rupture point.
The estimation of such non linear mixture models in high dimension is known to be difficult be-
cause of the trapping states effect that hampers the optimisation of cluster assignments during
training. We address this issue by using a tempered version of the stochastic EM algorithm.
Finally, we apply our algorithm on different data sets. First, synthetic data are used to show
that a tempered scheme achieves better convergence. We then apply our method to different
real data sets: 1D RECIST score used to monitor tumors growth, 3D facial expressions and
meshes of the hippocampus. In particular, we show how the method can be used to test differ-
ent scenarios of hippocampus atrophy by using an heteregenous population of normal ageing
individuals and mild cognitive impaired subjects.

This chapter uses notions of Riemannian manifolds and the LDDMM framework which are
quickly presented. For more information on those notions, we refer to the sections 2.3 and 2.4
of the introduction.
This work has been published in the International Journal of Computer Vision (Debavelaere
et al., 2020).
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3.1 Introduction

The emergence of large longitudinal data sets (subjects observed repeatedly at different time
points) has allowed the construction of different models improving the understanding of biolog-
ical or natural phenomenon. Longitudinal studies have numerous applications: understating of
the differences of progression in neurodegenerative disease such as Alzheimer’s, chemother-
apy monitoring, facial recognition, etc.. Such medical studies enable to retrieve the global pro-
gression of the disease while explaining the inter subject variability. In particular, it would be
interesting to highlight the influence of a disease on a normal ageing process and to be able to
differentiate those two processes. Clinicians are also interested in the possibility to detect the
moment when a disease begins to manifest itself, i.e. the moment at which a subject branches
from the normal dynamic. For instance, in the case of the Alzheimer’s disease, we still do
not know if the disease has a very early genesis, leading to a specific aging pattern from an
early age or if it is a sudden deviation from the normal ageing process. Another example is
the monitoring of tumors along treatment. Indeed, it is well known that the whole population
will not react the same way to a given drug. Therefore, clustering patients would enable a spe-
cific care. In both situations, the evolution may not be smooth in the sense that the disease
can show variations in dynamics according to the stage of its development. To tackle those
problems, we consider that populations can follow different dynamics over time. Moreover, in
order to detect subgroups with specific patterns, we implement an unsupervised clustering of
the dataset. Here, our populations are therefore heterogeneous but without prior knowledge on
the sub-groups composing them, thus preventing from the use of supervised approaches.

We design our model such that it is able to detect a certain fixed number of different dy-
namics in the population and, for each of them, to estimate a representative trajectory of that
population together with the inter subjects variability. The difficulty is in fact further increased in
this spatiotemporal setting since clustering may take various forms: sub-groups may follow in-
dependent trajectories, or they may follow trajectories that fork or merge at specific time-points.
The former case is relevant to discover pathological sub-types having different disease course.
The latter is interesting for a disease that is seen as a progressive deviation from a normal aging
scenario.

Usually, shape spaces are built by considering shape data as points on a Riemannian man-
ifold (for instance, Kendall spaces (Kendall, 1984), currents (Vaillant and Glaunès, 2005) or
varifolds (Charon and Trouvé, 2013)). In such shape spaces, descriptive (Donohue et al., 2014)
or generative (Jedynak et al., 2012; Durrleman et al., 2013; Allassonnière et al., 2015) models
have been constructed. To deform the shapes, different frameworks can be used, among oth-
ers diffeomorphic demons (Vercauteren et al., 2009) or the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework. We will here use the last. It allows us to compute the
deformation from one shape to the other by coding deformations as geodesics on a Riemannian
manifold and using flows of deformations (Miller et al., 2006). Given a data set of shapes, it is
then possible to construct an atlas. An atlas is composed of a shape that is representative of
the population, as well as the spatial variability within this population (Fletcher, 2013; Allasson-
nière and Kuhn, 2010; Lorenzen et al., 2005; Su et al., 2014). The next logical step is to handle
longitudinal data sets. Once again, the trajectory of a shape from one time point to the other
will be constructed by using flows of diffeomorphisms (Bône et al., 2018a; Lorenzi et al., 2011;
Singh et al., 2016; Muralidharan and Fletcher, 2012; Kim et al., 2017; Chakraborty et al., 2017).
In this framework, a longitudinal atlas consists of a representative trajectory, or template, and
of the spatiotemporal variability of the population. The representative trajectory is a long-term
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scenario of changes informed by sequences of short-term individual data. It can be seen as
a geodesic (Bône et al., 2018a; Schiratti et al., 2017) or a piecewise geodesic (Allassonniere
et al., 2017) curve on the manifold. For instance in the case of a sphere, a geodesic on the
manifold is just a great circle. Spatial and temporal deformations are then considered to gener-
ate subjects from this representative trajectory. In particular, the temporal reparametrization can
be considered as a general diffeomorphism (Su et al., 2014) or as an affine reparametrization
combining acceleration and offset coefficients (Bône et al., 2018a).

All these methods however assumed that observations are drawn from an homogeneous
population that may be summarized by a single representative trajectory. Several clustering
methods have already been proposed to create atlases from cross sectional datasets in an
unsupervised way (Allassonnière and Kuhn, 2010; Srivastava et al., 2005) or for longitudinal
datasets of continuous trajectories in a supervised way (Abdelkader et al., 2011). However, if
Hong et al. (2015) proposes a test to detect if there is one cluster or more in a longitudinal pop-
ulation, there is, to our knowledge, no paper proposing a method to detect those clusters in an
unsupervised way in the longitudinal framework while also creating the corresponding atlases.
This will be one of the goals of this paper. Our algorithm should be able to detect sub popula-
tions that could be different from those expected and so highlight unexpected dynamics. Such
a behaviour can be interesting to test different models or to highlight in a population some char-
acteristics that were previously considered without influence on the phenomenon under study.

In this chapter, we tackle the case where the population is supposed to contain a certain
fixed number of unknown clusters. To tackle this problem, we construct a mixed-effect genera-
tive model. To estimate the different parameters, we choose to use a variant of the Expectation-
Maximization algorithm called the Markov Chain Monte Carlo Stochastic Approximation Expec-
tation Maximization algorithm (MCMC-SAEM) (Delyon et al., 1999; Allassonnière et al., 2010).
However, using those algorithms in a clustering context leads to the problem of trapping states:
changing class assignment is often more costly than adjusting the parameters of the current
clusters, resulting in very few updates of class assignment during optimization. Solutions have
already been presented in the case of cross sectional data sets analysis but at very high com-
putational costs (Allassonnière and Kuhn, 2010). Here, we choose to introduce temperate dis-
tributions in our Expectation-Maximization algorithm to avoid being trapped in the initial labelling.

In this paper, we will first explain in section 3.2 the geometrical framework allowing us to
compute the representative trajectories and deformations towards the subjects. Because this
framework allows us to define our model by a finite number of parameters, we will present in
section 3.3 the statistical model and the algorithm used to estimate those parameters. Finally,
we will apply our work to different data sets. We will quantitatively validate it on simulated 2D
data. We will then perform experiments on real data: we will work with 1D RECIST score
used to monitor the growth of a tumor (Therasse et al., 2000), with a data set of 3D faces
expressing different expressions and with a 3D data set of hippocampi of patients with or without
Alzheimer’s disease.

3.2 Geometrical model

We will first present the geometrical model that allows us to compute the representative trajec-
tory of each of our clusters as well as the deformations towards the subjects.
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3.2.1 Construction of the representative trajectory

In the following, we consider a longitudinal data set of n subjects, each being observed ki times:
(yi,j)1≤i≤n,1≤j≤ki at time (ti,j)1≤i≤n,1≤j≤ki , where each observation yi,j is a point of Rd, d ∈ N.

We first want to explain how to construct a longitudinal trajectory in a set of shapes that will,
later on, define our group average. We choose to use the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) framework to define our shape deformations. Therefore, we can
deform an initial shape using the flow of a velocity vt ∈ V for t ∈ [0, 1] and for V a fixed Hilbert
space: 

∂φvt
∂t

= vt ◦ φvt
φv0 = Id .

(3.1)

Given velocities (vt)t∈[0,1], this equation creates diffeomorphisms (φvt )t∈[0,1] that will deform the
ambient space and so, in particular, our initial shape y0. Hence, given velocities (vt)t∈[0,1],
(φvt (y0))t∈[0,1] will define a longitudinal trajectory of shapes.

Each of those diffeomorphism φvt belongs to the set G = {φv1|v ∈ V }. This group of defor-
mation maps is provided with a right invariant metric via

d(Id, φ) =

√
inf

{∫ 1

0

||vt||2V dt|φ = φv1

}
.

This exactly states that G is given the structure of a manifold on which distances are com-
puted as the length of minimal geodesic paths connecting two elements. Given this structure,
we will no longer allow any diffeomorphism to be our group average but only diffeomorphisms
such that t 7→ φvt follows a geodesic path in G.

We need now to ask ourselves how to choose velocities verifying this condition. Since we
only study discrete shapes, we can place ourselves in the finite dimensional setting and suppose
that our velocities (vt)t∈[0,1] belong to a Reproducing Kernel Hilbert Space V with kernel Kg. V
is in fact the set of squared integrable functions regularized by the convolution by the kernel Kg.
A vector v in V can then be written using a set of ncp control points (ci)1≤i≤ncp and momentum
vectors (mi)1≤i≤ncp in Rd: for x ∈ Rd,

v(x) =

ncp∑
i=1

Kg(ci, x)mi . (3.2)

The value of v at a point x is obtained as the interpolation of the momenta at the control points.
Hence, to create a longitudinal trajectory, we now need to choose an initial shape and a set
of control points and momenta defining the velocities (vt)t∈[0,1] such that (φt)t∈[0,1] defines a
geodesic in G.

It has been shown in Miller et al. (2006) that if the initial velocity field v0 is the interpolation of
momentum vectors at control points as in Eq. (3.2), then the velocity field defining a geodesic
path in G keeps the same form:

vt(x) =

ncp∑
i=1

Kg(c(t)i, x)m(t)i . (3.3)
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Moreover, m(t) and c(t) are then time dependent momenta and control points solutions of
the Hamiltonian equations: {

ċ(t) = Kg(t)m(t)

ṁ(t) = ∇c(t)
(
m(t)TKg(t)m(t)

) (3.4)

with initial conditions m(0) = (m(0)k)1≤k≤ncp , c(0) = (c(0)k)1≤k≤ncp and where Kg(t) is the
ncp × ncp kernel matrix (Kg(ci(t), cj(t)))1≤i,j≤ncp .

To sum up, to define our longitudinal trajectory of shapes, we now only need to set an initial
shape and an initial set of momenta and control points. By integrating the Hamiltonian equations
(3.4), one can compute the evolution of those control points and momenta over time and obtain
the velocity vector at any time t (Eq. (3.3)). By integrating the flow equation (3.1), we obtain
diffeomorphisms (φt))t∈[0,1] deforming the ambient space. By applying this diffeomorphism at a
point cloud or mesh y0, we are finally able to deform it.

We finally note Expc0,t0,t(m0) = φvt the diffeomorphism obtained above with the initial condi-
tion φvt0 = Id. This deformation process involving the Riemaniann Exponential is showed on an
example figure 3.1.

Figure 3.1 The initial control points are the red points, the initial momenta, the red vectors. The
blue vector field is created using the initial momenta and control points. Finally, we compute the
deformation of the initial shape by this vector field.

However, in order to deal with possible change of dynamics in the population, we do not only
want to consider geodesics but piecewise geodesics. Hence, we will modelize our group tra-
jectories as a combination of K different geodesics following each other, generalizing the work
done in Allassonniere et al. (2017) in dimension 1. In particular, each of the geodesics defining
γ0 describes a dynamic of the population on a particular time segment, different from the others.
The time at which the group average goes from one dynamic to the other will be called rupture
times. The component of the piecewise geodesic following a rupture time will then be defined
using the Exponential operator defined previously, applied at the value of the trajectory at that
rupture time.

We now formalize this: we introduce a subdivision of R: (tR,1 < ... < tR,K−1 < tR,K := +∞)
where (tR,k)1≤k≤K−1 are called rupture times i.e. times when the representative curve switches
from one geodesic to another. It is at those times that the population switches from one dynamic
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to the other. Given a set of initial control points c1 ∈ Rncp×d, of rupture times tR ∈ RK−1, an
initial shape x1 and K momenta (m0,m1, ...,
mK−1), we define the representative trajectory as:

γ(t)(x1) = Expc1,tR,1,tR,1−t(m
0) · x11t≤tR,1

+

K−1∑
k=1

Expck,tR,k,t−tR,k(mk) · xk1tR,k≤t≤tR,k+1

with, for k ≥ 2 :

ck = Expck−1,tR,k−1,tR,k−tR,k−1
(mk−1) · ck−1

xk = Expck−1,tR,k−1,tR,k−tR,k−1
(mk−1) · xk−1

Here, the ck and xk are respectively the position of the control points and the value of the repre-
sentative curve at times tR,k. For k ≥ 2, they are fixed to assure the continuity of the trajectory.
It can be noticed that the first rupture time has a particular role as we must define a geodesic
before it, determining the trajectory from −∞ to the first rupture time and another after it, de-
termining the trajectory from the first rupture time to the second. The control points c1 and
momenta m0, m1 are used to compute the velocities at the time tR,1 defining the geodesic
before and after it. The other momenta m2, ...,mK−1 and control points c2, ..., cK−1 define the
subsequent geodesics.

The construction of a piecewise geodesic is applied on an example figure 3.2.

Figure 3.2 Example of a piecewise geodesic with 3 parts. At the first rupture time tR,1, the blue
control points and red momenta code the exponential before it. The green momenta codes the
exponential after the first rupture time. Both the control points and the shape are transported
by this diffeomorphism until the second rupture time tR,2. It is this transported shape and those
transported control points that will be used, along with the orange set of momenta, to compute
the deformation after the second rupture time.

3.2.2 Deformations towards the subjects

We now know how to construct a longitudinal trajectory that will play the role of a representative
trajectory. From this representative trajectory featuring the group characteristic path, we want
to generate individual trajectories following different behaviours. To achieve this goal, we take
into account both temporal and spatial differences by introducing a time reparametrization and
a diffeomorphic spatial deformation.

61



Chapter 3. Learning the clustering of longitudinal shape data sets

Time reparametrization

Each individual can follow its own rhythm of progression, different from the representative curve
and varying from one time segment to another, hence the need to introduce time reparametriza-
tions.
For each subject i, let ξi,0, ...ξi,K−1 be acceleration coefficients and τi,0, ..., τi,K−1 time shifts.
We write for every subject i:

ψi,0(t) = tR,1 − eξi,0 (tR,1 − t+ τi,0) (3.5)

and, for each time segment k ≥ 1,

ψi,k(t) = tR,k + eξi,k (t− tR,k − τi,k) . (3.6)

ψi,k codes the temporal reparametrization of the subject i on the time segment k. Once again,
a first time reparametrization must be defined before the first rupture time.
The time shifts τi,k are offsets that allow the subjects to be at different stage of evolution while
the acceleration factors ξi,k allow an inter-subject variability in the pace of evolution on each
geodesic (quicker evolution if ξi,k > 0, slower if ξi,k < 0). Both of those factors allow us to
represent behaviors in the population observed by clinicians.

Different conditions must be verified to assure the continuity of the time reparametrizations.
First, as the representative trajectory goes through a change of dynamics at the rupture times,
each subject has its own rupture times tR,i,k such that tR,k = ψi,k(tR,i,k) i.e. tR,i,k = tR,k + τi,k.
Before the individual rupture time tR,i,k, the time reparametrization is computed using ψi,k−1

and after it, using ψi,k. Hence, to assure the continuity of the global time reparametrization at
each of those rupture times, we also fix all the time shifts but τi,0 by continuity conditions: we
impose for all k ψi,k−1(tR,i,k) = ψi,k(tR,i,k), i.e.: τi,0 = τi,1 and, for k ∈ [|2,K − 1|],

τi,k = τi,k−1 + (tR,k − tR,k−1)(e−ξi,k−1 − 1) . (3.7)

From now on, we note τi = τi,0.

It can be remarked that the choice of this particular temporal reparametrization simplifies the
computations needed to assure the continuity of the final trajectory at each of the rupture time.
Indeed, if we had chosen, on each component, a diffeomorphic temporal reparametrization
without constraint (as done in Su et al. (2014) in the geodesic case), more complex equalities
should have been imposed at each of the individual rupture times. This reparametrization has
also the advantage to be easily interpreted.
Finally, we set:

ψi(t) = ψi,0(t)1t≤tR,i,1 +

K−1∑
k=1

ψi,k(t)1tR,i,k≤t≤tR,i,k+1
.

To summarize, those equations mean that the subject i at the instant t is obtained from the
representative trajectory shifted by τi and accelerated on each time segment by eξi,k . The time
reparametrization process is summarized figure 3.3.

Space deformations

Concerning the space deformations, as proposed in Bône et al. (2018a), we will account the
space variability by using exp-parallelizations, i.e. the generalization of parallelism to geodesi-
cally complete manifolds (Schiratti et al., 2015). More precisely, we introduce for each subject
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Figure 3.3 Example of a time reparametrization. At the top, the representative trajectory. At the
bottom, a time reparametrization towards the subject i observed at two times: ti,1 and ti,2. The
individual rupture time of the subject i is obtained as a translation of the rupture time by τi,0,
here chosen positive. On the first time segment, ξi,0 is negative and the progression is slower
than the one of the representative trajectory. On the second time segment, ξi,1 is positive and
the progression is quicker.

i a space-shift momentum wi. We note Pγ(w) the parallel transport which transports any vec-
tor w ∈ Rncp×d along the trajectory γ. Practically, we compute it using the fanning scheme
(Louis et al., 2017). Then, to code the deformation field at a time t, we transport the momentum
w along the curve γ(t) and then compute the flow given by this new momentum. The given
trajectory is the exp-parallelization of γ by wi. Hence, we define:

ηt(w) = Expγ(t)(c1),0,1(Pγ(t)(w)) .

Finally, given x1 the value of the representative curve at the first rupture time, the deformation
of the representative curve γ by the space shift w is given by:

γw(t) = ηt(w) ◦ γ(t) ◦ x1 .

We give examples of the space deformation process first on Fig. 3.4 by computing the exp-
parallelization of a trajectory on a sphere and then on Fig 3.5 by presenting an example in a
space of shapes.

We model this space shift as a linear combination of ns sources: we suppose that w = As
with A a ncp × ns matrix called the modulation matrix and s ∈ Rns the sources. This matrix
plays the role of the source separation matrix also known as the modulation matrix in the Inde-
pendent Component Analysis. This helps to reduce the dimension by highlighting the principal
sources of deformation. By projecting all the columns of A on (m0, ...,mK−1)⊥ for the metric
Kg, we impose orthogonality between the deformations towards the subjects and the velocity
field defining our representative trajectory. It has been shown in Schiratti et al. (2017) that this
condition is necessary to assure the identifiability of the model by preventing the algorithm to
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Figure 3.4 Example of parallel transport on a sphere. On the left, we draw a trajectory γ and
the momenta to transport w. On the center, we transport w along γ. On the right, we compute
the exp-parallelization of γ by w.

consider an acceleration with respect to the representative trajectory as a space shift.
Finally, we deform the template γ(t)(x1) by setting:

γi(t) = γw(ψi(t)) .

Figure 3.5 Samples from a piecewise geodesic (top) and a parallel deformation (bottom). The
blue momenta is first defined at the rupture time tR,1. It is then transported along the piecewise
geodesic and defines the deformation frame towards a subject.

3.2.3 Mixture and branching process

This construction builds a piecewise geodesic model of progression. Until now, it can only pro-
cess homogeneous populations. We propose an extension for the analysis of heterogeneous
populations. More precisely, we suppose there exists N different representative curves in a
given population, each of the subjects i being in the cluster cl(i) defined by the particular repre-
sentative curve γcl(i). This representative curve comes with its own set of rupture times (t

cl(i)
R,1 <
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... < t
cl(i)
R,K−1), initial shape x1,cl(i), control points c1,cl(i), momenta (m0,cl(i), ...,mK−1,cl(i)) and

modulation matrix Acl(i).

This mixture framework enables to compare and test hypothesis on the clusters. For in-
stance, some of the time segments can be shared by several clusters. This imposes the repre-
sentative curves of these clusters on these time segments to be the same. In particular, if we
want some of the clusters to be equal on the first time segment, we impose tkR,1, x1,k, c1,k and
m0,k to be the same for these clusters. This allows us to handle populations forking or merging
at the rupture times. The rupture times are then not only times when a change of dynamic
occurs but also times when populations fork or merge.

Hence, we have presented a complex geometrical model allowing us to compute global
trajectories and the deformations towards subjects. Those global trajectories can take a wide
variety of forms. But, in all cases, our model is parameterized by a finite number of parameters.
Hence, the next step is to construct a statistical model to estimate the unknown variables. We
will need to estimate the parameters defining the template as well as the clusters and the pa-
rameters defining the deformations towards the subjects. This is the goal of the next section:
in section 3.3.1, we will present the statistical model considered while in section 3.3.2 we will
explain how to estimate the parameters defining it.

3.3 Statistical Model and estimation

3.3.1 Statistical Model

We define a mixed effects statistical model allowing us to estimate those different parameters.
We note:

zrpop =
(
(mk,r, trR,k)0≤k≤K−1, x

1,r, c1,r, Ar
)

the population parameters of the cluster r and

zi = ((ξi,k)0≤k≤K−1, τi, si)

the deformation parameters of the subject i with ξi,k the acceleration parameters, si the sources
and τi the first time shift. As for the other time shifts they are fixed by continuity conditions (cf
Eq. (3.7)).

We suppose that the subject i is obtained as a noisy deformation of the representative curve
γcl(i): ∀i ∈ [|1, n|], ∀j ∈ [|1, ki|],

yi,j |cl(i), zcl(i)pop , zi ∼ N (γi(ti,j), σ
2Id) .

Such a notation implies that we are able to compute the distance between two different
shapes. Depending on the application, the points constituting the shape will be labeled or not.
In the first case we will be able to use a landmark distance. In the other, we will use the current
(Vaillant and Glaunès, 2005) or varifold (Charon and Trouvé, 2013) distances.

We also suppose that the deformation parameters zi verify:

zi|cl(i) ∼ N (0,Σcl(i))
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where for all cluster r, Σr is a positive-definite matrix.

The cluster r is drawn with a probability pr i.e.

cl(i) ∼
N∑
r=1

prδr .

To estimate the parameters of our model, we choose to apply a SAEM algorithm. However, this
algorithm requires the joint distribution to belong to the curved exponential family (see section
2.7 of the introduction). This is not the case if we suppose zpop to be a parameter. To over-
come this problem, we apply a trick first proposed in Kuhn and Lavielle (2005) and suppose
that zrpop ∼ N (z̄rpop, vpop) where vpop are small fixed variances. This new model now belongs to
the curved exponential family. We thus consider the population variables as random effects and
estimate their mean z̄pop. This trick and its influence on the maximum of likelihood returned by
the SAEM algorithm is further discussed chapter 6.

Finally, our model is defined with parameters θ =
(
(Σr, pr, z̄rpop)1≤r≤N , σ

)
.

For effectiveness in the high dimension low sample size setting, we work in the Bayesian
framework and set the usual conjugate priors:

Σr ∼ W−1(V,mΣ)

p ∼ D(α)

z̄rpop ∼ N (¯̄zrpop, v̄pop)

σ ∼ W−1(v,mσ)

(3.8)

whereW is the inverse Wishart distribution, D is the Dirichlet distribution and V , mΣ, v, mσ, α,
¯̄zrpop and v̄pop are hyperparameters of the model.

Finally, if we note Λ the dimension of the space in which the residuals ‖yi,j − γi(ti,j)‖2 are
computed, the complete log-likelihood writes:

log q(y, zpop, z, c, θ) = −
n∑
i=1

 ki∑
j=1

1

2σ2
‖yi,j − γcl(i)(ti,j)‖2 −

Λki
2

log(σ2)


− 1

2

N∑
r=1

(zrpop − z̄rpop)T v−1
pop(z

r
pop − z̄rpop)

− 1

2

n∑
i=1

(
zTi (Σcl(i))−1zi − log |Σcl(i)|

)
+

n∑
i=1

log pc(i) +

N∑
r=1

α log pr +

N∑
r=1

(mΣ

2
(log |V | − log|Σr|)− tr(V Σ−1

r )
)

+mσ log
( v
σ

)
− mσ

2

( v
σ

)2

− 1

2

N∑
r=1

(z̄rpop − ¯̄zrpop)
T v̄−1

pop(z̄
r
pop − ¯̄zrpop) + cste .

(3.9)
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It is important to note that our model belongs to the curved exponential family and so allows
us to define sufficient statistics. For any class r, wet set:

Sr1(y, z, zpop) = zrpop

Sr2(y, z, zpop) =

n∑
i=1

1cl(i)=r

S3(y, z, zpop) =

n∑
i=1

ki

Sr4(y, z, zpop) =

n∑
i=1

1cl(i)=rz
t
izi

S5(y, z, zpop) =

n∑
i=1

ki∑
j=1

‖yi,j − γi(ti,j)‖2

(3.10)

It will then be possible, in the next section, to estimate the parameters of our algorithm using
only those sufficient statistics.

3.3.2 Estimation

To estimate the parameters θ, we want to compute a maximum a posteriori estimator by using
a stochastic version of the Expectation Maximization algorithm known as MCMC-SAEM (Allas-
sonnière and Kuhn, 2010). It consists in the following steps:

(i) Simulation of (z, zpop, cl).

(ii) Stochastic approximation of the sufficient statistics of the curved exponential model.

(iii) Maximization using the updated stochastic approximation.

Concerning the sampling in step (i), we simulate (z, zpop, cl) as an iterate of an ergodic Monte
Carlo Markov Chain with stationary distribution q(zpop, z, cl|y, θ). More precisely, we use a sym-
metric random walk Monte-Carlo Markov Chain within Gibbs sampler with adapted variance.
Once those variables are sampled, it is then possible to compute the sufficient statistics and to
obtain the parameters maximizing the posterior distribution in a closed form, as explained below.

In step (ii), we compute a stochastic approximation of the sufficient statistics using Eq. (3.10)
and a decreasing positive sequence of step size (∆k)k∈N: if m is the current iteration of our al-
gorithm, 1 ≤ r ≤ N and 1 ≤ k ≤ 5, we compute srm,k = srm−1,k + ∆m−1(Srk(y, z, zpop)− srm−1,k).

Finally, in step (iii), the update of the parameters θ in the maximization step of the MCMC-
SAEM at iteration m can be derived: for all 1 ≤ r ≤ N ,

z̄rpop =
v̄pops

r
m,1 + vpop ¯̄zrpop
vpop + v̄pop

Σr =
srm,4 +mΣV

srm,2 +mΣ

σ2 =
srm,5 +mσv

Λsrm,3 +mσ

pr =
srm,2 + α

n+ αN

. (3.11)
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However, using the algorithm as presented above yields to bad results in exploring the sup-
port of the conditional probability distribution. This issue is known as trapping states: once a
label is given to an observation, the probability of changing to another is almost zero. This leads
to no change of cluster after a few iterations. This problem has already been encountered in
the clustering case, for instance in Allassonnière and Kuhn (2010) and Srivastava et al. (2005).
In the first case, the authors chose to compute deformations from each template towards each
subject leading to very high computational cost. In the second paper, the authors used tem-
pered distributions but only determine the clusters without the associated representative curve
and inter-subjects variability.
Here, to solve this problem, we use a tempered version of the MCMC-SAEM. Instead of target-
ting q(c|y, θ) in the MCMC step, we rather sample from an ergodic Markov Chain with density

1
C(Tk)q(c|y, θk)

1
Tk where k is the current iteration of the algorithm, Tk is a sequence of tempera-

ture converging towards 1 and C(Tk) is the normalizing constant. The higher the temperature,
the flatter the distribution and the more the clusters are likely to explore the entire set.

Finding a good distribution of temperatures such that meaningful representative curves are
found without immediately fixing the clusters nor forcing them to move throughout the whole
algorithm is quite difficult. Several choices have been proposed in Allassonnière and Cheval-
lier (2019) but we choose here a distribution that takes into account the current state of the
algorithm. For each subject i and each cluster k, we set τki = log

(
q(cl(i)=j)

q(cl(i)=k)

)
where cl(i) is

the cluster of the subject i, j the index of that cluster during the previous iteration and q is the
complete log likelihood. τki is in fact the logarithm of the acceptance rate of the MCMC-SAEM
algorithm for the subject i to go from the cluster j to the cluster k. We then take:

T =


Median(τ)

diter/10e
5− iter%10

5
+ 1− 5− iter%10

5

if iter%10 < 5

1 otherwise

(3.12)

where % is the modulo operator and iter is the current iteration.

Such a distribution of temperature allows the representative curves to fix themselves when
iter%10 ≥ 5 while forcing the clusters to explore the whole space when iter%10 < 5. Indeed,
such a temperature distribution allows us to directly influences the acceptance rate of the clus-
ters.

If this temperature scheme allows us to observe meaningful clusters, as showed later in
section 3.4, it must be remarked that it depends of the acceptance rate τ and so of the previ-
ous state of the algorithm. The convergence of tempered SAEM algorithms has already been
proven in Allassonnière and Chevallier (2019) but not for a state-dependent temperature, nor
for the MCMC-SAEM algorithm. A generalization of this work would be needed to obtain the
theoretical convergence of our algorithm.

The process is summarized on algorithm 8.
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Algorithm 8: MCMC-SAEM algorithm
Data: (yi,j), (ti,j), total number of iterations K, s0 = 0 and (∆k)k∈N a decreasing

positive step size sequence
for 1 ≤ k ≤ K do

Sample (zpop, z) using a single step of a Symmetric Random-Walk Metropolis
Hastings within Gibbs sampler targeting the posterior distribution q(zpop, z|y, θk).

Compute Tk using Eq. 3.12 and sample c using a single step of a Symmetric
Random-Walk Metropolis Hastings within Gibbs sampler targeting the posterior
distribution 1

Tk
q(c|y, θk).

Compute the stochastic approximation sk = sk−1 + ∆k−1(S(z, zpop, y)− sk−1) where
S are the sufficient statistics.

Update the parameters θk to maximize the posterior likelihood q(θ|y): θk = θ̂(sk).

3.3.3 Initialization and influence of the hyperparameters

Now that we have presented the algorithm estimating θ, we interest ourselves in its initialization
and in the influence of the choice of the hyperparameters.

Concerning the initialization, all the representative trajectories of the different clusters are
chosen equally by building a constant trajectory equal to the first observation of the first subject
at all times. Similarly, we initialize the individual parameters such that there is no initial defor-
mation towards the subjects. Hence, at first, all individual trajectories are equals.

The different hyperparameters defining the priors influence the update of θ at each iteration.
Indeed, all those updates can in fact be seen as barycenters between a quantity defined by
the sufficient statistics and another depending on the prior. For instance, z̄rpop is the barycenter
between a sufficient statistic and ¯̄zrpop with respective weight v̄pop

v̄pop+vpop
and vpop

v̄pop+vpop
. Hence, we

can choose the prior to influence the final value of z̄rpop and also choose the weight given to this
a priori. Similar remarks can be done with all parameters.

Finally, we must also choose the kernel used to compute the deformations. Here, we take a
Gaussian kernel: Kg(x, y) = exp

(
‖x−y‖22
σ2
g

)
. We choose the kernel width σg in the range of the

distance between the control points such that the whole shape can be deformed smoothly.

3.4 Results

3.4.1 2D simulated data

Creation of the dataset

We first test our algorithm on simulated data mimicking the shape of a dancing man. We cre-
ate 100 subjects by deforming a branching piecewise-geodesic representative curve with two
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components. More precisely, we begin by creating the two branching representative trajectories
by drawing three sets of random momenta that we apply on 16 control points equally spaced.
We first apply one set of momenta on a fixed shape to obtain the first common component and
then we apply the two other sets of momenta on the same fixed shape to obtain the two dis-
tinct components forking at the rupture time, set as 70. We then create our 100 individuals by
sampling random accelerations, time shifts and space shifts from a gaussian distribution as well
as random number of observation times before and after the rupture time. Those observation
times are sampled using an exponential distribution. Finally, we add a gaussian noise of vari-
ance 0.02 to each subject, use the varifold distance and choose a kernel width equals to the
distance between two adjacents control points.

Estimation of the parameters

We apply our algorithm to find the representative curves and the spatiotemporal deformations
towards the data sequence of each subject, asking for two branching clusters. Results in Fig.
3.6 show that there is only little differences between the true and estimated representative tra-
jectories (left), and no noticeable differences between the true and reconstructed observations.
To quantify the reconstruction error, we compute the varifold norm of the errors for all subjects
along the iterations on Fig. 3.7 (left).

97% of the subjects are classified in their right cluster. As for the others subjects, in most
cases, no measurement is done after the rupture time or the second acceleration coefficient
is so small that the shape practically does not vary after the rupture time, which explains why
the algorithm cannot find the right cluster. We also show the necessity of using tempered dis-
tributions by plotting the error of classification with and without temperature on Fig. 3.7 (right).
The oscillations we see on those figures are due to the oscillating evolution of the temperature.
We can see that the classification and hence the final reconstructions are better with tempered
distributions.

Finally, we launch the algorithm on the same data set 10 times to compute the errors on the
estimation of the different parameters. On the table 3.1, we display the relative errors of the
individual parameters. In particular, we do not show the error on the time shifts τi but on the
individual rupture times tR,i,0 (obtained from τi) since it is this value which will be of interest for
the clinicians. All those errors are below 10%, with particular good estimation for the individual
rupture times. The high standard deviation observed is in fact due to the badly classified sub-
jects. Indeed, for those subjects, the individual parameters often take absurd values: practically
null accelerations, large rupture times, etc..
On the table 3.2, we present the errors of reconstruction for the varifold norm. We can remark
that both the subjects and the templates are very well reconstructed. The error on the template
is a bit higher due to the repercussion of the small errors in the temporal reparametrization. In-
deed, the small errors in accelerations can cause the time lines between the real template and
the estimated one to differ causing small errors when comparing them at the same time point.

We also present the errors on our parameters table 3.3. Here, we can remark the very poor
estimation of Σ. Once again, this is due to the presence of badly classified subjects having
absurd individual parameters. Those outliers then induce a very high variance in the estimated
individual parameters. However, if we try to compute the estimated Σ taking into account only
the subjects in the correct cluster, we then find more correct results: an error of 8.12% with a
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standard deviation of 3.97. Hence, it seems impossible to have a correct estimation of Σ here.

ξi,0 ξi,1 tR,i,0
5.89%±7.01 8.60%±10.7 0.76%±1.61

Table 3.1 Mean and standard deviation of the relative errors for the temporal parameters.

Subjects Templates
1.23%±1.96 5.56%±2.60

Table 3.2 Mean and standard deviation of the errors of reconstruction for the subjects and
templates.

Σ σ p
160%±223 7.19%±4.01 2%

Table 3.3 Mean and standard deviation of the errors on the parameters θ.

Prediction of new data

Here, we test the ability of our model to predict new data by using cross validation. We create
100 new subjects deformed from the same representative curve as before. We then ask our
algorithm to classify and reconstruct the trajectories while fixing the parameters θ and the rep-
resentative curve by those learned previously. This time, 91% of the subjects are well classified
and the error of reconstruction is only 0.84% with a standard deviation of 1.93. Hence, our model
can process new data without a problem, proving that we have no problem of overfitting or se-
lection bias.

Comparison of the clustering with a baseline

We now want to test the performance of the clustering of our model against a baseline. To do
so, for each of the subjects, we compute the trajectory minimizing the distance with the obser-
vations using a geodesic regression. We obtain, for each subject, a set of momenta defining its
trajectory. We then use the kmeans algorithm on the set of all momenta to classify the subjects.
This algorithm will not create representative trajectories nor compute the variability of the popu-
lation but will only classify the subjects without any time reparametrization.

In this easy example where only the global movement of the shapes is important in the clus-
tering, the baseline gives us a perfect classification of the subjects. However, it is easy to create
cases where our algorithm will outperform the baseline. Indeed the baseline only takes into
account space deformations. Hence, it is unable to distinguish two different objects deformed
the same way. For instance, a geodesic regression will give us the same set of momenta for
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Figure 3.6 In red, the exact simulated data, in black, the results given by our algorithm. On
the left, the representative curves that split up at a certain rupture time. On the right side, two
subjects given with their reconstructions.

Figure 3.7 Left: evolution of the varifold distances between the subjects and their reconstruc-
tions. Right: percentage of error in the classification along the first 100 iterations. With tempered
distribution, the oscillating temperature coerces a lot of subjects to change classes. After 500
iterations, the error is 31.3% smaller.

squares and spheres following the same movement. Hence, the baseline will not be able to
distinguish two different clusters. In contrast, our algorithm also takes into account the mean
shape of each cluster and so is able to separate two such clusters.
Moreover, no time reparametrization is taken into account by the baseline. To highlight this
fact, we create a new dataset of "dancing men" with two clusters, each containing 100 subjects.
We obtain those subjects from the same representative curve but, for one cluster, the mean
acceleration of the subjects eξ is 1.3 while the other has a mean acceleration of 0.7. This time,
the baseline is unable to distinguish the two clusters as the momenta obtained by geodesic
regression for the different trajectories are all collinear. All the subjects but 6 are placed in the
same cluster and so only 51% of the subjects well classed. On the other hand, our algorithm is
more successful in this clustering task: subjects are indeed classified according to their speed
of progression: 84% of the subjects are classified as expected. As for those badly classified,
their acceleration is close to 1.

Finally, when the only distinction between clusters is based on their space deformation, the
baseline seems as precise as our algorithm. However, it is not able to distinguish differences
in time and is more limited than our model. Those observations will be confirmed in the next
examples.
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Test of an hypothesis on the model

We want now to test hypothesis about the heterogeneity of the population. We run our algorithm
on the dataset created section 3.4.1, supposing first that the two representative trajectories are
different. We then run it again supposing that their first component is the same and that they fork
at the rupture time. To select the model, we first compute the log-likelihood ratio test. However,
in this case, this test is not enough to determine which model to choose. Indeed, with two
independent representative curves, the algorithm can reconstruct the subjects as precisely as
with branching representative curves. Hence, the difference between the likelihoods of the two
models is too small to conclude and the test unstable between runs. To overcome this problem,
we choose to compute the Bayesian Information Criterion (BIC):

BIC = ln(n)m− 2ln(q(y, z, θ))

where m is the total number of parameters involved in the model and n the number of subjects.
This criterion takes into account the complexity of the model by adding a penalty proportional
to the number of parameters involved. Hence, we will penalize the model with two independent
trajectories (as it involves more parameters) even if the reconstruction is similar. This time, there
is a difference of 2.98% between the two BIC criterions, leading us to choose, as expected, the
model with branching representative curves.

3.4.2 1D RECIST scores

We test here the algorithm on a real 1D dataset. We consider a database of patients suffering
from the meta-
static kidney cancer and taking antiangiogenic drugs. They come on a regular basis at the
hospital to check the tumor evolution. Two behaviours are expected in the population: for all
patients, the tumor first regresses. But then, for some, it stabilizes while for others the tumor
size increases again forcing to change the treatment. The RECIST score is a feature that mea-
sures the tumor size and is used in the majority of clinical trials evaluating cancer treatments
for objective response in solid tumors. Our dataset consists in the evaluation of the RECIST
score for 176 patients with an average of 7 visits per subject and an average duration of 90 days
between consecutive visits.

In this 1D case, shapes are just curves on R and we work with a logistic metric. The parallel
transport is just a translation of the geodesic. That is why we rather considerate another space
reparametrization, as done in Allassonniere et al. (2017): for all classes i and all components l,
we set:

φi,l(x) = γcl(i)(t
cl(i)
R ) + eρ

l
i

(
x− γcl(i)(tcl(i)R )

)
+ δli .

ρli is a dilatation factor and δli is a translation factor. As with the time reparametrization, all the
translation factors but the first one are fixed by continuity conditions and we note δ0

i = δi. Fi-
nally, our individual curve is defined by deforming spatially each component of γcl(i) by φi,l and
temporally by the same ψi,l as previously.

With only two components, the piecewise geodesics for the logistic metric can be parame-
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terized, for any class r, by: 
γr1(t) =

γrinit + γrescape
art+br

1 + eart+br

γr2(t) =
γrfin + γrescape

−(crt+dr)

1 + e−(crt+dr)

γr(t) = γr1(t)1]−∞,trR] + γr2(t)1]trR,+∞[ ,

(3.13)

with γrinit, γ
r
escap, γ

r
fin ∈ R. We fix ar, br, cr and dr by asking the geodesics γ1

0,r and γ2
0,r to

be ν-near their geodesics at an initial time tr0, at the rupture time trR and at a final time tr1 (see
Allassonniere et al. (2017) for more details). Hence, rather than sampling momenta and control
points, we will sample zrpop = (γrinit, γ

r
escap, γ

r
fin, t

r
0, t

r
1). This whole process is summarized Fig.

3.8.

Figure 3.8 Model description. In blue, the template with the different parameters defining it and
in orange one subject obtained by deforming it. Here, t0 = 0, the rupture points are represented
by diamonds and the final times t1 by stars.

First, we launch our algorithm looking for two different representative curves. The result is
displayed on the first line of figure 3.9. Our algorithm is indeed able to explain the variability
of the population. However, it seems that our algorithm favours size over response dynamic as
a clustering feature: small initial tumors (blue curve, 28% of the patients) are separated from
big initial tumors (orange curve, 72% of the patients). For example, the orange reconstructed
trajectory (top right plot) is classified with the blue template (top left plot) even if the treatment
stays effective.

To overcome this trivial differentiation based on the tumor initial size, we ask the two tem-
plates to be the same until the rupture time using a branching process. This time, on the second
line of figure 3.9, we really see two different behaviours: for one of the template, the RECIST
score increases a lot more (blue curve, 37% of the patients) than for the other (orange curve,
63% of the patients). As for the clustering, we see indeed that the subjects whose RECIST score
do not increase after the rupture time are pooled together (green, red, orange and blue curves).
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Hence, we are able to separate the patients whose tumor becomes resistant to the treatment
from the others. It can also be remarked that we have fewer time points for patients whose
tumor becomes resistant because the clinicians change the treatment when this resistance is
remarked and so the record of score for this patient stops.

Figure 3.9 At the top, the results given with two different templates, at the bottom, with two tem-
plates whose first component is the same. To the left, our templates. To the right, 6 subjects and
their reconstructed trajectories. In dotted lines, subjects in the cluster of the orange template.
In plain lines subjects in the cluster of the blue template.

3.4.3 3D faces

We now obtain shapes of subjects expressing different facial expressions from the Birmingham
University 3D dynamic facial expression database (Yin et al.). This real database contains short
videos from 101 subjects expressing happiness or surprise. We uniformly extract 8 frames, from
the first to the 36-th one, which correspond to a subsampling of the first 1.4 seconds of each
video. We do not work directly with the texture video, but with a set of 75 semi-automatically
extracted landmarks, which were readily available along with this data set. Every set of 3D
landmarks is registered to a reference one by Procrustes alignment.

We apply our algorithm, once again with the varifold distance, to find two clusters, with only
one component geodesic for each template. As we can see Fig. 3.10 and 3.11, the faces are
well reconstructed and we can recognize the two expressions of surprise and happiness on the
two templates. In particular, for the surprise cluster, the mouth is more widely open, while the
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eyes are wide open and the eyebrows higher.

Hence, we can ask ourselves if the algorithm has really detected those two expressions or
if another characteristic has been detected to distinguish two sub populations. In fact, 68.5% of
the subjects are classified as expected (i.e. surprised subjects in the cluster with the template
looking surprised and happy subjects in the one looking happy). There are different explications
about the subjects classified differently. First, we can remark that some of them have a non
neutral expression at the first image, for example smiling at the beginning while they should
express surprise. For others, it is just really difficult (even for a human) to determine if they
express happiness or surprise (see Fig. 3.12). Finally, we can also remark figure 3.10 that
the left eyebrow is quite different from one template to another. And indeed, we find that same
difference in several subjects misclassified. However, even if the clustering can be surprising,
the algorithm fulfilled his role: we have been able to highlight two different dynamics in the pop-
ulation that can be explained by differences in the subjects considered.

Figure 3.10 Results of the algorithm when applied to a dataset of surprised or happy visages.
At the top, the evolution of the template of the happiness cluster, at the bottom, the evolution of
the template of the surprised cluster, one component for each template.

Figure 3.11 Reconstitution of a subject expressing surprise. In red, the exact data, in black the
reconstitution.

Concerning the baseline, we have a better classification in this case: 88% of the subjects are
classified as expected. This better classification can be explained by the fact that the movement
of the lips and eyebrows is the principal feature separating the two clusters. By not taking into

76



Section 3.4. Results

Figure 3.12 Evolution of subject that has been asked to express happiness but seems to ex-
press surprise. It is indeed classed in the template looking surprised by our algorithm.

account the initial shape of the subjects but only the deformation, the baseline is able to obtain
a better classification result. In this case, if we are interested in separating the happy subjects
from the surprised ones, it would thus be preferable to first compute the clusters using the
baseline and only after to run our algorithm in a supervised way with the fixed clusters obtained
previously to obtain the representative trajectories and the variability in each cluster.

3.4.4 Hippocampi dataset

We finally test the algorithm on 100 subjects obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative database (adni.loni.usc.edu). 50 of those subjects are control patients (CN) and 50
are Mild Cognitive Impairment subjects eventually diagnosed with Alzheimer’s disease (MCIc).
Meshes of the right hippocampus is segmented from the rigidly registered MRI.

We first run our algorithm with a forking model: we look for two clusters that fork at a certain
rupture time. As there is no reason for the control subjects to have two different dynamics, we
also ask one of the cluster (i.e. one of the evolution scenario) to follow the same geodesic before
and after the rupture time. Finally, we choose to use the varifold distance. Our algorithm splits
the patients in two clusters, one of them presenting a quicker and different pattern of atrophy
(Fig. 3.15 and left side of Fig. 3.13 where the hippocampi volume is plotted along time). More-
over, 72% of the subjects are classified as expected: the CN in the cluster with a single dynamic
showing a slower atrophy and the MCIc in the cluster with a faster atrophy after the rupture time.

We have also studied the relation between our rupture time and the age of diagnosis. The
individual rupture times are strongly correlated to the diagnostic age, indicating that we have
been able to detect a change of behaviour correlated with the date of diagnosis (Fig. 3.14).

We run again the algorithm, this time looking for two clusters with separate trajectories, one
of them with only one dynamic. The results are presented Fig. 3.16 and on the right side of
Fig. 3.13 for the hippocampi volumes evolution. It is interesting to remark that the cluster with
only one dynamic also presents a slower atrophy, as expected with a normal ageing. We can
also detect different patterns of atrophy before and after the rupture time for the cluster with two
dynamics. This time, 70% of the subjects are classified as expected: CN in the cluster with one
dynamic and MCIc in the cluster with two dynamics and a quicker rate of atrophy.

As we are given two possible evolution scenarii, it is natural to try to quantify the goodness of
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fit of each of them, allowing for a choice of a better explanation of the disease. As for synthetic
data, we use the Bayesian Information Criterion. We find a difference of 2.92% between the two
BIC values leading to choose the branching model. Hence, this suggests that the MCI subjects
first follow a normal aging scenario but deviate from it at the rupture time. It must however be
remarked that our model is quite complex with a lot of high dimensional variables, making model
selection quite difficult.

Figure 3.13 Left: volume evolution for two branching clusters. Right: volume evolution for two
clusters with separate trajectories.

Figure 3.14 Comparison of the age at diagnosis with the individual rupture time for the MCIc
patients in the case of the branching model, R2 = 0.91

Once again, we compare those results with the baseline. However, in this case, the dif-
ference between the two clusters is largely coded by the speed of atrophy and not the global
dynamic. Hence, it is not surprising to note that practically all the subjects are grouped in the
same cluster by the baseline and so, only 52% of the subjects are well classified. Thus, in this
example, our algorithm has to be used to cluster the subjects.
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Figure 3.15 Representative shape evolution at the ages 63.4y, 68.8y, 74.2y (i.e. rupture time),
75.5y, 80.9y and 86.3y. Bottom shapes: cluster with one dynamic. Top shapes : cluster with
change of dynamic after rupture time. The color map gives the norm of the velocity field ‖vt‖ on
the meshes.

3.5 Conclusion

We proposed a mixture model for longitudinal shape data sets where representative trajectories
take the form of piecewise geodesic curves. Our model can be applied in a wide variety of
situations to test whether sub-populations are independant from each other or fork or merge
at different time-points. We showed on simulated examples that our tempered optimization
scheme is key to achieve convergence of such a mixed effect model combining discrete vari-
ables with continuous variables of high dimension. It has also been noticed that taking only into
account the individual trajectories is not always enough to obtain a meaningful clustering of the
population. We have shown the versatility of our model by applying it to a lot of different cases:
trajectories with one or several dynamics, branching or not after a rupture time, with one part of
the population still following the same dynamic or not after the rupture time. Its application on
1D data allowed us to present results of the same model in another setting while the application
with 3D faces showed that we can highlight different meaningful dynamics in a same population.
Finally, the hippocampi data set allowed us to investigate the relationship between normal and
pathological ageing.

Different questions still have to be answered. In particular, our scheme of temperature de-
pends of the current state of the algorithm and a proof of convergence should be provided in
this situation. Moreover, specific model selection criterion should be devised in this complex
longitudinal setting. Those criterion should in particular help us to detect the optimal number
of clusters and rupture times. Finally, one may ask what is the consequence to consider the
population parameters zpop as random variables. This particular question is the subject of the
chapter 6 of the manuscript.
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Figure 3.16 Model with two separate clusters, one of them following only one dynamic. Repre-
sentative shape evolution at the ages 64.7y, 68.3y, 74.3y (i.e. rupture time for the cluster with two
dynamics), 77.5y, 80.9y and 86.3y. Top shapes : cluster with change of dynamic after rupture
time. Bottom shapes: cluster with one dynamic. The color map gives the norm of the velocity
field ‖vt‖ on the meshes.
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CHAPTER 4

Detection of anomalies using the LDDMM framework

In the previous chapter, we have created a new longitudinal model that allows to consider
subjects with change of dynamics at certain time points. We have in particular applied it to
RECIST scores in the case of chemotherapy monitoring. The intuitive next application would
be to consider images of organs with tumors.
However, we are not able to apply this model directly. Indeed, in that case, each observation
consists of the organ with a different number of lesions on it. But, each reconstruction,
obtained as a diffeomorphic deformation of a template, will have the same number of lesions
as this template. We hence need to create a new model tackling this issue.
This is the subject of this chapter where we propose to model observations as diffeomorphic
deformations of a template (to be estimated or not) and structured residuals. The residuals are
composed of a sparse matrix coding for the lesions and an independent additional noise. The
goal is to be able to highlight the tumors in these sparse matrices. We will see that this new
approach has two advantages. First, it localizes the tumors without any labeled training sample
(avoiding for clinicians pre-processing). It also reduces the error of reconstruction while being
efficient in the detection of anomalies. This enables to better evaluate the size and shape of
the organ as a whole. Last, this method is not organ dependent, allowing for multiple use in
oncology.
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4.1 Introduction

In this chapter, we are interested in the detection of anomalies taking advantage of the Large
Diffeomorphic Deformation Metric Mapping (LDDMM) framework. The motivation behind the
introduction of this new model comes from a medical issue faced by interventional radiologist
when dealing with a data set of patients with colorectal cancer. In most cases, hepatic metas-
tases of colorectal cancer are not resectable at the time of diagnosis. Intra-arterial chemother-
apy is one of the techniques developed recently and aims at providing the patients with a new
therapy: patients can receive high doses of chemotherapy administered locally, with fewer sys-
temic doses, thus reducing overall toxicity. Several of them will benefit from secondary curative
options such as surgery or classical intravenous chemotherapy. A 2020 clinical trial considered
using these techniques as a first-line treatment for colorectal cancer liver metastases (Pernot
et al., 2020). However, this treatment is not efficient for all patients. This led the interventional
radiologist Medical Doctors to ask for the possibility to predict the progression-free survival at
9 months i.e. the patients still alive and whose disease has not worsened after 9 months of
treatment. This could lead to better patient selection, and would prevent patients from receiving
inefficient treatment in a setting where many other options exist. As a first step, localizing the
lesions and quantifying the global liver shape is required. This encouraged us to propose the
following contribution. This model has been designed to address this problem but can also be
generalized to other organs. Therefore, two applications are presented below.

We are given a data set of scanners (i.e. of 3D images) of 57 patients, each of them being
observed between 2 and 11 times. An example of such a scanner is given Figure 4.1. Tumors
can be seen as dark spots on the liver.
We are also considering the BraTS 2018 data set of neuro-oncology where we are given 50
MRIs of brains with glioma (Bakas et al., 2017, 2018; Menze et al., 2014).
As a first step, we will just consider the first observation of each patient and interest ourselves
in the creation of a cross-sectional atlas.

Figure 4.1 Example of the scanner of a patient. The red arrows indicate tumors.
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The presence of tumors prevents us from directly applying the methods developed previ-
ously, which use the LDDMM framework to account for deformations. Indeed, each subject can
have a different number of lesions which leads to a different topology. If we directly apply the
LDDMM framework, the reconstruction of each subject is obtained as a diffeomorphic deforma-
tion of the template. If this template contains k dark spots, each deformation will also have k
dark spots, even if the targeted subject does not have this number of lesions. It may even force
the model to try to make some dark spots appear or disappear by using strong deformations in
areas where the liver shape should not change. Therefore, a model driven by a template with
lesion may not be the right one. One would rather think the template as a typical organ and the
lesions as additional elements not concerned by the global shape of each subject. Hence, we
need to transform the model.

We will in fact use this diffeomorphic constrain to automatically detect anomalies on a set of
images. More generally, we suppose that we have at our disposal a data set of subjects without
anomaly and another with anomalies. The goal is to immediately detect the presence, or not, of
those anomalies.

Different methods already exist for the segmentation of anomalies such as tumors. Most
of them use deep learning and algorithms derived from U-net (Ronneberger et al., 2015) (see
among many other works Bakas et al. (2018); Dong et al. (2017); Seo et al. (2019)). They
have however the disadvantage to require hundreds of images first annotated by oncologists.
As the methods depend on clinicians and large data set, they cannot be easily generalized to
any organ. Moreover, manual segmentation is expensive and time-consuming to obtain, greatly
limiting clinical application and the scale of available labelled data. To overcome this lack of
labeled data, another possibility is to study the residuals of an auto-encoder network trained on
control subjects (Baur et al., 2018; You et al., 2019; Pawlowski et al., 2018; Yu et al., 2019). This
method is quite similar to the one we will develop but still necessitates lots of images to learn
the parameters of the auto-encoder.

The method we propose has the advantage not to require any annotation nor large data
sets and can straightforwardly be generalized to any organ. We suppose that we have a data
set of control patients from which we are able to create a control template ȳ. In practice, ob-
taining a data set of control patients is often easier, for example by considering images from
patients suffering from any other pathology with no impact on the organ considered. Moreover,
estimating an atlas using the LDDMM framework does not require many training data. Indeed,
we are not estimating parameters of a blind neural network but rather parameters of a statistical
model mimicking the data generation. This control template will characterize a control popula-
tion and hence, will have no anomaly. With this template fixed, anomalies on a new subject are
then defined as what cannot be obtained as a diffeomorphic deformation of this control template.

To extract these anomalies, we model the residuals (i.e. the difference between the de-
formed template and the observation) as a sparse matrix in addition to an independent noise.
What cannot be reconstructed as a diffeomorphic deformation of the template is hence put in
this matrix and classified as an anomaly. The goal is to obtain these anomalies in the matrix and
separate them from the noise. The idea to study the residuals is further motivated by Durrle-
man et al. (2011b) where the authors showed that the residuals still contain information on the
variability of the population. Another advantage of our model is that it retrieves the deformations
from the control template towards the patients. This deformation can be interesting in the pre-
diction of the outcome of a treatment where the environment around the anomalies sometimes
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plays a decisive role.

One could imagine to first estimate the deformation from the template towards the observa-
tion and only at the end of the estimation, estimate the anomalies from the residuals. However,
we will show that estimating both deformations and anomalies at the same time improves the
results by reducing the error of reconstruction. Indeed, taking into account the possibility of
having additional elements in the organ enables to see the organ globally and therefore to have
a more accurate deformation.

Although the method seems to rely on a template of control patients, it can actually be es-
timated as well. We will propose a way to derive a template without anomaly from the sick
patients only using a single observation of a control patient, called hypertemplate.

In the following, we will first present the mathematical framework, the statistical model and
its estimation algorithm. Then, we apply the model on a simulated data set and show that we
obtain better reconstructions of our objects and an accurate localization of the lesions. We then
show its versatility by using it on two different real data sets. First, we apply it on a data set of
brains with lesions and then on a data set of livers.

At the time of writing of this manuscript, this work is still in progress.

4.2 Detection of anomalies using residuals

4.2.1 Presentation of the model

The model we propose aims at highlighting the anomalies of patients with respect to a control
template. As we are modeling anomalies, we make the assumption that these features are
sparse in the volume of the organ. Apart from these anomalies, the rest of the organ has to be
similar to a control one. Therefore, we propose the following model.

We write (yi)1≤i≤n the n subjects and ȳ ∈ Rd the template of control subjects obtained using
the methods of Section 2.4. We suppose that our images all have the same size

∏d
j=1 ni where

d = 2 or 3 for 2d or 3d images.

We assume that each observation can be written as:

yi = Exp0,1(vi)(ȳ) +Ai + εi ,

where the Riemannian exponential is defined Section 2.3.1. This equation means that we obtain
the subject yi as the diffeomorphic deformation of the template ȳ: Exp0,1(vi)(ȳ) to which we add
a matrix Ai containing the anomalies and a noise εi. As explained in Section 2.4.4, vi is a
velocity field that we obtain as the interpolation of momenta αi ∈ (Rd)ncp at ncp ∈ N control
points ci ∈ (Rd)ncp using a Gaussian kernel as follows: ∀x ∈ Rd:

vi(x) =

ncp∑
j=1

KV (ci,j , x)αi,j . (4.1)

In order to enforce the expected sparsity of the anomalies, we add a L1 regularization on
Ai. This is also a way to prevent it from including the noise, modeled as following a centered
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normal distribution.

Given this model, our goal is to estimate jointly the deformations from the given template
and the anomaly matrices for each subject. Here, as the control template has already been
estimated, we can process each subject separately and we want to minimize the following func-
tions:

Ji(ci,αi, Ai) =
1

2σ2
||yi − Exp0,1(vi)(ȳ)−Ai||22 + λ||Ai||1 +

1

2
||vi||2V , (4.2)

where ||.||V is defined Section 2.4.4 and vi is obtained using equation (4.1). The first term of Ji
measures the distance between the observation and the reconstruction while the other terms
measure the sparsity of Ai and the regularity of the diffeomorphic deformation.

To minimize Ji, as ||.||1 is not differentiable, we implement a proximal gradient descent al-
gorithm, using the Pytorch package to automatically compute the gradients of the differentiable
part of Ji.

4.2.2 Computation of the template using a hypertemplate

In some cases, it can be difficult to obtain a data set of control subjects, necessary to create the
control template ȳ. It is for instance the case for brains where we barely get a MRI scan from a
control patient. In that case, it is possible to create the template ȳ along the estimation of the
anomaly matrices using only the image of one control patient y0. To do so, we consider ȳ to be
the diffeomorphic deformation of a control hypertemplate y0:

ȳ = Exp0,1(v0)(y0) , (4.3)

where v0 is obtained as the interpolation of momenta α0 at control points c0, as explained above.
As y0 is a control subject, it has no anomaly, and its diffeomorphic deformation ȳ will have no
anomaly either.
Hence, in that case, we will not only estimate the velocities (vi)1≤i≤n and sparse matrices
(Ai)1≤i≤n but also the velocity v0 by minimizing:

J̃(c0, (αi)0≤1≤n, (Ai)1≤i≤n) =

n∑
i=1

(
1

2σ2
||yi − Exp0,1(vi)(ȳ)−Ai||22 + λ||Ai||1 +

1

2
||vi||2V

)
+

1

2
||v0||2V ,

(4.4)

where ȳ is obtained using the velocity v0 and vi is obtained as the interpolation of the momenta
αi at the control points c0.
Note that, as the template is a reference image for the whole population, the energy to minimize
is not separable and involves the contributions of all subjects.
Once again, this optimization is done by proximal gradient descent.

Remark 4.2.1. Here, we use the same control points c0 for all velocity fields (vi)0≤i≤n in order
to reduce the computation time.

Remark 4.2.2. In practice, we sometimes have a computational problem to estimate the pa-
rameters of those models. Indeed, the gradient descent tends to stay blocked in local minima.
By including the errors of reconstruction in the anomaly matrix, the algorithm often chooses not
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to improve the reconstruction and stays blocked in a local minimum. To solve this problem, we
prevent the anomaly matrix to take any value outside of the reconstruction of the object for the
first 100 iterations. This allows to improve the diffeomorphic reconstruction and to reach a more
relevant area of interest of the energy landscape.

4.2.3 Comparison to other models

In the following, we will compare this model to the usual cross-sectional atlas, estimating the
template ȳ and the deformations towards the subjects without the use of anomaly matrices nor
hypertemplate. This writes as minimizing the following energy:

J0(ȳ, c0, (αi)1≤i≤n) =
1

2σ2

n∑
i=1

||yi − Exp0,1(vi)(ȳ)||22 +
1

2

n∑
i=1

||vi||2V . (4.5)

We will also compare it to the cross-sectional atlas when the template is obtained via a
control hypertemplate. As above, v0 will be obtained as the interpolation of momenta α0 at
control points c0. The functional to minimize is now:

J1(c0, (αi)0≤i≤n) =
1

2σ2

n∑
i=1

||yi − Exp0,1(vi)(ȳ)||22 +
1

2

n∑
i=0

||vi||2V , (4.6)

where ȳ is defined by equation (4.3).
The estimation of those two models can be done using a usual gradient descent.

4.3 Simulated example

4.3.1 Data set

To test the model, we create a simulated data set of 500 subjects deformed from a common
template to which we add a random number of dark spots (between 1 and 5) and some Gaus-
sian noise. This template is created as the deformation of an ellipse (hypertemplate). We also
create a "control" data set of 100 subjects without dark spot from the same template to be able
to estimate a control template ȳ and use it in the case of the model (4.2). The template and five
subjects with dark spots are presented on the first line of Figure 4.2.

4.3.2 Application of the models presented section 4.2

We first apply the model where the template is directly estimated, without the use of a hyper-
template nor sparse matrices (Equation (4.5)). As can be seen on the second line of Figure 4.2,
a dark shadow is created on the estimated template. Similarly, this dark shadow is reported on
the reconstructions of each subject. Moreover, as can be seen on the last two columns, to min-
imize J0 the algorithm sometimes badly estimates the deformed object in order not to include a
dark spot.

On the third line of Figure 4.2, we apply the model where the template is obtained from an
ellipse hypertemplate but without any anomaly matrix (model (4.6)). This time, as expected,
there is no dark shadow on the template but the reconstruction of the last two subjects is still
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bad.

We also test the model (4.2). To do so, we begin by estimating a template from the 100
"control" subjects. We then fix this template in the minimization of Equation (4.2). This esti-
mated template and some reconstructions are represented on the fourth line of figure 4.2. This
time, the subjects are better reconstructed and the dark spots retrieved. Their intensity is a
bit weaker than initially due to the proximal gradient descent applying a soft threshold on the
residuals. Moreover, the shapes of the dark spots are well identified and so is their position.

Then, we apply the model (4.4) where the template is estimated from a hypertemplate. The
results are presented on the last line of Figure 4.2. Once again, the subjects are well recon-
structed and the dark spots are retrieved in the anomaly matrix. Shapes, positions and volumes
of the dark spots are captured.

Finally, we compare the four models by computing the mean error of registration when one
only considers the form (i.e. the error between the observations without their dark spots and
the reconstructions without their anomaly matrix) on table 4.1. As expected, the error is smaller
when considering the models (4.2) and (4.4).

Model (4.5) Model (4.6) Model (4.2) Model (4.4)
Error of registration 19, 8%±0.06 16.5%±0.10 11.9%±0.07 12.9%±0.03

Table 4.1 Mean and standard deviation of the error of registration when one does not consider
the dark spots.

Hence, we have been able to reconstruct the subjects and to retrieve their anomalies us-
ing the models (4.2) and (4.4). Moreover, we have been able to highlight an improvement of
reconstruction when we estimate both anomaly matrix and deformations.

4.3.3 On the choice to estimate anomaly matrix and deformation at the
same time

The choice to estimate both the deformation vi and the anomaly matrix Ai at the same time, and
not one after the other, comes from an effort to improve the reconstruction of the object. Indeed,
we can see on the Table 4.1 that the errors of reconstruction are smaller when we estimate both
at the same time. It can particularly be seen on the third line of Figure 4.2 where, for the last
two columns, the residuals contain whole parts of the observations. Those parts would hence
be retrieved in the anomaly matrix.

We present a last example to emphasize this need to estimate both the deformation and the
anomaly matrix at the same time. The different images of that example can be seen Figure 4.3.
This time, we add a little black line on the control template, mimicking for example a vein in a
liver or a gyrus in a brain slice. From this template we create one subject to which we add a
dark spot. We try to reconstruct this subject from the template, either with or without anomaly
matrix. Without anomaly matrix, the model chooses to heavily deform the black line to create
the dark spot. In particular, a part of the line would here be in the residual and the black spot
would not entirely be in it. The estimation of an anomaly matrix from this residual would hence
be bad. However, if we choose to estimate both deformation and anomaly matrix at the same
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Figure 4.2 On the top line, the template and five observations. On the second line, the es-
timated template and reconstructed subjects without the use of hypertemplate nor anomaly
matrix (model (4.5)). On the third line, the results when one uses the hypertemplate but no
anomaly matrix (model (4.6)). On the fourth line, we first estimate a template (first column) from
control subjects and then reconstruct the other subjects using an anomaly matrix (model (4.2)).
On the last line, the results with sparse matrices when the estimation of a template is done at
the same time, from a hypertemplate (model (4.4))

time, the black line is well registered from the template to the individual and only the black spot
is retrieved in the anomaly matrix.

Those two observations confirm the need to couple the estimation of anomaly matrices and
deformations.

Figure 4.3 From left to right, the fixed template, the subject, the reconstruction without anomaly
matrix and the reconstruction with anomaly matrix. Without anomaly matrix, the algorithm uses
the black line to recreate the dark spot, creating a fuzzy black zone.
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4.4 Application to a data set of brains with tumors

4.4.1 Presentation of the data set

We choose to first apply our model to a data set of brains with tumors obtained from the BraTS
2018 data set (Bakas et al., 2017, 2018; Menze et al., 2014). More precisely, the data set is
composed of 50 post-contrast T1-weighted MRI scans of glioblastoma and lower grade glioma.
We do not dispose of a data set of control subjects but only of the observation of one control
subject. We will hence use the model (4.4) to estimate the template using this control subject
as hypertemplate.

The goal is to reconstruct the brain of each subject from a control template and to obtain the
tumors in the anomaly matrix. Ideally, the diffeomorphic deformation will register the brain folds
(called gyri) and ventricles. What cannot be retrieved in the diffeomorphic deformation should
hence only be the tumors.

4.4.2 Results

We here present the results of our model applied to this data set. On figure 4.4, we present the
template estimated by our algorithm.

Figure 4.4 The template estimated using a control patient as a hypertemplate.

On Figure 4.5, we show the results for four subjects. As can be seen, the lesions are re-
trieved in the anomaly matrix with only small errors of reconstruction. In particular, we can see
that the gyri have been well registered and are not present in the anomaly matrix. As for the
ventricles, if a part of one is present in the bottom right image, they are also well registered for
the other images. In fact, for the bottom right patient, its right ventricle is quite different from the
template, causing our algorithm difficulties to register a part of it. But, in all cases, the use of
the LDDMM framework has allowed to register most of the parts of the brain without anomaly
and so to obtain a clean anomaly matrix.
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Figure 4.5 The results for four different subjects. Each time, we put on the left, the observation
and on the right, the anomaly matrix estimated. Each time, the lesions are well retrieved.

Figure 4.6 The patient and the anomaly matrix in a case where the tumor (red zone) is not
detected.

Here, the important choice of parameter in Equation (4.4) is in fact the sparsity constant
λ. One could choose to take a smaller λ. This would allow to include the peritumoral edema
(dark area around the tumor) in the anomaly matrix. However, we would then also include more
reconstruction errors. Here, we have chosen λ in order to visually detect the tumors but with as
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little reconstruction errors as possible, even if the whole tumor is not in the anomaly matrix. It
fulfils our goal as we wanted to be able to inform the doctors of possible anomalies, which are
indeed included in the anomaly matrix.

In fact, of the 62 tumors in the data set, 59 are visible in the anomaly matrix (95%). As for
the tumors not visible, they are small lesions in a zone of high variability of the brain. We show
such a case in Figure 4.6 where the tumor is less easy to distinguish and in the middle of the
brain gyri.

4.4.3 Application with only one control and one sick subject

Our approach here is particularly interesting as it does not require a large data set to be applied
and there is no annotation on the position of the tumors required. To highlight this advantage,
we apply the exact same algorithm to only one brain with tumors. As for the template, it is fixed
as a brain without tumor. Hence, we only use two different brains to try to detect an anomaly.
In particular, we compare the results with the anomaly matrix estimated for this patient in the
previous section where a template was estimated alongside (see Figure 4.7).

The tumor is once again retrieved in the anomaly matrix with small errors of reconstruction,
particularly on the border and top of the brain. The errors on the top, in particular, are not
present when one estimates a template alongside the anomaly matrix. In fact, the variability
between the control subject and the one with tumor is bigger there, causing bigger errors of re-
construction. But, estimating a template, even with few subjects as done section 4.4.2, prevents
this issue.

Even if more errors are included in the sparse matrix, it must be emphasized that it has been
produced using only two subjects and that it shows that our method can yield usable results
even without access to more than a few subjects.

4.5 Application to the liver data set

4.5.1 Pre-processing

We now apply our algorithm to the liver data set. The goal is to reconstruct the liver of each
patient while recovering the tumors in the anomaly matrix. As we do not have access to a full
data set of control patients, we cannot use the model (4.2) and we need to estimate the tem-
plate from a hypertemplate using model (4.4). The hypertemplate is chosen as a patient, not in
the database, and without tumor.

A first problem that arises from this data set is that the images contain the whole abdomen
while we only interest ourselves in the liver. If we try to directly create an atlas using the frame-
work presented before, the algorithm will find the template and deformations by minimizing a
function measuring the distance between the subjects and the deformed template. However,
most of the variability will come from differences of size, position and form of organs other than
the liver and the registration of the liver could be bad. To prevent this problem, a collaboration
with Philips has been set up allowing us to segment the liver. They provided us with a software
(Intellispace Portal pre-release AI Liver segmentation version 3.0.5, date 2020) allowing the
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Figure 4.7 On the left, the observation. In the center, the anomaly matrix estimated with the
template fixed as a control subject. On the right, when one estimates the template, as done
section 4.4.2. The results are showed for two different slices: at the position of the tumor (top
images) and at the top of the brain (bottom images). In both cases, the tumor is retrieved. More
reconstruction errors are included when one does not estimate a template.

segmentation of livers using deep learning. An example of such a segmentation is presented
figure 4.8. On that figure, the dark spots are tumors.

Two different structures appear on the livers: tumors as dark spots and vessels as white
structures. Hence, it is those two structures we will recover in the anomaly matrix. If one only
wants to retrieve the tumors, it is easy to separate them from the vessels according to their
intensity. Moreover, from one subject to the other, the noise level can be totally different. If we
do not preprocess the data set, we would not be able to find a sparsity constant λ efficient for
each subject and, for those with the highest level of noise, this noise would be recovered in the
anomaly matrix. To prevent this phenomenon, we decide to first convolve our observations with
a Gaussian kernel. The resulting images can be seen Figure 4.9. This smoothing allows to
have a robust algorithm for this population.

Moreover, because all images do not have the same pixel spacing, we need to down-sample
some of the images. We also include all of them in a black box of the same size.
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Figure 4.8 Example of a segmented liver.

Figure 4.9 On the left, the initial images. On the right, the same subjects after convolution with
a Gaussian kernel.
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In the following, we present the results for different subjects.

We also choose, as a post process, to put the coefficients of the anomaly matrix to 0 outside
of the reconstructions and targets. If one does not make this choice, the errors of reconstruction
are reported in the anomaly matrix. In particular, one would find white zones in the anomaly
matrix at voxels where the diffeomorphic deformation has not been able to recreate a liver part
and black zones where the diffeomorphic deformation has created a liver part at a place there
should not be one.

4.5.2 Presentation of the results

We begin by presenting the estimated template ȳ in figure 4.10. This estimation would partic-
ularly benefit from the use of a whole data set of control patients. Here, because it is derived
from a particular control subject, the vessels of this particular subject are still present in the final
template and can influence the future estimation of the anomaly matrix. Having a template of
control subject would also surely reduce the errors of reconstruction and allow a better detection
of the anomalies.

Figure 4.10 Template estimated as a diffeomorphic deformation of a control patient.

Then, on Figure 4.11, we show the results for a subject without any vessel visible on the
scanner. The algorithm is able to retrieve the tumors in the anomaly matrix. The outline of the
registration is also present in the anomaly matrix as it is used to obtain a better final reconstruc-
tion.

We then present a subject with vessels visible in Figure 4.12. As can be seen, not only the
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Figure 4.11 On the left, the observation. In the center, the reconstruction. On the right, the
anomaly matrix.

tumors are retrieved but also the vessels. If one wants to only find the tumors, a first possibility
is to look at the negative values of the anomaly matrix. Further investigation on a post process
would be required to only retrieve the anomalies without the small errors of reconstruction.

Figure 4.12 From left to right, the observation, the anomaly matrix, and the negative values of
the anomaly matrix.

Finally, we show the importance to apply a Gaussian convolution to the data set before esti-
mating the parameters of the model figure 4.13. If one does not perform this preprocessing, the
noise is retrieved in the anomaly matrix and the tumors are not visible. This problem is indeed
solved after convolution and the tumor (at the top left of the liver) is retrieved.
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Figure 4.13 On the top line, the results if we do not convolve the data set with a Gaussian kernel
beforehand. On the bottom, with preprocessing. On the left, the observation. In the center, the
reconstruction. On the right, the anomaly matrix.

4.5.3 Quality of the detection

To measure the quality of the detection, we asked a MD Radiologist to segment the tumors of
10 patients. This led to a total number of 133 tumors segmented. Here, we will only look at the
negative coefficients of the sparse matrices to measure the quality of detection as tumors are
dark spots on the liver.

We choose not to evaluate the segmentation but the detection. In fact, here, the dice score
would be average as our algorithm rarely segments the whole tumor. However, here, we do
not want to segment the exact tumor but only to inform the doctor of a possible anomaly and
particularly detect very small lesions.

On the 133 tumors segmented, our algorithm detects 125 of them (94%). As for the tumors
which are not detected, there are two possibilities. Sometimes, the difference between the tu-
mor intensity and the noise is really small and the algorithm is not able to separate them, in
particular for some subjects for which the noise is still high. The other possibility is when the
diffeomorphic registration of the liver is not perfect and the tumor is outside of it. In that case,
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the tumor will in fact be in the anomaly matrix but it will be lost in the error of reconstruction.

Finally, not only the tumors are retrieved in the anomaly matrix. As showed above, small
errors of reconstruction can be present on the boundary. But our algorithm also plays its part
by detecting other anomalies than lesions. In particular, on several subjects, some slightly dark
spots are retrieved and are in fact due to a perfusion disorder.

4.6 Conclusion

In this chapter, we have showed that we can use the residuals of the diffeomorphic deformation
from a control template to detect and segment lesions in an organ. Moreover, we showed that
it can even improve the diffeomorphic reconstruction of the observations. This method has the
advantage not to require a large data set of sick patients nor annotations from medical doctors.
It is hence particularly suited to the detection of anomalies, in particular for specific treatment
protocols where it is often impossible to obtain large data sets. We have showed the efficiency
of this method on a data set of brains with glioma and on a data set of livers. In particular, in
the former case, our algorithm has been able to register the gyri and the ventricles of the brains
while retrieving the tumors in the anomaly matrix.

Several problems still need to be solved. First, if this method detects the tumors it also de-
tects small errors of reconstruction. One would need to post process the image to only obtain
the lesions. A first idea is to use openings but this poses the risk to lose some little anomalies
in the post process. Moreover, a better treatment of the errors of reconstruction is needed as
a tumor not in the reconstruction of the object is lost. Further post-processing of the anomaly
matrix would be needed to retrieve them.

Moreover, with this data set of patients with colorectal cancer, the goal was to predict the
progression-free survival at 9 months. With only 57 patients, this is not an easy task. Because
the position of the tumors could be of importance, one cannot use usual techniques of rotation
and translation to augment the data. It could however be possible to use Variational Auto En-
coders to create new synthetic subjects. Another possibility is to further inform our model by
only giving it the segmented tumors transported on the template:

(
Exp0,1(vi)

−1(Ai)
)
i≤1≤n. This

would allow to inform the network of the tumors while erasing the variability due to differences of
livers form and size between subjects. Compared to learning on the whole image, one however
loses information on the environment around the tumors.

Finally, we do not only have access to the first exam but also to subsequent ones. It could be
interesting to add a longitudinal model on the segmentation to study the evolution of the lesions.
This would however not be an easy task as we cannot directly apply the model presented in
chapter 3. Indeed, from one time point to the other, tumors can appear or disappear. Hence,
the longitudinal trajectory of the tumors is not the diffeomorphic deformation of an initial one.

At the time of writing of this manuscript, those problems are still being studied.
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CHAPTER 5

On the convergence of stochastic approximations under a
subgeometric ergodic Markov dynamic

In the chapter 3, we have created a statistical model for longitudinal data sets. To estimate
the parameters of this model, we used the Monte Carlo Markov Chain Stochastic Approxima-
tion Expectation Maximization (MCMC SAEM) algorithm. This algorithm in particular lies on
the theoretical foundations of Stochastic Approximations (SA) with Markovian dynamic and its
theoretical convergence requires the geometric ergodicity of the chain considered. This can
however be a problem in practice as this assumption is not always verified.

In this chapter, to solve this issue, we extend the framework of the convergence of stochastic
approximations. Such a procedure is used in many methods such as parameters estimation
inside a Metropolis Hastings algorithm, stochastic gradient descent or stochastic Expectation
Maximization algorithm. It is given by

θn+1 = θn + ∆n+1Hθn(Xn+1) ,

where (Xn)n∈N is a sequence of random variables following a parametric distribution which de-
pends on (θn)n∈N, and (∆n)n∈N is a step sequence. The convergence of such a stochastic
approximation has already been proved under an assumption of geometric ergodicity of the
Markov dynamic. However, in many practical situations this hypothesis is not satisfied, for in-
stance for any heavy tail target distribution in a Monte Carlo Metropolis Hastings algorithm. In
this chapter, we relax this hypothesis and prove the convergence of the stochastic approxima-
tion by only assuming a subgeometric ergodicity of the Markov dynamic. This result opens up
the possibility to derive more generic algorithms with proven convergence. As an example, we
first study an adaptive Markov Chain Monte Carlo algorithm where the proposal distribution is
adapted by learning the variance of a heavy tail target distribution. We then apply our work to
the Independent Component Analysis when a positive heavy tail noise leads to a subgeometric
dynamic in an Expectation Maximization algorithm.
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This work has been published in the Electronic Journal of Statistics (Debavelaere et al.,
2021).
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5.1 Introduction

A common problem across scientific fields is to find the roots of a non-linear function h : Θ→ R.
Numerical schemes such as Newton’s methods have been developed to provide a numerical
solution to this equation. In statistics, the problem is further increased by the fact that h is not
known, but only noisy values of it, or of its gradient. This problem appears across different
domains such as stochastic optimization (Mandt et al., 2017; Spall et al., 1992), Expectation
Maximization algorithms (Allassonnière et al., 2010; Kuhn et al., 2019) or reinforcement learning
(Abounadi et al., 2002; Borkar and Meyn, 2000) for instance. In all cases, solutions to this
problem often take the form of an iterative sequence (θn)n∈N that converges towards a point θ∗

in the set of solutions of h(θ) = 0. The general class of stochastic approximation methods, such
as Robbins-Monro methods, falls within this framework. These methods produce a sequence
of the form:

θn+1 = θn + ∆n+1ζn+1 ,

where ζn+1 is a noisy observation of h(θn): ζn+1 = h(θn)+ξn+1 with ξn+1 a sequence of random
variables. In that case, h is called the mean field. This procedure, first developed in Robbins
and Monro (1951), has been studied under various sets of hypotheses, see Abounadi et al.
(2002); Benveniste et al. (2012); Borkar and Meyn (2000); Chen (2006); Chen et al. (1987);
Duflo (2013); Kushner and Yin (2003) among many other works.

In this paper, we focus on the case of a state-dependent noise with a Markovian dynamic.
The sequence (ζn)n∈N takes the form of (Hθn(Xn))n∈N, with h(θn) being the expectation of Hθn :

θn+1 = θn + ∆n+1Hθn(Xn+1) . (5.1)

The sequence (Xn, θn)n∈N is a Markov chain on X ×Θ. For all θ ∈ Θ, Hθ is a function from the
state space X to the parameter space Θ.

The assumption of state-dependent noise is met for instance in stochastic gradient descent
or Metropolis Hastings algorithms. Eq. (5.1) is also used as a step in stochastic optimization
algorithms where the parameter to estimate is a function of θn. These algorithms include the
Stochastic Approximation Expectation Maximization Markov Chain Monte Carlo (SAEM MCMC)
algorithm (Allassonnière et al., 2015, 2010; Delyon et al., 1999). Eq. (5.1) also appears in some
adaptive MCMC algorithms where the proposal distribution depends on a parameter θ. They
are used to adapt the variance of the proposal across iterations for better sampling (Andrieu
et al., 2005; Andrieu and Robert, 2001; Haario et al., 2001; Roberts and Tweedie, 1996).

The convergence of stochastic approximation algorithms has been studied in Andrieu et al.
(2005) for state-dependent noise. Conditions to ensure convergence include control of the fluc-
tuations of the Markov Chain and of the regularity of the solution of a Poisson equation. These
conditions are difficult to verify in practice. Authors introduce then a more restrictive, but more
practical condition: the Markov chain must satisfy drift conditions implying a geometric ergod-
icity of the chain. This condition amounts to assuming the convergence of the kernel of the
Markov Chain towards its invariant distribution at a geometric rate. Further developments lead
to prove the convergence of the SAEM MCMC algorithm (Allassonnière et al., 2010), some
adaptive MCMC algorithms (Andrieu et al., 2005) and mini-batch MCMC (Kuhn et al., 2019)
under the same conditions.

Nevertheless, the ergodicity condition is a limiting factor in practice. For instance, the se-
quence (Xn)n∈N is often sampled using a Metropolis Hastings algorithm. The ergodic condition
is not met if one targets heavy tail distributions such as Weibull or Pareto distribution (Douc et al.,
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2004; Fort and Moulines, 2000, 2003; Jarner and Hansen, 2000). The models for independent
component analysis presented in Allassonniere et al. (2012) with non-Gaussian distributions of
the sources or the noise do not meet the condition either. These examples show that these
methods may be used in practice without any theoretical guarantee of convergence.

This situation leads us to study the convergence of such stochastic algorithms for Markov
chains with a relaxed assumption of subgeometric ergodicity. The convergence of adaptive
MCMC algorithms under subgeometric constraints has been studied in Atchadé et al. (2010,
2012); Rosenthal and Roberts (2007); Yang (2008). To the best of our knowledge, there are no
results on the convergence for subgeometric Markovian dynamic in the general case.

In this paper, we propose a general set of hypotheses, under which we prove the conver-
gence of stochastic approximations with subgeometric Markovian dynamics. Our hypotheses
are essentially about the rate of convergence of the Markov Chain and the regularity of its
kernel. Most of the polynomial rates of convergence satisfy these hypotheses. Furthermore,
the proof shows the regularity of the solution of the Poisson equation under the same subge-
ometric conditions. We use this result to prove two corollaries. The first corollary proves the
convergence of a stochastic approximation used to adapt the variance of the proposal within a
Metropolis Hastings algorithm. We prove this convergence for two different classes of heavy
tail target distributions including the Weibull and the Pareto distributions among others. The
second corollary is about the independent component analysis model where distributions with
positive heavy tails lead to a subgeometric ergodic Markov Chain in a Stochastic Approximation
Expectation Maximization Monte Carlo Markov Chain (SAEM MCMC) algorithm.

5.2 Stochastic approximation framework with Markovian dy-
namic

In this section, we summarize the stochastic approximation procedure in the case of a Marko-
vian dynamic with adaptive truncation sets. This procedure was first described in Andrieu et al.
(2005). In the following, we denote X the state space and Θ the parameter space that we
assume to be an open subset of Rnθ . Moreover, we suppose that both are equipped with count-
ably generated σ-fields B(X ) and B(Θ).

In the next subsection, we present the framework of a stochastic approximation producing
a sequence of elements converging towards a solution of h(θ) = 0 when there exist probability
measures πθ such that, for any θ ∈ Θ, h(θ) = Eπθ (Hθ(X)) with Hθ : X 7→ Θ.

5.2.1 Markovian dynamic

Let ∆ = (∆n)n∈N be a non-increasing sequence of positive real numbers with ∆0 ≤ 1 and set
θc /∈ Θ and xc /∈ X two cemetery states. We also set, for all θ ∈ Θ the vector field Hθ : X 7→ Θ.
We then define a Markov chain Y ∆

n = (Xn, θn) on X ∪ {xc} ×Θ ∪ {θc} by:

θn+1 =

{
θn + ∆n+1Hθn(Xn+1) and Xn+1 ∼ Pθn(Xn, .) if θn ∈ Θ

θc and Xn+1 = xc if θn /∈ Θ .
(5.2)

Keeping notations and hypotheses labels from Andrieu et al. (2005), we put the following
hypothesis on the transition probabilities (Pθ, θ ∈ Θ) and on the random vector field H:
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(A2) For any θ ∈ Θ, the Markov kernel Pθ has a single stationary distribution πθ. In
addition, H : Θ×X → Θ is measurable for all (θ, x) ∈ Θ×X .

The existence and uniqueness of the invariant distribution can be verified under the classi-
cal conditions of irreducibility and recurrence (Meyn and Tweedie, 2012). We also set h(θ) =∫
X Hθ(x)πθ(dx) the mean field of the stochastic approximation. This allows us to recognize the

usual stochastic approximation procedure:

θn+1 = θn + ∆n+1(h(θn) + ξn+1)

where ξn+1 = Hθn(Xn+1)− h(θn) is the noise sequence.

We assume the mean field h satisfies the following hypothesis that amounts to the existence
of a global Lyapunov function:

(A1) h : Θ→ Rnθ is continuous and there exists a continuously differentiable function
w : Θ→ [0,+∞[ such that:

(i) there exists M0 > 0 such that

L := {θ ∈ Θ, 〈∇w(θ), h(θ)〉 = 0} ⊂ {θ ∈ Θ, w(θ) < M0} ,

(ii) there exists M1 ∈ (M0,+∞] such thatWM1 := {θ ∈ Θ, w(θ) ≤M1} is a compact
set,

(iii) for any θ ∈ Θ \ L, 〈∇w(θ), h(θ)〉 < 0,

(iv) the closure of w(L) has an empty interior.

We denote by F = {Fn, n ≥ 0} the natural filtration of the Markov chain (Xn, θn) and by
P∆
x,θ the probability measure associated to the chain (Y ∆

n ) started from the initial conditions
(x, θ) ∈ X ×Θ. Finally, we denote by Q∆n

the sequence of transition probabilities that generate
the inhomogeneous Markov chain (Y ∆

n ).

5.2.2 Truncation process

To ensure convergence of the sequence towards a root of h, the sequence (θn)n∈N is required
to remain in a given compact set. This assumption is rarely satisfied. To alleviate this constraint,
we introduce the usual trick which consists in reprojecting on increasing compact sets. It is then
proved that the sequence will be projected only a finite number of times along the algorithm.
Using this trick, the sequence (θn)n∈N now remains in a compact set of Θ. We detail this pro-
cess below.

We assume that there exists (Kn)n∈N a sequence of compact subsets of Θ such that⋃
q≥0

Kq = Θ and Kq ⊂ int(Kq+1) .

Let (εn)n∈N be a sequence of non-increasing positive numbers and K be a subset of X . Let
Φ : X × Θ → K × K0 be a measurable function. We then define the stochastic approximation
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algorithm with adaptive truncation sets as a homogeneous Markov chain on X ×Θ× N× N by

Zn = (Xn,Θn, κn, νn) (5.3)

with the following transition at iteration n+ 1:

• If νn = 0, then draw (Xn+1, θn+1) ∼ Q∆n(Φ(Xn, θn), .). Otherwise, draw (Xn+1, θn+1) ∼
Q∆n(Xn, θn, .).

• If |θn+1 − θn| ≤ εn and θn+1 ∈ Kκn then set κn+1 = κn and νn+1 = νn + 1. Otherwise, set
κn+1 = κn + 1 and νn+1 = 0.

To summarize this process, if our parameter θ leaves the current truncation set Kκn or if the
difference between two of its successive values is larger than a time dependent threshold εn,
we reinitialize the Markov chain by a value inside K0: Φ(Xn, θn) and update the truncation set
to a larger one Kκn+1 as well as the threshold to a smaller one: εn+1. Hence, κn represents
the number of re-initializations before the step n while νn is the number of steps since the last
re-initialization.

The idea behind this truncation process is to force the noise to be small in order for the drift
h(θ) to dominate. We do so by forcing our algorithm to come back to the center of Θ whenever
the parameters become too large.

5.2.3 Control of the fluctuations and main convergence theorem

In this section, we state two last hypotheses about the control of fluctuations before presenting
the theorem proved in Andrieu et al. (2005). In that paper, the authors present several conditions
(A1 to A4) that imply the convergence of the stochastic approximation algorithm. It is those con-
ditions that we will, in the next section, verify under subgeometric ergodicity of the Markov chain.

We first define, for any compact K and any sequence of non-increasing positive numbers
(εk)k∈N, σ(K) = inf(k ≥ 1, θk /∈ K) and νε = inf(k ≥ 1, |θk − θk−1| ≥ εk). Moreover, for
W : X → [1,∞) and g : X → Rnθ , we write

||g||W = sup
x∈X

|g(x)|
W (x)

.

We can now present the hypothesis (A3):
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(A3) For any θ ∈ Θ, the Poisson equation g−Pθg = Hθ−h(θ) has a solution gθ. Moreover,
there exist a function W : X → [1,+∞] such that {x ∈ X ,W (x) < +∞} 6= ∅,
constants α ∈ (0, 1] and p ≥ 2 such that for any compact subset K ⊂ Θ,

(i) the following holds:
sup
θ∈K
||Hθ||W <∞ (5.4)

sup
θ∈K
||gθ||W + ||Pθgθ||W <∞ (5.5)

sup
θ,θ′∈K

||θ − θ′||−α (||gθ − gθ′ ||W + ||Pθgθ − Pθ′gθ′ ||W ) <∞ (5.6)

(ii) there exist constants {Ck, k ≥ 0} such that, for any k ∈ N, for any sequence ∆
and for any x ∈ X ,

sup
θ∈K

E∆
x,θ[W

p(Xk)1σ(K)≥k] ≤ CkW p(x) (5.7)

(iii) there exist a sequence (εk)k∈N and a constant C such that for any sequence ∆
and for any x ∈ X ,

sup
θ∈K

E∆
x,θ[W

p(Xk)1σ(K)∧νε≥k] ≤ CW p(x) . (5.8)

This assumption concerns the existence and regularity of the Poisson equation associated
with each of the transition kernel Pθ. In Andrieu et al. (2005), the authors show that those con-
ditions are verified under the hypothesis of geometric ergodicity of the Markov chain. In the
next sections, we will relax this ergodicity condition to be able to consider subgeometric ergodic
chains.

Finally, the last condition concerns the step size sequences:

(A4) The sequences (∆k)k∈N and (εk)k∈N are non-increasing, positive and satisfy∑∞
k=0 ∆k =∞, limk→∞ εk = 0 and

∞∑
k=1

∆2
k + ∆kε

α
k + (ε−1

k ∆k)p <∞

where p and α are defined in (A3).
We can finally state the theorem proved in Andrieu et al. (2005):

Theorem 5.2.1 Andrieu et al. (2005) Assume (A1)-(A4). Let K ⊂ X such that supx∈KW (x) <
∞ and such that K0 ⊂ WM0

(where M0 andWM0
are defined in (A1)) and let Zn be as defined

in (5.3). Then, for all (x, θ) ∈ X ×Θ, we have limk→∞ d(θk,L) = 0, P∆
x,θ-a.s. where L is defined

in (A1).

Of the four conditions (A1) to (A4), (A3) is often the most difficult to verify and we need more
practical conditions. In particular, in Andrieu et al. (2005), the authors show that drift conditions
imply (A3). However, those drift conditions are only true for geometric ergodic Markov chains. In
a lot of cases, this ergodicity is not satisfied. To tackle this problem, we will, in the next section,
state subgeometric drift conditions and hypotheses on the rate of convergence that are sufficient
to ensure the validity of (A3). The new theorem then allows us to verify the convergence in a
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broader range of cases, some of them being presented in sections 5.5 and 5.6.

5.3 Convergence of the stochastic approximation sequence
under subgeometric conditions

In this section, we state the drift conditions and hypotheses under which we will work to prove
the validity of (A3). Denote, for V : X → [1,∞), LV = {g : X → Rnθ , ||g||V <∞}.

(DRI) For any θ ∈ Θ, Pθ is ψ-irreducible and aperiodic. In addition, there exist a function
V : X → [1,∞) and a constant p ≥ 2 such that, for any compact subset K ⊂ Θ,
there exist constants b, δ0 > 0, a probability measure ν, a concave, increasing
function φ : [1,∞)→ (0,∞), continuously differentiable such that limv→∞ φ′(v) = 0
and a subset C of X with

sup
θ∈K

PθV
p(x) + φ ◦ V p(x) ≤ V p(x) + b1C(x) ∀x ∈ X (5.9)

inf
θ∈K

Pθ(x,A) ≥ δ0ν(A) ∀x ∈ C,∀A ∈ B(X ) . (5.10)

Remark 5.3.1. We could consider the following, more general, drift condition: there exists m ∈
N∗ such that

sup
θ∈K

Pmθ V
p(x) + φ ◦ V p(x) ≤ V p(x) + b1C(x) ∀x ∈ X

inf
θ∈K

Pmθ (x,A) ≥ δ0ν(A) ∀x ∈ C,∀A ∈ B(X ) .

The results we present in the following sections would still be verified under such a drift con-
dition. To adapt the proofs (and more precisely, the proof of the lemma 5.4.6), we would then
need to use the lemma B.3. of Andrieu et al. (2005).

Under the condition (DRI), C is a small set and the Markov kernel Pθ verifies a subgeometric
drift condition (Douc et al., 2018). In particular, it implies the existence of a stationary distribution
πθ for all θ ∈ K as well as a uniform subgeometric ergodicity on all compacts of Θ. Hence, for all
θ ∈ Θ, there exist a constant Cθ and a sequence (rθ,k)k∈N such that, ∀q, s > 0 with 1/q+1/s = 1
and ∀f ∈ L(φ◦V p)1/s ,

r
1/q
θ,k ||P

k
θ f − πθ(f)||(φ◦V p)1/s ≤ Cθ||f ||(φ◦V p)1/s .

Moreover, it has been showed in Douc et al. (2004) that, under such a subgeometric ergod-
icity condition, we can choose a rate of convergence (rk)k∈N that only depends on the function
φ and so only on the fixed compact K. Similarly, it has been proved that the constant Cθ is
bounded on all compact K. Hence, there exist a constant CK and a sequence (rk)k∈N such
that, for all f ∈ L(φ◦V p)1/s and for all θ ∈ K,

sup
θ∈K

r
1/q
k ||P

k
θ f − πθ(f)||(φ◦V p)1/s ≤ CK||f ||(φ◦V p)1/s . (5.11)

We will see in the following that several hypotheses must be made on that rate of conver-
gence (rk)k∈N for the condition (A3) to be satisfied.
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Remark 5.3.2. In general, we can consider any pair Ψ1 and Ψ2 of inverse Young functions i.e.
two strictly increasing continuous functions on R+ verifying for all x, y in R+, Ψ1(x)Ψ2(y) ≤ x+y.
Under the subgeometric drift condition, we then have, for all f ∈ LΨ2(φ◦V p):

Ψ1(rk)||P kθ f − πθ(f)||Ψ2(φ◦V p) ≤ CK||f ||Ψ2(φ◦V p) .

In order to simplify the notations, we will only consider in the following the pair of inverse Young
functions Ψ1(x) = qx1/q and Ψ2(x) = sx1/s. The same reasoning could be carried out for any
other pair of Young functions by adapting the hypotheses (H1) and (H2).

We now state several hypotheses that we will need in order to prove the condition (A3). The
first one concerns the choice of the inverse Young functions with respect to the rate of conver-
gence and the regularity of Hθ. With p as defined in (DRI), we suppose:

(H1) For any compact K, there exist q > 0 and s ≥ p with 1/q + 1/s = 1 such that:∑
k≥0

1

r
1/q
k

<∞ and sup
θ∈K
||Hθ||(φ◦V p)1/s <∞ .

Remark 5.3.3. We will show in section 5.5.3 that this hypothesis can be verified even for poly-
nomial rates of convergence (rk = kd with d > 2 in that example). This hypothesis can be seen
as a compromise in the choice of q and s between the rate of convergence rk and the regularity
of Hθ. The assumption s ≥ p is necessary to control the V -norm by the (φ ◦ V p)1/s-norm.

We then need hypotheses on the regularity of Hθ and Pθ. Two of them are similar to the
ones presented in Andrieu et al. (2005) while the first one will help us to conclude on the validity
of Eq. (5.6).

(H2) For any compact K, there exists a constant β ∈ [0, 1] such that
(i) there exist Tθ,θ′ ∈ N∗ and α ∈ (0, 1) such that

sup
θ,θ′∈K

Tθ,θ′ ||θ − θ′||β−α + ||θ − θ′||−α
∑

k≥Tθ,θ′

1

r
1/q
k

<∞ .

(ii) there exists C such that for all x ∈ X ,

sup
θ,θ′∈K

||θ − θ′||−β |Hθ(x)−Hθ′(x)| ≤ CV p(x)

(iii) there exists C such that for all θ, θ′ ∈ K,

||Pθg − Pθ′g||(φ◦V p)1/s ≤ C||g||(φ◦V p)1/s ||θ − θ′||β ∀g ∈ L(φ◦V p)1/s .

Remark 5.3.4. In the condition (H2-i), Tθ,θ′ is a positive integer. It implies in particular β ≥ α.
This condition can be easily verified for r1/q

k = kd with d > 1. Indeed, we know that
∑∞
k=T

1
kd
∼

1
(d−1)Td−1 . Hence, if 0 < α < 1, we choose Tθ,θ′ = 1 ∨

⌊
||θ − θ′||−

α
d−1
⌋

and we have:

||θ − θ′||−α
∞∑

k=Tθ,θ′

1

kd
∼θ→θ′

1

d− 1
.
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Moreover, if ||θ−θ′|| ≤ 1, Tθ,θ′ ||θ−θ′||β−α = ||θ−θ′||β−α−
α
d−1 . Choosing α such that β−α− α

d−1 >

0 i.e. α < β d−1
d allows us to conclude.

Finally, due to the subgeometric ergodicity, we are unable to iterate the drift condition without
making divergent quantities appear. This iteration was however one of the keys of the proof of
the condition 5.8. To overcome this problem, we add one last hypothesis on the behaviour of φ
on the petite set C defined by assumption (DRI):

(H3) there exists δ > 0 such that, ∀x ∈ C,

φ ◦ V p(x) ≥ δV p(x) .

Remark 5.3.5. It is interesting to remark that asking for this condition on the whole set X
implies the geometric ergodicity of the chain. However, we only ask it on the petite set C on
which we have some freedom. In fact, in most cases, this condition will be easy to verify.
Indeed, according to the theorem 16.1.9. of Douc et al. (2018), we can choose C = {V p ≤ d}
with d > 0. Hence, if this set is compact (true if V is continuous and V (x) −→x→∞ ∞) and if
(φ ◦ V p)1/s/V p is continuous, (H3) is verified.

We can now state our major theorem:

Theorem 5.3.1 Assume (DRI) and (H1)-(H3). Then, the condition (A3) is verified. In partic-
ular, if (A1), (A2) and (A4) are also verified we can apply the theorem 5.2.1 to conclude that
limk→∞d(θk,L) = 0

5.4 Proof of the theorem 5.3.1

5.4.1 Sketch of proof

The proof follows the principal ideas of Andrieu et al. (2005). However, due to the fact that our
Markov chain is no longer supposed to be geometric ergodic, we need several new arguments.
In particular, the behaviour of φ on the petite set C and the hypotheses on the rate of conver-
gence (rk)k∈N will be of the upmost importance.

The first important result is the fact that we are able to dominate the V -norm by the (φ ◦ V p)1/s-
norm under the hypothesis (H1). This is particularly important as we need to choose W = V in
(A3) to be able to find an upper bound of the expectation of W p(Xk)1σ(K)∧νε≥k (see Eq. (5.8)).
Hence, we use this control of the V -norm to control the different quantities in Eq. (5.4), (5.5)
and (5.6) using the rate of convergence given by Eq (5.11). This control is given by the lemma
5.4.1.

Using this lemma, we can control the norm of the solution of the Poisson equation using the
subgeometric ergodicity. This is explained lemma 5.4.2.
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We then want to prove the condition (5.6) (lemma 5.4.5). Using once again a decomposition
of the solution of the Poisson equation, we see that we need regularity conditions on θ 7→ Pθ and
h. The regularity of θ 7→ Pθ is given by the condition (H2) while we prove the Hölder continuity
of h in lemma 5.4.4.

Finally, while the condition (5.7) is easily proved by iterating the drift condition, we still need
to prove the condition (5.8). In Andrieu et al. (2005), the authors prove it using the same argu-
ment which does not hold anymore for us as this iteration can make appear divergent quantities.
That is why we need to state the condition (H3). It is under this final condition that we are able
to iterate an upper bound of the drift and prove (5.8) in lemma 5.4.6.

After this final step, we have all the tools necessary to prove the theorem 5.3.1.

We will now present and prove with details the different lemmas introduced above and im-
plying each of the conditions in (A3) before proving the theorem 5.3.1.

5.4.2 Proof of Eq. (5.5)

First, using (H1), we show that we can control the V -norm using the (φ ◦ V p)1/s-norm:

Lemma 5.4.1. Assume (H1). Then, there exists C > 0 such that, for all g ∈ L(φ◦V p)1/s ,

||g||V ≤ C||g||(φ◦V p)1/s .

Proof. φ is concave and increasing so, ∀v ≥ 1, φ(v) ≤ φ′(1)(v − 1) + φ(1) ≤ cv with c a positive
constant. Hence, for all x ∈ X , since s ≥ p and V (x) ≥ 1,

(φ ◦ V p)1/s(x) ≤ c1/sV p/s(x) ≤ c1/qV (x)

which allows us to verify the announced inequality.

We can now prove the equation (5.5).

Lemma 5.4.2. Suppose (DRI). Then, the Poisson equation g − Pθg = Hθ − h(θ) has a solution
gθ. Moreover, under (H1),

sup
θ∈K
||gθ||V <∞ and sup

θ∈K
||Pθgθ||V <∞ .

Proof. The proposition [21.2.4] of Douc et al. (2018) states the existence of a solution gθ of the
Poisson equation under the subgeometric ergodicity conditions (DRI) verifying:

gθ(x) =
∑
k≥0

(
P kθ Hθ(x)− h(θ)

)
.

Moreover, we know that for any compact K, there exist a constant C and a convergence rate
(rk)k∈N independent of θ ∈ K such that, for all f ∈ L(φ◦V p)1/s , for all θ ∈ K,

r
1/q
k ||P

k
θ f − πθ(f)||(φ◦V p)1/s ≤ C||f ||(φ◦V p)1/s .

111



Chapter 5. On the convergence of stochastic approximations

Hence, using lemma 5.4.1,

r
1/q
k ||P

k
θ f − πθ(f)||V ≤ r1/q

k C||P kθ f − πθ(f)||(φ◦V p)1/s

≤ C||f ||(φ◦V p)1/s .

Since h(θ) = πθ(Hθ) and using (H1), we have that:

||gθ||V ≤
∑
k≥0

||P kθ Hθ − h(θ)||V ≤ C||Hθ||(φ◦V p)1/s

∑
k≥0

1

r
1/q
k

<∞ .

Finally, we can use the same argument for Pθgθ to prove that supθ∈K ||Pθgθ||V <∞.

5.4.3 Proof of Eq. (5.6)

We now want to prove the condition given by Eq. (5.6). In particular, we need the hypotheses on
the regularity in θ of Hθ and Pθ presented in condition (H2). We begin by proving two lemmas
implying the Hölder continuity of h.

Lemma 5.4.3. Assume (DRI), (H1) and (H2). Then, there exists a constant C such that, for all
g ∈ L(φ◦V p)1/s and any k ≥ 0,

sup
θ,θ′∈K

||θ − θ′||−β ||P kθ g − P kθ′g||(φ◦V p)1/s ≤ C||g||(φ◦V p)1/s .

Proof. This result is a consequence of (H2-iii). Indeed, we can write, for all θ, θ′ in K, all k ∈ N
and all g ∈ L(φ◦V p)1/s ,

P kθ g − P kθ′g =

k−1∑
j=0

P jθ (Pθ − Pθ′)(P k−j−1
θ′ g(x)− πθ′(g)) .

But, using Eq. (5.11), we know that, for any l ≥ 0,

sup
θ∈K
||P lθ − πθ||(φ◦V p)1/s ≤

C

r
1/q
l

.

Hence, supl∈N,θ∈K ||P lθ||(φ◦V p)1/s <∞.
Finally, using this result and (H2-iii),

||P kθ g − P kθ′g||(φ◦V p)1/s ≤ C||θ − θ′||β
k−1∑
j=0

||P k−j−1
θ′ g(x)− πθ′(g)||(φ◦V p)1/s

≤ C||θ − θ′||β ||g||(φ◦V p)1/s

k−1∑
j=0

1

r
1/q
k−j−1

.

We obtain the result using the convergence of the sum of the 1/r
1/q
j .

We now prove that h is β-Hölder. We will use this property to finally be able to prove (5.6).

Lemma 5.4.4. Assume (DRI), (H1) and (H2). Then,

sup
θ,θ′∈K

||θ − θ′||−β |h(θ)− h(θ′)| <∞ .
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Proof. We use the following decomposition of |h(θ)− h(θ′)| for x0 ∈ X , (θ, θ′) ∈ K2 and k ∈ N:

|h(θ)− h(θ′)| = |A(θ, θ′) +B(θ, θ′) + C(θ, θ′)|

with:

A(θ, θ′) = h(θ)− P kθ Hθ(x0) + P kθ′Hθ′(x0)− h(θ′)

B(θ, θ′) = P kθ Hθ(x0)− P kθ′Hθ(x0)

C(θ, θ′) = P kθ′Hθ(x0)− P kθ′Hθ′(x0) .

From lemma 5.4.3, hypotheses (H2-ii) and (DRI), we obtain the following inequalities:

|A(θ, θ′)| ≤ C

r
1/q
k

sup
θ∈K
||Hθ||(φ◦V p)1/s(φ ◦ V p)1/s(x0)

|B(θ, θ′)| ≤ C||Hθ||(φ◦V p)1/s ||θ − θ′||β(φ ◦ V p)1/s(x0)

|C(θ, θ′)| ≤
∫
X
P kθ′(x0, dy)|Hθ(y)−Hθ′(y)|

≤ C||θ − θ′||β
∫
X
P kθ′(x0, dy)V p(y)

≤ C||θ − θ′||βV p(x0) .

Hence, using the fact that supθ∈K ||Hθ||(φ◦V p)1/s <∞ and (φ ◦ V p)1/s ≤ cV p, we find

|h(θ)− h(θ′)| ≤ CV p(x0)

(
||θ − θ′||β +

1

r
1/q
k

)
.

Finally, because 1

r
1/q
k

→ 0, there exists k ∈ N such that 1

r
1/q
k

< ||θ− θ′||β which concludes the

proof.

Finally, we can state the condition (5.6).

Lemma 5.4.5. Assume (DRI), (H1) and (H2). Then,

sup
θ,θ′∈K

||θ − θ′||−α (||gθ − gθ′ ||W + ||Pθgθ − Pθ′gθ′ ||W ) <∞ .

Proof. Using (H2-iii), lemmas 5.4.3 and 5.4.4, we have that, for x ∈ X , k ∈ N and θ, θ′ ∈ K,

Dk(x, θ, θ′) := |P kθ Hθ(x)− h(θ)− P kθ′Hθ′(x) + h(θ′)|
≤ |P kθ Hθ(x)− P kθ Hθ′(x)|+ |P kθ′Hθ′(x)− P kθ Hθ′(x)|+ |h(θ)− h(θ′)|
≤ C||θ − θ′||β(φ ◦ V p)1/s(x)

where we have used the fact that (φ ◦ V p)1/s(x) ≥ φ(1) > 0.
On the other hand, using the ergodicity of the Markov Chain (5.11) and (H1), there exists

c > 0 such that
Dk(x, θ, θ′) ≤ c

r
1/q
k

(φ ◦ V p)1/s(x) .
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Hence for t = 0 or 1 and any T ≥ t by splitting the sum at k = T and using the two upper
bounds found above, we have:

||θ − θ′||−α||P tθgθ − P tθ′gθ′ ||V ≤ C||θ − θ′||−α||P tθgθ − P tθ′gθ′ ||(φ◦V p)1/s

≤ C||θ − θ′||−α
∑
k≥t

||Dk(., θ, θ′)||(φ◦V p)1/s

≤ C

(T − t)||θ − θ′||β−α + ||θ − θ′||−α
∑
k≥T

1

r
1/q
k

 .

Hence, we can use (H2-i) to conclude the proof.

Remark 5.4.1. Here, we have in fact proved that, under the hypotheses (DRI), (H1) and (H2),
the solution of the Poisson equation is α-Hölder.

Finally, under (DRI), (H1) and (H2), we are able to prove the first item of (A3). We still have
to prove the second and third item. The second item is easily proved using the drift condition:

E∆
x,θ(V

p(Xk)1σ(K)≥k) ≤ E∆
x,θ

[
E∆
x,θ(PV

p(Xk−1)|Fk−1)
]

≤ E∆
x,θ(V

p(Xk−1)) + b ≤ V p(x) + kb

and we conclude using the fact that for any x ∈ X , V p(x) ≥ 1.

Hence, we only need to prove the last item of (A3).

5.4.4 Proof of Eq. (5.8)

Under geometrical ergodicity, iterating the drift condition is enough to prove the necessary in-
equality. However, in the subgeometric case, this iteration can make appear a divergent sum.
To overcome this difficulty, we will use the condition (H3).

Lemma 5.4.6. Assume (DRI) and (H3). Then, there exist a sequence (εk)k∈N and a constant
C such that for any sequence ∆ and for any x ∈ X ,

sup
θ∈K

E∆
x,θ[V

p(Xk)1σ(K)∧νε≥k] ≤ CV p(X) .

Proof. Using (DRI) and (H3), we have that, for all x ∈ X ,

PV p(X) ≤ V p(x)− φ ◦ V p(x) + b1C(x) .

Hence, if x /∈ C, PV p(x) ≤ V p(x) and, if x ∈ C, PV p(x) ≤ (1− δ)V p(x) + b.

We first consider the case δ ≥ 1. In that case, if x ∈ C, PV p(x) ≤ b. Hence, by induction,
E∆
x,θ

(
V p(Xk)1σ(K)∧ν(ε)≥k

)
≤ V p(x) + b.

If δ < 1, we note τk = Card(Xi|Xi ∈ C for 1 ≤ i ≤ k) the number of elements (Xi)1≤i≤k
belonging to C. Then,

E∆
x,θ

(
V p(Xk)1σ(K)∧ν(ε)≥k

)
= E∆

x,θ

(
E∆
x,θ

(
PV p(Xk−1)1σ(K)∧ν(ε)≥k

∣∣∣Fk−1

))
≤ E∆

x,θ

(
(1− δ1Xk−1∈C)V

p(Xk−1) + b1Xk−1∈C
)
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Hence, at each iteration i ≤ k − 1, if Xi ∈ C, we multiply the expression by (1 − δ) and add
b. Such a case happens τk−1 times. Otherwise, we keep the same expression as before, but at
the rank i− 1. By iterating, we have:

E∆
x,θ

(
V p(Xk)1σ(K)∧ν(ε)≥k

)
≤ E∆

x,θ

(
(1− δ)τk−1V p(x) + b

τk−1−1∑
i=0

(1− δ)i
)

≤ V p(x) +
b

δ
.

Since V p(x) ≥ 1, we can conclude the proof.

5.4.5 Proof of Theorem 5.3.1

We can now finalize this section by proving the theorem 5.3.1 using the lemmas previously
presented.

Proof. Using lemma 5.4.1 and hypothesis (H1), we immediately obtain the first inequality in
hypothesis (A3-i). The next two conditions are given respectively by 5.4.2 and 5.4.5. The last
conditions are a consequence of lemma 5.4.6.

5.5 Example: Symmetric Random Walk Metropolis Hastings
(SRWMH)

5.5.1 Presentation of the algorithm

The SRWMH is a popular algorithm allowing for sampling from a distribution π. It consists in
simulating a Markov Chain (Xn)n∈N whose stationary distribution is π. The user chooses a
symmetric proposal distribution q. At each step, if the chain is currently at x, a candidate y for
Xn+1 is proposed using q(x− .). This candidate is then accepted with probability:

α(x, y) =

{
1 ∧ π(y)

π(x) if π(x) 6= 0

1 otherwise.
(5.12)

If the candidate is rejected, the chain stays at its current location x. The transition kernel of this
Markov Chain is: ∀x ∈ X ,∀A ∈ B(X ),

P (x,A) =

∫
A

α(x, y)q(x− y)λLeb(dy) + 1A(x)

∫
X

(1− α(x, y))q(x− y)λLeb(dy) . (5.13)

The choice of the proposal distribution q is of crucial importance. In particular, proposal
distributions with a too small or too large covariance matrix lead to a highly correlated Markov
Chain. To overcome this difficulty, the authors of Haario et al. (2001) have proposed to learn the
covariance matrix while sampling the Markov Chain leading to adaptive MCMC samplers. We
note θ = (µ,Γ) and we suppose that we can choose qθ such that V ar(qθ) = Γ. For instance, if
we choose to work with Gaussian distributions, qθ is the density of the distribution N (0,Γ). We
then write Pθ the kernel of the SRWMH when the proposal is qθ.
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We can then adapt the value of Γ using the following algorithm:{
µn+1 = µn + ∆n+1(Xn+1 − µn)

Γn+1 = Γn + ∆n+1

(
(Xn+1 − µn)(Xn+1 − µn)T − Γn

) (5.14)

with Xn+1 ∼ Pθn(Xn, .) where θn = (µn,Γn) and with (∆n)n∈N a non-increasing sequence of
step sizes such that

∑∞
n=1 ∆n =∞ and, for some b > 0,

∑∞
n=1 ∆1+b

n <∞.

This procedure is in fact a stochastic approximation:

θn+1 = θn + ∆n+1Hθn(Xn+1)

with
Hθ(x) = (x− µ, (x− µ)(x− µ)T − Γ) . (5.15)

Moreover, assuming that
∫
X x

2π(dx) <∞, one can verify that:

h(θ) =
(
µπ − µ, (µπ − µ)(µπ − µ)T + Γπ − Γ

)
with µπ and Γπ respectively the mean and variance of π.

This algorithm has already been studied in Andrieu et al. (2005). In that paper, the authors
make a hypothesis on the tail properties of the target distribution that implies the geometric
ergodicity of the Markov Chain Pθ. Under this hypothesis, the authors prove that the conditions
(A1)-(A4) are verified and so prove the convergence of the algorithm.
Within our framework, we are able to loosen the hypothesis on π to give conditions under which
we have a subgeometric ergodicity of the Markov Chain Pθ while still guaranteeing convergence
of the algorithm.

In Andrieu et al. (2005), the verification of the condition (A1) does not use the behaviour of
the tail of π. Hence, it will stay true in our case and we can state it here:

Proposition 5.5.1 Let

w(µ,Γ) = −
∫
X

log

(
π(x)

φµ,Γ(x)

)
π(dx)

where φµ,Γ is the normal density of mean µ and variance Γ. Then, w verifies (A1). Furthermore,
L is reduced to a single point θπ := (µπ,Γπ).

To prove (A3), we need some hypotheses on the behaviour of π. In particular, we will verify
that we can apply the theorem 5.3.1 under two different sets of hypotheses. The first contains
among others the Weibull distributions while the second one includes the Pareto distributions.
Those two sets of hypotheses as well as the proof of the condition (A3) are detailed in the
following subsections.

5.5.2 First family of distributions (including the Weibull one) satisfying
our assumptions

In Douc et al. (2004) and Fort and Moulines (2003), the authors present a set of hypotheses
on the target and proposal distributions that imply the subgeometric ergodicity of the Markov
Chain. The first hypothesis concerns the target distribution:
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(E1) The target density π is continuous and positive on Rd and there exist m ∈ (0, 1),
r ∈ (0, 1), positive constants di, Di, i = 0, 1, 2 and R0 <∞ such that, if |x| ≥ R0,
x 7→ π(x) is twice continuously differentiable and〈

∇π(x)

|∇π(x)|
,
x

|x|

〉
≤ −r

d0|x|m ≤ − lnπ(x) ≤ D0|x|m

d1|x|m−1 ≤ |∇ lnπ(x)| ≤ D1|x|m−1

d2|x|m−2 ≤ |∇2 lnπ(x)| ≤ D2|x|m−2 .

Among others, the Weibull distribution on R+ π : x 7→ βηxη−1 exp(−βxη) with β > 0 and
η ∈ (0, 1) verifies those conditions.
We also need some conditions on the proposal distribution:

(E2) There exist ε > 0 and r <∞ such that y < r =⇒ qθ(y) ≥ ε. Moreover, qθ is
symmetric, bounded away from zero in a neighborhood of zero, and is compactly
supported. We also assume that there exist C > 0 and β ∈ (0, 1) such that for all
(θ, θ′) ∈ Θ2, ∫

X

|qθ(z)− qθ′(z)|λLeb(dz) ≤ C|θ − θ′|β .

Remark 5.5.1. The compactly supported condition could be relaxed with appropriate moment
conditions.

We can now prove the following theorem:

Theorem 5.5.1 Let π and qθ be distributions satisfying (E1) and (E2) and consider the process
defined in (5.14) with ε and ∆ two sequences verifying (A4). Then, (A1), (A2) and (A3) are
verified. Moreover, θn → θπ w.p. 1 where θπ := (µπ,Γπ) is the unique stationary point of
(θn)n∈N.

Proof. According to the theorem 3.1 of Douc et al. (2004), if (E1) and (E2) are satisfied, there
exists ξ0 such that for all ξ ≤ ξ0, there exist c > 0, W := π−ξ and φ : x 7→ cx(1 + ln(x))−2 1−m

m

verifying:
PW + φ ◦W ≤W + b1C .

Hence, we have a subgeometric drift condition. It is then possible to compute the associated
rate of convergence: rk = exp(ck

m
2−m ).

As stated in proposition 5.5.1, the condition (A1) is verified and (A2) is satisfied using the
theorem 2.2 of Roberts and Tweedie (1996).
We will prove (A3) using the theorem 5.3.1.

First, the condition (DRI) is verified with V 2 = π−ξ and p = 2. Indeed, the drift condition is
given above while the existence of small sets is ensured given the continuity of π and hypothesis
(E2) (see Theorem 2.2 of Roberts and Tweedie (1996)).

We then verify the hypothesis (H1). Given the value of rk, the sum of the r1/q
k will be finite for

any q > 0. Moreover, supθ∈Θ ||Hθ||(φ◦V 2)1/s <∞ if and only if x2πξ/s(x)(1−ξ lnπ(x))
2(1−m)
sm <∞.
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This will be true for any s > 0 as π(x) ≤ exp(−D0x
m).

Concerning (H2), as discussed in remark 5.3.4, (H2-i) is verified for polynomial rates of con-
vergence kd with d > q. Using the fact that r1/q

k > kd for k big enough, we can conclude that
(H2-i) is verified in this case.

To verify (H2-ii), we remark that

|Hθ(x)−Hθ′(x)| ≤ |µ− µ′|(1 + |µ+ µ′|+ 2|x|) + |Γ− Γ′| .

Since ||x||V 2 <∞, we obtain the inequality (H2-ii) for any β ≤ 1.
We now interest ourselves in (H2-iii). Using the definition of the kernel Pθ, we have that

|Pθg(x)− Pθ′g(x)| ≤
∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|g(x+ z)λLeb(dz)

+ g(x)

∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|λLeb(dz)

≤ ||g||(φ◦V 2)1/s(φ ◦ V 2)1/s(x)
(∫

X

α(x, x+ z)|qθ(z)− qθ′(z)|
(φ ◦ V 2)1/s(x+ z)

(φ ◦ V 2)1/s(x)
λLeb(dz)

+

∫
X

α(x, x+ z)|qθ(z)− qθ′(z)|λLeb(dz)
)
.

Hence, writing Ψ := (φ ◦ V 2)1/s, we need to study:

α(x, x+ z)
Ψ(x+ z)

Ψ(x)
=

(
1 ∧ π(x+ z)

π(x)

)
π−ξ(x+ z)(1− ξ lnπ(x+ z))−

2(1−m)
m

π−ξ(x)(1− ξ lnπ(x))−
2(1−m)
m

.

But, if π(x+ z) ≥ π(x), this function is always less than 1.

If π(x+ z) ≤ π(x), we use the growth of the function Φ(u) = u1−ξ(1− ξ ln(u))−
2(1−m)
m for u in

a compact and ξ small enough. Hence, we deduce once again that the function is less than 1.

Finally,

|Pθg(x)− Pθ′g(x)| ≤ 2||g||(φ◦V 2)1/s(φ ◦ V 2)1/s(x)

∫
X

|qθ(z)− qθ′(z)|λLeb(dz) .

Hence, the hypothesis (E2) allows us to conclude on the validity of (H2-iii).

Finally, we just have the hypothesis (H3) to prove. According to the theorem 16.1.9 of Douc
et al. (2018), C can be chosen as {V ≤ d} with d ∈ [0,∞). But, V 2 converges towards infinity at
infinity and is continuous so, C is compact. Hence, because φ◦V 2

V 2 is continuous, there exists a
lower bound of φ◦V

2

V 2 on C and (H3) is verified.

All the hypotheses of the theorem 5.3.1 are thus verified and we can apply it to conclude.

Hence, we have proven the convergence of the Metropolis Hastings algorithm under a sub-
geometric ergodicity condition. In the next subsection we will interest ourselves in the case
where the rate of convergence is not only subgeometric but polynomial and, once again, prove
the convergence of a stochastic approximation.
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5.5.3 Second usual family (including the Pareto distribution) covered by
our framework

In Fort and Moulines (2003), the authors give other conditions on the target density for the SR-
WMH kernel to be subgeometric ergodic when we work in R:

(E3) π is continuous on R and there exist some finite constants α > 1, M > 0, C > 0 and
a function ρ : R→ [0,∞) verifying limx→∞ ρ(x) = 0 such that for all |x| > M , π is
strictly decreasing and, for all y ∈ {z ∈ R |π(x+ z) ≤ π(x)},∣∣∣∣π(x+ y)

π(x)
− 1 + αyx−1

∣∣∣∣ ≤ C|x|−1ρ(x)y2 .

This class of distributions contains in particular the Pareto distributions (π(x) ∝ x−α) as well as
many heavy tail distributions. We also need some hypotheses on our proposal:

(E4) There exist ε > 0 and r <∞ such that y < r =⇒ qθ(y) ≥ ε. Moreover, qθ is
symmetric and there exists ξ ≥ 1 such that

∫
|y|ξ+3qθ(y)dy <∞.

Under those conditions, we can state the following proposition, proved in Fort and Moulines
(2003).

Proposition 5.5.2 Assume (E3) and (E4). Set u = ξ ∧α+ 1 and W : x 7→ 1 + |x|u. Then, there
exist c > 0 and a small set C such that, if we set φ : x 7→ cx1−2/u,

PθW (x) + φ ◦W (x) ≤W (x) + b1C .

Under such a drift condition, we are able to deduce the rate of convergence using the value
of φ (Douc et al., 2004): for all k ∈ N, rk ∝ ku/2−1.

Theorem 5.5.2 Let π and qθ be distributions on R satisfying (E3) and (E4) with ξ ∧ α > 5 and
consider the model defined in (5.14) with ε and ∆ two sequences verifying (A4). Assume also
that (H2-iii) is verified. Then, (A1), (A2) and (A3) are verified. Moreover, θn → θπ w.p. 1 where
θπ := (µπ,Γπ) is the unique stationary point of (θn)n∈N.

Remark 5.5.2. In this theorem, we suppose that (H2-iii) is verified. This condition depends on
the function π. Given the functions V and φ chosen here, we need, ∀x, z ∈ R, π(x+ z) ≤ π(x) =⇒ π(x+z)

π(x)

(
1+|x+z|u

1+|x|u

)u−2
us ≤ C

π(x+ z) ≥ π(x) =⇒ |x+ z| ≤ C|x| .
(5.16)

Other conditions can appear if V or φ have another form. It was the case in the previous
subsection where we have been able to prove this condition under the hypotheses (E1) and
(E2). We prove this particular condition (H2-iii) in the next section in the case of the Pareto
distribution.

Proof. (A1) is stated in proposition 5.5.1.
Under (E3) and (E4), Pθ is ψ-irreducible (see theorem 2.2 of Roberts and Tweedie (1996)).
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Hence, we have existence and uniqueness of the invariant distribution πθ. Moreover, H is mea-
surable. Hence, (A2) is verified.
We still need to verify (A3). To do so, we will use the theorem 5.3.1 and prove the hypotheses
(DRI) and (H1)-(H3).
The proposition 5.5.2 and the theorem 2.2 of Roberts and Tweedie (1996) give us the validity of
(DRI) with p = 2 and W = V 2.

We now prove (H1). First,
∑
k≥0

1

r
1/q
k

is finite for any q < u−2
2 . Moreover, recalling that

1/s + 1/q = 1, that (φ ◦ V p)1/s = (1 + |x|u)
u−2
us and that Hθ is quadratic, for any K compact of

R × R∗+, supθ∈K ||Hθ||(φ◦V 2)1/s < ∞ if and only if q > u−2
u−4 . Hence, we need to choose q such

that:
u− 2

u− 4
< q <

u− 2

2
. (5.17)

Since u > 6, such a q exists. Moreover, because u−2
2 > 2 = p, we can also choose s > p.

Hence, the condition (H1) is verified.

Concerning (H2), as discussed in remark 5.3.4, (H2-i) is verified if u/2−1
q > 1 which is true

given Eq. (5.17).
Concerning (H2-ii), we have that

|Hθ(x)−Hθ′(x)| ≤ |µ− µ′|(1 + |µ+ µ′|+ 2|x|) + |Γ− Γ′| .

Since ||x||V 2 <∞ because u ≥ 1, we obtain the inequality (H2-ii) for any β ≤ 1.

Hence, we only have to prove (H3) to conclude. According to the theorem 16.1.9 of Douc
et al. (2018), C can be chosen as {V ≤ d} with d ∈ [0,∞). In particular, since V 2(x) = 1 + |x|u,
there exists d1 > 0 such that {V ≤ d} = [0, d1]. But, x 7→ (φ◦V 2)1/s(x)

V 2(x) is continuous hence,
bounded on the compact [0, d1]. Thus, (H3) is verified.

We have proved the convergence of the Metropolis Hastings algorithm under a set of hy-
potheses implying a polynomial rate of convergence. In the next section, we show that those
hypotheses are verified for the Pareto distribution with a scale parameter more than 5.

5.5.4 Application to the Pareto distribution

In this application, we choose to study the case where the target distribution π is a Pareto dis-
tribution and the proposal qθ is a normal distribution N (0,Γ). As showed in Fort and Moulines
(2003), the Pareto distribution π(x) ∝ |x|−α verifies the condition (E3). Moreover, (E4) is satis-
fied for any ξ > 0. Hence, when applying the theorem 5.5.2, we only need to assume α ∧ ξ > 5
i.e. α > 5.

We now show that the Pareto distribution verifies the condition (H2-iii):

Lemma 5.5.1. Suppose that π is a Pareto distribution with shape α > 5 and, for θ = (µ,Γ), qθ
is the normal distribution N (0,Γ). Then, if Pθ is the kernel defined in (5.13) and K is a compact
of R∗+, there exists C such that for all θ, θ′ ∈ K and for all g ∈ L(φ◦V p)1/s

||Pθg − Pθ′g||(φ◦V p)1/s ≤ C||g||(φ◦V p)1/s |θ − θ′|β .
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Proof. As done in the proof of the theorem 5.5.1, writing Ψ = (φ ◦ V p)1/s, we need to find an
upper bound to:∫

X

α(x, x+ z)|qθ(z)− qθ′(z)|
Ψ(x+ z)

Ψ(x)
λLeb(dz)

=

∫
X

(
1 ∧ |x|α

|x+ z|α

)
(1 + |x+ z|α+1)

α−1
s(α+1)

(1 + |x|α+1)
α−1
s(α+1)

|qθ(z)− qθ′(z)|λLeb(dz) .

But, if |x+ z|α ≤ |x|α,

(1 + |x+ z|α+1)
α−1
s(α+1)

(1 + |x|α+1)
α−1
s(α+1)

≤ 1 .

Similarly, if |x+ z|α ≥ |x|α, using Eq. (5.17), we have that s > 1 ≥ α−1
α . Hence,

|x|α

|x+ z|α
(1 + |x+ z|α+1)

α−1
s(α+1)

(1 + |x|α+1)
α−1
s(α+1)

≤
∣∣∣1 +

z

x

∣∣∣−α(1 +
∣∣∣1 +

z

x

∣∣∣α+1
) α−1
s(α+1)

is bounded since u 7→ u−α(1 + uα+1)
α−1
s(α+1) is bounded on [1,+∞).

Finally, there exists C > 0 such that:

|Pθg(x)− Pθ′g(x)| ≤ C||g||(φ◦V p)1/s(φ ◦ V p)1/s(x)

∫
X

|qθ(z)− qθ′(z)|dz .

But it has already been proved in Andrieu et al. (2005) that, if qθ is the normal distribution of
variance Γ then, for any Γ,Γ′ in a compact subset K of R∗+,∫

R
|qθ(z)− qθ′(z)|dz ≤

1

Γmin
|Γ− Γ′|

where Γmin is the minimum value of K which allows us to conclude for any β ≤ 1.

Theorem 5.5.3 Suppose that π is a Pareto distribution with shape α > 5 and, for θ = (µ,Γ) ∈
Θ = R×R∗+, qθ is the normal distributionN (0,Γ). Let (Zn)n∈N be the Markov chain as described
in 5.3 with Pθ defined in (5.13) and H defined in (5.15). Suppose that (∆n)n∈N and (εn)n∈N are
two sequences verifying (A4). Then, θn → θπ = (µπ, θπ) w.p. 1.

Proof. It is a consequence of the theorem 5.5.2 and lemma 5.5.1. All the conditions have
already been proved.

Thus, we have been able to prove the convergence of an adaptive MCMC algorithm targeting
distributions for which the theorem proved in Andrieu et al. (2005) was not enough to conclude.
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5.6 Application to Independent Component Analysis

Independent component analysis (ICA) is a method which aims at representing a data set of
random vectors as linear combinations of a fixed family of vectors with independent random
weights. ICA follows somehow the same goal as the Principal Component Analysis (PCA). How-
ever, PCA imposes orthogonality between principal components which amounts to supposing
that the observed vectors follow a Normal distribution. As for the ICA, it assumes a more general
statistical model where the observations are decomposed on components weighted by indepen-
dent random coefficients. It is sometimes called source separation. ICA has a large range of
applications in medical image analysis (Calhoun et al., 2001b,a), computer vision (Bartlett et al.,
2002; Bell and Sejnowski, 1995; Liu and Wechsler, 2003), computational biology (Liebermeis-
ter, 2002; Makeig et al., 1997), etc.. This method is also used to map the data set onto a smaller
space (not orthogonal) as one can choose the number of components in the linear combination.

This method writes an observation X ∈ Rd as:

X =

p∑
j=1

βjaj + ε = Aβ + ε , (5.18)

where A := (a1, ..., ap) ∈ Rd×p is a parameter, (β1, ..., βp) are independent scalars whose law
qm must be specified and ε is the additive noise.

In a lot of cases, ε is supposed to follow a normal distribution. This approximation enables to
develop easily many estimation algorithms. However, numerical images are rather affected by a
positive valued noise (MRI images for instance). Moreover, the Gaussian assumption reduces
the study to very rapidly decreasing noise. In this example, to take into account these two bot-
tlenecks of the Gaussian noise, we choose to model our data with a positive noise with heavy
tail: the Weibull distribution.

We suppose that each coordinate of ε satisfies: εj ∼ W(λ0, η0) with λ0 ∈ R∗+ and η0 ∈ (0, 1).

To estimate A, we will use a Monte Carlo Markov Chain - Stochastic Approximation Expec-
tation Maximization (MCMC-SAEM) algorithm introduced in Kuhn and Lavielle (2004). For this
algorithm to converge, we need our joint distribution to belong to the curved exponential family
i.e. to be of the following form:

q(X,β,A) = φ(A) + 〈S(X,β), ψ(A)〉 ,

where S(x, β) is called the sufficient statistic of the model.

However, it can be seen that the joint likelihood does not verify this hypothesis here. A usual
work around, first introduced in Kuhn and Lavielle (2005), is to consider that all vectors of A:
(aj)1≤j≤p are random vectors following a Gaussian prior. The goal is then to estimate the mean
of this prior. This writes, for each vector aj : aj ∼ N (a0,j , σ

2
AId).

If X is a data set of n observations (X1, ..., Xn), we finally have, writing A0 = (a0,1, ..., a0,p) ∈
Rd×p:
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log q(X,β,A,A0) =

n∑
i=1

p∑
j=1

(
(η0 − 1) log(Xi

j − (Aβi)j)−

(
Xi
j − (Aβi)j

λ0

)η0)

+

n∑
i=1

qm(βi)− ||A−A0||2

σ2
A

+ C

(5.19)

where ||A−A0||2 =
∑p
j=1 ||aj − a0,j ||22.

The joint distribution now belongs to the curved exponential family. Indeed, it can be written
as:

log q(X,β,A,A0) = φ(A0)+ < S(X,β,A), ψ(A0) > +S̃(X,β,A)φ̃(A0)

with: 

φ(A0) = ||A0||2
σ2
A

+ C

S(X,β,A) = A

ψ(A0) = −2A0

S̃(X,β,A) =
∑n
i=1

∑p
j=1

(
(η0 − 1) log(Xi

j − (Aβi)j)−
(
Xij−(Aβi)j

λ0

)η0)
+
∑n
i=1 qm(βi) + ||A||2

σ2
A

ψ̃(A0) = 1

The maximum of the log-likelihood can then be expressed as a function of the sufficient
statistics: the maximum of q(X,β,A, θ) is reached for A0 = θ̂(S(X,β,A)) = A.

Then, the MCMC-SAEM algorithm consists in the following steps:
(i) Simulation of β,A using a Metropolis Hastings algorithm targeting the conditional distribution
q(β,A|X, θk−1).
(ii) Stochastic approximation of the sufficient statistics:

Sk = Sk−1 + ∆k(A− Sk−1) .

(iii) Maximization of the conditional distribution using the sufficient statistics: θk = θ̂(Sk).

Remark 5.6.1. A fourth step not indicated above for clarity is the truncation process executed
as described in section 5.2.2 and allowing our parameters to stay on compact sets.

We can easily see that the described procedure is a particular case of the theorem 5.2.1
with Ps the kernel of the Metropolis Hastings algorithm targeting q(β,A|X, θ̂(s)) and with

Hs(β,A) = S(X,β,A)− s .

This problem has been tackled for instance in Allassonniere et al. (2012). In that paper,
the authors propose several distributions for β leading to geometrically ergodic Markov Chains.
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Using theorem 5.3.1, we are now able to tackle distributions leading to subgeometric ergodic
chains which enables to introduce models with higher variability. We provide here an example
of such a chain and prove convergence of the associated ICA parameters.

In the following, we suppose that all coordinates of β follow a Weibull distribution: ∀i ∈
[|1, n|],∀j ∈ [|1, p|], βij ∼ W(λ1, η1) with λ1 ∈ R∗+ and η1 ∈ (0, 1). Other distributions with heavy
tails such as the Pareto distribution would yield to similar results.

Theorem 5.6.1 Assume (A4), (A1i) and that the proposal distribution in the Metropolis Hastings
algorithm verifies (E2). Define l(θ) = log

∫
q(X,β,A, θ)dβdA and L′ = {θ ∈ θ̂(S)|∂θl(θ)) = 0}.

We then have d(θk,L′)→ 0.

Remark 5.6.2. Most of the work has in fact already been done in section 5.5.2. Indeed, the proof
of the hypothesis (A3) follows the exact same steps as in 5.5.2 and thus will not be detailed here.
Note that Condition (A1i) remains an assumption of the theorem as in many cases.

Proof. We first check the conditions (A1) (ii), (iii) and (iv). Let w(s) = −l(θ̂(s)). As showed in
Delyon et al. (1999), this function verifies (A1) (iii) and (iv). Moreover, the authors prove that
L = L′.
It is then easy to verify (A1)(ii) by remarking that w(s) →||s||→∞ ∞. Since w is continuous,
(A1)(ii) is verified for any M1 > 0.

Concerning (A2), the theorem 2.2 of Roberts and Tweedie (1996) gives the ψ-irreducibility
of the Markov Chain and thus the existence of the unique stationary distribution πθ. The mea-
surability of Hθ is immediate.

We can easily verify that (E1) is true for m = η0 ∨ η1. Hence, we can follow the exact same
proof as in theorem 5.5.1 to prove that (H1), (H2) and (H3) are verified and thus the condition
(A3) by theorem 5.3.1.

(A4) being supposed, we can apply the theorem 5.2.1 to conclude the proof.

Hence, this simple example shows that the algorithm can be applied not only on simulation
algorithms but also on optimization algorithms such as Expectation Maximization or stochastic
gradient which are involved in many machine learning and deep learning methods.

5.7 Conclusion

In this paper, we relaxed the condition of geometric ergodicity previously needed to ensure
the convergence of stochastic approximations with Markovian dynamics. We provide therefore
theoretical guarantees for a wider class of algorithms that are used in practice.

Our main result proves the convergence of these stochastic approximations for Markov
Chains which are only subgeometric ergodic assuming hypotheses on the rate of convergence
and the drift condition. A corollary is the convergence of a Metropolis Hastings algorithm with
adapted variance, first in the case of the Weibull distribution with a shape parameter between
0 and 1 and then in the case of the Pareto distribution with a shape parameter more than 5.
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Section 5.7. Conclusion

Another corollary applies to the convergence of a Stochastic Approximation Expectation Maxi-
mization algorithm when subgeometric Markov Chains appear. These results suggest that the
main theorem could be used to show the convergence of a broader range of algorithms for
which the geometric ergodicity is not verified.
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CHAPTER 6

On the curved exponential family in the Stochastic Approximation
Expectation Maximization Algorithm

The Expectation-Maximization Algorithm (EM) is a widely used method allowing to estimate the
maximum likelihood of models involving latent variables. When the Expectation step cannot be
computed easily, one can use stochastic versions of the EM such as the Stochastic Approxima-
tion EM.
In the chapter 3, we used this particular algorithm to estimate the parameters of our model. To
do so, we had to take into account that the SAEM convergence is only ensured when the model
is curved exponential. It forced us to rewrite the model by considering the population parame-
ters zpop as random variables: we supposed they follow a Gaussian distribution with variance σ2

centered on a new parameter z̄pop to estimate. Indeed, without this change, first introduced in
Kuhn and Lavielle (2005), the initial model would not be curved exponential. In practice, there
is however no guarentee that this change of model and the choice of σ will not influence the
estimation of the parameters.
In this chapter, we show that this transformation of the model can indeed introduce a bias, that
we quantify, in the final estimation of the parameters. In particular, we show that a trade-off
must be made between the speed of convergence and the tolerated error. Finally, we propose
a new algorithm achieving a better estimation of the maximum of likelihood of the initial model
in a reasonable computation time.

This work has been submitted.
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Section 6.1. Introduction

6.1 Introduction

With the increase of data, parametric statistical models have become a crucial tool for data
analysis and understanding. To be able to describe complex natural phenomena (epidemiology,
ecology, finance, disease evolution, etc.), the models have an increasing complexity. Some
of them are based on observed features or data which are assumed to be generated from a
latent random effect. A usual example is the family of mixed effects models which have been
used in pharmacokinetic, pharmacodynamic, shape analysis, etc. In such a context, one aims
at optimizing the model parameter to maximize the likelihood of the observed dataset. This
likelihood is also called the incomplete one as the latent variables are unknown.
Formally, this writes as follow: let y ∈ Rn be the observation and θ ∈ Θ the model parameter.
We call g the incomplete likelihood:

g(y, θ) =

∫
Z

f(y, z, θ) dz .

In that case, z is the latent or missing variable and f is the joint likelihood of the observations
and latent variables, depending on a parameter θ ∈ Θ.
The Expectation Maximization (EM) algorithm provides a numerical process to answer this prob-
lem by computing iteratively a sequence of estimates (θn)n∈N which, under several conditions
(see Dempster et al. (1977); Wu (1983)), converges towards the maximum likelihood estimate.
It proceeds in two steps for each iteration k. First, in the Expectation step (E), the function

Q(θ|θk−1) =

∫
Z

log(f(y, z, θ))p(y, z, θk−1) dz

is computed where p is the conditional distribution of z given the observations: p(y, z, θ) =
f(y, z, θ)/g(y, θ). θk is then updated in the Maximization step (M) as the argument of the maxi-
mum of the function Q(.|θk−1).

The EM algorithm has been first introduced in Dempster et al. (1977). Its properties have
then been studied in numerous papers, see Balakrishnan et al. (2017); Chrétien and Hero
(2008); Ma et al. (2000); Meng et al. (1994); Redner and Walker (1984); Tseng (2004); Wu
(1983) among many other works.

In many cases, the (E) step is in fact intractable as we have no closed form for Q. Dif-
ferent algorithms, both deterministic and stochastic, have been introduced in the literature to
overcome this problem. The Monte-Carlo EM (Wei and Tanner (1990)) replaces the (E) step
by computing a Monte Carlo approximation of Q using a large amount of simulated missing
data z. Another possibility, more computationally efficient, is to use a Stochastic Approximation
(SA) of the function Q. This SAEM algorithm has been introduced in Delyon et al. (1999) and
the authors proved the convergence towards a local maximum of the incomplete likelihood with
probability 1 under several hypotheses. It has later on been generalized in Kuhn and Lavielle
(2004) in the case where we are not able to easily sample z. This new algorithm, called the
SAEM Monte Carlo Markov Chain (SAEM-MCMC) replaces the sampling of z by one step of
a Markov Chain targeting the conditional distribution p. Those two algorithms have then been
applied in lots of different contexts: deformable models (Allassonnière et al., 2010; Bône et al.,
2018a; Debavelaere et al., 2020; Schiratti et al., 2015), Independent Component Analysis (Al-
lassonniere et al., 2012) and in many medical problems (see Benzekry et al. (2014); Guedj and
Perelson (2011); Lavielle and Mentré (2007); Sissoko et al. (2016) among many others).
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Among the hypotheses ensuring the convergence of most of these algorithms, and in par-
ticular our focus, the SAEM algorithm, one of the most restrictive is the necessity for the joint
likelihood to belong to the curved exponential family. This writes:

f(y, z, θ) = exp (−Ψ(θ) + 〈S(y, z),Φ(θ)〉) , (6.1)

where S is called a sufficient statistic of the model and Φ and Ψ are two functions on Θ. Simi-
larly, the different extensions to the SAEM algorithm, and some of the EM algorithm, carry the
same assumption (Kuhn et al., 2020; Lartigue et al., 2020; Panhard and Samson, 2009; Sam-
son et al., 2006).

However, this hypothesis can in fact be a bottleneck in lots of situations. For example, it
is not verified for heteroscedastic models (Dubois et al., 2011; Kuhn and Lavielle, 2005) nor
with more complex models (Bône et al., 2018a; Debavelaere et al., 2020; Lindsten, 2013; Meza
et al., 2012; Schiratti et al., 2015; Wang, 2007). Most of the authors then choose to compute
the maximization step using a gradient descent. However, in that case, there is no theoretical
guarantee of convergence. Moreover, the computational complexity increases. One needs to
compute the gradient descent steps and compute the stochastic approximation of the complete
likelihood while this function may not have a simple form. To solve this problem, Kuhn and
Lavielle (2005) propose to transform the initial model to make it curved exponential.

Their solution consists in considering the parameter θ as a realization of a Gaussian vector
of mean θ̄ and fixed variance σ2. θ then becomes an additional latent variable and the new
parameter to estimate is θ̄. We call this new model the exponentialized model. It now belongs
to the curved exponential family. However, as the likelihood of this exponentialized model is
different, the function to maximize has also been modified. In particular, there is no guarantee
that the new parameter to estimate is close to the initial one. Nevertheless, this trick has been
successfully used in different situations (Ajmal et al. (2019); Bône et al. (2018a); Debavelaere
et al. (2020); Schiratti et al. (2015) among others).

In this paper, we will study the maximum likelihood of this new exponentialized model and
measure its distance to one of the maxima of the initial likelihood. More precisely, we will show
that this distance goes to 0 as the variance σ2 of the exponentialized model tends to 0. We
will also provide an upper bound to this error when σ is small enough. Finally, we will verify
those results on an example. This example will show us that a compromise must be done in the
choice of σ. Indeed, if σ is too big, a substantial error is made in the estimation. However, for
σ too small, despite the theoretical guarantees, the numerical convergence is difficult to obtain.
To overcome this problem, we will present a new algorithm allowing a better estimation of the
initial parameter θ in a reasonable computation time.

6.2 Presentation of the Stochastic Approximation Expecta-
tion Maximization (SAEM) Algorithm

In this section, we recall the Stochastic Approximation Expectation Maximization (SAEM) algo-
rithm, first presented in Delyon et al. (1999) and recall the hypotheses ensuring convergence.
In the following, we suppose that the observation y belongs to Rn, the latent variable z to Rl and
that the parameter space Θ is an open subset of Rp with n, l, p ∈ N∗.
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6.2.1 Expectation Maximization (EM) Algorithm

The original EM algorithm proposes to maximize a function defined via:

g(y, θ) =

∫
Rl
f(y, z, θ)µ(dz)

with f the joint likelihood of the model and µ is a σ-finite measure on Rl.
This situation is of interest to estimate the parameters of a statistical model using maximum

likelihood estimates where the model depends on unobserved latent variables.

The Expectation-Maximization consists of iterations which guarantee an increase in g(θk) at
each step. Starting from θ0, the algorithm iterates:

• Expectation. Compute
Qk(θ) =

∫
Rl log (f(y, z, θ)) p(y, z, θk)dz.

• Maximization. Set θk+1 = argmax Qk(θ).

where p is the conditional distribution of z given the observations:

p(y, z, θ) =

{
f(y, z, θ)/g(y, θ) if g(y, θ) 6= 0

0 otherwise.

6.2.2 SAEM Algorithm

Because the expectation with respect to the conditional distribution p(y, z, θ) is often intractable
in practice, a different approach suggests replacing the E-step by a stochastic approximation on
Q, starting from θ0 and Q0 = 0. This gives us the following algorithm:

• Simulation. Generate zk, a realization of the hidden variable under the conditional density
p(y, z, θk).

• Approximation. Update

Qk(θ) = Qk−1(θ) + γk(log f(y, zk, θ)−Qk−1(θ)) . (6.2)

• Maximization. Set θk+1 ∈ argmax Qk(θ).

Convergence of this procedure is shown under the following hypotheses:

(M1) The parameter space Θ is an open subset of Rp, and f can write:

f(y, z, θ) = exp (−Ψ(θ) + 〈S(y, z),Φ(θ)〉) , (6.3)

where S(·) is a Borel function taking its value in S, an open subset of Rns . In that case,
we say that f belongs to the curved exponential family.
Moreover, the convex hull of S(Rl) is included in S and, for all θ ∈ Θ,∫

Rl
|S(y, z)|p(y, z, θ)µ(dz) <∞ .

(M2) The functions Ψ and Φ are twice continuously differentiable on Θ.

131



Chapter 6. On the curved exponential family in the SAEM

(M3) The function s : Θ→ S defined as:

s(θ) =

∫
Rl
S(y, z)p(y, z, θ)µ(dz)

is continuously differentiable on Θ.

(M4) The observed log-likelihood l(θ) := log g(y, θ) is continuously differentiable on Θ and

∂θg(y, θ) =

∫
Rl
∂θf(y, z, θ)µ(dz) .

(M5) There exists a function θ̂ : S → Θ such that ∀θ ∈ Θ,∀s ∈ S, L(s, θ̂(s)) ≥ L(s, θ), with
L(s, θ) = −Ψ(θ) + 〈s,Φ(θ)〉.
Moreover, θ̂ is continuously differentiable on S.

(SAEM1) For all k ≥ 0, 0 ≤ γk ≤ 1,
∑∞
i=1 γk =∞ and

∑∞
i=1 γ

2
k <∞.

(SAEM2) θ̂ : S → Θ and the observed-data log likelihood l : θ → R are ns times differen-
tiable.

(SAEM3) For all positive Borel function φ:

E(φ(zk+1)|Fk) =

∫
Rl
φ(z)p(z, θk)µ(dz) ,

where zk is the missing value simulated at step k under the conditional density p(y, z, θk−1)
and Fn is the family of σ-algebra generated by the random variables S0, z1, . . . , zn.

(SAEM4) For all θ ∈ Θ,
∫
Rl ||S(y, z)||2p(y, z, θ)µ(dz) <∞ and Γ(θ) := Covθ(S(y, z)) is con-

tinuous with respect to θ.

With the hypothesis (M1) specifying the form of the complete likelihood and (M5) giving us
the existence of a maximizer θ̂, the algorithm can take a simpler form. Indeed, using the fact
that Q is fully defined by a sufficient statistic S, we remark, by linearity, that the stochastic
approximation (6.2) is only applied on this sufficient statistic. Similarly, the maximization step
can be rewritten using only the sufficient statistic and θ̂. This gives the following algorithm:

• Simulation. Generate zk, a realization of the hidden variable under the conditional density
p(y, z, θk).

• Approximation. Update Sk = Sk−1 + γk(S(y, z)− Sk−1)

• Maximization. Set θk+1 = θ̂(Sk).

We finally assume the following hypothesis:

(A) With probability 1, clos((Sk)k≥1) is a compact subset of S.
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Remark 6.2.1. The assumption (A) can be relaxed by projecting the sequence (Sk)k∈N on
increasing compacts. See Andrieu et al. (2005) for more details.

Under the hypotheses (M1)-(M5), (SAEM1)-(SAEM4) and (A), it was shown in Andrieu et al.
(2005) that the distance between the sequence generated by the SAEM and the set of station-
ary point of the observed likelihood g converges almost surely towards 0.

However, in numerous cases, even quite simple (Dubois et al., 2011; Kuhn and Lavielle,
2005), the joint likelihood f does not verify the hypothesis (M1) as it does not belong to the
curved exponential family. In the next section, we will present a trick allowing us to approximate
the maximum likelihood when (M1) is not verified.
In the following, to simplify the notations, we no longer write the variable y in the different
expressions.

6.2.3 Exponentialization process

We now denote by (θ, ψ) the parameters of g where θ ∈ Θ, ψ ∈ Ψ = Rm, and we tackle the
case where the model cannot be written under the curved exponential form (6.1) because of the
parameter ψ. In that case, the log-likelihood can only be written as:

f(z, θ, ψ) = exp (−Ψ(θ) + 〈S(z),Φ(θ)〉)h(z, ψ) (6.4)

and f does not belong to the curved exponential family.

Here, some parameters θ are separable from the latent variables z and do not require fur-
ther transformation. Other variables ψ are at the source of the computational problem and the
exponentialization process will only apply on those parameters. It must be noticed that, in some
cases, θ can be empty.

The trick proposed in Kuhn and Lavielle (2005) is to consider ψ as a Gaussian random vari-
able ψ ∼ ⊗N (ψ, σ2), where the notation ⊗N (., .) denotes a multivariate Gaussian distribution
with diagonal covariance matrix. Hence, in this augmented model, ψ is no longer a parameter
but becomes an additional latent variable while a new parameter ψ̄ appears.

The resulting perturbed statistical model is curved exponential, with augmented parameters
θ̂ = (θ, ψ) and augmented random latent variables ẑ = (z, ψ).

The variance σ2 is chosen by the user, and should be reasonably small in order to minimally
perturb the original model. In practice, this variance should at the same time be chosen reason-
ably large in order to speed-up the parameter estimation (see experiments in section 6.4).

The complete log-likelihood of this exponentialized model then writes:

log fσ(y, ẑ, θ̂) = −Ψ(θ) + 〈S(z),Φ(θ)〉+ log(h(z, ψ))− ||ψ − ψ̄||
2

2σ2
. (6.5)

It is easy to check that the complete log-likelihood now belongs to the curved exponential
family with sufficient statistics: (S(z), ψ). Concerning the parameter θ, the maximization is done
as usual: θk+1 = θ̂(Sk) with Sk the stochastic approximation of the (S(zi))i≤k. The update of
the parameter ψ̄ can for its part be written as:

ψ̄k+1 = ψ̄k + γk(ψk − ψ̄k) . (6.6)
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If we suppose that this augmented model satisfies the hypotheses (M1)-(M5), (SAEM1)-
(SAEM4) and (A), we know, using the theorem proved in Andrieu et al. (2005), that it will con-
verge towards a critical point of its incomplete likelihood. However, if this process is used in
several applications (Lavielle, 2014), there is in fact no guarantee that the algorithm will con-
verge towards a critical point of the incomplete log-likelihood of the initial model.

In the following section, we show that, in general, the parameter returned by the SAEM on
the exponentialized model is indeed not a maximum likelihood of the initial model. However,
when σ goes to 0, it converges towards a critical point of the incomplete log likelihood of the
initial model. We also give an upper bound of the error made by this process for σ small.

It is interesting to notice that, even if this proof is done in the context of the SAEM algorithm,
the same results can be obtained for the MCMC-SAEM (Kuhn and Lavielle, 2004) as well as for
the Approximate SAEM (Allassonnière and Chevallier, 2019).

6.3 Distance between the limit point and the nearest critical
point

In this section, we first present an equation satisfied by the limit of the sequence of estimated
parameters of the SAEM algorithm for the exponentialized model. Using this equation, we will
then give an upper bound on the distance between this limit point and the nearest critical point
of the incomplete likelihood of the non-exponential model. This upper bound will in particular
show us that this distance tends to 0 when σ goes to 0.

6.3.1 Equation verified by the limit

We now state a theorem giving us an equation satisfied by the limit parameter estimated by the
SAEM algorithm applied on the exponentialized model. It is important to remark that, if the set
of the critical points of l is finite then, the SAEM algorithm converges almost surely towards one
of them (and not only towards a point at zero distance). Hence, we can study the parameters
returned by the SAEM on the exponential model: ψ̄σ and look at their behaviour when σ goes
to 0.

Theorem 6.3.1 Assume that the exponentialized model with variance σ verifies the hypotheses
(M1)-(M5), (SAEM1)-(SAEM4), (A) and that Ψ = Rm. Assume also that, for all σ > 0,

Lσ :=
{

(θ, ψ̄) ∈ Θ×Ψ | ∂θ,ψ̄lσ(θ, ψ̄) = 0
}

is finite where lσ refers to the observed log-likelihood of the exponentialized model of variance σ.
Then, the sequence returned by the SAEM algorithm converges almost surely towards (θ∞, ψ̄σ),
solutions of the following set of equations: ∀1 ≤ k ≤ m,∫

Rm
vkg(θ∞, ψ̄σ + v) exp(−||v||

2

2σ2
)dv = 0 , (6.7)

where vk is the k-th coordinate of v ∈ Rm and g(θ, ψ) =
∫
Z
f(z, θ, ψ)µ(dz).

134



Section 6.3. Distance between the limit point and the nearest critical point

Remark 6.3.1. Here, we suppose Ψ = Rm to be able to define a Gaussian distribution on Ψ.
The following proofs would be adaptable as long as one can define such a gaussian distribution,
necessary for applying the exponentialization trick.

Proof. The update of Sk, ψk can easily be seen as a Robbins Monro update:{
ψ̄k+1 = ψ̄k + γkvk

Sk+1 = Sk + γk(S(zk)− Sk−1)

where zk, vk are sampled following the conditional law fσ(y, z, ψ + ψ̄k|θk, ψ̄k).

Under the hypotheses explained section 6.2.2, it has been shown that this Robbin Mon-
roe approximation verifies limk→∞ d((θk, ψ̄k),Lσ) = 0. Moreover, because Lσ is finite, De-
lyon et al. (1999) show that the sequence (θk, ψ̄k)k≥0 converges almost surely towards a point
(θ∞, ψ̄σ) ∈ Θ × Ψ (theorem 6). Using the regularity of lσ, we deduce that those parameters
verify ∂θ,ψ̄lσ(θ∞, ψ̄σ) = 0.
By replacing lσ by its value in this equation and using the assumption (M4), we find, for all
1 ≤ k ≤ m: ∫

Rm
(vk − ψ̄σ)q(y, z, θ∞, v) exp(−||v − ψ̄σ||

2

2σ2
)dvdz = 0

Using a change of variable, we finally find the expected result.

Proposition 6.3.1 Suppose that a point ψ ∈ Rm verifies:

∀v, θ ∈ Rm ×Θ, g(θ, ψ + v) = g(θ, ψ − v) . (6.8)

Then, ψ is solution to Eq. (6.7) and can be the parameter returned by the exponential model.

Remark 6.3.2. It is not necessarily the only possibility of returned parameter. Several values of
ψ could be solutions of Eq. (6.7).

In particular, a solution of (6.8) is a critical point of g. However, a critical point of g is not
always solution of such an equation and will not always be a solution of Eq. (6.7). It is in fact
easy to find cases where the maximum is not a solution to Eq. (6.7) and hence where the
exponentialized model introduces a bias in the estimation of maximum likelihood.
We introduce next subsection a function g presenting such a behaviour and we explain the
heuristics behind Theorem 6.3.1.

6.3.2 Heuristics

We want to compare the solution of equation (6.7) to a maximum of the function g. Because of
the form of f supposed in equation (6.4), we see that we can maximize g in θ and ψ indepen-
dently of the other. In particular, we still immediately have θ∞ ∈ argmaxθg(θ, ψ) (independent
of ψ as can be seen in equation (6.4)).
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To explain equation (6.7), we introduce the function g : v 7→ 1
v exp(− 1

v2 ) presented Figure
6.1. This function has a maximum for ψ =

√
2 but is not symmetric around it. We will look at the

integral: ∫
Ψ

vg(ψ + v) exp

(
− v2

2σ2

)
dv

for different values of ψ and σ. ψ is a solution of equation (6.7) if and only if this integral is null.
It is interesting to remark that one can consider this integral as an expectation if normalized.

First we look at the case ψ =
√

2, the argmax of g, and σ = 1 on Figure (6.2a). In that case,
because g is not symmetric around its maximum, v 7→ g(

√
2 + v) exp

(
− v2

2σ2

)
is not symmetric

either. In particular, it means that
√

2 is not a solution of equation (6.7) as the integral is strictly
positive.

We then reduce the value of σ by taking σ = 0.1 on Figure (6.2b). The function v 7→
g(
√

2 + v) exp
(
− v2

2σ2

)
is still not symmetric around 0. Even if the value of the integral is smaller,

√
2 is still not a solution of equation (6.7).

We now interest ourselves in the case where ψ is not the argmax of g by taking ψ = 1 and
σ = 1 on Figure 6.3. This time, g is strictly increasing from 1 to

√
2. Hence, even if we multiply

by the exponential, v 7→ g(1 + v) exp
(
− v2

2σ2

)
is still increasing at 0. As g decreases slower than

it increases, 1 cannot be a solution of equation (6.7). The integral is indeed strictly positive. The
same behaviour would be observed for any point before

√
2.

We now look at a value bigger than the maximum: ψ = 4 and σ = 5 Figure 6.4a. This
time, as g decreases at v = 4, v 7→ g(4 + v) exp

(
− v2

2σ2

)
still decreases at 0. But g decreases

slower than it increases. Hence, it is possible to compensate this difference of variation by tak-
ing ψ >

√
2 as a solution of equation (6.7).

Let us now take a smaller value of σ as in Figure 6.4b. This time, the integral is negative.
Indeed, v 7→ g(4 + v) exp

(
− v2

2σ2

)
still decreases at 0. However, due to the multiplication by

the exponential, the difference of variation before and after the maximum is now way smaller.
In particular, it is this time too small to compensate the decrease at 0 and the integral will be
negative. To have a solution of equation (6.7) for this value of σ, we would need to choose a
value of ψ smaller. This suggests that, as σ goes to 0, the solution of equation (6.7) is closer to√

2.

From these examples, we can deduce two things. First, the argmax of g is not always solu-
tion of the equation (6.7) even for small values of σ because there is a difference in the speed of
variation before and after this maximum. However, it is possible to compensate this difference
of variation by choosing a value different than the argmax and thus to find a solution of (6.7)
different than the argmax. Moreover, when σ goes to 0, the difference of variation obtained
by multiplying by the exponential is smaller and smaller. It means that a parameter closer and
closer to the argmax will be solution of equation (6.7).
We illustrate this behaviour by plotting the exact value of the solution of equation (6.7) as a
function of σ in Figure 6.5.
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In the following, we write ψM the critical point of g(θ, ψ) minimizing the distance to ψ̄σ.
Using the heuristics presented above, we will, in the next section, state the theorem giving us
an upper bound on the distance to the nearest critical point of g. We will then prove it in the
case Ψ = R. A more general proof in Rm for m ≥ 2 is given in the annex.

Figure 6.1 Function g studied subsection 6.3.2, with a maximum reached at
√

2.

(a) v 7→ g(θ,
√

2 + v) exp(−v2
2

) (b) v 7→ g(θ,
√

2 + v) exp( −v2
2∗0.12 )

Figure 6.2 Plot of v 7→ g(θ,
√

2 + v) exp(−v
2

2σ2 ) for different values of σ. In all cases, we can see
that
√

2 is not a solution of Eq. (6.7).

6.3.3 Upper bound on the distance between ψ̄σ and the nearest critical
point of g

Theorem 6.3.2

1. Assume that the exponential model verifies the hypotheses (M1)-(M5), (SAEM1)-(SAEM4)
and (A). Assume also that, for all σ > 0, Lσ is finite, that L := {ψ ∈ Rm|∂ψg(θ, ψ) = 0} is
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compact and that there exists K compact such that, ∀σ > 0, ψ̄σ ∈ K. Then,

d(ψ̄σ,L) −−−→
σ→0

0 .

2. Assume also that L is finite and that, for all ψM ∈ L, there exists an integer lM such that
g is lM -times continuously differentiable and such that

∀k ≤ m,∃i ≤ lM with
∂ig

∂ψik
(ψM ) 6= 0 .

We write l = maxψM∈LlM .
Then, there exists c > 0 such that, for σ small enough,

d(ψ̄σ,L) ≤ cσ
2
l+2 . (6.9)

Figure 6.3 Plot of v 7→ g(θ, 1 + v) exp(−v
2

2σ2 ). Since g is increasing at 1 and increases quicker
than it decreases, 1 is not solution of (6.7).

(a) v 7→ g(θ, 4 + v) exp( −v2
2∗52 ) (b) v 7→ g(θ, 4 + v) exp(−v2

2
)

Figure 6.4 Plot of v 7→ g(θ, 4 + v) exp(−v
2

2σ2 ) for different values of σ.
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Figure 6.5 Solution of Eq. (6.7) as a function of σ for the function g studied subsection 6.3.2.

3. Suppose that v 7→ g(θ∞, v) and v 7→ vkg(θ∞, v) are integrable for all k between 1 and m.
Then, we have the following approximation of ψ̄σ when σ goes to infinity: for all 1 ≤ k ≤ m,

(ψ̄σ)k −−−−→
σ→∞

∫
Rm vkg(θ∞, v)dv∫
Rm g(θ∞, v)dv

.

Remark 6.3.3. When m = 1, lM is the smallest integer such that the lM -th derivative of g(θ∞, .)
at ψM is not 0. The inequality (6.9) indicates that the convergence will be slower when the
function to maximize behaves as a flat curve around the maximum, which was expected.
If such a lM does not exist, it means that g is constant in at least one direction around ψM .

Remark 6.3.4. We need to take a maximum over all ψM in L since, from one σ to another, ψσ
can approach a different maximum ψM ∈ L. It is also why the upper bound depends on this
maximum l. It is constrained by the critical point for which the convergence is the slowest.

Remark 6.3.5. For m = 1, we have the exact value of the constant in (6.9):

c = max
ψM∈L

(12(lM − 1)!
||g||∞

|∂lMψ g(θ∞, ψM )|

) 1
lM+2

 .
Remark 6.3.6. The results presented here would still be true in the case of the SAEM-MCMC
algorithm. Indeed, the equation (6.7) verified by the limit parameter of the SAEM would still be
verified in the case of the SAEM-MCMC and the same reasoning could then be done.

In the following, we will present the proof in the case m = 1. The proof in the multi-
dimensional case follows the same ideas than in dimension one but is more technical. It is
presented in the annex.

Proof. We present the proof in the case m = 1. As the maximum does not depend of θ∞ and
to simplify notations, we will forget the variable θ in g and use g(ψ) = g(θ∞, ψ).

First step: d(ψ̄σ,L) −−−→
σ→0

0
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We suppose that ψ̄σ is never a critical point of g for σ small enough. Otherwise, we directly
have the result. The equation (6.7) writes:∫

R
vg(ψ̄σ + v) exp(− v2

2σ2
)dv = 0 .

The first step is to show that d(ψ̄σ,L) −−−→
σ→0

0. By contradiction, even if it means extracting,

we can suppose that there exists c > 0 such that ∀σ > 0, d(ψ̄σ,L) > 3c.

Because there is no critical point between ψ̄σ−c and ψ̄σ+c, g is either increasing or decreas-
ing on [ψ̄σ − c, ψ̄σ + c]. We first suppose it is increasing. In particular, K0 := K \ {y | d(y,L) < c}
is compact and thus c0 := inf{g′(y) |y ∈ K0, g

′(y) ≥ 0} > 0. According to equation (6.7), the
integral on [−c, c] must have the same absolute value as the integral on [−c, c]c. However, we
will show that, when σ goes to zero, the first one converges towards 0 much more slowly than
the second one. Indeed,∫

|v|≥c
vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≥

∫
v≤−c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

≥ ||g||∞
∫
v≤−c

v exp(− v2

2σ2
)dv

≥ −σ2||g||∞ exp(− c2

2σ2
) .

On the other hand, we have:∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv =

∫
0≤v≤c

v
(
g(ψ̄σ + v)− g(ψ̄σ − v)

)
exp(− v2

2σ2
)dv .

Using the mean value theorem, for all 0 ≤ v ≤ c, there exists ψ̃v ∈ [ψ̄σ − v, ψ̄σ + v] ⊂ K0

such that g(ψ̄σ + v)− g(ψ̄σ − v) = 2vg′(ψ̃v) ≥ 2c0v. Hence, we find:∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≥ 2c0

∫
0≤v≤c

v2 exp(− v2

2σ2
)dv .

But, using an integration per part and defining

erf(x) :=
2√
π

∫ x

0

e−t
2

dt ,

we have: ∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≥ 2c0σ

2

[
−c exp(− c2

2σ2
) + σ

√
π

2
erf(

c√
2σ

)

]
.

Hence, because∫
|v|≤c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv = −

∫
|v|≥c

vg(ψ̄σ + v) exp(− v2

2σ2
)dv ,

we have:

||g||∞ exp(− c2

2σ2
) ≥ 2c0

[
−c exp(− c2

2σ2
) + σ

√
π

2
erf(

c√
2σ

)

]
.
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It is easy to find the same inequality if g is decreasing on [ψ̄σ − c, ψ̄σ + c]. Indeed, in that
case, by integrating only on {v ≥ c}, we first show that∫

|v|≥c
vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≤ σ2||g||∞ exp(− c2

2σ2
) .

Then, by considering this time c1 := sup{g′(y) |y ∈ K0, g
′(y) ≤ 0} < 0, we find:∫

|v|≤c
vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≤ 2c1σ

2

[
−c exp(− c2

2σ2
) + σ

√
π

2
erf(

c√
2σ

)

]
.

Hence, for all σ > 0, there exists C := 2 max(c0,−c1) > 0 such that:

||g||∞
σ

exp(− c2

2σ2
) ≥ C

[
− c
σ

exp(− c2

2σ2
) +

√
π

2
erf(

c√
2σ

)

]
.

By taking σ to 0 and using the fact that erf(x) −−−−→
x→∞

1, we find C ≤ 0 which is a contradiction.
Hence, we have proved that

d(ψ̄σ,L) −−−→
σ→0

0 .

The next step is to find an upper bound on d(ψ̄σ,L).

Second step: Search of the upper bound

In the following, we will suppose that the critical point towards which ψ̄σ converges is a
maximum. In practice, it will always be the case as any other critical point would be unstable
numerically. Theoretically, a set of conditions (LOC1)-(LOC3) are given in Delyon et al. (1999)
insuring the convergence towards a local maximum.

We write ψM the closest critical point to ψ̄σ and ασ = |ψ̄σ − ψM |. We also write lM the
smallest integer such that g(lM )(ψM ) 6= 0. Moreover, as explained above, we assume that ψM
is a maximum. It must be remarked that ψM depends on σ. However, as L is finite, we will be
able to consider maxima at the end of the proof. Since we assume ψM maximum, lM is even
and, for σ small enough, since g(lM ) is continuous, ∀v ∈ [ψ̄σ − ασ, ψ̄σ + ασ],

g(l)(v) ≤ 1

2
g(lM )(ψM ) := −cM < 0 .

As before, we will split up the integral (6.7) in two parts: {v||v| < ασ} and {v||v| > ασ}. The
idea behind the computations is that ασ cannot be too big without making the absolute value of
the integral on {v||v| < ασ} strictly superior than the one on {v||v| > ασ}.

On {v | |v| > ασ} we can use the same upper and lower bounds as before to find:∣∣∣∣∣
∫
|v|≥ασ

vg(ψ̄σ + v) exp(− v2

2σ2
)dv

∣∣∣∣∣ ≤ σ2||g||∞ exp(− α2
σ

2σ2
) . (6.10)

On {v | |v| < ασ}, we use twice the mean value theorem to find, for any v ∈ [0,ασ], there
exist ψ̃0

v ∈ [ψ̄σ − v, ψ̄σ + v] and ψ̃1
v ∈ [ψ̄σ − ασ, ψ̄σ + ασ] such that:

g(ψ̄σ + v)− g(ψ̄σ − v) = 2vg′(ψ̃0
v) = 2v(g′(ψ̃0

v)− g′(ψM ))

= 2v(ψ̃0
v − ψM )lM−1g(lM )(ψ̃1

v)/(lM − 1)!

≥ 2v(ψ̄σ + v − ψM )lM−1g(lM )(ψ̃1
v)/(lM − 1)! .
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We first suppose that g is increasing on [ψ̄σ − ασ, ψ̄σ + ασ]. Then, ασ = ψM − ψ̄σ and:

g(ψ̄σ + v)− g(ψ̄σ − v) ≥ 2cM
(lM − 1)!

v(ασ − v)lM−1 .

Hence, computing the integral (6.7) on {v | |v| < ασ}, we find:∫
|v|≤ασ

vg(ψ̄σ + v) exp(− v2

2σ2
)dv ≥ 2cM

(lM − 1)!

∫ ασ

0

v2(ασ − v)lM−1 exp(− v2

2σ2
)dv

≥ 2cM
(lM − 1)!

αlM+2
σ

∫ 1

0

v2(1− v)lM−1 exp(−α2
σv

2

2σ2
)dv

≥ 2cM
(lM − 1)!

αlM+2
σ exp(− α2

σ

2σ2
)

∫ 1

0

v2(1− v)dv .

Finally, by combining this inequality and (6.10), we find:

σ2||g||∞ exp(− α2
σ

2σ2
) ≥ cM

6(lM − 1)!
αlM+2
σ exp(− α2

σ

2σ2
) .

Hence, if σ ≤ 1,

ασ ≤
(

6(lM − 1)!
||g||∞
cM

)1/(lM+2)

σ
2

lM+2

≤ max
ψM∈L

((
6(lM − 1)!

||g||∞
cM

)1/(lM+2)
)
σ

2
l+2 .

Because L is finite, we indeed have a maximum which is strictly positive.
In the case where g in decreasing on [ψ̄σ − ασ, ψ̄σ + ασ], we have ασ = ψ̄σ − ψM and it is

easy to show that we have this time

g(ψ̄σ + v)− g(ψ̄σ − v) ≤ −2cMv(ασ − v)lM−1/(lM − 1)! .

Hence, we can use the same inequalities as before to find again:

ασ ≤ max
ψM∈L

((
6(lM − 1)!

||g||∞
cM

)1/(lM+2)
)
σ

2
l+2 .

Third step: Approximation when σ goes to infinity
We use again the equation (6.7). For all σ > 0,∫

R
vg(ψ̄σ + v) exp(− v2

2σ2
)dv = 0 .

Using the change of variable ψ̄σ + v, we find:

ψ̄σ =

∫
R vg(v) exp

(
− (v−ψ̄σ)2

2σ2

)
dv∫

R g(v) exp
(
− (v−ψ̄σ)2

2σ2

)
dv

.

But ψ̄σ is supposed to stay in a compact so, ∀v ∈ R, exp
(
− (v−ψ̄σ)2

2σ2

)
−−−−→
σ→∞

1. Using the inte-

grability of g and v 7→ vg(v), it is easy to conclude using the dominated convergence theorem.
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6.4 Simulation of a counter example

In this section, we demonstrate that the maximum likelihood of g is indeed not reached by the
SAEM algorithm on the exponentialized model on a concrete situation.

6.4.1 Application of the SAEM algorithm to the exponentialized model

We choose to study a heteroscedastic model where the variance depends on the observation.
This model has been used in Kuhn and Lavielle (2005) in order to analyze the growth of orange
trees. The parameters to estimate are the age β1 at half asymptotic trunk circumference ψi and
the grow scale β2 of n orange trees according to the measurement of their circumference yi,j at
m different ages xj .

We suppose that our observation yi,j verifies, for i between 1 and n and j between 1 and ki:

yi,j =
φi

1 + exp
(
−xj−β1

β2

) (1 + εi,j) ,

where εi,j are independent noises of distributionN (0, σ2
ε) of variance σ2

ε supposed to be known.
φi is treated as a random effect and is supposed to follow a Gaussian distribution of mean µ to
estimate and known variance τ2.

Such a model cannot be written in an exponential form due to the parameters β1 and β2 and
we will hence consider an exponentialized model where β1 and β2 are considered as random
effects with β1 ∼ N (β̄1, σ

2) and β2 ∼ N (β̄2, σ
2).

Writing

h(φ, β1, β2, x) =
φ

1 + exp
(
−x−β1

β2

) ,
the complete likelihood of the exponentialized model can then be written as:

f(y, φ, β1, β2, θ) = 2πσ2(2πσ2
ε)−nm/2(2πτ2)−n/2 · exp

− 1

2σ2
ε

∑
i,j

(
yi,j

h(φi, β1, β2, xj)
− 1

)

−
∑
i,j

log(h(φi, β1, β2, xj)) −
∑
i

(φi − µ)2

2τ2
− (β1 − β̄1)2

2σ2
− (β2 − β̄2)2

2σ2

]
,

where θ = (µ, β̄1, β̄2) are the exponentialized model parameters to estimate.

Remark 6.4.1. It would be easy to suppose τ and σ2
ε unknown and estimate them using the

SAEM algorithm. Those parameters would leave the joint distribution curved exponential and
it would not be necessary to further exponentialize the model. To simplify, we assume them
known here.
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It is then easy to show that this likelihood belongs to the curved exponential family with
sufficient statistics being: 

S1(φ) =
∑
i φi ,

S2(β1) = β1 ,

S3(β2) = β2 .

The maximum likelihood estimator can then be expressed as a function of S1(φ), S2(β1) and
S3(β2) as follows: 

µ̂ = S1(φ)/n ,
ˆ̄β1 = S2(β1) ,
ˆ̄β1 = S3(β2) .

Because we cannot easily sample (φ, β1, β2) from the conditional distribution, we will not di-
rectly use the SAEM algorithm but the SAEM-MCMC algorithm. We replace the sampling step
by one iteration of a Metropolis Hastings algorithm targeting the posterior distribution. Under
hypotheses presented in Kuhn and Lavielle (2004), this process converges towards the same
limit as the SAEM algorithm. In particular, it has been proved in Kuhn and Lavielle (2005) that
those conditions are indeed verified here and thus that the algorithm converges. Moreover, as
the limit is the same than the one given by the SAEM, our theorem 6.3.2 still applies.

We then create a synthetic dataset of a thousand observations following this model (100
subjects observed at 10 different ages). Knowing the exact value of µ, we plot the incomplete
likelihood of the non-exponentialized model gNE as a function of (β1, β2) figure 6.6a. We also
plot its behaviour around the maximum and along the axes β1 and β2 figures 6.6b and 6.6c.
As we can see, the function is not symmetric around the maximum. Hence, there should be a
bias while estimating the maximum likelihood using the exponentialized model. More precisely,
we can see the error in β2 should be larger than the one in β1 as the function is less symmetric
along the y axis than along the x axis.

To verify this heuristic, we use the SAEM-MCMC algorithm and launch our algorithm a hun-
dred times for different values of σ. We then compare the results given by the SAEM-MCMC
algorithm to the exact value of the maximum likelihood of the initial model. Because we know
the exact parameters from which the dataset has been simulated, we are also able to compute
numerically the solution of the equation (6.7) as a function of σ. The results are presented figure
6.7.

For σ ≥ 1, the results of the simulation follow our theory with the estimated parameters es-
timated close to the solution of the equation (6.7). Moreover, as expected, the error is bigger in
the estimation of β2 than in the estimation of β1 (see axis scale).

However, for a small σ, the algorithm does not converge. Indeed, in that case, the variance
of the conditional distribution is really small as it is proportional to exp

(
− (β−β̄)2

2σ2

)
. In particular,

it means that the algorithm will be extremely long to converge and, in practice, will stay near the
initial value (β1 = 6, β2 = 34 here).
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(a) Plot of the incomplete likelihood of the initial model as a function of (β1, β2).

(b) Plot of the incomplete likelihood of the initial
model as a function of β1 for β̄2 the argmax of
likelihood.

(c) Plot of the incomplete likelihood of the initial
model as a function of β2 for β̄1 the argmax of
likelihood.

Figure 6.6 Plot of the incomplete likelihood of the initial model as a function of (β1, β2) along
different sections for µ = 5.

6.4.2 Proposition of a new algorithm

To prevent this phenomenon, we now propose a new process that will allow a better estimation
of the real maximum of the non-exponentialized likelihood. We will still use the exponential trick
but using an adaptive σ along the iterations. The goal is to allow the estimate to escape from its
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(a) Results for β1 (b) Results for β2

Figure 6.7 The red line represents the theoretical value towards which the algorithm is sup-
posed to converge. The red points are the means of the parameters estimated over 100 itera-
tions with their standart deviations represented by the red zone. In dotted blue is the maximum
likelihood of the initial model. In magenta, the theoretical limit towards which the parameter
converges when σ goes to infinity. Finally, the green cross represents the value returned while
varying the variance of the exponentialized model throughout the algorithm.

initial value while converging towards a point closer to the true maximum.

We propose to first run the algorithm with σ = 1 for a certain number m of iterations and
then reduce the value of σ by multiplying it by 0.9. We iterate this process every m iterations
until the difference between successive parameters estimated is sufficiently small. We then let
the algorithm converge with this small value of σ. This may be seen as launching the algorithm
several times with an initialization closer and closer to the true maximum likelihood. While the
algorithm will not converge towards the real maximum likelihood estimate as σ is still positive
during the last iterations, the error should be smaller than before as σ has been significantly
reduced.

To test this new algorithm, we launch this process a hundred times. We present the means
and variances of the estimated parameters in Table 6.1 and as green crosses in figure 6.7. If we
do not reach the maximum likelihood of the initial model, the error for β2 is now smaller: 1.04%
while it was at least 2.6% without reducing the variance throughout the algorithm. As for β1, the
error is of the same order as before.

Remark 6.4.2. In Kuhn and Lavielle (2005), the authors use this model and algorithm on a real
dataset for different values of σ. They conclude that the estimation of (β1, β2) does not seem to
depend on the choice of σ. In fact, for the particular values of this real dataset, the likelihood is
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Mean of β̄1 Variance of β̄1 Mean of β̄2 Variance of β̄2

6.21 0.10 32.62 0.26

Table 6.1 Mean and variance of the parameters estimated while reducing the variance through-
out the algorithm. To be compared with the maximum likelihood of the non-exponentialized
model reached for β1 = 6.3 and β2 = 32.28.

practically symmetric around its maximum. Hence, the error made in that case is indeed small
for any σ.

Conclusion

In this paper, we have proved that the exponentialization process does not converge in general
towards the maximum likelihood of the initial model using the SAEM or SAEM-MCMC algorithm.
If the error converges towards 0 when σ goes to 0, it is numerically impossible to take σ too small
as the algorithm is numerically never able to converge. To overcome this problem, we propose
a new numerical scheme consisting in launching the algorithm several times while making the
variance of the exponentialized model decrease. Thanks to out theoretical results, we show
that this new process converges towards a better estimation of the maximum of likelihood of
the initial model, as verified by the numerical simulations. Hence, we are able to approach the
exact maximum likelihood even in the case where our likelihood does not belong to the curved
exponential family.
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Annex: Proof of theorem 6.3.2 for m ≥ 2

Proof. We prove the theorem 6.3.2 in the case m ≥ 2 and l = 2. For l ≥ 3, the proof could be
obtained using Taylor Lagrange formula at a higher order.

We recall the following equation verified by the limit (theorem 1):∫
Rm

vkg(θ∞, ψ̄σ + v) exp(−||v||
2

2σ2
)dv = 0 , (6.11)

First step: d(ψ̄σ,L) −−→
σ→0

0

We suppose that d(ψ̄σ,L) does not converge towards 0. Even if it means extracting, we can
suppose that, ∃c > 0,∀σ > 0, d(ψ̄σ,L) > 3c. As for the one-dimensional proof, we forget the θ
in g and write g(ψ) = g(θ∞, ψ). We also set K0 = K \ {y | d(y,L) < c}.

We want to show that

∃c0 > 0,∃c1 > 0,∀y ∈ K0,∃1 ≤ i ≤ m,∀x verifying ||x− y|| ≤ c1, |
∂g

∂ψi
(x)| > c0 . (6.12)

By contradiction, we can take c0 = 1/n and extract a converging subsequence in the compact
K0 to find:

∀c1 > 0,∃y ∈ K0,∀1 ≤ i ≤ m,∃x verifying ||x− y|| ≤ c1, |
∂g

∂ψi
(x)| = 0 .

However, because y /∈ L, there exists 1 ≤ j ≤ m such that | ∂g∂ψj (y)| 6= 0. If we take c1 small

enough then, for all x such that ||y − x|| ≤ c1, | ∂g∂ψj (x)| 6= 0 and we find a contradiction. Hence,
the condition (6.12) is verified.

Hence,

∃c0 > 0,∃c1 > 0,∀σ > 0,∃k ∈ [|1,m|],∀v verifying ||v − ψ̄σ|| ≤ c1, |
∂g

∂ψk
(v)| > c0 .

As for the proof in dimension 1, we split up our integral in two parts: I1 = {v | ∀i ∈ [|1, n|], vi ≤
c2} and I2 = {v | ∃i ∈ [|1, n|], vi ≥ c2} where c2 is chosen such that {v | ∀i ∈ [|1, n|], vi ≤ c2} ⊂
{v | ||v|| ≤ c1}.

First, on I2,

∫
I2

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥

∫
I2,vk≤0

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv

≥ ||g||∞
(∫

Rm,vk≤0

vk exp(−||v||
2

2σ2
)dv −

∫
I1,vk≤0

vk exp(−||v||
2

2σ2
)dv

)
≥ −σ2(

√
2πσ)m−1||g||∞

(
1−

(
1− exp(− c22

2σ2
)

)
erf
(

c2√
2σ

)m−1
)
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where erf is the error function defined by erf(x) = 2√
π

∫ x
0
e−t

2

dt.

We now integrate on I1. We write v−k the vector such that, ∀i 6= k, (v−k)i = vi and (v−k)k =
−vk. Then, using the mean value theorem, we have∫

I1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv =

∫
I1,vk≤0

vk(g(ψ̄σ + v)− g(ψ̄σ + v−k)) exp(−||v||
2

2σ2
)dv

=

∫
I1

2v2
k

∂g

∂ψk
(ψ̃v) exp(−||v||

2

2σ2
)dv

where, for i 6= k, (ψ̃v)i = (ψ̄σ)i + vi and (ψ̃v)k ∈ [(ψ̄σ)k − vk, (ψ̄σ)k + vk]. But we know that ∂g
∂ψk

does not cancel on I1. Hence, it is either positive or negative. If it is positive, we find:∫
I1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥ 2c0

∫
I1,vk≤0

v2
k exp(−||v||

2

2σ2
)dv

≥ 2c0(
√

2πσ)m−1σ2

[
−c2 exp(− c22

2σ2
) + σ

√
π

2
erf(

c2√
2σ

)

]
erf
(

c2√
2σ

)m−1

Finally, using (6.7), we have:

2c0

[
−c2
σ

exp(− c22
2σ2

) +

√
π

2
erf(

c2√
2σ

)

]
erf
(

c2√
2σ

)m−1

≤ |g||∞

1− erf
(

c2√
2σ

)m−1

σ
+

1

σ
exp(− c22

2σ2
)erf

(
c2√
2σ

)m−1

 (6.13)

But,

erf(x) =x→∞ 1− exp(−x2)√
πx

+ o

(
exp(−x2)

x

)
.

Hence, when σ goes to 0, the left-hand side of the inequality goes to
√
πc0 while the right-hand

side goes to 0. We thus find a contradiction.

Finally, if ∂g
∂ψk

is not positive on I1 (as supposed here) but negative, we can use the same
method to find an upper bound on the integral on I2 and on the integral on I1. We would then
find the same inequality as in (6.13).

Hence, in all cases, we have proved that d(ψ̄σ,L) −−−→
σ→0

0.

Second step: Choice of the basis

The upper bound using second derivatives is more complex to obtain for m > 1 as crossed
partial derivatives appear that can be either positive or negative. To control those parts, the
choice of the compact is more complex. We will first show that we can express our vector v and
our function g in any orthonormal basis and still have the equation (6.7).

Indeed, let P be a change-of-basis matrix. Then, because the equation (6.7) is linear on vk
and true for all k ∈ [|1,m|], we still have:
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∫
Rm

(Pv)kg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv = 0 .

Using the change of variable u = Pv, we then find, for any k ∈ [|1,m|]:∫
Rm

ukg(P−1(Pψ̄σ + u)) exp(−||u||
2

2σ2
)dv = 0 .

We write h : u 7→ g(P−1u). Hence, h verifies the equation (6.7).

We can thus choose to express our function g in any base. In particular, we write ψM the
nearest maximum of ψ̄σ. Then, the Hessian of g at ψM is a negative symmetric matrix. Hence,
it is diagonal in an orthonormal basis. We choose to express g in that basis. With a change
of notation, we can hence assume that the hessian of g at ψM is diagonal. In particular, for all
i 6= j ∈ [|1,m|],

∂2g

∂ψ2
i

(ψM ) < 0 and
∂2g

∂ψi∂ψj
(ψM ) = 0 .

In particular, we are now able to impose a condition between the second derivatives of g on a
compact centered around ψM . There exists K0 compact such that,

− sup
K0

∂2g

∂ψ2
k

>(m− 1) sup

{
∂2g

∂ψk∂ψj
(v)

∣∣∣∣ v ∈ K0, j 6= k,
∂2g

∂ψk∂ψj
(v) > 0

}
− m− 1

2
inf

{
∂2g

∂ψk∂ψj
(v)

∣∣∣∣ v ∈ K0, j 6= k,
∂2g

∂ψk∂ψj
(v) < 0

} (6.14)

Third step: Search of the upper bound

As for the proof in 1D, we will split our integral into two parts and say that neither can be too big
for the complete integral to be equal to 0. More precisely, for σ > 0, let k be the coordinate such
that |(ψ̄σ)k − (ψM )k| = max |(ψ̄σ)i − (ψM )i|. We write for i ∈ [|1,m|], (ασ)i = |(ψ̄σ)i − (ψM )i|.
The goal is to show that (ασ)k goes to 0 when σ goes to 0.

Let c > 0 and σ small enough such that

I1 :=
{
v ∈ Rm | vk ∈ [−(ασ)k, (ασ)k] and, for i 6= k, vi ∈ [−c, c]

}
⊂ K0 .

On Ic1 , we use the same upper bounds as in the first step to find:∫
Ic1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥ −σ2(

√
2πσ)m−1||g||∞

·

(
1−

(
1− exp(− (ασ)2

k

2σ2
)

)
erf
(

c√
2σ

)m−1
) (6.15)

On I1 we will use once again the mean value theorem, first between ψ̄σ + v−k and ψ̄σ + v to
find ψ̃v ∈ K0 such that, for i 6= k, (ψ̃v)i = (ψ̄σ + v)i, (ψ̃v)k ∈ [(ψ̄σ − v)k, (ψ̄σ + v)k] and

g(ψ̄σ + v)− g(ψ̄σ + v−k) = 2vk
∂g

∂ψk
(ψ̃v)
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and then between ψ̃v and ψM to find ψ̃1
v ∈ K0 such that:

∂g

∂ψk
(ψ̃v) =

m∑
i=1

(ψ̃v − ψM )i
∂2g

∂ψk∂ψi
(ψ̃1
v) .

Even if it means changing basis, we can assume that, ∀i ∈ [|1,m|], (ασ)i = |(ψ̄σ)i−(ψM )i| =
(ψM )i − (ψ̄σ)i without modifying the hypothesis (6.14).

The difficulty to find upper bounds is that ∂2g
∂ψk∂ψi

(ψ̃1
v) and also (ψ̃v − ψM )i can be either

positive or negative.

Using those previous equalities and the facts that ∂2g
∂ψ2

k
< 0 on K0 and (ψ̃v − ψM )k ≤ (ψ̄σ +

v − ψM )k = (v − ασ)k, we have:∫
I1

vkg(ψ̄σ + v) exp(−||v||
2

2σ2
)dv ≥ 2

∫
I1,vk≥0

v2
k

m∑
i=1

(v − ασ)i
∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
)dv

We will study the different terms of the sum differently according to i = k, or i 6= k.

First, for i = k, using the fact that (v − ασ)k ≤ 0 on I1, we can compute the integral using
integration per part and the function erf defined above to find:∫
I1,vk≥0

2v2
k(v − ασ)k

∂2g

∂ψ2
k

(ψ̃1
v) exp(−||v||

2

2σ2
)dv ≥ sup

K0

(
∂2g

∂ψ2
k

)∫
I1,vk≥0

2v2
k(v − ασ)k exp(−||v||

2

2σ2
)dv

= −2 sup
K0

(
∂2g

∂ψ2
k

)
(
√

2πσ)m−1erf
(

c√
2σ

)m−1

(ασ)4
k

[√
π

2

(
σ

(ασ)k

)3

erf
(

(ασ)k√
2σ

)

−2

(
d

(ασ)k

)4(
1− exp(− (ασ)k

2σ2
)

)]
For i 6= k, we do similar computations remarking that:

• if ∂2g
∂ψk∂ψi

(ψ̃1
v) > 0 and (v − ασ)i > 0,

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
) > 0

• if ∂2g
∂ψk∂ψi

(ψ̃1
v) > 0 and (v − ασ)i < 0, with K+

0 =
{
v ∈ K0| ∂2g

∂ψk∂ψi
(v) > 0

}
,

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
) > 2v2

k(v − ασ)i exp(−||v||
2

2σ2
) sup
K+

0 ,i

∂2g

∂ψk∂ψi

• if ∂2g
∂ψk∂ψi

(ψ̃1
v) < 0 and (v − ασ)i < 0

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
) > 0

• if ∂2g
∂ψk∂ψi

(ψ̃1
v) < 0 and (v − ασ)i > 0, with K−0 =

{
v ∈ K0| ∂2g

∂ψk∂ψi
(v) < 0

}
,

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
) > 2v2

k(v − ασ)i exp(−||v||
2

2σ2
) inf
K−0 ,i

∂2g

∂ψk∂ψi
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Hence, for i 6= k, we write I−1 = {v ∈ I1 | vk ≥ 0, vi ≤ (ασ)i} and:∫
I−1

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
)dv ≥ sup

K+
0 ,i

∂2g

∂ψk∂ψi

∫
I−1

2v2
k(v − ασ)i exp(−||v||

2

2σ2
)dv

= 2 sup
K+

0 ,i

∂2g

∂ψk∂ψi
(
√

2πσ)m−1erf
(

c√
2σ

)m−1

(ασ)4
k

·

[√
π

2

(
σ

(ασ)k

)4

erf
(

(ασ)k√
2σ

)
−
(

σ

(ασ)k

)3

exp

(
− (ασ)2

k

2σ2

)]

·

exp
(
−c2
2σ2

)
− exp

(
−(ασ)2j

2σ2

)
√

2πerf
(

c√
2σ

) − 1

2

(ασ)j
d

1 +
erf
(

(ασ)j√
2σ

)
erf
(

c√
2σ

)



Similarly, with I+
1 = {v ∈ I1 | vk ≥ 0, vi ≥ (ασ)i},∫

I+1

2v2
k(v − ασ)i

∂2g

∂ψk∂ψi
(ψ̃1
v) exp(−||v||

2

2σ2
)dv ≥ inf

K−0 ,i

∂2g

∂ψk∂ψi

∫
I+1

2v2
k(v − ασ)i exp(−||v||

2

2σ2
)dv

= 2 inf
K−0 ,i

∂2g

∂ψk∂ψi
(
√

2πσ)m−1erf
(

c√
2σ

)m−1

(ασ)4
k

·

[√
π

2

(
σ

(ασ)k

)4

erf
(

(ασ)k√
2σ

)
−
(

σ

(ασ)k

)3

exp

(
− (ασ)2

k

2σ2

)]

·

exp
(
−(ασ)2j

2σ2

)
− exp

(
−c2
2σ2

)
√

2πerf
(

c√
2σ

) − 1

2

(ασ)j
d

1−
erf
(

(ασ)j√
2σ

)
erf
(

c√
2σ

)



Those three upper bounds are quite complex, but we can remark that they can be written as

dm−1erf
(

c√
2σ

)m−1

(ασ)4
kh
(

(ασ)k
σ

)
.

We will now see that this function h is strictly positive at infinity.

Indeed, using all the previous upper bounds presented previously, equation (6.7) and using
the fact that erf

(
c√
2σ

)
≥ 1/2 for σ small enough, we can write:

(ασ)4
kerf

(
c√
2σ

)m−1
(
h
(αk
σ

)
−

1− erf
(
c/
√

2σ
)

σ2erf
(
c/
√

2σ
) ) ≤ ||g||∞

2
σ2

with:

h(x) =
ex

2/2

x4

[
− sup

K0

∂2g

∂ψ2
k

(√
π

2
xerf(x/

√
2)− 2(1− e−x

2/2)

)
+

(√
π

2
xerf(x/

√
2)− x2e−x

2/2

)
·

[
(m− 1)( inf

K−0 ,i

∂2g

∂ψk∂ψi
− sup
K+

0 ,i

∂2g

∂ψk∂ψi
)(

2√
2πx

+
1

2
)

− m− 1

2
sup
K+

0 ,i

∂2g

∂ψk∂ψi

]]
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is a function independent of ασ and σ.

In particular, when x goes to infinity, h(x) is equivalent to:

ex
2/2

x4

√
π

2
x

[
− sup

K0

∂2g

∂ψ2
k

+
m− 1

2
inf
K−0 ,i

∂2g

∂ψk∂ψi
− (m− 1) sup

K+
0 ,i

∂2g

∂ψk∂ψi

]

But, according to the hypothesis done on the compact K0, this is strictly positive.

Hence, there exist c0 > 0, c1 > 0 such that, if x ≥ c1, h(x) > c0 > 0.
We will now suppose that (ασ)k ≥ c1σ. Then, h

(
αk
σ

)
≥ c0 > 0. Moreover,

1− erf
(
c/
√

2σ
)

σ2erf
(
c/
√

2σ
) −−−→

σ→0
0 .

So, for σ small enough, it is smaller than c0/2 and we finally find:

(ασ)4
k ≤ c0||g||∞

σ2

erf
(

c√
2σ

)m−1

Using the fact that erf
(

c√
2σ

)m−1

−−−→
σ→0

1 gives us finally the existence of a constant c > 0 such
that

d(ψ̄σ,L) ≤ (c1σ) ∨ (c
√
σ)

which allows us to conclude for σ small enough.

Fourth step: Approximation when σ goes to infinity

The last step follows the exact same steps as for m = 1. It is copied here.
We use again the equation (6.7). For all σ ∈ R, ∀1 ≤ k ≤ m,∫

Rm
vkg(ψ̄σ + v) exp(−||v||

2

2σ2
)dv = 0

Using the change of variable ψ̄σ + v, we find:

(ψ̄σ)k =

∫
Rm vkg(v) exp

(
− ||v−ψ̄σ||

2

2σ2

)
dv∫

Rm g(v) exp
(
− ||v−ψ̄σ||

2

2σ2

)
dv

But ψ̄σ is supposed to stay in a compact so, ∀v ∈ Rm, exp
(
− ||v−ψ̄σ||

2

2σ2

)
−−−−→
σ→∞

1. Using the

integrability of g and v 7→ vkg(v), it is easy to conclude using the dominated convergence
theorem.
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Part IV. Conclusion and perspectives

In this thesis, we focused on different aspects of shape analysis and statistical optimization.
In this final part, we will review the contributions we have done in those fields and the questions
that have not yet been closed.

Analysis of longitudinal Riemannian manifold valued data with multiple
dynamics.

In the chapter 3, we generalized the model proposed in Schiratti et al. (2015) in the case where
the subjects can have different dynamics on different time intervals. Building on the work of
Chevallier et al. (2017) done in dimension 1, we proposed to model the representative trajectory
as a piecewise geodesic by introducing rupture times at which the population goes from one
dynamic to another. This allows to represent more complex dynamics such as the behaviour
of tumors during chemotherapy or the apparition of a disease after the beginning of the obser-
vations. Moreover, it is possible to allow different clusters of the population to merge or branch
at the rupture times. The clusters will then have common dynamics on certain time intervals
but split up on others. We thus introduced unsupervised clustering and used a scheme of tem-
perature to achieve numerical convergence. This new model allows to considerate deviations
of behaviours between subjects along time. For example, one can consider the efficiency of a
treatment for certain subjects as a deviation from the usual behaviour of sick patients.

If this model can be applied to a large number of situations, it has the disadvantage to require
the knowledge of lots of hyperparameters. One must choose the number of clusters, for each
of them, the number of rupture times and if the population merges or branches. The choice
of those hyperparameters will then dramatically change the clusters and dynamics estimated.
This problem could be solved by selecting models. This would have the advantage to allow to
test different assumptions on a particular data set. One could ask itself if there is or not different
clusters in a population, if there is a change of dynamic following a particular event, etc.. An
attempt has been made chapter 3 by using a Bayesian Information Criterion. However, in this
large dimension framework, model selection is not an easy question and would require further
investigation.

Another question arising from chapter 3 is the convergence of a tempered model under a
scheme of temperature depending of the current state of the algorithm. Indeed, the particular
scheme of temperature used chapter 3 depends on the current state of the Markov Chain to
reach an optimal acceptation rate in the Metropolis Hastings algorithm. If the convergence of
tempered SAEM has been studied in Allassonnière and Chevallier (2019), their assumptions do
not include a state-dependent temperature. Further work would thus be required to prove the
theoretical convergence of the algorithm proposed.

Detection of anomalies using the LDDMM framework.

In the chapter 4, we applied the LDDMM framework to the detection of anomalies. An anomaly
is then defined as what cannot be obtained as the diffeomorphic deformation of a control tem-
plate. This can in particular be applied to the detection of tumors. Indeed, tumors appear as
structures with a different grey level on images. Hence, those tumors cannot be retrieved by a
diffeomorphic deformation of a control template.
More precisely, in that chapter, we chose to represent the observations as the sum of a diffeo-
morphic deformation of a template and a sparse matrix, and we estimate both at the same time.
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Our method is particularly interesting for its versatility. One does not require any large data sets
nor any annotation by doctors. If one only disposes of one sane subject and one sick subject,
it is still possible to retrieve anomalies, even if the precision is improved using a template of
control subjects.

Improvements could still be applied to the method, particularly on the post-process of the
anomaly matrix. Indeed, in addition to the real anomalies, small errors of reconstruction are
retrieved, particularly on the border of the considered object. Further investigation should be
made to only retrieve the real anomalies without missing some.

One could also try to add a longitudinal layer to the model. The goal would then be to
estimate the temporal trajectory of the tumors. This would allow to predict their future, if they
will shrink or not and to adapt the treatment according to the prediction. However, as new tumors
can appear or disappear along time, a diffeomorphic deformation from an initial time point, as
done chapter 3, would not be relevant. At the time of writing of this manuscript, this work is still
in progress.

On the convergence of Stochastic Approximations with a subgeometric
Markovian dynamic.

To estimate the parameters of the mixed effect models with incomplete data, we used, in the
chapter 3, the Monte Carlo Markov Chain Stochastic Approximation Expectation Maximization
(MCMC-SAEM) algorithm. This variant of the EM uses Stochastic Approximations to compute
the Expectation step while using only one realization of the conditional distribution. Based on
Stochastic Approximations with Markovian dynamics, the proof of convergence of the MCMC
SAEM algorithm (Allassonnière et al., 2010) takes up the assumptions of the proof of conver-
gence of SA (Andrieu et al., 2005). In particular, one needs to verify the geometric ergodicity
of the Markov Chain. In practice, this assumption limits the conditional distributions one can
consider. In particular, when sampling from a heavy tail distribution using a Metropolis Hastings
algorithm, the resulting Markov Chain can be subgeometric.
To overcome this difficulty, we proposed chapter 5 a new set of hypotheses asking only the sub-
geometric ergodicity of the Markov Chain. Those assumptions express a compromise between
the rate of convergence of the Markov Chain and its regularity with respect to a control function.
We showed that they are verified in several applications where the initial theorem could not have
been applied.

Creation of a new EM algorithm for non curved exponential distributions.

Using the SAEM algorithm, one needs to compute a stochastic approximation of the sufficient
statistics. This, in particular, supposes that such sufficient statistics exist i.e. that our joint
distribution belongs to the curved exponential family. However, this hypothesis is not verified for
lots of realistic problems. For instance, if one supposes that{

yi ∼ N (f(ψi, α),Σ0)

ψi ∼ N (g(Ci, β),Σ1)

where θ = (α, β) are fixed effects, ψi are random individual parameters, Ci are hyperparame-
ters and f and g are non linear, the model is not curved exponential.
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Part IV. Conclusion and perspectives

To overcome this difficulty, Kuhn and Lavielle (2005) proposed to transform the model to
make it curved exponential. Their method consists in considering the parameters θ of the initial
model as additional latent variables following a Normal distribution centered on a new parame-
ter θ̄ with fixed variance σ2. Instead of estimating θ, they estimate the mean θ̄. This new model
is now curved exponential and it is this modification we applied chapter 3 to estimate the pop-
ulation parameters. However, there is no guarantee that the new maximum likelihood is close
to the one of the initial model. In chapter 6, we exhibit an example where the two maxima are
different. We also prove a theorem giving an upper bound on their distance for σ small. If the
second derivative of the incomplete likelihood at its maxima is not 0, this distance decreases in√
σ.

By verifying our results on an example, we see that, for σ small, the convergence of the SAEM
applied to the modified model is not achieved numerically. Hence, we propose a new algorithm,
where one decreases the value of σ along iterations, achieving a better estimation of the maxi-
mum likelihood of the initial model.

If we are now able to give a better estimation of the maximum likelihood of a non curved
exponential model, we still do not have an algorithm converging almost surely towards its value.
When confronted to the problem, one could choose to transform the SAEM algorithm to apply it
to the exact model. An idea could be to replace the stochastic approximation and maximization
steps: Qk(θ) = Qk−1(θ) + γk

(
log p(y, ψ(k), θ)−Qk−1(θ)

)
θk = argmaxθ Qk(θ)

(6.16)

by: θ̂(y, ψ
(k)) = argmaxθ p(y, ψ

(k), θ)

θk = θk−1 + γk

(
θ̂(y, ψ(k))− θk−1

)
.

(6.17)

While in the first case, one can often find a closed form of the maximization step using the
sufficient statistics, it is no longer the case in the second case and one needs to use gradient
descent algorithms. However, we are no longer in the curved exponential framework and the
question of the convergence of this SAEM algorithm is still open.
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Titre: Modélisation statistique de données médicales et analyse théorique des algorithmes d’estimation

Mots clés: Modélisation statistique, Algorithmes stochastiques, Données médicales, Variétés Riemaniennes

Résumé: Dans le domaine médicale, l’usage de car-
actéristiques extraites d’images est de plus en plus ré-
pandu. Ces mesures peuvent être des nombres réels
(volume, score cognitifs), des maillages d’organes ou
l’image elle-même. Dans ces deux derniers cas, un
espace Euclidien ne peut décrire l’espace de mesures
et il est nécessaire de se placer sur une variété Rie-
manienne. En utilisant ce cadre Riemannien et des
modèles à effets mixtes, il est alors possible d’estimer
un objet représentatif de la population ainsi que la
variabilité inter-individuelle.
Dans le cas longitudinal (sujets observés de manière
répétée au cours du temps), ces modèles permet-
tent de créer une trajectoire moyenne représentative
de l’évolution globale de la population. Dans cette
thèse, nous proposons de généraliser ces modèles
dans le cas d’un mélange de population. Chaque
sous-population peut suivre différentes dynamiques
au cours du temps et leur trajectoire représentative
peut être la même ou différer d’un intervalle temporel
à l’autre. Ce nouveau modèle permet par exemple
de modéliser l’apparition d’une maladie comme une
déviation par rapport à un vieillissement normal.

Nous nous intéressons également à la détection
d’anomalies (par exemple de tumeurs) dans une pop-
ulation. En disposant d’un objet représentant une
population contrôle, nous définissons une anomalie
comme ce qui ne peut être reconstruit par déforma-
tion difféomorphique de cet objet représentatif. Notre
méthode à l’avantage de ne nécessiter ni grand jeu de
donnée, ni annotation par des médecins et peut être
facilement appliquée à tout organe.
Finalement, nous nous intéressons à différentes pro-
priétés théoriques des algorithmes d’estimation util-
isés. Dans le cadre des modèles à effets mixtes
non linéaires, l’algorithme MCMC-SAEM est utilisé.
Nous discuterons de deux limitations théoriques. Pre-
mièrement, nous lèverons l’hypothèse d’ergodicité
géométrique en la remplaçant par une hypothèse
d’ergodicité sous-géométrique. De plus, nous nous
intéresserons à une méthode permettant d’appliquer
l’algorithme SAEM quand la distribution jointe n’est
pas courbe exponentielle. Nous montrerons que cette
méthode introduit un biais dans l’estimation que nous
mesurerons. Nous proposerons également un nouvel
algorithme permettant de le réduire.

Title: Statistical modelisation of medical data and theoretical analysis of estimation algorithms

Keywords: Statistical models, Stochastic algorithms, Medical data, Riemannian manifolds

Abstract: In the medical field, the use of features ex-
tracted from images is increasingly common to per-
form diagnostics or measure the effectiveness of a
treatment over time. These measures can for example
be real numbers (volume, cognitive scores), meshes
of an organ or even the image itself. In the latter two
cases, a Euclidean space cannot describe the space
of measurements and it is necessary to use Rieman-
nian manifolds. Using this Riemannian framework and
mixed effects models, it is then possible to estimate a
representative object of the population as well as the
inter-individual variability.
In the longitudinal case (subjects observed repeat-
edly over time), these models allow to create an av-
erage trajectory, representative of the global evolution
of the population. In this thesis, we propose to gen-
eralize these models in the case of a mixture of pop-
ulations. Each sub-population can follow different dy-
namics over time and their representative trajectory
can branch or join from one time interval to another.
This new model allows, for example, to model the on-
set of a disease as a deviation from a normal aging.

In a second step, we are also interested in the de-
tection of anomalies (e.g. tumours) in a population.
Given an object representing a control population, we
define an anomaly as a structure that cannot be re-
constructed by a diffeomorphic deformation of this
representative object. Our method has the advantage
of requiring neither a large data set nor annotation by
physicians. Moreover, it can be easily applied to any
organ.
Finally, we are interested in different theoretical prop-
erties of the previously used estimation algorithms. In
the context of non-linear mixed effects models, the
MCMC-SAEM algorithm is used. In this thesis, we
will discuss two theoretical limitations. Firstly, we will
lift the geometric ergodicity assumption by replacing it
with a sub-geometric ergodicity assumption. Further-
more, we will look at a method, often used in practice,
allowing to apply the SAEM algorithm when the joint
distribution is not exponentially curved. We will show
that this method introduces a bias in the estimation
that we will measure. We will also propose a new al-
gorithm to reduce it.

Institut Polytechnique de Paris
91120 Palaiseau, France


	I Introduction
	Résumé en Français
	Introduction
	Motivation
	Mixed effects models
	Riemannian notions 
	Riemannian metric and Exponential map 
	Exp-parallelization 
	Fréchet mean 
	Statistics on a Riemannian manifold

	Large Deformation Diffeomorphic Metric Mapping 
	First notions of shape spaces
	Measuring the distance between two shapes 
	Matching of two shapes
	Finite parametrization of the vector fields 
	Cross sectional atlas 
	First longitudinal models
	Hierarchical spatio-temporal model

	Markov Chains and Metropolis Hastings algorithms 
	Markov Chains 
	Metropolis Hastings algorithm 

	Stochastic Approximations 
	Presentation
	Convergence theorem in the Markovian dynamic case

	The Expectation Maximization algorithm and its variants 
	The Expectation Maximization algorithm
	The Stochastic EM algorithm
	The Monte Carlo EM algorithm
	The Stochastic Approximation EM algorithm 
	The Monte Carlo Markov Chain SAEM algorithm
	Restrictions of the Stochastic EM algorithms

	Thesis outline


	II Atlases on Riemannian manifolds 
	Learning the clustering of longitudinal shape data sets into a mixture of independent or branching trajectories 
	Introduction
	Geometrical model 
	Construction of the representative trajectory
	Deformations towards the subjects
	Mixture and branching process

	Statistical Model and estimation 
	Statistical Model 
	Estimation 
	Initialization and influence of the hyperparameters

	Results 
	2D simulated data
	1D RECIST scores
	3D faces
	Hippocampi dataset

	Conclusion

	Detection of anomalies using the LDDMM framework 
	Introduction
	Detection of anomalies using residuals 
	Presentation of the model
	Computation of the template using a hypertemplate
	Comparison to other models

	Simulated example
	Data set
	Application of the models presented section 4.2
	On the choice to estimate anomaly matrix and deformation at the same time 

	Application to a data set of brains with tumors
	Presentation of the data set
	Results 
	Application with only one control and one sick subject

	Application to the liver data set
	Pre-processing
	Presentation of the results
	Quality of the detection

	Conclusion


	III On the convergence properties of Stochastic Approximation algorithms 
	On the convergence of stochastic approximations under a subgeometric ergodic Markov dynamic 
	Introduction
	Stochastic approximation framework with Markovian dynamic
	Markovian dynamic
	Truncation process 
	Control of the fluctuations and main convergence theorem

	Convergence of the stochastic approximation sequence under subgeometric conditions
	Proof of the theorem 5.3.1
	Sketch of proof
	Proof of Eq. (5.5)
	Proof of Eq. (5.6)
	Proof of Eq. (5.8)
	Proof of Theorem 5.3.1

	Example: Symmetric Random Walk Metropolis Hastings (SRWMH)
	Presentation of the algorithm
	First family of distributions (including the Weibull one) satisfying our assumptions 
	Second usual family (including the Pareto distribution) covered by our framework 
	Application to the Pareto distribution

	Application to Independent Component Analysis 
	Conclusion

	On the curved exponential family in the Stochastic Approximation Expectation Maximization Algorithm 
	Introduction
	Presentation of the SAEM
	Expectation Maximization (EM) Algorithm
	SAEM Algorithm 
	Exponentialization process

	Distance between the limit point and the nearest critical point
	Equation verified by the limit
	Heuristics 
	Upper bound on the distance between  and the nearest critical point of g

	Simulation of a counter example 
	Application of the SAEM algorithm to the exponentialized model
	Proposition of a new algorithm

	ANNEX: Proof of theorem 6.3.2 for m2


	IV Conclusion and perspectives

